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Summary 

Aromatase inhibitors (AI), the gold standard for treatment of postmenopausal women with 

hormone-sensitive breast cancer, add an additional burden to the risk of osteoporosis in the 

postmenopausal population. Individual variation in AI associated bone loss is related to clinical 

risk factors as well as genetic variations in drug metabolism. 

The aim of the study is to identify postmenopausal breast cancer patients at highest risk for AI- 

associated bone loss by utilizing clinical, biochemical and genetic parameters. In parallel, 

clinically meaningful patient reports were developed from a secure online genomics database 

resource, enriched during the study. 

This prospective study was conducted at the Tygerberg Hospital Breast Clinic in affiliation with 

Stellenbosch University. Postmenopausal women with endocrine sensitive breast cancer, aged 50 

to 80 years, were enrolled after obtaining informed consent. A baseline questionnaire documented 

demographic-, lifestyle- and medical history before commencing AI treatment. Clinical, 

biochemical and bone mineral density (BMD) measurements were obtained at baseline. 

Cytochrome P450 19A1 (CYP19A1) genotyping was performed using real-time polymerase chain 

reaction (PCR), and a screening algorithm applied to select patients for whole exome sequencing 

(WES). Results relevant to breast cancer diagnosis, comorbidities and treatment response were 

integrated into an adaptable report format for clinical application. Descriptive statistics were used 

to analyze the data. 

A total of 101 participants were recruited, with a mean age of 617 years. Thirty-two women 

fulfilled global criteria for bone protection at baseline [BMD T-score -2SD (n=18); BMD T-score 

-1.5SD to < -2SD with risk factors (n=14)]. In women with osteoporosis, significantly lower body 
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weight, body mass-, fat mass- and lean mass index were documented (p <0.001). Low vitamin D 

status was present in more than 90% of the cohort tested (n=95). After one year of AI treatment, 

72 patients remained in the study, of whom 10 (14%) experienced more than 5% bone loss at the 

lumbar spine. Genotyping for the CYP19A1 rs10046 in 72 patients revealed that patients with two 

copies of the A-allele are 7,37 times more likely to have a higher percentage bone loss at the total 

hip compared to those without this allele (CI of 1.101- 49.336, p=0.04). At the lumbar spine, 

CYP19A1 rs10046 AA homozygotes were 10.79 times more likely to have a higher percentage 

bone loss compared to patients with the GA or GG genotypes (CI of 1.771- 65.830, p=0.01). 

Extended genetic testing using Sanger sequencing and WES in the 10 patients with more than 5% 

bone loss supported the clinical findings. None of the 34 patients without bone loss at the lumbar 

spine at month 12 were homozygous for the functional CYP19A1 polymorphism. 

At baseline, a third of women fulfilled global criteria for bone protection. This highlights bone 

fragility associated with body composition variables of postmenopausal women in our 

predominantly Mixed Ancestry study cohort. Homozygosity for CYP19A1 rs10046 provides 

additional information for individual risk stratification to optimize bone health maintenance. New 

insights gained into the mechanisms impacting bone health merit continued health outcome studies 

embedded in routine clinical practice. 
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Opsomming 

Aromatase inhibitore (AI), die goue standaard vir die behandeling van postmenopausale vroue met 

hormoon-sensitiewe borskanker, dra by tot die risiko vir osteoporose in die postmenopausale 

bevolking. Individuele variasie in AI geassosieёrde beenverlies is verwant aan kliniese risiko 

faktore asook genetiese variasie in middel metabolism.   

Die doel van die studie is om postmenopausale borskanker pasiënte te identifiseer wat die hoogste 

risiko het vir AI geassosieërde beenverlies deur gebruik te maak van kliniese, biochemiese en 

genetiese maatreёls. In parallel hiermee, is klinies betekenisvolle pasiёnt verslae ontwikkel vanuit 

die aanlyn geslote genomiese databasis bron, wat verryk is tydens die studie. 

Die prospektiewe studie het plaasgevind by die Tygerberg Hospitaal Borskliniek, geaffilieёr met 

die Universiteit van Stellenbosch. Postmenopausale vroue met endokrien-sensitiewe borskanker, 

tussen die ouderdomme van 50-80 jaar, is opgeneem in die studie, na verkryging van ingeligte 

toestemming. ‘n Basislyn vraelys het demografiese- leefstyl- en mediese geskiedenis 

gedokumenteer voor die aanvang van AI behandeling. Kliniese, biochemiese en been mineraal 

digtheid mates is geneem met basislyn. Sitochroom P450 19A1 (CYP19A1) genotipering is 

uitgevoer deur die gebruik van reёl-tyd polimerase ketting reaksie (PCR) en ‘n siftingsalgoritme 

is toegepas om pasiёnte te selekteer vir heel eksoom volgorde bepaling (WES). Alle inligting is 

ingelees in ‘n geslote aanlyn genomiese bron, op ‘n aangaande basis. Resultate wat relevant is tot 

die borskanker diagnose, ko-morbiditeite en behandelingsrepons is geintegreer in ‘n aanpasbare 

verslag formaat vir kliniese toepassing. Beskrywende statistiek is gebruik om die data te analiseer. 

‘n Totaal van 101 deelnemers is gewerf, met ‘n gemiddelde ouderdom van 617 jaar. Twee-en-

dertig vroue het voldoen aan die internasionale kriteria vir been beskerming, met basislyn [BMD 
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T-telling -2SD (n=18); BMD T-telling -1.5SD to < -2SD met risiko faktore (n=14)]. In vroue met 

osteoporose is beduidend laer liggamsgewig, liggamsmassa-, vet massa- en spier massa indeks 

gedokumenteer (p <0.001). Lae vitamin D status was teenwoordig in meer as 90% van die kohort 

wat getoets is (n=95). Na een jaar van AI behandeling, het 72 pasiёnte oorgebly in die studie, van 

wie 14% (n=10) meer as 5% beenverlies ervaar het by die lumbale area. Genotipering van 

CYP19A1 rs10046 in 72 pasiёnte het geoon dat pasiёnte met twee kopiee van die A-alleel, 7,37 

meer geneig sal wees om n hoёr persentasie been verlies by die heup te hê in vergelyking met die 

sonder hierdie alleel (CI of 1.101- 49.336, p=0.04). By die lumbale area, was CYP19A1 rs10046 

AA homosigote, 10.79 meer geneig om ‘n hoёr persentasie beenverlies te hê in vergelyking met 

pasiёnte wat die GA or GG genotipes het (CI of 1.771- 65.830, p=0.01). Uitgebreide genetiese 

toetsing met Sanger volgorde bepaling en WES in die 10 pasiente met meer as 5% beenverlies, 

ondersteun die kliniese bevindinge. Nie enige van die 34 pasiënte wat geen been verlies getoon 

het by die lumbale area teen maand 12, was homosigote vir die funksionele CYP19A1 

polimorfisme nie. 

By basislyn het ‘n derde van vroue voldoen aan die internasionale kriteria vir beenbeskerming, 

wat die assosiasie van liggaamsamestelling in postmenopausale vroue van Gemengde Oorsprong, 

beklemtoon. Homosigote vir CYP19A1 rs10046 verskaf bykomende inligting wat in oorweging 

gebring kan word ten einde individuele risiko bepaling vir optimale beengesondheid te 

verwesenlik. Nuwe insigte in meganismes wat beengesondheid beinvloed, vereis voortgaande 

navorsing vasgelê binne ‘n kliniese opset. 
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Outline of the dissertation 

 

The thesis is presented in chapter format, starting with a general introduction (Chapter 1). A review 

of the clinical (Chapter 2) and genetic (Chapter 3) aspects relevant to the study is presented 

separately. In parallel with study recruitment, a database resource was developed to align the 

fragmented genetic research data with clinical service delivery information (Chapter 4). The 

characteristics of the study cohort was described at baseline (Chapter 5) and used to explore the 

role of genetics in aromatase inhibitor related bone outcomes, following 12 months of treatment 

(Chapter 6). A summative conclusion (Chapter 7) is provided as cohesion of the multidisciplinary 

research performed.  
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and for each of the cases where this is not the case, a declaration is included in Appendix 1, 
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CHAPTER 1 

General Introduction 

Breast cancer is the most common malignancy in women worldwide (1). Endocrine therapy is an 

important modality in the treatment of postmenopausal women with hormone-sensitive breast 

cancer.  Several trials have documented a significant reduction of in-breast recurrence and contra-

lateral breast cancer, as well as a reduction in the risk of distant metastases with the use of 

aromatase inhibitors (AI)(2-4). The prolonged breast cancer survival rates necessitates attention to 

quality of life, most notably prevention of treatment-related bone health impairment (6).   

Physiological changes in older women increase the risk of developing osteoporosis. The bone side 

effects of AIs add an additional burden of osteoporosis to an already  at-risk population (5, 6), 

which accentuates the importance of maintaining bone health. In the post-menopause, estrogen 

production predominantly originates from adipose tissue, the adrenal glands, smooth muscle, and 

bone (7). AIs decrease estrogen levels by preventing estrogen production via aromatization of 

androgen precursors in peripheral tissues (6, 8). These low residual estrogen levels in healthy 

postmenopausal women are important in preserving bone health (9, 10).  

Treatment-related bone loss in  breast cancer may be different to the bone loss typically 

experienced in the postmenopausal woman (11). At the start of menopause, yearly bone loss is 

estimated at 2% annually; it plateaus at about 1% during the 2nd decade after menopause and 

beyond. However, the bone loss associated with AIs in postmenopausal women was estimated to 

be  >2.5% per annum (6, 12). Although breast cancer patients treated with AIs are at increased risk 

of bone loss and fracture, only 25 – 50% of postmenopausal AI users develop bone loss and 

fractures (13). This vulnerable subgroup is undefined and risk factors remain unclear. The 
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American Society of Clinical Oncology and the UK Expert Group have established osteoporosis 

prevention and treatment algorithms for women initiating treatment with AIs (14). These involve 

close follow-up of bone mineral density (BMD) and a more aggressive pharmacotherapy compared 

to healthy postmenopausal women with osteoporosis (15).   

BMD,  an assessment of mineral content at specific skeletal sites is measured by dual energy X-

ray absorptiometry (DXA) (16). DXA is accurate, non-invasive and can detect silent vertebral 

fractures and calculate body composition. It is also utilized to estimate BMD changes over time 

and evaluate response to therapy (17-19). As BMD decreases, the risk of fracture increases 

exponentially,  two- to three-fold with every standard deviation (SD) decline in BMD (20, 21). 

Conventional risk factors for osteoporosis include  modifiable and non-modifiable risk factors 

(22). Age, sex, genetic predisposition and ethnicity signify the most important non-modifiable 

factors. Adjustable factors such as low body weight, an inactive lifestyle, poor calcium diet and 

deficient vitamin D levels, smoking and excess alcohol use, may also impact bone density 

considerably. In women of all ethnicities, body weight is one of the most significant determinants 

of BMD at most skeletal sites (22, 23).  

Bone health should be assessed by utilizing a mixture of parameters. These include the clinical 

risk factors, BMD measurement and biochemical markers of bone turnover. Bone formation 

biomarkers include serum bone specific alkaline phosphatase and osteocalcin, as well as 

parameters of bone resorption e.g. urine deoxypyridinoline, serum C terminal telopeptide. These 

markers of bone turnover can forecast postmenopausal bone loss rates and assess fracture risk 

independent of BMD. These indicators of bone turnover are more sensitive than BMD and changes 

can be identified within 4-6 months. In the osteoporosis-treatment studies (with alendronate, 

risedronate, raloxifene), bone turnover markers appear to have a stronger correlation with fracture 
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risk reduction than BMD (24, 25). This supports the use of bone turnover markers as substitutes 

for fracture risk reduction.  

Osteoporosis has serious clinical and health systems implications. The addition of AIs as endocrine 

treatment of breast cancer compounds the problem. The prevalence of BMD and fractures have 

been described internationally, but data amongst diverse populations in Southern Africa is limited 

to black and white patients (26- 28). Expansion of knowledge in other ethnicities will optimize 

strategies towards prevention and management of osteoporosis as well as for the post-menopausal 

woman treated for breast cancer (29).  

The causal mechanism of cancer treatment induced bone loss remains undefined.  The aromatase 

enzyme plays a critical role in bone health. Pathogenic mutations in the Cytochrome P450 

(CYP450) CYP19A1 gene cause decreased BMD due to a significant effect on enzyme activity 

(30-32). Genetic polymorphisms in the aromatase gene have been associated with estrogen levels 

and bone mass in healthy postmenopausal women and men (33). Significant associations have 

been reported between several  polymorphisms in the CYP19A1 gene and bone health in 

postmenopausal women (33). Careful selection of clinically relevant single nucleotide 

polymorphisms (SNP) for pharmacogenetic studies is important and functionality should ideally 

be confirmed using in vitro studies as demonstrated for CYP19A1 rs10046 (34). This SNP is 

associated with raised estrogen levels because of elevated enzyme activity, expected to be 

beneficial for bone health but detrimental to cancer outcomes. Advances in pharmacogenetics, 

moving from SNP genotyping testing to next generation sequencing, covering the entire gene, 

could overcome the limitations of incomplete genotyping, which may lead to incorrect risk 

allocation of polymorphic alleles. 
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To determine the genetic contribution to AI treatment-related bone loss, a comprehensive 

assessment of established baseline characteristics is necessary. International consensus 

recommends that all women with endocrine sensitive breast cancer should have a baseline 

osteoporosis risk assessment, prior to starting an AI (35, 36). A thorough evaluation allows for 

individualized risk stratification and bone protective measures to be introduced as clinically 

indicated (37, 38). Bone protective measures as globally agreed, suggest that all women with a 

BMD T-score of -2 SD or less at any measured site, should be protected with bone directed therapy. 

Furthermore, patients with a BMD T-score of -1.5 SD or less with additional bone risk factors, 

should also be considered for treatment (36). These include women above 65 years of age, 

smoking, low body weight, a family or personal history of fractures as well as a course of steroid 

therapy of longer than a 3-month period. Recommended pharmacological therapy for these at-risk 

patients includes vitamin D and calcium supplementation especially if nutritional intake is 

insufficient. Antiresorptive therapy with bisphosphonates are recommended in patients with a 

baseline T score of <−2.0 or two or more clinical risk factors for fracture (5). 

There is significant individual variation in AI associated bone loss, which could be related to 

clinical factors such as age, menopausal status, years since menopause and body mass index 

(BMI). It is clear that individual vulnerability to AI side effects differs and this unpredictability 

may partly be explained by diverse genetic profiles (39). Breast cancer pharmacogenetics are 

evolving with utilization of whole exome sequencing (WES) to identify genetically predisposed 

patients for AI adverse bone effects.  In this study, the clinical value of AI pharmacogenetics as an 

additional bone risk factor postmenopausal breast cancer patients on AIs, was explored within the 

context of a pathology supported genetic testing algorithm developed in South Africa (40). 
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Aim 

The aim of the study is to employ clinical, biochemical and genetic measures to improve the 

understanding of the pathophysiology of treatment-induced bone loss. An examination into the 

impact of AIs on bone health in a multi-ethnic postmenopausal cohort with endocrine responsive 

breast cancer resident in the Western Cape Province of South Africa was undertaken.  

The goal is to identify a subgroup of women at highest risk of severe side effects, for effective 

implementation of preventive measures at the onset of treatment or by early modification of 

management. 

Integrating research on AI pharmacogenetics with established clinical and biochemical bone loss 

risk factors could lead to improved individualized cancer care and simultaneously enrich an onco-

genomic database resource, beyond a single study objective. 
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Abstract 

Breast cancer, as the most common malignancy in women, remains a major public health issue 

despite countless advances across decades. Endocrine therapy is the cornerstone of treatment of 

the hormone sensitive subtype of breast cancer. The use of aromatase inhibitors (AIs) in the post-

menopausal women has extended the survival beyond that of Tamoxifen, but harbours a subset of 

side effects, most notably accelerated bone loss. This, however, does not occur in all women 

undergoing treatment. It is vital to identify susceptible patients early, to limit such events, employ 

early treatment thereof or to alter drug therapy. International trials on AIs, predominantly 

performed in North American and European females, provide little information on what to expect 

in women in developing countries. Here, surgeons often prescribe and manage endocrine therapy. 

The prescribing surgeon should be aware of adverse effect of endocrine therapy and be able to 
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attend to side effects. This review highlights clinical and biochemical factors associated with 

decrease in bone mineral density in an, as yet, unidentified subgroup of post-menopausal women.  

In the era of personalised medical care, appropriate management of bone health by surgeons based 

on these factors becomes increasingly important. 

Abbreviations  

AIs - Aromatase inhibitors; ATAC- Arimidex Tamoxifen, Alone or in Combination; AEs- adverse 

effects; BMD - Bone mineral density; BMI – Body mass index; BS-ALP- bone-specific alkaline 

phosphatase; BIG 1-98- Breast International Group 1-98; CYP 19- cytochrome P450 enzyme; CR- 

clinical response; CTX- C terminal telopeptide; DNA- deoxyribonucleic acid; DXA -dual-energy 

x-ray absorptiometry; ER- estrogen receptor; FRAX- Fracture Risk Assessment Tools; HER 2- 

human epidermal growth factor 2; IOF- International Osteoporosis Foundation; IES Intergroup 

Exemestane Study; LVA- Lateral vertebral assessment; NCIC CTG-National Cancer Institute of 

Canada Clinical Trialist Group; NTX- cross-linked N-telopeptides of bone type I collagen; NOF- 

National Osteoporosis Foundation; NHANES- National Health and Nutrition Examination 

Survey; PTH- parathyroid hormone; PR- progesterone receptor; RANKL- receptor activator of 

NF-κB ligand; SNPs- single nucleotide polymorphisms; SDs- standard deviations; 25(OH) vitamin 

D- 25 hydroxy vitamin D; WHO- World Health Organisation 

Introduction 

Breast cancer is the most common female cancer, globally (1). In developing countries, it has 

replaced cervical cancer as the leading cause of cancer death in women (1). These patients ideally 

should  be managed in multidisciplinary teams that coordinate surgical treatment in conjunction 

with the modalities  of chemotherapy, irradiation, endocrine therapy, and biological therapy (2). 
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In developing countries, such as South Africa, this is often available only in major centres and 

mostly in tertiary hospitals affiliated with universities (3). 

Determination of the molecular receptor status of tumours is standard in breast cancer 

classification. Routine testing for receptors in breast cancer includes the estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2) (2). 

Hormone-receptor sensitive breast cancer is the most common breast cancer subtype and endocrine 

therapy is the cornerstone of systemic treatment (4).  

Women with hormone receptor–positive disease have an excellent 5-year survival (5). Endocrine 

therapy in the adjuvant setting for the post-menopausal status consists of treatment with Tamoxifen 

or Aromatase inhibitors (4). Endocrine manipulation has systemic side effects. It is important to 

take cognizance of these and accurately quantify the potential for long-term morbidity (6). 

In premenopause, ovaries are the principal source of estradiol. In post menopause, ovaries cease 

to produce estrogen and circulating estrogen levels fall precipitously. Extragonadal sites such as 

adipose tissue, breast, bone, vascular epithelium and brain produce estrogen locally from C19 

steroid precursors via the aromatase cytochrome P450 enzyme. Circulating estrogen levels 

therefore do not accurately reflect concentrations in local tissue, where estrogen acts in a paracrine 

or intracrine fashion (7). In bone in particular, local estrogen production slows postmenopausal 

bone loss (7). 

Bone health  

Osteoporosis is characterized by compromised bone strength that predisposes to an  increased risk 

of fracture (8). Osteoporotic fractures occur in nearly 40% of post-menopausal women. 

Menopausal women experience a sustained doubling of bone turnover (8) due to estrogen 
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withdrawal and a subsequent increase in bone resorption. An accelerated loss of BMD of 1–3% 

per year at the spine and 1–2% per year at the hip has been observed in the first 7 years after the 

onset of the menopause. 

This weakening of the bone structure decreases resistance to low-energy trauma and coupled with 

a low BMD increases bone fragility and fracture risk (9). Major risk factors for osteoporosis 

comprise: age, female sex, a personal history of fracture as an adult, a history of a fragility fracture 

in a first-degree relative, low body weight, current smoking and excessive alcohol consumption, 

and use of corticosteroids (10). Other contributing factors are: excess height, poor general health 

and certain endocrine and systemic conditions. Poor depth perception and the use of drugs like 

benzodiazepines increase the risk of falling and so add to the fracture incidence. 

The most common sites of fragility fractures are: vertebrae, femoral neck, and distal radius (8). 

Methods used to assess fracture risk include bone mineral density (BMD), biochemical bone 

markers and the Fracture Risk Assessment Tools utilized in countries or regions with known hip 

prevalence figures. 

Bone Mineral Density 

Bone mineral density (BMD) is an assessment of the mineral content in key skeletal regions (11). 

It is measured with dual x-ray absorptiometry and expressed in absolute terms as grams of mineral 

per square centimeter scanned (g/cm2). The T-score is the number of standard deviations that a 

patient’s bone mineral density value is above or below the reference value for a healthy thirty-

year-old adult.  

Results are expressed as standard deviations (SDs) from age- and sex-matched standards (Z score) 

or from the population mean peak bone mass (T score). The reference range recommended by the 
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International Osteoporosis Foundation (IOF), World health Organisation (WHO) and National 

Osteoporosis Foundation (NOF) for calculating the T-score is the National Health and Nutrition 

Examination Survey (NHANES) III reference database for femoral neck measurements in 

Caucasian women aged 20–29 years (12). Fracture risk increases roughly twofold for every 

standard deviation below the mean for a young adult. The WHO defines normal bone mass as T> 

-1.0, with osteopenia being T < -1.0 and Z > -2.5, and osteoporosis T <-2.5. Each SD represents a 

difference of 10%-15% in BMD. A T score of < -2, 5 is indicative of a 25% loss from peak bone 

mass. Fracture risk increases exponentially with lower BMD. For T scores of -1.0,-2.0, and -3.0, 

the relative risks of fracture are 1.7-, 3.4-  and 6.8-fold, respectively (8).  

DXA measured BMD is accurate and reproducible. It uses x-rays to assess BMD by area (not 

volume). The radiation dose is approximately one-tenth of a standard chest x-ray. Patients should 

have repeat BMD measured by the same machine and by the same operator, to minimize error (8). 

It is the only bone density test that is currently useful for assessment of BMD changes over a time 

period and for determining the response to therapy (13).  

Fracture Risk Assessment Tools (FRAX) 

BMD provides the cornerstone for the diagnosis of osteoporosis, but it cannot be used in isolation 

as a determinant for the initiation of therapy (12). The WHO’s Fracture Risk Assessment Tool 

(FRAX) is a risk prediction model that employs the femoral neck BMD as measured by DXA and 

includes clinical factors for bone loss. It estimates the 10-year probability of hip and other major 

osteoporotic fractures (spine, humerus and forearm). Clinical factors include: country or 

geographic region , the patient’s ethnic origin, age, sex, weight, height, prior fragility fracture, 
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parental history of hip fracture, current smoking, excess alcohol intake, long-term use of oral 

glucocorticoids, rheumatoid arthritis, and secondary osteoporosis (11).  

FRAX can be calculated for 4 ethnicities (white, Hispanic, Asian, and black) in a sex- and 

geographic-specific manner (8). It allows entry of ages 40 to 90 years; there is no validation of 

FRAX in younger or older patients. FRAX cannot be used to monitor therapy as it considers only 

femoral neck bone density in the calculation of risk and allows only yes / no input rather than 

gradations of secondary risk factors. In the United States, the National Osteoporosis Foundation 

recommends treatment of patients with a FRAX-calculated 10-year fracture probability of >3% 

for hip fracture and >20% for major osteoporotic fracture (11). 

A similar web-based tool, the FORE 10-Year Fracture Risk Calculator 

(http://riskcalculator.fore.org), closely aligns with the US regional data from the WHO-FRAX 

model offering similar risk estimates for men and women older than 45 years. FORE also allows 

entry of glucocorticoid dosing; allows information on spine fracture; and adds a graphic display 

showing low, moderate, or high 10-year fracture risk for use in patient education (8). 

Biomarkers of Bone Turnover  

The common use of aromatase inhibitors led to in an increased focus on cancer treatment-induced 

bone loss. Bone strength is a function of BMD and bone quality. Bone quality describes the set of 

characteristics that influence bone strength independently of BMD and include structural and 

material properties. Bone turnover is a function of the bone renewal process in which old or 

damaged bone is resorbed (bone resorption) and new bone is created (bone formation). Normally 

bone resorption and formation is tightly balanced to ensure that bone mass and quality is 

maintained. Excess resorption and sustained increases in bone turnover not only result in decreased 
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BMD, but may also adversely affect bone architecture and quality. These qualitative changes may 

decrease bone strength independent of BMD. Biomarkers are used to assess the rate of bone 

turnover and can thus provide information on bone quality. Combining BMD and bone markers 

allows for the identification of a subcategory of individuals at an increased risk of hip fracture 

compared to those identified by each test in isolation (14).  

The role of estrogen in bone health 

Estrogen plays an integral part in bone metabolism in women and is fundamental in the 

pathogenesis of osteoporosis in postmenopausal women. The bone loss associated with estrogen 

deficiency is a complex and multidimensional process (15). Estrogen is a systemic inhibitor of 

bone resorption by complex measures on bone cellular level (16). The reduction of serum 

oestradiol at the onset of the menopause leads to a negative balance at the bone remodelling unit 

level (17). The mechanisms by which estrogen regulates bone remodelling are not fully understood 

but estrogen is thought to affect osteoclastogenesis and osteoclast functioning through its effects 

on local cytokines and growth factors.  

Endocrine therapy 

There are two distinct subtypes of estrogen receptors, namely ER- and ER-. Tamoxifen has 

been used in the treatment of endocrine sensitive breast cancer for decades and it is the benchmark 

against which newer drugs are measured.  Tamoxifen acts as a pure antagonist on ERα in breast 

tissue, resulting in a decrease in breast cancer cell proliferation (19). Conversely, it acts as an 

agonist on the estrogen receptor β expressed in bone and brain thereby promoting estrogen 

effects in these organs. This selective agonist effect of Tamoxifen in bone thus protects women 
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against accelerated postmenopausal bone loss attributable to cessation of ovarian estrogen 

production (20).  

An overall 19% reduction in the incidence of fractures was seen in postmenopausal women 

receiving Tamoxifen therapy for a median of 5.75 years (18). Tamoxifen use in the switch trials 

as well as extended duration of treatment beyond 5 years are well documented (19, 20).  

Aromatase inhibitors heralded a new strategy in the treatment of breast cancer. These agents are 

without the estrogenic effects and have an improved side effect profile compared to Tamoxifen 

(21). Today, it constitutes the gold standard in treatment of endocrine responsive breast cancers in 

postmenopausal women. 

The use of aromatase inhibitors (AI) in post-menopausal patients is well-established.  Several trials 

have documented a significant reduction of in-breast recurrence and contra-lateral breast cancer, 

as well as a reduction in the risk of distant metastases (22, 23). The third-generation aromatase 

inhibitors demonstrate greater efficacy and superior overall safety in the adjuvant treatment of 

women with hormone receptor-positive breast cancer, compared with the selective estrogen 

receptor modulator Tamoxifen (24, 25). 

The near total suppression of oestrogen production by aromatase inhibitors has focused research 

on the aggravation of symptoms of menopause such as hot flashes and cardiovascular disease and 

has also raised significant concern regarding potential worsening of bone loss and the incidence of 

fragility fractures (26). 

Bone loss and fracture 

Aromatase inhibitors are the drugs of choice in post-menopausal breast cancer patients with 

endocrine responsive tumours. However, aromatase inhibitors enhance bone turnover and result in 
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the loss of bone mass (27).  The general population risk factors for osteoporosis apply to breast 

cancer patients. However, cancer treatment causes additional bone loss that could increase the risk, 

above that seen in cancer-free women.  

The level of bone loss and fracture risk is directly related to the further suppression of already low 

post-menopausal estrogen levels. In post-menopausal women, AIs decrease the serum levels of 

oestrogen beyond physiological levels and it is expected that bone loss would be augmented (28, 

29). The ATAC (Arimidex, Tamoxifen, alone or in combination) bone sub-protocol confirmed 

that adjuvant Anastrozole therapy can lead to accelerated bone loss for postmenopausal women 

with early breast cancer (30), compared to the bone-protective effect seen with Tamoxifen. This 

confers a 2- to 3-fold higher risk of fractures versus women receiving Tamoxifen.  Annual rates of 

bone loss from AI treatment range from 3%-4% at the spine and 1%-2% at the hip (31).  Hip 

fractures, associated with greater morbidity than all other osteoporotic fractures combined, did not 

differ between treatment groups, even with follow-up extending beyond the 5-year treatment 

period. The relative increase in fractures in the Anastrozole group remained constant over the 5-

year treatment period but was not evident in year 6 (32, 33). 

  

Stellenbosch University  https://scholar.sun.ac.za



21 
 

Trials  Intervention  BMD changes (%) p value Fracture 

rate (%) 

ATAC (6) Arimidex 

  

Tamoxifen, alone or in combination 

Hip:   - 7.24   

Spine: - 6.08  

Hip:  0.74 

Spine:  2.77 

<0.01 11  

 

7.7 

NCIC 

CTG 

MA.17/BI

G 1–97(6) 

Letrozole (post Tamoxifen) 

 

Placebo 

Hip:    -3.4   

Spine: – 4.1  

Hip:  2 

Spine: 1.0 

0.009 5.3  

 

4.6 

IES (6, 24) Exemestane post Tamoxifen 

 

Tamoxifen (continued) 

Hip:   -2.9 

Spine – 3.9  

Hip:  -1 

Spine - 0.6 

<0.001 7   

 

4.9 

Gonelli (6) 

 

Tamoxifen 

 

Exemestane (post Tamoxifen) 

 

Hip:   - 2.01  

Spine – 3.0  

Hip:  0 

Spine: 0.0 

<0.01 Not 

available 

BIG 1-98  

(6, 17) 

Letrozole (L) 

Tamoxifen (T)  

Not available 

 

0.002 5.7 

4.0 

 

Table 2.1: Impact of endocrine therapy on BMD in postmenopausal women with breast cancer 

Most of the large clinical trials have evaluated bone loss rates of AI therapy and reported 

significant bone loss at lumbar spine and hip. (Table 2.1) The rates of bone density change after 1 

year of AI treatment ranged from -1.66 % to -7.40 %; a wide variation depending on the baseline 

characteristics of the patients studied (34).  
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Many trials lack data on baseline risk factors for fracture, including, older age, prior fracture, and 

other co-morbidities, as well as the longer-term effect on bones. The objective of treatment is not 

only to ensure cancer-free survival, but to limit detrimental effects of therapy (6).  

Bone turnover 

Measurement of bone turnover markers can be used to examine changes in bone turnover in the 

short term (35). ATAC and MA17 (20, 36) indicated  statistically significant increases in both 

bone formation markers (e.g. osteocalcin) and bone resorption markers (e.g. cross-linked N-

telopeptides of bone type I collagen [NTXs]) over the first 3 to 24 months of treatment of AI 

therapy. Studies examining AI-induced bone marker changes suggest a disparity between 

resorption and formation, leading to a net bone loss and increased fracture risk. Bone turnover 

marker profiles may be clinically useful in identifying those at highest fracture risk who require 

early intervention with anti-resorptive agents or potentially a change in treatment (35). The bone 

turnover changes occur early on in the initiation of AI treatment and in the ATAC, MA-17 and 

IES trials (18, 36), bone loss has translated into increased fracture rates with AI use compared to 

Tamoxifen use (25, 35).  

Body weight 

The relationship between body weight, breast cancer risk and breast cancer treatment is complex 

(37). Estrogen has long been suspected as the hormone responsible for increasing breast cancer 

risk in obese postmenopausal women (38). Aromatase resides in adipose tissue (among other 

tissues), leading to higher estrogen levels in heavier, postmenopausal breast cancer patients. This 

higher level of estrogen may thus worsen breast cancer outcome, but may be bone-protective in 

this subgroup of postmenopausal women (39). 
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The adjuvant use of adjuvant AIs have increased the concern about long-term bone health and 

fracture risk (40). Considering the bone protecting effect of estrogen (41) and the hypothesis that 

concentrations of estrogen differ among lean and obese women, it is important to investigate bone 

health in accordance with BMI (39). Endocrine therapies for breast cancer are not given by weight- 

or body-surface-area–related dosing: currently one standard dosage applies to all patients (42). 

On the other side of the spectrum, low body mass index (BMI) has long been associated with an 

increased risk of fracture (43). The fracture risk associated with low BMI (<20 kg/m2) is the 

strongest for hip fracture and independent of age, sex and BMD (43). 

In the post-menopausal breast cancer patient population, there is marked variation in BMI. The 

increased fracture risk in the lean patient, and the potential protective effect of estrogen in obese 

patients, may thus influence the outcome of BMD changes in patients on AIs.  

Vitamin D 

Vitamin D is essential for the maintenance of the human skeleton (44, 45). Wide variability in 

vitamin D levels occurs due to differences in geographic location, season, sun avoidance 

behaviours, sunscreen use, increasing age and skin pigmentation, obesity, and other lifestyle 

factors (46) . The normal 25(OH)D values remain vague (47, 48). The International Osteoporosis 

Foundation recommends a desirable 25(OH)D serum level of 30 ng/mL or above (47).  

Deficiency in Vitamin D can cause secondary hyperparathyroidism, high bone turnover, low bone 

mineral density and mineralization defects. Insufficiency can be a significant risk factor for 

osteoporosis (44) and could contribute to an increased fracture risk (34). 

Vitamin D deficiency is very common among the general population, especially the elderly, (28) 

with up to 88% of post-menopausal breast cancer patients having levels <30 ng/mL (49). Adequate 
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dietary calcium and vitamin D intake is important for maintaining BMD, but supplementation 

alone is not sufficient to prevent the accelerated bone loss that occurs during AI therapy (43). 

Vitamin D repletion to a target threshold of >40 ng/ml can have a protective effect on bone loss 

among low-risk patients on AI treatment (34). Vitamin D level is currently not measured in a 

standard fashion, prior to initiation of AI therapy but is strongly recommended if resources allow 

(50).  

Guidelines for initiation of bone therapy for surgeons prescribing aromatase inhibitors  

The importance of maintenance of bone health during adjuvant breast cancer therapy has led to the 

formulation of multiple guidelines regarding the need for bone specific protection in the setting of 

AI therapy. These guidelines are very similar in their assessment of risk and recommendations (30, 

40, 51). Bone-specific protection therapy with bisphosphonates as first line option is indicated in 

all women with a baseline bone mineral density in the osteoporotic range (T-score  -2.5SD below 

norm) and should be continued for the duration of AI therapy.   

Patients with baseline BMD in the osteopenic range, i.e. a BMD T-score between -1 and -2.5 below 

norm, also qualify for bone specific protection if additional risk factors for bone loss are identified 

at baseline or if they display accelerated bone loss during follow-up.  

Recommended calcium supplementation in postmenopausal women is a total daily intake of 1200 

mg (dietary AND supplementation). Supplementation per se should not exceed 600 mg daily. 

Recommended daily Vitamin D supplementation is 800 – 2000 IU. 

Intravenous bisphosphonate therapy such as Zoledronic Acid is currently regarded the gold 

standard during adjuvant breast cancer therapy with AIs (52). Oral bisphosphonates and 
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Denusomab are other potential and very useful treatment options. Biphosphonates suppress bone 

resorption. Side-effects with oral bisphosphonates are mostly limited to reversible gastro-

esophageal irritation. Severe suppression of bone turnover with osteonecrosis of the jaw (ONJ) or 

atypical fractures are very unusual side-effects and almost exclusively seen with the more potent 

intravenous preparations and with longstanding use (beyond 5–10 years of therapy) (53, 54). The 

advantage of preventing excessive bone loss and fractures with bisphosphonate therapy far 

outweigh the potential risk of these very unusual complications. 

 An adjusted protocol based on guidelines in the setting of adjuvant AI therapy for post-

menopausal breast cancer patients is illustrated in fig. 2.1 (51, 55). 
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Figure 2.1.  Recommended algorithm for bone protection in post-menopausal breast cancer 

patients, on Aromatase Inhibitors (AI). Adopted with permission of  Hadji et al (40, 51). 
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Conclusion 

The extended survival in breast cancer patients heightened interest in the side effect profile of 

therapies. The secondary aim of treatment should be to minimize morbidity for survivors and 

simultaneously maximize quality of life. In the era of personalized medicine, an early assessment 

of bone risk would facilitate individualized patient management decisions and provide an accurate 

estimate of disease outcomes and side effects. This would aid in implementation of measures to 

prevent or limit adverse events and to assist the clinician/ surgeon in early treatment modification 

to potentially avoid the side effect in this subgroup of susceptible women or to minimize harmful 

effects.  
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Abstract 

Background 

Genetics play a significant role in drug metabolism of endocrine therapy of breast cancer. These 

aspects have been studied extensively in patients on tamoxifen, but the pharmacogenetics 

of aromatase inhibitors are less established. In contrast to the protective effect of tamoxifen, 

aromatase inhibitors are linked with an increased risk for bone loss and fractures. 

Objective 

This review outlines key issues around implementation of pharmacogenetics of cytochrome P450 

and tamoxifen as a model for optimal use of aromatase inhibitors in postmenopausal women with 

estrogen receptor positive breast cancer.  

Methods 

Lessons learnt from the association between tamoxifen and CYP2D6 genotyping were applied to 

identify polymorphisms with the potential to change clinical decision-making in patients on 

aromatase inhibitors. The ability of next generation sequencing to supersede single-gene analysis 

was furthermore evaluated in a subset of breast cancer patients on aromatase inhibitors selected 

from a central genomics database. 

Results 

Methodological flaws in major randomized controlled trials and continued referral to incorrect 

results in expert consensus statements are important factors delaying the implementation of 

CYP2D6 pharmacogenetics in tamoxifen treatment.  This highlighted the importance of a clinical 
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pipeline including comprehensive genotyping, to define the target population most likely to benefit 

from aromatase inhibitor pharmacogenetics. 

Conclusion 

The clinical utility of CYP2D6 genotyping is well-established in patients at increased risk of 

tamoxifen resistance due to cumulative risk. The pharmacogenetics of CYP19A1 requires further 

clarification in terms of bone risk assessment for appropriate use in the treatment algorithm of 

high-risk patients at the onset of aromatase inhibitors. 

 

Keywords: Breast cancer; Oncology, Pharmacogenetics, Tamoxifen, Aromatase inhibitors, Bone 

health 

 

Introduction 

Breast cancer is the most common malignancy in females worldwide (1), but the incidence varies 

significantly across continents (2). This global variation may partly be ascribed to differences in 

genetic background underlying the development of breast cancer and response to treatment.  In 

South Africa, breast cancer is most prevalent among Caucasian and Asian women and the second 

most common cancer  among Black and Coloured women (3). Population differences in drug 

metabolism supports individualized breast cancer treatment to replace a one-size-fits all approach 

(4). The high level of population admixture detected in genetically divergent ancestral clusters in 

Africa provides the ideal study ground for pharmacogenetic studies (5, 6). 
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Both germline and tumour genetics contribute to distinct immuno-phenotypes defined by estrogen 

receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2) 

status. These histo-pathological parameters are assessed routinely in all breast cancer patients at 

diagnosis. Along with clinical variables such as tumour size and nodal status, assessment of ER, 

PR and HER2 aid risk stratification and are mandatory in guiding systemic treatment decisions 

(7). In patients with the most common ER-positive breast cancer, endocrine therapy has been used 

as the cornerstone of treatment for decades (8). 

Tamoxifen was the first targeted treatment used in ER-positive breast cancer, signalling the era of 

personalized medicine. Aromatase inhibitors (AIs) are currently the gold standard for treatment of 

endocrine responsive breast cancers in postmenopausal women. Several trials verified improved 

overall survival, a substantial decrease in recurrence and contra-lateral breast cancer, as well as a 

decrease in distant metastases when compared to tamoxifen (9, 10). However, in contrast to the 

protective effect of tamoxifen on bone health, AIs are associated with a significantly increased risk 

of bone loss and fractures (11). The severity of side-effects may impact on treatment compliance 

and thereby reduce treatment efficacy (12, 13). Table 3.1 lists the most common side effects 

encountered with endocrine treatment, with some overlap noted between tamoxifen and AIs in 

relation to incidence and severity. 
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 Tamoxifen Aromatase inhibitors  References 

Bone health Bone protective  Increased bone loss / 

fractures  

(11,14, 15, 16) 

Hot flashes  Frequent  Frequent  (13, 17, 18,19) 

Gynaecological 

effects  

Vaginal bleeding  Less vaginal bleeding  (17, 18) 

Thromboembolic 

events 

Increased risk Rare (18) 

Cognitive Brain 

Function 

 

Cognitive impairment in 

verbal memory and 

executive functioning 

 

Similar to Tamoxifen 

(20) 

Lipid metabolism and 

cardiovascular 

disease 

Decrease of low-density 

lipoproteins and total 

cholesterol  

Increase of low-density 

lipoproteins and total 

cholesterol 

(14, 15) 

Endometrial cancer Increased risk after long 

term use 

No increased risk (19) 

Arthralgia/myalgia Rare  Frequent  (19, 21, 22) 

 

Table 3.1:  Common side effects of tamoxifen and aromatase inhibitors. 

Evaluation of fracture risk preceding the initiation of AI-treatment is essential. Lifestyle 

adjustments such as exercise and supplementation with calcium and vitamin D have a favourable 

impact on long-term bone health (23). However, thresholds to introduce preventative therapy and 

bisphosphonates as the first therapeutic option for AI-induced bone loss differ amongst available 

recommendations (24). The risk of side effects from bisphosphonates, such as gastro-esophageal 

irritation and rarely osteonecrosis of the jaw exists, but the benefit of limiting bone loss and 

reducing fracture risk prevails with the use of these agents in high-risk breast cancer patients. 
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We recently reviewed the clinical and biochemical risk factors associated with decreased bone 

mineral density and adopted a treatment algorithm for application in resource-limited 

environments (25). The potential role of genetics in this clinical management scheme has not 

previously been explored in South African breast cancer patients. The clinical usefulness of testing 

for common single nucleotide polymorphisms (SNPs) at critical control points within metabolic 

pathways affecting bone health, would depend on their effect on gene regulation or structure. 

Differences in SNP allele frequency across ethnic groups and haplotype associations also require 

careful consideration prior to inclusion of clinically validated gene targets in treatment algorithms 

(6). 

An enhanced understanding of breast cancer pharmacogenetics has evolved over recent years. It 

has become clear that genetic heterogeneity necessitates the identification of therapeutic targets to 

decrease drug toxicity and improve compliance (4). The cytochrome P450 (CYP 450) enzyme 

system, which metabolizes 80-90% of all commonly prescribed drugs, has been studied in relation 

to both tamoxifen resistance and the AI side effect profile.  The evidence supporting genetic testing 

before therapy is still considered too weak for incorporation in oncology practice (26). However, 

continued referral to flawed results in randomized controlled trials in expert consensus 

recommendations exemplifies issues of fundamental importance in breast cancer 

pharmacogenetics (27).  The Austrian Breast and Colorectal Cancer Study Group Trial 8 (ABCSG 

8) fully validated the association between CYP2D6 genotype and increased recurrence rate or death 

in a subgroup of post-menopausal women with invasive ER positive breast cancer (28). These 

include comprehensive CYP2D6 genotyping to minimize misclassification of poor metabolizer 

status and numerous pharmacologic features know to influence endoxifen levels comprising 

tamoxifen monotherapy, dose (20mg) and duration of 5 years with annual follow-up. Studies 
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without such strict selection criteria for target group identification, which should preferably 

include consideration of concomitant prescriptions influencing enzyme activity, cannot be used to 

either support or refute the CYP2D6 hypothesis.  

Delaying the implementation of CYP2D6 pharmacogenetics despite evidence of clinical utility in 

a subgroup of patients, may have serious consequences in affected families (29).  This is an 

important consideration in South Africa, due to an increased frequency of founder mutations in 

the BRCA1 and BRCA2 tumour suppressor genes in Afrikaner, Coloured and Xhosa breast cancer 

patients (30). A risk-benefit assessment of potential cumulative effects led to recommendation of 

CYP2D6 genotyping in ER-positive breast cancer patients with defective BRCA1/2 genes or 

concomitant use of anti-depressants associated with reduced CYP2D6 activity (31).  

Acceptance that genetic information may be insufficient to predict treatment response led to the 

development of a pathology-supported genetic testing  platform for research translation in South 

Africa (32). Genetic testing service delivery is linked to the generation of a research database using 

an institutional review board approved protocol. Establishment of joint pathology and genomic 

facilities could overcome the limitations of single health disciplines and result in new models for 

data acquisition and earlier adoption of pharmacogenetic applications. The use of stored patient 

information for validation studies performed at the interface between the laboratory and clinic has 

gained acceptance as a possible alternative to randomized controlled trials, provided that patient 

selection criteria are well defined and adhered to (32). This approach was used to validate a 

microarray pre-screen algorithm as an appropriate strategy to reduce chemotherapy overtreatment 

in South African patients with early-stage breast cancer (33, 34). Over a 9-year period, after 

introduction of the Food and Drug Administration (FDA) approved MammaPrint test, more than 

100 early-stage breast cancer patients in South Africa could safely avoid chemotherapy. This was 
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confirmed by recent level 1A evidence from the prospective Microarray in Node Negative and 1 

to 3 Positive Lymph Node Disease May Avoid Chemotherapy (MINDACT) study (35,36). As 

demonstrated in this case, appropriate introduction of new companion diagnostics may outpace the 

reporting of randomized controlled trials that require lengthy follow-up for final assessment of 

clinical outcome.  

Similar to microarray-based breast cancer gene profiling, many challenges have been encountered 

in the pursuit of CYP 450  pharmacogenetics in patients receiving endocrine treatment for breast 

cancer (37, 38). Key issues addressed during incorporation of CYP2D6 genotyping in clinical 

practice (31) served as a model in this study to determine the appropriateness of CYP19A1 

genotyping in patients treated with AIs.  

Tamoxifen pharmacogenetics 

CYP2D6 metabolizes tamoxifen, a Selective Estrogen Receptor Modulator (SERM). The principal 

mechanism of action of tamoxifen is mediated by ER binding and blocking of the proliferative 

effects of estrogen on mammary epithelium. Figure 3.1 illustrates the tamoxifen-endoxifen 

pathway with the CYP 450 enzyme encoding genes, including CYP2D6, CYP2B6, CYP2C9, 

CYP2C19 and CYP3A4/5, shown at each step.  Except for CYP2D6, none of the other enzymes 

involved in tamoxifen metabolism appear to cause any meaningful differences in drug efficacy 

(39). 
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Figure 3.1: Major metabolic pathways for tamoxifen, with the key enzymes indicated at each step. 

CYP, cytochrome P450; SULT, sulfotransferase; UGT, uridine diphosphate 

glucuronosyltransferase  

 

The relationship between CYP2D6 and tamoxifen is intricate (40)(41). A defective CYP2D6 gene 

may lead to slower metabolizing of tamoxifen, and could result in a greater risk for adverse events 

and lower efficacy of drugs requiring CYP2D6 activation (42). The efficacy of tamoxifen is also 

influenced by co-prescription of CYP2D6 inhibitors such as certain Selective Serotonin Release 

Inhibitors (SSRI’s), commonly prescribed for depression and relief of hot flashes as a by-effect in 

breast cancer patients (43, 44). Polymorphic variation may furthermore lead to absence of a 

functional CYP2D6 protein in approximately 5-10% of individuals of European ancestry and 1-

2% of those of Asian and African ancestry (6, 43). The majority of CYP2D6 genotyping studies 

were performed in Caucasian patients. As the frequencies of CYP2D6 polymorphisms vary 

significantly between different ethnic groups, data from these studies cannot be extrapolated 

directly to non-Caucasian breast cancer patients (6, 45).  
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Several studies reported the association between CYP2D6 and hot flashes as a possible marker for 

treatment efficacy (13, 42, 46). The Breast International Group 1–98 (BIG1-98) study described a 

link between CYP2D6 genotype and tamoxifen-associated hot flashes (47). However, other studies 

reported conflicting results (48). This has partly been ascribed to the use of tumour-derived DNA 

extracted from formalin-fixed paraffin-embedded  tissue in the BIG 1–98 study for CYP2D6 

genotyping (40). Significant deviation from the Hardy Weinberg equilibrium (HWE) raised 

concerns about quality and accuracy of genotyping and the consequential mistakes in data 

interpretation and conclusions drawn from these results (27). The HWE defines expected versus 

observed genotype frequencies in a randomly mating population. Similar discrepancies were 

detected in the Arimidex, Tamoxifen, Alone or in Combination (ATAC) and the Tamoxifen 

Exemestane Adjuvant Multinational (TEAM) trial (13, 49). These studies did not prove a link 

between CYP2D6 and tamoxifen outcome, but elicited severe critique about genotyping errors 

with considerable departure from HWE for the most important CYP2D6*4, causing conflicting 

results (50, 51).  

Despite the fact that CYP2D6 activity is largely dependent on polymorphic variation tested for in 

many laboratories worldwide, the American Society of Clinical Oncology (ASCO) maintains that 

data on the clinical utility of CYP2D6 pharmacogenetics is insufficient to endorse testing for 

endocrine treatment planning (26). They nevertheless recommend counselling of breast cancer 

patients treated with tamoxifen to avoid co-prescription of CYP2D6 inhibitors, which include a 

number of drugs frequently used for treatment of depression and other co-morbidities. The 

frequent co-prescription of certain antidepressants with tamoxifen may significantly impair the 

function of CYP2D6. This emphasizes the importance of appropriate eligibility criteria for 

selection of a subset of patients for whom the advantage of genetic testing offsets the risk (31). 
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The value of CYP2D6 genotyping depends on many factors, including the appropriate target 

population identified as one of the most important factors to consider in clinical outcome studies. 

Clinical utility was confirmed in the ABCSG 8 trial in a subgroup of breast cancer patients by 

comparing CYP2D6 poor metabolizers with extensive metabolizers according to different 

selection criteria (28). In this study, the observed CYP2D6 genotypes were in HWE, which is 

important to exclude genotype errors. CYP2D6 genotypes determined from tumor-derived DNA 

may be subject to inaccuracies due to loss of heterozygosity, known to affect the CYP2D6 locus 

in up to a third of breast cancers (40, 52). Chromosomal instability in breast cancer tissue at the 

CYP2D6 locus was an important source of error with use of breast cancer tissue to determine 

genotypes in previous randomized controlled trials (47, 49). Requests for retraction of BIG 1–98 

from the scientific literature due to significant methodological flaws, were unsuccessful (52, 53). 

It impacted on the interpretation of side effect profiles and delayed proof of clinical utility of 

CYP2D6-tamoxifen pharmacogenetics. It is therefore important to ensure quality control measures 

for accurate germline genotyping (44, 52) as we embark into the era of AI pharmacogenetics. 

 

Aromatase Inhibitor pharmacogenetics  

In the light of the challenges faced in the evolution of pharmacogenetics of the tamoxifen–CYP2D6 

pathway (figure 1), it is imperative to critically review the literature for genetic determinants of AI 

response and side effects. By comparison, little is known about the pharmacogenetics of AIs and 

it is unclear whether impediments similar to the use of tamoxifen will be encountered.  

AIs have replaced tamoxifen in endocrine therapy of women with ER-positive breast cancer due 

to improved outcome compared to tamoxifen (9, 54). In the post-menopause, estrogens are 
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produced by peripheral aromatization of androgen precursors to estrogen (55).  This reaction is 

catalyzed by the aromatase enzyme (CYP19) (56). Aromatase is a CYP 450 enzyme that is encoded 

by CYP19A1 located on chromosome 15q21.2. CYP19A1 has a complex structure, with a long 5’-

untranslated region that serves as the regulatory unit of the gene (57). Genetic variation could alter 

the levels of AIs available to inhibit aromatase and as such influence treatment efficacy and side 

effects such as bone loss (57).  

The profound suppression of estrogen production by AIs has intensified study into the potential 

deterioration of bone quality and subsequent increase of fractures (58). Estrogen is vital in 

maintaining bone structure, and plays a crucial role in the development of postmenopausal 

osteoporosis, a systemic bone disease characterized by alterations in bone quality, leading to 

fragility and fracture risk (59). The pathogenesis of osteoporosis includes multiple genetic and 

environmental risk factors. Alterations in genes involved in estrogen metabolism, such as 

CYP19A1, CYP11A1, 17-alpha-hydroxylase/17,20-lyase (CYP17), T-Cell Leukemia/Lymphoma 

1A (TCL1A) and estrogenic response (ESR1) genes are potential contributors to the abnormal 

pathophysiology of bone (60-63). 

CYP19A1 and bone effects 

 The effects of genetic polymorphisms in the CYP19A1 gene have been studied most extensively 

in breast cancer, prostate cancer and osteoporosis (59, 64). Susceptibility to side effects from AI-

treatment differs  between patients as a result of individual and ethnic variability in genetic traits 

(63, 65, 66). This supports the need for identification of biomarkers predicting clinical benefit and 

limitation of drug toxicity (65). Copy number variants and allelic variations of CYP19A1 between 

population groups justify investigation into the gene effects on side-effect profiles and drug 

efficacy between subgroups taking AIs (65). The mechanism at the core of the association between 
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CYP19A1 alleles and bone mass is still unclear.  A number of polymorphisms in the CYP19A1 

gene is associated with alterations in steroid hormone levels, aromatase activity, bone mineral 

density and risk of fracture (67). These polymorphisms may impact on a predisposition to skeletal 

effects from AIs leading to substantial variances in bone loss among patients (60). 

Some studies observed no difference in treatment-related adverse effects when stratified according 

to CYP19A1 genotypes for SNPs rs10046, rs4646 and rs700519 (68, 69). Napoli and colleagues 

observed that women with the AA genotype for CYP19A1 rs700518 (G/A, Val80) developed 

substantial AI associated bone loss at the lumbar spine and total hip at 12 months compared to 

patients with GA/GG variants (64). CYP19A1 rs700518 is a synonymous G/A (or C/T) 

polymorphism (at position 49,316,404) in exon 3 of the gene. In the BIG 1-98 trial including 

CYP19A1 genotyping, SNP rs700518 AA homozygotes or AG heterozygotes exacerbated the risk 

of adverse bone effects, compared with patients who had the GG wild-type genotype, irrespective 

of treatment with tamoxifen or letrozole (70,71). Reasons provided for this discrepancy in 

allocation of the risk-associated allele focused on differences in sample size between these two 

studies. However, these contradictory results highlight inconsistencies that can be expected for 

silent mutations or synonymous SNPs such as CYP19A1 rs700518 (Val80) due to the potential for 

chromosomal cross over events.  

CYP19A1 rs700518 was found to be in complete linkage disequilibrium with allele 7 of the TTTAn 

repeat polymorphism in intron 4, known to be involved in bone homeostasis (61). Although this 

marker is considered unlikely to be functional due to its location outside the coding region of the 

CYP19A1 gene, the allelic differences in gene expression summarized in table 2 favour potential 

clinical relevance. The influence of the TTTAn repeat polymorphism on lumbar spine bone 

mineral density difference was also assessed in response to hormone replacement therapy. A 
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higher number of TTTAn repeats were associated with higher lumbar spine bone mineral density 

and lower risk of spine fracture (62).  Breast cancer patients with shorter alleles may be prone to 

these bone-related risks, which could potentially be worsened by AI therapy.  

CYP19 repeat polymorphism alleles Effect on gene expression 

TTTA7; TTTA <9 Decrease transcription 

TTTA8; TTTA >9 Increase transcription 

3TCT del TTTA7   Decrease transcription 

 

Table 3.2 Functional effects of the TTTAn repeat polymorphism rs60271534 in the CYP19A1 

gene. 

 

 

From SNP analysis to next generation sequencing 

Genotyping of the CYP19A1 TTTAn polymorphism is complex and in contrast to high throughput 

SNP analysis, it usually requires Sanger sequencing for allelic discrimination (72, 73). This may 

be the reason why several studies used the synonymous CYP19A1 rs700518 as a tagging SNP for 

genotyping of this repeat polymorphism (71). In an attempt to clarify whether this synonymous 

SNP or the TTTAn polymorphism in intron 4 of the CYP19A1 gene is in linkage disequilibrium 

with a functional variant elsewhere in the gene as previously suggested (71), five AI-treated breast 

cancer patients formerly subjected to next generation sequencing  due to ultra-low vitamin D levels 

(data not shown), were selected from the genomics database for variant calling of the CYP19A1 

gene. Table 3.3 shows seven CYP19A1 SNPs identified in these patients and one control 

individual. The synonymous SNP rs700518 was found to be in linkage disequilibrium with other 

common SNPs (rs1065778, rs10046, rs4324076, rs1143704, rs17601241, rs2289105) with a minor 

allele frequency greater than 10%. CYP19A1 rs17601241 with a minor allele frequency of 0.08 

was only identified in one individual. This limits potential clinical utility in the context of 
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pharmacogenetics, as opposed to rare high impact variants applicable to familial risk. All of these 

SNPs except for the synonymous rs700518, occur in non-coding regions of the CYP19A1 gene. 

SNP rs10046 located in the 3’untranslated region (UTR) of the CYP19A1 gene, known to be 

associated with post-transcriptional gene regulation, was identified as the most likely functional 

variant among the 7 SNPs detected by whole exome sequencing. Indeed, in vitro studies previously 

demonstrated that this SNP is associated with a high estrogen profile, which correlates with the 

amount of tumor aromatase mRNA levels (74). SNP rs10046, together with rs727479 and rs4646, 

furthermore covers 88% of haplotype diversity in Caucasians (75, 76). In our opinion, these 

findings identify rs10046 as the best candidate SNP for validation as an additional risk factor for 

bone loss in AI pharmacogenetic studies. Additional studies which take different clinical settings 

into account, is warranted in the high risk South African population, using genotype strategies that 

include both founder mutations, underlying familial risk, as well as pharmacogenetics influencing 

clinical outcome (31,77).  
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Location dbSNP 

ID 

dbSN

P ref 

Minor 

Allele 

Frequen

cy 

Control BC1 BC2 BC3 BC4 BC5 

syn 

exon3 

rs700518 C 0,3259 T C T T C/T T T 

    412 1135 1065 17/16 54 44 

intron 3 rs1065778 A 0,3259 C C T T C/T T T 

    911 2349 2554 24/34 100 92 

intron 5 rs4324076 A 0,3672 C C A A C/A A A 

    310 724 826 3/10 30 24 

intron 6 rs1143704 A 0,3662 A A T T A/T T T 

    160 268 271 2/3 17 7 

intron 7 rs1760124

1 

G 0,0857 A G G/A G G G G 

    388 395/4

76 

877 16 34 26 

intron 7 rs2289105 T 0,3718 C C T T C/T T T 

    176 253 285 11/12 15 6 

3’ UTR 

exon 10 

rs10046 G 0,3628 G A G G G/A G G 

    670 1188 1176 21/29 79 49 

 

Table 3.3 Next generation sequencing results of the CYP19A1 gene in 5 breast cancer cases and a 

control individual. 

BC-breast cancer sample number; dbSNP-database Single Nucleotide Polymorphism 

Table 3.3 supports the findings in previous studies indicating that the functional SNP rs10046 is 

in linkage disequilibrium with the synonymous CYP19A1 rs700518. The minor G allele of rs10046 

assigned as the major allele in the standard human genome reference sequence (hg19) is the most 

common allele in some populations. Notably, the six-SNP (TTATTG) haplotype identified in all 

the vitamin D deficient breast cancer patients from three different population groups in South 

Africa, was not identified in a control individual (CCCACA). Figure 3.2 shows the alignment view 
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of next generation sequencing reads encompassing the 3’UTR SNP rs10046 in exon 10 of the 

CYP19A1 gene, identified as the functional SNP most likely to be clinically useful for future 

studies in an extended patient sample. Whole exome sequencing could not detect the TTTAn 

polymorphism due to its position outside the coding region (intron 4) of the CYP19A1 gene. Failure 

to observe the expected similar clinical association of CYP19A1 rs700518 and rs10046 occurring 

in linkage disequilibrium, impedes clinical application of the BIG 1-98 randomized control trial 

results (71). The finding that rs10046 is associated with increased risk of bone AEs in patients on 

tamoxifen, not observed for patients assigned on an AI, is clinically divergent.   

 

 

Figure 3.2: Alignment view of next generation sequencing reads encompassing the 3’UTR SNP 

rs10046 in exon 10 of the CYP19A1 gene. 
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Conclusion 

Application of breast cancer pharmacogenetics into the clinical scenario remains challenging as 

management recommendations cannot be based on genotype alone.  It requires the definition of a 

target group most likely to benefit from translation of research into a clinical management pipeline, 

as outlined in figure 3. This pathology supported genetic testing approach facilitates inclusion of 

pharmacogenetics in the treatment algorithm (78), utilizing whole exome sequencing to identify 

patients with a genetic predisposition for AI adverse bone effects. Arguments around the 

implementation of CYP2D6 genotyping at the onset of treatment with tamoxifen as part of the 

clinical work up and decision making are constantly developing (39, 66, 79). In South Africa, with 

an increased frequency of founder mutations in the BRCA1 and BRCA2 genes (30), 

CYP2D6 genotyping has already been integrated into clinical practice for high risk patients on 

tamoxifen (31).  The clinical value of incorporating AI pharmacogenetics as an additional risk 

factor for bone adverse events in post-menopausal breast cancer patients on endocrine therapy, at 

highest risk for further bone loss on long term AI therapy, merits further investigation.  
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Figure 3.3: Clinical pipeline for identification of genetically predisposed postmenopausal 

estrogen receptor positive (ER+) breast cancer patients on aromatase inhibitors with severe 

bone events despite optimal treatment. 
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Abstract 

Background 

Incorporating fragmented clinical and genomic data of individual patients into medical 

management is a major challenge. This study describes the conversion of patient information 

collated at the interface between the research laboratory and clinical practice into a comprehensive 

report for real-time service delivery.  

Methods 

Data from postmenopausal breast cancer patients treated with aromatase inhibitors (AIs) were 

entered into a central genomics resource, developed in an ongoing manner. A pathology-supported 

genetic testing algorithm was used to select patients for whole exome sequencing (WES). Results 

relevant to breast cancer diagnosis, comorbidities and treatment response were integrated into an 

adaptable report format.  

Results 

The reports generated for 101 patients at the start of AIs revealed a case with an unanticipated 

BRCA2 c.3881T>A (L1294*) mutation in the presence of MTHFR rs1801133 and rs1801131 

considered relevant to osteoporosis diagnosed at baseline. The report is presented in a summarized 

format to serve as an example of recommendations that can be provided for genetic counselling 

and clinical monitoring.  

Conclusion 

The database resource enabled integration of genomic research findings for responsive health care 

delivery, an approach rarely applied in routine clinical management. The ethical framework 
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developed for this purpose provides a sound basis for clinical intervention during and beyond the 

course of a single research project. 

 

Introduction 

In today’s data-centered medical world, patient management and research are heavily influenced 

by the availability of accurate patient information in a secure digital format. Databases developed 

for a specific disease usually contain a summary of associated comorbidities and co-prescribed 

medication, but may lack information on the genetic background of study participants (1-3). 

Development of a clinically enriched genomics database necessitates an in-depth understanding of 

the effect of individual and population genomic variation on health outcomes, disease and drug 

predisposition (4, 5). Literature curation for application of personalized medicine is a time-

consuming process that may best be achieved as part of translational research projects (4). 

In an effort to keep up with new discoveries on the relationship between disease, genetic variation 

and environmental triggers, we developed a pathology-supported genetic testing (PSGT) service 

linked to the establishment of a genomics database for research translation across diagnostic 

boundaries (5). Extension of PSGT to whole exome sequencing (WES) facilitated the 

identification and clinical interpretation of genetic risk factors of relevance to both cancer 

development and tailored therapeutic intervention in a single test (6). Lifestyle factors acting in 

combination with modifier genes or low-penetrance mutations are evaluated as part of a chronic 

disease screen, routinely applied as part of the PSGT algorithm before commencing WES (7). The 

creation of a clinically enriched patient registry allows for generation of medically meaningful 
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dynamic patient reports for real-time intervention during and beyond the duration of a single 

research project. 

The need to ensure long-term sustainability of database resources was highlighted by our first 

attempt at utilizing banked information from breast cancer patients at Tygerberg hospital. Van der 

Merwe et al.(8) integrated information of a 48-year old patient with a pathogenic BRCA2 mutation 

and the cytochrome P450 D6 (CYP2D6) poor metabolizer status into an informative report, 

provided to the treating physician. It led to a change of treatment from tamoxifen to an aromatase 

inhibitor (AI) in this case. When clinical outcome studies of the entire cohort were pursued, only 

a small proportion of patient information was available due to poor record-keeping (9). This 

hampered research progress and delayed clinical implementation dependent on defining a high-

risk patient group most likely to benefit from pharmacogenetics (4).   

Genomic data generated through research is rarely used in routine clinical decision-making. In 

response to the challenges encountered with translation of database information into clinical 

interpretation and management, three aspects relating to familial risk, treatment side effects and 

comorbidities were identified for simultaneous appraisal in South African breast cancer patients 

(7). Research data relating to all three aspects are deemed important to inform the development of 

dynamic WES reports as a clinical intervention tool for personalized treatment and monitoring of 

high-risk breast cancer patients. In this article, a representative case is used as an example to reflect 

our own experience of translating genomic research findings into clinical practice. 

Materials and Methods 

Ethics approval was obtained from the Stellenbosch University Health Research Ethics Committee 

to develop a secure online research database, in parallel with patient recruitment for a bone health 
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study at Tygerberg Hospital (project reference number S13/05/103). Study participants included 

postmenopausal women between the ages of 50-80 years with newly-diagnosed, hormone-

sensitive breast cancer, due to start endocrine therapy with AIs. All participants signed informed 

consent for WES and were given the choice for sample storage in a biobank linked to this study. 

Patients were also given the option to receive feedback on lifestyle assessment and special 

investigations performed. These included a chronic disease screen incorporated as part of the 

PSGT algorithm for WES, as previously described by van der Merwe et al. (7). The questionnaire 

initially developed for this purpose was used to document the family history, personal medical 

conditions, medication use/side effects and lifestyle factors relevant to the genes tested, after minor 

modification.  

Anthropometric dimensions were measured, and dual-energy X-ray absorptiometry used to 

quantify bone mineral density. Biochemistry testing included determination of calcium, phosphate, 

parathyroid hormone and 25 hydroxy-vitamin D levels as well as bone-specific alkaline 

phosphatase and C terminal telopeptides status. Tumor histopathology was recorded and 

immunohistochemistry of estrogen receptor (ER), progesterone (PR) and human epidermal growth 

factor receptor 2 (HER2) status documented. Results of BRCA1/2 mutation screening performed 

as part of routine clinical practice at Tygerberg Hospital (10), were also documented in the REDcap 

(Research Electronic Data capture) research database (11). It is a secure, web-based application 

used to store and update project-specific clinical and translational research data as shown in table 

4.1.  
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Schedule of assessments Baseline Follow-up 

 

Written informed consent Yes n/a 

Questionnaire administration Yes n/a 

Medical and surgical history from hospital records Yes n/a 

   

Biochemistry testing Yes No 

Bone mineral density assessment Yes Yes 

DNA extraction Yes n/a 

Sample storage for whole exome sequencing Yes n/a 

   

Data capture and input Yes Yes 
 

Table 4.1: Information entered into the databases 

Figure 4.1 illustrates the adaptation of the clinical pipeline previously described by Baatjes et al. 

(4), used to select patients for next-generation sequencing. Whole exome sequencing (WES) was 

performed according to van der Merwe et al (9) using the Ion Proton apparatus. The sequencing 

data was generated and stored at the Central Analytical Facility, Stellenbosch University. The Ion 

AmpliSeq™ Exome RDY kit was used for library construction and samples were sequenced with 

the One Touch workflow, followed by variant calling against the major allele reference sequence 

(12) to screen for deleterious variants in genes relating to bone health pathways (13)(14). 

Mutations considered to be pathogenic according to ClinVar (15), were confirmed by Sanger 

sequencing and added into the research database. It is acknowledged that the several variants 

previously associated with osteoporosis are located outside of the genomic regions covered by 

WES (15, 16). 

The information obtained from routine diagnostic workup of patients at Tygerberg Hospital and 

entered into the database at baseline were uploaded for integration with genetic research data. 

Information relevant to breast cancer diagnosis, comorbidities and treatment response were 
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extracted from the database (https://www.gknowmix.org.) and compiled into an adaptable report 

format for clinical application by the treating clinician and supporting genetic counsellor.  

 

Figure 4.1: Incorporating research generated WES findings in clinical management within an adaptable 

report, generated from the genomics database. 

 

Results 

The clinical, pathological, biochemical and genetic characteristics of ER-positive postmenopausal 

breast cancer patients at the start of AIs, are captured on an ongoing basis. Figure 4.2 illustrates 

study enrollment and attrition of the cohort. Routine testing for familial breast cancer risk 
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previously identified a founder mutation (BRCA2 c.6449_6450insTA) in one patient included in 

the database, as well as a variant of uncertain clinical significance in another (data not shown). 

 

 

Figure 4.2: Study enrolment and attrition of the breast cancer cohort evaluated by dual-energy X-ray 

absorptiometry to quantify bone mineral density (BMD) at baseline and 12 months after initiation of AI 

treatment. 

 

WES preceded by PSGT identified the BRCA2 c.3881T>A (p.L1294*; rs80358632) mutation in a 

patient found to be a compound heterozygote for MTHFR rs1801133 and rs1801131. The 

collective information of this patient was extracted from the database and assimilated into a clinical 

management report as an illustrative example. Table 4.2 shows the patient data focused on 

identification of 1) pathogenic mutations associated with familial risk, 2) genetic underpinnings of 

biochemical abnormalities and comorbidities influenced by modifiable risk factors, and 3) 

increased risk of medication side effects/failure possibly due to genetic variation.  
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CASE PRE-WES EVALUATION PROPOSED ACTION 

   

1.DIAGNOSIS Age at breast cancer diagnosis 

(postmenopausal) 

• 68 years  

Tumor histology 

• Invasive lobular carcinoma  

Genetic counselling 

• Pathogenic BRCA2 c.3881T>A 

mutation identified in germline 

DNA 

Familial risk Family members diagnosed >50 years 

(late-onset) 

• Breast cancer, Sister; 

Pancreatic and Lung, Sister; 

Prostate, Brother; Stomach, 

Mother; Lung, Father 

Family members diagnosed <50 years 

(early-onset) 

• None reported 

Eligible for cascade testing of BRCA2 

c.3881T>A  

• Test family members previously 

diagnosed with cancer 

• Test unaffected relatives on 

maternal or paternal side of the 

family, depending on whether 

the pathogenic mutation is 

detected in the mother or father 

of the index patient 

2.PATHOLOGY Immunohistochemistry  

• Estrogen receptor-positive, 

progesterone receptor-positive, 

human epidermal growth 

factor receptor 2-negative 

(luminal-type) 

Biochemistry 

• Vitamin D 17.4 ng/ml 

(deficient)  

Bone mineral density 

Pathway analysis 

• Monitor homocysteine levels as 

a marker of folate status due to 

genetic variation detected in the 

MTHFR gene, implicated in 

both cancer risk and 

osteoporosis 

Optimize bone health 

• Increase vitamin D levels >30 

ng/ml 

• Consider calcium, vitamin D 
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Table 4.2.  Patient data integration for risk management in a representative case report using a 3-                

pronged approach to whole exome sequencing (WES), which enables simultaneous assessment of high-

moderate risk genes and low-penetrance mutations in key disease pathways for consideration of familial or 

personal risk reduction intervention. 

 

Discussion 

This study describes the development of an adaptable patient report from integrated database 

resources. The availability of genome-scale sequencing allows integration of genetic knowledge 

with disease information, comorbidities and medication side effects across health disciplines (19, 

20). The PSGT approach applied in this study permits actionable interventions on both a personal 

and family level, which requires careful consideration of established clinical guidelines applicable 

to high- moderate risk genes and low-penetrance mutations in key disease pathways. Given the lack of 

reporting guidelines for WES used in multifaceted conditions such as breast cancer (20), we 

developed an integrated clinical and genetic pipeline, to permit continued monitoring of outcome 

and medication side effects (4). WES using a three-pronged approach as presented here, is based 

• T score -3 (osteoporosis) supplementation and 

Bisphosphonates  

Lifestyle risk Body mass index: 28.3 kg/m2 

(overweight) 

Weight management 

3. TREATMENT Current 

• Hypertension and type II 

diabetes 

Completed 

• Chemotherapy 

To commence 

• Aromatase inhibitor (↑risk of 

bone loss) 

Implementation of clinical management 

pipeline (Figure 4.1) 

 

• Extended WES data analysis if 

considered clinically important 

by the referring clinician 

 

• Research: Extended 

pharmacogenetic analysis as 

appropriate 

Side effects None reported at baseline Monitoring 
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on at least one of three indications for testing, namely 1) cancer in the family that cannot be 

explained by previous genetic evaluation, 2) abnormal pathology test results known to be 

associated with gene-environment interaction and 3) treatment failure or toxicity associated with 

prescription medication. 

These benefits of genetic testing were demonstrated in the representative case. Co-existence of 

breast cancer and osteoporosis could partly be explained by detection of genetic variation in the 

MTHFR gene, previously identified as a BRCA1/2 modifier and risk factor for many chronic, non-

communicable diseases with a genetic component (7). MTHFR genotyping forms part of the PSGT 

algorithm applied by van der Merwe et al. (7) to determine eligibility for WES. 

The pathogenic BRCA2 c.3881T>A (p. L1294*; rs80358632) mutation detected by WES creates 

a premature stop codon in the ovarian cancer cluster region in exon 11. Mutations in this gene 

region were previously identified in families with multiple types of cancer among first-degree 

relatives of BRCA2 mutation carriers (21).  The finding was consistent with the breast, prostate, 

pancreas and stomach cancers diagnosed at an advanced age, in 5 first-degree relatives of the 

patient studied. This familial risk profile did not fulfil the standard BRCA1/2 testing criteria of the 

institute at the time of breast cancer diagnosis, nor meet the minimum of 15 points signifying a 

10% likelihood of detecting a pathogenic mutation according to the updated Manchester scoring 

system (22). Although the BRCA2 mutation was detected at a relatively advanced age in the 

patient, the potential value to the extended family would not have come under the attention for 

genetic counselling, without WES. This unanticipated genetic finding was communicated to the 

genetic counsellor for return of research results, to the individual patient (23). 
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While this study presented a single example as proof of concept for the value of WES preceded by 

PSGT, the expansion of the onco-genomic research database within a real-life clinical setting 

allows for continuation of future comparative effectiveness studies centred on an ethical 

framework. WES using a three-pronged approach as presented here, requires careful consideration 

of multiple factors, including clinician education and policy development towards future adoption 

of personalized medicine (7, 18).  

 

Conclusion  

Adaptable reports generated from the genomics research database embedded within routine health 

care delivery, augment personalized patient care and supplement the clinician and counsellor’s 

decision-making process.   
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Abstract  

Purpose 

Osteoporosis (OP) risk factor assessment and bone mineral density (BMD) testing are frequently 

omitted at baseline in AI studies, which may lead to misinterpretation of AI associated bone loss. 

The present study describes bone health of South African postmenopausal women of 

predominantly mixed ancestry, prior to AI treatment.  

Methods 

This descriptive baseline study, nested in a prospective AI intervention study, included 

postmenopausal women with endocrine sensitive breast cancer, aged 50 to 80 years. A baseline 

questionnaire documented demographic-, medical-, lifestyle- and fracture history. Body weight 

was assessed clinically, and body composition and BMD measured via dual energy 

absorptiometry. Descriptive statistics were used to summarize the data (STATA 14). 

Results 

101 participants were recruited, with a mean age of 617 years. Near one-third (n=32) of women 

at baseline fulfilled global criteria for bone protection (BMD T-score -2SD (n=18); BMD T-score 

-1.5SD to < -2SD with risk factors (n=14). Lower body weight, body mass index (BMI), fat mass 

index and lean mass index was documented in women with OP (p <0.001). Low vitamin D was 

present in 93% of the cohort tested (n=95), whilst deficient vitamin D status (<20ng/ml) was 

documented in 52 women (55%).   
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Conclusions 

In this study, a third of postmenopausal women considered for AI therapy fulfilled international 

criteria for bone protective pharmacological intervention. This emphasizes the need for baseline 

clinical risk and BMD assessment in postmenopausal breast cancer patients considered for AIs. 

Body composition and bone health associations highlight bone fragility associated with lower body 

weight.  

Keywords  

breast cancer; osteoporosis; aromatase inhibitors; body composition 

 

Introduction 

Postmenopausal women have a significantly increased risk of developing osteoporosis, which 

relates to physiological changes in the ageing female body. Osteoporosis (OP) is a potentially 

debilitating condition with high morbidity in elderly populations especially women due to the 

increased risk of fracture, especially of the spine and hip (1). Osteoporotic fractures can cause 

severe morbidity with impairment of function and quality of life (2).  

Bone mineral density (BMD) measured by dual energy X-ray absorptiometry (DXA) is a two-

dimensional measure of mineral content in specific skeletal regions (3). It is useful for evaluation 

of BMD changes over time and to assess response to therapeutic interventions (4, 5). The risk of 

fracture increases two- to three-fold with every standard deviation (SD) decline in BMD (1,6).  

Endocrine treatment is indicated for estrogen receptor (ER) positive breast cancers. Tamoxifen, a 

selective estrogen receptor modulator has been used in the treatment of endocrine responsive breast 
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cancer for several decades (7). It protects against accelerated postmenopausal bone loss, as it 

maintains selective estrogenic effects on skeletal tissue (8).  Currently, aromatase inhibitors (AIs) 

are the gold standard in the treatment of endocrine sensitive breast cancer with an improved clinical 

outcome compared to Tamoxifen (9, 10).  

Estrogen is integral in bone metabolism with a multidimensional role in the pathogenesis of 

postmenopausal OP (11). In postmenopausal breast cancer patients, AIs further decrease the 

already low circulating and tissue levels of estrogen by inhibition of the aromatase enzyme (12, 

13). Numerous studies have documented accelerated bone loss and heightened fracture risk in 

postmenopausal women on AI therapy. The most pronounced loss is noted in the first two years 

of AI treatment and in early menopause (< 4 years). AI therapy predominantly affects the axial 

skeleton (7, 9).   

Many conventional risk factors for the development of OP have been identified in the general 

population (14). Age, sex, genetic predisposition and ethnic origin represent the most important 

non-modifiable risk factors. Modifiable factors such as low body weight, a sedentary lifestyle, 

poor calcium nutrition and deficient vitamin D levels, smoking and alcohol excess, may also 

significantly impact on bone density. Body weight is one of the most important determinants of 

BMD at most skeletal sites in women of all ethnicities (14, 15).  

In randomized controlled trials of AIs, the baseline state of BMD was not always reported. The 

conventional risk factors for fracture were not quantified and the prevalence of osteoporotic 

fractures (an important risk factor for development of incident fractures) prior to AI therapy 

remains unknown (16). The presence of conventional risk factors for osteoporosis and baseline 
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BMD must be considered to accurately calculate the excessive fracture risk attributable to AI 

therapy per se.  

The present study describes the baseline bone health status, prior to initiation of Aromatase 

Inhibitor therapy, of a multi-ethnic postmenopausal women cohort with endocrine responsive 

breast cancer, resident in the Western Cape Province of South Africa.  This study is nested within 

a cohort study aiming to prospectively examine the impact of AIs on bone health. The associations 

between BMD and body composition as well as certain lifestyle factors, known to potentially 

adversely affect bone mineral status, will be examined.  

Methods  

Study Population  

This descriptive study, nested within a larger prospective cohort study was conducted at the tertiary 

breast clinic of Tygerberg Hospital, affiliated to the University of Stellenbosch. Postmenopausal 

women with newly diagnosed, histologically confirmed endocrine sensitive breast cancer, stage 0-

III were eligible for study entry. All women were between 50 to 80 years of age and were 

consecutively enrolled from August 2014 until February 2017. Race determination was made by 

self-declaration. Patients were excluded if they had known metabolic bone disease, if they suffered 

from any disease (other than breast cancer), or were taking medication known to adversely affect 

BMD. The research complied with the World Medical Association Declaration of Helsinki (ethical 

principles for medical research involving human subjects). The study was approved by the Ethical 

Review Board of the Faculty of Medicine, University of Stellenbosch (S13/05/103).   

 

Stellenbosch University  https://scholar.sun.ac.za



87 
 

Demographics  

A demographic questionnaire was administered at baseline and included questions related to age, 

family medical history, personal health, lifestyle, reproduction and falls and fractures. Lifestyle 

questions included the use of alcohol (abstain, 1-7 units per week or >7 units per week), smoking 

(ever, current or never) and activity level (nil, in-house only or in-house and outdoors). The use of 

progesterone-only hormonal contraception and years since menopause (YSM) were documented.  

A history of prior fragility fractures, fall propensity indicated by falls in the last year and prolonged 

immobilization (>1 month) (14) was obtained. The medical, pharmacological and surgical history, 

as well as pathological information of the tumor, were collected at baseline.  

Anthropometry  

Basic anthropometric measurements including weight (in light clothing without shoes), height, 

waist (at level of umbilicus) and hip circumference (largest gluteal area), were taken. Body mass 

index (BMI) values were divided into weight categories (low/normal, overweight, obese and 

morbidly obese) according to the World Health Organisation (WHO) classification (17).  

Densitometry 

The DXA Hologic Discovery-W, S/N 70215; software Version 13.1 was employed in this study 

to measure BMD and body composition. A spine phantom was scanned daily to determine the 

intrinsic coefficient of variation of the machine. During the course of the study, coefficients of 

variation for BMD were < 1.5%.  A single trained DXA technician (MM Conradie) performed 

scans on all study subjects and the intra-operative variation was found to be below 1% for all 

skeletal sites.  
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Body composition 

Whole body DXA was used to measure and calculate total fat percentage, fat mass index (FMI), 

lean mass index (LMI), appendicular skeletal muscle mass as well as an android/gynoid fat ratio. 

Fat mass and lean mass measured by DXA are normalized for height (just like BMI) to calculate 

a fat mass index (fat/height2), a measure of obesity and a lean mass/height2 as an index of total 

body muscle mass. The appendicular skeletal muscle mass normalised for height2, is a good 

surrogate marker of sarcopenia, if found to be low. No local normative data for DXA measured 

body composition exist. The National Health and Nutrition Examination Survey (NHANES) 

reference dataset was thus used, which allowed comparison of the measured indices of body 

composition of our study subjects to the NHANES normal young adult female population aged 

18-25 years with a BMI within the normal WHO range (17). In the present NHANES database, fat 

comprises approximately 38% of body weight in females at age 25 years and this value will be 

regarded as the normal reference value for our study. The fat mass index was used to categorize 

study participants into weight classes similar to those mentioned for BMI (low/normal fat, excess 

fat, obese and morbidly obese). The normal fat mass index range is 5-9 kg/m2, excess fat 9.1-13 

kg/m2, obese 13.1-21 kg/m2 and morbid obesity indicated by a FMI in excess of 21 kg/m2. LMI 

and appendicular lean mass/height2 was categorized as being 2SD below or above expected with 

the cut-off values being 12.5 kg/m2 and 4.36 kg/m2, respectively. 

Bone Mineral Density 

Femoral neck (FN), total hip (TH) and lumbar spine (LS) BMD was measured. No normative data 

for South African women of mixed or black race exist. In this study, we therefore used a white 

female reference population to calculate T-scores and to define osteopenia and osteoporosis 

subgroups for all ethnicities. The use of white women as a reference for all persons in a multi-
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ethnic study may well not be appropriate, but until these ethnic specific reference ranges become 

available in our country, it is recommended to diagnose osteoporosis in all women by using the 

uniform normative database for whites.  A lateral vertebral assessment was done to detect prevalent 

morphometric vertebral fractures.  

Biochemistry 

Early morning blood samples were drawn for the evaluation of calcium homeostasis (serum 

calcium, phosphate, parathyroid hormone (PTH) and 25-OH Vitamin D levels) and to determine 

biochemical bone turnover markers (serum bone specific alkaline phosphatase and C-terminal 

telopeptides: Beta-CrossLaps/serum assay). Commercially available assays were used according 

to the manufacturer’s protocol. 

Statistical analyses 

Data management and analysis were conducted in STATA 14. Descriptive statistics were used to 

summarize the data including baseline characteristics and outcomes. Continuous data were tested 

for normality using descriptive statistics (e.g. histograms) where normally distributed data were 

presented as means and standard deviations or as medians and interquartile ranges (IQR), for non-

normally distributed data. Categorical data were presented as proportions and 95% confidence 

intervals. The associations between biological parameters and BMD was determined using one-

way ANOVA and chi2 tests. To account for confounding, significant univariate predictors were 

included in a final multinomial logistic regression model at p<0,2. An alpha of 0.05 was considered 

statistically significant. Associations were reported as relative risks with 95% confidence intervals. 

Missing data was assumed to be missing at random and no inputting performed.  
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Results 

Clinical demographic characteristics 

From August 2014 until February 2017, 101 postmenopausal participants were recruited with a 

mean age of 617 years. Near half (n=48, 48%) of women were in the 50-59year age group, with 

only a minority of the study cohort 70 years of age and older (~10%.) Eighty-two percent of the 

study population were of mixed ancestry, in accordance with the hospital’s reference population. 

White women represented 13.4% of the total cohort and two black and three Indian women were 

included. Demographics and lifestyle data are presented in Table 5.1.   

Clinical characteristics (n=101) 

Age (years) 61  7  

• 50 – 59 yrs  48 (48) 

• 60 – 69 yrs  43 (48) 

• 70 yrs+  10 (10) 

Smoking   

• ever 42 (42) 

• current 28 (28) 

Alcohol   

• abstain  79 (79) 

• 1-7 units per week  22 (22)  

• >7 units per week  0 

Activity level  

• In-house  20 (20) 

• In-house and Outdoors  81 (80) 

Falls in last year    

• Any fall  0 

Clinical fractures   

• non-vertebral 7 (7) 

Family history of OP   

• positive 1 (1) 

Age at menopause (years) 48  5 years 

Duration of menopause (n=72) 12  8 years 
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• 0 - 4 yrs  15 (21) 

• 5 - 10 yrs  15 (21) 

• > 10 yrs  42 (58) 

Hot Flashes   

• ever  64 (63) 

Hormonal contraception (ever)   

• Depot Provera  19 (19) 

• OCP  30 (30) 

 

Table 5.1. Summary of lifestyle and menstrual data of breast cancer patients at baseline 

 

Values for age, age at menopause and duration of menopause expressed as mean  SD, rest of 

data expressed as n (%). Cohort n = 101 for all clinical characteristics tabulated unless otherwise  

specified. OCP = oral estrogen containing contraceptive preparation 

 

Near half of the study population (42%) smoked at some stage in their lives and 28% of women 

reported to be current smokers. Alcohol consumption was minimal with 79% abstaining from any 

alcohol use and no intake in excess of 7 units per week reported. Most women lead a moderately 

active lifestyle with out-of-house activities documented in 81%. No falls in the last year were 

reported amongst this relatively young cohort of postmenopausal women. Low trauma non-

vertebral fractures were documented in seven women. Only one woman reported a family history 

of osteoporosis.  

Menopause occurred at a mean age of 48  5 years, within the expected normal range (45 yrs and 

older) in the vast majority. Eight women experienced an early menopause, of which six became 

menopausal between 40–45 years of age. The duration of menopause (n=73) was short (less or 

equal to 5 years) in 23% of women. Hot flashes were reported by 64% of women at some stage 

during their menopause. Hormonal contraception was used by 49% of the cohort during their 

reproductive years, of these 19% used an injectable progesterone containing preparation only. 
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Mineral homeostasis, calciotropic hormones and biochemical bone turnover markers 

Normal vitamin D status was only documented in 7% of the cohort. Insufficient vitamin D levels 

(20-30ng/ml) were present in 38% (n=36) of the cohort, whilst deficient vitamin D status 

(<20ng/ml) was documented in 55% (n=52). Bone disease caused by vitamin D deficiency is 

usually associated with values below 10-12ng/ml. This severe degree of deficiency was only 

evident in two participants, interestingly both these women had a normal BMD. Despite the almost 

universal 25-OH-Vitamin D deficiency, only twenty-four subjects (25%) had secondary 

hyperparathyroidism, a marker of poor vitamin D nutrition and/or a negative calcium balance.  

Bone specific alkaline phosphatase and β-cross laps, biochemical parameters of bone turnover, 

were normal (95% and 97% respectively) in most women, indicative of normal bone turnover at 

baseline in this cohort of postmenopausal women. 

Body composition 

Clinical and densitometric parameters of body composition are tabulated in Table 5.2. A 

concerning 85% of our cohort were overweight, with 59% falling into the obese categories of 

WHO-BMI (17). A waist/hip ratio in excess of 0.85, indicating excess metabolic risk, was present 

in the majority (79%). Densitometric assessment of body composition was in accordance with our 

clinical assessment. The mean total body fat mass (14.6  6%) and the FMI (14.4  4.8kg/m2) were 

significantly above normal. A high FMI was documented in 89% and a FMI indicative of obesity 

was present in 61% of the cohort. 
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Clinical parameters (n = 101) 

Category 

values Measurement 

Weight (kg)  81.2   19.4 

Height (cm)  158.6  6.0 

BMI (kg/cm2)  32.4  7.8 

BMI weight categories    

• Low/normal body weight   25 kg/m2 15 (15) 

• Overweight                        25.1–29.9 kg/m2 26 (26) 

• Obesity                               30–39.9 kg/m2 42 (41) 

• Morbid obesity                  40 kg/m2 18 (18) 

Waist circumference (cm)  102.1  15.8 

Waist/Hip circumference (cm)  0.9  0.1 

• > 0.85*   79 (78) 

Densitometric parameters (n = 101) 

Category 

values Measurement 

Mean Total Body Fat Mass (%)  45  6 

• Normal   38%   6 (6) 

• Increased  > 38%   95 (94) 

Mean Fat Mass Index (FMI) (kg/m2)  14.6  4.9 

• Normal                                5 - 9 11 (11) 

• Excess fat                          9.1 - 13 30 (30) 

• Obese                               13.1 - 21 53 (52) 

• Morbid obesity              >21 7 (7) 

Mean Lean Mass Index (LMI) (kg/m2)  16.7 2.8 

• Above third centile (>2SD)   12.5 98 (97) 

• Normal range < 12.5 3 (3) 

Mean Appendicular Lean mass/height2 (kg/cm2)  7.2  5.5 

• Above third centile (>2SD)   4.36  99 (98) 

• Normal range < 4.36  2 (2) 

Mean Android/Gynoid ratio  1.0  0.1 

• Gynoid dominant fat distribution  1   44 (44) 

• Android dominant fat distribution (visceral) > 1  57 (56) 

 

Table 5.2.  Body composition in postmenopausal breast cancer patients at baseline 

Body composition evaluated clinically and with DXA. Mean values presented as means ± standard 

deviation unless otherwise specified. Cohort sub-classified into WHO weight categories based on BMI and 
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percentage of cohort with waist/hip circumference indicative of metabolic syndrome (17)(18) noted*. 

Cohort also sub-classified into Fat Mass Index classification ranges in accordance with BMI weight 

categories. LMI and appendicular lean mass/height2 divided into categories below and above the third 

centile (2SD) for specific measurement in young NHANES females. All densitometric measured categories 

defined based on NHANES data base for young normal females within normal BMI range (17) Data 

expressed as n(%) of subjects within all weight categories 

 

Lean mass appeared well maintained with a significantly lowered appendicular lean mass (< 12.5 

kg/m2) indicative of sarcopenia i.e. loss of muscle strength, only documented in 2 subjects. It is 

noteworthy that both these subjects had osteoporotic range BMD, which infers a significant 

fracture risk based on low BMD and excess fall risk due to sarcopenia. 

The clinically determined BMI and the densitometric FMI were remarkably similar in their 

classification of women within the different weight categories. In the BMI determined normal to 

low body weight category, three of the women had a FMI marginally in excess of 9 (10.3 kg/m2 

in two subjects and 10.5 kg/m2 in the third subject) and only four of the women in the obese 

category, had a FMI below 13.1 kg/m2 (1.7%). 

Bone mineral density 

Baseline BMD was assessed at the lumbar spine in all participants (n=101) and in all but one study 

participant at the femoral neck and total hip region (bilateral hip replacement in one participant) 

(Table 5.3). BMD is expressed as an absolute density in g/cm2 and the deviation from expected 

peak value for the specific individual i.e. as a T-score to determine the patient’s specific BMD 

category as either within the normal, osteopenic or osteoporotic range (19). The mean BMD at all 

the measured sites for the total cohort was within the normal range (T-scores less -1 SD below 

expected peak). 
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BMD SUBCATEGORIES Lumbar Spine 

BMD (n= 101) 

Femoral neck 

BMD (n=100) 

Total hip BMD 

(n=100) 

Absolute value g/cm2 0.982  0.171 0.780  0.119 0.913  0.142 

 T-score -0.5  1.6 -0.65  1.1 -0.2  1.1 

• Normal 58 (58) 61 (60) 75 (75) 

• Osteopenia (< −1.0 > -

2.5) 

26 (26) 32 (33) 21 (21) 

• Osteoporosis ( -2.5) 13 (13) 6 (6) 3 (3) 

• High BMD (> 2.5) 3 (3) 1 (1) 1 (1) 

 

Table 5.3. Bone Mineral Density in postmenopausal breast cancer patients at baseline 

 

Absolute BMD values and T-scores at all the measured sites are presented as means ± standard deviation 

for the total study population. The cohort is then sub-classified into WHO-BMD categories (20).Number of 

patients and percentage of study population within subgroups for all measured sites is noted. 

 

 

A concerning 50% of participants displayed osteopenia at one or more measured site i.e. BMD T-

score deviations of -1 SD or more. Only two women with osteopenia, had a BMD in keeping with 

severe osteopenia i.e. a BMD T-score between -2.0 and -2.5 SD. BMD in keeping with 

osteoporosis was present in fourteen women (14%) prior to any hormonal intervention for breast 

cancer. Osteopenia and osteoporotic range BMD were most prevalent in the axial skeleton (all but 

one study subject with osteoporosis). In this group of relatively young postmenopausal women, 

the dominant loss of bone was at the lumbar spine region. This finding is not unexpected but 

noteworthy in a population expected to commence treatment with anti-estrogenic medication. A 

supernormal BMD (> +2.5 SD) was noted in three participants (3%). 
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A lateral vertebral assessment with DXA raised the suspicion of mild morphometric vertebral 

abnormalities in 15 women. Conventional radiology with a lateral lumbosacral X-ray, excluded 

significant vertebral compression ( 20% of vertebral height) in all of these women.  

Clinical characteristics, body composition and biochemistry within BMD sub-categories (normal, 

osteopenia, osteoporosis) 

Chronological age did not significantly differ amongst the BMD categories. Years since 

menopause (YSM) increased with worsening bone profile, with a mean duration of menopause 5 

years longer in the osteoporotic BMD subgroup compared to the normal BMD subgroup. No 

significant association between YSM and the BMD subgroups was noted (p = 0.14). In all the 

patients with OP, in whom the duration of menopause was documented (n=6), YSM exceeded 5 

years. 

Body composition differed significantly amongst BMD subcategories, with significantly lower 

total body weight, BMI, FMI, total fat percentage and LMI documented in the women with OP (p 

< 0.001; Table 5.4).  The waist/hip ratio was not significantly associated with BMD subcategories 

(p=0.48). The lack of association of BMD measurements with the waist/hip ratio may indicate 

difficulty to accurately determine this anthropometric parameter in a dominantly obese population.  
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Clinical characteristics, body 

composition and biochemistry 

BMD subcategories p-

value 

 Normal 

BMD 

(n=50) 

Osteopenia 

(n=37) 

Osteoporosis 

(n=14) 

 

Clinical characteristics     

Age (yrs) 59  6 62  7 64  8 0.074 

Years since menopause (yrs) 11  9 14  3 16  6 0.14 

Body composition     

Total body weight (kg) 86.6  17.3 79.5  19.2 63.8  15.4 <0.001 

BMI (kg/m2) 34.3  6.4 31.7  8.4 25.8  6.2 <0.001 

Waist/Hip ratio 0.91  0.06 0.88  0.08 0.91  0.14 0.48 

Total body fat (%) 46.9  5.0 44.9  6.6 41.6  5.9 0.144 

FMI (kg/m2) 15.0  4.3 14.0  4.9 10.5  3.6 <0.001 

LMI (kg/m2) 17.6  2.5 16.3  2.9 14.2  1.9 <0.001 

Appendicular lean mass (kg/m2)  8.1  7.6 6.6  1.1 5.5  1.1 0.19 

Biochemistry     

Vitamin D (ng/ml) 19.8  5.8 18.9  6.3 22.1  8.4 0.290 

• Total n  49 35 11  

• Sufficient  >30ng/ml  n (%) 3 (6%) 2 (5%) 2 (18%)  

• Insufficient 20-30ng/ml  n (%) 21 (43%) 12 (34%) 3 (27%)  

• Deficient: < 20ng/ml  n (%) 25 (51%) 21 (60%) 6 (54%)  

PTH (pmol/L) 5.54  2.87 5.10  1.99 6.77  4.36 0.221 

• Total n  48 36 11  

• normal 1.6-6.9 pmol/L n (%) 36 (75%) 29 (80%) 6 (54%)  

• elevated n (%) 12 (25%) 7 (20%) 5 (46%)  

 

Table 5.4. Body composition within DXA-BMD subcategories  

All values expressed as means  SD, unless otherwise specified. Yrs = years; BMI = body mass index; FMI 

= fat mass index; LMI = lean mass index; BMD = bone mineral density. BMD subcategories refers to DXA 

BMD T-score: normal = less than 1SD below norm, osteopenia = -1 to -2.49 SD below normal and 

osteoporosis = -2.5 SD below norm. p-value significant at < 0.05 for continuous comparison normal BMD 

versus osteopenia and osteoporosis subgroups. 

 

Fifty percent of women (7/14) with baseline OP had a low/normal BMI of  25 kg/m2. The other 

half had either an overweight BMI (n=4) or were obese (n=3). No woman with morbid obesity 
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was osteoporotic. Although a low/normal BMI in our cohort indicates increased risk for OP, 

overweight and obese BMI did not exclude the potential of having OP.  

The mean 25-OH-Vitamin D (p = 0.290) and PTH levels (p = 0.221) were similar in the BMD 

subcategories (Table 5.4).  Twenty-one percent of women with secondary hyperparathyroidism 

had OP, slightly higher than documented for the entire cohort (14%). Near half (45%) of women 

with OP, however, had compensatory secondary hyperparathyroidism. When comparing BMD in 

ascending PTH tertiles, a significant adverse BMD effect could not be demonstrated (p = 0.720). 

When looking at BMD subcategories at specific bone sites i.e. at the femur neck, total hip and 

lumbar spine, a similar trend was noted for clinical characteristics, body composition and 

biochemistry relationships compared to the composite BMD.  BMD at all measured sites increased 

significantly with increasing BMI based on WHO subcategories as demonstrated in figure 5.1. 

 

Figure 5.1. Bone mineral density within the WHO-BMI subcategories 
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Multinomial regression adjusting for known confounders indicated PTH (RR 1.61, 95% CI 1.15-

1.25) and LMI (RR 0.3, 95% CI 0.11-0.85) were significantly associated for OP compared to 

normal bone status (Table 5.5).  

 
Crude RR Adjusted RR 

Predictors of BMD Osteopenia Osteoporosis Osteopenia Osteoporosis 

BMI 0.95 (0.83-1.01) 0.82 (0.77-0.92) 1.14 (0.90-1.44) 1.24 (0.80-1.93) 

Fat mass index 0.91 (0.83-1.00) 0.74 (0.62-0.88) 0.87 (0.66-1.14) 0.73 (0.44-1.21) 

Lean mass index 0.82 (0.69-0.98) 0.54 (0.35-0.75) 0.70 (0.47-1.03) 0.30* (0.11-0.85) 

PTH  0.93 (0.79-1.10) 1.13 (0.92-1.38) 0.98 (0.81-1.17) 1.61* (1.15-2.25) 

 

Table 5.5. Crude versus adjusted predictors (reporting relative risk) for BMD status at baseline. 

Comparison of predictors of normal BMD. RR (95% CI), *p-value significant (adjusted only) at <0.05.   

 

Discussion 

In this study of predominantly mixed ancestry postmenopausal women, a concerning 14% had 

osteoporosis at baseline and half of the cohort were osteopenic prior to any intervention. Body 

composition, especially lean mass, was significantly associated with bone mass at all measured 

sites and the risk of being osteoporotic significantly less with increasing lean mass index (p < 

0.0001). All clinical and densitometric measures of body weight and composition were universally 

lowest in the women with OP (p < 0.001).  

Only seven study subjects had sufficient 25-OH Vitamin D levels. Compensatory, secondary 

hyperparathyroidism was documented in more women with OP (45%) compared to the rest of the 

cohort (23%).  

Osteoporosis is a critical public health issue, especially in ageing postmenopausal women. The 

addition of AIs in the endocrine treatment of breast cancer compounds the problem and could 
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adversely affect bone health. A Joint Position Statement by experts from the International 

Osteoporosis Foundation Bone and Cancer Working Group indicates that women commenced on 

adjuvant AI therapy for breast cancer, experience a two to four-fold increase in bone loss compared 

to the normal rate of bone loss with menopause (21). Clinical trials have shown an approximately 

10% increase in absolute fracture risk for women on AI therapy (13, 19). The fracture incidence 

in women with breast cancer on AI therapy was reported to be around 18-20% after five years of 

follow-up (22). This indicates that about one in five women on AI’s will sustain an AI related 

fracture. These fragility fractures result in morbidity with prolonged disability and may lead to a 

loss of independence and should be actively prevented.  

It is thus essential to delineate BMD, body composition and clinical risk factors for bone loss and 

fracture at the start of treatment in these women. This will enable appropriate risk stratification 

and allow for appropriate preventative measures as indicated. Breast cancer treatment seeks not 

only to prolong survival, but also to limit side effects (13, 23).  

BMD is a precise and reproducible measure of mineral content, determines up to 70% of bone 

strength and is viewed as the most robust indicator of fracture risk in untreated patients (3). Ethnic 

differences in bone mass and the risk of osteoporotic fracture have been described globally, but 

established data are particular to black and white populations (2, 24). 

More than 80% of our study population were of mixed ancestry, a population subgroup in whom 

bone mineral density and the prevalence of fractures are largely unknown. In the only reported 

data from South Africa on BMD in women of mixed ancestry (25), BMD measurements at both 

the lumbar (p=0.25) and femoral regions (p=0.52) were similar to whites. BMD in SA black 

women are higher at the femoral regions, but  similar or even lower at the lumbar spine, compared 

to white women (26-28). Extrapolated from densitometric studies, fracture risk is expected to be 
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similar in white women and those of mixed ancestry at all sites. Limited data suggest that South 

African black women may be protected from hip fractures, but is expected to have a vertebral 

fracture risk similar to the other ethnic groups (29, 30). No formal study looking at vertebral 

fracture prevalence in women of mixed ancestry in SA has been conducted to date and the 

prevalence of vertebral fractures in this ethnic group thus remains unknown. Such knowledge will 

facilitate prevention and management strategies for osteoporosis and consequent fragility fractures 

across all ethnic groups as well as in the post-menopausal woman treated for breast cancer (31). 

The prevalence of low BMD in more than half of our study population at baseline is concerning. 

This argues for routine bone density measurements in all postmenopausal women of mixed 

ancestry presenting with breast cancer in whom AI therapy is considered. In the majority of our 

subjects, significant bone loss was confined to the axial skeleton. This is especially concerning for 

an increased risk to sustain vertebral fracture. Guidelines have proposed different cut-offs for 

intervention based on baseline assessment of bone health in women starting AI therapy for breast 

cancer. According to the most recent global consensus recommendation, all women with a BMD 

T-score  -2 SD at any measured site, should be pharmacologically protected with bone-directed 

therapy (21). In addition, patients with a BMD T-score between -1.5 SD and -2 SD with added risk 

factors for bone loss, should also be considered for treatment. These risk factors include age above 

65 years, smoking, a family history of hip fracture or a personal history of fragility as well as low 

body weight and a longer than 3-month course of glucocorticoid therapy. FRAX (fracture risk 

assessment score), an algorithm designed to provide long-term (10-year) fracture risk, is also used 

to determine the need for active intervention in women considered for AI therapy. This algorithm 

can, however, only be used in countries where the background prevalence of fragility fractures of 

the hip is known and thus at present not an option in our patient population.                                                                                                                                 
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Based on these recommendations, eighteen of the women in our cohort (18%) warranted bone 

specific therapy based on BMD criteria per se (BMD T-score  -2 SD). Seventeen of our 

participants had a BMD T-score  -1.5 SD, but > -2 SD. The presence of one or more conventional 

risk factors for bone loss in fourteen of these women also dictated the need for active intervention 

at baseline (one risk factor, n = 6; two risk factors, n = 7; three risk factors, n =1). Near one-third 

(32%) of postmenopausal women at baseline in our study fulfilled global criteria for bone-specific 

intervention.  

Obesity, based on WHO-BMI criteria, is associated with increased peak bone mineral density, with 

higher bone mineral density in postmenopausal women and with slower rates of bone loss at both 

the hip and spine. Low body weight, also specifically studied in breast cancer cohorts, represent 

an important risk factor for low bone mineral density and even osteoporosis (4). Eighty-five 

percent of our study cohort was overweight, and although associated with significant metabolic 

adversity, this may afford bone protection. 

Fat mass has been shown to be positively associated with BMD due to increased mechanical 

loading and the release of osteogenic hormones from adipose tissue (32). In addition, after 

menopause, body fat becomes the main determinant of endogenous estrogen activity. The 

production of androgens is higher in obese than in normal weight women, and the excess body fat 

will increase adipocyte conversion of androgens to estrogen (33). In contrast, fat mass also 

produces inflammatory cytokines, which may negatively influence BMD tissue (34). Skeletal 

muscle mass or fat-free lean body mass has been consistently shown to be associated with 

increased BMD in all women due to the mechanical forces placed on bone during locomotion and 

muscle activity (4, 35). 
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In this study, all clinical and densitometric measures of body composition were significantly lower 

in women with OP (p < 0.001) and osteopenia (p < 0.001), compared to those with normal BMD 

as illustrated in Figure 5.1. A lower total body weight, BMI, FMI, total fat percentage and LMI, 

was noted in women who displayed bone loss at baseline based on a BMD T-score of – 1SD or 

lower at any site (p-value <0.001). Similar relationships between body composition parameters 

and BMD at individual skeletal sites i.e. the spine and both hip regions were documented. This 

indicates a beneficial effect of increased fat and lean mass on BMD maintenance irrespective of 

site. Prior studies have suggested a more pronounced effect of body weight on BMD in the hip 

region as a more weight-bearing site (26, 36). Our data indicate benefit and a positive correlation 

irrespective of site in accordance with another local study in community dwelling, healthy black 

and white women (27).  

Fifty percent of women with OP had a low/normal BMI of  25kg/m2 in contrast to our study 

cohort in whom 85% were obese. Low body weight is a well-established risk factor for OP in 

breast cancer patients and also documented in our study cohort. In our cohort, 85% of women were 

overweight according to WHO-BMI categories (17). This percentage exceeds the national figure 

of 68% for obesity in adult South African women as reported in the Department of Health, South 

Africa Demographic and Health Survey 2016 (37). It is noteworthy, that BMI in the overweight 

and obese categories did not preclude the possibility of OP in this cohort.  

In continuous comparison, the relationship between fat mass indices (total body fat percentage and 

FMI) and lean mass indices (LMI) with BMD measurements were similar.  In our relatively young 

postmenopausal cohort, lean mass was well maintained and above the third centile (as indicator of 

significant loss of muscle mass) in all but three study subjects. Likewise, appendicular lean mass, 

a parameter closely associated with sarcopenia and fall risk in the elderly, was normal in the vast 
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majority of our cohort (98%). Our findings indicate a significant role for lean mass in maintaining 

BMD. Measurement of this component of total body weight may be especially important in older 

women with breast cancer in whom accurate risk stratification of bone health is pertinent.  

Other conventional clinical risk factors for bone loss and OP were not significantly associated with 

BMD in our study subjects, but merit discussion. Alcohol intake was minimal amongst study 

participants with no one exceeding the recommended maximum daily intake. The women were all 

active, with 81% of the cohort reporting out-of-house activities. Univariate analysis did not 

identify active lifestyle or prior smoking to have a significant adverse impact on BMD. Although 

years since menopause (YSM) increased with declining BMD categories, the increase was not 

statistically significant. In all the women with OP, in whom the duration of menopause was 

documented (n=6), YSM did exceed five years and warrants consideration in risk stratification 

programs. 

Vitamin D insufficiency is common in the general population (13) and also reflects in our mixed 

race population. A marked seasonal variation in vitamin D3 production was noted in Cape Town, 

with very little being formed during the winter months of April through September in a study 

conducted in the late 1990’s (38).  Increased skin pigment and obesity are well known risk factors 

for decreased cutaneous vitamin D production, both present in the majority of our study subjects.   

Low vitamin D is a known risk factor for osteoporosis due to the associated negative calcium 

balance and compensatory secondary hyperparathyroidism with increased bone resorption (39, 

40). The vast majority of our study participants (93%) had insufficient or deficient vitamin D 

levels, an extremely high and concerning figure. The mean 25-OH-Vitamin D (p=0.290) did not 

Stellenbosch University  https://scholar.sun.ac.za



105 
 

differ amongst the BMD subcategories, but this may partly be due to the almost universal Vitamin 

D insufficiency in the study cohort.  

Only a minority of women with insufficient vitamin D status had elevated PTH-levels in keeping 

with a diagnosis of secondary hyperparathyroidism. Of the 38 women with insufficient Vitamin D 

levels, eight women had elevated serum-PTH (22%). Of the 52 women with deficient Vitamin D, 

15 manifested with secondary hyperparathyroidism (29%). Twenty-one percent of women with 

secondary hyperparathyroidism had OP, a figure slightly higher than that documented for the entire 

cohort (14%). When comparing BMD in ascending PTH tertiles, no significant adverse BMD 

effect was evident (p =0.720). It is noteworthy that near half (46%) of the women with OP had 

compensatory secondary hyperparathyroidism.  

Our study had limitations. Conclusions drawn from this study are limited by the small sample size 

of 101 women. Data obtained in this cohort nonetheless do contribute to the current small 

knowledge pool regarding the baseline bone health of South African postmenopausal women with 

breast cancer considered for AI therapy.  The cohort furthermore consisted almost exclusively of 

women of mixed descent and therefore our study data cannot be extrapolated to the other ethnic 

groups in our country in whom knowledge regarding baseline bone health is also very limited. A 

strength of our study, on the other hand, is that densitometric data were obtained by making use of 

a single, very experienced densitometrist that positively impact on the validity of both our body 

composition and BMD data. 

Conclusion  

A substantial 32% of our cohort of postmenopausal women considered for AI therapy fulfilled 

criteria for bone-specific pharmacological protection. Inadequate baseline assessment of bone 
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health may have dire consequences when life-saving breast cancer therapy, with known potential 

adverse bone effects, is prescribed. This study emphasizes the absolute need for BMD and clinical 

risk assessment in all postmenopausal women of mixed race with breast cancer, considered for AI 

therapy. Ultimately, it may also inform local health policy.  

The study provides valuable information regarding the relationship between body composition 

variables and bone health of postmenopausal women of mixed ancestry. It further highlights the 

importance of lower body weight as a risk factor in the assessment of bone health. The concerning 

high percentage of Vitamin D insufficiency noted in our study cohort requires additional 

investigation. Evaluation in larger cohorts may clarify the significance and magnitude of the 

impact of insufficient vitamin D status on bone health.  

This is the first study of its kind conducted in a group of women of mixed race residing in the 

Western Cape Province of South Africa. Improved insights into ethnic variations of bone health, 

provided by studies such as ours, will enable preventive approaches to osteoporosis for post-

menopausal women on breast cancer treatment (31). Further work in this same cohort will report 

on changes in bone health during the course of AI treatment. 
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Abstract 

Background 

Significant individual variation in bone loss associated with aromatase inhibitors (AIs) emphasizes 

the importance of identifying postmenopausal breast cancer patients at high risk for this adverse 

effect. The study explores the clinical relevance of genetic variation in the Cytochrome P450 19A1 

(CYP19A1) gene in a subset of South African patients during the first year of taking AIs for 

estrogen receptor (ER)-positive breast cancer.  

Methods  

The study population consisted of ER-positive breast cancer patients on AIs, followed in real-life 

clinical practice. Body mass index (BMI) was measured and bone mineral density (BMD) 

determined at baseline and at month 12. CYP19A1 genotyping was performed using real-time 

polymerase chain reaction analysis of rs10046, extended to Sanger sequencing and whole exome 

sequencing (WES) in 10 patients with more than 5% bone loss at month 12 at the lumbar spine.  

Results 

After 12 months of AI treatment, 72 patients had completed BMD and were successfully 

genotyped. Ten patients (14%) experienced more than 5% bone loss at the lumbar spine over the 

study period. Genotyping for CYP19A1 rs10046 revealed that patients with two copies of the A-

allele were 10.79 times more likely to have an ordinal category change of having an increased 

percentage of bone loss or no increase at the lumbar spine, compared to patients with the GA or 

GG genotypes (CI of 1.771- 65.830, p=0.01). None of the 34 patients without lumbar spine bone 

loss at month 12 were homozygous for the functional CYP19A1 polymorphism. At the total hip 

region, patients with the AA genotype were 7. 37 times more likely to have an ordinal category 
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change of having an increased percentage of bone loss or no increase (CI of 1.101- 49.336, 

p=0.04).  

Conclusion 

Homozygosity for the CYP19A1 rs10046 A-allele may provide information, in addition to clinical 

and biochemical factors that may be considered in risk stratification to optimize bone health in 

postmenopausal breast cancer women on AIs.  

 

 Introduction 

Aromatase inhibitors (AIs), the gold standard for treatment of estrogen receptor (ER)-positive 

postmenopausal breast cancer (1)(2), are associated with bone loss and fracture risk. There is 

however, significant individual variation in the bone loss induced by AIs. This is related to factors 

such as age, menopausal status, years since menopause and body mass index (BMI). Individual 

vulnerability to AI side effects is unpredictable and may also be explained by diverse genetic 

profiles (3).  

The aromatase enzyme plays a critical role in bone health. Rare loss of function mutations in the 

Cytochrome P450 19A1 (CYP19A1) gene, may cause decreased bone mineral density (BMD) (4, 

5). Common functional polymorphisms may affect enzyme activity in a context dependent manner 

(6). CYP19A1 rs10046 explains 1.6% of the variance in the estradiol-testosterone ratio (7). The A 

allele of CYP19A1 rs10046 is associated with raised estrogen levels, which in turn is expected to 

be beneficial for bone health (8).  

In view of the findings quoted above and our literature curation (9), we identified rs10046 as a 

clinically useful single nucleotide polymorphism (SNP) for risk stratification in AI 
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pharmacogenetics  pending validation in ethnically diverse South African breast cancer patients. 

However, genotype association with clinical outcome does not constitute biological significance; 

therefore it is important to substantiate the statistics with biological information (10). 

The study is the first to report on the impact of genetic variation within metabolic pathways 

underlying bone health in South African breast cancer patients, during the first year on AIs. 

Methods  

Study population and design 

We prospectively evaluated postmenopausal women with newly diagnosed, histologically 

confirmed endocrine sensitive early breast cancer between the ages of 50 to 80 years. The study 

was conducted at the Tygerberg Hospital Breast Clinic in affiliation with Stellenbosch University. 

The study population was derived from a larger cohort (n=101, Chapter 5) prospectively followed 

up on AI therapy to assess bone health outcomes and included 72 postmenopausal breast cancer 

patients who were successfully genotyped at baseline and in whom BMD were measured both at 

baseline and following 12 months of AI therapy. Patients with metabolic bone disease or on 

medication known to adversely affect BMD at baseline were excluded from the study. All 

participants were treated with Anastrazole, a non-steroidal AI according to guidelines, at the time 

of diagnosis. 

Information on other clinical variables were recorded at enrolment, including age at recruitment, 

gynaecological history, weight, height, calcium and Vitamin D status, activity levels and smoking 

status. 
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Bone mineral density 

Dual energy X-ray absorptiometry (DXA); Hologic Discovery-W (S/N 70215), software Version 

13.1 was employed in this study. Femoral neck (FN), total hip (TH) and lumbar spine (LS) BMD 

were measured at baseline and month 12 on treatment. A single experienced DEXA technician 

(MM Conradie) completed scans on all subjects. Intra-operator variation was below 1% for all 

bone sites.  

Genotyping  

DNA was extracted from whole blood using the QIAGEN QIAamp® DNA Blood Mini Kit 

(Hilden, Germany). At the time of study design, candidate SNPs were identified from publications 

in the literature based on their role in AI-associated effects (9, 11). CYP19A1 rs10046 was 

genotyped using real-time polymerase chain reaction (PCR) (TaqMan® technology), extended to 

Sanger sequencing and whole exome sequencing (WES) in 10 patients with more than 5% bone 

loss at month 12. WES was performed at the Central Analytical Facility of Stellenbosch 

University, using the protocol previously described (12).  

Statistical analyses 

Data management and analysis were conducted in STATA 14.  Descriptive statistics were used 

to describe baseline characteristics and 12- month outcome data. BMD were expressed as percent 

(%) change from baseline to 12 months. Continuous data were tested for normality using 

descriptive statistics (e.g. histograms) where normally distributed data were presented as means 

and standard deviations, or as medians and interquartile ranges (IQR) for non-normally distributed 

data. Categorical data were presented as proportions and 95% confidence intervals. The 

associations between biological parameters and BMD was determined using one-way ANOVA 
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and chi2 tests. To account for confounding, significant univariate predictors were included in a 

final ordered logistic regression model at p <0.2. An alpha of 0.05 was considered statistically 

significant. Associations were reported as relative risks with 95% confidence intervals. The 

Research Electronic Data Capture (REDCap) application was used for data management (13).  

Ethics approval  

The research complied with the World Medical Association Declaration of Helsinki- ethical 

principles for medical research involving human subjects- and the study was approved by the 

Ethical Review Board of the Faculty of Medicine, Stellenbosch University (S13/05/103). 

Results 

Baseline characteristics were documented in 101 breast cancer patients (Chapter 5). Seventy-two 

of these women were successfully genotyped and underwent BMD testing at baseline and after 12 

months of AI therapy.  

No significant change in the average body weight, height or BMI of the genotyped study cohort 

(n=72) was observed over the one-year course of AI therapy. When assessing changes in individual 

BMI, ten women experienced a decrease in BMI of 3 kg/m2 or more (14% of cohort), whereas the 

BMI of only four women increased to a similar degree (6% of cohort). A change in body weight 

in excess of 5 kg after 12 months of AI therapy was observed in 26 women (decrease: n=14, 

increase n=12).   

The average absolute BMD measured at all skeletal sites for this cohort on AI therapy was 

significantly lower at month 12 compared to baseline (Table 6.1). Significant bone loss based on 

average absolute BMD was thus demonstrated for the study cohort at the lumbar spine (p <0.0001). 
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 Baseline (n=72) Month 12 (n=72) p value 

Anthropometry 

Weight (kg) 82.4  19.1 81.9  19.5 0.44 

Height (cm) 159.6  5.9 158.9  6.0 0.22 

BMI (kg/cm2) 32.5  7.8 31.8  8.8 0.33 

Bone Mineral Density (g/cm2) 

Lumbar spine  1.001 ± 0.154 0. 978 ± 0.151 < 0.0001 

Femoral neck  0.798 ± 0.116 0.779 ± 0.117 <0.0001 

Total hip  0.939  0.136 0,928  0.129 0.02 

 

Table 6.1. Comparison of clinical anthropometry and BMD at baseline and after 12 months of AI 

therapy. 

Absolute parameters are presented as means ± standard deviation for patients who were genotyped. 

 

Genotyping was performed in 72 patients and included 60 women of Mixed Ancestry, 10 

Caucasians, one Black and one Indian patient. There was no difference in genotype distribution 

and allele frequency for the CYPA1 rs10046 polymorphism in the relatively small group of 

Caucasian and Mixed Ancestry patients studied. Table 6.2 shows the genotype distribution of 

CYP19A1 rs10046 in relation to baseline clinical characteristics and ethnicity and to BMD 

measurements documented both at baseline and at month 12 of AI use. The genotype distribution 

of this polymorphism was in Hardy–Weinberg Equilibrium.  

The three genotype groups were comparable with regard to age and BMI, determined both at 

baseline and at month 12. No significant weight loss, expressed as a change in BMI, were noticed 

from baseline to month 12 in any of the three genotype cohorts.   

There was an even distribution of the CYP19A1 rs10046 GG and GA genotypes in the predominant 

Mixed Ancestry group within our study population. Of the six patients with genotype AA, 67% 

(n=4) were Mixed Ancestry patients and the other two Caucasian. 
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The absolute BMD at all the measured sites, i.e. at the lumbar spine, femoral neck and total hip 

was similar in all three genotype groups. Although not statistically significant, a clear trend 

towards lower measured BMD was observed in the heterozygous and homozygous genotype 

groups with the CYP19A1 rs10046 A allele, compared to GG homozygotes. The lowered trend 

was more pronounced at 12 months, suggestive of accentuated loss in the genotype groups with 

the CYP19A1 polymorphism. This observation was noted at all skeletal sites and equates to a 

percentage difference in absolute average BMD between the GG homozygotes and AA 

homozygotes of 4.5%, 4.9% and 7.6% at the lumbar spine, femoral neck and total hip regions 

respectively, at baseline and a difference of 6.5%, 5.3% and 8.9% at the mentioned sites at 12 

months. 

                   CYP19A1 rs10046 (n = 72) 

 Genotype GG  Genotype GA Genotype AA p-value 

 34 (47%) 32 (45%) 6 (8%)  

Clinical characteristics  

Age (yrs.) 60  5.8 61   7.3 62  9.7 0.71 

BMI (kg/m2)     

baseline 33.0 ± 7.3 32.5 ± 8.7 30.1 ± 4.2 0.70 

month 12* 32.9 ± 7.7 31.0 ± 10.2 30.3 ± 6.2 0.62 

Ethnicity 

MA (n = 60) 28  28 4  N/A 

Caucasian (n =10) 5  3  2  N/A 

Black (n = 1) 1 0 0 N/A 

Indian (n = 1) 1 0 0 N/A 

Bone mineral density (g/cm2) 

Lumbar Spine     

baseline 1.028 ± 0.154 0.976 ± 0.158 0.982 ± 0.129 0.38 

month 12 1.001 ± 0.153 0.961 ± 0.154 0.936 ± 0.132 0.44 

Femur Neck     

baseline 0.819 ± 0.123 0.781 ± 0.115 0.770 ± 0.060 0.34 

month 12 0.803 ± 0.118 0.758 ± 0.119 0.750 ± 0.071 0.24 

Total Hip     

baseline 0.961 ± 0.131 0.926 ± 0.149 0.885 ± 0.063 0.35 

month 12 0.950 ± 0.132 0.917 ± 0.132 0.861 ± 0.070 0.24 
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6.2: Clinical characteristics, ethnicity and BMD in relation to genotype distribution of CYP19A1 rs10046 

in the total genotyped study population 

BMI- body mass index; MA- Mixed Ancestry; n/a-not applicable *no significant change in BMI from baseline to 

month 12 in any of the three genotypes 

 

A statistically significant (p= 0.003) decline in absolute BMD was noted for all skeletal sites in 

the three genotype groups from baseline to month 12. The greatest absolute loss (BMD decline of 

0.046) was noted for the lumbar spine region in CYP19A1 genotype subgroup AA. The decline in 

all groups were most pronounced in the lumbar and femoral neck regions known to be rich in 

trabecular bone. This is expected as a result of reduced tissue exposure to estrogen at this early 

time point of 12 months (Table 6.3). 

BMD according to genotype Baseline Month 12 p value 

Genotype GG    

Lumbar spine 1.028 ± 0.154 1.001 ± 0.153 0.003 

Femur Neck 0.819 ± 0.123 0.803 ± 0.118 0.003 

Total Hip 0.961 ± 0.131 0.950 ± 0.132 0.03 

Genotype GA    

Lumbar Spine 0.976 ± 0.158 0.961 ± 0.154 0.0005 

Femur Neck 0.781 ± 0.115 0.758 ± 0.119 0.0001 

Total Hip 0.926 ± 0.149 0.917 ± 0.132 0.29 

Genotype AA    

Lumbar Spine 0.982 ± 0.129 0.936 ± 0.132 0.0004 

Femur Neck 0.770 ± 0.060 0.750 ± 0.071 0.19 

Total Hip 0.885 ± 0.063 0.861 ± 0.070 0.09 

 

Table 6.3. Bone mineral density measurements at different skeletal sites within the three genotype groups 
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Table 6.4 shows the change in BMD at month 12 expressed as percentage bone loss. The degree 

of bone loss at the lumbar spine and total hip region is tabulated into three bone loss categories i.e. 

no change;   5%, but significant bone loss or >5% bone loss for all genotyped patients. In the 

total study population 47% of individuals (n=34) maintained their lumbar spine bone mass with 

no significant change from baseline, 39% (n= 28) had bone loss of up to 5% and 14% (n= 10) had 

bone loss in excess of 5%.  At the total hip, 72% maintained bone mass (n=52), 19% (n=14) had 

up to 5% bone loss, whereas 8% of women (n = 6) lost more than 5% of their bone mass.  Bone 

loss at the trabecular rich lumbar region were more pronounced within the limited observation 

period of 12 months compared to the total hip region mostly comprised of cortical bone as expected 

and as alluded to before.  

The percentage bone loss for the three genotypes were also calculated at the lumbar and hip region.  

All patients with the CYP19A1 rs10046 AA genotype displayed bone loss at the lumbar spine 

region over the observation period of 12 months. The individual losses in the two CYP19A1 AA 

homozygotes among patients with more than 5% bone loss were -5.8 and -7.6% respectively (one 

Caucasian, one Mixed Ancestry). The losses in the four AA homozygotes in the up to 5 % bone 

loss group ranged between -3.2 to -4.5% (one Caucasian, three Mixed Ancestry). Only 8% (n=6) 

of the study group displayed the AA genotype. Notably, this genotype group represented 20% of 

the cohort who suffered bone loss in excess of 5% over the 12-month period of AI therapy.  
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 No bone loss  5% bone loss >5% bone loss 

      n (%)      n (%)     n (%) 

Lumbar Spine    

Total (n = 72) 34 (47) 28 (39) 10 (14) 

GG genotype (n = 34) 17 (50) 12 (35) 5 (15) 

GA genotype (n = 32) 17 (53) 12 (37) 3 (9) 

AA genotype (n = 6) 0 4 (67) 2 (33) 

Total Hip     

Total (n = 72) 52 (72) 14 (19) 6 (8) 

GG genotype (n = 34) 27 (79) 5 (15) 2 (6) 

GA genotype (n = 32) 22 (69) 7 (22) 3 (9) 

AA genotype (n = 6) 3 (50) 2 (33) 1 (17) 

Table 6.4: Proportional bone loss at month 12 at Lumbar Spine (LS) and Total Hip (TH). 

Body composition parameters including clinically determined BMI and both Fat Mass Index and 

Lean Mass Index as determined by DXA were significant predictors of baseline BMD status in the 

larger study population, of whom 72 women underwent genotyping (Chapter 5).  At the lumbar 

spine, CYP19A1 rs10046 AA homozygotes were 10.79 times more likely to have an ordinal 

category change of having an increased percentage of bone loss or no increase, compared to 

patients with the GA or GG genotypes (CI of 1.771- 65.830, p=0.01). Genotyping for CYP19A1 

rs10046 revealed that patients with two copies of the A-allele are 7,37 times more likely to have 

an ordinal category change of having an increased percentage bone loss or no increase, at the total 

hip compared to those without this allele (CI of 1.101- 49.336, p=0.04). None of the 34 patients 

without bone loss at the lumbar spine at month 12, were homozygous for the functional CYP19A1 

polymorphism. DNA sequencing in the 10 patients with more than 5% bone loss, supported these 

findings and confirmed the genotype allocation of A and G alleles using real-time PCR. WES 
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demonstrated sufficient coverage to accurately detect this SNP within a greater pharmacogenetics 

and diagnostic screening context, as evidenced by the concomitant detection of a pathogenic 

BRCA2 mutation (c.582G>A) in one of these patients.   

 

Discussion 

This study describes the changes in BMD measured at baseline and after one year of AI treatment 

and its relation to genetic variation in the CYP19A1 gene. In our study cohort, the rs10046 genotype 

distribution was 46% in both the GG and GA genotype groups in the Mixed Ancestry patients 

compared to 50% and 30% for GG and GA, respectively, in the Caucasians. In the AA genotype 

group (n=6), Mixed Ancestry patients comprised 67% (n=4). The three genotype groups were 

similar in terms of age and BMI, as at baseline and no significant weight loss was evident over the 

one-year period, in any of the groups.  

Recent international consensus guidelines suggest that all women starting AI therapy should have 

a baseline clinical risk assessment of osteoporosis for individualized bone protective intervention 

(13, 14). Our baseline evaluation revealed that a third of our study population already had BMD 

findings necessitating active bone protection. Body composition was identified as the most 

important clinical predictor of baseline BMD in these women (Chapter 5). Our prospective bone 

health evaluation at month 12 of AI therapy, revealed that the average absolute BMD of the cohort 

is statistically lower than that measured at baseline, but similar amongst the genotype groups. This 

finding is in keeping with most large clinical trials reporting accelerated loss up to 7.5% annually 

(16). A statistically significant decline in absolute BMD was noted in the total cohort for all 

skeletal sites, and also within all three genotype groups from baseline to month 12. The greatest 

bone loss evaluated within the three genotype groups was noted for the lumbar spine region in 
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genotype subgroup AA (average decline of 4.5% over 12 months). The decline in all groups was 

most pronounced in the lumbar and femoral neck regions known to be rich in trabecular bone. This 

is expected as reduced tissue exposure to estrogen at this early time point of 12 months will 

predominantly affect metabolically more active trabecular bone tissue. 

A trend was noted towards a lower BMD (all skeletal sites) in groups with CYP19A1 rs10046 

GA/AA genotype compared to the GG genotype, but this was not statistically significant. Small 

patient numbers within some of the genotype groups may have limited our ability to detect 

significant differences in BMD amongst these groups and warrants further health outcomes studies 

in an extended patient cohort. 

Nearly 50% of the study cohort had significant loss of lumbar BMD. Fourteen percent of these 

women had more than 5% bone loss at the lumbar spine. At the hip, nearly a third of women had 

significant bone loss at month 12 and only six patients (8%) had more than 5% bone loss. These 

findings support the earlier loss of trabecular bone following reduced skeletal exposure to estrogen 

in postmenopausal women due to AI therapy. Furthermore, the observation in our study all patients 

with the AA genotype had significant bone loss is noteworthy.  

Although many studies support the role of functional polymorphisms in breast cancer, the 

mechanism underpinning the bone loss associated with AI therapy remains elusive (17). We 

explored the clinical relevance of CYP19A1 rs10046 as an additional tool for risk stratification in 

AI-related bone outcomes. Our results reveal that women with the CYP19A1 AA genotype are 

10.79 times more likely to have an ordinal category change of having an increased percentage bone 

loss or no increase, at the lumbar spine and are 7,37 times more likely to have an ordinal category 

change of having an increased percentage bone loss or no increase, at the total hip compared to 

those without this allele. 
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CYP19A1 rs10046 AA homozygotes may represent a population of breast cancer patients who 

could be at increased risk for bone loss with long-term AI therapy. Early intervention and close 

follow-up of bone health is indicated in these patients who may comprise a subgroup who should 

be considered for other forms of endocrine therapy. 

Our single institution study is limited by small numbers, marked by a significant degree of attrition 

in a real life clinical practice setting. Although the interval of BMD assessment at one year may 

be considered too short to experience the full impact of AIs on bone,  the majority of bone loss 

have been noted early in the course of AI therapy in several studies (17, 18). This prospective 

evaluation of bone health, performed in a predominantly Mixed Ancestry population, identified 

the CYP19A1 rs10046 A allele as conferring risk to bone loss. This conflicts with findings from 

other studies in mainly European populations.  

Discrepancies reported in pharmacogenetic studies may be attributed to background genetic 

influences, environmental factors and prescribed therapies (20). Notably, the A allele was reported 

as the minor allele in African population, while the G allele is the minor allele in most other 

populations. Further investigation is therefore required to place the clinical effect observed for a 

single SNP in a genomic context, with the aim to distinguish between true linkage and association 

resulting from shared ancestry. The genetic structure of the Mixed Ancestry population provides  

a valuable tool for admixture linkage disequilibrium mapping of pharmacogenetic markers (21). 

This is of particular relevance to the unique genetic structure of the Mixed Ancestry population of 

South Africa that clusters at positions between Africans and non-Africans.  
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Conclusion 

CYP19A1 rs10046 AA homozygotes may represent a target group most likely to benefit from 

translation of research into a clinical management pipeline for individualized risk stratification. 

WES enabled screening of the entire CYP19A1 gene simultaneously targeting other genetic 

variants previously implicated in bone health, which are scattered throughout the human genome.  
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CHAPTER 7 

 

Conclusion 

 

The high proportion of postmenopausal women of Mixed Ancestry with estrogen receptor (ER)-

positive breast cancer fulfilling international criteria for bone protective measures, was the most 

striking clinical finding of the study. International guidelines recommend accurate clinical and 

biochemical bone risk assessment in all postmenopausal breast cancer patients considered for AI 

therapy. Variability in side effects of breast cancer patients with similar clinical bone risk profiles 

can be ascribed to genetic differences, also evident in our cohort. 

 

The underlying pathophysiology of AI related bone loss entails complex interactions between 

clinical, biochemical and genetic factors and none of these aspects can be interpreted in isolation. 

Incorporation of pharmacogenetics into the clinical scenario is a major challenge which was 

addressed responsively in this study by the development of adaptable reports for continued 

monitoring, beyond a single research objective. The significant effect of CYP19A1 rs10046 in the 

homozygous state provided a glimpse into the context-dependency of enzyme activity underpinned 

by genetic variation. Though impressive, no direct association can be assumed for the 7-10 times 

increased likelihood of bone loss at the lumbar spine and hip in CYP19A1 rs10046 AA 

homozygotes. This statistical association requires further investigation with robust health outcome 

studies to validate biological significance in different clinical scenarios in the genetically diverse 
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South African population. The database resource developed in parallel to patient recruitment for 

this study would facilitate this process.  

 

Aligning clinical, biochemical and genetic information translated into adaptable patient reports 

may overcome the fragmentation between service delivery and research silos. This study merged 

multi-disciplinary research in a real-life clinical setting by utilising high throughput genotyping 

and advanced next generation sequencing technologies. Insights gained from this research, may 

inform policy development for implementation of a refined bone risk stratification strategy for 

endocrine therapy in postmenopausal breast cancer patients in South Africa.  
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