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SUMMARY 

 

Grapevine trunk diseases are caused by invasive pathogens that are responsible for the 

slow decline of vines.  In particular, Eutypa dieback of grapevine has had a devastating 

impact on vineyards worldwide, reducing growth and yield, eventually killing the 

grapevine.  The causal organism of Eutypa dieback was first described as Eutypa 

armeniacae Hansf. & Carter, the pathogen that causes dieback of apricots, but since 1987 

this species has been considered a synonym of Eutypa lata (Pers.:Fr.) Tul & C. Tul 

(anamorph Libertella blepharis A. L. Smith).  Recently, it was proposed that at least two 

species that are capable of infecting grapevines are responsible for Eutypa dieback.  

Consequently, the molecular identification and characterisation of Eutypa dieback was 

used to delineate the species occurring on infected grapevines in South Africa.  This 

involved the molecular analyses of three molecular markers, namely, the internal 

transcribed spacer (ITS) and large subunit (LSU) regions of the ribosomal DNA operon, 

and the -tubulin gene.  The results obtained revealed the presence of a second species, 

namely, Eutypa leptoplaca (Mont.) Rappaz, that occurred together with E. lata on 

infected grapevines. 

 

Also co-habiting with these pathogens were related fungi form the Diatrypaceae family, 

Cryptovalsa ampelina (Nitschke) Fuckel and Eutypella vitis (Schwein.) Ellis & Everhart.  

Pathogenicity tests conducted on isolates representing C. ampelina, E. lata, E. leptoplaca, 

and E. vitis revealed that all were pathogenic to grapevine.  Several species of 

Botryosphaeriaceae that commonly invade the woody tissue of grapevines are also 

pathogenic to grapevine.  The symptoms in grapevine commonly associated with 

Botryosphaeriaceae are easily confused with the symptoms produced by Eutypa dieback 

which prompted the need for the development of a detection method that can correctly 

identify the presence of multiple pathogens. 

 

A reverse dot blot hybridisation (RDBH) method was subsequently applied to provide a 

rapid, accurate and reliable means of detecting the Eutypa species involved in the Eutypa 

disease complex, as well as those species of Botryosphaeriaceae known to cause disease 
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in grapevines.  The method involved the use of multiplex PCR to simultaneously amplify 

and label the regions of DNA that are used as pathogen specific probes.  Consequently, 

membrane immobilised species-specific oligonucleotides synthesised from the ITS, -

tubulin and LSU molecular data were evaluated during the application of this diagnostic 

method to detect Eutypa species.  It was found that the species-specific oligonucleotides, 

designed from ITS sequence data, could consistently detect E. lata and E. leptoplaca.  

The application of the RDBH method for the detection of these Eutypa species, based on 

-tubulin and LSU sequence data, however, proved to be unsuccessful.  Subsequently, a 

RDBH method, utilising species-specific oligonucleotides designed from elongation 

factor-1α sequence data, was successfully applied for the detection of Botyrosphaeria 

dothidea (Moug.:Fr.) Ces. & De Not., Neofusicoccum luteum (Pennycook & Samuels) 

Crous, Slippers & A.J.L. Phillips, Neofusicoccum parvum (Pennycook & Samuels) 

Crous, Slippers, A.J.L. Phillips and Neofusicoccum ribis (Slippers, Crous & M.J. Wingf.) 

Crous, Slippers & A.J.L. Phillips.  The method, however, was unsuccessful for the 

detection of Diplodia seriata De Not. 

 

In addition to the above-mentioned shortcomings, the RDBH was not amenable to the 

detection of pathogens directly from field or environmental samples, but required 

preparation of DNA from pure cultures.  The method, however, allows for the 

identification of multiple pathogens in a single assay. As DNA extraction methods are 

amended, improved and honed to obtain DNA from environmental samples, so would it 

increase the usefulness of RDBH. 
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OPSOMMING 

 

Wingerd stamsiektes word veroorsaak deur patogene wat die vermoë het om 

wingerdplante te infekteer en dan stadige agteruitgang van dié wingerde te veroorsaak.  

Veral Eutypa terugsterwing het ‘n vernietigende effek op wingerde wêreldwyd deurdat 

dit groeikrag en oesmassa verlaag, maar ook omdat dit uiteindelik wingerdstokke kan 

dood.  Die veroorsakende organisme is aanvanklik as Eutypa armeniacae Hansf. & 

Carter beskryf, die patogeen wat terugsterf by appelkose veroorsaak, maar sedert 1987 

word hierdie spesies beskou as ‘n sinoniem van Eutypa lata (Pers.:Fr.) Tul & C. Tul 

(anamorph Libertella blepharis A. L. Smith).  Dit is egter onlangs voorgestel dat ten 

minste twee spesies die vermoë het om wingerd te infekteer om Eutypa terugsterwing te 

veroorsaak.  Gevolglik is molekulêre identifikasie- en karakteriseringstudies geloods om 

te bepaal watter spesies Eutypa terugsterwing in Suid-Afrikaanse wingerde veroorsaak.  

Dit het die molekulêre analise van drie molekulêre merkers behels, naamlik die interne 

getranskribeerde spasiëerderarea (“ITS”), die groot ribosomale subeenheid (“LSU 

rDNA”) en β-tubilien geen.  Resultate van die filogenetiese analise dui daarop dat ’n 

tweede spesies, naamlik Eutypa leptoplaca (Mont.) Rappaz, saam met E. lata in 

geïnfekteerde plante voorkom. 

 

Saam met bogenoemde twee spesies het daar ook verwante spesies van die Diatrypaceae 

familie voorgekom, naamlik Cryptovalsa ampelina (Nitschke) Fuckel en Eutypella vitis 

(Schwein.) Ellis & Everhart.  Patogenisiteitstudies wat uitgevoer is met 

verteenwoordigende isolate van C. ampelina, E. lata, E. leptoplaca, en E. vitis dui daarop 

dat almal patogene van wingerd is.  Verskeie Botryosphaeriaceae spesies wat gereeld in 

houtagtige wingerdweefsel aangetref word, is ook patogene van wingerd.  Interne 

simptome wat algemeen met Botryosphaeriaceae infeksies geassosieer word, kan baie 

maklik met dié van Eutypa terugsterwing verwar word en dit het die nood laat ontstaan 

om ‘n opsporingsmetode te ontwikkel wat akkuraat genoeg is om tussen veelvoudige 

infeksies te onderskei.   
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’n Omgekeerde-stippelklad-hibridisasie (OSH) metode  is gevolglik aangewend om 

Eutypa spesies betrokke in die Eutypa-siektekompleks op ‘n vinnige, akkurate en 

betroubare manier op te spoor, sowel as die Botryosphaeriaceae species wat bekend is as 

patogene van wingerd.  Die metode behels ’n saamgestelde PKR vir die vermeerdering en 

merk van DNS areas wat gebruik word as patogeen spesifieke peilers.  Spesies-spesifieke 

oligonukleotiede ontwikkel vanaf die ITS, -tubilien en LSU molekulêre data is op ‘n 

membraan vasgeheg en gebruik om ’n diagnostiese toets te ontwikkel vir Eutypa species.  

Merkers ontwikkel vanaf die ITS kon E. lata and E. leptoplaca konsekwent opspoor.  Die 

opspoor van Eutypa spesies  met merkers vanaf die -tubulien en LSU gene met OSH 

was onsuksesvol.  Die OSH metode met merkers vanaf die verlengingsfaktor-1α  kon 

susksesvol gebruik word om Botyrosphaeria dothidea (Moug.:Fr.) Ces. & De Not., 

Neofusicoccum luteum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips, 

Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers, A.J.L. Phillips and 

Neofusicoccum ribis (Slippers, Crous & M.J. Wingf.) Crous, Slippers & A.J.L. Phillips 

op te spoor.  Dié metode kon egter nie Diplodia seriata De Not. opspoor nie. 

 

Bykomend tot bogenoemde tekortkominge, kon die omgekeerde-stippelklad-hibridisasie 

metode ook nie aangepas word om patogene direk vanuit plantmateriaal op te spoor nie 

en word DNS afkomstig vanaf suiwer kulture benodig.  Dié metode laat egter 

identifikasie van verskeie patogene in ‘n enkele toets toe.  Soos DNS ekstraksie metodes 

aangepas, verbeter en verfyn word om DNS vanuit plantmateriaal te verkry, sal die 

bruikbaarheid van die omgekeerde stippelklad hibridisasie metode ook verbeter.  
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1 

MOTIVATION 

 

Grapevine trunk diseases involve a complex of pathogens that are responsible for the 

death and decline of grapevines throughout the grape growing regions of the world.  Of 

these diseases, Eutypa dieback in particular has evoked a great deal of interest due to the 

severity and extensive damages and losses it has incurred.  It is reported to have cost the 

US industry $260 million per annum (Siebert, 2001), while in South Africa losses of 

almost R1.7 million have been recorded for the 2000/2001 season (Van Niekerk et al., 

2003).  Eutypa dieback is thus recognised as one of the main limiting factors to the 

productivity and lifespan of a vineyard with the impact of this disease most significant on 

older, more established vines (Carter, 1988). 

 

Eutypa dieback develops slowly on grapevines with symptoms apparent in one season 

then appearing absent in the next, or healthy parts of the vine will cover them up.  

Consequently, it will have appeared as though the vines have recovered; however, the 

symptoms may persist for several years until the infected portion of the vine dies.  

Normally, the infected portion is only on one cordon arm bearing stunted shoots with 

shortened internodes and small leaves (Munkvold, 2001).  Bunches on the affected shoots 

also appear normal at the beginning of the season but tend to ripen late, producing a 

mixture of large and small berries (Creaser and Wicks, 1990).  The shoot and foliar 

symptoms are characteristic of Eutypa dieback and can be traced back to a canker 

surrounding an old pruning wound (Trese et al., 1980; Petzold et al., 1981). 

 

The causal organism of Eutypa dieback is Eutypa lata (Pers.:Fr.) Tul & C. Tul.  It is an 

ascomycetous fungus with a wide host range occurring on 88 hosts in 28 plant families 

(Bolay and Carter, 1985; Carter, 1986).  Eutypa lata has been reported to cause infection 

on agriculturally important crops like apricot (Prunus armeniaca L.), the host in which it 

was first described, and on almond (Prunus dulcis [Miller] D.A. Webb), cherry (Prunus 

avium), olive (Olea europaea L.), peach (Prunus persica L.), and walnuts (Juglans regia) 

(Carter et al., 1983; Munkvold and Marois, 1994).  In South Africa, little was known 

about the incidence of the disease in our vineyards.  It is, however, known that the fungus 
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is prevalent in high rainfall areas, with ascospores disseminated by rain, and responsible 

for invading pruning wounds (Carter, 1988).  Such conditions occur typically in the 

vineyards of the Western Cape which is situated in a winter rainfall region.  

Consequently, it was decided to investigate occurrences of Eutypa dieback on grapevines 

in South Africa and while E. lata is largely responsible for the damages to grapevine, the 

importance of other fungi which contribute to the death and decline of grapevines could 

not be ignored.  Species of Botryosphaeriaceae found on grapevines in South Africa 

(Crous et al., 2000) are responsible for several diseases.  The symptoms commonly 

associated with Botryosphaeriaceae species are the formation of cankers, dieback of 

shoots and branches, decline, brown streaking and the V-shaped lesion (Phillips, 1998 

and 2000; Larignon et al., 2001; Van Niekerk et al., 2004).  These symptoms are easily 

confused with the symptoms occurring in Eutypa dieback thus complicating disease 

identification and detection. 

 

With the above as background, the aim of this study was thus twofold, i.e. (1) to correctly 

identify and characterise the pathogen(s) responsible for Eutypa dieback in South Africa 

and, (2) to develop a molecular detection method to screen infected grapevine material 

for the presence of Eutypa and Botryosphaeriaceae species. 

 

It was decided to use molecular methods to identify and characterise the isolates obtained 

from diseased plants because identification methods solely based on cultural and 

morphological characteristics are insufficient for identifying the species responsible for 

Eutypa dieback (Glawe and Rogers, 1982; Glawe et al., 1982).  Morphological characters 

may be lost or reduced in number when E. lata is cultured in the laboratory, but 

identification based on molecular characters uses stable DNA or protein sequence data to 

compare and evaluate the relationship among organisms.  DNA-based molecular methods 

have been used extensively to facilitate the accurate identification of ascomycetous 

fungal species (Samuels and Seifert, 1995).  Consequently, the sequence data from three 

molecular markers were analysed to identify and characterise Eutypa dieback as it occurs 

on grapevines in South Africa (Chapter 2).  A reverse dot blot hybridisation method for 

disease detection was subsequently applied to screen infected grapevine material for 
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Eutypa and Botryosphaeriaceae species (Chapter 3), since this molecular technique was 

previously successfully used in the medical field to detect mutations related to human 

disorders (Saiki et al., 1989), to assess bacteria from environmental samples (Voordouw 

et al., 1993) and to identify Phytophthora species (Levesque et al., 1998). 
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CHAPTER 1 

 
INTRODUCTION 

 

Grapevine trunk diseases are caused by invasive pathogens that are responsible for the 

slow decline of grapevines (Gubler et al., 2005; Halleen et al., 2005).  The diseases 

associated with the decline are Petri disease, esca and Eutypa dieback.  Several species of 

Botryosphaeriaceae that commonly invade the woody tissue of diseased grapevines are 

also responsible for diseases occurring on grapevines.  Eutypa dieback, however, is one 

disease in particular that has evoked a great deal of interest due to the severity and 

extensive damages and losses it has incurred.  Few of the grape growing areas worldwide 

(Fig. 1-1) have escaped invasion demonstrating the ubiquitous nature of Eutypa dieback.  

Incidences of the disease have been reported in grape producing countries in both 

hemispheres.  From regions experiencing severe winters like central Europe and eastern 

United States, to temperate regions like California, southern Australia, southern France 

and the Western Cape of South Africa. 

 

Eutypa dieback on grapevines (Vitis vinifera L.) was detected for the first time in 

Australia in 1973 (Carter and Price, 1973; Wicks, 1975).  In France, Bolay identified the 

disease on grapevines in 1977 (Bolay and Moller, 1977), where it was commonly referred 

to as Eutypiose.  The disease, however, had been described previously, where it had been 

implicated in “dieback” of apricots (Prunus armeniacae L.), also commonly referred to 

as “gummosis”.  In the United States, the first appearance of the disease was in 1974 in 

New York (Uyemoto, et al., 1976) and in California (Moller et al., 1974), while in South 

Africa, where it is referred to as “tandpyn”, it was assumed to be the cause of “dying 

arm” in vines (Matthee and Thomas, 1977).  The disease had often also been referred to 

as “dead arm” because many of the symptoms described for dieback was attributed to the 

pathogen, Phomopsis viticola (Sacc.) Sacc. (Moller and Kasimatis, 1981).  Since then it 

was proposed that the term Eutypa dieback be used to describe the disease in grapevines.  

In extensive experiments it was demonstrated that many symptoms ascribed to “dead 

arm” were actually characteristic of Eutypa dieback. 
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Grape growing regions 
Figure 1-1  The distribution of grape growing regions in the world. 
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Thus, what do we know about the disease, Eutypa dieback?  What are the symptoms, the 

disease cycle, how does the disease spread and what tools have been used to characterise 

and identify the causal organism? 

 

1.1  Characterisation of Eutypa dieback 

 

1.1.1  Symptoms 

Eutypa dieback is chronic and slow to develop, with symptoms only appearing several 

years after infection (Munkvold et al., 1993).  This could be six to eight years after 

infection (Chapuis et al., 1998), but symptoms could become apparent as early as two to 

four years after infection (Creaser and Wicks, 2001).  The earliest symptoms are the leaf 

and shoot symptoms (Fig. 1-2A) most apparent in spring, becoming more pronounced 

with each year (Carter, 1988).  Even then symptoms may vary according to years, area 

and cultivars (Petzoldt et al., 1981; Péros et al., 1999, Creaser and Wicks, 2001).  The 

symptoms can persist for several years until the infected portion of vine dies, resulting in 

“dead arm” (Fig. 1-2B). 

 

The shoot symptoms are most apparent in spring when the shoots are 20 - 40 cm long 

(Munkvold, 2001).  The shoots from infected wood are stunted with shortened internodes 

and small leaves (Fig. 1-2A).  The leaves that become chlorotic (i.e. pale yellow or green) 

are cupped and tattered around the edges or margins (Carter, 1988; Kovacs, 2000; 

Munkvold, 2001).  Some leaves are speckled with small brown lesions (Magarey and 

Carter, 1986) which, with time, develop a scorched appearance (Fig. 1-2C).  These foliar 

symptoms often appear only on one cordon arm while the rest of the vine shoots appear 

unaffected.  Often healthy shoots on adjacent cordons mask these symptoms.  Towards 

the end of the season the leaf and shoot symptoms will all but disappear, with only the 

basal leaves of shoots affected.  Consequently, it will have appeared as though the vines 

have recovered, but the infected trunk and the growth above it will wither and die. 
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A 

Fig. 1-2.  Symptoms of Eutypa dieback of grapevines. 
 
A. Weak, stunted shoots with shortened internodes on a vine arm.  B. An older vine 
severely affected by Eutypa dieback, resulting in “dead arm”.  C. Some leaf symptoms that 
can occur are leaves with tattered edges or margins, or leaves with speckled, brown lesions.  
With time the leaves develop a scorched appearance.  D. Bunches on affected shoots 
producing mixture of large and small berries.  These bunches shrivel and die on more 
severely affected shoots. (Photo: JHS Marais).  E. A cankered area on wood surrounding an 
old pruning wound (Photo: JHS Marais).  F. A cross-section of an Eutypa lata infected arm 
shows a brown wedged-shaped zone of dead wood (Photo: F. Halleen). 

F E 

B 

D 

C 
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Similary, influorescences on the affected shoots appear normal but after flowering they 

often wither and die.  Bunches on the affected shoots also appear normal at the beginning 

of the season but tend to ripen late, producing a mixture of large and small berries or 

bunches could shrivel and die (Fig. 1-2D) on the more severely affected shoots (Creaser 

and Wicks, 1990).  Shoot and foliar symptoms are usually accompanied by canker 

formation (Fig. 1-2E). 

 

A cross section of the trunk reveals a canker that appears as darkened or discoloured 

wood in a wedge shape (Fig. 1-2F), with a definite margin between live and dead wood.  

The cankered wood on the trunk has a distorted and flattened appearance and is normally 

covered by old dead bark.  These cankers can develop up to three feet long downwards 

and can extend below the ground line on severely affected vines as determined in tests 

done on 14 year Shiraz vines in the spring of 1999 (Creaser and Wicks, 2001).  Vascular 

streaking or discolouration from infected shoots can be traced back to a cankered area on 

the wood (Fig. 1-2E) surrounding an old pruning wound (Trese et al., 1980; Petzoldt et 

al., 1981).  Surrounding the pruning wound is a dark stroma containing fungal fruiting 

bodies.  From these fruiting bodies the causal organism of Eutypa dieback on grapevines 

can be identified. 

 

1.1.2  Causal organism 

The causal organism of Eutypa dieback on grapevines was first described as Eutypa 

armeniacae Hansf. & Carter (Carter, 1957), which causes dieback of apricots.  In 1973, 

research by Carter and Price discovered grapevines (Vitis vinifera L.) as another 

economically important host of the pathogen.  Since 1987, this species has been 

considered a synonym of Eutypa lata (Pers.: Fr.) Tul & C. Tul (anamorph Libertella 

blepharis A.L. Smith).  In 1999, however, genetic analysis of Eutypa strains isolated 

from vineyards in California performed by Descenzo et al. (1999), presented the concept 

that the two species of Eutypa (E. armeniacae and E. lata) are not conspecific.  In truth, 

prior to 1987, E. armeniacae and other taxa were not considered synonymous with E. 

lata.  Interestingly, research conducted in California indicated that more than one species 

of Eutypa, and perhaps other genera in the same family, could also be pathogens of 
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grapevine capable of infecting pruning wounds (Smith, 2004).  But, E. lata is the species 

that has been implicated most in Eutypa dieback and as a grapevine pruning wound 

invader. 

 

 

1.1.3  Disease cycle 

The initial or primary sites of infection are pruning wounds, where the fungus can survive 

in an infected trunk for a long period of time (Fig. 1-3).  The pruning wounds are 

surrounded by a dark layer or stroma.  The stromata are black, cracked and sometimes 

punctate (Munkvold, 2001).  Embedded in the stromata are small black fungal fruiting 

bodies called perithecia.  By scraping the surface of the stromata the perithecial cavities 

are revealed in which spores, called ascospores, reside in a gelatinous whitish mass (Teliz 

and Valle, 1979).  The development of perithecia is favoured by an annual rainfall of at 

least 350 mm and is often only seen in areas with high rainfall.  Infection is initiated 

when ascospores are deposited onto fresh pruning wounds.  Rain or snowmelt is required 

for the release of the ascospores that become airborne and are deposited on the ends of 

exposed vessels.  It has been suggested that viable ascospores can be aerially transported 

for 50 to 100 km (Carter, 1988).  The ascospores travel through the xylem tissue to the 

cambium and phloem where they germinate in a matter of hours provided an optimal 

temperature of 20 to 25oC is reached.  Germination takes place 2 mm or more beneath the 

surface of the wound where the mycelia slowly multiply in the vessels and subsequently 

affecting those elements associated with the functioning of the wood.  The disease 

develops slowly on grapevine and no symptoms will be apparent on the first or second 

season’s growth.  After an incubation period of about three years or more (Moller and 

Kasimatis, 1978) cankers form, which lead to the characteristic shoot and foliar 

symptoms of Eutypa dieback. 
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Canker 

Infected vine.

Black fruiting bodies, 
perithecia embedded in 
stromata. 

Perithecial cavities in which 
ascospores reside. 

Infection initiated when ascospores 
deposited on fresh pruning wounds. 

Fresh pruning wounds are 
primary sites of infection. 

Spores germinate beneath 
surface of wood where they 
multiply in vessels. 

Cross section of 
a canker. 

Fig. 1-3.  Characteristic morphological stages in the disease cycle of Eutypa dieback. 
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1.1.4  Epidemiology 

The causal organism of Eutypa dieback exists in its perfect or teleomorphic (E. lata 

Pers.:Fr.) and in its imperfect or anamorphic (Libertella blepharis A.L. Smith) state.  The 

anamorph, L. blepharis, produce filiform spores inside asexual fruiting bodies called 

pycnidia found on the inner bark or between the perithecia (Munkvold et al., 1993).  The 

asexual spores or conidia have not been implicated in the infection process (Carter, 1957; 

Cortesi and Milgroom, 2001) as studies found that isolates sampled in a single vineyard 

was genetically different (Péros et al., 1997; Péros and Larignon, 1998) which is 

consistent with a sexual form of infection. 

 

The teleomorph, E. lata, produces the perithecia in which ascospores reside and it is these 

spores that have been found to be the primary source of inoculum (Munkvold et al., 

1993) particularly in areas with a mean annual rainfall higher than 330 mm and under 

optimal temperature conditions ranging from 20 to 25C (Ramos et al., 1975).  

Perithecium formation is rare and the disease incidence lower in areas under sprinkler 

irrigation where the mean annual rainfall is lower than 279 mm (Ramos et al., 1975).  In 

temperate regions these perithecia reach maturity in early spring (Carter, 1988) where a 

minimum rainfall of 2 mm is required to initiate the release of ascospores from dry 

stromata (Carter, 1957).  By late autumn the contents of the perithecia will have been 

exhausted but enough ascospores will have been released to infect vines pruned in winter.  

In colder regions (below 0C), dissemination of ascospores is greatest in late winter.  

Ascospores will, therefore, be in abundance during pruning time. 

 

Most ascospores are released in winter (after rainfall or snowmelt) or early in spring 

while the numbers released in summer are less.  The dissemination of the fungus 

coincides with the time when pruning is done.  The chance of infection immediately after 

pruning is, therefore, higher in December than in January or February (winter and early 

spring in the northern hemisphere).  This is similar to findings in the southern hemisphere 

where the chance of infection is higher in June than in July or August (winter and early 

spring in the south).  Pruning wounds remain susceptible for up to two weeks (Magarey 

and Carter, 1986), after which susceptibility steadily declines (after three to four weeks, 
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Petzold et al., 1981).  Perithecia can survive for long periods under favourable conditions 

and will continue to produce ascospores year after year. 

 

 

1.1.5  Conditions favouring infection 

The fungus has been known to develop on dead wood (Peros et al., 1996) but in a study 

done by Cortesi and Milgroom (2001) on vineyards in Italy and Germany perithecia was 

found on living tissue as well.  In winter rainfall regions with mild winter temperatures 

(e.g. Western Cape of South Africa) sporulation is encouraged and following a long, dry 

period the perithecia is “conditioned” for release following a long wet period (Ramos et 

al., 1975).  Trese et al. (1980), stated after studying results from freezing and thawing 

tests, that ascospores can germinate in low temperatures and even at very low 

temperatures (such as -20C).  Eutypa lata favour and grow better in fast growing plant 

tissue than plants under stress conditions (Rumbos, 1987).  The presence of alternative 

hosts would increase the chance of infection especially as viable ascospores can travel for 

up to 100 km on air currents. 

 

 

1.1.6  Host range 

Eutypa lata is an ascomycetous fungus with a wide host range, particularly on perennial 

tree species.  Its host range includes 88 species distributed among 28 plant families of 

which most are tree species (Bolay and Carter, 1985; Carter, 1986).  In all areas where E. 

lata has been isolated on alternative hosts it has always been associated with disease of 

grapevine in that area.  This suggests that grapevine is the universally accepted host of E. 

lata, susceptible to a variety of its pathotypes, but with the fungus not necessarily 

pathogenic to nearby hosts (Carter et al., 1985).  Pathogenicity studies (Carter et al., 

1985; Munkvold and Marois, 1994) have supported that grapevines is the universal host. 

 

Although E. lata is pathogenic to grapevines it does occur and severely affect some 

economically important crops like apricot (Prunus armenicae L.) and blackcurrant (Ribus 

nigrum L.) (Carter, 1988).  Work by Magarey and Carter (1986) in Australia have shown 
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how E. lata can infect a variety of woody plants and has found alternative hosts in 

almond (Prunus dulcis [Miller] D.A. Webb), apple (Malus domestica), pear (Pyrus 

communis L.), tamarisk (Tamarix parviflora) and in at least 16 ornamentals which 

include Ceanothus, Pittosporum and the Guebler rose.  In California, agriculturally 

important crops like almond (Prunus dulcis [Miller] D.A. Webb), sweetcherry (Prunus 

avium L.), olive (Olea europaea L.), peach (Prunus persica L.) and walnuts (Juglans 

regia) had been infected (Carter et al., 1983; Munkvold and Marois, 1994).  The fungus 

has been known to cause rotting on olive and apple fruits (Rumbos, 1987) while in 

almond, where it was previously identified as a saprophyte, pathogenicity studies 

(Rumbos, 1985) indicated that it could cause infection.  In the latter study it did not 

produce the characteristic shoot and foliar symptoms and dieback of arms had not been 

recorded.  Munkvold (2001) has also stated that although E. lata occurs on approximately 

88 species of woody dicots in 52 genera (including forest and ornamental species) not all 

isolates from these hosts need to be pathogenic.  Pathogenicity has been ascertained for 

isolates originating from almond, apple, apricot, Ceanothus (as previously mentioned), 

chokecherry (Prunus virginiana L.), grapevine, olive, pear, sourcherry (Prunus cerasus 

L.), sweetcherry, walnut and possibly peach.  Infection in peach has not been recorded 

but pathogenicity studies using E. lata isolates from apricot in the inoculation has shown 

some positive results.  Other hosts not previously mentioned are lemon (Citrus limon) 

(Chapuis et al., 1998) and pistachio (Pistacia vera L.) (Rumbos, 1986).  Eutypa lata has, 

therefore, had quite an impact on many hosts other than grapevine but the symptoms of 

the disease in the latter are the most severe. 

 

 

1.1.7  Impact of disease 

Eutypa dieback of grapevines is a trunk disease that has a devastating impact on 

vineyards worldwide.  The disease is slow to develop which makes it difficult to detect 

and the full implications are not felt until vineyards reach maturity (Carter, 1988).  

Eutypa lata infects propagating material, affects the growth of newly planted young vines 

and infection is especially threatening to established older vines.  Once the disease has 

manifested in a vineyard, grapevines gradually decline and eventually die. 
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In Australia yield losses of 860 kg/ha (Shiraz) and 740 kg/ha (Cabernet Sauvignon) had 

been recorded (Wicks and Davies, 1999).   In California losses were estimated at 30% to 

more than 60% for vineyards growing either Chenin Blanc or French Columbard while 

vineyards containing vines 20 years and older had recorded yield reductions of 83% 

(Munkvold et al., 1994).  The cost to the Californian wine industry was estimated to be 

more than $260 million per annum (Siebert, 2001).  The financial impact of the disease 

(Table 1-1) is the result of the cost of reworking, removing infected vines and, where 

necessary, the replanting of vineyards.  Most threatening to vine productivity is 

susceptibility to pruning wounds made when mature vines are reworked to change the 

cultivar or to alter the growth pattern to a new training system.   

 

In European countries Eutypa dieback is believed to be the chief limiting factor of the 

lifespan of vineyards.  The reduction in yield is attributed to the decreased number of 

clusters per vine (Munkvold et al., 1994) while reduced wine quality is due to uneven 

berry maturation (Wicks and Davies, 1999). 

 

In the Western Cape of South Africa an average of 32% vineyards were found to show 

Eutypa-like symptoms (Halleen et al., 2001a) with one 22 year old vineyard being the 

most severely affected (98%).  Significant yield reductions are recorded annually even on 

vines showing minimal incidence of the disease.  All V. vinifera cultivars are susceptible 

to E. lata and no remedial measures are available to effectively prevent the spread of the 

disease.  Biocontrol agents investigated for the inhibition of E. lata (Ferreira et al. 1991; 

Schmidt et al., 2001a and b) showed some retardation of the fungus in laboratory 

experiments, but no field trials were conducted.  Laboratory studies on the inhibitory 

effect of fungicides (Halleen et al., 2001b) proved benomyl to be the most effective.  

Benlate, Bavistin and acrylic paint, which proved to be successful on one-year old canes 

in the laboratory, are currently being tested in the field (Creaser and Wicks, 2002; 

Sosnowski et al., 2004).  In California, field trials were conducted on pruning wounds 

using boron for the control of Eutypa dieback.  The results indicated that boron could be 

used as a safe, economical and environmentally safe management strategy to control E.  
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Table 1-1.  Impact of Eutypa dieback on vineyards worldwide. 
 

WINE 
GROWING 

REGION 

LEVEL OF 
INFECTION 

LOSS RECORDED PERIOD REFERENCE 

California, US 30 – 62%  1994 Munkvold et al., 
1994 

US$260 million 2001 Siebert, 2001 
Southern Australia  A$20 million (Shiraz 

alone) 
2000/2001 Sosnowski et al., 

2005 
 24% 570kg or  

A$1150 per hectare 
1999 Wicks and Davies, 

1999 
 
Jalfon, 2005 

47% 1500kg or 
A$3040 per hectare 

South Africa 31 – 98% 
(highest level of 
infection recorded 
in 22 year old 
vineyard) 

 2000/2001 Halleen et al.,  
2001a 

  7.3% or 367 tons 
@ R4 610 per ton = 
R1.7 million 
R50 000 – R70 000 to 
replace vines 

2003 Van Niekerk et al.,
2003 
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lata.  However, formulations need to be optimised to increase the duration of control on 

the surface of the pruning wounds, while the effect of boron on bud failure of grapevine 

need to be confirmed (Rolshausen and Gubler, 2005). 

 

1.1.8  Pruning wound susceptibility 

The time of pruning influences the rate of contamination of pruning wounds.  Moller and 

Kasimatis (1980) found that pruning wounds made in late winter are more susceptible 

than pruning wounds made in December in California while wounds made in March were 

less susceptible.  Petzoldt et al. (1981) showed that pruning wounds made during late 

autumn were more susceptible than pruning wounds made in early spring with an 

intermediate period of susceptibility in winter.  This coincides with increased spore 

dispersal during autumn and early spring with fewer spores in the air during winter (Trese 

et al., 1980; Petzoldt et al., 1981; Ramsdell, 1995).  In South Africa, Ferreira (1999) 

attributed the increase in growth of the fungus during winter months to an increase in 

nutrients, thus pruning wounds made during this period could be more susceptible. 

 

The age of the wound also plays a role in the rate of infection of pruning wounds.  After 

the first pruning date pruning wounds are more susceptible to contamination than at the 

second pruning date.  This could be because more sap is exuded when vines are pruned in 

the latter stages of the dormant seasons (Munkvold and Marois, 1995).  Wound 

susceptibility decreased as the wound age increased (Gendloff et al., 1983).  This could 

be attributed to the presence of other wound colonisers that could inhibit the growth of E. 

lata (Carter and Moller, 1970; Ferreira et al., 1989).  However, the decrease in wound 

susceptibility could be because of natural wound healing (Petzoldt et al., 1981).  These 

researchers also noted a 75 – 100% reduction in infection four weeks after pruning but 

Munkvold and Marois (1995) contend that the period of wound susceptibility could be 

longer.  Ramsdell (1995) noted that pruning wounds in California were susceptible for up 

to a month while Trese et al. (1982) showed a reduced level of susceptibility over a 56 

day period.  Young plantings are more at risk to infection because pruning wounds go 

unprotected and the same holds true for older plantings because they require more severe 

pruning to rework the vine.  Also, in older vines vigour will have declined. 
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Thus, from the above it is obvious that grapevines show a marked difference in 

susceptibility to infection and this could be because of the hosts’ response, age, training 

system and the genotype of the vines.  Cultural practices and climatic conditions could 

also be responsible for this variation in susceptibility.  The tolerance of some cultivars to 

infection could be associated with differences in sensitivity to phytotoxic compounds. 

 

 

1.1.9  Toxin production by Eutypa lata 

The symptoms produced by E. lata would suggest that pathogenesis involves the 

production of a toxin (Tey-Rulh et al., 1991).  Such a compound was isolated from 

diseased vines and identified as eutypine (Tey-Rulh et al., 1991).  Eutypine [4-hydroxy-

3-(3-methyl-3-butene-1-ynyl) benzaldehyde] (Fig. 1-4) was found in the sap, stem, leaves 

and influorescence of all grapevines infected with E. lata.  It was stated that the presence 

of the toxin is largely responsible for the expression of symptoms in Eutypa dieback. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-4.  Chemical structure of eutypine and methyl-eutypine (Deswarte et al., 
1996) 
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The toxin is known to accumulate in grapevine cells and result in the death of leaf 

protoplasts (Mauro et al., 1988).  The toxin causes ultra-structural changes such as 

disruption of the cytoplasm, disorganisation of chloroplasts and breakage of the plasma 

membrane (Deswarte et al., 1994).  Respiration and energy balances are also affected by 

the secretion and accumulation of the toxin (Deswarte et al., 1996a and b) and 

photosynthesis is inhibited (Amborabe et al., 2001).  A protein encoding a eutypine 

reducing enzyme has been isolated and characterised (Roustan et al., 2000) with the view 

to increase the tolerance of V. vinifera cells to E. lata.  It has been used in transgenic 

grapevine research to impart increased resistance to grapevine plants to the toxin, 

eutypine (Legrand et al., 2003).  It has also been suggested that the phytotoxicity of E. 

lata could be due to a group of structurally related compounds with varying degrees of 

activity (Molyneux et al., 2002; Smith et al., 2003) which could explain the variation in 

symptoms expressed in Eutypa dieback.   

 

1.2  Identification of Eutypa lata 

 

1.2.1  Identification using phenotypic characteristics 

 

1.2.1.1  Morphological characteristics and cultural characteristics.  The teleomorph E. 

lata of the family Diatrypaceae, class Pyrenomycetes of the Ascomycotina produces 

perithecia in a thin single layer, hidden in wood or bark (Rappaz, 1984). The bases of the 

perithecia are embedded at varying depths according to the plant host and age of the 

stroma (Rappaz, 1984).  The stroma is black and continuous with irregular margins with 

slightly emergent necks or ostioles (Fig. 1-5, left).  The asci (Fig. 1-5, right) are borne on 

pedicels of varying length (60–130 µm long) and measure 30-60 x 5–7.5 µm with an 

apical pore (Carter, 1988).  An ascus contains eight ascospores that are subhyaline and 

allantoid measuring 6.5–11 x 1.8–2 µm (Rappaz, 1984; Carter, 1988).  The teleomorph 

develops slowly and no perithecia are produced in culture.  Under the latter conditions 

only the anamorph is produced. 
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The anamorph, Libertella blepharis (= Cytosporina sp. Carter, 1957) form black pycnidia 

after four to six weeks (Glawe and Rogers, 1982) which exude a cream to orange 

coloured conidial mass.  The conidia are filiform, straight or curved and numerous 

measuring 20-45 x 0.8–1.5µm (Munkvold, 2001) arising from septate hyphae that are 

branched, hyaline and smooth (Fig. 1-6). 

 

 

 

 

 

 

 

 

 

Fig. 1-5.  Vertical section of perithecial stroma (left) and asci and ascospores (right) of 
Eutypa lata.  (Adapted from Carter, 1988). 

Fig. 1-6.  Conidiogenous cells and conidiophores (left) and conidia (right) 
from a culture of Libertella blepharis.  (Adapted from Carter, 1988) 
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Characteristically, under cultural conditions E. lata isolates produce mycelial colonies 

that are at first white and cottony, cream-coloured in reverse, then later (after 

approximately two weeks), cultures develop a grey pigment with the reverse side almost 

black (Munkvold, 2001). 

 

Since it is known that taxonomic informative morphological characteristics may be lost 

or reduced in number when E. lata is cultured in the laboratory, identification procedures 

based on cultural and morphological characteristics alone are insufficient to correctly 

identify this fungal species.  In contrast, identification based on molecular characters 

using DNA or protein sequence data is known to be a reliable manner to compare and 

evaluate the relationship among fungi.  DNA-based molecular methods have been used 

extensively to differentiate genera, species, subspecies, races and strains (Glass and 

Donaldson, 1995). 

 

1.2.2  Identification using molecular methods 

The utility of molecular regions need to be taken into consideration when choosing a 

molecular marker in phylogenetic studies (Hillis and Dixon, 1991; Mitchell et al., 1995).  

The regions should have sufficient levels of sequence conservation and variation.  

Regions that are too conserved have few nucleotide changes, therefore, limited resolving 

power.  Similarly, regions that are too variable are inconsistent because of too many 

nucleotide changes.  An ideal region should be large, abundant i.e. present in multiple 

copies yet evolve as a single copy (Guarro et al., 1999).  The nuclear ribosomal RNA 

(rDNA) and protein coding genes like the β-tubulin gene are regions that fulfill these 

criteria (White et al., 1990; Guarro et al., 1999). 

 

 

1.2.2.1  Nuclear ribosomal RNA 

DNA sequence comparisons of the rDNA region have proved useful in determining 

relationships between fungal genera and species (Hillis and Dixon, 1991).  Nuclear 

ribosomal DNA is comprised of three RNA genes: a small subunit (SSU), a large subunit 

(LSU) and the 5.8S subunit (Fig. 1-7).  Interspersed between the rDNA regions which are 
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highly conserved are the internal transcribed spacer regions, ITS1 and ITS2, which are 

more variable and known to evolve at a faster rate than the three ribosomal gene 

sequences mentioned above.  It was, however, found that the ITS regions are mostly 

highly conserved within a fungal species but are known to vary between species (White 

et al., 1990).  Sequence analyses of the ITS regions have, therefore, been used in fungal 

taxonomy, including phylogenetic analyses (Mitchell et al., 1995) 

 

 

 

 

 

 

 

 

1.2.2.2  Phylogenies based on multiple genes 

In the construction of phylogenetic trees a tree based on one set of sequence data (e.g. 

only from the ITS region) has limited resolving power (Mitchell et al., 1995).  It is known 

that greater resolution would be achieved when trees are constructed from more than one 

set of sequence data.  The development of methods using different molecules as 

phylogenetic markers was, therefore, used in comparing phylogenies generated by rDNA 

and other genes (Roger et al., 1999).  Consequently, by combining the results from more 

than one set of sequence data it was possible to elucidate congruencies between data sets 

and eliminate any ambiguities (Roger et al., 1999; Baldauf et al., 2000).  Combinations of 

taxonomic informative gene sequences, such as the ribosomal gene cluster and the tubulin 

gene family have, therefore, been used with success in fungal taxonomy (Guarro et al., 

1999; Roger et al., 1999; Baldauf et al., 2000). 

 

1.2.2.3  Beta-tubulin genes 

The tubulin gene family comprising of the alpha (), beta (β) and gamma () genes are 

widely distributed among the eukaryotes (Keeling and Doolittle, 1996).  These genes 

code for components of microtubules which is a characteristic feature of eukaryotic cells.  

Figure 1-7.  Gene arrangement within a eukaryotic rDNA unit.  IGS = 
intergenic spacer; ITS = internal transcribed spacer; SSU = small subunit 
and LSU = large subunit 

SSU 5.8S LSU 

ITS1 ITS2  IGS
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The microtubules are major components of the cytoskeleton, the mitotic spindles and 

flagella.  Of the tubulin gene family the sequence database of the β-tubulin is the largest.  

Beta-tubulin is a protein-coding gene with conserved exons and many introns (Fig. 1-8).  

It has sufficient length and level of sequence conservation to produce highly resolved 

trees.  The β-tubulin gene was shown to have considerable sequence variation at the 5’-

end (Dupont et al., 2000) and is useful as a phylogenetic marker because insertions and 

deletions which can lead to disparities in phylogenetic studies are rare (Edlind et al., 

1996).  Phylogenies based on α and  tubulin genes have taxonomic representatives from 

both basidiomycete and ascomycete fungi (Dupont et al., 2000; Keeling et al., 2000; 

Edgcomb et al., 2001; Dupont et al., 2002). 

 

 

 

 

 

 

1.2.2.4  Large subunit of the rRNA genes 

The divergent domains of the large subunit (LSU) regions of the rDNA operon (Fig. 1-9) 

have considerable sequence variation making this gene highly informative (Hillis and 

Dixon, 1991).  The utility of the large subunit allows for comparison of organisms from a 

high taxonomic level down to species level.  Comparison of the LSU sequence data can 

be used to infer phylogenetic relationships among closely related organisms.  The use of 

sequence data has not only provided the means to analyse variation within fungal species 

to assess genetic diversity and phylogeny of species and genera but has had a far reaching 

impact on the detection and diagnosis of plant diseases (Henson and French, 1993). 

 

 

 

 

 

 

Figure 1-8.  Beta-tubulin nuclear gene structure. Intron Exon 

5’ 3’

5.8S LSU 5S 

Figure 1-9.  Gene arrangement within eukaryotic rDNA unit.  LSU = large subunit. 
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1.3  Detection 

Traditional diagnostic methods used in plant pathology are dependent on the observation 

of morphological and cultural characteristics of the organisms implicated in the disease 

(Samuels and Seifert, 1995).  These methods are time consuming and laborious.  Also, 

organisms like E. lata that lack comparable structural characters for its identification 

(Glawe and Rogers, 1984) and, thereby, its detection, is a complicating factor in the 

diagnosis of Eutypa dieback particularly as several species implicated in grapevine trunk 

diseases cause similar symptoms to those observed in Eutypa dieback. 

 

 

1.3.1  Early methods for the detection of Eutypa species 

One of the earliest methods for the detection of Eutypa species focused on the serological 

properties of the mycelium and ascospores of Eutypa armeniacae (Francki and Carter, 

1970).  It was, however, discovered that the ascospores of Cryptovalsa ampelina 

(Nitschke) Fuckel, a species that colonises infected grapevine tissue, are antigenically 

similar to that of E. armeniacae.  The two species could thus not be distinguished.  Later, 

an antiserum specific to E. armeniacae was described (Price, 1973).  The antiserum, 

however, was not tested against other Eutypa species.  The specificity of serological tests 

remains a questionable issue as the potential for false positive results is very real (Weber, 

2002).  Molecular methods involving polymerase chain reaction (PCR) have been 

developed to increase specificity and reliability. 

 

 

1.3.2  Molecular methods of detection 

The advances made by molecular methods in fungal systematics has resulted in the 

generation of large sequence databases from which information could be garnered to aid 

the development of detection methods.  The fungal rDNA with its multiple units of 

variable and conserved regions has facilitated the design of universal primers (White et 

al., 1990).  Molecular markers like random amplified polymorphic DNA (RAPD), 

amplified fragment length polymorphisms (AFLP) and restriction fragment length 

polymorphisms (RFLP) have been used extensively to study variation among fungal 
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genera and species (Chen et al., 1992; McDermott et al., 1994; Sreenivasaprasad et al., 

1996; Zhang et al., 1997; Lindqvist et al., 1998; Descenzo et al., 1999; Witthuhn et al., 

1999; Dupont et al., 2002; Tan and Niessen, 2003; Martin and Tooley, 2004).  These 

variations were further exploited in the subsequent design of species-specific primers 

(Brown et al., 1993, Lovic et al., 1995; Kageyama et al., 1997; Zhang et al., 1997; 

Lindqvist et al., 1998; Lecomte et al., 2000; Rolshausen et al., 2004).  The development 

of sequence characterised amplified regions (SCARs) stemmed from this kind of research 

as well (Jiménez-Gasco and Jiménez-Diaz, 2003; Lardner et al., 2005). 

 

Molecular-based detection methods have the advantage of being more sensitive, specific 

and reliable and with the added ability of processing large numbers of samples (Alvarez, 

2004).  However, detection methods that employ species-specific primers have 

limitations in that these PCR-based assays only detect one specific pathogen.  If another 

pathogen is present it will not generate a positive PCR response.  Furthermore, many of 

these primers can not be applied in situ to environmental samples. 

 

Other molecular-based detection methods like nucleic acid hybridisation that have been 

in use for a long time now, have utilised the large sequence databases generated by fungal 

systematic studies to develop sequence-specific oligonucleotides as probes (Kawasaki et 

al., 1993; Levesque et al., 1998).  Examples of these hybridisation methods, Southern 

blot and Northern blot, are widely used in molecular research.  Previously, probes were 

obtained from cDNA and genomic clones labeled by nick translation (Kawasaki et al., 

1993) but as DNA sequencing techniques have improved so have the ability to obtain 

probes that discriminate between closely related organisms.  These methods, although a 

mainstay of molecular research, can be time-consuming and labour intensive.  

Consequently, the dot-blot method of hybridisaton was developed to simplify the analysis 

of samples. 

 

In the dot-blot method of hybridisation, DNA (or RNA) obtained by PCR amplification is 

dotted onto membranes, fixed and then hybridised with specific oligonucleotides or 

probes (Kafatos et al., 1979).  Dot-blots are widely applicable for the detection of genetic 
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mutations and polymorphisms (Bos et al., 1984; Dessauer et al., 1996) but as more 

different mutations and polymorphisms occur, the method becomes more cumbersome 

(Saiki et al., 1989). This is due mainly because more PCR products need to be fixed to a 

number of membranes to be hybridised to additional probes (Kawasaki et al., 1993).  

Dot-blots are applicable for the detection of only one particular pathogen, not the 

simultaneous detection of several pathogens occurring in a complex on the same infected 

plant material.  These limitations were addressed with the development of the reverse dot 

blot hybridisation method. 

 

 

1.3.2.1  Reverse dot blot hybridisation and multiple pathogen detection.  Reverse dot 

blot hybridisation involves the use of multiplex PCR to simultaneously amplify and label 

the regions of DNA that are used to design specific oligonucleotides (Levesque et al., 

1998).  The labeled PCR products are used as probes for hybridisation with a membrane 

that contains an array of specific oligonucleotides.  This is in “reverse” to the dot blot 

method of hybridisation where the PCR products are fixed to the membrane and the 

specific oligonucleotides are used as probes.  A positive signal at a specific position on 

the membrane will indicate the presence of the particular pathogen against which the 

oligonucleotide was designed.  In this way, because the species-specific or pathogen-

specific oligonucleotides are fixed to one membrane, several pathogens can be detected. 

Eutypa lata has been positively identified as the pathogen responsible for Eutypa dieback.  

However, E. lata is found on infected grapevine tissue in association with related fungi 

from the same family, the Diatrypaceae (Trouillas and Gubler, 2004).  Also isolated from 

the V-shaped canker from infected grapevines are Botryosphaeriaceae species. 

 

 

1.4  Botryosphaeriaceae species occurring on grapevines 

In addition to the pathogen E. lata and related fungi, several species of 

Botryosphaeriaceae that commonly invade the woody tissue of diseased grapevines are 

responsible for diseases on grapevine.  There are many species of Botryosphaeria Ces. & 

De Not. and as a genus it has been well-documented where it is found throughout the 
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world in temperate and tropical climates.  Botryosphaeria spp. are ascomycetes with a 

wide host range, particularly on woody plant hosts (von Arx, 1987).  Many species of 

Botryosphaeria are considered endophytic or saprophytic on many hosts including a 

number of species in the family Proteaceae and on Fagus spp. (Smith et al., 1996; Danti 

et al., 2002; Denman et al., 2003), though some species are pathogenic when plant hosts 

are growing under stress conditions (Brown and Britton, 1986).  Some plant hosts to 

which Botryosphaeria spp. are pathogenic include Arbutus menziesii (Maloney et al., 

2004), Eucalyptus spp. (Smith et al., 1994), Pistacia vera L. (Michailides, 1991; Ma et 

al., 2002; Ahimera et al., 2003), pome and stone fruit (Brown and Britton, 1986; Ogata et 

al., 2000; Slippers et al., 2007) and Quercus spp. (Shoemaker, 1964; Sanchez et al., 

2003).  

 

Symptoms commonly associated with the Botryosphaeria spp. are fruit and seed rots, leaf 

spots, stem and branch cankers, gummosis and dieback (Brown and Britton, 1986; Parker 

and Sutton, 1993; Pusey, 1993; Biggs and Miller, 2003).  The Botryosphaeria spp. most 

associated with disease are Botryosphaeria dothidea (Moug.: Fr.) Ces. & De Not., B. 

obtusa (Schwein.) Shoemaker and B. stevensii Shoemaker, and to a lesser extent, B. 

parva (Pennycook and Samuels), B. lutea (A.J.L. Phillips) and B. rhodina (Berk. & M.A. 

Curtis) Arx. 

 

Many Botryosphaeria spp. are commonly associated with diseases of grapevines.  

Botryosphaeria stevensii was associated with decline of mature grapevines in Canada 

(Shoemaker, 1964) and with black dead arm in Hungary in 1974 (Lehoczky, 1974).  

Later, researchers in Italy (Cristinzio, 1978; Rovesti and Montermini, 1987) ascribed 

black dead arm to B. obtusa, while Larignon and Dubos (2001) associated B. obtusa and 

B. dothidea with the disease when it was identified for the first time in 1999 in vineyards 

in France.  Excoriose caused by B. dothidea is prevalent in grape-growing regions and 

results in severe damage and reductions in yield.  Grapevine decline syndrome is caused 

by B. parva, but B. obtusa, B. stevensii, B. lutea and B. rhodina have also been associated 

with the syndrome (Phillips, 2002).  Macrophoma rot has commonly been attributed to B. 

dothidea, but B. ribis Grossenb. & Duggar has also been isolated in association with this 
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disease (Mulholland, 1990).  Diplodia cane dieback and bunch rot has been ascribed to B. 

rhodina.  All of these diseases are responsible for severe losses and damages of 

grapevines but the Botryosphaeria species implicated as the causal organisms are 

considered as only weakly pathogenic (Phillips, 1998; Van Niekerk et al., 2004; Taylor et 

al., 2005) and as secondary invaders of damaged and stressed grapevines (Castillo-Pando 

et al., 2001). 

 

It must be noted, however, that the taxonomy of species within the genus Botryosphaeria 

has recently undergone a re-evaluation with new lineages in the Botryosphaeriaceae now 

being recognised.  This phylogenetic study was based on comparisons made using DNA 

sequence data from the large subunit of the rDNA operon and anamorph morphology 

(Crous et al., 2006).  In accordance with the delineation obtained and with several new 

genera included in the Botryosphaeriaceae to represent these lineages, name changes 

were suggested for those fungi mentioned above.  The genus Botryosphaeria was 

restricted to B. dothidea (Moug.: Fr.) Ces. & De Not. and B. corticis (Demaree & M.S. 

Wilcox) Arx & Müll. (Phillips et al., 2006) but is no longer valid for B. obtusa.  

Henceforth, B. obtusa will be referred to as Diplodia seriata De Not.  As a new name for 

B. rhodina have not been proposed as yet, it will continue to be referred to by its 

traditional name.  The genus Neofusicoccum is one of the lineages included in the 

Botryosphaeriaceae to accommodate fungi with Fusicoccum-like anamorphs.  These 

include B. lutea which will henceforth be referred to by its anamorph Neofusicoccum 

luteum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips comb. nov., B. parva 

will be referred to as N. parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. 

Phillips comb. nov. and B. ribis will be referred to as N. ribis (Slippers, Crous & M.J. 

Wingf.) Crous, Slippers & A.J.L. Phillips comb. nov.  Botryosphaeria stevensii will in 

turn be referred to by its Diplodia anamorph, namely Diplodia mutila (Fries) Montagne. 

 

In South Africa, several species of Botryosphaeriaceae have been identified where it is 

commonly associated with diseases on stone and pome fruit (Crous et al., 2000).  Three 

Botryosphaeria species, namely; B. obtusa, B. dothidea and N. ribis, have been found on 

grapevines in South Africa (Crous et al., 2000) but during a recent study by van Niekerk 
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et al. (2004) on grapevines in South Africa only B. obtusa was consistently isolated. Two 

new Fusicoccum species were also isolated from grapevine during this study, namely F. 

viticlavatum (Niekerk and Crous) Crous, Slippers & A.J.L. Phillips comb. nov. and F. 

vitifusiforme (Niekerk and Crous) Crous, Slippers & A.J.L. Phillips comb. nov. 

 

The symptoms commonly associated with the Botryosphaeriaceae species on infected 

grapevines are the formation of cankers, dieback of shoots and branches, decline, brown 

streaking and the V-shaped lesions (Phillips, 2000; Larignon et al., 2001; Van Niekerk et 

al., 2004).  These symptoms are easily confused with the symptoms occurring in Eutypa 

dieback.  The absence of morphological characters makes identification of the diseases 

attributed to Botryosphaeriaceae species difficult.  The presence of Botryosphaeriaceae 

species in the V-shaped canker characteristic of Eutypa dieback makes disease 

identification and detection complicated.  Here the reverse dot blot hybridisation method 

for disease detection may potentially be used to correctly identify the presence of 

multiple pathogens in a single assay. 

 

In summary, it is clearly evident from the research done to date that E. lata is a major 

threat to vine productivity and longevity throughout the grape growing regions of the 

world.  It has been said that Eutypa dieback or “tandpyn” of grapevines existed in South 

Africa since 1881 (Du Plessis, 1948).  However, confirmation of the disease being similar 

to “dying arm” reported in Australia and the USA, was only obtained in 1976 (Matthee 

and Thomas, 1977).  Then, E. armeniacae was accepted as the causal organism and 

identification was based largely on morphological characteristics.  This method is 

generally insufficient to identify E. lata, especially in the presence of morphologically 

similar species, which is why molecular methods to identify and characterise Eutypa 

dieback in South Africa was important.  How Eutypa dieback in South Africa compares 

with the disease elsewhere in the world is of great interest, particularly if more than one 

species of Eutypa is responsible for the disease.  Hence, the use of molecular data and 

pathogenicity studies would aid in determining the presence of other organisms and their 

pathogenicity to grapevines, while shedding some light on the relationship between the 

organisms.  This became the objective of the work done in Chapter 2. 
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In Chapter 3, the objective was to apply a reverse dot blot hybridisation method to detect  

Eutypa and Botryosphaeriaceae species.  Symptoms in Eutypa dieback are slow to 

develop and vary from year to year and may go undetected.  With more than one 

organism that can be isolated from the wedge-shaped canker characteristic of Eutypa 

dieback, it is important to have a diagnostic test that can accurately and correctly identify 

the presence of a particular pathogen.   
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CHAPTER 2 

 

MOLECULAR IDENTIFICATION AND CHARACTERISATION OF EUTYPA 

DIEBACK ON GRAPEVINES IN SOUTH AFRICA 

 

2.1  INTRODUCTION 

 

Eutypa dieback of grapevines (Vitis vinifera L.) is recognised as a serious disease of 

grapevines worldwide.  The disease is responsible for a slow decline of vineyards, 

thereby reducing growth and yield, eventually killing the grapevines.  Eutypa dieback is 

estimated to have cost the US wine industry alone approximately US$260 million in 

losses (Siebert, 2001), while in Australia it is estimated that it caused yield losses of 

approximately A$1000 – 2800 per hectare in Shiraz (Wicks and Davies, 1999).  In South 

Africa, the losses are estimated to be in the region of R1.7 million for the Cabernet 

Sauvignon crop (2000/2001 season) and this value excludes the cost of replacing vines, 

manpower and the subsequent reestablishment period (van Niekerk et al., 2003). 

 

The causal organism of Eutypa dieback on grapevines was first described as Eutypa 

armeniacae Hansf. & Carter (Carter, 1957), a fungus, that causes dieback of apricots 

(Prunus armeniacae L.).  In 1973, Carter and Price discovered that grapevines 

represented another economically important host for the pathogen. Its host range 

presently includes 80 species distributed among 27 plant families of which most are tree 

species (Carter et al., 1983; Bolay and Carter, 1985).  Since 1987, E. armeniacae has 

been considered a synonym of Eutypa lata (Pers.: Fr.) Tul & C. Tul (anamorph Libertella 

blepharis A.L. Sm.).  In 1999, however, genetic analysis of Eutypa strains isolated from 

vineyards in California (Descenzo et al., 1999) revealed that the two species of Eutypa 

(E. armeniacae and E. lata) were not conspecific.  In truth, prior to 1987, E. armeniacae 

and other taxa were not considered synonymous with E. lata (Rappaz, 1987).  

Interestingly, research conducted in California indicated that more than one species of 

Eutypa, and perhaps other genera in the same family, could also be pathogens of 

grapevine, and were capable of infecting pruning wounds (Smith, 2004).   
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This research led to the recent discovery of Eutypa leptoplaca (Mont.) Rappaz, reported 

as a pathogen of grapevines, in California (Trouillas and Gubler, 2004).  No other grape 

growing area worldwide where Eutypa dieback is a problem, have reported the same 

findings.  In a South African context, it has thus become important to ascertain the 

pathogen or pathogens responsible for Eutypa dieback of grapevines.  The correct 

identification and characterisation by use of molecular markers and pathogenicity testing 

would add greatly to the clarification of the causal organisms of Eutypa dieback in South 

Africa. 

 

Molecular markers are commonly used to differentiate fungal taxa (Glass and Donaldson, 

1995), and have proven particularly useful where cultural and morphological 

characteristics alone were insufficient to distinguish the causal organisms.  The 

phylogenetic analysis embarked on in this study, with the aim of identifying and 

characterising the pathogen(s) responsible for Eutypa dieback in South Africa, used the 

internal transcribed spacer (ITS) and large subunit (LSU) regions of the ribosomal DNA 

(rDNA) operon,  and the -tubulin gene.  Pathogenicity testing was also conducted on 

isolates to confirm Koch’s postulates. 

 

2.2  MATERIALS AND METHODS 

2.2.1  Fungal isolates  

Isolates were collected from grapevines and fruit trees with dieback symptoms, as well as 

from fruiting structures on infected wood (Table 2-1).  Eutypa lata isolates were also 

obtained from Southern Australia and France, while reference cultures were obtained 

from the Centraalbureau voor Schimmelcultures (CBS), Utrecht, Netherlands.  Initial 

identification of E. lata isolates was based on comparison of the anamorph, Libertella 

blepharis, with published descriptions (Glawe and Rogers, 1982).  The isolates were 

grown for 2 - 4 weeks on potato-dextrose agar (PDA; 39 g/l, Biolab, Merck) at 22oC.  All 

isolates were stored as colonised PDA plugs at 4oC in sterile water and on agar slants.  

All isolates collected were deposited at the Stellenbosch University culture collection 

(STE-U), Stellenbosch, South Africa. 
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Table 2-1.  Isolates collected and used in the phylogenetic study. 

Isolate Host Cultivars Origin 

STE-U 5519 

STE-U 5520 

STE-U 5521 

STE-U 5522 

STE-U 5523 

STE-U 5524 

STE-U 5525 

STE-U 5526 

STE-U 5527 

STE-U 5528 

STE-U 5529 

STE-U 5530 

STE-U 5531 

STE-U 5532 

STE-U 5534 

STE-U 5535 

STE-U 5536 

STE-U 5537 

STE-U 5538 

STE-U 5539 

STE-U 5540 

STE-U 5541 

STE-U 5542 

STE-U 5543 

STE-U 5544 

STE-U 5545 

STE-U 5546 

STE-U 5547 

STE-U 5548 

STE-U 5549 

STE-U 5550 

STE-U 5551 

STE-U 5552 

STE-U 5553 

STE-U 5554 

STE-U 5555 

STE-U 5556 

Vitis vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

Prunus salicinia  

P. salicinia  

P. salicinia  

P. salicinia  

P. salicinia  

P. salicinia  

P. salicinia  

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Chenin Blanc 

Chenin Blanc 

Shiraz 

Shiraz 

Cabernet Sauvignon 

Cabernet Sauvignon 

Chenin Blanc 

Chenin Blanc 

Chenin Blanc 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Chenin Blanc 

Chenin Blanc 

Chenin Blanc 

Cinsaut 

Cinsaut 

Cabernet Sauvignon 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

Angeleno 

Angeleno 

Angeleno 

Angeleno 

Angeleno 

Larry Anne 

Larry Anne 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

 South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

 South Africa 

 South Africa 

 South Africa 

 South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

France 

France 

France 

France 

France 

France 

France 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 
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STE-U 5557 

STE-U 5558 

STE-U 5559 

STE-U 5560 

STE-U 5561 

STE-U 5562 

STE-U 5315 

STE-U 5316 

STE-U 5317 

STE-U 5318 

STE-U 5319 

STE-U 5580 

STE-U 5581 

STE-U 5582 

STE-U 5583 

STE-U 5584 

STE-U 5585 

STE-U 5586 

STE-U 5587 

STE-U 5588 

STE-U 5589 

STE-U 5590 

STE-U 5591 

STE-U 5533 

STE-U 5621 

STE-U 5622 

STE-U 5692 

STE-U 5693 

STE-U 5694 

STE-U 5695 

STE-U 5696 

STE-U 5697 

STE-U 5698 

STE-U 5699 

STE-U 5700 

STE-U 5701 

STE-U 5702 

STE-U 5703 

 

P. salicinia  

P. salicinia  

P. salicinia  

Prunus persica 

V. vinifera 

V. vinifera 

Prunus armeniaca 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

V. vinifera 

 

Angeleno 

Angeleno 

Angeleno 

Armking 

Merlot 

Merlot 

Unknown 

Merlot 

Chardonnay 

Shiraz 

Cabernet Sauvignon 

Cabernet Sauvignon 

Chenin Blanc 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Cabernet Sauvignon 

Chenin Blanc 

Chenin Blanc 

Chenin Blanc 

Chenin Blanc 

Chenin Blanc 

Chenin Blanc 

Chenin Blanc 

Sauvignon Blanc 

Sauvignon Blanc 

Sauvignon Blanc 

Ruby Cabernet 

Cabernet Franc 

 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

Southern Australia 

Southern Australia 

Southern Australia 

Southern Australia 

Southern Australia 

South Africa 

 South Africa 

 South Africa 

 South Africa 

 South Africa 

 South Africa 

 South Africa 

 South Africa 

 South Africa 

 South Africa 

 South Africa 

 South Africa 

 South Africa 

 South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 

South Africa 
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CBS 622.84/STE-U 5627 

CBS 208.87/STE-U 5628 

CBS 247.87/STE-U 5630 

CBS 101932/STE-U 5632 

CBS 286.87/STE-U 5633 

CBS 288.87/STE-U 5634 

E. armeniacae 

E. lata 

E. lata 

E. lata 

E. leptoplaca 

E. leptoplaca 

 

Vitis vinifera 

Tilia 

Lonicera xylosteum 

Fraxinus excelsior 

Arundo donax 

Cissus hypoglauca 

Italy 

Switzerland 

Switzerland 

Netherlands 

France 

South Australia 

 

2.2.2  DNA isolation and PCR amplification 

Fresh mycelium was harvested by scraping the surface of the agar with a scalpel and 

transferred to a microcentrifuge tube containing extraction buffer (50 mM Tris-HCl,  

pH 8.0, 150 mM NaCl, 100 mM EDTA, pH 8.0, 2% w/v SDS).  Total DNA was isolated 

according to the method of Lee and Taylor (1990).  DNA was resuspended in sterile 

HPLC water (BDH, Merck) and examined on 0.8% agarose gels by electrophoresis.  For 

PCR reactions the DNA samples were diluted 1:10 or 1:50 using sterile HPLC water. 

 

All PCR amplifications were performed in 50 µl reactions on a MJ Research PTC 200 

thermal cycler.  Each DNA sample was amplified using universal ITS primers ITS4 and 

ITS5 (White et al., 1990), β-tubulin primers Bt2b and T1 (Glass and Donaldson, 1995), 

and large subunit primers LROR and LR7 (Rehner and Samuels, 1994; Vilgalys and 

Hester, 1990).  The cycling programs for the ITS PCR consisted of 35 cycles with a 45 s 

denaturation at 94oC, a 30 s annealing at 53oC, a 1 min extension at 72oC and a final 

extension period of 10 min at 72oC.  The -tubulin PCR program consisted of 36 cycles 

with a 30 s denaturation at 94oC, a 30 s annealing at 50oC, a 90 s extension at 72oC and a 

final extension period of 7 min at 72oC.  The large subunit PCR program consisted of 35 

cycles with an initial denaturation of 10 min at 95oC, followed by 30 s denaturation at 

94oC, a 30 s annealing at 55oC, a 1 min extension at 72oC and a 10 min final extension 

period at 72oC.  Amplified DNA fragments were visualized under UV light after 

electrophoresis at 70V on 1% agarose gels stained with ethidium bromide (10 mg/ml) and 

run in 1X Tris-borate-EDTA.  PCR products were purified with PCR purification kits 

(GFX™ PCR DNA and Gel Band Purification Kit, Amersham Pharmacia Biotech Inc. 

N.J.) to remove any excess primers, nucleotides and polymerases.  The concentration of 

the purified PCR products was determined by DNA fluorometer readings (DyNA Quant 
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200, Hoefer Pharmacia Biotech Inc. N.J.).  All samples were sequenced in both directions 

directly from purified PCR products using the primers mentioned for amplification except 

for the large subunit that was sequenced using the primers LROR and LR5. 

 

 

2.2.3  Phylogenetic analyses 

Sequence data were edited and imported to Sequence Alignment Editor v.2.0a8 

(Rambaut, 2002) which allows for manual alignment and manipulation of the forward 

and reverse sequences (see Appendix).  Sequence homology was determined doing a 

BLAST search against GenBank sequence data.  Phylogenetic analyses of all aligned 

sequence data were done using PAUP (Phylogenetic Analysis Using Parsimony) v.4.0b10 

(Swofford, 2000).  Gaps were treated as “fifth base” and all characters were unordered 

and of equal weight, while uninformative characters were excluded.  A parsimony 

analysis was performed for all datasets using the heuristic search option with stepwise 

random addition and a tree-bisection-reconnection (TBR) as branch-swapping algorithm 

to find maximum-parsimony trees.  Branches with a maximum branch length of zero 

were collapsed and all equally parsimonious trees were saved.  Topological constraints 

were not enforced.  Branch support was determined by 1000 bootstrap replicates.  The 

consistency index (CI), retention index (RI) rescaled consistency index (RC) and 

homoplasy index (HI) were also calculated.  Congruency between trees from different 

datasets was examined by partition homogeneity tests. 

 

 

2.2.4  Pathogenicity tests 

Fourteen isolates representing E. lata and other species collected from grapevines with 

dieback symptoms were selected for the pathogenicity tests (Table 2-2).  The isolates 

were plated on PDA and incubated at 22oC for 1 week.  In the first experiment 

inoculations were made on one-year old rooted cuttings of Sauvignon Blanc planted in 

plastic bags [5l, 160 mm (length)  120 mm (breadth)  300 mm (height)] that were 

maintained in a glasshouse at +/- 26oC and watered thrice a week.  A V-shaped notch was 

cut through the cambium to a depth of approximately 1.5 mm above the first node.  A 5 
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mm diam plug was cut from the margin of actively growing fungal isolates.  The plug 

was placed mycelium-side down on the wound.  A negative control of a non-colonised 

PDA plug was used to inoculate wounded cuttings serving as control treatments.  The 

inoculation sites were covered with Parafilm (Pechiney Plastic Packaging, Menasha, WI) 

for 1 month after which it was removed.  There were 10 replicates per treatment in a 

randomised design.  The rooted cuttings were maintained in a greenhouse for 1 year.  

Results were collected by splitting the stems at the wound longitudinally and measuring 

the internal lesions. 

 

In the second experiment green shoots were cut from one-year old Sauvignon Blanc and 

Red Globe vines 3 months after being potted in soil.  The green shoots were cut between 

the internodes.  Inoculations of the green shoots were made using the same fungal isolates 

selected for the first experiment.  A V-shaped notch was cut through the cambium to a 

depth of approximately 1.5 mm above the internode.  A 5 mm diam plug was cut from the 

margin of actively growing fungal isolates.  The plug was placed mycelium-side down on 

the wound.  A negative control of a non-colonised PDA plug was applied to the wounded 

shoots.  The inoculation sites were covered with Parafilm for one week after which it was 

removed.  There were 5 replicates per cultivar per treatment in a randomised design.  

Inoculated shoots were incubated under moist conditions in the laboratory for 3 weeks at 

22oC.  Following the incubation period, the shoots were split longitudinally and the 

internal lesions measured.  The data were statistically analysed using ANOVA and the 

mean lesion lengths are listed in Table 2-2.   

 

In both experiments re-isolations were made from the margins of the lesions by plating 

the infected material on PDA with incubation at 22oC.  The plant material in both 

experiments was subsequently destroyed by incineration or autoclaving twice for 20 min. 
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2.3  RESULTS 

 

2.3.1  Phylogenetic analyses 

Amplification of the ITS region of the isolates collected in South Africa yielded a 600 

bp PCR product for those from grapevines and a 560 bp PCR product for those form 

fruit trees.  Variations in size of the amplified PCR product were resolved through 

alignment.  Of the 528 characters in the aligned sequence, 349 characters were constant, 

125 characters were parsimony informative and 54 variable characters were parsimony 

uninformative.  A heuristic maximum parsimony analysis resulted in 300 most 

parsimonious trees of 319 steps (CI = 0.721, RI = 0.983, RC = 0.676, HI = 0.279).  The 

bootstrap consensus tree (Fig. 2-1) was rooted using Diatrype flavovirens (Pers) Fr., 

Diatrypella pulvinata Nitschke and Cryptosphaeria eunomia var. fraxini (Richon) 

Rappaz as outgroups. 

 

Amplification of a partial sequence at the 5’-end of the -tubulin gene region yielded a 

single PCR product of 800 bp for all isolates collected in South Africa.  Of the 736 

characters in the aligned sequences, 159 characters were constant, 487 characters were 

parsimony informative and 90 variable characters were parsimony uninformative.  A 

heuristic maximum parsimony analysis resulted in 144 most parsimonious trees of 1692 

steps (CI = 0.702, RI = 0.932, RC = 0.654, HI = 0.298).  The bootstrap consensus tree 

(Fig. 2-2) was rooted using Diatrype Fr. and Diatrypella (Ces. & De Not) De Not. as 

outgroups. 

 

Amplification of a partial sequence of the large subunit region yielded a single PCR 

product of 1500 bp of which 900 bp was sequenced using primers LR0R and LR5.  Of 

the 814 characters in the aligned sequences, 477 characters were constant, 304 were 

parsimony informative and 33 variable characters were parsimony uninformative.  A 

heuristic maximum parsimony analysis resulted in 72 most parsimonious trees of 477 

steps (CI = 0.795, RI = 0.827, RC = 0.657, HI = 0.205).  The bootstrap consensus tree 

(Fig. 2-3) was rooted using Xylaria hypoxylon (L.) Grev. as an outgroup for the Eutypa 
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lata isolates and Cryptosphaeria eunomia as outgroup for the C. ampelina and Eutypa 

isolates. 

 

A partition homogeneity test of the combined datasets of ITS and -tubulin sequences 

contained 984 characters of which 514 characters were constant, 463 characters were 

parsimony informative and seven variable characters were parsimony uninformative.  A 

heuristic maximum parsimony analysis resulted in a single most parsimonious tree (Fig. 

2-4) of 792 steps (CI = 0.723, RI = 0.854, RC = 0.667, HI = 0.217, P = 0.059). 

 

One hundred and eight isolates were included in the ITS tree (Fig. 2-1).  The tree 

consisted of five groups with high bootstrap support.  Group I included 59 isolates, of 

which 44 were isolates collected from grapevines in South Africa with dieback 

symptoms.  The remaining 15 isolates comprised of the reference isolates (STE-U 

5627/CBS 622.84, STE-U 5628/CBS 208.87 and STE-U 5630/CBS 247.87), the French 

isolates (STE-U 5543-5549) and the Australian isolates (STE-U 5315-5319).  The 59 

isolates grouped with E. lata / E. armeniacae in a well-supported clade with a bootstrap 

support value of 83%.  In group II an isolate (STE-U 5581) identified as E. leptoplaca 

grouped together with the reference isolate, STE-U 5633/CBS 286.87 with high (94%) 

support in one clade while the other E. leptoplaca reference isolate, STE-U 5634 CBS 

288.87, grouped with other E. leptoplaca isolates in a separate clade (bootstrap support 

value of 93%).  Group III included E. lejoplaca (Fr.) Cooke, E. maura (Fr.) Sacc., E. 

astroidea (Fr.) Rappaz, E. crustata (Fr.) Sacc. and E. consobrina (Mont.) Rappaz.  In 

group IV, isolates (STE-U 5621, STE-U 5622, STE-U 5701 and STE-U 5703) identified 

as Cryptovalsa ampelina (Nitschke) Fuckel grouped together with this species in a well 

supported clade with a bootstrap support value of 100%.  In group V isolates STE-U 

5561, STE-U 5562 and STE-U 5702, isolated from grapevines, grouped with the fruit tree 

isolates, STE-U 5550-5560.  These isolates shared sequence similarity to Eutypella vitis 

(Schwein.) Ellis & Everh. with a bootstrap support value of 98%.  

 

Eighty isolates were included in the -tubulin tree (Fig. 2-2).  The tree consisted of five 

groups with high bootstrap support.  Group I included 30 isolates collected from 
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grapevines in South Africa which, grouping together with the French and Australian 

isolates, showed sequence homology with E. lata.  The E. lata isolates STE-U 5546 and 

STE-U 5548, two of the seven French isolates used in this analysis, grouped together 

with STE-U 5590 in a cluster with low (62%) bootstrap support.  The rest of the E. lata 

isolates grouped together in a separate cluster with 70% bootstrap support.  STE-U 5581 

and STE-U 5633/CBS 286.87 grouped with E. leptoplaca in group II with 100% 

bootstrap support.  Group III included E. lejoplaca, E. sparsa, E. maura and E. tetragona.  

Group IV represented the E. vitis isolates, where STE-U 5552 (from plum) and STE-U 

5561 (from grapevines) grouped apart with low (62%) bootstrap support, while the rest 

grouped together with 63% bootstrap support.  In group V the C. ampelina isolates 

grouped together with 100% bootstrap support, except for STE-U 5701 and STE-U 5703 

that grouped together with 51% bootstrap support. 

 

Twenty-nine isolates were included in the LSU tree (Fig. 2-3), of which 26 isolates 

originated from South Africa.  The sequences from these isolates proved to be identical 

and did not separate E. lata from E. leptoplaca or from C. ampelina.  These isolates 

grouped together with low support. 

 

The phylogenetic tree constructed of the combined ITS and -tubulin datasets (Fig. 2-4) 

had a similar topology to the individual trees.  The four groups of taxa comprised of E. 

lata (group I), E. leptoplaca (group II), E. vitis (group III) and C. ampelina (group IV) 

that yielded strong bootstrap support.  The group III in the ITS phylogenetic tree which 

included E. lejoplaca, E. maura, E. astroidea, E. crustata and E. consobrina, was not 

included in the combined phylogenetic analysis, neither was group III of the -tubulin 

phylogenetic tree.  However, this did not significantly alter the overall topology of the 

tree. 

 

Not included in the ITS phylogenetic tree was the reference isolate STE-U 5632/CBS 

101932 identified by the CBS culture collection as E. lata.  Sequence homology of this 

isolate was determined by doing a BLAST search against GenBank sequence data.  STE-  
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STE-U 5526 
STE-U 5535 
STE-U 5541 
STE-U 5527 
STE-U 5700 
STE-U 5536 
STE-U 5537 
STE-U 5545 
STE-U 5583 
STE-U 5586 
STE-U 5585 
STE-U 5592 
STE-U 5593 
STE-U 5522 
STE-U 5523 
STE-U 5520 
STE-U 5525 
STE-U 5519 
STE-U 5529 
STE-U 5530 
STE-U 5531 
STE-U 5533 
STE-U 5534 
STE-U 5538 
STE-U 5540 
STE-U 5542 
STE-U 5521 
STE-U 5524 
STE-U 5532 
STE-U 5539 
STE-U 5528 
STE-U 5589 
STE-U 5587 
STE-U 5588 
STE-U 5584 
STE-U 5590 
STE-U 5582 
STE-U 5591 
STE-U 5580 
STE-U 5546 
STE-U 5547 
STE-U 5549 
STE-U 5544 
STE-U 5543 
STE-U 5548 
STE-U 5315 
STE-U 5316 
STE-U 5317 
STE-U 5318 
STE-U 5319 

STE-U 5627 (CBS 622.84) 
STE-U 5628 (CBS 208.87) 
STE-U 5630 (CBS 247.87) 
STE-U 5694 
STE-U 5695 
STE-U 5696 
STE-U 5697 
STE-U 5698 
STE-U 5699 
Eutypa lata AY462541 
Eutypa lata AY462450 
Eutypa lata AY462539 
Eutypa lata AY684233 
Eutypa lata AJ302450 
Eutypa armeniacae AJ302446 
Eutypa armeniacae AJ302445 
Eutypa laevata AJ302449 
Eutypa petrakii var. petrakii AJ302456 
Eutypa petrakii var. petrakii AJ302455 

STE-U 5633 (CBS 286.87) 
Eutypa leptoplaca AJ302453 
STE-U 5581 
STE-U 5634 (CBS 288.87) 
Eutypa leptoplaca AY684237 
Eutypa leptoplaca AY684236 
Eutypa lejoplaca AY684238 
Eutypa lejoplaca AY684221 
Eutypa maura AJ302454 
Eutypa astroidea AJ302458 
Eutypa crustata AJ302448 
Eutypa consobrina AJ302447 
STE-U 5621 
STE-U 5622 
STE-U 5701 
STE-U 5703 
Cryptovalsa ampelina AY920391 
Cryptovalsa ampelina AY307107 
Cryptosphaeria eunomia var fraxini AJ302421 
Diatrypella pulvinata AJ302443 
STE-U 5562 
STE-U 5561 
STE-U 5551 
STE-U 5552 
STE-U 5556 
STE-U 5557 
STE-U 5558 
STE-U 5559 
STE-U 5560 
STE-U 5550 
STE-U 5553 
STE-U 5554 
STE-U 5555 
STE-U 5702 
Eutypella vitis AJ302466 
Eutypella vitis AY462571 
Eutypella vitis AY462576 
Eutypa flavovirens AJ302457 
Diatrype flavovirens AJ302428 
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Fig. 2-2.  One of the 72 most parsimonious trees with bootstrap support values using 1000 bootstrap 
replicates generated in PAUP 4.0b10 from the partial sequence of the -tubulin gene region (tree length = 
1692, CI = 0.702, RI = 0.932, RC = 0.654, HI = 0.298). 
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Eutypa lata AY684214 
STE-U 5545 
STE-U 5547 
STE-U 5543 
STE-U 5316 
STE-U 5317 
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STE-U 5693 
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STE-U 5697 
STE-U 5699 
Eutypa lata AY684215 
Eutypa lata AY683213 
STE-U 5538 
STE-U 5540 
STE-U 5591 
STE-U 5582 
STE-U 5587 
STE-U 5315 

Eutypa leptoplaca AY684214 
Eutypa leptoplaca AY684211 
Eutypa leptoplaca AY684210 
Eutypa leptoplaca AY684209 
Eutypa leptoplaca AY684208 
Eutypa leptoplaca AY684206 
Eutypa leptoplaca AY684205 
Eutypa leptoplaca AY684204 
STE-U 5581 
STE-U 5633 (CBS 286.87) 
Eutypa lejoplaca AY684196 
Eutypa lejoplaca AY684197 
Eutypa sparsa AY684200 
Eutypa sparsa AY684201 
Eutypa maura AY684199 
Eutypa maura AY684198 
Eutypa tetragona AY684202 
STE-U 5632 (CBS 101932) 
STE-U 5552 
STE-U 5561 
STE-U 5550 
STE-U 5553 
STE-U 5554 
STE-U 5557 
STE-U 5562 
STE-U 5556 
STE-U 5702 
STE-U 5558 
Eutypella vitis DQ006999 
STE-U 5701 
STE-U 5703 
STE-U 5621 
STE-U 5622 
Diatrype sp. AY684218 
Diatrype sp. AY684216 
Diatrypella sp. AY684217 
 

= French isolates 

= Australian isolates 

= Reference isolates 
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Diatrype disciformis U47829 
 
Eutypa sp. SMH3580 AY346280 
 
Libertella blepharis AY621003 
STE-U 5520 
 
STE-U 5522 
 
STE-U 5523 
 
STE-U 5580 
 
STE-U 5533 
 
STE-U 5584 
 
STE-U 5540 
STE-U 5519 
 
STE-U 5526                                        E. lata 
 
STE-U 5527 
STE-U 5528 
 
STE-U 5531 
 
STE-U 5535 
 
STE-U 5536 
 
STE-U 5537 
 
STE-U 5538 
 
STE-U 5521 
 
STE-U 5525 
 
STE-U 5524 
Xylaria hypoxylon AY327480 
 
Xylaria hypoxylon AY327481 
 
Eutypa sp. HKUCC 337 AY083825 
 
STE-U 5622 C. ampelina 
STE-U 5581  
        E. leptoplaca  
STE-U 5634 CBS 288.87 
 
Cryptosphaeria eunomia AY083826 

Fig. 2-3.  One of the 72 most parsimonious trees with bootstrap support values using 1000 bootstrap 
replicates generated in PAUP 4.0b10 from the partial sequence of the large subunit region (tree length = 
477, CI = 0.795, RI = 0.827, RC = 0.657, HI = 0.205). 
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would suggest that these matches are less significant (E values: 2e-173 and 4e-110, 

respectively).  In the -tubulin phylogenetic tree STE-U 5632 was clearly distinct from E. 

lata, E. leptoplaca and the other species of Eutypa in group III.  Only with the inclusion 

of additional isolates representative of E. caricae would it be possible to conclusively 

determine whether STE-U 5632/CBS 101932 represents this species or not. 

than E. leptoplaca.  Other than the lesions, no foliar symptoms were observed.  Re-

isolation of the isolates from lesions was successful.  Isolations made further away from 

the inoculation site were not as successful. 

 

 

 

 

 

STE-U 5693 
STE-U 5692 
STE-U 5537 
STE-U 5536 
STE-U 5545 
STE-U 5547 
STE-U 5543 
STE-U 5546 
STE-U 5548 
STE-U 5315 
STE-U 5316 
STE-U 5317 
STE-U 5522 
STE-U 5524 
STE-U 5544 
STE-U 5525 
STE-U 5526 
STE-U 5533 
STE-U 5534 
STE-U 5539 
STE-U 5541 
STE-U 5588 
STE-U 5538 
STE-U 5540 
STE-U 5591 
STE-U 5535 
STE-U 5549 

STE-U 5542 
STE-U 5521 
STE-U 5700 
STE-U 5519 
STE-U 5520 
STE-U 5582 
STE-U 5587 
STE-U 5590 
STE-U 5697 
STE-U 5699 
ST-U 5584 
STE-U 5696 
STE-U 5319 
STE-U 5529 
STE-U 5581 
STE-U 5633 
STE-U 5552 
STE-U 5561 
STE-U 5550 
STE-U 5553 
STE-U 5554 
STE-U 5556 
STE-U 5557 
STE-U 5562 
STE-U 5702 
STE-U 5558 
STE-U 5701 
STE-U 5703 
STE-U 5622 
STE-U 5621 

 

I 

II 

IV 

III 

Fig. 2-4.  One of the most parsimonious trees with bootstrap support values using 1000 replicates generated 
in PAUP 4.0b10 from the combined 5.8S rDNA gene and flanking ITS1 and ITS2 regions and -tubulin 
gene (tree length = 792, CI = 0.723, RI = 0.854, RC = 0.667, HI = 0.217, P = 0.059). 

= French isolates 

= Australian isolates 

= Reference isolates 



 

 

65

 

Table 2-2. Mean lesion lengths in rooted cuttings and green shoots of grapevine cultivar  

“Sauvignon blanc”, caused by inoculations with isolates of Eutypa and related species 

 

 

Isolate 

Mean lesion length (mm) 

Rooted cuttings Green shoots 

Eutypa lata STE-U 5519 24.2 a 14.2 b 

E. lata STE-U 5520 24.5 a 13.9 b 

E. lata STE-U 5521 24.8 a 13.6 b 

E. lata STE-U 5522 23.5 ab 13.9 b 

E. lata STE-U 5529 24.0 a 14.0 b 

E. lata STE-U 5536 19.4 b 15.3 a 

E. lata STE-U 5537 22.4 ab 15.3 a 

E. lata STE-U 5540 25.3 a 13.6 b 

E. lata STE-U 5585 25.8 a 13.9 b 

E. leptoplaca STE-U 5581 9.75 d 6.88 d 

Eutypella vitis STE-U 5551 17.7 b 12.8 bc 

Cryptovalsa ampelina  

STE-U 5703 

13.9 c 10.9 c 

C. ampelina STE-U 5621 13.8 c 11.6 c 

C. ampelina STE-U 5622 15.1 bc 11.7 c 

Agar plug 3.74 e 3.6 e 

 Values followed by the same letter are not significantly different from one other. 
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U 5632/CBS 101932 showed great sequence homology to Eutypella caricae (De Not.) 

Berl. (100%).  However, when sequence homology was determined using the -tubulin 

sequence data this isolate showed sequence homology to Diatrypella sp. and Diatrype sp. 

with a sequence identity of 88% and 89%, respectively, while the E values obtained 

would suggest that these matches are less significant (E values: 2e-173 and 4e-110, 

respectively).  In the -tubulin phylogenetic tree STE-U 5632/CBS 101932 was clearly 

distinct from E. lata, E. leptoplaca and the other species of Eutypa in group III.  

Additional reference isolates of E. caricae would be required to conclusively clarify the 

status STE-U 5632/CBS 101932. 

 

2.3.2  Pathogenicity tests 

The mean lesion lengths obtained for both experiments, one conducted with rooted 

cuttings and the other with green shoots, are listed in Table 2-2.  In the first experiment E. 

lata caused longer lesions than E. leptoplaca on the rooted cuttings.  The lesion lengths 

obtained for C. ampelina and E. vitis were shorter than most of the E. lata isolates tested, 

but longer than E. leptoplaca.  In the second experiment, E. lata again caused longer 

lesions than E. leptoplaca on the green unrooted shoots.  The lesion lengths obtained for 

E. vitis and C. ampelina were similar, and again shorter than most of the E. lata isolates 

tested, but longer than E. leptoplaca.  Other than the stem lesions, no foliar symptoms 

were observed.  Re-isolation of the isolates from lesions was successful.  Isolations made 

further away from the inoculation site were not as successful due to the slow progression 

of the disease. 

 

 

 

2.4  DISCUSSION 

 

The molecular characterisation and identification of Eutypa dieback revealed that E. lata 

was present in all vineyards from which isolates were collected.  This suggests that the 

disease is well established in South African grapevines, particularly on the cv. “Cabernet 

Sauvignon”.  A study based on the visual identification of Eutypa-like symptoms from 



 

 

67

 

vines in South Africa (Halleen et al., 2001) showed that the average level of infection 

was 31.7% with the highest level of infection (98%) being observed in a 22-year-old 

vineyard.  This finding has serious economic implications in the long term for South 

African vineyards, as the disease is especially severe in older vineyards. 

 

The molecular data gathered also showed that the isolates of E. lata were divergent from 

other species of Eutypa, but appeared synonymous with E. armeniacae.  Alignment of the 

sequences of E. lata and E. armeniacae showed a 99% sequence homology between the 

two species.  DeScenzo et al. (1999) used amplified fragment length polymorphisms 

(AFLP) and ITS sequence data in their genetic analysis of Eutypa strains.  The isolates 

used in the genetic analysis were strains of E. lata from 10 host species which included 

grape (V. vinifera L.), apricot (P. armeniaca L.), oak (Quercus lobata) and madrone 

(Arbutus menziesii).  Their analysis suggested that while E. armeniacae and E. lata are 

pathogenic on their hosts, the species found on grapevines and cultivated hosts is E. 

armeniacae, which is distinct from E. lata.  However, the analysis did not include 

additional isolates representative of the Diatrypaceae and could thus not be compared.  

Carmarán et al. (2006) used ascal morphology as opposed to stromatal morphology to 

infer phylogenetic relationships among species and genera in the Diatrypaceae.  The 

results obtained showed that E. lata is distinct from other species of Eutypa and from 

other genera like Cryptosphaeria Ces. & De Not., Diatrype (Ces. & De Not.) De Not. and 

Eutypella (Nitschke) Sacc.  The molecular data in this present study and a similar study 

by Rolshausen et al. (2006) lead us to conclude that E. lata and E. armeniacae are 

synonymous.  The molecular analyses also revealed the presence of a second species of 

Eutypa, namely E. leptoplaca, though our data suggest that isolates identified as E. 

leptoplaca may represent two species, and not one as previously thought.  Eutypa 

leptoplaca was also recently reported from grapevines in California (Trouillas and 

Gubler, 2004), while the same study also concluded E. lata and E. armeniacae to be 

conspecific.  The discovery of E. leptoplaca in California and the conclusions drawn on 

the conspecificity of E. lata and E. armeniacae are further supported by the results 

obtained in the present study from South African vineyards. 
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Eutypa lata proved to be distinct from E. leptoplaca as shown in the various analyses 

(Fig. 2-1, 2-2).  The two trees had a similar topology with the taxa separating into five 

distinct groups, except where E. vitis was designated as group V in the ITS phylogenetic 

tree, and group IV in the -tubulin phylogenetic tree.  Cryptovalsa ampelina represented 

group V in the -tubulin tree because this species shared greater sequence homology with 

E. vitis in the -tubulin gene region.  The Eutypa species in group III are clearly distinct 

form each other as evidenced by the phylogenies constructed using ITS and -tubulin 

sequence data, though they are morphologically similar (Glawe and Rogers, 1982).  The 

species resolved in this study concur with a previous study of the Diatrypaceae by Acero 

et al. (2004). 

 

The E. leptoplaca isolate from South Africa, STE-U 5581, grouped with STE-U 

5633/CBS 286.87 in a well-supported clade with a bootstrap support value of  94% (ITS) 

and 100% (-tubulin).  Based on molecular data, Trouillas and Gubler (2004) concluded 

that CBS 286.87 could represent E. consobrina.  This would imply that STE-U 5581 

could be E. consobrina and not E. leptoplaca.  However, due to the lack of a reference 

isolate of E. consobrina, it is presently not possible to resolve the taxonomic placement 

of this isolate. 

 

Eutypa lata and E. leptoplaca occurred together on the same vines, which suggested that 

they can coinfect the same niche, though E. leptoplaca was not isolated from all 

vineyards sampled.  In culture, it was observed that E. lata grew faster than E. leptoplaca.  

Vines and shoots inoculated in the pathogenicity tests showed similar results, whereby 

the lesion lengths for E. lata were significantly larger than those for E. leptoplaca.  This 

scenario could be the same in the environment, which would explain why E. lata was 

more dominant than E. leptoplaca.  In Californian vineyards, E. leptoplaca was not 

isolated from the V-shaped cankers characteristic of Eutypa dieback, though it was 

isolated from severely affected grapevines. 

 

While all the grapevines were infected with E. lata, none of the South African fruit trees 

were similarly infected with this fungus.  The presence of E. vitis on grapevines, 
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including C. ampelina, together with the Eutypa species, complicates the rapid and 

accurate identification of these pathogens.  Cryptovalsa ampelina causes symptoms 

similar to those produced by E. lata (Ferreira, 1987) though grapevines appear to be only 

weakly susceptible to the pathogen (Price, 1973; Mostert et al., 2004).  Eutypella vitis has 

been identified as a possible pathogen of grapevines in Michigan (Jordan et al., 2005).  

Its presence in infected grapevines in South Africa would suggest the same.  

Pathogenicity testing revealed that the fungus was capable of causing stem lesions and 

although no foliar symptoms were observed, it would imply that E. vitis is pathogenic to 

grapevine, even though not highly virulent. 

 

The presence of other diatrypaceous fungi has also been observed in California vineyards 

(Trouillas et al., 2001), where ascospores of Cryptovalsa, Diatrype and Diatrypella 

species have been found on dead grapevine wood.  These fungi were found to occur 

together with E. lata and E. leptoplaca in infected grapevines and on native California 

plant hosts like big leaf maple (Acer macrophyllum Pursh.), boxelder (A. negundo L.), 

California laurel (Umbellularia californica (Hook & Arn.) Nutt.), Oregon ash (Fraxinus 

latifolia Benth.) and oak (Quercus sp.).  Molecular analyses of isolates collected from 

grapevines showing dieback symptoms in South Africa revealed the presence of 

Cryptovalsa ampelina and Eutypella vitis, but Diatrypella and Diatrype species were not 

identified.  The stromata of Cryptovalsa and Diatrypella are similar in appearance and 

species within these genera have often been confused (Vasilyeva and Stephenson, 2005).  

Generic classification in the Diatrypaceae is primarily based on stromatal morphology 

which can be insufficient as it has been suggested that stromata development could be 

influenced by host species and humidity (Vasilyeva and Stephenson, 2004). 

 

The occurrence of these diatrypaceous fungi alongside E. lata and E. leptoplaca in 

infected grapevines possibly contributes to the slow decline of vineyards.  The toxin 

produced by E. lata, eutypine, certainly plays a large role in symptom development (Tey-

Rulh et al., 1991), but the presence of these other fungi may enhance the decline of the 

grapevines.  Eutypa lata is considered to play a pioneering role in infecting pruning 

wounds which are the primary sites of infection (Larignon and Dubos, 1997; Carter, 
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1957).  As a result, the grapevines physiology is compromised, and with it the ability to 

fight infection, which allows the entrance of other pathogens.  This has enormous 

implications for any disease control strategies that could be implemented.  Early 

detection, and the correct identification of organisms involved in the Eutypa dieback 

complex are important for establishing a disease control programme.  Consequently, the 

aim of the work reported in the next chapter was to develop the reverse dot blot 

hybridisation technique to detect the pathogens responsible for Eutypa dieback.  Also 

included in this work were several species of Botryosphaeriaceae known to cause canker 

diseases in grapevines, and also frequently co-occurring with Eutypa species. 
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CHAPTER 3 

 

A PCR-BASED ASSAY FOR THE DETECTION OF EUTYPA LATA AND 

SPECIES OF BOTRYOSPHAERIACEAE FROM GRAPEVINE 

 

 

3.1  INTRODUCTION 

 

Eutypa dieback of grapevines, caused by the fungus Eutypa lata (Pers.) Tul & C. Tul, is 

responsible for a slow decline of vineyards, thereby reducing growth and yield, 

eventually killing the grapevine.  In 1998, this disease was estimated to have cost the US 

wine industry about US$260 million per annum in losses (Siebert, 2001).  The losses for 

the South African Cabernet Sauvignon crop during the 2000/2001 season, was estimated 

to be R1.7 million (Van Niekerk et al., 2003). 

 

The devastating impact of Eutypa dieback on grape-growing regions worldwide has 

fuelled the demand for efficient and reliable methods for the detection of the causal 

organisms.  The causal organism initially implicated in Eutypa dieback was the 

ascomycetous fungus E. lata (Pers.:Fr.) Tul. & C. Tul. from the Diatrypaceae family.  

The recent discovery of a second Eutypa species namely, E. leptoplaca (Mont.) Rappaz, 

as well as other diatrypaceous fungi also capable of causing disease (Chapter 2) suggests 

that these organisms form part of the Eutypa disease complex which has further spurred 

the need for rapid and reliable detection methods.  Traditional methods of identification 

are dependent on morphological and cultural characters.  Several morphologically similar 

species are involved in the Eutypa disease complex and these methods have proven 

insufficient for rapid and accurate identification. 

 

Eutypa lata and E. leptoplaca have only recently been reported in association with other 

members of the Diatrypaceae on infected grapevine material (Trouillas and Gubler, 

2004).  These latter fungi have been identified as Cryptovalsa ampelina (Nitschke) 

Fuckel and Eutypella vitis (Schwein.) Ellis & Everh. by employing molecular analysis 
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based on ITS, -tubulin and large subunit sequence data (Chapter 2).  Other fungi that are 

also frequently isolated from diseased vines with V-shaped cankers characteristic of 

Eutypa dieback, are species of Botryosphaeriaceae (Crous et al., 2000).  Several species 

of Botryosphaeria are known from grapevines, of which three species, Diplodia seriata 

De Not, B. dothidea (Moug.: Fr.) Ces. & De Not. and Neofusicoccum ribis (Slippers, 

Crous & M.J. Wingf.) Crous, Slippers & A.J.L. Phillips, have been commonly isolated 

from grapevines in South Africa (Crous et al., 2000).  However, a study by Van Niekerk 

et al. (2004) using molecular methods and morphological characteristics to compare 

South African Botryosphaeria isolates failed to confirm the presence of  B. dothidea and 

N. ribis on grapevines in South Africa.  Other common species known from grapevines 

are N. luteum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips and N. parvum 

(Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips, which also occur on this host 

in South Africa. Common disease symptoms include canker formation, shoot and branch 

dieback, decline and brown wood streaking.  These disease symptoms are easily confused 

with those produced by the Eutypa disease complex.  Consequently, it was imperative 

that a detection method be employed that could correctly identify the presence of one or 

more of these pathogens.  In previous studies a reverse dot blot hybridisation (RDBH) 

method was successfully developed to identify unknown isolates of Pythium Pringsh. and 

Phytophthora de Bary (Levesque et al., 1998), and therefore, one aim of the present study 

was to investigate the usability of RDBH in the grapevine pathosystem.  A further aim 

was to screen infected grapevine material for the presence of the Eutypa species involved 

in the Eutypa disease complex and those Botryosphaeriaceae species known to cause 

disease on this host. 

 

 

 

3.2  MATERIALS AND METHODS 

3.2.1  Fungal isolates and DNA isolation 

The fungal isolates used were obtained from infected grapevine material and grown for 2-

4 wks on potato-dextrose agar (PDA; 39g/l, Biolab, Merck) at 25oC.  Fresh mycelium 

was harvested by scraping the surface of the agar with a scalpel and transferring it to a 
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microcentrifuge tube containing extraction buffer (50mM Tris-HCl, pH 8.0, 150 mM 

NaCl, 100mM EDTA, pH 8.0, 2% w/v SDS).  Total DNA was isolated according to the 

method of Lee and Taylor (1990).  The DNA was resuspended in sterile HPLC water 

(BDH, Merck) and examined on a 0.8% agarose gel by electrophoresis.  For PCR 

reactions the DNA samples were diluted 1:10 or 1:50 using sterile HPLC water. 

 

 

3.2.2  Detection of Eutypa dieback by reverse dot blot hybridisation 

 

PCR amplification and labelling.  All PCR amplifications were performed in 50 µl 

reactions on a MJ Research PTC 200 thermal cycler.  Each DNA sample was amplified 

using universal ITS primers ITS4 and ITS5 (White et al., 1990), β-tubulin primers Bt2b 

and T1 (Glass and Donaldson, 1995), and large subunit (LSU) RNA primers LROR and 

LR7 (Vilgalys and Hester, 1990; Rehner and Samuels, 1994).  The cycling programs for 

the ITS PCR consisted of 35 cycles with a 45 s denaturation at 94oC, a 30 s annealing at 

53oC, a 1 min extension at 72oC and a final extension period of 10 min at 72oC.  The -

tubulin PCR program consisted of 36 cycles with a 30 s denaturation at 94oC, a 30 s 

annealing at 50oC, a 90 s extension at 72oC and a final extension period of 7 min at 72oC.  

The large subunit PCR program consisted of 35 cycles with an initial denaturation of 10 

min at 95oC, followed by 30 s denaturation at 94oC, a 30 s annealing at 55oC, a 1 min 

extension at 72oC and a 10 min final extension period at 72oC.  For the labelling 

reactions, the PCR conditions were as described above, except that the universal primers 

were used with 10x DIG-dNTPs [ 100 µM dATP, 100 µM dGTP, 100 µM dCTP, 65 M 

dTTP and 35 µM alkaline labile DIG-dUTP (digoxigenin-11-dUTP; Roche Diagnostics, 

South Africa Pty. Ltd.)].  The final PCR products were purified with a PCR purification 

kit (GFXTM PCR DNA and Gel Band Purification Kit, Amersham Pharmacia Biotech Inc, 

NJ).  These labelled and purified PCR products would be used in the subsequent 

hybridisation experiments as probes. 

 

Blotting oligonucleotides.  Species-specific oligonucleotides for E. lata and E. leptoplaca 

were synthesised from internal transcribed spacer, β-tubulin and nuclear large subunit 
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ribosomal DNA sequence data.  Each oligonucleotide (200 µM) was poly(dT)-tailed at 

the 3’ end according to the manufacturer’s protocol (Roche Diagnostics, South Africa 

Pty. Ltd.).  Reactions were incubated at 37oC for 2 h and then placed on ice.  The 

reactions were stopped with the addition of 1 μl EDTA (200mM, pH 8.0).  The 

oligonucleotides were blotted onto the respective positively charged nylon membranes 

(Roche Diagnostics, South Africa Pty. Ltd.).  The ITS I and ITS II regions of a Phoma sp. 

(Sacc.) and a Colletotrichum sp. (Corda) were amplified using ITS4 and ITS5.  An equal 

mix of this amplified DNA, 5 ng in total, was added to the membranes as a control.  

Similarly, controls of the β-tubulin region amplified with Bt2b and T1 and the large 

subunit region amplified with LROR and LR7 were added to the respective membranes 

by using 5 ng in total of an equal mix of amplified DNA of Phoma sp. and 

Colletotrichum sp.  The detection control dot contained DNA labelled with alkaline stable 

DIG-dUTP provided in the labelling kits (Roche Diagnostics, South Africa Pty. Ltd).  A 

negative control of an unrelated species, Botrytis cinerea Pers., was also included.  These 

controls were blotted onto the respective nylon membranes after heat denaturation.  The 

membranes were then irradiated for 7 min by UV illumination to bind the DNA. 

 

 

Hybridisation with immobilised oligonucleotides.  Membranes were placed in 

hybridisation bottles and prehybridised in 10 ml DIG Easy Hyb buffer (Roche 

Diagnostics) for 2 h at hybridisation temperatures of 50-55oC.  From 30 to 80 ng of DIG-

labelled probe was boiled for 10 min and added to 10 ml of fresh DIG Easy Hyb buffer.  

This solution of probe and buffer was filtered through a 0.45 µm filter (Cameo 25AS, 

Osmonics) and added to the hybridisation bottles after the prehybridisation solution was 

poured off.  Following overnight hybridisation the hybridisation solution containing the 

probe was decanted and stored at -20oC.  The membranes were washed at hybridisation 

temperature in 2.0X SSC.  Subsequent washes were done in either 0.5X SSC / 0.1% SDS 

or 2X SSC / 0.1% SDS.  Digoxigenin was detected using a three-step chemiluminescent 

procedure.  In step one, the membranes were treated with a blocking reagent.  In step two, 

the membranes were incubated with antibody, anti-DIG alkaline phosphatase (Roche 
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Diagnostics. South Africa Pty. Ltd).  In step three, the membranes were allowed to react 

with the chemiluminescent substrate, CSPD, and exposed to X-ray film. 

 

3.2.3  Detection of Botryosphaeriaceae species by reverse dot blot hybridisation 

 

PCR amplification and labelling.  All PCR amplifications were performed in 50 µl 

reactions on a MJ Research PTC 200 thermal cycler.  Each DNA sample was amplified 

using universal elongation factor-1α primers, EF1-728f and EF1-986r (Carbone and 

Kohn, 1999).  The elongation factor PCR program consisted of 35 cycles with an initial 

denaturation of 7 min at 94oC, followed by 45 s denaturation at 95oC, a 60 s annealing at 

55oC, a 2 min extension at 72oC and a 2 min final extension period at 72oC.  For the 

labelling reactions, the PCR conditions were as described, except that the universal 

primers were used with 10x DIG-dNTPs [ 100 µM dATP, 100 µM dGTP, 100 µM dCTP, 

65 M dTTP and 35 µM alkaline labile DIG-dUTP (digoxigenin-11-dUTP; Roche 

Diagnostics, South Africa Pty. Ltd.)].  The final PCR products were purified with a PCR 

purification kit (GFXTM PCR DNA and Gel Band Purification Kit, Amersham Pharmacia 

Biotech Inc, NJ).  These labelled and purified PCR products would be used in the 

subsequent hybridisation experiments as probes. 

 

 

Blotting oligonucleotides.  Species-specific oligonucleotides for D. seriata, B. dothidea, 

N. luteum, N. parvum and N. ribis were synthesised from elongation factor-1α sequence 

data.  Each oligonucleotide (200 µM) was poly(dT)-tailed at the 3’ end according to the 

manufacturer’s protocol (Roche Diagnostics, South Africa Pty. Ltd.).  Reactions were 

incubated at 37oC for 2 h and then placed on ice.  The reactions were stopped with the 

addition of 1 μl EDTA (200 mM, pH 8.0).  The oligonucleotides were blotted onto the 

respective nylon membranes.  The elongation factor region of a Phoma sp. and a 

Colletotrichum sp. was amplified with the primer pair EF1-728f and EF1-986r.  An equal 

mix of this amplified DNA, 5 ng in total, was added to the membranes as a control.  The 

detection control dot contained DNA labelled with alkaline stable DIG-dUTP provided in 

the labelling kits (Roche Diagnostics, South Africa Pty. Ltd).  The same negative control 
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as explained above was included in the experiments.  These controls were blotted to the 

respective nylon membranes after heat denaturation and the membranes irradiated as 

described above.  The procedure for the hybridisation and detection of the 

Botryosphaeria species was also performed as described above for the Eutypa species. 

 

 

3.2.4  Direct detection of E. lata, E. leptoplaca and Botryosphaeriaceae species from 

grapevine wood 

One-year-old rooted vines of Sauvignon Blanc were inoculated in a pathogenicity study 

with mycelium from actively growing E. lata grown on PDA plates (Chapter 2).  The 

vines were inoculated in the same manner with isolates of E. leptoplaca, C. ampelina and 

E. vitis collected from grapevines with dieback symptoms.  Cryptovalsa ampelina and E. 

vitis were included in the detection method as negative controls.  The presence of these 

fungi was confirmed by culturing from vines with necrotic lesions.  These infected vines 

were used in attempts to detect E. lata and E. leptoplaca species directly from the woody 

material.   

 

Infected woody material was surface sterilised in 20% (w/v) hypochlorite solution.  

Wood shavings were cut from the necrotic region of each isolate using a sterile scalpel 

and placed in a mortar.  The wood shavings (0.5 g) were crushed with a pestle in liquid 

nitrogen.  Total DNA was extracted following a CTAB extraction protocol.  CTAB 

extraction buffer was added and the mixture transferred to a 50 ml centrifuge tube.  The 

samples were incubated at 65oC with occasional shaking for 2 h. Samples were 

centrifuged at 12,000 g for 30 min and the supernatant transferred to a 30 ml Corex 

tube.  The samples were washed with an equal volume of chloroform:isoamyalcohol 

(24:1) and centrifuged at 10,000 g for 30 min.  The aqueous phase was subsequently 

divided between two new Corex tubes to which two volumes of precipitation buffer was 

added.  After an incubation period of 2 h at room temperature the samples were 

centrifuged at 10,000 g for 30 min.  The supernatant was discarded and the pellet 

dissolved in 1 ml 1M CsCl.  Two volumes of ice-cold ethanol were added to precipitate 

the DNA overnight at -20oC.  The samples were centrifuged at 10,000 g for 30 min.  
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The pellet was washed in ice-cold 70% (v/v) ethanol, centrifuged and dried.  The DNA 

was suspended in sterile HPLC grade water (BDH, Merck) and used at 1:10, 1:50 and 

1:100 dilutions in the PCR amplification and labeling reactions.  These extraction 

protocols were also used to obtain DNA from wood shavings to which pure preparations 

of E. lata DNA was added. 

 

For the detection of the Botryosphaeriaceae species grapevine wood shavings were 

incubated with individual 2 ml suspensions of D. seriata, B. dothidea, N. luteum, N. 

parvum and N. ribis at room temperature for 30 min to 2 h.  A 50 l aliquot of each 

sample was transferred to 1.5 ml microcentrifuge tubes and incubated at 95oC for 15 min, 

and immediately placed on ice.  Five microlitres of 1:10, 1:50 and 1:100 dilutions of the 

supernatant were used for PCR amplification and labeling in the reverse dot blot 

hybridisation method.  Similarly, the CTAB method of obtaining DNA as described 

above was also used. 

 

In a second experiment, the rapid DNA extraction method published by Lecomte et al. 

(2000) was also tested.  Wood shavings were cut from the necrotic region of each isolate 

using a sterile scalpel and placed in 1.5 ml microcentrifuge tubes containing 50 l of 

sterile, distilled water.  The tubes were then incubated at 95oC for 15 min, and 

immediately placed on ice.  Five microlitres of 1:10, 1:50 and 1:100 dilutions of the 

supernatant were used for PCR amplification in preparation for the reverse dot blot 

hybridisation method. 

 

 

 

3.2.5  Detection of E. lata by PCR based on primers designed by Lecomte et al. 

(2000) 

In addition to the reverse dot blot hybridisation, a method developed by Lecomte et al. 

(2000) for the detection of E. lata by PCR directly from infected grapevine wood material 

was tested.  These authors designed primers for the detection of E. lata from ITS 

sequence data and from randomly amplified polymorphic DNA (RAPD) fragments.  In 
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particular, the primer pair Lata 1 and Lata 2.2 derived from ITS sequences, was tested 

because Lecomte et al. (2000) obtained positive results using these primers. 

 

 

3.3  RESULTS 

3.3.1  Sequencing and oligonucleotide design 

Sequences from the four molecular markers used in this study (ITS, β-tubulin, large 

subunit and elongation factor-1) were each aligned using a manual alignment program 

(Se-Al 2.0a8) and potential species-specific primers were designed using Primer 3 

(http://www-genome.wi.mit.edu/cgi-bin/primer/primer3).  Selected oligonucleotides for 

the ITS and LSU regions were synthesized by IDT Technologies (Whitehead Scientific, 

SA) and were tested by reverse dot blot.  Although oligonucleotides were developed from 

β-tubulin sequence data, they were not tested in the reverse dot blot hybridisation 

method.  This was due to problems encountered during a DNA phylogeny study using 

this marker (Chapter 2).  The universal primers used, Bt2b/T1, did not consistently 

amplify a region during PCR.  The PCR had to be repeated, sometimes more than once, 

before a PCR fragment was obtained. 

 

3.3.2  Reverse dot blot with immobilised oligonucleotides 

The optimum conditions selected for hybridisation and washes were found to be 52oC 

with subsequent washes using 2.0X SSC / 0.1% SDS.  These conditions were optimal for 

the detection of both Eutypa and Botryosphaeriaceae species.  In all cases the 

hybridisation results were consistent and highly reproducible. 

 

DNA from E. lata isolates that was labelled and purified to be used as probes, hybridised 

to the E. lata ITS oligonucleotides, Ela1 and Ela2, (Fig. 3-1A).  None of the other 

members of Diatrypaceae tested (Fig. 3-1B – G) hybridised to these oligonucleotides.  

Probes from E. leptoplaca hybridised to E. leptoplaca ITS oligonucleotides, Elep1 and 

Elep2, (Fig. 3-1B), but probes from any of the other fungal genera tested (Fig. 3-1A; C – 

G) did not. 
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From the large subunit sequence data, oligonucleotides were only designed for the 

detection of E. lata (LS1 and LS2) by reverse dot blot hybridisation.  The amplification 

of a partial region of the large subunit did not show much sequence variation between E. 

lata and E. leptoplaca (Chapter 2; Fig. 2-3).  This made the design of species-specific 

primers difficult.  Nevertheless, many of the isolates of E. lata used as probes hybridised 

to the oligonucleotides LS1 and LS2.  The result of one probe, E. lata STE-U 5519, is 

shown (Fig. 3-2A).  Eutypa leptoplaca probes hybridised to oligonucleotide LS1, but 

after washes at increasing stringencies the pathogen did not hybridise to the 

oligonucleotide (result not shown).  None of the probes from the other related species 

hybridised to the two oligonucleotides (Fig. 3-2B – F). 

 

For the detection of species of Botryosphaeriaceae from grapevine, oligonucleotides were 

designed from the elongation factor-1α sequence data.  Data generated from amplification 

of the ITS region could not be used for the design of oligonucleotides because of the 

close-relatedness between taxa.  Oligonucleotides, Bob-EF1, Bob-EF2, Bdo-EF1, Bdo-

EF2, Blu-EF1, Blu-EF2, Bpa-EF1 Bpa-EF2 and Bri-EF were designed for D. seriata, B. 

dothidea, N. luteum, N. parvum and N. ribis, respectively. 

 

Probes prepared from isolates of N. ribis hybridised to the N. ribis oligonucleotide, Bri-

EF (Fig. 3-3A), while probes from B. dothidea isolates hybridised to both B. dothidea 

oligonucleotides, Bdo-EF1 and Bdo-EF2 (Fig. 3-3B).  Probes from D. seriata hybridised 

to one of the B. dothidea oligonucleotides, Bdo-EF2 (Fig. 3.3C).  Probes from N. luteum 

hybridised to both oligonucleotides, Blu-EF1 and Blu-EF2 (Fig. 3-3D), and N. parvum 

probes hybridised to both oligonucleotides, Bpa-EF1 and Bpa-EF2 (Fig. 3-3E).  With the 

exception of the oligonucleotides Blu-EF1 and Blu-EF2 which respectively detected 

isolates of E. lata (Fig. 3-3F) and C. ampelina (Fig. 3-3I), the rest of the oligonucleotides 

did not detect other species which occur together with a particular Botryosphaeriaceae 

species in infected wood tissue (Fig. 3-3F – I).  These immobilised oligonucleotides 

were, therefore, mostly specific for the detection of the species they were designed for.  

Unfortunately, the oligonucleotides designed for the detection of B. obtusa were less 
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successful.  They were not specific and hybridised to probes of other diatrypaceous fungi 

as well (Fig. 3-4A - C). 

 

 

3.3.3  Direct detection of E. lata, E. leptoplaca and Botryosphaeriaceae species from 

grapevine wood 

PCR amplification of the ITS region from DNA obtained from infected grapevine 

material using the CTAB extraction protocol was inconsistent.  The addition of 

polyvinyl-pyrrolidone (PVP) did not improve the quality of DNA for PCR.  Similarly, the 

inclusion of -mercaptoethanol to the PCR reactions did not improve the PCR results. 

 

PCR amplification of the DNA recovered by the method described by Lecomte et al. 

(2000) with the universal primers did not produce a single PCR fragment (Fig. 3-5; lanes 

5- 8).  Successful amplification of the fungal species did not occur regardless of the DNA 

template dilutions used.  The wood shaving samples were incubated at room temperature 

to encourage the release of the fungi into the solution.  This did not improve the 

amplification of DNA and positive PCR fragments were not obtained.  Positive controls 

using genomic DNA from pure isolates yielded PCR products of the expected size 

amplified with the universal ITS primers (Fig. 3-5; lanes 1 – 4). 

 

 

3.3.4  Detection of E. lata by PCR based on primers designed by Lecomte et al. 

(2000) 

Eutypa lata could be detected by PCR with the primers Lata 1/Lata 2.2, but only when 

pure preparations of DNA were used (Fig. 3-6; lanes 1 - 4).  Included with E. lata in the 

analysis were pure preparations of DNA from the following isolates: Botryosphaeria 

dothidea, N. luteum, N. parvum, N. ribis, E. leptoplaca, Eutypella vitis and C. ampelina.   
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Eutypa lata 
STE-U 5525 

 
 

Eutypa leptoplaca 

STE-U 5581 
 
 

Cryptovalsa ampelina 
STE-U 5701 

 
 

Botryosphaeria dothidea 

CMW 8000 
 

 
Neofusicoccum. parvum 

CMW 9081 
 
 

Neofusicoccum ribis 

CMW 7772 
 
 

Cryptovalsa ampelina 
STE-U 5622 

Fig. 3-1 A – G.  Reverse dot blot hybridisation with immobilised specific oligonucleotides to 
demonstrate specificity of the Eutypa lata oligonucleotides (Ela1 and Ela2) and the Eutypa leptoplaca 
oligonucleotides (Elep1 and Elep2).  The strains listed on the left were used to prepare the probes for 
each hybridisation.  The first three dots on the left are controls (C.): detection = control DNA amplified 
and labelled with alkaline stable digoxigenin-11-dUTP; oligonucleoide = universal ITS 2; and ITS 
rDNA = amplified and mixed ITS I and ITS II from wide range of genera.  A negative control, Botrytis 
cinerea, was added, as no hybridisation should occur at this site. 
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Fig. 3-2 A – F. Reverse dot blot hybridisation with immobilised specific oligonucleotides to 
demonstrate specificity of the Eutypa lata oligonucleotides (LS1 and LS2).  The strains listed on the 
left were used to prepare the probes for each hybridisation.  The first three dots on the left are controls 
(C.): detection = control DNA labelled with alkaline stable digoxigenin-11-dUTP; oligonucleoide = 
universal LROR; DNA mix = amplified and mixed large subunit region from wide range of genera, 
including related species, and unrelated = a negative control, Phoma sp., was added, as no 
hybridisation should occur at this site. 
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Fig. 3-3 A – I. Reverse dot blot hybridisation with immobilised specific oligonucleotides to demonstrate specificity of the 
Botryosphaeria spp. oligonucleotides.  The strains listed on the left were used to prepare the probes for each hybridisation.  
The controls are (C.): detection = control DNA labelled with alkaline stable digoxigenin-11-dUTP; oligonucleoide = 
universal EF 986R; DNA mix = amplified and mixed elongation factor region from wide range of genera including related 
species, and unrelated = a negative control, Phoma sp., was added, as no hybridisation should occur at this site. 
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Fig. 3-4 A – C. Reverse dot blot hybridisation with immobilised specific oligonucleotides to demonstrate 
specificity of the Botryosphaeria spp. oligonucleotides.  The strains listed on the left were used to prepare 
the probes for each hybridisation.  The controls are (C.): detection = control DNA labelled with alkaline 
stable digoxigenin-11-dUTP; oligonucleoide = universal EF1-986r; and unrelated = a negative control, 
Phoma sp., was added, as no hybridisation should occur at this site. 
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  M           1           2           3           4           C          5            6          7           8        C 

1000 bp 

 500 bp 

Fig. 3-5.  PCR amplification of the DNA recovered by the method described by Lecomte et 
al. (2000) with ITS primers ITS4/ITS5.  Lanes: M = 100bp ladder, (1) E. lata STE-U 
5525; (2) E. leptoplaca STE-U 5581; (3) Cryptovalsa ampelina STE-U 5701; (4) 
Cryptovalsa ampelina STE- U 5622; (5) E. lata STE-U 5525; (6) E. leptoplaca STE-U 
5581; (7) Cryptovalsa ampelina  STE-U 5701; (8) Cryptovalsa ampelina STE-U 5622; C 
= negative control.  The positive controls, lanes 1 to 4, are genomic DNA obtained from 
pure isolates. 
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M      1       2      3       4       C     5      6      7      8       9      10    11    12     13    14   

1000 bp 

500 bp 

Fig. 3-6. PCR amplification of pure DNA preparations of Eutypa and related isolates with 
primers Lata 1/Lata 2.2 (Lecomte et al., 2000).  Lanes: M = 100 bp ladder; (1) E. lata STE-
U 5519; (2) E. lata STE-U 5520; (3) E. lata STE-U 5525; (4) E. lata STE-U 5527; (5) E. 
lata STE-U 5533; (6) E. leptoplaca STE-U 5581; (7) C. ampelina. STE-U 5701; (8) C. 
ampelina STE-U 5622; (9) N. ribis CMW 7772; (10) N. luteum CMW 10309; (11) D. 
seriata CMW 568; (12) B. dothidea CMW 8000; (13) N. parvum CMW 9081; (14) 
Eutypella vitis STE-U 5551.  C = negative control. 



 

 

91

 

The primers amplified a PCR fragment in each of these isolates, as well.  The primers 

Lata 1/Lata 2.2 amplified a PCR fragment in E. leptoplaca (Fig. 3.6; lane 6), in one 

isolate of C. ampelina (Fig. 3.6; lane 7) but not in the other (Fig. 3.6; lane 8).  These 

primers also amplified a PCR fragment in DNA preparations from B. dothidea (Fig. 3.6; 

lanes 11 and 12) and in E. vitis (Fig. 3.6; lane 14).  Smears were obtained for those 

isolates which did not produce a PCR fragment, namely, C. ampelina (Fig. 3.6; lane 8), 

N. ribis (Fig. 3.6; lane 9), N. luteum (Fig. 3.6; lane 10) and N. parvum (Fig. 3.6; lane 13). 

 

 

 

3.4 DISCUSSION 

 

The objective of this study was to apply the RDBH method for the screening of grapevine 

material infected with species of Eutypa and Botryosphaeriaceae implicated as grapevine 

pathogens.  Lardner et al. (2005), Rolshausen et al. (2004) and Lecomte et al. (2000) 

developed molecular methods that can identify and detect E. lata.  Lardner et al. (2005) 

developed sequence characterised amplified regions (SCARs) to identify E. lata directly 

from grapevine wood and in mixed cultures.  Rolshausen et al. (2004) developed a PCR-

RFLP method for the identification of E. lata while Lecomte et al. (2000) designed PCR 

primers from ribosomal DNA ITS sequences and from randomly amplified polymorphic 

DNA fragments for the detection of E. lata in grapevine wood samples.  This, however, is 

the first study in which RDBH has been used to detect E. lata and E. leptoplaca in a 

single assay.  This is also the first study in which B. dothidea, N. luteum, N. parvum and 

N. ribis have been detected, in a single assay, using reverse dot blot hybridisation. 

 

Reverse dot blot hybridisation was developed for the detection of mutations related to 

human disorders (Saiki et al., 1989) and was subsequently developed for the detection of 

bacteria (Voordouw et al., 1993, McManus and Jones, 1995).  The efficacy of the 

technique was then applied for the identification of oomycetes (Levesque et al., 1998). 
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In the present study RDBH was successfully applied for the detection of the pathogens 

involved in Eutypa dieback and selected members of Botryosphaeriaceae responsible for 

diseases in grapevines.  The species-specific oligonucleotides designed from the ITS 

sequence data for the positive identification of E. lata and E. leptoplaca could 

consistently detect these pathogens during the RDBH method.  For the detection of E. 

lata and E. leptoplaca involved in the Eutypa disease complex, the ITS region proved the 

most useful for the design of the species-specific oligonucleotides and as several copies 

of the ITS rDNA region can be found in a genome, ITS-based detection can be more 

sensitive than detection for a single copy amplicon.  The ITS region also provided the 

most consistent PCR amplification rates of the fungal DNA used in the RDBH method. 

 

The β-tubulin region is well able to distinguish between Eutypa species (Chapter 2; Fig. 

2-2).  However, the use of its universal primers Bt2b/T1 in RDBH did not result in 

consistent amplification.  Successful amplification of the partial region of the 5’-end of 

the gene was unpredictable, i.e. a PCR product was inconsistenly obtained.  This 

disadvantage would account for too many delays in trying to obtain a PCR product for it 

to be useful in RDBH. 

 

In the case of the large subunit, only a partial region was amplified and sequenced.  The 

sequence variation between E. lata and E. leptoplaca was minimal and made the design 

of species-specific oligonucleotides difficult.  Also, the lack of comparative large subunit 

sequence data from other diatrypaceous fungi in the GenBank database would not result 

in the design of species-specific oligonucleotides with high confidence.  As a case in 

point, Lecomte et al. (2000) based the design of their six primers said to detect E. lata on 

one isolate, i.e. isolate BX1-10.  At the time when these primers were designed, there 

were no other representative diatrypaceous fungi in GenBank.  Since then, several 

sequences of Diatrypaceae have been deposited, and these primers were shown to lack 

specificity (Rolshausen et al., 2004, Lardner et al., 2005).   

 

In the case of the several species of Botryosphaeriaceae found on grapevines, all capable 

of causing disease (Phillips, 1998 and 2002; Van Niekerk et al., 2004; Taylor et al., 
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2005), the ITS region, although able to assess variability between species (Dupont et al., 

2000), was insufficient in distinguishing between closely related species (Tooley et al., 

1996; Taylor and Fischer, 2003; Crous et al., 2004).  Single gene phylogenetic studies, 

although valuable to Botryosphaeriaceae taxonomy (Jacobs and Rehner, 1998; Denman et 

al., 2000; Ogata et al., 2000; Taylor et al., 2005) have not differentiated between closely 

related sequences, and therefore, multiple gene phylogenies are necessary to resolve the 

species (Taylor et al., 2000).  Many studies have used sequence data derived from 

multiple molecular markers to resolve the Botryosphaeriaceae (Slippers et al., 2004a; 

2004b; Van Niekerk et al., 2004).  Consequently, species-specific oligonucleotides were 

synthesised from elongation factor-1α sequence data of the Botryosphaeriaceae found on 

grapevines in South Africa (Van Niekerk et al., 2004) for the use in the RDBH assays. 

 

Species-specific oligonucleotides designed from the elongation factor-1α sequence data 

for the positive identification of B. dothidea, N. luteum, N. parvum and N. ribis could 

consistently detect these pathogens during the RDBH technique, with the exception of 

oligonucleotides Bdo-EF2, Blu-EF1, Blu-EF2, Bob-EF1 and Bob-EF2 that detected 

isolates other than for which they were specifically designed.  From the species reported 

as pathogens of grapevines in South Africa, namely N. ribis, B. dothidea and D. seriata, 

(Crous et al., 2000), only D. seriata was consistently isolated.  No isolates of B. dothidea 

or N. ribis were isolated from grapevines in South Africa (Van Niekerk et al., 2004).  The 

RDBH technique employed here was, therefore, unsuccessful for the detection of D. 

seriata, the Botryosphaeriaceae species most prevalent on grapevines in South Africa.  

However, the availability of oligonucleotides that can detect for B. dothidea, N. luteum, 

N. parvum and N. ribis would contribute to diagnostic tests screening for the presence of 

these and other members of Botryosphaeriaceae from grapevine material.  Van Niekerk et 

al. (2004) also isolated B. rhodina, B. australis, N. parvum from grapevines, in addition 

to two new Fusicoccum species, namely F. viticlavatum Van Niekerk & Crous and F. 

vitifusiforme Van Niekerk & Crous.   

 

In addition to this lack of success, the RDBH method was not amenable to the detection 

of pathogens directly from field or environmental diagnostic samples but required pure 



 

 

94

 

cultures.  The oligonucleotides designed in this study could not detect the target 

pathogens directly from infected wood tissue, which reduces the value of this method.  

 

The lack of success in the direct detection of the fungal pathogens targeted in this study 

could be explained by (1) the use of universal primers in RDBH allowed for the potential 

amplification of several other fungi inhabiting the infected grapevine, (2) the presence of 

other species in the Diatrypaceae (Cryptovalsa ampelina and Eutypella vitis) complicates 

the positive identification of the target pathogens, and (3) the presence of phenolics, the 

most important PCR-inhibiting compounds present in plant tissue (Nielsen et al., 2002), 

prevents positive amplification of the target pathogens. 

 

The use of universal primers from the molecular regions mentioned could potentially 

amplify several fungi on infected plant material, but this was perhaps not the greatest 

drawback in the direct detection of the target pathogens.  The greatest drawback 

encountered in the direct detection of the target pathogens was the PCR-inhibiting 

compounds present in the plant tissue.  Lardner et al. (2005) found that the addition of 

PVP enhanced amplification but not in all reactions.  PCR bands were either faint or not 

visible on the gels.  The addition of PVP would thus not necessarily overcome the 

inhibitory effect the presence of phenolic compounds has on PCR.  The lack of success in 

detecting the target pathogens directly from the infected wood tissue is likely due to the 

continued presence of phenolic compounds despite the addition of PVP and even organic 

solvents added to a PCR. 

 

Organic solvents shown to enhance PCR could affect the melting temperature of 

oligonucleotides and thereby influence strand separation in a PCR reaction (Pomp and 

Medrano, 1991).  Levesque et al. (1998) stated that the standardisation of the melting 

temperatures of the oligonucleotides is a critical consideration in RDBH.  If organic 

solvents affect the melting temperature it would be difficult to standardise the conditions 

for a successful RDBH assay in the direct detection of pathogens.  Optimal hybridisation 

conditions need to be accurately determined, particularly if several pathogens are to be 

integrated in a single assay.  
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In addition, the DNA isolation method used in this chapter was optimised for the isolation 

of PCR-competent DNA from leaf material, and not woody tissue.  Lardner et al. (2005) 

tested several DNA extraction protocols to obtain PCR-competent DNA.  The only 

protocol which met the requirements was obtained with a DNA isolation kit, the Bio-101 

soil DNA extraction kit, which proved too expensive for the routine detection of E. lata.   

 

The rapid DNA method described by Lecomte et al. (2000) failed to produce a single 

PCR fragment, primarily because heating the infected material to 95oC apparently does 

not remove the phenolic compounds.  The primers Lata 1/Lata 2.2 were not specific for 

E. lata as previously thought but could amplify a fragment in E. leptoplaca and in related 

diatrypaceous fungi, viz., C. ampelina and E. vitis.   

 

Reverse dot blot hybridisation can be used for the identification and detection of the 

pathogens involved in Eutypa dieback and Botryosphaeriaceae species responsible for 

diseases on grapevines.  The method as described here, though, could not be used for 

detection directly from infected material.  Despite this disadvantage, the RDBH method 

is useful because it allows for the identification of multiple pathogens in a single assay.  

From pure preparations of DNA, oligonucleotides designed for the detection of the two 

Eutypa species and four Botryosphaeriaceae species, although not tested against a wide 

range of fungi, did not detect the diatrypaceous fungi C. ampelina and E. vitis which 

occur together with the target pathogens in infected wood tissue.  As DNA extraction 

methods are amended, improved and honed, so would it increase the usefulness of 

RDBH.  With the potential use of RDBH as a macroarray with many different 

oligonucleotides bound to a single membrane, the opportunities for the routine 

identification of plant pathogens cannot be discounted.  However, alternative methods 

could be developed for the detection of these pathogens.   

 

Research done on the use of nested primers has shown to increase the sensitivity of 

detection (Henson and French, 1993; McManus and Jones, 1995; Clair et al., 2003; 

Martin et al., 2004).  PCR assays that employ species-specific primers for the detection 

and identification of pathogens are not new, but have their limitations in that these assays 
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only detect one specific pathogen and if another is present it will not generate a positive 

PCR response.  Also, many of these primer pairs can not be applied in situ.  The species-

specific primers developed by Lecomte et al. (2000) developed for the detection of E. 

lata were not tested on other Diatrypaceous fungi.  Rolshausen et al. (2004) tested these 

primers on E. lata isolates collected from grapevines in California and reported a lack of 

specificity.  This is consistent with our findings presented here.  Rolshausen et al. (2004) 

developed a technique for the detection of E. lata by PCR-RFLP of the rDNA ITS region 

but the method required pure cultures.  Lardner et al. (2005) was more successful with 

the SCAR markers but this was not cost effective because of the expense of the DNA 

isolation using the Bio-101 soil DNA extraction kit.  The presence of polyphenols that 

were isolated with the genomic DNA in other protocols resulted in PCR inhibition. 

 

These technical problems could be resolved with the development of nested primers to 

use in a second round of amplification, i.e. a set of universal primers is used in a first 

round of amplification followed by a second round of amplification using species-specific 

nested primers.  Species-specific nested primers would be used to increase the sensitivity 

of the PCR and reduce the “incidence of false negatives” (Martin et al., 2000). 

 
Molecular methods can not be discounted as a valuable tool in diagnostics because it 

ensures reliability and accuracy of the results.  With the advances made in disease 

diagnosis, it is required that protocols and methods be revised on a regular basis to ensure 

that the demands of the industries for quick and accurate diagnostic tools are met.  The 

development of new methods also ensure that costs of new tests are evaluated and that the 

most efficient and cost effective methods are employed. 

 

 

 

 

 

 

 

 



 

 

97

 

REFERENCES 

 

Carbone, I. and Kohn, L.M.  1999.  A method for designing primer sets for speciation 

studies in filamentous ascomycetes.  Mycologia 91: 553 – 556. 

 

Clair, D., Larrue, J., Aubert, G., Gillet, J., Gloquemin, G. and Boudon-Padieu, E.  2003.  

A multiplex nested-PCR assay for sensitive and simultaneous detection and direct 

identification of phytoplasma in the Elm yellows group and Stolbur group and its use in 

survey of grapevine yellows in France.  Vitis 42: 151 – 157. 

 

Crous, P.W., Slippers, B., Wingfield, M.J., Rheeder, J., Marasas, W.F.O., Phillips, A.J.L., 

Alves, A., Burgess, T., Barber, P. and Groenewald, J.Z.  2006.  Phylogenetic lineages in 

the Botryosphaeriaceae.  Studies in Mycology 55: 235 – 253. 

 

Crous, P.W., Phillips, A.J.L. and Baxter, A.P.  2000.  Phytopathogenic fungi from South  

Africa.  Stellenbosch, South Africa: Department of Plant Pathology Press, University of 

Stellenbosch Printers: 267. 

 

Crous, P.W., Groenewald, J. Z., Pongpanich, K., Himaman, W., Arzanlou, M. and 

Wingfield, M.J.  2004.  Cryptic speciation and host specificity among Mycosphaerella 

spp. occurring on Australian Acacia species grown as exotics in the tropics.  Studies in 

Mycology 50: 457 – 469. 

 

Denman, S., Crous, P.W., Taylor, J.E., Kang, J.-C., Pascoe, I. and Wingfield, M.J.  2000.  

An overview of the taxonomic history of Botryosphaeria, and a re-evaluation of its 

anamorphs based on morphology and ITS rDNA phylogeny.  Studies in Mycology 45: 

129 – 140. 

 

Dupont, J., Laloui, W., Magnin, S., Larignon, P. and Roquebert, M.F.  2000.  

Phaeoacremonium viticola, a new species associated with Esca disease of grapevine in 

France.  Mycologia 88: 786 – 796. 



 

 

98

 

Glass, N.L. and Donaldson, G.C.  1995.  Development of primer sets designed for use 

with the PCR to amplify conserved genes from filamentous ascomycetes.  Applied and 

Environmental Microbiology 61: 1323 – 1330. 

 

Henson, J.M. and French, R.  1993.  The polymerase chain reaction and plant disease 

diagnosis.  Annual Review of Phytopathology 31: 81 – 109. 

 

Jacobs, K.A. and Rehner, S.A.  1998.  Comparison of cultural and morphological 

characters and ITS sequences in anamorphs of Botryosphaeria and related taxa.  

Mycologia 90: 601 – 610. 

 

Lardner, R., Stummer, B. E., Sosnowski, M.R., and Scott, E.S.  2005.  Molecular 

identification and detection of Eutypa lata in grapevine.  Mycological Research 109: 799 

– 808. 

 

Lecomte, P., Peros, J.-P., Blanchard, D., Bastien, N., and Delye, C.  2000.  PCR assays 

that identify the grapevine dieback fungus Eutypa lata.  Applied and Environmental 

Microbiology 66: 4475 – 4480. 

 

Lee, S.B. and Taylor, J.W.  1990.  Isolation of DNA from fungal mycelia and single 

spores.  In:  M.A. Innis, D.H. Gelfand., J.J. Sninsky and T.J. White (eds).  PCR 

Protocols:  A guide to methods and spplications.  Academic Press, San Diego, California:  

282 – 287. 

 

Levesque, C.A., Harlton, C.E. and De Cock, A.W.A.M.  1998.  Identification of some 

oomycetes by reverse dot blot hybridization.  Phytopathology 88: 213 – 222. 

 

Martin, R.R., James, D. and Levesque, C.A.  2000.  Impacts of molecular diagnostic 

technologies on plant disease management.  Annual Review of Phytopathology 38: 207 – 

239. 

 



 

 

99

 

McManus, P.S. and Jones, A.L.  1995.  Detection of Erwinia amylovora by nested PCR 

and PCR-dot-blot and reverse dot blot hybridizations.  Phytopathology 85: 618 – 623. 

 

Nielsen, K., Yohalem, D.S. and Jansen, D.F. 2002.  PCR detection and RFLP 

differentiation of Botrytis species associated with neck rot of onion.  Plant Disease 86: 

682 – 686. 

 

Ogata, T., Sano, T. and Harada, Y.  2000.  Botryosphaeria spp. isolated from apple and 

several deciduous fruit trees are divided into three groups based on the production of 

warts on twigs, size of conidia, and nucleotide sequences of nuclear ribosomal DNA ITS 

regions.  Mycoscience 41: 331 - 337. 

 

Phillips, A.J.L.  2002.  Botryosphaeria species associated with diseases of grapevine in 

Portugal.  Phytopathologia Mediterranea 41: 3 – 18. 

 

Phillips, A.J. L.  1998.  Botryosphaeria dothidea and other fungi associated with 

excoriose and dieback of grapevines in Portugal.  Journal of Phytopathology 146: 327 – 

332. 

 

Pomp, D. and Medrano, J.F.  1991.  Organic solvents as facilitators of polymerase chain 

reaction.  Biotechniques 10: 58 – 59. 

 

Rehner, S.A. and Samuels, G.J.  1994.  Taxonomy and phylogeny of Gliocladium 

analysed from nuclear large subunit ribosomal DNA sequences.  Mycological Research 

98: 625 – 634. 

 

Rolshausen, P.E., Trouillas, F. and Gubler, W.D.  2004.  Identification of Eutypa lata by 

PCR-RFLP.  Plant Disease 88: 925 – 929. 

 



 

 

100

 

Saiki, R.K., Walsh, P.S., Levenson, C.H. and Erlich, H.A.  1989.  Genetic analysis of 

amplified DNA with immobilized sequence-specific oligonucleotide probes.  Procedures 

in National Academy of Science 86: 6230 – 6234. 

 

Siebert, J.B.  2001.  Eutypa:  The economic toll on vineyards.  Wines & Vines 50 – 56. 

 

Slippers, B., Crous, P.W., Denman, S., Coutinho, T.A., Wingfield, B.D. and Wingfield, 

M.J.  2004a.  Combined multiple gene genealogies and phenotypic characters 

differentiate several species previously identified as Botryosphaeria dothidea.  

Mycologia 96: 83 – 101. 

 

Slippers, B., Fourie, G., Crous, P.W., Coutinho, T.A., Wingfield, B.D., Carnegie, A.J. 

and Wingfield, M.J.  2004b.  Speciation and distribution of Botryosphaeria spp. on native 

and introduced Eucalyptus trees in Australia and South Africa.  Studies in Mycology 50: 

343 – 358. 

 

Taylor, A., Hardy, G.E.St.J., Wood, P. and Burgess, T.  2005.  Identification and 

pathogenicity of Botryosphaeria species associated with grapevine decline in Western 

Australia.  Australian Plant Pathology 34: 187 – 195. 

 

Taylor, J. W. and Fischer, M.C.  2003.  Fungal multilocus sequence typing – it’s not just 

for bacteria.  Current Opinion in Microbiology 6: 351 – 356. 

 

Taylor, J.W., Jacobson, D.J., Kroken, S., Dasuga, T., Geiser, D.M, Hibbett, D.S. and 

Fischer, M.C.  2000.  Phylogenetic species recognition and species concepts in fungi.  

Fungal Genetics and Biology 31: 21 – 32. 

 

Tooley, P. W., Carras, M.M. and Falkenstein, K.F.  1996.  Relationships among group IV 

Phytophthora species inferred by restriction analysis of the ITS2 region.  Journal of 

Phytopathology 144: 363 – 369. 

 



 

 

101

 

Trouillas, F.P. and Gubler, W.D.  2004.  Identification and characterization of Eutypa 

leptoplaca, a new pathogen of grapevine in Northern California.  Mycological Research 

108: 1195 – 1204. 

 

Van Niekerk, J.M., Crous, P.W., Groenewald, J.Z., Fourie, P.H. and Halleen, F.  2004.  

DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on 

grapevines.  Mycologia 96: 781 – 798. 

 

Van Niekerk, J.  2003.  Economic impact of Eutypa dieback of grapevines.  Technical 

Wynboer 173: 78 – 80. 

 

Vilgalys, R. and Hester, M.  1990.  Rapid genetic identification and mapping of 

enzymatically amplified ribosomal DNA from several Cryptococcus species.  Journal of 

Bacteriology 172: 4238 – 4246. 

 

Voordouw, G., Shen, Y., Harrington, C.S., Telang, A.J., Jack, T.R. and Westlake, D.W.S.  

1993.  Quantitative reverse sample genome probing of microbial communities and its 

application to oil field production waters.  Applied and Environmental Microbiology 59: 

4101 – 4113. 

 

White, T.J., Bruns, T., Lee, S. and Taylor, J.  1990.  Amplification and direct sequencing 

of fungi ribosomal RNA genes for phylogenetics.  In:  PCR protocols.  A guide to 

methods and applications.  Academic Press, San Diego, CA. 

 

 

 

 


	TITLE PAGE
	SUMMARY + TABLE OF CONTENTS
	THESIS OCTOBER 2007



