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Summary 

The changes experienced in climate in many parts of the world have led to an increase in 

incidences of wildfire, and it has been predicted that these events will become more prevalent over 

time. All fires release volatile compounds into the atmosphere, and if they occur near vineyards 

where grapes are ripening, smoke taint may be detected in wines made from these grapes. Smoke 

taint is a critical issue for wine producing regions of the world as smoky and unpleasant flavours 

and aromas are perceived in affected wines, and this may have serious economic implications for 

producers. A number of researchers have tried to understand smoke taint, and their research has 

shown that volatile phenols (VP) are chemical compounds responsible. Additional research has 

revealed that although guaiacol, 4-ethylguaiacol, and 4-methylguiacol were originally identified as 

chemical markers of smoke taint, other VPs such cresols, eugenol, and phenol derivatives also 

play a role in causing smoky and ashy flavours. Strategies to eliminate the problem have ranged 

from washing the grapes and harvesting by hand, to minimising skin contact and choosing yeast 

and bacteria for minimal impact, and marketing wines for early release. These techniques work but 

do not eliminate an important underlying issue: glycoconjugates. Glycoconjugates or glycosides 

(VPs bound to sugars) are compounds that act as precursors of smoke taint produced as a 

detoxification by-product by vines. Glycosides can be hydrolysed by acid and enzymes, which 

means wines have the potential to increase available VPs in the wine, despite great care being 

taken to minimise VPs. 

This study expands on previous strategies that have been used to ameliorate smoke taint by using 

commercially available and legally permissible products in South Africa and exploring their 

effectivity at different dosage levels. Grapes in this study were harvested and deliberately smoked 

in crates using a bee-smoker, which produced smoke generated from fynbos (indigenous 

vegetation) and pine needles. Activated charcoal, oak extract, polymer powder were used in the 

first part of this study to try and ameliorate the taint during winemaking. GC-MS analysis of treated 

wines and controls revealed that only activated charcoal at elevated levels decreased VPs 

chemically. Sensory analysis of treated wines and controls by a trained panel using Descriptive 

Analysis showed that oak extract did increase levels of eugenol and consequently increased the 

‘woody’ attribute, thus somewhat masking the smoke aroma. None of the treatments were able to 

remove the smoke aroma and flavour satisfactorily, primarily because of ashy flavour on the 

palate, likely due to in-mouth enzymes hydrolysing VP-glycosides. Building on the data and 

knowledge accumulated during the first part of the study, the second part of the study attempted to 

reduce levels of volatile phenol glycosides by using β-glucosidases before treatment application for 

removing free volatiles (“release-and-remove”). The treatments used after the enzyme hydrolysis 

were activated charcoal, polymer powder, yeast hulls, and mannoproteins. Chemically, GC-MS 

showed that there were sharp 
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increases of VPs after the addition of enzymes, and some success in subsequent removal of the 

free volatiles. Further work is needed to determine the optimum levels of treatment. The data in 

this study showed potential for β-glucosidases to be used in the winemaking process, not only to 

release VPs (for later removal) but to increase the expression of fruity aromas in the wine. 

Enzymes may help to release other compounds that contribute to wine flavour, thus masking some 

of the smoke taint. 

This study contributes to the improved understanding of methods that can be used for the removal 

or treatment of smoke taint, but the need for further work was highlighted. The use of β-

glucosidases followed by multiple finings could be an option for producers after a fire incident has 

occurred near a vineyard during ripening of grapes. 
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Opsomming 

Die klimaatsveranderinge wat in baie dele van die wêreld ervaar word, het gelei tot ’n toename in 

die gevalle van veldbrande en daar is voorspel dat sulke gebeure met tyd sal toeneem. Alle brande 

stel vlugtige verbindings in die atmosfeer vry en as hulle naby wingerde plaasvind waar druiwe ryp 

word, kan ’n rooksmaak in die wyn geproe word wat met hierdie druiwe berei is. ’n Rooksmaak is 

’n kritiese kwessie vir die wynproduserende dele van die wêreld omdat rokerige en onaangename 

geure en aromas in die geaffekteerde wyne bespeur kan word en dit kan ernstige ekonomiese 

implikasies vir die produsente inhou. ’n Aantal navorsers het probeer om die rooksmaak te begryp 

en hulle navorsing toon dat vlugtige fenole (VF) die chemiese verbindings is wat daarvoor 

verantwoordelik is. Bykomende navorsing het getoon dat alhoewel guajakol, 4-etielguajakol en 4-

metielguajakol aanvanklik geïdentifiseer is as chemiese merkers van die rooksmaak, speel ander 

VF’s, soos kresole, eugenol en fenol derivate ook ’n rol in die veroorsaking van rokerige en 

asgeure. Strategieë om die probleem uit te skakel, wissel van die was van die druiwe en oes met 

die hand tot die vermindering van dopkontak, om gis en bakterieë met ’n minimale impak te kies en 

bemarking van die wyn vir vroeë vrystelling. Hierdie tegnieke werk wel, maar skakel nie ’n 

belangrike onderliggende kwessie uit nie: glikokonjugate. Glikokonjugate of glikosiede (VF’s 

verbind aan suikers) is verbindings wat optree as voorlopers van die rooksmaak wat geproduseer 

word as ’n detoksifikasie byproduk van die wingerdstokke. Glikosiede kan deur suur en ensieme 

gehidroliseer word, wat beteken dat wyn die potensiaal het om die beskikbare VF’s in die wyn te 

verhoog, ten spyte van sorg wat geneem word om VF’s te verminder. 

Hierdie studie brei uit op vorige strategieë wat gebruik is om rooksmaak te verminder deur 

kommersieel beskikbare en wetlik toelaatbare produkte in Suid-Afrika te gebruik en hulle 

doeltreffendheid by verskillende dosisse te ondersoek. Die druiwe vir hierdie studie is geoes en 

opsetlik met behulp van ’n rookpomp in kratte gerook, met rook wat deur fynbos (inheemse 

plantegroei) en dennenaalde gegenereer is. Geaktiveerde steenkool, eik-ekstrak en 

polimeerpoeier is in die eerste deel van die studie gebruik om te probeer om die rooksmaak tydens 

wynbereiding te verminder. GC-MS analise van die behandelde wyne en kontroles het getoon dat 

slegs geaktiveerde steenkool teen verhoogde vlakke die VF’s chemies kon verminder. Sensoriese 

analise van die behandelde wyne en kontroles deur ’n opgeleide paneel m.b.t. beskrywende 

analise het getoon dat die eike-ekstrak die vlakke van eugenol verhoog het en gevolglik die 

‘houtagtige’ eienskap verhoog het, wat in ’n mate die rook-aroma verbloem het. Geen van die 

behandelings kon die rook-aroma en geur doeltreffend verwyder nie, hoofsaaklik as gevolg van die 

asgeure in die palet, moontlik as gevolg van binnensmondse ensieme wat VF-glikosiede 

hidroliseer. Op grond van die data en kennis wat tydens die eerste deel van die studie verkry is, 

het die tweede deel van die studie gepoog om die vlakke van vlugtige fenolglikosiede te verminder 

deur gebruik te maak van β-glukosidases 
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voor die toepassing van die behandeling om vry vlugtige verbindings te verwyder. Die 

behandelings wat ná ensiemhidrolise gebruik is, was geaktiveerde steenkool, polimeerpoeier, 

gisdoppe en mannoproteïene. Chemies het GC-MS getoon dat daar skerp toenames in VF’s was 

ná die byvoeging van ensieme, en ’n mate van sukses in die gevolglike verwydering van vry 

vlugtige verbindings. Meer werk word benodig om die optimum vlakke van die behandeling te 

bepaal. Die data in hierdie studie het die potensiaal getoon vir β-glukosidases om in die 

wynbereidingsproses gebruik te word, nie net om VF’s vry te stel nie (vir latere verwydering) maar 

ook om die uitdrukking van vrugtige aromas in die wyn te verhoog. Ensieme kan help om ander 

verbindings vry te laat wat ’n bydrae kan maak tot wyngeur en wat kan help om ’n mate van die 

rooksmaak te verbloem. 

Hierdie studie dra by tot ’n verbeterde begrip van metodes wat gebruik kan word vir die 

verwydering of behandeling van rooksmaak, maar ’n behoefte aan verdere werk is uitgelig. Die 

gebruik van β-glukosidases gevolg deur veelvoudige brei is ’n moontlike opsie vir produsente 

nadat daar ’n brand naby ’n wingerd was terwyl die druiwe besig was om ryp te word.
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Isifinyezo 

Kuleminyaka eyedlule, izindawo lapho kutshalwa khona izithelo zamagilebhisi zivelelwa 

izinhlekelele zemililo eduze nazo futhi kubikwa ukuthi zisazoqhubeka lezi zigameko. Lokhu 

kuchaphazela iwayini elivutshwe ngalamagilebhisi ngoba liba nephunga elingemnandi lentuthu 

(smoke-taint). Izindawo ezihaqwa ilezi zigameko, yilezo ezitholakakala ezindaweni ezinesimo 

sezulu esishisa kakhulu futhi okunganethi ehlobo okubalelwa kuzo i-Australia, i-Melika, i-Spain, i-

Ningizimu Afrika, kanye namazwe asezwenikazi i-Ningizimu Amelika. Yonke imililo ikhiqhiza 

imvubela yamakhemikhali ahamba ngomoya. Yilapho ke, uma ukuthi lezi zigameko zenzeke eduze 

namasimu amagilebhisi iphunga lentuthu liye litholakale ewayinini.  Leli phunga lentuthu lingudaba 

olubucayi, ngoba kukhahlamezeka nezomnotho kanye naso isiphuzo sewayini ngoba sigcina 

sesinuka kabi bese singaphuzeki. Ongoti nochwepheshe sebahlola bathola ukuthi amakhemikali 

abandakanyekayo i-guaiacol, ne-4-ethylguaiacol, Kanye ne-4-methylguiacol, baphinde bathola 

ukuthi ama-cresols, ne-eugenol, kanye nemikhiqizo yama-phenol kuyimbangela ekunukeni 

kwentuthu.  

Izingcubabuchopho kulomkhakha seziqhamuke nezindlela zokugwema leli phunga okubalwa kuzo 

uguhlamba amagilebhisi, ukuwavuna ngezandla, ukuwagcina isikhathi esifushane exubene 

namakhasi, ukukhetha imvubelo efanele, kanye nokukhangisa ukuze asheshe athengwe 

amawayini. Lezi zindlela ziyasebenza kepha ziphelela endleleni uma sekufikwa kwenye 

inkiyankiya lapho amakhemikhali entuthu ekwisibopho nezinhlobonhlobo zikashukela 

(glycoconjugates). Lesi sibopho singandisa amakhemikhali entuthu uma singahlukaniswa i-esidi 

kanye nama-enzyme. Izitshalo zikhiqhiza lezibopho ngoba zizivikela ekuhaqweni amakhemikhali 

entuthu yomlilo.  

Ucwaningo lwethu lwandisa kulwazi oselukhona ngezindlela zokukhuculula amakhemikhali entuthu 

kwiwayini kusetshenziswa izinongo nemikhiqizo okusemthethweni nokutholakala simahla. Siye 

savuna amagilebhisi sase siwathuntelanisa ngentuthu yomlilo owakhiwe nge- fynbos, 

(okuyizitshalo semvelo eKapa) sase sakha iwayini ngawo. Imikhiqizo yokuhlanza iwayini 

esiyisebenzisile kwisigaba sokuqala ngamalahle ahluziwe, uketshezi lwesihlahla se-oak, kanye 

nemvuthu kapulasitiki. Sisebenzise i-GC-MS ukuhlola amakhemikhali entuthu atholakale 

emvubelweni, lapho sithole khona ukuthi amalahle alehlisile izinga lamakhemikhali entuthu. 

Siphinde saba nethimba labaqeqeshelwe ukunambitha baphinde banuke ukudla. Bona bathole 

ukuthi uketshezi lwenyusa izinga lokunuka kwezinkuni ewayinini. Bathe bangalizwa emlonyeni leli 

wayini bathola ukuthi linambitheka okomlotha kanye nentuthu. Isigaba sesibili besibhekene ngqo 

neziphopho zamakhemikhali entuthu kushukela. Lapho sisebenzise amalahle ahluziwe, impuphu 

kapilasitiki, izigujana zemvubelo kanye nama-mannophrotheni. Emuva kokuhlanza iwayini 

ngalemikhiqizo, kutholakale ukwehla kwamakhemikhali entuthu amazinga ehlukile. Ngaphambi 

kokukhuculula kufakwe ama-enzyme, okunguwo abahlukanisi bezibopho. Imiphumela iveze ukuthi 
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ama-enzyme ayalenyusa izinga lamakhemikhali entuthu, okuyinto enhle. Kusho ukuthi iziphopho 

ziyencipha. Ama-enzyme abe nomthelela omuhle wokunyusa izinga lokunuka kamnandi 

kwewayini, lokho kuchaza ukuthi angahlukanisa izibopho ngaphambi kokuhlanzwa kweyayini 

aphinde anyuse izinga lokunambitheka kwalo.  

Lolu cwaningo lwengeza kulwazi oselukhona ngezindlela zokuhlanza iwayini emuva 

kokungcoliseka ngamakhemikhali entuthu. Ukusetshenziswa kwama-enzyme kunganomthelela 

omuhle kwiwayini elikhahlamizekile ukuze lithengiseke lisesemnandi. 
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Chapter 1:  General Introduction and Project aims 

1.1  General Introduction 

In recent years, grape growing areas have seen an increase in veld fires which have resulted in 

smoke taint in wines produced from these regions. Areas affected by veldfires in the last decade 

have Mediterranean climates (Kelly et al. 2012) with hot, dry summers, and include Australia, the 

United States, Spain, South Africa, and South American countries. In 2003, the first serious 

economic impact due to smoke-taint was recorded in Australia (Høj et al. 2003). Australian 

researchers have since been the pioneers in this regard and have made noticeable strides in 

acquiring knowledge in this field. 

The Western Cape is the main grape growing and wine making region in South Africa. The 

majority of devastating fires have been in 2015, 2014, and 2016 according to Global Fire Watch 

(ttps://fires.globalforestwatch.org) data of reported fire over the years. Strydom et al. (2016) found 

that for the period of 2003 to 2013, mountain fynbos was responsible for 9.26% of fires recorded 

in South Africa and the Western Cape experienced the highest frequencies of recorded fires from 

January to April. The losses due to veldfires in proximity to vineyards have badly affected wine 

producers, which is why methods of ameliorating the issue have been under investigation.  

The exposure of grapes to veldfire smoke results in flavours and aromas that are unpleasant in 

wine, collectively called ‘smoke taint’ (Kennison et al. 2007). Smoke produces volatile phenols 

(VPs) which are associated with different aromas and tastes in wine (Høj et al. 2003). Different 

sources of fires will result in varied combinations of produced volatile phenols that are associated 

with smoke taint (Kelly et al. 2012). The volatile phenols enter the grapes through three pathways 

namely; the berries, leaves and roots (Ugrekhelidze et al. 1997). The berries then metabolise these 

volatile phenols in order to reduce the toxicity of the volatiles by chemically bonding them to sugars 

and storing them in the berries, making them less soluble in water (Korte et al. 2000; Kennison 

et al. 2008). The compounds formed are glycoconjugates (Kennison et al. 2008) and will remain in 

the grapes and the grape juice until external influences such as acidity, enzymes, bacteria and 

yeasts start interacting with them.  

Smoke taint is associated with certain flavours which are pungent and unpleasant. These include 

‘smoky’, ‘earthy’, ‘leathery’, ‘smoked meats’, ‘tarry’, and ‘rubbery’ aromas which are accompanied 

by ‘ashy’, ‘smoky’, and ‘green’ flavours (Høj et al. 2003; Kennison et al. 2007; 2009; Whiting & 

Krstic 2007; Hayasaka et al. 2010; 2013; Parker et al. 2012). These flavours have been linked to 

volatile phenols (Kennison et al. 2007) and thresholds have been determined. The chemical 

compounds that have been used as markers for smoke taint are guaiacol 4-methylguaiacol and 4-

ethylphenol (Kennison et al. 2007). 

Little has been published on the use of a wide range of commercially available products on the 

removal of smoke taint on both aroma and taste of wine. The available research mainly focuses on 
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the removal of one to six compounds (Kennison et al. 2007; 2009; Parker et al. 2012; 2013). The 

issue of the release of VPs from glycoconjugates into the wine over time has not received a lot of 

attention, although some research has been carried out on bottle-aged wines (Singh et al. 2011, 

Hayasaka et al. 2013). A better understanding of the effects of amelioration methods, and 

management of VPs and glycosides could benefit the wine industry and help produce wines of 

better quality after fire and smoke incidents. 

1.2  Project aims 

The aim of this study was mainly to investigate the use of legally permissible and commercially 

available products in South Africa on the removal of smoke taint in wines that were affected by 

smoke. A further aim was to attempt to reduce volatile phenols in finished wine by treating smoke-

tainted wine with β-glucosidase enzymes to release VPs, followed by fining and bottling. 

 

The specific aims and their objectives were as follows: 

1. To investigate the use of permissible additives for reduction of smoke taint 

 

(i) To deliberately smoke grapes after harvest with the aim of producing smoke tainted wine for 

treatment purposes, 

(ii) To investigate the use of activated charcoal, polymer powder, and an oak extract and to 

determine the effective dosage levels of each treatment on the removal of VPs, 

(iii) To analyse and quantify the selected aroma compounds in the different wines using gas-

chromatography, and 

(iv) To test the effect of treatments on sensory attributes and selected chemical compounds. 

2. To investigate the use of β-glucosidase enzymes in reduction of smoke taint 

 

(i) To produce wine made from smoke-affected grapes, 

(ii) To investigate the use of β-glucosidase enzymes to release VPs, 

(iii) To test the efficacy of activated charcoal, polymer powder, yeast hulls, and mannoproteins 

on the removal of these VPs, 

(iv) To analyse and quantify the selected VPs in the different wines using gas-chromatography, 

and 

(v) To investigate the effect of treatments on sensory attributes. 
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Chapter 2:  Literature Review 

2.1  Introduction 

Over the ages, fire has become an integral part of human existence, providing heat for warmth and 

cooking, and protection. Cooking food has led to an improvement in the safety of the human diet 

which in turn led to an increase in brain size of humans. Fires also provide light at night, and heat 

which allowed our ancestors to ward off predators, as well as means for earlier humans to be able 

to inhabit harsher environments. It has also been theorised that fire had a significant role to play in 

social and behavioural of humans by encouraging social circles and gatherings around the fires 

(Gowlett 2010). Fire is undoubtedly an irreplaceable resource for human survival (Gowlett 2016), 

but studies concerning its history and impact are surprisingly scarce. 

Fire can also have devastating effects on society, environment, and economy when it spreads 

rapidly in uncontrolled manner (Strydom et al. 2016). Human and animal lives, and entire 

ecosystems can be lost. According SA fire loss statistics 2014 (http://www.fpasa.co.za/journals/sa-

national-fire-statistics), over 800 human lives were lost due to fire events and the damage 

sustained amounted close to R2 billion in the year 2014. Strydom et al. (2016) suggested that 

there are two possible scenarios for fire formation due to climate change. The first scenario is that 

due to a warming climate, air temperatures will rise, heat waves and drought become more severe, 

plant material in the environment will dry at higher rates, leading to drier fuels for fires therefore an 

increase in fire occurrences (Strydom et al. 2016). Scenario two outlined by the authors is one in 

which the warming climate results in an increase in rainfall which will increase vegetation growth, 

leading to heavier fuel loads available which will increase fires and rates of speed from which they 

spread (Strydom et al. 2016). Both scenarios indicate that fires will become more devastating over 

time. 

The Western Cape is the main grape growing and wine making region in South Africa. The majority 

of devastating fires have been in 2015, 2014, and 2016. Strydom et al. (2016) found that for the 

period of 2003 to 2013, mountain fynbos was responsible for 9.26% of fires recorded in South 

Africa and the Western Cape experienced the highest frequencies of recorded fires from January 

to April, which is the pre-harvest / harvest period for grapes in the Western Cape. In recent years, 

grape growing areas which are mostly found in Mediterranean climate (Kelly at al. 2012) have seen 

an increase in bushfires which have resulted in the taint in grapes and wine produced. The wine 

making regions that have been increasingly affected over the years are Australia (Figure 2.1a), 

America (Figure 2.1b), Spain, South Africa (Figure 2.1c), and South American countries (not 

shown). The year 2003 in Australia had the first noticeable loss of income as a result of smoke/fire 

impact on vineyards which was recorded, and thus spurred research into smoke taint. Australia 

have taken the lead in this regard and have made noticeable strides in acquiring knowledge in this 
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field. The losses recorded have negatively impacted producers (Høj et al. 2003), which is why 

methods of ameliorating the issue have been under investigation.  

(a) (b) (c) 

 

Figure 2.1:  Illustration of recorded fires over the years from 2011 to 2018 in wine producing areas of 
(a) Australia, (b) USA, and (c) South Africa (Global Fire Watch 2018) 

2.1.1  Chemical compounds associated with smoke taint 

“Taints are unpleasant odours or tastes resulting from contamination of a food by some foreign 

chemical with which it accidentally comes into contact.” (Baigrie 2003). Smoke taint is then the 

amounting flavours that are unpleasant in wine due to the exposure of grapes to bushfire smoke. 

Smoke taint in a well-known issue that has been explored by numerous authors in reviews over the 

years (Krstic et al. 2015). Therefore, this review will not be comprehensive on smoke taint but will 

be limited to issues that pertaining to the removal of smoke taint in wine as well as the sensory 

effects of volatile compounds. 

Smoke and ash result from the combustion of flammable material, and in the specific case of 

smoke taint, from the burning of vegetation near vineyards. Smoke - contains volatile phenols 

which are produced through the pyrolysis of lignin, and are associated with particular aromas and 

tastes in wine (smoke taint). Different sources of smoke (for example, different types of burning 

vegetation) will result in varied combinations of volatile phenols. Moreover, there are variables that 

have been identified as having an effect on the pyrolysis of lignin; these include the composition 

lignin, age of vegetation, state of decay, temperature, and oxygen availability (Kelly et al. 2012). 

Smoke taint is associated with certain flavours which are pungent and unpleasant. These include 

wine descriptors such as ‘smoky’, ‘earthy’, ‘leathery’, ‘smoked meats’, ‘tarry’, and ‘rubbery’ aromas 

which are accompanied by ‘ashy’, ‘smoky’, and ‘green’ flavours on the palate (Høj et al. 2003; 

Kennison et al. 2007; 2009; Whiting & Krstic 2007; Hayasaka et al. 2010a; 2013; Parker et al. 

2012). These flavours have been linked to their chemical counterparts (Kennison et al. 2007) and 

thresholds have been determined (Table 2.1) and their glycoconjugates. The chemical compounds 

that have been mainly associated with smoke taint are guaiacol, 4-methylguaiacol, 4-ethylguaiacol, 

4-ethlyphenol and eugenol (Kennison et al. 2007). The volatiles are usually quantified through GC-

MS analysis (Wilkinson et al. 2011; Singh et al. 2012), and their glycocojugates by LC-MS 

(Hayasaka et al. 2010a). Sensory analysis usually uses descriptive analysis (DA) because of its 

repeatability (Martin et al. 2000; Lotong et al. 2002). Other methods of sensory evaluation such as 

sorting (Cartier et al. 2006) have been investigated against DA and were found to be effective at 

producing similar results even in untrained panellists. 
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Table 2.1:  Volatile phenols and their aroma descriptors (source: De Vries et al. 2016) 

Compound Aroma descriptors Odour 
Threshold (µg/l) 

Reference 

Guaiacol Smoky, sweet, medicinal 7.5-23 Ferreira et al. 2000 
Parker et al. 2012 

2,6-Dimethylphenol Medicinal, phenolic 570 Escudero et al. 2007 

4-Methylguaiacol Ashy, toasted, vanilla-like 65 Kennison et al. 2009 

o-cresol Band-aid, medicinal, smoky 62 Parker et al. 2012 

Phenol Sickeningly sweet, irritating 7100 Parker et al. 2012 
Panzeri, 2013 

4-Ethylguaiacol Smoke spicy, toasted 110 Kennison et al. 2009 

m-cresol Dry, tar, medicinal-leathery 20 Parker et al. 2012 

p-cresol Band-aid, phenol-like 64 Parker et al. 2012 

2,3-Dimethylphenol Phenolic 500 Verschueren. 1983 

Eugenol Clove 6 Escudero et al. 2007 

4-Ethylphenol Barnyard, horsey, phenolic 605 Kennison et al. 2009 

4-Vinylguaiacol  Clove, curry 40 Parker et al. 2012 

3,4-Dimethylphenol Sick sweet, medicinal 1200 Burdock 2010 

     

The chemical thresholds have also been determined for the compounds associated with smoke 

taint (Table 2.1). Some of these compounds and aromas can also be linked to other taints like so-

called ‘brett’ (off-odour associated with Brettanomyces contamination of wine) (Chatonnet et al. 

1992; Lisanti et al. 2017) and ‘greenness’ (van Eeden 2009) because of the increase in alcohol 

(Kennison et al. 2007) which has an affect on the perceived ‘green’ character (Goldner et al. 2009). 

Brettanomyces and Dekkera yeast activities in wine result in the production of 4-ethylguaiacol and 

4-ethylphenol (Chatonnet et al. 1990), compounds which are also linked to smoke taint. Guaiacol, 

4-methylguaiacol, and eugenol are produced through the pyrolysis of oak lignin during the toasting 

process, so they are also associated with oak wood maturation (Kennison et al. 2008). 

2.1.2  Transfer to the berries and wine 

Volatile phenols enter grapes through three pathways. The first is via diffusion through the berry 

skin, second is by absorption through the leaves (Krstic et al. 2015) and the third route is uptake 

through the root system from affected groundwater (which is less likely is the Western Cape due to 

the dry climate in summer). A number of factors have been shown to play a role in uptake of VPs 

including the duration and intensity of smoke exposure (Kennison et al. 2008), thickness of berry 

skins and the grape varietal (Sheppard et al. 2009; Singh et al. 2011), although Kelly et al. (2014) 

indicated that cultivar differences did not play a significant role. 

Sheppard et al. (2009) found that even short exposure of an hour pre- and post-harvest smoke on 

grapes could result in perceivable taint during sensory evaluation of wine. Grape berries have been 

found to be mostly susceptible to smoke uptake seven days post veraison (Kennison et al. 2009). 

This research was further expanded upon by Kennison et al. 2011, who investigated the effect of 

smoke exposure at key phenological stages. The study found that smoke exposure carry-over 

effects are only limited to physiological responses such as yield and bunch number and VPs are 
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not transferred to the next generation of grapes. Moreover, if the vines are exposed prior to 

flowering, then the resulting smoke taint will be low compared to the stages from fruit-set to 

harvest, as the berries are more likely to take up VPs than leaves or flowers. The reasons cited for 

this was that the source-sink relationship between leaves and berries, which plays a significant 

role. In earlier phenological stages there are no berries to store the products of smoke absorbed. 

After berry set, the increase in berry size causes an increase in the ability of the plant to store VPs 

absorbed by the leaves (Kennison et al. 2011). Also, the berries themselves are directly 

responsible for some absorption. The berries are able to reduce toxicity of the volatile phenols by 

making them soluble in water through the addition of a glucose group to the VP. 

An earlier study by Kennison et al. (2007) concluded that even after harvest, berries were still 

susceptible to smoke taint as they continued metabolising VPs after harvest. The VPs are then 

bound to sugars in the berry in a process called glycosylation as it’s a detoxification mechanism 

(Korte et al. 2000; Kennison et al. 2008). The compounds formed are called ‘glycoconjugates’ or 

‘glycosides’ and will remain in the grapes and the grape juice until external influences such as 

acidity, enzymes, bacteria and yeasts start interacting with them (Sarry et al. 2004).  

2.1.3  Glycosides 

A number of studies of glycosylation of volatile phenols in grapes have been conducted over the 

years. Hayasaka et al. (2010) found the glycoconjugates formed after the application of liquid 

guaiacol to vines between guaiacol and glucose, and disaccharides identified as glucose-

glucoside, pentose-glucoside and rutinoside could be detected in leaves and/or fruits. In another 

study, the most abundant glycosides found in fruit were glucose-pentose disaccharides, followed 

by rutinosides (Pardo-Garcia et al. 2017) as shown in Figure 2.2.  

 

Figure 2.2:  Illustration of the most abundant glycoconjugates in wine. (Pardo-Garcia et al. 2017) 

Glycosylation was shown to occur 10 to 14 days after smoke exposure and the glycolysated 

products were mostly formed in the skin and pulp (Dungey et al. 2011). This was further 

emphasised by a study done by Pardo-Garcia et al. 2017, where after foliar application of guaiacol, 

elevated levels of glycoconjugates were observed after 10 days of application. These compounds 
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can also be found in small amounts in wines not made from smoke-exposed grapes (Dungey et al. 

2011; Ristic et al. 2011; Fudge et al. 2011).  

Glycosides are hydrolysed through acid and enzyme catalysed hydrolysis during and after 

winemaking through various processes (Kennison et al. 2008). Ristic et al. (2011) evaluated the 

extraction of glycoconjugates into wine using different grape processing techniques. Fermenting 

red to dryness, crushing then destemming white wines, and whole bunch pressing of white wines 

resulted in 85%, 25%, and 18% extraction of glycoconjugates, respectively.  

Yeast and bacterial contribution have been observed in the release of smoke VPs from their bound 

state (Kennison et al. 2008; Dungey et al. 2010; Ristic et al. 2011). The glycosidase activity has 

resulted in increases of VPs after fermentation compared to those observed before fermentation 

(Hayasaka et al. 2010). Saccharomyces cerevisea yeast species have been found to exhibit β-

glucosidase activity at low levels while non-Saccharomyces genera such as Candida and Dekkera 

(Sarry et al. 2004) have been found to express β-glucosidase activity when cultured on a suitable 

medium. Botrytis cinerea has been found to increase the presence of β-glucosidases in the wine 

but these are inhibited by a compound (glucono-d-lactone) that is found in mould contaminated 

juices (Gunata et al. 1989). The preparations which are used for pectic and hemicellulose enzymes 

in juice clarification also contain a high number of β-glucosidases which are isolated from 

Aspergillus spp. (Sarry et al. 2004). Oenococcus oeni has also been found to present β-

glucosidase activity (Boido et al. 2002, Grimaldi et al. 2000). Some of the β-glucosidases can be 

inhibited by high levels of glucose while those that have been isolated from wine grapes have 

shown resistance (Sarry et al. 2004). Lactobacillus plantarum has been under investigation for its 

β-glucosidase activity (Sestelo et al. 2004), where abiotic stresses were investigated and it was 

found that pH at 5 and temperature of 45°C were ideal for enzyme activity.  

β-Glucosidase enzymes are involved in the breakdown of the glyosidic bonds between sugars and 

volatile phenols and, in winemaking, are mainly used for enhancing aroma (Baffi et al. 2013a). 

Glycosides have been shown to persist in wine during the winemaking process. A study by Kelly et 

al. 2012 found that 72-87% of smoke derived volatile phenols exist in glycoconjugated form at 

bottling and after 19 months of wine ageing it was found that 70% of VPs remain bound. 

The long-term implication of glycoconjugates present in wine at bottling is the re-release of VPs 

from their bound glycoconjugate form during maturation and bottle-aging. Acid hydrolysis occurs in 

the bottle at wine pH over time. In lab conditions, intentional acid hydrolysis was carried out, and it 

was found that a total of 92% of smoke glycosides had been eliminated with low levels of free VPs 

being observed as they were said to have decomposed (Hayasaka et al. 2010a). A contrasting 

study showed that low levels in the increase of VPs are observed over a period of 5-6 years and 

they concluded that the intensity of the perceived smoky aromas is cultivar dependent (Ristic et al. 

2017). 

It has also been found that in-mouth enzymes contribute to the release of the VPs. The sensory 

effect of glycoconjugates has been assessed and although each panellist’s experience of intensity 
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was different, the in-mouth release occurred in all cases (Parker et al. 2012; Mayr et al. 2014). This 

was attributed to the presence of in-mouth bacterial microflora or epithelial cells for being sources 

of β-glucosidases. Moreover, high glucose levels have been found to hinder the activity of β-

glucosidase enzymes in the mouth which is why the potential of smoke taint cannot be achieved by 

tasting of berries (Hemingway et al. 1999; Parker et al. 2012; Mayr et al. 2014). 

2.2  Viticultural and oenological amelioration 

2.2.1  Viticultural amelioration 

Studies over the years have determined that smoke is a complex mixture of gases that can have 

phytotoxic effects on plants (Ristic et al. 2016). These gases can cause leaf necrosis and inhibit 

photosynthetic abilities of the vines through the hindrance of stomatal conductance (Kennison et al. 

2009; Ristic et al. 2016). The total soluble solids and yield were found to decrease in the fruit 

harvested from smoked exposed vines depending on the number of smoke applications (Kennison 

et al. 2008). However, the negative effects of smoke exposure on the grapevine is also influenced 

by the grape varietal, type of smoke and the duration of smoke (Ristic et al. 2016; Calder et al. 

2010). 

Several techniques of amelioration have been investigated in viticulture. Leaf removal is a practice 

performed during the growing season to control canopy density and regulate bunch exposure 

(Ristic et al. 2013). The effect of leaf removal pre- and post- smoke application was investigated 

(Kelly et al. 2012), and results showed that smoking without leaf removal yielded similar VPs in 

wines made from exposed grapes, as post-smoke leaf removal. However, leaf removal before the 

smoke event yielded the highest concentration of VP in the wine. The same study found that 

glycoconjugate levels in the wines were similar for all three treatments. Defoliation pre-smoking 

produced wines with intense smoky, ashy, burnt rubber and bitterness attributes, leaf removal 

post-smoking application reduced the intensity of cold ash and ashy aftertaste without affecting the 

expression of fruit aroma and flavour. 

The influence of fruit maturity was also evaluated by Kennison et al. (2011) and Ristic et al. (2015). 

It was shown that harvesting between 16-20 and 22-25˚Brix did yield differences, but these 

differences were between cultivars. Certain cultivars (Sauvignon Blanc and Chardonnay) may 

exhibit high levels of smoke associated characteristics after early harvest and another (Merlot and 

Shiraz) may not. This was observed in both red and white cultivars (Ristic et al. 2015). Harvesting 

later in the season was also shown to increase fruit expression in some cultivars such as 

Chardonnay, which may have had a masking effect on smoke aromas. In contrast, Shiraz was 

shown to exhibit smoke taint aromas irrespective of ripeness stage (Ristic et al. 2015).  

2.2.2  Oenological/winemaking interventions 

Previous research has looked at different oenological and winemaking solutions to try and 

eliminate volatile phenols associated with smoke taint. The following techniques and practices 
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have been evaluated and some conclusions were made but these methods still fall short at solving 

the whole problem. Hand harvesting (Whiting & Krstic, 2007) has been recommended for its 

gentler approach in handling of bunches. By limiting skin breaks which allow for the release of 

juice, skin contact with grape juice is limited therefore extraction is slowed down. The exclusion of 

leaf material (Whiting& Krstic, 2007; Simos 2008) was shown to prevent the extraction of VPs from 

leaves into the wine/juice. Washing grapes (Høj et al. 2003) helps with removal of ash from the 

surface but VPs would have been absorbed at that stage. Keeping fruits cool after harvesting 

(Whiting & Krstic 2007; Simos 2008) and processing at ≤10ºC provided less extraction of VPs from 

the skin. Whole bunch press (Simos 2008; Ulrich 2009) was more effective in reducing extraction 

of VPs in white wines as less skin contact is needed post-fermentation compared to red wines. 

Minimising skin contact (Kennison et al. 2008; Simos 2008; Ristic et al. 2011) at any point of the 

wine making process allowed for decreased extraction from the skin of a high number of VPs. 

Yeast selection (Ristic et al. 2011) was found to affect smoke related aromas, flavours and 

chemistry of wine. Masking of smoke aromas was investigated with addition of oak and tannins, 

this increased the complexity of the wine (Fudge et al. 2011). Reverse osmosis (Fudge et al. 2011) 

was found to remove VPs but other wine components were also removed. It was further found that 

smoke taint may return through hydrolysis if treated using reverse osmosis as glycoconjugates still 

remain. Because of the glycosylation of VPs, marketing for early release was suggested (Simos 

2008; Ulrich 2009; Fudge et al. 2011; Singh et al. 2011) which makes sense for white wines and 

wines with minimal skin contact but would prove to be a less effective strategy on red wines which 

are fermented on skins. 

2.3  New research products in experimental phase 

Chemistry has been spear-heading research into developing products that may be suitable for the 

removal of VPs via adsorption. A filter membrane called “Molecular Imprinted Polymer” (MIPs) has 

been developed that be engineered to have sites that are molecular specific for binding thus the 

extraction of the targeted molecules from wine (Teixeira et al. 2015). A study sought to design such 

a membrane to extract VPs from wine, and it was very effective with 50-60% reduction rate of VPs. 

However, the study also showed that other non-volatile phenols were removed significantly by this 

treatment (Teixeira et al. 2015). 

A cork extract suberin was researched by Gallardo-Chacon et al. (2015), for its ability to remove 4-

ethylphenol and 4-ethylguaiacol. The results showed a decrease of the compounds by 45- 71% 

when treated with suberin, the wide variation was attributed to different wine matrices. Suberin is a 

water insoluble biopolymer that serves as protection for plants against environmental damage and 

it represents approximately 37% w/w of 3g cork sample (Gallardo-Chacon et al. 2015). 

Some work has shown that phenolic compounds, sulphur products and aroma compounds can be 

adsorbed by yeast lees (Chassagne et al. 2005; Mazauric et al. 2005) which suggest that this 

substance can be used to remove undesirable flavours. Other studies (Chassagne et al. 2005; 
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Pérez-Serradilla & Castro 2008; Pradelles et al. 2008) worked on the capability of Saccharomyces 

cerevisiae cells on the sorption of 4-ethylphenol and they showed that adsorption was greatly 

influenced by yeast strain, medium and mode of culture, and yeast cell wall nature and 

composition. So, with use of the lees drying process in three different ways, it was found that 

between 61.5% and 192% sorption was achieved in the adsorption of 4-EP (Pradelles et al. 2009). 

The potential of β-glucosidases (1,4-β-D-glucoside glucohydrolases, EC 3.2.1.21) in wine has 

been explored as an enhancer of wine aroma through the hydrolysis of glucoside precursors, 

especially terpene release (Sarry et al. 2004 ; Baffi et al. 2012). In wines affected by smoke, this 

application means the release of bound VPs (Parker et al. 2012). 

Mannoproteins have been studied and it was determined that they interact with volatile aromas 

(Lubbers et al. 1993). Mannoproteins are released during yeast autolysis or at fermentation and 

can interact with phenolic compounds, improving colour stability and decreasing astringency 

(Chatonnet et al. 1991; Pérez-Serradilla et al. 2008). Vidal et al. (2003) estimated that 

mannoproteins make up 35% of the total polysaccharides in red wines.  

2.4  Conclusion 

A lot of research has gone into understanding smoke taint and its effects on wine. Through the 

investigation of volatile phenol compounds responsible, to identifying microorganisms that play a 

role and the understanding of the chemical interactions, the understanding of the issue is 

becoming ever so clearer, but more work is still needed. Studies still need to evaluate and/or 

develop potential products to eliminate volatile phenols completely, both in their bound and free 

forms as smoke taint can persist even after treatment. In the context of the South African wine 

industry, a study that focuses on the removal of smoke taint in wine using products that are 

available locally and are legal in the wine legislature has not been done. Studies on amelioration 

have only been done on Pinot noir, Merlot, and Cabernet Sauvignon (Fudge et al. 2011; 2012) 

cultivars, therefore more research is needed for other cultivars that are grown abundantly in South 

Africa like Chenin blanc and Pinotage. The effect of fining using the experimental products 

developed in new research have not yet been quantified in a wine matrix whether it be natural or 

synthetic. Linking sensory flavours to specific glycoconjugates is research that still needs to be 

done so that strategies specific to the removal of those glycosides can be devised.  
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Chapter 3:  Amelioration of smoke taint in red wine using 
permissible fining treatments 

3.1  Introduction 

Smoke taint leads to flavours of ‘smoky, burnt’, ‘burnt rubber’, ‘ashtray’, ‘cold ash’, ‘smoked meats’, 

‘smoked foods’, ‘leather’, ‘disinfectant/hospital’, ‘medicinal’, ‘earthy’ aromas (Høj et al. 2003, 

Kennison et al. 2007; 2009; Whiting & Krstic 2007; Hayasaka et al. 2010; 2013; Parker et al. 2012) 

with “an excessively drying back-palate and retronasal ash character” (Hayasaka et al, 2013) that 

are unpleasant in wine due to the exposure of grapes to bushfire smoke (Kennison et al. 2007). 

Smoke produces volatile phenols which are associated with different aromas and tastes in wine 

(Parker et al. 2012). The berries then metabolise these volatile phenols for reduction of the 

volatiles’ toxicity by making them soluble in water (Korte et al. 2000).  

Smoke taint is associated with certain flavours which are pungent and unpleasant. These flavours 

have been linked to chemical counterparts and odour detection thresholds have been determined 

in various matrices as listed in Chapter 2 Table 2.1. The chemical compounds that are associated 

with smoke taint are guaiacol, 4-methylguaiacol, and 4-ethylphenol (Kennison et al. 2007). These 

are usually quantified through the use of GC-MS methods of analyses (Wilkinson et al. 2011; Singh 

et al. 2012; De Vries et al. 2016). Over time, other volatile compounds have been identified as 

contributors to the smoke taint; guaiacol. 4-vinylguaiacol, phenol, o-cresol, m-cresol, p-cresol, and 

4-methylsyringol, (Parker et al. 2012,2013; De Vries et al. 2016); 

Studies into the effects of amelioration on smoke-taint during winemaking are very limited and 

seem to give some contradictory results. The earliest study to investigate amelioration of smoke 

taint evaluated techniques such cold maceration, fermentation on skins, fermentation with different 

yeast strains and the addition of oak chips and tannins (Ristic et al. 2011). The logic applied to 

using cold maceration for smoke-exposed grapes was that the typical process decreases the 

extraction of aromatic and phenolic compounds compared to normal on-skin fermentation, so the 

same should apply with smoke related VPs. The overall phenolic concentration was indeed 

reduced, but wines made from the smoked grapes displayed increased brown hue. This was 

enhanced by some yeast strains which, according to Ristic and co-workers (2011), were unable to 

produce secondary alcoholic fermentation metabolites which are present in the formation of 

anthocyanin pigments.  

Yeast strain selection was found to have effects on VA production, titratable acidity, and extraction 

of wine phenolics such as anthocyanins (Ristic et al. 2011). Yeast strains were also found to affect 

the β-glucosidase activity by increasing guaiacol concentrations. The yeast strains that were 

selected in the study conducted by Ristic and co-workers (2011) showed little to no β-glucosidase 

activity. This study showed that yeast strain selection is important in the winemaking process if β-

glucosidase activity is what is sought after. 
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Oak chips and tannin added during the winemaking process can significantly reduce the perception 

smoke-related sensory attributes (Ristic et al. 2011). This was found to be because of the masking 

effect that toasting of oak has on the wine by contributing flavours such as vanillin, acetovanillone, 

and syringaldehyde (Ristic et al. 2011; Kelly et al. 2015). It was also found that toasted oak chips 

increased the perceived fruit aroma compared to the control, which is unexpected. Oak aging and 

maturation are well-known to increase concentrations of guaiacol and 4-methylguaiacol (Ristic et 

al. 2011).  

The use of reverse osmosis and solid phase adsorption by Fudge et al. (2011) was investigated as 

a potential solution to the removal of volatiles associated with smoke taint. Reverse osmosis is a 

filtration process across a semi-permeable membrane against a concentration membrane (Paulsen 

et al. 1985). In the wine industry, reverse osmosis is frequently used to change alcoholic content, 

VA, and acidity, although there is little formal research on these applications. Reverse osmosis has 

been shown to remove 4-EG and 4-EP associated with wines affected by Brettanomyces when 

used in conjunction with solid phase adsorption (Ugarte et al. 2005), reducing VPs by more than 

67% after a three-hour treatment. This method also removed some desirable wine aroma as it did 

not discriminate between compounds selected for removal and those that contribute to the wine 

positively. Sensory studies have found significant differences in the removal of smoke taint related 

flavours, but also that smoke taint can gradually increase over time in the wines because of 

hydrolysis of glycoconjugates (Kennison et al. 2008).  

Commercial fining agents have also been investigated to determine their efficacy in treating smoke 

taint in wine. Previous studies have used some of the agents in the removal of volatile phenols 

associated with “brettiness’ (Lisanti et al. 2008) and greenness (Pickering et al. 2006) successfully. 

A study by Fudge et al. (2012) showed that fining agents (Table 3.1, number 1-7) were least 

effective against smoke volatile phenols due to their affinity to other phenols in wine. It was 

observed that there were losses of colour and flavour. Activated carbon was found to be the most 

effective as it removed 58-71% of VPs and enhancing the expression of fruity characteristics after 

application, but this treatment is generally considered a ‘last resort’ as it is well-known to affect 

colour, aroma and enhance oxidation (Zoecklein 1990). Activated carbon has the ability to adsorb 

compounds of low polarity, so depending on the type of charcoal used and dosage, aroma and 

colour losses can be observed (Lopez et al. 2001). 
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Table 2.1:  Fining agents used in previous studies percentage removal of volatile phenols (adapted from 
Fudge et al. 2012) 

 Fining agent Removed VPs Amount removed 

1 egg albumin   

2 potassium caseinate   

3 isinglass   

4 bentonite   

5 PVPP   

6 gelatine   

7 yeast cell walls   

8 Silica sol/activated carbon VPs  3-14% 

9 Synthetic mineral Syringol 
4-MG 
Guaiacol and cresols 

58% 
29% 
13% 

10 Activated carbon VPs 58-71% 

 

Yeast hulls have been investigated for the removal of 4-ethylphenol by Pradelles et al. (2009). 

These authors found that 61.5% to 192% removal was found, depending on the drying process of 

the yeast cells and yeast strains. The increase in surface area of the yeast cells from the damage 

sustained through the drying processes resulted in the greatest removal of 4-ethylphenol. 

Polyethylene terephthalate (PET) is food grade plastic that is used mainly for packaging a variety 

of foods. Many studies have looked at the impact PET has on aroma profiles of wines and it has 

been found that the differences in manufacturing of PET like incorporating oxygen scavengers 

(Dombre et al. 2014) can have minimal effect on wine aromas. Moreover, in the process to reduce 

the environmental footprint of using plastic, recycled PET is preferred. However, it has been found 

that compounds trapped in the plastic matrix can desorb into wine therefore affecting the wine 

aroma packaged using the PET (Dombre et al. 2014). 

The glycoconjugated forms were not shown to be affected by fining in any of the studies. However, 

in research conducted by Lisanti et al. (2017), PVPP and deodorant activated charcoal resulted in 

a significant decrease in 4-ethylphenol and 4-ethylguaiacol of 11 to 18% in naturally contaminated 

wines and the ‘fruity’ and ‘berry’ aromas were increased with the use of these treatments, probably 

as a result of the removal of the masking effect. Strategies to remove all free volatile phenols from 

the wine before the wine is released for sale will ignore the pool of potential smoke-taint 

precursors, and by the time the wine is opened and consumed, a significant level of free volatile 

phenols may have built up in the bottle (Singh et al. 2011). 

In order to prevent this from happening, it is necessary to have wine-making strategies that can 

deal with both free volatiles and glycosides. The treatments used were activated charcoal, oak 

extract and polymer powder. In literature, they have been proven to remove VPs at varying 

degrees as well as preferred VPs for removal (see Chapter 2). In South African wine legislation, 

the use of tannin (if not ‘foreign to wine’) and charcoal is permitted while the use of polyethylene 
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terephthylene (PET) is only approved for use in bottling wine as containers (SAWIS, Liquor 

products act 60 of 1989). 

3.2  Aims of the project: 

The aims of this aspect of the project were: 

A. To test the efficacy of three legal additives on deliberately smoke-tainted wines for removal of 

volatile phenols and smoke taint 

i) To test efficacy of additives at two different levels (one level recommended by the 

manufacturer and the second level will double the initial dosage) on VP removal and/or 

reduction. 

ii) To chemically and sensorially analyse treated and untreated wines for success in 

reduction of taint in comparison with controls. 

B. To investigate the potential for hydrolysis as a strategy for removing glycosides. 

i) To establish the potential for smoke-affected wines to manifest a taint after slow acid 

hydrolysis of precursors during bottle-aging. 

ii) To carry out a complete enzyme hydrolysis and monitor VPs before and afterwards in 

order to determine the concentration of glycolysated precursors, and the potential for 

smoke-taint development. 

C. To investigate the effects of amelioration treatments over time, the project wines made in Year 1 

(Y1) will be retested in Year 2 (Y1) for volatile phenols and effect on attributes. 

3.3 Materials and Methods 

The project was carried out during the 2017 (Y1) and 2018 (Y2) seasons. The grapes were 

harvested for both seasons from Welgevallen experimental farm 157 m above sea level (-

33.939847, 18.865590). The block has a North-South direction on a horizontal surface. Vitis 

vinifera L. cv. Shiraz cultivar grapes were used, clone SH9C which was grafted onto 101-14 Mgt 

(Vitis riparia x Vitis rupestris). The vines were planted in the year 2000 with a 2.7 m by 1.5 m 

spacing. Trellising is a seven-wire vertical shoot positioning. The vines were irrigated with a 

pressure compensated drip system. 

Sampling was done weekly and grape parameters were measured. These are pH, TA and balling 

to gauge the ripening process and help in determining the harvest date. 

3.3.1  Smoke treatment and winemaking 

The grapes were hand-harvested when the sugar levels had reached 23-24 ° Balling. The grapes 

were separated into food grade plastic containers for smoking, and individual crates weighed. The 

containers (Addis, South Africa) were clear plastic and could be closed and sealed, with volumes 

ranging from 10 L to 40 L. 
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Figure 3.1:  Smoking of grapes after harvest in plastic crates 

 

In order to generate smoke, a commercial bee-keeping smoker was filled with a mixture of dried 

pine-needles and fynbos which was then set alight. The species used were chosen to mimic the 

bush fires in proximity to Western Cape (De Vries et al. 2016) vineyards, and included dried 

leaves, flowers, stems and twigs of pine trees (Pinus radiata), blombos (Metalasia muricata), 

Pincushion (Leucospermum codiofolium), Erica (Erica verticillata), Restio (Thamnochoryus 

insignis), and Imphepho (Helichrysum petiolare). On the day of harvest the containers that had 

been selected for the smoke treatment had smoke applied for 30 seconds each until the air inside 

the containers were opaque (Figure 3.1). The smoke applications were done twice on the day of 

harvest within 2 hours after the completion of harvesting and twice 24 hours later. This was to 

ensure that the smoke taint was pronounced enough for detection by the trained panellists. 

Kennison et al, (2009) found that multiple applications of smoke yielded cumulative effect that 

could be detected by panellists. In between smoke events, containers were stored in a laboratory 

at 18˚C. 

Grape processing was carried out at the Stellenbosch University experimental cellar, following 

standard winemaking protocols. Prior to processing, grapes were moved from the laboratory to the 

4˚C cold room, where they were stored for three days. In order to ensure homogeneity of smoke 

treatment, grapes bunches from all the containers that had been smoked were carefully divided 

between the containers before crushing and destemming. The crushing and destemming 

happened using CDS Vintec® (Paarl, South Africa) crusher. 

SO2 was added at crushing and destemming. Fermentation was carried out in 20L food-grade 

plastic (Polypropylene) buckets for the smoked treatments and 60L bucket for the unsmoked 

control. An extraction enzyme (Laffort® Lafase® HE Grand Cru, Bordeaux Cedex, France) was 

added to all buckets (smoked and unsmoked) at a dose rate of 4g/100kg in order to increase juice 

yield. The yeast used was Lallemand (Montreal, Canada) Lavlin QA23® 30 g/hL with the aid of 

Anchor© Fermaid K® at 40 g/hL yeast nutrient at inoculation. The buckets were stored at 25ºC to 

ferment. 

Three days after the initial yeast inoculation the wines were inoculated with Anchor® co-inoculant® 

at 1 g/hL to start malolactic fermentation (MLF). The MLF process was monitored once every two 

weeks by the Chemical Analysis Laboratory (Department of Viticulture & Oenology, Stellenbosch 
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University). Malic acid concentrations were measured by enzyme robot (Arena 20XT enzyme 

robot, Institute for Wine Biotechnology, Stellenbosch University). After the completion of MLF at < 

0.1 g/L malic acid present, the wines had SO2 added.  

Pressing of the wines commenced six days after yeast inoculation using a pneumatic press 

(Speidel® hydropress, Ofterdingen, Germany) and up to 2 bars of pressure was applied. The wines 

had finished alcohol fermentation. The wine was then transferred into 4.5 L Distell® glass 

containers (Stellenbosch, South Africa) and kept in 20ºC room to finish malolactic fermentation. 

The wines were racked off the lees one month after yeast inoculation, and SO2 was added giving 

the total of SO2 added as 90 mg/L. Potassium metabisulphite (SO2) (Ever® srl, Pramaggiore, Italy) 

which was diluted to a concentration of 2.5% was used in the winemaking process. 

The wines were filtered using Pall Corporation® Filtersystems GmbH Seitz K300® filter sheets, in 

a Wine Machinery® wall mounted filter. Bottling took place in parallel with each batch filtered. 

Bottles used were Consol® 750 ml green bottles. The bottles were screw-capped using Guala 

Closure Group® caps. 

The wines were stored in crates in the 15ºC room until sensory evaluation and chemical analysis. 

Samples of grapes, juice and wine were taken throughout the winemaking process to be used for 

chemical analysis and enzyme hydrolysis. 

Table 3.2:  Summary of treatments applied during winemaking 

Sample 
code 

Treatment Trade 
name 

Year of 
additio

n 

Stage of application Dosage 

Control None (unsmoked/ 
clean grapes) 

- - - 
- 

C-smoke None: Smoked 
grapes 

- - - 
- 

T1L1 Liquid tannin (oak 
extract)- level 1 WLT 150 

Oakwood® 
2017 

Before alcoholic 
fermentation and before 

bottling 

2 ml/L and 0.5 
ml/L 

T1L2 Liquid tannin (oak 
extract)- level 2 

5 ml/L and 1 
ml/L 

T2L1 Activated Charcoal 
Level 1 

Geosorb® 2017 
During alcoholic 

fermentation 

25 g/hL 

T2L2 Activated Charcoal 
Level 2 

45 g/hL 

T3L1 Polymer powder: 
Level 1 Not 

registered 

2017 Before bottling 3 g/L 

T3L2 Polymer powder: 
Level 2 

3 g/L on day 1 
3 g/L on day 2 

 

3.3.2  Treatment 1:  Oak extract 

Stoak® Technologies (Diep River, Cape Town, South Africa) “WLT 150 Oakwood” wood extract 

was added to the wine prior to alcoholic fermentation. The extract is described by the manufacturer 

as ‘a dark reddish brown with cocoa, vanilla, aged, cognac, woody, aged, spirits sensory aromas’ 

(Stoak® Technologies WLT 150 blend brochure), and was used for its potential masking effect on 

smoke taint. The liquefied extract was added directly to the juice and the fermentation occurred 
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with the tannin in the mixture. This additive is a concentrated hydroalcoholic extract of toasted 

American oak. The extract was added to wines at two different dosage levels: 2 ml/L (‘Level 1’) and 

5 ml/L (‘Level 2’) before yeast inoculation. A second addition was made before filtration of 0.5 ml/L 

(‘Level 1’) and 1 ml/L (‘Level 2’). The first application had three months contact time before filtration 

and the second application had one month contact time.  

3.3.3  Treatment 2: Activated charcoal 

The charcoal product used for Treatment 2 was Laffort® Geosorb® (food grade granulated 

activated carbon). This product is recommended by the manufacturer for removal of smoke and 

other taints, and for moderation of colour (Geosorb® product data sheet). The treatment was 

applied, as per the recommended guidelines from Laffort®, one day after yeast inoculation. The 

dosage was 25 g/hL (‘Level 1’) and 45 g/hL (‘Level 2’). The Geosorb® was rehydrated for 4 hours 

before being added directly into the fermenting juice.  

3.3.4  Treatment 3: Polymer powder 

Treatment 3 used a finely ground powder of PET plastic that is recommended for the removal of 

taint compounds (specifically cork taint) via the mechanism of adsorbency of volatiles on contact. 

This treatment was applied post alcoholic fermentation, after racking but before bottling, as 

recommended by the manufacturer. ‘Level 1’ of the application was 3g/L on day 1. ‘Level two’ of 

the application was 3 g/L on day 1 and another dose of 3 g/L 24h later (day 2). The product was 

sieved off the wines after six hours of contact per application. However, it was seen that small 

particles remained behind, and the wines therefore had to be filtered. 

3.3.5  Sensory Evaluation 

The sensory method chosen to be used for the first set of experimental wines was Descriptive 

Analysis (DA) (Lawless & Heymann 2010) and was conducted one month after bottling and one 

year after bottling.  

The panel comprised of 8 females with ages ranging from 25 to 60 years, who had previous 

experience on evaluating wines made on smoke taint projects. The assessors were experienced 

evaluators of sensory products, were of legal drinking age, and were available for tastings at 

designated times. Panel training was conducted three weeks with three sessions of two hours each 

week. During each training session eight wines from the experiment were used in duplicate. The 

aroma standards that were used are listed in appendix A. 

During the first year of the study, sensory training was conducted over three weeks with sessions 

on Monday, Wednesday and Friday. Eight wines were used in duplicates per session making a 

total of 16 wines. The wines were split into groups of four per two-hour session. This was the 

maximum value that could be used to limit panel fatigue and saturation (Solomon, 2006). The 

mouth cleansing regimen was rinsing with pectin solution (Earth products, apple pectin) then with 

sparkling water (Spar, sparkling spring water) then eating a cracker (Bakers, cream crackers) and 
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lastly rinsing with still water. The wines were at room temperature of 20°C when poured. 25 mL 

was poured and covered with petri dishes. A three-digit code was assigned to each glass. The 

panellists smelled and tasted the wines and came up with descriptors. The descriptors were 

narrowed down, and aroma standards were prepared. The panellist agreed on the final list of 

attributes to be used in the tasting’s tests (Appendix B). 

The chosen attributes to be used in the DA evaluation were narrowed down and grouped together 

during the training sessions. Appendix B shows the attributes used in the test sessions. The 

panellists had to rate each attribute on a line scale using Compusense® (Ontario, Canada) 

programme. Both the aroma and taste attributes were evaluated. The mouth cleansing regime was 

the same in each session. 

The second year of the study, DA was carried out on the 2017 wines in a similar fashion as the 

previous year. The training of the panel took four days over two weeks for two hours, utilising the 

same panel members as the previous year as well as two new panel member additions, a female 

of fifty years of age and a male of approximately thirty years. The shorter period of training was 

because of the panellists had experience in smoke taint evaluation from the previous intensive 

sessions of training.  

The actual sensory testing was carried over 3 days in a week (Monday, Wednesday, and Friday), 

with each day evaluating each biological replicate. Only two technical replicates were used on 

each day, as panel members became easily fatigued from the strong odours and flavours of the 

smoked wines. The mouth cleansing for the second year was conducted without the use of pectin 

because of shortages from the suppliers of the product. The cleansing process then included the 

use of sparkling water, crackers, and then still water. Other alternative mouth cleansers like 

carrots, whole milk, cucumbers, and mozzarella cheese (Vickers et al. 2007; Jaffe et al. 2017) 

would have imparted strong flavours to the mouth, and may have affected evaluation of the 

smoked wines.  

The wines were poured (25 mL) into black International Standardisation Organisation (ISO) 

sensory evaluation glasses and covered with petri dishes while the content equilibrated to room 

temperature (20°C). The panellists during the evaluation agreed to the addition of an attribute, 

caramel, in the second year as it was more pronounced. They evaluated the attributes on a line 

scale for both aroma and taste as above in the previous year.  

3.3.6  Chemical analyses 

Grapes samples were collected after smoking, and then frozen before being macerated and 

prepared for GC-MS analysis. Juice, must, and wine samples were collected throughout the 

winemaking process. Chemical analyses of volatile phenols were carried out by Central Analysis 

Facilities (CAF) using the Gas chromatography–mass spectrometry (GC-MS). The samples were 

taken before and after crushing and destemming, during alcoholic and malolactic fermentations, 

pressing, bottling and sensory evaluation in the first year of study. In the second year of the study, 
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the samples were taken before and after crushing and destemming, before enzyme application, 

and at bottling. 

The compounds tested for were: guaiacol, 2,6-dimethylphenol (2.6DMP), 4-methylguaiacol (4MG), 

o-cresol, phenol, 4-ethylguaiacol (4EG), m-cresol, p-cresol, 2,3-dimethylphenol (2.3DMP), eugenol, 

4-ethylphenol (4EP), 4-vinylguaiacol (4VG) and 3,4-dimethylphenol (3.4DMP). 

Sample preparation had two methods for solid and liquid contents (grapes, juice and wine). The 

grapes were homogenised using a hand-held homogeniser. Fifty grapes were used, randomly 

selected from the crates. Five grams of the homogenate was measured for each analysis. The 

homogenated samples were transferred to 20 mL GC-MS headspace glass vials (Separations, 

Randburg, South Africa). A further 5 mL of MilliQ water (ultra-pure distilled water, Millipore, 

Bedford, MA, USA) was added to each vial and then vortexed (Vortex-Genie® 2; Scientific 

Industries Inc., NY, USA) for 30 seconds. Subsequently, 2.5 mL of 20% sodium chloride (NaCl) 

solution (Merck, Germany) was added as well as 100 µL of the phenol internal standard (anisole-

d8: methoxybenzene-d8; Sigma, St. Luis, MO, USA) prepared in the CAF facility. The sample was 

then vortexed and loaded into the GC-MS machine. Stock solutions of pure compounds (all 

reference standards supplied by Sigma-Aldrich/Merck, KGaA, Darmstadt, Germany), were diluted 

for calibration purposes, creating an 8-point calibration series from 25 to 1000 µL/L. 

Liquid sample preparation (juice or wine) required 10 mL of sample. After transferring the sample 

into the GC-MS vial, 2.5ml of 20% NaCl and 100 µL of the phenol internal standard of 100 µL/L 

concentration were added into the same vial and vortexed to be loaded into the GC-MS machine. 

Analysis of VPs was performed using a Thermo Scientific trace 1300 gas chromatograph (Anatech, 

coupled to a Thermo Scientific TSQ 8000 Triple Quadrupole Mass (Anatech Instruments (Pty) Ltd, 

RSA. The MS-detector was set for acquisition in single reaction monitoring (SRM) mode. 

Vials were incubated in the auto-sampler for 5 minutes at 50°C, after which a 

Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) SPME fibre (Supelco, 

Bellafonte, PA, USA) was exposed to the headspace of the vial for a further 30 minutes at the 

same temperature. After exposure, the fibre was injected, and ten minutes were allowed for 

desorption of compounds of interest. The injector was operated in splitless mode. The total run 

time of the method was 30.54 minutes. Wines were analyzed by GC-MS according to a modified 

version of a previously described method (De Vries et al. 2016).  

3.3.7  Enzymatic Hydrolysis 

The method used was taken from a pilot study carried out during the previous year (2015) 

(unpublished) and adapted from a method developed by Kennison et al. (2008).  

Model wine was made using the method by Wildenradt and Singleton (1974). A solution containing 

12% ethanol was made up in Milli-Q water (ultra-pure distilled water, Millipore, Bedford, MA, USA). 

Tartaric acid (5 g/L) was added. The mixture was then adjusted to pH 3.5 using NaOH.  

Two slightly differing methods were used to prepare berries and juice samples for analysis.  
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For berries, a sample of random 50 berries were chosen and homogenised, and 5 g of the 

homogenate was transferred into a test tube. For the purposes of reporting the method, this will be 

called ‘test tube 1’. Five mL of model wine was added to another test tube (‘test tube 2’). Both test 

tubes were put into a heating block at 30°C. Following this, 50 mg β-Glucosidase enzyme (Sigma-

Aldrich®, South Africa) was measured into an Eppendorf tube (2 mL, Sigma-Aldrich®, South Africa) 

and set aside to be added to each test tube of berry sample to be analysed. Separating the grape 

and enzyme was done because of the consistency of the homogenised grape which would not 

have allowed for optimal mixing of the enzyme into the solution. 

For wine, 5mL wine sample and 5 mL model wine were added into the same test tube and put into 

the 30°C heating block to heat up to 30°C. After this, 12.5 mg enzyme was measured out and set 

aside for each test tube of wine sample to be analysed. 

The measured enzyme aliquots were stored in a 4°C fridge until use 24 hours before GC-MS 

analysis, the pre-weighed enzymes were added into the wine mixture in the heating block by 

quantitatively rinsing enzyme from the Eppendorf tubes with the wine solution into a separate 

clean, warm glass test tube. For berries, the enzymes were quantitatively transferred into ‘test tube 

1’ using the model wine solution in ‘test tube 2’. The wine and berry samples were then vortexed 

and kept in the heating block for 24 hours. After 24 hours, the solutions were transferred into 20mL 

head space vials. The test tubes were rinsed using 2.0 ml 20% NaCl solution and added to the 

corresponding vials. The internal standard (100 µl) was added as previously, and the samples 

were vortexed and loaded for GC-MS analysis.  

3.3.8  Data analysis 

Panel performance was monitored, and data was analysed using TIBCO Statistica™ (Statistica 10, 

Statsoft Inc., Tulsa, USA) with the help of the Stellenbosch University Statistical Analysis 

department. The aroma and flavour attribute correlations to treatments were achieved by using 

one-way Analysis of Variance (ANOVA) using Least Squares (LS) means tests for each attribute. 

Overviews over the two years of DA on the effects of treatments on the experimental wines are 

achieved by Principal Component analysis (PCA) biplots from Statistica™ where attributes are 

correlated to treatments from assessors’ ratings. Chemical analysis of volatile phenols made use of 

Kruskal-Wallis Analysis of Variance (ANOVA) to test the effects of treatments on VPs in the wines. 

A confidence level of 5% was used to determine significant differences and those attributes and 

volatile phenols are reported on in the following work. 
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3.4  Results and Discussion 

3.4.1  PART A: Amelioration Treatments 

3.4.1.1  Sensory effects of Amelioration treatments: 

a) General effects: 

Results obtained from sensory and chemical analyses of the wines are discussed in this section in 

terms of general sensory effects, and then on a per treatment basis. Chemical results follow. 

Sample names used throughout the discussion are “c” = control (wine made from unsmoked 

grapes), “smoked control” (wine made from smoke grapes, untreated), T1 (oak extract at levels L1 

and L2), T2 (activated charcoal at levels L1 and L2), and T3 (polymer powder at levels L1 and L2). 

Descriptive analysis was done for sensory results and GC-MS was used for chemical evaluation of 

the volatile phenols associated with smoke taint in wine. 

 (a) (b) 

 

Figure 3.2:  LS Means diagrams (Type II decomposition) showing panel scores of Y1 (2017) in intensity of 
the (a) ‘Smoky flavour’ and (b) ‘ashy aftertaste’ attributes in controls and treatments (T1- T3) at two different 
levels (L1 and L2); p<0.001; Vertical bars denote 95% confidence  

Sensory analysis of aroma and taste attributes showed insignificant differences between 

treatments under each attribute. However, smoky flavour and ashy aftertaste (Figure 3.2) showed 

significances between the unsmoked controls and the rest of the treatments. This trend was also 

observed in the second year of sensory evaluation of the wines. The percentage observations 

remained within the same ranges as well. A trend that could also be observed in the second year, 

is the decrease in the detection of these attributes’ intensities when treated by activated charcoal 

compared to the intensities of the first year. 

The flavour profile (Figure 3.2) shows what was expected, which was the unsmoked control wines 

being significantly less smoky and ashy compared to all the other wines. These results also allude 

to the underlying issue of glycoconjugates (Kennison et al. 2008), where chemically there were 

some decreases in VPs, and sensory analyses did show presence of ‘fruity’, ‘floral’, ‘woody’ etc. 

aromas but the wines that had grapes smoked were still perceived as smoky and ashy when 

tasted.  
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 (a) (b) 

  

Figure 3.3:  PCA of all sensory attributes in the first year (Y1) of the study (2017) a) showing attributes and 
b) detail showing separation of samples 

 (a) (b) 

   

Figure 3.4:  PCA scores of all sensory attributes one year after bottling (Y2) for 2017 wines a) showing 
attributes and b) detail showing separation of samples 

The PCA (Figure 3.3) from year one (Y1) of the study explains 85% of the variation in the dataset, 

along the two principal components (PC1 = 70%; PC2 = 15%). The unsmoked controls separate 

out along PC1 towards the positive attributes of ‘berries’, ‘fruity flavour’, ‘woody’, ‘prunes/jammy’ 

and ‘floral/perfume’ attributes from the other smoked treatments which are on the opposite side of 

the spectrum with the ‘smoky’ and unpleasant aromas and flavours.   

The PCA (Figure 3.4) from year two (Y2) shows the unsmoked control related to fruity flavour while 

all the other treatments are clustered around the origin. The smoked control and the rest of the 

treatments are still clustered towards ‘earthy’, ‘animal’, ‘smoky’,’ and savoury/meaty’ attributes. The 

implication here may be that the wines are too young to get a clearer picture as a previous study 

only did a follow-up sensory analysis study after three years of wine being in the bottle (Singh et al. 

2011) which showed a significant increase in guaiacol in 5 to 6 years (Ristic et al. 2017). The PCA 

of Y2 showed an improved separation of the data of 89% compared to the previous year’s PCA of 

Y1 which had an 85% separation. This also shows complete consistency of the panel as the 

treatments separate along the same attributes in both years of tasting.  
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b) Sensory effect of T1: Oak Extract 

None of the wines had any form of oakwood treatment during the winemaking process, except the 

T1 wines where it was added to elucidate its effect on smoke taint. The oak extract used in the 

study was chosen for its masking abilities and the complexity it brings to the wine. Overall, in the 

study T1, contributed to an increase in VPs as well as an increase ‘smokiness’ and ‘woodiness’ of 

the wines. T1 at L2 showed the most significant differences with the ‘woody’ attribute which was 

consistently high (Figure 3.5(a) and Figure 3.5(b)) in both years of the study. This treatment (L2) 

had total oak extract added of 6 mL/L compared to L1 which had 2.5 mL/L total added. The ‘woody’ 

attribute was characterised as dry wood, oaky and toasted wood by the panel during training 

sessions. There were 38% in Y1 and 43% in Y2 perceived differences between the smoked control 

and oak extract at L2. This shows an improvement in distinction of the samples by the assessors 

and may also allude to the release of more VPs during the ageing process. 

 (a) (b) 

   

Figure 3.5:  LS Means diagrams (Type II decomposition) showing panel scores of the ‘woody’ aroma 
attribute in controls and treatments (T1- T3) at two different levels (L1 and L2); Vertical bars denote 95% 
confidence intervals.  a)  Y1 (p= 0.02); b) Y2 (p=0.03)  

 (a) (b) 
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 (c) (d) 

 

Figure 3.6:  LS Means diagrams (Type II decomposition) showing panel scores of (a) ‘Prunes/jammy’ 
(p=0.02), (b) ‘caramel/vanilla’ (p=0.02), (c) ‘floral/perfume’ (p=0.03), and (d) ‘savoury/ meaty’ aroma (p=0.03)  
attribute in Y2 in controls and treatments (T1- T3) at two different levels (L1 and L2); p= 0.02; Vertical bars 
denote 95% confidence intervals.  

The wines were evaluated by the sensory panel twice, using exactly the same sensory 

methodology, one year apart (Y1 and Y2). The wines showed an increase in the number of 

attributes that were significantly different at p=0.05 between the treatments after one year in bottle 

at Y2. In Figure 3.6 the (a) ‘prunes/jammy’ and (b) ‘caramel/vanilla’ remained consistently higher 

than the unsmoked and smoked controls. While (c) ‘floral/perfume’ attribute was significantly 

increased with the addition of the oak extract at L1 and (d) ‘savoury/meaty’ was decreased while 

The olfactory interaction of compounds (Parker et al. 2012) may be related to the sensory results 

of ‘prunes/jammy’, ‘caramel/vanilla’, ‘floral/perfume’, and ‘savoury/meaty’. The high perceived 

‘floral/perfume’ (Figure 3.6(c)) resulted in low perceived savoury/meaty (Figure 3.6(d)) attribute for 

oak extract at L1. The ‘floral/perfume’ attribute has similar characteristics to the ‘varnish’ aroma 

described by Chatonnet et al. (1990) as being present in oak aged red wines with high levels of 

lactones.  Oak extract at L1 had highest level of ‘caramel’ (Figure 3.6(b), which is known to be 

associated with toasted oak (Cutzach et al. 1997) thus explaining the increase of ‘caramel/vanilla’ 

in this oak extract treatment compared to the smoked control. Oak extract at L1 also has some 

association with ‘floral/perfume’ and ‘berry’ attributes in the first year. And in the PCA (figure 3.4) of 

Y2, the oak extract L1 shows close relations to the ‘rubber/plastic’ attribute. This indicates that high 

levels (> odour detection threshold) of guaiacol, 4-ethylphenol, 4-methylguaiacol, and  

4-ethylguaiacol can lead to an increase in unpleasant aromas (Kennison et al. 2009) 

Moreover, a significant decrease is witnessed at L2 for ‘floral/perfume’. This means that the 

masking effect of the oak extract at higher levels then recommended may mask the expression of 

other aromas. 

c) Sensory effects of T2: Activated Charcoal 

Activated charcoal is a fining agent used for its adsorption capabilities in wines and is versatile in 

its removal of unwanted compounds in wine. The results obtained in this study showed a general 

trend of activated charcoal at L2 resulting in significant decreases of aroma observations both 

positive and negative, this is because of the chemical properties of this fining agent which allows 
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for indifference in adsorption of volatile phenols (Jackson 2008). In figure 3.6, ‘prunes/jammy’, 

‘floral/perfume’, and ‘caramel/vanilla’ all had decreases with the addition of 45 g/hL of activated 

charcoal. 

The ‘tar’ (Figure 3.7) attribute showed significant differences of the unsmoked control from all the 

other treatment by being perceived less. Treatment 2 at L1 which is activated charcoal was only 

significantly different to five out of the eight treatments by being perceived the highest in tar aroma 

present. This however did not interfere with the ‘floral/perfume’ (Figure 3.6(c)) attribute which was 

increased with the addition of activated charcoal at L1. 

 (a) (b) 

 

Figure 3.7:  LS Means diagrams (Type II decomposition) showing panel scores of intensity of the ‘tar’ 
attribute in controls and treatments (T1- T3) at two different levels (L1 and L2); Vertical bars denote 95% 
confidence; a) Y1 (p=0.888) b) Y2 (p<0.001) 

Comparison between the two years of sensory showed a decrease in maximum observed ‘smoky’ 

and ‘woody’ attributes by the panel when activated charcoal was added. For the ‘woody’ character, 

the introduction of the ‘caramel/vanilla’ attribute indicates an increase in distinction of aromas from 

toasted wood extract over time. The ‘smoky’ aroma may have been affected by the increase of 

positive aromas perceived by the panel which resulted in the decrease of ‘smokiness’ observed 

generally. The ‘smoky flavour’ had a slight decrease and ‘ashy aftertaste’ had a slight increase in 

the second year of the study compared to the first year. The decrease of the ‘smoky flavour’ may 

have resulted from the decrease of available glycoconjugates that can be released in the mouth 

(Parker et al. 2012; Mayr et al. 2014). The increase in ashy aftertaste may be attributed to the 

increase sensitivity of the panel to the compounds that relate to ashy aftertaste as they became 

more experienced. This effect was observed by Bende & Nordin (1997) where they found that a 

trained panel could distinguish between aromas and flavours, as well as be able to identify each 

attribute and name it compared to untrained individuals. Therefore, with increased experience in 

training, assessors become better at identifying attributes, and become more sensitised to it. 

d) Sensory results of T3: Polymer powder 

Treatment 3, polymer powder, had little to no effect on sensory results. The smoke-associated 

attributes still remained at high levels as can be seen with ‘smoky flavour’ and ‘ashy aftertaste’ 

(figure 3.2) where the perceived levels were even higher than the smoked control. The PCAs 
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(figure 3.3 & figure 3.4) both show T3 being more associated with ‘smoky’ and ‘ashy aftertaste’. 

Figure 3.6 shows an increase in ‘savoury/meaty’ as well as slight decrease in ‘floral/perfume’ and 

‘caramel/vanilla’. All of these results are not significant, and it is clear that this treatment had little 

effect in decreasing smoke taint or altering the aroma profile of the wines for the better. 

3.4.1.2  Chemical results of amelioration treatments: 

Thirteen volatile phenol compounds were evaluated by GC-MS. Two of the compounds (4-

vinylguaiacol and 3,4-dimethylphenol) proved very difficult to detect, possibly as they may have 

been unable to bind to the fibre used (Mokwena, 2018, personal communication). Ideally, these 

compounds could be revaluated using HPLC-MS methods but because of budget and logistical 

constraints, this was not accomplished. Therefore, these two compounds were omitted from 

statistical evaluation and excluded from reporting. 

Chemical analysis of the same samples of wine as was used in sensory analysis, showed 

significant differences in VP concentrations of the unsmoked controls compared to the smoked 

wines; both smoked controls and treated wines. This trend was seen in both years where the oak 

extract has the highest increase in VPs and activated charcoal had the highest decrease. Polymer 

powder showed negligible change in VPs, be it an increase or decrease compared to the smoked 

control wines.  

a) Chemical effects of T1: oak extract 

Eugenol (Figure 3.8) showed significant differences for T1 (oak extract) at L2 compared to the 

other treatments. Eugenol is twice as high at L2 compared to level one as a result of the high 

amount of oak extract added v/v. This result is very significant, with p< 0.001. Eugenol is a well 

know wood component that contributes to increased ‘oakiness’ in the wine (Singleton 1995). This 

can be correlated to the sensory results which indeed did show high levels of perceived ‘woody’ 

(Figure 3.5(a) and Figure 3.5(b)) attribute in the wines assessed. Measurements of eugenol 

(Figure 3.8) one year after bottling (Y2) showed a similar graph trend to the previous 

measurements one year prior. The noticeable difference is the increase in concentration per 

treatment which had a range of 22% to 69% of eugenol present in the wine. This probably resulted 

from the release of volatile phenols from their glycosides.  
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 (a) (b) 
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Figure 3.8:  LS Means diagrams (Type III decomposition) concentration (µg/L) of eugenol in controls and 
treatments (T1- T3) at two different levels (L1 and L2); Vertical bars denote 95% confidence (a) Y1 (p<0.001) 
(b) Y2 (p<0.02) 

The increase in eugenol levels may explain the improvement in performance of the panel in 

distinguishing between the smoked control and T1L2 when it came to the ‘woody’ attribute which 

saw a 5% increase in scores. This increase in ‘woody’ may have led to the decrease in 

‘floral/perfume’ (Figure 3.6(c)) attribute.  

b) Chemical effects of T2: Charcoal treatment 

As can be seen in figures (Figure 3.9a-h), the unsmoked control (“control’) shows significantly less 

guaiacol, 4-methyl guaiacol, m-cresol, o-cresol, p-cresol, 4 ethyl phenol, and 2.6 dimethyl phenol at 

the p=0.01 level and 4-ethyl guaiacol at p=0.05. The odour detection threshold of 7.5-23 µg/L 

(Ferreira et al. 2000; Parker et al. 2012) for guaiacol is exceeded in the case of the smoked control 

and all the smoked treatments (Figure 3.9(c). Likewise, the unsmoked control sample 4-

methylguaiacol (Figure 3.9(b)) shows results of less than 0 which are below the detection threshold 

of 65 µg/L (Kennison et al. 2009). 4-ethylguaiacol (Figure 3.9(a)) also shows significantly low levels 

of compared to the detection threshold of 110 µg/L (Kennison et al. 2009). Parker et al. 2012 

showed that 20 µg/L, 64 µg/L, and 62 µg/L were the detection thresholds for m-cresol (figure 

3.9(d)), p-cresol (Figure 3.9(h)), and o-cresol (Figure 3.9(g)), respectively, and all the wines 

measured below those values. 4-ethylphenol has a detection threshold of 605 µL (Kennison et al, 

2009) and 2,3-dimethylphenol (Figure 3.9(f)) has 500 µg/L (Verschueren 1983) and all these 

compounds at different treatments measured (Appendix D) below those threshold values (Table 

2.1). These wine matrices provide further evidence that the combination of volatile phenols and 

other wine compounds can result in smoke taint even if the odour thresholds are not reached as it 

was shown with the measurement of ethylguaiacol and ethylphenol which were below odour 

threshold but still presented the Brettanomyces characteristic in sensory (Romano et al. 2009) 
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 (a) (b) 

 

 (c) (d) 

 

 (e) (f) 

 

  (g) (h) 

 
Figure 3.9:  LS Means diagrams (Type II decomposition) showing concentrations (µg/L)  in Y1 of VPs 

measured per treatment using GC-MS (a) 4-ethyl guaiacol (p=0.01); (b) 4-methyl guaiacol (p<0.001);  (c) 

guaiacol (p<0.001);  (d) m-cresol (p<0.001);  (e) 4-ethyl phenol (p<0.001);  (f) 2.6 dimethyl phenol (p<0.001);  

(g) o-cresol (p<0.001);  (h) p-cresol (p<0.001);  in controls and treatments (T1- T3) at two different levels (L1 

and L2); p= 0.00; Vertical bars denote 95% confidence 
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Moreover, Figure 3.9 (a-h) show that T2 at L2 has an effect of consistently decreasing the VPs 

compared to the other treatments. This was because 45 g/hL was used compared to 25 g/hL of 

level one. The recommended dosage by the manufacturer is between 10 g/hL to 45 g/hL. This is 

further illustrated by the sensory results where smoky flavour and ashy aftertaste had a slight 

decrease compared to other treatments. The different effects that activated charcoal has on 

sensory results versus chemical results can be attributed to the presence of glycoconjugates that 

increased the perceived smoke in the wine even if there was a decrease chemically of VPs. 

 (a) (b) 

 

 (c) (d) 

 

 (e) (f) 
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Figure 3.10:  LS Means diagrams (Type II decomposition) showing concentration (µg/L) in Y2 of VPs 

measured per treatment using GC-MS one year after bottling (a) guaiacol (b) 2.6 dimethyl phenol (c) 4-ethyl 

guaiacol (d) 4-ethyl phenol (e) m-cresol (f) 4-methyl guaiacol in controls and treatments (T1- T3) at two 

different levels (L1 and L2); p<0.001; Vertical bars denote 95% confidence  

 

The data (Figure 3.10 a-f) demonstrates similar graph trends of Y2 compared to Y1 after bottling 

the wines in terms of VPs available (Appendix E). There were slight increases in some of the VPs, 

but most remained at the same levels. This further illustrates that over time VPs can be released in 

the bottle at varying rates (Singh et al. 2011). The levels measured correspond to those found in 

literature for VPs.  

Literature has found that fining with charcoal can have an effect on bound volatile compounds by 

decreasing them, the decrease is higher when compared to settling, using pectin enzymes, and 

using a mixture of bentonite, casein, silica gel during settling stage of the winemaking process, 

(Moio et al. 2004). This may explain why there is a low concentration of VPs for the wines treated 

with activated charcoal when compared to the other treatments. 

3.4.2  PART B: Hydrolysis Experiment: 

This additional experiment was carried out in order to elucidate whether enzyme hydrolysis would 

reveal the effect of ‘hidden’ VPs in the form of glycoconjugates. Results from before versus after 

treatment with the enzyme (Table 3.4) showed substantial increases in VPs after cleaving these 

compounds from their glycoconjugates precursors. 

Table 3.3:  Volatile phenol levels (average of machine duplicates) before and after enzyme hydrolysis of Y1 
wine. 

Sample 

Label

Guaiacol 

µg/L 

2,6 

Dimethyl 

phenol 

µg/L 

4 Methyl 

Guaiacol 

µg/L 

o-cresol 

µg/L 

phenol 

µg/L 

4 Ethyl 

Guaiacol

µg/L 

m-cresol 

µg/L 

p-cresol 

µg/L 

2,3 

Dimethyl 

phenol 

µg/L 

Eugenol 

µg/L 

4 Ethyl 

phenol 

µg/L 

control grape 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

smoked grape 2.86 0.24 0.25 0.72 9.27 0.05 0.23 0.14 0.14 0.00 0.05

control juice 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

smoked juice 0.36 0.00 0.00 0.04 0.00 0.02 0.00 0.00 0.00 0.00 0.00

control 7.49 1.12 0.54 1.43 3.43 0.19 0.81 0.56 0.00 0.72 0.14

C smoke 24.96 1.23 4.41 4.71 40.61 0.96 2.18 4.64 0.32 0.77 1.24

T1L2 24.67 ±1.54 1.24 ±0.13 4.41 ±0.36 4.23 ±0.23 38.07 ±2.760.94 ±0.02 2.16 ±0.14 4.02 ±0.290.25±0.01 2.37±0.10 1.21±0.02

T2L2 20.98 ±1.02 0.69 ±0.05 3.29 ±0.15 3.45 ±0.1834.60 ±1.29 0.66 ±0.04 1.82 ±0.13 3.64 ±0.180.16±0.02 0.37±0.03 1.02±0.05

T3L2 25.05 ±1.58 1.26 ±0.07 4.20 ±0.52 4.47 ±0.42 43.92 ±4.990.96 ±0.10 2.40 ±0.28 4.73±0.51 0.29±0.05 0.73±0.04 1.37±0.16

control grape 3.39 0.03 0.28 0.55 2.96 0.10 0.27 0.21 0.26 0.38 0.23

smoked grape 44.38 0.04 12.86 10.32 39.75 1.56 8.78 11.83 0.61 0.52 0.64

control juice 1.38 0.03 0.18 0.20 1.56 0.10 0.07 0.08 0.25 0.34 0.23

smoked juice 17.28 0.03 5.31 5.37 21.78 0.74 2.57 4.26 0.50 0.40 0.43

control 18.73 0.09 2.10 2.83 181.27 0.92 3.74 2.43 0.49 2.01 0.47

C smoke 80.19 0.06 37.13 18.31 48.62 5.66 15.72 24.12 1.89 2.43 1.71

T1L2 79.36±12.220.07±0.02 37.7±7 18.63±3.15 53.90±12.325.45±1.07 15.71±2.7023.37±4.231.89±0.34 3.51±0.50 1.67±0.26

T2L2 77.04±12.010.05±0.01 36.60±6.6218.12±2.95 54.07±11.784.99±0.97 15.76±2.1624.13±3.901.90±0.13 1.66±0.17 1.60±0.20

T3L2 88.23±13.100.06±0.01 43.29±7.3520.73±3.33 55.56±6.586.35±1.02 18.53±2.9927.01±3.171.92±0.25 2.11±0.21 1.83±0.17

before

after
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Table 3.4:  Percentage changes of volatile phenol levels (average of machine duplicates) from before to 
after enzyme hydrolysis of Y1 wine. 

Sample 

Label Guaiacol

4 Methyl 

Guaiacol o-cresol phenol

4 Ethyl 

Guaiacol m-cresol

p-

cresol

2,3 

Dimethyl 

phenol Eugenol

4 Ethyl 

phenol

control grape 91 100 100 100 100 100 100 100 100 100

smoked grape 94 98 93 77 97 97 99 78 100 92

control juice 100 100 100 100 100 100 100 100 100 100

smoked juice 98 100 99 100 98 100 100 100 100 100

control 60 74 49 98 80 78 77 100 64 70

C smoke 69 88 74 16 83 86 81 83 68 28

T1L2 69 88 77 29 83 86 83 87 33 27

T2L2 73 91 81 36 87 88 85 91 78 36

T3L2 72 90 78 21 85 87 82 85 65 25  
 

Significant increases of between 21 to 100% change of VPs after enzyme treatment (Table 3.4) 

are revealed, in the case of guaiacol causing increases far above the odour detection threshold of 

23 µg/L to 88 µg/L (Table 3.3). Some of the VPs experienced 100% increase because of their non-

existence before the treatment. This is further illustration of the presence of glycosides and their 

potential to increase VP levels in the wine.  

Figure 3.11 shows VP concentrations across the wine production process, and also clearly 

demonstrates the much higher levels in post-enzyme treated wines.  
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Figure 3.11:  (a) Before and (b) after enzyme application measurements of VPs 

 

Thus, these results show the potential for smoke taint to develop intensely in the bottle as a result 

of VPs being released by acid hydrolysis over time, and measuring in excess of their detection 

thresholds when the bottle is opened for consumption. Smoke taint precursors/glycoconjugates 

remain in the wine until acid or enzyme hydrolysis occurs gradually over time (Fudge et al. 2011; 

Singh et al. 2011; Ristic et al. 2016; 2017). For producers, these results mean that wine will be 

contaminated by smoke taint over time even if it is treated before bottling. This has serious 

implications for winemaking with smoke-contaminated juice and grapes, and supports the 

requirement for additional investigations. 

3.5  Conclusions 

The projected increases in the number of wild fires has seen the need to come up with solutions to 

the issues that are associated with wildfires such as smoke taint in wine. Three different 

commercial treatments were selected on the basis of anecdotal or published smoke taint-reduction 

properties, and applied during the winemaking process, in the experimental cellar at the 

Department of Viticulture and Oenology at Stellenbosch University. For quantifying associated 

volatile phenols in treated and untreated samples, a GC-MS method was used, in conjunction with 

sensory evaluation by descriptive analysis at one month and again, one year after bottling. 

This first part of this experiment aimed to ameliorate smoke taint in wines using commercially 

available products after the smoke incidence has occurred. This was applied in the South African 

wine industry context by using products that are locally available. The first aim of this part of the 

project was to test the efficacy of three legal additives on deliberately smoke-tainted wines for 
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removal of volatile phenols and smoke taint. The reduction aspect focussed on either removal or 

masking of smoke-related compounds in wines as well as testing two dosage levels of each 

treatment. The products used were an oak extract (for masking of smoke taint), activated charcoal 

and a polymer powder for the removal of smoke taint.  

In this study, only guaiacol measured above odour threshold (Table 2.1, Chapter 2) and sufficient 

smoke taint was generated for easier detection by the panel. The levels of VPs generated are 

above those that can be found in the industry which means the study may need to be carried out 

on naturally tainted wines. There is thus a strong possibility that at those levels the treatments may 

have a significant decrease in VPs measured and smoke detected.  

The data showed that activated charcoal was successful at removing fruity as well as undesirable 

attributes in the wine. This resulted in low perceived positive aromas such as ‘floral/perfume’ and 

an increase in aromas such as ‘savoury/meaty’.  This treatment was marginally effective in 

decreasing smoke related aromas. The oak extract was successful in increasing ‘woody’ attribute 

and introducing the ‘caramel/vanilla’ attribute. However, this increase was overshadowed by the 

fact that the smoke aromas remained at high levels. Chemical analysis showed that activated 

charcoal at L2 had the highest decreases of VPs throughout compared to the smoked control. 

The results showed that the oak extract at double the manufacture’s recommended level made the 

wine more ‘woody’, ‘oaky’ and ‘caramel’. However, with the increase of these positive 

characteristics, the wine still remained smoky. In the first year, there was little distinction in sensory 

results between the smoked treatments except the ‘woody’ attributes. The second year of analysis 

yielded much more promising results with the PCA showing a stronger differentiation between 

treatments compared to the first year with activated charcoal a shift towards being associated with 

positive attributes of ‘floral’, ‘caramel’ and ‘berries’.  Eugenol measured the highest in the oak 

extract treatment and that can also be linked to the increased ‘woody’ attribute in sensory analysis. 

Chemical analysis showed similar trends in the first and second year of analysis. Activated 

charcoal at L2 had the biggest effect in the decrease of volatile phenols in the wine. This however 

stripped the wine of many aromas, as has been shown by other authors (López et al. 2001) and as 

revealed by the sensory results where low levels of any aroma attribute are detected.   

Although there were some differences found between treatments regarding the aroma of the wine, 

none of the treatments had an effect on the flavour (palate) of the wine. This agrees with findings 

by Wilkinson et al. (2011) and Mayr et al. (2014), in which the majority of VPs were found to be 

stored in glycosylated forms in the wines and could be released by in-mouth enzymes. 

The second aim of this study was thus to investigate the potential for hydrolysis followed by fining 

as a strategy for removing glycosides.  This was done by establishing the potential for smoke-

affected wines to manifest a taint after slow acid hydrolysis of precursors during bottle-aging and to 

carry out a complete enzyme hydrolysis, and monitor VPs before and afterwards in order to 

determine the concentration of glycosylated precursors, and the potential for smoke-taint 

development. The increase in significantly detectable attributes shows the potential for the wine to 
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reveal more aroma changes over time. The inclusion of hydrolysis in the study was to measure 

severity of glycoconjugates’ effects on the wines during ageing. The increase in VPs which shows 

high risk potential. A possible recommendation from the results obtained would be to use activated 

charcoal at relatively high levels to remove smoke taint aroma after treatment with enzymes, and 

then add oak extract to increase positive aromas. The glycoconjugates still remain the main issue 

and further research still needs to be conducted in this area to decrease these compounds without 

compromising the quality of the wines.  Chapter 4 of this study focuses on the use of enzymes 

during the winemaking process, with the aim of releasing volatile phenols and thus decreasing the 

quantity of glycoconjugates in the bottled wine.   
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Chapter 4:  The effect of post-fermentation enzyme 
treatments and fining on amelioration of smoke taint 

4.1  Introduction 

Grape exposure to smoke from burning of wildfires (‘veldfires’) around vineyards results in wines 

that have ‘smoky’, ‘barbeque’, ‘meaty’, ‘ashy’ and ‘burnt’ characteristics that are collectively known 

as smoke taint (Høj et al. 2003). Table 4.1 outlines attributes and thresholds associated with some 

of the compounds that have been linked to smoke taint. 

Table 4.1:  Volatile phenol attributes and odour detection thresholds (ODTs) as found by previous workers 

Compound   Aroma descriptors   ODT (µg/l)   Reference   

Guaiacol   Smoky, sweet, medicinal   7.5-23   Ferreira et al. 2000   

Parker et al. 2012   

2,6 Dimethylphenol   Medicinal, phenolic   570   Escudero et al. 2007   

4-Methylguaiacol   Ashy, toasted, vanilla-like   65   Kennison et al. 2009   

o-cresol   Band-aid, medicinal, smoky   62   Parker et al. . 2012   

phenol   Sickeningly sweet, irritating   7100   Parker et al. 2012   

Panzeri  2013   

4-Ethylguaiacol   Smoke, spicy, toasted   110   Kennison et al. 2009   

m-cresol   Dry, tar, medicinal-leathery   20   Parker et al. 2012   

p-cresol   Band-aid, phenol-like   64   Parker et al. 2012   

2,3-Dimethylphenol   Phenolic   500   Verschueren 1983   

Eugenol   Clove   6   Escudero et al. 2007   

4-Ethylphenol   Barnyard, horsey, phenolic   605   Kennison et al. 2009   

4-Vinylguaiacol   Clove, curry   40   Parker et al. . 2012   

3,4-Dimethylphenol   Sick sweet, medicinal   1200   Burdock 2010   

 
Although the olfactory contribution of smoke taint has been well documented, the issue associated 

with smoke exposure of grapes that has not received sufficient attention in the literature is the 

presence of glycoconjugated forms of volatile phenols (Kennison et al. 2008), as they cannot be 

detected in the aroma of the wine. Their hydrolysis can lead to in-mouth release of volatile phenols 

(VPs) and associated ‘ashy’/’burnt’ flavours on the palate.  

Glycoconjugated forms arise as a result of VPs being taken up by the vines through the leaves and 

berries (Krstic et al. 2015), and then detoxified by being bound to sugars in a process called 

glycosylation (Korte et al. 2000; Kennison et al. 2008; Hartl et al. 2017). The glycoconjugates or 

glycosides will remain in the grapes and the grape juice until external influences such as acidity, 

enzymes, bacteria and yeasts start interacting with them (Sarry et al. 2004).  These versions are 

water-soluble and cannot be fined or filtered (Harborne 1984; Korte et al. 2000; Kennison et al. 

2008). They remain in the wine where they can be cleaved in the bottle by acids and enzymes thus 

increasing the level of volatile phenols in the wine during bottle maturation.  
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β-Glucosidases are enzymes responsible for the release of VPs from sugars (Kennison et 

al. 2008). These enzymes are used by winemakers for aroma enhancement by breaking down of 

the glyosidic bonds between sugars and volatiles (mainly terpenes) in wine and ideally should be 

active under wine conditions: low temperatures, low pH, high glucose, and high ethanol (Baffi et 

al. 2013a). In wine the presence of β-glucosidases has been found to be influenced by yeast 

(Villena et al.  2007) and bacteria (Grimaldi et al. 2000) and commercial preparations of fungal 

origin have been mainly used in wine (Villera et al. 2007). The β-glucosidase activity of yeast and 

bacteria may thus result in wines high in VPs after fermentation (Kennison et al. 2008; Dungey et 

al. 2011; Ristic et al. 2011). As previously mentioned, the effects of glycoconjugates being present 

in wine are thus ‘ashy’ and ‘smoky’ flavours that can be detected on the palate as a result of in-

mouth release that occurs due to the presence of these enzymes in the mouth (Parker et al. 2012; 

Mayr et al. 2014).  

Strategies have been devised to try and limit VPs in wine and grapes, as well as limiting VPs 

released during the wine making process by different authors and have been summarised in the 

work done by Brodison et al. (2013). The use of activated charcoal is for fining purposes and for its 

abilities to adsorb compounds in the wine but it is impartial on what gets removed (Zoecklein 

1990)- refer to Chapter 3 for activated charcoal and PET. 

Yeast autolysis is an important oenological stage of winemaking. As the yeast cells lyse, they 

release cellular component into the wine which can contribute to flavours. Yeast cell walls/hulls and 

mannoproteins are some of the by-products of autolysis (Pérez-Serradilla et al. 2008). 

Mannoproteins are cell wall proteins which can enhance protein and colour stabilisation in wine. 

The capacity of mannoproteins for adsorption of aroma compounds has been attributed to the 

presence of high protein proportions. Yeast hulls have been characterised as fermentation 

activators because they fix toxic fatty acids and contribute sterols, and unsaturated long-chain fatty 

acids (Ribereau-Gayon et al. 2007).Yeast hulls have been investigated for the removal of 4-

ethylphenol by Pradelles et al. (2009). These authors found that 61.5% to 192% removal could be 

measured depending on the drying process of the yeast cells and yeast strains. The increase in 

surface area of the yeast cell through damage from the drying processes resulted in significant 

removal of 4-ethylphenol. 

These strategies mostly aim to remove free VPs, and keep VPs in their glycoconjugated form so 

that the wine can be marketed for early release. However, none of these treatments deal with the 

direct removal of glycoconjugates before bottling, and there is little research in this area.  

The aim of this part of the project was thus to explore the success of strategies for releasing VPs 

from their glycoconjugates before wine was fined, bottled and sold, preventing unpleasant smoke-

taint related occurrences for consumers at a later stage.   
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Aims of the project: 

 
1. To hydrolyse volatile phenols (VPs) and their sugar moieties (glycoconjugated VPs) through the 

addition of commercial β-glucosidase enzymes post-fermentation.  

2. To apply four fining treatments in order to remove liberated VPs after the β-glucosidase enzyme 

treatment.  Treatments to be tested include activated charcoal, polymer powder, yeast hulls and 

mannoproteins. 

3. To monitor results through chemical and sensory evaluation of the treated wines and unsmoked 

controls.   

4. To make recommendations for winemaking and future studies based on the results of these 

trials 

4.2  Materials and Methods 

The project on amelioration of smoke taint project was carried out during 2017 and 2018 seasons. 

The work discussed in this chapter of the study was carried out in 2018. The grapes were 

harvested from Welgevallen experimental farm 157m above sea level (-33.939847, 18.865590). 

Shiraz cultivar grapes were used, clone SH9C which was grafted on 101-14 Mgt (Vitis riparia x 

Vitis rupestris). The vines were planted in the year 2000 with a 2.7m by 1.5m spacing trellised on a 

seven-wire vertical shoot positioning. The vines were irrigated with a pressure compensated drip 

system. The block has a North-South direction on a horizontal surface. 

4.2.1  Smoke treatments: 

The grapes were harvested on 08/03/2018 at 22-23 º balling. Grapes (526 kg) were hand-

harvested with each treatment replicate assigned 16 kg. As outlined in Chapter 3, Section 3.1.2, 

grapes were smoked in 40-60L clear plastic containers for 30 seconds using a beekeeping smoker 

(Agrimark, Stellenbosch). Grapes were smoked within two hours of harvesting, stored at 18 º C in 

a laboratory, and smoked again 24 hours after harvest. 

The grapes were stored in the Stellenbosch experimental cellar overnight at 20 º C for logistical 

reasons and risk of contaminating other University experiments with smoke.  

4.2.2  Amelioration treatment experimental design: 

Experimental treatments followed the protocol shown in Figure 4.1. Smoked, and unsmoked 

grapes were subjected to exactly the same winemaking, enzyme and fining treatments. Smoked 

and unsmoked wines were separated into two batches post-fermentation, and one batch in each 

case was subject to enzyme treatments. The other batch in each case was simply fined, as 

outlined below. Samples were taken throughout the winemaking process for analysis of volatile 

phenol content by GC-MS. 
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Figure 4.1:  Experimental protocols for enzyme-related treatments for smoked and unsmoked Shiraz grapes 
and wine (SE= smoked enzyme treatment; SNE = Smoked grapes, no enzymes; USE = Unsmoked grapes, 
enzyme treatments; USNE = Unsmoked grapes, no enzymes. Red arrows indicate samples taken at this 
point for GC-MS analysis.) 

4.2.3 Winemaking: 

Grape processing commenced with dividing the smoke-treated grapes from each smoked crate 

evenly between fermentation buckets in order to minimise variability between them.  The grapes 

were crushed and destemmed and SO2 was added before fermentation. Winemaking followed 

standard experimental cellar protocols for the Department of Viticulture and Oenology. Inoculation 

with yeast Saccharomyces cerevisiae Lallemand (Montreal, Canada) Lavlin QA23®  was carried 

out after this, which was within 48 hours of harvesting. This yeast was chosen in a pilot study for 

this project and it also has high β-glucosidase activity. Inoculation for malolactic fermentation 

(MLF) with Anchor Co-inoculant™ (Anchor, South Africa) was carried out three days after yeast 

inoculation.  

Alcoholic fermentation took a total of five days in a temperature-controlled (25ºC) environment. It 

was monitored twice daily by taking Balling measurements until less than -1 º B. Punch downs 

were carried out three times a day to ensure maximum extraction of VPs from the skins. Pressing 

was carried out after the completion of alcoholic fermentation, and the wines were transferred to 

4.5L glass containers to finish MLF. MLF was finished within a month of inoculation in a 

temperature-controlled room at 20ºC. 3 g/L of enzyme Oenobrands (Montpellier, France) 

Rapidase™ Revelation Aroma were added to the wines after MLF had was measured below 0.5 

g/L.  After this, sulphur dioxide levels were checked, and SO2 was added. Before the application of 

treatments, the individual wines were transferred to one container to homogenise them, and an 
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additional SO2 was added. The final concentration of SO2 that was added was 115 mg/L The wines 

were allowed to stand for 3-5 days after treatment application.  

4.2.4  Enzyme treatments 

The enzyme treatment (Oenobrands Rapidase™ Revelation Aroma enzyme mixture) was applied 

as per the experimental protocol and allowed to stand for seven days before treatments 

application. This treatment is said to be “a microgranulated pectolytic enzyme preparation with the 

four essential α and β-glucosidase activities” on the RapidaseTM product sheet. 

Bottling commenced 3-5 days after treatment application. The wines were racked off the lees and 

had 40mg/l of SO2 added at bottling and were filtered through the Pall Corporation Filtersystems 

(GmbH) Seitz K300 filter sheets. The wines were then kept at 15 ºC room until sensory evaluation. 

4.2.5  Fining treatments 

The treatments applied were (activated charcoal or polymer extract or Extraferm® (Oenobrands 

Montpellier, France) or Extraferm™+Mannoproteins) and the wines were kept at 25ºC because of 

logistical reasons after treatment application for 3-5 days. Table 4.2 illustrates the treatments used, 

stage of application and dosage levels. 

Table 4.2:  Treatments applied to 2018 vintage wines post enzymatic hydrolysis 

Sample code Treatment Sample labels Trade name Stage of 
application 

Dosage 

Control None: 
unsmoked 
(clean) 
grapes/wine 

Unsmoked 
control 

- - - 

C smoke None: Smoked 
control 

Smoked 
control 

- - - 

- Enzyme None; applied 
to all the wines 

Rapidase® 
Revelation 
Aroma 

After MLF 3g/L 

Act. Char. NE 

Act. Char. ENZ 

Activated 
Charcoal 

Activated 
Charcoal 

Charbon actif 
Plus GR® 

Before bottling 50g/L 

Powder NE 

Powder ENZ 

Polymer 
powder 

polymer 
powder 

Not registered Before bottling 
over 3 days 

3g/L 

Yeast hulls NE 

Yeast hulls ENZ 

Yeast hulls Extraferm Extraferm® Before bottling 40g/hL 

Yeast hulls+ MP NE 

Yeast hulls+MP ENZ 

Yeast hulls + 
mannoproteins 

Extraferm + 
MP 

Extraferm® Before bottling 40g/hL 

40mL/L 

4.2.5.1  Fining treatment 1: Activated charcoal (Act. Char. NE;   Act. Char. ENZ) 

The activated charcoal was applied to a wine that had finished both alcoholic and malolactic 

fermentations. The product used was Laffort© Charbon actif Plus GR® which was a different 

product than that which was used in the first year of the study. 50g/hL was measured out and 
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rehydrated for 2 hours before addition. The mixture was then added directly into the wine in 4.5L 

glass containers and was kept in the 25 ºC for five days before filtration and bottling. 

4.2.5.2  Fining treatment 2: Polymer Powder (Powder NE; Powder ENZ) 

The treatment was applied to wine that had undergone alcoholic and malolactic fermentations. This 

application regime different to that of Y1 in chapter 3. 3 g/L of the powder was added at 0 hours, 

then sieving-off the powder at 24 hours and 3 g/L added again at 24 hours, and then sieving-off at 

36 hours. The wine was mixed twice a day to ensure that enough contact between it and the PET 

was obtained. The wines were stored at 25 ºC. 

4.2.5.3  Fining treatment 3: Yeast Hulls (Yeast hulls NE; Yeast hulls ENZ) 

Extraferm® is the powder of yeast cell hulls was used as the fourth treatment. 40g/hL was added 

to the wine and allowed to stand in the wine for five days. The product was from Anchor©. 

4.2.5.4  Fining treatment 4: Extraferm ® + Mannoproteins (Yeast hulls+ MP NE; Yeast 

hulls+MP ENZ) 

40g/hL of ExtrafermTM were added, plus 40ml/L of mannoproteins were added after MLF had 

finished as recommended by the manufacturer. These products were provided by Oenobrands© 

(Montpellier, France). 

4.2.6 Sensory training and testing 

Fifteen individuals were in the 2018 panel with ages ranging from 21 to 60. There were 14 females 

and 1 male.  

Sensory training was carried out as outlined in Chapter 3 of this thesis. The panel was well-trained 

in a range of sensory methods and had previous experience with smoke taint. Aroma and taste 

attributes were selected by consensus by the panel during training sessions. They were the same 

as were used for the DA study in chapter 3: ‘berries’, ‘prunes/jammy’, ‘floral/perfume’, 

‘savoury/meaty’, ‘woody’, ‘pencil shaving/dusty’, ‘smoky’, ‘earthy’, ‘tar’, ‘medicinal’, ‘animal’, 

‘rubber/plastic’, and ‘caramel/vanilla’. 

For sensory testing purposes, a combination of sensory methods was used for this section of the 

study, due to the increase in the number of wines to be evaluated.  Although DA has been shown 

in to be reliable, detailed and reproducible (Lawless and Heymann 2010), panel fatigue influenced 

the results of the previous study (Chapter 3). Thus, rapid sensory methodology was chosen for this 

study in order to avoid panel fatigue. A combination of rapid sensory mapping (grouping samples 

according to the similarities and differences) (Cartier et al. 2006) and PSP (polarised sensory 

positioning) which gives the panellists a certain number of attributes to choose from when 

evaluating the dissimilarities of wines (Teillet et al. 2010) was chosen.  
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The tests were carried over 2 weeks (6 days) with each session taking 2 hours. Two sessions out 

of the six represented a biological replicate.  

For sensory testing, 25 mL of the wines were poured into black ISO-standard tasting glasses at 

room temperature, 20°C, and covered with petri dishes. Each wine was given a three-digit code. 

Two flights were poured (one for smelling and the other for tasting) from the same bottle. The 

panellists were also given sparkling water, crackers and still water, in that order, for mouth rinsing 

between tasting samples. In Appendix B, designs for the aroma and taste tests are shown. 

4.2.7 Chemical analyses 

GC-MS was used to obtain chemical data of volatile phenols as outlined in Chapter 3 of this thesis. 

4.2.8 Data analysis 

The sensory data was captured into Excel (Microsoft, Redmond, USA).  All data analysis for 

chemistry and sensory was done using the Statistica (TIBCO Data Science, Palo Alto, USA) 

programme with the assistance from Stellenbosch University Statistical department. Chemical data 

analysis made use of the same methods as discussed in Chapter 3. For sensory analysis of the 

rapid method, cluster analysis using the Ward’s method on STATISTICA was used to give 

dendogram responses and correspondence analysis. Chi-square analysis using Rao & Scott 

adjustment yielded the histograms of responses per treatment against each attribute and that data 

set was condensed on Excel.  

4.3  Results and Discussion 

4.3.1  Sensory Results: 

Cluster analysis for overall sensory evaluation data of the sorting exercise for sample aroma 

(Figure 4.2) indicated that three distinct groupings were formed. In this type of analysis, the further 

the linkage is from 0, the more differences there are between samples.  Unsmoked wines formed a 

distinct cluster clearly separating from other treatments. The second cluster contains activated 

charcoal and the polymer powder. The third cluster grouped all the other treatments.  
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Figure 4.2:  Dendrogram of sensory responses for the sorting exercise (aroma) generated by agglomerated 
hierarchical cluster (AHC) analysis. (NE = no enzyme, ENZ = enzyme treatment) 
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This result was supported by the Principle Component Analysis (Figure 4.3) which showed 

separation along both principle components for the three groups, although PC1 and PC2 only 

explain 30% of the variability within the dataset. This data indicates how closely related some of 

the treatments were to each other in terms of their lack of effect on the attributes as perceived by 

the panel during sorting.  All the smoked treatments remained grouped on the positive side of PC1, 

whereas the controls were positioned together on the negative side of PC1. In terms of the second 

principal components, the yeast hulls treatments were grouped with the smoked controls, 

indicating that they did not cause a significant difference in terms of the perceived aroma of the 

samples. The charcoal and polymer powder treatments did separate out from the smoked controls 

(smoked ENZ and smoked NE) along PC2 indicating that these samples showed different 

attributes. These attributes are possibly ‘woody’, ‘earthy’, ‘savoury/soy’, and ‘pencil shaving/dusty’ 

from Figure 4.4, although the groupings are not completely clear.  

  

Figure 4.3.  Principle Component Analysis biplot showing treatments and controls for the sensory sorting 
exercise (aroma) of samples. (NE = no enzyme, ENZ = enzyme treatment) 

Figure 4.4 showed results of the correspondence analysis of the aroma sorting exercise. These 

results emphasized how closely associated the treatments were, with little separation between 

them. Although 83% of the variation in the dataset is explained by the separation along Dimension 

1, this is between unsmoked controls with enzymes which is positioned on the negative side of 

Dimension 1, closely associated with ‘floral/perfume’. The unsmoked control (without enzymes) is 

associated with ‘berries’, ‘prunes/jammy’ and ‘caramel/vanilla’, more to the centre of Dimension 1.  

These are all generally positive descriptors for red wine. The third group is a cluster of all the other 

treatments and attributes, including most of the negative aroma attributes like ‘earthy’, ‘meaty’, 

‘herbaceous’, ‘medicinal’, ‘animal’ and ‘pencil shavings’, on the positive side of Dimension 1.  
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 (a) (b) 

  

Figure 4.4:  Correspondence Analysis of treatments a) showing all treatments and attributes b) detail 
showing separation of samples in the cluster. Red circles denote 95% confidence intervals (NE = no 
enzyme, ENZ = enzyme treatment) 

Although it is difficult to separate the attributes in this cluster, it can be seen that the smoky 

attribute is opposed along Dimension 1, and is furthest separated from the unsmoked control 

wines. Along Dimension 2, the ‘woody’, ‘earthy’, ‘meaty’, ‘savoury/soy’ attributes are opposed to 

the ‘rubber/plastic’, ‘herbaceous’, ‘smoky’ ‘pencil shaving/dusty’, ‘animal’, ‘tar’, ‘medicinal’, and 

‘rubber/plastic’ attributes in the negative quadrant of Dimension 2.  

A cluster diagram of the taste/flavour (palate) sensory data (Figure 4.5) is presented. Figure 4.5 

shows three groups at 0.6 linkage distance, indicating three major groupings in the samples 

regarding taste.  

 

Figure 4.5:  Dendrogram of responses generated by agglomerated hierarchical cluster (AHC) analysis of 
wine taste data. (NE = no enzyme, ENZ = enzyme treatment) 
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Figure 4.6:  Principle Component Analysis Biplot for sensory data associated with taste/flavour of samples. 
(NE = no enzyme, ENZ = enzyme treatment) 

This result was again emphasized by the Principle Component Analysis (Figure 4.6) which showed 

separation along both principle components for the two groups, although PC1 and PC2 only 

explain 29% of the variability within the dataset. This data indicates how closely related the 

treatments were to each other in terms of their lack of effect on the attributes as perceived by the 

panel during sorting.  All the smoked treatments remained grouped on the positive side of PC1, 

whereas the controls are positioned together on the negative side of PC1. In terms of the second 

principal components, the yeast hulls, activated charcoal, polymer powder with enzymes and 

mannoproteins are grouped with the smoked controls, indicating that they did not cause a 

significant difference in terms of the perceived aroma of the samples. The polymer powder without 

enzyme does separate out slightly from the smoked controls (smoked ENZ and smoked NE) along 

PC2 indicating that these samples showed different attributes. These attributes are not clear in 

figure 4.7 as all the treatments are clustered between ‘green flavour’, and ‘smoky flavour’ with 

‘ashy aftertaste’ 
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 (a) (b) 

  

Figure 4.7:  Correspondence Analysis of samples and taste attribute data a) showing all treatments and 
attributes b) detail showing separation of samples in the cluster. Red circles denote 95% confidence 
intervals. (NE = no enzyme, ENZ = enzyme treatment) 

It is difficult to separate the samples according to the treatments in this cluster analysis (figure 4.7), 

however, it can be seen that the ‘green flavour’ is opposed along Dimension 2, and is furthest 

separated from the yeast hulls + mannoprotein wines. The unsmoked control that was not 

subjected to enzyme treatment (‘unsmoked NE) is most associated with ‘fruitiness’ activated 

charcoal (NE and ENZ) was closest to ‘green flavour’ compared to the other smoked treatments. 

The ‘smoky flavour’, and ‘ashy aftertaste’ attributes were associated with the third cluster of 

treatments which had smoke applied.  

 

Figure 4.8:  Categorised histograms of data of observations of ‘aroma’ modality for ‘berries’ in rapid method 
sensory using chi-squares at significance p< 0.01 using Rao & Scott adjustment. (NE = no enzyme, ENZ = 
enzyme treatment) 
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Figure 4.8 shows the percentage observations of ‘berries’ for each treatment. The unsmoked 

control with enzymes had the highest observations of 89% compared to the smoked control without 

enzymes which had 36% observations. This indicates that enzymes had an effect in releasing 

fruity/berry aroma from precursors during wine processing, which would be consistent with release 

of terpenoids from their glycosides. The data was significant at a p< 0.01 level. 

 

Figure 4.9:  Condensed data from chi-squares comparing ‘berries’, ‘floral/perfume’, ‘prunes/jammy’ to 
‘smoky’ and ‘rubber/plastic’ aromas. p< 0.01 for the attributes used in this graph.  (NE = no enzyme, ENZ = 
enzyme treatment) 

Figure 4.9 represents condensed data previously shown in figure 4.8 for five aroma attributes in a 

group of ‘fruity’ (‘fruity’, ‘floral/perfume’, ‘prunes/jammy’) which are positive and ‘smoky’ (‘smoky’ 

and ‘rubber/plastic’) which are negative characteristics. The unsmoked control showed an increase 

in fruitiness and a decrease in smokiness after the addition of the enzyme. The application of 

smoke had the highest effect on ‘floral/perfume’ which was not perceived at high levels for any of 

the treatments. The smoked control has high levels of ‘smoky’ and a slight decrease after enzyme 

addition, this is followed by an increase of berries’, ‘floral/perfume’, ‘prunes/jammy’. Activated 

charcoal behaved the opposite to smoked control where with enzyme addition, decrease in positive 

aromas and an increase in negative aromas is represented in the data. The polymer powder 

treatment after enzyme addition, only increased ‘prunes/jammy’ and decreased the other 

attributes. Yeast hulls before enzyme treatment had the highest ‘rubber/plastic’ observations which 

decreased after enzyme treatment compared to smoked control (NE and ENZ). This may be 

because fining the wine plus an increase of ‘smoky’, ‘berries’, ‘prunes/jammy’ overshadowed the 

‘rubber/plastic’ aroma. Yeast hulls + mannoproteins had all of the attributes increase after enzyme 

addition but the negative aromas were still lower than the smoked control and the positive aromas 

were higher. 
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These results did confirm what has been said in literature on the potential of β-glucosidases as 

enhancers of aroma improvement in the wine (Mateo et al. 1997; Sarry et al. 2004; Villena et 

al. 2007; Reynolds et al. 2010; Parker et al. 2012; Baffi et al. 2013; Hjelmeland et al. 2015). There 

was an increase in perceived overall fruitiness with the addition of the enzyme.  

Figure 4.10 shows the percentage observations of ‘smoky flavour’ for each treatment. The 

unsmoked control with enzymes had the lowest observations of 16% compared to the smoked 

control without enzymes which had 77% observations. This data set illustrates the effects of each 

treatment on the ‘smoky flavour’ attribute. The data was significant with p< 0.01.  

Categorized Histogram: Treatment x Smoky flavour

Chi-square(df=11)=155.87, p=0.0000

Rao&Scott adjustment: Cluster var="Judge", F=10.596, ndf=5, ddf=77, p<0.01

Include condition:  Modality="taste"
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Figure 4.10:  Categorised histograms of data of observations of ‘taste’ modality for ‘smoky flavour’ in rapid 
method sensory using chi-squares at significance p< 0.01 using Rao & Scott adjustment. (NE = no enzyme, 
ENZ = enzyme treatment) 

Figure 4.11 shows condensed data of all histograms obtained from the panel using chi-squares 

with significant results of p<0.01. The unsmoked control and the smoked control had an increase in 

‘fruity flavour’ and a decrease in ‘smoky flavour’, and ‘ashy aftertaste’ after the enzymes were 

added. This shows that a decrease of in-mouth release of VPs from their glycoside is possible with 

the addition of enzymes even if no fining treatment was applied to smoked wines. This decrease in 

glycosides did not increase the ‘smoky’ aromas observed (figure 4.9) but this may be because the 

release of fruity aromas brought complexity to the wine which suppressed the ‘smoky’ aroma.  
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Figure 4.11:  Condensed data from chi-squares comparing ‘fruity flavour’, ‘smoky flavour’, and ‘ashy 
aftertaste’ flavours. p< 0.01 for the attributes used in this graph.  (NE = no enzyme, ENZ = enzyme 
treatment) 

Activated charcoal provided the highest decrease in ‘ashy aftertaste’ compared to all the 

treatments. ‘Smoky flavour’ was increased after enzymes, indicating that the panel perceived 

higher levels of VPs in the treated samples. Yeast hulls with enzymes also decreased ‘ashy 

aftertaste’ and ‘smoky flavour’ was also decreased by this treatment, which is promising. Although 

polymer powder provided a general decrease in negative flavours, an increase was still observed 

after enzyme addition and the ‘fruity flavour’ was also decreased. 

4.3.2  Chemical analyses 

Chemical analysis was carried out using GC-MS at CAF at Stellenbosch University. The samples 

were analysed after filtration and bottling. Ten volatile phenols were quantified in triplicate using 

the method outlined in Chapter 3. The VPs analysed were guaiacol, 2.6-dimethylphenol, 4-

methylguaiacol, o-cresol, phenol, 4-ethylguaiacol, m-cresol, p-cresol, eugenol, and 4-ethylphenol 

Due to issues experienced during the later phases of the instrumental analysis, the treatment of 

yeast hulls + mannoproteins with enzymes had only one sample quantified and therefore this could 

not be included in statistical analysis. 

Table 4.3 shows the results obtained from analysis of the wines after bottling.  

The use of enzymes in the study was to release the VPs from their glycosides before treating with 

fining products. The smoked control ENZ constantly showed the highest levels of VPs and 

unsmoked control NE presented the lowest levels of VPs. From these results it can be seen that 

enzymes were able to release 3.32 µg/L more guaiacol in unsmoked controls than was present in 

the original samples, and also released 9.76 µg/L more guaiacol from smoked controls.  
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Table 4.3:  Volatile phenol results for analysis by GC-MS (averages of instrumental triplicates) 

Treatment

Guaiacol 
µg/L 

2,6-

Dimethyl 

phenol 
µg/L

4 Methyl 

Guaiacol 
µg/L

o-cresol 
µg/L phenol µg/L

4 Ethyl 

Guaiacol 
µg/L

m-cresol 
µg/L

p-cresol 
µg/L

Eugenol 
µg/L

4 Ethyl 

phenol µg/L

Control NE 9.29 ± 1.32 1.24 ± 0.16 0.36 ± 0.06 0.99 ± 0.28 0.92 ± 1.66 0.45 ± 0.08 1.52 ± 0.21 0.92 ± 0.18 1.08 ± 0.11 0.64 ± 0.09

Control ENZ 12.61 ± 0.56 1.11 ± 0.10 0.60 ± 0.05 1.95 ± 0.20 4.31 ± 0.52 0.41 ± 0.02 2.70 ± 0.27 1.43 ± 0.08 1.88 ± 0.30 0.85 ± 0.06

C smoke NE 30.58 ± 0.36 1.79 ± 0.03 7.09 ± 0.18 6.19 ± 0.25 42.64 ± 0.57 1.70 ± 0.03 7.69 ± 0.32 3.46 ± 0.06 1.12 ± 0.07 2.92 ± 0.06

C smoke ENZ 40.34 ± 11.24 3.35 ± 1.60 11.31 ± 4.98 9.33 ± 4.01 93.81 ± 12.45 2.87 ± 1.60 16.78 ± 7.82 12.35 ± 6.77 3.33 ± 2.60 6.58 ± 3.60

Act. Char. NE 26.87 ± 0.48 1.57 ± 0.02 5.71 ± 0.09 5.13 ± 0.03 40.69 ± 1.11 1.21 ± 0.02 6.07 ± 0.74 3.22 ± 0.10 0.75 ± 0.01 2.13± 0.06

Act. Char. ENZ 27.86 ± 1.01 1.63 ± 0.11 6.08 ± 050 5.81 ± 0.54 64.13 ± 2.93 1.21 ± 0.08 10.05 ± 0.62 5.16 ± 0.44 1.00 ± 0.08 3.00 ± 0.13

Polymer NE 28.34 ± 0.70 1.72 ± 0.08 6.43 ± 0.20 5.81 ± 0.14 39.56 ± 1.92 1.55 ± 0.08 7.76 ± 0.29 3.34 ± 0.20 1.05 ± 0.08 2.60 ± 0.15

Polymer ENZ 34.09 ± 5.57 2.95 ± 2.12 8.45 ± 2.28 7.06 ± 0.70 85.86 ± 7.91 1.90 ± 0.51 12.62 ± 1.66 8.80 ± 5.28 1.67 ±0.58 4.35 ± 1.28

 Yeast hulls NE 25.24 ± 0.66 1.52 ± 0.07 6.14 ± 0.26 5.45 ± 0.19 34.76 ± 0.77 1.43 ± 0.09 7.20 ± 0.45 2.95 ± 0.23 0.98 ± 0.07 2.40 ± 0.16

Yeast hulls ENZ 29.44 ± 8.19 2.85 ± 2.06 7.27 ± 2.80 5.98 ± 1.96 57.44 ± 1.78 1.68 ± 0.60 9.11 ± 4.97 6.50 ± 6.71 1.37 ± 0.83 3.39 ± 1.98

Yeast hulls + MP NE 24.26 ± 0.62 1.45 ± 0.09 5.64 ±  0.15 4.98 ± 0.18 42.01 ± 10.45 1.26 ± 0.10 6.62 ± 3.10 3.56 ± 0.78 1.03 ± 0.04 2.66 ± 0.33

Yeast hulls + MP ENZ 24.94 1.43 5.67 5.13 48.77 1.21 8.73 4.19 1.1 3.01  
 
There was a clear general trend of treatments decreasing the number of VPs present both with and 

without enzyme addition when compared to smoked controls. Another overall trend observed was 

the increase in available VPs after the treatment with enzymes, indicating that the levels of fining 

agent might need adjusting for the higher levels of VPs released by the enzymes. The only 

exception was the yeast hull treatment which had a decrease in VPs after the addition of enzymes 

(figures 4.12-4.16). 

The changes at different stages of winemaking of VPs were monitored and are presented in full in 

Appendix F. The levels remained low in grapes.  Guaiacol was 0.87 µg/L for unsmoked control 

(grapes) and 2.64 µg/L for smoked control (grapes) because most of the VPs are in their bound 

form at this stage (Kennison et al. 2008; Ristic et al. 2011). The increase was then observed after 

the completion of both alcoholic and malolactic fermentations (guaiacol: 10.53 µg/L unsmoked 

control; 25.86 µg/L smoked control). Decreases were then observed after the application of 

treatments which were activated charcoal, polymer powder, yeast hulls, and yeast hull + 

mannoproteins.  
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Figure 4.12:  LS Means diagrams (Type II decomposition) showing chemical results for guaiacol in 
controls and treatments; Vertical bars denote 95% confidence intervals.  (p<0.01) (ENZ= treated with 
enzymes; NE = not treated) 

Guaiacol (figure 4.12) demonstrated a trend observed for all treatments, where treatments with 

enzyme added had higher levels than those without. The smoked control with enzymes had the 

highest level of guaiacol above 35µg/l, which is above the ODT of 23 µg/L (Ferreira et al. 2000 and 

Parker et al. 2012). The treatment that had the highest decrease post fining was the mix of yeast 

hulls and mannoproteins without enzymes, guaiacol was below 25 µg/L. The polymer powder 

treatment showed elevated levels of guaiacol above 30 µg/L in the wines that had enzymes- higher 

than the wines that did not. In literature the re-release (Dombre et al. 2014) of VPs into wine can 

be experienced with this product. In this case, addition was very carefully monitored, and time was 

kept constant for the polymer powder treatment (NE and ENZ). This may then indicate the 

decrease of the efficacy of the treatment with increased VP concentration, so a higher dosage may 

be effective in the removal of VPs. 
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Figure 4.13:  LS Means diagrams (Type II decomposition) showing chemical results for 4-methylguaiacol in 
controls and treatments; Vertical bars denote 95% confidence intervals.  (p<0.01). (ENZ= treated with 
enzymes; NE = not treated) 

The same trends were observed for 4-methylguaiacol (Figure 4.13) as were shown for guaiacol.  

Smoked controls had the highest measured 4-methylguaiacol concentrations while polymer 

powder ENZ had the third highest measured levels. There was a trend for increasing levels of 4-

methylguaiacol after the addition of the enzyme in a treatment except for yeast hulls which 

decreased from above 7.3 µg/L NE to below 5.6 µg/L.  

The data can be linked to sensory results (figure 4.11) where an increase in ashy aftertaste was 

experienced with the addition of the enzyme for all treatments except for yeast hulls and yeast hull 

+ mannoproteins. 4-methylguaiacol has been correlated with the increase in ashy aftertaste 

alongside guaiacol, 4-methylsyringol, phenol, o-cresol, and m-cresol (Parker et al. 2012). 
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Figure 4.14:  LS Means diagrams (Type II decomposition) showing chemical results for 4-ethylguaiacol in 
controls and treatments; Vertical bars denote 95% confidence intervals.  (p<0.01). (ENZ= treated with 
enzymes; NE = not treated) 

Activated charcoal showed the highest decrease in 4-ethylguaiacol (Figure 4.14). This can be 

linked to figure 4.11, where the ‘smoky flavour’ and ‘ashy aftertaste’ experienced a decrease. 4-

ethylguaiacol provides smoke, spicy and toasted  aromas to wine (Kennison et al.  2008) and a 

decrease in ‘smoky flavour’ was observed in activated charcoal while an increase in ‘smoky 

flavour’ was seen with the increase in this compound for the other treatments. 

 (a) (b) 
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 (c) (d) 

  

Figure 4.15:  LS Means diagrams (Type II decomposition) showing chemical results for (a) m-cresol, (b)  4-
ethylphenol, (c) phenol, and (d) p-cresol in controls and treatments; Vertical bars denote 95% confidence 
intervals.  (p<0.01). (ENZ= treated with enzymes; NE = not treated) 

Phenol, 4 ethyl phenol, m-, and p-cresol showed extremely high increases when enzymes were 

added (Figure 4.15). Concentrations of double and higher are shown in Table 4.3 between no 

enzyme additions to enzyme addition. m-cresol, 4-ethylphenol, phenol, and p-cresol had a change 

of 1.52 µg/L to 2.7 µg/L; 0.64 µg/L to .085 µg/L; 0.92 µg/L to 4.31 µg/L; 0.92 µg/L to 1.43 µg/L for 

unsmoked control and the changes for unsmoked control were 7.69 µg/L to 16.78 µg/L; 2.92 µg/L 

to 6.58; µg/L; 42.64 µg/L to 93.81 µg/L; 3.46 µg/L to 12.35 µg/L, respectively. Phenol  has 

sickeningly sweet, irritating  aromas (Parker et al. 2012; Panzeri 2013), m-cresol has dry, tar, and 

medicinal-leathery  aromas (Parker et al. 2012), p-cresol has band-aid, phenol-like aromas (Parker 

et al. 2012 ) and 4-ethylphenol  has barnyard, horsey, phenolic aromas (Kennison et al. 2009). 

 Most of these were not observed significantly in sensory evaluation but the phenolic and sweet 

character might have contributed to the ‘berries’, prunes/jammy’, and ‘floral/perfume’ (Figure 4.9). 

Yeast hulls had the highest decrease of all the treatments. By adding enzymes, the yeast hulls 

showed a slight decrease in the treatment that had enzymes added. Literature has explored the 

adsorptive abilities of yeast lees and in turn yeast hulls (Ribereau-Gayon et al. 2007; Pradelles et 

al. 2008; Reynolds 2010; Kheir et al. 2013) as detoxifying agents in fermentations. The result 

displayed here where a decrease in VPs is seen after the addition of yeast hulls further illustrates 

the efficacy of yeast hulls as VP fining agents. 
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Figure 4.16:  LS Means diagrams (Type II decomposition) showing chemical results for eugenol in controls 
and treatments; Vertical bars denote 95% confidence intervals.  (p<0.01). (ENZ= treated with enzymes; NE = 
not treated) 

Eugenol shows an increase after enzyme addition for all treatments (figure 4.16). The controls both 

smoked and unsmoked showed the highest increases. While the treatments of activated charcoal, 

polymer powder, yeast hulls and mannoproteins had general decreases for both enzyme and no 

enzymes compared to the controls but slight increases per pair of treatments. The eugenol levels 

had little effect in the aroma results as ‘woody’ did not produce significant results when the chi-

square test was done of the data. As eugenol is associated with cloves and spice (Escudero 

et al. 2007), this might have contributed to the fruity and sweet aromas observed by the panel 

(figure 4.9) 

Overall it appeared that ENZ treatments increase the release of VPs which may be associated with 

the smoke taint attributes. The fining treatments did not however, seem to sufficiently decrease 

levels of guaiacol, 2.6-dimethylphenol, 4-methylguaiacol, o-cresol, phenol, 4-ethylguaiacol,  

m-cresol, p-cresol, eugenol, and 4-ethylphenol except for yeast hulls. It may also be the case that 

the enzymes continued hydrolysing glycolysates during the post-bottling period, once the fining 

agents had been removed. The dosage of fining agents may also not have been adequate to deal 

with the higher levels of VPs after release by enzymes. The dosage levels may either be increased 

per application or kept the same and the number of repeat applications could be increased. This 

however, has implications on costs. The producer would then have to weigh the cost of losing a 

product because of smoke taint against the cost of treating a tainted wine. 

4.4  Conclusions 

Volatile phenols (VPs) are well known culprits when it comes to smoke taint in wine but their bound 

precursors (glycoconjugates) pose a greater threat to the quality of the wine as they are not 
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perceived during the winemaking process.  Thus the removal of these glycoconjugated precursors 

may be the differentiating factor between wine that is palatable and wine that is not after a fire 

incident. It has been well documented in literature that slow acid hydrolysis and enzyme hydrolysis 

are the two main processes from which VP can be released from their glycoconjugated forms. Acid 

hydrolysis will act on glycolysates during bottle-aging, releasing VPs which can then be perceived 

by consumers. It has long been believed that marketing the wines for earlier release after a smoke 

incident may bring about better returns of investments and prevent in-bottle release of VPs.  

In this study, the aims were to test commercial β-glucosidases enzymes as hydrolysis agents for 

the early release of VPs, and the efficacy of subsequent removal of the VPs by fining using legal 

winemaking additives.  

To address the first aim of the study, viz. to hydrolyse volatile phenols (VPs) and their sugar 

moieties (glycoconjugated VPs) through the addition of commercial β-glucosidase enzymes, post-

fermentation, smoked and unsmoked wines were treated with commercial enzymes after 

fermentation. Released VPs were monitored chemically and effects of treatments were assessed 

sensorially in all treated and untreated wines. From the data obtained the enzymes were able to 

release a significant number of VPs from their bound forms with a range that was up to 80% 

increase for smoked controls. Control wines were associated with positive fruity aroma attributes, 

and fruity flavour attributes, whereas there were significant increases in berries’, ‘floral/perfume’, 

‘prunes/jammy’ attributes after enzyme treatments. 

The second aim was to apply four fining treatments to remove liberated VPs after the β-

glucosidase enzyme was added into the wine.  Treatments included activated charcoal, polymer 

powder, yeast hulls and mannoproteins. Results were monitored through chemical and sensory 

evaluation of the treated wines and unsmoked controls.  The treatments were able to decrease the 

VPs to a certain extent but complete or significant removal was not achieved because smoke 

aroma and taste were still perceived even after the treatments were applied. Activated charcoal 

has the biggest effect in aroma, flavour, and VPs by having the highest decrease compared to the 

other treatments. The mixture of yeast hulls and mannoproteins show promising results for removal 

of VPs after enzyme treatment, and may provide another alternative to decreasing aroma and 

taste. However, the chemical results were inconclusive because of issues with instrumental 

analysis in the later stages of the project.  

This study provides a practical and affordable way to speed the process of hydrolysis, but the 

efficacy of fining treatments needs to be tested further. The increase in fruitiness with addition of 

enzymes was observed, and this also brought a decrease in perceived smoke aroma. It is thus 

recommended for winemaking and future studies based on the results of these trials that the 

experiment be repeated over a longer period so all aspects can be explored. Keeping the wine 

longer before bottling may allow for β-glucosidase activity to complete, decreasing chances of 

further release in the bottle. Therefore, the determination of the time frame of which wines can be 
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kept is important, while also treating the wines. Aspects such as changing fining treatment dosages 

or increasing application frequencies need additional research. 
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Chapter 5:  Discussion and conclusions  

5.1  General discussion and conclusions 

Ever since the publication by Høj et al. in 2003, where the first recorded smoke taint in wine was 

reported, there have been strides to understand the phenomenon. Smoke taint is characterised by 

‘smoky’, ‘burnt’, ‘burnt rubber’, ‘ashtray’, ‘cold ash’, ‘smoked meats’, ‘smoked foods’, ‘leather’, 

‘disinfectant/hospital’, ‘medicinal’, ‘earthy’ aromas (Høj et al. 2003, Kennison et al. 2007; 2009; 

Whiting & Krstic 2007; Hayasaka et al. 2010; 2013; Parker et al. 2012) with “an excessively drying 

back-palate and retronasal ash character” (Hayasaka et al. 2013). A number of volatile phenols 

(VPs) are responsible for these flavours and aromas and strategies have been investigated to 

remove these compounds and related smoke taint flavours (Høj et al. 2003; Whiting & Krstic, 2007; 

Kennison et al. 2008; Simos 2008; Ulrich 2009; Fudge et al. 2011; Ristic et al. 2011; Singh et 

al. 2011). It has also been determined that most of the VPs are stored in wine as glycoconjugated 

moieties (Kennison et al. 2008; Hayasaka et al. 2010a; Dungey et al. 2011; Ristic et al. 2011). 

In this study, a South African (SA) context for smoke taint was explored, using commercially 

available additives that are legally permissible according to current SA legislation for fining.  

In the first part of the study, covered in Chapter 3 of this thesis, the efficacy of three legal additives 

on deliberately smoke-tainted wines for removal of VPs and smoke taint was tested. Commercial 

treatments were selected on the basis of anecdotal or published smoke taint-reduction properties. 

The products used were an oak extract (for masking of smoke taint), activated charcoal and a 

polymer powder for the removal of smoke taint. It was, of course, important to test efficacy of 

additives at different levels, so two levels were chosen: one level recommended by the 

manufacturer and the second level double the initial dosage. The reduction aspect focussed on 

either removal or masking of smoke-related compounds in wines.  

In order to assess the efficacy of the treatments, wines were made from deliberately smoked 

grapes, and then controls and smoked wines were treated and analysed chemically and sensorially 

for success in reduction of taint in comparison with unsmoked controls.  To investigate the effects 

of amelioration treatments over time, the project wines made were retested in a year later for VPs 

and effect on aroma and taste attributes. For quantifying VPs in treated and untreated samples, an 

existing GC-MS method was used, in conjunction with sensory evaluation by Descriptive Analysis 

(DA) at one month and again, one year after bottling. 

In order to check the potential for smoke-affected wines to manifest a taint after slow acid 

hydrolysis of precursors during bottle-aging, an additional part to the first study was to investigate 

the potential for hydrolysis as a strategy for removing glycosides. This was achieved by carrying 

out a complete enzyme hydrolysis on all experimental wines, and monitoring VPs before and 

afterwards in order to determine the concentration of glycoconjugated precursors, and the potential 

for smoke-taint development. 
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Results (chemical as well as in sensory analysis) of the fining experiments showed that activated 

charcoal was most successful at removing undesirable and smoky attributes in the wine and also 

provided the greatest decrease in concentrations of VPs. Chemical analysis showed that activated 

charcoal at the higher level had the highest decreases of VPs throughout compared to the smoked 

control. This treatment, however, also removed fruitiness. This resulted in lower perceived levels of 

positive aromas such as ‘floral/perfume’ and an increase in aromas such as ‘savoury/meaty’.  

Thus, because of the stripping effect of the charcoal treatment (López et al. 2001), it appeared that 

a number of flavour compounds that contribute to better wine quality were removed.  

The oak extract was successful in increasing ‘woody’ attribute and introducing the ‘caramel/vanilla’ 

attributes, especially at double the manufacture’s recommended level. However, these positive 

aspects were obscured by the fact that the smoke aromas and available VPs remained at high 

levels. In fact, none of the treatments had an effect on the taste of the wine, which remained 

‘smoky’ and ‘ashy’. Although there were some differences found between smoked and unsmoked 

treatments regarding the aroma of the wine, none of the smoked treatments had an effect on the 

flavour (palate) of the wine. This agrees with findings by Wilkinson et al. (2011) and Mayr et al. 

(2014), in which the majority of VPs were found to be stored in glycosylated forms in the wines and 

could be released by in-mouth enzymes.  An additional aim of the first study was thus to 

investigate the potential for release of VPs from glycosides, and for smoke-affected wines to 

manifest a taint after slow acid hydrolysis during bottle aging. Through carrying out a complete 

enzyme hydrolysis, and monitoring VPs before and afterwards in order to determine the 

concentration of glycosylated precursors, it was shown that VPs increased in the smoked wines. 

The increase in VPs showed extremely high risk potential for wines to develop smoke taint even 

after thorough fining. 

The second year of analysis of wines made during the first part of the project yielded promising 

results with the PCA showing a stronger differentiation between treatments compared to the first 

year with activated charcoal showing a shift towards being associated with positive attributes of 

‘floral’, ‘caramel’ and ‘berries’.  Eugenol measured the highest in the oak extract treatment and 

could be linked to the increased ‘woody’ attribute in sensory analysis. The VPs still remained at 

varying levels in comparison to their odour thresholds after one year in bottle. 

 

Bound smoke taint precursors pose a greater threat to the quality of the wine and their removal can 

be the differentiating factor between wine that is palatable and wine that is not after a fire incident. 

The second major aim of the overall project was related to the need to completely hydrolyse 

glycolysated precursors (glycoconjugated VPs) in wine in order to ensure no ‘late development’ of 

smoke taint to be perceived by consumers. As shown in Chapter 3, VPs in smoked wine could be 

hydrolysed from sugar moieties through the addition of commercial β-glucosidase enzymes post-

fermentation.  Chapter 4 of the thesis further elucidated the ‘release and remove’ strategy that had 

been suggested by the results in Chapter 3.  
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To hydrolyse volatile phenols (VPs) and their sugar moieties (glycoconjugated VPs) through the 

addition of commercial β-glucosidase enzymes post-fermentation, smoked and unsmoked wines 

were treated with commercial enzymes after fermentation.  In the second study, four fining 

treatments were applied to the enzyme treated wine in order to remove liberated VPs after the β-

glucosidase enzyme treatment.  Treatments tested included activated charcoal, polymer powder, 

yeast hulls and mannoproteins.  Results were again monitored through chemical (GC-MS) and 

sensory evaluation of the treated wines and unsmoked controls. As the study in Chapter 3 had 

indicated, the panel experienced fatigue during the lengthy DA process, and thus the wines were 

assessed using a combination of rapid sensory mapping and polarised sensory positioning. 

From the data obtained, it was shown that the enzymes were able to release a significant number 

of VPs from their bound forms with a range that was up to 80% increase for smoked controls. 

Control wines were again associated with positive fruity aroma attributes, and fruity flavour 

attributes, and there were significant increases in ‘berries’, ‘floral/perfume’, ‘prunes/jammy’ 

attributes after enzyme treatments, showing that these enzymes can have a positive effect on wine 

quality.  In the smoked wines, the β-glucosidase enzymes were shown by GC-MS to have released 

VPs.  The fining treatments were able to decrease these VPs to a limited degree, but significant 

removal was not achieved because smoke aroma and taste were still perceived by sensory 

evaluation even after the treatments were applied. Chemical analysis also showed that VPs were 

present after fining. In terms of efficacy, activated charcoal again had the biggest effect on aroma, 

flavour, and VPs by having the highest decrease compared to the other treatments. The mixture of 

yeast hulls and mannoproteins showed promise in removing smoky taste and flavours. Through 

personal communication from Du Plessis (2019), recommendations can be made on the choice of 

yeasts, bacteria and type of wine to be made as these play an important role in the release VPs. 

Rosé wines can be made from red grapes as lower VPs have been found and no MLF is needed 

for such wines as bacteria has an influence on VPs present in the wine. Rosé wines can be made 

for early release by using yeast that prevent or limit the release of VPs. If the aim is to release 

more VPs then the use of the yeast that was chosen for this study would be sufficient. In this study, 

the use of QA23 and co-inoculation yeast did have an influence and that is why these organisms 

were chosen in the pilot study. 

 

With any study, experience and lessons allow for insights thus wisdom to know what can be done 

differently or improved upon. An additional aim of this work was to try and make recommendations 

for winemaking and future studies based on the results. The levels of VPs generated by the smoke 

treatments in these experiments were higher than those that likely to be found in the industry after 

natural fire events, which means the study could be repeated on naturally tainted wines. There is 

thus a strong possibility that at those ‘normal’ smoke taint levels the treatments may have a 

significant decrease in VPs measured and smoke taint detected by consumers.  It is thus 

recommended for winemaking and future studies based on the results of these trials that the 
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experiment be carried out on a longer period so all aspects can be explored. Based on this study, 

keeping the wine in the cellar for a longer period before bottling will allow for changing treatment 

dosages whether it be to increase or decrease depending on the needs of the wines or blending or 

the use of reverse osmosis to eliminate VPs. As an alternative increasing application frequency of 

treatments may remove VPs gradually as they develop and get released into the wine.  Therefore, 

a possible study would be the determination of the time frame for which wines can be kept in the 

cellar for treatments. Moreover, once enzyme treatments have been applied, the use of activated 

charcoal at relatively high levels to remove smoke taint aroma could be tested, and then adding 

oak extract to increase positive aromas of woodiness and caramel/vanilla to provide complexity 

may be recommended.  

This study has the potential to expand to product development of products to specifically target 

volatile phenols and their glycoconjugates. For example, a product that may show some potential 

as a treatment to target VPs is suberin from cork. Also, filtration systems and materials with 

adsorptive capabilities could be investigated.  

This current amelioration of smoke taint project has been carried out in the South African context 

as there have been a limited number of studies on this subject matter. This work expanded on the 

research mostly done in Australia by Anthea Fudge which looked at reverse osmosis, solid phase 

adsorption and commercial fining agents as means of smoke taint reduction and removal of VPs.  
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APPENDICES 
 

Appendix A 

Table of sensory training standards 

 Aroma Standard 

1 Caramel Moir’s, essence caramel flavour 

2 Honey Spar, honey choice grade 

3 Vanilla Woolworths, vanilla essence and vanilla paste mix 

4 Polish Kiwi, black quality shoe polish 

5 Raw meat Spar, steak fillet 

6 Medicinal Jean Lenoir : Le Nez du Vin faults 

7 Banana Jean Lenoir : Le Nez du Vin 

8 Tobacco Domingo, 100% whole leaf tobacco natural 

9 Cinnamon Robertsons, cinnamon 

10 Rubber Elastic bands 

11 Earth Jean Lenoir : Le Nez du Vin faults 

12 Liquorice Jean Lenoir : Le Nez du Vin 

13 Nutty Jean Lenoir : Le Nez du Vin 

14 Jammy Freshers, strawberry jam 

15 Red berries Jean Lenoir : Le Nez du Vin 

16 Prunes Jean Lenoir : Le Nez du Vin 

17 Cooked veg Cooked green beans 

18 Balsamic vinegar Olyvenbosch, balsamic vinegar 

19 Strawberries Jean Lenoir : Le Nez du Vin 

20 Black pepper Robertsons, black pepper 

21 Soy Vital, soy sauce 

22 Leather Jean Lenoir : Le Nez du Vin faults 

23 Barnyard Jean Lenoir : Le Nez du Vin faults 

24 Floral/violet Jean Lenoir : Le Nez du Vin 

25 Mushrooms Jean Lenoir : Le Nez du Vin 

26 Muscat Jean Lenoir : Le Nez du Vin 

27 Musk Jean Lenoir : Le Nez du Vin 

28 Ashy Ash from ashtray 

29 Green olives Tuna marine, green olives in traditional brine 

30 Plums Jean Lenoir : Le Nez du Vin 

31 Smokey Burnt cork 

32 Roasted coffee Coffee beans with hot water 

33 Dark berries Jean Lenoir : Le Nez du Vin 

34 Tar Creosote 

35 Pencil shavings Staedtler HB shavings 

36 Woody Oak chips 
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Appendix B  

 2017 DA tasting sheet 

 
Judge_______________________________________ Date___________________ 

Aroma 

Berries none------------|------------------------------------------------------|--------------intense 

Prunes/Jammy none------------|------------------------------------------------------|--------------intense 

Caramel/Vanilla none------------|------------------------------------------------------|--------------intense 

Floral/Perfume none------------|------------------------------------------------------|--------------intense 

Savoury/Soy none------------|------------------------------------------------------|--------------intense 

Woody none------------|------------------------------------------------------|--------------intense 

Meaty none------------|------------------------------------------------------|--------------intense 

Pencil shavings/Dusty none------------|------------------------------------------------------|--------------intense 

Smoky none------------|------------------------------------------------------|--------------intense 

Earthy none------------|------------------------------------------------------|--------------intense 

Tar none------------|------------------------------------------------------|--------------intense 

Medicinal none------------|------------------------------------------------------|--------------intense 

Animal none------------|------------------------------------------------------|--------------intense 

Rubber/Plastic none------------|------------------------------------------------------|--------------intense 

 

Berries:  red and dark berries 

Prunes:  Prunes, raisins, jammy, tobacco 

Savoury:  savoury, balsamic, soy sauce 

Woody:  toasted oak, vanilla pod 

Meaty:  raw meat, metallic 

Smoky  smoky, ashy 

Animal:  barnyard, leather, musk 

Earthy:  earthy, mushrooms, mouldy 
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Judge_______________________________________ Date___________________ 

 

Taste 

Fruity flavour none------------|----------------------------|--------------------------|--------------intense 

 Low Medium High 

Green flavour none------------|-----------------------------|-------------------------|--------------intense 

 Low Medium High 

Smoky flavour none------------|-----------------------------|-------------------------|--------------intense 

 Low Medium High 

Ashy aftertaste none------------|-----------------------------|-------------------------|--------------intense 

 Short Medium Long 
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Appendix C 

Tasting sheets for 2018 rapid method 
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Appendix D 

Volatile phenols results in 2017 (Y1) 

Treatment Guaiacol

2,6-

dimethyl

phenol

4-

ethylguai

acol o-cresol phenol

4-

ethylgu

aiacol m-cresol p-cresol eugenol

4-

ethylph

enol

4-

vinylguai

acol

control 7,10±0,35 0 1,08±0,06 0,19±0,02 3,20±0,04 0 0,61±0,03 0,22±0,02 0 0,39±0,04 0

s control 23,91±2,14 0,66±0,17 4,25±0,32 3,81±0,31 40,20±4,65 0,53±0,14 1,92±0,16 4,11±0,24 0,13±0,05 0,49±0,09 1,03±0,15

T1L1 27,08±0,52 0,86±0,06 4,58±0,11 4,47±0,23 46,55±0,47 0,66±0,07 2,22±0,13 4,78±0,22 0,16±0,01 1,21±0,11 1,34±0,09

T1L2 24,56±2,80 0,72±0,07 3,92±0,44 4,14±0,61 38,51±5,46 0,55±0,10 1,94±0,25 3,72±0,71 0,06±0,03 2,11±0,24 1,07±0,18

T2L1 23,68±1,60 0,42±0,07 3,82±0,24 3,73±0,31 39,78±2,81 0,43±0,06 1,88±0,17 4,09±0,28 0,08±0,03 0,24±0,02 0,99±0,08

T2L2 21,31±0,92 0,22±0,08 3,22±0,28 3,30±0,23 35,4±2,92 0,34±0,09 1,63±0,13 3,44±0,29 0,01±0,01 0,08±0,03 0,84±0,17

T3L1 23,88±0,80 0,65±0,06 3,98±0,19 3,75±0,22 40,17±2,33 0,53±0,04 2,03±0,16 4,16±0,27 0,14±0,01 0,51±0,03 1,24±0,07

T3L2 23,12±1,72 0,66±0,11 3,77±0,17 3,89±0,52 40,98±0,33 0,60±0,20 2,09±0,12 4,08±0,15 0,08±0,05 0,42±0,06 1,20±0,20  

 
 
Appendix E 

Volatile phenols results in 2018 (Y2) 

Treatment Guaiacol

2,6-

dimethyl

phenol

4-

ethylguai

acol o-cresol phenol

4-

ethylgua

iacol

m-

cresol p-cresol eugenol

4-

ethylph

enol

4-

vinylgua

iacol

control 6,83±0,75 1,25±0,08 0,30±0,033 1,40±0,42 4,93±2,45 0,45±0,10 1,95±0,63 0,95±0,30 1,06±0,18 0,35±0,05 2,69±0,66

s control 19,98±1,17 2,71±0,14 4,25±0,53 3,44±0,75 47,08±8,91 1,46±0,13 4,85±0,83 4,01±1,41 1,22±0,26 1,90±0,35 4,19±2,25

T1L1 23,49±4,55 2,95±0,51 5,01±0,84 3,97±0,92 53,77±13,27 1,70±0,36 5,76±1,60 3,85±0,74 1,97±0,44 2,11±0,42 3,21±0,56

T1L2 19,87±1,46 2,80±0,16 4,38±0,54 3,32±0,76 34,39±4,61 1,58±0,15 4,89±0,76 3,64±1,62 2,66±0,37 1,88±0,40 4,70±2,89

T2L1 18,87±0,97 2,34±0,14 3,98±0,36 3,87±0,30 40,63±3,94 1,24±0,10 4,53±0,31 3,62±0,76 0,84±0,08 1,70±0,18 2,87±0,33

T2L2 16,90±1,39 2,20±0,20 3,29±0,32 2,77±0,73 35,20±3,30 1,04±0,18 3,59±0,28 2,97±0,70 0,71±0,24 1,40±0,60 2,41±0,35

T3L1 19,55±1,64 2,60±0,04 4,04±0,51 3,39±0,31 40,00±5,42 1,45±0,15 4,62±0,44 3,19±0,42 1,11±0,12 1,83±0,24 3,15±0,21

T3L2 20,10±1,91 2,57±0,35 3,90±0,48 2,73±1,18 41,06±7,00 1,40±0,40 4,70±1,26 3,57±0,63 0,88±0,19 1,75±0,28 3,12±0,43  

Stellenbosch University  https://scholar.sun.ac.za



75 

Appendix F 

Pre-treatment with fining products VP changes 

Treatment Guaiacol

2,6 

Dimethyl 

phenol

4 Methyl 

Guaiacol o-cresol phenol

4 Ethyl 

Guaiacol m-cresol p-cresol Eugenol

4 Ethyl 

phenol

4 Vinyl 

Guaiacol

control grapes 1,00 ± 0,10 0,97 ± 0,06 0,01 ± 0,01 0,06 ± 0,05 n/a 0,14 ± 0,01 n/a n/a 0,17 ± 0,05 0,06 ± 0,01 0,01 ± 0,01

s control grapes 2,48 ± 0,13 1,25 ± 0,17 0,06 ± 0,01 0,67 ± 0,05 n/a 0,18 ± 0,01 n/a n/a 0,14 ± 0,01 0,18 ± 0,01 0,05 ± 0,07

control juice 0,56 ± 0,03 0,43 ± 0,05 n/a n/a n/a 0,14 ± 0,00 n/a n/a 0,05 ± 0,01 0,05 ± 0,00 2,78 ± 0,32

s control juice 2,57 ± 0,30 0,80± 0,12 0,56 ± 0,12 0,36 ± 0,13 1,34 ± 0,91 0,39 ± 0,02 0,01 ± 0,01 0,04 ± 0,04 0,16 ± 0,05 0,17 ± 0,02 5,02 ± 1,33

control before enzyme 11,7 ± 15,04 1,24 ± 0,56 0,51 ± 4,59 1,85 ± 2,28 6,37 ± 26,33 0,65 ± 1,18 2,19 ± 2,83 1,14 ± 3,11 1,50 ± 0,23 0,79 ± 1,39 7,66 ± 0,66

s control before enzyme 43,35 ± 1,92 2,45 ± 0,10 10,43 ± 0,56 7,13 ± 0,47 60,14 ± 4,32 3,05 ± 0,16 9,10 ± 1,14 6,71 ± 0,81 1,87 ± 0,08 3,78 ± 0,17 8,75 ± 0,43

control no enzyme 11,74 ± 0,20 1,23 ± 0,03 0,47 ± 0,02 1,53 ± 0,04 5,89 ± 0,36 0,60 ± 0,02 2,46 ± 0,21 1,12 ± 0,16 1,41 ± 0,04 0,84 ± 0,07 8,51 ± 0,37

control enzyme 15,28 ± 1,00 1,13 ± 0,04 0,73 ± 0,08 2,32 ± 0,28 10,30 ± 1,28 0,64 ± 0,01 4,29 ± 0,66 2,10 ± 0,34 2,44 ± 0,34 1,13 ± 0,14 18,51 ± 3,48

s control no enzyme 40,16 ± 1,10 2,09 ± 0,05 9,474 ± 0,22 7,63 ± 0,20 56,90 ± 2,61 2,32 ± 0,08 11,77 ± 0,21 4,72 ± 0,38 1,61 ± 0,04 3,67 ± 0,09 8,98 ± 0,35

s control enzyme 39,56 ± 1,09 2,08 ± 0,09 9,48 ± 0,26 7,36 ± 0,32 82,89 ± 2,94 2,09 ± 0,07 15,99 ± 1,55 6,63 ± 0,19 1,77 ± 0,06 4,20 ± 0,14 11,49 ± 0,26  
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