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Abstract
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Private Bag X1, 7602 Matieland, South Africa.

Dissertation: PhD
December 2012

In recent years academic and industrial interest on 77-conjugated organic semi-
conductors has increased due to their electrical and optical properties that can be
applied in devices such as organic light emitting diodes (OLED), organic field-
effect transistors (OFET), organic solar cells (OSC) among others. Majority of re-
search was focused on device design rather than understanding the fundamental
processes responsible for the observed properties. Such knowledge can be useful
in tailoring new compounds exhibiting desired properties. Optical characteriza-
tion was one of the ways to extract this information. In this work, steady state ab-
sorption and femtosecond transient absorption spectroscopy measurements were
done on tetracene single crystals and tetracene in toluene solvent at room tem-
perature. A lot of previously reported work was on polycrystalline thin films and
few on free standing crystals. In this study, single crystals of thicknesses 200 nm,
300 nm and 500 nm were cut using a microtome. The steady state absorption
spectra of these crystals revealed existence of two non-degenerate first excited
singlet states (S1) that can be excited with orthogonally polarized optical fields,
1 band || b axis of the ab face of the unit cell respectively. A Davydov split-
ting of between 0.08 eV and 0.12 eV between the two states was determined and
compared well with literature values implying similarities in the samples.

The transient absorption measurements done at room temperature on tetracene
dissolved in toluene solvent displayed a broad positive signal implying that ex-
cited state absorption (ESA) plays a major role. For the first time signatures of
excited triplet absorption were seen 20 ps after excitation at 2.67 eV (465 nm) and
was proposed to result from ultrafast inter-system crossing (ISC) facilitated by
the position of the second excited triplet state T, being energetically below the
tirst excited singlet state S;. The overlapping signals in the transient absorption
spectra of single crystals in the UV to VIS regime frustrated efforts to interpret
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them in the past but here we employed a robust deconvolution technique involv-
ing sum of Gaussian functions fit. From this we were able to identify a number
of important properties which include

1. Singlet exciton fission occurs on sub-picoseconds through direct fission of
higher-lying singlet states forming two triplets S, — 2T;, and at 40 ps
timescales through the thermally activated singlet fission of the lowest ex-
cited singled state S; — 2T7. These were seen on positive signals decaying
beyond 2.6 ns attributed to absorption by T state at 2.66 eV (467 nm) and
at 2.5 eV (496 nm). The attribution of the former was done for the first time
here while the latter had been done in other studies elsewhere on polycrys-
talline thin films [1].

2. The rapid generation of triplets was independent of excitation energy. This
was because the same timescales, sub-ps and 40 ps, were obtained from ex-
citation done at 3.20 eV (387 nm) and at 2.34 eV (530 nm). This was contrary
to the expectation of the often used model where exciton fission from the
S; state excited at 530 nm proceeds only at around 40 - 100 ps and not at
shorter time scales.

3. The high energy Davydov exciton at 2.47 eV (503 nm) was short-lived as
it readily undergoes fission forming triplet excitons. This was revealed
through probing the excited crystal with field polarized L b-axis of the ab
face of the unit cell. Such measurements had never been reported before as
thin enough single crystals were unavailable.

4. There was a short lived (<10 ps) emission from the low energy Davydov
at around 2.30 eV (540 nm). The emission was followed by a weak positive
signal attributed to trapped excitons at defect sites and which exhibited a
decay extending beyond 2 ns.
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Uittreksel

Exciton Dynamics in Tetracene Enkellopend Crystals bestudeer
Met behulp van Femtoseconde Laser Spektroskopie

(“Exciton Dynamics in Tetracene Single Crystals Studied Using Femtosecond Laser
Spectroscopy”)

Zephania Birech

Fisika Departement,
Universiteit van Stellenbosch,
Privaatsak X1, 7602 Matieland, Suid Afrika.

Proefskrif: PhD
Desember 2012

Onlangs het akademiese en industriéle belangstelling van 7-gekonjugeerde or-
ganiese semi-geleiers toegeneem as gevolg van hulle elektriese en optiese eien-
skappe wat toegepas kan word in toestelle soos organiese liguitstralende diodes,
organiese veld-effek transistors en organiese sonselle. 'n Meerderheid van die na-
vorsing is gefokus op die ontwerp van toestelle eerder as om die begrip van die
fundamentele prosesse te verstaan wat verantwoordelik is vir die waargenome
eienskappe. Sodanige kennis kan nuttig wees in die aanpassing van nuwe ma-
terie om verlangde eienskappe te genereer. Optiese karakterisering is een van
die maniere om hierdie inligting te onttrek. In hierdie werk word stabielestaat
absorpsie en femtosekonde absorpsie spektroskopie metings gedoen op enkel-
kristal tetracene in n tolueen oplosmiddel by kamertemperatuur. Baie van vorheen
gerapporteerde werk was van poly-kristal dun films en net 'n paar op vrystaande
kristalle. In hierdie studie is enkel-kristalle met diktes van 200 nm, 300 nm en
500 nm gesny. Die stabielestaat absorpsie spektra van hierdie kristalle het die
bestaan dadvan twee nie-gedegenereerde eerste opgewekte enkel toestande (S1)
bewys, wat opgewek kan word met ortogonale gepolariseerde lig wat onderskei-
delik loodreg en parallel met betrekking tot die a-b gesig van die eenheidsel is.
'n Davydov splitsing van tussen 0.08 eV en 0.12 eV tussen die twee toestande is
bepaal en vergelyk goed met die literatuur waardes.

Die femtosekonde absorpsie metings wat gedoen is by kamertemperatuur op
tetracene opgelos in 'n tolueen oplosmiddel vertoon 'n wye positiewe sein. Dit
impliseer dat opgewekte toestand absorpsie 'n belangrike rol speel. Vir die eerste
keer is tekens van opgewekte triplet toestand absorpsie gesien, 20 ps na die op-
wekking met 2,67 eV (465 nm) lig. Die verskynsel was voorgestel as ultra-vinnige
inter-stelsel kruising wat gefasiliteer word deur die posisie van die tweede opgewekte
triplet toestand (T2) wat energiek onder die eerste opgewekte enkel toestand (S1)
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is. Die oorvleueling van seine in die femtosekonde absorpsie spektra het die
interpretasie in die verlede moeilik gemaak maar hier het ons van 'n robuuste
dekonvolusie tegniek, wat die som van verskillende Gauss funksies pas, gebruik
gemaak. Hieruit was ons in staat om van die belangrikste eienskappe te identi-
tiseer wat die volgende ingesluit het:

1. Enkel eksiton splyting kom voor op sub-pikosekondes deur onmiddellike
splyting van hoérliggende enkel toestande wat twee triplet toestande vorm,
en op die 40 ps tydskaal, deur die termies geaktiveerde splyting van die
laagste opgewekte enkel toestand. Dit is gesien deur positiewe seine wat
verval na 2.6 ns, toegeskryf aan absorpsie deur die T1 toestand van 2.66
eV (467 nm) en 2.5 eV (496 nm). Die toeskrywing van die eerste proses is
hier vir die eerste keer gedoen, terwyl die laasgenoemde gedoen is in ander
studies elders op poly-kristal films.

2. Die vinnige generasie van triplets was onafhanklik van opwekende energie.
Dit was omdat die dieselfde tye, sub-ps en 40 ps, daverkry is uit opwekking
met 3.20 eV (387 nm) en 2.34 eV (530 nm). Dit was in strydig met die dikwels
gebruikte model waar eksiton splyting van die S1 staat opgewek met 530
nm ongeveer 40 - 100 ps vat en nie op korter tydskale nie.

3. Die leeftyd van die hoérenergie Davydov eksiton by 2.47 eV (503 nm) was
kort, aangesien dit graag splyting na triplet eksitone ondergaan. Dit was
gewys deur die kristal met lodreg gepolariseerde lig met repsek tot die
a-b gesig van die eenheidsel te ondersoek. Sulke metings was nog nooit
aangemeld nie aangesien dun genoeg enkel kristalle nie beskikbaar was nie.

4. Daar was 'n kort duurende (<10 ps) emissie van die lae energie Davydov
by ongeveer 2.30 eV (540 nm). Die emissie is gevolg deur 'n swak positiewe
sein wat toegeskryf word aan vasgevangde eksitone by onsuiwerhede in
die kristal en wat 'n verval wat buite 2 ns strek.
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1. Introduction

Over the last two decades molecules with conjugated 7r-electron systems have
become a source of novel organic-based devices which include organic light-
emitting diodes (OLEDs) [2] and organic field-effect transistors (OFETs) [3, 4, 5].
They are now gaining a new interest in the solar cell industry for their potential
to improve significantly the efficiency of photovoltaic solar cells [6, 7, 8]. A lot of
research is also on-going in trying to understand the mechanisms and timescales
of energy and charge transfer in the naturally occurring 7r-conjugated molecu-
lar system, the photosynthetic light harvesting complex, found in various living
organisms (higher plants, algae, bacteria e.t.c) [9, 10, 11]. The ability of these
natural light harvesters to capture and efficiently channel excitation energy over
considerable distances (tens of nanometers) has been the compelling motivation
to study them. The goal has been to understand the precise molecular principles
governing the high light-to-charge conversion efficiency ( > 95 %) [11] and ap-
plying it in the synthesis of artificial molecular complexes mimicking the process
of photosynthesis. This will in turn set the stage for using light harvesting to fuel
renewable energy technologies [10].

Carbon atoms are the main structural elements in 77-conjugated molecular sys-
tems. The electron configuration of an isolated carbon atom in its ground state
is 15?2522p%. In a molecule it's valence is four due to the four electrons in the
outermost shell. The four orbital electrons can form four bonds (equivalent hy-
bridized sp® bonds) in a non-conjugated organic molecule such as methane [12].
In conjugated organic molecules i.e having alternating single and double bonds
( see Figure 1.2 (a)), a double bond can form between two carbon atoms due to
sp? hybridization. Here, three degenerate orbitals are constructed out of one s
and two p orbitals leaving one p orbital [13] as schematically shown in figure 1.1.
This remaining p (the p,) orbitals form a 7t bond which results from the overlap
of the p-orbitals above and below the plane of the ring (see Figure 1.2(b,c)). The
three sp? orbitals which lie in one plane and are separated by 120° angle form
the so called o bonds. These bonds form single bonds. The electrons in the o
bonds are not free (i.e more localized) compared to the 7w bonds’ electrons which
may be delocalized over all or part of the molecule. As can be seen in Figure
1.2(b,c) showing the distribution of 7r-electrons on the lowest un-occupied molec-
ular orbitals (LUMO) and on the highest occupied molecular orbitals (HOMO) or
ground state in tetracene, the 7r-orbitals are out of plane of the atoms and so can
interact with each other freely and become delocalized. The 7 bonds lie on a
plane that is perpendicular to that of the ¢ bonds. A double bond consists of a
o-bond and a 7r-bond.

Among molecular structures with conjugated 7r-electron systems are molec-
ular crystals. These are solids in which organic molecules are held together in
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(a) (b)

2p 2p 2p 2p

= SEalE;

Three sp’
vil,.

Figure 1.1: A schematic of sp2 hybridization in carbon. (a)The orbitals of a free carbon atom
showing the upper two shells 2s?2p? which play a role in bonding. (b) sp? hybridization brought
about by bonding of two carbon atoms. This result in an sp? hybridized orbital where one of the
2s orbital electron is shared with those of two 2p orbitals leaving one 2p orbital electron. The
remaining p orbital can form a 7-bond.

(a) O

n- electrons cloud

Figure 1.2: (a)Molecular structure of conjugated compound tetracene consisting of four fused
benzene rings and (b) the distribution of the rr-electron cloud in the lowest unoccupied molecular
orbital (LUMO) and (c) the distribution in the highest occupied molecular orbital (HOMO). The
colors represent the different phases (4, —) of the cloud with respect to the o bonds’ plane. These
were calculated using Gausian programme.

position by weak intermolecular forces (Van der Waals forces). These forces re-
sult from fluctuating charge distributions which induces dipole moments in the
neighboring molecules. Due to the weak intermolecular interactions, the molecules
in the crystal retain their individual physical properties, hence the term molec-
ular. The low melting temperature (e.g 217 °C for Anthracene compared with
937°C for Germanium [13]), low mechanical strength and high compressibility
can also be attributed to the same weak forces. This also explains why several
different lattice arrangements with similar ground state energies (polymorphism)

2
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are common in these crystals. Many of their optical properties which include low
electronic excitation energies (a few eV), absorption and luminescence in the visi-
ble, near-infrared or ultraviolet spectral regimes can be attributed to the 7t orbitals
of the individual constituents [13]. The arrangement of molecules in their crys-
tal’s unit cells result in anisotropy in optical, electrical, magnetic and mechanical
properties [14, 15]. The interaction of N differently oriented molecules in the unit
cell upon excitation cause splitting of electronic terms into N states that can be
excited by light of different polarizations respectively. This splitting is referred to
as Davydov splitting [13, 14, 16, 17]. Examples of organic molecular crystals in-
clude polyacenes (e.g anthracene, tetracene, pentacene, pyrene e.t.c), radical ion
salts, polymers (e.g PVC) among many [13].

Energy conduction in molecular crystals is by means of excitons [13]. These
are bound electron-hole (e-h) pairs formed upon excitation that move within the
crystal [18, 13, 12] and can release energy radiatively (photoluminescence ) when
they recombine [19]. The e-h pairs that are localized on the same molecule are
referred to as Frenkel excitons [13] and play a key role in energy transport in
molecular crystals, polymers and biological systems. Those pairs that are delo-
calized over several molecules and separated by a large distance between them
are termed Mott-Wannier excitons and are mainly created in inorganic semicon-
ductors such as Gallium Arsenide. The pairs where the hole is formed on one
molecule and the electron on the adjacent one are called charge transfer (CT) ex-
citons. Among Frenkel excitons are singlet and triplet excitons. A Singlet exciton
is formed when the promoted electron retains its spin in the excited state such
that the total quantum spin of the molecule is zero i.e S=0. Triplet excitons on
the other hand are created when the excited electron undergoes a spin inversion
in the excited state resulting in total quantum spin S=1 [13, 20].

The definitive positions and lifetimes of singlet and triplet exciton states in
the larger polyacenes such as tetracene and pentacene are still debatable. The
lowest band of the first excited singlet state (S;) in tetracene at room tempera-
ture for instance has been stated to be at 2.30 eV (540 nm) [21] and 2.40 eV (517
nm) [22] in single crystals and 2.32 eV (533 nm) [23] and 2.34 eV (530 nm) [1]
in polycrystalline thin films. Its lifetime was between 200 ps [24] to 300 ps [25]
in polycrystalline thin films and single crystals respectively and 20 ns to 23 ns
[26] in solution. The absorptivity of molecular crystals are generally high, in the
order of 10° cm~! [13] and so very dilute solution or nanometer thick crystals
were needed. Virtually all the reported results on single crystals involved use of
thick samples (>>1 ym) where electro-absorption and fluorescence measurements
were done [22, 25,27, 28, 29, 30]. The main reason of using such thick crystals was
lack of technology to produce good quality thin free standing single crystals. In
polycrystalline thin films, the different orientations of crystallites on the substrate
was likely to frustrate the resolution of some weak signals such as those due to
transitions in the triplet states in transient absorption measurements [23] besides
making it hard to perform polarized probing of the excited sample.

One of the tasks of this research was to prepare free standing single crystals
from the provided thick (/= 500 ym) sublimation grown tetracene crystal platelets.
This involved first estimating the appropriate thickness for performing transmis-
sion measurements from absorbance values obtained from sample in solution.

3
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Slicing of the platelets using a microtome and obtaining nanometer thick sam-
ples was then to be done. The samples were to be supported on a copper wire
mesh with squares of dimensions 150 ym.

Since tetracene crystallizes in a layered herringbone structure with a triclinic
unit cell consisting of two non-equivalent molecules under translational opera-
tion [13, 14, 16, 31, 32], two excitonic states that can be excited with orthogonally
polarized light were expected. The energy splitting of these states (Davydov
splitting) results from the electrostatic interaction of the two transition dipole
moments [13, 31]. The energetic positions of these two excitonic states and the
amount of splitting in our single crystals were to be determined and compared
with values obtained in literature. The solution to crystal shift energy result-
ing from non-resonant interaction of the excited molecules with neighbouring
ground state molecules was also to be estimated.

Femtosecond transient absorption measurements on free standing single tetracene
crystals are few in literature, the author of this work came across only one in ref-
erence [33]. From such measurements, ultra-fast energy transfer between states
in the same molecule or between neighbouring molecules are studied. The infor-
mation obtained is useful in developing technological appliances utilizing these
properties. Of particular interest in the solar cell industry for instance is the fast
generation of two triplet excitons from one singlet exciton (singlet fission) which
has been shown theoretically to improve the efficiency of solar cells by a factor
of 1.5 (from 31% to 46%) [6, 34]. In this study transient absorption measurements
using femtosecond laser pulses were performed on the obtained single tetracene
crystals using the setup built in our lab. The experimental transient absorption
setup was first made spectrally tunable over a wide band of frequencies ranging
from the UV to the VIS regime. This necessitated the building and characteriza-
tion of a non-collinear parametric amplifier (NOPA). When the setup was ready
transient absorption data was obtained and analyzed. From the results, transient
states were identified and interpreted. Given that the measurements were per-
formed in the UV-VIS regime of the electromagnetic spectrum where there are
overlap of different excited states, a method to deconvolve them was established.

This dissertation has been organized as follows.

Chapter 1 introduces the general concept of 7t-conjugated molecular systems,
the general properties of molecular crystals and the aims and objectives of this
work.

Chapter 2 provides a brief description of the properties and applications of
tetracene crystals which includes crystal structure, Davydov splitting, excitonic
processes and superradiance.

Chapter 3 discusses the steady state absorption measurements on both tetracene
in solution and single crystals. The vibrational bands in the Sy — S; transitions
are identified and compared in both solution and crystal samples. A description
of Davydov splitting determination is given.

Chapter 4 discusses femtosecond transient absorption measurements performed
on solution and crystal samples. A number of transient states are identified and
interpreted.

Conclusions are then given in the fifth chapter.
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2. Structure and Optical Properties of
Tetracene crystals

In this dissertation we deal with the optical properties of molecular crystals with
emphasis on tetracene which is one of the linear polyacenes. The other members
of this group are naphthalene, anthracene and pentacene consisting of two, three
and five fused benzene rings respectively. Tetracene has four. These molecules
crystallize in a layered herringbone structure with two molecules per unit cell.
The information which can be obtained experimentally includes exciton band
splitting (Davydov splitting ), exciton creation and decay time scales and their
interactions. The occurrence of superradiance which is characterized by shorten-
ing of radiative lifetimes of excitons at lower temperatures can also be studied. A
brief description of these properties together with their potential applications is
given in this chapter.

Single crystals

A single crystal is a solid with a continuous lattice, unbroken up to the edges
and with no grain boundaries. Tetracene crystallizes in a layered herringbone
structure whose unit cell is triclinic with two molecules. A herringbone crystal
structure is one in which the molecules lie above the valleys/gaps of the neigh-
boring molecules as shown in Figure 2.1. This arrangement enables maximum

Figure 2.1: The tetracene crystal structure showing (a) the herringbone arrangement of the
molecules in tetracene unit cell (adapted from [21]) and (b)the crystal structure as viewed from
the ab face with the two translationally inequivalent molecules in the unit cell labeled 1 and 2.

intermolecular interactions and optimum packing in space. Naphthalene, an-
thracene and pentacene crystals also prefers this structural arrangement [13]. The
molecules in these crystals have no permanent dipoles but have charge distri-
butions that fluctuate with time resulting in fluctuating dipole moments in the

5
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neighboring molecules. The net effect is the weak attractive Van der Waals force
which is responsible for holding molecules together in molecular crystals [13].
The geometry (sizes of the three edge lengths a,b, c and the three interaxial an-
gles, a, B,y ) of the unit cell of a crystal is normally used to classify or group
crystal structures into cubic, hexagonal, tetragonal e.t.c. Naphthalene and an-
thracene for instance are monoclinic (witha # b # cand & = B = 90° # <) while
tetracene and pentacene are triclinic (witha # b # cand a« # B # v # 90°). The
dimensions of the unit cells of these four molecular crystals have been given in
Table 2.1. The length of dimension ¢ and the unit cell volume V' can be seen to in-
crease proportionately with increase in number of benzene rings in the molecule.
These crystals typically expose a wide ab (001) face which is the accessible face
for optical measurements [14].

Table 2.1: Table of unit cell geometrical dimensions of naphthalene, anthracene, tetracene and
pentacene crystals [13, 31]. Z represent the number of molecules in a unit cell and V its volume.
Two crystal structures are shown; monoclinic and triclinic.

Crystal Naphthalene | Anthracene | Tetracene | Pentacene
Structure monoclinic | monoclinic | triclinic triclinic
a(A) 8.24 8.56 7.90 7.90
b(A) 6.00 6.04 6.03 6.06
c(A) 8.66 11.16 13.53 16.01
a (%) 90 90 100.3 101.9
B (°) 122.9 124.7 113.2 112.6
7 (%) 90 90 86.3 85.8
V(A3) 360 474 583 692
Z 2 2 2 2
Benzene rings 2 3 4 5
Davydov Splitting

In molecular crystals the molecules are held together by weak intermolecular in-
teractions, the Van der Waals forces. What happens to the energy states of a free
isolated molecule when they interact forming the crystal? A detailed description
was given by Davydov [35] and we shall only concentrate on the main points
relevant in this work.

To illustrate the consequence of intermolecular interactions on the energy states
of the individual isolated molecules in the crystal, a dimer (two coupled molecules)
is considered. In the absence of interaction due to a large separation distance
the two molecules such as those of tetracene in gas or solution phase (tetracene
monomers) have their respective ground |¢1), |¢2) and excited |¢]), |¢p;) states
with energies Ey, = Ey, = Eg and Ey: = Eyr = E” respectively as schematically
depicted in Figure 2.2. When the two are in close proximity such that their wave-
functions ¢y, ¢ and ¢7, ¢5 in the ground and excited states mix (overlap), a dimer
is formed with three states |¢¢), |¢* ) and [¢p’ ) that are shifted in energy rela-
tive to those of the monomer (see Figure 2.2). These dimer states have energies

6
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Figure 2.2: A schematic of Davydov splitting in a dimer and in a crystal. 1 and 2 represent two
isolated molecules such as those of tetracene in gas or solution phase with respective ground and
excited states. At close proximity, Coulomb interaction causes splitting of the states by twice the
interaction energy Iy, (i.e 2I15). The quantity Ap is called Davydov splitting. D' and D° are the
Coulomb interaction energy in the excited and ground state respectively. In the crystal, splitting
results in a band [13] and the case shown here represents a crystal with n interacting molecules
resulting in splitting nIj,.

Eg, E_ and E_ respectively. Besides the lifting of degeneracy in excited states,
non-resonant interaction of the excited dimer with the neighboring un-excited
molecules result in energy shift D = D' — D? from those of the monomer [13]. D’
represents the Coulomb interaction energy in the excited state i.e Coulomb inter-
action of the charge distribution of the excited state in molecule 1 with that of the
ground state of molecule 2. This can be expressed as [13, 35]

= (911 Vi2l2) = (2] V12|¢h1) 2.1

and Coulomb interaction in the ground state D? expressed as

= (¢1|V12|¢2) = (P2|V12|¢p1), (2.2)

where V5 is the interaction Hamiltonian that depends on the coordinates of the
electrons of the interacting molecules. It should be noted that the dimers” excited
states depicted in Figure 2.2 exists only when one of the molecule is excited and
the other is in the ground state. When both are excited simultaneously, then the
dimer’s electronic population will evolve in the so called doubly excited state
(not shown in Figure 2.2) situated above |¢*) and |¢* ) [36]. This latter state is
not relevant in our current discussion. The wavefunctions of the singly excited
dimer (i.e to either of the two excited states |¢* ) and |¢? )) is a linear combination

7
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[13]
01 = 5 (9iga £ p145) @3
and the energies of the two dimer states are given by
Eiy =Eq+D=x2l (2.4)
where E,,;; = E* — E , is the molecular excitation energy, E* and E, are the

monomer excited and ground state energies respectively and I, is the resonance
interaction energy which describes exchange of excitation energy between molecules
1 and 2( Figure 2.2). The quantity 21, is the Davydov splitting energy.

In the crystal, the dimer states |¢* ) and |¢% ) form bands [13, 35] as schemati-
cally shown in Figure 2.2. The wavefunctions of these bands can be expressed as
[35]

1
G (k) = —= (95 (k) £ p5(k 2.5
Pk) = = (910 £ 93 (K)) (2.5)
with energy
ES (k) = Eor + D" + L1 (k) £ ha (k). (2.6)

Here, ¢ ,(k) are the wave functions of the two differently oriented molecules in
the crystal’s unit cells, D* is the static gas to crystal shift and is in general < 0
since an excited molecule interacts more strongly with the adjacent molecules
than an unexcited one (this leads to a decrease of the excitation energy of the
crystal)[13, 35] and k = 27t/ is the magnitude of the wavevector k. I;1(k) and
I1>(k) represent the resonant interactions between translationally equivalent and
non-equivalent molecules in the crystal respectively. This means that apart from
proximity, relative orientation of the molecules also determines the degree of
Davydov splitting i.e value of 2nl;, [36]. If for instance the crystal consist of only
one molecule per unit cell such as that of Hexamethylbenzene [13] then equation
2.6 can be expressed as

ES(k) = Epor + D* + I (k). 2.7)

Since the molecules in the crystal’s unit cell have the same orientation i.e they
are translationally equivalent, then there is no Davydov splitting. The interac-
tions between adjacent molecules ( with interaction energy I;1(k)) result in non-
degenerate states differing only by the value of the wavevector k. These states
in a large crystal constitute a band as consecutive values of k differ little from
one another [35]. Each of the excited states defined by k collectively constitute an
excited state of the whole crystal.

When there are two translationally inequivalent molecules per unit cell, then
two bands of excited states are formed. The band splitting for a fixed value of the
wave vector k can then be expressed by [13, 35]

Ap = |ES (k) — E° (k)| = 2Ip(K). 28)

When there are n nearest neighbor translationally inequivalent molecules in the
unit cell then we have
AD = 27[[12(](). (29)

8
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Due to the different orientations of the two molecules in the unit cell (i.e trans-
lationally inequivalent) such as in tetracene the optical transitions to the two
bands, the high and the low energy Davydov, have different polarizations, || b
and L b respectively. The short axis b of the ab face of the crystal is used as a
reference in describing polarization [14]. The origin of these polarized transitions
can be visualized by considering electrostatic interaction of two transition dipole
moments yj and yy as sketched in figure 2.3. The two dipoles can be arranged
parallel or obliquely with respect to each other [37, 13].

(@) Parallel transition dipoles | |(b) Oblique transition dipoles

u®_@." " p% x u{}

E w 1 ? Eom =
E,
p =

IJ1 2 H -
E‘ 1 Z' N
a
ayH, H.
E b||E ®
= i Dipole z i Dipole
Monomers  Dimer phases Monomers Dimer phases

Figure 2.3: A schematic of dipole-dipole interactions with (a) parallel dipoles where interaction
results in only one allowed optical transition and (b) oblique dipoles where interactions result in
two states with polarized optical transitions (|| b and || a) .

The transition dipole moments of the individual molecules can be expressed
as [13]

u1 = (¢1ler|py) (2.10)
o = (P2lex(¢s). (2.11)

For the dimer we have

Ht = (pgler|pL)
- %<¢1¢z|erl¢1¢é - gin)

2.12
= %@@zyerl@ﬁ) + (P1¢2]exr|p1P2) -
1

= —(p1 £ m2).

=

If the transition dipole moments of the two molecules are parallel i.e translation-
ally equivalent, then one of the two optical transitions is allowed as depicted in
Figure 2.3(a). From equation 2.12 one then obtains

1 1
=2 = —2 2.13
H+ \/2 U1 Or Yy \/E Uz ( )

9
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and the forbidden transition represented by dipole
u_ =0 (2.14)

For the case of oblique arrangement of the two transition dipole moments as de-
picted in Figure 2.3(b) i.e translationally inequivalent molecules, then both of the
excited states have allowed transitions. These transitions as in the case of poly-
acenes such as anthracene and tetracene are orthogonal i.e || b and || a axis of the
ab face of the crystal (see Figure 2.3(b)). Equation 2.12 represents this situation in
a dimer.

This dipole-dipole interaction described above applied to singlet state (Sg —
Sy) transitions. Triplet state splitting also occur but is weaker compared to those
of singlets. For example a Davydov splitting (DS) of 21.5 cm ! in triplets com-
pared to 220 cm ™! in singlets have been reported in anthracene [13].

Davydov splitting can be determined experimentally through absorption mea-
surements where the crystal is excited at normal incidence to the ab crystal plane
with a field whose polarization with respect to the b-axis of the crystal can be
varied and absorbance determined. The difference (in energy) between the cen-
ter of the vibrational peaks of the spectrum obtained with field polarized || b and
that with field polarized L b is the Davydov splitting energy. The value of this
energy for the 0-0 vibrational peak ranges from ~ 200 cm ! in anthracene [16], ~
630 cm~! (0.08 eV) in tetracene [16, 14] and ~ 1100 cm ™! in pentacene [16]. The
other thing that should be mentioned is that DS is a crystal effect requiring lattice
periodicity and vanishes in a randomly oriented system since the average over
resonance interaction energies is zero [38].

Exciton processes and energy conduction in molecular
crystals

One of the most important property of molecular crystals as mentioned earlier
is that upon optical excitation bound electron-hole (e-h) pairs known as excitons
are created [12, 13, 18]. The primary function of these electrically neutral quasi-
particles are to store and transport excitation energy from one point to the next
within the crystal lattice [13]. Many of the optical and optoelectronic proper-
ties in molecular crystals are determined by them and are classified basing on
the distance between the electron and the hole and on their locations. Those
excitons with electron and hole separation distance smaller than the unit cell
dimensions and are localized on the same molecule are termed Frenkel excitons.
These types excitons (i.e Frenkel excitons) are mainly created in molecular crys-
tals. They are the reason why molecular crystals are considered model systems
for investigating energy conduction in biological systems such as photosynthetic
light harvesting complexes. If the e-h separation distance is larger than the unit
cell size (about 40-100 A) and are delocalized over several molecules then the
generated excitons are called Mott-Wannier excitons. These latter excitons exists
in inorganic crystals such as Cu,O, Silicon or Germanium [13]. When an excita-
tion results in transfer of an electron or hole to a molecule in the neighborhood
then a charge transfer (CT) exciton is formed. The e-h distance in CT excitons is one
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or two times greater than the unit cell size and are essential in the development
of excitonic solar cells [18]. A schematic of these excitons are given in Figure 2.4.

Conduction band

CT exciton o Q o0 9 0 © o0 0o o Q 0 QS 0
000 €L W 08090
OQVP OO Boood 08 6 B 0
‘= 00 00 0 W°uEh o qoN o
-¢/ . \ o ‘Omewe o
) \ Singlet exciton,S » o o0 o © coooo O0Q O Q O
! ! - .
i v Triplet exciton,T Frenkel Wannier  Charge - transfer
1 ,' exciton exciton exciton
| !

Figure 2.4: A schematic showing generation of Frenkel excitons and the different types of exci-
tons. Among Frenkel excitons are singlet (S) and triplet (T) excitons (see text for their descrip-
tion). Charge transfer (CT) excitonic states are normally located just below the conduction band.
Adapted from [13].

Frenkel excitons are further classified basing on the total quantum spin S of
the excited molecule. A Singlet (S) exciton is formed when the promoted elec-
tron retains its spin in the excited state such that the total quantum spin of the
molecule is zero i.e S=0. Triplet (T) excitons on the other hand are created when
the excited electron undergoes a spin inversion in the excited state resulting in
total quantum spin S=1 [13, 20]. These quasi-particles have a decay lifetime i.e
the time taken for the electron and the hole to recombine, and diffusion lengths
which can be considerably long. Some of the reported decay lifetimes and dif-
fusion lengths of these excitons have been summarized in Table 2.2. These were
obtained from references [13, 25, 29, 30].

Table 2.2: Table of decay lifetimes and diffusion lengths of the lowest singlet S; and triplet T;
excitonic states and ionization energies for naphthalene, anthracene and pentacene crystals at
room temperature obtained from [13, 25, 29, 30] .

Crystal Decay lifetime (ns) | Diffusion length (A) | Ionization energy (eV)
S1 Th Sq Th
Naphthalene | 10° 5 x 10° 10° 5.0
Anthracene | 20 4x107 10° 10° 4.1
Tetracene | 0.3 2 x 10° 120 4000 3.7

It is evident from the table that decay lifetimes and diffusion lengths of triplet
excitons are considerably higher than those of singlets. This property is the rea-
son molecular crystals are gaining interest in the photovoltaic industry where
possibilities of harvesting triplet excitons to generate free positive and negative
charge carriers are being explored [6, 34, 39, 40]. From the table it can be seen that
singlet and triplet decay lifetimes together with ionization energies decrease with
increasing conjugation length of the crystal.

The other excitonic processes includes singlet-singlet exciton annihilation or
fusion which occurres at high excitation energies. This involves singlets colliding
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with each other due to their high density leading to excitation of higher singlet
(S) states or deactivation without emission of radiation but exciting phonons v
in the lattice or ejection of an electron from the crystal according to the scheme
[13]

514 S1 — Su + Sp higher excited singlet states
— S1 — So + v de-activation with no light emission and energy released as heat

— e~ +h" electron-hole separation, ionization.
(2.15)

The opposite process to the above occurring in select organic molecules is sin-
glet exciton fission (SF) [6, 39, 41]. This is where an organic dimer (e.g tetracene
unit cell which has two differently oriented molecules) in an excited singlet state
shares its excitation energy with a neighbouring ground state dimer and both are
converted into triplet excited states as schematically depicted in figure 2.5[41].

S (T.T) T

1

."f p : \ - xf/'\\' ~ ‘\'\\
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Singlet

. Multi-exciton Triplet Excitons
Exciton

Figure 2.5: A schematic showing singlet exciton fission. Singlet excitons (S;) created e.g in
tetracene, undergoes fission producing two triplet excitons that are coupled into a pure singlet
state 1 (T T;). The two formed triplets in the multi-exciton (ME) state which is at twice the first
excited triplet state energy E(2T) then diffuse apart and get localized on individual dimers (or
molecules [39]).
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The phenomenon is a spin allowed process since the two resulting triplet ex-
citons }(T;T;) are born coupled into a pure singlet state before diffusing apart
(see Equation 2.16 and Figure 2.5). It can therefore be viewed as a special kind
of internal conversion (IC) (transitions between states of the same multiplicity)
hence can happen on an ultrafast timescale (femtoseconds to picoseconds) and
competes with vibrational relaxation [39]. The two electrons in the optically in-
accessible intermediate state cannot couple to the ground state via a one-electron
dipole operator. This state is referred to as a multi-exciton (ME) or dark state
[41, 42] and is positioned at twice the first excited triplet energy E(2T;). The two
triplets formed from one singlet exciton soon diffuse apart and get localized on
individual dimers as schematically shown in Figure 2.5. The process can also be
represented in an equation of the form [13, 39, 41];

So+S = (MTY) =T + Th. (2.16)

The generation of more than two triplet states has not been observed so far.
For SF to occur, certain conditions must be fulfilled which includes:

1. The energy of the first singlet excited state S; must be equal or greater than
twice the energy of the first triplet excited state T; i.e E(S1) > 2E(Ty)
[1, 23, 33, 34, 39]. This condition is met very infrequently in many com-
pounds thus making SF rare to observe. In most organic molecules twice
the triplet excitation energy, 2E(T;) exceeds singlet excitation energy, E(S1)
significantly and so SF does not take place. The condition is, however, met
in some organic molecular crystals where SF has been observed. The re-
ported values of E(S1) —2E(Ty) are -1.3 eV, -0.55 eV, -0.21 eV and 0.11 eV
in naphthalene, anthracene, tetracene and pentacene respectively [33, 42].
From these values, it is obvious that SF is energetically allowed in pen-
tacene. In tetracene, however, a additional energy is needed for the con-
dition to be met. This can be provided through thermal activation and at
room temperature this is readily possible [23, 33, 42].

2. There have to be at least two excitation sites to accommodate the created
triplet excitations for SF to occur. Therefore, this process is not expected to
happen in single small molecules at the usual energies [39].

3. Itis not easy to observe SF unless if the formed triplet excitons diffuse apart
rapidly as they can destroy each other by Triplet-Triplet annihilation (the
reverse process shown in equation 2.16 above) usually forming an excited
singlet which decays radiatively to the ground state (delayed fluorescence,
DF) or a higher excited Triplet (excited triplet-triplet absorption) or result-
ing in the ground state singlet (phosphorescence). This annihilation can be
represented in an equation of the form [13, 43];

T+ Ty — So+ Ty — So + T Triplet quenching

2.17
— So+ Sy — Sp + S1 delayed fluorescence. ( )

Sn and T, refers to higher electronically excited singlet and triplet states re-
spectively. In triplet quenching, two triplets combine to produce a higher
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level triplet T, which relaxes back to the lowest level one triplet T;. From
this latter state, light emission (phosphorescence) or radiationless decay oc-
curs.

Observation of delayed fluorescence (DF) proves that triplets were formed [13, 43,
23]. This can be observed after switching off the excitation. The intensity of DF
produced by triplet-triplet annihilation can be influenced by an applied magnetic
tield [13, 43]. In the pair state 1 (T1T1) (or the multi-exciton state), the two triplets
repeatedly collide before reacting and the possible spin correlations have both
triplet as well as singlet character. The triplets in this state can be influenced by
an applied magnetic field via the Zeeman interaction of the coupled individual
spins with the field.

Singlet fission has been found to be of significance in improving the efficiency
of dye-sensitized photovoltaic (PV) solar cells by a factor of 1.5 (from 31% to
46%) in theoretical studies done elsewhere [6, 34]. The generated two triplets
from one photon must diffuse quickly to the crystal wall and be injected to a
semiconductor such as a TiO, nanoparticle film where two electron-hole (e-h)
pairs are produced. The resulting hole must be transported quickly to a hole
conducting material such as Iodide ion or a hole conducting polymer [6] to avoid
e-h recombination. Studies on the possibility of singlet fission being applied in
water splitting to generate Hydrogen are also being done elsewhere [40].

Superradiance

Superradiance refers to a process in which the excited molecules (N molecules)
co-operatively emit radiation in phase with each other (coherent light) with in-
tensity proportional to N? leading to the shortening of the radiative lifetime and
line narrowing of the transition [44, 45]. The emitted radiation is directional un-
like in incoherent emission such as spontaneous emission where also the inten-
sity is proportional to the number of emitting molecules (N). This phenomena,
which is enhanced at lower temperatures, has been reported in tetracene (Ic)
nano-aggregates and films deposited on glass substrates [45], Tc films deposited
on a highly oriented pyrolytic graphite [19] and on Tc single crystals [44]. Time-
resolved photoluminescence spectroscopy [19, 44, 45] and fluorescence measure-
ments [19] were used in these studies. From these studies exciton delocalization
of ~ 40 molecules in single crystals [44],~ 10 molecules in films [45] were esti-
mated and thus making them interesting for quantum optical applications. The
fact that the molecular exciton lifetime can be varied /controlled by varying tem-
perature [19, 45] may be useful in developing strategies for the design of organic
laser diodes [19].
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3. Steady state absorption
measurements of tetracene

Knowledge of structure and excitonic states involved in energy transfer processes
in an optically active material are vital in designing devices that optimally utilize
its properties. Here we seek to establish energy positions (in wavelengths) of
the excited singlet excitonic states in both tetracene crystal and solution phase
samples through performing steady state absorption measurements. Steady state
absorption spectra of single crystals which are rare to find in literature due to their
high absorbance are provided. We also report how nanometer thick free standing
single crystals that enabled us to perform these measurements were obtained.

3.1 Solution phase tetracene

Steady state absorption measurements provides a means to establish the posi-
tions of the lowest accessible electronic excited states (or excitonic states) of the
sample. The simplest sample to begin with, in case the experimental setup was
not designed for gas phase samples, is one in solution. In this studies tetracene
was dissolved in toluene solvent. In literature, a range of solvents have been used
including benzene [26, 46], acetonitrile, methanol, ethanol and 1-butanol [47] and
toluene [23]. No special reason informed our choice of the solvent.

Due to the 7r-conjugation in tetracene molecules their optical response was
expectedly high and only a small concentration was required to obtain a solution
with high optical density. This was prepared by dissolving 0.0004 g of crystals in
0.37 cm? of toluene at room temperature obtaining a concentration of 3.1 x10'®
molecules / cm3. This sample was put in a 1 mm path length quartz cuvette
for performing steady state absorption measurements. The layout of the exper-
imental set up sketched in Figure 3.1(a) was the same one used for performing
transient absorption measurements whose details are discussed in chapter 4. The
exciting field was derived from focusing the fundamental laser beam at 775 nm
from a regenerative Titanium-Sapphire (Ti:Sa) amplifier system (CPA 2101; Clark
MXR) onto a 3 mm thick calcium fluorite (CaF;) crystal plate. This produced a
wide band spectrum (white light continuum) extending from 340 nm to the near
infrared (NIR) as shown in Figure 3.1(b). This displayed probe spectrum (Fig-
ure 3.1(b)) was measured after putting a NIR filter along its path. The beam
transmitted through the sample was directed towards a spectrometer (Andor
SR163) equipped with a camera (1024 pixel photodiode array, Entwicklungsbiiro
Stresing). The wavelength calibration of this spectrometer was always checked
using a mercury-argon light source (Mikropack, CAL-2000). Good comparison
of steady state and transient absorption results are achieved with using the same

15



Stellenbosch University http://scholar.sun.ac.za

setup for measurements as any noise or experimental errors emanating from the
devices used will be constant in all measurements.
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Figure 3.1: (a) The layout of the experimental set up used for performing steady state absorption
measurements. The set up was the same one used for transient absorption measurements and the
region covered with a transparency was not used for the current measurements. (b) The spectrum

of white light continuum generated from CaF, crystal plate used as exciting field in steady state
absorption measurements.

The obtained tetracene solution steady state absorption spectrum displayed a
clear vibronic progression with spacing AE = 0.17 eV (x1430 cm ') in the range
390 nm to 490 nm as seen in Figure 3.2. The profiles and the position of the
peaks were similar to those reported in literature [16, 31, 47, 48] indicating that
the samples were identical. The obtained results have been summarized in Table
3.1. The spectrum marked the transition Sy — 51’20’1’2’3 [16, 31, 47, 48] where
v represents the vibronic bands centered at 474 nm, 444 nm, 418 nm and 395
nm. This measurement was repeated using a conventional ultraviolet - visible
spectrometer (Evolution 600 UV-VIS, Thermo Scientific). The same profiles and

positions of the vibrational bands were obtained thus justifying the use of our
setup.
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Figure 3.2: The absorption spectrum of tetracene dissolved in toluene solvent. The four peaks

represent the transitions (So — S¥:0’1’2’3) where v are the vibrational bands in S;. The respec-
tive bands have been labeled 0-0, 0-1, 0-2 and 0-3 in the figure. OD stands for optical density
(absorbance) of the sample.

Table 3.1: Table giving the experimental position of the centre of the vibrational bands in the first
excited singlet state in Tc solution. The absorbance and vibrational modes (A E (eV)) are also
given.

Transition | A (nm) | Absorbance | AE (eV)
0-0 474 0.25
0-1 444 0.20 0.18
0-2 418 0.08 0.17
0-3 395 0.03 0.17

From the lowest energy peak at 474 nm with absorbance of 0.25 in solution
phase an absorption cross-section of 8.0 x 1071 cm?(molecules) ! was estimated
(refer to Appendix A). The transition dipole moment of the measured So — S;
transition is parallel to the short axis (the M axis) of the molecule as schematically
shown in the inset of Figure 3.2 [14, 21, 47]. The position of the second excited sin-
glet state Sp — Sy was reported elsewhere to be situated at 294 nm with transition
dipole moment parallel to the long axis of the molecule [31]. The peak observed
below 350 nm in our sample most likely represented this latter state (S;) and lies
close to a jumble of higher energy singlet state transitions [31]. In studies done
by Liu et al the spectra of Tc dissolved in other solvents showed no variations in
shapes but with small shifts (= 3 nm) in the positions of the peaks due to solvent
shifts [47]. The absorbance values at the peaks corresponding to transitions from
the ground state to the vibrational bands in S; ranged from 0.25 to 0.03 as given
in Table 3.1.

These results showed that tetracene absorbs in a wide spectral range span-
ning from UV to VIS. Its absorbance is also considerably high. This makes it an
interesting material to study for purposes of utilizing its properties in solar cells
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and other optical devices such as light emitting diodes and transistors. It can also
serve as a model system to investigate mechanisms of solar energy capture and
transfer in photosynthetic light harvesting complexes. In solid state electrical de-
vices, crystals are used. It is therefore interesting to study this same sample in
crystal phase.

3.2 Single Crystals of tetracene

Now having established the energy position of Sy — S transition in tetracene so-
lution, it would be interesting to also study the influence the two molecules in the
crystal unit cell will have on it. It is known from past experimental [32] and the-
oretical studies [16, 31, 35] that the presence of the two non-equivalent molecules
in the unit cell cause energy splitting (Davydov splitting) as mentioned earlier in
this work. In polycrystalline thin films, this splitting will be difficult to observe
since the different orientations of the crystallites on the substrate suppresses it.
Here we report on results obtained from free standing single crystals of tetracene.
The crystals were provided by Prof. Jens Pflaum of the University of Wuerzburg,
Germany. They were prepared by plate sublimation under an inert gas atmo-
sphere. Platelates of up to 5 mm lateral dimension and about 500 ym thick were
obtained as shown in Figure 3.3(a). Using the results obtained from the sample
in solution, one can estimate the appropriate crystal thickness for use in our mea-
surements. To obtain an absorbance of 0.25 same as that at 474 nm in solution,
one needs a crystal of thickness 920 nm (refer to Appendix A). This value showed
that nanometer thick tetracene samples were required. This meant that the crys-
tal platelates provided to us had to be cut to samples that were as thin as possible.
This was achieved by means of a microtome (see Figure 3.3(b) )

(a) (b) (c)

Figure 3.3: Images of (a) tetracene un-cut crystal platelates on a square grid with 1mm divisions
(b) microtome and (c) a 200 nm thick Tc single crystal supported on a copper wire mesh with
squares of dimensions 150 ym.

With this device, one can obtain very thin single crystals through slicing off
layers of the crystal glued on a resin rod using a diamond knife. The cut pieces
were let to float on water in a boat adjacent to the knife. The pieces were then
tished out using a 3 mm diameter copper wire mesh with squares of dimensions
150 um (see Figure 3.3(c)) . For this work, crystals of thicknesses 200 nm, 300 nm
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and 500 nm and lateral dimensions of ~150 ym x150um were obtained. Due to
their sizes, steady state absorption measurements could not be done using con-
ventional UV-VIS spectrometers.

Since the sizes of the crystals were so small as shown in Figure 3.3(c) , a mag-
nifying system was necessary to align it appropriately at the sample position in
the transient absorption (TA) setup. The system made in our lab for this pur-
pose composed of a lens with adjustable position and a camera as sketched in
Figure 3.4. Magnification M of the copper wire mesh supporting the crystal was

Imaging system

CMOs
Camera

Tc on copper
wire mesh

Incident Lens

Beam

Object distance Image distance
Up+llg=1lf; M=qlp;(M+1)IpM=1/f
M - magnification

Figure 3.4: The imaging system consisting of a lens of focal length f and a CMOS camera. The
camera was connected to a computer using a USB cord.

achieved through adjusting the distances p and 4. For good magnification, g was
made as long as possible. A maximum magnification of 3 (i.e g/p < 3) was
obtainable from the system. The coordinates of the square aperture in the wire
mesh containing good quality single crystal was first noted by viewing under a
microscope and getting its image (see Figure 3.3(c)).

The absorbance measurements were performed at room temperature (300 K)
using the same experimental setup shown in Figure 3.1(a). A Glan-Taylor calcite
polarizer (providing a clean polarized field) and an achromatic half wave-plate
(400 nm - 800 nm band width) for varying the polarization direction were placed
along the beam. The spectrum was recorded at every 8° additional rotation of the
wave-plate. Figure 3.5 display spectra at selected polarization angles in the three
crystals of thickness 200 nm, 300 nm and 500 nm.

The 0-0 vibrational peaks in the three crystals displayed existence of two com-
ponents with one being suppressed at certain field polarization angles and en-
hanced in others. A flattening or saturation of absorbance of this same peak was
noticed in the 300 nm and 500 nm thick crystals (see Figure 3.5 (b) and (c)). The
two components observed at the 0-0 vibrational peaks represented transitions to
the two Davydov states arising from interactions of the translationally inequiv-
alent molecules in the unit cell as was described in chapter 2. The fact that no
significant changes in absorbance was noticed with varying polarization angles
in the vibrational bands higher than the 0-1 band signified that intermolecular
interaction was minimum in higher excited states and maximum at vibrationally
relaxed states [13] (see also Figure 3.6(c)).
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Figure 3.5: Absorption spectrum of the (a) 200 nm (b) 300 nm and (c) 500 nm thick crystals at the
selected polarization angles of the incident field obtained by rotating the achromatic half wave-
plate. The same OD scale in (a) applies to (b) and (c). There was a large background in the 500
nm thick crystal.

The observed saturation of absorbance at the low energy peak in the thicker
crystals was attributed to increase in the number of absorbing molecules. The
number of molecules excited in each of the crystals can be estimated from the ex-
citation spot diameter (=200 ym) and the crystal unit cell volume (583 A3 [13]).
In the 200 nm, 300 nm and 500 nm thick crystals 2.1 x10'3 , 3.2 x10'3 and 5.3
x 1013 molecules respectively were excited (see Appendix A ). These values show
clearly that there were more molecules in the thicker samples. A similar satura-
tion of absorption with increase in crystal thickness was observed by Tavazzi et
al in Oligothiophenes [32]. Spectra obtained through calculations done by West
et al also displayed an increase in oscillator strength at the lowest energy bands
with increase in the size of the system [21].

In order to determine the value of Davydov splitting, a number of spectra at
different polarization angles were fitted with a sum of six Lorentzian functions as
shown in Figure 3.6.

1.6
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Figure 3.6: (a) and (b) Fitting of the spectra for the 300 nm thick single crystal with a sum of
Lorentzian peaks. The Lorentzian peaks represented the different contributions in the respec-
tive vibrational band. (c) Variation of integrated absorbance at different polarization angles at
Lorentzian peaks L; withi =1,2,3,4,5.

The 0-0 and 0-1 vibrational transition peaks were reproduced using two Lorentzians
Li, Ly and L3, L4 respectively to account for the two Davydov components ob-
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served in Figure 3.5 (see Figure 3.6 (a,b)). The variation of absorbance integrated
over the widths of each of the Lorentzian peaks L; with i = 1,2,3,4,5 at dif-
ferent field polarization angles are displayed in Figure 3.6(c). The high energy
transitions represented by Lorentzian Ls and Lg (the latter not labeled) showed
minimum change in absorbance with change of polarization angle implying little
intermolecular interactions and therefore low Davydov splitting. L; represented
transitions to the low energy Davydov band and it displayed a maximum and
minimum absorbance at field polarization of 40° and 136° respectively in the 300
nm thick crystal. The fields were then thought to be respectively polarized || b-
and L b-axis of the ab crystal face [13, 14, 16, 31, 32]. It was also interesting to
note that at field polarization of 40° (|| b-axis) the high and the low energy Davy-
dov components ( Ly, Ly and L;, L3 ) were both responsible for the heights and
widths of the 0-0 and 0-1 transition peaks while at 136° (L b-axis) the low en-
ergy Davydov components (L, L3) were suppressed as shown in Figures 3.6(a)
and (b) respectively. The suppression of one of the components at a certain field
orientation signified that the projection of the transition dipole moments of the
two molecules in the unit cell onto the ab-crystal plane were orthogonal. If this
were true, then the difference between the polarization angle giving maximum
and minimum absorbance at L; should be 90°. A value 88° (the average of 80°,
96° and 88° angles obtained from the 200nm, 300nm and 500nm thick crystals re-
spectively) was found. This indicated that the two polarizations were not strictly
perpendicular confirming calculations done by Tavazzi et al where non-zero com-
ponents were found in all crystallographic directions [14]. The same was also
pointed out by Schlosser and Philpott as the expected result due to the triclinic
crystal structure [31]. Figure 3.7 displays the spectra at || b- and L b-axis field
polarizations in the 200 nm, 300 nm and 500 nm thick crystals.

(a) 200 nm

—56°
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-
[
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Figure 3.7: Spectrum of the (a) 200 nm (b) 300 nm and (c) 500 nm thick crystals giving the max-
imum and minimum absorbance representing fields polarized parallel and perpendicular to the

ab crystal face respectively. The shift in the spectrum between the two polarizations is known as
Davydov splitting.

In this work, Davydov splitting (DS) was determined in two ways. One method
involved obtaining the average of centers of lorentzians L; (i = 1 — 5) from spec-
tra at different polarization angles. Splitting was then determined from Dyy =
(E(Lp) — E(Ly)) eVand Dy = (E(Lyg) — E(L3)) €V in the 0-0 and 0-1 band transi-
tions respectively. From this operation, values of 0.12 eV and 0.04 eV for the two
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band transitions were obtained. These were higher than the reported values of
0.08 eV [14, 16] and 0.03 eV [14] respectively but similar to what was calculated
(0.11 eV) by Schlosser and Philpott using dipole approximations [31]. Table 3.2
displays the resultant averages and the estimated DS energy.

Table 3.2: Table of centre wavelengths of the Lorentzian functions, L; (i = 1 — 5), used for making
the fits to the spectra. These values were obtained from the average of centers at chosen angles
of polarization. Spectra at eight different angles were used. Dgg and Dy, represented Davydov
splitting.

Thickness | Li(nm) | Ly(nm) | Lz(nm) | Ly(nm) | Ls(nm) | Dgo(eV) | Dg1(eV)
200 nm 528.1 503.3 480.3 472.7 443.5 0.12 0.04
300 nm 529.9 503.4 483.2 474.3 444 4 0.12 0.05
500 nm 531.9 503.3 480.5 471.7 443.6 0.13 0.05

The other method of determining DS energy which was similar to that de-
scribed in literature [14, 17] was also done. It involved obtaining the difference
between the centre of the 0-0 vibrational peak at minimum and at maximum ab-
sorbance of Lorentzian peak L; (see Figure 3.7(a)) . The spectra corresponded to
those obtained with the exciting field polarized L b- and || b-axis respectively.
Splitting of of 0.08 eV and 0.03 eV was estimated from this method which com-
pared well with literature values [14, 16]. Table 3.3 displays the obtained results
in the three crystals.

Table 3.3: Table of experimental Davydov splitting values obtained from tetracene single crystals.

Sample Pol. O0O—-00-=1)|(0—-2)
200nm | L b(nm) | 503 472 444
[b(mm) | 519 477 443
DSypo(eV) | 0.08 | 0.03 | 0.01
300nm | L b(nm) | 503 474 443
|6 (nm) | 520 480 445
DS300(eV) | 0.08 | 0.03 | 0.01
500nm Lb 503 472 443
[b(mm) | 520 477 444
DSspo(eV) | 0.08 | 0.03 | 0.01

In the two results it was found that crystal thickness had no influence on the
magnitude of the splitting implying that it was a crystal specific quantity. The
reasons for differing results from the two methods used was not understood. It
has been known that the amount of splitting in tetracene is influenced by contri-
butions from states higher than S; [31]. S3 state for instance was shown through
calculations done by Schlosser and Philpott to have a very large splitting with its
low energy branch overlapping with S; vibrational states. The influence of this
overlap was reported to depress splitting in the 0-0 vibrational band in S; state .
Whether one of the methods used above was blind to this mixing was not exactly
known. The second method, however, reproduced experimental results reported
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in literature [14, 16]. Charge transfer states were also shown by Yamagata et al to
play a role in the splitting [16].

The interaction of the excited molecules with the surrounding molecules in
the ground state results in a red-shift of their energy. This shift was given by the
relation D = D' — DY in chapter 2 (see Figure 2.2). The solution to crystal shift SS
provides an experimental value of this interaction. A value of 0.15 eV and 0.23
eV, 0.17 eV and 0.20 eV, and 0.17 eV in the 0-0, 0-1 and 0-2 vibrational bands (i.e
550-0,1,2 ) in the high energy and low energy Davydov states respectively were
determined. The results have been given in Table 3.4. There was more shift in
the low energy Davydov band (|| b) compared to the high energy Davydov band
(L b) in all the crystal thicknesses.
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Figure 3.8: Spectra of the solution and crystal phase samples (200 nm thick crystal) plotted on the
same axes showing the solvent to crystal shift.

Table 3.4: Solution to crystal shifts 55y_¢ 1 » in tetracene single crystals.

Sample | Pol. | SSp_¢ (eV) | SSp—1 (eV) | SSp—2 (eV)
200nm | L b 0.15 0.17 0.17

|| b 0.23 0.19 0.17
300nm | Lb 0.15 0.18 0.17

| b 0.23 0.21 0.18
500nm | L b 0.15 0.16 0.17

e 0.23 0.19 0.17
Average | L b 0.15 0.17 0.17

|| b 0.23 0.20 0.17

The positions of a number of excited states in Tc have been reported in dif-
ferent studies as summarized in Table 3.5 and 3.6. There is no consensus yet on
the definitive positions of states higher than the first excited singlet and triplet.
The presence of many overlapping singlet and triplet states in the ultraviolet and
visible region of the electromagnetic spectrum made such efforts difficult.
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Table 3.5: Table of the positions of the various energy states in Tc solution reported in this study
and literature and the methods used for their determination. In the table Abs., Th, FP and 2-MTHF
stands for absorption, theory, flash photolysis and 2-methyltetrahydrofuran respectively.

Tc molecule / solution

State A (nm) Solvent | Method | Reference
S 471,441,416 Acetone Abs [47]

474,444 418,395 | Toluene Abs our work
S, 294 Acetone Abs [47]
294 Th [31]

S3 274 Th [31, 16]

T, 485,468,440 2-MTHF Abs [49]
412,385,360, 320 | 2-MTHF Abs [49]
465 Benzene FP [46]

Table 3.6: Table of the positions of the various energy states in Tc crystal reported in this study
and in literature and the methods used for their determination. Position of charge transfer (CT)
state and the lowest energy conduction (E.) band are also shown.

Tc crystal
State | A (|| b) (nm) A (L b) (nm) Method Reference
Sy | 518,477,443,419 | 502,471,441,416 Absorption [14]
520,477 444 503,472,443 Absorption Our work
Ti 886 Fluorescence [22]
CT 428 Electroluminiscence | [22, 29]
E. 413 Fluorescence [22, 50]
400 [13]

As can be seen from tables 3.5 and 3.6 the results obtained from our sam-
ples compared well with literature values indicating that the samples were never
damaged or modified during preparation. The Sy — S; transitions were at 474
nm, 444 nm, 418 nm, 395 nm in solution phase tetracene and 520 nm, 477 nm, 444
nm (low energy Davydov) and 503 nm, 472 nm, 443 nm (high energy Davydov)
in the single crystal. The knowledge of positions of these two excitonic states will
enable making informed decision on states to be interrogated in an optical mea-
surement. The solution to crystal shift energy can also be accounted for when
investigating samples in the two phases.
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4. Femtosecond transient absorption
spectroscopy of Tetracene

In order to successfully utilize organic semiconductors in designing new tech-
nological devices such as organic light emitting diodes (OLED), organic solar
cells (OSC) and organic field-effect transistors (OFET), it is important to under-
stand both the nature of photogenerated states and their relaxation dynamics.
Such information can be obtained through performing femtosecond transient ab-
sorption spectroscopy. Here measurements done on tetracene single crystals and
tetracene dissolved in toluene solvent are discussed. A number of short-lived
and long-lived transient states were identified and interpreted. A brief descrip-
tion of the principle of transient absorption spectroscopy and of the home-built
non-collinear phase-matched optical parametric amplifier (NOPA) has also been
given.

4.1 The experiment

The creation and decay of excitons take place on timescales ranging from sub-
100 femtoseconds (fs) to tens of picoseconds (ps) [21, 33]. In order to temporally
resolve such ultrafast processes, techniques with femtosecond temporal resolu-
tion must be used. One candidate is the femtosecond transient absorption (TA)
spectroscopy. This method offers the opportunity to track in real time energy
and charge transfer processes, ultra-fast structural changes (isomerization) and
formation of new transient species [51, 52]. Here, a fraction of molecules are
promoted to an electronically excited state by means of a resonant femtosecond
optical pump pulse. A second less intense pulse (the probe) then interrogates the
system (molecule or crystal) at a later time T after excitation. The probe field can
either be absorbed by the excited sample (excited state absorption, ESA) or stim-
ulate an emission (stimulated emission, SE). The entire map of transient dynam-
ics in the sample are contained in a two-dimensional array AOD(A, T) obtained
from recording the spectra of the probe beam at different delay times relative to
the pump pulse. This quantity represents the change in absorbance of the sample
after excitation and is calculated as [51, 52]

Iunfpumped (A) )

AOD(A,t) = log( 7 O T)
pumped\/\s

(4.1)

where Iy, pumpea(A) and Lyyumped(A, T) represents the intensity of the transmitted
probe beam through un-excited and excited sample respectively at a particular
probe wavelength (1) and delay 7. The transient spectra (AOD(A, T)) contain
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contributions from various processes including ground state bleach (GSB), stim-
ulated emission (SE) and excited state absorption (ESA) signals. The amplitudes
of these transient signals at a particular time after excitation are schematically
represented in the transient spectra of figure 4.1.

Delta O.D
&
[3,]

400 450 500 550 600
Wavelength (nm)

Figure 4.1: A schematic of the the TA spectra at a particular time after excitation showing the
amplitudes of the GSB, SE and ESA signals. GSB and SE signals have negative amplitudes while
ESA have positive. A detailed description of these signals are given in the main text of this work.

1 Ground state bleach (GSB) signals arise when the probe beam interrogates
a sample electronically excited by the pump pulse. Fewer molecules will
therefore be available in the ground state to absorb more energy. Conse-
quently, the transmitted probe beam is stronger in the pumped than in the
un-pumped sample. This leads to a negative peak appearing in the transient
absorption spectrum AOD(A, 7). The persistence of such peaks indicates
that not all the molecules have returned to the ground state [51, 52].

2 Stimulated emission (SE) signals appear when the probe pulse cause a de-
excitation of some of the molecules to the ground state accompanied by re-
lease of photons which propagate collinearly with the probe. This leads to
a more intense beam being measured through the excited than un-excited
sample. They also have a negative amplitude in the transient absorption
spectra but are red (Stokes) shifted with respect to the GSB signals as de-
picted in Figure 4.1. This is because they occur only for allowed transitions
i.e those with high Frank-Condon factors (FC). The shift may sometimes be
so small that both the GSB and SE signals spectrally overlap (see Figure 4.1).

3 Excited state absorption (ESA) signals are seen at wavelengths of allowed
transition from populated excited states to higher-lying states through ab-
sorption of probe photons. A less intense beam will be detected at the re-
spective wavelengths. They therefore, have positive peaks in the TA spec-
trum as shown in figure 4.1.

Experimental setup

The complete schematic of our experimental setup is shown in Figure 4.2. It de-
picts all the essential elements employed which includes the laser source, the
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generation of the pump and probe beams. A brief description of each of these is
given below.
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Figure 4.2: The layout of TA spectroscopy setup used in our studies. The beams in the visible
regime from the NOPA are compressed using a prism compressor (PC). Part of the fundamental
is used to generate white light (WG) by focusing it onto a calcium fluorite crystal plate.

The laser source

As a light source a regenerative Titanium-Sapphire (Ti:Sa) amplifier system (CPA
2101; Clark MXR) delivering pulses with an energy of 800 u] and of ~150 fs dura-
tion and centered at 775 nm was used. The pulses were produced at a repetition
rate of 1 kHz.

The NOPA

The output of the Ti:Sa laser is only slightly tunable within the vicinity of 775
nm and its second harmonic at 387 nm. This limits it’s use to studying only
few molecules that absorb within these energy regions. A versatile spectroscopic
setup that was tunable over a wide range of wavelengths was therefore required.

A powerful way to achieve this is by using a noncollinearly phase-matched
parametric amplifier (NOPA). A detailed description of its operation has been
done elsewhere [53, 54]. In brief, in a suitable nonlinear optical medium such
as a B-barium borate (BBO) crystal, transfer of energy from a high power, fixed
frequency w, pump beam to a lower power variable frequency w; signal/seed
beam occur, besides, a third beam, the idler at frequency w; is generated such
that w; < ws < wy [53, 54, 55]. This process is referred to as optical parametric
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amplification/generation. In the interaction, the energy conservation
hwy = hws + hw;, (4.2)
and momentum conservation

ik, = fiks + fik;, (4.3)

must be satisfied [54]. ky, ks and k; are the wave vectors of the pump, signal
and idler beams respectively. An efficient conversion is achieved when the phase
matching condition

Ak =ky—ks—ki=0 (4.4)

is met. This can be ensured through proper orientation of the birefringent crystal
(BBO) [53].

From
Ti:5a
Laser
(775 nm)

i
1)

VA Iris lens Sa

White
Light Continuum

Figure 4.3: Schematic of the two-stage amplification NOPA built in our Lab. The BBO1 was
used for frequency doubling of the fundamental (775 nm) while BBO2 and BBO3 were used for
amplification of the desired portion of the seed pulse in a non-collinear arrangement as shown.
The seed beam (VIS white light continuum) was generated by focusing the fundamental into a
sapphire plate (Sa). F is a filter for the fundamental. The temporal overlap at the BBO crystal site
was adjusted by manual delay stages. Spherical mirrors SM focused the pump beams into the
birefringent crystals BBO2 and BBO3.

As part of this project, a two amplification stage NOPA was built which con-
sisted of three nonlinear crystals BBO1, BBO2 and BBO3 for frequency doubling
of the fundamental (FM), pre-amplification and power amplification respectively,
beam splitters (BS), temporal delay stages, plane and spherical mirrors for steer-
ing and focusing respectively and white light (signal beam) generation stage as
sketched in Figure 4.3. The variable attenuator (VA) and the iris in the white
light generator were used to control the energy of the fundamental beam and its
diameter on the sapphire crystal plate. The residual FM beam was filtered out
using filter F. The three lenses were for focusing of FM into the Sapphire crystal,
collimation and focusing onto BBO2 of the signal beam.

The high intensity focused into the sapphire crystal results in the production
of a visible (VIS) white light continuum beam. The cause of this spectral broaden-
ing is essentially self-focusing and self-phase modulation [54, 56] although other
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nonlinear effects might also contribute. The desired portion of this continuum
(signal beam) is amplified in BBO2 crystal pumped by the frequency doubled
FW beam (doubling done at BBO1 yielding pulses centered at 387 nm) in a non-
collinear geometry as shown in Figure 4.3. Such a geometry provides a broad
amplification bandwidth by broadband phase matching since the white light is
linearly chirped i.e some frequencies are in-front and some are at the tail of the
pulse as it travels [53]. Phase-matching bandwidth can be increased further by
adjusting the orientation of the BBO crystal. From this, spectrally broad pulses
are produced which can support shorter pulses. It is known that in linear ar-
rangement, the faster propagating idler generates more signal beam and at the
same time the slower signal also generates more idler as they travel in the crystal
leading to temporally broadened pulses [53]. BBO3 is used for further amplifica-
tion in the NOPA.
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Figure 4.4: (a)The NOPA spectrum. This serves to show the spectral tunability range of the system
which extends from 450 nm to 700 nm. The autocorrelation traces of the compressed NOPA
output pulses centered at (b) 497 nm and (c) 530 nm are also shown. Pulses as short as 24 fs were
obtained.

Figure 4.4(a) shows the spectrum of the NOPA which spans from 450 nm to
700 nm. This showed that the experimental setup can now be tuned spectrally
with ease within this band. The chirped VIS pulses outputting from the NOPA
were compressed further by using a pair of Brewster angle fussed silica prisms
as shown in Figure 4.2. From this system, pulses as short as 24 fs (fwhm) shorter
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than the duration of the pump pulse (/=150 fs) as measured using a home-built
D-mirror autocorrelator were obtained as shown in Figure 4.4(b) and (c)

The pump beam

In our TA studies, two separate experiments were done. In one, the sample was
pumped at 387 nm and in the other done at 530 nm. The former was obtained
from steering the beam derived from BBO1 in the NOPA (see Figure 4.3) to the
sample position via a retro-reflector mounted on a computer controlled linear
delay stage, a beam chopper and a half wave-plate in that order as shown in
Figure 4.2. The chopper wheel operated at 500 Hz blocked every second pump
pulse leading to alternating pumping and no pumping of the sample. Changes
in the optical density AOD were then possible to calculate. The wave-plate was
for varying the beam polarization.

For VIS excitation (at 530 nm), the NOPA was tuned such that the appropri-
ate portion of the seed beam was amplified. The chirped NOPA output pulses
with energies upto 30 ] were then compressed using a sequence of two Brewster
prisms to about 30 fs full-width at half maximum duration as was measured with
a D-mirror autocorrelator (not shown in Figure 4.2). Details of the auto-correlator
can be found in [57]. The resultant beam was then steered to the sample for
pumping as was described above.

The probe beam

Most organic molecules have absorption bands in or extending into the UV spec-
tral region of the electromagnetic (EM) spectrum. Examples include anthracene
and tetracene. It is therefore useful to have probe pulses covering ultra-broad
spectral range at once. This enables simultaneous probing of a large percentage
of the transient species generated by the action of the pump pulse. In our set up,
this was achieved by focusing about 1 yJ of the original laser beam onto a 3 mm
thick calcium fluorite (CaF;) crystal plate. This resulted in the generation of a
continuum extending from 340 nm to the near infrared shown in Figure 3.1(b).

The variable attenuator (VA) and the iris in the white light generator (WG)
(see Figure 4.2) were used to control the energy and numerical aperture of the
fundamental beam and its diameter on the CaF; crystal. This ensures genera-
tion of a stable and good quality (i.e one filament) white light. The crystal was
mounted on a motor moving in a circular motion to reduce chances of damage.
The resulting probe beam after passing through the sample was then dispersed
in a spectrometer (Andor SR163) equipped with a camera (1024 pixel photodiode
array, Entwicklungsbiiro Stresing) as shown in Figure 4.2.

Chirp correction

The white light continuum probe beam was linearly chirped. Due to this, the
temporal overlap of the pump and probe pulse (i.e time zero) was wavelength
dependent as shown in Figure 4.5.
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Figure 4.5: The chirp of white light continuum as seen in the raw transient absorption spectrum
of 300 nm thick tetracene single crystal excited at 530 nm. The short wavelengths (400 nm) were
ahead of the long wavelengths (650 nm) by approximately 1 ps.
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This resulted in ~1 ps temporal dispersion between 400 nm and 650 nm. The
raw data had to be corrected for this chirp in order to obtain the transient spec-
trum at a particular time. This was done by fitting about 5 time zero points at
selected wavelengths with a low order polynomial to interpolate time zero over
the whole data set. The transient spectra reconstructed after this interpolation
along the time axis contained all the molecular dynamics of interest.

For our studies, the pump beam’s diameter (~ 300 ym) on the sample was
larger than that of the probe (~ 150 ym) to ensure that only the pumped region
was always probed. This was checked by imaging a wire mesh placed at the sam-
ple position and with squares of known dimensions onto a camera connected to
a computer. During the experiment the average of between 1500 and 2000 spec-
tra were recorded at every T probe delay. Excitation power of 120 yW and beam
spot diameter of 200 ym on the sample was used in all the experiments unless
otherwise stated. The polarization of the probe beam with respect to the b-axis of
the ab crystal face was adjusted using an achromatic wave-plate (400 - 800 nm).
For tetracene in toluene, excitation was done at a magic angle of 54.7° in order to
eliminate effects due to the re-orientation of the transition dipole moments.

4.2 Transient absorption spectroscopy of Tetracene
solution

A good characterization of the properties of a sample can be achieved through
studying it in all the possible phases (gas, liquid and crystal). The ideal case
is studying an isolated molecule (i.e in gas phase). However, many ultra-fast
laser spectroscopy setups are not designed for gas phase systems. The normal
practice has been to dissolve the sample of interest in a suitable solvent resulting
in molecules that are separated by a large distance in comparison to those in the
crystal. The behavior exhibited by this system was then assumed to be similar to
that of an isolated molecule (monomer). Here, Tc was dissolved in toluene solvent
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obtaining a concentration of 3.1 x 10'8 molecules/cm?®. This was the same sample

used for steady state absorption measurements described in chapter 3.

The purpose of this study, as pointed out earlier, was to identify transient
species and their decay life times in the monomer and use the obtained results in
making comparison with those of the crystal. This will enable study of effect of
orderly aggregation of the molecules in the crystal on the monomer energy levels.

The sample was pumped at 387 nm at room temperature and probed with
white light continuum . The idea was to excite higher states and then probe the
temporal evolution of the system. This pumping accessed states overlapping the
0-3 (395 nm) and 0-4 (374 nm) vibrational bands in the Sg — S; transition (see
Table 3.1 in chapter 3). The transient absorption spectrum obtained was repre-
sented in a two-dimensional (2D) array AOD(A, T) shown in Figure 4.6(a). This
spectrum contained all the relevant accessible information on the transient dy-
namics in the excited (pumped) sample. It displayed them in terms of change
in absorbance as a function of excitation wavelength (1) and probe pulse delay
(7). Slices of this spectrum along the time axis at a given wavelength provided
transient decay kinetic traces while slicing along the wavelength axis at a given
probe delay gave transient spectra traces like those shown in Figure 4.6(b). The

-0.018

0.016

AOD

0.014

0.012

® E

400 500 = 600
A (nm) A (nm)

Figure 4.6: (a) 2D TA spectrum with GSB signals at 444 nm and 474 nm indicated together with
the intense positive signal at 418 nm. (b) The traces obtained from slicing the 2D spectrum along
the wavelength axis at a given time plotted together with a rescaled steady state absorption (SSA)
spectrum plotted on the same axes so as to identify GSB signals. These signals appeared as small
minima on the TA traces.

obtained TA spectrum displayed only a positive signal with a brighter band at ap-
proximately 418 nm and bands of minimum intensity at approximately 474 nm
and 444 nm (see Figure 4.6(a)). Slices taken along the wavelength axis at given
probe delays revealed these features clearly as shown in Figure 4.6(b). The less
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bright (minima) bands in the 2D spectra appeared as dips in the traces and rep-
resented GSB signals as elucidated by plotting a rescaled steady state absorption
spectrum on the same axis. These were in fact negative signals superimposed on
top of a positive ESA signal.

The positive TA signal that was detected indicated that excited state absorp-
tion (ESA) plays a big role. The traces also show an increasing amplitude with
time at the 444 nm to 550 nm region of the peak accompanied by a decrease at
around 418 nm (see Figure 4.6(b)(i)). This behavior signified transfer of excitation
energy from higher-lying states (vibrational or electronic) to the lower ones. This
transfer was complete by 10.4 ns as by this time the 418 nm peak was no longer
prominent compared to that around (444-550) nm as shown in Figure 4.6(b)(ii) .

The other notable feature in the transient spectra was the small maximum
on the positive signal at 465 nm situated on top of the region of the minimum
between the 0 — 0 and 0 — 1 vibrational bands in the Sy — S; transition as shown
in Figure 4.6(b). A decay kinetic trace taken at around this ESA feature displayed
a steady rise as shown in Figure 4.7. As mentioned, ESA signal was responsible
for the positive signal observed but it was difficult to isolate the trace of the small
maximum from those that overlaps with it. For this reason, no attempt was made
to fit an exponential function to extract the time constant as it would be hard to
make a definitive attribution of the dynamic responsible.

0.020

0.015- ——ESA_465nm

0.010 -

AOD
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0.000 -

0 20 40 60 80
T (ps)
Figure 4.7: The decay kinetic trace of ESA signal at 465 nm in Tc dissolved in toluene.

The feature was more pronounced in the 10.4 ns spectra indicating its long live
nature (see Figure 4.6(b)(ii)). About 38 % of excited singlet states are expected to
have decayed by this time since their decay lifetime in Tc dissolved in benzene
is reported as 23 ns [26]. A state situated at 468 nm was previously attributed to
excited triplet - triplet absorption in studies done by Pavlopoulos on Tc dissolved
in 2-methyltetrahydrofuran (2-MTHF) [49]. The same excited triplet transition
was noted at 465 nm in Tc dissolved in benzene by Bensasson and Land [46]. We
can therefore assign the observed feature at 465 nm to T; — T, transitions.

The appearance of this feature (the small maximum at 465 nm) assigned to
Ty — T, transitions in solution by 20 ps after excitation was puzzling. This
was because population of triplet states usually happens via inter-system cross-
ing which involves spin inversion and therefore proceeds slowly (nanoseconds to
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microseconds) [20, 39]. The first probable explanation was that there was dimer-
ization or aggregation of Tc molecules in toluene solvent which then facilitate,
due to their closeness, the formation of triplet states in sub-nanoseconds timescale
through singlet exciton fission just the same as it happens in polycrystalline thin
tilms [1, 23] and single crystals [33]. If this were so, then an additional red-shifted
peak attributed to dimers would be seen near the 0-0 vibrational band in the
steady state absorption spectrum. Clearly, the steady state spectrum displayed in
Figures 3.2 and 4.6 did not show any additional low energy peak near the 0-0 vi-
brational band. This rules out dimerization or aggregation as responsible for the
fast production of triplets. The only logical explanation was that ultra-fast inter-
system crossing occur. This can happen when the first excited singlet state was
either at a higher energy or degenerate with the second (T;) or higher excited
triplet (T,) states as sketched in Figure 4.8. This then provides the populated
excited singlet (51 or S;,) states with an additional relaxation channel through ex-
cited triplet states.

ESA
(465 nm)

1
' lesa =™ T.
1
1

Figure 4.8: A schematic of the energy level diagram of Tc dissolved in toluene. The second excited
triplet state (T,) was thought to be situated energetically lower than S; and so making ISC a prob-
able relaxation channel and proceeding on 20 ps timescale. ESA signals which were responsible
for the observed broad positive peak were sketched as emanating from both the triplet and singlet
states.

4.3 Transient absorption spectroscopy of Tetracene
single crystals

As mentioned before, the high optical density of tetracene crystals meant that
very thin crystals are required for performing transmission measurements of which
transient absorption spectroscopy is one of them. This explains why few reports
on ultra-fast dynamics in tetracene single crystals are available in literature. Most
such studies are on polycrystalline thin films [1, 23] and the author of this work
came across only one on Tc single crystals with transient changes in reflectivity
performed [33]. The disadvantage of the latter approach is that only the surface
and first few layers of the crystal is probed and not the volume. In polycrystalline
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thin films on the other hand, due to the different orientation of Tc molecules on
the substrate surface, signatures of Ty — T, transitions may be difficult to identify
in TA spectroscopy as they will be weak and would be buried under the experi-
mental noise [23]. In this work, free standing single crystals of thicknesses 200 nm
and 300 nm were cut from the provided platelets using microtome as described
in chapter 3.

It is expected that the feature assigned to T; — T, transitions in Tc solution
become prominent in the crystal due to the high density of molecules. It has also
been established that the preferred relaxation channel of excited singlet states in
Tc is through the formation of triplet states [1, 33, 39, 41, 42]. With ultra-fast tran-
sient absorption measurements, different photogenerated transient states in the
crystal can be identified and their interactions and temporal evolution studied.
Some of these include observation of transitions associated with higher excited
singlets and triplets. These transitions are expected to be polarized due to the
different orientations of the dipole moments of the two molecules in the unit cell
(Davydov splitting) as discussed in chapters 2 and 3. This can be elucidated by
studying the transient spectra obtained with the probe beam polarized || b and
L b. The subsequent sections that follows explores these dynamics in the two
crystals of different thicknesses.

TA spectroscopy of a 300 nm thick Tc single crystal excited at 387
nm and probed with beam polarized || b-axis

The transient absorption spectrum of the 300 nm thick crystal obtained after ex-
citing (pumping) it at 387 nm and with probe beam polarized || b of the ab plane
revealed a number of negative and positive peaks as shown in Figure 4.9. This
signified the existence of both ground state bleach (GSB) or stimulated emission
(SE) and excited state absorption (ESA) signals respectively. The positive peaks
were centered at 467 nm, 498 nm and 540 nm while the negative peaks were cen-
tered at 447 nm, 482 nm and at 540 nm as shown in Figures 4.9(a) and 4.9(b). The
2D spectrum (4.9(a) ) display the positive signals as bright bands and negative
ones as dark/black bands. These features become more evident in the traces ob-
tained from slicing the 2D spectrum along the wavelength axis at a given time
after excitation as shown in Figure 4.9(b).

Deconvolution of this complicated spectrum was done in two ways. One way
involved plotting both TA and rescaled steady state absorption (SSA) spectrum
in the same axes. In the other, a reconstruction of the TA trace at a given time
was done using a fit generated from sum of Gauss functions centered at different
positions on the spectrum. These two methods are discussed below.

As has been pointed out, GSB signals have negative amplitudes in the TA
spectrum. They are seen at positions corresponding directly to SSA bands. Fig-
ure 4.10(a) consisting of a rescaled SSA spectrum and that of TA confirms this
point. The negative peaks centered at 447 nm and 482 nm were consequently
attributed to GSB signals. It was also noted that the GSB peak at 520 nm was sup-
pressed due to high optical density at this region for the present crystal thickness.
Summing the two spectra (TA and rescaled SSA spectrum) should result in only
peaks associated with the positive ESA and the negative SE signals remaining as
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Figure 4.9: Transient spectra for the 300 nm thick crystals pumped at 387 nm showing (a) two-
dimensional spectra with the white /bright bands representing increased absorption, excited state
absorption (ESA) while the dark/black bands represents either ground state bleach (GSB) or stim-
ulated emission (SE). Slices along the wavelength axis at specific times gives the transient spectra
represented on (b).

shown in Figure 4.10(b). Peaks at around 467 nm and 498 nm were therefore at-
tributed to ESA signals while the negative peak at around 538 nm was assigned
to SE signals.

The deconvolution method employed above served only to identify GSB, SE
and ESA signals based on their amplitudes and positions relative to the SSA spec-
trum. Given that within the spectral region (UV-VIS) of our study, ESA and GSB
signals in Tc spectrally overlap a more rigorous method was required. A sum of
Gauss functions were used to generate a fit to the transient spectra at preferably
early time, say 1 ps, after excitation so as to capture a significant percentage of
dynamics as shown in Figure 4.11. The Gauss functions used were of the form

G = Axexp|—4mlog2((A — Ag)/0)?] (4.5)

where A, A, Ag and o represented the amplitude, the wavelength, center wave-
length and the full-width at half maximum (fwhm) respectively. The fit parame-
ters were as given in table 4.1. The Gaussians at different positions were grouped
basing on the earlier assignments on the contributions of the respective peaks i.e
GSB, ESA and SE signals.

The positions, apart from the amplitudes, of the Gaussian peaks did not change
significantly over the temporal scan range of our experimental set up. As can be

36



Stellenbosch University http://scholar.sun.ac.za

0.04{ (a)
0.02- }/\
(]
o) AN, I/ \,
= ono-_—nlﬁ\kjr
2ps
0.02 — 400ps
SSA —— 400ps_Diff
0.04-

400 450 500 550 400 450 500 550
A (nm) A (nm)

Figure 4.10: Transient spectra at 2 ps and at 400 ps after excitation plotted together with a rescaled
steady state absorption (SSA) spectrum is shown in (a). The negative peaks were at the positions
of the 0 — 1 (peak at 482 nm) and 0 — 2 (peak at 447 nm) vibrational band transitions in S; state.
The 0 — 0 (at around 525 nm) vibrational transition was suppressed. In (b) the spectra after adding
the rescaled SSA spectrum to the transient absorption spectrum.

Table 4.1: The parameters used for the sum of Gauss functions fit used in Figure 4.11 for the 300
nm thick crystal. The Gaussians were grouped into GSB, ESA and SE based on their positions and
the assignments made above on the contributing signals.

GSB ESA SE

Gaussian G1 G2 G4 G3 G5 G6 G7 G8 G9

Ap (nm) 443 449 480 467 | 496 | 502 538 538 544

o (nm) 7 10 9 14 11 6 6 2 11

A (a.u) |-0.009 | -0.018 | -0.016 | 0.008 | 0.022 | 0.012 | -0.027 | -0.010 | -0.016

seen in Figure 4.11 the fit reproduced the general profile of the transient spectra.
The Gaussian peaks at the respective positions (see Figure 4.11) represented tran-
sitions contributing to the observed transient absorption peak. The descriptions
of each of the signals are given in the paragraphs that follows.

ESA signals (G3, G5, G6)

These are usually positive signals resulting from absorption of the probe pulse
photons by molecules already promoted to excited states by the pump pulse.
The excited states can either be singlets or triplets. The latter are characterized
by longer decay times extending into milliseconds time scale (0.2 ms has been
reported for Tc crystals [30] ) compared to the former which decay within the
picoseconds timescale at room temperature (300 ps for Tc crystals has been re-
ported [25]). This property can be used in distinguishing between singlet and
triplet excitons.

In our crystals the positive peaks were fitted with Gaussians G3, G5 and G6
centered at 467 nm, 496 nm and 502 nm respectively as shown in Figure 4.11. G5
and G6 reproduced the same TA peak. Obtaining kinetic decay traces around
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Figure 4.11: A sum of Gaussian functions fitted on the transient spectrum at 1 ps showing that it
reproduces well its general profile. The positions of the Gaussian peaks used in creating the fit
are also shown.

these regions will help in identifying the dynamics causing them. This was done
by slicing the 2D spectrum along the time axis at the center wavelength (Ag) and
integrating the changes in absorbance (AOD) over the widths (¢) of the respec-
tive Gaussians (see table 4.1). This resulted in the traces given in figure 4.12.

These traces revealed dynamics occurring in four time regions. The first one
involved a sub-picoseconds rise as shown in figure 4.12(a). This was then fol-
lowed by a decay with a time constant of 6 ps (an average of 6, 8 and 5 in Table
4.2) obtained from applying a single exponential fit of the form

E(t) =y, +AX exp(%t) (4.6)

where yg, A and T represented the offset, the amplitude and the decay time con-
stant respectively. The fitted data of two of the ESA signals’ traces are shown in
Figure 4.13 and the obtained decay time constants are given in table 4.2.

Table 4.2: Table of decay time constants for the ESA signals represented in Figure 4.12 for the 300
nm thick crystal.

ESA
Gaussian | G3 | G5 | G6
Ao (nm) | 467 | 496 | 502
T (ps) 6 8 5

The third time region involved a subsequent rise at about 50 ps after excita-
tion. The latter dynamics, after equilibrating, displayed a decay extending be-
yond 2.6 ns in G3 (467 nm) and G5 (496 nm) as shown in Figure 4.12(b) and (c)
respectively. Oscillations on the traces were also noticed.

The long live decay dynamics observed at G3 (467 nm) and G5 (496 nm) as
shown in Figure 4.12(b) and (c) can be attributed to absorption by molecules in
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Figure 4.12: The decay kinetic traces of ESA signals G3 (467 nm), G5 (496 nm) and G6 (502 nm)
with (a) showing the initial decay (b) and (c) a decay extending beyond 2.6 ns at 467 nm and 496
nm respecively and (d) showing that G6 is decayed by 2.6 ns.

the T; state. This was supported by the fact that G3 was close to 465 nm where
a similar transition was identified in solution phase tetracene in this work and
also in reference [46]. The attribution of the latter peak (G5 at 496 nm) was based
on a similar assignment made by Grumstrup et al on transient absorption studies
on polycrystalline Tc thin films [1]. Dynamics represented by G6 (502 nm) were
thought to be due to trapped excitons at crystal defect sites. The most common
structural defects in molecular crystals are dislocation planes where a part of the
crystal is displaced relative to its neighborhood [13]. They are known to act as
traps for excitons and charge carriers.

Triplet excitons in our crystals are thought to be formed rapidly at sub-ps
timescales. This is possible through direct fission of higher excited singlet states
(S, states pumped at 387 nm) via the multi-exciton (ME) state ((T;Ty)) to form
triplets (S, — 2T;) as schematically depicted in Figure 4.14. A similar fission
occurring on 300 fs timescale was reported recently by Thorsmoelle et al on Tc
single crystals pumped at 400 nm [33]. The resulting triplets explains the per-
sistence of G3 (467 nm) and G5 (496 nm) after the initial decay. The subsequent
rise observed at about 50 ps after excitation most likely represented the onset of
the thermally activated (AE) singlet fission i.e S; — 2T; (see Figure 4.14). The
large amplitudes and cross-sectional areas of these positive signals signified that
exciton fission was the dominant relaxation channel in tetracene. A discussion on
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Figure 4.13: The initial rapid decay dynamics fit with a single exponential function for transition
represented by (i) G5 (496 nm) and (ii) G3 (467 nm). Time constants ranging from 5 ps to 8 ps as
seen in Table 4.2 were obtained.

this will be given in sections that follows.
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Figure 4.14: A schematic showing the states involved in exciton fission with the two Davydov
states, high energy and low energy, in 5; shown. The high energy Davydov state is close to the
multi exciton (ME) state ! (T;T;). Exciton fission occurs through two channels, one from S —1
(T1Tq) occurring in sub-10 ps timescale and the other through a thermally activated (AE) first
excited singlet exciton fission S; —! (T;T;) occurring on 40 ps timescale. The two coupled triplet
excitons in the ME (or optically dark) state then diffuse apart resulting in two triplet excitons
localized on individual molecules. The observed ESA signal was then the Ty — T, transition.
Stimulated emission (SE) occurs from the vibrationally relaxed first excited state, here thought to
be the low energy Davydov state, on 10 ps timescale.

The initial decay observed in these signals with 5 - 8 ps time constants can
be attributed to either overlapping S; — S, and Ty — T, transitions or to
exciton-exciton annihilation. Overlap of excited singlet and triplet transitions
are known to occur within the UV and VIS spectral regime in Tc. This has al-
ways resulted in complicated transient absorption spectra as was also seen in
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solution phase sample. The rate of this decay was found to increase with in-
crease in excitation power as shown in Figure 4.15. The decay timescale changed
from 4 ps to 2 ps upon increase in excitation power from 170 yW to 290 uW
respectively. The time constants were extracted from applying fit of the form
y(t) = G(t) ® [0(t){yo + A1 exp(—t/T)] where G(t), 6(t), yo, A;, T represented
the Gaussian instrument response function, a step function, offset, amplitude and
time constants respectively. It is known that high excitation strengths increases
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o
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Figure 4.15: The influence of increase in excitation power on the initial decay of ESA signal at 468
nm in the 300 nm thick crystal. The decay time constant changed from 4 ps to 2 ps with increase

in excitation beam power from 170 yW to 290 uW respectively. The amplitudes were also seen to
increase.

the probability of exciton-exciton annihilation occurring [13] in molecular crys-
tals as was mentioned in chapter 2. The result in Figure 4.15 served to show that
exciton-exciton annihilation was one of the contributors to this decay. A similar
attribution was recently made by Burdett ef al in studies done on polycrystalline
thin films by [24].

The oscillations observed in the kinetic traces (see Figures 4.12(a) and 4.15)
were independent of excitation power (pulse fluence) indicating that they em-
anated from dynamics in the crystal. Burdett et al attributed them to acoustic
modes excited by sudden heat input from rapid exciton-exciton annihilation [24].
They also recently explained similar oscillations seen in delayed fluorescence de-
cays of solution-grown Tc single crystals as being caused by coherent superposi-
tion of the states in the triplet pair state 1(T1 Ty) [58]. It should be recalled that
this optically inaccessible state is a triplet state with a singlet character and its
purpose is to mediate singlet fision.

GSB signals (G1, G2, G4)

These negative signals reflect de-population or bleach of the ground state. They
represent positions where Sy — S7 transitions occurred through the action of the
pump pulse (v = 0, 1...n are the vibrational bands) as was mentioned earlier. The
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peaks representing them were reproduced by Gaussians G1 (443 nm), G2 (449
nm) and G4 (480 nm) as shown in Figure 4.11.

Their kinetic traces displayed a complicated profile as seen in Figure 4.16. An
initial fast recovery (see Figure 4.16(b)) with time constant of 6 ps (average of
6, 4 and 7 ps given in Table 4.3) which compared well with those obtained for
the early decay in ESA signals signified that the same dynamics were responsi-
ble. They also persisted beyond 600 ps indicating that some molecules remained
in excited states and thus supporting our earlier assignment of the long live dy-
namics seen at 467 nm and 496 nm to triplets. The dynamics of these two signals
i.e the GSB and ESA were correlated as shown in Figure 4.16(a). Exponential fit
on the trace at G2 (449 nm) is shown in Figure 4.16(b).
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Figure 4.16: The decay kinetic traces for the GSB and ESA signals for the 300 nm thick crystal
plotted on the same axes in (a) and single exponential fit applied on the initial dynamics of the
GSB signal at 449 nm shown in (b).

Table 4.3: Table of decay time constants for the GSB signals represented in Figure 4.16 for the 300
nm thick crystal.

GSB
Gaussian | G1 | G2 | G4
Ag (nm) | 443 | 449 | 480
T (ps) 6 4 7

SE signals (G7, G8, G9)

SE signals, which have negative amplitudes in TA spectra as was described ear-
lier, result from photo-induced radiative decay of excited electronic states. They
mainly emanate from the vibrationally relaxed first excited singlet state (see Fig-
ure 4.14) and have red-shifted peaks relative to those of GSB signals.

The peak representing it in our crystal was that reproduced by Gaussians G7
(538 nm) and G9 (544 nm). The kinetic traces of these Gaussians displayed a de-
caying emission with a time constant of 10 ps (average of 9ps and 11 ps in Table
4.4) as shown in Figure 4.17(a). Positive amplitude signals (increased absorbance)
were also observed after the combined large negative signal had decayed (see
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Figure 4.17: The decay kinetic traces for the SE signals for the 300 nm thick crystal displaying
an initial rapid emission occurring within the first 20 ps in (a) and (b) decay extending from
picoseconds to nanoseconds timescale.

Figure 4.17(b)). The SE signal (the negative amplitude part) was thought to orig-

Table 4.4: Table of decay time constants for the SE signals represented in Figure 4.17(a) for the 300
nm thick crystal.

SE
Gaussian | G7 | G9
Ag (nm) | 538 | 544
T (ps) 9 | 11

inate from the low energy Davydov component centered at 520 nm. A similar
short lived emission with a time constant of 9.2 ps attributed to a superradiant
Sp «+— S transition was reported earlier in polycrystalline Tc thin films at room
temperature [23]. The positive signals resulting after the decay of emission seen
in our crystals were thought to be due to absorption by trapped excitons at de-
fect sites. This assignment was based on the fact that no triplet states have been
reported at these wavelengths (i.e 538 nm and 540 nm) in literature and the only
other probable states displaying long decay times in molecular crystals are defect
states. These defects could also arise from a transient structural phase transition.

Excitation of the 300 nm crystal at 387 nm and probe polarized
1 b axis

In chapter 3, Davydov splitting in Sy — S transitions of 0.08 eV was measured.
This splitting, as was pointed out, resulted from Coulombic interaction between
the two differently oriented molecules in Tc unit cell. This was observed with
polarized excitation of the crystal i.e using light that was polarized || b and L b
axis of the ab crystal face. In this studies an attempt was made to determine
lifetimes of the two Davydov excitonic states through using probes which were
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polarized L b and || b axis. In the previous discussion the probe was polarized
|| b thus interrogating transitions to the low energy Davydov state. The obtained
results displayed broad and large amplitude ESA (at 467 nm and 496 nm) and
SE (at 540 nm) signals as was seen in Figure 4.9(b). The GSB (at around 443 nm
and 482 nm) on the other hand were weak implying that a significant fraction
of excitons at these energies decayed. This Davydov state lifetime could not be
established precisely. Here we probe the high energy Davydov state with a beam
polarized L b axis. The same excitation conditions as in above experiment were
employed.

(b)

ESA 491
000 [ -ononsmoncnn
a a GSB_4
(@] Q GSB 473
< g —
0.011
GSB_503
0.02]
0 100 200 300 400 500 600
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Figure 4.18: (a)The transient absorption spectra of the 300 nm thick Tc crystal excited at 387 nm
and probed with L b-polarized white light at different times after excitation and with the steady
state absorption (SSA) spectra also plotted on the same wavelength axis. The signal was domi-
nated by GSB (at 503 nm, 473 nm, 447 nm) signals. A long living positive signal was also noticed
at 491 nm attributed to Ty — T}, absorption. (b) The decay kinetic traces of both the GSB and ESA
signals.

The obtained transient spectra was dominated by GSB signals situated at 503
nm, 473 nm and 443 nm as seen in Figure 4.18(a). A positive amplitude peak was
also observed at around 491 nm close to where a large ESA signal (at 496 nm)
attributed to Ty — T, transition was observed before in this work with using a
probe polarized || b axis. The other ESA peak (due to excited triplet absorption)
expected at around 467 nm did not appear in this spectrum.

The large negative amplitude and long living GSB signals implied that major-
ity of the electronic populations at these energies were evolving in higher excited
states. The most probable long living excitonic states were triplets. Given that
the probed high energy Davydov states in the 0-0, 0-1 and 0-2 vibrational transi-
tions situated at around 503 nm, 473 nm and 443 nm respectively were higher in
energy or nearly degenerate with the ME state (1(T;T;)) at between 480-498 nm
(see Figure 4.14 ) [33, 42], a rapid singlet fission was highly possible. This then
accounted for the large negative amplitude GSB signals. The signal observed at
491 nm (see Figure 4.18(b)) was thought to represent T; — T}, transitions.

From these results one can conclude that the high energy Davydov states were
short-lived (<1ps) as their population was readily distributed to the triplet states.
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Excitation of the 300 nm crystal at 530nm

The dynamics in the 300 nm thick crystal were also studied with excitation done
at 530 nm which accessed only the S; state. The idea was to identify dynamics
that were dependent on excitation energy. Pump pulses of duration 30 fs (full-
width at half maximum, fwhm), fluence of 665 yJ cm ™2 and 30 nm bandwidth
were used and probed with white light continuum polarized || b. With this exci-
tation, singlet fission (SF) will only proceed through thermal activation via multi-
exciton (ME) state as was schematically represented in Figure 4.14 [42]. This state
is located between 480 nm and 498 nm according to literature [33, 42]. The high
energy wing side of the pump pulse extended upto 510 nm which was below this
state’s energy. A sub-picoseconds rise in the peaks attributed to absorption by
excited triplet states T; — T}, at 467 nm and 496 nm was therefore not expected.
A rapid rise at this timescale was previously attributed to direct fission via the
ME state of excited S, states forming triplets [33, 42, 58]. It should be noted that
ME state cannot be accessed by a direct absorption of a single photon since such
a transition is forbidden due to Pauli principle [42].

0.02] 0.009, SA_498
ESA_498
0.01
o ESA_467 0.006
(@] ESA_467
3 0.00]
GSB_482 0.003
£0.01/
GSB_447
-0.02 4 0.000 {
0 1 20 30 40 0 100 200 300 400

T (ps) T (ps)

Figure 4.19: The decay kinetic traces of the 300 nm thick crystal excited at 530 nm showing (a)
ESA and GSB signal traces within the first 50 ps after excitation showing the initial decay and
recovery respectively and (b) ESA signals traces at long times after excitation.

The results obtained with this excitation displayed similar profiles as those
given before with a 387 nm excitation (see Figure 4.19). The traces from peaks
we attributed to triplets (at 467 nm and 496 nm) did not show an initial rise in-
dicating that they are possibly created rapidly after excitation. This can only be
possible if the probe beam coherently excites the vibrational excitons (vibrons)
either in the ground state or in S; state to S,,. This most likely happens in sub-ps
time scale. These states can then fission directly to form triplets as shown in Fig-
ure 4.14. Vibrons that are either degenerate, almost degenerate or with slightly
higher energies than ME state can also fission rapidly forming triplets [42, 1]. A
similar explanation was given by Grumstrup et al on dynamics observed in poly-
crystalline Tc thin films pumped at 530 nm and probed with both shaped and
un-shaped pulses [1]. There was a possibility that ultra-fast inter-system crossing
proposed to account for the triplet population observed in solution phase sam-
ple was also playing a role in crystals or there was another channel not known
yet that was responsible as indicated in studies done by Burdett et al [24, 58]. In
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reference [24] it was shown through delayed fluorescence measurements at low
temperatures and excitation at 530 nm that singlet decay (those created through
fusion of triplets) does not depend on excitation energy in contrast to the expec-
tation of the often used simple model of SF where it is assumed to be an activated
process.

TA spectroscopy of a 200 nm thick Tc single crystal

Some of the optical properties of the crystal such as absorbance and emission
are thickness dependent. A thicker sample will absorb greatly the energy of the
exciting field and so making transmission measurements difficult. It will also re-
absorb emitted radiation thus compromising the determination of quantum yield
in emission measurements.

The transient spectra obtained for the 200 nm thick crystal pumped at 387
nm at room temperature and probed with beam polarized || b axis displayed
a profile similar to that of the 300 nm thick crystal indicating that the features
were intrinsic (see Figure 4.20). The only difference was the appearance of the
GSB signal at 525 nm that was suppressed in the previous sample. This signal
overlapped with the SE signal at 533 nm. The defect state signal seen at 538 nm
in the previous crystal was missing in the present sample. This further confirmed
our assignment since structural defects such as dislocations are expected to be
randomly distributed in the crystal.

T T T T T T T

1.0
0.5

0.00- _
L0.0
-0.01- _

D _'0.5 O
% -0.02- [ 1.00
-0.03- 1.5
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Figure 4.20: The transient absorption spectra of the 200 nm thick Tc crystal probed with a || b
polarized white light continuum with the steady state absorption (SSA) spectra plotted in the
same wavelength axis. A large negative signal was observed at around 533 nm and the positive
signals were at the same positions as those found in the 300 nm thick crystal.

A sum of Gaussians fit was also done in order to deconvolve its transient
spectra. The fit obtained reproduced the profile of the spectra as seen in Figure
4.21. The fit parameters used are given in Table 4.5.

The positions of the Gaussian peaks reproducing the GSB and ESA signals
were comparable to those obtained for the 300 nm thick crystal discussed in the
previous sections. This showed that the deconvolution technique employed here
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Figure 4.21: The transient absorption spectrum of the 200 nm thick Tc crystal at 1 ps after excitation
fitted with a sum of Gaussians. The obtained fit reproduced the general features of the spectrum.
The positions of the Gaussian peaks G1 to G9 are also shown.

Table 4.5: The parameters used for the sum of Gaussian fit used in Figure 4.21 for the 200 nm thick
crystal. The Gaussians were grouped into GSB, ESA and SE signals as before.

GSB ESA SE

Gaussian G1 G2 G4 G3 G5 G6 G7 G8 G9

Ao (nm) 443 450 482 468 | 499 | 508 533 549 565

o (nm) 7 11 12 14 | 13 8 15 9 35

A (a.u) | -0.005 | -0.008 | -0.012 | 0.006 | 0.003 | 0.034 | -0.003 | -0.002 | -0.002

was robust. The only deviation was in the positions of the Gaussians reproducing
the SE signals. No attempt was made here to investigate this descrepancy.

The temporal dynamics of this crystal were similar to those of the previous
one (i.e the 300 nm thick crystal) with the GSB and ESA signals displaying an
initial recovery and initial decay respectively as seen in Figure 4.22(a). The ESA
signals ascribed to triplets seen at 468 nm and 499 nm were also long living as
shown in figure 4.22(b). A rapidly decaying emission with a time constant of 7 ps
was observed at G7 (533 nm) followed by a slower decay extending upto a bout
225 ps (Figure 4.22 and 4.23).

The extracted decay constants for the initial dynamics (i.e within the first 50
ps as shown in Figure 4.23) ranged between 4 ps and 9 ps (see Table 4.6). These
represented the same dynamics explained earlier in this work.

Table 4.6: Decay constants from a single exponential fit on the 200 nm thick crystal’s initial decay
kinetics i.e within the first 50 ps.

GSB ESA SE
Gaussian | G1 | G2 | G4 | G3 | G5 | G6 | G7 | G8 | G9
Ag (nm) | 443 | 450 | 482 | 468 | 499 | 508 | 533 | 549 | 565
T (ps) 9 5 4 4 3 4 7 9 8
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Figure 4.22: The decay kinetic traces for the 200 nm thick crystal. (a)The temporal decay profiles
on sub-100 ps after excitation taken with a 0.2 ps probe delay step size and (b) on longer time
scale taken wit a 1 ps step size. The ESA signals at 468 nm and 499 nm display a decay extending
beyond 600 ps. The SE signal at 533 nm displayed a rapid decay within the first 20 ps.
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Figure 4.23: Initial rapid decay of (a) emission and (b) ESA fitted with exponential function in the
200 nm thick crystal. The fits were used to extract the decay constants. (a) Displays the fit applied
to the SE signal at 533 nm while (b) shows that applied to the ESA signal at 468 nm.

The results obtained with probe polarized L b axis were dominated by GSB
signals as shown in Figure 4.24. A fairly strong positive signal (ESA) was ob-
served at 491 nm and a week one at 465 nm. These were the same signals assigned
to triplets in the previous discussions. The amplitude of the peak at 465 nm was
so low that it was never resolved at later times after excitation. The crystal was
excited with 170 yW beam power compared to 120 yW used before in order to
get a good signal to noise ratio. This increase in excitation strength caused accel-
erated decay to be observed which stabilized after about 150 ps.

These results from the two crystal samples of different thicknesses served to
confirm that the position of the energy levels does not shift with change in thick-
ness. The TA spectrum of the 200 nm thick crystal compared so well with those
of polycrystalline Tc thin films obtained elsewhere [23, 24]. The only effect ob-
served with using a thicker sample (300 nm crystal) was the suppression of the
GSB signal at 525 nm due to increased absorbance.
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Figure 4.24: TA spectrum of the 200 nm thick crystal with probe polarized L b axis of ab face. (a)
Spectrum was dominated by GSB signals. An ESA signal was noticed at 491 nm. (b)The decay
traces.

The long decay dynamics

We re-visit the long decay dynamics assigned to Ty — T, transitions in our
tetracene crystal samples. Here we are interested in the dynamics responsible
for the shape of the kinetic traces which included the observed initial decay, then
a rise and finally a long living decay. A global fit was done in order to extract the
time constants of these profiles which were then used together with literature val-
ues to assign the respective features to a particular physical process in the crystal
appropriately. The fit consisted of a multi-exponential function of the form

y(t) = G(t) @ [0(t){yo + Arexp(—t/T1) + T(t)}] (47)
T(t) = Ap{l1+exp(—t/m)} + As{l —exp(—t/13)} (4.8)
G(t) = Aexp(—(t/0)?) (4.9)

where G(t), o, 0(t), A;, T (i = 1,2,3) represented the Gaussian instrument re-
sponse function, its width, a step function, amplitudes and time constants re-
spectively. The Gaussian function was convoluted with the product of the step
function and the multi-exponential function. The offset 1 represented yield re-
sulting from sub-ps processes such as direct fission of S, states. The fit repro-
duced the general profile of the trace as shown in Figure 4.25 and the results are
summarized in Table 4.7.

Table 4.7 provides the fitting parameters. The initial decay that was attributed
to exciton-exciton annihilation was represented by the first decay constant 7;. The
value of this constant was kept fixed within the limits of the results presented
before in this work. The focus was on the subsequent dynamics i.e the steady rise
followed by a slow decay, represented by time constants 7, and 13 respectively. A
value of about 40 ps was found in all the crystal samples irrespective of excitation
wavelength as shown in Table 4.7. This signified a feature that was characteristic
of the crystal. In other similar TA studies a rise on a 50 ps time scale in single
crystals[33] and 37.5 ps in polycrystalline thin films [1] of Tc were observed in
absorptive features assigned to Ty — T, transitions. This dynamic was ascribed
to increased triplets yield due to the thermally activated singlet fission (SF). It
should be noted that SF time scales measured in TA studies are generally half
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Figure 4.25: The multi-exponential fit on the long decay dynamics of the (a) 300 nm and (b) 200
nm thick crystals excited at 387 nm and (c) the 300 nm thick crystal excited at 530 nm represented
by the red line. The probe beam was polarized || b in all these results.

Table 4.7: The long decay dynamics exponential fit results for the crystals excited at 387 nm and
at 530 nm. A Gaussian response function of width 200 fs was used.

A (nm) S ESA (nm) | y(ps) | a(ps) | s(ps) | Az Ay Az
387 | 300nm 467 6 39 2000 | 0.089 | 0.02 | -0.097
496 5 40 3000 | 0.03 | 0.04 | -0.31
200nm 468 3 40 2000 | 0.07 | 0.006 | -0.03
499 5 37 1000 | 0.04 | 0.022 | -0.057
530 | 300nm 467 5 40 5000 | 0.06 | 0.015 | -0.03
496 19 41 3000 | 0.03 | 0.037 | -0.05

those obtained from delayed fluorescence measurements 100 ps [24], 75 ps [1, 45].
This was expected since the former method probes the creation while the latter
the annihilation of triplet species.

The long decay life times which is a characteristic of triplet states was reflected
by time constant 3. It’s values were in nanoseconds range and so supporting the
results displayed in Figure 4.12.

Results obtained here showed clearly the existence of both short-lived (<20
ps) and long-lived (>2.6 ns) excitonic states. The short-lived states can be utilized
in the design of an ultra-fast photo-switch, while the long-lived states which were
formed between sub-ps and 40 ps timescales can be utilized in improving the per-
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formance of solar cells as was described elsewhere [6, 24, 34, 59]. Briefly, the main
problems in semiconductor solar cells is the inability of typical photovoltaic ma-
terials to convert a large portion of the solar spectrum into usable energy. Most
materials thermalize excess energy above the band gap and those below have no
effect and their energy is lost. This limits their power-conversion efficiency aver-
aged over the solar spectrum to a maximum of 33 % - the Shockley-Queisser limit
[6, 34, 59]. This limitation can be overcome by using materials exhibiting exciton
tission, like tetracene, where multiple electron-hole pairs - the triplet excitons -
are produced from a single photon. The electrons or holes in the triplet excitons
can then be harvested with a suitable holes conductor or acceptor. The rapidity
with which singlet fission occur in the samples investigated here (<40 ps) allow
it to compete with other relaxation processes.

The potential utilization of the results obtained here are therefore immense.
Besides, the method of preparation of thin free standing tetracene single crystals
can be applied in other polyacenes.
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5. Conclusions

Conjugated organic semiconductors have in recent years witnessed an increased
academic and industrial interest due to their appealing properties and promise
to replace their expensive inorganic counterparts in device applications. De-
vices such as organic light emitting diodes (OLED), organic field-effect transis-
tors (OFET), organic solar cells (OSC) among others based on them have been
demonstrated. In order to optimally utilize their properties in these technologies
it is important to understand both the nature of photogenerated states and their
relaxation dynamics. Towards this end we investigated one of the promising can-
didates, tetracene. This material has immense absorbance in the visible regime of
the electromagnetic spectrum. Any optical transmission measurements on their
single crystals therefore required nanometer thick samples. This explains why it
is rare to find steady state and transient absorption spectroscopy measurements
on single crystals in literature. Using microtome apparatus we were able to cut
the provided thick (= 500 ym) sublimation grown crystal platelets obtaining 200
nm, 300 nm and 500 nm thick single crystals supported on a copper wire mesh
with squares of dimensions 150 ym.

The energy positions of tetracene’s excitonic states are not well understood
and the reported values often depend on the sample preparation history and ex-
perimental conditions. Steady state absorption measurements done in this work
at room temperature (300 K) on the crystals revealed two excitonic states with
orthogonally polarized ( = 90°) optical transitions. The transition polarized L b-
axis (high energy Davydov band) of the ab crystal face had the 0-0, 0-1, and 0-2
vibrational bands centered at 503 nm, 472 nm and 443 nm respectively. The || b-
axis (low energy Davydov band) transition on the other hand had their 0-0, 0-1,
and 0-2 vibrational bands centered at 520 nm, 478 nm and 444 nm respectively.
From these two states, a Davydov splitting energy of between 0.08 eV and 0.12
eV was determined and compared well with experimentally and theoretically de-
termined literature values and thus confirming similarities in the samples. The
crystal spectrum was also red-shifted with respect to the solution spectrum and
there was a solution-to-crystal shift energy of 0.15 eV and 0.23 eV in the 0-0 vi-
brational bands of the high and low energy Davydov components respectively.

The broad aim of femtosecond transient absorption spectroscopy measure-
ments was to reveal positions of states other than S;, which steady state mea-
surements provided, and their relaxation dynamics. Besides, there were few such
measurements done on tetracene single crystals. Excited state absorption (ESA)
signals play a key role in tetracene dissolved in toluene solvent as was revealed
by a large positive signal in its transient spectrum. Superimposed on top of this
signal were negative ground state bleach signals. Signatures of excited triplet ab-
sorption were also seen 20 ps after excitation at 465 nm. This unexpected feature
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in the stated timescale was proposed here for the first time to result from fast
inter-system crossing (ISC) facilitated by the position of the second excited triplet
state being energetically below the first excited singlet state S;. This triplet for-
mation was confirmed by probing the excited sample at 10 ns. The transient ab-
sorption spectra obtained from single crystals were complicated by overlapping
GSB and ESA signals which frustrated efforts to interpret them in other studies.
Here we employed a robust deconvolution technique involving use of sum of
Gaussians fit. From this technique positive signals attributable to absorption by
T, state were identified from the long living peaks on the transient absorption
spectra at 467 nm and 496 nm. The population of T; state occurred from fission
of not only the lowest excited singled state S; — 2T; but also of the higher-lying
singlet states S, — 2T in 40 ps and sub-picoseconds time scales respectively at
room temperature. These states seen through T; — T}, transition bands displayed
a decay extending beyond 2.6 ns. The attribution of the peak observed at 467 nm
was done for the first time in this studies but the one at 496 nm had been done
somewhere else. The rapid generation of triplet excitons which apart from hav-
ing long decay lifetimes also have large diffusion lengths can be utilized in solar
cells where the electrons and holes can be harvested with help of suitable accep-
tor materials. There was also an emission on a time scale of about 10 ps which
can be applied in the design of an ultra-fast photo-switch. The rapid generation
of triplets was independent of excitation energy as was found out from compar-
ing excitation done at 387 nm and 530 nm corresponding to S,, and S; excitation
respectively. Triplet population in the crystals occur mainly from the high energy
Davydov state as observed from the large negative ground state bleach signals
obtained with probe field polarized L b-axis compared with those with field po-
larized || b of the ab face of the unit cell.
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A. Appendix

Absorption cross section 0 ()

Here we show how the values stated in this thesis were obtained which include
the absorption cross section 0(A) and the number of molecules excited in both the
solution and the crystals investigated. The molar mass (MM) of tetracene, C1gHj;
was found from

MM = (12.01 x 18) + (1.0079 x 12) = 228 g/mole. (A.1)

The Avogadros No. = 6.626 x 103 molecules / mole.
Mass of tetracene dissolved in toluene solvent M = 4.0 x10~* g.
Volume of Tc solution V = 0.37 cm?.
Length of cuvette = 0.1 cm.
Concentration of tetracene in toluene solvent in the cuvette was determined
from,
M 4x107*
= = = 4.7 x 107° mol 3, A2
‘T VX MM T 037 x228 X 1077 moles / em (4.2
This was then expressed in terms of number of tetracene molecules per unit vol-
ume obtaining

Csol = (6.626 x 10%) x (4.7 x 107%) = 3.14 x 10'® molecules / cm®.  (A.3)

Since the laser beam (white light continuum) was shone on a diameter of ~ 0.02
cm, then the volume excited was

Vol = 71 % (0.01)% x 0.1 = 3.14 x 107 cm® (A.4)

and the number of tetracene molecules excited N%‘C)l was then

N3Ol = V5l 5 cgpp = 3.14 x 107° x 3.14 x 10'® = 9.9 x 10'® molecules.  (A.5)

exc

The absorbance value of 0.25 at 474 nm in tetracene dissolved in toluene given

in Table 3.1 was obtained from exciting a fraction (%) of the volume in the

cuvette . Nevertheless, if we consider that entire volume was excited, we can
estimate absorption cross section o'(A) as

OD 0.25
A = = — 8. -19 2 _1. .
o) Csot X1 (3.14 x 1018) x 0.1 8.0 x 10~ cm“molecule (A.6)
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Required tetracene crystal thickness

Now when determining the appropriate thickness of tetracene crystal required to
obtain an absorbance of 0.25 similar to that in solution at 474 nm, we need to first
determine the number of molecules in a unit volume. Given that the volume of
tetracene unit cell is 583 x10~2*cm? and that there are two molecules per unit cell
then we get

2

Cerystal = TR X 10 B 3.4 x 10! (molecules) cm 3 (A.7)

The thickness which can give absorbance of 0.25 can be obtained from

oD 0.25
l = = = .
ers5tal = O X Corgent (80 % 10-19) x 34 x 102 0™ (A8.8)

The number of molecules excited N/ ! in the crystal

Given that the excitation spot diameter was 0.02 cm, one can estimate the number
of molecules excited in the 200 nm, 300 nm and 500 nm thick samples from

NP = 70206yt (A.9)
N;Zy stal,200nm _ 5 1 % 1013 molecules (A.10)
Ngystal 300 _ 3 5 % 10" molecules (A.11)
N;Zy stal,500nm _ 5 3+ 10'3 molecules (A12)
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