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Summary

Pathogenic organisms frequently utilize proteases to perform specific functions related to 

virulence. There is little information regarding the role of proteolysis in Mycobacterium tuberculosis 

and no studies on the potential involvement of these enzymes in the pathogenesis of tuberculosis. 

The present study initially focused on the characterization of a family of membrane anchored, cell wall 

associated, subtilisin-like serine proteases (mycosins-1 to 5) of Mycobacterium tuberculosis. These 

proteases were shown to be constitutively expressed in M. tuberculosis, to be located in the cell wall 

of the organism and to be potentially shed (either actively or passively) from the wall. Relatively high 

levels of gamma interferon secretion by T-cells in response to these proteases were observed in 

Mantoux positive individuals. The absence of any detectable protease activity lead to a protein 

sequence analysis which indicated that the mycosins are probable mycobacterial-specific proprotein 

processing proteases.

To identify possible substrates for these proteases, the genome sequence regions 

surrounding the mycosin genes were analyzed. This revealed that the mycosin genes are in fact part 

of a cluster of 6 to 12 genes which have been duplicated multiple times in the genome of M. 

tuberculosis. Due to the presence of members of the previously described ESAT-6 T-cell antigen 

family within this duplicated region, the five gene cluster regions were named the ESAT-6 loci. In 

silico analysis of finished and unfinished genome sequencing data revealed the presence of 

orthologues of the Mycobacterium tuberculosis H37Rv ESAT-6 loci in the genomes of other 

mycobacteria, e.g. M. tuberculosis CDC1551, M. tuberculosis 210, M. bovis, M. leprae, M. avium, and 

the avirulent strain M. smegmatis. Phylogenetic analyses done on the resulting sequences have 

established the duplication order of the gene clusters and demonstrated that gene cluster region 4 

(Rv3444c-3450c) is ancestral. Region 4 is also the only region for which an orthologue could be 

found in the genomes of Corynebacterium diptheriae and Streptomyces coelicoior. Thus, the 

comparative genomic analyses revealed that the presence of the ESAT-6 gene cluster seems to be a 

unique characteristic shared by members of the high G+C gram-positive bacteria and that multiple 

duplications of this cluster have occurred and have been maintained only within the genomes of 

members of the genus Mycobacterium.
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The ESAT-6 gene cluster regions were shown to consist of the members of the ESAT-6 gene 

family (encoding secreted T-cell antigens that lack detectable secretion signals), the mycosins 

(secreted, cell wall-associated subtilisin-like serine proteases) as well as genes encoding putative 

ABC transporters, ATP-binding proteins, and other membrane-associated proteins. Thus, from the 

observation that members of the ESAT-6 family are secreted without the normal sec-dependent 

secretion signals, it was hypothesized that the membrane-associated and energy-providing proteins 

function together to form a transport system for the secretion of the members of the ESAT-6 protein 

family. Supporting this hypothesis, one of the ESAT-6 gene clusters was shown to be expressed as a 

single polycistronic RNA, forming an operon structure. The promoter for this operon, P e s r e g 3. was 

also identified and its activity characterized. Subsequent secretion analyses results have shown that 

secretion of members of the ESAT-6 protein family is dependent on the presence of the proteins 

encoded by the ESAT-6 gene cluster regions, confirming the putative transport-associated functions 

of the ESAT-6 gene cluster-encoded proteins. The mycobacterial ESAT-6 gene clusters contain a 

number of features of quorum sensing and lantibiotic operons, and an extensive review of the 

literature have led to the hypothesis that the members of the ESAT-6 family may be secreted as 

signaling molecules and may be involved in the regulation of expression of genes during intracellular 

residence of the bacterium. In the final part of this study, the evolutionary history of the PE and PPE 

gene families (members of which is found situated in the ESAT-6 gene clusters) were investigated. 

This investigation revealed that the expansion of these families are linked to the duplications of the 

ESAT-6 gene clusters, which is supported by the absence of the multiple copies of the PE and PPE 

families in the genome of the fast-growing mycobacterium M. smegmatis. Furthermore, dot blot 

analyses showed that the PPE gene present in ESAT-6 gene cluster region 5 is able to distinguish 

between mycobacteria belonging to the slow-growing or fast-growing species, indicating a function for 

the genes of these two families and/or the ESAT-6 gene clusters in the phenotypical differences 

distinguishing these two groups of mycobacteria.

In conclusion, this study has highlighted numerous important aspects of mycobacterial 

genomics and has greatly contributed to the current body of knowledge concerning the role of 

proteases, gene duplication and mechanisms of antigen expression and secretion in M. tuberculosis.

Stellenbosch University http://scholar.sun.ac.za/



Opsomming

Patogeniese organismes gebruik gereeld proteases om spesifieke funksies te verrig wat te 

doene het met virulensie. Daar is egter baie min inligting beskikbaar aangaande die rol van proteolise 

in Mycobacterium tuberculosis en geen studies is al gedoen om die invloed van hierdie ensieme in die 

patogenese van tuberkulose te bestudeer nie. Die huidige studie het oorspronklik gefokus op die 

karakterisering van 'n familie van membraan-geankerde, selwand-geassosieSrde, subtilisien-agtige 

serien proteases (mycosins-1 tot 5) van Mycobacterium tuberculosis. Daar is aangetoon dat hierdie 

proteases deurgans uitgedruk word in M. tuberculosis, dat hulle in die selwand van die organisme 

geleS is, en dat hulle potensieel afgeskilfer word (of aktief of passief) vanaf die wand. Relatiewe ho6 

vlakke van gamma interferon uitskeiding deur T-selle is verkry in respons tot die proteases in Mantoux 

positiewe persone. Die afwesigheid van enige opspoorbare protease aktiwiteit het gelei tot die 

analisering van die protein volgordes van hierdie ensieme, wat daarop gedui het dat die mycosins 

heel moontlik mikobakteri6le-spesifieke proprotein prosesserende proteases is.

Die genoom volgorde gebiede random die mycosin gene is geanaliseer om die identiteit van 

die moontlike substrate van die proteases te identifiseer. Dit het gewys dat die mycosin gene in 

werklikheid deel vorm van 'n groep van 6 tot 12 gene wat veelvuldiglik in die genoom van M. 

tuberculosis gedupliseer is. As gevolg van die aanwesigheid van lede van die voorheen beskryfde 

ESAT-6 T-sel antigeen familie binne hierdie gedupliseerde geen groep, is die vyf geen groep gebiede 

die ESAT-6 lokusse genoem. In silico analises van voltooide en onvoltooide genoom volgorde data 

het die teenwoordigheid van ortoloe van die Mycobacterium tuberculosis H37Rv ESAT-6 lokusse in 

die genome van ander mikobakterie, bv. M. tuberculosis CDC1551, M. tuberculosis 210, M. bovis, M. 

leprae, M. avium, en die nie-virulente ras M. smegmatis, bevestig. Filogenetiese analises wat op die 

geenvolgordes uitgevoer is het die volgorde van duplisering van die geen groepe vasgestel, en het 

aangetoon dat die geen groep gebied 4 (Rv3444c-3450c) die voorouer is van die ander duplikate. 

Gebied 4 is ook die enigste gebied waarvoor daar ortoloe gebiede in die genome van 

Corynebacterium diptheriae en Streptomyces coelicolor gevind kon word. Die vergelykende 

genomiese analises het dus aangetoon dat die teenwoordigheid van die ESAT-6 geen groepe 'n 

unieke kenmerk is van die lede van die hoe G+C gram-positiewe bakterie en dat die veelvuldige
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duplisering van hierdie gebiede slegs plaasgevind het en behou is in die genome van die lede van die 

genus Mikobakterium.

Die ESAT-6 geen groep gebiede bestaan uit die gene van die ESAT-6 geen familie (wat 

kodeer vir gesekreteerde T-sel antigene sonder enige bespeurbare sekreteringsseine), die mycosins 

(wat gesekreteerde, selwand-geassosieerde subtilisien-agtige serien proteases is) sowel as gene wat 

kodeer vir moontlike ABC tranporters, ATP-bindingsproteine, en ander membraan-geassosieerde 

proteine. Aangesien die lede van die ESAT-6 familie gesekreteer word sonder enige normale sec- 

afhanklike sekreteringsseine, is daar gehipotetiseer dat hierdie membraan-geassosieerde en energie- 

verskaffende proteine saam funksioneer om 'n transport sisteem te vorm vir die sekretering van die 

lede van die ESAT-6 protein familie. Hierdie hipotese is ondersteun deur die resultate wat aangedui 

het dat een van die ESAT-6 geen groep gebiede uitgedruk word as een enkele polisistroniese RNA 

en dus 'n operon vorm. Die promoter vir hierdie operon, Pesreg3. is ook geidentifiseer en die aktiwiteit 

daarvan gekarakteriseer. Daaropvolgende sekresie analise resultate het getoon dat die sekresie van 

die lede van die ESAT-6 protein familie afhanklik is van die teenwoordigeheid van die proteine wat 

uitgedruk word deur die ESAT-6 geen groep gebiede, wat die moontlike transport-geassosieerde 

funksies van die ESAT-6 geen groep-geSnkodeerde proteine bevestig. Die mikobakteriSle ESAT-6 

geen groepe vertoon ’ n hele aantal eienskappe van kworum aanvoelings en lantibiotiese operone, en 

‘ n omvattende oorsig van die literatuur het gelei tot die hipotese dat die lede van die ESAT-6 familie 

moontlik as sein molekules gesekreteer mag word en moontlik betrokke is by die regulering van die 

uitdrukking van gene gedurende die intrasellulere verblyf van die bakterium. In die finale gedeelte 

van hierdie studie, is die evolusionere geskiedenis van die PE en PPE geen families (waarvan lede 

teenwoordig is in die ESAT-6 geen groep gebiede) ondersoek. Hierdie ondersoek het openbaar dat 

die uitbreiding van hierdie families gekoppel kan word aan die duplisering van die ESAT-6 geen 

groepe, wat ondersteun word deur die afwesigheid van die veelvuldige kopiee van die PE en PPE 

families in die genoom van die vinnig-groeiende mikobakterium M. smegmatis. Dot blot analises het 

verder aangetoon dat die PPE geen wat gelee is in die ESAT-6 geen groep gebied 5 die vermog het 

om te kan onderskei tussen mikobakterie wat behoort aan die vinnig-groeiende of die stadig- 

groeiende spesies. Dit dui daarop dat die gene van hierdie twee families en/of die ESAT-6 geen
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groepe een of ander funksie verrig wat 'n  invloed het op die fenotipiese verskille wat die twee groepe 

mikobakterie van mekaar onderskei.

Om saam te vat, hierdie studie het ‘ n hele aantal belangrike aspekte van mikobakteriele 

genomika aangeraak en het grootliks bygedra tot die huidige kennis aangaande die rol van proteases, 

geenduplisering en die meganismes van antigeen uitdrukking en sekresie in M. tuberculosis.
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CHAPTER ONE

INTRODUCTION

"He died o f consumption, died forgotten, died withered and blighted like the flowers a lover has given 

to his mistress, which she leaves to die secreted in a drawer where she has hidden them from the 

world."

The Man in the Iron Mask (Chapter V: Two Friends) - Dumas
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1.1. Preamble

Mycobacterium tuberculosis, which causes the human disease tuberculosis, is an extremely 

slow-growing rod-shaped bacterium with a thick cell wall (Shinnick and Good, 1994). Despite more 

than a hundred years of research on this organism, the mechanisms of its pathogenicity is still poorly 

understood (Ehlers, 1993). This paucity of knowledge may be due to a number of factors, including 

the slow growth of the organism (it may take up to six weeks to form a colony on a plate) leading to 

problems with contamination and making experiments extremely time consuming (Parish and Stoker,

1999). Other difficulties encountered by mycobacteriologists includes the extensive clumping of the 

organisms when grown in liquid culture due to the thick, lipid-rich cell wall, the resistance of the 

organism to standard chemical lysis procedures, the fact that experiments have to be carried out 

under category 3 biosafety conditions, the high G+C content of the mycobacteria (leading to difficulty 

in molecular techniques such as the polymerase chain reaction), the spontaneous acquirement of 

antibiotic resistance, and the absence of general mycobacterial genetic research tools (Parish and 

Stoker, 1999). While scientists are struggling to improve the basic tools required for the provision of 

the necessary foundation for future progress in molecular analysis of the mycobacteria, the pathogen 

remains the most important cause of mortality due to a single infectious agent, and the incidence of 

disease is on the increase worldwide (Ehlers, 1993). Thus, there is an urgent need for an increase in 

the understanding of the metabolism of the pathogen, its interactions with the host as well as the host 

responses to infection. The recent sequencing of the whole genome sequences of two strains of M. 

tuberculosis (Cole et a i, 1998) and the causative agent of leprosy, M. leprae (Cole et al., 2001), as 

well as the ongoing sequencing projects of other members of the genus Mycobacterium, has opened 

the way for the unraveling of the molecular basis of the pathogenesis, host range specificity, evolution 

and phenotypic differences involved in growth characteristic and virulence (Brosch et al., 2001).

In the present study a family of five subtilisin-like serine proteases of M. tuberculosis were 

identified, cloned and characterized. As proteases are frequently involved in important mechanisms 

of pathogenicity (Maeda and Yamamoto, 1996), the significance of the duplications of these genes 

was studied. Using the recently available whole genome sequence data of several members of the 

genus Mycobacterium, including the reference strain M. tuberculosis H37Rv (Cole et al., 1998), other
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genes were found to be associated with these proteases, including the secreted, immunologically- 

important, potent T-cell antigens ESAT-6 and CFP-10 (Sorensen et al., 1995, Berthet et al., 1998). 

This in turn lead to the identification of an association between the duplication of these genes and the 

expansion of the newly described PE and PPE multigene families (novel genes of unknown function 

that have been associated with pathogenicity, and which makes up 10 % of the coding potential of the 

genome of M. tuberculosis)(Co\e et al., 1998).
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1.2. Background

1.2.1. Tuberculosis

Tuberculosis is an infectious disease caused by the bacillus Mycobacterium tuberculosis and 

remains the greatest cause of death worldwide due to a single pathogen (Ehlers, 1993). It usually 

enters the body through inhalation of aerosol droplets carrying bacteria into the lungs of an individual 

(Riley et al., 1959, McKinney et al., 1998), after which disease progression involves phagocytosis of 

the organisms by alveolar macrophages, and subsequent survival and replication within these cells. 

Over 80% of tuberculosis cases present as pulmonary tuberculosis, which is also the most infectious 

form of the disease, and leads to coughing, fever, weight loss, tiredness and the coughing up of blood 

(Hopewell, 1994). Extra-pulmonary tuberculosis results from the spread of the organism to other 

parts and organs of the body.

In 1993, the World Health Organization (WHO) took an unprecedented step and declared 

tuberculosis a global emergency, so great was the concern about the modern dangerously growing 

tuberculosis epidemic (WHO, 1993). The registered number of new cases of TB worldwide roughly 

correlates with economic conditions: the highest incidences are seen in the countries of Africa, Asia, 

and Latin America with the lowest gross national products (NJMS National Tuberculosis Center, 

http://www.umdnj.edu/-ntbcweb/history.htm). The breakdown in health services (Kochi, 1994), the 

variability in the efficacy of BCG vaccination (Colditz et al., 1994, Fine, 1995, Roche et al., 1995), the 

spread of HIV/AIDS (Barnes et al., 1991, Schulzer et al., 1992, Haas and Des Prez, 1994, Wendel et 

al., 2001), the failure to complete treatment due to the long duration of chemotherapy and 

noncompliance (Lipsitch and Levin, 1998, Agrawal et al., 2001) and the subsequent emergence of 

multidrug-resistant tuberculosis (Willcox, 2000) are all factors contributing to the worsening impact of 

this disease. It is estimated that between the years 2000 and 2020, nearly one billion people will be 

newly infected, 200 million people will become sick, and 35 million will die from tuberculosis - if control 

is not further strengthened (WHO Fact Sheet N°104, Revised April 2000). Approximately 2 billion 

people are thought to be presently infected worldwide, with about 3 million deaths occurring annually 

due to this disease. This is alarming, but is further compounded by the fact that the increasing 

incidence does not only occur in developing countries, but also in industrialized countries due to the
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emergence of HIV infection and drug resistance (Yew and Chau, 1995). The identification of novel 

drug targets and the development of an effective vaccine against M. tuberculosis is thus of utmost 

importance to combat this disease.

1.2.2. The history o f tuberculosis

Tuberculosis in humans (otherwise known as consumption, phthisis or chronic wasting) was 

documented in history as early as Ancient Greece, when the well-known physician Hippocrates 

identified phthisis as the most widespread disease of the times, and noted that it was almost always 

fatal ("Of the Epidemics", by Hippocrates, ca 400 B.C.). We now know that Mycobacterium 

tuberculosis was infecting humans much earlier, as pathological signs of tubercular decay was found 

in fragments of the spinal column from Egyptian mummies from 2400 B.C. (NJMS National 

Tuberculosis Center, http://www.umdnj.edu/-ntbcweb/history.htm). Salo and coworkers (1994) 

identified M. tuberculosis DNA in 1000-year-old lung tissue of a pre-Columbian Peruvian mummy and 

spinal deformities in a pre-dynastic Egyptian mummy, shown to be specific to an M. tuberculosis- 

complex bacterial infection of the spine (Pott’s disease), were identified to be even more ancient at 

around 5400 years old (Crubezy E, et al., 1998). It is commonly though that M. tuberculosis evolved 

from saprophytic soil bacteria, which firstly found a niche infecting animals and after the domestication 

of cattle subsequently spread to humans (Stead, 1997).

The term tuberculosis was first described by Franciscus de la Boe (Dr. Silvius) in his Opera 

Medica of 1679, and relates to the tubercles, tuberculous cavities and tuberculous lymph nodes that 

are associated with the disease (http://www.wits.ac.za/myco/noframe/no_history.htm#people). The 

first great step forward in the combat of tuberculosis came with the recognition by an English 

physician, Benjamin Marten, that tuberculosis may be caused by an airborne organism (McKinney et 

al., 1999). In his work, A New Theory of Consumption, published in 1722, he hypothesized that the

etiological agent “ .....may possibly be some certain Species of Animalculae or wonderfully minute

living creatures that, by their peculiar Shape or disagreeable Parts are inimicable to our Nature; but,

however, capable of subsisting in our Juices and Vessels.......” (Dubos and Dubos, 1952). These

“wonderfully minute creatures” were only first isolated more than 100 years later in the late 1800’s by 

the German physician Robert Koch (Koch, 1882). He revealed his discovery of the identification of
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Mycobacterium tuberculosis as the causative agent of tuberculosis in a historical address to the Berlin 

Physiological Society on March 24, 1882 (McKinney et al., 1998). It is disturbing that after more than 

100 years of research on the biochemistry and physiology of M. tuberculosis, the disease processes 

are still poorly understood and we still have no clear indications of what differentiates this organism 

from the lesser virulent and avirulent mycobacterial species (Ehlers, 1993).

1.2.3. Mycobacterium tuberculosis and the genus Mycobacterium

Mycobacteria are aerobic, rod-shaped, nonmotile bacteria characterized by being acid-alcohol 

fast, having complex lipid-rich cell wall structures containing mycolic acids with 60-90 carbon atoms 

which are cleaved to C22 to C26 fatty acid methyl esters, and by having a G+C (guanine + cytosine) 

DNA content of 61 to 71% (Shinnick and Good, 1994). Mycobacterium leprae, originally named 

Bacillus leprae, was the first mycobacterial species that was identified, its discovery by Armauer 

Hansen being the first convincing association of a microorganism with a human disease (Hansen, 

1874, Hansen, 1880). There are currently 71 recognized species, which are divided into two groups, 

the slow-growing (having generation times of 1 - 14 days) and the fast-growing species (Shinnik and 

Good, 1994, Springer et al., 1996). Most of the slow-growing mycobacteria are pathogenic species, 

and include the species causing tuberculosis, leprosy, paratuberculosis and other diseases, while the 

fast growing mycobacteria are predominantly non-pathogenic (Shinnick and Good, 1994). Closely- 

related genera to the genus Mycobacterium include Corynebacterium, Nocardia, and Rhodococcus 

and other actinomycete genera for example Streptomyces (Wayne and Kubica, 1986).

The Mycobacterium tuberculosis complex includes M. tuberculosis, M. bovis (including bovis 

BCG), M. africanum and M. microti, the first three of which are the causitive agents of tuberculosis in 

humans and animals, and the last of which are pathogenic only in rodents (Brosch et al., 2000a). 

Other species investigated in the present study includes Mycobacterium leprae, the causative agent 

of the chronic neurological disease leprosy, or Hansen disease (Gelber, 1994); Mycobacterium avium, 

which causes pulmonary and nonpulmonary infections primarily in immunocompromised individuals 

(Havlir, 1994); Mycobacterium avium subsp. paratuberculosis or Mycobacterium paratuberculosis, 

which causes paratuberculosis or Johne's disease (which is a chronic granulomatous enteritis of 

ruminants, Chiodini et al., 1984); and Mycobacterium smegmatis, which is a saprophytic, fast growing,
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non-pathogenic mycobacterium originally isolated from human smegma (the natural lubricant 

produced underneath the foreskin of the penis) in 1885 (Alvarez and Tavel, 1885).

1.2.4. Mycobacterial genomics

A major breakthrough in the research of tuberculosis came with the complete sequencing of 

the whole genome sequence of the widely used Mycobacterium tuberculosis reference laboratory 

strain H37Rv in 1998 (Cole et al., 1998). This data revealed that the genome is around 4.4 Mb, has a 

high G+C content of 67% and is made up of around 4000 genes distributed evenly on both strands. 

Around 40% of the genes were identified to be of known function, 20% of vague function, and 40 % 

were totally unknown. Thus, the sequencing revealed a large number of previously unknown genes 

with the potential to be involved in the pathogenesis of the organism (Cole, 1998). Interestingly, 

approximately 51% of the genome originated due to gene duplication or domain shuffling (Tekaia et 

al., 1999). Another very surprising observation was the fact that two unknown, novel gene families 

(representing areas on the genome with an exceptionally high G+C content of more than 80%), make 

up around 10% of the genome (Cole, 1999). These families were named the PE (99 members) and 

PPE (67 members) gene families (see below). The sequencing of the genome of M. tuberculosis 

presents an unprecedented opportunity to discover important genes through the newly evolved 

science of comparative genomics (Cole, 1998). Since the completion of the genome sequencing of 

M. tuberculosis H37Rv in 1998, the whole genome sequences of M. tuberculosis strain CDC1551 

(Fieischmann et al., manuscript in preparation), as well as M. leprae (Cole et al., 2001), were also 

completed. Furthermore, the genomes of another nine mycobacterial species and strains are in the 

process of being sequenced (M. tuberculosis strain 210, M. avium, M. paratuberculosis, M. bovis, M. 

bovis BCG, M. marinum, M. microti, M. ulcerans, M. smegmatis). These will undoubtedly reveal novel 

genes that may be investigated to determine the cause of the pathogenesis of these organisms, as 

well as to identify novel drug targets (Brosch ef al., 2000a).

1.2.5. Proteases

Proteases are enzymes that cleave peptide bonds and are found in all organisms from 

humans to viruses where they are essential for a variety of biological processes. These processes 

range from nonspecific functions such as digestion and catabolism of proteins to highly specialized
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functions such as the specific activation of a secreted protein (Khan and James, 1998). In the human, 

various protease cascade systems contribute to the normal functioning of the blood coagulation and 

fibrinolysis pathways, regulation of sodium balance and blood pressure, and the immune response 

and apoptosis (Khan and James, 1998). These host-encoded proteases are tightly regulated, though, 

by various mechanisms such as the secretion of inhibitors, compartmentalization and rapid 

inactivation (Lantz, 1997). Pathogenic organisms infecting a human host have the potential to secrete 

proteases that not only contribute to tissue invasion and destruction, but also interfere with and upset 

the complex, multilevel control mechanisms of the host protease cascade systems (Goguen et al.,

1995). This leads to deregulation and uncontrolled activation of host derived protease zymogens, 

inducing inflammation and the degradation of tissue matrix, which in turn facilitates the translocation 

of the infecting organism (Maeda and Yamamoto, 1996). In addition to this, the bacterial proteases 

are also capable of uncontrolled degradation of the surrounding tissue, as their activities are not 

affected by the host-derived plasma protease inhibitors, which are even degraded by the foreign 

proteases (Travis et al., 1995). In infected patients, secreted bacterial and fungal proteases may also 

display different pathogenic effects, including pain, edema, shock, and even septicemia (Maeda and 

Yamamoto, 1996).

Proteases are classified into five subclasses according to their catalytic type, namely the 

serine proteases, the cysteine proteases, the aspartic proteases, the metalloproteases and the 

unknown proteases (Barret, 1994). The serine protease subclass (making use of the amino acid 

serine as the catalytic residue) contains six different clans, of which the subtilases are the second 

largest clan (Barret and Rawlings, 1995). The functions of these proteases range from defense and 

nutrition, to highly specialized functions such as the processing and maturation of pro-proteins 

(Siezen and Leunissen, 1997). The most studied subtilases are produced by the Bacillus species 

where the secretion of subtilisin is associated with onset of sporulation, and many mutations which 

block sporulation at early stages affect expression levels of subtilisin. However, subtilisin is not 

necessary for normal sporulation. Subtilisin is also a potential virulence factor as it is able to induce 

the production of bradykinin (which is an endogenous peptide that causes pain, extravasation, 

vasodilation, hypotension, shock etc.) by the activation of Hageman factor and prekallikrein and are 

able to generate kinin from both low molecular weight and high molecular weight kininogen (Maeda
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and Yamamoto, 1996). It is thus clear that microbial proteases may exert pathological functions by 

not only directly destroying tissues, but also by uncontrollably activating normal host expressed 

cascades leading to inflammatory processes.

1.2.6. Mycobacterial proteases

M. tuberculosis has several strategies to subvert killing within the macrophage. It prevents 

acidification of the phagosome by exclusion of the proton ATPase (Sturgill-Koszycki et al., 1994), and 

prevents fusion of the phagosome with lysosomes (Goren et al., 1976). Furthermore, M. tuberculosis 

induces deactivation of macrophages, inefficient antigen presentation to T-cells and the secretion of 

suppressive cytokines, particularly TGF-p (Fenton and Vermeulen, 1996, Schluger and Rom, 1998). 

The mechanisms by which the organism induces these changes in macrophages and T lymphocytes 

are not clear, but viability of the organism is required for most of these effects. In addition to this, the 

exact intracellular nutrient source(s) utilized by the organisms are also not clear and it may be 

possible that M. tuberculosis has the potential to utilize host vacuolar proteins as a nutrient source by 

secreting host protein-degrading enzymes. All the abovementioned mechanisms and effects may be 

mediated by secreted proteins and/or glycolipids (Fenton and Vermeulen, 1996, Schluger and Rom, 

1998). In agreement with this, M. tuberculosis culture filtrates have been shown to contain a number 

of secreted proteins, including proteases (Reich, 1981, Kannan, 1987). The effects of these 

proteases on the modification of the host zymogen cascades (coagulation, complement, fibrinolysis), 

and tissue necrosis (lung pathology observed during tuberculosis) has not been studied. Although the 

presence of protease activity in mycobacterial culture filtrates has been known since the early 1980’s 

(Reich, 1981), only two specific proteases have so far been identified in the M. tuberculosis culture 

filtrates, both belonging to the chymotrypsin clan of serine proteases (Skeiky et al., 1999). The 

genome of M. tuberculosis contains around 70 potential proteases, the majority of which have not 

been described and many of which may contribute to the pathogenic mechanisms observed during M. 

tuberculosis infection.

1.2.7. Secreted antigens - the ESAT-6 gene family

Proteins released from live, actively dividing bacteria have attracted considerable interest 

from researchers interested in tuberculosis vaccine development, as it has been shown that only live
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and replicating, as opposed to killed, mycobacterial preparations have the ability to generate and 

recall protective immunity to M. tuberculosis (Orme, 1988a, Orme, 1988b, Andersen et al., 1991a, 

Orme et al., 1993). The importance of the secreted antigens is highlighted by the fact that complex 

mixtures of secreted M. tuberculosis proteins have been shown to induce high levels of protection in 

animal models of tuberculosis (Hubbard et al., 1992, Pal and Horwitz, 1992, Andersen, 1994b, 

Roberts et al., 1995). The low molecular weight culture filtrate proteins (3 to 9 kDa) have been shown 

to induce the highest levels of T-cell proliferation and gamma interferon production in mice (Andersen 

and Heron, 1993). Interestingly, the dissection of the low molecular mass culture filtrate fraction has 

led to the identification of a number of small proteins belonging to the ESAT-6 gene family (Sorensen 

et al., 1995, Berthet et al., 1998, Alderson et al., 2000, Skjot et al., 2000, Rosenkrands et al., 2000a). 

This family encodes small proteins of unknown function, which are secreted by an unknown 

mechanism, as they do not contain the ordinary secretion signals in their protein sequences, and all 

share a remarkable level of immunodominance (Skjot et al., 2001). Several studies have linked the 

deletion of these genes with a decrease in virulence, indicating that these genes may play an 

important role in intracellular survival (Mahairas et al., 1996, Wards et al., 2000).

1.2.8. PE and PPE

Several areas with an exceptionally high G+C content of more than 80 % were identified on 

the genome sequence of M. tuberculosis (Cole, 1998). These regions were found to contain multiple 

copies of the PGRS (polymorphic G+C rich sequence) sequences. The PGRS along with the MPTR 

(major polymorphic tandem repeat) sequences were originally described as non-coding repetitive 

sequences (CGGCGGCAA and GCCGGTGTTG, respectively) in the genome of M. tuberculosis 

(Hermans et al., 1992, Ross et al., 1992, Poulet and Cole, 1995). After the completion of the genome 

sequence of M. tuberculosis, it was shown that these two groups of repetitive sequences actually 

encode for genes belonging to subgroups of the acidic, glycine-rich PE and PPE gene families (Cole 

et al., 1998). The PE and PPE gene families are two large multigene families of unknown function, 

comprising around 10 % of the genome of M. tuberculosis and containing 99 and 68 members, 

respectively (see Figure 1.1 for distribution of the PPE gene family). The PE family is characterized 

by the presence of a proline-glutamic acid (PE) motif at positions 8 and 9 in a very conserved N- 

terminal domain of around 110 amino acids (Gordon et al., 1999b) and is divided into two subgroups
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of which the polymorphic GC-rich sequence (PGRS) subgroup is the largest and contains proteins 

with multiple tandem repeats of a glycine-glycine-alanine or a glycine-glycine-asparagine motif in the 

C-terminal domain. The other subgroup consists of proteins with C-terminal domains of low 

homology.

Figure 1.1. Distribution of the PPE gene family on the genome sequence of M. tuberculosis 

H37Rv. Reproduced with kind permission of S. Sampson (Department of Medical Biochemistry, 

Faculty of Health Sciences, University of Stellenbosch, South Africa).
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Similarly, the PPE family also contains a highly conserved N-terminal domain of around 180 

amino acids, with a proline-proline-glutamic acid (PPE) motif at positions 7-9 (Cole et al., 1998) and 

can be divided into three subgroups (Gordon et al., 1999b) of which the major polymorphic tandem 

repeat (MPTR) subgroup is the largest. The proteins of this subgroup contain multiple repeats of the 

motif AsnXGIyXGIyXAsnXGIy encoded by a consensus repeat sequence GCCGGTGTTG, seperated 

by 5 bp spacers (Cole and Barrell, 1998). The PPE-SVP subgroup is characterized by the motif
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GlyXXSerValProXXTrp at position 350 in the amino acid sequence and the last subgroup consists of 

proteins with a low percentage of homology at the C-terminus (Gordon et al., 1999b). The C-terminal 

domains of both these protein families are of variable size and sequence (the MPTR subgroup 

contains proteins consisting of more than 3000 amino acid residues and the PGRS subgroup proteins 

may contain up to 1400 amino acids)(Cole, 1998). These domains also contain repeat sequences of 

different copy numbers in a number of cases (Gordon et al., 1999b), thus showing extensive 

polymorphisms in the different M. tuberculosis complex strains, which is probably due to strand 

slippage during replication (Cole, 1998).

The 167 members of the PE and PPE gene families are of unknown function, but it has been 

suggested that the proteins encoded by these gene families may inhibit antigen processing or may be 

involved in antigenic variation as the size and sequence variation would hold relevance in the evasion 

of the host immune response (Cole et al., 1998, Cole, 1998, Cole, 1999, Gordon et al., 1999b). In 

agreement with this, sequence variation has been observed between the orthologues of the PE and 

PPE protein families in an in silico analysis of the genomes of M. tuberculosis H37Rv and M. bovis 

(Cole et al., 1998, Gordon et al., 2001). Extensive variation of a subset of PPE genes in clinical 

isolates of M. tuberculosis have also been observed recently (S. Sampson, submitted for publication). 

These are all theories, though, and no conclusive experimental evidence has been provided to date 

which would indicate the function(s) of these polymorphic proteins. Several studies have highlighted 

different aspects of selected members of the two families. For example, Rodriguez and colleagues 

(1999) have found that the PPE gene Rv2123 is upregulated under low iron conditions, leading to the 

hypothesis that it may encode a siderophore involved in iron uptake. Recent data have suggested 

that the members of the PPE gene family may be involved in disease pathogenesis, as a transposon 

mutant of the gene Rv3018c was attenuated for growth in macrophages (Camacho et al., 1999). 

Others have shown that the PE-PGRS subgroup may be a novel family of fibronectin binding proteins 

(Abou-Zeid et al. 1991, Cole et al., 1998, Espitia et al., 1999). Furthermore, it was recently shown 

that two members of the PGRS subfamily from M. marinum  are essential for replication in 

macrophages as well as persistence in granulomas (Ramakrishnan et al., 2000). The fact that these 

genes encode for about 4% of the total protein species in the organism (if all genes are expressed), 

indicates that they most probably fulfill an important function or functions in the organism.
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1.3. Study Aims and Design

This dissertation is divided into eight chapters and six addenda and consists of an 

introductory review chapter (Chapter 1), one chapter and three addenda dealing with the mycosin 

proteases (Chapter 2, Addenda 2A, B and C), three chapters and three addenda dealing with the 

ESAT-6 gene clusters (Chapter 3, 4, and 5, Addenda 3A, B and 5A) and one chapter dealing with the 

PE and PPE gene families (Chapter 6). This is followed by a discussion of the results and future 

directions (Chapter 7), and a conclusions chapter (Chapter 8). The last section contains the list of 

references.

The aims of this study can be divided in three major parts, summarized as follows:

The mycosin proteases were investigated with the aim of:

(i) cloning, expressing and characterizing the family of mycobacterial subtilases 

(Chapter 2),

(ii) determining where these proteins are located (Addendum 2A),

(iii) determining the antigenicity of the secreted proteases (Addendum 2B),

(iv) determining the substrate and optimal activity conditions of the proteases (Addendum 

2C),

(v) identifying the genetic milieu in which they are situated in the M. tuberculosis genome 

(Chapter 3).

The ESAT-6 gene clusters were investigated with the aim of:

(i) identifying the genes other than the mycosin proteases which are present within the 

clusters (Chapter 3),

(ii) determining the distribution of the clusters within the genomes of different 

mycobacterial species, as well as in the genomes of other bacterial species (Chapter 

3 ),

(iii) identifying the most ancient progenitor gene cluster by systematic phylogenetic 

analyses (Chapter 3),
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(iv) establishing whether the gene clusters are expressed as one or more operons 

(Chapter 4),

(v) identifying a promoter responsible for the expression of the clusters (Chapter 4),

(vi) examining the putative ESAT-6 multi-component secretion system function of the 

cluster-encoded proteins (Chapter 5),

(vii) establishing a putative function for the secretion system from the literature 

(Addendum 5A).

The PE/PPE gene families were investigated with the aim of:

(i) determining whether the presence of PE and PPE copies within the ESAT-6 gene 

clusters have any significance (Chapter 6),

(ii) determining whether there is an association between the expansion of the PE and 

PPE gene families and the duplication of the ESAT-6 gene clusters (Chapter 6),

(iii) discovering their evolutionary history (Chapter 6).

Chapters 2 to 6 are presented as published papers (Chapters 2 and 3) or as manuscripts in 

preparation (Chapters 4, 5 and 6 and Addenda 3A, 3B and 5A). It is therefore likely that repetition 

may occur in the introductions of many of these chapters. All cited literature has been included in a 

single list of references in the last section of this dissertation.
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CHAPTER TWO

THE MYCOSINS

“It was no accident that man mastered the plague more easily than tuberculosis. The one comes in 

terrible waves o f death that shake humanity to the foundations, the other slowly and stealthily; the one 

leads to terrible fear, the other to gradual indifference. The consequence is that man opposed the one 

with all the ruthlessness of his energy, while he tries to control consumption with feeble means. Thus 

he mastered the plague, while tuberculosis masters him. ”

Mein K am p f- Adolf Hitler

NOTE: The results presented in the following chapter were published as: “The mycosins of M. 

tubercu los is  H37Rv: A family of Subtilisin-Like Serine Proteases. Brown, G.D., Dave, J.A., Gey 

van Pittius, N.C., Stevens, L., Ehlers, M.R.W., and Beyers, A.D., Gene, 2000, Aug 22, 254 (1-2): 147- 

155.

(The style of the text and numbering o f sections has been altered to conform to the style o f this 

dissertation. All cited literature is compiled into a single list at the end o f the dissertation for ease o f 

reference)
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2.1. Introduction

Mycobacterium tuberculosis is the leading cause of bacterial related deaths, killing more than 

two million people per year (Murray and Salomon, 1998). The bacterium is an intracellular pathogen 

of macrophages and is able to modify the maturation of the phagosome within which it resides, 

allowing the bacterium to bypass the microbicidal effector functions of the host cell (Clemens and 

Horwitz, 1995). The mechanisms responsible for these modifications and the other factors 

contributing to the pathogenesis of the organism are largely unknown. With the control of tuberculosis 

hampered by the duration required for successful treatment, drug resistance and the increased 

susceptibility of patients with HIV/AIDS, it is hoped that the elucidation of these virulence factors as 

well as other key processes essential for the survival of the organism will provide new strategies to 

deal with this pathogen.

Proteolysis represents one essential function which has been largely ignored in the study of 

M. tuberculosis and in other mycobacteria. Proteases serve many roles in bacteria, ranging from the 

turnover and modification of cellular proteins to virulence factors in pathogens, and the targeting of 

proteolytic enzymes is a strategy showing promise in the control of other bacterial pathogens 

(Miyagawa et al., 1991; Travis et al., 1995). Despite this, only a few proteases have been examined in 

mycobacteria, including the 20S proteasome and the Lon protease from M. smegmatis (Knipfer and 

Shrader, 1997; Roudiak et al., 1998), the M. leprae Clp protease ATPase subunit, CIpC, (Misra et al.,

1996) and HtrA in M. avium subsp. paratuberculosis (Cameron et al., 1994). The genome of M. 

tuberculosis H37Rv encodes over 30 proteases (Cole et al., 1998) and it is therefore surprising that so 

little is known about the biology of these enzymes in this organism. Only two secreted serine 

proteases (MTB32A and MTB32B), FtsH and an unidentified elastolytic metalloprotease have been 

studied in M. tuberculosis (Rowland et al., 1997; Anilkumar et al., 1998; Skeiky et al., 1999).

The paucity of information regarding the role of proteolysis in the biology of M. tuberculosis 

and mycobacteria in general, the possibility that proteases are involved in pathogenesis, and the 

likelihood that these enzymes may provide alternative drug targets, motivated the investigation 

described here. In this study we characterised a group of proteins, the mycosins, whose primary
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sequence features strongly suggest that they are transmembrane serine proteases of the subtilisin 

family. The expression, cellular localisation and presence of the mycosins in M. tuberculosis and in 

other mycobacteria were examined.
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2.2. Materials and Methods

2.2.1. Bacterial strains and growth conditions

Escherichia coli strains were grown in LB broth with 0.2% glucose and the appropriate 

antibiotics at 37°C, unless otherwise indicated. M. tuberculosis H37Rv (ATCC 25618) and M. bovis 

BCG Tokyo (State Vaccine Institute, Cape Town), were grown at 37°C in 7H9 broth (Difco) with 

OADC (0.5% BSA, 0.2% glucose, 0.006% oleic acid, 140mM NaCI) and 0.05% Tween 80 (Sigma) 

with stirring in 1-liter screw-cap bottles. All work on M. tuberculosis H37Rv was performed in a 

Biosafety Level III facility. M. smegmatis mc2155 (Snapper et al., 1990) cultures were grown in 7H9 

broth, as described, or in Sauton's medium with 0.05% Tween 80 (Connell, 1994) at 37°C and were 

agitated by shaking (200 rpm). Hygromycin (0.1 mg/ml; Boehringer Mannheim) was added to cultures 

of M. smegmatis transformed with the various p19Kpro constructs (see below).

2.2.2. DNA constructs, plasmids and methods

All standard molecular techniques were performed essentially as described by Sambrook et 

al. (1989). Transformation o f M. smegmatis was performed using electroporation, as described 

(Jacobs et al., 1991). Details of the cosmids, plasmids, plasmid constructs, genes and probes with 

the sequence positions relevant to their construction are presented in Table 2.1. Constructs were 

generated by appropriate ligations of the relevant cosmid fragments into the vectors except for the 

construction of p19K-P2RBS, where PCR was utilised. All essential constructs were verified by DNA 

sequencing. Construction of p19K-P2RBS involved the addition of a RBS 10 bp upstream from the 

predicted start codon. Two primers were used to amplify the 5' portion of the mycP2 gene containing 

the start codon (shown in bold): 5'-aatagatctgcaATGgcttcgccactaaac-3' and 5'- 

aataagcttgtactgccacgccttgc-3’. To add the RBS, the BglW / Hind\\\ digested PCR product was ligated 

into the BamH\ / Hind\\\ sites of the pRBS1 vector, which contained the RBS. The mycP2 gene was 

then reconstituted and ligated back into the p19Kpro vector. pRBS1 was generated by ligating an 

adaptor fragment into the EcoRI / BamHI site of pUC18. The oligonucleotides used to generate the 

adaptor were: 5'-aattcagatctAAAGGAGGag-3' and 5'-gatcctcctttagatctg-3'. The RBS sequence 

chosen (AAAGGAGG) was based on the 16s RNA sequence of M. tuberculosis (Genbank accession 

number X58890). Primers used to generate the PCR probes for mycP4 and mycP5 from H37Rv

Stellenbosch University http://scholar.sun.ac.za/



19

Table 2.1. Sequence positions and accession numbers of the mycP  genes

Plasmid 1 Gene 

(accession number)

Description
Relevant positions 

on genomic 

sequence

Source or reference

Cloning vectors

pGex2T E. coli expression system (GST fusion, Ampr) Pharmacia

pMalC E. coli expression system (MBP fusion, Ampr) New England Biolabs

p19Kpro Mycobacterial expression system derived from p16R1 with 

the constitutive 19kD antigen promoter (Hygromycinr)

Gift from K. de Smet, Imperial College, 

London (Garbe et al., 1994).

pRBS1 pUC18 carrying a mycobacterial ribosome binding site (Ampr) This study

Mycosin-1 (Z94121)

mycP1 mycosin-1 ORF 4363414 to 4364754c (Cole et al., 1998)

pGex-P1 mycP1 cloned without sequence encoding signal peptide in 

pGex2T

4363414 to 4364703° (J.A. Dave et al., submitted for publication)

p19K-P1 mycP1 cloned into p19Kpro 4363414 to 4364822° (J.A. Dave et al., submitted for publication)

mycP1 probe DNA probe for Southern blotting 4363638 to 4364082 This study

Mycosin-2 (Z94121)

mycP2 mycosin-2 ORF 4368515 to 4370167° (Cole et al., 1998)

pMalC-P2 mycP2 cloned without sequence encoding signal peptide in 

pMalC

4367943 to 4370037° This study

p19K-P2 mycP2 cloned into p19Kpro 4367943 to 4370277° This study

p19K-P2RBS mycP2 with a RBS cloned into p19Kpro 4367943 to 4370167° This study

mycP2 probe DNA probe for Southern blotting 4368712 to 4369515 This study
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Mycosin-3 (AL021930)

mycP3

pGex-P3

P19K-P3 

mycP3 probe

mycosin-3 ORF

mycP3 cloned without sequence encoding signal peptide in 

pGex2T 

mycP3 cloned into p19Kpro 

DNA probe for Southern blotting

354496 to 355881 

354573 to 356056

354320 to 356320 

355279 to 355743

(Cole eta l., 1998) 

This study

This study 

This study

Mycosin-4 (Z95390)

mycP4 mycosin-4 ORF 3869748 to 3871115 (Cole eta l., 1998)

mycP4 probe PCR generated probe for Southern blotting 3870432 to 3870898 This study

Mycosin-5 (AL022021)

mycP5 mycosin-5 ORF 2033727 to 2035484 (Cole etal., 1998)

mycP5 probe PCR generated probe for Southern blotting 2034733 to 2035373 This study

ccomplementary sequence
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genomic DNA (a gift from J.T. Belisle, Colorado State University) were: 5'-aagaacgccgtcatcgtg-3' and 

5'-gaatcgagtcgctgctga-3'; 5’-gtgctcgtaatgtcatcg-3' and 5'-catatcggcaccatatcg-3\ respectively.

2.2.3. Protein methods

Expression of the protease-fusion proteins in E. coli was induced by the addition of isopropyl- 

li-D-thiogalactoside (0.3mM final concentration) to mid-logarithmic phase cultures. The cultures were 

then incubated for a further 2 to 3 hours at 25°C following which the cells were harvested and 

disrupted by sonication. Depending on the fusion partner, the fusion proteins were purified by affinity 

chromatography using amylose resin (New England Biolabs) or glutathione-agarose (Sigma), as 

described by the manufacturers. Purified protease-fusion proteins were dialysed against PBS 

(Sambrook et al., 1989) before use. To obtain mycobacterial protein extracts for use in Western 

blotting experiments, cells were harvested and washed twice in 0.05% Tween 80. The cells were 

resuspended in H20 and SDS (Sigma) was added to a final concentration of 2%. The cells were then 

sonicated for 5 min and boiled for 5 min. SDS-PAGE sample buffer (Sambrook et al., 1989) was 

added and the samples boiled for 15 min. All samples were stored at -20°C. Cellular fractions of M. 

smegmatis transformed with the various p19Kpro constructs were obtained following a modified 

protocol of Raynaud et al., (1998). M. smegmatis cultures were grown to early stationary phase 

(O D 600nm~1) in 100 ml of Sauton's medium. The cells were harvested (3000 x g for 10 min), washed 

twice in PBS, resuspended in 5 ml of PBS and disrupted by sonication. After clearing the unlysed cells 

(3000 x g for 15 min, twice) the whole cell lysate (wcl) fraction was subjected to high speed 

centrifugation (100 000 x g for 2 hr) to separate out the cytoplasmic fraction (supernatant) and 

membrane/cell wall fraction (pellet). The membrane/cell wall fraction was resuspended in PBS 

containing 0.33% NP40 (Sigma). The extracellular medium was concentrated to approximately 5 ml, 

using an Amicon PM10 ultrafiltration system, and dialysed against PBS. NaN3 (5 mM) was added to 

all the fractions to inhibit bacterial growth. The purity of the fractions was verified using the 

cytoplasmic marker, isocitrate dehydrogenase, as described (Raynaud et al., 1998).

2.2.4. Generation o f antiserum

Polyclonal antibodies to three purified fusion proteins (mycosin-1, -2 and -3) were obtained 

from immunized New Zealand white rabbits. Briefly, the rabbits were immunized subcutaneously with
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the £. co//-derived protease fusions in Freund’s incomplete adjuvant. Similar booster immunizations 

were given after four weeks, and then every two to three weeks thereafter until acceptable titres were 

reached. Antiserum was stored in 50% glycerol at -20°C. Antisera against mycosin-1 and mycosin-2 

were depleted of antibodies cross reactive to other mycobacterial antigens by the addition of 

sonicated M. smegmatis cellular lysates before use in Western blotting experiments. Antiserum to 

mycosin-3 was not depleted because of the possibility of a mycosin-3 homologue in M. smegmatis. 

The polyclonal antisera was not cross reactive between the mycosins.
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2.3. Results and Discussion

2.3.1. Identification o f the mycosins

We initially identified the first mycosin by analysis of a bank of partial sequences generated 

using a PhoA fusion system, which selects for genes encoding secreted proteins (data not shown; 

Mdluli et al., 1995). The genes encoding the four other members of this family were subsequently 

identified in the M. tuberculosis H37Rv genomic sequence through similarity (BLAST) searches 

(Altschul et al., 1997). The identity of these proteins ranged from 36% to 47%, suggesting that they 

probably arose through gene duplication. The proteins were designated mycosin-1 to -5, based on 

their sequential identification, and are annotated as Rv3883c, Rv3886c, Rv0291, Rv3449 and 

Rv1796, respectively, on the M. tuberculosis H37Rv genomic sequence (Cole et al., 1998). A 

dendrogram of all annotated Mycobacterial proteases, including the mycosins and a related serine 

protease, is shown in Figure 2.1. The genes encoding all five mycosins (mycP) reside in high-density 

protein-encoding regions on the genome, and mycP1 and mycP2 are separated by only 3.7kbp 

containing two ORFs. Although the functions of these two ORFs and of the other genes surrounding 

mycP1 - 5 are unknown (Cole et al., 1998), each mycP gene is located close to or next to a putative 

transmembrane transporter (Rv3877, Rv3887c, Rv0290, Rv3448 and Rv1795), but the significance of 

this association, if any, is unclear.

2.3.2. Primary sequence characteristics and gene distribution in mycobacteria

The mycosins have a number of conserved features in the primary amino acid sequence 

including the catalytic residues, the hydrophobic N termini, and the hydrophobic regions near the C 

termini (Figure 2.2). The catalytic triad (Asp90, His121 and Ser332; mycosin-1 numbering), within 

conserved sequences, is typical of bacterial serine proteases of the subtilisin family (peptidase family 

S8 (Rawlings and Barrett, 1993, pyrolysin subfamily - Siezen and Leunissen, 1997). Furthermore, the 

mycP genes possess all three active site signatures described in the Prosite database, giving them a 

100% probability of encoding a serine protease from the subtilase family (www.expasy.ch/cgi- 

bin/prosite-search-ac?PDOC00125). Thus based on the overall similarity of the mycosins to other 

proteases, the highly conserved nature of the proposed catalytic residues and similarities in 

surrounding sequences, the mycP genes are likely to encode subtilisin proteases.
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Figure 2.1. Dendrogram of all annotated Mycobacterium tuberculosis H37Rv proteases.

Mycobacterial proteases were identified by Entrez protein database searches 

(http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Protein), searching for the terms protease, 

proteinase or peptidase. The proteins are named as designated on the genomic sequence (Cole et 

al., 1998) and the gene name, where known, is shown in italics. The proteins were aligned using 

ClustalW (Higgins and Sharp, 1988) and the dendrogram generated using Treeview (Page, 1996). 

Also shown, for comparison, is Bacillus sp. NKS-21 subtilisin ALP1 (underlined: Genbank accession 

number D29736). The bar represents 10% sequence divergence. Vertical distances are arbitrary.
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Figure 2.2. Conserved features of the serine protease family. (A) ClustalW alignment (Higgins 

and Sharp, 1988) of the five serine proteases and Bacillus sp. NKS-21 subtilisin ALP1 (Genbank 

accession number D29736) showing the residues thought to comprise the catalytic triad (D90, H121 

and S332, mycosin-1 numbering; indicated by asterisks). The putative signal peptide cleavage sites 

are indicated by an arrow. (B) Hydropathy plot of mycosin-1 showing the hydrophobic N terminus 

(comprising the signal sequence) and the hydrophobic C terminus (the transmembrane region), 

followed by charged residues. The hydropathy plots for the other proteases are similar.
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The hydrophobic N termini are probably signal peptides, which are predicted to be cleaved 

within a conserved sequence (AXAAI or AXAAV; http://www.cbs.dtu.dk/services/SignalP/). The 

cleavage sites for all the proteins were predicted as indicated, except mycosin-3 which was predicted 

to be cleaved at AAAAQP. As the cleavage site appears to be highly conserved, we assume that 

mycosin-3 will also be cleaved at the indicated position. These proteins also contain hydrophobic 

stretches followed by charged residues at the C termini, suggestive of transmembrane domains. 

Furthermore, this region was predicted to be a transmembrane domain using TMpred (data not 

shown; http://www.ch.embnet.org/software/TMPRED_form.html). A proline-rich linker connects the 

enzymatic domain to the transmembrane sequence and mycosin-2 and mycosin-5 each contains an 

additional, but dissimilar, highly proline-rich segment which has not been observed before in that 

position in any subtilase.

The multiplicity of the mycosins in M. tuberculosis prompted an examination of their 

distribution in other mycobacterial species (Figure 2.3). All the mycP genes were present in M. bovis 

as well as M. bovis BCG. mycP1, mycP3 and mycP5 homologues were detected in the incomplete 

genome sequence of M. leprae and mycP2-5 in the incomplete sequence of M. avium. Only mycP3 

was detected in the avirulent M. smegmatis and although it appears that the multiplicity of the mycP 

genes may occur only in virulent mycobacteria, it was possible that other, more divergent, mycP 

genes were present which were not detected with the methods used.

2.3.3. Expression and localisation o f the mycosins in M. smegmatis

We initially attempted to express the mycosins in E. coli without their signal sequences and 

with N-terminal fusion partners, glutathione-S-transferase or the maltose binding protein, for ease of 

purification. Although full-length protein fusions were observed the majority of the protein was 

expressed in truncated and/ or degraded form (see positive controls in Figure 2.5). Nevertheless, 

antisera raised against these E. coli-derived fusion proteins were specific for the mycosins, as verified 

by the detection of these proteins when heterologously expressed in M. smegmatis (see below, Figure 

2.4).
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Figure 2.3. Distribution of the protease genes in various mycobacterial species. (A) The

presence of the protease genes was determined by Southern blotting except for those that are 

underlined, which were identified through similarity (BLAST; (Altschul et al., 1997)) searches. The 

CSU93, M. bovis, M. leprae and M. avium sequence data were obtained through early release of data 

from The Institute for Genomic Research (http://www.tigr.org) and from the Sanger Centre 

(http://www.sanger.ac.uk). The phylogenetic relationship between the various species was based on 

16s RNA, as described (Wang et al., 1995). The Genbank accession numbers of the genes indicated 

a and b are: U34848 and Y14967, respectively. ND, not determined. (B) Southern blot of DNA from 

various mycobacterial species probed with mycP3 and showing the presence of a mycosin 3 

homologue in M. smegmatis. Lanes (1) M. bovis BCG, (2) M. tuberculosis Erdman, (3) M. 

tuberculosis H37Ra, (4) M. tuberculosis H37Rv, and (5) M. smegmatis.
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■ M. smegmatis
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We then expressed three of the mycosins in M. smegmatis, by cloning the mycP genes in a 

shuttle plasmid downstream of the constitutive 19kDa antigen promoter. Expression of mycosin-1 

(J.A. Dave et al., submitted for publication) and mycosin-3 in M. smegmatis was achieved by cloning 

the entire ORF and more than 50 bp of the 5’ non-coding region, containing any putative translation 

signals, downstream of the 19kDa promoter. The mycosin-1 and mycosin-3 products were of the 

predicted size (-50  kDa; Figure 2.4). Although M. smegmatis possesses a mycP3 homologue, 

mycosin-3 was not detected in wild type M. smegmatis by Western blotting (Figure 2.4).

Expression of mycP2 was not obtained in this vector, despite the inclusion of 110 bp of the 5’ 

non-coding region, and was only achieved after the inclusion of a RBS 10 bp upstream of the 

proposed start codon. The full-length protein (-65 kDa) was cleaved into a fragment of -36  kDa and a 

more predominant fragment of -29  kDa. Although the full length protein was predicted to be -55  kDa, 

mycosin-2 contains a highly proline-rich segment and it is known that proline-rich proteins can migrate 

anomalously on SDS-PAGE (See and Jackowski, 1989).

As the primary sequence of these proteases suggested that the enzymes were extracellularly 

located and anchored in the membrane, we determined the location of the heterologously expressed 

proteases in cellular fractions of M. smegmatis by Western blotting (Figure 2.5). Mycosin-1, -2 and -3 

were all localised to the cell wall/membrane fraction, supporting the proposed functions of the signal 

peptide and transmembrane C-terminal regions. The mycosins did not appear to be released into the 

growth medium. Although only one fragment is likely to possess the transmembrane anchor, both 

mycosin-2 fragments were present in the cell wall/ membrane fraction. The localisation of both 

fragments in the membrane of M. smegmatis indicates that the two fragments were associating in 

some way but, despite the presence of a number of cysteine residues throughout the protein 

sequence, disulphide linkages between the two fragments could not be detected by analysis on non­

reducing SDS-PAGE (data not shown).
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Figure 2.4. Expression of mycosin-1, mycosin-2 and mycosin-3 in various mycobacterial 

species. Western blots were probed with anti-protease antisera, as indicated. The protease bands 

are indicated by arrowheads. The M. tuberculosis and M. bovis BCG samples were taken from log- 

phase cells (O D 600nm vs H20  0.6-0.7). Heterologous expression of all the proteases in M. smegmatis 

was achieved using the p19Kpro expression vector except for mycosin-2 whose expression required 

the addition of a RBS, as described. M. smegmatis transformed with the vector alone was used as a 

negative control. Lanes (1) M. smegmatis (p19kpro), M. smegmatis (p19k-P1), (3) M. bovis BCG, (4) 

M. tuberculosis H37Rv, (5) M. smegmatis (p19kpro), (6) M. smegmatis (p19k-P2), (7) M. smegmatis 

(p19k-P2RBS), (8) M. bovis BCG, (9) M. tuberculosis H37Rv, (10) M. smegmatis (p19kpro), (11) M. 

smegmatis (p19k-P3), (12) M. bovis BCG, (13) M. tuberculosis H37Rv.
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2.3.4. Mycosin expression in M. tuberculosis and M. bovis BCG

The expression of the mycosins in broth grown M. tuberculosis was analysed by Western 

blotting (Figure 2.4). Both mycosin-1 and mycosin-3 were detected and their apparent molecular 

weights were in agreement to those predicted (-50 kDa). Although full-length mycosin-2 could not be 

detected in M. tuberculosis lysates, two proteins were detected (-36  kDa and -2 9  kDa) which 

corresponded to the cleavage products observed when mycosin-2 was expressed in M. smegmatis. 

The processing of mycosin-2 into these fragments may be autocatalytic as cleavage also took place in 

M. smegmatis. It is possible that cleavage occurs in the proline-rich region between the active site 

residues His133 and Ser435 (mycosin-2 numbering), to generate fragments of the observed size (-36 

kDa and -2 9  kDa).
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Figure 2.5. Localisation of the heterologously expressed proteases to the membrane in M. 

sm egmatis. Western blotted cellular fractions of transformed M. smegmatis were probed with the 

various anti-protease antisera, as indicated. The amount of sample loaded was adjusted to represent 

the proportions of the original cellular volumes. M. smegmatis was transformed with (A) p19k-P1, (B) 

p19k-P2RBS, (C) p19k-P3 and cellular fractions loaded were (1) cell free extract, (2) cytoplasm, (3) 

cell wall / membrane, (4) medium.
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Expression of the mycosins in M. tuberculosis during growth in broth was examined by 

Western blotting (Figure 2.6). All three proteins appeared to be constitutively expressed, as they were 

detectable throughout the growth cycle of the organism. Although antibodies to mycosin-4 and 

mycosin-5 were not generated, dot blot analysis of RNA samples taken at the same times as the 

protein samples indicated that these genes were also constitutively expressed (data not shown). The 

constitutive expression of all of the mycosins in M. tuberculosis suggests that they play a role in 

normal cellular processes during the growth of the organism. As expression of mycosin-1 also occurs 

in intracellular bacteria and appears to be up-regulated during growth in macrophages (J.A. Dave et 

al., submitted for publication), it is also possible that these proteases are involved in intracellular 

survival. As we had detected all five mycP genes in M. bovis BCG, we examined the expression of 

mycosin-1, -2 and -3 in this organism by Western blotting (Figure 2.4). Bands of similar molecular 

weights to mycosin-3 and mycosin-2 of M. tuberculosis were observed in lysates of M. bovis BCG, 

suggesting that these proteins were being expressed in this organism.
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Figure 2.6. Expression of mycosin-1, -2 and -3 during the growth cycle of M. tuberculosis. (A)

Growth curve of M. tuberculosis. Samples of M. tuberculosis were taken at the times indicated and 

measured against water at O D 600nm- Total protein was also isolated during sampling. (B ) Western 

blots of M. tuberculosis protein samples probed with anti-protease antisera, as indicated. Protein 

samples, taken at the various time points indicated, were quantitatively equilibrated using coomassie 

blue staining. The positive control (+) in each case is 100 ng of the respective E. coli-derived 

protease-fusion protein.
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Similarly to M. tuberculosis, mycosin-2 was cleaved into smaller molecular weight products 

and mycosin-2 and 3 were constitutively expressed during growth in broth (data not shown). Despite 

possessing a gene identical to mycP1 (Genbank accession number U34848), no band of similar 

molecular weight to mycosin- 1  could be detected and expression of mycosin- 1  was not detectable 

throughout the growth cycle (data not shown). The lack of mycosin-1 expression in M. bovis BCG 

indicates that this protein is not essential for normal growth in broth, although it is possible that the 

other mycosins are compensating for the function of this protein.

As there are no mycosin homologs in other bacteria, it is difficult to speculate on the function 

of these proteases. It is unlikely that these enzymes are involved in nutrition; they are membrane 

bound and M. tuberculosis lysine auxotrophs are unable to replicate in macrophages (Hondalus et al.,

2000). They may function in the processing of secreted and/ or extracellular proteins, such as the 19 

kDa lipoprotein antigen whose deglycosylation-dependant release from the cell surface is mediated by 

proteolytic cleavage (Herrmann et al., 1996). These proteases may contribute to virulence, as 

extracellular protease activity has only been detected in the pathogenic mycobacteria (Kannan et al., 

1987).

In conclusion, Mycobacterium tuberculosis possesses over 30 protease genes including a 

closely related family of five genes (the mycP genes), which encode transmembrane serine proteases 

that we have termed the mycosins. Multiple mycP genes are present in other virulent mycobacteria 

but only one gene was detected in the non-pathogenic M. smegmatis. All the mycosins were 

constitutively expressed in M. tuberculosis and at least one mycosin (mycosin-2) was modified by 

cleavage. One mycosin (mycosin-1) was not expressed in M. bovis BCG. The multiplicity and 

constitutive expression of the mycosins indicates that these enzymes play an important role in M. 

tuberculosis. We are currently investigating the substrate specificities of the mycosins and their role 

in the biology of M. tuberculosis.
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ADDENDA TO CHAPTER TWO

ADDENDUM 2A 

SUBCELLULAR LOCALIZATION

“ ....plenty of work is waiting for microbial geneticists in the field of tuberculosis. I have never 

understood why the only infection in which resistance acquired in vivo is so frequent has not attracted

their attention. Is it because everything takes place at such a slow pace in tuberculosis? .....with

such a slow-motion picture of the process, what an opportunity for closer observation!"

Georges Canetti (1965)
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Protein sequence analysis of the five mycosin proteases of M. tuberculosis indicated that 

each member of the family encodes a typical N-terminal signal sequence, as well as a strongly 

hydrophobic sequence in the C-terminal half of the protein. This suggests that the mycosins are likely 

to be secreted and anchored in the cytoplasmic membrane or in the lipid-rich regions of the 

mycobacterial cell envelope. In agreement with the evidence of a signal peptide, recent studies have 

established that M. tuberculosis contains a general sec-dependent protein export pathway in common 

with other eubacteria (Chubb,A.J., Woodman,Z.L. et al., 1998). The signal peptide in the mycosin 

sequences is followed by a ± 42-residue segment preceding the first catalytic residue. This segment 

is likely to be a propeptide, but it is shorter and shows only weak homology to typical subtilisin 

propeptides (usually 69 - 84 residues in length). All subtilisins and most bacterial secreted proteases 

contain propeptides, which can be highly variable in length and sequence (Wandersman, 1989; Braun 

and Tommassen, 1998). Propeptides may assist with protein folding during export, and usually 

maintain the protease in an inactive state until the propeptide is cleaved (Braun and Tommassen, 

1998).

Two of the three catalytic residues are located within hydrophobic regions. In general, some 

of the flanking sequences around catalytic residues in bacterial subtilisins are rich in hydrophobic 

amino acids, but the mycosins are even more hydrophobic than the normal subtilisins (data not 

shown). The significance of this is uncertain, but there are two possibilities; first, the mycosins act on 

hydrophobic protein substrates, or second, they reside predominantly within the lipid-rich 

mycobacterial cell wall, where the active sites are stabilized by hydrophobic interactions.

As a first step to elucidating the cellular location of the mycosins, we constructed a 

hypothetical model for the 3-dimensional structure of these enzymes, based on the consensus, 

empirically determined 3-dimensional structure of Bacillus subtilis subtilisin as a template, using the 

program SWISS-MODEL (http://www.expasy.ch/swissmod/SWISS-MODEL.html).

2A.1. Introduction

Stellenbosch University http://scholar.sun.ac.za/

http://www.expasy.ch/swissmod/SWISS-MODEL.html


37

The output of this program reveals only the 3-dimensional core structure of the molecule, 

therefore the remaining part of the molecule (linker region and hydrophobic transmembrane anchor), 

was added manually (Figure 2A.1). The results of the analysis predicted the size of the mycosins to 

be between 4 x 4 nm and 5 x 5  nm. Although this is only an approximate prediction of the size of the 

proteins, it is sufficiently accurate to predict that the mycosins would not extend more than a few 

nanometres beyond the peptidoglycan layer of the cell wall, and would definitely not be able to reach 

through the wall (Figure 2A.2). Thus it seems as if these mycobacterial subtilisins must function 

inside the cell wall (although it is possible that it may be cleaved from the wall and secreted into the 

medium).

Figure 2A.1. Schematic representation of the predicted 3-dimensional structure and 

localization of the mycosins. The 3-dimensional structure of the core molecule was predicted using 

the program SWISS-MODEL, and the linker and transmembrane anchor was added manually.
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Figure 2A.2. Schematic representation of the mycobacterial cell envelope showing main

constituents and predicted thickness of each layer.
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The results obtained from the primary sequence analyses of these proteases led to 

experiments to determined the location of the heterologously-expressed proteases in cellular fractions 

of M. smegmatis by Western blotting (Brown et al., 2000; Chapter 2, Figure 2.5). These results 

showed that mycosin-1, -2 and -3 are all partitioned in the cell wall/membrane fraction, which 

supported the hypothesis that the enzymes were predominantly located in the cell wall and anchored 

in the membrane, confirming the proposed functions of the signal peptide and transmembrane C- 

terminal regions. The heterologously-expressed mycosins did not appear to be released into the 

growth medium.

In a follow-up study on mycosin-1 (Dave et al., submitted for publication), we examined the 

expression and localization of mycosin-1 in M. tuberculosis (clinical strain GSH-3052) by Western 

blotting. The localization of native mycosin-1 was found to be limited to the membrane and cell wall 

fractions with a complete absence in the cytoplasmic fraction. Interestingly, in M. tuberculosis, 

mycosin- 1  protein was equally divided between cell membrane and cell wall fractions, whereas in
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Figure 2A.3. Subcellular localization o f mycosin-1 in M. smegmatis-P'\ (expressing 

recombinant mycosin-1) and M. tuberculosis. Bacterial cell lysates were subfractionated into cell 

wall (w), cell membrane (m), and intracellular (i) fractions. Fractions were resolved by SDS-PAGE 

and analyzed by Western blotting using anti-mycosin-1 antiserum. Molecular weights (in kDa) are 

indicated on the left. (Reproduced with kind permission from Dr. J.A. Dave, Department of Medicine, 

Groote Schuur Hospital, Cape Town, South Africa).
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Figure 2A.4. Electron micrographs o f M. smegmatis-P‘\ and M. tuberculosis following 

immunogold labeling with anti-mycosin-1 antiserum. Bacterial pellets were first incubated with 

anti-mycosin-1 antiserum, fixed, cryosectioned, and labeled with 5 nm gold particles. (A) M. 

smegmatis transformed with vector only (p19Kpro); (B) M. smegmatis-P1; (C) M. tuberculosis 

incubated with pre-immune serum as primary antibody; and (D) M. tuberculosis incubated with anti- 

mycosin-1 antiserum. (Reproduced with kind permission from Dr. J.A. Dave, Department of Medicine, 

Groote Schuur Hospital, Cape Town, South Africa).
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M. smegmatis-P1 (expressing recombinant mycosin-1 ) most of the protein was located in the cell wall. 

The reason for this is unclear, but may reflect a greater tendency for the recombinant protein to be 

shed (cleaved) from the cell membrane in M. smegmatis. The Western blotting result was confirmed 

using immunogold transmission electron microscopy (Figure 2A.4), which revealed that mycosin-1 

was clearly localized to the cell envelope in both M. tuberculosis (Figure 2A.4D) and M. smegmatis-P'\ 

(expressing recombinant mycosin-1, Figure 2A.4B). In spite of this, mycosin-1 could also be identified 

in M. tuberculosis culture filtrates using Western blotting (Figure 2A.5), indicating that during growth 

the protein was shed from the cell envelope into the medium. Only full-length, 50 kDa mycosin-1 was 

observed in lysates of broth-grown M. tuberculosis and M. smegmatis-P1, whereas a 40 kDa species 

was detected in the 6 -week M. tuberculosis culture filtrates. As mycosin-1 without the propeptide has 

a calculated mass of -39 kDa, this could further suggest that the proenzyme is processed after 

shedding. A similar 40 kDa immunoreactive band was also observed in lysates of macrophages 

infected with the clinical strain M. tuberculosis GSH-3052, suggesting that mycosin-1 is also 

expressed and processed in a similar manner during intracellular residence (Figure 2A.5).

Figure 2A.5. Expression o f mycosin-1 in mycobacteria in culture and during infection of 

macrophages. Samples were resolved by SDS-PAGE and analyzed by Western blotting using anti- 

mycosin-1 antiserum. Lanes: 1, M. smegmatis; 2, M. smegmatis transformed with p19Kpro vector; 3, 

M. smegmatis transformed with p19K-P1 (expressing recombinant mycosin-1); 4, M. tuberculosis 

clinical isolate GSH-3052 cell lysate; 5, M. tuberculosis clinical isolate GSH-3052 culture filtrate after 

growth in Kirchner’s broth for 6  weeks; 6 , lysate of uninfected P388D! macrophages; 7, lysate of M. 

tuberculosis clinical isolate GSH-3052-infected P388D! macrophages. Molecular weights (in kDa) are 

indicated on the left. (Reproduced with kind permission from Dr. J.A. Dave, Department of Medicine, 

Groote Schuur Hospital, Cape Town, South Africa).
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To confirm the subcellular localization results obtained with the heterologously expressed 

mycosin-3 protein (see Chapter 2, Figure 2.5) as well as to verify whether the same results could be 

obtained with mycosin-3 as was observed during the mycosin-1 analysis, we performed Western 

blotting experiments on subcellular fractions of M. tuberculosis H37Rv.

2A.2.1. Materials and Methods

Subcellular fractions (whole cell lysate, membrane, cytosol, cell wall and culture filtrate 

proteins) of M. tuberculosis H37Rv were obtained from Dr. J.T. Belisle (Department of Microbiology, 

College of Veterinary Medicine and Biomedical Science, Colorado State University). Samples were 

produced and provided through funds from the National Institutes of Health, National Institute of 

Allergy and Infectious Diseases, Contract No1-AI-75320, entitled “Tuberculosis Research Materials 

and Vaccine Testing." Five micrograms of each sample was resolved by reducing SDS-PAGE, 

electroblotted onto a nitrocellulose membrane and probed with 1/5000 of positively- and negatively- 

selected polyclonal anti-mycosin-3 antibodies (see Chapter 2 for details of antibody preparation).

2A.2.1. Results

The results of the Western blot analysis of subcellular fractions of M. tuberculosis H37Rv are 

presented in Figure 2A.6. These results indicate the presence of full-length (-50 kDa) mycosin-3 in 

the cell wall fraction, with very little to no protein detected in the membrane and cytosolic fractions, 

and a small amount in the culture filtrate fraction. The size of the protein in the culture filtrate fraction 

was the same as in the cell wall, which is in contrast with what was observed with mycosin-1 (Figure 

2A.5). It thus seems as if some shedding of mycosin-3 does occur, as is observed in various 

microorganisms (Doyle et al., 1988), but no processing of the protein could be detected. Although M. 

smegmatis possesses a mycP3 orthologue, mycosin-3 was not detected in wild type M. smegmatis by 

Western blotting during previous experiments (Chapter 2, Fig. 2.4). The results from this analysis, 

though, did reveal an immunoreactive band at around 30 kDa in both wild-type M. smegmatis and M. 

smegmatis expressing mycosin-3. Although this may be non-specific antibody binding, it is possible

2A.2. Localization of mycosin-3 in M. tuberculosis H37Rv
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that the anti-mycosin-3 antibodies are detecting a processed form of the M. smegmatis mycosin-3 

orthologue, similar to what was observed with mycosin-1 .

Figure 2A.6. Localization of mycosin-3 in M. tuberculosis H37Rv subcellular fractions.

Samples were resolved by SDS-PAGE and analyzed by Western blotting using positively- and 

negatively-selected polyclonal anti-mycosin-3 antibodies (1/5000). Lanes: 1, M. smegmatis 

transformed with p19Kpro vector membrane fraction; 2, M. smegmatis transformed with p19K-P3 

(expressing recombinant mycosin-3) membrane fraction; 3, M. tuberculosis H37Rv whole cell lysate; 

4, M. tuberculosis H37Rv cell wall fraction; 5, M. tuberculosis H37Rv membrane fraction; 6 , M. 

tuberculosis H37Rv cytoplasmic fraction; 7, M. tuberculosis H37Rv culture filtrate. Molecular weights 

(in kDa) are indicated on the left.

2A.2.2. Discussion

We previously determined the location of the heterologously expressed proteases in cellular 

fractions of M. smegmatis by Western blotting (Chapter 2, Figure 2.5) and showed that mycosin-1, -2 

and -3 were all localised to the cell wall/membrane fraction, supporting the proposed functions of the 

signal peptide and transmembrane C-terminal regions. The mycosins did not appear to be released 

into the growth medium during heterologous expression. More complete subfractionation experiments 

(of cell lysates into wall, membrane, and intracellular fractions) were performed on heterologously 

expressed mycosin-1, as well as mycosin-1 expressed natively by M. tuberculosis (Dave et al., 

submitted for publication). The results obtained from these experiments indicated that mycosin-1 was
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present in the cell wall and membrane fractions as observed previously (Figure 2A.3 and 2A.4), but 

could also be detected in the culture filtrate in an apparently processed form (Figure 2A.5). The 

subcellular localization analysis done on mycosin-3 showed that this protein predominantly resides in 

the cell wall fraction of M. tuberculosis H37Rv, but some protein could also be detected in the culture 

filtrate, although apparently in an unprocessed form. It has been shown previously that mycosin-5 

(Rv1796) was only able to elicit delayed-type hypersensitivity reactions in guinea pigs immunized with 

live mycobacteria (Romain et al., 1993), providing supporting evidence that these proteins may be 

able to be shed from the cell wall surface during active growth of the mycobacteria as part of normal 

cell wall turnover (Doyle et al., 1988).

In conclusion, we have used a number of approaches to determine the subcellular localization 

of selected members of the mycosins. The results obtained from these analyses showed that the 

mycosins are secreted, membrane bound, cell wall-associated subtilisin-like serine proteases that are 

shed by an unknown mechanism (actively or passively) from the cell wall during growth of M. 

tuberculosis under in vitro and in vivo conditions.
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ADDENDUM 2B 

T-CELL RESPONSES

“Gladly the humble shepherdess, responded to that gentle call; and following Mary, swift to bless, she 

came to Carmel's lofty wall"

Poems - St. Theresa of Lisieux

Stellenbosch University http://scholar.sun.ac.za/



45

2B.1. Introduction

There has been increased interest in secreted antigens of the mycobacteria as candidates for 

a subunit-based vaccine (Andersen, 1997). The reason for this is the fact that it was observed that 

only live vaccines, and not killed preparations, can provide long-lived specific immunity towards these 

pathogens. In addition to this, it has been shown that in animal models of tuberculosis, culture filtrate 

proteins of M. tuberculosis cultures offers some degree of protection (Hubbard et al., 1992, Pal and 

Horwitz, 1992, Andersen, 1994a, Andersen, 1994b, Horwitz et al., 1995, Roberts et al., 1995). Thus, 

there is a number of studies presently being done to determine novel antigens of M. tuberculosis that 

are being secreted or shed extracellulary, as these antigens in the culture filtrate are an important 

potential source of candidates for a subunit vaccine against tuberculosis. From the analysis of the 

subcellular localization of the mycosin proteases of M. tuberculosis, we have shown that the mycosins 

are located in the cell wall of the bacterium, and may be shed from the wall into the extracellular 

milieu during active growth of the organism (see Addendum 2A). Furthermore, we have detected a 

proteolytic activity in the culture filtrates of M. tuberculosis, which is inhibited by mixed serine/cysteine 

protease inhibitors and activated by Ca2+, features typical of the subtilisins (see Addendum 2C). In 

accordance with this, Romain and coworkers (1993) have shown that mycosin-5 (Rv1796) was able to 

elicit delayed-type hypersensitivity (DTH) reactions only in guinea pigs immunized with live 

mycobacteria, indicating the release of protein only during active growth of the organism. As DTH is 

known to be a strictly T-cell dependant immune reaction, it is possible that the mycosin-5 protein may 

also be recognized by the T-cell population mediating the cell mediated immune response (CMI) 

reaction. This reaction is key to the effective activation of macrophages to control M. tuberculosis 

infection (Andersen, 1997, Flynn and Chan, 2001).

There is a constant search for antigens able to stimulate the CMI cellular population for use 

as possible vaccine candidates. We decided to perform preliminary investigations into the T-cell 

response profile of the recombinant mycosin fusion proteins (mycosin-1-GST, mycosin-2-MBP and 

mycosin-3-GST) using whole blood assays (Kirchner et al., 1982, Rothel et al., 1990, Rothel et al.,

1992), during which we determined T-cell proliferation as well as gamma interferon (IFN-y) production. 

IFN-y production was assayed because it is widely recognized that the immune response to M.
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tuberculosis is highly dependent upon the production of this cytokine by antigen-specific T-cells (Flynn 

and Chan, 2001).
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2B.2.1. Methodology

The methodology utilized to investigate the T-cell responses towards the recombinant 

mycosins in vitro was the whole blood culture technique (Kirchner et al., 1982, Rothel et al., 1990, 

Rothel et al., 1992), during which T-cell proliferation and IFN-y production were assayed. This 

technique requires less incubation time, is technically simpler, inexpensive, more sensitive and 

provides a milieu closer to in vivo conditions than when using peripheral blood mononuclear cells 

(PBMC’s)(Doldi et al., 1985, Rothel et al., 1992).

2B.2.2. Participants and skin testing

Two preliminary experiments were done. In the primary experiment, three volunteers were 

recruited of which one was Mantoux positive, one was a recovered tuberculosis patient and the third 

was a patient presenting with disease. In the second larger experiment, eight healthy volunteers with 

no previous history of tuberculosis were recruited from a scientific setting. The ages of the 

participants ranged from 22 to 47, with the median age being 27. Prior to enrollment, all subjects 

were skin tested with 0.1 ml of 5 TU (tuberculin units) PPD placed intradermally according to the 

standard technique (Mantoux skin testing technique). All PPD skin tests were placed and read by a 

certified nurse who performs these duties regularly. All readings were done with the palpation and 

ballpoint methods along two axes of the forearm (Sokal, 1975). A positive reading was defined as an 

induration greater than 10 mm in diameter. Five of the subjects were Mantoux positive (13, 18, 18, 

19, and 2 2  mm induration respectively), while the rest (three subjects) were negative ( 0  mm induration 

each). All individuals had negative chest X-rays.

2B.2.3. Whole blood culture

Venous blood was collected from the subjects in sodium heparinized tubes. Whole blood 

culture was done by diluting blood 1:10 with sterile RPMI 1640 medium (supplemented with 5x1 O' 5 M 

2-mercaptoethanol, 100 IU of penicillin per ml, 50 ng of streptomycin per ml, 2 g/l NaHC03, 1mM of L- 

glutamine and 10% Fetal Calf Serum) and aliquoting 180 |il of diluted blood in wells of a 96-well tissue 

culture plate. Above procedure was done within 30 minutes after blood collection. The whole blood

2B.2. Materials and Methods
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was stimulated with 20 nl of either sterile RPMI medium (as unstimulated control), the mitogen 

phytohemagglutinin (PHA, Sigma C/N: L-8754, used as a positive control for T-cell activation at a final 

concentration of 10 ng/ml), PPD (purified protein derivative - a gift from Stan Ress, Department of 

Medicine, Clinical Immunology, Groote Schuur Hospital, used as a positive control for mycobacterial- 

specific T-cell activation at a final concentration of 3.3 |ig/ml), purified glutathione-S-transferase 

protein (GST, fusion partner control, final concentration of 1 ng/ml), purified maltose binding protein 

(MBP, fusion partner control, final concentration of 1 ng/ml), purified mycosin-1-GST fusion protein 

(final concentration of 1 ng/ml), purified mycosin-2-MBP fusion protein (final concentration of 1 ng/ml) 

and purified mycosin-3-GST fusion protein (final concentration of 1 ng/ml). Fusion proteins and fusion 

partners were prepared as described in Brown et al., 2000 (Chapter 2) and were 0.22 ^M filter 

sterilized. Six replicates of all tests were carried out. The tissue culture plates were incubated for 7 

days at 37°C (in an atmosphere of 5% C 0 2 in humidified air).

2B.2.4. T-cell proliferation assays

At 20 h prior to harvesting, 20 (il of Methyl-[3H]thymidine (Amersham C/N: TRK120) was 

added to each well to a final concentration of 2.5 nCi. PHA samples were harvested at day 4 and all 

other samples at day 7. The cells were harvested onto fiberglass paper, added to a vial containing 

4.5 ml of scintillation fluid (Insta-Gel Plus - Biotecknik C/N: 6013399) and the incorporated 

radioactivity was measured in a liquid scintillation counter. The proliferative responses were 

expressed in counts per minute.

2B.2.5. Interferon-/ELISA assays

Plasma in culture supernatants was harvested from parallel cultures at day 5 and stored at - 

20°C for later quantification of IFN-y using a commercially available sandwich enzyme-linked 

immunosorbent assay (ELISA) kit (Human IFN-y DuoSeT, Genzyme Diagnostics C/N: 80393200). 

Interferon-y ELISA’s were done according to the manufacturer’s specifications. Briefly, 96-well plates 

were coated with 100 |il of anti-human IFN-y capture antibody in coating buffer (0.1 M Carbonate, pH 

9.4 - 9.8) per well and incubated overnight at 2-8°C. Plates were washed for 5 cycles with wash 

buffer (PBS containing 0.05% Tween 20) and subsequently blocked with 250 |il of blocking buffer
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(PBS containing 4% BSA) per well at 37°C for 2 hours. Blocking buffer was decanted, plate blotted 

dry and 100 |il of standards (dilutions of recombinant human IFN-y covering an assay range from 15.6 

to 1000 pg/ml) and samples (1/20 dilutions of PHA and PPD and 1/5 dilutions for other samples) 

added to each well. Plates were incubated for 2 hours at 37°C. Thereafter, the plates were washed 

for 5 cycles with wash buffer and 100 nl of diluted anti-human IFN-y HRPO secondary antibody was 

added to each well. The plates were once more incubated at 37°C for 30 minutes.. After incubation, 

the plates were washed for 5 cycles with wash buffer, 100 |il of TMB substrate reagent was added to 

each well, and the plates were incubated for 30 minutes at room temperature, at which time 100 nl of 

stop solution (2N H2S 04) was added to each well to halt the reaction. Absorbance was read at 450nm 

within 60 minutes.

2B. 2.6. Statistical methods

All data are expressed as median values of results from six wells per stimulant. Standard 

deviations were calculated for all T-cell proliferation values. For IFN-y results, mean absorbance of 

standards and samples were calculated and background (mean OD of zero pg/ml standard) were 

subtracted to calculate corrected absorbance. A standard curve was constructed by plotting the mean 

OD450 values of the seven standards versus their corresponding concentrations in pg/ml.
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2B.3. Results

In the primary study, the recombinant mycosin proteases were evaluated in vitro for their 

ability to induce T-cell proliferation and IFN-y production with whole blood cultures obtained from three 

subjects of different disease status. The cellular proliferation results of the primary experiment are 

presented in Figure 2B.1. Although proliferations were low in all three subjects, the results indicate a 

higher level of responses in the Mantoux positive subject, in comparison to both the tuberculosis 

patient presenting with disease as well as the cured patient. When comparing purified antigens to 

complex mixtures like PPD, the IFN-y production should always be monitored as even a very low T- 

cell proliferation is associated with a pronounced interferon-gamma production (Peter Andersen, 

Statens Serum Institut, Copenhagen, Denmark, personal communication). The results of the 

interferon-gamma production assays are presented in Figure 2B.2. These results clearly indicate that 

the Mantoux-positive subject has much higher levels of IFN-y production when stimulated with the 

individual mycobacterial proteases than either of the tuberculosis patient or cured subject. This is 

despite the fact that in all three cases extremely high responses (both proliferative and IFN-y 

secreting) were obtained against mycobacterial purified protein derivative (PPD, Figure 2B.3). The 

responses to the fusion partner GST (glutathione-S-transferase protein, fused to mycosin-1 and -3) 

are nominal, but the MBP fusion partner (maltose binding protein, fused to mycosin-2) gives 

substantial production of IFN-y on its own, although it is still less than what is observed with the 

mycosin-2-MBP fusion protein. The results from this primary experiment underlined the necessity for 

a follow-up experiment using a larger sample base, to examine the differences between responses 

from Mantoux-positive and -negative subjects.
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Figure 2B.1. Cellular reactivity to mycobacterial mycosin proteases. Proliferative responses of 

whole blood cultures from a tuberculosis patient presenting with disease, a recovered tuberculosis 

patient as well as a Mantoux-positive control subject. Values shown are median values of results 

from six wells ± standard deviations. Values were compensated against unstimulated controls.

TB Patient (presenting)

GST (day 7) MBP(day7) P1 (day 7) P2(day7) P3(day7)

Stimulants

Recovered TB patient

GST (day 7) MBP (day 7) P1 (day 7) P2 (day 7) P3 (day 7)

Stimulants

Mantoux-positive

1500

GST (day 7) MBP (day 7) P1 (day 7) P2(day7) P3(day7)

Stimulants

Stellenbosch University http://scholar.sun.ac.za/



52

Figure 2B.2. Interferon-gamma production in response to mycobacterial mycosin proteases.

Production of IFN-y in whole blood cultures from a tuberculosis patient presenting with disease, a 

recovered tuberculosis patient as well as a Mantoux-positive control subject. Values shown are 

picograms of IFN-y produced per milliliter and are mean values of results from six wells.
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Figure 2B.3. Interferon gamma production in response to controls for cellular activation, the 

mitogen PHA and mycobacterial purified protein derivative (PPD). Control production of IFN-y in 

whole blood cultures from a tuberculosis patient presenting with disease, a recovered tuberculosis 

patient as well as a Mantoux-positive control subject. Values shown are picograms of IFN-y produced 

per milliliter and are mean values of results from six wells.
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In the second experiment, the recombinant mycosin proteases were evaluated in vitro for their 

ability to induce T-cell proliferation and IFN-y production with the whole blood cultures obtained from 

healthy Mantoux-positive (PPD+, induration of more than 10 mm) and healthy Mantoux-negative 

(PPD~, induration of 0 mm) subjects. The results of this analysis showed no differences in the T-cell 

proliferations between the two groups (data not shown). As described previously, the proliferation of 

T-cells towards singular antigens are mostly nominal and the IFN-y responses were thus examined. 

These results are presented in Figure 2B.4, and shows that, although the standard deviations are 

quite large, it seems clear that the responses towards the recombinant mycosin proteases (especially 

mycosin-2 and -3) are higher in the PPD+ individuals, when compared to the PPD” subjects. No 

production of IFN-y in response to stimulation with PPD (mean value 35 pglFN-y/ml, less than the
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unstimulated control with a mean value of 48 pglFN-y/ml) was observed in any of the Mantoux- 

negative subjects, as would be expected (Katial et al., 2001). All Mantoux-positive subjects had high 

levels of IFN-y production in response to PPD stimulation (mean value of 14894 pglFN-y/ml). Again, 

as in the primary experiment, no response was obtained towards the fusion partner GST, while 

definite responses were obtained against the MBP fusion partner. It thus seems as if the maltose 

binding protein fusion partner has an inherent antigenicity recognized by all the individuals in this 

study. The fact that the MBP fusion partner on its own seem to evoke the production of IFN-y did not 

influence the observed results of mycosin-2-MBP, as responses towards this fusion protein were 

consistently higher than that observed towards the fusion partner. As in the primary experiment, the 

viability of all donor whole blood culture cells was confirmed by proliferation and the secretion of IFN-y 

in response to the mitogen phytohemagglutinin (PHA).

The IFN-y response profile suggested a difference in the responses towards stimulation with 

the mycobacterial proteases between Mantoux-positive and -negative subjects, although, because of 

the low sample base, the standard deviations were large, especially in the Mantoux-positive group.

Stellenbosch University http://scholar.sun.ac.za/



55

Figure 2B.4. Interferon-gamma production in response to mycobacterial mycosin proteases.

Production of IFN-y in whole blood cultures from Mantoux-negative (n = 3) and Mantoux-positive (n = 

5) subjects. Values shown are picograms of IFN-y produced per milliliter and are mean values of 

results from six wells.
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The protective response against M. tuberculosis infection relies heavily on the cell mediated 

immune response (CMI) (Andersen, 1997). The reason for this is the fact that the organisms are 

usually found situated within the phagosome inside macrophages during infection, requiring T-cell 

effector mechanisms rather than antibodies to control or eliminate the bacteria (Flynn and Chan,

2001). The primary effector function of T-cells is the production of IFN-y in response to a wide variety 

of mycobacterial antigens, which are, together with some other cytokines, sufficient to activate the 

macrophages for the control or elimination of the intracellular organisms (Flynn and Chan, 2001). IFN- 

y is thus a key cytokine in the control of M. tuberculosis infection. The whole blood culture technique 

was developed in the early part of the previous decade specifically to determine the production of 

different types of human interferons. Interferon production was studied in mixtures of whole blood of 

healthy adults with tissue culture medium (Kirchner et al., 1982). Since there is no need to 

supplement the system with additional foreign serum and since the cell populations in the whole blood 

assay are present in their natural distribution, this test system reflects the in vivo situation better than 

an assay using isolated peripheral blood mononuclear cells (PBMC’s)(Doldi et al., 1985). It took a few 

years before this system was applied to the study of mycobacterial infections, and it was first used in 

a sandwich enzyme immunoassay for bovine IFN-y to detect bovine tuberculosis in Australian cattle 

(Rothel et al., 1990). This assay detected IFN-y released in response to specific antigens in a whole 

blood culture system and was found to be a simple, rapid and sensitive in vitro assay for specific cell 

mediated immune responsiveness to M. bovis infection in cattle (Rothel et al., 1992). The whole 

blood assay technique has been successfully applied in our laboratory for a number of years to study 

T-cell proliferation and cytokine release in whole blood cultures from tuberculosis patients and 

Mantoux positive and negative controls in response to mycobacterial antigens.

In this study we aimed to obtain some insight into the T-cell antigenicity of the mycobacterial 

mycosin proteases. It has been shown previously that these proteases are potentially shed into the 

extracellular milieu of the bacterium during active growth (Addendum 2A). As the extracellular milieu 

of the organism is also the intracellular milieu of the phagosome of the macrophage, these proteins 

may be subjected to MHC class II presentation to CD4+T-cells. In support of this, a DTH response (a

2B.4. Discussion
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T-cell-dependent reaction) was previously observed to one of the members of this family (mycosin-5) 

only during immunization with live bacteria (Romain et al., 1993). It is thus of more than academic 

importance to evaluate the T-cell antigenicity of these proteins, as they may have a potential to be 

utilized as possible vaccine candidates.

As T-cells recognize peptide antigens in association with MHC molecules, the different types 

of MHC molecules found in different individuals have a major influence on the antigenic epitopes 

presented to the T-cells in these individuals (Andersen, 1997). Each type of MHC protein is encoded 

by several genes, and there are several alleles that represent different MHC proteins for each of these 

genes. Thus, a tremendous variety of MHC proteins exists, with the effect that it is unlikely for two 

individuals to possess the same group of MHC molecules (Zubay, 1993). Looking for T-cell 

responses to single antigens is difficult, owing to low responder frequency. In other words, different 

individuals may respond to the limited set of T-cell epitopes of a single antigen differently because of 

the large MHC variety. As PPD contains hundreds of antigens, the responder frequencies to this 

complex mix of antigens would be relatively high with the subsequently higher observed responses. 

But, although T-cell proliferation to individual mycobacterial antigens such as ESAT-6 is often 

marginal or even absent, dominant antigens can still induce relatively prominent IFN-y responses, that 

can be measured to determine levels of antigenicity (Peter Andersen, Statens Serum Institut, 

Copenhagen, Denmark, personal communication).

In the primary experiment, IFN-y production was assayed in whole blood cultures from a 

Mantoux-positive subject, a TB patient presenting with disease as well as a cured patient. The results 

have shown that high levels of IFN-y were produced after stimulation with the three mycosin protease 

fusion proteins only in the Mantoux-positive subject, and not in the cured tuberculosis patient or the 

patient presenting with disease. Interestingly, all three subjects had high responses towards PPD, 

indicating an inability of the subjects infected by and cured of tuberculosis to specifically respond to 

the proteases. A number of studies have shown that patients with active tuberculosis are 

characterized by deficient IFN-y production and a depressed cell mediated immunity (Onwubalili et al., 

1985, Flynn and Chan, 2001). This could be due to several factors, including antigen specific T-cell 

depletion due to sequestration at the site of infection (Ravn et al., 1999). The observation that the
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cured patient displayed a similar absence of specific IFN-y release as the tuberculosis patient, as well 

as the observation that these two subjects each did have a prominent response to both the mitogen 

PHA and the mycobacterial PPD, suggests that depression of the CMI response is not a valid 

explanation for this observation. It is much more likely to be due to the phenomenon called the “hole 

in the T-cell repertoire” (Andersen, 1997). This phenomenon is linked to the MHC restriction of 

responses to single epitopes, leading to the observation that tuberculosis patients, in contrast to 

healthy subjects, do not recognize some epitopes on mycobacterial antigens. It has been suggested 

that these “holes in the T-cell repertoire” be involved in the immunopathogenesis of tuberculosis, and 

that the antigens, which are being responded to by the healthy subjects but not by the T-cells from the 

tuberculosis patients, could be implicated in protective immunity.

The primary experiment was extended to an investigation involving a larger sample base of 

eight subjects, three Mantoux-negative and five Mantoux-positive. The results from this experiment 

once again suggested a trend of an increased level of IFN-y responses towards the proteases in the 

Mantoux-positive group, when compared to the Mantoux-negative subjects. The standard deviations 

were large, though, especially in the Mantoux-positive group, because of the low sample base. Thus, 

clearer results will only be obtained by using a larger subject group in future studies. The levels of 

IFN-y production observed in response to stimulation with the mycosin-1 protease in the Mantoux 

positive group, was much lower than the levels produced in response to the mycosin-2 and -3 

proteases. A possible explanation for this may be the fact that mycosin-1 is not expressed in the M. 

bovis BCG vaccine strain (Chapter 2). As the Mantoux positivity of these individuals may be due to 

BCG vaccination, it may explain the general absence of a response to this protein in this group. The 

question of whether these mycosins are actively released into the culture filtrate or whether the 

observed responses were due to shedding and normal cell death could not be answered by the 

results of this study.

In conclusion, we have shown that the mycosin proteases may be able to elicit low levels of 

T-cell dependent cellular proliferation, with concomitant production of relatively high levels of IFN-y. 

There was an interesting difference observed between the three subjects of the primary study, 

suggesting that the mycosins may be specifically recognized only in healthy individuals, and pointing
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to the possibility that these proteins may be involved in protective immunity. These results are 

preliminary, and will have to be followed by studies involving a larger sample base. The results of the 

secondary study indicated that the mycobacterial mycosins are recognized by Mantoux positive 

individuals, thereby being able to stimulate the CMI response. These mycosins are thus potentially 

interesting for use as components for future subunit vaccines against tuberculosis. As the sample 

base for both the primary and secondary experiments was not optimal, the subject number used in 

these studies will have to be increased in future investigations to determine the full extent of 

antigenicity of the members of the mycosin family of proteases.
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ADDENDUM 2C 

PROTEASE ACTIVITY

“ ....a number of useful contributions to our present knowledge must be discussed too briefly or not at 

all. Particularly ironic is the fact that the action of proteolytic enzymes on proteins is omitted from 

review, since here our ignorance is deepest."

Proteolytic enzymes -  B. S. Hartley (1960)
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2C.1 Introduction

Proteases (also termed proteinases, peptidases or peptide hydrolases) are proteolytic 

enzymes that catalyze the hydrolysis of proteins or peptides (Wandersman, 1989). They play an 

important role in normal physiological processes where they function as biological regulators in 

zymogen activation, release of hormones, nutrient acquisition, cell growth and protein turnover 

(Neurath, 1989, Wolf, 1992). Many saprophytic bacteria utilise proteases with broad substrate 

specificities to obtain nutrients from the surrounding environment (Travis et al., 1995). Pathogenic 

organisms may also use proteases to obtain nutrients from their hosts and, in addition, frequently use 

proteases to perform more specific functions related to virulence (Lantz, 1997).

There are six different molecular mechanisms by which proteases may contribute to 

pathogenesis: (1) the enhancement of vascular permeability and edema formation, (2) degradation of 

defense orientated proteins, (3) inactivation of the complement system, (4) degradation of regulatory 

plasma protease inhibitors (serpins), (5) destruction of intracellular integrity and cell killing, and (6) 

elevated lethality by increase of viral yield during co-infection (Maeda and Molla, 1989). Proteases 

also contribute to tissue invasion and destruction, evasion of host defenses and the subversion of the 

host immune system (Kilian et al., 1988, Travis et al., 1995).

Pain and edema at the site of infection may be caused by the dysregulation of the kallikrein- 

kinin pathway by foreign bacterial proteases (Molla et al., 1989). At least 16 microbial proteases can 

activate the host kallikrein-kinin cascade, leading to the generation of bradykinin and a local 

inflammatory reaction (Travis et al., 1995). The local increase in vascular permeability and the 

recruitment of phagocytic cells, which in turn release host-derived proteases, may benefit the 

pathogen by increasing the supply of nutrients. Proteases from pathogens can also activate other 

zymogen cascades, including the coagulation, fibrinolysis and complement pathways (Wingrove et al., 

1992, Travis et al., 1995). Many bacterial proteases cause tissue damage by degrading collagen, 

elastin and fibronectin: the secreted proteases of Pseudomonas aeruginosa, Serratia marcesens, 

Porphyromonas gingivalis and Clostridium perfringens contribute to tissue damage in cystic fibrosis, 

keratitis, periodontitis and gas gangrene respectively (Travis et al., 1995). Proteases secreted by P.
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gingivalis not only activate the kallikrein-kinin system, inducing a local inflammatory reaction, but also 

degrade complement and immunoglobulins (Wingrove et al., 1992, Cutler et al., 1993, Travis et al., 

1995). Other examples include the HtrA serine protease of Salmonella typhimurium, which has been 

associated with virulence during intracellular infection (Johnson et al., 1991) as well as a secreted 

serine protease identified in the culture filtrates of virulent strains of Dichelobacter nodosus associated 

with virulent foot-rot disease (Kortt et al., 1994). Thus, many proteases are involved in various human 

diseases and therefore these enzymes are targets for the development of inhibitors as new 

therapeutic agents (Powers et al., 1993).

Three major criteria are used to classify proteases: (1) the reaction catalyzed, (2) the 

chemical nature of the catalytic site, and (3) the structural and evolutionary relationship of the protein 

(Barrett, 1994). The first classification system depends on the type of reaction that the protease uses 

to hydrolyse the substrate as well as the position of the cleavage site. A list of the major possibilities 

is included in Figure 2C.1. Proteases either cleave a peptide from the termini (exopeptidases) or 

within the peptide chain (endopeptidases). The exopeptidases are further divided into subfamilies 

depending on the recognition of the cleavage site as well as the amount of amino acid residues that 

are cleaved from the terminus.

The second, more widely used classification system is based on the chemical nature of the 

catalytic site. Using this form of classification, all proteases have been divided into five groups, 

depending on the residue essential for enzyme activity. These five groups are:

1) Serine peptidases (dependent on a serine residue for catalytic activity)

2) Cysteine peptidases (dependent on a cysteine residue for catalytic activity)

3) Aspartic peptidases (dependent on two aspartic acid residues for catalytic activity)

4) Metallopeptidases (dependent on a metal ion, commonly zinc, for catalytic activity) and

5) Unknown peptidases (of unknown catalytic type)
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Figure 2C.1. Classification of peptidases by type o f reaction catalyzed. Open circles represent 

amino acid residues, and filled circles represent cleaved blocks of residues. Triangles indicate 

blocked termini providing substrates for some of the omega peptidases. Adapted from Barrett, 1994.
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The third classification system is also the most recently introduced (Rawlings and Barrett, 

1993) and was a direct consequence of the enormous amount of gene and genome sequence 

information that have become available since the early 1990’s. This system makes use of the 

structural and evolutionary relationships between different proteases within a specific catalytic type, 

as described above, to classify them into clans and families. A family is defined as a group of 

enzymes in which each member shows evolutionary relationship to at least one other, while a clan 

comprises a group of families for which there are indications of evolutionary relationship, primarily 

from the linear order of catalytic site residues and from the tertiary structure (Rawlings and Barrett,

1993). Thus, each catalytic type was assigned a code (S, C, A, M, or U, for serine, cysteine, aspartic, 

metallo-, and unknown), each clan a letter starting from A, B, C etc and each family a number e.g. 1, 

2, 3, etc.

Using this powerful classification system, the serine proteases were subdivided into clans SA, 

SB, SC, SE, SF and SG (Barrett and Rawlings, 1995), where SA is the chymotrypsins, SB is the
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subtilases, SC the carboxypeptidases, etc. Thus, subtilisin belongs to the peptidase clan SB, family 

S8; also known as the subtilisin-like serine proteases. The first three clans of the serine proteases 

(chymotrypsin, subtilisin and carboxypeptidase) share a common reaction mechanism by all making 

use of a “catalytic triad” of three amino acids: serine (the nucleophile), aspartate (electrophile), and 

histidine (base) (Rawlings and Barrett, 1994). The divisions into the different clans are reflected in the 

arrangement of the catalytic residues in the primary sequence of the proteins, as follows:

S A - H, D, S = Chymotrypsin-like

SB -  D, H, S = Subtilisin-like

SC -  S, D, H = Carboxypeptidase-like 

were H denotes histidine, D denotes aspartate and S denotes serine.

The subtilisin clan (also known as the subtilases or the superfamily of subtilisin-like serine 

proteases) is the second-largest serine protease clan, after chymotrypsin. Over 200 subtilases were 

already known in 1997 (Siezen and Leunissen, 1997), and more are discovered every year (Siezen 

et al., 1991, Siezen and Leunissen, 1997, Brown etal., 2000, Gey van Pittius etal., 2001). This clan 

is subdivided into six separate families, namely the subtilisin family, the thermitase family, the 

proteinase K family, the lantibiotic peptidase family, the kexin family and the pyrolysin family. All the 

members of the subtilases are endopeptidases (or sometimes tripeptidylpeptidases) and are mostly 

found extracellular (in the case of the bacteria) where they nonspecifically cleave proteins and are 

required for either defense or growth on proteinaceous substrates (Siezen and Leunissen, 1997). In 

certain cases, however, members of this clan have developed into highly specialized enzymes of 

biosynthetic pathways where they are involved in processing and maturation of pro-proteins. These 

are the lantibiotic peptidases in the bacteria and the kexin pro-protein convertase family of the higher 

eukaryotes (Siezen and Leunissen, 1997).

To date over 1627 proteases, which can be divided into 42 clans and 220 families, have been 

identified (Merops peptidase database release 5.7, updated 17/12/2001, http://www.merops.co.uk). 

Of these, 131 proteases have been identified in the genomes of members of the genus 

Mycobacterium (M. avium -1, M. fortuitum - 1, M. paratuberculosis - 1, M. smegmatis - 6, M. leprae -
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52, M. tuberculosis - 70). However, only a small number of these mycobacterial proteases have been 

described experimentally. These include the proteases from M. tuberculosis (unknown culture filtrate 

proteases - Reich, 1981, extracellular proteases - Kannan, 1987, elastolytic protease - Rowland, 

1997, FtsH - Anilkumar, 1998, pepA and Rv0983 - Skeiky, 1999, mycosins - Brown, 2000, ESAS-7 - 

Nair et al., 2001), M. smegmatis (DD-carboxypeptidase - Eun et al., 1978, 20S proteasome - Knipfer, 

1997, Ion - Roudiak, 1998, Roudiak and Shrader, 1998), M. avium subsp. paratuberculosis (pepA - 

Cameron, 1994), and M. leprae (cIpC - Misra, 1996). At present, little is known about the diversity of 

mycobacterial proteases, patterns of expression, substrate specificities, specific functions, and 

possible links to pathogenesis.

Mycobacterial proteases may contribute to many of the following mechanisms that are 

essential for the infection process: (1) intracellular nutrition (there is an absence of readily-available 

nutrients in the macrophage for the infecting organism), (2) modification of the host vacuole by 

cleavage of vacuolar proteins (to prevent normal lysosomal fusion with the phagosome), (3) 

modification of other host proteins (e.g. modification of serpins, cytokines, or cytokine receptors), (4) 

modification of mycobacterial proteins (activation of surface or secreted proteins of M. tuberculosis by 

cleavage), (5) modification of host zymogen cascades (coagulation, complement, fibrinolysis), and (6) 

tissue necrosis (lung pathology observed during tuberculosis). As described above, a number of 

studies have linked the secretion or expression of serine proteases on the surface of bacterial cell 

walls to various diseases caused by pathogens. One appropriate example with regard to lung 

disease is the injury and degradation by hydrolysis of the major extracellular matrix components of the 

lungs of patients infected by Aspergillus fumigatus, caused by a serine protease secreted by this 

organism (ladarola et al., 1998). Although it is widely accepted that host-mediated destruction of lung 

tissue is the major factor contributing to the lung pathology associated with advanced tuberculosis 

(Flynn and Chan, 2001), the contribution of extracellularly shedded or secreted proteases of M. 

tuberculosis can not be excluded.

We have previously identified a family of five secreted, cell-wall associated, membrane- 

anchored subtilisin-like serine proteases in the genome of M. tuberculosis H37Rv (Brown et al., 2000). 

These subtilases were named the mycosins, and are the only subtilisin-like serine proteases in the
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mycobacteria (Gey van Pittius et al., 2001). Previously, we have examined whether mycosin-1 

possessed proteolytic activity, using 125l-fibrinogen as a substrate (J.A. Dave et al., submitted for 

publication). Assays of fractions of E. coli or M. smegmatis expressing mycosin-1, as well as purified 

GST-mycosin-1 fusion protein, revealed no protease activity. Propeptide removal is usually required 

for activation of secreted bacterial proteases (Wandersman, 1989, Eder et al., 1993, Eder and Fersht,

1995), but pre-treatment of mycosin-1-expressing M. smegmatis lysates with acidic buffers or limited 

tryptic digestion was not successful (J.A. Dave et al., submitted for publication).

We also examined whether protease activity could be detected in culture supernatants of M. 

tuberculosis, as lower molecular weight isoforms of mycosin-1 were identified in culture filtrates and 

during infection of macrophages (see Addendum 2A). Although highly variable and requiring 

extended (16 -18  h) incubations with substrate, protease activity could be detected in M. tuberculosis 

culture filtrates after growth in Kirchner’s medium for 2 weeks, reaching a maximum after 4 weeks 

(J.A. Dave et al., submitted for publication).

To examine this proteolytic activity further, 125l-fibrinogen was incubated with M. tuberculosis 

GSH-3052 culture filtrate in the presence of a diverse array of class-specific protease inhibitors. The 

effects of different inhibitors provide reliable information for the classification of the catalytic type of a 

peptidase (Barrett, 1994). This analysis revealed that the proteolytic activity was significantly inhibited 

by serine and cysteine protease inhibitors (Figure 2C.2), with strongest inhibition obtained with 

chymostatin (77 ± 14%), ALLN (69 ± 20%), ALLM (66 ± 22%) and PMSF (66 ± 30%)(J.A. Dave et al., 

submitted for publication). Some subtilisins, including mycosin-1, contain a cysteine residue near the 

active site histidine, which renders these enzymes susceptible to some cysteine protease inhibitors 

(Barrett and Rawlings, 1991, Rawlings and Barrett, 1994). Moderate inhibition was also noted with 

3,4-dichloroisocoumarin (38 ± 8%) and EDTA (33 ± 9%), whereas inhibition by other inhibitors was 

variable and generally less than 20%. Inhibition of a protease by a nonspecific chelating agent such 

as EDTA cannot be taken as a reliable indication that the enzyme is a metalloprotease, though, 

because the activity of many peptidases of other types are enhanced and activated by cations, 

notably Ca2+. Such enzymes include members of the subtilisin family (Barret, 1994, Braxton and 

Wells, 1992).
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Figure 2C.2. Degradation o f 125l-fibrinogen by M. tuberculosis culture filtrates and inhibition by 

class-specific protease inhibitors. M. tuberculosis GSH-3052 culture supernatants were assayed 

for proteolytic activity by incubation for 16-18 h with 125l-labeled fibrinogen as described (Shephard et 

al., 1989). Fibrinogen degradation was determined quantitatively by trichloroacetic acid (TCA) 

precipitation. The inhibition of proteolytic activity of M. tuberculosis culture filtrates by class-specific 

protease inhibitors was investigated by addition of each of the following inhibitors to the reaction: (A) 

Serine protease specific inhibitors: 3, 4-DCI (3, 4-dichloroisocoumarin) (1 mM), aprotinin (2 ng/ml) and 

pefabloc (1 mM). (B) Mixed serine and cysteine protease inhibitors: chymostatin (0.2 mM), ALLN (N- 

acetyl-Leu-Leu-norleucinal or Calpain Inhibitor I) (200 ng/ml), ALLM (N-acetyl-Leu-Leu-methional or 

Calpain Inhibitor II) (100 ng/ml), PMSF (phenylmethanesulfonyl fluoride) (1 mM), leupeptin (0.4 mM), 

TPCK (L-1-chloro-3-[4-tosylamido]-4-phenyl-2-butanone) (100 ng/ml) and TLCK (L-1-chloro-3-[4- 

tosylamido]-7-amino-2-heptanone HCI) (100 ng/ml). (C) Cysteine protease specific inhibitor: E-64 (L- 

trans-epoxysuccinyl-leucylamido-[4-guanidino]-butane) (0.05 mM). (D) Aspartic protease specific 

inhibitor: pepstatin A (50 ng/ml). (E) Metallo-protease inhibitors: EDTA (ethylenediaminotetraacetic 

acid) (10 mM), 1, 10-phenanthroline (2 mg/ml) and phosphoramidon (0.09 mM). Results are 

expressed as percent degradation relative to control (no inhibitor) and are the means ± standard 

deviations of four independent experiments. (Reproduced with kind permission from Dr. J.A. Dave, 

Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa).

Percentage degradation
50 100

Inhibitor Serine and Cysteine 

protease inhibitors

Cysteine protease inhibitor

Aspartic protease inhibitor
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Proteolytic activity was enhanced 38% by the addition of 2.5 mM Ca2+ but was unaffected by 

0.1 mM Zn2+. These results suggested that the predominant protease activity in M. tuberculosis 

culture filtrates comprise one or more serine and/or cysteine proteases that are partially Ca2+ 

dependent, but all attempts to purify this activity failed (J.A. Dave et al., submitted for publication).

It has been observed since early in the 1980's that culture filtrates of M. tuberculosis contains 

proteolytic enzyme activity which are able to hydrolyze extracellular tuberculoproteins (Reich et al., 

1981). Serine protease activity has also been observed and two trypsin-like serine proteases (pepA 

or Rv0125 and Rv0983) have been identified recently (Skeiky et al., 1999). To determine the number 

of proteases that could potentially contribute to the proteolytic activity observed in the culture filtrate, 

all possible protease sequences were identified in the M. tuberculosis gene database 

(http://genolist.pasteur.fr/TubercuList/) and are listed in Table 2C.1. This revealed a number of 

proteases with the potential to be secreted into the extracellular milieu of the organism. It is thus 

highly likely that there are many different protease activities present in the culture filtrate, of which the 

majority would belong to the serine and cysteine protease families.

In the present study we aimed to further investigate the protease activity of the mycosins, in 

order to confirm that these proteins are proteases, to identify the optimal conditions for activity and to 

identify possible substrates, and thereby to obtain clues to their potential function.
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Table 2C.1. Potential proteases present in the genome of At. tuberculosis H37Rv*

Rv
Number

Gene
Name

Description and Function
Predicted

transmembrane
region

Predicted signal 

peptide
Predicted localization

Possible protease 
activity in cell wall 
fraction? (Yes/No)

Reference

1 RvO125 pepA probable trypsin-like serine protease 1 X (N - terminal) Yes Secreted ?
Downing et al., 1999 and Skeiky 

eta l., 1999

2 RvO185
unknown (neutral zinc metallopeptidases zinc- 

binding region signature)
None None Cytoplasm

3 RvO198c probable zinc metalloprotease None None Cytoplasm

2X(1 X N - Secreted, C - terminally
4 Rv0291 mycP3 subtilisin-like serine protease terminal, 1 X C - 

terminal)
Yes membrane anchored, enzyme 

domain in cell wall
Yes Brown et al., 2000

5 Rv0319 pep pyrrolidone-carboxylate peptidase None None Cytoplasm

6 Rv0359
unknown (neutral zinc metallopeptidases zinc- 6 X (Whole

Yes
Secreted, integral membrane

binding region signature) length of protein) protein

7 Rv0399c IpqK
possible penicillin binding protein (eg. d-alanyl-d- 

alanine carboxypeptidase protein)
None None Cytoplasm

8 Rv0418 ipqL probable aminopeptidase Y 1 X (N - terminal) Yes Secreted ?

9 Rv0419 IpqM
unknown (neutral zinc metallopeptidases zinc- 

binding region signature)
1 X (N - terminal) Yes Secreted ?

10 Rv0434 unknown (similar to atp-dependent protease la 2 ) None None Cytoplasm

11 Rv0457c probable peptidase None None Cytoplasm

12 Rv0724 sppA endopeptidase IV, signal peptide peptidase None None Cytoplasm
Bolhuis et al., 1999, Suzuki et al., 

1987 and Ichihara et al., 1986

13 Rv0734 map' probable methionine aminopeptidase None None Cytoplasm
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14 Rv0773c 99tA putative g-glutamyl transpeptidase None None Cytoplasm

15 Rv0781 ptrBb protease II, b subunit None None Cytoplasm Kanatani el al., 1992

16 Rv0782 ptrBa protease II, a subunit None None Cytoplasm Kanatani el al., 1992

17 Rv0800 pepC aminopeptidase I None None Cytoplasm Frederick el al., 1993

18 Rv0838 IpqR
unknown (similarity to d-alanyl-d-alanine 

dipeptidase)
None Yes Secreted ?

19 Rv0840c probable proline iminopeptidase None None Cytoplasm

20 Rv0983 probable trypsin-like serine protease 1 X (N - terminal) Yes Secreted ? Skeikyefa/.. 1999

21 Rv1191
unknown (some similarity to proline 

iminopeptidase)
None None Cytoplasm

22 Rv1223 htrA DegP protease serine protease homologue 1 X (internal) None
Membrane anchored, enzyme 

domain in cytoplasm
Kim et al., 1999 and Poquet el 

al.. 2000

23 Rv1539 IspA probable lipoprotein signal peptidase
4 X (whole length 

of protein)
None Integral membrane protein

24 Rv 1577c
unknown (similarity to putative bacteriophage 

HK97 prohead protease (gp4))
None None Cytoplasm

2X(1 X N - Secreted, C - terminally
25 Rv1796 mycP5 subtilisin-like serine protease terminal, 1 X C - 

terminal)
Yes membrane anchored, enzyme 

domain in cell wall
Yes Brown el al., 2000

26 Rv1887
unknown (eukaryotic thiol (cysteine) proteases 

histidine active site at N-terminus)
None None Cytoplasm

27 Rv1922
possible penicillin binding protein (eg. d-alanyl-d- 

alanine carboxypeptidase protein)
1 X (N - terminal) Yes Secreted ?

28 Rv1977
unknown (neutral zinc metallopeptidases zinc- 

binding region signature)
None None Cytoplasm
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29 Rv1983
unknown (Eukaryotic and viral aspartyl proteases 

active site)
None Yes Secreted ?

30 Rv2008c unknown (Signal peptidases I serine active site) None None Cytoplasm

31 Rv2089c pepE probable pepQ, cytoplasmic peptidase None None Cytoplasm

32 Rv2109c prcA proteasome a-type subunit 1 None None Cytoplasm

33 Rv2110c prcB proteasome b-type subunit 2 None None Cytoplasm

34 Rv2141c dapE2
ArgE/DapE/Acy1/Cpg2/yscS family (similarity to 

carboxypeptidase S precursor)
None None Cytoplasm

35 Rv2213 pepB probable pepA, similar to aminopeptidases None None Cytoplasm

36 Rv2223c probable exported protease 1 X (N - terminal) Yes Secreted ?

37 Rv2224c probable exported protease 1 X (N - terminal) Yes Secreted ?

38 Rv2394 ggtB
probable gamma-glutamyltranspeptidase 

precursor
1 X (N - terminal) Yes Secreted ? Shetty e/a/., 1981

39 Rv2457c cIpX
ATP-dependent CIp protease ATP-binding 

subunit CIpX
None None Cytoplasm

40 Rv2460c clpP2 ATP-dependent CIp protease proteolytic subunit None None Cytoplasm

41 Rv2461c cIpP ATP-dependent CIp protease proteolytic subunit None None Cytoplasm

42 Rv2467 pepD probable aminopeptidase None None Cytoplasm

43 Rv2515c
unknown (neutral zinc metallopeptidases zinc- 

binding region signature)
None None Cytoplasm

44 Rv2535c pepQ probable pepQ cytoplasmic peptidase None None Cytoplasm

45 Rv2575
unknown (neutral zinc metallopeptidases zinc- 

binding region signature)
1 X (N - terminal) None

Membrane anchored, enzyme 
domain in cytoplasm

46 Rv2625c unknown (neutral zinc metallopeptidases zinc- 6 X (N - temiinal) None Integral membrane protein, C-
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binding region signature) terminus in cytoplasm

47 Rv2651c
unknown (similarity to putative bacteriophage 

HK97 prohead protease (gp4))
None None Cytoplasm

48 Rv2667 clpX1
similar to ATP-dependent CIpC protease from M. 

leprae but shorter
None None Cytoplasm

49 Rv2672 putative exported protease 1 X (N - terminal) Yes Secreted ?

50 Rv2725c hfIX
hflA bacterial membrane-bound ATP-dependent 

protease GTP-binding protein
None None Cytoplasm Noble el al., 1993

51 Rv2782c pepR probable protease None None Cytoplasm

52 Rv2861c map methionine aminopeptidase None None Cytoplasm

53 Rv2870c
unknown (zinc carboxypeptidases, zinc-binding 

region2 signature)
None None Cytoplasm

54 Rv2903 lepB signal peptidase 1 1 X (N - terminal) None
Membrane anchored, enzyme 

domain in cytoplasm

55 Rv3207c
unknown (neutral zinc metallopeptidases zinc- 

binding region signature)
1 X (N - terminal) Yes Secreted ?

56) Rv3305c amiA
probable N-acyl-L-amino acid amidohydrolase or 

peptidase
None None Cytoplasm

57 Rv3306c amiB probable aminohydrolase None None Cytoplasm

58 Rv3365c
unknown (neutral zinc metallopeptidases zinc- 

binding region signature)
2 X (N - terminal) Yes

Secreted, N-terminally 
membrane anchored, enzyme 

domain in cytoplasm

59 Rv3419c gcp glycoprotease None None Cytoplasm

60 Rv3449 mycP4 subtilisin-like serine protease
2 X (1 X N - Secreted, C - terminally

terminal, 1 X C - Yes membrane anchored, enzyme Yes
terminal) domain in cell wall

Brown el al., 2000
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61 Rv3596c cIpC
probable ATP-dependent Clp protease ATP- 

binding subunit
None None Cytoplasm

Secreted, N-terminally
62 Rv3610 ftsH membrane bound ATP-dependent zinc protease 2 X (N - terminal) Yes membrane anchored, enzyme Makino et al., 1999

domain in cytoplasm

63 Rv3626c
unknown (neutral zinc metallopeptidases zinc- 

binding region signature)
None None Cytoplasm

64 Rv3668c probable alkaline serine protease 1 X (N - terminal) Yes Secreted ?

65 Rv3671c probable trypsin-like serine protease 4 X (N - terminal) None
Integral membrane protein, C- 

terminus in cytoplasm

66 Rv3836
unknown (neutral zinc metallopeptidases zinc- 

binding region signature)
None None Cytoplasm

2 X (1 X N - Secreted, C - terminally
67 Rv3883c mycP1 subtilisin-like serine protease terminal, 1 X C - 

terminal)
Yes membrane anchored, enzyme 

domain in cell wall
Yes Brown et al., 2000

2X(1 X N - Secreted, C - terminally
68 Rv3886c

CM
CL£E subtilisin-like serine protease terminal, 1 X C - 

terminal)
Yes membrane anchored, enzyme 

domain in cell wall
Yes Brown et al., 2000

* Obtained by searching Tuberculist website (http://genoiist.pasteur.fr/TubercuList/) with the terms protease, proteinase and peptidase.
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2C. 2.1. Bacterial strains and plasmids

Escherichia coli JM109 was used as a host for the expression of recombinant mycosin fusion 

proteins and Mycobacterium smegmatis mc2155 (Snapper et al., 1990) as a heterologous host for the 

expression of the cloned full-length M. tuberculosis mycosins. The construction of the plasmids 

containing the mycosin fusion proteins (pGex-P1, pMalC-P2 and pGex-P3) as well as the native 

mycosin clones for expression in M. smegmatis (p19K-P1, p19K-P2RBS and p19K-P3) was described 

by Brown et al. (2000)(Chapter 2). M. tuberculosis H37Rv (laboratory strain; ATCC 25618) and M. 

tuberculosis clinical isolate GSH-3052 (from a pleural effusion)(Cywes et al., 1997) were used for the 

characterization of the natively expressed mycosins. The clinical isolate was a gift from Dr. J.A. Dave 

(Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa) and was originally 

obtained from the Bacteriology Laboratory, Department of Medical Microbiology, Groote Schuur 

Hospital, Cape Town, South Africa.

2C.2.2. Media and culture conditions

E. coli was grown on solid or liquid Luria-Bertani (LB) medium as described by Sambrook et 

al. (1989). Mycobacterial strains were grown at 37°C for 2 days with shaking (200 rpm, M. 

smegmatis) or 14 days with stirring (M. tuberculosis) in Middlebrook 7H9 broth (Difco) supplemented 

with filter-sterile ADC (0.5% BSA, 0.2% glucose, 0.015% catalase) and containing 0.05% Tween 80 

(Sigma). For the M. tuberculosis clinical isolate GSH-3052 fractionation samples, 100 ml of 

Kirchener’s medium (3 g/l Na2HP04, 4 g/l KH2P04, 1.07 g MgS04.7H20, 2.5 g/l Tri-sodium citrate, 

20% glycerol, 5 g/l asparagine) was inoculated with the M. tuberculosis GSH-3052 and incubated with 

stirring for 4 weeks at 37°C. All work on M. tuberculosis H37Rv and M. tuberculosis clinical isolate 

GSH-3052 was done in a Biosafety Level III facility. Hygromycin (100 |ig/ml, Roche) and Ampicillin 

(50 j.ig/ml, Roche) were added to bacterial cultures when antibiotic selection was required. For plate 

activity assays on solid media, M. smegmatis were grown on Middlebrook 7H11 agar supplemented 

with filter-sterile OADC (0.005% oleic acid, 0.5% BSA, 0.2% glucose, 0.02% catalase, 0.085% NaCI) 

and containing 0.05% Tween 80 (Sigma) as well as 0.025 g/ml skim milk powder.

2C.2. Materials and Methods
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2C.2.3. Protease activity assays sample preparation

For protease activity assays involving purified recombinant mycosins, purified proteins were 

obtained as described in Brown et al. (2000). During the purification and preparation all protease 

inhibitors were omitted. For the other activity assay samples, mycobacterial cultures (10 ml) were 

grown to an optical density of 1. The cells were pelleted by centrifugation, resuspended in 500 ^l 

phosphate-buffered saline (PBS) and 1% NP40 and either sonicated at 4.5 setting in a Misonix cup 

sonicator on ice for a total of 5 minutes (15-second bursts with 30-second intervals), freeze-thawed 

(15 x in liquid nitrogen) or fast-prepped (with glass-beads - 6.5 power for 45 seconds) to disrupt the 

cells without denaturing the proteases.

For the PepTag assays, in addition to the samples described above, another set of samples 

was prepared by immunoprecipitation of native mycosin-2 from M. smegmatis expressing mycosin-2. 

Polyclonal positively- and negatively-selected anti-mycosin-2 antisera (Brown et al., 2000, Chapter 2) 

were absorbed to Protein A sepharose beads at 4°C for 1h with rotation. The beads were washed 

with phosphate-buffered saline (PBS), pelleted by centrifugation, and the mycosin-2 expressing M. 

smegmatis lysate was added to the sample. This was allowed to immunoprecipitate at 4°C overnight 

with rotation. The immunoprecipitate was washed four times with PBS and used in the PepTag 

protease assays. Presence of the absorbed proteins was determined by separation of the samples 

on SDS-PAGE and subsequent Western blot analyses. Similarly, a vector-expressing M. smegmatis 

lysate was immunoprecipitated to act as a negative control.

For the M. tuberculosis clinical isolate GSH-3052 fractionation samples, the culture was 

centrifuged at 3000 x g for 20 minutes, after which the supernatant was removed. The supernatant 

contained the culture proteins and was filtered through 1.0, 0.45 and 0.22 micron filters, dialyzed at 

4°C overnight against PBS and concentrated with Centriprep concentrator (Amicon). The pellet was 

resuspended in 2 ml PBS and ribolyzed (6.5 power for 45 seconds). After standing for 10 minutes on 

ice, the sample was centrifuged for 20 minutes at low speed to remove unbroken cell residues. 

0.33% NP40 was added to the pellet, which contained the whole cell lysate fraction. The supernatant 

was filter sterilized through a 0.22 micron filter, subfractionationated, and centrifuged twice for 1h at 

27 000 x g, whereafter the pellet contained the cell wall fraction. The pellet was resuspended in PBS
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containing 0.33% NP40. The supernatant was further centrifuged at 100 000 x g for 2 hours and the 

resulting pellet contained the membrane fraction while the supernatant contained the cytosol. The 

pellet was resuspended in PBS containing 0.33% NP40 and 0.33% NP40 was also added to the 

cytosol. Sodium azide (5 mM NaN3) was added to all samples to prevent microbial growth. As there 

is no available marker to test for the purity of the mycobacterial fractions, the fractions were assayed 

using three enzyme assays, namely isocitrate dehydrogenase (a marker for cytoplasmic proteins), 

catalase (a marker for cell surface proteins) and aminopeptidase (a marker for extracellular proteins).

During all assays, between 1 and 10 ng of purified commercial subtilisin (Roche), proteinase 

K (Roche), trypsin (Roche) or alkaline protease (Promega) was used as a positive control, depending 

on the specific assay. Unless stated otherwise, samples were assayed in the presence of calcium (10 

mM CaCI2) at all times, while magnesium (10 mM MgCI) and zinc (0.1 mM ZnS04) was also added in 

certain cases to determine the effect of metal ions. To determine the effect of pH and temperature, 

assays were incubated at different temperatures and under different buffer conditions. In an attempt 

to activate the zymogens, some of the samples were either subjected to limited proteolysis (with 

commercial subtilisin), low pH treatment (pH 3.3), the addition of dithiothreitol (DTT, 10mM), or by 

heat activation (65°C).

2C. 2.4. Plate protease activity assays

Plate activity assays depend on the radial diffusion of proteolytic enzymes secreted from 

bacterial colonies into agar containing skim milk as substrate. This results in cleared zones 

surrounding the colonies, which is the result of the proteolysis of the skim milk proteins. Plates were 

prepared by adding sterile skim milk solution in H20  to autoclaved agar medium (LB for E. coli and 

Middlebrook 7H11 for M. smegmatis). E. coli expressing the mycosin fusion proteins, as well as M. 

smegmatis expressing wild type mycosins were assayed by spreading the bacteria onto the skim milk 

agar plates and incubating at 37°C for the desired time interval. Results were visually evaluated by 

the clearing of zones surrounding the bacterial colonies.
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2C.2.5. Zymogram protease activity assays

Protease activity was assayed by zymography by applying samples to a 10% SDS- 

polyacrilamide gel containing co-polymerized gelatin or casein (1 mg/ml) as described by Heussen et 

al. (1980). After electrophoresis at 4°C (to prevent autodigestion), SDS was removed by successive 

washes in 2.5% (w/v) Triton X-100 in distilled H20  for 20 minutes, 2.5% (w/v) Triton X-100 in 50 mM 

Tris-HCI (pH 7.4) for 20 minutes, and 50 mM Tris-HCI (pH 7.4) for 20 minutes. The gel was then 

incubated overnight at 37°C in 50 mM Tris-HCI (pH 7.4), fixed in 10% methanol / 10% acetic acid for 

10 minutes, stained with Coomassie brilliant blue R-250 followed by destaining with 10% methanol / 

10% acetic acid until the proteolytic band was observed.

2C.2.6. PepTag protease activity assays

This commercial assay (Promega) makes use of two fluorescent dye-linked peptides, the A1 

peptide (Dye-L-R-R-A-S-L-G) and C1 peptide (Dye-P-L-S-R-T-L-S-V-A-A-K), as substrates for 

proteases. Proteolytic cleavage of the peptides changes the peptide's mobility in an agarose gel by 

altering the peptide's net charge and size. This system detects picogram quantities of proteases in 

solution after a 30 minute incubation, followed by a 15-30  minute agarose gel electrophoresis. The 

assay was done according to the manufacturer’s conditions. Briefly, 3 (xl of either peptide was added 

to the sample to be tested. For a negative control, sample was added to buffer only, while alkaline 

protease (20 - 100 ng) was added to another sample for a positive control. The samples were 

incubated under the required conditions, whereafter 1 îl of 80% glycerol was added and the samples 

were analysed by agarose gel electrophoresis.

2C.2.7. FITC-casein protease activity assays

The fluorescein isothiocyanate-labeled casein (FITC-casein) assay for proteolytic enzyme 

activity was done essentially as described by Twining (1984). Briefly, 20 |il of 0.5% FITC-labelled 

casein (Sigma) was added to 20 jj.I of a desired assay buffer (depending on pH being measured). The 

reaction mixture was completed by adding 10 (J.I of protease sample and were incubated at 37°C for 1 

hour, after which 120 nl of 5% TCA were added. The sample was left to stand at room temperature 

for 1h and centrifuged for 5 minutes in a microfuge to sediment the TCA-insoluble protein. A 60 |il
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aliquot of the supernatant was diluted to 1 ml with 500 mM Tris-HCI (pH 8.5) and the fluorescence 

was measured in a flourometer at excitation 490 nm and emission 525 nm.

2C.2.8. Azo-casein protease activity assays

For the azocasein protease activity assay, 20 nl of the protease sample was added to a 460 

|j.l 50 mM Tris-HCI buffer (pH 7.5). 20 nl of a 5% azocasein (Sigma) solution in 0.2 M Tris-HCI (pH 

7.5) and containing 1 mM CaCI2, was added to the mixture and incubated for 30 minutes at 37°C. 

After incubation, 500 |il of 10% trichloroacetic acid (TCA) was added, the mixture was incubated for 

15 minutes on ice, and the sample was centrifuged for 2 minute at maximum speed in a microfuge. 

The supernatant was removed and 800 nl of the supernatant was added to 200 nl 1.8 N NaOH, 

whereafter the optical density was read at 420 nm.

2C.2.9. Gene sequence analyses

Annotations, descriptions and protein sequences of individual genes from the M. tuberculosis 

H37Rv genome were obtained from the publicly available genome sequence database for M. 

tuberculosis H37Rv (http://genolist.pasteur.fr/TubercuList/). Protein sequences of the five mycosins 

(Rv3883c, Rv3886c, Rv0291, Rv3449, and Rv1796) as well as the Bacillus sp. NKS-21 subtilisin 

ALP1 (Genbank accession number D29736) were aligned using ClustalW 1.5 on the ClustalW WWW 

server at the European Bioinformatics Institute website (http://www2.ebi.ac.uk/clustalw/; Thompson et 

al., 1994). These protein sequences were visually analysed for common subtilase residues and 

motifs and primary structural features according to Siezen and Leunissen (1997).
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2C.3.1. Plate protease activity assays

Colonies of E. coli expressing recombinant mycosin-1, -2 and -3 fusion proteins were grown 

on LB agar containing skim milk powder as a protein source. No cleared zones were detected on 

these plates, indicating that no proteins containing protease activity were secreted. A similar assay 

was done using M. smegmatis heterologously expressing the native M. tuberculosis mycosin 

proteases and grown on Middlebrook 7H11 agar containing skim milk as protein substrate. Once 

again, no secreted protease activity could be detected.

2C.3.2. Zymogram protease activity assays

Samples were tested for protease activity by zymogram analysis, by separating the samples 

on an SDS-PAGE gel co-polymerized with either casein or gelatin. Renaturation and incubation in the 

desired assay buffer should result in a clearing in the gel surrounding the separated protease protein 

band. Although various parameters were changed during these analyses (pH, temperature, length of 

incubation, non-denaturing, calcium etc.), no protease activity of the right molecular size could be 

detected in any of the samples. This was not due to the assay not working, as the control enzyme 

resulted in a clear zone in each case (results not shown). In certain instances, enzyme activity of a 

much larger size than the expected was obtained (Figure 2C.3). As this activity was obtained in both 

the control lysate and the test lysate, it was clear that this was due to another protease expressed by 

M. smegmatis.

2C.3.3. PepTag protease activity assays

The protease activity of various samples was assayed using the extremely sensitive 

commercial PepTag protease activity assay system. No protease activity could be detected for any of 

the recombinant mycosin fusion proteases (Figure 2C.4A). Although protease activity could be 

detected in wild-type M. smegmatis and mycosin-expressing M. smegmatis whole cell lysate samples, 

these activities could never be attributed to the mycosins as such, as the activity was in most cases 

observed in both lysates (see for example Figure 2C.4B).

2C.3. Results and Discussion
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Figure 2C.3. Zymogram protease activity assays. Samples tested for protease activity by 

zymogram analysis were seperating on SDS-PAGE gel co-polymerized with either casein or gelatin. 

Protease activity is detected by clear bands on stained gels. Lanes (1) Wild type M. smegmatis whole 

cell lysate as control, (2) whole cell lysate of M. smegmatis expressing mycosin-2. A clear band 

showing native background M. smegmatis protease activity is indicated by an arrow.

200-

Figure 2C.4. PepTag protease activity assays. Two fluorescent dye-linked peptides (A1 and C1)

were used as substrates for detecting protease activity. Proteolytic cleavage of the peptides changes 

the mobility in an agarose gel by altering the peptide’s net charge and size. (A) Assay using purified 

recombinant mycosin fusion proteins. Lanes (1) control uncleaved peptide, (2) Alkaline protease 

positive control, (3) GST fusion partner protein, (4) MBP fusion partner protein, (5) mycosin-1-GST, 

(6) mycosin-2-MBP, (7) mycosin-3-GST. (B) Assay using culture supernatants of wild-type M. 

smegmatis and M. smegmatis expressing mycosin-2. Lanes (8) control uncleaved peptide, (9) 

Alkaline protease positive control, (10-16) wild-type M. smegmatis and mycosin-2 expressing M. 

smegmatis whole cell lysates alternately loaded in decreasing concentrations from 910 ng/ml to 1 

ng/ml.
1 2 3 4 5 6 7 891011 12 13141516

« • * * A1 peptide

A

C1 peptide

B

♦  Atft
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2C.3.4. FITC-casein protease activity assays

FITC-casein protease activity assays were done on different samples and results were 

measured using a fluorometer. The results of one of the analyses are indicated in Table 2C.2 and 

reveals that although high levels of activity could be detected with the control subtilisin, no activity 

could be detected in any of the other samples.

Table 2C.2. FITC-Casein protease activity assay

Sample whole cells lysate low pH

subtilisin control (10ng) 883.1 849.1 848.1

p19kDpro vector control 0 4.1 0

p19K-P1 (mycosin-1) 0.1 0 0

p19K-P2 (mycosin-2) 0 2.1 0

p19K-P3 (mycosin-3) 0 0 4.1

All results are arbitrary and are calculated as actual reading - blank (31.9 in this assay).

2C.3.5. Azo-casein protease activity assays

Azocasein was used as a substrate for the final protease activity assays using different 

samples including the M. tuberculosis clinical isolate GSH-3052 fractionation samples. Once again, 

no protease activity could be attributed to the recombinant mycosins. Experiments were also carried 

out to complement the activity of M. smegmatis to comparable levels of M. bovis BCG (which contains 

one extra mycosin). Protease activity could be detected in all the samples tested, with higher levels of 

protease activity in the M. smegmatis cells expressing mycosin-1 and 3 (comparable to the activity of 

M. bovis BCG). However, these differences were not significant as only low levels of protease 

activity, comparable to wild-type M. smegmatis cells, were detected in M. smegmatis cells expressing 

mycosin-2 (Table 2C.3).
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Table 2C.3. Azocasein protease activity assays

Sample O D 4 2 o

M. smegmatis cells 0.529

p19K-P1 cells 1.405

p19K-P2 cells 0.060

p19K-P3 cells 1.407

M. bovis BCG cells 1.695

E. coli JM109 cells 0.224

To summarize, the protease activity assays done in the present and previous studies clearly 

demonstrates the presence of serine protease activities in mycobacterial whole cell lysates as well as 

culture filtrates. However, these activities could not be attributed to the mycosins per se as no 

differences could be detected between controls and test samples. Furthermore, the recombinant 

mycosin fusion proteins did not show any protease activity under any of the conditions tested. It was 

thus concluded that these proteases must require a specific substrate or conditions for activity.

2C.3.6. Gene sequence analyses

To obtain clues for the elucidation of the function and substrate specificity of the mycosin 

proteases, and to look for structural reasons that could explain why no protease activity could be 

detected in any of the assays, we did a complete sequence analysis of the protein sequences of all 

five the mycosin proteases, according to the common subtilase motifs as described by Siezen and 

Leunissen (1997). A multiple sequence alignment of the mycosin proteases are presented in Figure 

2C.5.

The five mycosins of M. tuberculosis are more closely related to each other than to any other 

known subtilase sequence, and therefore they must have evolved from each other through gene 

duplication. All members contain an N-terminal signal sequence with a signal peptidase I cleavage 

site (AxA//x) as well as a C-terminal hydrophobic domain, followed by a short positively charged 

segment, that could act as a transmembrane anchor (Figure 2C.5, Figure 3A.8).
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Figure 2C.5. Conserved features of the mycosins. A multiple sequence alignment of the five 

mycosin subtilisin-like serine proteases and Bacillus sp. NKS-21 subtilisin ALP1 (Genbank accession 

number D29736) showing the catalytic triad residues (D90, H121 and S332, mycosin-1 numbering; 

indicated by asterisks and in red). Conserved and semi-conserved residues are indicated in light 

grey. The putative signal peptide and pro-region cleavage sites are indicated by arrows. Conserved 

cysteine residues are indicated in green, acidic residues in or near substrate binding sites are 

indicated in yellow and the oxyanion-hole residue (N237, mycosin-1 numbering) is indicated in dark 

blue. Light blue residues indicate hydrophobic residues of the membrane anchor and purple residues 

the hydrophilic basic residues forming the positively charged segment of the membrane anchor. The 

proline-rich linker region is indicated (prolines are indicated in dark grey).
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mycosinl
mycosin2
mycosin3
mycosin4
mycosin5
alpl

mycosinl
mycosin2
mycosin3
mycosin4
mycosin5
alpl

mycosinl
mycosin2
mycosin3
mycosin4
mycosin5
alpl

mycosinl
mycosin2
mycosin3
mycosin4
mycosin5
alpl

mycosinl
mycosin2
mycosin3
mycosin4
mycosin5
alpl

inycosinl
mycosin2
mycosin3
mycosin4
mycosin5
alpl

mycosinl
mycosin2
mycosin3
mycosin4
mycosin5
alpl

Signal peptide Putative pro-region
cleavage site cleavage site

Signal peptide I Pro-region
-------- MHRIFLITVALAiLTASP----- JVSJUTPBP------- IDPGALPPDVT - GPDQPTEQSVL|AS PTTL - PG S : 58
-MASPLNRPGLRAAAASAALTLVAI.SANV--PAAQAIPPPS------- VDPAMVPADARPGPDQPMRRSNS|STPITV-RNP : 71

QPTB^WL|ASP

--------------- MXRAAFACLAATVWAGWWT--PPAWAIGPPV------- VDAAAQP PS GDPGPVAPMEQRGA§SVS GVI - PGT : 63
---------- MTTSRTLBLLVVSALAILSGL0TPV--- AHAVSPPP------- IDERWLPESALPAPPRPTVQREVfTEVTAE-SGR : 66
--- MQRFGTGSSRSWCGRAGTATIAAVLLASGALTGLPPAYAISPPT------- IDPGALPPDGPPGPLAPHKQNAYJTEVGVL - PGT : 77
MNLQKIRSALKVKQSALVSSLTILFLIMLVGTTSANGAKQEYIiIGFNSDKAKGLIQNAGGEIHHEYTEFEVIYAEIjPEAAVSGLKNNPHI

GPHD P--------- PWSNTYLGVADAH KTA- TGAGVTVXVlfTGVDAS PRVPAE P - GGDFVD QAGNGLSD§DA§GTLTAS IXAGRPAP -
DVAQL--------- APGFNLVHISKAWQYS - TGNGVPVAVXfTGVS PNPRLPWP-GGDYIMG-EDGLSD§DA§OTWS SIIAAAPLGI
DPGVP--------- TPSQTMLHI,PAASJQFS-RGEG<JLVAIlfrGVQPGPRlPNVDAGGDFVES-TDGLTDp)G§GTLVAGXVAGQPGN-
AFGRA--------- E RS AQLADLDQ VWRiT - RGAGQRVAVl|TGVARHRRiP KWAGGDYVFT - GDGTADfDAfGTLVAGI IAAAPDAQ
DFQLQ--------- PKYMEMLKLNEAWQrG-RGDGVKVAVl|TGVTPHPRLPRLIPGGDYVMAGGDGlSDiMfGTLVASMIAAVPAHG
DFIEEHEEVEIAQTVPWGIPYIYSDWHRgGYFGNGVKVAVLgTGVAPHPDLHIRG-GVSI'IST-ENTYVDYNG§gTHVAGTV3^AmNS-

Enlarged Ca1 calcium-ion binding region

LPMPRAMPATAAFPPPAGPPP--- VTAAPAPPVEVPPPMPPPPPVTITQTVAPPPPPPEDAGAMAPSNGP-

AVPLPS VPRRPVTIPTTETP PP PQTVTLS PVP PQTVTVIPAP PPEEGVP PGAPVPGPEP PPAPGPQP PAVDRGGGTVTVPS YSGGRKIAP

135
148
140
144
156
177

215

246

Enlarged mycosin substrate Enlarged mycosin substrate
binding region el binding region elll

--------------1 i i i---
------------------ TDGFVGVAPDARIiSLRQTSEAFlPVGSQANPNDPNATPAAGSIRSIARAWHAAKLGVGVINISEAAfYK : 206
-PDPQTEDEPAVPPPPPGAPDGWGVAPHATIISIRQSSRAFIPVNPSSAGPNSDIKVKAGTIJ>SVARAWHAANMGAKVXHTSVTA§LP : 304
------------------- DGFSGVAPAARLLSIRAMSTKF-- SPRTSG(3>PQLAQATLDVAVLAGAIVHAADLGAKVTHVSTITfLP : 207
------------------ SDNFSGVAPDVTLISIRQSSSKFAP--- VG- -DPS -STGVGDVDTMAKAVRTAADLGAS VINISS IA§VP : 208
IDNPRNPHPSAPSPALGPPPnArSGIAPGVEIISIRQSSQAFGLKDPYTGDEDPQTAQKlDNVITMARAXVHAAHMGASVIHISDVI^tS : 336
--------------- --- YqVÎ 3VAPGAEX.YAVKVLDRU^---------------- SGs)lASIAQGXEW»MHNmg>IAlB^LGs|--g : 228

_______  Enlarged kexin-like region

VSRPIDETSXfGRSIDYAVNVKGVWWAAfifFGG----- DfVQHPAPDPSTPGOPRGHNNVQTWTPAJ»YAPI.VI,SVGGIG<2TGMP-SS
AAAPGDQRVLGAALWYAATVKDAVXVAAAG|DGE---- AGfGNNPMYDPLDPSDPRDWHQVTWSSPSWFSDYVXSVGAVDAYGAA-LD
ADRMVDQAAI,GAAIRYAAVDKDAVXVAAAGfTGASGSVSAS|DSHPLTDLSRPDDPRNWAGVTSVSIPSWWQPYVI,SVASLTSAGQP-SK
AAAAPDDRALGAALAYAVDVKHAVrVAAAQfTGGA--- AQf----- PPQAPGVTBD --SVTVAVS PAWYDDYVLTVGSVNAQGEP-SA
ARHVIDQRALGAAVHYAAVDKDAVXVAAAG-DGSKK--- DfKQNP IFDPLQPDD PRAWNAVTTWT PSWF HD YVLTVGAVDAHGQ PL S K
SGS--- TTLQLAADRARNAG-VLLIGAAGfSGQ--------------------- Q — GGSNNMGYPARYAS -VMAVGAVDQNGNR-AN

289
388
296
285
421
287

FSMHGPWVDVAAPAEMVAI.GDT3S--PVHALQG-- REGPVPIAGTjFAAAYVSGLAALLRQRFPDLTPAQIIHRXTATARHPGGGVDD : 374
KSMSGPWVGVAAPGTHIMGLSPQGG-GPVHAYPPSRPGEKNMPFWGTfFSAAYVSGVAALVRAK»PEI,TAYQVlHRIVQSAHMPPAGVDS : 477
FSMPGPWVGIAAPGEHIASV3NSGDGALAHG£PDA--HQKLVALS<H^YAAGYVSGVAAI,VRSRYPGMATEWRKLTATAHRGARESSH : 384
FTLAGPWVDVAATGEAVTSltSPFGD-GTVNRIiGG-- QHGSIPISGTfYAAPWSGLAALIRARFPTLTARQVMQRIESTAHHPPAGWDP : 371
MSIA0EV9VSXSAPGTDWGLSPROD-<3£iIHAXDGP— DNSLLVPAGTjFSAAIVSGVAALVRAKFPELSAYQIINRLIHTARPPARGVDN : 508

: FSSYGSE1EIMAPGVHINSTY----- LNNGYRS-------- LNGT^1ASPHVAGVAALVKQKHPHI,TAAQXRHRMNQTAIP --LGHST : 360

LVGAGVXDAVAAX.XnDI^G$ASAfYNVRRLi^VVE|G|--- DRS^ tH H H gItH qIg4 H H aI'S|- -|-----
KLGYGLVD P VAALTFNIP S GD RMABGAQ SRVIT EAAPPP PP-- DH9|RIl|BGM t rGH i ^ B GS LH x~ ~l-----
IVGAGNLDAVAALTWQLPAEPGGG--- MpAK|VAD|fV|A|KDTT|RN^B4iHsI K M P l̂ I H ~  “BEPTE-
LVGNGTVDALAAVSSDSIPQAGTATSDPAP,VAVtVCRRSTIiGt>SDRR(HTdGHHHHBTV4sB L|PG|NGIAGD
QVGYGWDPVAALTWDVSKGSAEPB- - -KQLSAFLWf Q|»APRI|HP,B B G<3B GI M GGM G1E1 IB B - SB0Q- —
: YYGHGLVDAEYAAQ--------------------------------------------------------------------

446
550
461
455
585
374

Proline-rich linker 
region

Hydrophobic membrane anchor region 
followed by positively-charged section
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All the mycosins contain the subtilase conserved active site residues Asp-His-Ser (Figure 

2C.5, indicated by asterisks and highlighted in red). It is commonly accepted that if a protein includes 

at least two of the three active site signatures, the probability of it being a serine protease from the 

subtilase family is 100% (PROSITE database, http://www.expasy.org/prosite/, Bairoch, 1991). In 

addition to the catalytic triad, the regions displaying the highest percentage of conservation all 

correspond to the 3D structurally conserved core of the subtilases, so the overall macromolecular 

structure should be consistent with the structures of subtilisin or thermitase (Siezen and Leunissen, 

1997). Four of the five mycosins also display the conserved asparagine residue at the oxyanion hole 

(highlighted in dark blue in Figure 2C.2), with only the oxyanion hole residue in mycosin-5 being 

substituted by an aspartic acid (D367, mycosin-5 numbering). In all subtilisins, the oxyanione hole is 

formed by the active site residue serine and the residue asparagine-262 (preprosubtilisin BPN’ 

numbering). The N-residue (in a conserved segment AAGN) helps to stabilize the oxyanion 

generated in the tetrahedral transition state (Carter and Wells, 1990). There is only one other known 

exception where the conserved asparagine residue is substituted, and this is in the mammalian furin 

known as PC2 (which form part of the PC2 subgroup of the kexin family)(Siezen and Leunissen, 

1997). This protease has an aspartic acid residue (D) in the place of the Asn-262 in the oxyanione 

hole, which is the same substitution that is observed in mycosin-5. This substitution was shown not to 

influence the catalytic efficiency of the pro-protein processing protease PC2 (Zhou et al., 1995).

In Gram-positive bacteria extracellular proteins normally contain NH2-terminal signal peptides 

that direct the protein to the membrane for secretion (Pugsley and Schwartz, 1985, Pugsley, 1993). 

This is also the case for all secreted or extracellularly located proteases (Wong and Doi, 1986, Power 

et al., 1986). In addition to this, all known cellular and bacterial proteolytic enzymes are produced as 

inactive precursors (zymogens), containing an additional polypeptide segment (pro-sequence) located 

C-terminally to the signal sequence (the pre- sequence), that needs to be auto- or transproteolytically 

cleaved off to reveal active enzyme (Khan and James, 1998). Activation is rapid and irreversible and 

the cleaved activation segment is usually degraded by the activated enzyme. This propeptide has 

several functions including: (1) inhibiting and maintaining the protease inactive, (2) promoting correct 

folding of the protease and stabilizes the protein, (3) alters protease specificity, (4) act as an anchor in 

the membrane, and (5) potentially plays a role in secretion (Ikemura et al., 1987, Baker et al., 1992,
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Eder and Fersht, 1995). Almost all extracellular subtilases also have, in addition to the signal peptide, 

a propeptide that is (auto)proteolytically cleaved to obtain active enzyme (Eder et al., 1993, Hu et al.,

1996). If another mycobacterial protease is required for this maturation step, this may explain why the 

recombinant mycosins expressed in E. coli are inactive. The mycosins have a fairly short predicted 

propeptide of about 30 - 40 residues (instead of the normal 70 aa), and the first part of the predicted 

propeptide has 5 - 6  conserved prolines, which is very unusual. This highly conserved region of the 

propeptide ends just before the cysteine residue at position 68 (mycosin-5 numbering, Figure 2C.5).

There are only four totally conserved cysteines in all five mycosins (something which is not 

normally found in bacterial subtilisins; highlighted in green in Figure 2C.2), which is highly significant 

and suggests two conserved disulfide bridges (S-S). As extracellular enzymes of the Gram-positive 

bacteria rarely contain disulfides, it is hypothesized that these proteases may be secreted (due to the 

signal peptide) and then subsequently situated inside the cell wall of the organism. Disulfide bridges 

can contribute to the overall stability of the protein, and two disulfide bonds are also found in the 

subtilases of the kexin/furin family of proprotein processing proteases (Van de Ven et al., 1990, 

Siezen et al., 1994). Thus, the first conserved cysteine would be part of the mature enzyme, and not 

part of the cleaved propeptide, which suggests that the propeptide is cleaved just before this first C- 

residue, probably directly after the partially conserved TEQR/MEQR/TVQR/MKQN sequence (Figure 

2C.5). This first C-residue would hold the new N-terminus closely bound to the mature enzyme after 

propeptide cleavage, making degradation of the protease by aminopeptidase activity virtually 

impossible. The positions of the conserved C-residues signify a disulphide bridge between the third 

and fourth C-residues (residue 334 and 373, mycosin-5 numbering) because these domains normally 

interact to contribute to the formation of the S1 substrate binding pocket (see Figure 2C.7, residues 

129 and 160, subtilisin BPN' numbering). The first C-residue must therefore link to the second 

residue situated close to the catalytic active site residue histidine. Reducing agents in the protease 

activity assay buffer may therefore inactivate the enzymes by reducing these S-S bridges. The 

eukaryotic proprotein processing subtilases (kexin/furin-type subtilisins) also contains a cysteine near 

the active site histidine (although on the other side of the histidine) that confers a requirement for thiol 

activation to these enzymes (Rawlings and Barrett, 1994). Although thiol activation was attempted in 

the mycosin activity assays, this did not result in protease activity. It was previously observed that
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although only one fragment is likely to possess the transmembrane anchor, both mycosin-2 fragments 

were present in the cell wall/membrane fraction when heterologously expressed in M. smegmatis 

(Brown et al., 2000). The localisation of both fragments in the membrane of M. smegmatis indicates 

that the two fragments are associating in some way but the disulphide linkages between the two 

fragments could not be detected by analysis on non-reducing SDS-PAGE (data not shown).

There are several large amino acid sequence insertions into loop regions of the mycosins, 

probably classifying these subtilases in the pyrolysin subfamily of subtilases (a heterogeneous group 

of low sequence conservation and characterized by large insertions, Siezen and Leunissen, 1997). 

These are unusually rich in proline, and most of the prolines seem to occur in the extra loop regions, 

suggesting low flexibility of these loops and possibly reduced susceptibility to proteolysis. These loop 

regions are approximately from residues 40-60, 153-266, 370-387, 525-552 (mycosin-5 numbering). 

The activity of most subtilisins is stimulated by Ca2+ (Barrett and Rawlings, 1991, Braxton and Wells, 

1992), which is bound to the molecule by up to four calcium-ion binding sites, and is essential for 

stability and activity (Siezen et al., 1995, Siezen and Leunissen, 1997). The most common calcium 

binding sites in the subtilisins were predicted to be the Ca1 (strong) and Ca3 (weak) sites, with the 

medium strength site Ca2 being less common (Siezen et al., 1991). Very exceptional extra large 

proline-rich inserts occur in mycosin-2 (Rv3886c) and mycosin-5 (Rv1796). These occur in the region 

that is supposed to contain the Ca1 major calcium-ion binding site, thus it is predicted that this site is 

not likely to be present or is disrupted in the members of the mycosin family, placing a question mark 

on the calcium requirements for these proteases. Such large inserts have never been found before in 

that position in any subtilase. The nisin lantibiotic processing peptidase NisP also contains a number 

of insertions into the catalytic domain and has also been shown to not contain the strong Ca1 binding 

site (Siezen et al., 1995). In addition to this, the Ca3 (weak) and Ca4 (weak) binding sites were also 

absent, with only the medium strength site Ca2 being present. Closer inspection of the mycosin 

sequences revealed a potential for only the weak Ca3 region to be present, although it is possible that 

there may be other novel Ca2+ binding sites present in the large inserts in the protein sequences (data 

not shown).
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In all the mycosins there is also an insert of 10 - 17 residues (starting at about residue 290 in 

mycosin-5) in the substrate-binding region el, making prediction of substrate specificity or modelling of 

the substrate binding region impossible. The catalytic site of a protease is considered to be flanked 

by specificity subsites, each able to accommodate the side chain of a single amino acid residue 

(Barrett, 1994). The nomenclature of these subsites was proposed by Schechter and Berger in 1967 

and the numbering extend from S1 tot Sn (from catalytic site to N-terminus) and S1 ’ to Sri (catalytic 

site to C-terminus). The residues accommodated by these sites are numbered accordingly, as 

indicated in Figure 2C.6.

Figure 2C.6. Substrate binding of a protease substrate into the specificity subsites of the 

enzyme. The arrow indicates the peptide bond cleaved (called the scissile bond).

Enzyme

Substrate -NH-CH-CO-NH-CH-CO-NH-CH-CO-NH-CH-CO-NH-CH-CO-NH-CH-CO-

t
Scissile bond

The substrate specificity of many serine proteases is determined by the interaction between 

enzyme and substrate at the primary substrate binding site (S1) (Powers et al., 1993, Lu et al., 1997). 

In the subtilases, the binding region is able to accommodate at least six amino acid residues (P4-P2’) 

of a polypeptide (see Figure 2C.7, Siezen and Leunissen, 1997), and the substrate specificity seems 

to be largely determined by not only the S1, but also the S4 binding sites (Gron et al., 1992).
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Figure 2C.7. Schematic presentation of the substrate binding to a subtilase. Nomenclature of 

peptide side chain residues and enzyme binding sites are according to Schechter and Berger (1967). 

Circles indicate peptide side chains (P4-P2') inside enzyme sites (S4-S2’). Numbering of amino acids 

is according to the protein sequence of subtilisin BPN’. The scissile bond is shown as a jagged line. 

The catalytic residues (D, H, and S) as well as the oxyanione hole residue (N) are indicated in 

positions 32, 64, 221 and 155 respecively. Adapted from Siezen and Leunissen, 1997.

Variations in the substrate specificity of the subtilases are due to variations in the residues 

situated in the substrate binding regions, specifically in the S1 and S4 sites. An example of this is the 

presence of an additional Asp residue in the bottom of the S1 pocket, found in all members of the 

kexin/furin family (eukaryotic pro-protein processing subtilisins) and the lantibiotic peptidases. This 

addition makes the S1 binding site very acidic and prone to the binding of and cleaving C-terminally to 

basic residues like Arg (Figure 2C.8, Rawlings and Barrett, 1994, Siezen et al., 1994, Siezen and 

Leunissen, 1997). This region was found to be enlarged in the mycosin protein sequences 

(Figure2C.8). An alignment of the mycosin regions with the regions of the kexin and subtilisin families 

revealed a high number of aspartic acid residues present in the mycosin regions, similar to what is 

observed in the kexins. In addition to this these regions also contain a conserved cysteine residue
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which is another feature of kexin family (as well as the lantibiotic peptidases, Figure 2C.8). It is 

significant that the kexin and lantibiotic peptidase families of proteases are both highly substrate 

specific and are all involved in the activation of pro-proteins by cleavage at (pairs of) basic residues as 

the precursor protein is transported through the secretory pathway (Barr, 1991, Steiner et al., 1992, 

Seidah and Chretien, 1994, Siezen et al., 1995). The members of the kexin family contains a number 

of other acidic residues in conserved positions which also form part of the substrate binding pockets 

on the three dimensional structure of the protein. These residues form a high density of negative 

charge on the surface of the substrate binding region, in particular the S1, S2 and S4 sites (Creemers 

et al., 1993, Siezen et al., 1994, Siezen and Leunissen, 1997). The acidic residues that are present in 

the members of the kexin family are found at positions 33, 61, 97, 104, 107, 129, 130, 131, 161, 166, 

191 and 209 (subtilisin BPN’ numbering) and are all situated in or near the substrate binding region 

(see Figure 2C.7). The protein sequences of the mycosins were also inspected for acidic residues 

found in the corresponding regions. Multiple acidic residues were found in the mycosins in most of 

these regions (acidic residues present in or near substrate binding pockets are highlighted in yellow in 

Figure 2C.5). The similarity between the amino acid sequences suggests that the mycosins may 

have a high specificity for cleaving a substrate pro-protein between paired basic residues and may 

thus also be examples of bacterial pro-protein-processing subtilases. This could explain why no 

protease activity was found with the common substrates used in the activity assays.

It is interesting to observe that when the S1 pocket regions of the mycosins are arranged 

according to their duplication order (Gey van Pittius et al., 2001, see Chapter 3), it is clear that the 

substrate binding regions of these proteases seem to be evolving, as the aspartic acid residue 

numbers in this region are increasing (Figure 2C.8). Thus, the sequence of the most ancient mycosin 

(mycosin-4) only contains one residue, while the most recent duplicate (mycosin-5) contains five. 

Mycosin-1, -3 and -2 contain three, four and five residues respectively. This may indicate that each 

mycosin has evolved to cleave a specific substrate that is not cleaved by the other mycosins. 

Supporting evidence for this comes from the fact that the el and elll substrate binding regions of the 

mycosins (Figure 2C.2) are reasonably unconserved, indicating differences in the substrate specificity 

of the different mycosins.
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Figure 2C.8. Structural basis for the specificity of some members of the subtilisin family for 

cleavage at paired basic residues. Part of the S1 specificity subsite (residues 161-172 of 

thermitase), was aligned with other bacterial subtilisins and the eukaryotic proprotein processing 

subtilisins (the kexin family), showing clearly that the kexin-like molecules contains aspartic acid 

residues in this part of the sequence that is not found in the bacterial subtilisins (Barrett and Rawlings, 

1991). The corresponding enlarged region of the mycosins is also aligned with the other regions and 

indicates a high level of aspartic acid residues present in these sequences, as well as a conserved 

cysteine residue also only found in the kexin family. Mycosins were arranged in duplication order 

(Gey van Pittius et al., 2001), indicating evolution of region by addition of acidic residues.

Bacterial subtilisins

Thermitase gnagn— tapny— pa
Subtilisin BPN’ gnegtsgssstv-gypg
Subtilisin Carlsberg gnsgssgntnti-gypa
Subtilisin DY gnsgssgsqnti-gypa
Subtilisin amylosacchariticus gnegssgssstv-gypa

Eukaryotic subtilisins (kexin family)

Yeast kexin 
Human PC2 
Mouse PC1 
Mouse PC2 
Human furin 
Rat furin

GNGGTRGDt'
GDGGSY-DE
GNGGRQGDIi
GDGGSY-DI
GNGGREHDSl
GNGGREHDsI

■JYDGYTN
Id g ya s

[ d g y td

Id g ya s

Id g y t n

Id g y t n

Mycosins

mycosin-1
mycosin-2
mycosin-3
mycosin-4
mycosin-5

GNTGG------ DBVQN PAP DPSTPGDP RGWNNVQT W T  PA
GNDGE----- A gI g NNPMYDPLDPSDPRDWHQVTWSSPS
g n t g a s g s v s a s I d s n p l t d l s r p d d p r n w a g v t s v s i p s
GNTGGA---- A qI ------ P PQAPGVTRD— SVTVAVS PA
G-DGSKK---- DiKQNPIFDPLQPDDPRAWNAVTTWTPS

Mycosins (arranged according to duplication order)

mycosin-4
mycosin-1
mycosin-3
mycosin-2
mycosin-5

GNTGGA----AC
GNTGG-----
GNTGASGSVSASl
GNDGE----- AG
G-DGSKK----1

----- PPQAPGVTRD— SVTVAVSPA
rQNPAPDPSTPGDP RGWNNVQT W T  PA 
ISNPLTDLSRPDDPRNWAGVTSVSIPS 

|GNN PMYD P L D P S D P RDWHQVT W  S S P S 
KQNPIFDPLQPDDPRAWNAVTTWTPS
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In addition to the pro-protein processing features identified in the substrate binding sites of the 

mycosins, there is another feature of these proteases which indicates a function similar to that of the 

lantibiotic proprotein processing peptidases. The enzyme domains are attached to a membrane 

anchor (very typical with about 20 hydrophobic residues followed by 3 - 4 arginine residues), via a 

short linker of 20 - 30 residues, which is very proline-rich as mentioned earlier. As the M. tuberculosis 

cell wall is about 30 nm thick, the linker is much too short to position the enzyme outside the cell wall, 

so that the protein must function inside the cell wall. This feature has only been detected in one other 

subtilase, the NisP subtilisin-like serine protease that specifically cleaves and activates the nisin- 

lantibiotic (Van der Meer et al., 1993, Kok and De Vos, 1994, Siezen et al., 1995) and belongs to the 

family of lantibiotic peptidases. The substrate for this enzyme is pre-nisin, the precursor of the 

bacteriocin nisin which comes from inside the cell (Lactococcus lactis) and is activated by cleavage of 

the pro-region by the membrane-bound protease as it translocates across the cell membrane. This 

protease is encoded by a gene situated in a cluster of genes involved in the specific biosynthesis and 

active transport of the nisin lantibiotic. Subsequent to the protease activity assay analyses of the 

present study, several genes encoding active transport-associated proteins were identified to be 

situated adjacent to the mycosin genes in a cluster formation in the genome of M. tuberculosis 

(Tekaia et al., 1999, Gey van Pittius et al., 2001), similar to what is observed in the lantibiotic 

biosynthesis clusters of the lactococci.

It is thus possible that the mycosins are also lantibiotic/kexin-type proteases displaying a high 

degree of substrate specificity (especially for basic amino acid residues) and which are involved in the 

maturation of a pro-protein secreted by M. tuberculosis. Owing to the extreme specificity of these 

types of proteases, this would explain why no protease activity was obtained during the protease 

activity analyses using casein and other common substrates.

2C.3.5. Conclusions

In conclusion, although there are a number of possible reasons for not observing protease 

activity for the recombinant mycosins (which could include incorrect folding of the fusion protein, no or 

incorrect processing of the prepromycosins, substrate specificity, pH or temperature, cofactors etc.), 

the most likely explanation is provided by the fact that the mycosins reveal characteristics shared only
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by the lantibiotic peptidases and the proprotein convertases, indicating that substrate specificity may 

be extremely crucial. Almost all of the known subtilisins that have been examined previously were 

identified from an observed unknown protease activity, thereby immediately providing a usable 

substrate. The fact that the mycosins were identified from their gene sequences, makes the 

postulation of a possible substrate, as well as optimal conditions for activity extremely difficult. It is 

clear from this study that the substrate of the mycosins has to be identified before any further activity 

analyses could be done.
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CHAPTER THREE

THE ESAT-6 GENE CLUSTERS

“the mere existence of such arrangements shows that they must be beneficial, conferring an 

evolutionary advantage on individuals and populations which exhibit them. ”

Complex loci in microorganisms -  M. Demerec and P. Hartman (1959)

NOTE: The results presented in the following chapter were published as: “The ESAT-6 gene cluster 

of Mycobacterium tuberculosis and other high G+C gram-positive bacteria.” Gey van Pittius, 

N.C., Gamieldien, J., Hide, W., Brown, G.D., Siezen, R.J., and Beyers, A.D., Genome Biology 2001 

2(10): research0044.1-0044.18.

(The style of the text and numbering of sections has been altered to conform to the style of this 

dissertation. Literature cited in the text takes the form of author name and year of publication as 

opposed to the number format specified by Genome Biology. All cited literature is compiled into a 

single list at the end of the dissertation for ease of reference)
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Mycobacterium tuberculosis remains a serious threat to human health and in spite of 

significant investment into the research of this organism, the mechanisms of its pathogenicity are still 

not clearly understood. One of the strategies used to decipher these mechanisms is the comparison 

of the presence and absence of genes in different species (e.g. virulent and avirulent) and 

extrapolation of these differences to variation in phenotype. The genomes of M. tuberculosis H37Rv, 

M. tuberculosis H37Ra, M. bovis, and the attenuated M. bovis BCG have been compared in different 

combinations using a variety of methods (subtractive genomic hybridization -  Mahairas et al., 1996, 

BAC restriction profile analysis -  Philipp et al., 1996, Brosch et al., 1998, Brosch et al., 1999, Brosch 

et al., 2000c, BAC arrays -  Gordon et al., 1999a, DNA microarrays -  Behr et al., 1999, and Southern 

blotting -  Zumarraga et al., 1999), resulting in the identification of a number of regions of difference 

(RD) between the various organisms.

One of these regions, designated the RD1 (region of difference 1) deletion region (Mahairas 

et al., 1996), is a 9505 bp region absent in all M. bovis BCG strains. RD1 is commonly thought to be 

the primary deletion that occurred during the serial passage of M. bovis by Calmette and Guerin 

between 1908 and 1921, and is thus thought to possibly be responsible for the primary attenuation of 

M. bovis to M. bovis BCG (Behr et al., 1999, Brosch et al., 2000a). Consequently, the genes 

contained in this region have also been the subject of a number of studies focusing on diagnosis of M. 

tuberculosis infection, the search for efficient vaccine candidates and virulence (Ahmad et al., 1999, 

Arend et al., 2000a, Brandt et al., 2000, Wards et al., 2000). This region encompasses the genes 

Rv3871 to Rv3879c (annotation according to Cole et al., 1998), which include the 6 kDa early- 

secreted antigenic target ESAT-6 (esx or esat-6) and L45 homologous protein CFP-10 (Ihp) genes 

(Andersen et al., 1995, Berthet et al., 1998). The esat-6 and Ihp genes are situated directly adjacent 

to each other and encode for potent T-cell antigens that are secreted but lack detectable secretion 

signals (S0 rensen et al., 1995, Van Pinxteren et al., 2000).

During the genome sequencing of M. tuberculosis H37Rv, Cole et al. (1998) identified at least 

eleven additional genes encoding small proteins of approximately 100 amino acids that share

3.1. Introduction
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sequence similarities with esat-6, and grouped them into the esat-6 gene family. In addition, they 

found several small genes that share similarity with Ihp that are also situated directly adjacent to the 

esat-6 family member genes. Sequence analyses indicated that the Ihp family members belong to 

and extend this esat-6 gene family. It was also found that the Ihp gene is co-transcribed and thus 

forms part of an operon with esat-6 (Berthet et al., 1998).

The genes encoding the originally annotated CFP-10 and ESAT-6 proteins within the RD1 

deletion region lie in a cluster of 12 other genes (encompassing the deletion region), which seems to 

have been duplicated five times in the genome of M. tuberculosis. The duplicated gene clusters have 

been previously described as the ESAT-6 loci in an analysis of the proteome of M. tuberculosis 

(Tekaia et al., 1999). An examination of the sets of genes in the clusters reveals that each of the 

clusters also contains (in addition to a copy of ESAT-6 and CFP-10), genes encoding putative ABC 

transporters (integral inner-membrane proteins), ATP-binding proteins, subtilisin-like membrane- 

anchored cell wall-associated serine proteases (the mycosins -  Brown et al., 2000), and other N- 

terminal membrane-associated proteins (Tekaia et al., 1999).

We have implemented a sequence comparison approach to establish the relationship 

between the multiple copies of the ESAT-6 gene cluster. Our results demonstrate that the ESAT-6 

gene cluster is of ancient origin, is present in and restricted to the genomes of other members of the 

high G+C gram-positive bacteria such as Corynebacterium diphtheriae and Streptomyces coelicolor 

and is duplicated multiple times in Mycobacterium tuberculosis and other mycobacteria. We discuss 

the conservation of this gene cluster in the context of possible functional importance and diagnoses of 

mycobacterial infection.
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3.2.1. Genome sequence data and analyses

Annotations and descriptions of individual genes as well as gene and protein sequences of 

individual organisms were obtained from the publicly available finished and unfinished genome 

sequence databases (Table 3.1). All gene and protein sequences were subjected to analyses with 

the following programs to confirm annotation and to look for additional information: SignalP V2.0.b2 

(Nielsen et al., 1997, http://www.cbs.dtu.dk/services/SignalP-2.0/#submission), ClustalW WWW 

server at the European Bioinformatics Institute (Thompson et al., 1994, 

http://www2.ebi.ac.uk/clustalw/), TMHMM v0.1 transmembrane prediction server (Sonnhammer et al., 

1998, http://www.cbs.dtu.dk/services/TMHMM-1.0/), MOTIF (http://www.motif.genome.ad.jp/) and 

BLASTP (Altschul et al., 1990, http://www.ncbi.nlm.nih.gov/blast/blast.cgi?Jform=0). No data, 

progress report, or BLAST search function is available for the genome sequencing of Mycobacterium 

bovis BCG Pasteur 1173P2 produced by the Pasteur Institute, but information concerning genome 

deletions was obtained from published data (Mahairas et al., 1996, Philipp et al., 1996, Brosch et al., 

1998, Behr et al., 1999, Gordon et al., 1999a, Brosch et al., 2000c) as well as the Pasteur Institute 

website (http://www.pasteur.fr/recherche/unites/Lgmb/Deletion.html).

3.2.2. Analyses of similar gene clusters

BLAST similarity searches (Altschul et al., 1990), using the BLAST 2.0 program with tblastn 

and the BLOSUM-62 weight matrix, were utilized to identify stretches of DNA containing putative 

ORF’s homologous to the genes found in the M. tuberculosis ESAT-6 gene cluster regions from 

finished and unfinished genome sequences available at the NCBI website 

(http://www.ncbi.nlm.nih.gov/Microb_blast/unfinishedgenome.html). A total of 98 finished and 

unfinished genome sequences (35 from Gram positive species) were used in the analysis, as 

summarized in Table 3.1. Where applicable, BLAST servers in database search services of individual 

sequencing centers were also used for protein identification. The Sanger Centre and The Institute for 

Genomic Research (TIGR) use the program WU-BLAST version 2.0 (http://blast.wustl.edu/), while the 

University of Minnesota uses BLASTN with supplied defaults (http://www.cbc.umn.edu/cgi- 

bin/blasts/AGAC.restrict/blastn.cgi). Sequences were only admitted to analyses when found to be

3.2. Materials and Methods
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part of one of the five gene clusters. In other words, no single homologous genes in the mycobacteria 

or other organisms (for example Bacillus subtilis) that did not form part of a similar gene cluster were 

considered for analyses, to exclude any potential unassociated similarity that could lead to false 

positives.
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Table 3.1. Publicly available finished and unfinished genome sequence databases used in 

this study

Acidithiobacillus ferrooxidans 
Actinobacillus actinomycetemcomitans 
Aquifex aeolicus 
Bacillus anthracis 
Bacillus halodurans 
Bacillus subtilis 
Bacillus stearothermophilus 
Bordetella bronchiseptica 
Bordetella parapertussis 
Bordetella pertussis 
Borrelia burgdorferi 
Brucella melitensis biovar Suis 
Buchnera sp. APS 
Burkholderia mallei 
Burkholderia pseudomallei 
Campylobacter jejuni NCTC 11168 
Carboxydothermus hydrogenoformans 
Caulobacter crescentus 
Chlamydia muridarum 
Chlamydia pneumoniae 
Chlamydia trachomatis D/UW-3/CX 
Chlamydophila pneumoniae AR39 
Chlamydophila psittaci 
Chlorobium tepidum 
Clostridium acetobutvlicum 
Clostridium difficile 
Corvnebacterium diphtheriae 
Coxiella burnetii 
Dehalococcoides ethenogenes 
Desulfovibrio vulgaris 
Deinococcus radiodurans 
Escherichia coli K-12 MG1655 
Escherichia coli 0157:H7 
Escherichia coli 0157:H7 EDL933 
Enterococcus faecalis 
Geobacter sulfurreducens 
Haemophilus ducreyi 35000HP 
Haemophilus influenzae Rd 
Helicobacter pylori 26695 
Helicobacter pylori J99 
Klebsiella pneumoniae 
Lactococcus lactis subsp. lactis 
Legionella pneumophila 
Listeria monocytogenes 
Mesorhizobium loti 
Methylococcus capsulatus 
Mycobacterium avium
Mycobacterium avium subsp. oaratuberculosis 
Mycobacterium bovis

Mycobacterium leprae
Mycobacterium smegmatis 
Mycobacterium tuberculosis 210 
Mycobacterium tuberculosis CDC1551 
Mycobacterium tuberculosis H37Rv 
Mycoplasma genitalium  G37 
Mycoplasma pneumoniae M129 
Neisseria gonorrhoeae 
Neisseria meningitidis MC58 
Neisseria meningitidis Z2491 
Pasteurella multocida PM70 
Porphyromonas gingivalis W83 
Pseudomonas aeruginosa 
Pseudomonas putida KT2440 
Pseudomonas putida PRS1 
Pseudomonas syringae pv. tomato 
Rickettsia prowazekii 
Rhodobacter sphaeroides 
Salmonella dublin 
Salmonella enteritidis 
Salmonella paratyphi 
Salmonella typhi 
Salmonella typhimurium LT2 
Shewanella putrefaciens 
Sinorhizobium meliloti 
Staphylococcus aureus COL 
Staphylococcus aureus MRSA 
Staphylococcus aureus MSSA 
Staphylococcus aureus Mu50 
Staphylococcus aureus N315 
Staphylococcus aureus NCTC 8325 
Staphylococcus eoidermidis 
Streptococcus eaui 
Streptococcus oordonii 
Streptococcus mutans 
Streptococcus pneumoniae 
Streptococcus pyogenes 
Streptococcus pyogenes Manfredo 
Streotomvces coelicolor A3(2) 
Synechocystis PCC6803 
Thermotoga maritima 
Treponema denticola 
Treponema pallidum  
Ureaplasma urealvticum 
Vibrio choierae 
Wolbachia 
Xylella fastidiosa 
Yersinia enterocolitica 
Yersinia pestis

Finished genome sequences are indicated in bold, Gram-positive species are underlined
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Contig sequences corresponding to the gene clusters were obtained from their respective 

genome databases and used in further analyses. The Genetics Computer Group (Wisconsin 

Package Version 10.0, Genetics Computer Group (GCG), Madison, Wisconsin) program 

FRAMESEARCH was used to obtain whole sequence ORF's from the contigs. These ORF's were 

translated to protein sequences with the program TRANSLATE (also from GCG). All multiple 

sequence alignments and phylogenetic analyses were conducted on the protein level with these 

translated protein sequences.

3.2.3. Multiple sequence alignments

Multiple sequence alignments were performed on separate gene families belonging to the 

different clusters using ClustalW 1.5 (Thompson et al., 1994) with the default parameters. The 

alignments were manually checked for errors and refined where appropriate. Multiple sequence 

alignments were also manually edited in some analyses during which unaligned regions (inserts) were 

removed (resulting in so-called edited alignments).

3.2.4. Phylogenetic trees

Bootstrapping resampling of the data sets were performed on the edited alignments, which 

generated 100 randomly chosen subsets of the multiple sequence alignment. Pairwise distances 

were determined with PROTDIST using the Dayhoff PAM matrix and neighbor-joining phylogenetic 

trees were calculated using NEIGHBOR (PHYLIP 3.5, Felsenstein, 1989). In the case of each family 

of proteins, the C. diphtheriae sequence was firstly used as the outgroup after which the S. coelicolor 

sequence was used. Further phylogenetic analyses were performed using the programs FITCH and 

KITSCH with and without the outgroups respectively. A majority rule and strict consensus tree of all 

bootstrapped sequences were obtained using CONSENSE. The same analyses as described above 

were performed on a combined protein consisting of the edited aligned sequences of all six conserved 

proteins in these gene clusters as well as a combined protein constructed from the edited aligned 

sequences of all available ESAT-6 and CFP-10 family members. Finally, to confirm the results 

obtained on the singular protein level, an analysis was performed with whole, unedited aligned 

sequences of the six most conserved proteins, using the program Paup 4.0b4a (Swofford, 1998), 

during which negative branches were collapsed and 1000 subsets were generated for Bootstrapping

Stellenbosch University http://scholar.sun.ac.za/



101

resampling of the data. The consensus trees of all of the above were drawn using the program 

Treeview 1.5 (Page, 1996).
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3.3.1. Individual gene families and genomic organization in M. tuberculosis

The five ESAT-6 gene cluster regions present in Mycobacterium tuberculosis H37Rv were 

named region 1 (Rv3866-Rv3883c), 2 (Rv3884c-Rv3895c), 3 (Rv0282-Rv0292), 4 (Rv3444c- 

Rv3450c) and 5 (Rv1782-Rv1798) consistent with the arbitrary numbering system used previously to 

classify the five mycosin (subtilisin-like serine protease) genes identified from these regions (Brown et 

al., 2000). Orthologues of the ESAT-6 gene clusters of M. tuberculosis H37Rv could be identified in 

the genomes of eight other strains and species belonging to the genus Mycobacterium, as well as two 

species belonging to other genera (Table 3.2). Up to twelve different genes representing different 

gene families were identified in the five gene cluster regions and were designated family A to L 

according to their position in region 1 (Table 3.3).

Figure 3.1 shows a schematic representation of the genomic organization of the respective 

gene families present in each of the five ESAT-6 gene cluster regions of M. tuberculosis. Annotations 

and descriptions of single genes in these regions can be found at 

(http://genolist.pasteur.fr/TubercuList/). Region 1 and 2 are situated directly adjacent to each other on 

the genome and are transcribed in opposite directions. The large gene belonging to family D 

(encoding the ATPase protein) has been disrupted by an insertion in both regions 1 and 5 (Figure 

3.1). This insertion has caused an in-frame stop codon, giving rise to two smaller genes (containing 

all the motifs of the larger homologue) located directly adjacent to each other. The gene positions of 

members of family C, D, G, and H are maintained throughout the five regions (see Figure 3.1), while 

most of the families that are not present in region 4, seem to be more flexible with regard to their 

position within the gene cluster regions (family A, B, I, and L). There are also some genes present 

within the ESAT-6 gene cluster regions that do not have any homologues in the other clusters, 

suggesting subsequent insertions or deletions from the ancestral region (indicated by black arrows in 

Figure 3.1, see also Table 3.3).

3.3. Results
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Table 3.2. Bacterial Genome Sequencing Projects o f Species and Strains Containing ESAT-6 Gene Clusters

Organism Strain Status Last Access Date Last Update Sequencing Centre<s) Website(s) Reference

1 Mycobacterium tuberculosis H37Rv Completed 5-Mar-2001 11-Jun-1998 Sanger Centre/Pasteur Institute http://www.sanger.ac.uk/Projects/M_tuberculosis/ and 

http://genolist.pasteurfr/T ubercuList/

Cole et al., 1998

2 Mycobacterium tuberculosis CDC1551 (Oshkosh strain or 

CSU#93)

Completed 5-Mar-2001 28-Jan-1999 TIGR http://www.tigr.org/tigr-scripts/CMR2/GenomePage3 spl?dalabase=gmt Fleischmann et al., manuscript in 

preparation

3 Mycobacterium tuberculosis 210 Partial sequencing project 

completed, no additional 

sequencing anticipated.

21-May-2001 4-May-2001 TIGR http://www.tigr.org/cgi-bin/BlastSearch/blast cgi?

4 Mycobacterium bovis AF2122/97(spoligotype 9) Shotgun in progress 5-Mar-2001 29-Aug-2000 Sanger Centre/Pasteur Institute httpV/www sanger.ac.uk/Projects/M_bovis/

5 Mycobacterium bovis BCG Pasteur 1173P2 Unfinished Pasteur Institute http://www. pasteur fr/recherche/unites/Lgmb/mycogenomics. ht ml

6 Mycobacterium leprae TN Completed 7-Mar-2001 21-Feb-2001 Sanger Centre/Pasteur Institute http://www sanger.ac.uk/Prpjects/M_leprae/ and http://genolist.pasteur fr/Leproma Cole et al.. 2001

7 Mycobacterium avium 104 Gap closure finished 6-Mar-2001 22-Feb-2001 TIGR http://www.tigr org/cgi-bin/BlastSearch/blast.cgi?org an ism=m_avium

8 Mycobacterium paratuberculosis K10 Unfinished (6 9 x coverage) 6-Mar-2001 25-Feb-2001 University of Minnesota http://www.cbc.umn edu/ResearchProjects/AGAC/Mptb/M ptbhome.html

9 Mycobacterium smegmatis MC2 155 Shotgun completed, assembly 6-Mar-2001 22-Feb-2001 TIGR http://www.tigr.org/cgi-bin/Blast Search/blast.cgi?organism=m_smegmatis

10 Corynebacterium diphteriae NCTC13129 Finishing/gap closure 5-Mar-2001 26-Feb-2001 Sanger Centre http://www.sanger.ac uk/Projects/C_diphtheriae/

11 Streptomyces coeUcolor A3(2) Cosmid sequencing 5-Mar-2001 1-Mar-2001 Sanger Centre http://www. sanger. ac. uk/Projects/S_coelicolor/
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Figure 3.1. Schematic representation of the genomic organization of the genes present in the 

five ESAT-6 gene cluster regions of Mycobacterium tuberculosis H37Rv as well as the regions 

in C. diphtheriae and S. coelicolor. ORF's are represented as blocked arrows showing the direction 

of transcription, with the different colors reflecting the specific gene family and the length of the arrow 

reflecting the relative lengths of the genes. Annotations of M. tuberculosis H37Rv genes are 

according to Cole et al. (1998). Black arrows indicate unconserved genes present in these regions. 

Gaps between genes do not represent physical gaps between genes on the genome, but have been 

inserted to aid in indicating conservation among gene positions. Gene families were named arbitrarily 

according to their position in M. tuberculosis H37Rv region 1. The regions were named after the 

numbering system of Brown et al. (2000) used arbitrarily for the five mycosin (subtilisin-like serine 

protease) genes identified from these regions (family K). M. tuberculosis regions are shown in order 

of suggested duplication events (see phylogenetic results) and not by numbering. The results of the 

analyses of the primary features of these genes and their corresponding proteins are included in a 

short summary at the bottom of the figure (see also Table 3.3).

Stellenbosch University http://scholar.sun.ac.za/



105

S. coelicolor
SC3C3.07 

t ^
SC3C3.21

C. diohtheriae
CORDmem

[= £ > < = m asm
CORDesat6

4 4

M. tuberculosis 

Region 4

Rv3450c Rv3444c

M. tuberculosis 

Region 1

Rv3866
bi^ ^ i ^  I N

Rv3883c

czzzzzzz ': [}□=> c)4 E ^> i 

M. bovis BCG RD1 Deletion Region

M. tuberculosis

Region 3

Rv0282 Rv0292

c)c=> 4 4 s #

M. tuberculosis 

Region 2

Rv3895c Rv3884c

M. tuberculosis 

Region 5

Rv1782 Rv1798 

► i = >

^  Fam. C: N-terminal transmembrane 
protein, 1 x ATP/GTP binding site;

Fam. D: 2 x N-terminal transmembrane 
ATPase, 3 x ATP/GTP binding sites;

Fam. B: AAA+ class ATPase,
1 x ATP/GTP binding site;

Fam. K: Mycosin, subtilisin-like cell wall-associated serine 
protease;

Fam. J: Integral membrane protein, binding protein 
dependant transport systems inner membrane component;

Fam. G: Lhp (CFP-10); 

i'"  Fam. E: PE;

Fam. H: ESAT-6; Fam. A: ABC transporter family signature;

:£> Fam. F: PPE; i r r r f o , Fam. I: Chromosome partitioning
ATPase, 1 x ATP/GTP binding site;

Fam. L: 2 x N-terminal 
transmembrane protein;

Other region-specific 
gene.

Stellenbosch University http://scholar.sun.ac.za/



106

The ESAT-6/CFP-10 operon is not only found in the ESAT-6 gene cluster regions, but 

distributes as 6 additional copies of the gene pair in the genome of M. tuberculosis. Figure 3.2 gives 

a schematic representation of the positions of the six additional gene pairs. In four of the six cases, 

the ESAT-6/CFP-10 operon is flanked by PPE and PE genes, indicating possible linked-duplication 

between the ESAT-6/CFP-10 operon and the PE/PPE gene pair.

3.3.2. ESAT-6 gene cluster identification in other mycobacteria

Table 3.3 presents the results of the similarity searches and all available data for the twelve 

identified gene families present in the different regions. All the mycobacteria currently being 

sequenced contain multiple copies of these regions in their genomes. As these different copies are 

also found in the same respective genomic locations (corresponding flanking genes) in all the 

mycobacteria, it indicates that the duplication events took place prior to the divergence of the different 

species.

3.3.2.1. Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis 210 and Mycobacterium 

bovis

The genomes of the M. tuberculosis CDC1551 and 210 clinical strains as well as the genome 

of M. bovis contain all five of the ESAT-6 gene cluster regions present in the genome of M. 

tuberculosis H37Rv (sharing between 99 and 100% similarity to M. tuberculosis H37Rv at protein 

level). However, it is interesting to note that two of the genes present in region 2 in CDC1551 

(MT4000 and MT4001) contain frameshifts in their sequences, indicating that they and the rest of the 

region may no longer be functional in CDC1551. Part of region 2 (a 2405 bp fragment containing 

Rv3887c, Rv3888c and Rv3889c) is also deleted in only certain strains of M. bovis, including the 

strain AF2122/97 that is currently being sequenced (Rauzier et al., 1999). An in-frame stop codon 

found in Rv1792 (family G) is also present in the orthologues in CDC1551 (MT1841) and strain 210 

(MTB196G), indicating that the mutation may have taken place before divergence of the three strains. 

Two of the H37Rv as well as the strain 210 Family D genes (in region 1 and 5) have obtained in-frame 

stop codons resulting in two genes lying adjacent to each other, whereas the Family D Rv1783 and 

Rv1784 orthologues in CDC1551 are still one intact gene (MT1833). The orthologues of this gene in 

M. bovis (MB771.1D), M. leprae (ML1543) M. avium (MA221D), and M. paratubercuiosis (MP1783)
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are also intact, implying that the mutation in the H37Rv and strain 210 orthologues must have 

occurred after divergence of the three M. tuberculosis strains.

Figure 3.2. Schematic representation of the six additional ESAT-6/CFP-10 operon duplications 

and the regions that surround them in the genome of M. tuberculosis H37Rv. ORF’s are 

represented by blocked arrows indicating direction of transcription, with the different colors reflecting 

the specific gene family and the length of the arrow reflecting the relative lengths of the genes as in 

Figure 3.1. The ESAT-6/CFP-10 genes deleted in M. bovis RD 07 and RD 09 deletion regions (Behr 

et al., 1999) are indicated.
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Table 3.3. Presence of Genes in Gene Clusters of All Available Finished and Unfinished Genome Sequences

Presence and names of genes in each species
Protein ESAT-6

Gene Description size Cluster M. tuberculosis M. tuberculosis M. tuberculosis' M. bovis’  M. bovis’
Family______________________________________(In ¥.tb) Region H37Rv CDC1551 (CSU#93) 210 AF2122/97(spoligotype 9) BCG Pasteur 1173P2

A ABC transporter family signature. 283 1 Rv3866 MT3980 ND MB851A No Sequence Data
19-27% homology 276 2 Rv3889c MT4004 MTB12A MB727.3A (Partly deleted # ) No Sequence Data

295 3 Rv0289 MT0302 MTB203A MB548A No Sequence Data
4 No Duplication No Duplication No Duplication No Duplication No Duplication

300 5 Rv1794 MT1843 MTB196A MB557A No Sequence Data

B AAA+ dass ATPases, CBXX/CFQX 573 1 Rv3868 MT3981 MTB44B MB851B No Sequence Data
family. SpoVK. 1 x ATP/GTP binding 619 2 Rv3884c MT3999 MTB12B MB727.1B No Sequence Data
Site. 29-39% homology 631 3 Rv0282 MT0295 MTB23B MB672B No Sequence Data

4 No Duplication No Duplication No Duplication No Duplication No Duplication
610 5 Rv1798 MT1847 MTB196B MB542B No Sequence Data

C N-terminal transmembrane protein. 480 1 Rv3869 MT3982 MTB44C MB851C No Sequence Data
possible ATP/GTP binding motif. 495 2 Rv3895c MT4011 MTB136C MB7801C No Sequence Data
31-41% homology 538 3 Rv0283 MT0296 MTB23C MB672C No Sequence Data

470 4 Rv3450c MT3556 MTB45C MB493.1C No Sequence Data
506 5 Rv1782 MT1832 MTB46C MB771 1C No Sequence Data

D DNA segregation ATPase. ftsK 747+591 1 Rv3870+71 MT3983+85 MTB44Da+Db MB851D MB851D (Partly deleted)
chromosome partitioning protein. 1396 2 Rv3894c MT4010 MTB3D MB780.1D No Sequence Data
SpolllE, yukA. 3 x ATP/GTP binding 1330 3 Rv0284 MT0297 MTB23D MB672D No Sequence Data
sites. 2 x N-terminal transmembrane 1236 4 Rv3447c MT3553 MTB45D MB585.1D No Sequence Data
protein. 28-39% homology 435+932 5 Rv1783+84 MT1833 MTB46Da+Db MB771.1D No Sequence Data

E PE, 18-90% homology 99 1 Rv3872 MT3986 MTB44E MB851E Deleted
77 2 Rv3893c MT4008 MTB3E MB780.1E No Sequence Data
102 3 Rv0285 MT0298 MTB23E MB389E No Sequence Data

4 No Duplication No Duplication No Duplication No Duplication No Duplication
99 & 99 5 Rv1788 & 91 MT1837 & 40 MTB196Ea & Eb MB771 0E & MB557E No Sequence Data

F PPE. 19-88% homology 368 1 Rv3873 MT3987 MTB44F MB851F Deleted
399 2 Rv3892c MT4007 MTB3F MB780.1F No Sequence Data
513 3 Rv0286 MT0299 MTB472F MB528F No Sequence Data

4 No Duplication No Duplication No Duplication No Duplication No Duplication
365. 393 & 5 Rv1787 & 89 & 90 MT1836 & 38 4 39 MTB196Fa& Fb& Fc MB771 OFa & Fb & MB557F No Sequence Data

350

G Ihp or CFP-10. also MTSA-10, grouped 100 1 Rv3874 MT3988 MTB44G MB851G Deleted
into ESAT-6 family, potent secreted 107 2 Rv3891c MT4006 MTB12G MB727.3G No Sequence Data
T-cell antigens. 9-32% homology 97 3 Rv0287 MT0300 MTB472G MB548G No Sequence Data

125 4 Rv3445c MT3550 MTB45G MB585.0G No Sequence Data
98 5 Rv1792 (Stop) MT1841 (Stop) MTB196G (Stop) MB557G No Sequence Data

H ESAT-6 family. cfp7. L45 or l-esat, also 95 1 Rv3875 MT3989 MTB44H MB851H w Deleted
Mtb9.9 family, potent secreted T-cell 95 2 Rv3890c MT4005 MTB12H MB727.3H No Sequence Data
antigens. 15-27% homology 96 3 Rv0288 MT0301 MTB203H MB548H No Sequence Data

100 4 Rv3444c MT3549 MTB45H MB585.0H No Sequence Data
94 5 Rv1793 MT1842 MTB196H MB557H No Sequence Data

1 ATPases involved in chromosome 666 1 Rv3876 MT3990 MTB60I MB477I Deleted
partitioning, 1 x ATP/GTP binding 341 2 Rv3888c MT4003 MTB12I Deleted # No Sequence Data
motif. 33% homology 3 No Duplication No Duplication No Duplication No Duplication No Duplication

4 No Duplication No Duplication No Duplication No Duplication No Duplication
5 No Duplication No Duplication No Duplication No Duplication No Duplication

J Integral inner membrane protein. 511 1 Rv3877 MT3991 MTB369J MB477J Deleted
binding protein dependent transport 509 2 Rv3887c MT4002 MTB12J MB727.3J (Partly deleted # ) No Sequence Data
systems inner membrane component 472 3 Rv0290 MT0303 MTB203J MB548J No Sequence Data
signature, putative transporter 467 4 Rv3448 MT3554 MTB45J MB585 1J No Sequence Data
protein, 19-27% homology) 503 5 Rv1795 MT1844 MTB196J MB506J No Sequence Data

K Mycosins, subtilisin-like cell-wall 446 1 Rv3883c MT3998 MTB12Ka MB727.0K No Sequence Data
associated serine proteases, 550 2 Rv3886c MT4001 (Frame) MTB12Kb MB727.2K No Sequence Data
43-49% homology 461 3 Rv0291 MT0304 MTB203K MB548K No Sequence Data

455 4 Rv3449 MT3555 MTB45K MB585.1K No Sequence Data
585 5 Rv1796 MT 1845 MTB196K MB506K No Sequence Data

L 2 x N-terminal transmembrane protein, 462 1 Rv3882c MT3997 MTB12La MB727 0L No Sequence Data
16-27% homology 537 2 Rv3885c MT4000 (Frame) MTB12Lb MB727.2L No Sequence Data

331 3 Rv0292 MT0305 MTB203L MB694 0L No Sequence Data
4 No Duplication No Duplication No Duplication No Duplication No Duplication

406 5 Rv1797 MT1846 MTB196L MB542L No Sequence Data
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Table 3.3. (Continued)

Gene
Family

Description
Protein 

size 
(in M.tb)

ESAT-6
Cluster M. leprae 
Region TN

M. avium* 
104

Presence and names o f genes in each species

M. paratuberculosis* M. smegmatis* C. diphtheriae* 
K 10 MCJ 155 NCTC13129

S. coelicolor 
A3 (2)

A ABC transporter family signature, 283 1 ML0057(pseudo) ND ND MS29A ND ND
19-27% homology 276 2 MLabc (pseudo)** MA138A MP3889C ND ND ND

295 3 ML2530 MA141A MP0289 MS32A ND ND
4 No Duplication No Duplication No Duplication No Duplication No Duplication No Duplication

300 5 ML1540 MA310A MP1794 ND ND ND

B AAA+ class ATPases, CBXX/CFQX 573 1 ML0055 ND ND MS29B ND ND
family. SpoVK, 1 x ATP/GTP binding 619 2 ML0039(pseudo) MA177B MP3884C ND ND ND
site. 29-39% homology 631 3 ML2537 MA78B MP0282 MS32B ND ND

4 No Duplication No Duplication No Duplication No Duplication No Duplication No Duplication
610 5 ML1536 MA310B MP1798 ND ND ND

C N-terminal transmembrane protein, 480 1 ML0054 ND ND MS29C ND ND
possible ATP/GTP binding motif. 495 2 Deleted MA144C MP3895C ND ND ND
31-41% homology 538 3 ML2536 MA78C MP0283 MS32C ND ND

470 4 Deleted MA94C MP3450C MS8C CORDmem SC3C3.07
506 5 ML1544 MA221C MP1782 ND ND ND

D DNA segregation ATPase, ftsK 747+591 1 ML0053+52 ND ND MS29D (StopS) ND ND
chromosome partitioning protein. 1396 2 Deleted MA144D MP3894C ND ND ND
SpolllE, yukA, 3 x ATP/GTP binding 1330 3 ML2535 MA78D MP0284 MS32D ND ND
sites, 2 x N-terminal transmembrane 1236 4 Deleted MA504D MP3447c MS8D CORDyuk SC3C3.20c
protein. 28-39% homology 435+932 5 ML1543 MA221D MP1783 ND ND ND

E PE, 18-90% homology 99 1 Deleted ND ND MS29E ND ND
77 2 Deleted MA138E MP3893C ND ND ND
102 3 ML2534 MA78E MP0285 MS32E ND ND

4 No Duplication No Duplication No Duplication No Duplication No Duplication No Duplication
99 & 99 5 Deleted MA310Ea & Eb MP1788 & 91 ND ND ND

F PPE, 19-88% homology 368 1 ML0051 ND ND MS29F ND ND
399 2 Deleted MA138F MP3892C ND ND ND
513 3 ML2533 (pseudo) MA78F MP0286 MS32F ND ND

4 No Duplication No Duplication No Duplication No Duplication No Duplication No Duplication
365, 393 & 5 Deleted MA310Fa & Fb & Fc M P1787&89&90 ND ND ND

350

G Ihp or CFP-10, also MTSA-10, grouped 100 1 ML0050 ND ND MS29G ND SC3C3.10 and SC3C3.11(e)
into ESAT-6 family, potent secreted 107 2 Deleted MA138G MP3891c(,) ND ND ND
T-cell antigens, 9-32% homology 97 3 ML2532 MA141G MP0287 MS32G ND ND

125 4 Deleted MA319G MP3445C MS8G CORDcfpIO ND
98 5 MLcfp (pseudo)** MA310G MP1792 ND ND ND

H ESAT-6 family. cfp7, L45 orl-esat, also 95 1 ML0049 ND ND MS29H ND SC3C3.10 and SCSCS.II1' ’
Mtb9.9 family, potent secreted T-cell 95 2 ML0034(pseudo) MA138H MP3890C " ) ND ND ND
antigens, 15-27% homology 96 3 ML2531 MA141H MP0288 MS32H ND ND

100 4 ML0363 MA319H MP3444C MS8H CORDesat6 ND
94 5 MLesat (pseudo)** MA310H MP1793 ND ND ND

1 ATPases involved in chromosome 666 1 ML0048 ND ND MS29I ND SC3C3 03c
partitioning, 1 x ATP/GTP binding 341 2 ML0035 (pseudo) MA138I MP3888C ND ND ND
motif, 33% homology 3 No Duplication No Duplication No Duplication No Duplication No Duplication No Duplication

4 No Duplication No Duplication No Duplication No Duplication No Duplication No Duplication
5 No Duplication No Duplication No Duplication No Duplication No Duplication No Duplication

J Integral inner membrane protein, 511 1 ML0047 ND ND MS29J ND ND
binding protein dependent transport 509 2 ML0036 (pseudo) MA138J MP3887C ND ND ND
systems inner membrane component 472 3 ML2529 MA141J MP0290 MS32J ND ND
signature, putative transporter 467 4 Deleted MA504J MP3448 MS8J CORDtransporter SC3C3 21
protein, 19-27% homology) 503 5 ML1539 MA310J MP1795 ND ND ND

K Mycosins, subtilisin-like cell-wall 446 1 ML0041 ND ND MS65K ND ND
associated serine proteases, 550 2 ML0037 (pseudo) MA177K MP3886C ND ND ND
43-49% homology 461 3 ML2528 MA141K MP0291 MS32K ND ND

455 4 Deleted MA439K MP3449 MS8K CORDsub SC3C3.17c and SC3C3.08
585 5 ML1538 MA310K MP1796 ND ND ND

L 2 x N-terminal transmembrane protein, 462 1 ML0042 ND ND MS65L ND ND
16-27% homology 537 2 ML0038 (pseudo) MA177L MP3885C ND ND ND

331 3 ML2527 MA81L MP0292 MS32L ND ND
4 No Duplication No Duplication No Duplication No Duplication No Duplication No Duplication

406 5 ML1537 MA310L MP1797 ND ND ND

Other region-specific genes o f known functions (not assigned to  a family):

Region 5 Rv1785c • Probable member of the cytochrome P450 fam ily (pseudogene in M. leprae)
(not present in M. smegmatis, C. diphtheriae Rv1786 • Probable ferredoxin (pseudogene in M. leprae)

and S. coelicolor)

Qthgr region-specific aenes o f unknown functions (not assigned to a family):

Region 1 Rv3867 - Unknown, annotated as part o f MT3980 (Rv3866) in M. tuberculosis CDC1551 sequence w ith a frameshift (functional in M. leprae)
(deleted in M. avium and M. paratuberculosis, Rv3878 - Unknown, some sim ilarity to  PPE family, deleted w ith RD1 deletion region in M. bovis  BCG (pseudogene in M. leprae)
not present in C. diphtheriae and S. coelicolor) Rv3879c - Unknown, repetitive, highly proline-rich N-terminus, deleted with RD1 deletion region in M. bovis BCG (pseudogene in M. leprae)

Rv3880c • Unknown (functional in M. leprae)
Rv3881c - Unknown (pseudogene in M. leprae)

Region 4 Rv3446c - Unknown, may contain a possible ABC transporter signature (deleted in M. leprae)
(not present in S. coelicolor)

* = Names of genes of these organisms were given arbitrarily by the authors of this paper; **»  Gene is present in the sequence, but not annotated (name given arbitrarily by authors of this paper);
ND = Not detected - not necessarily absent from genome but possibly not detected because of unfinished sequencing process; No Duplication = No duplication of this gene is present in this region;
No Sequence Data = No sequence data is available for this organism, published deletion information is included (Mahairas et al., 1996 and others); Deleted « Deleted from the genome of this particular species 
or strain ( # = deleted in only some strains of this species); Frame ■ Frameshift; Stop » In frame stopcodon, (a) = Genes identified by BLAST as well as data obtained from Genbank, accession no AJ250015; 
w  = Gene not identified by BLAST, data obtained from (Mahairas et al., 1996), Genbank accession no U34848 and AAC44033,(c) = Orthologues in S. coelicolor are equally similar to Family G and H,
Stop$ = Stopcodon corresponds to stopcodon in M. tuberculosis H37Rv, which splits gene into Rv3870 and Rv3871 ; pseudo = confirmed pseudogene due to multiple frameshifts and stopcodons
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3.3.2.2. Mycobacterium leprae

Figure 3.3 shows a schematic representation of the genomic organization of the respective 

gene families present in each of the five ESAT-6 gene cluster regions of M. leprae. The genome 

sequence of M. leprae contains functional copies of two of the five ESAT-6 gene cluster regions 

(region 1 and 3 -  sharing between 50 and 70% similarity to M. tuberculosis H37Rv at protein level). 

Most of the genes from region 2 are deleted, while all the remaining genes of this region became 

pseudogenes due to extensive point mutations. This is in contrast to the genes from region 1 (which 

lies directly adjacent to region 2) and which contains no pseudogenes. It is thus conceivable that 

these clusters should function as a unit, and that genes could become non-functional when part of the 

unit is disrupted. Furthermore, all of the genes immediately flanking the putative functional regions as 

well as five of the eight genes only present in one of the regions as depicted in Table 3.3 (the 

Rv1785c, Rv1786, Rv3878, Rv3879c and Rv3881c orthologues ML1542, ML1541, ML0046, ML0045 

and ML0043), are probable pseudogenes, indicating that the genes present in the functional clusters 

are being maintained as a unit.

3.3.2.3. Mycobacterium avium and Mycobacterium paratuberculosis

The genomes of the M. avium strain 104 and the closely related species M. paratuberculosis (or M. 

avium subsp. paratuberculosis) has revealed four of the five ESAT-6 gene cluster regions (sharing 

between 65 and 75% similarity to M. tuberculosis H37Rv at protein level), with region 1 being absent 

in both species (Figure 3.4). Closer inspection of the gene sequence surrounding region 1 in both 

these species has revealed a deletion of the region containing region 1 and some upstream flanking 

genes (from the Rv3861 gene orthologue up to and including the Rv3883c orthologue). This deletion 

coincided with the insertion of a ± 2 292 bp sequence containing the genes for a putative hydroxylase 

(± 818 bp) and the sigl sigma factor (± 824 bp). The presence of this sequence in both genomes 

(99% DNA sequence identity) indicates that the insertion-deletion may have occurred before the 

divergence of the two species. The genes from the remaining ESAT-6 gene cluster regions that are 

present in M. avium and M. paratuberculosis contain no stop codons or frameshifts and thus appear 

to be functional.
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Figure 3.3. Schematic representation of the genomic organization of the genes present in the 

five ESAT-6 gene cluster regions of Mycobacterium leprae. ORF's are represented as blocked 

arrows showing the direction of transcription, with the different colors reflecting the specific gene 

family and the length of the arrow reflecting the relative lengths of the genes as in Figure 3.1. Black 

arrows indicate unconserved genes present in these regions, while open arrows indicate 

pseudogenes. Annotations of M. leprae genes are according to Cole et al. (1998).
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Figure 3.4. Schematic representation of the genomic organization of the genes present in the 

four ESAT-6 gene cluster regions of Mycobacterium avium  and Mycobacterium  

paratuberculosis, as well as the flanking genes of the region 1 deletion. ORF's are represented 

as blocked arrows showing the direction of transcription, with the different colors reflecting the specific 

gene family and the length of the arrow reflecting the relative lengths of the genes as in Figure 3.1. 

Black arrows indicate unconserved genes present in these regions. M. avium and M. 

paratuberculosis genes were arbitrarily annotated by the authors of this paper.

Stellenbosch University http://scholar.sun.ac.za/



114

M . avium 
/paratuberculosis

MA94C /  MA319H / 
MP3450 MP3444C

Reaion 4
1-------✓ 1 ..............

M . avium 
/paratuberculosis 

Reaion 1

Rv3860- sig l putative MA177B / MP3884C 
orthologue hydroxylase (Rv3884c-orthologue)

■ 4  . « - i  ■ #  .

'—  2292 bp insertion — '

M . avium 
/paratuberculosis 

Reaion 3

MA78B / MA81L / 
MP0282 MP0292 

ia—B E a ^B — ^  n * K r ' - ," ' s S .  Hi— \  r) r------N  i

M . avium 
/paratuberculosis 

Reaion 2

MA144C/ MA177B/ 
MP3895C MP3884c 

I . . . : ... . r)r— i ) ^ wwf i  *n j  ^

M . avium 
/paratuberculosis 

Reaion 5

MA221C / MA310B/ 
MP1782 MP1798
C — >  4 L _ z X } ( = ^ l= ^ C )  ̂  C>

i— Fam. C: N-terminal transmembrane — ■̂  Fam. K: Mycosin, subtilisin-like cell wall-associated serine Fam. J: Integral membrane protein, binding protein
protein, 1 x ATP/GTP binding site; protease; dependant transport systems inner membrane component;

i-..... 0  Fam. D: 2 x N-terminal transmembrane cava fr Fam. G: Lhp (CFP-10); Fam. H: ESAT-6; Fam. A: ABC transporter family signature; Fam. L: 2 x N-terminal
ATPase, 3 x ATP/GTP binding sites; transmembrane protein;

i— ~^> Fam. B: AAA+class ATPase, i-------*> Fam. E: PE; i-------S  Fam F- PPF; i-------N  Fam. 1: Chromosome partitioning Other region-specific
1 x ATP/GTP binding site; ATPase, 1 x ATP/GTP binding site; gene.

Stellenbosch University http://scholar.sun.ac.za/



115

3.3.2.4. Mycobacterium smegmatis

The genome sequence of the avirulent, fast-growing mycobacteria! species M. smegmatis 

contains three of the five ESAT-6 gene cluster regions, namely region 1, 3, and 4 (sharing between 60 

and 75% similarity to M. tuberculosis H37Rv at protein level), with region 2 and 5 being absent (Figure 

3.5). No deletions, frameshifts or stop codons were identified in any of the genes in the regions that 

are present and therefore it is concluded that these regions are functional.

3.3.3. ESAT-6 gene cluster identification in bacteria other than the mycobacteria

3.3.3.1. Corynebacterium diphtheriae

The genome sequence of the closely related C. diphtheriae has revealed a copy of the region 

4 ESAT-6 gene cluster (Figure 3.1, see Table 3.4 for percentage similarity between sequences), 

situated in the same genomic location as in the mycobacteria (indicated by the large stretch of 

flanking genes homologous to the genes flanking region 4 in M. tuberculosis H37Rv). All the genes 

present within this cluster appear to be fully functional as no deletions, stop codons or frameshifts 

were identified. No duplications of the gene cluster could be detected in the genome of this organism.

Table 3.4. Similarity of M. tuberculosis H37Rv Region 4- encoded proteins to proteins 

encoded by the C. diptheriae and S. coelicolor regions

M. tuberculosis 

region 4 proteins Family

Percentage similarity 

C. diptheriae S. coelicolor

Rv3450c C 47% 36%

Rv3447c D 53% 57%

Rv3445c G 47% 47 and 51%*

Rv3444c H 58% 41 and 44%*

Rv3448 J 33% 45%

Rv3449 K 49% 45 and 47%

* Orthologues in S. coelicolor are equally similar to Family G and H.
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Figure 3.5. Schematic representation of the genomic organization of the genes present in the 

three ESAT-6 gene cluster regions of Mycobacterium smegmatis. ORF's are represented as 

blocked arrows showing the direction of transcription, with the different colors reflecting the specific 

gene family and the length of the arrow reflecting the relative lengths of the genes as in Figure 3.1. 

Black arrows indicate unconserved genes present in these regions. M. smegmatis genes were 

arbitrarily annotated by the authors of this paper.
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3.3.3.2. Streptomyces coelicolor

The S. coelicolor genome has revealed distinct orthologues for four of the six most conserved 

genes from the ESAT-6 gene cluster regions located in close proximity to each other (Figure 3.1). 

These genes show the highest similarity to the corresponding orthologues in region 4 of M. 

tuberculosis (see Table 3.4 for percentage similarity between sequences). There is also a very 

distinct orthologue (SC3C3.03c) of the region 1 family I gene (Rv3876) in the S. coelicolor region. 

There is no homologue for this gene in region 4 of M. tuberculosis. A sequence similarity search 

using the sequences of the other two proteins of region 4, namely ESAT-6 (Rv3444c) and CFP-10 

(Rv3445c), has also revealed some similarity to two small genes situated within the same region in 

the genome of S. coelicolor (Table 3.4 and Figure 3.1). These genes (SC3C3.10 and SC3C3.11) 

encode small proteins (124 and 103aa) of unknown function, are very similar to each other, and lie 

adjacent to each other, similar to the observation for the ESAT-6/CFP-10 operon. The sequences of 

both of these proteins also contain the motif W-X-G, a feature present in most of the ESAT-6 and 

CFP-10 proteins. The higher degree of similarity between the genes from region 4 of the 

mycobacteria (and C. diptheriae) and those present in the region in S. coelicolor suggests that region 

4 may be the ancestral region in the mycobacteria, although a number of differences between these 

regions do exist.

3.3.4. Taxonomy

It is evident from the taxonomy (Figure 3.6) of the different species of bacteria in which copies 

of the ESAT-6 gene clusters could be found, that the presence of these clusters appear to be a 

specific characteristic of the high G+C gram-positive Actinobacteria, and that multiple copies thereof 

are only found in the mycobacteria. No copies of the clusters could be found in the completed 

genome sequence of Bacillus subtilus and that of other related species, which also form part of the 

Firmicutes (gram-positive bacteria), but fall under the Bacillus/Clostridium group (low G+C gram- 

positive bacteria). No copies of these clusters could be found in the genomes of any other bacteria or 

organism outside of the Firmicutes and thus the ESAT-6 gene clusters appear to be unique to the 

Actinobacteria.
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Figure 3.6. Taxonomical position of the bacterial species that have the ESAT-6 gene clusters 

present in their genomes. This indicates that the ESAT-6 gene clusters seem to be a feature of only 

the high G+C gram-positive bacteria (Actinobacteria) and that the presence of multiple copies of the 

gene clusters seems to be a characteristic only found in the mycobacteria. Phylogenetic relationships 

of members of the genus Mycobacterium indicated are based on 16S rRNA gene sequence 

information (Shinnick and Good, 1994).
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To calculate the phylogenetic relationships between the five duplicated ESAT-6 gene cluster 

regions in M. tuberculosis and to identify the ancestral region, detailed phylogenetic analyses were 

performed on each of the six protein families which are present in all five of these regions (family C, 

D, G, H, J and K). Figure 3.7 shows an example of a part of one of the multiple protein sequence 

alignments (family C), showing the high level of sequence identity shared among the family members 

in regions of homology. Although the individual protein families differ in the amount of sequence 

identity, they are all clearly derived from duplication events. These multiple sequence alignments 

were used in the subsequent phylogenetic analyses of the ESAT-6 gene cluster regions.

3.3.5. Phytogeny o f the ESA T-6 gene cluster

Figure 3.7. Partial multiple sequence alignment of Family C protein sequences.

(results not shown in published paper due to length restrictions).
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Figure 3.8A shows a neighbor-joining tree of the protein sequences of the ATP/GTP binding 

protein family (family D) from the ESAT-6 gene cluster regions of the mycobacteria and C. 

diphtheriae, with the protein orthologue of S. coelicolor as the outgroup. This tree is representative of 

all six trees that were drawn using the six families (data for the other trees are not shown). To confirm
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the results obtained with the S. coelicolor orthologues as outgroups, the same analyses were done 

using the C. diphtheriae orthologues as outgroups, with comparable results (results not shown). This 

tree topology was not due to systematic error as trees drawn using the FITCH algorithm gave the 

same results (results not shown). To confirm the basic structure of the trees and to verify that this 

structure is not influenced by the choice of outgroup, unrooted trees without any outgroup were 

constructed using the KITSCH algorithm, once again with comparable results (Figure 3.8D). To further 

verify the relationships among these clusters, the conserved sequences of all six proteins from M. 

tuberculosis were combined into one protein sequence and the same analysis was performed. The 

result of this analysis is presented in Figure 3.8B.

To investigate whether the non-conserved protein families (in other words those that are not 

present in region 4 of the mycobacteria, C. diphtheriae or S. coelicolor) show the same basic 

phylogenetic relationships as the conserved families (present in all five regions), an analysis was 

done on the AAA+ class ATPases family (family B). This family does not have a homologue in region 

4 and there is also no C. diphtheriae or S. coelicolor orthologue to use as outgroup. The tree 

constructed from the data of this family clearly demonstrated once again that region 2 and 5, and 

region 1 and 3, respectively, are phylogenetically closer to each other (Figure 3.8E).
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Figure 3.8. Phylogenetic trees showing the relationships between the five duplicated gene 

cluster regions. (A) Neighbor-joining phylogenetic tree of all available protein sequences of the 

ATP/GTP-binding protein family (family D in Table 3.3) with the protein orthologue of Streptomyces 

coelicolor as the outgroup. This tree is representative of ail the trees drawn using the six most 

conserved proteins in these regions as well as using the protein orthologue of Corynebacterium 

diphtheriae as the outgroup. (B) Neighbor-joining phylogenetic tree of all six conserved proteins from 

the M. tuberculosis gene clusters combined into one protein per region. The combined protein of C. 

diphtheriae was used as the outgroup. (C) Neighbor-joining phylogenetic tree of the ESAT-6 and 

CFP-10 protein families combined (family G and H), using the combined protein of C. diphtheriae as 

the outgroup. (D) Unrooted phylogenetic tree, drawn without an outgroup, of all five protein 

sequences of the ATP/GTP binding protein family (family D) of M. tuberculosis H37Rv using the 

KITSCH algorithm. (E) Unrooted phylogenetic tree, drawn without an outgroup, of the AAA+ class 

ATPases family (Family B), which is one of the unconserved gene families found only in region 2 - 5  

and not in C. diptheriae and S. coelicolor (results for D and E not shown in published paper due to 

length restrictions).
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Neighbor joining, FITCH, KITSCH and concatenated sequence comparison analyses all 

supported a single phylogeny that indicates that region 4 seems to be the most ancient of the 

mycobacterial ESAT-6 gene cluster regions. Region 4 is also the closest region to the S. coelicolor 

and C. diphtheriae regions. The order of duplication seems to extend from region 4, through 1 and 3 

to regions 2 and 5. The phylogenetic relationships between corresponding clusters in the different 

mycobacteria are maintained throughout the different protein family trees, and are in agreement with 

the proposed phylogenetic order (or taxonomical position) of the mycobacterial species according to 

16S rRNA data (see Figure 3.6).

As the genome of M. tuberculosis contains 11 copy pairs of the ESAT-6/CFP-10 genes that 

appear to be duplicated together, phylogenetic trees were constructed using the ESAT-6 or CFP-10 

proteins separately (results not shown), or in combination as one ESAT-6/CFP-10 protein (Figure 

3.8C). Using the combined C. diphtheriae ESAT-6/CFP-10 orthologue protein as outgroup, the same 

organization of duplication events was obtained with region 1, 3, 2 and lastly 5 being duplicated from 

the ancient region 4. The other copies of the ESAT-6/CFP-10 operon pairs that are present in the M. 

tuberculosis genome sequence, but are not part of the ESAT-6 gene cluster regions, seem to have 

arisen from singular duplication events originating from different cluster regions. It is interesting to 

note that the ESAT-6 and CFP-10 genes from region 5 seem to be highly prone to duplication, as 

there are four additional copies of these two genes present in the genome, compared to just one 

additional copy originating from region 4 and region 3, respectively. These four gene duplicates of 

ESAT-6 and CFP-10 from region 5 are also nearly identical (93 - 100% similarity at protein level), 

indicating their recent duplication.
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It was recently estimated in an in silico analysis of the genome sequence of M. tuberculosis 

H37Rv, that 52% of the proteome has been derived from gene duplication events (Tekaia et al.,

1999). One of these duplication events involves multiple copies of the genes of the secreted T-cell 

antigens ESAT-6 and CFP-10 (Andersen et al., 1995, Sorensen et al., 1995, Van Pinxteren et al.,

2000) together with a number of associated genes. A total of twelve gene families were identified in 

five regions (which were termed the ESAT-6 loci).

Phylogenetic analyses of the protein sequences of the six most conserved gene families, 

present within the five regions, predict that region 4 (Rv3444c to Rv3450c) is the ancestral region. 

Region 4 also contains the least number of proteins [only 6 compared to the 12 of region 1 (Rv3866- 

3883c) and region 2 (Rv3884c-3895c)], and does not contain the PE and PPE genes, which appear to 

may have been have been inserted into this region following the first duplication. Phylogenetic 

analyses using different methods and protein family data also suggests that subsequent duplications 

took place in the following order: region 1 (Rv3866-3883c) -> 3 (Rv0282-0292) -> 2 (Rv3884c-3895c) 

-> 5 (Rv1782-1798). Furthermore, these analyses support the taxonomical order observed for the 

mycobacteria, with M. smegmatis being taxonomically the farthest removed from M. tuberculosis. The 

presence of a copy of region 4 and its flanking genes in C. diphtheriae strengthens the taxonomical 

data that implies that the corynebacteria and mycobacteria have a common ancestor. It appears that 

C. diphtheriae have diverged from the mycobacteria before the multiple duplications of the ESAT-6 

gene cluster, as only one copy of this cluster could be identified in the genome of this organism.

The loss of region 1 from the genomes of the species M. avium and M. paratuberculosis 

(belonging to the M. avium complex) is confirmed by clinical data showing that HIV-sero-negative 

patients infected with mycobacteria belonging to the M. avium complex, do not respond to ESAT-6 

from region 1, but do recognize PPD and M. avium sensitins (Lein et al., 1999). The ESAT-6 and 

CFP-10 genes encoded by region 1 are also not found in M. bovis BCG and have thus been a focus 

of recent research efforts because of their application as diagnostic markers to differentiate between 

BCG vaccination and M. tuberculosis, M. bovis, or M. avium infection (Van Pinxteren et al., 2000,

8.4. Discussion
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Vordermeier et al., 2000, etc.). In this study we have found several copies of ESAT-6 and CFP-10 

(with differing degrees of similarity) in the genomes of different mycobacteria (80% and 71% protein 

sequence similarity for ESAT-6 and CFP-10 respectively from region 1 in avirulent M. smegmatis) as 

well as orthologues in species outside of the mycobacteria, therefore care should be taken when 

using these proteins for diagnostic purposes. It would be important to look at the protein sequence 

similarity between the copies of ESAT-6 and CFP-10 of different virulent and environmental 

mycobacterial species before a member of these immunodominant protein families can be chosen as 

a definite marker of M. tuberculosis infection. Studies to determine the IFN-gamma production in 

response to ESAT-6 and CFP-10 from environmental mycobacteria (for example M. smegmatis) by 

peripheral blood mononuclear cells from infected patients have not been done. Until these results are 

available indicating that the T-cell responses against these proteins are not comparable to those 

found with the M. tuberculosis proteins, care should be taken with claims regarding the potential 

diagnostic value of these antigens.

Most of the sequences of the genes belonging to the ESAT-6 gene cluster regions contain no 

stop codons or frameshifts and thus appear to be functional. This is significant when placed into the 

context of a bacterium like M. leprae, since it is hypothesized that the genome of M. leprae may 

contain the minimal gene set required by a pathogenic mycobacterium (Brosch et al., 2000b, Wixon, 

2000, Cole et al., 2001) and that the activities of some functional genes once present in the genome 

of M. leprae have been silenced (they became pseudogenes through multiple stop codon mutations 

and frameshifts) because it is no longer needed for its intracellular survival (Cole et al., 1998). It 

appears as if M. leprae contains at least two functional copies of the ESAT-6 gene cluster in its 

genome (region 1 and 3). The M. leprae ESAT-6 copy from region 1 (the L45-antigen or L-ESAT 

antigen from clone L45) was shown to be strongly reactive to sera from leprosy patients (Sathish et 

al., 1990), further providing experimental data that at least one of the cluster regions are definitely 

functional in M. leprae.

As most of the genes present within the ESAT-6 gene cluster regions encode for proteins that 

are predicted to be associated with transport and energy-providing systems, we hypothesize that 

these proteins may be involved in the secretion of a substrate across the mycobacterial cell wall. It is
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well known that the T-cell antigens ESAT-6 and CFP-10 are found in short term culture filtrates (ST- 

CF) of M. tuberculosis, although the mechanism by which secretion occurs are unknown, as these 

proteins do not possess any ordinary sec-dependant secretion signals (Andersen et al., 1995, 

Sarensen et al., 1995, Berthet et al., 1998). Therefore it is possible that the genes present within the 

ESAT-6 gene cluster regions function together to provide a system for the secretion of the ESAT-6 

and CFP-10 proteins. There is evidence for the processing of the TB10.4 protein (the ESAT-6 family 

member belonging to region 3) to a lower molecular weight product (Skjat et al., 2000), suggesting a 

possible role for the cell wall-associated mycosin proteases (Brown et al., 2000) in the hypothesized 

transport system. Most of region 1 is situated in the RD1 deletion region of M. bovis BCG, possibly 

explaining the absence of expression of the mycosin-1 gene (Rv3883c) in BCG (Brown et al., 2000). 

The hypothesis that a dependent functional relationship exists between the genes contained in these 

regions is further supported by the M. leprae sequence data, which shows that a deletion of part of the 

ESAT-6 gene cluster region 2 apparently caused the remaining genes in the region to become 

pseudogenes, or vice versa. Furthermore, Wards and coworkers (2000) produced an M. bovis 

knockout mutant of the ATPase gene Rv3871 (family D) in the ESAT-6 gene cluster region 1, 

resulting in a strain that did not sensitize guinea pigs to an ESAT-6 skin test. These results indicate a 

close relationship between the genes contained within these regions.

Wards et al. (2000) showed that an esat-6lcfp-10 knockout mutant of M. bovis was less 

virulent than its parent if gross pathology, histopathology and mycobacterial culture of tissues were 

taken into account. These results, combined with the fact that multiple copies of the ESAT-6 gene 

clusters are found in all the mycobacteria, clearly indicate that they form an important part of the 

mycobacterial genomic composition. The presence of multiple duplications of the ESAT-6 gene 

cluster regions in the mycobacteria may be a significant difference between the members of this 

genus and other high G+C gram positives. Although the function of this cluster is presently unknown, 

there is sufficient evidence to indicate that it is of importance to the mycobacteria, and needs to be 

investigated further.
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NOTE ADDED IN PROOF: Since the publication of the results described in the preceding chapter the 

whole genome sequence of another high G+C Gram positive organism belonging to the genus 

Corynebacterium, namely Corynebacterium glutamicum, has been completed 

(http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/genom_table_cgi). The genome sequence of C. 

glutamicum was subsequently also analyzed to determine the presence of the ESAT-6 gene cluster 

regions. The results of this analysis indicate that there is only one copy of the ESAT-6 gene cluster 

region present in the genome of C. glutamicum, which is an orthologue of region 4. This result 

supports the data obtained from the C. diphtheriae genome sequence analyses as well as the 

phylogenetic analyses indicating that region 4 is the most ancient ESAT-6 gene cluster. The 

genomes of a further two high G+C gram positive organisms, namely Thermobifida fusca 

(http://www.jgi. doe. gov/JGI_microbial/html/thermobifida/thermob_homepage.html) and Clavibacter 

michiganensis (http://www.sanger.ac.uk/Projects/C_michiganensis/), as well as a further three 

members of the genus Mycobacterium, namely Mycobacterium ulcerans, Mycobacterium miroti 

(http://www.pasteur.fr/recherche/unites/Lgmb/mycogenomics.html) and Mycobacterium marinum 

(http://www.sanger.ac.uk/Projects/M_marinum/), are in the process of being sequenced and will 

undoubtedly provide further clues to the distribution and evolution of the ESAT-6 gene cluster regions 

in the near future.
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ADDENDA TO CHAPTER THREE

ADDENDUM 3A 

INDIVIDUAL PROTEIN FAMILIES, IMMUNOLOGICAL ASPECTS AND 

LINKS TO PATHOGENICITY

“There is a dread disease which so prepares the victim, as it were, for death; which so refines it of its 

grosser aspect, and throws around familiar looks, unearthly indications of the coming change -  a 

dread disease, in which the struggle between soul and body is so gradual, quite, and solemn, and the 

result so sure, that day by day, and grain by grain, the mortal part wastes and withers away, so that 

the spirit grows light and sanguine with its lightening load, and, feeling immortality at hand, deems it 

but a new term of mortal life; a disease in which death takes the glow and hue of life, and life the 

gaunt and grisly form of death; a disease which medicine never cured, wealth warded off, or poverty 

could boast exemption from; which sometimes moves in giant strides, and sometimes at a tardy pace; 

but, slow or quick, is ever sure and certain."

Nicholas N ickleby- Charles Dickens (1870)

NOTE: The results presented in the following addendum will be submitted as part of a review article 

for peer review and publication as: “The mycobacterial ESAT-6 gene clusters, Gey van Pittius, 

N.C., Warren, R.M., and Van Helden, P.D.”
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It has been known for many years that molecules secreted by M. tuberculosis during the early 

phases of infection can be targets for a protective immune response and could thus possibly be 

utilized in a novel antituberculosis vaccine (Andersen et al., 1991a, Andersen et al., 1991b, Pal and 

Horwitz, 1992;). A number of studies have shown that the two most antigenic fractions of short-term 

culture filtrates (ST-CF’s) are the low-molecular weight fractions of secreted proteins ranging in 

molecular mass from 3 to 12 kDa and from 25 to 31 kDa (Andersen and Heron, 1993, Boesen et al, 

1995). These studies have shown that T lymphocytes producing high levels of gamma-interferon are 

specifically directed to the abovementioned fractions. A number of small, potently immunogenic 

proteins have been identified from the low molecular mass fraction, which includes members of the 

ESAT-6 and CFP-10 protein families. These are potent T-cell antigens of between 90 and 125aa that 

are secreted without any obvious secretion signal. Recently, it has been shown that the genes 

encoding for these proteins are situated within a cluster of genes named the ESAT-6 gene cluster 

regions (Tekaia et al., 1999, Gey van Pittius et al., 2001). These clusters contain genes encoding for 

energy-providing and transport associated proteins and have thus been hypothesized to function 

together to form an energy-dependant active transport secretion system for the secretion of the 

immunologically-important ESAT-6 and CFP-10 protein families (Tekaia et al., 1999, Gey van Pittius 

et al., 2001).

This study aims to provide an extensive review of all currently available data concerning the 

proteins encoded by the ESAT-6 gene cluster regions of M. tuberculosis, as there is a wealth of 

unprocessed data concerning this T-cell antigen family and its proposed biosynthetic gene clusters.

3A.1. Introduction
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The distribution of the five ESAT-6 gene clusters within different bacterial species has 

recently been described in a detailed analysis of publicly available whole genome sequencing data 

(Gey van Pittius et al., 2001). The results of this study indicate that the ESAT-6 gene clusters appear 

to be a feature of the Actinobacteria (high G+C Gram positive bacteria), with multiple duplications 

being limited to members of the genus Mycobacterium.

In addition to the whole genome sequencing information, several recent publications have 

described experiments done on genes or regions of DNA within the ESAT-6 gene cluster regions 

(Sorenson et al., 1995, Harboe et al., 1996, Mahairas et al., 1996, Gormley et al., 1997, Alderson et 

al., 2000, Colangeli et al., 2000, Skjot et al., 2000). ESAT-6 gene cluster region 1 (Rv3866-Rv3883c) 

has enjoyed preference throughout these studies because of the presence of the immunologically 

important ESAT-6 (Rv3875) and CFP-10 (Rv3874) genes (Skjat et al., 2001) and the RD1 deletion 

region within this cluster. RD1 is commonly thought to be the primary deletion that occurred during 

the serial passage of M. bovis by Calmette and Guerin between 1908 and 1921 (Calmette and 

Guerin, 1920, Calmette, 1927, Calmette, 1928, Guerin, 1928, Guerin, 1948, Guerin, 1980), and is 

thus thought to possibly be responsible for the primary attenuation of M. bovis to M. bovis BCG (Behr 

et al., 1999, Brosch et al., 2000a). As no immunological significance has so far been attributed to the 

ESAT-6 and CFP-10 copies within Region 4 (Rv3444c-Rv345Oc)(Skj0t et al., 2001), this region has 

been largely ignored in the past and is thus the only one of the five ESAT-6 gene cluster regions for 

which no experimental data is available in the literature. This is despite the fact that this is probably 

the progenitor ESAT-6 gene cluster (from where subsequent duplications took place), and that this is 

the only one of the ESAT-6 gene cluster regions also present in the Corynebacteria (Gey van Pittius 

et al., 2001). By performing a comprehensive analysis of the Southern, Western and PCR results 

from all of the abovementioned publications, it is possible to obtain further insight into the distribution 

of the ESAT-6 gene clusters in different members of the genus Mycobacterium (Table 3A.1). Figure 

3A.1 summarizes the results from this data on a phylogenetic tree of the mycobacteria, revealing that 

the multi-duplication of the ESAT-6 clusters are conserved in (although not necessarily restricted to) 

the slow-growing pathogenic mycobacterial complexes encompassing M. tuberculosis and M. avium.

3A.2. Distribution in the genus Mycobacterium
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It is interesting to note how the experimental results showing the absence of region 1 in M. 

avium (Sorenson et al., 1995, Harboe et al., 1996, Gormley et al., 1997, Skjot et al., 2000, Colangeli 

et al., 2000), compliment the whole genome sequencing data which confirmed the deletion of this 

region in the organism (Gey van Pittius et al, 2001). The sequencing data also revealed a 

corresponding absence of this region in the genome of the closely related species M. 

paratuberculosis. Furthermore, the experimental data revealed the absence of region 1 in M. 

intracellulare (Sorenson et al., 1995, Harboe et al., 1996, Skjot et al., 2000), indicating that the 

deletion of region 1 is probably a feature shared by all members of the MAI complex (M. avium, 

paratuberculosis and intracellulare). This is confirmed by clinical data indicating that there are no in 

vitro gamma interferon responses by peripheral blood mononuclear cells to Region 1 ESAT-6 in 

patients infected with a member of the M. avium complex, although they do respond to PPD and M. 

avium sensitins (Lein et al., 1999).

Many authors (for example Picken et al., 1988, Ramos, 1994) include the very similar M. 

scrofulaceum species into this complex (describing it as the MAIS complex). According to Shinnick 

and Good (1994), this is incorrect, because this species is phylogenetically and phenetically distinct 

from M. avium and M. intracellulare and it is thus not a member of the complex. What is very 

interesting to note though, is the observation that the M. scrofulaceum species is also one of the very 

few species that does not contain a copy of region 1, similar to the other members of the M. avium 

complex, while the species which separate the M. avium complex from M. scrofulaceum on the 

proposed phylogenetic tree (Figure 3A.1, for example M. gastri and M. kansasii), do contain this 

region. Although the absence of region 1 in M. scrofulaceum could be due to a separate deletion 

event, this observation may indicate a phylogenetically closer relationship between M. scrofulaceum 

and the members of the MAI complex than what is proposed by Shinnick and Good (1994) and could 

thus be an important observation in the taxonomical classification of the species.

In summary, the results derived from the analysis of data from experimental approaches 

confirm the in silico results indicating the presence of different numbers of the ESAT-6 gene clusters 

in the genomes of members of the genus Mycobacterium.
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Table 3A.1. Evidence for the presence of the ESAT-6 gene cluster regions in the mycobacteria*

Species and Strain Pathogenicity(a) ESAT-6 Gene Cluster Region(b)

Region 1 Region 2 Region 3 Region 5

M.africanum Pathogenic Present (d) (f) (g)
M.asiaticum Pathogenic Not detected (d)
M. avium Pathogenic Not detected (d) (f) (g) (h) (j) Present (i) Present (h) Not detected (e)
M. bo v/s ATCC19210 Pathogenic Present (j)
M.bovis Branch Pathogenic Present (d)
M.bovis KML Pathogenic Present (i)
M.bovis MNC 27 Pathogenic Present (g) (h) Present (h)
M.bovis NADL Pathogenic Present (d)
M.bovis Ravenel Pathogenic Present (d)
M.bovis BCG Brazil Non-pathogenic (c) Not detected (j)
M.bovis BCG Connaught Non-pathogenic (c) Not detected (d) (j)
M.bovis BCG Danish 1331 Non-pathogenic (c) Not detected (f) (g) (h) Present (h)
M.bovis BCG Glaxo 1077 Non-pathogenic (c) Not detected (g)
M.bovis BCG Japan 172 Non-pathogenic (c) Not detected (d)
M.bovis BCG Montreal Non-pathogenic (c) Not detected (d)
M.bovis BCG Moreau Non-pathogenic (c) Not detected (g)
M.bovis BCG Pasteur 1173P2 Non-pathogenic (c) Not detected (d) (g) (j) Present (i)
M.bovis BCG Tice Non-pathogenic (c) Not detected (g)
M.bovis BCG Tokyo Non-pathogenic (c) Not detected (g) (h) Present (h)
M.bovis BCG Russia Non-pathogenic (c) Not detected (d) (g)
M.chelonae Pathogenic Not detected (e)
M.flavescens Non-pathogenic Present (g)
M.fortuitum Pathogenic Not detected (d) (f) (g) (h) Not detected (i) Not detected (h) Not detected (e)
M.gastri Non-pathogenic Present (d)
M.gordonae Non-pathogenic Not detected (i) Not detected (e)
M.heamophilum Pathogenic Not detected (d)
M.intracellulare Pathogenic Not detected (f) (g) (h) Present (i) Present (h)
M.kansasii Pathogenic Present (d) (f) (g) (h) Present (i) Present (h)
M. leprae Pathogenic Not detected (g) Not detected (e)
M.malmoense Pathogenic Not detected (d)
M.marinum Pathogenic Present (f) (g) (h) Not detected (i) Present (h)
M. paratuberculosis Pathogenic Present (i)
M.phlei Non-pathogenic Not detected (d) Not detected (i)
M.scrofulaceum Pathogenic Not detected (d) (f) (g) (h) Present (i) Not detected (h) Not detected (e)
M.simiae Pathogenic Not detected (d)
M. smegmatis Non-pathogenic Not detected (j) Not detected (i) Not detected (e)
M.szulgai Pathogenic Present (f) (g) (h) Not detected (h)
M. terrae Non-pathogenic Not detected (d) Not detected (i)
M.triviale Non-pathogenic Not detected (d)
M.tuberculosis CSU#93 Pathogenic Present (d)
M.tuberculosis Erdman Pathogenic Present (g) (j) Present (e)
M.tuberculosis H37Ra Non-pathogenic (c) Present (d) (f) (g) G) Present (i) Present (e)
M.tuberculosis H37Rv Pathogenic Present (d) (f) (g) (h) (j) Present (i) Present (h) Present (e)
M.tuberculosis R1609 Pathogenic Present (f)
M.tuberculosis W Pathogenic Present (d)
M.ulcerans Pathogenic Not detected (d)
M.vaccae Non-pathogenic Not detected (e)
M.xenopi Pathogenic Not detected (f) (g) (h) Not detected (h)

* Based on previously published Southern blotting, Western blotting and PCR data of selected genes and regions within the gene clusters
(a) = Shinnick and Good, 1994; (b) = No work has been done on any of the genes within region 4; (c) = Attenuated strains, potentially hazardous;
(d) = Southern blotting data using mtsa-10 (cfp-10) and esat-6 as probes (Colangeli et al., 2000); (e) = Southern blotting data using mtb9.9a
as probe (Alderson et al., 2000); (f) = Western blotting data using monoclonal anti-ESAT-6 antibodies (HYB 76-8) as probe
(Sorenson et al., 1995); (g) = Southern blotting and PCR data using esat-6 as probe (Harboe ef al., 1996); (h) Southern blotting data using
tb10.4 and cfp-10 as probes (Skjat et al., 2000); (i) = Southern blotting data using Pan promoter sequence as probe (Gormley et al., 1997);
(j) = Southern blotting data using RD1 deletion region specific probe (Mahairas et al., 1996).
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Figure 3A.1. Taxonomical positions of members of the genus Mycobacterium with the 

presence and absence of the different ESAT-6 gene cluster regions indicated next to the 

species. Data was obtained from experimental results (Table 3A.1) or from whole genome 

sequencing data (Gey van Pittius et al., 2001). (1) = Region 1; (2) = Region 2; (3) = Region 3; (4) = 

Region 4; (5) = Region 5; not (..) = absent from the genome of this species and deleted (..) = 

confirmed as deleted from the genome of this species. A region has only been indicated as being 

absent or deleted if this has been shown by whole genome sequencing data or by experimental data 

from more than one publication. Underlined species are pathogens. * = M. farcinogenes is a slow 

growing mycobacterium. The taxonomical relationships between members of the genus 

Mycobacterium was constructed using sequence information of 16S rRNA genes as adapted from 

Pitulle et al. (1992), Shinnick and Good (1994) and Springer et al. (1996).
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To obtain a clearer understanding of the potential function of the ESAT-6 gene clusters, it is 

important to review all current information available for the individual protein families belonging to 

these clusters (see Chapter 3, Figure 3.1 and Table 3.3). These families are discussed in the 

following section according to the arbitrary alphabetical names given previously (Gey van Pittius et al.,

2001).

3A.3.1. Family A - Unknown

All members of this family are of unknown function. The average size of the proteins is 

approximately 288 aa. One member (Rv1794) contains a PS00211 ABC transporter family signature 

that is totally absent in the other family members. This protein has been detected in the bacterial 

cytoplasmic fraction with a molecular weight of 31 kDa. Another member (Rv0289) contains a motif 

(ALRTGTGKT) which has one mismatch to the PS00017 ATP/GTP-binding site motif A (P-loop) ([A] 

x4 GK [T]). This motif is found in proteins that bind ATP or GTP and is a glycine-rich region, which 

typically forms a flexible loop between a beta-strand and an alpha-helix. This loop interacts with one 

of the phosphate groups of the nucleotide and is generally referred to as the ‘P-loop’. These motifs 

are among others found in ATP-binding proteins involved in active transport (ABC transporters). The 

Family A member of region 1 (Rv3866) is situated next to Rv3867 (a hypothetical gene of unknown 

function). The orthologue of Rv3867 is predicted to be part of the ORF of the Rv3866 gene 

orthologue (MT3980) in the genome sequence of M. tuberculosis CSU#93, and to have undergone a 

frameshift, which could indicate an error in the original ORF prediction and annotation of the M. 

tuberculosis H37Rv genome sequence. It is interesting to note that the gene sequence of the 

orthologue in M. leprae (ML1143A) also contains a frameshift (although it is not in the same position 

in the sequence). It is thus possible that this gene does not play a major role in the function of the 

gene cluster (highlighted by the fact that it is absent in region 4) or that the shortened version of this 

gene (only Rv3866) contains all the necessary domains to still be able to perform the original function.

3A.3. Individual protein families
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3A.3.2. Family B - AAA* class ATPases

This family of proteins is classified under the AAA* class ATPases (COG database - Tatusov 

et al., 2000 - maintained by the NCBI at http://www.ncbi.nlm.nih.gov/COG/). The AAA* class 

ATPases are a family of chaperone-like ATPases associated with the assembly, operation and 

disassembly of protein complexes (Neuwald et al., 1999). The hexameric structure, which is often 

associated with members of this class, can form a hole through which DNA or RNA can be 

transported. The average size of the proteins from the mycobacterial Family B is approximately 

608aa. They are all hydrophobic proteins and each contains one PS00017 ATP/GTP binding site 

motif A (P-loop) (see Family A for description of motif). Their N-termini appear to be mycobacterial 

specific, but their C-termini are highly similar to members of the CbxX/CfqX family, which are ATP- 

binding proteins of unknown function (Tekaia et al., 1999). The closest known homologue is the 

Bacillus subtilis spore formation protein spoVK (also named spoVJ) which is required for spore coat 

formation (Fan et al., 1992). One member (Rv0282) has been detected in the bacterial cytoplasmic 

fraction at a molecular size of between 65 kDa and 80 kDa.

3A.3.3. Family C - Unknown

All members of this family are of unknown function. The average size of the proteins is 

approximately 497 aa. There is a hydrophobic stretch near the N-terminus of all members 

corresponding to an N-terminal transmembrane region (Figure 3A.2). One member (Rv3450c) 

contains a binding-protein-dependent transport systems inner membrane component signature (with a 

single amino acid mismatch). Another family member (Rv0283) contains one PS00017 ATP/GTP 

binding site motif A (P-loop) (that is totally absent from all other members) and has recently been 

identified to be a secreted protein containing an N-terminal secretion signal (Wiker et al., 2000). The 

authors made use of a phoA fusion library and identified an alternative starting codon on this protein 

other than the annotated one so that the N-terminal transmembrane region moved sufficiently close to 

the N-terminus to be predicted as a signal peptide. It is possible that all the members of this family 

might have an alternative start site, resulting in the N-terminal transmembrane region to change to a 

signal peptide. It is clear, though, from the multiple sequence alignment (Figure 3A.3) that the 

originally predicted N-terminal region YRRGFVTRHQVTGWRFVMRRIAAGIA (that was deleted by the 

authors of this paper) is a region of relatively high sequence homology between the proteins in this
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family. If this proposed alternative start site holds true, the significance of this homologous stretch of 

residues before the start codon is unknown, but it could indicate the presence of a conserved 

regulatory region upstream of the genes.

Figure 3A.2. TMHMM profile for Rv0283. This result is representative of all members of Family C 

and shows clearly the single N-terminal transmembrane region.
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Figure 3A.3. Partial sequence alignment of N-terminal part of Family C protein sequences.

Arrow indicates new experimentally defined starting amino acid.

1S. coelicolor ----------------------------------- MASRRDELNAYTFAKRRLLAAFL QPS
M.tb region 4 -------------------------------- VPSPATTWLHVSGYRFLLRRIECALL FGD
M.tb region 1 ------------------------------MGLR— LTTKVQVSGWRFLLRRLEHA.IV RRD
M.tb region 3 MTNQQHDHDFDHDRRSFASRTPVNNNPDKWYRRGFVTRHQVTGWRFVMRRIAAGIA LHD
M.tb region 2 -------------------------------- MPLSLSNRDQNSGHLFYNRRLRAATT RFS
M.tb region 5 ------------------- VAEESRGQRGSGYGLGLSTRTQVTGYQFLARRTAMALT RWR

•k * *

S .coelicolor 
M.tb region 4 
M.tb region 1 
M.tb region 3 
M.tb region 2 
M.tb region 5

PSGTEEGAPKPLRTWPSLVAGALTLAVFGAWGMFQPTAPSGWDEPGARVIVGKQSTTRY
VCAATGALRARTTSLALGCVLAIVAAMGCAFVALLRPQSALGQAP-----IVMGRESGAL
TRMFDDPLQFYSRSIALGIWAVLILAGAALLAYFKPQGKLGGTS-----LFTDRATNQL
TRMLVDPLRTQS RAVLMGVLIVITGLIGS FVFS LI RPNGQAGSNA-----VLADRSTAAL
VRMKHDD-RKQTAALALSMVLVAIAAGWMMLLNVLKPTGIVGDSA---- IIGDRDSGAL
VRMEIE PGRRQT LAWAS VS AALVICLGALLWS FI S P S GQLNE S P-----IIADRDSGAL

S .coelicolor 
M.tb region 4 
M.tb region 1 
M.tb region 3 
M.tb region 2 
M.tb region 5

WLKTDGDTRLHPVLNIASARLLMKDGTYEWQVGDDVLDSGEIPRGPILGIPYAPDRLP
YVRVDD-- VWHPVLNLASARLIAAT-NANPQPVSESELG— HTKRGPLLGIPGAPQLLD
YVLLSG-- QLHPVYNLTSARLVLGN-PANPATVKSSELS— KLPMGQT VGIP GAP YAT P
YVRVGE-- QLHPVLNLTSARLIVGR-PVSPTTVKSTELD— QFPRGNLIGIPGAPERMV
YARIDG-- RL Y PALNLT S ARLAT GT - AGQ P TWVKPAEIA— KYPTGPLVGIPGAPAAMP
YVRVGD-- RL YPALNLAS ARLIT GR- P DNPHLVRS S QIA— TMPRGPLVGIPGAPSSFS

•k k  k  k  k  k
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3A. 3.4. Family D - A TPases

This family of proteins is classified under the DNA segregation ATPase FtsK/SpolllE and 

related proteins (COG database - Tatusov et al., 2000 - maintained by the NCBI at 

http://www.ncbi.nlm.nih.gov/COG/). The average size of the proteins is approximately 1333aa. They 

all contain two N-terminal transmembrane regions (Figure 3A.4) as well as three PS00017 ATP/GTP 

binding site motif A (P-loop) in the C-terminus that are separated by ~350 and 230 residues (Tekaia et 

al., 1999). The closest known homologues are the cell division protein FtsK, the DNA translocase 

stage III sporulation protein spolllE and the Bacillus subtilus yukA (or yueA). These are all 

membrane-associated proteins containing hydrophobic N-terminal transmembrane regions connected 

to a highly homologous C-terminal region that is situated in the cytoplasm (Wu et al., 1997, Wang et 

al., 1998) and contains the ATP binding sites responsible for ATP hydrolyses to drive translocation (of 

DNA in this case).

Figure 3A.4. TMHM M  profile for Rv3447c. This result is representative of all members of Family D 

and shows clearly the two N-terminal transmembrane regions.
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The PE family is a large family of 99 duplicated Gly-Ala-rich proteins of variable sequences 

found distributed throughout the genome of M. tuberculosis. All these proteins contain a conserved 

N-terminal segment of -110 aa with the motif Pro-GIu (PE) in positions 8 - 9 in most cases (Tekaia et 

al., 1999). The average size of the PE proteins found in the ESAT-6 gene clusters is approximately 95 

aa, although the sizes of other family members vary greatly.

3A. 3.6. Family F - PPE

The PPE family is a large family of 67 duplicated Gly-Ala-rich proteins of variable sequences 

found distributed throughout the genome of M. tuberculosis. All these proteins contain a conserved 

N-terminal segment of -180 aa containing the motif Pro-Pro-GIu (PPE) (Tekaia et a l, 1999). The 

average size of the PPE proteins found in the ESAT-6 gene clusters is approximately 398 aa, 

although the sizes of other family members vary greatly.

3A.3.7. Family G - Ihp (CFP-10) and Family H - ESAT-6

Family G and Family H are both families of small (-10 kDa), very potent T-cell antigens of 

unknown function, secreted from early growth without any ordinary secretion signals (Andersen et al., 

1995, Sarensen et al., 1995, Berthet et al., 1998, Van Pinxteren et al., 2000). In addition to the five 

duplications in the ESAT-6 gene clusters, there are six other sub-duplications of only the Ihp and esat- 

6 genes in the genome of M. tuberculosis H37Rv (see Chapter 3, Figure 3.2). As these are mostly 

flanked on one or both sides with PE, PPE and/or an insertion sequence (IS), it signifies either a 

propensity to co-duplicate with PE and PPE, or a susceptibility to IS-mediated transfer (Tekaia et al., 

1999).

One member of Family G, named the “L45 homologous protein” or Ihp (Rv3874), encode the 

“culture filtrate protein-10” (CFP-10 or renamed “M. tuberculosis-specific antigen-10", MTSA-10 by 

Colangeli et al., 2000) and was shown to form part of an operon with a member of Family H named 

the “6kDa early-secreted antigenic target” (ESAT-6 or Rv3875, Berthet et al., 1998). The genes of all 

the other members of Family G are also situated directly next to a member of Family H, suggesting 

that these genes may all form part of operon structures.

3A.3.5. Family E - PE
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Because of the sequence similarity observed between members of these two families, as well 

as the fact that their genes are always situated directly adjacent to each other, it is hypothesized that 

they have arisen through gene duplication. Thus, the 23 genes from Families G and H are collectively 

classified under the combined ESAT-6 family (Berthet et al., 1998, Skj0t et al., 2001). A list of the 

family members and alternative names are provided in Table 3A.2.

There is evidence that at least three ESAT-6 family members (Rv1038c or TB11, Rv3875 or 

ESAT-6 and Rv0288 or TB10.4) are N-terminally cleaved (Skjat et al., 2000, Peter Andersen and 

Karin Weldingh, personal communication), indicating a possible function for the mycosin proteases 

(Family K) present within the ESAT-6 gene clusters.

Stellenbosch University http://scholar.sun.ac.za/



144

Table 3A.2. Members of the ESAT-6 family (Subfamily G)

No. ORF no. Region Gene Name Protein name M. tb M. tb M. bovis M. leprae M. avium M. paratb M. smegmatis Reference
H37Rv CSU#93

1 Rv3445c region 4 Yes Yes Yes Deleted Yes Yes Yes

2 Rv3874 region 1 Ihp. mtsa-10, LHP, CFP-10, Yes Yes Yes Yes Deleted Deleted Yes Berthet et al., 1998; Alderson et al.,
mtb11 or Mtb11 or 2000, Dillon et al., 2000, Colangeli
ORF-6 MTSA-10 et al., 2000; Mustafa, 2001

3 Rv3905c — Yes Yes Yes ? Yes Yes Yes
4 Contig565 — No No No ? Yes Yes ?

5 Rv0287 region 3 tb9.8 TB9.8 Yes Yes Yes Yes Yes Yes Yes Skjet et al., 2001
6 Rv3020c — Yes Yes Yes ? ? ? ?

7 Rv3891c region 2 Yes Yes Yes Deleted Yes Yes ?

8 Rv1792 region 5 Yes Yes Yes Stop + frame Yes Yes ?
9 Rv2347c - - Yes Yes Deleted (RD7) ? ? ? ?
10 Rv1197 — u1756c Yes Yes Yes Yes ? ? ? Genbank accession number

U15180
11 MLCB1701.07C MLCB1701.07c No No No Yes ? ? ? Genbank accession number

AL049191
12 Rv 1038c —  tb11.0 TB11.0 Yes Yes Yes Stop + frame ? ? ? Rosenkrands et al., 2000a, 2000b
13 Rv3620c — Yes Yes Deleted (RD9) ? ? ? ?
14 MT2421 — Deleted Yes Deleted ? ? ? ?

Note: (a) The name “L45 homologous protein" (Ihp) is in fact a misnomer, as the L45 gene of M. leprae is a Family H (ESAT-6) orthologue (see Genbank accession no X90946 and family H below) and 
the authors actually described the gene lying adjacent to the L45 gene (the Family G CFP-10 orthologue). The confusion in the naming of the Ihp gene was probably the result from the fact that the clone 
containing L45 also contains the M. leprae orthologues of Rv3874 and Rv3876.
(b) Rv1792 contains an in-frame stopcodon and is probably a pseudogene.
(c) Rv3020c has been incorrectly classified as a member of the PE family of proteins in the original annotation of the M. tuberculosis H37Rv genome (Cole et al., 1998).
(d) M. avium contains one extra duplicate of Family G not found in the other mycobacteria. This gene is situated on contig 565 and seems to be a duplication of the M. avium Rv3905c orthologue.
(e) MLCB1701.07c is an M. leprae region 5 duplicate and do not have any homologue on the M. tuberculosis genome sequence. It seems to be a recent duplication of the Rv1197 orthologue into a 
region a few thousand bases downstream of Rv1354.
(f) M. tuberculosis CSU#93 contains one more copy of the QILSS subfamily designated MT2421. This gene has been knocked out in the genome of M. tuberculosis H37Rv by the insertion of an IS 6110 
transposon.
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Table 3A.2. Continued - Members of the ESAT-6 family (Subfamily H)

No ORF no. Region Gene Name Protein name M. tb 

H37Rv
M. tb 

CSU#93
M. bovis M. leprae M. avium M. paratb M. smegmatis Reference

1 Rv3444c region 4 Yes Yes Yes Deleted Yes Yes Yes

2 Rv3875 region 1 esx, esat-6, 

L45, ORF-7, 

ORF1C

ESAT-6 or 

L-ESAT

Yes Yes Yes Yes Deleted Deleted Yes Andersen et al., 1995, Genbank 
accession number X79562, Ahmad 
et al., 1999, Genbank accession no 
X90946, Mahairas et al., 1996

3 Rv3904c — Yes Yes Yes ? Yes Yes Yes
4 Contig565 — No No No ? Yes Yes ?

5 Rv0288 region 3 tb10.4 or 

cfp-7

TB10.4 or 

CFP-7

Yes Yes Yes Yes Yes Yes Yes Skjet etal., 2000,

Genbank accession no. AJ002067,

6 Rv3019c — tb10.3 TB10.3 Yes Yes Yes ? ? ? ? Skjot etal., 2001

7 Rv3017c — tb12.9 TB12.9 Yes Yes Yes ? ? ? ? Skjot et al., 2001

8 Rv3890c region 2 Yes Yes Yes Deleted Yes Yes ?

9 Rv1793 region 5 mtb9.9a Mtb9.9A Yes Yes Yes Stop + frame Yes Yes ? Alderson et al., 2000

10 Rv2346c — mtb9.9e Mtb9.9E Yes Yes Partly deleted (RD7) ? ? ? ? Alderson et al., 2000

11 Rv1198 mtb9.9c Mtb9.9C or 
u1756d

Yes Yes Yes Yes ? ? ? Alderson et al., 2000, 
Genbank accession number 
U15180 and AAA62902

12 MLCB1701.06c MLCB1701.06c No No No Yes ? ? ? Genbank accession number
AL049191

13 Rv 1037c — mtb9.9d Mtb9.9D Yes Yes Yes Stop + frame ? ? ? Alderson et al., 2000

14 Rv3619c — mtb9.9b Mtb9.9B Yes Yes Deleted (RD9) ? ? ? ? Alderson et al., 2000

15 MT2420 - - Deleted Yes Deleted ? ? ? ?

Note: (a) M. avium contains one extra duplicate of Family G not found in the other mycobacteria. This gene is situated on contig 565 and seems to be a duplication of the M. avium Rv3904c orthologue. 
(b) MLCB1701.07c is an M. leprae region 5 duplicate and do not have any homologue on the M. tuberculosis genome sequence. It seems to be a recent duplication of the Rv1198 orthologue into a 
region a few thousand bases downstream of Rv1354. (c) M. tuberculosis CSU#93 contains one more copy of the Mtb9.9 subfamily designated MT2420. This gene has been knocked out in the genome 
of M. tuberculosis H37Rv by the insertion of an IS 6110 transposon.
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Although the 23 members of the combined ESAT-6 family show very low protein sequence 

homology (< 22%), most of them contain one conserved primary sequence feature. This sequence 

feature is a [W]-x-[G] motif shared by 18 of the 23 members (with the other 5 containing slight 

variations thereof), situated at positions 43 and 45 (Rv3875 numbering, Figure 3A.5). The region 

surrounding these conserved tryptophan (W) and glycine (G) residues is also moderately conserved 

between the proteins. Conserved aromatic residues like tryptophan have been shown previously to 

play a very important role in protein activity. One example of this is the drastic decrease in activity 

that was observed with the removal of a single residue of tryptophan from mesentericin Y105 

(Montville and Chen, 1998).

Figure 3A.5. Partial sequence alignment of the members of the ESAT-6 protein family. Amino

acid residues in bold indicates potential family-specific motif [W]-x-[G],

Rv3 6 1 9 c LTASDF--WGG-AGSAACQGFI TQLGRNFQVIYEQA
R v l0 3 7 c LTASDF--WGG-AGSAACQGFITQLGRNFQVIYEQA
R v l l9 8 LTASDF--WGG-AGSAACQGFITQLGRNFQVIYEQA
R v 2 3 4 6c LAAGDF--WGG-AGSVACQEFITQLGRNFQVIYEQA
R v l7  93 LAAGDF--WGG-AGSVACQEFITQLGRNFQVIYEQA
R v02 8 8 AALQSA--WQG-DTGITYQAWQAQWNQAMEDLVRAY
Rv3 0 1 9 c AVLSSA--WQG-DTGITYQGWQTQWNQALEDLVRAY
Rv3 0 1 7 c TAPSRA--CQG-DLGMSHQDWQAQWNQAMEALARAY
R V0287 MSAQAF--HQG-ESSAAFQAAHARFVAAAAKVNTLL
R v302  0c MSAQAF--HQG-ESAAAFQGAHARFVAAAAKVNTLL
R v l0 3  8 c QNISGAG-WS G-MAEATS LDTMTQMNQAFRNIVNML
R v l7 9 2 QNISGAG-WSG-MAEATSLDTMT-MNQAFRNIVNML
Rv3 62 0c QNISGAG-WSG-MAEATSLDTMTQMNQAFRNIVNML
R v l l9 7 QNISGAG-WSG-MAEATSLDTMAQMNQAFRNIVNML
R v23 4 7 c QNISGAG-WSG-MAEAT SLDTMAQMNQAFRNIVNML
Rv3 874 GSLQGQ- -  WRG -  AAGTAAQAAWRFQEAANKQKQEL
Rv3 8 90c NALQEF--FAG-HGAQGFFDAQAQMLSGLQGLIETV
Rv3 8 9 1 c NVMNP AT -  WS G -  TGWASHMTATEITNE LNKVLTGG
Rv3 9 0 5 c GQMLGG--WRG-ASGSAYGSAWELWHRGAGEVQLGL
R v 3 9 0 4 c TRLHVT- -  WTG- EGAAAHAEAQRHWAAGEAMMRQAL
E s a t 6 TKLAAA--W G G -SGSEAYQGVQQKWDATATELNNAL
R v 3 4 4 4 c APLQQL--WTR-EAAAAYHAEQLKWHQAASALNEIL
R v 3 4 4 5 c SGVPPSV-WGG-LAAARFQDWDRWNAESTRLYHVL
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Five of the duplications from both Family G and H are almost identical (suggestive of recent 

duplication events) and have arisen exclusively from duplications of the region 5 copies (Gey van 

Pittius et al., 2001, Skjot et al, 2001). These two subfamilies have been classified as the QILSS 

subfamily (for the members of family G, Cole et al., 1998) and the MTIN or immunodominant Mtb9.9 

subfamily (for the members of family H, see Figure 3A.6, Cole et al., 1998, Alderson et al., 2000).

Alderson et al. (2000) only identified 4 members of the Mtb9.9 subfamily present in M. 

tuberculosis strain Erdman (designated mtb9.9a, b, c and d). They further identified one more family 

member in the M. tuberculosis H37Rv genome sequence and named it mtb9.9e and also noted that 

the mtb9.9b gene identified in Erdman was not present on the H37Rv genome sequence. M. 

tuberculosis H37Rv actually have 5 members of this subfamily, with the members Rv1037 and 

Rv3619c being identical and having the same sequence as the mtb9.9d gene identified in Erdman. 

There are two possibilities to explain the fact that Alderson and coworkers saw another member of 

this family (mtb9.9b) and did not detect the second copy of mtb9.9d (Rv1037 or Rv3619c). Either the 

Erdman genome actually does contain one extra duplicate of this family (mtb9.9b) and the 

experimental methods they used could not distinguish between Rv1037 and Rv3619c, or one of the 

genes Rv1073 or Rv3619c have undergone changes in Erdman to result in the formation of mtb9.9b. 

A possible answer for this can be found in the genome sequence of M. tuberculosis CSU#93. The 

sequence for the Rv3619c orthologue found in CSU#93 (MT3721) has exactly the same sequence as 

the M. tuberculosis Erdman mtb9.9b identified by Alderson and coworkers as being novel to Erdman 

(Figure 3A.6). It is thus very likely that this is the same gene in all three M. tuberculosis strains, which 

has undergone changes in H37Rv.
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Figure 3A.6. Multiple protein sequence alignment of the Mtb9.9 subfamily of the ESAT-6 

protein family. The alignment indicates the extremely high level of amino acid sequence 

conservation between family members. Homologous residues are represented by a dot (.) and

differences are indicated by the change in residue. Orthologs are grouped together.

M.tb H37Rv Rvl793 MTINYQFG DVDAHGAMIR AQAASLEAEH QAIVRDVLAA GDFWGGAGSV
M.tb CSU93 MTX84 2 ............................................................
M.bovis Rvl793 ............................................................
M. avium Rvl793 .S................L ................... I ...................

M.tb H37RV RV1198 .......................... G L ..........S ..................A
M.tb CSU93 MT123 6 .......................... G L ............................. A
M.bovis Rvll98 ............. D ...........G L ..........I ----T. S ........ A

M.tb H37Rv Rv2346c .......................... G L ...............................
M.tb CSU93 MT2411 .......................... G L ...............................
M.bovis Rv2346 c ...............

M.tb CSU93 MT24 20 ........................... A ...............................

M.tb H37RV Rvl037c .......................... G ........... IS...T. S ........ A
M.tb CSU93 MT1066 .......................... G ........... IS...T. S .........A
M.bovis Rvl037c ........................ L.G........... IS...T. S ........ A

M.tb H37Rv Rv3619c .......................... G ........... IS...T. S .........A
M.tb CSU93 MT3721 ........................ L.GL..........IS...T. S .........A
M.tb Erdman mtb9.9b ........................ L.GL..........IS...T. S ........ A

M.leprae ...... E l.... A ....... A. .TT. ...LAT.RD. A E ----Q. . T

M.tb H37Rv RV1793 ACQEFITQLG RNFQVIYEQA NAHGQKVQAA GNNMAQTDSA VGSSWA
M.tb CSU93 MT1842 ..........................................................
M.bovis Rvl7 93 ..........................................................
M.avium Rvl7 93 ...................................T. .S...S............

M.tb H37Rv Rvll98 ...G.....................................................
M.tb CSU93 MT1236 ...G.....................................................
M.bovis Rvll98 ...G.....................................................

M.tb H37Rv Rv2346c ..........................................................
M.tb CSU93 MT2411 ..........................................................
M.bovis Rv2346c ..........................................................

M.tb CSU93 MT24 20 ........A ...... A. . .Q..........I... .S.................

M.tb H37Rv Rvl037c ...G.....................................................
M.tb CSU93 MT1066 ...G.....................................................
M.bovis Rvl037c ...G.....................................................

M.tb H37RV Rv3619c .. .G.....................................................
M.tb CSU93 MT3721 .. .G.....................................................
M.tb Erdman mtb9.9b ...G.....................................................

M.leprae .HEM. .AD........M ....... S ...... R. SSS..D..RS .S.A.S
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3A. 3.8. Family I - A TPases involved in chromosome partitioning

This two-member family is classified under the “ATPases involved in chromosome 

partitioning” (COG database - Tatusov et al., 2000 - maintained by the NCBI at 

http://www.ncbi.nlm.nih.gov/COG/). One gene (Rv3876) has a highly repetitive and proline-rich N- 

terminus and has a length of 666aa. Only the C-terminus of this protein shares homology to the other 

protein in the family, (Rv3888c), which is 341 aa in length. This protein contains a transmembrane 

region inside the shared homology area, which only shows very weak transmembrane potential in 

Rv3876 in the corresponding position. These two proteins also share similarity to three other 

hypothetical M. tuberculosis proteins Rv0530, Rv2787 and Rv3860, which are not found situated in 

the ESAT-6 gene clusters but probably form part of this family. Two of these proteins have easily 

identifiable PS00017 ATP/GTP binding site motifs (Rv3860 and Rv2787). Rv3876 and Rv3888c have 

a shared region of very high homology, which corresponds to the ATP/GTP binding motifs of the other 

two proteins. This region contains just two amino acid changes, only one of which does not 

correspond to the classical ATP/GTP binding motif [(AG)-X-X-X-X-G-K-(ST)] so that it could probably 

still act as a motif for ATP/GTP binding in these proteins. (ATP/GTP binding motif in Rv2787 = 

VSAKGGVGKTTM, conserved corresponding region in Rv3888c VSGKGGVGVTTM).

3A.3.9. Family J  - Putative transporters

A family of integral inner-membrane proteins containing 11 transmembrane regions (Figure 

3A.7) and sharing weak similarity to known transporters. The average size of the proteins is 

approximately 492aa. One member (Rv3448) contains a PS00402 binding protein dependent 

transport systems inner membrane component signature, which seemed to have undergone some 

divergence in the sequences of the other members. Rv3877 contains a predicted signal peptide 

sequence, while Rv3448 and Rv1795 have weak N-terminal hydrophobic domains that may also act 

as membrane signals. Rv1795 is the only member that contains only 10 transmembrane regions as 

opposed to 11 in the other family members. Two members of this family (Rv3448 and Rv3887c) were 

shown to be deleted in certain clinical strains of M. tuberculosis (Kato-Maeda et al., 2001).
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Figure 3A.7. TMHMM profile for Rv3877. This result is representative of all members of Family J

and shows clearly the eleven transmembrane regions.
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3A. 3.10. Fam ily K  - M ycosins - subtilisin-like serine proteases

Family K is a family of secreted, membrane anchored, cell wall associated subtilisin-like 

serine proteases - the mycosins (Brown e t al., 2000). The average size of the proteins is 

approximately 499 aa. All members contain an N-terminal signal sequence with a signal peptidase I 

cleavage site as well as a C-terminal hydrophobic domain, followed by a short positively charged 

segment, that could act as a transmembrane anchor (Figure 3A.8). All the mycosins contain the 

subtilase conserved active site residues Asp-His-Ser (see Chapter 2, Figure 2.2). One member of 

this family (Rv1796) was shown to elicit delayed-type hypersensitivity reactions only in guinea pigs 

immunized with live mycobacteria (Romain e t al., 1993), indicating that these proteins may be able to 

be shed from the cell wall surface.
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Figure 3A.8. TMHMM profile for Rv1796. This result is representative of all members of Family K 

and shows clearly the N-terminal signal peptide as well as the C-terminal transmembrane anchor.
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3A. 3.11. Fam ily L - Unknown

A family of proteins of unknown function containing two N-terminal transmembrane regions, the first 

one of which is predicted to be a signal peptide sequence (Figure 3A.9). The average size of the 

proteins is approximately 434 aa. The first transmembrane region is situated very close to the second 

region so that it might be more likely to be a signal anchor. It is known that there is a problem with 

poor discrimination between signal peptides and uncleaved signal anchors when using computer 

prediction systems (Nielsen e ta !., 1998).
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Figure 3A.9. TMHMM profile for Rv3882c. This result is representative of all members of Family L 

and shows clearly the two N-terminal transmembrane regions.
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It is a well-known contradiction in terms that live mycobacteria generate a much more efficient 

protective immunity than killed bacteria (Andersen, 1997), but that both sensitize animals for a DTH 

reaction. This has been linked to the fact that live bacteria secrete peptides early in infection that are 

needed to recruit protective T-cells. The key antigenic determinants of the culture filtrate are smaller 

than the 10 kDa fraction (Boesen et al., 1995) and we now know that this fraction contains multiple 

copies of the small immunodominant proteins belonging to the ESAT-6 and CFP-10 families 

(Sorensen et al., 1995, Berthet et al., 1998, Alderson et al., 2000). ESAT-6 elicits a high level of 

interferon-gamma from memory effector cells during the first phase of a protective immune response 

and this is important because mycobacterial diseases are generally characterized by strong Th1 

responses and high levels of interferon-gamma (Andersen, 1997). At least eight of the twenty-three 

members of the greater ESAT-6 family (including the CFP-10 family) have already been shown 

experimentally to be immunologically relevant (Skjot et al., 2001). However, it is not known what 

advantage the bacterium obtains from the secretion of the multiple immunodominant copies of the 

ESAT-6 and the CFP-10 proteins. It may be speculated that spread of disease could be propagated 

by inducing a massive host immune response, resulting in intense inflammation, tissue destruction, 

caseous necrosis and the formation of cavitory lesions resulting in release of the bacteria from the 

damaged airways of susceptible individuals unable to contain the infection. In a comparison between 

the immunopathologies of schistosomiasis and tuberculosis, Doenhoff (1998) showed how in both 

diseases extensive immune-dependent granulomatous inflammation is an important step in facilitating 

the right conditions for efficient transmission of trapped infective bacteria. Transmission of M. 

tuberculosis depends almost entirely upon the bacteria being able to be released into the airways of 

an infected individual’s lungs. It is well-known that during leprosy disease there is a massive 

destruction of the infected Schwann cells of the nervous system, mediated by the host’s own immune 

system in response to M. leprae antigens, and that much of the pathology seen during tuberculosis 

infection is also the result of excessive host-mediated cellular immune and inflammatory responses 

against M. tuberculosis antigens (Brosch et al., 2000b). This is confirmed by a recent report by 

Dannenberg and Collins (2001) in which they showed extensively that progressive pulmonary

3A.4. Immunological aspects of the ESAT-6 gene cluster
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tuberculosis is not due to increasing numbers of viable bacteria, but rather to the continuous host 

response against constantly released mycobacterial products.

On the other hand, in resistant healthy individuals T-cell migration and activation would take 

place in response to the potent antigen release, with granuloma formation and subsequent control of 

the progression of disease, causing a long-term latent infection. The bacteria that survive in a host 

that controls the infection are potentially placed into an important growth phase whereby they are held 

in stasis for many years. This static phase may continue until a time point when the host's immune 

system is down-regulated (for example during an immunosuppressing disease like AIDS) and the 

reactivation and continued multiplication of the bacteria result in tuberculosis (Andersen, 1997). The 

clinical isolate CDC1551 (CSU#93 or Oshkosh strain) that was reported to be hypervirulent and 

having an unusually high rate of transmission (Valway et al., 1998), was shown to be in fact less 

virulent than other clinical isolates (North et al., 1999), but proved to be more transmissible (Bishai et 

al., 1999). In addition to this, CDC1551 induced an earlier and more vigorous host response, causing 

earlier control of the growth in lungs and the establishment of chronic stable infection (Manca et al., 

1999). This is critical for the long-term outcome of disease, since individuals infected with this strain 

would survive longer and have a longer lifespan in which to spread the disease. It would thus make 

sense for a bacterium to secrete high levels of different immunodominant proteins like the ESAT-6 

and CFP-10 families to obtain such an early, vigorous host response and the subsequent chronic 

stable infection.

Betts and coworkers (2000) have hypothesized that the presence of an extra pair of ESAT-6 

and CFP-10 proteins in the genome of M. tuberculosis CSU#93 (Table 3A.2) may contribute to the 

inceased host immune response to this strain observed by Manca et al. (1999). It is interesting to 

note that the different mycobacterial species all contain varying amounts of copies of the ESAT-6 and 

CFP-10 family members in their genomes (Table 3A.2). It has been shown previously that the 

efficacy of BCG vaccination against leprosy was much greater than that obtained against tuberculosis 

(Ponnighaus et al., 1992). This observation may be linked to the fact that the ESAT-6 and CFP-10 

families form a major part of the antigenic nature of the mycobacteria and that the genome of M. 

leprae contains less copies of the ESAT-6 and CFP-10 families than M. bovis BCG, while M.
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tuberculosis contains more copies than BCG. Thus, the amount of copies of the ESAT-6 and CFP-10 

proteins in the different species might be an indication of the differences and variability of their host 

range and might have an influence on their level of pathogenicity. It must also be kept in mind that for 

an immunocompromised individual, nonpathogenic mycobacteria may not really exist (Shinnick and 

Good, 1994).

In addition to the amount of copies in the different genomes, the sequence homology of the 

orthologous copies also varies between different organisms. Although there is very little sequence 

divergence among the Mtb9.9 subfamily protein sequences (Figure 3A.4), Alderson et al. (2000) 

showed that even these small changes were enough to cause specificity of T-cells to each peptide in 

the subfamily and thus heterogeneity in their responses to the antigens. A number of studies (Ravn et 

al., 1999, Mustafa et al., 2000, Arend et al., 2000a) have clearly indicated that multiple epitopes 

throughout the sequences of ESAT-6 as well as CFP-10 are recognized by T-cells. Skj0t et al. (2000) 

presented data that indicated that TB10.4 (Rv0288) from the ESAT-6 family induced significantly 

higher levels of interferon-gamma than ESAT-6 (Rv3875) in tuberculosis patients, while comparable 

levels were obtained with T-cell responses to CFP-10 and ESAT-6 . Immunization of mice with ESAT- 

6-encoding DNA gave only reasonable protection (considerably less than BCG vaccination) to M. 

tuberculosis infection (Kamath et al., 1999, Li et al., 1999), but immunization with a multivalent 

combination DNA vaccine (containing the ESAT-6 , MPT-64, MPT-63, and KatG constructs) generated 

a strong protective response comparable to the protection given by BCG (Morris et al., 2000). It 

would be interesting to investigate the effect of a multi-subunit vaccine consisting of more than one 

ESAT-6 family member, thus broadening the total epitope population available for recognition. The 

fact that the broader ESAT-6 family consists of twenty-three potentially strong T-cell antigens, holds a 

lot of appeal for this strategy. This could be especially useful when vaccination is to be done in a 

genetically heterogeneous population, as it has been shown that different individuals sometimes 

recognize different epitopes and different members of these protein families (Ravn et al., 1999, Skjot 

et al., 2000, Alderson et al., 2000). It must be added, though, that it has been demonstrated recently 

that ESAT-6 is able to induce a very potent immune response which controls infection to the same 

level as BCG vaccination on its own, but only when vaccinated in combination with a very strong 

adjuvant (Brandt et al., 2000). As there is no correlation between sequence homology and the
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immunodominance of proteins belonging to the ESAT-6 and CFP-10 families, the explanation for the 

consistently high level of T-cell responses to members of these families must be due to another factor. 

This is very likely to be the synchronized upregulation of all members during a certain stage of 

intracellular infection (Skj0t et al., 2000). It has been suggested previously (Brandt et al., 1996) that 

because of the fact that ESAT-6 is only produced in low quantities during growth in vitro, the fact that 

it is such a potent target in vivo could indicate that there is an upregulation of expression during 

growth in the macrophage. It is also interesting that Romain and coworkers (1993) found that one of 

the mycosin proteases (Rv1796 in region 5) elicited DTH responses in guinea pigs only when it was 

immunized with live M. bovis BCG and not with dead bacteria. As we know that the mycosins are 

expressed constitutively throughout the growth of M. tuberculosis (Brown et al., 2000), this might also 

indicate an upregulation of the expression of the mycosins during in vivo replication.
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3A.5. Potentia l links to  pathogenic ity

M. tuberculosis primarily reside within the granuloma during latent infection where there is an 

absence of sufficient levels of oxygen, and it has also been suggested that during these periods of low 

oxygen availability, the organism switches off the expression of certain unessential genes and goes 

into a state of spore-like inactivity (Imboden et al., 1998). A cDNA clone of ESAT-6 was obtained in a 

partial M. tuberculosis cDNA expression library of genes expressed at reduced (5%) oxygen tension 

(Imboden et al., 1998, GenBank accession number AA465071), which corresponds to the oxygen 

levels a bacterium would encounter in the vascular space. Although the oxygen levels in the 

granuloma might even be lower, it is interesting that ESAT-6 is still being expressed, indicating a 

potential important function for this protein during infection. Because the library was constructed from 

bacteria in the late log phase, it also indicates that it is expressed at least up to late log phase and not 

only in the early stages of development as was previously shown (Andersen et al., 1995). This is 

confirmed by data that showed the presence of the cfp-10/esat-6 RNA transcript in early (day 5) and 

late (day 16) cultures (Berthet et al., 1998).

The RD1 deletion region of M. bovis BCG is a major region that is thought to have been 

deleted during the original attenuation of BCG from M. bovis (Mahairas et al., 1996, Oettinger et al., 

1999). This region is present within ESAT-6 gene cluster region 1 and M. bovis BCG can thus be 

seen as a natural knockout of ESAT-6 and CFP-10 and some surrounding genes of region 1. The 

gene Rv3881c, as well as the mycosin associated with the ESAT-6 gene cluster region 1 (mycosin-1 

or Rv3883c), are not expressed in M. bovis BCG, although both of these genes are present in the 

genome of this organism (Brown et al., 2000, Mattow et al., 2001). This is in contrast to the ESAT-6 

gene cluster region 2 mycosin-2 gene (Rv3886c), lying only 3 ORF’s downstream of mycosin-1, which 

are expressed efficiently in BCG (Brown et al., 2000). As the Rv3881c and mycosin-1 genes lie 2 and 

4 ORF’s respectively downstream of the RD1 deletion region, it indicates that there are certain factors 

present within the RD1 deletion region that are needed for mycosin-1/Rv3881c expression, and points 

to a possible relationship between the genes present in this region. Wards et al. (2000) showed that a 

knockout of Rv3871 (a member of the ATPase protein family D which lies just inside the RD1 deletion 

region, 4 genes upstream of ESAT-6) resulted in a mutant showing similar loss of virulence in guinea
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pigs as an esat-6 knockout. The authors speculate that this might be due to polar effects on the 

downstream esat-6 gene. They further showed that an esat-6lcfp-10 knockout of M. bovis was less 

virulent than its parent, if gross pathology, histopathology and mycobacterial culture of tissues was 

taken into account, indicating that the ESAT-6 and/or CFP-10 proteins are most likely associated with 

virulence. This is not limited only to the ESAT-6 protein Rv3875, as a family member of ESAT-6 

named Rv0288 (TB10.4 or CFP-7) was previously shown to be highly downregulated (64%) in the 

attenuated M. tuberculosis strain H37Ra (Rindi et al., 1999).

After the original deletion event that resulted in the RD1 deletion in M. bovis BCG, further 

deletions occurred with time in different substrains of BCG (RD2 and RD14 in Pasteur, RD8 in 

Frappier and Connaught, and RD16 in Moreau - numbering according to Behr et al., 1999), resulting 

in substrains that showed a very high variability in protective efficiency and a decrease in virulence 

(Behr et al., 1999, Gordon et al., 1999a, Oettinger et al., 1999). It is hypothesized that the deletion of 

certain transcriptional regulators (repressors and activators) from RD2, 14 and 16 may have had an 

influence on the adaptation to environmental change, such as in vivo infection (Behr et al., 1999). 

One of these transcriptional regulators (Rv1773c in RDM) lies just upstream of the ESAT-6 gene 

cluster region 5 (Rv1782-Rv1798), but its influence on the transcription of the adjacent ESAT-6 gene 

cluster is unknown. Deletions specific to M. bovis (and accordingly also BCG) were also described, 

and it is interesting to note that two of these deletion regions (RD7 and RD9) span the ESAT-6 and 

CFP-10 family members Rv2346c and 47c, and Rv3619c and 20c, respectively. These two ESAT-6 

genes (Rv2346c and Rv3619c) were recently shown to be part of the immunodominant Mtb9.9 

subfamily of the ESAT-6 family (Alderson et al., 2000). It is thus clear that M. bovis has a 

disadvantage compared to M. tuberculosis because it contains two less copies of the ESAT-6 and 

CFP-10 families. It is also tempting to speculate that the deletion of another pair of ESAT-6 and CFP- 

10 family members (for example with the RD1 deletion) might cause an attenuation of this strain 

similar to BCG, that would not be observed in M. tuberculosis due to the fact that it still has enough 

copies of the ESAT-6 and CFP-10 gene families. These genetic differences between M. bovis and M. 

tuberculosis may provide insights into the phenotypic differences between the two species (Behr et 

al., 1999). M. bovis are not spread easily from person to person, and do not reactivate to the same 

level as M. tuberculosis, although the disease caused by both species is identical in all ways. It was
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also shown that both RD7 and RD9 (RD5 and RD8 according to Gordon et al., 1999a) are deleted 

from the M. microti genome, although both regions are present on the genome of M. africanum. It is 

thus possible that these regions may effect host range and virulence and also be the cause of the 

phenotypical differences observed between members of the M. tuberculosis complex (Gordon et al., 

1999a).

By using a library of signature-tagged transposon mutants, Camacho et al. (1999) identified a 

number of genes that affected multiplication of M. tuberculosis within the lungs of mice. One of these 

attenuated mutants contained a transposon insertion into the gene Rv3018c, which is one of the PPE 

genes co-duplicated with an ESAT-6/CFP-10 operon singular copy (Rv3019c/20c). This insertion 

may have disrupted the operon structure and therefore may have an influence on the expression of 

the ESAT-6 and CFP-10 proteins situated within the region, giving a false impression that the 

Rv3018c gene is a virulence factor.

One factor which has to be explained if the ESAT-6 gene clusters were to be linked to 

virulence, is the presence of a copy of ESAT-6 gene cluster region 4 in the genomes of the 

Corynebacteria, as well as an ortholog of this region in the genome sequence of S. coelicolor. One 

explanation may be the existence of an earlier function for these proteins shared by all the high G+C 

Gram positives, after which duplication of the region resulted in evolution of function. The virulence 

properties may also be dependent on dosage or the amount of antigenicity of the respective ESAT-6 

proteins. It is interesting to note that the corresponding ESAT-6 family proteins from region 4 have 

not been identified as immunologically relevant antigens of M. tuberculosis (Skjot et al., 2001), which 

may indicate that they have a low antigenicity. As the ESAT-6 and CFP-10 proteins have never been 

described in bacteria other than the mycobacteria, it would be interesting to look at the expression, 

localization and antigenicity of the orthologues in the Corynebacteria.
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The function of the ESAT-6 gene clusters in the growth and pathogenicity of the mycobacteria 

is still unknown, but all the above information on the genes that form part thereof indicates that it may 

play a very important role in the growth of these organisms and in tuberculosis infection. We 

summarize the importance and indications of an association with virulence as follows:

(1) Multiple copies of the gene cluster. M. tuberculosis and M. bovis contain five duplications of 

this gene cluster on the genome, M. avium four copies and M. leprae three. These proteins 

must have some important or significant function to have been functionally retained as 

multiple copies on the genomes of these virulent mycobacteria.

(2) M. leprae clusters are fully functional. It is suggested that genes in the genome of M. leprae 

that are not absolutely necessary for intracellular survival became non-functional (in other 

words it contains multiple stopcodons and frameshifts) and that the genome of M. leprae 

contains the minimal gene set required by a pathogenic mycobacterium (Vissa and Brennan, 

2001). Most of the genes in the three gene clusters in M. leprae contain no stopcodons or 

frameshifts (in other words seems to be functional) and there is experimental evidence for the 

successful secretion of the region 1 ESAT-6 homologue L-ESAT in M. leprae.

(3) ESAT-6 and CFP-10. These regions contain members of the ESAT-6 and CFP-10 families, 

which are small proteins of unknown function and are potent, secreted T-cell antigens. They 

have no detectable secretion signals, but seem to be actively secreted from early in infection.

(4) RD1 deletion region. Most of the genes of region 1 lie in the RD1 deletion region of the 

attenuated strain M. bovis BCG. It is commonly thought that the deletion of RD1 from M. 

bovis led to the attenuation of this organism to BCG. This indicates the importance of this 

region with regard to virulence.

(5) Other ESAT-6 family deletions. Other ESAT-6 and CFP-10 family members have been 

deleted in other RD regions in M. bovis.

(6 ) Downregulation in H37Ra. The ESAT-6 family member Rv0288 (belonging to gene cluster 

region3) is highly downregulated in the avirulent strain M. tuberculosis H37Ra.

3A.6. Concluding Remarks
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(7) Esat-6/cfp-10 knockout. A decrease in virulence has been shown to occur with infection with 

an esat-61cfp-10 knockout mutant in guinea pigs.

(8 ) Rv3871 knockout. A comparable decrease in virulence has been shown to occur in a 

knockout of Rv3871 (the 3 X ATP/GTP binding ATPase).

(9) Rv3018c knockout. Attenuation of virulence as measured by multiplication within mice lungs 

have been obtained by a knockout mutant of the PPE gene associated with a singular 

duplication of ESAT-6 and CFP-10.

(10)Expression under oxygen tension. ESAT-6 is expressed under reduced oxygen tension 

comparable to conditions within the vascular space, and also during late log phase.

(11) Extra pair of ESAT-6 and CFP-10 in strain CSU#93. Strain CSU#93, which has been shown 

to induce a more robust immune response than other M. tuberculosis strains, contains one 

more copy of ESAT-6 and CFP-10.

(12) One less copy in Erdman. There is evidence to suggest that M. tuberculosis strain Erdman, 

which has been shown to be less virulent than other M. tuberculosis strains, contains one less 

copy of ESAT-6 (and possibly also the associated CFP-10).

The multiplicity of these gene clusters, their immunological significance as well as the links to 

pathogenicity suggest that they have an important function in the mycobacteria and are worth further 

investigation.
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ADDENDUM 3B 

DIAGNOSTIC POTENTIAL

“Consumption, that great destroyer o f human health and human life, takes the first rank as an agent of 

death. Any facts regarding a disease that destroys one-seventh to one-fourth o f all that die, cannot but 

be interesting. ”

Lemuel Shattuck (1849)

NOTE: The views presented in the following addendum will be submitted as a counterpoint article for 

peer review and publication as: “ESAT-6 and CFP-10: What is the diagnoses?, Gey van Pittius, 

N.C.”
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There is a constant search for new and effective diagnostic tests for the determination of M. 

tuberculosis infection due to the non-specificity of the current tuberculin test (Andersen et al., 2000). 

The ESAT-6 and CFP-10 proteins have been evaluated over the past few years and have shown 

promise as a tool to differentiate between BCG vaccination, M. avium infection and M. tuberculosis 

infection (Ravn et al., 1999, Colangeli et al., 2000, Arend et al., 2000b). The major problem is that 

contrary to common belief (Harboe et al., 1996, Elhay et al., 1998, Ravn et al., 1999, Arend et al., 

2000a, Arend et al., 2000b, Van Pinxteren et al., 2000, Andersen et al., 2000, Arend et al., 2001a, 

Arend et al., 2001b), these proteins are not M. tuberculosis specific (Gey van Pittius et al., 2001). 

They are also present in fast growing environmental mycobacterial species (with a high percentage of 

protein homology), the presence of which may therefore interfere with diagnostic tests based on these 

antigens (Gey van Pittius et al., 2001). This should be especially evident in developing countries 

where environmental mycobacteria are present in large amounts (Vekemans et al., 2001).

3B.1. Introduction
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What is the definition of a “good diagnostic agent"? The most important criterion must surely 

be specificity towards the infecting organism, failure of which could lead to false or misleading 

diagnoses (Andersen et al., 2000). Diagnostic tests currently in use for the diagnoses of 

Mycobacterium tuberculosis infection are based on the Mantoux skin test, making use of purified 

protein derivative (PPD or tuberculin), but because the protein constituents of PPD are shared 

between several non-pathogenic environmental mycobacterial species as well as the vaccine strain 

M. bovis BCG, it is poorly specific and does not perform well as a diagnostic tool (Chaparas et al., 

1970, Huebner et al., 1993, Andersen et al., 2000). Thus, novel approaches for the specific 

diagnoses of Mycobacterium tuberculosis infection are constantly being evaluated. Recently, a great 

deal of interest has been shown towards two small, secreted proteins of M. tuberculosis, namely 

ESAT-6 (encoded by the gene esx or esat-6, Sorensen et al., 1995) and CFP-10 (encoded by the 

gene Ihp, Bethet et al., 1998). These proteins are potent T-cell antigens (Skjot et al., 2000) and their 

genes are absent from the genomes of M. bovis BCG (the tuberculosis vaccine strain, Mahairas et al., 

1996) as well as M. avium (an agent of opportunistic infections, Gey van Pittius et al., 2001). In M. 

bovis BCG this is due to a 9505 bp deletion named RD1, commonly thought to have resulted from the 

serial passage of M. bovis by Calmette and Guerin between 1908 and 1921 (Mahairas et al., 1996). 

Consequently, the ESAT-6 and CFP-10 antigens from the RD1 deletion region have been the focus of 

recent research efforts because of their application as potential diagnostic markers to differentiate 

between M. bovis BCG vaccination, and M. tuberculosis, M. bovis or M. avium complex infection 

(Ravn et al., 1999, Colangeli et al., 2000, Arend et al., 2000b). Esat-6 and Ihp belong to a family of 21 

other genes distributed throughout the genome of M. tuberculosis (Cole et al, 1998, Gey van Pittius et 

al., 2001, Skjot et al., 2001, Addendum 3A). These other copies of the esat-6 and Ihp genes are also 

situated adjacent to each other, suggesting that they were co-duplicated (Gey van Pittius et al., 2001). 

The protein sequence homology between the different copies within each of these two protein families 

varies between 15 to 27% for ESAT-6 and between 9 to 32% for the CFP-10 proteins, respectively 

(Gey van Pittius et al., 2001). Due to the very low percentage homology of the paralogs in a specific 

organism, it would be safe to say that the other copies of ESAT-6 and CFP-10 within a specific

3B.2. Discussion
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organism should not interfere with a potential diagnostic test based on the two antigens from ESAT-6 

gene cluster region 1 .

The most recent evaluation of the diagnostic potential of an assay for M. tuberculosis infection 

based on the ESAT-6 and CFP-10 proteins (from the RD1 deletion region) was performed by Arend 

and colleagues (2001a). In this study the authors refer to ESAT-6 and CFP-10 as being M. 

tuberculosis-spec\f\c antigens absent from most environmental mycobacteria, due to the well-known 

absence of these proteins from M. bovis BCG and M. avium. This assumption was further based on 

previously published Southern blotting results that indicated the absence of these genomic domains 

from most environmental mycobacteria (Sorenson et al., 1995).

We propose that this statement is incorrect. In a recent comparative genomic analysis we 

have found that the genomes of all members of the mycobacteria that are currently being sequenced 

contain copies of different members of the ESAT-6 and CFP-10 families (Gey van Pittius et al., 2001). 

More specifically, a copy of the ESAT-6 and CFP-10 proteins of the RD1 deletion region (Rv3874 and 

Rv3875) could be found in the genomes of M. leprae and even the distantly-related, non-pathogenic, 

fast-growing, environmental mycobacterium M. smegmatis. This data is further supported by results 

dating back to 1995, which showed that the genes for these proteins are also present in other 

pathogenic mycobacteria (M. africanum, M. kansasii, M. marinum, M. szulgai - Sorenson et al., 1995 

and M. bovis - Harboe et al., 1996), as well as the slow-growing non-pathogenic mycobacterium M. 

gastri (Colangeli et al., 2000) and the fast-growing non-pathogenic environmental species M. 

flavescens (Harboe et al., 1996). The similarity between the orthologs in M. smegmatis and the so- 

called “M. tuberculosis-specific antigens ESAT-6 and CFP-10” is 80% and 71%, respectively (see 

Figure 3B.1 for sequence alignment). Therefore, it is likely that these proteins share epitopes that 

could be recognized by the T-cells and which may result in a similar T-cell response. Furthermore, 

given the evolutionary history of the mycobacteria (see Addendum 3A, Figure 3A.1) and the presence 

of the RD1 deletion region-specific ESAT-6 and CFP-10 in M. smegmatis and the other mentioned 

species, it is highly plausible that this region would be present in the genomes of most other 

environmental mycobacteria. The homology between ESAT-6 and CFP-10 of the many 

environmental mycobacterial strains phylogenetically more closely related to M. tuberculosis may
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even be higher than that between the antigens of M. tuberculosis and M. smegmatis. It is therefore 

imperative to study the extent of sequence similarity between the ESAT-6 and CFP-10 proteins of 

different pathogenic and non-pathogenic environmental mycobacteria before a member of these 

immunodominant families can be considered as a specific marker for M. tuberculosis infection. 

Furthermore, studies will have to be initiated to determine the relative influence of secreted ESAT-6 

and CFP-10 from environmental mycobacteria on the T-cell responses from suspected infected 

individuals. Interferon gamma production in response to ESAT-6 and CFP-10 from environmental 

mycobacteria by peripheral blood mononuclear cells from infected patients has to our knowledge not 

been done. This is surprising given the fact that numerous studies have already been performed on 

the use of these antigens as diagnostic tools (Ravn et al., 1999, Andersen et al., 2000, Arend et al., 

2000a, Arend et al., 2000b, Dillon et al., 2000, Skjot et al., 2000, Ulrichs et al., 2000, Van Pinxteren et 

al., 2000, Arend et al., 2001a, Arend et al., 2001b, Vekemans et al., 2001, Vordermeier et al., 2001). 

The only explanation for this omission must be the misleading absence of these antigens from M. 

bovis BCG and M. avium. Until results are obtained which indicate that the host cellular immune 

response is able to distinguish between the ESAT-6 and CFP-10 proteins secreted from either 

environmental mycobacteria or M. tuberculosis, claims regarding the potential diagnostic use of these 

antigens in the diagnoses of M. tuberculosis infection have to be treated with caution. Even if proved 

that the response is specific, it is still misleading to term the ESAT-6 and CFP-10 antigens M. 

tuberculosis-spec'\T\c.

The presence of ESAT-6 and CFP-10 in the genomes of other mycobacteria may also explain 

the significant proportion of PPD-positive individuals showing memory T-cell responses towards 

ESAT-6 and CFP-10 without evident disease (Ravn et al., 1999). These people may have come in 

contact with environmental mycobacteria and could thus be sensitized with the ESAT-6 and CFP-10 

secreted by the organisms, causing cross-reactivity when the assays are performed. In a recent 

paper by Vekemans and colleagues (2001) it was found that tuberculosis contacts but not patients in 

the Gambia have higher interferon gamma responses to ESAT-6 than do community controls. In spite 

of this, 30% of the community controls produced interferon gamma in response to ESAT-6 , which was 

proportionately similar to the number observed in the patient group. This is also only 8% less than the 

38% of the community control individuals who had a positive skin response to tuberculin, indicating
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that there is a highly plausible that these responses were caused by exposure to environmental 

mycobacteria. The authors conclude that an ESAT-6 interferon gamma assay “will be of limited use in 

the diagnoses of tuberculosis in countries where tuberculosis is endemic”.

It is clear that the promising results obtained with ESAT-6 and CFP-10 in industrialized 

countries will be of little benefit to those people living in developing countries (where the real need for 

these tests lies), underlining the fact that studies done on tuberculosis in industrialized countries can 

not necessarily always be applied directly to the developing world. Thus, considering the amount of 

specificity of ESAT-6 and CFP-10 to M. tuberculosis, can we really say that they fulfil the main 

criterion of a good diagnostic agent?
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Figure 3B.1. Multiple protein sequence alignment between RD1 deletion region-specific ESAT- 

6 and CFP-10 orthologs from M. tuberculosis and M. smegmatis. Although studies have 

indicated the presence of multiple T-cell epitopes scattered throughout the ESAT-6 protein sequence 

(Ulrichs e t al., 1998, Mustafa e t al., 2000), the positions of predominantly recognized epitopes are 

indicated. Data for epitopes were obtained from Brandt e t al. (1996), Ulrichs e t al. (1998), Ravn et al. 

(1999) and Mustafa e ta l. (2000).

ESAT-6

Mouse T-cell epitope Mouse T-cell
(aa 1 -20) epitope (aa 51 -70)

Human T-cell epitope Human T-cell epitope
(aa 1 -30) - Germany (aa 42-75) - Ethiopia

M. tb MTEQQWNFAGIEAAASAIQGNVTSIHSLLDEGKQSLTKLAAAWGGSGSEAYQGVQQKWDA

M. smeg MTEQVWNFAGIEGGASEIHGAVSTTAGLLDEGKASLTTLASAWGGTGSEAYQAVQARWDS 
**** *******_** *;* *;; _****** *****.****.******** ;**;

Human T-cell epitope 
(aa 72-95) - Kuwait and Denmark

M. tb TATELNNALQNLARTISEAGQAMASTEGNVTGMFA 95

M. smeg TSNELNLALQNLAQTISEAGQTMAQTEAGVTGMFA 95
★• * * *  * * * * * * . * * * * * * * . * *  ★* * * * * * *

CFP-10

M. tb MAEMKTDAATLAQEAGNFERISGDLKTQIDQVESTAGSLQGQWRGAAGTAAQAAWRFQE 

M. smeg MAAMNTDAAVLAKEAANFERISGELKGVIAQVESTGSALAAQMVGQAGTAAQAALARFHE

M. tb AANKQKQELDEISTNIRQAGVQYSRADEEQQQALSSQM 98 

M. smeg AAAKQVQELNEISANIHTSGTQYTSTDEDQAGTLASSM 98
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CHAPTER FOUR

OPERON STRUCTURE

“.... the genome is considered as a mosaic of independent molecular blueprints for the building of

individual cellular constituents. In the execution of these plans, however, coordination is evidently of 

absolute survival value."

F. Jacob and J. Monod (1961)

NOTE: The results presented in the following chapter will be submitted for peer review and publication 

as: “Mycosin-3, a Subtilisin-like Serine Protease o f M ycobacterium  tuberculosis, is expressed 

as part of the ESAT-6 gene cluster region 3 operon along with members of the ESAT-6, CFP-

10, PE and PPE multigene families. Gey van Pittius, N.C., Warren, R.M., and Van Helden, P.D.”
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Gene clusters are prominent features of bacterial chromosomes. Prokaryotic gene clusters 

are typically composed of functionally related genes (Overbeek et al., 1999). These functionally 

coupled genes are mostly situated adjacent to each other on the same strand with intergenic gaps of 

no more than 300 bp. The probability of a functional relationship between the genes in a cluster 

further increases if the cluster is conserved between different bacterial species (Overbeek et al., 

1999). Examples of these types of gene clusters have been known for many years and include the 

genes for lactose utilization (lac), galactose utilization (gal), histidine biosynthesis (his) and tryptophan 

biosynthesis (trp) (Lawrence and Roth, 1996). Gene clusters are also found in the genome of M. 

tuberculosis, and include for example the mce operons and the various operons in which the ATP- 

binding cassette (ABC) transporter superfamilies are situated (Tekaia et al., 1999). We have 

previously described a gene cluster situated in the genome of Mycobacterium tuberculosis and other 

mycobacteria, as well as in the genomes of members of the Corynebacteria and Streptomyces (Gey 

van Pittius et al., 2001). This gene cluster is duplicated five times in the genome of M. tuberculosis 

and contains members of the important T-cell antigen ESAT-6 gene family, leading to the clusters 

being designated the ESAT-6 loci (Tekaia et al., 1999). The gene organization within the ESAT-6 

clusters and the conservation thereof between species have been described in detail (Gey van Pittius 

et al., 2001). Visual inspection of the close proximity of the genes within the clusters indicates that 

they may constitute one or more operons, which is supported by the fact that they are conserved 

between different bacterial species. Furthermore, it has already been demonstrated that the esat-6 

gene from the ESAT-6 gene cluster region 1 forms part of an operon with the gene Ihp, which is 

situated directly adjacent to it (Berthet et al., 1998). Although the functions of the genes situated in 

the clusters remain unknown, it is hypothesized that these genes may encode proteins involved in the 

active transport of the members of the ESAT-6 protein family (Tekaia et al., 1999, Gey van Pittius et 

al., 2001). These proteins are secreted without ordinary secretion signals and are potent T-cell 

antigens of M. tuberculosis. As the relationships between the genes within the clusters may shed light 

on their function, we decided to investigate one of the ESAT-6 gene cluster regions (region 3: 

Rv0282-Rv0292) to determine if these clusters are of an operonic nature and to identify the promoter 

driving the expression of this cluster. This region includes a member of the previously described

4.1. Introduction
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mycosin subtilisin-like serine protease family (mycosin-3, Brown et al., 2000). The ESAT-6 protein 

encoded by this cluster (Rv0288, TB10.4 or CFP-7) was shown to be a potent secreted T-cell antigen 

(Skjot et al., 2000) and was previously shown to be highly downregulated (64%) in the attenuated M. 

tuberculosis strain H37Ra (Rindi et al., 1999). It is thus of utmost importance to study and identify the 

regulatory mechanisms controlling the expression of this gene and the cluster it is situated in.

In this study, we demonstrate that the ESAT-6 gene cluster region 3 is expressed as one 

single polycistronic RNA. In addition to this we have cloned various intergenic regions from this 

cluster and subsequently identified the promoter driving the expression of this region. This work 

opens the way for the study of the mechanisms controlling the expression and regulation of the ESAT-

6 antigen family and their putative secretion system.
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4.2.1. DNA sequence analyses

All DNA sequence information was obtained from the publicly available finished and 

unfinished genome sequence databases. These databases are accessible on the internet at the 

URL’s listed in Table 4.1. Multiple sequence alignments of promoter regions were done with the 

program ClustalW 1.5 on the ClustalW WWW server at the European Bioinformatics Institute website 

(http://www2.ebi.ac.uk/clustalw/; Thompson et al., 1994).

4.2. Materials and Methods

Table 4.1. Genome sequencing project data used in this study:

Organism Website(s)

Mycobacterium tuberculosis H37Rv http://genolist.pasteur.fr/TubercuList/

Mycobacterium tuberculosis CDC1551 http://www.tigr.org/tigr-scripts/CMR2/GenomePage3.spl?database=gmt

Mycobacterium tuberculosis 210 http://www.tigr.org/cgi-bin/BlastSearch/blast.cgi?

Mycobacterium bovis AF2122/97 http://www.sanger.ac.uk/Projects/M_bovis/

Mycobacterium leprae TN http://genolist.pasteur.fr/Leproma

Mycobacterium avium 104 http://www.tigr.org/cgi-bin/BlastSea rch/blast.cgi?organism=m_avium

Mycobacterium paratuberculosis K10 http://www.cbc.umn.edu/ResearchProjects/AGAC/Mptb/Mptbhome.html

Mycobacterium smegmatis me2155 http://www.tigr.org/cgi-bin/BlastSearch/blast.cgi?organism=m_smegmatis

4.2.2. Bacterial strains

Escherichia coli JM109 was used as a host for all cloning experiments. Mycobacterium 

tuberculosis H37Rv (laboratory strain; ATCC 25618) was used for the characterization of operon 

structure and M. smegmatis mc2155 (Snapper et al., 1990) as a heterologous mycobacterial cloning 

host to study promoter activity.

4.2.3. Media and culture conditions

E. coli was grown on solid or liquid Luria-Bertani (LB) medium as described by Sambrook et 

al. (1989). Mycobacterial strains were grown at 37°C for 2 days with shaking (200 rpm, M. 

smegmatis) or 14 days with stirring (M. tuberculosis) in Middlebrook 7H9 broth (Difco) supplemented
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with filter-sterile ADC (0.5% BSA, 0.2% glucose, 0.015% catalase) and containing 0.05% Tween 80 

(Sigma). All work on M. tuberculosis H37Rv was performed in a Biosafety Level III facility. Kanamycin 

(50 ng/ml, Roche) and Ampicillin (50 |ig/ml, Roche) were added to bacterial cultures when antibiotic 

selection was required. For transformant selection and >3-galactosidase activity detection on solid 

media, M. smegmatis cells were grown on Middlebrook 7H11 agar supplemented with filter-sterile 

OADC (0.005% oleic acid, 0.5% BSA, 0.2 % glucose, 0.02% catalase, 0.085% NaCI) and containing 

0.05% Tween 80 (Sigma). For y5-galactosidase activity assays in liquid media, mycobacterial cultures 

(10 ml) were grown to an optical density of 1. The cells were pelleted by centrifugation, resuspended 

in 500 |il phosphate-buffered saline (PBS) and sonicated at 4.5 setting in a Misonix cup sonicator on 

ice for a total of 5 minutes (15-second bursts with 30-second intervals).

4.2.4. Primers

Table 4.2 contains a list of all oligonucleotide primers used in this study. Primers were 

chosen according to length, Tm, G+C content and length of the product, to efficiently amplify the 

complete selected intergenic region. To avoid problems with RT-PCR reactions due to length 

restrictions of products, all primers were chosen to result in a product less than 300 bp.
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Table 4.2. List of RT-PCR and PCR oligonucleotide primers

Name of 

primer
Primer sequence 
(from 5’ to 3’)

Length
of

primer

Tm * 

[°C]

G+C

(%)

Intergenic region 
covered

Length
of
product

T028182f gttcgcccgcaacaccct 18 bp 60 66.7 From 40 bp inside Rv0281 to
281 bpT028182r ttcacctacgcccgccat 18 bp 58 61.1 18 bp inside Rv0282

T028283f caatggtcggtttgtgcg 18 bp 56 55.6 From 187 bp inside Rv0282
207 bpT028283r gtggtcgtgctgctggttc 19 bp 62 63.2 to 24 bp inside Rv0283

T028384f cggtgctgtcgctgtttgt 19 bp 60 57.9 From 125 bp inside Rv0283
242 bpT028384r gtcgtagcagtgacggtggg 20 bp 66 65.0 to 121 bp inside Rv0284

T028485f ccgacagtgatagtccaacct 21 bp 64 52.4 From 98 bp inside Rv0284 to
270 bpT028485r acgccctgtgcactgaac 18 bp 58 61.1 172 bp inside Rv0285

T028586f agctacctggccggtgatg 19 bp 62 63.2 From 57 bp inside Rv0285 to
216 bp

T028586r ccagtagcccactgagttctgc 22 bp 70 59.1 157 bp inside Rv0286

T028687f gaccgcaaccaaagaacgc 19 bp 60 57.9 From 184 bp inside Rv0286
273 bp

T028687r gaggccaccaactgtgggata 21 bp 66 57.1 to 40 bp inside Rv0287

T028788f caggcgaatctgggtgag 18 bp 58 61.1 From 78 bp inside Rv0287 to
142 bp

T028788r aacatcgcggggtagttgta 20 bp 60 50.0 35 bp inside Rv0288

T028889f acccatgaagccaacacca 19 bp 58 52.6 From 69 bp inside Rv0288 to
274 bp

T028889r aacaccctgcggcgataa 18 bp 56 55.6 195 bp inside Rv0289

T028990f tgggtctccaccttcagcc 19 bp 62 63.2 From 135 bp inside Rv0289
249 bp

T028990r gccatctcggtcaacctgct 20 bp 64 60.0 to 68 bp inside Rv0290

T029091f tgtggtggcactgaacccg 19 bp 62 63.2 From 154 bp inside Rv0290
182 bp

T029091r gccgccagacacgcaaat 18 bp 58 61.1 to 28 bp inside Rv0291

T029192f gtgctggtcgggctcacag 19 bp 64 68.4 From 66 bp inside Rv0291 to
171 bp

T029192r gcacgtaatcgcgtgtcga 19 bp 60 57.9 105 bp inside Rv0292

T387374f gcaggagcgtgaagaagac 19 bp 60 57.9 From 55 bp inside Rv3873 to
241 bp

T387374r cctggtcgatctgggtttt 19 bp 58 52.6 94 bp inside Rv3874

*Tm were calculated using the following formula: [4x (G+C)] + [2x (A+T)].
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4.2.5. RNA preparation

All procedures involving RNA were performed under the strictest RNase-free conditions. 

Total RNA was extracted from mycobacterial cultures by firstly pelleting the cells in 50 ml centrifuge 

tubes at 4 000 rpm for 5 minutes. Thereafter, the culture supernatant was removed and Trizol 

(GibcoBRL) was immediately added to the cell pellet (1ml of Trizol per 20 ml volume of original 

culture). Cells were resuspended by pipetting and transferred to Blue FastPrep tubes containing 

silicone beads (Biol 01). Cells were ribolyzed in a FastPrep bead-beater (B io l01) at speed setting 6.5 

for 45 seconds. Cells were placed on ice for 5 minutes immediately after ribolyzing, and centrifuged 

at 13 000 rpm for 1 minute in a microfuge. The supernatant was removed from the beads/cell debris 

and transferred to a 1.5 ml microfuge tube containing 500 nl chloroform. The tube was vortexed, and 

placed on ice for 2 minutes with intermittent vortexing. The tube was centrifuged at 13 000 rpm for 5 

minutes, and the aqueous phase was transferred to a 1.5 ml microfuge tube containing 500 p.l 

isopropanol. Tubes were incubated at -20°C overnight. RNA was pelleted by centrifugation at 13 000 

rpm for 30 minutes at 4°C. The pellet was washed with 1 ml of 70% ethanol and briefly air-dried. 

Nuclease-free H20  (200 |il per 20 ml volume of original culture, Promega) containing DNAsel buffer, 1 

U/|il RNasin and 10 mM DTT was added to the tube to resuspend the RNA. This was incubated on 

ice for 30 minutes with intermittent pipetting (no vortexing to avoid shearing of the RNA). DNAsel was 

added at 0.1 U/nl and incubated at 37°C for 30 minutes, after which stop solution was added (20 |il 

per 200 |al), and the RNA purified using the QIAGEN RNeasy mini-kit, as described by the 

manufacturer. Briefly, 350 nl buffer RLT and 250 nl ethanol were added per 100 ^l RNA. This was 

applied to a minicolumn, washed twice with buffer RLT, and once with buffer RPE. RNA was eluted 

with nuclease-free H20. A second round of DNasel treatment and column purification was performed. 

The integrity of the RNA was assayed on a 1 % TAE agarose gel. RNA stocks were stored in single­

use aliquots at -20°C with 1 U/jil RNasin and 10 mM DTT. RNA was confirmed to be free of any DNA 

contamination by PCR analysis.

4.2.6. RT-PCR analyses

RT-PCR reactions were performed using the Roche Titan One-Tube RT-PCR System kit in 

combination with the Promega HotstarTaq PCR System, as described by the manufacturer. Two 

separate master mixes were prepared, and only mixed together immediately prior to cycling. Master
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mix 1 contained the RNA template, dNTP's (200 |iM final concentration), primers (50 pmol each), DTT 

(10 mM final concentration), RNasin (1 U/jal) and water to a final volume of 25 nl. Master mix 2 

contained 5X RT-PCR buffer (with MgCI2 to a final concentration of 1.5 mM), Reverse Transcriptase 

enzyme mix (1 |j.l), HotstarTaq PCR enzyme mix (0.2 nl), Q-buffer (10 ^l) and water to a final volume 

of 25 (il. Reverse transcription and cycling were performed without interruption in a Perkin Elmer 

GeneAmp 2400 under the conditions indicated in Table 4.3. Results of RT-PCR reactions were 

visualized on a 2 % TAE agarose gel.

Table 4.3. RT-PCR cycling parameters

Number of Cycles Reaction, temperature and time duration

1 cycle reverse transcription at 50°C for 30 minutes

1 cycle template denaturing at 94°C for 2 minutes

1 cycle Hotstart Taq polymerase activation at 95°C for 15 minutes

35 cycles denaturing at 94°C for 30 seconds 

annealing at x°C* for 30 seconds 

elongation at 72°C for 30 seconds

1 cycle elongation at 72°C for 7 minutes

*x°C is the optimum anealing temperature for the specific primer pair.

4.2.7. DNA manipulations for promoter cloning

All DNA manipulations (plasmid extraction, DNA cloning and restriction digestions) were 

performed essentially as described by Sambrook et al., (1989). Details of the plasmids and plasmid 

constructs with the sequence positions relevant to their construction are presented in Table 4.4. lacZ 

operon transcriptional fusions were constructed using a mycobacterial-E. coli shuttle vector from the 

pJEM series, pJEM15 (Timm et al., 1994), a gift from J. Rauzier (Institut Pasteur, Paris, France). 

Oligonucleotide pairs T387374f and r, T028182f and r, T028687f and r, and T028990f and r, were 

used to PCR amplify intergenic regions (see Table 4.1) from M. tuberculosis H37Rv DNA (a gift from 

J.T. Belisle, Colorado State University, USA). Intergenic regions chosen for amplification were 

selected according to DNA sequence analysis of the ESAT-6 gene cluster region 3. Intergenic region 

Rv3873-Rv3874 was chosen as a positive control for promoter activity by an ESAT-6 region promoter,
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as an ESAT-6 operon promoter has been identified from this region (region 1) previously (Berthet et 

al., 1998). Intergenic region PCR products were cloned into the T-vector pGemT-Easy (Promega), 

resulting in pGemT7374, pGemT8182, pGemT8687 and pGemT8990 respectively. Inserts were 

excised using EcoRI, and cloned into the EcoRI site of pBiuescript II KS (Stratagene), resulting in 

pBlue7374, pBlue8182, pBlue8687 and pBlue8990 respectively. BamHI / Kpnl fragments were 

excised from these constructs and finally cloned into the corresponding sites in the mycobacterial- 

E.coli promoter-probe shuttle vector pJEM15, creating transcriptional fusions of the intergenic regions 

with a promoterless lacZ operon. These constructs were named pJEM7374, pJEM8182, pJEM8687 

and pJEM8990 respectively. All essential constructs created during the cloning of the intergenic 

regions were verified by DNA sequencing. Transformation of M. smegmatis with the pJEM constructs 

was performed using electroporation, as described previously (Jacobs et al., 1991), and transformants 

were selected on Kanamycin-containing Middlebrook 7H11 agar plates.

4.2.8. p-Galactosidase assays

P-Galactosidase activity of M. smegmatis transformants were detected on solid media by 

plating transformants on Middlebrook 7H11 media containing 5-bromo-4-chloro-3-indolyl-(3-D- 

galactopyranoside (X-Gal; 0.001%). p-Galactosidase activity was quantitatively assayed in liquid 

media as described previously (Pardee et al., 1959, Timm et al., 1994) using sonicated extracts (see 

Media and culture conditions) of M. smegmatis transformed with different pJEM constructs. This 

assay makes use of the p-galactosidase substrate o-nitrophenyl-p-D-galactoside (ONPG) and one 

unit of p-galactosidase is defined as producing 1 p.Mole o-nitrophenol per minute from o-nitrophenyl-p- 

D-galactoside at 28°C, pH 7.0 (1 |iMole/ml o-nitrophenol has an optical density at 420 nm of 0.0075). 

p-Galactosidase activity was spectrophotometrically measured at OD42o after a 30 minute incubation 

in equal amounts of protein (6.6 ^g). Protein concentrations of sonicated extracts were determined 

spectrophotometrically using the BioRad protein concentration assay. All activity assays were 

performed in triplicate. To calculate the units of p-galactosidase we used the formula: 1 Unit = 200 x 

OD420/mg of protein/minute, as was described by Timm et al. (1994) and Berthet et al. (1998).
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Table 4.4. Plasmids and constructs used in this study

Plasmids Characteristics* Source or 

reference

pGemT-Easy PCR Cloning T-vector, Ampr Promega

pGemT7374 241 bp M. tuberculosis H37Rv PCR product using primers T387374f and T387374r, cloned into pGemT-Easy, Ampr This study

pGemT8182 281 bp M. tuberculosis H37Rv PCR product using primers T028182f and T028182r, cloned into pGemT-Easy, Ampr This study

pGemT8687 273 bp M. tuberculosis H37Rv PCR product using primers T028687f and T028687r, cloned into pGemT-Easy, Ampr This study

pGemT8990 249 bp M. tuberculosis H37Rv PCR product using primers T028990f and T028990r, cloned into pGemT-Easy, Ampr This study

pBluescript II KS Cloning vector, Ampr Stratagene

pBlue7374 EcoRI fragment from pGemT7374 subcloned into pBluescript II KS, Ampr This study

pBlue8182 EcoRI fragment from pGemT8182 subcloned into pBluescript II KS, Ampr This study

pBlue8687 EcoRI fragment from pGemT8687 subcloned into pBluescript II KS, Ampr This study

pBlue8990 EcoRI fragment from pGemT8990 subcloned into pBluescript II KS, Ampr This study

pJEM15 Promoter-probe vector used for creating transcriptional fusions with lacZ, Kanr Timm et al., 1994

pJEM7374 BamHI / Kpnl fragment from pBlueT7374 subcloned into pJEM15, Kanr This study

pJEM8182 BamHI / Kpn\ fragment from pBlueT8182 subcloned into pJEM15, Kan' This study

pJEM8687 BamHI / Kpn\ fragment from pBlueT8687 subcloned into pJEM15, Kanr This study

pJEM8990 BamHI / Kpn\ fragment from pBlueT8990 subcloned into pJEM15, Kanr This study

* Ampr, Ampicillin resistance; Kan', Kanamycin resistance
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Figure 4.1. Generation of the pJEM-promoter clones. Intergenic regions were PCR amplified from 

M. tuberculosis genomic DNA and cloned into the T-vector pGEM-T Easy. Inserts were subcloned 

through pBluescript II KS into the mycobacterial-E. coli promoter-probe shuttle vector pJEM15.

M. tuberculosis H37Rv genomic DNA
PCR the following intergenic regions: 
T028182 - 281 bp 
T028687 - 273 bp 
T028990 - 249 bp 
T387374 - 241 bp

EcoRI

EcoRI

ECO Rl
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4.3.1. Gene organization in the M. tuberculosis ESAT-6 gene cluster region 3

The whole genome sequence of M. tuberculosis H37Rv revealed that the ESAT-6 gene 

cluster region 3 contains 11 open reading frames (ORF’s) all situated on the same strand (Figure 4.2).

4.3. Results

Figure 4.2. Genomic organization of the Mycobacterium tuberculosis ESAT-6 gene clusters.

Distances between genes are representative of actual intergenic distances. Intergenic distance 

lengths for region 3 are indicated. Large intergenic distances (containing non-conserved genes in 

some cases) are indicated by a boxed space. Homologous genes from different clusters are shown in 

the same colours, with non-conserved genes indicated in white. Promoters that were previously 

identified experimentally are indicated by a black triangle (Murray et al., 1992, Berthet e t al., 1998). A 

putative Rho-dependent terminator downstream of region 3 is indicated by a stem-loop structure. 

Intergenic regions from region 1 (T387374) and 3 (T028182, T028687 and T028990) that were cloned 

in this study are indicated by arrows.

Region 3
(Rv0282-Rv0292)

Rv0281-Rv0282 Rv0286-Rv0287 Rv0289-Rv0290 
(T028182) (T028687) (T028990)

223 0 0

v v  f y

I  U  4 1 U U  U !
0 2 48 29 10 46 0 0

Region 1
(Rv3866-Rv3883c)

■4 r) > :=>£=)

Rv3873-Rv3874
(T387374)

'F I /
■» H

Esat-6
promoter

Region 2 c^>i ' —
(Rv3895c-Rv3884c)

promoter

Region 4 + 1"' . ' ^  4
(R v3450c- R v3444c)

Region 5
(Rv1782-Rv1798) •HZHD
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A visual analysis of the juxtaposition of these 11 genes strongly suggests that they are co­

transcribed and thus constitute a single ESAT-6 gene cluster operon (Figure 4.3). There are little or 

no intercistronic regions between the 11 ORF’s (the largest being 48 bp), but a 223 bp region in which 

no ORF could be detected, was found situated upstream of the first gene Rv0282. The length of this 

region and the fact that it is situated upstream of the first gene of the gene cluster supported the 

results obtained by an in silico analysis of the region and which revealed the presence of a putative 

promoter sequence (Figure 4.4).

Figure 4.3. Intergenic distances and Stop/Start codons for genes in ESAT-6 gene cluster 

region 3. Start codons are indicated in bold, stop codons of the previous genes are underlined and 

putative ribosome binding sites are highlighted

Gene Overlap o f stop/start codons

Preceding 

intergenic 

region size

Position of 

start 

codon

Position of 

stop 

codon

Protein

length

Rv0282 AGGCGGATCGGCCG ATG GCGGGC 223 bp 342130 bp 344023 bp 631 aa

Rv0283 TCGGTGCGGGC ATGA CGAACCAG 0 bp 344022 bp 345636 bp 538 aa

Rv0284 GAGGGAGGGTACCG GTGA GCAGA 0 bp 345635 bp 349625 bp 1330 aa

Rv0285 AGGGGAGTCAGTC ATGA CGTTGC 0 bp 349624 bp 349930 bp 102  aa

Rv0286 TGGGCGGC TGA GC ATG GCCGC 2 bp 349935 bp 351474 bp 513 aa

Rv0287 AG TAA CCGAATTCCGAATCACGT 
GGACCCGTACGGGTCGAAAGGASSAG 
ATGTT ATG AGCCTTTTGGATGCT

48 bp 35 1525 bp 351816 bp 97 aa

Rv0288 GGTTC TGA TCGAACCCTGCTGAC 
CGAGAGGACTTGTG ATG TCGCAA

29 bp 351848 bp 352136 bp 96 aa

Rv0289 GC TAG CTCGCGCTAC ATG GAT 10 bp 352149 bp 353034 bp 295 aa

Rv0290 CG TAA TCAGAAACCAGAAAGTGA 
GCACGATGTCCCAGGAACGGTCCCG 
CTG ATG TCCGGCACCGTCATGCA

46 bp 353083 bp 354499 bp 472 aa

Rv0291 GGTGCTCAACAG ATGA TCCGTGC 0 bp 354498 bp 355881 bp 461 aa

Rv0292 GGAGCCCACCGA ATGA ACCCGAT 0 bp 355880 bp 356873 bp 331 aa
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Figure 4.4. Putative region 3 promoter element. Nucleotide sequence of the 223 bp intergenic 

region between the open reading frames Rv0281 and Rv0282, indicating the motifs of the putative 

ESAT-6 gene cluster region 3 promoter. The annotated positions of the genes Rv0281 and Rv0282 

are indicated by horizontal arrows. Vertical arrow indicates putative transcription initiation site. The 

T028182 primers used for RT-PCR and cloning of the region are boxed. The £  coli consensus 

sequence motifs with inter-motif distances and percentages of base occurrence are included at the 

bottom of the figure.

Rv0281 £tccqaaqccqqqccqat}qttcqcccqcaacaccct|qqtcaqtqccqcccqcgtc^B eg

gcgcaccgttcgcgctgccggcaccccgggctccataatgaaaatcatgttcagtaagct

acactctgcatatcgggctaccaacgaaatggagtatcggtcatgatcttgccagccgtgc
17 bp

ctaaaagcttggccgcagggccgagtcgattggtcgcggtcgcc tcgaca gttagcttat 
6 bp 7 bp

^caa^^ egggg^aagtte aggegga tcggccg H Pqcqqqcqtaqqtqaa|gq
4  ----------------------------------------- *

Rv0282

Stop codon for Rv0281 

Start codon for Rv0282

Putative -3 5  motif (homologous to -3 5  region of Pan promoter)

Putative extended -10 motif (TGn)

Putative -10 motif (Pribnow box)

Putative transcriptional start site

Putative ribosome binding site (RBS or Shine-Delgamo sequence)

Motif -35 -10 +1 RBS Start codon
% of occurrence 85 83 81 61 69 52
E. co li consensus sequence: 16 -1 9  bp |

42 78 
4 - 9 bp C A /G AGGAGG 4 - 7 bp

The proposed promoter of region 3 was named P e s r e g 3 , the ESAT-6 gene cluster region 3 

promoter. The promoter-specific motifs of P e s r e g 3  (-35 sequence, -10  sequence, transcriptional start 

site), as well as the intermotif distances are typical of a mycobacterial promoter (Mulder e t al., 1997). 

There is a putative ribosome binding site identified seven basepairs upstream of the annotated start 

codon of Rv0282. In addition to this, a signature (TGC) characteristic of an extended -10 motif (TGn) 

was found situated directly upstream from the putative -10 motif. This motif is found predominantly in
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promoters that have the ability to still function in the absence of its -35 region (Kenney and 

Churchward, 1996). In the case were the -35 region is deleted, the RNA polymerase typically binds to 

the extended -10  region alone and is able to initiate transcription from this point.

Only two promoters have been previously identified in the ESAT-6 gene clusters, the P AN 

promoter situated in the ESAT-6 gene cluster region 2 (Murray et al., 1992, Genbank accession no 

AJ250015), and the esat-6 promoter from region 1 (Berthet et al., 1998). An alignment of the motif 

sequences of the two previously identified promoters with that of the putative region 3 promoter 

revealed that P e s re g3 seem to be closest in homology to the P an promoter from region 2 , with a 

striking 100% sequence homology found in the -35 region (Figure 4.5).

Figure 4.5. ESAT-6 gene cluster promoter alignment. Alignment of the esat-6 promoter from the 

ESAT-6 gene cluster region 1 and the P AN promoter of the ESAT-6 gene cluster region 2 with the 

putative P Es re g3 promoter from ESAT-6 gene cluster region 3.

________________________________ -35________________ -10_______________+1_______________ RBS__________ Start codon

E .  c o l l  consensus

TTGACA 16-19 TATAAT 4-9 CG/A AGGAGG 4-7 ATG

ESAT-6 gene clusters

Region 1 (esat-6) AGGACG 15 TAATGA 8 CT 52 GAGAGA 12 ATG
Region 2 (Pm ) TCGACA 17 TACACT 7 CA 37 AAGGAG 8 GTG
Region 3 (PESREG3) TCGACA 17 TAACTT 6 CA 6 AGGCGG 7 ATG

The 223 bp region in M. tuberculosis H37Rv containing P e s r e g 3 was also aligned to the same 

intergenic region (orthologous to Rv0281-Rv0282) from other mycobacteria. The sequences of the 

corresponding M. tuberculosis CDC1551, M. tuberculosis 210, and M. bovis regions were exactly the 

same as that of M. tuberculosis H37Rv (Figure 4.7). In the more distantly-related mycobacteria, M. 

leprae and M. smegmatis, the region upstream from the putative promoter is unconserved. This is in 

contrast to the sequence surrounding the putative P e s r e g 3  promoter region, which shows a high 

percentage of homology to that of M. tuberculosis H37Rv in both organisms (Figure 4.7). Although 

only limited sequence was available for the M. paratuberculosis region, a part of the region
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corresponding to the putative promoter region was identified and also showed a high percentage of 

homology to the M. tuberculosis region. The inability to extract any surrounding sequences from this 

region in M. paratuberculosis is indicative of a low level of homology of the rest of the region, in 

agreement with what was observed in M. leprae and M. smegmatis. The exclusive conservation of 

this part of the intergenic region supports the hypothesis that this region is important for the 

transcription mechanisms and that it contains the P e s r e g 3  promoter for the ESAT-6 gene cluster 

region 3.

Figure 4.7. Multiple sequence alignment o f the ESAT-6 gene cluster region 3 putative P e s r e g 3  

promoter regions from different mycobacteria. Putative -35 sequence is highlighted in blue, 

extended -10  sequence in red, -10  sequence in green and transcriptional start site in grey.

M. bovis 

M. tuberculosis 

M. paratuberculosis

M. leprae 

M. tuberculosis 

M. smegmatis

t t g g c c g c t g g g c c g a g t c g a t t g g t c g c g g t c g c c J B H g t t a g c t t a t g c m ^ M I M B c:g g g gM a a g t t  
i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i m n  i i n  h i  11 i i i  i i i i m i i i i i  i n  i i i  i i i  11 
TTGGCCGCAGGGCCGAGTCGATTGGTCGCGGTCGCcBHBGTTAGCT rATGCAA^ M B B B CGGGGB AAG,r'r

1 1 1 1  m m  i i n  m  m  m  i ^ ^ n m  i1
cgccH H gttagcttatgcaa^ ^ H cgt

lAGG^GGTCAGCGGAGTTGAGTCGTGAAGCGAGCGGGTCTGAAAAGC^HMg TTAGCTTACGC,
I I I  I I  I I I  I I  I I I I M I  I I I I  I I I I I  I I I  I I I  I I 

t t g g c c g c a g g g c c g a g t c g a t t g g t c g c g g t c g c c ^ M M g t t a g c t t a t g g

I 11 I I I I I 11 I I I  I I  11 I I I  I I I  I I I  I I I  I I I
TGAGCCGCTTCACGGCCCAGAGCCCCCACGTGCGTC^mGTTAACTTATGT

!G G G G ^A AGTT
I I 

!TC* AAGTTAG

An analysis of all the intergenic regions of ESAT-6 gene cluster region 3 revealed that there 

are no clearly identifiable transcriptional terminators or attenuators present within this region. This 

includes the upstream 223 bp intergenic region containing the putative promoter fo r the region 

(between Rv0281 and Rv0282). An RNA secondary structure possibly representing a weak rho- 

dependent terminator-like structure could be identified at a position 51 bp after the stop codon o f the 

last gene (Rv0292) in the cluster (Figure 4.4), which may represent the termination point of this 

region.
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Figure 4.4. Primary structure o f the putative ESAT-6 gene cluster region 3 terminator. Stem- 

loop structure predicted from inspection of the sequence in the region downstream from Rv0292. 

Also shown is the free energy of secondary structure formation, AG.

,G HA G \ 'C— G I IG— C
AG (Kcal/mol): -3.30 ^  ' 

i r
f - fA-A-C-U-G-G-C-U-C-A-C-A-U-G~C-C-G-G-G-G-A-A-C-C-A-G-U

Rv0292
GTCGAACA~T^A GGCCCTGCAGGAACACGGTCATCCGCCGCAGATA 
GTCCAACTGGCTCACAT GCAGCaggtgGCTGC CGGGGAACCAGTG

putative terminator

4.3.2. Operon analysis

RT-PCR analysis of the intergenic regions between the adjacent open reading frames of the 

ESAT-6 gene cluster region 3 suggested that the whole region is expressed as one single 

polycistronic RNA of at least 14 743 bp (Figure 4.8). This result was not due to DNA contamination as 

all the necessary controls were present during analyses (see lanes 1-6, Figure 4.8). In three cases 

(T028283, T028384 and T028586), more than one amplification product was observed after the RT- 

PCR reaction (lanes 7, 10 and 16). These products were isolated and sequenced to confirm the 

amplification of the respective intergenic regions. In all three cases the presence of an amplicon 

corresponding to the intergenic region sequence was confirmed, with the other products being the 

result of non-specific priming (results not shown).
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Figure 4.8. RT-PCR results of analysis of intergenic regions of the ESAT-6 gene cluster region

3. RT-PCR was done on M. tuberculosis RNA with primers spanning the intergenic regions of the 

ESAT-6 gene cluster region 3. Positive and negative controls for Reverse Transcriptase activity, DNA 

contamination, and DNA Polymerase activity were included and amplicons was separated on a 1.7% 

agarose gel. Lanes: 1, RT-PCR positive control; 2, H20  negative control; 3, Inactivated reverse 

transcriptase negative control; 4, DNAsel positive control; 5, M. tuberculosis H37Rv DNA positive 

control; 6 , M. tuberculosis H37Rv DNA + DNAsel negative control; 7, T028283 RT-PCR; 8 , T028283 

H20; 9, T028283 PCR; 10, T028384 RT-PCR; 11 T028384 H20; 12, T028384 PCR; 13, T028485 RT- 

PCR; 14, T028485 H20 ; 15, T028485 PCR; 16, T028586 RT-PCR; 17, T028586 H20; 18, T028586 

PCR; 19, T028687 RT-PCR; 20, T028687 H20; 21, T028687 PCR; 22, T028788 RT-PCR; 23, 

T028788 H20; 24, T028788 PCR; 25, T028889 RT-PCR; 26, T028889 H20; 27, T028889 PCR; 28, 

T028990 RT-PCR; 29, T028990 H20; 30, T028990 PCR; 31, T029091 RT-PCR; 32, T029091 H20; 

33, T029091 PCR; 34, T029192 RT-PCR; 35, T029192 H20; 36, T029192 PCR; 37, T387374 RT- 

PCR; 38, T387374 H20; 39, T387374 PCR.
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To identify the promoter elements driving the expression of the M. tuberculosis ESAT-6 gene 

cluster region 3 operon; we cloned selected intergenic regions (T028182, T028687, T028990, and 

T387374, see Table 4.2, Table 4.4, Figure 4.1 and Figure 4.2) into a p-galactosidase promoter-probe 

vector pJEM15. The intergenic region T028182 was selected for the analysis because of the 

identification of the putative P Es re g3 promoter in this region (described in Section 4.3.1). T028687 

was selected because it is the largest intergenic region (48 bp, see Table 4.3) within this cluster. This 

region is also situated upstream of the esat-6 gene family member Rv0287, and thus in the same 

position as both the east-6 promoter from region 1 and the P AN promoter from region 2 (Figure 4.2, 

Berthet et al., 1998, Murray et al., 1992, Genbank accession no AJ250015). T028990 was selected 

because it is the second largest intergenic region (46 bp, Table 4.3), and also the only other intergenic 

region large enough to have the potential to contain a promoter sequence. Lastly, the intergenic 

region T387374 was selected as a positive control for the presence of an ESAT-6 gene cluster region 

promoter, because it contains the previously identified esat-6 promoter from ESAT-6 gene cluster 

region 1 (Berthet et al., 1998). Promoter constructs were transformed into E. coli and plated on LB- 

Kanamycin plates containing X-Gal. As was observed by Timm et al. (1994), all transformants 

(including E. coli transformed with the promoterless vector pJEM15) were blue on LB-Kanamycin-X- 

Gal plates, indicating a higher copy number of the vector when inserted in E. coli (results not shown). 

This also confirms the conclusion reached by Timm and coworkers, which states that blue-white 

screening should be done directly in a mycobacterial host. When the same constructs were 

subsequently electroporated into M. smegmatis and plated onto Middlebrook 7H11-Kanamycin-X-Gal 

plates, white colonies were obtained in the case of pJEM15, pJEM8687 and pJEM8990, while light 

blue colonies were obtained with pJEM7374 and dark blue colonies with pJEM8182 (Figure 4.9). This 

indicates the presence of a strong promoter in construct pJEM8182, while no promoter activity could 

be detected in the intergenic regions of T028687 and T028990. The promoter activity of pJEM8182 

also seemed to be much higher than that observed in the control construct pJEM7374.

4.3.3. Promoter analysis
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Figure 4.9. Promoter constructs electroporated in M. smegmatis and plated on X-Gal plates.

Promoter constructs were electroporated into M smegmatis and plated onto Middlebrook 7H11- 

Kanamycin-X-Gal plates. White colonies were obtained in the case of the negative control pJEM15, 

and constructs pJEM8687 and pJEM8990, while light blue colonies were obtained with the positive 

control pJEM7374 and dark blue colonies with pJEM8182. This indicates the presence of a strong 

promoter in construct pJEM8182 (much stronger than that observed in the control construct 

pJEM7374), while no promoter activity could be detected in the intergenic regions of T028687 and 

T028990.

pJEM15 (negative control) pJEM7374 (positive control) pJEM8990

pJEM8687

To quantitatively determine the amount of (J-galactosidase activity, we used the previously 

described ONPG (3-galactosidase spectrophotometric assay (Pardee et al., 1959, Figure 4.10). The 

results clearly demonstrate that the intergenic region T028182 contains a very strong promoter activity 

(more than 7 times stronger than the control esat-6 promoter region, T387374). None of the other 

regions showed any promoter activity, having values exactly the same as the promoterless vector 

pJEM15. This result confirms what was observed on the X-Gal plates as well as the sequence 

analyses of the ESAT-6 gene cluster region 3.
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Figure 4.10. p-Galactosidase activities o f M. sm egm atis  clones containing different intergenic 

regions from the ESAT-6 gene cluster region 3. Results are means of three independent 

experiments and standard deviations are indicated.

Construct Units o f (3-Galactosidase activity detected in

sonicated cell extracts o f transformed M. sm egm atisf

h 2o 0 ± 0

pJEM15 6 + 0

pJEM7374 32 ± 3

pJEM8182 224 ± 14

PJEM8687 6 ± 1

PJEM8990 6  ± 1

‘ Results are the averages and standard deviations for three independent experiments.
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Although a great number of mycobacterial antigens have been identified to date, the function 

of most of these proteins remains unknown. The 23 members of the potently immunogenic ESAT-6 

antigen family are an example of this. Elucidation of the intracellular functions of these antigens and 

its contribution to the overall pathogenicity and immunogenicity profile of the organism may help us to 

obtain a better understanding of the processes involved in causing disease. As a first step to 

determining the function, an in-depth analysis of the regulation of expression and the genetic milieu of 

the genes encoding these antigens must be performed. In this study the potential polycistronic nature 

of the previously identified ESAT-6 gene clusters was investigated (by focusing on the gene cluster 

region 3) as this may reveal distinct information on the regulation and expression of these important 

antigens and the operons that they are situated in and may provide some clues to their intracellular 

function.

Experimental evidence pointing to a close relationship between the genes situated in the 

ESAT-6 gene clusters has been provided by several independent studies. Berthet and coworkers 

(1998) have shown that the esat-6 and Ihp genes from the ESAT-6 gene cluster region 1 are 

transcribed as a single polycistronic RNA and thus constitute an operon. In addition, Wards and 

coworkers (2000) have found that a knockout of Rv3871 upstream of the Ihp (Rv3874) and esat-6 

(Rv3875) genes in region 1 resulted in a mutant showing a similar loss of virulence in guinea pigs as a 

lhp/esat-6 knockout. Interestingly, this mutant also caused a negative ESAT-6 skin test reaction result 

in the guinea pigs, providing evidence that the knockout might have had a polar effect on the 

downstream esat-6 gene. Further evidence indicating a close relationship between different parts of 

the ESAT-6 gene cluster region 1 comes as a result of the deletion of a certain part of this region in M. 

bovis BCG (the RD1 deletion region). Although both the ESAT-6 gene cluster region 1 genes 

Rv3881c and Rv3883c (mycosin-1 ) are present in the genome of this organism neither of them are 

expressed in M. bovis BCG (Brown et al., 2000, Mattow et al., 2001). As the Rv3881c and mycosin-1 

genes lie 2 and 4 ORF’s downstream of the RD1 deletion region, it indicates that there are certain 

factors present within this deleted region that are needed for their expression. This is supported by 

the fact that the ESAT-6 gene cluster region 2 mycosin-2 gene (Rv3886c), lying only 3 ORF’s

4.4. Discussion

Stellenbosch University http://scholar.sun.ac.za/



191

downstream of mycosin-1, are expressed efficiently in BCG (Brown et al., 2000). All this experimental 

evidence supports the genome sequence analysis, which suggests that these regions may be 

expressed as one or more operons.

The results of this study showed that the ESAT-6 gene cluster region 3 is expressed in its 

entirety as one single operon. Although we have not yet performed these experiments on the other 

ESAT-6 gene clusters, there is no reason to believe that these duplicate clusters are not also 

expressed as one or more operons. As a parts of region 1 and region 4, respectively, are encoded on 

the opposite strand, these two regions would definitely be transcribed as more than one operon. It is 

clear from the relative positions of the genes present within these clusters that gene rearrangements 

have taken place during or after the duplication events, but it is known that gene order does not 

necessarily influence expression and function of similar well-investigated operon-like structures, for 

example that of certain lantibiotic operons (Siezen et al., 1996).

The absence of identifiable terminators in region 3 is in agreement with what is observed for 

the whole genome sequence of M. tuberculosis. Using terminator-identifying computer algorithms, 

only a few possible terminators were identified in intergenic regions of the whole genome sequence 

(data not shown). It thus seems as if the genome sequence of M. tuberculosis is deficient in ordinary 

terminators having the consensus £. coli transcriptional termination motifs (E. coli transcriptional 

terminators are described in detail by d’Aubenton Carafa et al., 1990). The reason for the absence of 

identifiable terminator sequences may be the G+C richness of the genome of M. tuberculosis (65.9%, 

Cole et al., 1998) as one of the major features of ordinary E. coli rho-independent terminators is the 

use of a very conserved stretch of thymidines at the 3’ end of the terminator (d’Aubenton Carafa et al., 

1990). In the putative terminator sequence identified from this study (Figure 4.4), we could only find a 

4 bp stretch of guanosines at the 3’ end of the terminator. The difference due to the G+C richness of 

the genome affects codon usage and promoter recognition sites (Mulder et al., 1997) and is also 

represented in other DNA and RNA structural motifs. An example of this is the positional base 

preference in codons where there is an increase observed in the third position G or C. Another 

example is the wide range of promoter sequences in the mycobacteria, which differ quite considerably 

with the consensus E. coli sequence, and are much more reliant on G and C bases. The
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transcriptional start site that is most frequently an A in the case of E. coli, is also more frequently a G 

(in 48% of cases) in the mycobacterial sequences (Timm et al., 1999). All of this indicates a 

difference in the mycobacterial transcription and translation mechanisms in comparison to other 

bacteria, which are most probably also reflected in the terminator sequences and termination 

mechanisms. The absence of strong, clearly identifiable consensus terminator motifs in the 

mycobacteria may indicate a low level of specific termination of transcription, the presence of as yet 

unidentified mycobacterial-specific G+C rich terminator sequences, or that the mycobacteria may rely 

more on rho-type protein dependent transcriptional termination. Although no transcriptional terminator 

structures were identified inside the region 3 operon, Berthet and coworkers (1998) did find a 

structure similar to a Rho-independent transcription terminator 40bp downstream from the stop codon 

of the esat-6 gene in ESAT-6 gene cluster region 1. These authors speculated that there would be no 

more additional genes downstream of the esat-6 gene that could form part of the esat-6/cfp-10 operon 

(Berthet ef al., 1998). It is well known that many gene clusters, for example those involved in the 

biosynthesis of lantibiotics, consist of several transcription units (Sahl and Bierbaum, 1998). This 

allows for the high level transcription of the mRNA of certain genes required at higher levels, while the 

presence of a weak terminator structure allows only low levels of readthrough to the modification, 

secretion and processing enzymes.

To further elucidate the regulation of expression of the ESAT-6 gene clusters, we identified 

the promoter involved in the expression of ESAT-6 gene cluster region 3 and named it P e s r e g 3 • This 

promoter was initially identified by genome sequence analysis, and was confirmed to be the (only) 

promoter of the ESAT-6 gene cluster region 3 by cloning the region into a mycobacterial promoter 

probe vector. In this study we have not investigated the possibility that promoters may be present in 

intracistronic regions. The presence of promoters within mycobacterial genes has not yet been shown 

(W. Bourn, personal communication), although Strohl (1992) found that out of 139 streptomycete (an 

actinomycete relative of the mycobacteria) promoters studied, 6 were situated within open reading 

frames. The P e s r e g s  promoter is expressed very strongly in M . smegmatis, at a seven times higher 

level than the region 1 esat-6 promoter identified by Berthet et al. (1998). The sequence of P e s r e g 3  is 

closest in homology to the M. paratuberculosis Pan promoter from ESAT-6 gene cluster region 2, 

previously identified by Murray and coworkers (1992). The promoter probe analysis done in this study
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did not reveal any promoter activity in the intergenic region upstream of the esat-6 gene in the ESAT- 

6 gene cluster region 3, the same position in which the esat-6 promoter of region 1 and the PAN 

promoter from region 2 are situated. No homology could also be found between these two promoters 

and the upstream sequences of the esat-6 genes of the other two ESAT-6 gene cluster regions (data 

not shown).

Although no other upstream promoters for region 1 and 2 have been identified yet, it is 

tempting to speculate that the esat-6 and P AN promoters are secondary promoters and that primary 

promoters for the expression of the whole region 1 and 2 is situated upstream in the same position as 

the region 3 P e s re g3 promoter. These promoters would be most likely found situated in the large 

intergenic regions (91 bp and 160 bp) before Rv3865 and Rv3896c respectively. It must be noted 

that, although there is no doubt that there is a promoter element present in the intergenic region 

before the esat-6/cfp-10 operon in ESAT-6 gene cluster region 1 (the esat-6 promoter), a multiple 

sequence alignment similar to the one in Figure 4.7 revealed that the -35 and -10 regions 

hypothesized by Berthet and coworkers (1998) are not conserved between different mycobacteria 

(Figure 4.11). Also, the -35 region proposed by these authors is situated inside the gene sequence of 

the upstream PPE gene. It may thus be more likely that the correct position of this promoter is 

situated within the conserved region indicated in Figure 4.11.

In conclusion, we have shown that at least one of the gene clusters encoding the very 

important T-cell antigen ESAT-6 family is expressed as a single polycistronic RNA and the 11 genes 

situated in this cluster thus form one single operon. We have also identified the promoter for this 

operon, P e s r e g 3, and characterized its activity. The identification of this promoter may provide clues to 

the mechanisms involved in the 64% downregulation in the attenuated M. tuberculosis strain H37Ra 

of the ESAT-6 family member named Rv0288 (TB10.4 or CFP-7, Rindi et al., 1999). It may even 

ultimately reveal the reason for the attenuation of the organism. The verification of the polycistronic 

nature of the ESAT-6 gene clusters as well as the identification of the promoter Pesreg3 is an 

important step in the elucidation of the function and regulation of members of the ESAT-6 family as 

well as its biosynthetic gene clusters. This study contributes to the slowly growing field of research 

aimed at the understanding of the mycobacterial transcriptional machinery. This could ultimately
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provide insights into the mechanisms involved in the regulation of antigen expression and 

pathogenicity.

Figure 4.11. Multiple sequence alignment of the ESAT-6 gene cluster region 1 esat-6 promoter 

regions from different mycobacteria. C-terminal sequence of upstream gene Rv3873 is shown in 

red letters and start codon of Rv3874 gene in blue. Promoter regions proposed by Berthet e t al. 

(1998) is highlighted: -35 in blue, -10 in green, transcriptional start sites in grey and ribosome binding 

site in yellow.

M. smegmatis 

M. leprae 

M. tuberculosis

AGGATGAAGACGACGAGTGGTGA 
I I I I I I I I I I I I I I I I 
ATGACGACCAGCACAACTGGTGA 

I I I I I I I I I I

ACACTCGCACAAGAACTTTCCGGT GCACTCGCCGGAA 
I I I  I I  I I I I  I I I I I  I I I  I I I I I I I

ACACCCAAAATCACAAACTTCCCGGC GCCCGGGCCGGAAA
I I I I I I I I I I I I I I I I I I I I I I I I I I I I

GGACGAAG ACTGGTGAGCTCCCG caacagacJtcccggccacccgggccggJa

GACTCGCCATGGAATTGGTGAGGA CACAGGGAAATAAGGGGAAAT CCA ATG
I I I I I I I I I I I I I I I I I I  I I I I I I I I  I I I  I I I
GACTTGCCAGCATC TGGCGAGTAACAGCAAGAAAGAGAGTAGAA CCAACATG 
l l l l l l l l l  I I I  l l l l l l l  I I  I I I I I I I I I I I I  I N I
GACfjTGCCAACATTTTGGCGAGGAA GG^B|j3AGA§AGTAGT CCAGCATG
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CHAPTER FIVE

MULTI-COMPONENT PROTEIN TRANSPORT SYSTEM

“He smiled and said ‘Sir, does your mother know that you are out?'” 

Misadventures at Margate -  Rev. R.H. Barham (1788-1845)

NOTE: The results presented in the following chapter will be submitted for peer review and publication 

as: “The ESAT-6 gene cluster o f Mycobacterium tuberculosis forms a multi-component protein 

transport system for the secretion of members of the immunologically important ESAT-6 and 

CFP-10 multigene families. Gey van Pittius, N.C., Daugelat, S., Warren, R.M., Kaufmann, S.H.E., 

and Van Helden, P.D.”
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Approximately 20% of proteins synthesized by bacteria are trafficked to the cell membrane 

and extracellular environment and most of these exogenous proteins are transported via the general 

secretory pathway (Pugsley, 1993). This pathway makes use of the Sec protein-translocation system 

(Mori and Ito, 2001) as a first step to translocate the proteins across the cytoplasmic membrane. In 

Gram-positive bacteria, these translocated proteins are directly released into the extracellular milieu, 

while in Gram-negative bacteria a second transport mechanism, termed a terminal branch, is required 

to translocate the protein across the outer membrane (Pugsley, 1993). Protein secretion systems 

have been grouped into five major pathways, which have recently been the subject of a number of 

excellent reviews and will thus not be covered in this paper. These pathways are named the type I 

(signal sequence independent ATP-binding cassette [ABC] transporter pathway, Linton and Higgins,

1998), II (main terminal branch of the general secretion pathway, Sandkvist, 2001), III (contact- 

dependent secretion pathway, Plano et al., 2001), IV (conjugal transfer system pathway, Christie, 

2001), and V (autotransporter pathway, Jacob-Dubuisson et al., 2001) secretion systems.

Although the mycobacteria are classified as Gram-positive organisms, they exhibit a highly 

complex cell wall structure displaying an exceptionally low permeability due to of the presence of an 

unusual layer of lipid (mycolate esters) (Brennan and Nikaido, 1995, Daffe and Draper, 1998, Barry, 

2001a). All members of the genus Mycobacterium, examined so far, appear to have similar cell wall 

structures, although the permeability of these walls varies widely between species (Barry and Mdluli, 

1996). Only a small number of studies have been done on secretion in the mycobacteria and little is 

known about how transport occurs through the complex cell wall and membrane (Braunstein and 

Belisle, 2000). The genome of M. tuberculosis contains all the genes necessary for an efficient Sec 

translocation system and although a large number of M. tuberculosis secreted proteins make use of 

the sec-dependent secretion pathway (predicted to be more than 700 proteins, Braunstein and 

Belisle, 2000), there are certain important proteins found in the culture filtrates that do not contain the 

ordinary N-terminal secretion signals (Daffe and Etienne, 1999, Gomez et al., 2000, Braunstein and 

Belisle, 2000). This observation has led to the conclusion that M. tuberculosis is able to transport 

proteins independently of the general secretory pathway (Harth and Horwitz, 1997). These proteins,

5.1. Introduction
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which include superoxide dismutase, alanine dehydrogenase, glutamine synthetase, alcohol 

dehydrogenase, thioredoxine (Daffe and Etienne, 1999) and the multiple members of the ESAT-6 

family (Skj0t et al., 2001), are thus secreted by other, still unknown mechanisms.

Only as recently as 1997 did Barsom and coworkers describe the first protein-dependent 

ATP-binding cassette (ABC) transport system in mycobacteria, consisting of four closely-spaced open 

reading frames adjacent to the mpr gene (encoding a mycobacteriophage resistance protein) of M. 

smegmatis. The sequencing of the whole genome of M. tuberculosis (Cole et al., 1998) revealed a 

number of other genes potentially encoding the typical subunits of the ABC transporters (nucleotide 

binding domains, membrane-spanning domains and substrate binding proteins), leading to the 

identification of at least 26 complete and 11 incomplete ABC transporters (Braibant et al., 2000). ABC 

transporters transport various molecules (which includes ions, amino acids, peptides, proteins, 

antibiotics, polysaccharides, etc.) into (importers) and out of (exporters) bacterial cells. In prokaryotes 

these transporters are encoded by different genes organized in one or more operons, which are 

clustered in one DNA region on the chromosome. The proteins carrying the nucleotide binding 

domains of the transporters provide the energy to the active transport process by binding and 

hydrolyzing ATP (Braibant et al., 2000). These proteins contain conserved motifs namely the WalkerA 

(PS00017 ATP/GTP-binding site motif A (P-loop)) and WalkerB motifs (which together form an ATP 

binding pocket), as well as an ABC transporter family signature situated between the Walker motifs. 

The proteins containing the membrane-spanning domains consist of four to eight transmembrane a- 

helices that form a channel through which the substrate is transported. These proteins contain one 

conserved motif named the EAA loop motif (or binding protein-dependent transport systems inner 

membrane component signature). The last component of the ABC transporter is called the substrate 

binding protein and is usually more commonly found in importers (transporters that transport proteins 

into the cell).

The structure and organization of the ESAT-6 gene clusters have been described in detail 

previously (Gey van Pittius et al., 2001). A study of the potential functions of the proteins encoded by 

these clusters shows that most of these proteins have a potential to function in a protein-dependent 

ATP-binding cassette active transport system (Figure 5.1, Addendum 3A). These genes encode
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proteins containing Walker motif ATP binding sites, transporter family signatures as well as binding 

protein dependent transport systems inner membrane component signatures in combination with 11 

transmembrane a-helices that could form a large channel through which the substrate could be 

transported.

Figure 5.1. Organization o f the genes and potential functions of the encoded proteins situated 

within the ESAT-6 gene cluster regions.

Reg. 4 i___ i m i a i L j  u
Reg. 1 b  \m\ i i i rii i ■  ■  IU U U L l r i f l
Reg. 3 i i i i i B M W  ■ ■ ■
Reg. 2 □  □  □ □
Reg. 5 n  □ □ □ □ □ □ □ [ II I H H 1 [

■ Secreted antiaens

N-terminal transmembrane proteins

■ Inteqral inner membrane proteins, containinq transporter sianatures

■ ATPases. containina ATP/GTP bindina sites

Cell-wall associated proteases

B Cell-wall associated proteins

C Z J Non-conserved genes

It has been proposed previously that these gene clusters are responsible for the secretion of 

the ESAT-6 protein family members, explaining the absence of any ordinary sec-dependent secretion 

signals in the amino acid sequences of members of this family (Tekaia et al., 1999, Gey van Pittius et 

al., 2001). Thus, each of the duplicated ESAT-6 gene clusters may be a regulon that encodes 

components of a unique ABC transporter type structure that has not been identified previously in the 

mycobacteria. In the present study we adopted a novel approach to attempt to answer the question of 

whether the proteins encoded by the ESAT-6 gene clusters (Gey van Pittius et al., 2001) function 

together as a mycobacterial membrane-bound complex involved in protein-dependent transport and if 

so, whether this transport system is responsible for the active secretion of the ESAT-6 protein family 

members.
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5.2.1. DNA and protein sequence analyses

All DNA and protein sequence information for M. tuberculosis H37Rv as well as M. 

smegmatis mc2155 was obtained from publicly available finished and unfinished genome sequence 

databases at the Pasteur Institute and the Institute for Genomic Research (TIGR) websites 

(http://genolist.pasteur.fr/TubercuList/, for M. tuberculosis H37Rv and http://www.tigr.org/cgi- 

bin/BlastSearch/blast.cgi?organism=m_smegmatis for M. smegmatis), as well as from previously 

published sequence analyses (Tekaia etal., 1999, Gey van Pittius et al., 2001).

5.2.2. Bacterial strains

Escherichia coli JM109 was used as a host for propagation of cosmids and plasmids. 

Mycobacterium smegmatis mc2155 (Snapper et al., 1990) was used as a heterologous mycobacterial 

host for transformation of plasmids and recombinant cosmid integration, as well as for the expression 

of genes and subsequent protein secretion studies.

5.2.3. Media and culture conditions

E. coli was grown on solid or in liquid Luria-Bertani (LB) medium as described by Sambrook 

et al. (1989). For RNA extraction, M. smegmatis was grown at 37°C for 2 days with shaking (200 

rpm) in Middlebrook 7H9 broth (Difco) supplemented with filter-sterile ADC (0.5% BSA, 0.2% glucose, 

0.015% catalase) and containing 0.05% Tween 80 (Sigma). For transformant selection on solid 

media, M. smegmatis was grown on Middlebrook 7H11 agar supplemented with filter-sterile OADC 

(0.005% oleic acid, 0.5% BSA, 0.2% glucose, 0.02% catalase, 0.085% NaCI) and containing 0.05% 

Tween 80 (Sigma). To obtain culture filtrate proteins in detergent/protein-free culture media for 

secretion analyses, different recombinant M. smegmatis clones were grown at 37°C in 150 ml 

Kirchner’s broth (3 g/l Na2HP04, 4 g/l KH2P04, 1.07 g MgS04.7H20, 2.5 g/l Tri-sodium citrate, 20% 

glycerol, 5 g/l asparagine) to an optical density of 0.3 at 600 nm (early log phase). Hygromycin (50 

ng/ml, Roche), Kanamycin (50 ng/ml, Roche) and/or Ampicillin (50 ng/ml, Roche) were added to 

bacterial cultures when antibiotic selection was required. Whenever mycobacteria were double

5.2. Materials and Methods
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transformed (integrating cosmid and plasmid), the cultures were grown in both Hygromycin and 

Kanamycin to select for both transforming structures.

5.2.4. RNA prepara tion

All procedures involving RNA were performed under the strictest RNase-free conditions. 

Total RNA was extracted from M. smegmatis cultures essentially as described in Chapter 4.2.5. 

Briefly, cells were pelleted, Trizol (GibcoBRL) was immediately added and transferred to FastPrep 

tubes containing silicone beads (B io l01). Cells were ribolyzed and after centrifugation the 

supernatant was removed from the beads/cell debris and transferred to a 1.5 ml microfuge tube 

containing 500 ^l chloroform. The tube was vortexed, and placed on ice for 2 minutes with 

intermittent vortexing, after which it was centrifuged again and the aqueous phase was transferred to 

a 1.5 ml microfuge tube containing 500 isopropanol. After an overnight incubation at -20°C, the 

RNA was pelleted by centrifugation, washed with 70% ethanol and resuspended in nuclease-free H20 

(200 nl per 20 ml volume of original culture) containing DNAsel buffer, 1 U/|J RNasin and 10 mM 

DTT. This was incubated on ice for 30 minutes after which DNAsel was added at 0.1 U/jj.1 and 

incubated at 37°C for a further 30 minutes. Stop solution was added (20 p.1 per 200 j.il), and the RNA 

was purified using the QIAGEN RNeasy mini-kit, as described by the manufacturer. The integrity of 

the RNA was assayed on a 1 % TAE agarose gel. RNA stocks were stored in single-use aliquots at - 

20°C containing 1 U/jj.1 RNasin and 10 mM DTT. RNA was confirmed to be totally free of any DNA 

contamination using PCR analysis excluding a reverse transcriptase step.

5.2.5. RT-PCR analysis

RT-PCR reactions were performed using the Roche Titan One-Tube RT-PCR System kit in 

combination with the Promega HotstarTaq PCR System, as described by the manufacturers. Two 

separate master mixes were prepared, and only mixed together immediately prior to cycling. Master 

mix 1 contained the RNA template, dNTP’s (200 ^M final concentration), primers (50 pmol each), DTT 

(10 mM final concentration), RNasin (1 U/|il) and water to a final volume of 25 (il. Master mix 2 

contained 5X RT-PCR buffer (with MgCI2 to a final concentration of 1.5 mM), Reverse Transcriptase 

enzyme mix (1 |il), HotstarTaq PCR enzyme mix (0.2 p.l), Q-buffer (10 nl) and water to a final volume 

of 25 |il. Reverse transcription and cycling were performed without interruption in a Perkin Elmer
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GeneAmp 2400 under the conditions indicated in Chapter 4 (Table 4.3). Results of RT-PCR reactions 

were visualized on a 2 % TAE agarose gel.

5.2.6. Primers

Table 5.1 contains a list of all oligonucleotide primers used in this study for RT-PCR, PCR for 

cosmid isolation confirmation as well as PCR for radioactively labeled probe amplification. Primers 

were chosen according to length, Tm, G+C content and length of the product, to efficiently amplify the 

selected gene region. To avoid problems with RT-PCR reactions due to length restrictions of 

products, all RT-PCR primers were chosen to result in a product less than 300 bp.

Table 5.1. List of RT-PCR and PCR oligonucleotide primers

Name of 

primer

Primer sequence 

(from 5’ to 3’)

Length of 

primer

Tm *

[°C]

G+C

(%)

Length of 

product
Application

Rv3866f cgtcatggtgcgcttcgt 18 bp 58 61.1
201 bp

PCR confirmation
Rv3866r gcggttgtgcattcggcta 19 bp 60 57.9 of cosmid isolation

MycP1f tgacgttgaccgcatagt 18 bp 54 50.0
230 bp

PCR confirmation
MycP1 r ctgctctcgctacgtcag 18 bp 58 61.1 of cosmid isolation

S0288 f 
S0288 r

ccagatcatgtacaactacccg
gccatggtgttctgctcgt

22 bp 
19 bp

66

60
50.0
57.9

240 bp RT-PCR

Sesat f 
Sesat r

gtatggaatttcgccggtatc
ggtctgggcgaggttctgc

21 bp 
19 bp

62
64

47.6
68.4

213 bp RT-PCR

SrpoB f 
SrpoB r

tggcggcgatcaaggagt
tgcacgtcgcggacctcga

18 bp 
19 bp

58
64

61.1
68.4

157 bp RT-PCR

ESAT-6 f 
ESAT-6 r

agcagcagtggaatttcgc
tcccagtgacgttgccttc

19 bp 
19 bp

58
60

52.6
57.9

270 bp
Probe for cosmid 
isolation and PCR 

confirmation

*Tm were calculated using the following formula: [4x (G+C)] + [2x (A+T)].

5.2.7. DNA manipulations for secretion analysis

All DNA manipulations were performed essentially as described by Sambrook et al. (1989). 

Details of the cosmid and plasmid constructs are presented in Table 5.2 and Figure 5.2. The M. 

tuberculosis H37Rv genomic DNA integrating cosmid library (Bange et al., 1999) was a gift from F.-C. 

Bange (Medizinische Hochschule, Hannover, Germany). This library was constructed by cloning the
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M. tuberculosis H37Rv Sau3A genomic DNA fragments (approximately 40 000 kb) into the Bell site of 

the vector pYUB412 (an £.co//-mycobacterial shuttle vector containing two selectable markers 

allowing for selection on Hygromycin- and Ampicillin-containing media). This vector also contains an 

integrase gene and integrates stably into the attB site in the genome of mycobacteria (Bange et al.,

1999).

Plasmid pMB154, an E. co//-mycobacterial shuttle expression vector containing the M. 

tuberculosis ESAT-6 gene cluster region 1-specific ESAT-6 protein gene (Rv3875) was originally 

constructed by M. Braunstein (Albert Einstein College of Medicine, New York, USA, unpublished data) 

and was a gift from S. Daugelat (Max-Planck-lnstitut fur Infektionsbiologie, Berlin, Germany). This 

construct was used for the expression of recombinant HA-tagged ESAT-6 protein in mycobacteria. 

The C-terminal HA epitope included in this vector makes use of M. tuberculosis-specific codons. 

pMB154 was constructed by the insertion of the ESAT-6 gene in frame into the plasmid pSD21, which 

was used as a control plasmid and were also a gift from S. Daugelat.
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Table 5.2. Plasmids and cosmid constructs used in this study

Plasmids and cosmids Characteristics* Source or reference

pYUB412-derived M. tuberculosis 

H37Rv genomic DNA cosmid library
Single copy integrating E. co//-mycobacterial shuttle vector library containing M. tuberculosis 

genomic DNA fragment inserts of approximately 40 000 bp, Hygr and Ampr
F.-C. Bange (Bange et al., 

1999)

pSD21 E. co//-mycobacterial shuttle expression cloning vector for expression of C-terminal HA- 
tagged recombinant proteins, Kanr

S. Daugelat

pMB154 E. co//-mycobacterial shuttle expression vector for expression of the C-terminally HA-tagged 

M. tuberculosis ESAT-6 gene cluster region 1-specific ESAT-6 protein, Kanr
S. Daugelat (constructed 

by M. Braunstein)

cosmid H1 (0) Single copy integrating cosmid isolated from M. tuberculosis H37Rv genomic DNA library. 

Contains DNA fragment including the complete ESAT-6 gene cluster region 1, Hygr and Ampr
This study
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5.2.8. Isolation o f cosmids containing selected genomic regions

Cosmids containing selected genomic regions were isolated from the M. tuberculosis H37Rv 

library by colony blotting, as described by Sambrook et al. (1989). Briefly, approximately 2000 clones 

of the M. tuberculosis H37Rv genomic DNA cosmid library were spread onto LB plates containing 

Ampicillin (50 ng/ml, Roche) and allowed to grow at 37°C for 16 h. Bacterial colonies were transferred 

to Hybond-N+ membrane filters (Amersham) by placing the membrane onto the colonies and 

incubating for one minute. The membrane was then subjected to subsequent steps of denaturing, 

neutralization, and washing, after which the filters were baked for 2 hours at 80°C in a vacuum oven. 

After baking, the membranes were washed and prehybridized overnight at 42°C, after which it was 

subjected to hybridization at 42°C using a radioactively labeled probe. Washing, prehybridization and 

hybridization was performed essentially as described by Sambrook et al. (1989). During hybridization, 

membranes were probed using a [a-32P] dCTP-labeled probe complementary to an internal region of 

the ESAT-6 gene sequence (Rv3875, for probing for ESAT-6 gene cluster region 1). Labeling of the 

radioactive probe was done by using the commercial Prime-lt RmT Random Primer Labeling Kit 

(Stratagene) according to the manufacturer’s instructions. Labeled probe was purified from 

unincorporated radioactive nucleotides using a G50M Sephadex desalting spin column. The positive 

clones were visualized by autoradiography, and corresponding colonies were subsequently picked (as 

the cosmid sizes are around 40 000 kb, positive clones were obtained with a frequency of ± 1:300). 

Positive clones were confirmed by PCR of the gene used as probe (ESAT-6 from regionl), as well as 

the genes present in the first and last positions of the cluster (Rv3866 and Rv3883c). PCR was done 

using the HotStar Taq (Promega) PCR system according to the manufacturer’s conditions. Finally, 

the isolated cosmids were sequenced on an automated sequencer using T3 and T7 sequencing 

primers to confirm correct DNA region as well as to determine exact start and stop of insert DNA.

5.2.9. Transformation o f M. smegmatis

Transformation o f M. smegmatis with the plasmid and cosmid constructs was done using 

electroporation, as described previously (Jacobs et al., 1991). As the isolated integrating cosmid 

containing the selected M. tuberculosis H37Rv DNA sequence were integrated stably into the genome 

of M. smegmatis upon transformation, these recombinant cells could be retransformed with an 

episomally-replicating plasmid (pSD21 or pMB154) without loss of either construct. Transformants
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were selected on Hygromycin, Kanamycin or Hygromycin/Kanamycin-containing Middlebrook 7H11 

agar plates, depending on whether transformation was done with cosmid, plasmid, or both. All work 

on recombinant M. smegmatis mc2155 transformed with the single copy vector M. tuberculosis H37Rv 

genomic DNA cosmid library was performed under Biosafety Level II conditions, as was 

recommended by Bange et al. (1999).

5.2.10. Protein secretion analyses

Recombinant M. smegmatis clones were grown under conditions as specified in 5.2.3. For 

protein secretion assays in liquid media, mycobacterial culture cells were pelleted by centrifugation at 

4500 x g and supernatant containing culture medium and secreted proteins were removed by 

aspiration. Cells were resuspended in 500 nl phosphate-buffered saline (PBS) and sonicated at 4.5 

setting in a Misonix cup sonicator on ice for a total of 5 minutes (15-second bursts with 30-second 

intervals), whereafter insoluble debris was pelleted to obtain whole cell lysate proteins. Supernatants 

from both the culture filtrate and whole cell lysate were filter-sterilized by serial filtration through 1.0 

(iM, 0.45 |iM and 0.22 |aM filters, and culture filtrate proteins were concentrated using the 3 kDa cutoff 

Centriprep 3 centrifuge concentration system (Centricon). When grown to an OD600 = 0.3, 150 ml of 

culture filtrate produced approximately 0.5 -1 mg of concentrated culture filtrate proteins.

Culture filtrate and whole cell lysate protein concentrations were accurately determined 

spectrophotometrically using the BioRad protein concentration determination assay, according to the 

manufacturer’s instructions. Low molecular weight proteins was separated on a three-layered 

Tris/Tricine/SDS-PAGE gel (16% resolving gel, 10% spacer gel and 4% stack gel) according to the 

method of Schagger and von Jagow (1987). 10 ng of each sample was loaded into each well. M. 

tuberculosis H37Rv culture filtrate proteins was a gift from C. Pheiffer (University of Stellenbosch, 

Tygerberg, South Africa) and was used as a positive control of native ESAT-6 expression and 

secretion. Purified recombinant His-tagged ESAT-6 protein was used as a second positive control 

and was obtained from Dr. J.T. Belisle (Department of Microbiology, College of Veterinary Medicine 

and Biomedical Science, Colorado State University, USA). The protein was produced and provided 

through funds from the National Institutes of Health, National Institute of Allergy and Infectious 

Diseases, Contract No1-AI-75320, entitled “Tuberculosis Research Materials and Vaccine Testing.”

Stellenbosch University http://scholar.sun.ac.za/



206

Purified recombinant dimer ESAT-6 protein was used as a third positive control and was a gift from R. 

Skjot and P. Andersen (Statens Serum Institut, Copenhagen, Denmark). Mouse anti-ESAT-6 

monoclonal antibodies (HYB 76-8) were used at a dilution of 1/25 to detect the presence of M. 

tuberculosis ESAT-6 protein in Western blotting analyses, and was a gift from I. Rosenkrands 

(Statens Serum Institut, Copenhagen, Denmark). Mouse anti-HA monoclonal antibodies (HA.11, 

Clone 16B12, Covance) were used at a dilution of 1/2000 to detect HA-tagged recombinantly- 

expressed ESAT-6 protein (expressed from pMB154) in M. smegmatis fractions by Western blotting. 

Anti-HA antibodies have a high specificity to allow unambigious identification of the influenza 

hemagglutinin epitope (YPYDVPDYA). Horse radish peroxidase (HRPO)-conjugated goat anti-mouse 

antibodies (Caltag Laboratories) were used as secondary antibody in Western blotting at a 

concentration of 1/10 000.
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5.3.1. Sequence analyses

To determine the potential secretion function of the ESAT-6 gene clusters, a suitable 

mycobacterial host had to be identified. This host had to be a member of the genus Mycobacterium, 

as the cell wall structure of the mycobacteria is unique to the genus (Barry and Mdluli, 1996). Thus, 

another bacterial host with a different cell wall structure would not necessarily display the same 

secretion characteristics. The avirulent, fast-growing species M. smegmatis can be transformed with 

a high efficiency and has been used widely in the study of M. tuberculosis proteins (Snapper et al., 

1990). To ascertain whether M. smegmatis was a suitable host to study the ESAT-6 gene cluster 

secretion system, it was essential to determine whether the genome of this organism contains any 

copies of the ESAT-6 gene cluster regions which could influence the results obtained with the 

transfomed M. tuberculosis-spec\T\c regions. The results from the whole genome sequence analyses 

indicated that the genome of M. smegmatis contains three of the ESAT-6 gene clusters (region 1, 3 

and 4), which confirmed previously described results (see Chapter 3, Gey van Pittius et al., 2001). 

These gene clusters displayed the same gene organization as in M. tuberculosis, with a high 

percentage of homology shared between the gene sequences of the two organisms (data not shown).

5.3.2. RT-PCR analysis

To determine if the genes present in the ESAT-6 gene clusters of M. smegmatis are 

expressed in this organism, a RT-PCR analysis was done. This analysis was done on M. smegmatis 

RNA to determine expression of the genes Sesat (the M. smegmatis region 1 ESAT-6 orthologue 

MS3875) and S0288 (the M. smegmatis region 3 TB10.4 orthologue MS0288), with the M. smegmatis 

copy of the rpoB gene {SrpoB) as positive control. The results show clearly that both of these genes 

are efficiently expressed in M. smegmatis, indicating that the gene cluster regions 1 and 3 are 

functional in this organism (Figure 5.3).

5.3. Results
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Figure 5.3. RT-PCR analysis o f M. sm egm atis ESAT-6 gene cluster region 1 and 3 expression.

Analysis was done on M. smegmatis RNA to determine expression of the M. smegmatis region land 

3 genes Sesat and S0288 with the M. smegmatis copy of the rpoB gene (SrpoB) as positive control. 

Results indicate that both of these genes are efficiently expressed in M. smegmatis. Lanes: (1) SrpoB 

RT-PCR H20  control for DNA contamination, (2) M. smegmatis DNA SrpoB positive control, (3) SrpoB 

RT-PCR, (4) Sesat RT-PCR, (5) S0288 RT-PCR, (6) SrpoB RT inactivated control, (7) SrpoB DNAse 

positve control.

5.3.3. Cross-reactivity analysis o f anti-ESAT-6 antibodies

In a final attempt to evaluate the suitability of M. smegmatis as a potential mycobacterial host 

for the secretion studies, a Western blot analysis was done with wild-type M. smegmatis culture filtrate 

proteins as well as whole cell lysate proteins. The Western blot was probed with the anti-ESAT-6 

antibodies (HYB-76-8) to determine if these antibodies could also detect M. smegmatis ESAT-6 . No 

ESAT-6 protein could be detected in either the whole cell lysate or the culture filtrate of the wild-type 

M. smegmatis (Figure 5.4, lanes WCL and CF). This was not due to the antibody not working as the 

recombinant His-tagged ESAT-6 protein (CSU) was detected efficiently by this antibody (Figure 5.4, 

lane rESAT-6). The results of this analysis indicate that the anti-ESAT-6 antibodies are M. 

tuberculosis ESAT-6-specific, with no cross reactivity being observed. The same analysis was done 

with the anti-HA antibodies, showing that these antibodies also did not cross react to any of the 

proteins found in the wild-type M. smegmatis whole cell lysates as well as culture filtrates and could 

not detect ESAT-6 protein that was not HA-tagged (Figure 5.4). This result provided evidence that it 

was possible to use M. smegmatis as a host to study the M. tuberculosis ESAT-6 gene cluster region,
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as the antibodies used in this study do not cross react with the native M. smegmatis expressed 

proteins.

Figure 5.4. Cross reactivity analysis of anti-ESAT-6 antibodies. Western blot analysis of wild-

type M. smegmatis whole cell lysate (WCL) as well as culture filtrate (CF) proteins was done by

probing with the anti-ESAT-6 antibodies (HYB-76-8) and the anti-HA antibodies to determine if these

antibodies could also detect M. smegmatis ESAT-6. No ESAT-6 protein could be detected in either

the whole cell lysate or the culture filtrate of the wild-type M. smegmatis with the anti-ESAT-6

antibodies and the anti-HA antibodies also did not cross react to any of the proteins found in the wild-

type M. smegmatis whole cell lysates as well as culture filtrates. Recombinant His-tagged ESAT-6

protein (rESAT-6) was used as a positive control.

kDa
rESAT-6 WCL CF

kDa
rESAT-6 WCL CF

66 — 66 —

45 ---- 45 —

30 ---- 30 —

2 0 ---- 20 ----

14 —

•

1 4 ----

Anti-ESAT-6 Anti-HA

5.3.3. Isolation o f cosmids containing selected genomic regions

Cosmids containing M. tuberculosis H37Rv genomic DNA encoding ESAT-6 gene cluster 

region 1 were isolated using colony blotting (Figure 5.5).
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Figure 5.5. Colony blotting o f a M. tuberculosis H37Rv genomic DNA intergrating cosmid 

library. M. tuberculosis H37Rv genomic DNA cosmid library on LB plates were transferred to 

Hybond-N+ membrane filters, and probed with a [a-32P] dCTP-labeled probe complementary to an 

internal region of the ESAT-6 gene sequence (Rv3875). (A) M. tuberculosis H37Rv genomic DNA 

positive control membrane, (B) colony blot with positive clone indicated by an arrow.

genomic DNA DNA library colony blot

Isolated cosmids were confirmed to contain the specified region by PCR analysis of the first 

and last genes of the gene cluster (Figure 5.6). Final confirmation of the exact start and stop of the 

genome sequence fragment present in the cosmid was obtained by DNA sequencing using the T3 

and T7 sequencing primers situated at the 5’ and 3’ ends of the insert. A cosmid containing the 

complete ESAT-6 gene cluster region 1 were isolated and named cosmid H1(0) (see Figure 5.7).

Figure 5.6. PCR analyses o f the isolated cosmids. Isolated cosmid H1(0) were confirmed to 

contain the specified region by PCR analysis of the first (Rv3866) and last (Rv3883c) genes of the 

gene cluster region 1. Lanes (1) Rv3866 PCR H20  control, (2) Rv3866 PCR positive control with M. 

tuberculosis H37Rv DNA, (3) Rv3866 PCR with cosmid H1(0), (4) Rv3883c PCR H20  control, (5) 

Rv3883c PCR positive control with M. tuberculosis H37Rv DNA, (6) Rv3883c PCR with cosmid H1 (0).

1 2 3 4 5 6
bp

500-----
200----- m m *■■■■ —
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Figure 5.7. Genes present within isolated cosmid H1(0) insert. The M. tuberculosis H37Rv annotated ORF numbers and position in the whole genome 

sequence (as determined by T3 and T7 sequencing) is shown at the termini of the insert. Genes confirmed to be present by PCR are indicated by arrows. 

The ESAT-6 gene cluster region 1 is indicated by a horizontal line.

H1(0) 34 980 bp
Rv3866

gltB (Rv3859) 
4332361

i
esat-6

(Rv3875)
mycP1

(Rv3883c)

1 1
ESAT-6 gene cluster region 1

Rv3885c
4367341
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To determine if wild-type M. smegmatis are able to secrete recombinant M. tuberculosis 

ESAT-6 into the culture filtrate, pMB154 (expressing HA-tagged ESAT-6) was transformed into M. 

smegmatis mc2155. Whole cell lysates and culture filtrate proteins were Western blotted and probed 

with anti-HA antibodies. The results of this analysis (shown in Figure 5.8, lanes 3 and 4, as well as in 

schematic format in Figure 5.9A) indicate that although very high levels of ESAT-6-HA are expressed 

in recombinant M. smegmatis whole cell lysate, no ESAT-6-HA protein could be detected in the 

culture filtrate. This was confirmed using the anti-ESAT-6 antibodies (Figure 5.8, lanes 3 and 4). In 

agreement to what was observed in the cross reactivity analysis, no M. smegmatis-spec\f\c ESAT-6 

protein could be detected in wild-type M. smegmatis whole cell lysate or culture filtrate. This result 

confirms that the M. smegmatis-specific ESAT-6 gene cluster region 1 present within the genome of 

M. smegmatis is not able to secrete the M. tuberculosis-specific ESAT-6 protein, making M. 

smegmatis a suitable host for the analysis of the secretion of M. tuberculosis ESAT-6.

To analyse the secretion of native M. tuberculosis ESAT-6 protein in M. smegmatis, the 

cosmid H1(0), containing the complete ESAT-6 gene cluster region 1, was stably integrated into the 

genome of M. smegmatis mc2155. Whole cell lysates and culture filtrate proteins were Western 

blotted and probed with anti-HA as well as anti-ESAT-6 antibodies. As would be expected, no protein 

could be detected using the anti-HA antibodies (Figure 5.8, lanes 5 and 6). However, using the anti- 

ESAT-6 antibodies, high levels of ESAT-6 protein were detected in the whole cell lysate as well as 

culture filtrate of H1(0) cosmid-transformed M. smegmatis (Figure 5.8, lanes 5 and 6, Figure 5.9B).

To determine whether the M. smegmatis genome-integrated M. tuberculosis ESAT-6 gene 

cluster region 1 encodes proteins which are able to cause the secretion of ESAT-6 from the cells in 

trans, pMB154 was transformed into M. smegmatis transformed with cosmid H1(0). This resulted in 

the efficient secretion of high levels of recombinant ESAT-6-HA-tagged protein (Figure 5.8, lanes 7 

and 8). This result clearly demonstrates that ESAT-6 is secreted into the culture medium only in the 

presence of the ESAT-6 gene cluster region 1 from M. tuberculosis (Figure 5.9C), indicating that there 

are certain factors present within this genomic region that are essential for the efficient translocation 

of the ESAT-6 protein across the complex mycobacterial cell wall. It furthermore indicates that the

5.3.4. Secretion analyses
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orthologous region 1 in the genome of M, smegmatis is not able to perform the same function when 

an M. tuberculosis-specific ESAT-6 protein is used, indicating a high specificity of protein sequence 

recognition and secretion.

Figure 5.8. Secretion of M. tubercu los is  H37Rv ESAT-6 in recombinant M. smegmatis. M.

smegmatis was transformed with pMB154 (expressing HA-tagged ESAT-6) and the cosmid 1-11(0) 

(containing the complete ESAT-6 gene cluster region 1), respectively. As 1-11(0) integrated stably into 

the genome, this transformant could be double transformed with pMB154. Whole cell lysates and 

culture filtrate proteins of each of the three transformants were Western blotted and probed with anti- 

HA as well as anti-ESAT-6 antibodies. Wild-type M. smegmatis whole cell lysates and culture filtrates 

were used as a negative control and M. tuberculosis H37Rv culture filtrate were used as a positive 

control. Lanes (1) Wild-type M. smegmatis whole cell lysate, (2) Wild-type M. smegmatis culture 

filtrate, (3) pMB154 transformed M. smegmatis whole cell lysate, (4) pMB154 transformed M. 

smegmatis culture filtrate, (5) 1-11(0) transformed M. smegmatis whole cell lysate, (6) 1-11(0) 

transformed M. smegmatis culture filtrate, (7) H1(0)+pMB154 transformed M. smegmatis whole cell 

lysate, (8) H1(0)+pMB154 transformed M. smegmatis culture filtrate, (9) M. tuberculosis H37Rv 

culture filtrate.
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Figure 5.9. Schematic representation o f the M. tuberculosis ESAT-6 gene cluster region 1 

specific secretion of ESAT-6 protein in M. smegmatis.

M. smegmatis transformed 
with plasmid pMB154 and 
expressing C-terminally HA- 
tagged ESAT-6 protein. No 
ESAT-6-HA is secreted.

m  #•

M. smegmatis containing 
stably integrated cosmid 
H1(0) with complete ESAT-6 
gene cluster region 1 and 
expressing native ESAT-6 
protein. High levels of ESAT- 
6 are secreted into the 
extracellular medium.
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M. smegmatis containing 
stably integrated cosmid 
H1(0) with complete ESAT-6 
gene cluster region 1 and 
expressing native ESAT-6 
protein as well as 
transformed plasmid pMB154 
expressing C-terminally HA- 
tagged ESAT-6 protein.. 
High levels of native ESAT-6 
as well as recombinant HA- 
tagged ESAT-6 are secreted 
into the extracellular medium.
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Protein translocation systems are central to antigen secretion and the uptake of antibiotics, 

making the dearth of information available on these systems in the mycobacteria surprising. The 

advent of whole genome sequencing made the analysis of the coding potential of complete genomes 

possible. The availability of the genome sequence information also makes the identification of 

transporter systems much easier than before, as most of the constituent genes of these systems are 

encoded by one or more operons situated in the same DNA region. In this way, a wealth of 

information on the number of transport systems in the mycobacteria have become available since the 

completion of the genome sequence of M. tuberculosis in 1998 (Cole et al., 1998).

We have previously studied the genomic organization and duplication of a cluster of putative 

transport associated genes surrounding the immunologically important ESAT-6 family proteins (Gey 

van Pittius et al., 2001). An analysis of the expression of the ESAT-6 gene clusters have revealed 

that at least one of these clusters (region 3) is expressed as one single polycistronic RNA and thus 

forms an operon structure (Chapter 4). The co-expression of the genes situated within the ESAT-6 

gene clusters indicated that there might be a functional relationship between the encoded proteins. 

The results of the present study revealed that the ESAT-6 gene cluster regions are in fact involved in 

the secretion of the ESAT-6 protein family members, as was demonstrated with the ESAT-6 protein 

Rv3875 and the ESAT-6 gene cluster region 1. This study indicated that the ESAT-6 protein is 

located intracellularly when expressed heterologously in M. smegmatis in the absence of the complete 

ESAT-6 gene cluster region 1, but is secreted to the extracellular milieu efficiently as soon as the 

whole region 1 is present. This result indicates that there are components present within the region 

that are able to allow the transport of the ESAT-6 protein through the membrane of the organism, 

proving previous hypotheses on the potential secretion function of the clusters (Tekaia et al., 1999, 

Gey van Pittius et al., 2001). This result also fits the proposed functions of the constituent genes of 

the clusters, as was described previously (Addendum 3A). The present study also clearly 

demonstrated that the secretion of the proteins is extremely sequence specific, as no interspecies 

secretion could be obtained although the regions were orthologs. From this result it may be

5.4. Discussion
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hypothesized that the different regions within a specific organism may also only be able to secrete a 

specific sequence belonging to that region, and this is the subject of ongoing experiments.

The sequence specificity observed in the secretion system may explain the high level of 

sequence homology observed in the Mtb9.9 ESAT-6 subfamily (Alderson et al., 2000, Gey van Pittius 

et al., 2001, Addendum 3A). This subfamily consists of duplications of the ESAT-6 family members 

originating from the ESAT-6 gene cluster region 5. Members of the subfamily which do not from part 

of region 5 may thus be able to be recognized by the region-specific transport apparatus and may be 

secreted efficiently due to their extremely high level of sequence homology (Addendum 3A, Figure 

3A.6). This hypothesis is supported by the fact that a study by Alderson and coworkers (2000) 

revealed that 83% of PPD+ donors made a significant proliferative response to rMtb9.9A, indicating 

that it was an efficiently secreted protein. The gene for this Mtb9.9 family member is not situated in 

an ESAT-6 gene cluster, but is the homologue of Rv1793 (situated in the region 5 gene cluster) and is 

thus most probably secreted by the ESAT-6 gene cluster region 5 transporter apparatus.

Another aspect of the ESAT-6 secretion system that we are continuing to study, is the 

question of which of the genes in the clusters are essential for efficient secretion. As not all the 

cluster regions contain the same amount of genes, it is logical to assume that not all the genes would 

be necessary for the formation of an effective translocation apparatus. Wards and coworkers (2000) 

have found that a knockout of Rv3871 (situated 4 genes upstream of ESAT-6) resulted in a mutant 

showing a similar loss of virulence in guinea pigs as an esat-6 knockout. Surprisingly, this mutant 

also did not sensitize the animals to an ESAT-6 skin test. Despite the fact that no information was 

given on the expression of ESAT-6 in this mutant, it is tempting to speculate that ESAT-6 was 

possibly expressed in the organism, but that the protein was not secreted due to the knockout of 

Rv3871. As Rv3871 belongs to a conserved gene family in the clusters which is hypothesized to 

function as ATPases, the knockout of this gene may disrupt the provision of energy to the active 

transport system and may thus cause the whole transport apparatus to become nonfunctional.

The presence of very high levels of ESAT-6 protein observed in the whole cell lysates in this 

study is in agreement with previous observations showing similar high amounts of ESAT-6 and CFP-
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10 family members (Mtb9.9 subfamily, ESAT-6, CFP-10, TB10.4) inside the cells, with lower 

concentrations found in the culture filtrate (Sorensen et al., 1995, Alderson et al., 2000, Skjot et al., 

2000). This observation could be an indication that either the esat-6 genes are transcribed faster than 

it can be transported and thus accumulates inside the cell, or that the secretion mechanism only 

works optimally under in vivo conditions. Tekaia and coworkers (1999) suggested that the 

cytoplasmic accumulation observed is consistent with the existence of a dedicated secretion 

apparatus as intracellular stockpiling of proteins for secretion has been observed previously in other 

pathogens that possess type III secretion systems. Other explanations may be that the efficacy of 

translocation of these proteins may be less because of the absence of a consensus signal sequence 

(Sorensen et al., 1995) or that the transport system may need some external factor to be fully 

activated.

Although we concede that M. smegmatis may not be the most appropriate host for these 

studies due to the presence of three ESAT-6 gene cluster regions in the genome of this organism, we 

have been compelled to use this species because of the absence of another suitable bacterial host 

containing the same or similar cell wall structure. The feasibility of M. smegmatis as a model for the 

study of the pathogenesis of tuberculosis has been questioned in the past, with positive (Reyrat and 

Kahn, 2001) and negative opinions (Barry, 2001b). The results of our study indicates, though, that the 

use of M. smegmatis in the secretion analyses is justified, as the ESAT-6 gene clusters from this 

species seems to be sufficiently different from that of M. tuberculosis to not interfere with the 

analyses, while the cell wall structure is sufficiently similar to allow the transport mechanisms to 

operate efficiently. An alternative method to replace the use of complementation in the secretion 

studies would be to use the technique of gene knockouts. The presence of multiple copies of these 

clusters in the genomes of the mycobacteria has made the use of gene knockout studies unfeasible in 

the past. This is due to the fact that it was hypothesized that a gene from one region may be able to 

compensate for the loss of a gene from another region. The present study has indicated though, that 

the ESAT-6 gene clusters show very high individual specificity towards the dedicated secretion of 

specific protein sequences, so that the use of gene knockouts may still be an option to consider in 

future studies of the ESAT-6 secretion mechanisms. In the case where this technique is used, it 

would be important to consider that the disruption of one gene by knockout may have a polar effect on
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the whole region, which once again may influence secretion results. In addition to this, we can not 

exclude the possibility that the specificity of the ESAT-6 gene cluster region secretion may be due to 

the specificity of only a singular or a few of the genes present within these regions, and that knockouts 

of the other genes may be compensated for by other regions.

Although one of the limitations of this study is that we do not know how this apparatus is 

assembled, we have constructed a model based on the putative functions of the genes present in the 

ESAT-6 gene clusters for the secretion of the members of the ESAT-6 protein family. This model 

contains all of the components necessary to form a dedicated, multi-component, binding protein- 

dependant active transport system (Figure 5.10).

Such a system could consist of:

• a cytoplasmic substrate binding protein (possibly the conserved N-terminal transmembrane 

proteins),

• 1 or 2 reciprocally homologous integral inner membrane proteins that translocate the substrate 

across the membrane (possibly the putative transporter proteins),

• 1 or 2 peripheral membrane ATP-binding proteins that couple energy to the active transport 

system (possibly the ATP/GTP binding proteins),

• a dedicated protease to cleave the inactivating prepeptide and activate the transported protein or 

to authenticate the secreted proteins and to clear slowly folding or misfolded proteins from the 

vicinity of the translocation complex (possibly the subtilisin-like serine proteases) and

• a secreted protein transported without the ordinary sec-dependant secretion pathway (possibly 

the ESAT-6 and CFP-10 family members).
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Figure 5.10. Schematic representation of the proposed model o f ESAT-6 secretion.
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It is unknown whether the ESAT-6 gene cluster transport system is also able to import the 

ESAT-6 molecules back into the organism, although it is possible as this is commonly observed in 

other secretions systems such as those of the (antibiotics (e.g. nisin, Sahl and Bierbaum, 1998). If 

this is the case, these transporters may well be used as carriers for antimycobacterial drugs that are 

designed according to the ESAT-6 protein structure.

In conclusion, we have developed a novel method of looking at secretion mechanisms in the 

mycobacteria. Our results have shown that secretion of members of the ESAT-6 protein family is 

dependent on the presence of the ESAT-6 gene cluster regions. Furthermore, we have shown that 

this secretion is region-specific, to such an extent that even orthologous regions between different 

mycobacteria are unable to cross secrete ESAT-6 . We have also constructed a possible model for
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the secretion apparatus, based on putative functions of proteins encoded by the ESAT-6 gene cluster 

regions. This investigation has important implications for the study of dedicated mycobacterial 

transport and secretion mechanisms, as well as for the understanding of secretion of important T-cell 

antigens of the mycobacteria. This could lead to the development of efficient strategies to either 

terminate or enhance secretion of these antigens, thereby influencing the immunogenicity of the 

pathogens, which may ultimately have an impact on vaccine design and development.
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ADDENDA TO CHAPTER FIVE

ADDENDUM 5A 

POTENTIAL QUORUM SENSING FUNCTION

“...shall your city call us lord, in that behalf which we have challenged it? Or shall we give the signal 

to our rage and stalk in blood to our possession?"

King John (Act II Scene I) - Shakespeare

NOTE: The views presented in the following chapter will be submitted as an hypothesis for peer 

review and publication as: “Are the immunologically important mycobacterial ESAT-6 gene 

clusters involved in cell-cell signaling?, Gey van Pittius, N.C., Warren, R.M., Siezen, R.J., and Van 

Helden, P.D.”
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Intracellular communication or quorum sensing is an important mechanism for the control of 

essential processes in the growth of microorganisms. In Gram-positive bacteria quorum sensing is a 

cell-cell communication mechanism which depends on the secretion of signaling molecules, mostly 

peptides or modified peptides (Dunny and Leonard, 1997). Quorum sensing has one important 

function, which is the sensing and monitoring of bacterial density in the immediate environment, and 

the reaction on the information obtained by regulation of gene expression. When a single bacterium 

or starter bacterial colony releases these molecules, the concentrations of the signals are very low 

(see Figure 5A.1.A). However, as soon as these bacteria accumulate, the concentration of the 

molecules increases, leading to the sensing and subsequent activation or repression of different 

target genes (Figure 5A.1.B, De Kievit and Iglewski, 2000). These target genes may include virulence 

factors, gene transfer proteins as well as antibiotic- and bacteriocin(lantibiotic)-production proteins 

(Dunny and Leonard, 1997). In a situation where a single bacterial cell is phagocytosed by a 

macrophage (which is predominantly the case with the mycobacterial cell during infection), the 

bacterium is encapsulated inside a small space within the phagosome (Figure 5A.1.C). In this 

scenario a single bacterium would be able to release enough signaling molecules on its own, to cause 

a high concentration of these molecules present in the small space between the cell wall of the 

organism and the vacuolar membrane (Dunny and Leonard, 1997). As this critical threshold 

concentration is reached fairly quickly, specific gene expression could be induced to manage the new 

environment. In this way the bacterium is able to monitor its environment, to sense that it is now 

intracellular and is then able switch on genes that may include genes involved in intracellular growth, 

resistance to killing, resistance to acidification of the phagosome etc. In an example of this 

mechanism, Sperandio et al. (1999) showed that quorum sensing controls the expression of operons 

encoding the type III secretion system of the LEE pathogenicity island in both enterohemorrhagic 

Escherichia coli and enteropathogenic E. coli. These authors speculate that the discovery of quorum 

sensing mechanisms in pathogenic bacteria is an important factor in the search for the inhibition of 

intracellular communication between bacteria and thus also the inhibition of subsequent expression of 

virulence determinants in vivo.

5A.1. Introduction
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Figure 5A.1. Environments influencing the regulation of gene expression by quorum sensing.

(A) single bacteria secreting signaling molecules could determine the absence of other bacteria in the 

immediate environment, (B) higher numbers of bacteria cause a high concentration of signaling 

molecules causing the expression of genes to compensate for the decrease in nutrients and space, 

(C) intracellular bacteria within vacuole of macrophage could determine intracellular residence by high 

concentration of signaling molecules and induce the expression of genes to compensate for the new 

intracellular environment. Adapted from Dunny and Leonard (1997).
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In this review on the potential function of the ESAT-6 gene clusters, we provide evidence from 

the literature showing that these clusters share many characteristics with quorum sensing operons of 

Gram-positive bacteria. We hypothesize that the ESAT-6 gene clusters may represent mycobacterial- 

specific quorum sensing operons that may be involved in the determination of intracellular residence.
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5A.2. Comparison of the ESAT-6 gene clusters with cell-signaling and 

lantibiotic operons

As discussed in previous chapters, we have shown that the ESAT-6 gene clusters (Chapter 3) 

are organized as operon structures (Chapter 4) and encode proteins that are involved in the secretion 

of the small T-cell antigens from the esat-6  gene family (Chapter 5). We have also shown the 

presence of copies of these gene clusters in the genomes of all other mycobacteria tested (Chapter 

3), as well as the presence of an orthologue of the cluster region 4 in the genome of the saprophytic 

bacterium S. coelicolor (Figure 5A.2).

Figure 5A.2. Schematic representation o f the genes present within the S. coelicolor genome 

sequence cosmid clone 3C3. Orthologues of the ESAT-6 gene cluster genes are indicated in 

colour, with a reference table at the bottom of the figure. Positions, relative sizes of genes as well as 

the direction of transcription are indicated by blocked arrows.
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= SC3C3.07, homologous to Rv3450c - N-terminal transmembrane protein 
= SC3C3.08 and 17c, homologous to Rv3449 - Subtilisin-like serine protease 
= SC3C3.20c, homologous to Rv3448 - integral membrane protein (putative transporter)
= SC3C3.21, homologous to Rv3447c - ATPase (3 x ATP/GTP binding sites)
= SC3C3.10 and 11, homologous to Rv3874and Rv3875- ESAT-6/CFP-10 secreted T-cell antigens

The presence of an orthologue of the ESAT-6 gene cluster in S. coelicolor may provide some 

clues to the potential function of this gene cluster. Most of the genes present within the region in S. 

coelicolor, are involved with some peptide transport and secretion function, based on their sequence 

homology to known transporter proteins. One of the most interesting genes from this region is the 

gene bldB  (SC3C3.09, Figure 5A.2). bldB  encodes a small protein that is required for 

morphogenesis, antibiotic production, catabolite control and signal production required for cell-cell
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communication in S. coelicolor (Harasym et al., 1990, Pope et al., 1998). These are quite diverse 

activities for a single protein. Pope and coworkers (1998) attempted to explain this interesting 

observation from the fact that certain bid mutants are able to erect aerial hyphae only when grown in 

close proximity to wild-type S. coelicolor. The fact that these mutants were able to erect the hyphae 

indicates that they are indeed able to make the structures associated with sporulation, but that they 

are unable to initiate the differentiation process on their own, because of an inability to send and/or 

receive the required extracellular signals. It seems that these mutants are thus unable to sense the 

conditions in its immediate environment (in other words it lost its quorum sensing abilities). As said 

previously, bldB is required for morphogenesis, antibiotic production, catabolite control and signal 

production required for cell-cell communication (Harasym et al., 1990, Pope et al., 1998). As carbon 

utilization, initiation of differentiation and morphogenesis and antibiotic production are all processes 

controlled by the. mechanism of quorum sensing, we speculate that the whole locus surrounding bldB 

may be involved in the process of intracellular signaling and signal molecule secretion.

Pope et al. (1998) also deduced from the structure of the bldB protein that it is a putative 

transcription factor that might regulate a distinct group of developmental genes. It has also been 

postulated that the products of the bid genes are either directly or indirectly involved in the secretion 

or uptake of extracellular signaling molecules (Willey et al., 1993). The bldK locus encodes for 

proteins homologous to the subunits of the ATP-binding cassette (ABC) membrane-spanning 

transporters (Nodwell et al., 1996). This oligopeptide transporter was shown to be responsible for the 

import of an extracellular signaling molecule involved in the production of aerial mycelia (Nodwell et 

al. 1998). Similarly, the ESAT-6 gene cluster region ortholog in S. coelicolor also seems to be 

involved in active transport and the numerous transport-associated proteins encoded by this region 

could form the subunits for an ABC-type membrane spanning transporter. If this locus is involved in 

cell-cell communication as with the other bid mutants, it is highly plausible that the ESAT-6 gene 

clusters in the mycobacteria are also cell-signaling loci. We have shown that the ESAT-6 gene 

clusters in the mycobacteria are involved in the secretion of the ESAT-6 protein family members 

(Chapter 5). We thus speculate that as a potential transcription factor, BldB could be involved in the 

regulation of this whole region and that the orthologues for ESAT-6 and CFP-10 (SC3C3.10 and 

SC3C3.11) are secreted as extracellular signaling molecules.
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In agreement with this hypothesis, Mahairas and coworkers have shown that the M. bovis 

BCG RD1 deletion region (situated inside the ESAT-6 gene cluster region 1) might have an influence 

on regulation of expression of a number of proteins (Mahairas et al., 1996). The reintroduction of RD1 

to M. bovis BCG appears to strongly repress the expression of at least 10 proteins and downregulates 

the expression of many additional cellular proteins (Mahairas et al., 1996). Indications are that 

several of these regulated proteins may be heat shock or stress proteins. If this is true, it might 

indicate a function in the same manner as the extracellular signaling loci of S. coelicolor, which in 

effect controls the expression of numerous genes important in differentiation, and could implicate 

signaling events during changes of the extracellular environment and subsequent expression of 

stress-related proteins. Mahairas and coworkers speculated that the disruption of this stress 

response might affect the ability to adapt and survive in the host and to cause disease, leading to the 

observed decrease in virulence caused by the deletion of RD1 (Maharias et al., 1996) and the genes 

situated within it (Wards et al., 2000). These ESAT-6 gene clusters seem to be key genetic loci in 

mycobacterial (and clearly much wider) genomics, and therefore it may make sense to use the S. 

coelicolor homologous region as a starting point to further investigate its function.

In the Gram-positive bacteria, the majority of signaling molecules requires a specialized 

export mechanism and the structural gene is mostly situated within an operon containing export- and 

modification-encoding genes, as is observed with the ESAT-6 gene clusters (Chapter 5). In addition, 

all peptide or peptide-derived signaling molecules are acquired through the posttranslational 

processing of a larger precursor peptide. One of the commonly used examples of quorum sensing 

mechanisms in Gram-positive bacteria, is the cell-cell signaling mechanism and regulation of nisin 

lantibiotic biosynthesis in the organism Lactococcus lactis (Dunny and Leonard, 1997). Several 

species of Gram-positive bacteria secrete small, gene-encoded antimicrobial peptides (bacteriocins) 

that, like the members of the ESAT-6 protein family, also lack ordinary sec-dependant secretion 

signals (Sahl and Bierbaum, 1998). The lantibiotics forms a unique class of the bacteriocins and 

contain unusual amino acids and lanthionine rings that are introduced by post-translational 

modifications (Montville and Chen, 1998). Interestingly, the biosynthesis, processing and transport of 

these peptides are also accomplished by between 3 and 12 genes organized in operons. This
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includes genes encoding the small antibiotic prepeptide, modification enzymes, dedicated subtilisin- 

like serine proteases and ABC transporters (containing ATPase activity for active transport). Figure 

5.8 gives a schematic representation of one of these lantibiotic gene clusters, the nisin lantibiotic gene 

cluster.

Figure 5.8. The nisin lantibiotic gene cluster.
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It is well known that some lantibiotics, for example nisin, indeed also function as signaling 

molecules that can, once they are activated by cleavage and extracellularly secreted, sense the 

population density in their environment and induce their own biosynthesis (also in surrounding cells) 

by binding to specific receptors. Only very low levels of transcription of the genes in the biosynthetic 

gene cluster of nisin occur during exponential growth, so that there is a very gradual accumulation of 

the peptides in the surrounding culture filtrate. This accumulation takes place up to a level where the 

concentration is high enough (an indication of cell density) to signal the activation of the promoters 

and the initiation of transcription of massive levels of mRNA from the genes in the cluster (Sahl and 

Bierbaum, 1998).

Although they do not seem to contain any modification enzymes as found in the lantibiotic 

clusters, it is clear that the mycobacterial ESAT-6 gene clusters contain some of the secretion and 

processing features of lantibiotic operons. It is interesting to note that S0 rensen e t al. (1995) and 

several other authors observed different forms of the ESAT-6 protein with unexplainable size and pi 

differences on 2D PAGE analyses. These differences may be due to posttranslational modifications. 

As the functions of most of the proteins forming part of the ESAT-6 gene clusters are still unknown, it 

is possible than one or more of them may function as modification enzymes, although classical
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lantibiotic-type modification enzyme motifs could not be detected in any of them (N.C. Gey van Pittius, 

Unpublished results).

The presence of the mycosins in the ESAT-6 gene clusters is another feature shared with the 

lantibiotics clusters, as these clusters are the only other known examples of subtilisin-like membrane- 

anchored serine proteases forming part of a gene cluster with secretion-associated proteins. The 

subtilisin enzyme domains of the mycosins in the ESAT-6 gene clusters are separated from their 

membrane anchors by a short linker or spacer (see Addendum 2A), a feature that is also only found in 

the nisin-lantibiotic activating subtilisin-like serine protease NisP (Siezen et al., 1996). These 

lantibiotic subtilases have the exclusive function to cleave the N-terminal extensions of the secreted 

lantibiotic prepeptide that keeps it inactive, in order to activate the lantibiotic after secretion. Evidence 

does exist for the processing of ESAT-6 and TB11 (another ESAT-6 family member, Rv1038c, 

Rosenkrands et al., 2000a, Rosenkrands et al., 2000b), to lower molecular weight products (Peter 

Andersen and Karin Weldingh, personal communication), as indicated in Figure 5.9. Skjot and 

coworkers (2000) also saw a similar processing after obtaining the N-terminal sequence of the purified 

culture filtrate protein TB10.4 (Rv0288) that belongs to the ESAT-6 family and is located in the ESAT- 

6 gene cluster region 3. They observed that the amino acid sequence starts from residue 13 onwards 

(Figure 5.9), and speculated that it may be because of an alternative start site or a partial cleavage of 

the protein in the culture filtrate.

Figure 5.9. Evidence for N-terminal cleavage of members of the ESAT-6 protein family.

Cleavage site

I
Rv3875 (ESAT-6): 95 aa MTEQQWNFAGIEAAA----SAIQGNVTSIHSLLDEGKQSLTKLAAAWG

Rv1038c (TB11): 98 aa MASRFMTDPHAMRDM----AGRFEVHAQTVEDEARRMWASAQNISGAG

Rv0288 (TB10.4): 96 aa MSQIMYNYPAML------- GHAGDMAGYAGTLQSLGAEIAVEQAALQS

GSGSEAYQGVQQKWDATATELNNALQNLARTISEAGQAMASTEGNVTGMFA 

WSGMAEATSLDTMTQMNQAFRNIVNMLHGVRDGLVRDANNYEQQEQASQQILSS 

AWQGDTGITYQAWQAQWNQAMEDLVRAYHAMSS THEANTMAMMARDTAEAAKWGG
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Sorensen et al. (1995) described multiple forms of the ESAT-6 protein present when 

analyzing short term-culture filtrates on 2D-E gels. They observed the protein to be focused at two 

pi's and found three versions of it of sizes differing between 6 and 4kDa at each pi. This could further 

indicate that there is some N-terminal processing of the proteins resulting in smaller forms. These 

observations suggest that the members of the ESAT-6 family are activated during secretion. It also 

provides a possible role for the mycosins, similar to that of the activation subtilases of the lantibiotics. 

The fact that uncleaved ESAT-6 proteins are observed in culture filtrates, could be explained by the 

unnatural conditions under which the bacteria are grown in the laboratory. It is possible that the 

ESAT-6 family members need to be delayed long enough during the secretion process for the 

cleavage of the N-terminus by the transporter apparatus-associated subtilase. This feature would 

only be obtainable in vivo and would not be possible under the continual stirring or shaking of in vitro 

culture growth conditions.

Thus, if the ESAT-6 gene clusters are not involved in cell-cell signaling per se as discussed 

above, it might be interesting to investigate the possibility that these clusters evolved from early 

lantibiotic-like clusters in saprophytic mycobacteria and that they might even still show some 

antimicrobial activity. In fact, Brandt et al. (1996) have shown that only low levels of transcription of 

ESAT-6 are observed during growth in vitro, and have speculated that the fact that it is such a potent 

target in vivo could indicate that there is an upregulation of expression of this gene during growth 

within the macrophage. This upregulation may thus also be the result of a sensing mechanism that 

recognizes the new intracellular environment.

Lantibiotics, like nisin, act as antimicrobial agents through a number of mechanisms, but 

primarily through the formation of pores in the membrane of the susceptible organism (Montville and 

Chen, 1998, reviewed by Sahl and Bierbaum, 1998 and McAuliffe et al., 2000). Nisin forms these 

poration complexes in the membrane through a multi-step process of binding, insertion and pore 

formation. In tuberculosis infections, mycobacterial growth damages the vacuolar membrane, leading 

to leakage (Andersen, 1997). Teitelbaum et al. (1999) recently demonstrated that only viable M. bovis 

BCG organisms are able to create phagosomal membrane permeability, suggesting that live 

mycobacteria may release molecules that create pores in the vesicular membrane. It was shown that
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formalin-killed BCG and nonpathogenic M. smegmatis were unable to accomplish the same. This is 

important, as we know that mycobacteria reside within a phagosome within the macrophage where it 

is difficult to access host nutrients (Teitelbaum et al., 1999). The authors speculate that the 

mycobacteria may biosynthesize and secrete pore-forming molecules that could facilitate bi­

directional, size-restricted transport of nutrients and antigens through the phagosomal membrane. It 

was shown previously that although BCG was able to facilitate presentation of antigens to T-cells in 

an MHC class l-restricted manner, this process was several-fold less efficient than that observed in 

virulent M. tuberculosis (Mazzaccaro et al., 1996). It could be hypothesized that BCG may thus 

contain less or inefficient copies of the pore-forming molecules, resulting in inefficient access of 

mycobacterial antigens to the MHC molecules. If the small, secreted ESAT-6 family members 

function in a lantibiotic manner (owing to their similarity to the nisin lantibiotic biosynthesis system), 

these proteins might be the secreted proteins involved in the formation of pores in the host vacuolar 

membrane, and could be responsible for the differences in phagosomal permeability phenotype 

observed between the species of mycobacteria.

The fact that there are multiple copies of the ESAT-6 gene clusters found in M. tuberculosis 

(Gey van Pittius et al., 2001) may indicate an intricate cellular sensing network that would greatly 

benefit or even be required by such a successful intracellular pathogen. It may also be possible that 

the functions of some of these clusters have diverged and that they have not all retained the same 

biological function as putative sensing molecules. The effects of ESAT-6 gene cluster region 1 

deletions could not be complemented by any of the other regions (Mahairas et al., 1996, Wards et al.,

2000), indicating that each of these regions perform a specific function in the biology of the organism.

In conclusion, we have shown from the available literature that the mycobacterial ESAT-6 

gene clusters contain a number of features of quorum sensing and lantibiotic operons. We 

hypothesize that members of the ESAT-6 family may be secreted as signaling molecules and are 

involved in the regulation of expression of genes during intracellular residence of the bacterium within 

the macrophage.
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CHAPTER SIX

PE AND PPE EXPANSION

“ a theory trying to unify a vast and difficult field with innumerable details is certainly nothing static; 

it is a fleeting moment in an eternal flux. ”

The theory of the gene -  R. Goldschmidt (1951)

NOTE: The results presented in the following chapter will be submitted for peer review and publication 

as: “The evolutionary history of the expansion of the M ycobacterium  tubercu los is  PE and PPE 

multigene families and its association with the duplication of the ESAT-6 gene cluster, Gey van

Pittius, N.C., Sampson, S.L., Lee, H., Warren, R.M., and Van Helden, P.D.”
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The genome of Mycobacterium tuberculosis contains five duplicate copies of the 

immunologically important ESAT-6 gene clusters. Each gene cluster encodes proteins involved in 

energy provision for active transport, membrane pore formation and protease processing and could 

thus assemble to form a dedicated biosynthesis, transport and putative processing system for the 

secretion of the potent T-cell antigens belonging to the ESAT-6 protein family (Chapter 5). 

Interestingly, in addition to these genes, there are two families of genes present within these clusters 

which seem to be anomalous, named the PE and PPE gene families (Figure 6.1).

6.1. Introduction

Figure 6.1. Genomic organization of the Mycobacterium tuberculosis ESAT-6 gene clusters.

The vertical arrow indicates the direction of duplication, with the ESAT-6 gene cluster regions 

numbered region 4, 1, 3, 2 and lastly 5 in descending order. The positions of the PE (small arrow in 

grey) and PPE (larger arrow in black) genes are blocked.
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The PE and PPE protein families are large multigene families (99 and 68 members 

respectively) of unknown function (Cole et al., 1998). They are glycine-rich protein families 

comprising about 10 % of the coding potential of the genome of M. tuberculosis (Cole et al., 1998).
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The PE family is characterized by the presence of a proline-glutamic-acid (PE) motif at positions 8 

and 9 in a very conserved N-terminal domain of around 110 amino acids (Gordon et al., 1999b). 

Similarly, the PPE family also contains a highly conserved N-terminal domain of around 180 amino 

acids, with a proline-proline-glutamic acid (PPE) motif at positions 7 - 9  (Cole et al., 1998). The C- 

terminal domains of both these protein families are of variable size and sequence and contain repeat 

sequences of different copy numbers in a number of cases (Gordon et al., 1999b).

Both these families are divided into subgroups according to the homology and presence of 

motifs in their C-terminal domains (Gordon et al., 1999b). The polymorphic GC-rich sequence 

(PGRS) subgroup of the PE family is the largest subgroup and contains proteins with multiple tandem 

repeats of a glycine-glycine-alanine or a glycine-glycine-asparagine motif in the C-terminal domain. 

The other subgroup consists of proteins with C-terminal domains of low homology. The PPE family 

can be divided into three subgroups (Gordon et al., 1999b) of which the major polymorphic tandem 

repeat (MPTR) subgroup is the largest. The proteins of this subgroup contain multiple repeats of the 

motif AsnXGIyXGIyXAsnXGIy encoded by a consensus repeat sequence GCCGGTGTTG, seperated 

by 5 bp spacers (Cole and Barrell, 1998). The PPE-SVP subgroup is characterized by the motif 

GlyXXSerValProXXTrp at position 350 in the amino acid sequence and the last subgroup consists of 

proteins with a low percentage of homology at the C-terminus (Gordon et al., 1999b).

Until recently, no evidence has been available for the subcellular localization of the members 

of the PE and PPE proteins, although an early paper by Doran and coworkers (1992) suggested that 

the members of the PPE-MPTR family were likely to be cell wall associated. Recently, though, it has 

been shown that certain PE-PGRS proteins are cell-surface constituents which influence the 

interactions of the organism with other cells (Brennan et al., 2001). In addition to this, the PPE-MPTR 

protein Rv1917c was also found to be situated in the cell wall and is at least partly exposed on the cell 

surface (S. Sampson, submitted for publication).

Although the 167 members of the PE and PPE gene families are of unknown function, it has 

been suggested that the proteins encoded by these gene families may inhibit antigen processing or 

may be involved in antigenic variation due to the highly polymorphic nature of their C-terminal
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domains (Cole et al., 1998, Cole, 1999, Gordon et al., 1999b). In agreement with this, sequence 

variation has been observed between the orthologues of the PE and PPE protein families in an in 

silico analysis of the genomes of M. tuberculosis H37Rv and M. bovis (Cole et al., 1998, Gordon et 

al., 2001). Extensive variation of a subset of PPE genes in clinical isolates of M. tuberculosis have 

also been observed recently (S. Sampson, submitted for publication). Other clues to the putative 

functions of the members of these families also exist. For example, Rodriguez and colleagues (1999) 

have found that the PPE gene Rv2123 is upregulated under low iron conditions, leading to the 

hypothesis that it may encode a siderophore involved in iron uptake. Abou-Zeid et al. (1991) 

described a 55 kDa fibronectin binding protein, which was later found to be a member of the PE- 

PGRS subfamily and related to Rv1759c (Cole et al., 1998, Espitia et al., 1999). Rv1759c was in turn 

also found to be able to bind fibronectin (Espitia et al., 1999). Furthermore, it was recently shown that 

two members of the PGRS subfamily from M. marinum are essential for replication in macrophages 

as well as persistence in granulomas (Ramakrishnan et al., 2000). Additional recent data have also 

suggested that the members of the PPE gene family may be involved in disease pathogenesis, as a 

transposon mutant of the gene Rv3018c was attenuated for growth in macrophages (Camacho et al., 

1999). The fact that these genes encode for about 4% of the total protein species in the organism (if 

all genes are expressed), indicates that they most probably fulfill an important function or functions in 

the organism.

The duplication order of the ESAT-6 gene clusters within the genome of M. tuberculosis has 

been predicted by systematic phylogenetic analyses of the constituent genes (Gey van Pittius et al.,

2001). This duplication order was shown to extend from the ancestral region named region 4 

(Rv3444c-Rv3450c) to region 1 (Rv3866-Rv3883c), 3 (Rv0282-Rv0292), 2 (Rv3884c-Rv3895c), and 

lastly region 5 (Rv1782-Rv1798)(Figure 6.1 and Figure 3.8B). The absence of a pair of PE and PPE 

proteins within the ancestral region 4, indicates that these genes may have been integrated into the 

first duplicate of this region (region 1 ), and have subsequently been successfully co-duplicated 

together with the rest of the genes within the regions. Supporting evidence for the published 

duplication order of the ESAT-6 gene clusters also comes from the fact that the last duplicate (region 

5) includes multiple separate duplications of the PE and PPE genes within the region (Figure 6.1).
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This study investigates the duplication characteristics of the PE and PPE gene families 

situated in and outside of the immunologically important ESAT-6 gene clusters, using a combination 

of phylogenetic analyses, DNA hybridization as well as comparative genomics (between the genomes 

of the pathogenic slow-growing mycobacterium M. tuberculosis and the fast-growing, non-pathogenic 

M. smegmatis). This investigation attempts to answer the question of why these PE and PPE proteins 

are situated, as well as tolerated within the ESAT-6 gene clusters, as well as whether the duplication 

of the genes into the ESAT-6 gene clusters lend some kind of advantage to the family as a whole. 

We envisage that this data will provide a better understanding of the factors involved in the massive 

expansion of the PE and PPE families and the contribution of the relationship to the ESAT-6 gene 

clusters in the evolutionary history.
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6.2.1. Genome sequence data and analyses

Annotations, descriptions and protein sequences of individual genes belonging to the PE and 

PPE families were obtained from the publicly available finished and unfinished genome sequence 

databases for M. tuberculosis H37Rv (http://genolist.pasteur.fr/TubercuList/) as well as M. smegmatis 

mc2155 (http://www.tigr.org/cgi-bin/BlastSearch/blast.cgi?organism=m_smegmatis).

The phylogenetic reconstruction of the evolutionary relationships between the members of the 

PE and PPE protein families was done by analyses of four separate datasets. The first two datasets 

downloaded from the M. tuberculosis H37Rv database included the protein sequences of all the 

members of the PE and PPE protein families that are present within the ESAT-6 gene clusters, 

respectively.

For the third dataset, the protein sequences of the sixty-eight members of the PPE family 

were downloaded from the M. tuberculosis H37Rv database. Ten of the predicted PPE proteins did 

not contain the characteristic N-terminal PPE motif, but in five of these (Rv0305c, Rv3425, Rv3426, 

Rv3429, Rv3892c) it was found that one of the two proline residues in the conserved motif have been 

substituted and they could be reliably aligned to the rest of the family members due to a high 

percentage of sequence homology. The other five proteins (Rv0304c, Rv0354c, Rv2353c, Rv3021c 

and Rv3738c) were excluded from the analysis as it was found that their upstream regions were 

disrupted by either IS6110 insertion or apparent frameshift mutations.

For the fourth dataset, the protein sequences of the ninety-nine members of the PE family 

were downloaded from the M. tuberculosis H37Rv database. One of the members of the predicted 

PE family (Rv3020c) was found to have been annotated incorrectly by Cole et al. (1998) (Gey van 

Pittius et al., 2001, see Addendum 3A). Two members of the predicted PE proteins (Rv3539 and 

Rv2126c) could not be reliably aligned due to a loss of the N-terminal conserved regions, and were 

excluded from further analyses. Six members (Rv0833, Rv1089, Rv2098c, Rv3344c, Rv3512, and 

Rv3653), which also did not have conserved N-termini, were shown to actually be situated adjacent to

6.2. Materials and Methods
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a gene encoding for the N-terminus (Rv0832, Rv1088, Rv2099c, Rv3345c, Rv3511, and Rv3652). 

Closer inspection of this organization suggested that these genes were actually one gene that was 

split by stop codon formation during frameshifting. Thus, each pair of genes from this group were 

combined and included in the analyses.

6.2.2. Multiple sequence alignments

Due to the highly polymorphic nature of the C-terminal part of the PE as well as the PPE 

proteins, only the conserved N-terminal domains of 100 aa and 180 aa, respectively were used to 

construct the multiple sequence alignments. Multiple sequence alignments of the protein sequences 

of the ninety-six PE and sixty-three PPE proteins were done using ClustalW 1.5 on the WWW server 

at the European Bioinformatics Institute website (http://www2.ebi.ac.uk/clustalw/; Thompson et al., 

1994). The alignments were manually checked for errors and refined where appropriate.

6.2.3. Phylogenetic trees

Neighbour-joining phylogenetic analyses were done using the program PAUP 4.0b8 

(Swofford, 1998), and 1000 subsets were generated for Bootstrapping resampling of the data. 

Confidence intervals for the internal topology of the trees were obtained from the resampling analyses 

and only nodes occurring in over 50% of the trees were assumed to be significant (Felsenstein, 1985). 

All branches with a zero branch length were collapsed. Based on the evolutionary order defined for 

the ESAT-6 gene clusters (Gey van Pittius et al., 2001), we have used the ancestral PE and PPE 

genes present within ESAT-6 gene cluster region 1 (Rv3872 and Rv3873, respectively) as the 

outgroups. The consensus trees of the above were calculated using the majority rule formula and 

were drawn using the program Treeview 1.5 (Page, 1996).

6.2.4. Comparative genomics analyses

BLAST similarity searches (Altschul et al., 1990) with the tblastn algorithm, were done using 

the WU-BLAST version 2.0 (http://blast.wustl.edu/) server in the database search service of the TIGR 

website, to identify orthologues of the M. tuberculosis PE and PPE genes from the M. smegmatis 

mc2155 whole genome sequence. To confirm the identity of the resulting sequences, potential 

surrounding open reading frames were identified in the immediate vicinity of the genes in the M.
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smegmatis genome sequence. These open reading frames were subsequently examined to 

determine if they correspond to the genes surrounding the M. tuberculosis PE and PPE genes, 

thereby confirming the identity of the orthologue.

6.2.5. Primers and Probes

The primers from the gene sequences of the PPE gene family used in this study are listed in 

Table 6.1. PPE 5’ terminal probes were generated for genomic DNA hybridization from the selected 

primers by separate PCR amplification of regions from the genes Rv1787 (primers ppe-15 and ppe- 

16), Rv2123 (primers 2123F and 2123R), Rv3018c (primers 3018cF and 3018cR) and Rv3429 

(primers 3425F and 3429R), respectively. The respective probes were named 15/16, 2123, 3018, 

and 3429.

Table 6.1 . List of oligonucleotide primers used for dot blot hybridization probe generation

Name
of
primer

Primer sequence 

(from 5’ to 3’)

Length
of

primer

Tm*

[°C]

G+C
(%)

Application

ppe-15 tgg act teg ggg cgt tac 18 bp 58 61.1 Amplification o f 499 bp 5 'terminal

ppe-16 aac gga ate aac ege gac 18 bp 56 55.5 region from Rv1787 and Rv1790

2123F atg tgg ttc gca gtt ccg c 19 bp 60 57.9 Amplification o f 227 bp 5' terminal

2123R gtt age caa tac egg aac gg 20 bp 62 55.0 region from Rv2123

3018cF att egg ege tgc taa gtg c 19 bp 60 57.9 Amplification o f 160 bp 5' terminal

3018cR aac tea gca ctg gga ccc tg 20 bp 64 60.0 region from Rv3018c and Rv3021c

3425F cat cca atg ata cca geg gag 21 bp 64 52.4 Amplification o f 148 bp 5' terminal

3429R get ege cga gcc tgt egg 18 bp 64 77.8 region from Rv3429

*Tm were calculated using the following formula: [4x (G+C)] + [2x (A+T)].

6.2.6. Dot blot analyses

Dot blot analyses were done by blotting a small amount of genomic DNA isolated from 

different mycobacterial species onto a membrane and probing this using ECL-labelled probes as 

listed in section 6.2.5. The genomic DNA probed in this analysis was isolated from the mycobacterial 

species listed in Table 6.2.
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Table 6.2. Mycobacterial species used to obtain genomic DNA for dot blot analyses

Mycobacterial species Slow/fast growing ATCC number

1 M. aichiense Fast ATCC 27280

2 M. asiaticum Slow ATCC 25276

3 M. aurum Fast ATCC 23366

4 M. avium Slow ATCC 25291

5 M. celatum Slow ATCC 51131

6 M. celatum Slow ATCC 51130

7 M. chitae Fast ATCC 19627

8 M. fallax Fast ATCC 35219

9 M. fortuitum Fast ATCC 6841

10 M. fortuitum Fast ATCC 49403

11 M. fortuitum Fast ATCC 49404

12 M. genavense Slow ATCC 51233

13 M. gilvum Fast ATCC 43909

14 M. gordonae Slow ATCC 14470

15 M. haemophilum Slow ATCC 29548

16 M. intraceliulare Slow ATCC 13950

17 M. kansasii Slow ATCC 12478

18 M. malmoense Slow ATCC 29571

19 M. marinum Slow ATCC 927

20 M. mucogenicum Fast ATCC 49650

21 M, neoaurum Fast ATCC 25795

22 M. rtonchromogenicum Slow ATCC 19530

23 M. parafortuitum Fast ATCC 19686

24 M. peregrinum Fast ATCC 14467

25 M. phlei Fast ATCC 11758

26 M. scrofulaceum Slow ATCC 19981

27 M. senegalense Fast ATCC 35796
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28 M. simiae Slow ATCC 25275

29 M. smegmatis Fast ATCC 19420

30 M. terrae Slow ATCC 15755

31 M. thermoresistibile Fast ATCC 19527

32 M. triviale Slow ATCC 23292

33 M. tuberculosis H37Rv Slow ATCC 25618

34 M. tuberculosis K (Korean clinical strain) Slow N/A

35 M. ulcerans Slow ATCC 19423

36 M. vaccae Fast ATCC 15483

37 M. xenopi Slow ATCC 19250

N/A - not applicable
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6.3.1. Phytogeny o f the PE and PPE protein families

The phylogenetic trees constructed from the results of the analyses of all the members of the 

PE and PPE families present in the ESAT-6 gene cluster regions (Figure 6.2) showed topologies 

similar to the phylogenetic trees obtained for all the other gene families situated in the clusters 

(Chapter 3, Figure 3.8 and 3.9). This confirms that the PE and PPE genes were duplicated together 

with the ESAT-6 gene clusters after initial insertion, rather than being inserted during multiple events. 

These results also confirms the previously determined duplication order of the gene clusters (Gey van 

Pittius et al., 2001).

The phylogenetic tree constructed from the ninety-six PE protein family N-terminal sequences 

(and rooted to the PE outgroup from ESAT-6 gene cluster region 1, Rv3872) showed an evolutionary 

topology similar to the phylogenetic tree constructed from the sixty-three PPE sequences (rooted to 

the PPE outgroup, Rv3873, Figure 6.3 and Figure 6.4). Each tree is characterized by five distinct 

corresponding sublineages (indicated by Roman numericals in Figure 6.3 and 6.4). Three of these 

sublineages correspond to the PE-PGRS, PPE-SVP and PPE-MPTR subgroups, respectively. These 

results confirm the subgroupings of the PE and PPE families proposed previously (Cole et al., 1998, 

Gordon et al., 1999b). As the tree topologies correspond to each other, it also suggests a possible 

evolutionary history for the gene families. Interestingly, this evolutionary history corresponds to the 

evolutionary history determined for the ESAT-6 gene clusters, with duplication events expanding from 

region 1 to 3, 2 and lastly region 5. The topology of the phylogenetic trees suggests that the PE- 

PGRS as well as the PPE-MPTR subgroups are the result of the most recent evolutionary events and 

have evolved from the subgroups that include the ESAT-6 gene cluster region 5 PE and PPE genes, 

respectively (Figure 6.3 and 6.4, sublineage 4). This is supported by the observation that some 

members of the PPE sublineage 4 (PPE-SVP subgroup) contains isolated MPTR repeats, suggesting 

the existence of a common progenitor gene from which the PPE-MPTR subgroup expanded (S. 

Sampson, unpublished results).

6.3. Results
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Figure 6.2. Phylogeny of the PE and PPE protein families present within the ESAT-6 gene clusters. The phylogenetic tree of the PE family members 

are indicated on the left, with the PPE phylogenetic tree situated on the right.
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Figure 6.3. Phylogenetic reconstruction of the evolutionary relationships between the 

members of the PPE protein family. The phylogenetic tree was constructed from the phylogenetic 

analyses done on the 180 aa N-terminal domains of the PPE proteins. The tree was rooted to the 

outgroup, which was chosen as Rv3873. This gene has been shown previously to be the first PPE 

insertion into the ESAT-6 gene clusters (region 1). The gene highlighted in purple is present in ESAT- 

6 gene cluster region 1 , genes highlighted in green are present in or have been previously shown to 

be duplicated from ESAT-6 gene cluster region 3 (Gey van Pittius et al., 2001), gene highlighted in 

blue is present in ESAT-6 gene cluster region 2, genes highlighted in red are present in or have been 

previously shown to be duplicated from ESAT-6 gene cluster region 5 (Gey van Pittius et al., 2001) 

and genes highlighted in yellow are members of the MPTR subgroup of the PPE family. Arrows 

indicate genes identified to be present within the M. smegmatis genome sequence. Five sublineages 

(including the PPE-SVP and PPE-MPTR subgroups) are indicated by Roman numericals.
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Figure 6.4. Phylogenetic reconstruction of the evolutionary relationships between the 

members of the PE protein family. The tree was rooted to the outgroup, which was chosen as 

Rv3872. This gene has been previously shown to be the first PE insertion into the ESAT-6 gene 

clusters (region 1). The gene highlighted in purple is present in ESAT-6 gene cluster region 1, the 

gene highlighted in green is present in ESAT-6 gene cluster region 3, the gene highlighted in blue is 

present in ESAT-6 gene cluster region 2, genes highlighted in red are present in or have been 

previously shown to be duplicated from ESAT-6 gene cluster region 5 (Gey van Pittius et al., 2001) 

and genes highlighted in yellow are members of the PGRS subgroup of the PE family. Arrows 

indicate genes identified to be present within the M. smegmatis genome sequence. Five sublineages 

(including the PE-PGRS subgroup) are indicated by Roman numericals.
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The observation that the highly polymorphic PGRS and MPTR subfamilies seem to have 

expanded from the sublineage including the ESAT-6 gene cluster region 5 genes, is potentially 

significant, as the genes from this cluster seem to be highly prone to duplication. This is evident from 

the fact that it is the only one of the five ESAT-6 gene clusters which contains multiple copies of the 

PE and PPE genes situated inside the cluster (Figure 6.1). Furthermore, this ESAT-6 gene cluster is 

also the parent of a number of secondary duplications containing only the genes for PE, PPE, ESAT-6 

and CFP-10 (Chapter 3, Figure 3.2). It is thus clear that this region plays an important role in the 

propagation of both the ESAT-6/CFP-10 and the PE/PPE genes. We also speculate that this 

duplication propensity of the region 5 genes may have resulted in the expansion of the PGRS and 

MPTR subfamilies.

Closer inspection of the positions of the PE and PPE genes in the M. tuberculosis genome 

sequence revealed that in a number of cases a copy of each of these families was found situated 

adjacent to each other (Table 6.3). By examining the evolutionary positions of these genes on the PE 

and PPE phylogenetic trees, it was found that these genes are also always situated in the same 

sublineage on the trees, indicating that they were co-duplicated. Furthermore, the order of their 

positions are also always conserved with the PE protein always found situated upstream of the PPE 

gene. These paired genes are found in all the sublineages except in the highly polymorphic PGRS 

and MPTR subfamilies (sublineage 5). In this sublineage, the genes were in most cases found 

situated on their own within a specific genomic location. Thus, although it is clear that a change have 

taken place in the duplication characteristics with the expansion of the PGRS and MPTR subfamilies, 

the cause and significance of this organization is unclear.
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Table 6.3. Paired genes present in both the PE and PPE multigene families.

Sub­ Paired genes Associated ESAT-6 gene cluster region
lineage (PE) (PPE)

I Rv3872 Rv3873 Situated in ESAT-6 gene cluster region 1

I or II Rv3746c Rv3739c Associated with ESAT-6 gene cluster region 1 or 3

II Rv0285 Rv0286 Situated in ESAT-6 gene cluster region 3

II Rv1386 Rv1387 Associated with ESAT-6 gene cluster region 3

III Rv3893c Rv3892c Situated in ESAT-6 gene cluster region 2

III Rv2107 Rv2108 Associated with ESAT-6 gene cluster region 2

III Rv2431c Rv2430c Associated with ESAT-6 gene cluster region 2

III or IV Rv1169c Rv1168c Associated with ESAT-6 gene cluster region 2 or 5

IV Rv1788 / 91 Rv1787 / 89 / 90 Situated in ESAT-6 gene cluster region 5

IV Rv3622c Rv3621c Duplicated from ESAT-6 gene cluster region 5

IV Rv1195 Rv1196 Duplicated from ESAT-6 gene cluster region 5

IV Rv1040c Rv1039c Duplicated from ESAT-6 gene cluster region 5

IV Rv1806 Rv1801 / 21 7 /  8 /9 Associated with ESAT-6 gene cluster region 5

IV Rv3477 Rv3478 Associated with ESAT-6 gene cluster region 5

IV Rv2769c Rv2768c / 70c Associated with ESAT-6 gene cluster region 5

IV Rv0916c Rv0915c Associated with ESAT-6 gene cluster region 5

6.3.3. Comparative genomics

Previously performed comparative genomic analyses indicated that the genome of the non- 

pathogenic, fast-growing mycobacterium M. smegmatis only contains three of the five ESAT-6 gene 

cluster regions (region 4, 1 and 3), with region 2 and 5 being absent (Gey van Pittius et al., 2001). 

Although regions 2 and 5 may have been deleted from the genome of this organism, it is much more 

likely that they were not duplicated because these regions were determined to be the last two 

duplicates of the ESAT-6 gene cluster evolution (Gey van Pittius et al., 2001). This hypothesis is 

supported by the fact that the genome of M. smegmatis is approximately 1.7 times larger than that of 

M. tuberculosis (Reyrat and Kahn, 2001), and thus does not display the same reductive properties
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observed in the genome of M. leprae (which was confirmed to have lost ESAT-6 gene cluster region 2 

and 4 by deletion, Cole et al., 2001).

The phylogenetic analyses done on both the PE as well as the PPE protein families 

supported a single evolutionary distribution similar to the duplications of the ESAT-6 gene clusters, 

with region 1 being duplicated to region 3, 2 and lastly 5 (section 6.3.2). It also seems clear from the 

phylogenetic analyses that the PGRS and MPTR subgroups are the last duplications of the two PE 

and PPE families respectively, and that they have each originated for the ESAT-6 gene cluster region 

5 duplicates. If the hypothesis that regions 2 and 5 were not duplicated in the genome of M. 

smegmatis is true, it would also be logical then to presume that any genes that were duplicated from 

these regions in M. tuberculosis (in other words the PGRS and MPTR gene families as well as any of 

the other genes associated with region 2 and 5) would not be present in the genome of M. smegmatis. 

Closer inspection of the genome sequence of M. smegmatis revealed only two copies of the PE and 

PPE protein families respectively (indicated in Figure 6.4 and 6.5). These genes are the Rv3872/3 

orthologues from ESAT-6 gene cluster region 1 (70% and 55% similarity to the M. tuberculosis H37Rv 

proteins respectively), and the Rv0285/6 orthologues from ESAT-6 gene cluster region 3 (87% and 

64% similarity to the M. tuberculosis H37Rv proteins respectively). None of the other members of the 

PE or PPE protein families could be detected within the M. smegmatis genome, including any of the 

PE-PGRS or PPE-MPTR genes (supporting the hypothesis that the genes from these subgroups were 

duplicated from the ESAT-6 gene cluster region 5).

6.3.4. Dot blot analyses

To confirm the results obtained in silico with the genome sequence of M. smegmatis, as well 

as to determine the distribution of the PPE protein family in the genomes of various members of the 

genus Mycobacterium, dot blot analyses were done using selected PPE gene probes. The results 

showed that the genes Rv2123 and Rv3429 (present in sublineages II and III) are not present within 

the genomes of the mycobacteria other than tuberculosis (MOTTS), indicating that these genes are 

recent M. tuberculosis-specific duplications (Figure 6.6A and B). The sublineage II probe 3018 (for 

Rv3018c, a duplication of the ESAT-6 gene cluster region 3 PPE) hybridized to the genomic DNA of 

all the mycobacterial species tested (Figure 6.6C). As it was determined in section 6.3.3 that the M.
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smegmatis genome does not contain this gene, the sequence of this probe was BLAST-searched 

against the M. smegmatis genome sequence, and resulted in the identification of only the orthologue 

of Rv0286. The gene sequence of Rv3018c was aligned with the sequence of Rv0286, resulting in a 

two sequence alignment showing a significant percentage of homology between these two sequences 

(Figure 6.7). This indicates that the 3018 probe most probably hybridized to the orthologues of the 

gene Rv0286 in the other mycobacterial species.

The dot blot result obtained with probe 15/16 (Rv1787, Figure 6 .6D) confirmed the results 

from the comparative genomics on the M. smegmatis genome sequence by not hybridizing to the 

genomic DNA of M. smegmatis (Figure 6 .6D, number 19). Furthermore, it was found that the gene 

Rv1787 is not present in the genomes of any of the fast-growing mycobacterial species (see Figure 

6 .8 ), but it is present within the genomes of all the slow-growing mycobacterial species tested. The 

only exception for this is M. nonchromogenicum, which might have undergone a deletion of this 

region. This specific member of the PPE family is thus able to distinguish between slow-growing and 

fast-growing mycobacteria. As this gene is situated in the ESAT-6 gene cluster region 5, it may be 

possible that the whole region 5 is absent only in the fast-growing mycobacteria as was observed in 

the case of M. smegmatis.
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Figure 6.5. Dot blot analyses of genomic DNA of different members of the genus 

M ycobacterium  probed with different members of the PPE gene family. Genomic DNA of 

different species were blotted onto the membrane in the following order: (1) M. asiaticum, (2) M. 

avium, (3) M. fortuitum ATCC 6841, (4) M. fortuitum ATCC 49403, (5) M. fortuitum ATCC 49404, (6) 

M. gordonae, (7) M. intraceiluiare, (8 ) M. kansasii, (9) M. maimoense, (10) M. nonchromogenicum, 

(11) M. phlei, (12) M. scrofulaceum, (13) M. terrae, (14) M. triviaie, (15) M. celatum ATCC 51131, (16) 

M. celatum ATCC 51130, (17) M. marinum, (18) M. peregrinum, (19) M. smegmatis, (20) M. 

genavense, (21) M. xenopi, (22) M. haemophilum, (23) M. simiae, (24) M. uicerans, (25) M. vaccae, 

(26) M. aichiense, (27) M. aurum, (28) M. gilvum, (29) M. neoaurum, (30) M. senegalense, (31) M. 

parafortuitum, (32) M. chitae, (33) M. fallax, (34) M. thermoresistibile, (35) M. mucogenicum, (H37Rv) 

M. tuberculosis H37Rv, (K) M. tuberculosis K (Korean clinical strain); A, Dot blot probed with probe 

2123 (Rv2123); B, Dot blot probed with probe 3429 (Rv3429); C, Dot blot probed with probe 3018 

(Rv3018c); D, Dot blot probed with probe 15/16 (Rv1787).
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(C) Rv3018c
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Figure 6.6. Partial two gene sequence alignments of the M. tuberculosis H37Rv genes Rv0286 

and Rv3018c, as well as the M. tuberculosis H37Rv gene Rv3018c and the M. smegmatis 

Rv0286 orthologue. Alignm ent A  shows the high percentage o f homology shared between the N- 

tenminal parts o f the M. tuberculosis H37Rv genes Rv0286 and Rv3018c. A lignm ent B shows the 

high percentage o f homology shared between the N-term inal parts o f the M. tuberculosis  H37Rv gene 

Rv3018c and the M. sm egmatis  gene orthologue fo r Rv0286. Area covered by probe 3018 sequence 

is highlighted in yellow.

Rv3018c
Rv0286_

GTGACGGCGCCGGTGTGGTTGGCGTCGCCGCCGGAGGTGCATTCGGCGCTGCTAAGTGCT 
ATGGCCGCGCCCATCTGGATGGCTTCGCCGCCGGAGGTACATTCGGCGTTGCTTAGCAAT ** * ***** * *** **** ************** ********* **** ** *

60
60

Rv3018c
Rv0286_

GGTCCGGGGCCGGGTTCGTTGCAGGCGGCCGCGGCGGGGTGGAGCGCGTTAAGCGCCGAG 
GGTCCGGGCCCGGGTTCGCTAGTGGCGGCTGCCACGGCCTGGAGCCAGCTGAGTGCCGAG ******** ********* * ****** ** *** ****** * * ** ******

120
120

Rv3018c
Rv0286_

TACGCCGCTGTGGCGCAAGAGTTGAGCGTGGTGGTGGCCGCGGTGGGGGCCGGGGTGTGG 
TATGCCTCGACGGCAGCAGAACTCAGTGGGCTACTGGGGGCGGTACCTGGTTGGGCATGG ** *** * *** *** * ** * * * *** ***** * *** ***

180
180

Rv3018c
Rv0286_

CAGGGTCCCAGTGCTGAGTTGTTTGTGGCCGCCTATGTGCCGTATGTGGCGTGGTTGGTG 
CAGGGGCCCAGCGCGGAGTGGTACGTGGCCGCGCATTTGCCATATGTGGCGTGGCTGACG 
***** ***** ** **** ** ******** ** **** ************ ** *

240
240

Rv3018c_
Rv0286_

CAGGCCAGTGCGGATAGCGCGGCGGCGGCCGGTGAGCATGAGGCCGCGGCGGCTGGCTAT 
CAGGCCAGTGCGGATGCCGCAGGAGCAGCGGCCCAGCACGAGGCCGCCGCGGCGGCCTAC *************** *** * ** ** * **** ******** ***** * ***

300
300

Rv3018c_
Rv0286_

GTTTGTGCGTTGGCGGAGATGCCGACGTTGCCGGAGTTGGCGGCCAACCACCTCACGCAT 
ACCACTGCCTTGGCAGCCATGCCGACATTAGCGGAGTTGGCCGCCAACCACGTGATTCAC *** ***** * ******** ** ********** ********* * * **

360
360

Rv3018c
Rv0286_

GCGGTGTTGGTGGCGACGAATTTCTTTGGGATCAACACGATCCCGATCGCGCTCAACGAG 
ACCGTGTTGGTGGCGACGAATTTCTTTGGGATCAACACGATTCCCATCACGCTCAATGAG 
* ************************************** ** *** ******* ***

420
420

B R v 3 0 1 8 c _
smeg

GTGACGGCGCCGGTGTGGTTGGCGTCGCCGCCGGAGGTGCATTCGGCGCTGCTAAGTGCT 
ATGACGGCCCCTATCTGGATGGCTCTGCCGCCCGAGGTGCACTCGTCGCTGCTGTCCAGC 

* * * * * * *  * *  *  * * *  * * * *  * * * * * *  * * * * * * * *  * * *  * * * * * * *

60
60

R v 3 0 1 8 c _
smeg

GGTCCGGGGCCGGGTTCGTTGCAGGCGGCCGCGGCGGGGTGGAGCGCGTTAAGCGCCGAG 
GGCCCAGGCCCCGGGTCGCTGCTGGCCGCCGCGGGGGCGTGGCAGTCGCTCAGCGCCGAA 
* *  * *  * *  * *  * *  * * *  * * *  * * *  * * * * * * *  * *  * * * *  * *  *  * * * * * * * *

1 2 0
120

R v 3 0 1 8 c _
smeg

TACGCCGCTGTGGCGCAAGAGTTGAGCGTGGTGGTGGCCGCGGTGGGGGCCGGGGTGTGG 
TACGCCGCGGCGGCAGCCGAACTCACGAGTGTGCTGAGCGCGGTGCAGGCCGGCTCGTGG 
* * * * * * * *  *  * * *  * *  *  *  * * *  * *  * * * * * * *  * * * * * *  * * * *

180
180

R v 3 0 1 8 c _
smeg

CAGGGTCCCAGTGCTGAGTTGTTTGTGGCCGCCTATGTGCCGTATGTGGCGTGGTTGGTG 
GAAGGTCCGAGTTCCGAGCAGTATGTCGCGGCCCACGCGCCGTATCTGCAGTGGCTCGCG 

*  * * * * *  * * *  *  * * *  * *  * * *  * *  * * *  *  *  * * * * * * *  * *  * * * *  *  *  *

2 4 0
2 4 0

R v 3 0 1 8 c _
smeg

CAGGCCAGTGCGGATAGCGCGGCGGCGGCCGGTGAGCATGAGGCCGCGGCGGCTGGCTAT 
CAGCAGAGCGCCAACAGCGCGGCCGCGGCCGTCCAGCACGAGACCGCGGCCGCGGCGTAC 
* * *  * *  * *  *  * * * * * * * *  * * * * * * *  * * * *  * * *  * * * * * * *  * *  *  * *

300
300

R v 3 0 1 8 c _
smeg

GTTTGTGCGTTGGCGGAGATGCCGACGTTGCCGGAGTTGGCGGCCAACCACCTCACGCAT
TCCACGGCACTGGCCACGATGCCGACCATGGCCGAACTGGCGCTCAACCACACCATGCAC

■*r *  *  ★  *  *  * * * * * * * * *  * *  *  * *  * * * * *  * * * * * * *  * *  * * *

360
360

R v 3 0 1 8 c _
smeg

GCGGTGTTGGTGGCGACGAATTTCTTTGGGATCAACACGATCCCGATCGCGCTCAACGAG 
GGTGTGCTCGTGGCCACGAACTTCTTCGGGATCAACACGATCCCGATCGCGCTCAACGAG 
*  * * *  *  * * * * *  * * * * *  * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

420
420
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Figure 6.7. Presence and absence of Rv1787 in members of the genus Mycobacterium.

Presence and absence of gene Rv1787 was examined by dot blot analysis using probe 15/16. Gene 

Rv1787 is absent in species indicated in yellow and present in species indicated in red. The division 

between fast and slow-growing species are indicated by a dotted line. Underlined species are 

pathogens. * = M. farcinogenes is a slow growing mycobacterium. (1) = Rv1787 was confirmed to be 

present in the genome of this organism by whole genome sequencing and not by dot blot analyses. 

The taxonomical relationships between members of the genus Mycobacterium  are based on 16S 

rRNA gene sequence information and were adapted from data published by Pitulle et al. (1992), 

Shinnick and Good (1994) and Springer et al. (1996).
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The PE and PPE protein families are large families (99 and 68 members respectively) of 

repetitive sequence-containing genes of largely unknown function. These genes are found distributed 

throughout the genome of M. tuberculosis and copies are also found situated in the ESAT-6 gene 

cluster regions (Cole et al., 1998, Gey van Pittius et al., 2001). In contrast to their wide distribution in 

the genome, little is known about the function of these two protein families. Although nearly all 

proposed functions remains at most speculative, the most widely accepted hypothesis suggest that 

these proteins could function as a source of antigenic variability, due to their highly polymorphic C- 

terminal domains (Cole et al., 1998, Gordon et al., 1999b). Other putative functions include a function 

as storage proteins for the rare amino acid asparagine (Cole et al., 1999), the inhibition of antigen 

processing (Cole et al., 1998), an involvement in iron uptake (Rv2123, Rodriguez et al., 1999) and 

fibronectin binding (Abou-Zeid et al., 1991, Rv1759c - Espitia et al., 1999). Furthermore, it was 

recently shown that two members of the PGRS subfamily from M. marinum (the Rv3812 and Rv1651c 

orthologues) are essential for replication in host macrophages as well as persistence in granulomas 

(Ramakrishnan et al., 2000). Additional recent data from Camacho and colleagues (1999) have also 

suggested that the members of the PPE gene family may be involved in disease pathogenesis, as a 

transposon mutant of the gene Rv3018c was attenuated for growth in macrophages.

It is unknown why the insertions of the PE and PPE genes within the ESAT-6 gene clusters 

have occurred and why they are tolerated. It may be possible that the high levels of expression of the 

ESAT-6 gene clusters (Chapter 4) and hypothesized upregulation under in vivo conditions (Addendum 

5A) are providing an advantage to the organism by the co-expression of these genes. The presence 

of the PE and PPE genes within the ESAT-6 gene clusters prompted the investigation of the 

evolutionary history of these large gene families to determine whether the duplication order of the 

ESAT-6 gene clusters could be connected to the duplications of the PE and PPE families. It was 

thought that this may provide clues to the potential functions of these large gene families and may 

explain the major expansion thereof. The overall topology of the PE phylogenetic tree in this study is 

highly similar to the tree predicted by Espitia et al. (1999), although 19 sequences had been excluded 

from their calculations. The absence of these sequences, which include the PE proteins belonging to

6.4. Discussion
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the ESAT-6 gene cluster regions 1 (Rv3872), 2 (Rv3893c) and 3 (Rv0285) leaves a major gap in the 

study of the evolutionary expansion of this family.

Phylogenetic reconstruction of the evolutionary history of the PE and PPE gene families 

suggested that these genes have been initially inserted into the ESAT-6 gene cluster region 1 after 

the first duplication of the clusters, and have been subsequently duplicated together with the regions. 

The results further indicated that the expansion of the PE and PPE gene families has occurred in 

unison with the duplications of the ESAT-6 gene cluster regions. After each main duplication event 

involving an ESAT-6 gene cluster region, a number of secondary subduplications of the PE and PPE 

genes (in some cases associated with a copy of the ESAT-6 and CFP-10 genes, see Chapter 3, 

Figure 3.2) have occurred from the ESAT-6 gene cluster regions. This phenomenon seems to have 

culminated in the duplication of the ESAT-6 gene cluster region 5, from which not only a large number 

of PE and PPE genes were secondarily multiplied to the rest of the genome, but also within which 

multiple secondary duplication events of these families have occurred. In addition to this, the 

evolutionary history predicted by the phylogenetic trees suggests that the highly duplicated PGRS as 

well as MPTR subfamilies have also been duplicated from region 5. It thus seems as if the PE and 

PPE genes present within region 5 have an enhanced ability for duplication, which also allowed the 

expansion of these genes into the highly polymorphic PGRS and MPTR subfamilies. These 

sequences have become extremely mobile, almost analogous to transposon elements.

It has been suggested previously that it seems as if the occurrence of numerous PE (and PE- 

PGRS) proteins is restricted to members of the M. tuberculosis complex and a few other pathogenic 

mycobacterial species (Brennan et al., 2001). This was supported by the in silico comparative 

genomics analyses results in the present study which demonstrated the absence of the multiple 

duplications of this family and the PPE family from the genome of M. smegmatis. It was previously 

found that the genomes of members of the corynebacteria contain one copy of the ESAT-6 gene 

clusters (region 4, Gey van Pittius et al., 2001), but no copies of the PE or PPE genes could be 

identified in these organisms (N.C. Gey van Pittius, unpublished results). It is clear from the 

evolutionary relationships between the members of the genus Mycobacterium  determined by 16S 

rRNA sequence information that the M. smegmatis species is quite distant from the pathogenic M.
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tuberculosis complex, and seem to represent an evolutionary much earlier species. It thus seems as 

if the PE and PPE gene insertion into the second duplication of the ESAT-6 gene clusters (region 1) 

occurred early on in the evolution of the mycobacteria, after their divergence from the corynebacteria, 

and that the multiple duplications of these families have coincided with the evolution of the genus, 

reaching a maximum in the slow-growing pathogenic mycobacteral species. The dot blot results 

presented in this study confirm the above hypothesis. The genes Rv2123 and Rv3429 were found to 

be M. tuberculosis specific, confirming their recent duplication. In addition to this, the probe 3018 

(most probably hybridizing to the Rv0286 orthologues) gave a positive hybridization result to all the 

species tested, indicating that it is an ancient duplication present in the earliest mycobacteria. The 

absence of the gene Rv1787 from the genome of M. smegmatis came as no surprise, as it has been 

shown to be absent by the comparative genomic analyses. What was fascinating was the observation 

that the probe for this gene only hybridized to the members of the slow-growing mycobacteria, 

indicating a clear evolutionary division between these two phenotypically separated groups. It thus 

seems as if the duplication of this region (which have been shown in this study to be prone to 

secondary duplications and the potential origin of the PGRS and MPTR families) had some influence 

on the growth characteristics of the organisms. To our knowledge no genetic factors have been 

identified which differentiate between these two divisions of the genus to such a clear extent, making 

this a novel and highly applicable finding. Whether this differentiation ability is restricted to Rv1787 

(the PPE protein in the ESAT-6 gene cluster region 5), or the whole subgroup of PPE proteins 

surrounding the gene Rv1787 on the phylogenetic tree is at this stage uncertain. In addition to this, it 

must still be established whether the other genes present within the ESAT-6 gene cluster region 5 

also have this differentiation ability. Our results could thus not distinguish whether the differentiation 

is due to the presence of the PPE genes specifically or the presence of the ESAT-6 gene cluster 

(region 5) as a whole, and this is the subject of ongoing studies. These results did indicate that the 

duplications of the PPE and PE gene families and/or the ESAT-6 gene clusters are in some way 

involved in the differences observed between fast-growing and slow growing mycobacteria.

In conclusion, we aimed to investigate the evolutionary distribution of the PE and PPE gene 

families in relation to their observed presence within four of the five ESAT-6 gene clusters. We have 

shown that the expansion of the PE and PPE families are linked to the duplications of the ESAT-6
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gene clusters. We have also shown that this association has led to the absence of the multiple 

duplications of the PE and PPE families in the fast-growing mycobacterium M. smegmatis. This 

includes the members of the multigene PGRS and MPTR subgroups, which are hypothesized to be 

involved in antigenic variation by virtue of their hypervariable C-terminal domains (Cole et al., 1998, 

Cole, 1999, Gordon et al., 1999b). We have also showed that the PPE gene present in ESAT-6 gene 

cluster region 5 is able to distinguish between mycobacteria belonging to the slow-growing or fast- 

growing species. This result is highly significant with regard to the exploitation of this sequence as a 

potential epidemiological tool to differentiate between fast- and slow-growing species. It is also an 

important step in advancing the study of the differences between the members of these two divisions. 

This research contributes to the development of an understanding of the PE and PPE gene families, 

in terms of stability, absence/presence of the PE and PPE genes within the genomes of various 

mycobacteria, their assosiation with the ESAT-6 gene clusters and links to growth rate and cell wall 

structure.

NOTE: Ms. S. Sampson (Department o f Medical Biochemistry, Faculty o f Health Sciences, University 

of Stellenbosch, Tygerberg, South Africa) and Dr. H. Lee (Dept, o f Microbiology, Korean Institute of 

Tuberculosis, Seoul, South Korea) are thanked for their invaluable contributions towards the PPE 

phytogeny and dot blot analyses, respectively.
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CHAPTER SEVEN

DISCUSSION AND FUTURE DIRECTIONS

“Imbeciles! . . .Tuberculosis! Everybody knows the true remedy, which would be the paying of 

sufficient wages, and the tearing down o f the filthy tenements into which the laborers are packed - 

those who are the most useful and the most unfortunate among our population! But needless to say, 

no one wants that remedy, so we go round begging the workingmen not to spit on the sidewalks. “ 

Damaged Goods - Upton Sinclair
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Exported proteases are commonly associated with virulence in bacterial pathogens, yet there 

is a paucity of information regarding their role in Mycobacterium tuberculosis (Goguen et al., 1995, 

Brown et al., 2000). Mycobacterium tuberculosis possesses over 70 protease genes, which includes 

the closely related family of five subtilisin-like serine protease genes (the mycP genes) identified in the 

present study. These genes make up the largest protease family in M. tuberculosis, and encode 

transmembrane subtilases, termed the mycosins. Using Southern blotting, multiple copies of the 

mycP genes were shown to also be present in the genomes of other mycobacterial species, and all 

the mycosins were found to be constitutively expressed in M. tuberculosis. Mycosin-1 was found to 

not be expressed in the attenuated vaccine strain M. bovis BCG (bacille de Calmette et Guerin) 

although the gene is present in the genome of this organism. Closer inspection revealed that the 

gene mycP1 is situated 3700 bp (four ORF’s) from the RD1 deletion region in the genome of M. bovis 

BCG (Mahairas et al., 1996), indicating that the deletion of this region may have removed regulatory 

sequences required for the expression of the gene.

Subcellular localization of selected members of the mycosins showed that the proteins are 

secreted, membrane bound, cell wall-associated proteases that are shed by an unknown mechanism 

(actively or passively) from the cell wall during growth of M. tuberculosis under in vitro and in vivo 

conditions. In support of this, it was also shown previously that at least one of the mycosins is able to 

elicit delayed-type hypersensitivity (DTH) reactions only in guinea pigs immunized with live 

mycobacteria, indicating the release of protein only during active growth of the organism (Romain et 

al., 1993). As DTH is known to be a strictly T-cell dependant immune reaction, the possibility that the 

mycosins may also be recognized by the T-cell population mediating the cell mediated immune 

response (CMI) reaction was investigated. Whole blood assay results indicated that the 

extracellularly located mycosin proteases are able to elicit low levels of T-cell dependent cellular 

proliferation, with concomitant production of relatively high levels of IFN-y. An interesting observation 

of the primary study was the indication that the mycosins may be specifically recognized only in 

healthy individuals, which points to the possibility that these proteins may be involved in protective 

immunity. Further results indicated that the mycobacterial mycosins are predominantly recognized by

7.1. The mycosin proteases
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Mantoux positive individuals, thereby being able to stimulate the CMI response. These mycosins are 

thus interesting for their potential use as components for future subunit vaccines against tuberculosis. 

However, it is acknowledged that the sample bases of both the primary and secondary experiments 

were not optimal, and that it will be necessary to increase the number of subjects in future 

investigations to determine the full extent of antigenicity of the members of the mycosin family.

A number of protease activity assays were performed to determine the substrate specificty, 

activity, and conditions of activity of the mycosins, and thereby to obtain insight into their functions in 

vivo. Despite all efforts, no protease activity could be detected. The most likely reason for not 

observing protease activity for the recombinant mycosins (which could include incorrect folding of the 

fusion protein, the absence of or incorrect processing of the prepromycosins, substrate specificity, pH, 

temperature, cofactors etc.), was provided by the fact that the mycosins revealed characteristics 

shared only by the lantibiotic peptidases and the proprotein convertases (Siezen and Leunissen,

1997). These subtilases are in highly specialized families of proprotein processing proteases, 

suggesting that the activity of the mycosins may also be highly substrate specific. Almost all of the 

known proteases that have been examined previously were identified from an observed, yet unknown 

protease activity, thereby immediately providing a usable substrate (see for example Butler et al.,

1996). The fact that the mycosins were identified from their gene sequences was a limitation in this 

study, as it made the identification of a possible substrate, as well as optimal conditions for activity, 

virtually impossible. It is clear from this study that the substrate of the mycosins has to be identified 

before any further activity analyses could be done and the potential role of the mycosins in disease 

pathology could be evaluated. To obtain clues to a potential substrate and the possible function of 

these proteases in the physiology of M. tuberculosis, the genetic environment of the mycosin genes 

was studied in the then newly released whole genome sequence of M. tuberculosis (Cole et al.,

1998). This revealed the fascinating fact that these mycosin genes were not duplicated alone in the 

genome of the organism, but were actually found situated in a cluster of between 6 and 12  genes, 

which were duplicated five times in the genome. The identification of this gene cluster led to the 

hypothesis that these genes may encode proteins that function together. Thus, it was important to 

study the gene clusters in which the mycosins were situated, as the function of the mycosin proteases 

may be closely linked to the functions of the other genes in these clusters.
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The most interesting observation in the study of the gene cluster regions was the fact that 

each of these regions contained members of the previously identified, immunologically important 

ESAT-6 T-cell antigen family (Andersen et al., 1995, Sorensen et al., 1995, Berthet et al., 1998, Van 

Pinxteren et al., 2000), leading to these regions being named the ESAT-6 gene cluster regions. A 

comparative genomics approach was implemented to establish the relationship between the multiple 

copies of the ESAT-6 gene cluster as well as to determine the evolutionary history of the cluster 

duplication. The results demonstrated that the ESAT-6 gene cluster is of ancient origin, with the 

progenitor cluster, region 4, also being present in members of other genera (for example 

Corynebacterium). It also demonstrated that this cluster seem to be a feature of the high G+C gram- 

positive bacteria as it is present in and restricted to the genomes of other members of the Firmicutes 

such as Corynebacterium diphtheriae and Streptomyces coelicolor. Furthermore, it was shown to be 

duplicated multiple times only in Mycobacterium tuberculosis and other mycobacteria. It is thus 

tempting to speculate that the multiple copies of the ESAT-6 gene cluster present only in the genomes 

of the mycobacteria, may point to an important function for these clusters in the mycobacterial 

physiology that differentiates this genus from the other genera of the Firmicutes.

The observation that live mycobacteria generate a much more efficient protective immunity 

than killed bacteria (Andersen, 1997), but that both sensitize animals for a DTH reaction, has been 

linked to the fact that live bacteria secrete peptides early in infection that are needed to recruit 

protective T-cells. The key antigenic determinants of the culture filtrate was shown to be smaller than 

the 10kDa fraction (Boesen et al., 1995), in which multiple copies of the small immunodominant 

ESAT-6 protein family members were identified (Sorensen et al., 1995, Berthet et al., 1998, Alderson 

et al., 2000). The fact that ESAT-6 elicits a high level of interferon-gamma from memory effector cells 

during the first phase of a protective immune response is important because mycobacterial diseases 

are generally characterized by strong Th1 responses and high levels of interferon-gamma (Andersen,

1997). However, it is not known what advantage the bacterium obtains from the secretion of the 

multiple immunodominant copies of the ESAT-6 proteins. It may be possible that the induction of a 

massive host immune response, resulting in intense inflammation, tissue destruction, caseous

7.2. The ESAT-6 gene clusters
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necrosis and the formation of cavitory lesions may facilitate the spread of disease by the release of 

the bacteria from the damaged airways of susceptible individuals unable to contain the infection.

Although the function of the ESAT-6 gene clusters and their role in the growth and 

pathogenicity of the mycobacteria is still unknown, data originating from a number of studies have 

indicated that the genes that form part of these clusters may play a very important role in the growth 

of these organisms and in tuberculosis infection. For example, Wards and coworkers (2000) showed 

that an esat-6lcfp-10 knockout mutant of M. bovis was less virulent than its parent if gross pathology, 

histopathology and mycobacterial culture of tissues were taken into account. A comparable decrease 

in virulence was also shown in a knockout of Rv3871 (another gene present in ESAT-6 gene cluster 

region 1) by the same authors. Similarly, Mahairas and colleagues (1996) and others (Behr et al.,

1999, Brosch et al., 2000a) have implicated the RD1 deletion region (containing most of the genes of 

ESAT-6 gene cluster region 1) in the attenuation of M. bovis BCG, supporting the importance of this 

region with regard to virulence. Further clues are provided by the fact that these genes are expressed 

under oxygen tension similar to that observed in intracellular residence (Imboden et al., 1998), and 

the fact that the genome of M. leprae, which is commonly though to contain the minimal gene set for a 

pathogenic mycobacterium (Vissa and Brennan, 2001), contains at least two and maybe even three 

functional copies of the ESAT-6 gene clusters. The ESAT-6 family member Rv0288 (belonging to 

gene cluster region3) is also highly downregulated in the avirulent strain M. tuberculosis H37Ra (Rindi 

et al., 1999). The multiplicity of these gene clusters, their immunological significance as well as the 

links to pathogenicity suggest that they have an important function in the mycobacteria and are worth 

further investigation.

During this study, the topical subject of diagnosis of M. tuberculosis infection using the 

members of the ESAT-6 protein family (specifically ESAT-6 and CFP-10) was re-evaluated. The 

ESAT-6 and CFP-10 proteins have been evaluated over the past few years as diagnostic agents (see 

for example Van Pinxteren et al., 2000), as there is a constant search for new and effective diagnostic 

tests for the determination of M. tuberculosis infection due to the non-specificity of the current 

tuberculin test (Andersen et al., 2000). Both of these proteins have shown promise as a tool to 

differentiate between BCG vaccination, M. avium infection and M. tuberculosis infection (Ravn et al.,
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1999, Colangeli et al., 2000, Arend et al., 2000b), but contrary to common belief (Harboe et al., 1996, 

Elhay et al., 1998, Ravn et al., 1999, Arend et al., 2000a, Arend et al., 2000b, Van Pinxteren et al.,

2000, Andersen et al., 2000, Arend et al., 2001a, Arend et al., 2001b), this study showed that these 

proteins are not M. tuberculosis specific (Gey van Pittius et al., 2001). As the genes for these proteins 

are also present in fast growing environmental mycobacterial species (with a high percentage of 

protein homology), the presence of environmental mycobacteria may interfere with diagnostic tests 

based on these antigens (Gey van Pittius et al., 2001). This should be especially evident in 

developing countries where environmental mycobacteria is present in large amounts (Vekemans et 

al., 20 0 1).

The ESAT-6 gene family consists of members of the ESAT-6 and CFP-10 subfamilies, and 

encode small proteins, which are potent T-cell antigens of M. tuberculosis, but which are secreted 

without ordinary sec-dependent secretion system signals (Andersen et al., 1995, Sorensen et al., 

1995). It has thus been widely accepted in the literature that these proteins must have some other, 

still unknown mechanism of transport to procure the release into the extracellular environment (Tekaia 

et al., 1999). An in depth bioinformatics analysis of the other genes present within the ESAT-6 gene 

clusters revealed that all of these genes may encode proteins that are directed to the cell 

wall/membrane where they are potentially involved in binding protein dependent transport systems 

subcomponent functions (energy provision, pore formation, etc). Thus, the proteins encoded by the 

ESAT-6 gene clusters may be able to function together to provide an active transport system, and it 

was hypothesized that this system may be able to transport the sec-independently secreted members 

of the ESAT-6 T-cell antigen family across the mycobacterial membrane.

In support of the abovementioned hypothesis, the results presented in this study have shown 

that at least one of the ESAT-6 gene clusters is expressed as a single polycistronic RNA and the 11 

genes situated in this cluster thus form one single operon. Furthermore, the promoter driving the 

expression of this operon, P e s r e g 3 , was identified and its activity characterized. The verification of the 

polycistronic nature of the ESAT-6 gene clusters as well as the identification of the promoter Pesreg3 

is an important step in the elucidation of the function and regulation of members of the ESAT-6 family 

as well as its putative biosynthetic gene clusters. Currently, there is only a limited amount of

Stellenbosch University http://scholar.sun.ac.za/



266

information available on the mycobacterial transcriptional machinery (Mulder et al., 1997), making this 

study important as a basis for investigating the mechanisms of antigen expression in M. tuberculosis.

During the present study, a novel method of examining secretion mechanisms in the 

mycobacteria was developed, making use of double transformation after cosmid integration. The 

results have shown that secretion of members of the ESAT-6 protein family is dependent on the 

presence of the ESAT-6 gene cluster regions, as was illustrated in the case of ESAT-6 and ESAT-6 

gene cluster region 1. Furthermore, this secretion seems to be region-specific, to such an extent that 

even orthologous regions between different mycobacteria are unable to cross-secrete ESAT-6 . A 

possible model for the secretion apparatus was also constructed, based on the putative functions of 

the proteins encoded by the ESAT-6 gene cluster regions. The results obtained from this 

investigation provides an important basis for the study of dedicated mycobacterial transport and 

secretion mechanisms, as well as for the understanding of T-cell antigen secretion in the 

mycobacteria. As the mycobacterial ESAT-6 gene clusters contain a number of features of quorum 

sensing and lantibiotic biosynthetic, transport and processing operons (Sahl and Bierbaum, 1998), it is 

hypothesized that the members of the ESAT-6 family may be secreted as signaling molecules and are 

possibly involved in the regulation of expression of genes during intracellular residence of the 

bacterium.
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Each of the ESAT-6 gene cluster regions encode proteins involved in energy provision and 

membrane pore formation, and have been shown in the present study to be involved in the transport 

of the potent T-cell antigens belonging to the ESAT-6 protein family. In addition, there are two 

families of genes present within the ESAT-6 gene clusters (named the PE and PPE gene families), 

which seem to be anomalous as they do not appear to be involved in the transport system, are not 

found in region 4, and members of these two families are found distributed throughout the genome of 

M. tuberculosis (Cole et al., 1998). To gain an insight into the evolutionary history of these genes, the 

PE and PPE gene families were investigated with the aim of determining the ancestral genes from 

both families, as well as to determine whether the presence of copies of these genes within the ESAT- 

6 gene clusters have any significance with regard to the expansion of both families. The results 

presented in this study have shown that the expansion of the PE and PPE families is linked to the 

duplications of the ESAT-6 gene clusters. Furthermore, it is clear that this association has led to the 

absence of the multiple duplications of the PE and PPE families in the fast-growing mycobacterium M. 

smegmatis. This includes the members of the multigene PGRS and MPTR subgroups, which are 

hypothesized to be involved in antigenic variation by virtue of their hypervariable C-terminal domains 

(Cole et al., 1998, Cole, 1999, Gordon et al., 1999b). A surprising result was obtained with the dot 

blot analysis of the PPE gene present in ESAT-6 gene cluster region 5, which demonstrated that this 

gene was not present in the genomes of any of the fast-growing mycobacterial species tested and is 

clearly able to distinguish between mycobacteria belonging to the slow-growing or fast-growing 

species. This indicates that the PPE/ESAT-6 gene cluster region 5 may be involved in some function 

which differentiates these two groups of mycobacteria. This research contributes to the development 

of an understanding of the PE and PPE gene families, in terms of stability, absence/presence of the 

PE and PPE genes within the genomes of various mycobacteria, their assosiation with the ESAT-6 

gene clusters and links to growth rate and cell wall structure.

7.3. The history of the PE/PPE gene family expansion
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The results of this investigation satisfied most of the aims set out at the inception of this study.

However, a number of new questions have also arisen, which may present excellent challenges for

future investigations.

The recommendations for future studies is as follows:

• cloning, expression and antibody generation with mycosin-4 and -5,

• more extensive T-cell assays with larger subject groups to determine the full extent of the mycosin 

family antigenicity,

• the identification of a substrate for the mycosins, possibly the members of the ESAT-6 protein 

family,

• subsequent protease activity assays on the substrate to determine optimal activity parameters - 

(initial studies may focus on investigating whether the mycosins are able to cleave the members 

of the ESAT-6 protein family,

• in silico modelling of substrate binding site,

• in silico investigation of the presence of the ESAT-6 gene clusters in the newly sequenced 

genomes of other members of the high G+C Gram-positives, namely Thermobifida fusca and 

Clavibacter michiganensis as well as other members of the genus Mycobacterium, namely 

Mycobacterium uicerans, Mycobacterium miroti and Mycobacterium marinum,

• investigation to determine the influence of gene knockouts described by Wards et al. (2000) on
i

expression and secretion of ESAT-6 ,

• investigation to determine the influence of gene knockouts of the singular ESAT-6 gene clusters in 

members of the genus Corynebacterium and/ or Streptomyces,

• cloning, expression and purification of M. smegmatis ESAT-6 proteins to investigate whether host 

cellular immune response are able to distinguish between the ESAT-6 and CFP-10 proteins 

secreted from environmental mycobacteria and M. tuberculosis,

• identification of operon structures in other ESAT-6 gene cluster regions

• identification of other primary or secondary promoters present in the ESAT-6 gene clusters,

7.4. Future directions
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• investigation of the regulation of expression of the gene clusters,

• gene deletion in cosmids to determine which genes are essential for the ESAT-6 secretion system 

to function efficiently,

• investigation to determine whether different regions in a certain species are able to cross-secrete 

members of the ESAT-6 protein family,

• investigation to determine whether addition of ESAT-6 protein to cultures has an influence on 

growth characteristics and signalling between organisms,

• extensive Southern blotting analyses to determine the presence of different PE and PPE genes 

and the ESAT-6 gene clusters in different species of mycobacteria.
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CHAPTER EIGHT

CONCLUSION

“But most important, the ancient foe o f man, known as consumption, the great white plague, 

tuberculosis, or by whatever other name, is on the way to being reduced to a minor ailment o f man. 

The future appears bright indeed, and the complete eradication o f the disease is in sight. ”

The Conquest of Tuberculosis -  S. A. Waksman (1964)
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In this study, a closely related family of five subtilisin-like serine protease genes (the mycP 

genes), encoding transmembrane subtilases (termed the mycosins) was identified. These genes 

were cloned and characterized with the aim of elucidating their potential function in M. tuberculosis 

and to investigate the possibility that they may be involved in the virulence mechanisms of the 

organism. Subcellular localization of selected members of the mycosins revealed that these proteins 

are secreted, membrane bound, cell wall-associated subtilisin-like serine proteases that may be shed 

from the cell wall during growth of M. tuberculosis under in vitro and in vivo conditions. Whole blood 

assay results indicated that the extracellularly located mycosin proteases are able to elicit low levels 

of T-cell dependent cellular proliferation, with concomitant production of relatively high levels of IFN-y, 

and may be involved in protective immunity. The ability of the mycosins to stimulate the CMI 

response presents a potential opportunity for them to be evaluated as components for future subunit 

vaccines against tuberculosis. No protease activity could be attributed to the mycosins, but protein 

sequence analyses revealed that these mycobacterial subtilases share characteristics with the 

lantibiotic peptidases and the eukaryotic proprotein convertases. This indicates that they may be 

involved in the specific activation of secreted proteins and that substrate specificity may thus be 

extremely crucial. To obtain further clues into the possible function of these enzymes, their immediate 

genetic environment was studied, which revealed that the mycosins actually form part of a gene 

cluster of between 6 and 12 genes, which are duplicated five times in the genome of M. tuberculosis. 

This gene cluster also contains members of the previously identified immunologically important ESAT- 

6 T-cell antigen family and have thus been named the ESAT-6 gene clusters. In addition to this, the 

gene clusters contain a number of genes potentially involved in different aspects of protein transport. 

Comparative genomics analyses revealed that the presence of the ESAT-6 gene cluster seems to be 

a characteristic shared by all high G+C gram-positive bacteria and that multiple duplications of this 

cluster have occurred and are maintained only within the genomes of members of the genus 

Mycobacterium. One of the ESAT-6 gene clusters was shown to be expressed as a single 

polycistronic RNA, forming an operon structure. The promoter for this operon, P e s r e g 3 , was also 

identified and its activity characterized. This led to the hypothesis that these operons may encode 

proteins that function together for the active transport and processing of the members of the sec- 

independently secreted ESAT-6 T-cell antigen family. Subsequent secretion analyses results have 

shown that secretion of members of the ESAT-6 protein family is dependent on the presence of the
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ESAT-6 gene cluster regions, confirming the putative transport associated functions of the ESAT-6 

gene cluster-encoded proteins. The mycobacterial ESAT-6 gene clusters contain a number of 

features of quorum sensing and lantibiotic operons, and an extensive review of the literature has led 

to the hypothesis that the members of the ESAT-6 family may be secreted as signaling molecules and 

may be involved in the regulation of expression of genes during intracellular residence of the 

bacterium within the macrophage. Finally, the results of the investigation of the evolutionary history of 

the PE and PPE gene families have shown that the expansion of these families are linked to the 

duplications of the ESAT-6 gene clusters, and that the highly polymorphic PGRS and MPTR 

subgroups are the direct result of the most recent duplication events. This association is supported by 

the absence of the multiple copies of the PE and PPE families in the genome of the fast-growing 

mycobacterium M. smegmatis. Dot blot analyses showed that the PPE gene present in ESAT-6 gene 

cluster region 5 is able to distinguish between mycobacteria belonging to the slow-growing or fast- 

growing species, indicating a function for these genes and/or the ESAT-6 gene clusters in the 

phenotypical differences distinguishing these two groups of mycobacteria.

In conclusion, this study has highlighted several important aspects of mycobacterial genomics 

and has greatly contributed to the current body of knowledge concerning the mechanisms of antigen 

secretion. This work not only presented the identification and characterization of a novel 

mycobacterial protease gene family, it also led to the identification of an immunologically important 

gene cluster within which this family is situated. It provided proof for the presence of the genes of 

important secreted antigens within dedicated transporter-encoding operons and also identified the 

promoter driving the expression of at least one of the important T-cell antigens of the ESAT-6 gene 

family. Most importantly, it provided invaluable insight into the mechanisms of sec-independent 

protein secretion in the mycobacteria. Finally, this study provided evidence that the duplications of 

the ESAT-6 gene clusters/PE/PPE proteins are involved in the division between fast and slow-growing 

mycobacterial species. This work lays the foundation for further research into the characterization of 

the specific functions of the members of the mycosin, ESAT-6 , PE and PPE multigene families. The 

data presented in this study, supported by the discussed literature, indicates that these gene families 

may be important in disease pathogenesis and may present interesting candidates for drug design 

and to evaluate as components for anti- tuberculosis subunit vaccines.
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