
The Development and Evaluation of an Electronic

Serious Game Aimed at the Education of Core

Programming Skills

by

Leon van Niekerk

MA (Socio-Informatics)

Thesis presented in fulfilment of the requirements for the

degree of Master of Arts in Socio-Informatics in the Faculty

of Arts and Social Science at Stellenbosch University

Department of Information Science
Stellenbosch University

Private Bag X1, Matieland 7602, South Africa

Supervisors:

Prof. Bruce W. Watson Prof. G-J van Rooyen

December 2016

Declaration

By submitting this report electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and publication
thereof by Stellenbosch University will not infringe any third party rights and
that I have not previously in its entirety or in part submitted it for obtaining any
qualification.

December 2016Date: .

Copyright © 2016 Stellenbosch University
All rights reserved

ii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

Acknowledgements need to be given to the following people and organisations for
their assistance with the production of this thesis:

• Prof Bruce Watson for his guidance and supervision.

• Prof. Gert-Jan van Rooyen for his supervision and guidance.

• Richard Barnett for his help in data gathering.

• Maryke de Wet for her help with language editing.

• Naspers and the MIH Media Lab for providing an amazing working environ-
ment.

• The Department of Statistics and Actuarial Science at Stellenbosch Univer-
sity for their help with data analysis.

iii

Stellenbosch University https://scholar.sun.ac.za

Abstract

English

The integration of information technology with everyday life has increased the
demand for the number of programmers and computer scientists, yet the number of
students moving into these fields professionally has not kept up with this demand.

Education, and fostering interest is one potential way to increase the number of
students moving into these fields. While good teachers and schools can develop this
interest in students, this research explores the use of an educational serious game
to both teach students the fundamentals of programming, while also increasing
their interest in the field.

Serious games are digital games with a primary purpose other than entertainment.
In the case of this research, the purpose is education.

A prototype serious game was developed to teach students the concepts and pro-
cesses involved in programming and algorithmic development, rather than the
writing of programming code. Abstract symbols represent blocks of conceptual
code, which can be manipulated by the player in order to “program” solutions for
predefined problems.

In addition, the research called for testing the prototype. For this purpose, intro-
ductory programming students at the University of Stellenbosch were approached
as test subjects. These students were asked firstly to complete a language-agnostic
programming aptitude questionnaire, also developed as part of the research, at the
start and end of their semester; and secondly, a subset was asked to play the game
during the semester.

Several metrics were gathered from these tests, namely, their university marks
for the course, the results of the language-agnostic aptitude test, the previous
programming and mathematics experience of the students, and an opinion ques-

iv

Stellenbosch University https://scholar.sun.ac.za

v

tionnaire from the subset of students who played the game.

While student fallout throughout the course was expected, the small class size
and voluntary nature of their involvement in the study led to an unexpectedly low
number of usable data points. However, it was possible to obtain the course marks
from the students without their involvement. Thus, the test results were used in
conjunction with the valid university course marks to establish a conclusion.

Students who played the prototype scored significantly better in the quantitative
tests than those who did not. This in combination with the results of other earlier
studies indicate that games can be used as tools for the enhancement of the learning
process.

Stellenbosch University https://scholar.sun.ac.za

vi ABSTRACT

Afrikaans

Die integrasie van informasietegnologie met die alledaagse lewe het gelei tot ’n
toename in die aanvraag vir programmeerders en rekenaarwetenskaplikes. Ter-
selfdertyd het die aantal studente wat professioneel in hierdie velde inbeweeg nie
bygebly met hierdie aanvraag nie.

Opleiding, asook die aanmoediging van belangstelling in hierdie velde is maniere
om die aantal studente te vermeerder. Goeie onderwysers en skole kan ook moont-
lik hierdie belangstelling kweek.Hierdie navorsing ondersoek egter die gebruik van
’n opvoedkundige, ernstige speletjie om die kernkonsepte van programmering oor
te dra, asook belangstelling onder studente te kweek.

Ernstige speletjies is digitale speletjies met ’n ander primêre doel as vermaak. Vir
hierdie navorsing was daardie doel opvoedkunde.

’n Prototipe van die ernstige speletjie was ontwikkel om studente te leer van die
konsepte en prosesse betrokke by programmering en algoritme-ontwikkeling, eerder
as die skryf van programmeringskode. Abstrakte simbole stel blokke konseptuele
kode voor, wat kan beheer word deur die speler om oplossings tot vooraf bepaalde
probleme te “programmeer”.

Die navorsing het ook vereis dat die prototipe getoets word. Vir hierdie doel, was
inleidende programmering studente aan die Universiteit van Stellenbosch benader
as respondente. Hierdie studente was gevra om ’n taal-agnostiese programmer-
ingsaanlegvraelys te voltooi aan die begin en einde van die semester.

Hierdie vraelys was ook ontwikkel as deel van die navorsing. ’n Onderafdeling van
die groep studente was ook gevra om gedurende die semester die speletjie te speel.

Verskeie maatstawwe was versamel van hierdie toetse, naamlik die studente se
punte vir die kursus, die resultate van die taal-agnosties aanlegtoets, hul vorige
programmering en wiskunde ervaring, en ’n meningsvraelys uit die onderafdeling
van studente wat die speletjie gespeel het.

Terwyl dit verwag was dat studente sou uit val gedurende die kursus, het die klein
klasgrootte en vrywillige aard van hul betrokkenheid by die studie gelei tot ’n
onverwags lae aantal bruikbare datapunte. Die studente se klaspunte was nietemin
beskikbaar sonder hul vrywillige inset. Die toetsuitslae is dus gebruik, saam met
die geldige klaspunte, om ’n gevolgtrekking te vestig.

Stellenbosch University https://scholar.sun.ac.za

vii

Studente wat die prototipe gespeel het, het op ’n statisties betekenisvolle vlak
beter punte behaal in die kwantitatiewe toetse as dié wat dit nie gespeel het nie.
In kombinasie met die resultate van vorige studies dui hierdie resultaat aan dat
speletjies gebruik kan word as instrumente vir die verbetering van die leerproses.

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration ii

Acknowledgements iii

Abstract iv

Contents viii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Goals . 2

1.2.1 Thesis Statement . 3

1.2.2 Hypotheses . 3

1.2.3 Objectives . 3

1.3 Scope and Limitations . 4

1.4 Thesis Document Structure . 4

2 Literature Review 6

viii

Stellenbosch University https://scholar.sun.ac.za

ix

2.1 Gamification . 6

Fitocracy . 7

Galaxy Zoo . 7

Stack Overflow . 8

2.1.1 Education . 8

Scratch . 9

Snap! . 9

Codecademy . 10

Quest to Learn . 10

2.2 Serious Gaming . 11

Ribbon Hero 2 . 11

America’s Army . 12

Fold-it . 13

Google Ingress . 14

2.2.1 Education . 14

Google Blocky . 15

Lightbot . 15

Alice . 16

2.2.2 Marques, 2013 . 16

Current attempts at the problem 18

2.3 Summary . 19

3 Game Design and Development 20

3.1 Introduction . 20

3.2 Game Design Background . 21

3.2.1 Programming Concept Focus Area 21

Stellenbosch University https://scholar.sun.ac.za

x CONTENTS

3.2.2 Visualisation . 22

3.2.3 Text- versus Symbol-Based Code Representation 22

3.2.4 Process Flow Diagrams . 24

3.3 Design Decisions . 25

3.3.1 Target Users . 25

3.3.2 Focus Areas of the Game . 25

3.3.3 Game Mechanics . 27

The Level . 27

The Carrier and Flow . 27

Build Time and Run Time 27

Arrows and Direction . 28

Gems . 29

Changing Gem Values . 29

Gem Spawners and Goals 30

Split Symbols . 30

Loops . 31

Walls . 32

Limiting Player Options . 32

3.3.4 Technical Specifications . 32

3.3.5 Level Description . 34

Tutorial 1: Basics . 34

Movers . 34

Tutorial 2: Change . 34

Warm-up . 35

All together . 35

Tutorial 3: Decisions . 35

Stellenbosch University https://scholar.sun.ac.za

xi

Choices . 35

Crossroads . 35

3.4 Summary . 36

4 Test and Experiment Design and Development 37

4.1 Measurement Design . 37

4.1.1 Test Design . 38

Language-Agnostic Test . 38

Other Measurements . 40

4.1.2 Testing Procedure Design 40

4.2 Final Target Group . 42

4.3 Test Deployment . 43

4.4 Test Implementation Issues . 44

4.5 Summary . 44

5 Measurement and Test Results 45

5.1 Introduction . 45

5.2 Language-Agnostic Test . 45

5.3 Previous Computer Science and Mathematics Experience 48

5.4 University Course Marks . 50

5.5 Impression Survey . 52

5.6 Summary . 54

6 Conclusion 55

6.1 Objectives . 55

6.2 Hypotheses . 56

6.3 Summary of Results . 56

Stellenbosch University https://scholar.sun.ac.za

xii CONTENTS

6.4 Comparison with Previous Approaches 57

6.5 Future Work . 58

6.5.1 Restrictions and Limitations 58

Respondent Drop O↵ and Subsequent Scope Limitations . . 58

Limited Sample Selection . 59

6.5.2 Next Steps . 60

Separation of Influences through Larger Sample Groups . . . 60

Qualitative Prototype Testing 61

6.5.3 Incorporating fields in Visualisation 61

Bibliography 62

A First language agnostic programming test 66

B Second language agnostic programming test 79

C Game impression survey 91

D Anonymised end-of-semester university marks 93

E Anonymised impression survey results 95

Stellenbosch University https://scholar.sun.ac.za

List of Figures

2.1 An example of Fitocracy app, showing progress bars and quests. . . . 7

2.2 An example of Galaxy Zoo website, showing classification in progress. 8

2.3 An example of the Stack Overflow reputation system. 9

2.4 An example of a piece of Scratch code. 10

2.5 An example of Codecademy quests. 11

2.6 An example of gamification in Ribbon Hero 2. 12

2.7 Promotional material for America’s Army. 12

2.8 A game of Foldit being played. 13

2.9 A game of Ingress being played. 14

2.10 A Google Blocky maze navigation puzzle with code on the right. . . . 15

2.11 A puzzle in Lightbot 2, featuring player controlled instructions on the
right. 16

2.12 An animation scene being coded in Alice. 17

2.13 A serious game developed at the University of Witwatersrand, show-
ing code at tra�c intersections. 18

3.1 An example of an activity diagram showing a high level website login
algorithm (Lucidchart - Activity Diagram Introduction Page, 2015). . 26

3.2 The carrier . 27

3.3 An arrow pointing upwards. 28

3.4 A full series of red gems . 29

xiii

Stellenbosch University https://scholar.sun.ac.za

xiv LIST OF FIGURES

3.5 An incremental, decremental and colour change symbol. 29

3.6 Spawner and goal. 30

3.7 A split symbol checking for green triangles. 30

3.8 A split symbol customisation menu. 31

3.9 A wall . 32

4.1 A section from the first language-agnostic programming test given to
the students. 39

4.2 An example of a 5-point Likert-scale question. 40

5.1 Mean comparison considering group and time di↵erences. 46

Stellenbosch University https://scholar.sun.ac.za

List of Tables

3.1 The order of concept introduction in a selection of textbooks. 23

3.2 Comparison between game mechanics and programming concepts . . 33

5.1 Fixed E↵ect Test for language-agnostic test results. 46

5.2 The p-value of any group being distinct when compared to each other
group. 47

5.3 Least Significant Di↵erence (LSD) test between groups. 47

5.4 Descriptive statistics for language-agnostic test. 48

5.5 Responses for “Please indicate your history with computer science.” . 49

5.6 Responses for “Please indicate your history with mathematics.” . . . 49

5.7 Initial data groupings received and their sizes 50

5.8 Compressed data groupings received and their sizes 51

5.9 Descriptive statistics of university marks 51

5.10 The p-value of any group being distinct when compared to each other
group . 51

5.11 Impression Survey: number of respondents per answer category . . . 53

D.1 The raw class marks for the respondants 94

xv

Stellenbosch University https://scholar.sun.ac.za

xvi LIST OF TABLES

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Gamification, or gameful design, is the practice of incorporating elements of game
design into systems that do not require them, in order to increase the level of user
engagement with the systems. To some extent, this practice can theoretically be
applied to any system, not just digital ones. Serious gaming, on the other hand,
is the use of a game for any primary purpose other than entertainment. These
purposes include, but are not limited to, advertising, education, recruitment and
information gathering. Both gamification and serious games make use of games:
serious gaming as a whole, whereas gamification uses individual elements of game
design.

The research presented here demonstrates that serious gaming in particular, shows
promise in teaching students abstract skills, such as computer programming. It
is hoped that the advantage of user engagement o↵ered by these approaches will
prove useful in promoting an interest in computer programming as a field of further
study.

This research then presents three sections. Firstly, an overview of the relevant liter-
ature and past attempts at the problem of educating through game-play. Secondly
it describes in detail an experiment whereby students enrolled in an introductory
programming course were exposed to a serious game prototype containing the same
concepts in addition to their studies. Lastly it presents the quantified results of
said experiment as well as conclusions that can be drawn from it.

It is concluded that the results gathered show a correlation between exposure to
a programming game and results in university course marks. However, due to the
inherent exploratory nature of the research and the unintended small size of the
testing group, further research is recommended to be conclusive.

1

Stellenbosch University https://scholar.sun.ac.za

2 CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Trends over the past decade indicate that the number of students which are mov-
ing into the computer science field, or fields related to it are decreasing. Surveys
administered at the University of California, Los Angeles saw a decline in Com-
puter Science majors amongst freshman of 70% between 2000 and 2005 (Crenshaw
et al., 2008). Similarly, the interest shown by and results of high school learners’
science courses have also declined in South Africa (Muwanga-Zake, 2003).

Even as this decline in the number of prospective computer scientists is happening,
dependence on computer- and internet-based technologies continues to grow. More
and more, existing technologies are linked together and computer chips are finding
their way into a greater variety of objects. There is no indication that this trend
is slowing down (Conti, 2006; Smith, 2011).

This presents a serious discrepancy between the number of new professionals being
produced and the number of software professionals required in the world at large.
This discrepancy needs to be addressed before the cost of developing new software
becomes too high and the number of knowledgeable individuals too low.

Shrinking this discrepancy represents a serious undertaking. It deals not only with
increasing the number of learners and students who have the required technical
knowledge but also with fostering a lasting interest in these fields amongst school
and university students so that they eventually enter these fields professionally.

Stimulating the technical knowledge as well as the interest of learners and students
is an ongoing process. It follows that one of the most crucial periods to foster this
kind of interest is at the beginning of a learner or student’s exposure to the field.
While technical expertise can be improved upon throughout the learning process,
the student must be available, and keen enough, to be taught.

The research presented here focuses on electronic games as a medium of education.
Specifically, it deals with the creation of a serious game, that is to say, a game
with a primary purpose not of entertainment but of informing on the basics of
computer programming.

1.2 Research Goals

This research makes use of an electronic serious game as an aid for computer
science learning.

Stellenbosch University https://scholar.sun.ac.za

1.2. RESEARCH GOALS 3

1.2.1 Thesis Statement

The goal of this research is to answer the following questions:

1. Can a digital serious game be used to enhance an introductory programming
course to increase a student’s understanding of relevant concepts?

2. Can a digital serious game be used to replace an introductory programming
course to establish a student’s understanding of relevant concepts?

As such, the second research question is inherently a stronger version of the first
question.

1.2.2 Hypotheses

Given the research questions in the previous section there are two possible hy-
potheses and one possible null hypothesis.

• H0: No correlation was found between exposure to an electronic serious
game and understanding of introductory concepts.

• H1: A correlation was found between exposure to an electronic serious game
and understanding of introductory concepts, given the additional presence
of a standard introductory programming course.

• H2: A correlation was found between exposure to an electronic serious game
and understanding of introductory concepts, given no other directly relevant
stimuli.

1.2.3 Objectives

This research concerns itself with the use of computer games as a medium for
conveying the core principles of programming. To achieve this exploration requires
the completion of two intertwined objectives.

The first objective is the design and development of a game aimed at conveying
of introductory principles of computer programming. This game has to meet the
following requirements:

Stellenbosch University https://scholar.sun.ac.za

4 CHAPTER 1. INTRODUCTION

1. The game must convey basic programming concepts as described in Chap-
ter 4.

2. The game must be understandable to users without any outside input.

3. The game must be free of any technical issues which would cause it to crash.

4. The game must not contain any conceptual fallacies which could potentially
corrupt the concepts it seeks to convey.

5. The game must run on a relatively wide array of computers, so that its target
audience can easily access it.

The second objective is the testing of the game so as to measure its success. This
section of the research can be split into the following subsections:

1. The location of a group of people on which to test the e↵ectiveness of the
game as a tool for conveying the above mentioned concepts.

2. The identification and gathering of any relevant data on these individuals.

3. If necessary, the development of a measurable testing mechanic that can
be given to those involved in this experiment to test their programming
knowledge over time.

4. The administration of any testing procedure.

5. The processing and analysis of any gathered data.

1.3 Scope and Limitations

Note that the academic subject areas of education, cognitive science, learning, as
well as various fields in visualisation are outside of the scope of this research. This
research makes use of an electronic serious game as a method of knowledge transfer
and quantitatively compares it an accepted classroom-based approach.

1.4 Thesis Document Structure

Following this introductory chapter this thesis will discuss a selection of prominent
examples in the fields of gamification and serious gaming. A special focus is given

Stellenbosch University https://scholar.sun.ac.za

1.4. THESIS DOCUMENT STRUCTURE 5

to the use of gamification and serious gaming techniques in the fields of education,
especially that of computer programming.

Chapter 3 will discuss the design and development of the serious game, followed
by chapter 4 which explores the design of the testing mechanisms used as well as
the rationale for the sampling of those students who took part in the experiment.

Chapter 5 analyses the data gathered through the tests. Finally the conclusion
will consider the results gathered as a whole in chapter 6, describe any perceived
shortcomings and list recommendations for future areas of research.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Literature Review

2.1 Gamification

Gamification, also called gameful design, is the application of game design tech-
niques to non-gaming systems. Over the last three decades the gaming industry
has honed the art of creating engagement between players of games and the games
themselves. As gamification expert Gabe Zichermann said in a presentation to
Google sta↵ members, “Games are the only force on Earth that can get people to
willingly do something they do not want to, without the use of force.”(Zicherman,
2010)

Games have now been part of mainstream culture for multiple generations. Stu-
dents today have more interesting worlds and opportunities available to them than
those of their parent and grandparents. These worlds typically exist as entertain-
ment and distraction and the average student may be more engaged with virtual
game worlds than with everyday life. They may have become used to being en-
gaged with these worlds and implicitly expect the same from their educational
environments. This research looks to these virtual worlds of entertainment as a
source of inspiration on how to engage students and learners in their educational
environment.

Gamification typically involves the application of common game design mechanics
to non-gaming systems (Small Business Labs, 2012), which this research applies to
education. These mechanics are myriad and include leaderboards, point systems,
achievement badges and ranking systems (Hayden, 2011). While these systems
have been shown to produce results, they are missing the ‘play’ part of gameplay
(Entis, 2011).

6

Stellenbosch University https://scholar.sun.ac.za

2.1. GAMIFICATION 7

Figure 2.1: An example of Fitocracy app, showing progress bars and quests.

Fitocracy

Fitocracy is a website and smartphone application aimed at helping people keep
to their exercise regiments (Fitocracy Home Page, 2012). It awards points and
achievements, and publishes milestones to an online social network of the user’s
friends. This combination of gamification and competitiveness has garnered it a
serious user base. It also showcases that weaknesses occur when gamification is
applied to a non gaming system. For example, in order to gather exercise data
about their users, Fitocracy requires individuals to log their own exercise sessions.
This allows opportunity for players to lie and cheat the system. However, the social
element, combined with the nature of exercise, might negate the risk of cheating.

Galaxy Zoo

Galaxy Zoo is an example of gamified crowd-sourcing. On the Galaxy Zoo web-
site, users participate in the classification of deep space photographs of individual
astronomical bodies (Galaxy Zoo Home Page, 2012). Users sort these photographs
based on specific characteristics, such as a galaxy appearing spherical, elliptical,
or spiral. In this way the program gathers information that is very di�cult for
computers to gather through conventional computing. The creators can ensure
that each photograph is classified multiple times by building into the system re-

Stellenbosch University https://scholar.sun.ac.za

8 CHAPTER 2. LITERATURE REVIEW

Figure 2.2: An example of Galaxy Zoo website, showing classification in progress.

dundancies that allow users to verify one another’s classifications. This enables
the system to accurately classify objects by sourcing multiple user classifications.

Stack Overflow

Stack Overflow is a popular web forum where users discuss various topics related
to programming. It has more than 4 million registered users (Stack Overflow User
Page, 2014). Users can vote on any topic or answer if the find it interesting or
specifically useful. The user who provided the question or answer is then awarded
a score related to the number of votes on their answer. A users score is displayed
whenever he makes a post, allowing readers to easily see who is, and who is not a
valued source of information (Stack Overflow Website, 2013).

2.1.1 Education

The following sections cover examples of gamification applied specifically to projects
or products that deal with the teaching of programming or computer science skills.

Stellenbosch University https://scholar.sun.ac.za

2.1. GAMIFICATION 9

Figure 2.3: An example of the Stack Overflow reputation system.

Scratch

Scratch is a graphical programming tool aimed at a novice audience (Scratch Home
Page, 2012). It was developed by the MIT Media Lab with the objective of mak-
ing an easy tool that could be given to students with no programming experience.
It achieves this goal by representing programming logic as interlocking “puzzle
pieces”, instead of traditional text-based code. These pieces join together to form
logical pieces of programming code. The puzzle pieces are colour coded according
to their function and are shaped in such a way that they can only join in specific
ways. For example, a triangular boolean logic piece fits the triangular gap left
open in a conditional statement block. Additionally, Scratch includes an anima-
tion library by default. In this way, not only do students code using a graphical
interface, but because the e↵ects of their coding is shown in a graphical, animated
fashion, it becomes much easier for students to determine the results of their code.

Snap!

Snap! is an advanced o↵shoot of Scratch and aims to extend it to a more mature
audience by adding functionality such as object-orientation, to allow for a wider
variety and greater scale of programs to be developed. Snap! maintains Scratch’s
graphics-based user interface. One of the goals of Snap! is to make Scratch a viable
language for building small applications, making for a smoother transition between
Scratch and a more traditional programming language (BYOB Home Page, 2012).

Stellenbosch University https://scholar.sun.ac.za

10 CHAPTER 2. LITERATURE REVIEW

Figure 2.4: An example of a piece of Scratch code.

Codecademy

Codecademy is web-based attempt at gamifying the learning process for introduc-
tory computer programming. Codecademy uses interactive online lessons coupled
with social networking and badge rewards to teach users to program using a script-
ing language presented in the browser (Codecademy Home Page, 2012). The use
of these badges and points give users, when comparing themselves to their friends,
motivation to improve themselves. Codecademy provides courses on a multitude of
programming languages and concepts, so students can study through a wide range
of skill levels. Each of these courses contain their own relevant sets of gamification
objectives and badges.

Quest to Learn

One notable attempt made at a completely gamified school system is Quest to
Learn, a high-school based in New York City. Quest to Learn is aimed at grade
6-12 learners and opened in 2009 with its first class of 6th graders. A new class
is added each year. Its first cohort of students will graduate in 2015 (Quest to
Learn Home Page, 2012). All aspects of the school were designed by a team of
educators and game designers to maximise engagement with students. Quest to
Learn shows an attempt to use gamification on a large scale within education, and
that gamifying education as a whole is being seriously explored.

Stellenbosch University https://scholar.sun.ac.za

2.2. SERIOUS GAMING 11

Figure 2.5: An example of Codecademy quests.

2.2 Serious Gaming

Serious games have been discussed since 1970 (Abt, 1970) and have also seen
application in education. They can be defined as games with a primary purpose
other than entertainment, such as learning (Derryberry, 2007). The di↵erence
between serious games and gamified systems is that serious games are whole game
systems, whereas a gamified non-game system may incorporate only some elements
from game design. Given this, gamified systems may or may not, for example,
include actual gameplay. Serious games, on the other hand, resemble recognisable
electronic or traditional games, and should ideally provide intrinsic gameplay-
based reasons for users to want to engage with the system.

Ribbon Hero 2

Ribbon Hero 2 is a plug-in for the Microsoft O�ce suite of programs. In the game,
players travel through time with Clippy, the digital o�ce assistant featured in the
same suite (Ribbon Hero 2 Home Page, 2013). Throughout their journey, players
are tasked with completing certain objectives that mirror typical use of the pro-
gram suite. The game is played entirely within the Microsoft O�ce environment,
allowing users to familiarise themselves not only with concepts through game-
play, but also with ways to implement these concepts with ways to appropriately
implement these concepts.

Stellenbosch University https://scholar.sun.ac.za

12 CHAPTER 2. LITERATURE REVIEW

Figure 2.6: An example of gamification in Ribbon Hero 2.

Figure 2.7: Promotional material for America’s Army.

America’s Army

America’s Army is a first person shooter (FPS) game developed in-house by the
United States Army. Iterations of the game are released online for free as a pub-
lic relations e↵ort. The primary goal of the game is to show the American army
in a positive light internationally. Additionally, America’s Army potentially di-
rects players to recruitment pages for the United States army, thereby fulfilling a
secondary promotional goal (America’s Army Home Page, 2013).

Stellenbosch University https://scholar.sun.ac.za

2.2. SERIOUS GAMING 13

Figure 2.8: A game of Foldit being played.

Fold-it

Foldit is a game about protein folding, in which players attempt to create accurate
protein structure models. Protein folding describes a range of biological excercises
whereby the complex structures of proteins must be determined to understand
their reactions. Due to the number of permutations inherent in the folding an
individual protein, it has proven to be a di�cult problem to solve using modern
computational techniques (Unger & Moult, 1993).

In Foldit, problems are presented to a multitude of players who can collaborate
or compete to create the best solution. Predefined metrics evaluate the problem
and presents the player with a point value based on their success. This allows
for multiple solutions to a single problem. For certain types of hard protein-
folding problems, Foldit puzzles have produced better results than state-of-the-art
computer-based solutions (Khatib et al., 2011). Data gathered using Foldit is being
used to develop cures for HIV/Aids, cancer and Alzheimer’s disease amongst others
(Foldit Science Page, 2013).

Stellenbosch University https://scholar.sun.ac.za

14 CHAPTER 2. LITERATURE REVIEW

Figure 2.9: A game of Ingress being played.

Google Ingress

Google Ingress an augmented reality game. Augmented reality is the act of over-
laying digital information on the physical world through the use of some digital
medium, such as smart phones or tablets (Carmigniani et al., 2011). Augmented
reality games can be characterised as using input from the real world to determine
output.

In the case of Ingress, players visit real-world points of interest, where they must
engage with and fight alien invaders with the help of other players (Ingress Home
Page, 2013). While this game mechanically follows established game design pat-
terns, Google can use it to gather foot tra�c data for their map applications.
Additionally, since the points of interest are tagged by users, Google can also
incorporate those into its maps.

2.2.1 Education

In contrast to section 2.1.1 , the next section specifically looks at serious games
dealing with the education of programming or computer science skills.

Stellenbosch University https://scholar.sun.ac.za

2.2. SERIOUS GAMING 15

Figure 2.10: A Google Blocky maze navigation puzzle with code on the right.

Google Blocky

Google Blocky is another visual programming tool, similar to Scratch, in which
segments of coding logic are snapped together. However unlike, Scratch, Blocky
takes a serious game approach to learning. Players are asked to solve puzzles using
the blocky interface, such as guiding a robot through a maze, or drawing visuals in
a fashion similar to the turtle in the Logo programming language (Logo Foundation
Home Page, 2013). Additionally, Blocky can automatically generate Javascript,
Python and XML code based on the visual programs users create (Google Blocky
Home Page, 2013).

Lightbot

Another example of a visual code snapping programming serious game can be
found in the browser-based flash game Lightbot and its sequel Lightbot 2. These
two games are short puzzle games that make use of programming-style logic to
navigate a small robot around the game world. Although not developed as teach-
ing tools, the games make use of conditions, functions and recursion as part of
game-play (Yaroslavski, 2012). Lightbot also completely abstracts away from code
based programs instead makes use of symbols and a drag-and-drop interface, thus
conceptually opening up the game to a wider audience.

Stellenbosch University https://scholar.sun.ac.za

16 CHAPTER 2. LITERATURE REVIEW

Figure 2.11: A puzzle in Lightbot 2, featuring player controlled instructions on
the right.

Alice

Alice, a graphical programming language, is aimed at building interest in program-
ming amongst young women focusing on storytelling and animation. Alice’s focus
on storytelling, specifically its users’ ability to create their own stories’ proved
to increase user interest with the tool over a version without a storytelling focus
(Kelleher et al., 2007). This suggests that personalising the goals and outcomes
of programming problems to a specific target audience could lead to increased
interest in the field amongst that audience. Studies making use of Alice have pro-
duced results showing rises in user interest, but are vague on the skill transference
abilities of such programs.

2.2.2 Marques, 2013

In a game developed at the University of Witwatersrand in South Africa, users use
an interface with a custom programming language to direct tra�c (Marques et al.,
2012). Each level consists of a tunnel from which a succession of vehicles is gener-
ated. Each vehicle is one of six colours (red, blue, white, etc.), and one of several
types (bus, car, etc.). Vehicles drive towards intersections. These intersections
must be programmed by the player using if-else statements and Boolean logic to
guide cars to predetermined garages. In this fashion, players of the game can be

Stellenbosch University https://scholar.sun.ac.za

2.2. SERIOUS GAMING 17

Figure 2.12: An animation scene being coded in Alice.

taught about relatively complex conditional statements and embedded conditional
statements.

Unless the game is paused, vehicles will start behaving according to the newly
coded rules for an intersection as players code. This allows players to immediately
see the e↵ects of any code written. It also allows the players to see the basic flow
of the program at any point in time. This is especially useful given the easily
identifiable colour/model combination of the vehicles.

Marques, the designer of the game, tested various versions of his prototype with
three volunteer groups from various programming backgrounds, with some having
significant programming experience and others little to none. The students were
rated using metrics derived from the game play itself, such as number of lines of
code used and time taken to complete the level. While translating these metrics
into something resembling “programming skill” is certainly questionable, Marques
also referenced the average class mark of these groups and compared the marks
with those in the class who were not part of the study. While most of the groups
did not show a discernible di↵erence in averages the group who had no previous
programming experience showed a 7% increase over those in the class who did
not take part in the study. However, it is important to note that no additional
statistics, such as the level of statistical significance or standard deviation, were
provided in the study. Nonetheless, the study does indicate the viability of a
serious game approach.

Stellenbosch University https://scholar.sun.ac.za

18 CHAPTER 2. LITERATURE REVIEW

Figure 2.13: A serious game developed at the University of Witwatersrand, showing
code at tra�c intersections.

Current attempts at the problem

Several new commercial and academic serious game approaches to computer lan-
guage learning through games are in development.

Code Hero makes use of a first-person viewpoint and lets players solve puzzles
by using a “code gun” that shoots user defined code at items within a pre-
defined game world (Code Hero Project Page, 2012)). Another new project is
“else{Heart.break()}”, in which the player controls a character in a player-reprogrammable
world. As the story of the game unfolds the player is taught to code by in-game
characters and more of the game’s code becomes mutable (else{Heart.break()}
Home Page, 2012).

CodeSpells is an RPG in development at the University of California in which
players use a custom programming language to write magic spells to use on objects
within the game world(CodeSpells Game Page, 2013).

Lastly, BotLogic is a mobile game in development that is aimed at teaching young
children procedural logic and algorithms through a drag-and-drop interface, similar
to the approach presented by Lightbot(BotLogic Home Page, 2013).

While none of these games have been fully released, the presence of new additions

Stellenbosch University https://scholar.sun.ac.za

2.3. SUMMARY 19

to the field indicate that there is significant interest by both academia and industry
in trying to teach programming and its associated skills through gameplay.

2.3 Summary

This chapter discussed various general, and specifically educational, gamification
and serious gaming implementations, their purposes, design decisions and imple-
mentations. These examples of previous work were used to guide the creation
of the serious game developed to achieve the goals of the research. Chapter 3
brings together the mechanical system and puzzle design decisions in the game
that resulted from these guidelines, and also provides a comprehensive description
of the systems. Specific focus was given to the previous work done in programming
education through serious games and the creation of a novel design, namely the
use of symbols to represent programing logic instead of text. This distinction is
described in full detail in section 3.2.3 of chapter 3.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Game Design and Development

3.1 Introduction

This chapter covers the design and development of the serious game developed
to test the hypotheses discussed in Chapter 1. The research had the following
objectives for the game design:

1. The game must convey a coherent set of the basic programming concepts. If
the game fails to meet this objective it will not be usable as an educational
tool for either of the hypotheses. This objective informs the core of the game
design.

2. The game must be understandable to users without any outside input. In
order to avoid potential external contamination of the concepts the game
seeks to convey, it must communicate them within the game.

3. The game must be free of any technical issues which would cause it to crash.
Any technical issues that render the game unplayable or frustrates the player
must be avoided to avoid respondents from dropping o↵ and reducing the
data set available for testing.

4. The game must not contain any fallacies which could potentially corrupt the
concepts it seeks to convey. The game must convey programming concepts
accurately in order to allow for a valid comparison to traditional class-taught
programmers.

5. The game must run on a relatively wide array of computers, so that its target

20

Stellenbosch University https://scholar.sun.ac.za

3.2. GAME DESIGN BACKGROUND 21

audience can easily access it. This is important to maximize the amount of
data gathered during the testing period.

3.2 Game Design Background

Various factors and fields were used as a foundation in the design of the game and
are discussed in the section.

3.2.1 Programming Concept Focus Area

Opinions di↵er on what qualifies as introductory programming concepts. While
most experts agree on which topics should be included in a typical introductory
programming textbook, it is the order in which these topics are introduced tend
to di↵er.

It was decided to focus on an isolated subset of introductory programming concepts
in order to allow the topics to be conveyed as coherently as possible, without
any prerequisite knowledge. In addition, the available development time for the
experiment had to be taken into consideration.

An analysis was performed on several contemporary introductory textbooks to
determine a focus area for the prototype. These included the two textbooks used
by the Department of Information Science, which were provided to respondents as
their introductory textbooks during this study.

The content of the textbooks on a per-chapter basis by comparing the order in
which the following concepts were introduced:

1. Variables : The concept that information can be tied to certain variables and
manipulated abstractly.

2. Conditional Statements : The concept that a program can act di↵erently
based on defined criteria being met.

3. Loop Structures : The concept that code segments can be repeated, allowing
for greater control of programming flow.

4. Data Structures : More complex forms of data storage and the manipulations
of these structures. Includes arrays, lists, tuples, etc.

Stellenbosch University https://scholar.sun.ac.za

22 CHAPTER 3. GAME DESIGN AND DEVELOPMENT

5. Methods : The abstraction of sections of code into easily reusable segments.

6. Classes : Any discussion of object orientated programming and the practical
implementation of these principles.

7. Files : Any discussion of the use of files for input and output.

While the names of the concepts di↵er between textbooks and languages, the anal-
ysis qualitatively determined when the concepts were introduced for each textbook.

The above analysis is presented below in Table 3.1.

It was decided to focus on the basic concepts of variables, conditional statements
and loops, as it is clear from the analysis presented in Table 3.1 that a majority
of the analysed works agree that these concepts should be introduced first and in
sequence. It is only after the introduction of these concepts that the textbooks
start to diverge. In addition, these concepts blend well and provide a basis for
coherent game design.

3.2.2 Visualisation

Significant work has been done regarding the visualisation of various domains
related to computer programming. Work has been done in visualising program
source structures (Caudwell, 2009), data and information (Tufte & Graves-Morris,
1983), and human-computer interfaces (Raskin, 2000; Crawford, 2002) amongst
many other fields. While elements of all these fields can be tied into the topic of
this thesis, its primary concern is with the visualisation of program logic for the
purpose of explanation to a novice audience.

3.2.3 Text- versus Symbol-Based Code Representation

As demonstrated in Chapter 2, some work has been done in the field of interactive
educational programming games. However, the majority of these games make use
of a coding user interface, meaning players interact with the game world or puzzle
by means of writing some sort of codified language. In some cases this language is
similar to a programming language, such as Java, while in others the language is
game-specific and does not mimic an existing language. Regardless, the majority
of attempts at making an educational programming serious game used text coding
as the medium of interaction (Kelleher et al., 2007; Marques et al., 2012; Google
Blocky Home Page, 2013; CodeSpells Game Page, 2013).

Stellenbosch University https://scholar.sun.ac.za

3.2. GAME DESIGN BACKGROUND 23

Table 3.1: The order of concept introduction in a selection of textbooks.

Microsoft Visual C# 2012 An In-
troduction to Object-Orientated
Programming (Farrell, 2012)

Java Actually: A comprehensive
primer in programming (Mughal
et al., 2008)

Variables Variables
Conditional Statements Conditional Statements
Loops Loops
Data Structures Data Structures
Methods Classes
Classes Methods
Files Files
A beginner’s guide to Program-
ming Logic and Design: Compre-
hensive (Farrel, 2013)

Introduction to Python Program-
ming and Developing GUI Appli-
cations with PyQ(Harwani, 2012)

Variables Variables
Conditional Statements Conditional Statements
Loops Loops
Data Structures Data Structures
Files Methods
Methods Classes
Classes Files
Python Programming: An Intro-
duction to computer science 2nd
edition(Zelle, 2010)

Fundamentals of Python: From
first programs through data struc-
tures(Lambert, 2011)

Variables Variables
Loops Loops
Methods Conditional Statements
Objects Files
Data Structures Data Structures
Conditional Statements Methods
Loops Classes
Fundamentals of Programming
using Java(Currie, 2006)
Variables
Decision Statements
Loops
Methods
Data Structures
Files
Classes

Stellenbosch University https://scholar.sun.ac.za

24 CHAPTER 3. GAME DESIGN AND DEVELOPMENT

Academic programming courses typically make use of a specific formal coding lan-
guage as a medium to teach programming. Some attempts have been made at
textbooks that teach programming concepts without teaching a specific program-
ming language Farrel (2013).

Non-coding approaches are much more rare. One such approach makes use of
symbols to represent code. Here commands are represented as graphical symbols
in some fashion. In this way, an arrow symbol could command an on-screen robot
to walk ten steps, which in turn could be looped through the use of some looping
symbol (Yaroslavski, 2012; Manufactoria Game Page, 2013).

A coding approach would conceivably lend itself into easier integration with actual
coding practices, as it could focus on the syntax and definition of coding, whereas a
symbol-based approach could forgo coding specifics and instead focus on problem
analysis and problem solving in programming.

Significant research attempts have been made in text-based coding serious games
(CodeSpells Game Page, 2013; Muratet et al., 2010), most of which have shown
promising results regarding their e↵ectiveness as learning tools (Kelleher et al.,
2007; Marques et al., 2012). On the other hand most of the attempts at symbol-
based code representations have been small games made primarily as entertain-
ment (Yaroslavski, 2012; Manufactoria Game Page, 2013), and not for pedagogical
purposes. This indicates that people are willing to play symbol-based games for
entertainment and of their own volition. As such, a symbol-based approach was
used in the prototype developed as part of this research. Positive results from
tests with such a game may be comparable to the results of previous text-based
approaches and would open up further avenues for the development of an enter-
taining educational game.

3.2.4 Process Flow Diagrams

A process flow diagram is a programming design too used to graphically repre-
sent an algorithm or program. One style of process flow diagrams is the Unified
Modelling Language (UML) set of program design and development tools. For
this reason, process flow diagrams provided useful inspiration in designing a game
aimed at teaching programming concepts while avoiding the use of programming
language.

Process flow diagrams, or activity diagrams, make use of symbols to represent code
structure. The procedure or flow of an algorithm is represented by unidirectional
arrows between these symbols. The symbols typically have one arrow pointing

Stellenbosch University https://scholar.sun.ac.za

3.3. DESIGN DECISIONS 25

toward them and one arrow pointing from them. An executed command such as
“Increase counter by 1” is typically shown in a square box. A diamond typically
represents a decision such as “Is counter greater than 10?” and allows for multiple
arrows moving outward. Through these basic symbols, as well as arrows that point
back to earlier symbols, process flow diagram, can represent the basic programming
concepts of iteration and conditional branching.

Figure 3.1 shows a simple activity diagram describing the login process for a web-
site. Note the arrows indicating the logical order of the process, as well as the
diamond checking if a user has entered correct login details.

Process flow diagrams are often a preliminary step in writing code, because it
allows the programmer to focus on the logic, also called semantics, of a problem,
rather than the coding, also called syntax, itself.

Because of this focus on programming logic over programming language, process
flow diagrams were the inspiration for representing algorithmic or procedural think-
ing processes in-game to non-programmers. Through this inspiration, the game
avoids the use of a language-based approach for programming code.

3.3 Design Decisions

This section discusses the development of the research prototype.

3.3.1 Target Users

The game is aimed at introductory level students, ranging from children in primary
or high school to university or adult students learning programming for the first
time. Specifically, it is aimed at students who are having di�culties understanding
the underlying logic of introductory level coding, as opposed to the writing of the
code itself.

3.3.2 Focus Areas of the Game

The prototype focuses on demonstrating the three core ideas in entry level pro-
gramming described earlier in this chapter, namely 1) variables and mutability,
and 2) process iteration, 3) process branching. As discussed, in a typical intro-
ductory programming text book these concepts would be covered in the first few

Stellenbosch University https://scholar.sun.ac.za

26 CHAPTER 3. GAME DESIGN AND DEVELOPMENT

Figure 3.1: An example of an activity diagram showing a high level website login
algorithm (Lucidchart - Activity Diagram Introduction Page, 2015).

chapters by discussing concepts such as variables, operators, for- and while-loops
as well as if-else statements.

Players are gradually introduced to these concepts through a series of puzzles, first
incorporating only some and later all of the elements described above. Addition-
ally, the di�culty of these puzzles are increased over time, leading the player firstly
to focus on the initial conceptualisation of solutions to the problems and, secondly,
allowing more opportunity for feedback from the game through the solving process.

Overall, the game consists of fifty-five distinct game levels or puzzles split into eight
segments, each focusing on di↵erent areas of the game. Three of the eight sections
are tutorial segments, that introduce players to concepts through on-screen text
and prompts. These tutorial segments comprised fourteen of the fifty-five total
levels.

Stellenbosch University https://scholar.sun.ac.za

3.3. DESIGN DECISIONS 27

3.3.3 Game Mechanics

The player directs an object, called a carrier, by moving it through various level
that contain objects with which the carrier interact. Most notably, the carrier is
used to pick up and move gems, manipulate them, and drop them in goals. When
enough gems have been dropped in goals, the player has completed the level.

The next section details the mechanics of the game, explaining their relevance
to gameplay and, where appropriate, indicating where specific mechanics act as
analogues for programming concepts.

The Level

Each level consists of a two dimensional grid of objects or symbols. Each cell in
the grid may contain one object. Each of the symbols contained in these cells
represent a specific interaction, similar to symbols in process flow diagrams.

The Carrier and Flow

The carrier is the only moving object in the game. Upon the initialisation of the
level, the carrier is placed on a specific launcher that launches it in one of the four
orthogonal directions (up, right, down or left).

Additionally, the path that the carrier is allowed to take is highlighted with flow
lines. These lines, combined with the instructional symbols, to present a picture
similar to that of a typical process flow diagram.

Figure 3.2: The carrier

Build Time and Run Time

The game is split in two phases. During the build phase the player can place
symbols on the level board to direct the actions of the carrier. The player can use
this phase to move, change or delete objects placed on the board during previous

Stellenbosch University https://scholar.sun.ac.za

28 CHAPTER 3. GAME DESIGN AND DEVELOPMENT

build phases. By default, objects placed as part of the level cannot be moved,
changed or destroyed. The carrier does not move during the build phase.

When the player activates the run phase, the carrier begins moving in the direction
dictated by the carrier launcher objects. During this phase the player cannot move,
alter or delete any of the placed symbols. Ideally, the player would have solved
the level and the carrier would run to completion, causing the game to open the
next level.

However, if the carrier runs into a situation that causes an error, or the run time
is cancelled by the player, the game will revert to the build phase. This will reset
all variables and counters to their initial values. Essentially, the level returns to
its default state, with the exception of any symbols placed by the user.

These two phases are designed to reflect the iterative process of design, develop-
ment and observation that programmers use when developing software.

Arrows and Direction

When the carrier objects collides with arrows, it changes direction and goes either
up, down, left or right. Additionally, if a placed arrow objects intersects a process
flow line, it will reflect the new direction the carrier will take during the run phase.
The arrows only point in the four orthogonal directions. Diagonal movement is
not used in the game.

Each symbol can be interacted with on two paths due to the orthogonal nature
of the carrier movement, as well as the two dimensional nature of the level board
and emergent factor of gameplay incorporated into the level design. A symbol can
be crossed from left-to-right as well as top-to-bottom. This leads to dynamic level
design when combined with mechanics designed to limit the players decision space.
These will be discussed later.

Figure 3.3: An arrow pointing upwards.

Stellenbosch University https://scholar.sun.ac.za

3.3. DESIGN DECISIONS 29

Gems

Gems represent variables in the game. When a carrier moves over a gem it will
pick it up, which causes the gem to move with the carrier. In this way, the player
now has focus on that gem and can manipulate it and other symbols. Gems can
be one of five incremental sizes. Triangular gems are the smallest, followed by
squares, pentagons, hexagons and, finally, circular gems. Additionally, gems are
one of three colours, namely orange, green or blue. Both variables (number of
sides and colour) can change by placing specific objects on the level board.

Figure 3.4: A full series of red gems

Changing Gem Values

Players have access to two objects that can change the size of a gem. The plus
symbol will increase a gem’s size category by one, and a minus symbol will decrease
it by one. Incrementing the largest gem, a circular gem, or decreasing the smallest
gem, a triangular gem, counts as a runtime error and will cause the game to switch
from the run phase to the build phase, thereby reseting a player’s progress on that
specific level.

Colour change symbols are also present in the game. Unlike the increment and
decrement symbols however, colour change symbols cannot be placed by players,
and are only present if they form part of the puzzle the players must to solve.
This was a design decision made to force players into certain desired puzzle solu-
tions. Colour change symbols only change a specific colour of gem into another
predetermined colour.

The three symbols (plus, minus, and colour change) can be seen as represent-
ing mutator methods, if the gems represented objects. They can also represent
operators, if the gems are seen as variables.

Figure 3.5: An incremental, decremental and colour change symbol.

Stellenbosch University https://scholar.sun.ac.za

30 CHAPTER 3. GAME DESIGN AND DEVELOPMENT

Gem Spawners and Goals

Gem spawners are objects that spawn the gems the player moves around using
the carrier. Conversely, goals are the objects a carrier carrying a gem interacts in
order to deposit it and progress towards completing the current level.

Gem spawners generate a specific sequence of gems in a specific order. Once a gem
is dropped o↵ at a goal, the next gem in the sequence is created at the spawner
position. This sequence consists of up to fifteen distinct symbols, each of which
has an arbitrary level and colour.

Similarly, each goal only accepts as valid only certain gem level-colour combina-
tions as valid. A gem is removed from the board, the score increased and a new
gem generated at the spawner of the previous gem only if a valid gem is brought
into the same cell as a goal accepting that colour and level combination.

The concept grounding the arbitrary sequences of gems is to simulate random
algorithmic inputs. When dealing with input outside of the control of the program,
a programmer must take into account a wide variety of potential inputs.

Figure 3.6: Spawner and goal.

Split Symbols

Split symbols are the games conditional statements and would be equivalent to
simple if statements in a programming language. Each split symbol can be given
one level value and one colour value, matching a specific gem.

If a split symbol is placed on a horizontal flow line, it will create a secondary flow
line leading downwards. this causes a split in the line and indicates to the player
that the carrier could take one of two paths at that point during runtime.

Figure 3.7: A split symbol checking for green triangles.

Stellenbosch University https://scholar.sun.ac.za

3.3. DESIGN DECISIONS 31

It is important to note at this point that it would have been possible to use fairly
complicated boolean logic check to build puzzles which the players must solve.
However, since the focus of the game is to convey the concepts of program flow
and not boolean logic, it was decided to limit the puzzles to relatively simplistic
boolean checks. As it is implemented in the game, the split symbols will check for
only one type of gem and send it in a downward direction if a carrier containing a
matching gem passes over the split symbol.

Loops

A typical programming language provides three types of loop functions. Repeat
loops, as the name suggests, are used to repeat a section of code for a predefined
number of times. A while loop is used to repeat a section of code until a specific
condition is met. Lastly, a for loop is used to repeat a piece of code a specific
number of times, but has a built-in variable that changes in a predefined way for
each iteration. While these loops are alike and can be made to fit most situations,
they are distinct concepts to inexperienced programmers and are taught as such.

In the game loops can be set up by using a mimum of four arrow symbols pointing
to one another. Players can use loops in conjuction with split symbols to set up
the equivalent of a while loop.

Figure 3.8: A split symbol customisation menu.

Figure 3.8 shows the menu for customising split symbols. The first row sets the
desired gem size. The second row sets the desired gem colour.

Stellenbosch University https://scholar.sun.ac.za

32 CHAPTER 3. GAME DESIGN AND DEVELOPMENT

Walls

Walls were implemented to limit player decision making, or to force players to
consider sets of pre-placed symbols in a specific sequence. A wall is an object,
taking up one cell, that does not allow the carrier to pass over it. If a carrier
collides with a wall, it counts as a runtime error. This resets the level and puts the
player back into build mode. Any flow lines also end when colliding with a wall.

Figure 3.9: A wall

Limiting Player Options

Player decisions can be limited in three ways on a per-level basis in order to
introduce concepts in a controlled fashion, as well as give more options for level
designs. Firstly, player access to specific symbols can be restricted to remove
certain functionality. With access to all of the symbols, several of the puzzles can
be solved conceptually in a number of di↵erent ways, so this restriction is also
useful when encouraging a particular mindset.

Secondly, a limit on the number of symbols per level can be defined. Each placed
symbol counts towards a running total. If the total is met, a new symbol cannot
be placed until a previous symbol is deleted.

Thirdly, walls and other pre-placed symbols can limit a player’s choices in any
situation, which is useful in reinforcing a desired thought pattern or when teaching
new concepts or new uses for familiar concepts.

3.3.4 Technical Specifications

The game was developed using Python 2.7.2, as well the pygame 1.9 library for
Python. Pygame was used for the drawing logic, as well as other gameplay logic,
such as collision detection.

Other game development platforms were also considered. Game Maker(Yo Yo
Games, 2012) is a popular 2D game creation kit but was rejected as it does not

Stellenbosch University https://scholar.sun.ac.za

3.3. DESIGN DECISIONS 33

Table 3.2: Comparison between game mechanics and programming concepts

Game
Mechanic

Programming
Concept

Carrier State

Build time vs.
running time

Code
Compilation

Arrows Sequentiality

Gems
Variables and

objects

Gem spawners
Unreliable user

input

Loops created
using arrows

Code iteration

Split symbols
Conditional
statements

Walls
Separation of
complex logic

Stellenbosch University https://scholar.sun.ac.za

34 CHAPTER 3. GAME DESIGN AND DEVELOPMENT

allow access to it’s entire code base, particularly the low level game loop code.
Unity is a another platform that was considered as, at the time of the projects
start, Unity(Unity Home Page, 2012) only allowed for the creation of 3D games,
which was considered unnecessary for the goals of this project.

This project did not concern itself with the creation of a standard for the creation
of educational games, nor with any particular level of game scope scalability, and
as such made use of a once-o↵ coding architecture. Standard object-orientated
practices where followed for control of in-game elements.

After a single initialisation phase, the game made use of an infinite loop to iterate
over three phases in the program. The first of these listened for keyboard and
mouse input from the player and passed any caught input events to the relevant
object. The second phase performed the game logic, resulting in state changes for
the game objects. The final phase updated the rendering logic on a specific frame
count.

3.3.5 Level Description

Tutorial 1: Basics

The introductory tutorial introduces the basics concepts of the game and actions
such as placing objects, impacting flow, moving gems and dropping gems. Players
are also introduced to basic loops.

Movers

Movers is the first level set players must complete. In this level set, puzzles revolve
around players picking up and dropping o↵ gems in the correct sequence. Some
puzzles involve loops and others only a set of instructions.

Tutorial 2: Change

In the second tutorial players are taught that gems are mutable. They are first
introduced to the concepts of gem levels, plus and minus symbols, and colour
change symbols. Players are also shown that a level will reset if gems grow or
shrink beyond their constraints. This tutorial also teaches players how to place
plus and minus symbols, and that colour swap symbols are static and cannot be
placed by the player.

Stellenbosch University https://scholar.sun.ac.za

3.3. DESIGN DECISIONS 35

Warm-up

The second set of levels players must solve includes a mixture of game elements.
Some levels require players to simply move over a set of symbols in the correct
sequence; while others require players to use the same symbols multiple times,
necessitating them to plan the order in which certain parts of the puzzle is ap-
proached. Other puzzles are unsolvable without the use of individual symbols
multiple times. Additionally, the puzzles vary in giving players the ability to place
plus and minus symbols, or whether they use the available symbols.

All together

The third set is similar to the level sets described above but with slightly more
di�cult puzzles and with a focus on integrating all the elements the players have
been introduced to so far in the game in each individual level. No new mechanics
are introduced in this level set.

Tutorial 3: Decisions

The third tutorial introduces split symbols and the concept of decision making
into game flow. Players are shown how the split symbol functions and how it
can be used to direct the carrier. Players are also shown how to place, and later
customise, the split symbol to fit each problem.

Choices

The fourth level set uses all the elements introduced thus far, including the split
symbol. As before each element is used separately or combined in small ways, so
the player may focus on one problem at a time.

Crossroads

The fifth and final level set contains complex puzzles that use all or most of the
mechanics in the game. At this point, players have shown proficiency in and
understanding of all the individual mechanics and are tasked with combining them
in this final level set.

Stellenbosch University https://scholar.sun.ac.za

36 CHAPTER 3. GAME DESIGN AND DEVELOPMENT

3.4 Summary

This chapter discussed the design and development process of the programming
educational game developed for this research. It discusses the design decisions and
sources of inspiration for the games mechanical systems, as well as the puzzle design
for the game. This also covered half of the requirements set forth in chapter 1. The
next chapter presents the development and testing of the measurement mechanics.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Test and Experiment Design and
Development

4.1 Measurement Design

Testing the e↵ectiveness of the finished programming educational game prototype
required a longitudinal test. Longitudinal tests take similar measurements spread
over time and compare them to look for changes in specific variables. This research
measures students’ programming aptitude before and after two sets of stimuli,
namely a traditional classroom environment as well as the game developed for this
project.

The research aim is to study the comparable empirical di↵erences between e↵ects
of the stimuli, described above, on the volunteer test groups.

Four groups of potential respondents were identified:

1. A group with no programming experience tested before and after playing the
prototype game.

2. A group with no programming experience tested before and after taking a
traditional class-driven introductory programming course.

3. A group with no programming experience were tested before and after taking
a traditional class-driven introductory programming course as well as playing
the prototype.

4. A control group, tested twice, with no stimuli. This group served to isolate

37

Stellenbosch University https://scholar.sun.ac.za

38 CHAPTER 4. TEST AND EXPERIMENT DESIGN AND DEVELOPMENT

the degree to which a student’s ability in taking the test improved solely
through previous exposure to the test.

In order to correctly measure and di↵erentiate between these group, several sources
of data were measured. Due to the nature of the sampling process, and that
respondents are university students, the marks of students’ relevant course-work
were taken as one data source. While this does provide an easily compatible metric,
one has to consider some inherent problems of such a measure.

Coursework scores would be derived from tests or projects set on the specific work
covered in such a course. For example, a class doing an introductory Python
course, would assess programming logic expressed in Python, as opposed to just
programming logic. Additionally, for groups 1 and 4, no such class marks would
exist. Thus, while class marks would provide useful additional data it should
ideally not be the only source of data used to support the second hypothesis, that
of gameplay being used to completely replace course work, describe in Chapter 1.

4.1.1 Test Design

Language-Agnostic Test

In addition to class marks, a language-agnostic programming aptitude test was
used for additional data. While research has been done on programming aptitude
tests (Dehnadi, 2006), no standard test has emerged. Given this, a test was de-
veloped that could measure the change in a persons’ programming ability, given
both the stimuli of the educational game and the traditional introductory class.

The creation of a language-independent programming aptitude test falls outside
the scope of the research. Thus, the research focused on determining the di↵erence
in skill between points in time, rather than determining skill at a given point at
time. In this way, the average growth in skill for a given group is used to determine
the e↵ectiveness of given stimuli.

Inspired by standard IQ tests, the test developed is comprised of basic level pseudo-
code programming problems. Participants are given an example problem and
answer that show the basic logic of a concept and are asked three questions of in-
creasing di�culty. Consequently, each category of questions contains one example
and three questions. Categories of questions are tied to programming principles,
such as variables, iteration, conditionals, etc. In total, the questionnaire contained
twenty-three questions.

Stellenbosch University https://scholar.sun.ac.za

4.1. MEASUREMENT DESIGN 39

Figure 4.1: A section from the first language-agnostic programming test given to
the students.

All questions dealt with variables with a certain starting value that change in
some instructions sets, after which participants must give the end value. This
minimised the number of possible answers in each question. Participants need
only basic arithmetic skills as a prerequisite to correctly answer each question.

To test for growth in knowledge over time, participants wrote the test before and
after each set of stimuli. The first and second test were identical in structure but
with the values of the variables changed so that participants could not copy the
answers across tests.

Stellenbosch University https://scholar.sun.ac.za

40 CHAPTER 4. TEST AND EXPERIMENT DESIGN AND DEVELOPMENT

Figure 4.2: An example of a 5-point Likert-scale question.

Other Measurements

Two smaller measurements were also designed to gather more descriptive data
about the respondents. Firstly, two questions were included in the language ag-
nostic test to determine the initial experience of the student respondents by asking
about their level of education in the fields of mathematics and computer science.

The second descriptive test, a survey, the impression the respondents had of the
game, as described in Chapter 3. This survey consisted of two questions on time
spent with the system, as well as twelve five-point Likert-scale questions asking
respondents about their impressions of various parts of the system. This survey
can be seen in appendix C. Likert-scale questions ask respondents to rate how
strongly they agree or disagree with a specific statement.

4.1.2 Testing Procedure Design

In order to homogenise the sample groups as much as possible, a large group of
potential respondents had to be identified. This would need to include respondents
who were to be enrolled in an introductory programming course; and respondents
who would not be enrolled in such a course but could be used in comparison.
University or high school learners who were going to enroll, or were already en-
rolled in an introductory level programming course seemed ideal. However, several
restrictions had to be taken into account in the sampling procedure:

• The group must be large enough to compensate for the inherent variation of
individuals. Forty respondents per test group would be ideal.

• The group must be homogeneous while programming students and non-
programming students still needed to be distinguishable.

• Due to the longitudinal nature of the study, the group remain involved with
the study throughout their education period.

Stellenbosch University https://scholar.sun.ac.za

4.1. MEASUREMENT DESIGN 41

• As the study was not o�cially a�liated with any specific degree program,
all student respondents had to volunteer for the duration of the study.

Because of the restriction requiring respondents to volunteer for duration of the
study it was decided not to target school learners. School learners typically start an
introductory programming course at sixteen years old and so would be subject to
greater legal and institutional restrictions. On the other hand, university students
who are starting a programming course would legally be able to give permission
for their own involvement.

Due to the time frame of the tests there were only a few opportunities available,
typically at the start of each academic semester, for e↵ectively testing a new group
of respondents.

Because of the timing constraints inherent in the test, the subject matter being
tested, as well as the administration involved in organising each potential test
group, the number of viable tests in the academic year is limited to two opportu-
nities for each academic department or group, once at the start of each semester.

Finally, respondents were financially reimbursed for their participation in order to
maximise their numbers. This, however, increased the severity of any false starts,
as such an occurrence severely limited the financial resources available for this
research.

Due to these factors, it was decided that as many initial student respondents as
possible would be the most likely to produce illuminating results.

A single introductory course in a specific academic year group was targeted and
asked to participate. The students were asked to complete the developed test, after
which a subset played the game throughout the course. Both groups then wrote
the second test after completing their course. Both groups would provide data
on the possibility of using serious games as enhancement to standard classroom
processes.

A second set of students, in the same academic department as the first groups
but uninvolved in programming courses, were asked to participate in order to test
the second hypothesis of replacing the standard classroom process. Similar to the
first two sets of respondents, these student were split in two groups: one playing
the game and the other group only writing the two tests, with some time passing
between, to prevent students learning the test as they write.

When considering these restrictions, as well as the sampling design, three university
faculties and departments were identified as sources of potential respondents:

Stellenbosch University https://scholar.sun.ac.za

42 CHAPTER 4. TEST AND EXPERIMENT DESIGN AND DEVELOPMENT

1. Electrical engineering students who study computer programming in the En-
gineering Faculty. All first year students, however, complete a short pro-
gramming course, which would lead to exposure in the test groups and are
therefore not ideal candidates.

2. The Computer Science Division in the Department of Mathematical Sciences
specialises in programming education. Other students of this department
would provide a potential control group.

3. Finally, the Faculty of Art and Social Sciences houses the Department of
Information Science. Half of these students start programming courses in
their second year which is for many of the students their first exposure to
the field.

Of these three groups, the Engineering Faculty provides the least attractive po-
tential respondent pool because all first year students are enrolled in an basic
programming course during their second semester that covers much of the ma-
terial the game seeks to support. This meant that there would be no group of
comparable students with no programming experience, which could be used as a
control group.

The second least desirable group is the Department of Mathematical Sciences.
While they provide su�ciently distinct students, the formal requirements of the de-
partment make it likely that any potential respondents would have had significant
previous exposure to programming or programming-like environments, meaning
that the two groups could potentially test closer together.

The most desirable of the three groups is the Department of Information Sciences.
These students tend to take programming as an elective, minimising any potential
previous exposure to the discipline. In addition, the department has a relatively
homogeneous student body in the Center for Knowledge Dynamics, with students
studying Decision Making who do not have any earlier formal programming expo-
sure.

4.2 Final Target Group

Considering the above-mentioned factors, it was decided to target second-year
Socio-Informatics students as the two groups with exposure to a traditional pro-
gramming class. Second year decision making students share some classes with
Informatics students, typically without electing to take the programming course.

Stellenbosch University https://scholar.sun.ac.za

4.3. TEST DEPLOYMENT 43

They would provide the non-programming groups. The Informatics class group
were close to ninety students in 2013, whereas the Decision Making students were
approximately one hundred students.

4.3 Test Deployment

Testing started in the first semester of 2013. Students were approached during a
practical class at the start of the semester, informed on the nature of the exper-
iment and asked to participate in the two aspects of research. Firstly, they were
asked to write the two tests, described in section 4.1.1. Secondly, they were asked
to volunteer to play the game throughout the semester. Those who volunteered
to play the game were required to write the two tests as a prerequisite for taking
part in the research. The students were also informed that those who volunteered
for and completed the game-play trails would receive compensation. Prerequisites
set forth by the University of Stellenbosch’s ethics board required several of the
steps in this procedure to be administered by the class lecturer, which complicated
communication throughout the experiment.

Two weeks after the initial test, students who indicated interest in taking part in
the game-play experiment were contacted with instructions and a download link
to a copy of the game. At this point, the version of the game sent to the students
contained a limited level set with features fitting the workload they had done thus
far.

One week later, a second version of the game containing the full level set was sent
to the students. At this point, the students had covered the topics analogous to
those covered in the game.

During the process of playing the game, students were asked to report on any
technical issues. Aside from two students who did not have home computers with
su�cient screen resolutions to support the game - an unforeseen occurrence given
the game’s relatively small resolution - no technical issues were reported by the
players.

Finally, the students were approached during class for a second time a week before
the end of the first semester. At this time, they were asked to write the second set
of tests. In addition, the students who played the game were asked to complete
the impression questionnaire detailing their experience in playing the game.

After this process the class lecturer gathered anonymised data of all four measure-
ments, which in turn was used to determine the results presented in chapter 5.

Stellenbosch University https://scholar.sun.ac.za

44 CHAPTER 4. TEST AND EXPERIMENT DESIGN AND DEVELOPMENT

4.4 Test Implementation Issues

While test implementation was executed without any issues, problems arose during
the various tests for two reasons. Firstly, all but one of the measurements described
required students to voluntarily complete sets of tests or surveys. Secondly, the
sampled class was ninety-eight students at the start of the tests, meaning that any
students not participating resulted in a significant reduction of responded.

Throughout the test-taking period there was a shortfall in the number of students
who participated in any one test, meaning that only large discrepancies in the data
gathered were discernible. These results are discussed in greater detail in Chapter
5.

The only test with a significant metric was the anonymised class marks, as this
test provided a significant number of data points. This can be attributed to this
result set not requiring direct student participation.

4.5 Summary

This chapter discussed the various measurements, tests and surveys used through-
out the experiment to gather data.This included the concepts that prompted the
design of these tests, the design process itself, as well as the sources of inspiration
for these designs.

In addition, the sampling procedure used to determine how respondents was chosen
was described. This included an explanation of the desired respondent and possible
sources of such players within the local geographical environment.This chapter
described the testing procedure and finally the issues that arose during this process
were also detailed.

Following on the design and development decisions in Chapter 3 and 4, Chapter 5
describes the data gathering and analysis. This also highlights, if present, issues
that arose in each of the tests. Finally, Chapter 6 concludes this thesis, giving the
cumulative results of all the tests and recommending future paths of study.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Measurement and Test Results

5.1 Introduction

This chapter analyses and discusses the data gathered as part of this research.
As stated earlier, some of these sources contain too few data points to be useful
in drawing any significant conclusions when considered in isolation. They are
however included here for the sake of completeness as well as to inform any future
researchers.

5.2 Language-Agnostic Test

As was discussed in Chapter 3, a programming language-agnostic test was de-
veloped to allow for comparison between the two test groups for which there was
access to class marks for one but not the other. This was done so that the classroom
mark comparison could underscore the results of the language-agnostic test and
subsequently legitimise measurement of the groups without programming course
marks, for who only the results of the language-agnostic test would be available.

Data was received in the form of an anonymised set of test scores with each entry
representing the test scores of an individual respondent. While an initial 68 stu-
dents completed the first test at the start of the semester, only 22 of those 68 also
completed the second test. This is too low a number of respondents from which
meaningful insight can be drawn, and was further compounded by the group being
split into two - those who played the game and those who did not. These groups
were sized at 45 and 28 respondants at the start of the semester and 18 and 4

45

Stellenbosch University https://scholar.sun.ac.za

46 CHAPTER 5. MEASUREMENT AND TEST RESULTS

Figure 5.1: Mean comparison considering group and time di↵erences.

respondants respectively, at the end of the semster.

The initial unequal group sizes were acceptable because of the longitudinal nature
of the study and the expectation that the number of students who volunteer to
write the tests and to play the game would certainly decrease as the semester
progressed. Thus, although this would hinder statistical comparison because the
sizes of the groups could di↵er drastically, it increased the likelihood of a larger
number of final respondents.

Table 5.1: Fixed E↵ect Test for language-agnostic test results.

E↵ect Num. DF Den. Df F p
A 1 20 0.389594 0.539568
B 1 20 9611227 0.005642

A+B 1 20 1.275571 0.272089

** A - Group E↵ect — B - Time — A+B - Group and Time e↵ect

Figure 5.1 shows the comparison between the test groups, split by the sampling

Stellenbosch University https://scholar.sun.ac.za

5.2. LANGUAGE-AGNOSTIC TEST 47

Table 5.2: The p-value of any group being distinct when compared to each other
group.

P+T1 P+T2 NP+T1 NP+T2
P+T1 0.031621 0.264972 0.241885
P+T2 0.031621 0.036357 0.913789
NP+T1 0.264972 0.036357 0.02989
NP+T2 0.241885 0.913789 0.02989

** P+T1 - Played game and did Test one — P+T2 - Played game and did Test
two — NP+T1 - Control and did Test one — NP+T2 - Control and did Test two

Table 5.3: Least Significant Di↵erence (LSD) test between groups.

1st Mean 2nd Mean Mean Di↵. Std. Error p-value

P+T1 P+T2 -3.6111 1.562608 0.031621
P+T1 NP+T1 3.77778 3.293673 0.264927
P+T1 NP+T2 -3.97222 3.293673 0.241885
P+T2 NP+T1 7.38889 3.293673 0.036357
P+T2 NP+T2 -0.36111 3.293673 0.913789
NP+T1 NP+T2 -7.75000 3.314792 0.029890

** P+T1 - Played game and did Test one — P+T2 - Played game and did Test
two — NP+T1 - Control and did Test one — NP+T2 - Control and did Test two

process as well as over time, referencing the two separate tests written by each
group. The characters at the top of the four bar graphs denote whether any two
groups can be considered statisically di↵erent significant at a level of 95%. If a
character is shared between any two bars, the groups are not considered di↵erent
at a p-value of 0.05.

From this it is determined that both groups scored significantly better in their sec-
ond test than in their first test. However, the two groups did not vary significantly
from each other for either of the tests.

As can be seen in Table 5.1, the only e↵ect to carry a significant p-value, that
is, one less than 0.05, is the time e↵ect. The probability of the four groups being
statistically similar is 27.21%, much to high too be reliable for reporting purposes.

Table 5.2 shows the p-values of each group when compared to every other group.
The number in red shows the combination of groups that can be considered statisti-

Stellenbosch University https://scholar.sun.ac.za

48 CHAPTER 5. MEASUREMENT AND TEST RESULTS

Table 5.4: Descriptive statistics for language-agnostic test.

N Mean Std. Dev. Std. Error -0.95% +0.95%

Total 44 16.27273 6.24449 0.941392 14.3742 18.1713

P 36 16.58333 6.48680 1.081133 14.3885 18.7782
NP 8 14.87500 5.13914 1.816959 10.5786 19.1714

T1 22 14.09091 4.83941 1.031766 11.9452 16.2366

T2 22 18.4555 6.81544 1.453057 15.4327 21.4763
P+T1 18 14.77778 4.82098 1.139315 12.3804 17.1752
P+T2 18 18.38889 7.51578 1.771486 14.6514 22.4763
NP+T1 4 11.00000 4.08248 2.041241 4.5039 17.4961
NP+T2 4 19.75000 2.21736 1.108678 15.2217 22.2783

** P - Played game — NP - Control — T1 - Did test one — T2 - Did test two —
P+T1 - Played game and did Test one — P+T2 - Played game and did Test two
— NP+T1 - Control and did Test one — NP+T2 - Control and did Test two

cally distinct from one another. Each combination will be displayed twice because
of the nature of the table. Game group test one and two di↵er significantly from
one another. Similarly, the results of control group test one and two are distinct
from one another. Lastly, the results of the first test of the control group and
the second test of the game group were distinctly di↵erent. This last comparison,
however, does not lead to any logical insight into the data, as neither the time and
type variable of the two groups match.

5.3 Previous Computer Science and
Mathematics Experience

As part of the first language agnostic test, all participants were asked to indicate
what their previous experience with mathematics and computer science was. This
information could not be tied to individual marks because of limitations in the
capturing process and needing to adhere to ethical standards. However, it is still
useful information on the experiment group as a whole.

As seen in Table 5.5, a few of the students indicated previous exposure to program-

Stellenbosch University https://scholar.sun.ac.za

5.3. PREVIOUS COMPUTER SCIENCE AND MATHEMATICS EXPERIENCE 49

ming. The eight students who indicted having “More than one year [programming]
education” would be familiar with the concepts covered in the game. The same
might be said, although with far less assuarance, of some of the students with only
one year’s experience or those who have some degree of self-education. Again, due
to ethical regulation limitations it was impossible to tie these experienced individu-
als to course marks. However, considering the similarity in the standard deviation
of the marks of the three groups, as seen in Table 5.9, there was no discrepancy in
how the groups performed.

Table 5.6 shows group experience with mathematics. The overwhelming majority
of respondents completed Matric mathematics, with only a few of the students
indicating a higher level of mathematical competency. Accordingly, the level of
mathematical skill should be consistent over all the groups, and should not a↵ect
the outcome of the study.

Table 5.5: Responses for “Please indicate your history with computer science.”

Description Count

None 14
One Year Education of Introductory Course 9
More than one year education 8
Some Self-aught 4
Self-Taught and consider yourself competent 2

Table 5.6: Responses for “Please indicate your history with mathematics.”

Description Count

University Mathematics 4
Matric Mathematics 30
Matric Mathematics Literacy 1
Minimal High School Mathematics 0
Other 1

Stellenbosch University https://scholar.sun.ac.za

50 CHAPTER 5. MEASUREMENT AND TEST RESULTS

Table 5.7: Initial data groupings received and their sizes

Group Description Size

Played the game and completed both language agnostic
tests

18

Played the game and completed only the first language
agnostic test

9

Did not play the game, but completed both language
agnostic tests

5

Did not play the game, but completed the first language
agnostic test

13

Did not participate in the study in any way 27

5.4 University Course Marks

The target groups’ final semester marks for their introductory programming class
served as the main data source for this project. Testing also took place during
this single semester. Because class marks measure performance at specific points
in time, this test is cross-sectional. It would, in other words, provide data for
only a single point in time, namely the end of the semester. While this does not
allow tracking the progress of the students over time, it does allow comparison
between the data of the game-play volunteers with the rest of the students in the
introductory class.

All data was anonymised by the class lecturer because of limitations by the Univer-
sity’s ethics board. Thus, no identifying information on any individual respondents
was available. The data was received in five groups. Descriptions of these groups,
as well as the number of data point in each group, is listed in Table 5.7.

This data was compressed into three groups not on the basis of number of tests
written, but by whether students participated in the study. The first and second
groups, those who played the game, were combined, as were third and fourth
groups, those who did not. This resulted in three groups, as described in Table 5.8.

Table 5.9 shows the descriptive statistics of these three groups. As can be seen,
the averages of the three groups di↵er by up to 7%. The standard deviation of the
three groups, however, are similar and show a similar distribution of marks.

Table 5.10 shows the statistical significance of every of these three groups when
compared to each other group. As can be seen, none of the comparisons are

Stellenbosch University https://scholar.sun.ac.za

5.4. UNIVERSITY COURSE MARKS 51

Table 5.8: Compressed data groupings received and their sizes

Group Description Size

P 23
NP 22
O 27

** P - Played the game — NP - Did not play the game, but participated in the
study — O - Did not participate in the study in any way

Table 5.9: Descriptive statistics of university marks

N Mean Std. Dev. Std. Error -0.95% +0.95%
Total 72 67.83333 14.40168 1.697255 64.44910 71.21756
P 23 71.95652 13.15114 2.742203 66.26954 77.64350
NP 22 67.09091 15.09623 3.218527 60.39762 73.78420
O 27 64.92593 14.54945 2.800044 59.17035 70.68150

** P - Played the game — NP - Did not play the game, but participated in the
study — O - Did not participate in the study in any way

Table 5.10: The p-value of any group being distinct when compared to each other
group

P NP O
P 0.257577 0.087454

NP 0.257577 0.599601
O 0.087454 0.599601

** P - Played the game — NP - Did not play the game, but participated in the
study — O - Did not participate in the study in any way

Stellenbosch University https://scholar.sun.ac.za

52 CHAPTER 5. MEASUREMENT AND TEST RESULTS

significant at a p-value of 0.5 or less. However, the di↵erence of 7% between the
students who played the game and the students who did not participate in the
study is significant at a p-value of 0.087. While this metric could improve it is
nonetheless promising when considering the low number of respondents in each of
the three groups.

5.5 Impression Survey

As part of the second language-agnostic test the students were asked to complete
an impression survey, giving their opinion on the game. This was presented to the
students as an optional survey they could complete after completing the second
language-agnostic test. This meant that only twelve of the respondents who played
the game completed the impression survey. The impression survey consisted of two
quantitative questions to determine the level of respondent engagement with the
game. Following these were twelve 5-point Likert scale questions to qualitatively
determine respondants’ impressions of their experience with the game. The results
of the impression survey are shown in Table 5.11

As seen from Table 5.11, respondants who completed the survey were evenly spread
in the percentage of the game they completed, though there is a slightly higher
concentration of respondents at the lower end of the distribution.

Some inferences can be made when looking at the impression questions. Due to
the small number of respondents, these inferences are subjectively based on the
limited evidence present, and further testing is required to make more definite
claims.

Firstly, the majority of the respondents had generally positive feedback regarding
their experience with the game. Secondly, respondents agreed that the mechan-
ics introduced in the game helped them to understand and make decisions with
regarding in-game puzzles. Most importantly questions dealing with the e↵ect of
the game on programming skill were responded to positively, suggesting that users
feel as though more easily cope with programming problems after exposure to the
game developed for this research.

Stellenbosch University https://scholar.sun.ac.za

5.5. IMPRESSION SURVEY 53

Table 5.11: Impression Survey: number of respondents per answer category

<1h 1-2h 2-4h 4-6h >6h

How much time would you esti-
mate you spent playing the game?

5 4 0 2 1

<20% 20-40% 40-60% 60-80% >80%

How many of the level sets would
you estimate you completed?

3 3 3 0 3

Please indicate if you agree or dis-
agree with each of the following
statements.

Strongly
Agree

Agree Neutral Disagree Strongly
Disagree

I found the game to be easy overall. 1 4 6 1 0

I could complete at least the first few

levels of each level set.

7 4 1 0 0

I had di�culty following and complet-

ing the tutorial level sets.

1 3 3 1 4

I accurately could predict what if a so-

lution to a level was going to work be-

fore actually running it.

2 3 6 1 0

I had trouble making placements when

there were a lot of symbols on the

screen.

0 4 4 3 1

Watching the carrier as it moved

helped me realise where I had made a

mistake.

3 7 2 0 0

Being able to see the size and colour

of a gem at all times helped me under-

stand what was going on in my solu-

tions.

2 7 3 0 0

Knowing the size and colour of a gem

at a specific point helped me make de-

cisions about how to approach a puz-

zle.

1 8 3 0 0

Seeing the size and colour of a gem

change when a level ran helped me to

better understand the function of spe-

cific symbols.

2 8 2 0 0

Playing the game helped me to more

easily derive solutions for puzzles.

1 6 5 0 0

Playing the game gave me insight into

the way programming languages work.

1 5 4 1 1

I’ll find it easier to solve programming

problems after playing the game.

0 6 4 1 1

Stellenbosch University https://scholar.sun.ac.za

54 CHAPTER 5. MEASUREMENT AND TEST RESULTS

5.6 Summary

This chapter discussed the results of tests, surveys, and analyses done to answer the
research questions as presented in Chapter 1. The results of the language-agnostic
test developed as part of this research were shown. This chapter considered the
previous programming experience of the respondents, as well as their impressions
of the game played. Finally, it examined the university course marks of the various
groups and discussed these di↵erences amongst the groups.

Emphasised in the discussion of all the results is the impact that a lack of re-
spondents had on the measurable metrics. Given that the research is longitudinal
and requires a long term commitment from the respondents, a decline in these
respondents was expected. This, coupled with the inherently limited scope of this
research, meant that the lack of respondents led to ome of the results being incon-
clusive. However, taken as a whole, the results gathered seem reliable enough to
draw some conclusions, which will be more fully discussed in Chapter 6.

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Conclusion

The research presented in the preceding chapters explored design, development,
and implementation of a game aimed at conveying introductory programming con-
cepts. This chapter concludes the thesis with a holistic overview of the results
gathered, their impact given the hypotheses, as well as recommendations for fu-
ture research.

6.1 Objectives

As stated in Chapter 1, the aim of the research is to show the use of computer
games as a medium for conveying the core principles of computer programming.
This required the completion of two objectives:

Firstly, it required the design and development of a game aimed at conveying the
introductory principles of computer science. This game had several requirements:

1. The game must convey a coherent set of the basic programming concepts.

2. The game must be understandable to users without any outside input.

3. The game must be free of any technical issues which would have cause it to
crash.

4. The game may not contain any conceptual fallacies that could potentially
corrupt the concepts it must convey.

5. The game must run on a relatively wide array of computers, so that its target
audience can easily access it.

55

Stellenbosch University https://scholar.sun.ac.za

56 CHAPTER 6. CONCLUSION

Secondly, the research required testing the game to measure its success. This
section of the research was divided into the following subsections:

1. The location of a group of respondents on which to test the e↵ectiveness of
the game as a tool for conveying the above mentioned concepts.

2. The identification and gathering of any relevant data on the respondents.

3. If necessary, the development of a measurable testing mechanism that can
be given to the respondents.

4. The administration of any the testing process.

5. The processing and analysis of any gathered data.

6.2 Hypotheses

Given the two research questions, there are possible hypotheses and one possible
null hypothesis.

• H0: No correlation was found between exposure to an electronic serious game
and understanding of introductory concepts.

• H1: A correlation was found between exposure to an electronic serious game
and understanding of introductory concepts, given the additional presence
of a standard introductory programming course.

• H2: A correlation was found between exposure to an electronic serious game
and understanding of introductory concepts, given no other directly relevant
stimuli.

6.3 Summary of Results

Chapter 5 discussed the results of the various measurement mechanics used during
this research. Due to a lack of volunteers on some of the tests, or a decline in
volunteers over the course of the experiment, many of the results gathered were not
as definitive as desired. Given the scope of the research,as well as the limitations
imposed by qualitative, respondent based research, the lack of respondents is not
entirely surprising.

Stellenbosch University https://scholar.sun.ac.za

6.4. COMPARISON WITH PREVIOUS APPROACHES 57

However, the gathered data suggests positive support for the primary hypothesis,
namely, that electronic games can be used to enhance established introductory pro-
gramming courses. It is important to note that, due to the nature of respondent-
based social research, it is impossible to definitively state that no other factors in-
fluenced these results. The primary metrics of this research, the university course
marks, resulted in a di↵erence of approximately 7% between respondents who
played the game, and those who did not participate in the study. This is signifi-
cant at a p-value of 0.1. Given the relatively small size of the sample group, these
results lend themselves to the prospect of future research aimed at clarification.

While the rest of the measurements are not as definitive because of their qualitative
nature, the limited number of respondents, or a combination of the two factors,
they suggest, overall, that exposure to the game had a positive e↵ect on both the
academic outcomes of the respondents and their outlook on their programming
skills development.

It should be noted that these outcomes can be explained by other factors, such
as a volunteer bias in the respondents or a positivity bias in the surveys. While
these possibilities should be explored, such exploration would have been impossible
given the scope of this research as it would have further diluted the small sample
pool and made significant result sets extremely unlikely.

This research specifically dealt with the creation of a codeless, symbol-based learn-
ing environment and, in combination with the work done by others in this field
as described in Chapter 2 (Marques et al., 2012; Kelleher et al., 2007), there is
a clear pattern indicating the positive influence of games in basic programming
education. These studies did not use directly comparable metrics, but all of them
do show a positive e↵ect in programming education amongst learners exposed to
programming serious games.

6.4 Comparison with Previous Approaches

As was described in Chapter 3, the game developed here made the novel leap of
representing programming logic through visual symbols rather than a more tradi-
tional text based representation. It is therefore pertinent to compare the results
from this research to some of the previous approaches to teaching programming
fundamentals through serious games.

Unfortunately there is no standard method of data gathering or modeling across
the previous work in this field, which makes any direct comparison impossible.
In addition, since most of the work has dealt with direct respondents in some

Stellenbosch University https://scholar.sun.ac.za

58 CHAPTER 6. CONCLUSION

way various known and unknown situational factors would make any definitive
conclusion from comparison impossible. It is therefore more prudent to consider
the essence of the results from the various pieces of work and see if an overall trend
is indicated.

In 2006, Kelleher compared two version of an internal tool, Alice, to measure the
e↵ect narratives have on user engagement and found a positive correlation between
the use of narratives in games and user engagement (Kelleher et al., 2007).

Marques, in 2012, used the time taken to complete their games levels as a met-
ric for comparison (Marques et al., 2012). Additionally, similar to the research
presented here, they studied the e↵ect on university students and reported an av-
erage increase of 10% amongst the 14 students whose university course marks they
compared. Lastly, they gathered qualitative feedback indicating that the game is
rewarding and fun.

These two approaches indicate that games have the ability to engage users, while
also having the ability to increase performance. This aligns closely with the find-
ings of this research. While neither of these two pieces of previous work, nor the
work presented here, can be taken as conclusive on their own or as a whole, it does
seem like they indicate the same optimistic trend.

Unfortunately it does not seem that the use of symbols over text as a representation
method made much di↵erence in the e↵ectiveness of the approach. However, it
does not seem to have performed significantly worse either, at least when compared
with Marques. This might indicate that a symbol based approach might be of
significant interest in situations where language is a barrier to adoption, such as
with the very young of the illiterate.

6.5 Future Work

6.5.1 Restrictions and Limitations

Respondent Drop O↵ and Subsequent Scope Limitations

The research plan was to use the first semester of 2013 to gather data from a
introductory programming class at the Department of Information Sciences at
Stellenbosch University. The second semester would be used to gather data from
a second homogeneous source to test whether games are successful as replacement
educational tools as opposed to only as enhancement.

Stellenbosch University https://scholar.sun.ac.za

6.5. FUTURE WORK 59

Initially, the response rate in the class was positive, with almost two-thirds of the
students participating in the voluntary skills assessment test developed as part
of the research. In addition, just under half the class volunteered to play the
game. Although this resulted in an uneven distribution of students between the
three groups of students who a) did not participate, b) only wrote the test, and
c) played the game, it was suspected that many of the students in groups b and
c would not fulfil their commitment as research subjects for the duration of the
experimen thus, it was decided to maximise the number of volunteers to have
potentially as large a sample at the end of the semester as possible.

At the end of the first semester, only twenty-three students had finished the game.
The majority of the respondents who completed the aptitude tests at both the
start and the end of the semester were also part of the group who played the
games. This meant that the number of results in the control group were to few to
provide statistically significant results. However, as the class marks were available
irrespective of respondent interaction, the results gathered from that data was
statistically significant.

This, however, meant that any data gathered from the second series of tests would
not be useful in proving the research hypothesis as there was no control group with
which it could be compared. This was because the second test set would only be
supported only by data from the aptitude test.

As a result, the second set of tests was abandoned and instead the focus fell solely
on class marks as the measure for determining the validity of the main hypothesis.

Limited Sample Selection

As has been mentioned, this research used student volunteers as respondents.
Although a limited form of financial incentive was provided, the research did not
o�cially partner with any department and could not require students to participate
as part of their course. This meant that there was limited sampling control in the
experiment, which made it impossible to spread out of factors such as previous
informal programming experience.

Groups would ideally be used to isolate not only planned influences, but also other
variables, such as volunteer bias.

Stellenbosch University https://scholar.sun.ac.za

60 CHAPTER 6. CONCLUSION

6.5.2 Next Steps

Separation of Influences through Larger Sample Groups

At the time of writing, several studies have been done that explore the possibility
of using electronic games to teach programming. This has resulted in the devel-
opment of several prototype tools that have shown various degrees of success in
their respective studies. However, as has been previously highlighted, direct com-
parison between the gathered data of di↵erent studies is impossible because the
testing mechanism used in this study and those developed by previous studies are
unique. These testing mechanisms di↵er in various ways. Firstly, previous studies
focused on di↵erent population samples, with some focusing on young children and
others focusing on adults. Secondly, these studies di↵ered in terms of their explicit
research goals. Lastly, they di↵er in the type of data the tests generate.

When considered as a whole, separate data sets that all point to the same con-
clusion that electronic games can be used as enhancement tools for programming
courses. In addition, several distinct and di↵erent tools have been developed.

This creates a ripe environment for a meta analysis of the previous approaches,
with special focus given to testing these solutions in such a manner that they pro-
duce comparable data. This is not an easy task to accomplish. Such an experiment
would require a large number of respondents to make each test group large enough
for data comparison.

The following groups would be required for the suggested experiment: three groups
testing the e↵ect of three distinct games in conjunction with a class environment;
three groups testing the same three games in isolation from a class environment;
two groups, to test a game not expected to a↵ect programming skills, with one
group in a class environment and one in an isolated environment to control for
a volunteer or participation bias; one group to test the e↵ects of a class without
a game influence; and, finally, one group to test only the e↵ect of the tests over
time, without the influence of either a class or a game.

This makes for a total of twelve distinct groups, needing a large number of homo-
geneous respondents to test the distinctions between the data gathered in such an
experiment.

Stellenbosch University https://scholar.sun.ac.za

6.5. FUTURE WORK 61

Qualitative Prototype Testing

One of the objectives implicit in this research was the development of a prototype
fit for testing the hypotheses highlighted in Chapter 1. One of the requirements
of this objective is that the prototype must be programmatically stable. It should
not crash and should run on all targeted devices to reach its intended audience.

One of the instructions the respondents of this research received was to report any
technical issues. A couple of respondents reported issues with screen resolutions,
but otherwise no complaints were received. While this can be deemed as succeed-
ing in the technical development of the task, it is recommended that any future
research in to this field includes questioning respondents specifically about their
experience with the stability and usability aspects of the prototype.

This would allow future researcher to more easily identify the potential influence of
any technical issues with the results of those respondents. In the research presented
here, any data from users experiencing technical issues was simply ignored in order
to avoid fragmenting the number of influences in a group.

6.5.3 Incorporating fields in Visualisation

Section 3.2.2 briefly mentioned a number of fields that have benefited from studies
in visualisation. Incorporating elements from these fields was outside of the scope
of this study, but such integration would likely have significant positive impacts
on the ability of the game to reach it’s targets.

A future prototype specifically aimed at incorporating lessons learned from these
fields into order to increase usability, concept conveyance as well as potentially
teaching new lessons could be an interesting field of future study.

Stellenbosch University https://scholar.sun.ac.za

Bibliography

Abt, C. C. (1970). Serious games: The art and science of games that simulate life. Viking
Compass Book, USA.

America’s Army Home Page (2013). [Online] Available: http://www.americasarmy.com/ [24
October 2015].

BotLogic Home Page (2013). [Online] Available: http://botlogic.us/ [25 October 2015].

BYOB Home Page (2012). [Online] Available: http://snap.berkeley.edu/ [16 October 2015].

Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E., & Ivkovic, M. (2011).
Augmented reality technologies, systems and applications. Multimedia Tools and
Applications, 51 (1), 341–377.

Caudwell, A. (2009). Gource: Software version control vizualisation. [Online] Available:
https://code.google.com/archive/p/gource/[25 October 2015].

Code Hero Project Page (2012). [Online] Available: http://primerlabs.com/codehero [23
October 2015].

Codecademy Home Page (2012). [Online] Available: http://www.codecademy.com [25 October
2015].

CodeSpells Game Page (2013). [Online] Available: http://codespells.org/ [16 October 2015].

Conti, J. (2006). The Internet of Things. Communications Engineer , 4 (6), 20–25.

Crawford, C. (2002). Art of Interactive Design. No Starch Press San Francisco, CA.

Crenshaw, T., Chambers, E., & Metcalf, H. (2008). A case study of retention practices at the
University of Illinois at Urbana-Champaign. ACM SIGCSE Bulletin, 40 (1), 412–416.

Currie, E. (2006). Fundamentals of Programming using Java. Thomson Learning.

Dehnadi, S. (2006). Testing programming aptitude. In Proceedings of the 18th Annual
Workshop of the Psychology of Programming Interest Group, (pp. 22–37).

Derryberry, A. (2007). Serious games: online games for learning. Adobe Whitepaper, November .

62

Stellenbosch University https://scholar.sun.ac.za

63

else{Heart.break()} Home Page (2012). [Online] Available:
http://eriksvedang.com/2012/02/16/else-heart-break/ [23 October 2015].

Entis, G. (2011). Beyond Badges – Gamification for the Real World. Entertainment
Computing–ICEC 2011 , (pp. 472–472).

Farrel, J. (2013). A beginner’s guide to Programming Logic and Design: Comprehensive.
Cengage Learning.

Farrell, J. (2012). Microsoft Visual C# 2012 An Introduction to Object-Orientated
Programming . Cengage Learning.

Fitocracy Home Page (2012). [Online] Available: http://www.galaxyzoo.org/ [25 October
2015].

Foldit Science Page (2013). [Online] Available: http://fold.it/portal/info/science [23 October
2015].

Galaxy Zoo Home Page (2012). [Online] Available: https://www.fitocracy.com/ [25 October
2015].

Google Blocky Home Page (2013). [Online] Available: https://blockly-games.appspot.com/ [25
October 2015].

Harwani, B. (2012). Introduction to Python Programming and Developing GUI Applications
with PyQT . Cengage Learning.

Hayden, D. (2011). Gamification by Design – Implementing Game Mechanics in Web and
Mobile Apps. [Online] Available: http://www.davidhayden.me/blog/gamification-by-design-
implementing-game-mechanics-in-web-and-mobile-apps [24 October
2015].

Ingress Home Page (2013). [Online] Available: http://www.ingress.com/ [25 October 2015].

Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling Alice Motivates Middle School Girls
to Learn Computer Programming. In Proceedings of the SIGCHI conference on Human
factors in computing systems , (pp. 1455–1464). ACM.

Khatib, F., Cooper, S., Tyka, M. D., Xu, K., Makedon, I., Popović, Z., Baker, D., & Players, F.
(2011). Algorithm discovery by protein folding game players. Proceedings of the National
Academy of Sciences , 108 (47), 18949–18953.

Lambert, K. (2011). Fundamentals of Python: From first programs through data structures .
Cengage Learning.

Logo Foundation Home Page (2013). [Online] Available:
http://el.media.mit.edu/logo-foundation/ [25 October 2015].

Lucidchart - Activity Diagram Introduction Page (2015). [Online] Available:
https://www.lucidchart.com/pages/uml/activity-diagram [27 October 2015].

Stellenbosch University https://scholar.sun.ac.za

64 BIBLIOGRAPHY

Manufactoria Game Page (2013). [Online] Available:
http://www.pleasingfungus.com/Manufactoria/ [25 October 2015].

Marques, B. R., Levitt, S. P., & Nixon, K. J. (2012). Video games as a medium for software
education. In Games Innovation Conference (IGIC), 2012 IEEE International , (pp. 1–4).
IEEE.

Mughal, K., Hamre, T., & Rasmussen, R. (2008). Java Actually: A comprehensive primer in
programming . Cengage Learning.

Muratet, M., Torguet, P., Viallet, F., & Jessel, J. (2010). Experimental Feedback on
Prog&Play: A Serious Game for Programming Practice. In Computer Graphics Forum.
Wiley Online Library.

Muwanga-Zake, J. (2003). Is science education in a crisis? some of the problems in South
Africa. [Online] Available: http://www.scienceinafrica.co.za/scicrisis.html [04 March 2012].

Quest to Learn Home Page (2012). [Online] Available: http://q2l.org/ [25 October 2015].

Raskin, J. (2000). The humane interface: new directions for designing interactive systems .
Addison-Wesley Professional.

Ribbon Hero 2 Home Page (2013). [Online] Available: http://www.ribbonhero.com/news.html
[25 October 2015].

Scratch Home Page (2012). [Online] Available: http://scratch.mit.edu/ [25 October 2015].

Small Business Labs (2012). [Online] Available:
http://www.smallbizlabs.com/2011/02/what-is-gamification.html [24 October 2015].

Smith, J. (2011). The growing internet of things. [Online] Avalable:
http://www.capacitymagazine.com/Article/2919323/The-growing-Internet-of-Things.html
[04 March 2012].

Stack Overflow User Page (2014). [Online] Available: http://https://stackoverflow.com/users
[5 June 2014].

Stack Overflow Website (2013). [Online] Available: http://stackoverflow.com [25 October 2015].

Tufte, E. R., & Graves-Morris, P. (1983). The visual display of quantitative information, vol. 2.
Graphics press Cheshire, CT.

Unger, R., & Moult, J. (1993). Genetic algorithms for protein folding simulations. Journal of
molecular biology , 231 (1), 75–81.

Unity Home Page (2012). [Online] Available: http://unity3d.com/unity/ [23 October 2015].

Yaroslavski, D. (2012). Lightbot 2 Game Page. [Online] Available:
http://armorgames.com/play/6061/light-bot-20 [23 October 2015].

Yo Yo Games (2012). GameMaker Home Page. [Online] Available:
http://www.yoyogames.com/make [23 October 2015].

Stellenbosch University https://scholar.sun.ac.za

65

Zelle, J. (2010). Python Programming: An Introduction to computer science 2nd edition.
Franklin, Beedle and Associates.

Zicherman, G. (2010). Fun is the future: Mastering Gamificaton. [Online] Available:
http://www.youtube.com/watch?v=6O1gNVeaE4g [25 October 2015].

Stellenbosch University https://scholar.sun.ac.za

Appendix A

First language agnostic
programming test

This appendix gives, verbatim, the first aptitude test presented to the respondents
at the start of the testing period.

The aptitude test is split into a preamble and 5 sections, the purpose of which are
described below.

The preamble is aimed at determining the respondent’s existing knowledge of
programming and mathematics, which could provide data about the respondent’s
predisposition to answering the test easily.

Section A aims to introduce the respondent to the format of the test. It intro-
duces them to the idea that the test makes use of sequential statements of simple
mathematical arithmetic, and that they will be asked to track the values of various
variables.

Section B introduces each type of question the respondents will be asked to answer.
Each question is introduced with an example, followed by an initial question of
the same di�culty level. Each type of question is roughly related to a segment of
programming knowledge.

Question B1 introduces conditional statements.

Question B2 introduces bounded loops.

Question B3 introduces loops with conditional escapes.

Question B4 introduces programming functions.

66

Stellenbosch University https://scholar.sun.ac.za

67

Questions B5 introduces memory pointers.

Sections C, D and E then iterate on these questions in increasing, sequential,
di�culty.

In addition to these explicit di↵erentiation, the test as a whole also introduces
basic boolean logical operators to the respondent. Respondents are exposed to
AND, OR and NOT operators by the end of the test, as those are all logically
coherent in plain English.

Stellenbosch University https://scholar.sun.ac.za

Please indicate you history with computer science:

None

One Year Education or Introductory Course

More than One Year Education

Some Self-Taught

Self-Taught and considered competent

Please indicate your history with Mathematics

University Math

Matric Math

Minimal High school Math

Other

Stellenbosch University https://scholar.sun.ac.za

Section A

Example:

Given that:

x has a starting value of 0

y has a starting value of 10

z has a starting value of 6

And the following commands:

x ← y

y ← 2 × x

z ← y + x

with the resulting values:

x has an end value of 10

y has an end value of 20

z has an end value of 30

Question 1

Given That

a has a starting value of 7

c has a starting value of 19

And the following commands:

a ← a + 3

c ← c + a - 4

a ← c – a

what are the end values of a and c?

Question 2

Given:

a has a starting value of 5

c has a starting value of 10

And the following commands:

a ← c ÷ a

b ← c

c ← b ÷ a

d ← a + b - c

What are the end values of a,b,c and d?

Stellenbosch University https://scholar.sun.ac.za

Question 3

Given:

a has a starting value of 5

c has a starting value of 10

And the following commands:

b ← a ÷ c

c ← a × b

d ← a + c × b

What are the end values of a,b,c and d?

Section B

Example 1:

Given:

a has a starting value of 10

And the following commands:

if a is 15 then do:

b ← 5

otherwise do:

b ← 7

then a will have an end value of 10

and b will have and end value of 7

Question 1

Given:

a has a starting value of 2

b has a starting value of 3

And the following commands:

if (a+b) is 5 then do:

a ← a – 1

b ← b – 1

otherwise do:

a ← a + 1

b ← b + 1

What are the end values of a and b?

Stellenbosch University https://scholar.sun.ac.za

Example 2:

Given:

a has a starting value of 1

And the following commands:

repeat(10)

a ← a + 1

then a will have an end value of 11

Question 2

Given:

a has a starting value of 1

And the following commands:

repeat(4)

a ← a×2

What is the end value of a?

Example 3:

Given:

a has a starting value of 1

b has a starting value of 5

And the following commands:

while a is not 5 do:

a ← a + 1

b ← b + 1

then a will have an end value of 5

and b will have an end value of 9

Stellenbosch University https://scholar.sun.ac.za

Question 3

Given:

a has a starting value of 1

b has a starting value of 1

And the following commands:

while a is not 5 do:

a ← a + 1

b ← b×a

What is the end value of a and b?

Example 4:

Given:

a has a starting value of 1

And the following commands:

to add_five with var do:

var ← var + 5

add_five(a)

add_five(a)

then a will have an end value of 11

Question 4

Given:

a has a starting value of 10

b has a starting value of 22

And the following commands:

to double with var do:

var ← var+var

double(a)

double(b)

What are the end values of a and b?

Stellenbosch University https://scholar.sun.ac.za

Example 5:

Given:

a has a starting value of 10

And the following commands:

b <<< a

a ← a + 10

then a will have an end value of 20

and b* will have an end value of 20

Question 5

Given:

a has a starting value of 5

b has a starting value of 12

And the following commands:

c <<< a + b

a ← a + 10

b ← b + 8

What is the end values of a, b and c*

Section C

Question 1

Given:

a has a starting value of 10

And the following commands:

if a is 10 then do:

if a is not divisible by 5 then do:

b ← 1

otherwise do:

b ← 2

otherwise do:

if a is divisible by 3 then do:

b ← 3

otherwise do:

b ← 4

What is the end value of b?

Stellenbosch University https://scholar.sun.ac.za

Question 2

Given:

a has a starting value of 1

b has a starting value of 1

And the following commands:

repeat(2)

repeat(2)

repeat(2)

a ← a + b

What is the end value of a?

Question 3

Given:

a has a starting value of 1

b has a starting value of 1

And the following commands:

while a is not 5 do:

a ← a + 1

while (a+b) is a multiple of 2

b ← b + 1

What are the end values of a and b?

Question 4

Given:

a has starting value of 7

And the following commands:

to split with var do:

var ← var ÷ 2

to increase with var do:

var ← var + 1

increase(a)

split(a)

a ← a + 2

What are the end values of a?

Stellenbosch University https://scholar.sun.ac.za

Question 5

Given:

a has a starting value of 2

b has a starting value of 8

And the following commands:

c <<< a

d <<< b + a

b ← b + a

What are the end values of a, b, c* and d*?

Section D

Question 1

Given:

a has a starting value of 10

And the following commands:

if a is not 10 then do:

a ← a + 6

if a is divisible by 4 then do:

b ← 1

otherwise do:

b ← 2

otherwise do:

a ← a - 4

if a is divisible by 3 then do:

b ← 3

otherwise do:

b ← 4

What is the end value b?

Stellenbosch University https://scholar.sun.ac.za

Question 2

Given:

a has a starting value of 1

b has a starting value of 1

And the following commands:

repeat(2)

repeat(2)

repeat(2)

a ← a + b

b ← b + 1

What is the end value of a and b?

Question 3

Given:

a has a starting value of 1

b has a starting value of 1

And the following commands:

while a is smaller than 20 do:

a ← a + b

while (a+b) is a multiple of 2 do:

b ← b + a

What is the end value of a and b?

Question 4

Given:

a has a starting value of 5

b has a starting value of 3

And the following commands:

to mul with base, deg do:

base ← base*deg

mul(a,b)

What are the end values of a and b?

Stellenbosch University https://scholar.sun.ac.za

Question 5

Given:

a has a starting value of 7

b has a starting value of 9

And the following commands:

c <<< b

b ← b + a

d <<< a

a ← a + b

e <<< a – b

What are the values of a, b, c*, d* and e*?

Section E

Question 1

Given:

a has a starting value of 10

b has a starting value of 8

And the following commands:

if a is divisible by 2 or b is divisible by 2 do:

c ← 1

if a is divisible by 4 and b is divisible by 4 do:

d ← 1

otherwise do:

d ← 2

otherwise do:

c ← 2

if a is divisible by 4 and b is divisible by 4 do:

d ← 3

otherwise do:

d ← 4

What are the end values of c and d?

Stellenbosch University https://scholar.sun.ac.za

Question 2

Given:

a has a starting value of 13

b has a starting value of 12

And the following commands:

if (a + b) is divisible by 2 do:

a ← a + 2

if (a + b) is divisible 5 do:

b ← b + 10

while b is smaller than 20 do:

a ← a + 1

b ← b + 1

c ← 1

while a is smaller than 15 do:

a ← a + 1

c ← c + 1

What are the end values of a, b and c?

Question 3

Given:

a has a starting value of 2

b has a starting value of 10

And the following commands:

to incr with base, deg do:

base ← base+deg

while a is smaller than 20 do:

if (a+b) is divisible by 2 do:

incr(a,b)

a ← a + 1

otherwise do:

incr(b,a)

What are the end values of a and b?

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Second language agnostic
programming test

This appendix gives, verbatim, the second aptitude test presented to the respon-
dents at the end of the testing period.

This almost identical to the initial test presented in appendix A, with di↵erent
variable values. This protects against respondents copying the answers from their
initial tests.

79

Stellenbosch University https://scholar.sun.ac.za

Please indicate you history with computer science:

None

One Year Education or Introductory Course

More than One Year Education

Some Self-Taught

Self-Taught and considered competent

Please indicate your history with Mathematics

University Math

Matric Math

Minimal High school Math

Other

Stellenbosch University https://scholar.sun.ac.za

Section A

Example:

Given that:

x has a starting value of 0

y has a starting value of 10

z has a starting value of 6

And the following commands:

x ← y

y ← 2 × x

z ← y + x

with the resulting values:

x has an end value of 10

y has an end value of 20

z has an end value of 30

Question 1

Given That

a has a starting value of 5

c has a starting value of 22

And the following commands:

a ← a + 3

c ← c + a - 4

a ← c – a

what are the end values of a and c?

Question 2

Given:

a has a starting value of 10

c has a starting value of 5

And the following commands:

a ← c ÷ a

b ← c

c ← b ÷ a

d ← a + b - c

What are the end values of a,b,c and d?

Stellenbosch University https://scholar.sun.ac.za

Question 3

Given:

a has a starting value of 14

c has a starting value of 7

And the following commands:

b ← a ÷ c

c ← a × b

d ← a + c × b

What are the end values of a,b,c and d?

Section B

Example 1:

Given:

a has a starting value of 10

And the following commands:

if a is 15 then do:

b ← 5

otherwise do:

b ← 7

then a will have an end value of 10

and b will have and end value of 7

Question 1

Given:

a has a starting value of 3

b has a starting value of 4

And the following commands:

if (a+b) is 5 then do:

a ← a – 1

b ← b – 1

otherwise do:

a ← a + 1

b ← b + 1

What are the end values of a and b?

Stellenbosch University https://scholar.sun.ac.za

Example 2:

Given:

a has a starting value of 1

And the following commands:

repeat(10)

a ← a + 1

then a will have an end value of 11

Question 2

Given:

a has a starting value of 1

And the following commands:

repeat(3)

a ← a+a+2

What is the end value of a?

Example 3:

Given:

a has a starting value of 1

b has a starting value of 5

And the following commands:

while a is not 5 do:

a ← a + 1

b ← b + 1

then a will have an end value of 5

and b will have an end value of 9

Stellenbosch University https://scholar.sun.ac.za

Question 3

Given:

a has a starting value of 3

b has a starting value of 1

And the following commands:

while a is less than 5 do:

a ← a + 1

b ← b×a

What is the end value of a and b?

Example 4:

Given:

a has a starting value of 1

And the following commands:

to add_five with var do:

var ← var + 5

add_five(a)

add_five(a)

then a will have an end value of 11

Question 4

Given:

a has a starting value of 5

b has a starting value of 11

And the following commands:

to triple with var do:

var ← var × 3

triple(a)

triple(b)

What are the end values of a and b?

Stellenbosch University https://scholar.sun.ac.za

Example 5:

Given:

a has a starting value of 10

And the following commands:

b <<< a

a ← a + 10

then a will have an end value of 20

and b* will have an end value of 20

Question 5

Given:

a has a starting value of 3

b has a starting value of 9

And the following commands:

c <<< a + b

a ← a + 10

b ← b + 8

What is the end values of a, b and c*

Section C

Question 1

Given:

a has a starting value of 10

And the following commands:

if a is 10 then do:

if a is not divisible by 5 then do:

b ← 1

otherwise do:

b ← 2

otherwise do:

if a is divisible by 3 then do:

b ← 3

otherwise do:

b ← 4

What is the end value of b?

Stellenbosch University https://scholar.sun.ac.za

Question 2

Given:

a has a starting value of 2

b has a starting value of 1

And the following commands:

repeat(2)

repeat(2)

repeat(3)

a ← a + b

What is the end value of a?

Question 3

Given:

a has a starting value of 1

b has a starting value of 2

And the following commands:

while a is less than 5 do:

a ← a + 1

while (a+b) is a multiple of 2

b ← b + 1

What are the end values of a and b?

Question 4

Given:

a has starting value of 9

And the following commands:

to split with var do:

var ← var ÷ 2

to increase with var do:

var ← var + 1

increase(a)

split(a)

a ← a + 2

What are the end values of a?

Stellenbosch University https://scholar.sun.ac.za

Question 5

Given:

a has a starting value of 8

b has a starting value of 2

And the following commands:

c <<< a

d <<< b + a

b ← b + a

What are the end values of a, b, c* and d*?

Section D

Question 1

Given:

a has a starting value of 9

And the following commands:

if a is not 10 then do:

a ← a + 6

if a is divisible by 4 then do:

b ← 1

otherwise do:

b ← 2

otherwise do:

a ← a - 4

if a is divisible by 3 then do:

b ← 3

otherwise do:

b ← 4

What is the end value b?

Stellenbosch University https://scholar.sun.ac.za

Question 2

Given:

a has a starting value of 2

b has a starting value of 2

And the following commands:

repeat(2)

repeat(2)

repeat(3)

a ← a + b

b ← b + 1

What is the end value of a and b?

Question 3

Given:

a has a starting value of 1

b has a starting value of 3

And the following commands:

while a is smaller than 20 do:

a ← a + b

while (a+b) is a multiple of 2 do:

b ← b + a

What is the end value of a and b?

Question 4

Given:

a has a starting value of 5

b has a starting value of 3

And the following commands:

to mul with base, deg do:

base ← base*deg

mul(a,b)

What are the end values of a and b?

Stellenbosch University https://scholar.sun.ac.za

Question 5

Given:

a has a starting value of 9

b has a starting value of 7

And the following commands:

c <<< b

b ← b + a b = 16

d <<< a

a ← a + b a = 25

e <<< a – b

What are the values of a, b, c*, d* and e*?

Section E

Question 1

Given:

a has a starting value of 9

b has a starting value of 15

And the following commands:

if a is divisible by 2 or b is divisible by 2 do:

c ← 1

if a is divisible by 4 and b is divisible by 4 do:

d ← 1

otherwise do:

d ← 2

otherwise do:

c ← 2

if a is divisible by 3 and b is divisible by 3 do:

d ← 3

otherwise do:

d ← 4

What are the end values of c and d?

Stellenbosch University https://scholar.sun.ac.za

Question 2

Given:

a has a starting value of 11

b has a starting value of 9

And the following commands:

if (a + b) is divisible by 2 do:

a ← a + 2

if (a + b) is divisible 5 do:

b ← b + 10

while b is smaller than 20 do:

a ← a + 1

b ← b + 1

c ← 1

while a is smaller than 15 do:

a ← a + 1

c ← c + 1

What are the end values of a, b and c?

Question 3

Given:

a has a starting value of 10

b has a starting value of 2

And the following commands:

to incr with base, deg do:

base ← base+deg

while a is smaller than 20 do:

if (a+b) is divisible by 2 do:

incr(a,b)

a ← a + 1

otherwise do:

incr(b,a)

What are the end values of a and b?

Stellenbosch University https://scholar.sun.ac.za

Appendix C

Game impression survey

This appendix gives the impression survey that was presented to the respondents
to optionally complete after they had played the game and done the two language
agnostic tests.

91

Stellenbosch University https://scholar.sun.ac.za

How much time would you estimate you spent playing the game?

<1h 1-2h 2-4h 4-6h >6h

What many of the level sets would you estimate you completed?

<20% 20-40% 40-60% 60-80% 80-100%

All of the questions below need to be 5-point Likert-scale questions. ie with 5 answers:

Strongly Disagree – Disagree – Neutral – Agree – Strongly Agree

I found the game to be easy overall

I could complete at least the first few levels of each level set

I had difficulty following and completing the tutorial level sets.

I accuratly could predict what if a solution to a level was going to work before actually running it.

I had trouble making placements when there were a lot of symbols on the screen.

Watching the carrier as it moved helped me realise where I had made a mistake.

Being able to see the size and colour of a gem at all times helped me understand what was going on

in my solutions.

Knowing the size and colour of a gem at a specific point helped me make decisions about how to

approach a puzzle.

Seeing the size and colour of a gem change when a level ran helped me to better understand the

function of specific symbols.

Playing the game helped me to more easily derive solutions for puzzles.

Playing the game gave me insight into the way programming languages work

I'll find it easier to solve programming problems after playing the game.

Stellenbosch University https://scholar.sun.ac.za

Appendix D

Anonymised end-of-semester
university marks

93

Stellenbosch University https://scholar.sun.ac.za

9
4

A
P
P
E
N
D
IX

D
.
A
N
O
N
Y
M
IS
E
D

E
N
D
-O

F
-S
E
M
E
S
T
E
R

U
N
IV

E
R
S
IT

Y
M
A
R
K
S

Both Tests
and Played

Both
Tests,
but did
not Play

Test One,
Not Two
and Played

Test One,
Not Two
and Did
Not Play

Did Not
Participate

Played
Game

Did not
play game

Did Not
Participate

45 45 63 45 40 45 45 40
50 55 67 50 45 50 55 45
58 58 67 51 50 58 58 50
59 58 68 57 50 59 58 50
63 67 76 60 52 63 67 52
64 75 61 53 64 75 53
67 76 61 54 67 76 54
68 84 61 56 68 84 56
75 90 75 57 75 90 57
78 82 57 78 45 57
78 83 58 78 50 58
80 86 59 80 51 59
80 96 59 80 57 59
84 61 84 60 61
86 61 86 61 61
92 65 92 61 65
92 66 92 61 66
95 66 95 75 66

71 63 82 71
73 67 83 73
78 67 86 78
81 68 96 81
86 76 86
87 87
88 88
89 89
91 91

Table D.1: The raw class marks for the respondants

Please note that in Table D.1 the last three columns are an amalgamation of the first five columns.

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

Appendix E

Anonymised impression survey results

95

Stellenbosch University https://scholar.sun.ac.za

9
6

A
P
P
E
N
D
IX

E
.
A
N
O
N
Y
M
IS
E
D

IM
P
R
E
S
S
IO

N
S
U
R
V
E
Y

R
E
S
U
L
T
S

Anon
ID

How
much
time
would
you es-
timate
you
spent
playing
the
game?

How
many
of the
level
sets
would
you es-
timate
you
com-
pleted?

I found
the
game
to be
easy
overall.

I could
com-
plete
at least
the
first
few
levels
of each
level
set.

I had
di�-
culty
follow-
ing and
com-
pleting
the tu-
torial
level
sets.

I accu-
rately
could
predict
what if
a solu-
tion to
a level
was go-
ing to
work
before
actu-
ally
run-
ning
it.

I had
trouble
making
place-
ments
when
there
were a
lot of
sym-
bols
on the
screen.

Watching
the
carrier
as it
moved
helped
me
realise
where
I had
made
a mis-
take.

Being
able
to see
the size
and
colour
of a
gem
at all
times
helped
me
under-
stand
what
was
going
on in
my so-
lutions.

Knowing
the size
and
colour
of a
gem
at a
specific
point
helped
me
make
deci-
sions
about
how
to ap-
proach
a
puzzle.

Seeing
the size
and
colour
of a
gem
change
when
a level
ran
helped
me to
better
under-
stand
the
func-
tion of
specific
sym-
bols.

Playing
the
game
helped
me to
more
easily
derive
solu-
tions
for
puz-
zles.

Playing
the
game
gave
me
insight
into
the
way
pro-
gram-
ming
lan-
guages
work.

I’ll find
it eas-
ier to
solve
pro-
gram-
ming
prob-
lems
after
playing
the
game.

1 <1h 40-60% Agree Agree Disagree Strongly
Agree

Disagree Neutral Neutral Neutral Neutral Agree Agree Agree

2 1-2h <20% Disagree Strongly
Agree

Agree Neutral Agree Agree Agree Agree Agree Neutral Strongly
Dis-
agree

Strongly
Dis-
agree

3 1-2h 40-60% Agree Agree Neutral Neutral Neutral Agree Agree Agree Agree Agree Agree Agree
4 <1h <20% Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral
5 1-2h <20% Neutral Agree Strongly

Agree
Neutral Agree Strongly

Agree
Neutral Neutral Agree Neutral Disagree Neutral

6 <1h >80% Strongly
Agree

Strongly
Agree

Strongly
Dis-
agree

Strongly
Agree

Strongly
Dis-
agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Agree Strongly
Agree

Agree

7 4-6h >80% Agree Strongly
Agree

Strongly
Dis-
agree

Agree Disagree Agree Agree Agree Agree Agree Agree Agree

8 <1h 20-40% Neutral Strongly
Agree

Agree Neutral Neutral Agree Agree Agree Agree Agree Agree Neutral

9 1-2h 20-40% Neutral Agree Agree Disagree Agree Agree Agree Agree Agree Neutral Neutral Neutral
10 4-6h >80% Neutral Strongly

Agree
Strongly
Dis-
agree

Agree Agree Agree Agree Agree Agree Neutral Neutral Agree

11 <1h 40-60% Agree Strongly
Agree

Neutral Agree Disagree Strongly
Agree

Strongly
Agree

Agree Strongly
Agree

Agree Neutral Disagree

12 >6h 60-80% Neutral Strongly
Agree

Strongly
Dis-
agree

Neutral Neutral Agree Agree Agree Agree Strongly
Agree

Agree Agree

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

	Declaration
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Research Goals
	Thesis Statement
	Hypotheses
	Objectives

	Scope and Limitations
	Thesis Document Structure

	Literature Review
	Gamification
	Fitocracy
	Galaxy Zoo
	Stack Overflow

	Education
	Scratch
	Snap!
	Codecademy
	Quest to Learn

	Serious Gaming
	Ribbon Hero 2
	America's Army
	Fold-it
	Google Ingress

	Education
	Google Blocky
	Lightbot
	Alice

	Marques, 2013
	Current attempts at the problem

	Summary

	Game Design and Development
	Introduction
	Game Design Background
	Programming Concept Focus Area
	Visualisation
	Text- versus Symbol-Based Code Representation
	Process Flow Diagrams

	Design Decisions
	Target Users
	Focus Areas of the Game
	Game Mechanics
	The Level
	The Carrier and Flow
	Build Time and Run Time
	Arrows and Direction
	Gems
	Changing Gem Values
	Gem Spawners and Goals
	Split Symbols
	Loops
	Walls
	Limiting Player Options

	Technical Specifications
	Level Description
	Tutorial 1: Basics
	Movers
	Tutorial 2: Change
	Warm-up
	All together
	Tutorial 3: Decisions
	Choices
	Crossroads

	Summary

	Test and Experiment Design and Development
	Measurement Design
	Test Design
	Language-Agnostic Test
	Other Measurements

	Testing Procedure Design

	Final Target Group
	Test Deployment
	Test Implementation Issues
	Summary

	Measurement and Test Results
	Introduction
	Language-Agnostic Test
	Previous Computer Science and Mathematics Experience
	University Course Marks
	Impression Survey
	Summary

	Conclusion
	Objectives
	Hypotheses
	Summary of Results
	Comparison with Previous Approaches
	Future Work
	Restrictions and Limitations
	Respondent Drop Off and Subsequent Scope Limitations
	Limited Sample Selection

	Next Steps
	Separation of Influences through Larger Sample Groups
	Qualitative Prototype Testing

	Incorporating fields in Visualisation

	Bibliography
	First language agnostic programming test
	Second language agnostic programming test
	Game impression survey
	Anonymised end-of-semester university marks
	Anonymised impression survey results

