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Abstract

Accounting for Proof Test Data in a Reliability Based

Design Optimisation

M. Ndashimye

Thesis: MScEng (Mech)

March 2015

Recent studies have shown that considering proof test data in a Reliability
Based Design Optimization (RBDO) environment can result in design improve-
ment. Proof testing involves the physical testing of each and every component
before it enters into service. Considering the proof test data as part of the
RBDO process allows for improvement of the original design, such as weight
savings, while preserving high reliability levels.

Composite Over-Wrapped Pressure Vessels (COPV) is used as an example
application of achieving weight savings while maintaining high reliability levels.
COPVs are light structures used to store pressurized �uids in space shuttles, the
international space station and other applications where they are maintained at
high pressure for extended periods of time. Given that each and every COPV
used in spacecraft is proof tested before entering service and any weight savings
on a spacecraft results in signi�cant cost savings, this thesis put forward an
application of RBDO that accounts for proof test data in the design of a COPV.

The method developed in this thesis shows that, while maintaining high
levels of reliability, signi�cant weight savings can be achieved by including
proof test data in the design process. Also, the method enables a designer
to have control over the magnitude of the proof test, making it possible to
also design the proof test itself depending on the desired level of reliability for
passing the proof test.

The implementation of the method is discussed in detail. The evaluation
of the reliability was based on the First Order Reliability Method (FORM)
supported by Monte Carlo Simulation. Also, the method is implemented in a
versatile way that allows the use of analytical as well as numerical (in the form
of �nite element) models. Results show that additional weight savings can be
achieved by the inclusion of proof test data in the design process.
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Uittreksel

Die Gebruik van Proeftoetsdata in Betroubaarheids

Gebaseerde Optimering

(�Accounting for Proof Test Data in a Reliability Based Design Optimisation�)

M. Ndashimye

Tesis: MScIng (Meg)

Maart 2015

Onlangse studies het getoon dat die gebruik van ontwerp spesi�eke proef-
toets data in betroubaarheids gebaseerde optimering (BGO) kan lei tot 'n
verbeterde ontwerp. BGO behels vele aspekte in die ontwerpsgebied. Die
toevoeging van proeftoets data in ontwerpsoptimering bring te weë; die toet-
sing van 'n ontwerp en onderdele voor gebruik, die aangepaste en verbeterde
ontwerp en gewig-besparing met handhawing van hoë betroubaarsheidsvlakke.
'n Praktiese toepassing van die BGO tegniek behels die ontwerp van druk-
vatte met saamgestelde materiaal bewapening. Die drukvatontwerp is 'n ligte
struktuur wat gebruik word in die berging van hoë druk vloeistowwe in bv.
in ruimtetuie, in die internasionale ruimtestasie en in ander toepassings waar
hoë druk oor 'n tydperk verlang word. Elke drukvat met saamgestelde mate-
riaal bewapening wat in ruimtevaartstelsels gebruik word, word geproeftoets
voor gebruik. In ruimte stelselontwerp lei massa besparing tot 'n toename in
loonvrag.

Die tesis beskryf 'n optimeringsmetode soos ontwikkel en gebaseer op 'n
BGO tegniek. Die metode word toegepas in die ontwerp van drukvatte met
saamgestelde materiaal bewapening. Die resultate toon dat die gebruik van
proeftoets data in massa besparing optimering onderhewig soos aan hoë be-
troubaarheidsvlakke moontlik is. Verdermeer, die metode laat ook ontwerpers
toe om die proeftoetsvlak aan te pas om sodoende by ander betroubaarheids-
vlakke te toets.

In die tesis word die ontwikkeling en gebruik van die optimeringsmetode
uiteengelê. Die evaluering van betroubaarheidsvlakke is gebaseer op 'n eer-
ste orde betroubaarheids-tegniek wat geveri�eer word met talle Monte Carlo
simulasie resultate. Die metode is ook so geskep dat beide analitiese sowel
as eindige element modelle gebruik kan word. Ten slotte, word 'n toepassing
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getoon waar resultate wys dat die gebruik van die optimeringsmetode met die
insluiting van proeftoets data wel massa besparing kan oplewer.
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Chapter 1

Introduction

1.1 Background

R
eliability Based Design Optimisation (RBDO) methods have been in-
vestigated over the past few decades. They are currently considered to

be important design methods since almost all engineering problems present as
there is a certain level of uncertainty in the parameters of almost all engineer-
ing problems. In RBDO processes, reliability indices for each of the failure
modes of a system are calculated and those reliability indices are then used to
estimate the overall probability of failure of the system.

In various areas of engineering such as aerospace, a limited number of com-
ponents are manufactured and weight reductions are extremely important. In
some cases, where high levels of safety are required like NASA for example,
each and every component is proof tested before being used. A new RBDO ap-
proach proposed by Venter and Scotti (2010) has shown that the consideration
of the proof test data in the design process can allow further weight savings
without loss of the overall reliability of the component.

In this thesis, this RBDO method that accounts for proof test data is
applied to the design and life estimation of a Composite Over-wrapped Pressure
Vessel (COPV). The aim is to illustrate the method and prove that the method
is better than the more traditional methods. In the thesis the versatility of
the method is explored by implementing the method using an analytical model
of a COPV in the �rst instance, then a Finite Element Model (FEM) of the
COPV for more accuracy and �exibility.

COPVs are lighter structures than all metal pressure vessels. They are
mostly used as fuel storage tanks on-board spacecraft. Pressurised �uids con-
tained in COPVs have the potential of causing fatal accidents if they are re-
leased suddenly due to the failure of the vessel. Design standards for COPVs
have been developed over the past four decades. Until now, there is no deter-
ministic mechanism to determine the life span of a COPV because it can fail
at an unanticipated time due to stress rupture.

Stress rupture is a failure mode of COPVs as a result of composite degrada-

1
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CHAPTER 1. INTRODUCTION 2

tion. Stress rupture depends on the stress in the composite, the temperature
and the period of time the COPV stays loaded. This degradation results in
a sudden structural failure of the COPV. The stress rupture can occur while
the COPV is maintained at stress levels below its ultimate strength for an
extended period of time. The stress rupture failure mechanism is complex, not
well understood, and di�cult to predict accurately (McLaughlan and Forth,
2011).

In this study, a reliability-based design method is applied to the design of
COPVs in order to ensure that the COPV will remain reliable at a stress level
set by the designer for a period of time also de�ned at the design stage. For
this reason, the stress rupture of COPVs is modelled using the Strength Decay
Model (SDM) developed by Reeder (2012). The model is based on the concept
that the strength of �bres in the overwrap of the COPV deteriorates over time.
Stress rupture occurs when the decayed strength falls below the level of the
applied stress.

1.2 Objectives

The two main objectives of this project are namely:

1. The implementation of the RBDO method that accounts for proof test
data.

2. Application of the method to the design of a real engineering component
that has been designed using other standard design methods, in order to
prove the advantages of the newly developed method over the existing
design methods.

The design of a COPV has been chosen as the application of the method. The
design tool that was developed in this study will allow for the use of both an
analytical model and a Finite Element Model (FEM) of the vessel. The vessel
is designed using deterministic methods and reliability-based design methods
with consideration of proof test data and without consideration of proof test
data. Results are then compared to prove the bene�ts of including proof test
data in the design process.

The main objectives are accomplished through the completion of the fol-
lowing steps,

� Become familiar with the current techniques used for optimisation and
simulation in industry.

� Become familiar with �nite element modelling software (SimXpert, Pa-
tran).

� Become familiar with the Python programming environment.
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� Implement the RBDO method that accounts for proof test data using
Python with the option of coupling it with �nite element analysis tools
(Nastran).

� Become familiar with the design of COPVs.

� Apply the RBDO method that accounts for proof test data to the design
of COPVs and compare the method to standard design methods used in
industry.

1.3 Thesis Overview

This thesis is composed of six chapters laid out as follows,

� Chapter 1 is an introduction in which there is a brief background of the
project and its objectives.

� Chapter 2 is a literature review on which the subsequent sections are
built. The literature review explains in a broad way RBDO, the inclusion
of proof test data in the design process and the design of COPVs.

� In Chapter 3 the focus is on the deterministic design of a COPV. In
this chapter two design approaches, one using an analytical model and
another using a �nite element model are applied to the design of a COPV,
results of both methods are then compared and discussed.

� In Chapter 4 RBDO of a COPV is further discussed, two models of the
COPV are again used, an analytical model and a �nite element model.

� In Chapter 5 the focus is on the consideration of proof test data in a
RBDO environment of COPVs. Again, two models of the COPV are
considered.

� In Chapter 6 conclusions are presented and recommendations for further
studies are made.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 2

Literature Review

Design is one of the major components of engineering. Along with the quick
advancement in computational technology, engineering design also keeps grow-
ing at a remarkable pace. Powerful computers have enabled the design of new
tools that can handle complex engineering problems with large numbers of
parameters. They have also enabled designers to achieve a higher level of
accuracy using modelling and simulations. In this chapter an insight into engi-
neering design is provided with focus on Reliability Based Design Optimisation
(RBDO) that accounts for proof test data. Also, the design of Composite Over-
wrapped Pressure Vessels (COPVs) is reviewed with the objective to use it as
an illustrative example in subsequent chapters.

2.1 Introduction to Reliability Based Design

Optimisation (RBDO)

Engineering design consists of sizing components of a system so that the whole
system satis�es de�ned criteria of performance, cost, durability and safety.
However, in most cases the design process is not straightforward due to the ex-
istence of uncertainties in parameters of the design that needs to be accounted
for. The basic formulation of an engineering design optimisation problem is
the determination of a set of design variables that maximises or minimises
a system performance function while satisfying a set of system performance
constraints.

Most designers assume that design variables are deterministic and account
for uncertainties that exist in modelling, simulation, manufacturing processes
and uncertainties in system usage such as extreme loads and structural strength
degradation over time by means of safety factors. This type of design is re-
ferred to as deterministic design. In contrast, in a reliability based design
environment, all uncertain parameters of the design problem are considered as
random variables, and uncertainties in design variables are directly taken into
consideration using appropriate probability distributions.

4
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2.1.1 Deterministic Design

In a deterministic design optimisation, the aim is to de�ne a set of values that
minimise the performance function and at the same time satisfy constraints
imposed on the system to be designed, such us maximum load, failure stress
and so on.

Typically, a deterministic design problem is formulated as (Vanderplaats,
1984):

Minimise: f(x)

such that: gi(x) ≤ 0 i = 1,m

xloweri ≤ xi ≤ xupperi i = 1, n (2.1.1)

where x is a vector of n design variables, f(x) is the objective function, gi
is the ith constraint that models the ith failure mode of the system out of m
failure modes and xloweri and xupperi are respectively lower and upper boundaries
on the design variables. All equations and variables in this formulation are
deterministic. Uncertainties in variables are taken into consideration using
safety factors.

Safety factors are determined depending on the level of reliability that
needs to be achieved and the nature of the problem. Let us use the Load and
Resistance Factor Design (LRFD) method to illustrate the deterministic design
optimisation. As illustrated in Fig. 2.1, the load L and the resistance R are
both random variables with probability density functions fL(L) and fR(R),
with mean µL and µR and standard deviation σL and σR respectively. The
shaded area on the graph, which is the overlap between the curves of probability
distributions of the load and the resistance represents the probability of failure.

fR(R)

fL(L)

P
D
F

µL µRL̃R̃ L,R

Figure 2.1: Reliability evaluation of a load - resistance design optimisation

According to Haldar and Mahadevan (2000) there are three factors that
in�uence the size of the overlap between the two curves,
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CHAPTER 2. LITERATURE REVIEW 6

1. The positions of the curves relative to each other, that is, the means of
the two variables. Increasing the distance between the two curves reduces
the overlap.

2. The dispersion of the two curves, that is the standard deviations of the
two variables. Small values of standard deviations will result in narrow
curves and small overlap.

3. The shapes of the curves, that is, the probability distribution function.

The goal of design optimisation is to �nd optimal values that reduce the overlap
region as much as possible. The deterministic design approach reduces the risk
of failure by shifting the positions of the curves. This is achieved by using safety
factors. The approach is to make sure that the nominal resistance R̃ is greater
than the nominal load L̃ by a safety factor de�ned as

SF =
R̃

L̃
(2.1.2)

The nominal resistance R̃ and the nominal load L̃ are deterministic values
obtained from statistical analysis. Data for the analysis can be obtained by
performing tests on components or using values provided in data logs. The
nominal resistance is a �xed value smaller than the mean resistance. It is
calculated to be below the mean resistance by the product of deviation and a
correction factor referred to as a K-factor.

R̃ = µR − kRσR (2.1.3)

In the same way, the nominal design load is a �xed value taken above the mean
load. It is calculated to be the sum of the mean load and the product of a
correction factor and the standard deviation. Applying the safety factor to the
load, the �nal expression of the design load is,

L̃ = SF (µL + kLσL) (2.1.4)

The safety factor can be applied to the load, to the resistance or to both.

2.1.2 RBDO

In deterministic design optimisation described in the previous section, all de-
sign parameters of the system are deterministic, and uncertainties are taken
into account by means of safety factors. This approach often leads to over-
designing some parts of the system and eventually under-designing others. A
rigorous method of designing reliable systems is the individual consideration
of uncertainties in design parameters, that is, using random variables to de�ne
the parameters of the system instead of deterministic values, and designing a
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system that has reliability standards that have been de�ned by the designer
beforehand.

In the RBDO framework, a design model can generally be de�ned as(Haldar
and Mahadevan, 2000):

Minimise: f(x)

such that: P (F ) ≤ Pf

xloweri ≤ xi ≤ xupperi i = 1, n (2.1.5)

where x is a vector of n design variables, f(x) is the objective function,
P (F ) is the probability of system failure F , Pf is the maximum probability of
failure allowed for the design, xloweri and xupperi are respectively the upper and
lower boundaries on the design variables.

In most instances, engineering systems have to satisfy more than one crite-
rion or constraint related to each of its failure modes, and the evaluation of the
system reliability is a combination of more than one probability of failure. The
combination of individual probabilities of failure into a system probability of
failure depends on many factors. According to Haldar and Mahadevan (2000)
the most predominant factors are the following:

1. The contribution of each of the individual failure events to the system
failure

2. The statistical correlation between individual failure events

3. Post failure status at the component level and system level

4. Parallelism in the system

5. Progressive failure of components.

For an individual failure mode, Fi, the probability of failure is,

P (Fi) = P (Gi ≤ 0) (2.1.6)

where Gi is the limit-state surface, or failure surface which represents a state
beyond which the structure can no longer ful�l the function for which it was
designed. The probability of failure is then calculated as,

Pf =

∫
. . .

∫
g(X1,X2,...,Xn)≤0

f(X1, X2, . . . , Xn)dX1dX2 . . . dXn (2.1.7)

where f(X1, X2, . . . , Xn) is the joint probability density function for the ba-
sic random variables X1, X2, . . . , Xn. This expression is often referred to as
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the probability integral over the failure set, and 1 − Pf is referred to as the
reliability.

1− Pf =

∫
. . .

∫
g(X1,X2,...,Xn)>0

f(X1, X2, . . . , Xn)dX1dX2 . . . dXn (2.1.8)

The corresponding reliability index is

β = Φ−1(1− Pf ) (2.1.9)

where Φ is the standard normal distribution function, and Φ−1 its inverse.
The probability integrations in Eq. A.0.1 and Eq. 2.1.8 are visualised with a
two-dimensional case in Fig. 2.2.

Figure 2.2: Probability integration surface and contours in original space (Du,
2005).

All the points on the contours have the same probability density. Note that
generally contours are not circular. The limit state g(X1, X2) is also plotted on
the X1, X2 plane. The probability integrations in Eq. A.0.1 and Eq. 2.1.8 are
the volumes underneath the surface of the joint probability density function
f(X1, X2), in the failure region and safe region respectively.
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2.2 Reliability Analysis

Direct evaluation of the probability integration is extremely di�cult due to the
fact that �rstly, the integration is multidimensional, the dimensionality is typi-
cally high for engineering applications. Secondly, the integrand f(X1, . . . , Xn),
which is the joint probability distribution function, is generally non-linear.
Lastly, the integration boundary g(X1, . . . , Xn) is in general non-linear and
multidimensional.

The easiest method commonly used to estimate the reliability in structural
engineering is the Standard Monte Carlo simulation technique (SMC) (Olsson
et al., 2002). SMC techniques have the advantage of being simple to understand
and to execute, they give solutions which converge towards the exact proba-
bility of failure, when a su�cient number of simulations are carried out. The
drawback is that for small values of probability often encountered in structural
engineering, the amount of computation time required is prohibitively large.

In most cases, a reasonable approach is to use analytical approximations of
Eq. A.0.1. The �rst and second order reliability methods are the most widely
used analytical methods. The advantage of the analytical methods is that, they
often do not require large computation time. The drawback is that they do
not provide exact results for the failure probabilities, but only approximations.

A suitable method is the one which gives acceptable estimates of the prob-
ability at an acceptable computational cost. Therefore, the choice of a method
has to be justi�ed. The justi�cation may be based on a veri�cation of the
method by another relevant method. Analytical methods can generally be
veri�ed by simulation methods, which are considered as veri�ed if a su�cient
number of experiments are carried out.

2.2.1 Monte Carlo Simulation

Monte Carlo simulation refers to any technique of statistical sampling used
to approximate solutions to quantitative problems. Any problem modelled
using random variables represented by their respective probability distribution
functions, can be simulated using the Monte Carlo method. This is achieved
by simulating the full system many times, each time randomly choosing a value
for each variable from its probability distribution.

To evaluate the failure or reliability of an engineering system with a limit-
state represented by Eq. A.0.1, all the random variables in the equation are
assumed to be statistically independent. The Monte Carlo simulation consists
of drawing samples of the variables according to their probability distribution
density functions and feeding them into the equation g(X1, X2, . . . , Xn). The
event of failure is realised when the drawn sample yields g(X1, X2, . . . , Xn) < 0.
Let Nf be the number of simulations where g(X1, X2, . . . , Xn) < 0 and N the
total number of simulations. The estimated probability of failure is then

Pf =
Nf

N
(2.2.1)
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The accuracy of Monte Carlo simulation depends on the number of itera-
tions used in the simulation process. One way of evaluating the accuracy of the
method is the calculation of the coe�cient of variation (COV) of the estimated
probability of failure. The COV is a dimensionless value de�ned as the ratio
of the standard deviation to the mean.

Assuming that the simulation is a sequence of N independent Yes/No ex-
periments depending on whether g(X1, X2, . . . , Xn) < 0 or not, the Monte
Carlo Simulation can be considered as an experiment counting the number of
failures in a sample of size N drawn with replacement, and the number of fail-
ures out of N trials can be considered to follow a binomial distribution. The
coe�cient of variance of a binomial distribution for a Monte Carlo process is
then given by the expression

COV (Pf ) =

√
(1− Pf )Pf

N
Pf

(2.2.2)

where Pf is the estimated probability of failure. Therefore, a su�cient number
of simulation cycles should satisfy the relation

N ≥ 1− Pf
PfCOV (Pf )2

. (2.2.3)

Commonly a coe�cient of variation of 10% is used for engineering problems (Li
et al., 2013) and the su�cient number of simulation cycles can be estimated

to be greater than
100

Pf
.

2.2.2 Analytical Approximation Methods

The direct evaluation of the probability integral being cumbersome, the eval-
uation of reliability requires approximations. Depending on the shape of the
failure region, a �rst order or a second order Tylor series approximation of the
limit state function may be used. Methods developed based on these approxi-
mations are referred to as First Order Reliability Method (FORM) and Second
Order Reliability Method (SORM) respectively, they are the most widely used
approximation methods in reliability analysis. A broad discussion of both
methods is presented in Appendix A and Appendix B.

2.3 System Reliability

Up to this point, we have explored reliability analysis for a single failure mode
or limit state function. Real life problems are presented in the form of systems
which are collections of components connected together to perform a function
for which the system is designed with a certain level of reliability.
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System reliability depends on the reliabilities of the individual components
of the system, as well as the way the components are interconnected within
the system. In most cases, relationships between components are complex and
di�cult to be understood fully.

In a reliability analysis environment, relationships between components are
modelled depending on the contribution of components to the system failure
event. In cases where the system failure occurs when any of the components
fail, the system is referred to as a series system (or a weak link system) and
the system failure is de�ned by the union of individual component failures.

P (Fs) = P (F1 ∪ F2 · · · ∪ Fn) (2.3.1)

Alternatively, if the system failure occurs after the failure of all the compo-
nents, the system is referred to as a parallel system (or redundant system) and
the system failure is de�ned by the intersection of the individual components
failures. Fig. 2.3 illustrates series and parallel systems.

P (Fp) = P (F1 ∩ F2 · · · ∩ Fn) (2.3.2)

Figure 2.3: Series and parallel systems

In general, engineering systems are de�ned by a combination of series and
parallel subsystems.

2.3.1 Parallel Systems

In the standard normal space, the probability of failure of a parallel system is
evaluated using the integral

P (Fp) =
1√

(2π)n|cor|

∫ ∞
βn

. . .

∫ ∞
β1

exp

[
−1

2
UTcor−1U

]
dU1 . . . dUn (2.3.3)

where cor is the correlation matrix, an n × n matrix made of coe�cients of
correlation between individual components of the system.

The analytical evaluation of Eq. 2.3.3 is extremely di�cult for large number
of variables as is the case in reliability analysis of engineering systems. Alterna-
tively the integral can be evaluated using numerical integration, approximating
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the answer or bounding the answer. Numerical integration is e�cient when
the number of variables is lower than 500 (Venter and Scotti, 2010). In this
thesis, a numerical integration algorithm developed by Genz (1992) is used to
evaluate the probability of failure of parallel systems numerically.

2.3.2 Series Systems

The series system probability of failure cannot directly be evaluated using
Eq. 2.3.3. The integral represents the intersection of individual failure modes,
and the series system probability is de�ned by the union of failure modes.

To evaluate the series system reliability, the expression of system reliabil-
ity is transformed into an expression that uses intersections. There are two
possible ways to transform the expression of the series system into an expres-
sion that uses intersections. The �rst approach is to express the probability of
failure Fs in terms of its complement F s as

P (Fs) = 1− P (F s) = P (F1 ∪ F2 · · · ∪ Fn) (2.3.4)

Then using the De Morgan's rule (Haldar and Mahadevan, 2000) the expression
is further transformed into

P (Fs) = 1− P (F1 ∩ F2 ∩ · · · ∩ Fn) (2.3.5)

The right side of Eq. 2.3.5 can now be evaluated using Eq. 2.3.3. A second
alternative is the use of probability mathematics to express unions in terms of
intersections, as an example of a two components series system the expression
will be transformed as

P (F1 ∪ F2) = P (F1) + P (F2)− P (F1 ∩ F2) (2.3.6)

and for a three component series system the expression will be transformed as

P (F1 ∪ F2 ∪ F3) =P (F1) + P (F2) + P (F3)− P (F1 ∩ F2)− P (F1 ∩ F3)

− P (F2 ∩ F3) + P (F1 ∩ F2 ∩ F3)

(2.3.7)

Again after transformation, the expressions obtained are sums of which the
terms are either probability of failure of individual components of the system
which can be easily evaluated or probability of failure of intersections of two
or more components which can be evaluated using Eq. 2.3.3.

The �rst approach has the advantage of having just one multivariate in-
tegral but the subtraction of numbers that are very close to each other can
cause loss of accuracy. The second approach has the disadvantage that the
number of terms grows exponentially with an increase of the number of failure
modes. In the second approach, the sum of probability of failure of individual
failure modes is the most important part of the sum. An upper limit to the
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probability of failure can be obtained by just considering these terms with the
advantage of evaluating only univariate integrals. In this case the probability
of failure of the system will be estimated by

P (Fs) = min

(
1,

n∑
i=1

P (Fi)

)
(2.3.8)

2.4 Reliability Accounting for Proof Test Data

Reliability of a design is the probability that the strength of the designed
system is higher than the load that will be applied to it. As explained in
previous sections and illustrated in Fig. 2.1, the probability of failure represents
the overlap between the distributions of load and strength.

A proof test is a non-destructive test performed before a newly designed
system enters service. During a proof test the system is basically subjected to
loads that exceed its operational load to prove that the system is safe and can
operate within the design margins.

After the proof test, the probability of failure becomes a conditional prob-
ability of failure which is the probability of failure given that the system has
successfully passed the proof test. In this study the assumption that the sys-
tem has passed the proof test successfully is used. This means that we assume
that the system does not fail the proof test and the system continues to be
fully functional after the proof test. Graphically, a successful proof test cuts
o� the tail of the strength distribution (Venter and Scotti, 2010) as illustrated
in Fig. 2.4.

Figure 2.4: Strength distribution after proof testing

The conditional probability of failure is represented by the shaded area
in Fig. 2.5. The proof test reduces the probability of failure, this reduction
in probability of failure can be quanti�ed and included in the design process
(Venter and Scotti, 2010).
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Figure 2.5: Reliability evaluation of a load - resistance design optimisation with
proof test data

The RBDO optimisation problem de�ned in Eq. 2.1.5 using the probability
of failure P (F ) then becomes

Minimise: f(x)

such that: P (F |A) ≤ Pf

1− P (A) ≤ Pproof

xloweri ≤ xi ≤ xupperi i = 1, n

plowerj ≤ pj ≤ pupperj j = 1, np (2.4.1)

where A represents the event of passing the proof test, 1− P (A) is the proba-
bility of failing the proof test, Pf is the maximum probability of failure allowed
for in the design, Pproof is the maximum allowable probability of failing the
proof test and pj are magnitudes of the components of the proof load.

In this RBDO optimisation formulation, the designer �xes the probability
of failing the proof test depending on implications of failing the proof test.
For example, for a structural design, where failing the proof test is not costly,
the designer can allow higher risk of failing the proof test and get signi�cantly
higher weight savings, and in cases where the cost of failing the proof test is
high, the designer can prefer successful proof tests over weight savings.

In addition, this RBDO method allows the designer to have control over
the proof test. In fact, the design has variables that describe the magnitude of
the proof test loads, therefore, the designer is empowered with the ability to
design the system and the proof test simultaneously.

2.5 Conditional Reliability

The conditional probability is the probability of occurrence of an event given
that another event occurred, this is called the probability multiplication rule.
Haldar and Mahadevan (2000) states that

P (A ∩B) = P (A|B)P (B) (2.5.1)
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where P (A|B) is the conditional probability, from the multiplication rule, the
conditional probability can be calculated as

P (A|B) =
P (A ∩B)

P (B)
(2.5.2)

Therefore, for a single mode of failure and a single proof test, the conditional
probability of failure given that the design has passed the proof test success-
fully, is

P (F |A) =
P (F ∩ A)

P (A)
(2.5.3)

The numerator and the denominator of this fraction are evaluated using the
integral 2.3.3 for n = 2 and n = 1 respectively. The integrals are computed
using the Genz algorithm.

A system conditional probability of failure implies the consideration of mul-
tiple failure modes and multiple proof tests. Again the system can be a parallel
system or a series system.

For a parallel system, the condition probability of failure is given by

P (Fp|A) =
P (Fp ∩ A)

P (A)
=

(P (F1 ∩ F2 ∩ · · · ∩ Fnf ) ∩ P (A1 ∩ A2 ∩ · · · ∩ Anp))
P (A1 ∩ A2 ∩ · · · ∩ Anp)

(2.5.4)
In this case the numerator is evaluated using the Eq. 2.3.3 for n = nf + np
where nf is the number of system failure modes and np the number of proof
tests. The denominator is also evaluated using the Eq. 2.3.3 for n = np. Both
integrals can be computed using the Genz algorithm.

For a series system, the condition probability of failure is given by

P (Fs|A) =
P (Fs ∩ A)

P (A)
=

(P (F1 ∪ F2 ∪ · · · ∪ Fnf ) ∩ P (A1 ∩ A2 ∩ · · · ∩ Anp))
P (A1 ∩ A2 ∩ · · · ∩ Anp)

(2.5.5)
In this case only the denominator can be directly evaluated using the integral
2.3.3 for n = np, the numerator has to be transformed to have only intersec-
tions, the two approaches used to calculate the series system probability of
failure introduced in Section 2.3.2 are applicable. The �rst approach that uses
the complement and the De Morgan Rule gives

P (Fs|A) = 1− P (F p ∩ A)

P (A)

= 1−
(
P (F 1 ∩ F 2 ∩ · · · ∩ F nf ) ∩ P (A1 ∩ A2 ∩ · · · ∩ Anp)

)
P (A1 ∩ A2 ∩ · · · ∩ Anp)

(2.5.6)

The second approach uses the mathematics of probability to express unions
using intersections, for example, a system conditional probability of failure
with two failure modes will be transformed as

P (Fs|A) =
P (F1 ∪ F2) ∩ A)

P (A)
=
P (F1 ∩ A)

P (A)
+
P (F2 ∩ A)

P (A)
− P (F1 ∩ F2 ∩ A)

P (A)
(2.5.7)
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After transformation using either approach the �nal expressions can be evalu-
ated using the integral 2.3.3 then computed using Genz algorithm.

Using numerical experimentation, Venter and Scotti (2010) found that the
�rst approach is more computationally involved than the second approach.
This is due to the fact that the Genz algorithm doesn't converge easily for the
integration of the numerator of Eq. 2.5.6. On the other hand, they have found
that, although the number of terms on the right hand side of Eq. 2.5.7 could
be large, the Genz algorithm converges easily for all of these terms. Also, using
the second approach, the upper bound of P (Fs|A) given by

P (Fs|A) = min

(
1,

nf∑
i=1

P (Fi|A)

)
(2.5.8)

can be used to approximate P (Fs|A) without signi�cant loss of accuracy.
Therefore, the second approach was used in this project.

2.6 Implicit Limit State Functions

In previous sections we discussed the evaluation of the probability of failure
assuming that a di�erentiable limit state function is available. However, in
most engineering problems an analytical limit state function is not available.
The performance function is commonly computed using numerical methods
such as �nite element analysis, dynamic simulation or computational �uid
dynamics.

In a situation where the limit state is not available reliability can be eval-
uated using three approaches (Haldar and Mahadevan, 2000): Monte Carlo
simulation, approximation of the limit state and uncertainty analysis.

Monte Carlo simulation has been introduced in Subsection 2.2.1 using ex-
plicit limit state functions. The same approach can be used for implicit limit
state functions provided that there is a possibility of changing the input val-
ues of the numerical method used to compute the limit state of the system.
Again, the method becomes highly computationally expensive for small values
of probability of failure.

The approximation of implicit limit states is carried out collecting data
using a few simulations in the estimated neighbourhood of the MPP. Then a
�rst or second order polynomial is �tted to the data using regression analysis
methods such as the least square method. Once the polynomial is available the
same techniques used in the case of explicit limit state functions are applicable.

Uncertainty analysis investigates how uncertainty in the output of a nu-
merical model can be allocated to di�erent sources of uncertainty in its inputs.
Uncertainty based analysis is in general more e�cient compared to the other
two methods. In this approach, sensitivities of the limit state are calculated
using perturbation methods such as the �nite di�erence method (Haldar and
Mahadevan, 2000), iterative perturbation analysis techniques (Ho and Cao,
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1991) and the score function or likelihood method (Rubinstein and Shapiro,
1993).

In this thesis, the �nite di�erence method is preferred due to its simplic-
ity and versatility. In the �nite di�erence method, each of the variables is
perturbed at a time and the change in the limit state is calculated, the �nite
di�erence method is discussed in Appendix ??.

In reliability analysis using implicit limit states FORM is preferred because
it requires only �rst order derivatives. Second order derivatives required in
SORM increase computational cost and can be a signi�cant source of errors
due to signi�cant round-o� errors and series truncations.

2.7 Composite Over-wrapped Pressure Vessels

(COPV)

2.7.1 Introduction to COPV

Pressure vessels are closed containers designed to hold �uids at pressures sig-
ni�cantly higher than the ambient pressure. COPVs are formed by an ultra
thin walled metal tank that plays the role of a liner over-wrapped by a com-
posite composed of continuous high tensile �bres that carry the pressure loads
combined with cured resin that maintain the �bres in position and carry shear
loads.

The �rst composite pressure vessel was designed in 1919 in an attempt
to use gas as fuel for motor cars (Kaemp�ert, 1919). It was a tank with a
15 cm diameter spirally wound with two layers of steel tape. The domes of the
vessel were connected by high tensile strength wires to prevent rupture in the
longitudinal direction. The vessel could withstand pressures up to 69 MPa.

Rocket motor cases were the �rst composite over-wrapped structures that
used �lament winding technology (Peters et al., 2011). The project was initi-
ated in the cold war when light structures were needed for long range missiles.
Any weight savings could be used to increase either the range of the missile or
its payload.

The �rst �lament wound COPV was made in the 1970's when the NASA
Fire-�ghter's Breathing System Program requested the industry to manufac-
ture a lightweight and higher-pressure compressed air vessel. A glass �bre
COPV weighing half the weight of the existing metal vessel was suggested.
The COPV received certi�cation in 1975, and commercial production was ini-
tiated. Since then, the COPV technology has matured and �bre technology
has expanded from glass to Kevlar and Carbon composites leading to further
weight reductions.

COPVs are made by winding a band of �bres impregnated with wet resin
around a mandrel and curing it. Fibre reinforced structures are particu-
larly attractive in applications where weight savings are crucial such as avia-
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tion and aerospace applications because of their high directional strength and
sti�ness-to-density ratios. Especially, �bre-reinforced composites are suited for
COPV, mainly because the loads in cylindrical pressure vessel are inherently
anisotropic, that is, the loads in the hoop direction σh are double the loads in
the axial direction σa and the loads are dominated by tension as can be seen
in Fig. 2.6.

Figure 2.6: Pressure vessel loaded by internal pressure (Mian et al., 2013)

In applications where weight savings are crucial, COPVs are preferred to
the widely used isotropic all-metal pressure vessels because of their higher
pressure vessel e�ciency η (Kaushik et al., 2004) de�ned by the equation,

η =
PV

W
(2.7.1)

where P , V and W are the burst pressure of the vessel, its volume and its
weight respectively. The use of COPVs allow weight savings in the range of
30% to 50% compared to all-metal pressure vessels (McLaughlan and Forth,
2011). Typical COPVs are shown in Fig. 2.7.
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Figure 2.7: Typical COPV

Pressurising the COPV may cause cracks in the resin matrix and cause
leakage of the �uids contained in the vessel. To prevent leakage COPVs are
lined with rubber, plastic or ultra thin metals. Also, during the manufacturing
process, the liner is used as a mandrel over which the composite is wrapped.
In some cases the liner is strong enough to share part of the load with the
composite over-wrap and is called a load-sharing liner.

COPVs are designed to contain large amounts of energy that can cause
fatal accidents if released instantly. NASA has identi�ed four major failure
modes of COPVs (McLaughlan and Forth, 2011) as listed below, along with
measures that are taken in order to mitigate the failure.

1. Burst from over-pressurisation. This failure mode is mitigated by proof-
testing the vessel and controlling the pressurisation source.

2. Fatigue failure of the liner, mitigated by visual observation of liners to
eliminate liners with signi�cant �aws. Also, proper safety factors are
used while de�ning the vessel cycle life.

3. Burst from damage, mitigated using proper protection from damage and
visual inspection of surface damages before pressurisation.

4. Stress rupture of the composite. Unlike isotropic metal vessels, COPV
can fail due to static fatigue or stress rupture of the �bres in the com-
posite. This is a sudden failure of the COPV that occurs if it has been
maintained below its maximum operating pressure for a long period of
time. The failure is the result of degradation of the �bres over time. It
cannot be detected by current technology. Experiments have shown that
stress rupture depends on time, pressure and temperature. Using experi-
mental data, it has been shown that stress rupture can be predicted using
Weibull distributions (Lorie et al., 2006). In this thesis, stress rupture is
modelled using the strength decay model developed by Reeder (2012).
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2.7.2 COPV Design Requirements

A standard COPV is made of an ultra thin metallic liner over-wrapped with
reinforcing �bres and an epoxy matrix. It can be regarded as a shell of revo-
lution, covered by a net with a particular pattern that depends on how it has
been wound. Typical loads applied to a COPV consist of internal pressure,
P , and externally applied axial load, Fa, resulting from the vessel interfacing
with other structural components.

Conceptually, pressure vessels can have any shape, however, due to manu-
facturability issues, surface of revolution such as cylinders, cones and sections
of spheres are preferred shapes for pressure vessel designers. The most popular
shape of pressure vessels is a cylinder with two dome shaped end caps referred
to as domes. The shape of the domes is chosen depending on the �bre winding
pattern. The most e�ective winding pattern is the geodesic winding pattern in
which the �bres follow geodesic paths which are the shortest distances between
the tangent lines where the cylindrical part of the vessel ends, and the polar
openings of the vessel. Geodesic patterns of �bres have an in�uence on the
shape of the dome. The shaping of a geodesic dome is explained in subsequent
sections.

The design of the COPV is driven by its geometric limits, operational
requirements, ultimate structural loads and sti�ness, environmental require-
ments such as temperature and the required overall reliability of the vessel.
COPV design parameters are given in Table 2.1 along with typical values that
those parameters can take.
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Table 2.1: COPV design requirements

Parameters Typical values

Geometry:
Length 67.6 cm
Diameter 42.2 cm

Operational requirements:
Operating pressure 30 MPa
Minimum burst pressure 37.5 MPa
Proof test pressure 45 MPa
Tank weight 13.5 kg
Internal volume 65 l
Pressurant He, O2, . . .
Shell leakage 10−6 scc/s

Interface structural strength:
Compression −525 kN/m
Tension +470 kN/m
Shear and torsion ±350 kN/m
Bending sti�ness 2.9× 109 N/m2

Environment requirement:
Temperature −95◦C to 60◦C
Humidity 100% RH
Life span > 10 years

Safety factors:
Proof factor 1.25
Minimum burst 1.5

Material requirement

Metals Aluminium, Titanium, . . .
Fibre Kevlar, Carbon
Epoxy Epon 826, Cyanate ester, . . .

Reliability 0.9999

2.7.3 Finite Element Model of a COPV

COPVs are shells of revolution, if the composite is quasi-isotropic and the
vessel is subjected to an axisymmetric loading, it can be modelled using an
axisymmetric �nite element model, otherwise, it is modelled using a three
dimensional �nite element model. In case a 3D model is chosen, its geometry
is either imported as a CAD model or drawn by revolving the pro�le of the
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COPV around its axis. The angle of revolution can be 90◦, 180◦ or 360◦

depending on whether a quarter model, a half model or a full model is desired.
The pro�le of a COPV depends on the choice of the shape of the dome which

can be spherical, ellipsoidal, geodesic and so on. Equations that de�ne various
shapes are available, they are used to generate lists of (x, y, z) coordinates
of points which are then connected using cubic splines to get a smooth curve.
The pro�le of the cylindrical part of the COPV is obtained by drawing a line
that connects the curves describing the domes. Depending on whether both
domes have the same shape or not, it might be necessary to model the full
vessel or just half of it using adequate symmetries.

After de�ning the geometry, the next step is the de�nition of the composite
overwrap layout. The composite is considered a layered orthotropic material,
each layer having a di�erent thickness and winding angle. In practice, there
are two types of layers, helical layers and hoop layers. Helical layers cover the
entire vessel and they are balanced, that is, for every layer with a winding
angle α, there is a corresponding layer with a winding angle −α(SIMULIA,
2007). The winding angle and thickness of helical layers are not uniform.

The winding angle varies according to Eq. 2.7.2 (SIMULIA, 2007)

α(r) = sin−1
(r0

r

)
± δ

(
r − r0

rtl − r0

)n
(2.7.2)

where α(r) is the wind angle at radius r, r0 is the radius at the helical
turnaround point, rtl the radius at the dome-cylinder tangent line. The thick-
ness varies according to Eq. 2.7.3 (SIMULIA, 2007)

t(r) =
rtlttl cos(αtl)(

r + 2BW

(
rtl − r
rtl − r0

)4
)

cos(α(r))

(2.7.3)

where t(r) is the thickness at radius r, ttl the thickness of helical layer at the
tangent line, αtl is the wind angle at the tangent line, and BW the winding
band width. Hoop layers cover only the cylindrical part of the vessel, they
have a uniform thickness and they are wound at 90 degrees reference taken
from the axis of the vessel.

A COPV model is meshed using shell elements to which ply material prop-
erties are assigned. Ply materials are de�ned considering each of the layers
composing the overwrap separately and assigning to them 2D-orthotropic ma-
terial properties, orientation angles and thicknesses.

Loads applied to a COPV �nite element model are internal pressure,thermal
loads and axial loads originating from the interaction of the vessel with other
structural components. Boundary conditions depend on whether an axisym-
metric or 3D model of the vessel is considered. Also, the 3D model can be full,
half or quarter depending on the loading of the vessel.

The model as set up is then analysed. The output of a COPV model
analysis can be set to give results at ply level referred to as layered results
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where stresses and deformations are given for each individual ply. In contrast,
the output can be set to give results of the composite as a whole without
considering individual plies, these results are referred to as non-layered or
global results, they can be averages or maximums of layered results.
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Chapter 3

Deterministic Design of a
Composite Over-wrapped Pressure
Vessel (COPV)

The focus of the current study is to demonstrate the bene�ts of proof test
data in Reliability-Based Design Optimisation (RBDO) over other more tra-
ditional design methods. The theory underpinning the deterministic and the
reliability-based design approaches with and without proof test data, is re-
viewed in Chapter 2. In this and subsequent chapters we will discuss the
application of these design approaches on a real life engineering problem. By
comparing results of the three design approaches, we will be able to showcase
the bene�ts of including proof test data in the design process.

The design of COPV has been chosen as an application for the method
developed in this project. The chosen COPV was designed by Kawahara and
McCleskey (1966) and improved by Tam et al. (2002). The vessel has been
chosen because it has been manufactured, successfully proof tested and certi�ed
for commercialisation.

This chapter is dedicated to the deterministic design of the COPV. The
focus is on the optimisation of the composite overwrap. The liner is considered
to be as thin as possible, and therefore does not contribute to the structural
strength and is thus not included in the optimisation process. To ensure that
the current design is realistic, the original design of the COPV was used as a
benchmark.

At the beginning of the chapter the design requirements are speci�ed, this
is followed by a detailed design optimisation of the COPV. Two designs are
carried out, one is based on an analytical model of the COPV and the other on
its �nite element model. The comparison of the results of the two designs as
well as the comparison of both results to the original design will be provided
at the end of this chapter.

24
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3.1 Design Requirements

The COPV is designed to hold 67.3 litre of Helium at a pressure of 3.1 MPa
and a temperature of 60◦C. The COPV was proof tested by pressurising it at
a pressure 1.25 times its operating pressure. The proof test pressure is referred
to as proof pressure in subsequent sections. The minimum burst pressure,
that is the maximum internal pressure the COPV can withstand, is estimated
to be 1.5 times its operating pressure. Detailed requirements are provided in
Table 3.1 and in Fig. 3.1 .

Table 3.1: COPV design speci�cations

Parameter Requirement

Maximum Operating Pressure 3.1 MPa
Proof Pressure 3.875 MPa
Minimum Burst Pressure 4.65 MPa
Size 422 mm dia. × 676 mm length
Tank Weight 13.4 kg maximum
Operating Temperature −95.5◦C to 60◦C
Fibres Carbon T1000
Resin Epoxy
Winding Pattern Geodesic

Figure 3.1: COPV dimensions
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3.2 The Analytical Model

An optimisation problem as described in Eq. 2.1.1, consists of minimising (or
maximising) a function of the design variables referred to as the objective func-
tion taking into account some limitations or constraints on the system to be
designed. The objective function as well as the constraints can be mathemati-
cal equations that express the performance of the system and its limitations. In
this case, the model of the system is referred to as an analytical model. Alter-
natively, the role of these mathematical expressions can be played by black-box
software such as �nite element models or computational �uid dynamics mod-
els. In this section, the optimisation of a COPV based on its analytical model
is presented.

3.2.1 Design Variables

The design of the COPV has two types of parameters. The �rst type involves
pre-assigned parameters that are de�ned as requirements by the design. These
are, the inner radius of the cylindrical part of the vessel R , the length of the
cylindrical part Lcyl, the maximum operating pressure P , radii of the forward
and aft polar openings of the vessel respectively RE_FWD and RE_AFT , the
material to be used as well as the winding technique that will be used to build
the vessel. In the current design, a geodesic winding is considered. All these
parameters are de�ned in Table 3.1. The second type involves design variables,
of which the values are the outcome of the optimisation. The variables of a
COPV design are the thickness of the hoop windings and the thickness of the
helical windings.

3.2.2 Objective Function

The optimisation of a COPV is concerned with maximising its internal volume
and maximum allowable pressure while minimising its weight. In the current
study the internal volume of the vessel and its operating pressure are prede-
�ned parameters, therefore, the objective function is the weight of the pressure
vessel. The calculation of the thickness and weight of the composite and the
determination of the winding angle are discussed in Appendix D.

3.2.3 Environmental In�uence on Composite Structures

The design of composite structures takes into consideration the in�uence of
external factors such as changes in temperatures, humidity and corrosive agents
since they can a�ect mechanical performance of the structure by changing its
physical properties (Gosavi et al., 2014).

Elevated temperatures can decrease the strength of the structure by thermal
softening. In this project, the in�uence of thermal softening was neglected
because we consider all the loads to be carried by �bres longitudinally loaded,
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and experiments have shown that the longitudinal strength and tensile modulus
of a unidirectional composite ply remains almost for temperatures ranging from
−120◦C to −120◦C (Gosavi et al., 2014; Nettles and Biss, 1996).

Composite matrices can absorb moisture by exposure to humid environ-
ments. The moisture enters through the surface and then di�uses through the
matrix and can a�ect the mechanical performance of the composite. This en-
vironmental in�uence on the composite can be avoided using special coatings
that reduce moisture absorption.

3.2.4 Design Constraints

Constraints applied to the design originate from the requirements related to
the maximum strength of the vessel, the life span of the vessel and its preferred
failure modes. These constraints will be elaborated on one by one.

3.2.4.1 Structural Integrity

Composite material failure characterisation is still debatable unlike the status
of failure characterisation for isotropic materials. The two failure theories that
are widely adopted for isotropic materials, namely the Von Mises Criterion and
the Tresca Criterion are not applicable to composite materials (Christensen,
2005) simply because both theories predict that the uni-axial tension and com-
pression will be the same and both are independent of a superimposed mean
normal stress.

A number of theories for composite failure characterisation are available,
amongst others, the maximum stress criterion, the Tsai-wu criterion and the
Tsai-Hill are widely used in laminate composite (Christensen, 2005). In this
thesis, the Tsai-Wu criterion is used.

The Tsai-Wu failure criterion is given by the equation (Wu and Tsai, 1971)(
1

Xt

− 1

Xc

)
σ1 +

(
1

Yt
− 1

Yc

)
σ2 +

σ2
1

XtXc

+
σ2

2

YtYc
+ 2F12σ1σ2 +

σ12

S2
< 1 (3.2.1)

where σ1 and σ2 are respectively stresses in the axial (1) and transverse (2)
directions of the �bres. X and Y are respectively strengths in the axial and
transverse directions, subscripts t and c stand for tension and compression
respectively, S is the shear strength and

F12 = −1

2

√
1

XtXcYtYc
(3.2.2)

3.2.4.2 Life Span of the Vessel

Experimental data show that a COPV can fail after a certain period of time
if it is maintained at a lower pressure than the acceptable operating pressure
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(McLaughlan and Forth, 2011). This phenomenon is referred to as stress rup-
ture. It is thus crucial to include the time to failure in the design process and
design a structure that will last long enough for the application for which it is
designed.

A COPV that fails as a result of stress rupture does not present any ap-
parent signs like leakage or cracks before the failure occurs. Stress rupture is
thus an unpredictable and an unanticipated failure mode of COPVs. From ex-
periments, it has been shown that stress rupture is a function of the stresses in
the composite, the operating temperature and the time (Murthy and Phoenix,
2009; Pat B. McLaughlan et al., 2011).

To mitigate stress rupture, COPVs are maintained at pressures much lower
than their burst pressure, typically less than half the burst pressure (Pat
B. McLaughlan et al., 2011). Also, reliability models developed based on exist-
ing data are used to predict the likelihood of stress rupture (Lorie et al., 2006).
However, models used to date don't account directly for the initial strength
of the �bre, they simply model the life span of the �bre depending on their
loading and operating conditions.

In this thesis, a model developed by Reeder (2012) under the assumption
that the pressure vessel material is factory-made with an initial strength S0

that deteriorates over time, was used. The model is referred to as the strength
decay model. However, the initial strength cannot be speci�ed with certainty
because the strength of the �bres varies from one spool to the next and there is
no technique available to date that can be used to measure the initial strength
of a �bre in a COPV without destroying it.

The strength of �bres wound on a loaded COPV will decay until falling
below the value of the applied stress, causing the failure of the COPV. In the
strength decay model, the �bre strength at any instant of time T before the
time of failure Tf is given by

s(T ) = σ

(
1− T − Tf

d

)1/b

(3.2.3)

where b is a shape parameter of the strength decay curve and d is a scaling
parameter that scales the rate of the strength decrease.
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Figure 3.2: Strength decay model parameters(Reeder, 2012)

As can be seen from Fig. 3.2, b = 1, results in a linear strength decay curve,
and for larger values of b the strength decay curve tends to be constant with
a faster decrease as the strength approaches the value of the applied stress.
The shape of the curve �ts the behaviour of stress rupture, where the COPV
does not show any signs of weakness until it fails suddenly. It can also be seen
from Fig. 3.2 that the bigger the value of d, the longer the COPV life span.
Constants b and d are intrinsic properties of materials; they are determined
comparing the strength decay material with experimental data (Reeder, 2012).
At the instant T0 = 0, the strength s(T0) = s0. Plugging these values in
Eq. 3.2.3 we get

s0

σ
=

(
1 +

Tf
d

)1/b

(3.2.4)

Assuming that the COPV is subjected to a constant uniform loading through-
out its life span, the time to failure will be given by

Tf = d

((s0

σ

)b
− 1

)
(3.2.5)

Reliability methods such as FORM, Eq. 3.2.5 can be used to estimate the
probability that a COPV loaded at a constant stress σ will fail after a period
of time Tf . However, the initial strength s0 in Eq. 3.2.5 is unknown and cannot
be estimated with certainty, it can only be represented by a random variable S
of which the distribution is established through testing or using existing data
available in data logs.
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For carbon �bres (IM6), the strength decay model parameters as deduced
from data analysis are b = 0.04 hr and d = 147 (Reeder, 2012). Typically,
COPVs are designed to last at least ten years in service, which means Tf =
87658 hours. The life span constraint is thus expressed as,

d

((s0

σ

)b
− 1

)
> 87658 (3.2.6)

3.2.4.3 Preferred Failure Mode of the Structure

A failure of the vessel originating from the hoop windings is preferred compared
to a helical failure. The reason a failure in hoop direction is preferred is that
it is easily predictable and depends only on the shell loading of the vessel. To
ensure that the vessel will fail in the hoop windings, the ratio of the helical
�bre stress to the hoop �bre stress is set to be less than one. Typically, the
stress ratio is chosen between 60% and 85% (Peters et al., 2011). In this study,
we used a stress ratio of 75%. The stress ratio (SR) is given by the equation

SR < 0.75
σx
σy

< 0.75 (3.2.7)

where σx is the stress in the axial direction and σy the stress in the hoop
direction.

3.2.5 Optimisation Process

For deterministic optimisation, uncertainties in design parameters are taken
into consideration by means of safety factors. According to Eq. 2.1.3 and
Eq. 2.1.4, the strength of materials is calculated to be the mean strength
reduced by the product of a correction factor and the standard deviation. The
correction factor is referred to as the K-factor.

The correction factor depends on the test sample size and the required
reliability and level of con�dence. In this project a correction factor of 3
and a safety factor of 1.5 are assumed. In practice, it requires 35 tests to
obtain a K-factor of 3 for a normally distributed parameter if a reliability of
99% is required with a con�dence level of 95% (Venter and Scotti, 2010). It
is also assumed that all parameters of the current design are uncorrelated,
normally distributed random variables. This assumption is not realistic since
parameters like the strength of materials are known to be distributed following
an exponential distribution. However, the assumption can be achieved by
means of appropriate change of variables (Haldar and Mahadevan, 2000).

Values of the mean and standard deviation (Std Dev) representing the
normal distribution for each of the design parameters are provided in Table 3.2.
Note that for the thicknesses, only the standard deviation value is given. The
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reason is that, these parameters are not prede�ned and will be obtained as a
result of the optimisation process.

The standard deviation for the thickness has been chosen to be in the order
of the thickness of two plies which is about 0.2 mm. The standard deviation
of the pressure is likely to be small due to the existence of accurate loading
facilities; it is assumed to be 5%. For the strength of materials, it has been
found from experiments that a deviation of 12% exists in measurements (Duell
et al., 2008). The standard deviation in the time to failure is likely to be large;
it is chosen to be 50%. For the winding angle, a standard deviation of 10% is
assumed.

Table 3.2: Normal distributions of design parameters

Parameter Unity Mean Std Dev

Thickness of hoop plies (th) m − 2× 10−4

Thickness of helical plies (ta) m − 2× 10−4

Pressure(P) Pa 3.1× 106 1.55× 105

Winding angle(α) ◦ 6 0.6
Time to failure (Tf ) Hours 87660 43830
Longitudinal tensile strength(Xt) Pa 1.5× 109 0.18× 109

Transverse tensile strength(Yt) Pa 40× 106 4.8× 106

Longitudinal compressive strength(Xc) Pa 1.5× 109 0.18× 109

Transverse compressive strength(Yc) Pa 246× 106 29.52× 106

The optimisation process is carried out using the sequential quadratic pro-
gramming algorithm (SQP) of the DOT1 suite. Given that the SQP method is
sensitive to the starting point and can be easily trapped in a local minimum,
the optimisation is performed for 36 di�erent starting points and the best local
solution is chosen. A sampling method based on the translational propagation
algorithm (Viana et al.) has been used to generate the starting points. The
algorithm is based on translations of small building blocks or seeds consisting
of one or more points in the design space. The distribution of starting points
is represented in Fig. 3.3. Starting points were generated assuming that the
thickness is in the range of 1 mm to 5 mm.

1Design Optimisation Tools by Vanderplaats Research & Development, Inc. (Vander-
plaats Research & Development, 2001)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. DETERMINISTIC DESIGN OF A COMPOSITE

OVER-WRAPPED PRESSURE VESSEL (COPV) 32

Figure 3.3: Distribution of starting points in the design space

A graph of sorted results considering various starting points is represented
in Fig. 3.4. The optimal weights are sorted to show how many times the
optimisations resulted in a particular local minimum.

Figure 3.4: Sorted optimal weights

For the optimal solution, the optimisation was completed after 5 iterations,
the �rst and the third constraints were active, and none of the constraints were
violated. Results are reported in Table 3.3.
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Table 3.3: Results of the analytical deterministic design

Parameter Value

th (mm) 3.04
ta (mm) 2.78
ttotal (mm) 5.82
Weight (kg) 6.52

3.3 Finite Element Model

The �nite element model of the COPV was created using MSC Patran 2012.
The software was chosen because it features the MSC Laminate Modeller, a
tool which has a wide range of options for composite material creation. An
in depth discussion of the model creation and analysis is given in subsequent
subsections.

3.3.1 Geometry

The geometry of the 1/8 of the COPV was generated by creating its pro�le,
then revolving it through 90 degrees around the axis of symmetry for the vessel.
The 1/8 model is preferred because the overwrap of the COPV has an axial
symmetry and the only loading that is considered is an internal pressure which
is also symmetric about the axis of the COPV.

The ideal shape of the vessel is one which allows all the �bres to be wound in
such a way that they will experience a uniform tension throughout their length
when the vessel is loaded. This is achieved by designing domes that allow the
�bres to be wound following an isotensoid pattern which is achieved by winding
the �bres following geodesic paths in the dome parts of the vessel. Also, �bres
wound following geodesic paths do not slip during the winding process (Peters
et al., 2011) and that contributes to the reduction of void spaces which are air
spaces trapped in the composite during the winding process.

A geodesic path is a curve connecting two points on a surface and follow-
ing the shortest path. The design of a geodesic dome is obtained by creat-
ing geodesic lines between the vessel polar opening and the cylindrical part
of the vessel. The geodesic dome pro�le is obtained from the elliptic inte-
gral 3.3.1(Kabir, 2000; Kumar and Kumari, 2012).

z̄(r̄∗) = −
√

1− r̄2
0

∫ r̄∗

1

r̄3dr√
r̄2 − r̄2

0 − r̄6 (1− r̄2
0)

(3.3.1)

where z is the axial coordinate, r the radial coordinate, r0 the radius of the

polar opening, and R the radius of the cylindrical part. r̄ =
r

R
, z̄ =

z

R
and

r̄0 =
r0

R
The above elliptic equation has a point of in�ection at r̄ = 1.225r0 as

illustrated in Fig. 3.5.
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Figure 3.5: Geodesic pro�le

From the in�ection point to the opening, another geodesic pro�le is de�ned
using the following equation (Kumar and Kumari, 2012),

z̄(r̄∗) = −r̄2
f

√
1− r̄2

0

∫ r̄∗

r̄f

r̄
√
r̄2 − r̄2

0dr√(
r̄2
f − r̄2

0

)
− r̄4

f ((1− r̄2
0) r̄2 (r̄2 − r̄2

0))
+ z̄f (3.3.2)

where z̄f = z̄(r̄∗ = rf ) and rf = 1.225r0 is the radius at the point of in�ection.
To obtain the pro�le of the COPV, the centre of the COPV is set to lie at the

origin of the coordinates, and Eq. 3.3.1 and Eq. 3.3.2 are integrated considering
the radius to be lying on the X coordinates. Since the two openings are not of
the same size, each dome is considered separately. The geometry of the vessel
is shown in Fig. 3.6.

Figure 3.6: Geometry of the COPV

3.3.2 Finite Elements

The model has been meshed using QUAD4 elements. Mesh seeds are �rst
applied on all curves in order to obtain a uniform mesh. To ensure the conver-
gence of the model, mesh re�nement was applied. The �nal model had 4560
elements in total and 4690 nodes. The mesh is shown in Fig. 3.7
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Figure 3.7: COPV QUAD4 mesh

3.3.3 Loads and Boundary Conditions

In this study, the only load that is applied to the COPV is the internal pres-
sure. Axial loads due to interfacing between the vessel and other mechanical
components, as well as thermal loads are not considered.

The application of loads and boundary conditions is achieved by setting
three conditions:

� A uniform pressure of 3.1 MPa applied to all elements of the model.

� Cylindrical coordinates with the Z axis coinciding with the axis of the
vessel are used to create boundary conditions. Edges parallel to the axis
of the vessel are �xed in the θ direction. The edge perpendicular to the
axis of the vessel is �xed in the Z direction and the polar point �xed in
the r and θ directions.

3.3.4 Composite Material De�nition

Composite material refers to material made by the combination of two or
more constituent materials. In material science, the combination of two or
more materials can result in a �nal material that has better structural prop-
erties compared to the constituents. Often, composite materials are preferred
to homogeneous material because of their high strength, lightness and cost
e�ectiveness.

The de�nition of composite materials depends on the manufacturing pro-
cess. The composite in COPV is made of continuous �bres wound over a liner
acting as a mandrel. It is composed of many layers wound at di�erent angles.
Hoop windings are wound at an angle of 90◦ reference taken as the axis of the
COPV and helical windings are wound at an angle α measured from the vessel
axis. The axial winding angle is calculated using Eq. E.0.2. An angle of 6◦ is
calculated for the current design.
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MSC-Laminate Modeler is a PATRAN tool dedicated to the creation of
laminated composite material. Three levels of material properties are created
successively in order to create laminate material properties (MSC, 2012).

1. Homogeneous materials are created using PATRAN, typically these ma-
terial are orthotropic, they represent �bres together with resin.

2. Composite materials are created using Patran. Composite materials ref-
erence the homogeneous materials and transform them by adding on
manufacturing process data such as thickness of plies, initial warp/weft
angle and maximum strain. These materials also specify how plies are
laid up by specifying a sequence of plies with their respective composite
materials, thicknesses and orientations.

3. 2D shell layered material properties are created referencing to the com-
posite material created at the second stage. A reference direction is
chosen for plies that have been laid up at the second stage and an ap-
plication region is chosen. Additional options such us the composite
material o�set, non-structural weight, reference temperature and others
can be speci�ed at this stage.

Homogeneous material properties that represent �bres together with the
resin can be deduced from material properties of isotropic �bres and isotropic
resin by means of a micro-mechanics analytical method referred to as the rule
of mixtures. The rule of mixtures is discussed in Appendix ??.

Composite material properties obtained using the rule of mixtures and
material properties for carbon T1000 (Toray, 2008) and Epon 826 (Hexion,
2005) are reported in Table 3.4.

Table 3.4: Carbon-Epoxy composite material properties

Property Unity Carbon Epoxy Composite

Longitudinal modulus (E11) GPa 294 2.75 177.5
Transverse modulus (E22) GPa 294 2.75 6.8
Shear modulus (G) GPa 113.08 0.97 2.38
Poisson's ratio (ν12) − 0.3 0.42 0.35
Density (ρ) kg/m3 1800 1160 1544

After creation of homogeneous materials, the composite layup is created by
specifying the orientation of plies relative to a chosen direction, their number
and the sequence in which they are stacked on top of each other.

In the current study, the composite needs to be quasi-isotropic. That is, it
needs to be equally strong in hoop and helical directions. In order to obtain
a quasi-isotropic composite, plies need to be balanced. That means, for each
ply wound at an angle α there is a corresponding ply wound at an angle −α.
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For a COPV, ply sequences on the cylindrical part of the vessel are di�erent
from the ply sequences on the domes, the reason being that hoop windings
only cover the cylindrical part. Taking the axis of the vessel as a reference and
recalling that α = 6◦, plies on the cylindrical part of the current model are
stacked in the order 90◦, 6◦, −6◦, 90◦ as illustrated in Fig. 3.8. Each ply has
a thickness of 0.1 mm and 56 plies are used for a total thickness of 5.6 mm.

Figure 3.8: Composite layup

Winding angle on the dome changes continuously as the �bre leaves the
tangent line where the dome is connected to the cylinder all the way up to the
polar opening, as illustrated in Fig. 3.9.

Figure 3.9: Path of the �bre
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The winding angle at any point of the dome is calculated using the Clairaut's
theorem (Madhavi et al., 2009; Jianqiao et al., 2012),

r sinα = Constant (3.3.3)

where r is the radius at the point measured from the axis of the vessel and
α is the winding angle between the �bres and a direction of reference. In the
current model the reference direction has been chosen to be the element x-axis,
that is, the side joining the �rst to the second node, and it coincides with the
φ direction of the spherical coordinates system, as illustrated in Fig. 3.9.

Taking into consideration the fact that at the beginning of the dome the
winding angle (α) is equal to the winding angle over the cylinder αcyl, we get

r sinα = R sinαcyl

sinα =
R

r
sinαcyl (3.3.4)

Inserting the value of αcyl as in Eq. E.0.1 we obtain the expression of winding
angles over the domes as

sinα =
RE

r

α = sin−1

(
RE

r

)
(3.3.5)

where RE is the radius measured from the axis to the centre of the winding
band adjacent to the polar opening. Fig. 3.10 pro�les how the winding angle
changes from the aft polar opening of the vessel to its forward polar opening.
The angle varies from 90◦ at the opening to 6◦ at the beginning of the cylinder.
It stays constant over the cylinder and varies again at the beginning of the other
dome, where it varies from 6◦ to 90◦ at the other opening.

Figure 3.10: Change in winding angles along the axial direction
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3.3.5 Material Properties of Elements

The composite is modelled using CQUAD4 shell elements. Element properties
are de�ned using PCOMP composite properties. These properties are used to
model layered composite. The �bres of these layers are unidirectional. They
are de�ned by specifying each layer's composite material, its thickness and its
orientation.

The composite layout depends on the winding angle which also depends
on the radius, see Eq. 3.3.5. Over the cylinder, the layout is uniform but over
the domes the layup is subjected to a continuous change as the radius changes
continuously. To account for the change in angles, PCOMP material properties
are de�ned using a Python script, the script sorts elements depending on the
radius from the axis of the vessel at which the elements are located and assigns
to those elements materials properties corresponding to the angle of the �bre
at that speci�c radius.

3.3.6 Analysis

The analysis was carried out using MSC Nastran 2012 linear solution SOL
101. The solver has the ability to provide ply based results as well as element
based results. In this study, we needed the value of the maximum stress in the
composite. Therefore, the output of the solver was set to be the non-layered
element stresses using the option of maximum stress.

3.3.7 Optimisation Process

The same optimisation process as in the analytical model case was followed,
and DOT SQP algorithm was used again. The di�erence resides in the fact
that the stresses were now calculated using a �nite element model (FEM) for
more accuracy. To replace equations with the FEM, there is need to exchange
data between the optimiser and the FEM. An interfacing method between the
two software has been developed using Python. At each optimisation iteration,
the method reads the f06 output �le of Nastran and extracts the value of the
maximum stress in hoop plies, that is, plies wound at 90◦ and the maximum
stress in helical plies, that is, plies wound at 6◦. Also, the interfacing method
updates values of the design variables in the bdf input �le of Nastran before a
new optimisation iteration starts. Results are reported in Table 3.5.

Table 3.5: Results of the FEM design

Parameter Value

th (mm) 2.95
ta (mm) 2.66
ttotal (mm) 5.61
Weight (kg) 6.63
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3.4 Comparison of Analytical Model and Finite

Element Model Results

In this section, results obtained in previous sections for the analytical and
the �nite element models are compared. Also, both results are compared to
results of the original design of the vessel. The comparison is based on the
total thickness and the total mass, as given in Table 3.6.

Table 3.6: Comparison of results for deterministic designs

Parameter Original Analytical FEM
Design Model Model

ttotal(mm) 5.6 5.8 5.6
Weight (kg) 6.61 6.52 6.63

The �nite element model results are a bit lower compared to results of the
analytical model, in the order of 4%, this is the result of the accuracy of stresses
calculated using the �nite element model. The maximum stress is found at the
pole opening as shown in Fig. 3.11. The high stress at the pole opening is due
to stress concentration (Jianqiao et al., 2012).

Figure 3.11: Von Mises stresses in the composite shell of the deterministic design
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The weight estimated using Eq. D.0.20 is small compared to both the weight
of the original design and the weight of the �nite element model. The formula
does not give the exact value of the weight, but it provides good estimates for
a preliminary design.
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Chapter 4

Reliability Based Design
Optimisation (RBDO) of a
Composite Over-wrapped Pressure
Vessel (COPV)

In Chapter 3, the deterministic design optimisation of a COPV based on both
analytical and �nite element models was presented. In this chapter, an RBDO
of the COPV is presented. The COPV is designed so that it can achieve
the same reliability level as the deterministic design presented in Chapter 3.
The aim is to show that conserving the same level of reliability, a lighter
structure can be designed using reliability-based optimisation methods. First,
there is a reliability analysis of the COPV using the First Order Reliability
Method (FORM). The reliability obtained will then be set as the minimum
allowed probability of failure of the COPV in the RBDO process as speci�ed
by Eq. 2.1.5. In the present work, Monte Carlo Simulations will be used to
check results obtained using FORM.

4.1 Evaluation of the Probability of Failure

The reliability of the COPV is evaluated using FORM. As seen in Subsec-
tion ??, after transformation of all random variables from their original spaces
to the standard normal space and the linearisation of the limit state, the evalua-
tion of the reliability becomes an optimisation problem described by Eq. A.0.11.

To solve this optimisation problem, a Newton - Raphson type recursive
method was used. The method is initialised by setting a starting point u∗0,
then recursively updating the MPP using the formula

u∗k+1 =
1

|∇g(u∗k)|
2 [∇g(u∗k)u

∗
k − g(u∗k)]∇g(u∗k) (4.1.1)
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Where ∇g(u
∗
k) is the gradient vector of the performance function at u

∗
k, and

the kth iteration point. Note that k refers to the iteration number. Therefore,
u∗k is a vector with components {u∗1k, u∗2k, . . . , u∗nk}, where n is the number of
random variables.
The algorithm is repeated until at least one of the following convergence con-
ditions is satis�ed,

1. |u∗k − u∗k−1| ≤ δ

2. |g(u∗k)| ≤ ε

Where δ and ε are small quantities, say 0.001.
The recursive method is graphically represented in Fig. 4.1, where a is a nor-
malised vector of direction cosines evaluated at the design point as

ai =

(
∂g

∂ui

)
(u∗)√

n∑
i=1

((
∂g

∂ui

)
(u∗)

)2
(4.1.2)

Figure 4.1: MPP recursive search method

The FORM procedure can be summarised as follows:

I. Transform the original random variables to standard normal random vari-
ables using the Rosenblatt transformation,

II. Solve the optimisation problem to �nd the MPP in the standard normal
space which gives the value of the reliability index β.

III. Calculate the probability of failure Pf = Φ(−β)
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Fig. 4.2 provides a �owchart summarising the algorithm to compute the reli-
ability index, as it has been proposed by Haldar and Mahadevan (2000), the
algorithm was implemented using Python.

Figure 4.2: Flowchart of the FORM method.

The design of the COPV is subjected to four constraints that include two
constraints that set stresses in hoop and helical plies to be less than the max-
imum tensile strength of the �bres, a constraint that ensures that the stress
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rupture will not occur while the COPV is in service and a condition of the
preferable failure region. Since any failure due to these three constraints will
result in the failure of the COPV, the reliability of the COPV is calculated
as a series system reliability of the three failure modes. The reliability of the
system is then calculated as the union of the three failure modes. The unions
in the expression of the reliability are transformed into intersections using the
transformation in Eq.2.3.7. After transforming the expression, the system re-
liability integral given by Eq. 2.3.3 is calculated using a numerical integration
method developed by Genz (1992) referred to as the Genz Algorithm. The
method is described in Appendix G.

4.2 Analytical Model

In this section, the analytical model of a COPV based on the Classical Lami-
nate Theory (CLT) as discussed in Chapter 3 is used in an RBDO design of a
COPV. The minimum allowable probability of failure is set to be the probabil-
ity of failure of the deterministic design obtained in Chapter 3. The probability
of failure of the COPV is a series system probability of failure combining �ve
failure modes, which are

� The probability of failure due the structure integrity, that is the prob-
ability that the design does not satisfy the Tsai-Wu failure criterion in
hoop laminae and in helical laminae.

� The probability of failure due to strength decay in hoop and helical lam-
inae.

� The probability of failure due the stress ratio.

The system probability of failure is evaluated using FORM alongside with
the Genz algorithm. Using the probability distribution data of the design
parameters de�ned in Table 3.2, a probability of failure of 1.08× 10−6 was ob-
tained. The accuracy of the result was checked using Monte Carlo simulation.
108 Monte Carlo experiments were used to obtain a value of 1.05× 10−6.

The probability of failure of the analytical model were then set as the
minimum allowable probability of failure for the RBDO optimisation problem
formulated as,

Minimize: Weight

such that: Ps(F ) < 1.08× 10−6

10−3 ≤ th, ta ≤ 10−2 (4.2.1)

where th and ta are the hoop and the helical plies thicknesses respectively.
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The values of the thicknesses obtained using the RBDO design as well as
the weight of the structure are reported in Table 4.1

Table 4.1: Results of the analytical RBDO design

Parameter Value

th (mm) 2.87
ta (mm) 2.85
ttotal (mm) 5.72
Weight (kg) 6.33

Results show that a RBDO design with the same probability of failure as a
deterministic design allows weight savings in the order of 3% of the weight of
the deterministically designed COPV. The deterministic design takes care of
stresses in hoop and helical plies only and the result is a fully stressed design
with stresses that respect the stress ratio. Conversely, the RBDO design is
only concerned with probabilities of failure. In the deterministic design only
the Tsai-Wu failure criterion in hoop direction is critical when it comes to
probability of failure. But in the RBDO design both the Tsai-Wu in hoop plies
and the stress ratio failure mode are critical, as can be seen in Table 4.2.

Table 4.2: Individual probabilities of failure for the deterministic and the RBDO
designs

Mode of failure Pf Deterministic Pf RBDO

Tsai-Wu criterion for axial layers 1.32× 10−9 1.04× 10−9

Tsai-Wu criterion for hoop layers 1.8× 10−6 9.68× 10−7

Stress rupture for axial layers 6.2× 10−16 6.2× 10−16

Stress rupture for hoop layers 6.2× 10−16 6.2× 10−16

Stress ratio condition 3.1× 10−10 1.18× 10−7

Where Pf stands for probability of failure.

4.3 Finite Element Model

In this section, the same �nite element model as used in Chapter 3 was used
to illustrate the design of the COPV using an RBDO method that calculates
stress in the composite using a �nite element model. The probability of fail-
ure of the Finite Element Model (FEM)-based deterministic design discussed
in Chapter 3 was evaluated using FORM. The same procedure was used to
evaluate reliability for the FEM-based RBDO. A system probability of failure
of 1.08 × 10−6 found for the deterministic design was set as the maximum
allowable probability of failure for the RBDO design.
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The same optimisation problem as in the case of the analytical model was
solved using the SQP algorithm of DOT. Results are summarised in Table 4.3.
Results show weight savings in the order of 2% compared to those in the
deterministic design while conserving the same level of reliability.

Table 4.3: Results of FEM based RBDO design

Parameter Value

th (mm) 2.84
ta (mm) 2.68
ttotal (mm) 5.52
Weight (kg) 6.48

4.4 Comparison of Analytical Model and FEM

In this section the comparison of results of the RBDO based on an analytical
model and the RBDO based on a FEM is discussed. The thicknesses of hoop
plies, the thicknesses of helical plies, the total thicknesses and the total weights
from both design approaches are compared. Table 4.4 is a summary of the
compared values.

Table 4.4: Comparison of results for RBDO design

Parameter Analytical FEM
Model Model

th(mm) 2.88 2.84
ta(mm) 2.83 2.68
ttotal(mm) 5.71 5.52
Weight(kg) 6.37 6.49

Again, as in the case of a deterministic design, the optimal dimensions
obtained using FEM-based design are a bit smaller compared to those obtained
using analytical model-based design, due to the fact that the FEM analysis
stresses are more accurate, especially for the composite over the domes. Also,
as in the case of the deterministic design, the weight of the analytical model
estimated using Eq. D.0.20 is small compared to the weight of the �nite element
model. The formula underestimates the value of the weight.
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Proof Test Data Driven RBDO of
a COPV

The main goal in this project is to use a real engineering example to prove that
accounting for proof test data in a reliability-based design approach leads to
the improvement of the original design. It is common in the design process of
mechanical components that require a high level of reliability like in spacecraft,
to proof test each and every designed component before they enter service.
However, up to now, the use of data gathered during the proof test process
has not been e�ectively used with the goal of improving on the design that is
in place before proof testing the designed component.

In this thesis, by means of a real engineering example, we illustrated and
proved the bene�ts of including proof test data in the design process. The
design of a COPV was used in previous chapters to show that the use of
RBDO methods can lead to better designs compared to the use of deterministic
methods. The same example is used in this chapter to showcase that including
proof test data in RBDO leads to the improvement of the RBDO design. The
same analytical and FEM models as in previous chapters are used to design
the vessel.

A typical design optimisation problem that accounts for proof test data is
expressed by Eq. 2.4.1. In the current study, it is assumed that the component
has passed the proof test successfully. The probability of passing the proof test
P (A) is evaluated using FORM. The conditional probability of failure P (F |A)
which is a system probability of failure given that the component has passed
the proof test successfully, it is in the form of Eq. 2.5.7. Its evaluation is done
using FORM together with the Genz algorithm.

The proof test of a COPV is carried out by pressurisation of the vessel
at pressure higher that its operating pressure. Typically, a multiplier of 1.25
is applied to the operating pressure in order to obtain the proof pressure.
However, the method used in this study provides the designer with the ability
to control the magnitude of the proof test loads by setting a probability of
success of the proof test.

48
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The choice of the probability of successfully passing the proof test is a trade-
o� between achieving higher levels of reliability, and allowing improvement of
the design. For the current project design, improvement is evaluated in terms
of weight savings. In cases where the cost of failing the proof test is bearable,
the designer can choose to set higher probabilities of failing the proof test and
achieve signi�cant weight savings. In contrast, if failing the proof test is costly,
the designer might choose to set higher probability of passing the proof test
and achieve moderate weight savings.

The allowable probability of failure of the system given that it has passed
the proof test successfully Preq is set to be equal to the probability of failure
of the deterministic design, Preq = 1.08 × 10−6. The optimisation problem is
then formulated as

Minimize: Weight

such that: P (F |A) ≤ 1.08× 10−6

1− P (A) ≤ Pproof

10−3 ≤ τhoop, τhelical ≤ 10−2

3.1× 106 ≤ pp ≤ 4.65× 106 (5.0.1)

where Ps(F |A) is the conditional probability of failure of the system given that
it has been passed the proof test successfully. 1 − P (A) is the probability of
failing the proof test. The last two constraints set the upper and lower limits
of the thicknesses and the proof pressure. Thicknesses are constrained to be
between 1 mm and 5 mm and the proof test magnitude cannot be lower than
the operational pressure or higher than the burst pressure, which is estimated
to be 1.5 times the operational pressure.

As seen in Eq. 5.0.1, the magnitude of the proof test load pp is part of the
design variables. That equips the designer with the ability to design the proof
test level by setting the probability of failing the proof test depending on the
the level of reliability he wants to achieve. In this study the optimisation is
done for di�erent values of Pproof ranging from 0% to 0.1%. A trade-o� graph
representing the variation of the proof pressure when the probability of failing
the proof test is varied, is presented in Fig. 5.1.
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Figure 5.1: Trade-o� graph betwen the proof test magnitude and the probability
of failing the proof test.

From Fig.5.1 it can be seen that including the proof test in the RBDO
design process allows for further weight savings while preserving the reliability
level as the deterministic design. In the present particular case, weight savings
of about 1.5% compared to those of the RBDO design without proof test can
be made, if a probability of failing the proof test of 1 in 1000 is allowed.
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Chapter 6

Conclusions

The work presented in this thesis was concerned with the application of Reliability-
Based Design Optimisation (RBDO) method that includes proof test data in
the design process. The method was applied to the design of a Composite
Over-wrapped Pressure Vessel (COPV). The main goal was to prove that con-
sidering proof test data in the design process can allow the designer to improve
on the original design used for the proof tested component.

Features of the design method presented in this thesis have been imple-
mented and applied to the design of a COPV. The design of a COPV was
concerned with minimisation of the weight. The method was proven to be ad-
vantageous compared to standard RBDO and deterministic methods in terms
of weight savings. Moreover, it was shown that the method enables the de-
signer to set the magnitude of the proof test load, based on the choice of a
probability of failing the proof test.

6.1 Overview

In the �rst stage of the project, a review of design tools commonly used in
industry was presented. Two design methods were of interest.

� Deterministic design optimisation

� Reliability Based Design Optimisation (RBDO).

These two design methods were assessed and set as the basis of comparison for
the method studied in this project.

For both design methods, optimisation was carried out using the Sequential
Quadratic Programming (SQP) algorithm of the Vanderplaats design optimi-
sation tools (DOT) suite. Particularly, for RBDO methods, reliability was
evaluated using the First Order Reliability Method (FORM). FORM was im-
plemented using Python based on a Newton-Raphson algorithm that searches
for the Most Probable Point (MPP)

51

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. CONCLUSIONS 52

The optimisation of the design of a COPV was concerned with weight
minimisation. The Tsai-Wu failure criterion was used to ensure the structural
integrity of the design, and the vessel was designed to last more than twenty
years in service by modelling the stress rupture failure using the strength decay
model. The COPV was modelled using both its analytical model based on the
classic laminate theory and its �nite element model developed using MSC
Patran as pre- and post-processor and MSC Nastran as a solver.

Results showed that for the same level of reliability, including proof test
data in RBDO allows signi�cant weight savings compared to standard RBDO
and deterministic design methods. It was also shown that the level of proof test
has an in�uence on the design, and the designer has control over it. Depending
on the cost that will involve the failure of a proof test, the designer can choose
to set high probability of failing the proof test and have signi�cant weight
savings, or set low probability of failing the proof test and get minor weight
savings.

6.2 Future Work

The application of the RBDO that accounts for proof test data as presented
in this thesis has proven the e�ectiveness of the method. However, the im-
plementation of the method can be improved in a number of ways to make it
more e�ective and �exible. The following are some of the improvements that
can be made to the implementation of the method,

� The use of reliability methods other than FORM. In this study, FORM
was chosen for reliability estimation. However, depending on the problem
being studied, other reliability methods such us the Second Order Relia-
bility Method (SORM) can give better reliability estimations. Therefore,
the consideration of other reliability methods can improve on the accu-
racy of reliability estimation in RBDO.

� The use of non normal correlated random variables. In the current im-
plementation of the method, all random variables are assumed to be
uncorrelated and normally distributed. In real engineering problems, pa-
rameters are often correlated and follow various probability distributions.
The consideration of correlated non normal random variables will expand
the method and make its application to a wide range of engineering prob-
lems easier.

� Considering the case where the proof test is not passed successfully. In
this study, the in�uence of a successful proof test on the design process
has been assessed. However, it might be of interest to assess the in�uence
of a failed proof test on the design process.

� Use of non gradient based optimisers. The sequential quadratic pro-
gramming method used in this study depends on the starting point,
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and in some cases the optimisation process leads to a local minimum.
The consideration of population based optimisation algorithms such us
the Particle Swarm Optimisation (PSO) or the Genetic Algorithm (GA)
would lead to a better global optimisation. Also, in some cases, discrete
optimisation algorithm are more appropriate. As an example, the use
of integer programming for the optimisation of the COPV would have
allowed to optimise not only the thickness of the composite overwrap,
but also the number of plies.

Stellenbosch University  https://scholar.sun.ac.za



Appendices

54

Stellenbosch University  https://scholar.sun.ac.za



Appendix A

The First Order Reliability
Method (FORM)

FORM is an analytical approximation method used to approximate the prob-
ability integral

Pf =

∫
. . .

∫
g(X1,X2,...,Xn)≤0

f(X1, X2, . . . , Xn)dX1dX2 . . . dXn (A.0.1)

Where f(X1, X2, . . . , Xn) is the joint probability density function for the basic
random variables X1, X2, . . . , Xn and g(X1, . . . , Xn) the limit state function.

In FORM the limit state function g(X1, . . . , Xn) is linearised by approxi-
mating it using the �rst order Taylor expansion. FORM simpli�es the prob-
ability integration using a two-step procedure. The �rst step involves the
simpli�cation of the function f(X1, . . . , Xn) so that its contours become more
regular and symmetric, and the second step is the linearisation of the integra-
tion boundary g(X1, . . . , Xn) = 0.

The simpli�cation of the integrand is achieved by the transformation of all
basic variables from their original space referred to as X, to a standard normal
space referred to as U . In the new space all the random variables U1, . . . , Un
follow the standard normal distribution. The transformation from X to U
is based on the condition that the cumulative distribution functions of the
random variables remain the same in both spaces. This type of transformation
is called the Rosenblatt transformation (Rosenblatt, 1952), which is expressed
by

FXi
(Xi) = Φ(Ui) (A.0.2)

The transformed standard normal variable is then given by

Ui = Φ−1 [FXi
(Xi)] (A.0.3)

For example, a normally distributed random variable X with mean µ and
standard deviation σ, X=N(µ, σ) is transformed into

U = Φ−1 [FX(X)] = Φ−1

[
Φ

(
X − µ
σ

)]
=
X − µ
σ

(A.0.4)
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Correlated non-normal random variables are �rst transformed into normal un-
correlated random variables using appropriate transformations (Haldar and
Mahadevan, 2000) before transformation into normal standard random vari-
ables.

After the transformation, the limit state function g(X1, . . . , Xn) will change
to g(U1, . . . , Un) denoting the transformed limit state function in the standard
space, and the fundamental equation of reliability analysis becomes

Pf =

∫
. . .

∫
g(U)≤0

f(U1, U2, . . . , Un)dU1dU2 . . . dUn (A.0.5)

The transformed probability integrations in the reduced normal space is visu-
alised with a two-dimensional case in Fig. A.1. Note that, after the transfor-
mation the contours are regular and circular.

Figure A.1: Probability integration surface in reduced standard normal space (Du,
2005).

Since all random variables are independent standard normal random vari-
ables, the joint probability density can be expressed as the product of the
individual probability densities (Haldar and Mahadevan, 2000) and it is then
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given by

f(U1, U2, . . . , Un) =
n∏
i=1

1√
2π

exp

(
−1

2
U2
i

)
(A.0.6)

and the probability integration becomes

Pf =

∫
. . .

∫
g(U)≤0

n∏
i=1

1√
2π

exp

(
−1

2
U2
i

)
dU1dU2 . . . dUn (A.0.7)

Furthermore, the probability integration is simpli�ed even more in FORM
by the use of a linear approximation of the limit state function using its �rst
order Taylor series expression

g(U) = g(U∗) +∇g(U∗)(U−U∗)T (A.0.8)

where U∗ = (U∗1 , . . . , U
∗
n) is the expansion point and ∇g(U∗) the gradient of

g(U) at U∗ given by

∇g(U∗) =

(
∂g(U)

∂U1

,
∂g(U)

∂U2

, . . . ,
∂g(U)

∂Un

)∣∣∣∣
U
∗

(A.0.9)

For an accurate approximation, the performance function has to be ex-
panded at a point that has the highest contribution to the probability inte-
gration. That is, a point located on the limit state function that has the
highest probability density, referred to as the Most Probable Point (MPP).
The mathematical model to locate the MPP is

Maximize:
n∏
i=1

1√
2π

exp

(
−1

2
U2
i

)
such that: g(U) ≤ 0 (A.0.10)

Since maximising
n∏
i=1

1√
2π

exp

(
−1

2
U2
i

)
is equivalent to minimising

n∑
i=1

U2
1 , the

problem becomes the minimisation of the norm of the vector U given by

Minimize: ‖ U ‖=

√√√√ n∑
i=1

U2
i

such that: g(U) ≤ 0 (A.0.11)

Then, the MPP is a point on the limit state that is closest to the origin in
the standard normal space, as shown in Fig. A.2.
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Figure A.2: Most probable point
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Appendix B

The Second Order Reliability
Method (SORM)

The second order reliability method (SORM) is an analytical method that
approximates reliability using the second order Taylor expansion of the limit
state function,

g(U) = g(U∗) +∇g(U∗)(U−U∗)T +
1

2
(U−U∗)H(U∗)(U−U∗)T (B.0.1)

where H(U∗) is the Hessian matrix evaluated at the design point

H(U∗) =



∂2g(U)

∂U2
1

∂2g(U)

∂U1∂U2

. . .
∂2g(U)

∂U1∂Un

∂2g(U)

∂U2∂U1

∂2g(U)

∂U2
2

. . .
∂2g(U)

∂U2∂Un

. . . . . . . . . . . .

∂2g(U)

∂Un∂U1

∂2g(U)

∂Un∂U2

. . .
∂2g(U)

∂U2
n


U=U∗

(B.0.2)

In SORM, the limit state is further simpli�ed rotating the coordinate system
by an angle θ such that the last variable Un coincides with the direction cosine
vector a oriented from the origin to the design point. Fig. B.1 illustrates the
rotation of the coordinate system for a simple example of two variables.
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Figure B.1: Rotation of coordinates

The rotation transforms the space U into a new rotated space U ′ through
the transformation

U′ = RU (B.0.3)

The rotation matrix R is obtained using Gram-Schmidt orthogonalisation of
the matrix

R0 =


1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1
a1 a2 . . . an

 (B.0.4)

where a1, a2, . . . ,an are the components of the direction cosine vector a. In
the new space the limit state function can be rewritten as

g(U′) = U ′n −
(
β +

1

2
U′TAU′

)
(B.0.5)

where A is an (n− 1)× (n− 1) matrix of which the elements are

aij =
(RHRT )ij
|∇g(U∗)|

, i, j = 1, 2, . . . , n− 1 (B.0.6)

where R is the rotation matrix, H is the Hessian matrix evaluated at the design
point in the normal standard space and |∇g(u∗)| is the norm of the gradient
vector evaluated at the design point in the normal standard space. Note that
in this expression the last variable U ′n is not considered because it coincides
with the vector β evaluated using the First Order Reliability Method (FORM)
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discussed in Appendix A. An approximation of the probability of failure is then
calculated using the theory of asymptotic approximations (Breitung, 1984) as

Pf = Φ(−β)
n−1∏
i=1

(1 + βκi)
−1/2 (B.0.7)

where κi are the principal curvatures of the limit state at the MPP. The prin-
cipal curvatures are calculated as eigenvalues of the matrix A.

Generally SORM is more accurate than FORM since it takes into consid-
eration the curvature of the limit state as illustrated in Fig. B.2. However,
SORM is not computationally e�cient since it requires the evaluation of the
second order derivatives, hence involving a large number of function evalua-
tions. Also, the probability of failure in SORM is determined using the theory
of asymptotic approximation which is accurate only when β is large, as small
values of β, SORM can be inaccurate (Haldar and Mahadevan, 2000).

Figure B.2: Comparison of FORM and SORM
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Appendix C

Finite Di�erence Method

The �nite di�erence method is based on the de�nition of partial derivatives,

∂g(x)

∂xi
= lim

∆xi→0

∆g(x∗1, x
∗
2, . . . , x

∗
i + ∆xi, . . . , x

∗
n)

∆xi
(C.0.1)

Where x∗ = x∗1, x
∗
2, . . . , x

∗
n is the point at which the derivative is evaluated and

∆xi a small variation of the variable xi. It turns out that for small values
of perturbations in variables, the ratio of the change in the limit state to
the perturbation is a good approximation of the derivative of the limit state
with respect to the perturbed variable at a given point. Therefore, the �nite
di�erence method can be used to calculate the derivatives at the MPP required
in FORM and SORM. An algorithm to compute partial derivatives at the MPP
x∗ = x∗1, x

∗
2, . . . , x

∗
n can be described as

1. Compute Z0 = g(x∗1, x
∗
2, . . . , x

∗
n)

2. Change the value of x∗1 to (x∗1 +∆x1), where ∆x1 is a small variation, say
0.001, referred to as perturbation in the value of x1, all the other variables
keeping their original values, and compute Z1 = g(x∗1 + ∆x1, x

∗
2, . . . , x

∗
n).

3.
∆Z

∆x1

=
Z1 − Z0

∆x1

approximates the derivative of g(x) with respect to x1.

4. Repeat steps 2 and 3 for each variable.
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Appendix D

Calculation of the Composite
Overwrap Thickness and Weight

The thickness of the composite can be calculated using analytical methods such
as the netting analysis (Peters et al., 2011) or the Classical Laminate Theory
(CLT) (Daniel and Ishai, 2006). In this thesis, the CLT method is used.

The CLT considers only thicknesses of �bre plies on the cylindrical part of
the COPV, stresses in the domes are not accounted for directly. To account
for stresses in the domes, a design factor known as the stress ratio is used. The
stress ratio is de�ned as the ratio of the allowable stress in the helical windings
to the allowable stress in the hoop windings. The stress ratio provides the
designer with the ability to de�ne which failure mode prevails. For ratios
lower than 90%, the hoop failure mode prevails, and for 100% and greater, the
helical failure prevails.

It is preferred to have a hoop failure because hoop failures are predomi-
nantly a�ected by internal pressure that makes them accurately predictable.
Helical failures are strongly a�ected by the bending loads, and that makes them
complex and hard to predict. Mixed-mode failures (stress ratios between 90%
and 100%) are also not recommended due to their complexity. It is therefore
recommended that a stress ratio between 60% and 85% be set (Peters et al.,
2011).

The stress ratio increases the thickness of the composite in the dome re-
gions to account for complex unknown stresses in that region. This approach
is inaccurate and can result in either over designed or under designed com-
posite plies in the dome region. For a better analysis of stresses in the dome
region that considers the shape of the dome, multiple wind angle and the resin
contribution, a �nite element analysis is preferred.

In CLT, a laminate is considered as an organised stack of plies each of which
is composed of �bres oriented in a single direction. The laminate is de�ned by
specifying the directions of its constituent plies. As an examples [90, −6, 6,
90] represents a laminate composed of 4 plies with �bres oriented in directions
speci�ed by the angles in brackets. The CLT describes elastic properties of
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laminated composites with the following assumptions,

� Laminae are perfectly bonded,

� Bond between laminae are in�nitesimally thin,

� Straight lines normal to the middle surface remain straight,

� Strain perpendicular to the middle surface is ignored.

The middle surface is then selected as a reference plane.
In CLT, two type of coordinate systems are considered, a global coordinate

system that often coincides with the loading of the laminate and is referred
to as the (x, y, s) coordinate system where s refers to the shear in the (x, y)
plane, and laminae coordinate systems referred to as (1, 2, 6) coordinate sys-
tems where 6 refers to the shear in the (1, 2) plane. The strain at any point in
the laminated composite is then given by the relation,εxεy

γs

 =

ε0
x

ε0
y

γ0
s

+ z

κxκy
κs

 (D.0.1)

where ε0
x, ε

0
y, γ

0
s are the mid-surface strains and kx, ky, ks are the curvatures

and z is the distance from the mid surface to the point where the strain is
measured.

Each lamina compliance matrix is given by the equation

S =


1

E1

−ν21

E2

0

−ν21

E2

1

E2

0

0 0
1

G12

 (D.0.2)

where E1 and E2 are respectively the Young's moduli in the axial and trans-
verse directions of the �bres and G12 the shear modulus.

ν21 = ν12 ×
E1

E2

(D.0.3)

where ν12 is the Poison's ratio. Each lamina modulus matrix Q is then obtained
as the inverse of its compliance matrix. That is,

Q = S−1 (D.0.4)

Laminae in a composite are oriented in di�erent directions. In order to calcu-
late the strain in the global coordinate system, laminae are rotated using the
transformation

T =

 cos2 θ sin2 θ 2 sin θ cos θ
sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ

 (D.0.5)
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where θ is the orientation of the �bres in the lamina, that is, the angle between
the axial direction of the �bres and the X-axis of the global coordinate system.
The lamina global modulus matrix is then calculated as

Qxys = TQT−1 (D.0.6)

Forces and moments acting on the laminate are directly related to the stress
and deformation in each lamina. Considering the strain in each lamina and
using the relation (D.0.1), force resultants can be written as

N =
n∑
k=1

(∫ zk

zk−1

(
Qk
xysε

0 + zQk
xysκ

)
dz

)

N =
n∑
k=1

(
Qk
xysε

0

∫ zk

zk−1

dz +Qk
xysκ

∫ zk

zk−1

zdz

)
(D.0.7)

N =

(
n∑
k=1

Qk
xys(zk − zk−1)

)
ε0 +

(
1

2

n∑
k=1

Qk
xys(z

2
k − z2

k−1)

)
κ

This can be rewritten in a matrix form asNx

Ny

Nz

 =

 A11 A12 A16

A22 A26

Sym A66

ε0
x

ε0
y

γ0
s

+

 B11 B12 B16

B22 B26

Sym B66

κxκy
κs

 (D.0.8)

where A is a symmetric matrix referred to as the laminate extensional sti�ness
matrix or the in-plane moduli matrix de�ned as

Aij =
n∑
k=1

Qk
ij(zk − zk−1) (D.0.9)

B is also a symmetric matrix referred to as the laminate coupling matrix
de�ned as

Bij =
1

2

n∑
k=1

Qk
ij(z

2
k − z2

k−1) (D.0.10)

zk is the distance from the mid-surface to the layer k. Similarly, moment
resultants are obtained asMx

My

Mz

 =

 B11 B12 B16

B22 B26

Sym B66

ε0
x

ε0
y

γ0
s

+

D11 C12 D16

C22 D26

Sym D66

κxκy
κs

 (D.0.11)

where D is the laminate bending sti�ness matrix given by

Dij =
1

3

n∑
k=1

Qk
ij(z

3
k − z3

k−1) (D.0.12)
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.
The load-deformation relations in global coordinates is then calculated as[

ε0
xys

κ0
xys

]
=

[
A B
B D

]−1 [
N
M

]
(D.0.13)

where ε0
xys and κ

0
xys are respectively the mid-surface strains and curvatures.

Using Eq. D.0.1 the strain at any point of the laminate can be obtained. The
stress in a given layer of the composite is then calculated as

σxys = Q̄xysεxys (D.0.14)

Where Q̄ is the reduced lamina global matrix de�ned as

Q̄xys = T−1QBTB−1 (D.0.15)

Where B is the Reuter's matrix de�ned by

B =

1 0 0
0 1 0
0 0 2

 (D.0.16)

COPVs are preferred over homogeneous metallic pressure vessels due to
their high strength to weight ratio. In most applications, COPVs are used for
the storage of fuel in space craft where any weight savings can increase the
payload of the vehicle. For that reason, the optimisation of a COPV design
is mostly a minimisation of its weight. For this purpose, it is necessary to
establish a performance function that expresses the total weight of the vessel.

Ih the case of the cylindrical part of the vessel, the weight can easily be
calculated using the formula

Wcyl = 2πRLcylρtcyl (D.0.17)

whereWcyl is the cylinder weight, Lcyl the cylinder length, R the cylinder inner
radius and ρ the density of the composite.

In the case of domes, the calculation of the weight is not straightforward,
and it involves the use of numerical integration. A simpli�ed equation (Pe-
ters et al., 2011) that gives a close estimation of the weight of the composite
overwrap in the dome region is

WDome = cR2ρta (D.0.18)

where c is a constant determined using the nomogram in Fig. D.1, where RE is
the radius measured from the axis to the centre of the winding band adjacent
to the polar opening and R the inner radius of the cylinder.
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Figure D.1: Nomogram for the estimation of the weight of geodesic domes (Peters
et al., 2011)

The total weight of the pressure vessel is de�ned as the sum of Eq. D.0.17
and Eq. D.0.18 resulting in the equation:

WTot = 2πRLcylρ(th + ta) + 2cR2ρta (D.0.19)

Since dividing an equation by a constant doesn't a�ect its minimum, the per-
formance function can be rewritten as

f(th, ta) = πLcyl(th + ta) + cRta (D.0.20)

The parameter c is read from the nomogram presented in Fig. D.1. To read
the value of c, we need to calculate the value of RE/R where RE is the radius
measured from the axis of the vessel to the centre of the winding band adjacent
to the polar opening and R, the inner radius of the cylinder. Typically, the
band widths are between 2 and 4% of the vessel diameter (Peters et al., 2011).
In this study, we consider the band width to be 3% of the diameter and we
take the radius of the opening to be the average of the radii of both openings.
Results for the value of c are given in Table D.1.

Table D.1: Value of the parameter c

Parameter Value
RE 21.63 mm
RE/R 0.1
c 7.95
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Appendix E

Determination of the Winding
Angle

The composite overwrap is wound in two directions, the hoop direction and
the longitudinal direction. Hoop windings cover the cylinder and resist pres-
sure in the radial direction. Longitudinal windings cover both the cylinder
and the domes. They mostly resist pressure in the axial direction. Fibres in
the longitudinal direction are helically wound at an angle de�ned by using a
semi empirical formula established based on experience, the formula is de�ned
depending on the shape of the dome, the radius of the cylinder and the radius
of the opening (Peters et al., 2011). For geodesic domes, the winding angle

α = sin−1

(
RE

R

)
(E.0.1)

Where RE is the radius to the centre of the winding band, and R is the
radius of the vessel.

Figure E.1: Winding angle for geodesic domes (Peters et al., 2011)

Eq. E.0.1 is valid when the diameters of both openings are the same. In
the case of two domes with di�erent diameters, the winding angle is

α =
αFWD + αAFT

2
(E.0.2)
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where αFWD and αAFT are winding angles with respect to the forward and
the aft polar openings respectively and are de�ned by

αFWD = sin−1

(
RE_FWD

R

)
αAFT = sin−1

(
RE_AFT

R

)
(E.0.3)

where RE_FWD and RE_AFT are radii to the centre of the winding band
for the forward and the aft polar openings respectively.
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Appendix F

Micromechanical Analysis of
Laminates

The rule of mixtures is a micro-mechanics analytical method that assumes
that:

� The distribution of �bres inside the resin matrix is uniform.

� The bonding �bres-resin is prefect,

� Loads are applied either in the longitudinal direction of the �bres or in
their transverse direction.

� The �bre and the resin are linear elastic materials.

� There are no voids in the resin matrix.

� There are initially no residual stresses in constituent materials.

The longitudinal modulus is calculated using the assumption that the strain
in the �bre εf , the strain in the resin matrix εm and the strain in the composite
εc are the same. This can be seen in Fig. F.1,

εf = εm = εc =
∆L

L
(F.0.1)

where L is the initial length of a lamina of the material, and ∆L its elongation
when a load is applied longitudinally.
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Figure F.1: Deformation in longitudinal direction (Yadama and Englund, 2007)

For a static equilibrium, the total force exerted on the composite must be
equivalent to the sum of the forces exerted on the �bre and the resin matrix

σc1Ac = σf1Af + σm1Am (F.0.2)

σc1 = σf1
Af
Ac

+ σm1
Am
Ac

(F.0.3)

where σc1, σf1, σm1 are respectively stresses in the composite, the �bre and
the resin matrix and Ac, Af , Am the corresponding cross sections. Eq. F.0.3
considering the fact that

V Ff =
AfL

AcL
=
Af
Ac

(F.0.4)

V Fm =
AmL

AcL
=
Am
Ac

(F.0.5)

where V Ff and V Fm are the volume fractions of the �bre and the resin matrix
respectively. Eq F.0.3 becomes

σc1 = σf1V Ff + σm1V Fm (F.0.6)

Taking the Hooke's law into consideration, the equation becomes

Ec1εc = EfεfV Ff + EmεmV Fm (F.0.7)

Taking into account the assumption of equal strain expressed by Eq F.0.1, the
expression of the longitudinal young modulus is deduced as

Ec1 = EfV Ff + EmV Fm = EfV Ff + Em(1− V Ff ) (F.0.8)

In the transversal direction, the total elongation must be equal to the sum
of the elongation of the �bre and the elongation of the matrix, as can be seen
in Fig. F.2.
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Figure F.2: Deformation in transverse direction (Yadama and Englund, 2007)

∆W = ∆Wf + ∆Wm (F.0.9)

ε2W = εfV FfW + εmV FmW (F.0.10)

ε2 = εfV Ff + εmV Fm (F.0.11)
σ2

E2

=
σf
Ef

V Ff +
σm
Em

V Fm (F.0.12)

with the assumption the stress is the same in the �bre and in the resin matrix,

1

E2

=
V Ff
Ef

+
V Fm
Em

(F.0.13)

E2 =
EfEm

EfV Fm + EmV Ff.
(F.0.14)

To establish the expression for the Poisson's ratio let us consider Fig. F.3.
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Figure F.3: Deformation in a volume element (Yadama and Englund, 2007)

As can be seen,

∆W = −Wε2 = Wν12ε1. (F.0.15)

Using micro-mechanics equations

∆W = ∆Wf + ∆Wm (F.0.16)

∆W = WV Ffνfε1 +WV Fmνmε1 (F.0.17)

and combining Eq. F.0.15 and Eq. F.0.17 we get,

ν12 = νfV Ff + νmV Fm. (F.0.18)

To establish the expression of the shear modulus, it is assumed that the
shearing stress is the same on the �bre and the matrix as illustrated in Fig. F.4.
The total shear deformation

∆ = ∆f + ∆m (F.0.19)

γW = V FfWγf + V FmWγm (F.0.20)

γ = V Ffγf + V Fmγm (F.0.21)

where γ, γm and γf are shear strains in the composite, the �bres and the resin
matrix and the �bres respectively.

Figure F.4: Shearing deformation in a volume element (Yadama and Englund,
2007)
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Expressing the shear strain in terms of the shear stress τ and the shear
modulus, that is

γ =
τ

G12

(F.0.22)

Eq. F.0.21 becomes,
τ

G12

= V Ff
τ

Gf

+ V Fm
τ

Gm

(F.0.23)

where Gf and Gm are shear moduli for the �bres and the resin respectively.
Therefore,

G12 =
GmGf

V FmGf + V FfGm

(F.0.24)

The assumption that the stresses in the resin matrix and the �bres are equal
is poor and makes the value of the transverse Young's modulus and the in-
plane shear modulus obtained using respectively Eq (F.0.14) and Eq (F.0.24)
inaccurate. Alternatively these parameters are accurately calculated using
other models such as �nite element methods, boundary elements methods,
variational principal models and others (Kaw, 2006). All these models imply
complicated equations. For design use, simple semi-empirical models have
been developed. The mostly used semi-empirical models are the Halphin and
Tsai models developed by curve �tting to results that are based on elasticity
(Kaw, 2006). The transverse Young's modulus equation obtained using the
Halphin-Tsai model is

E2 = Em
1 + ζηV Ff
1− ηV Ff

(F.0.25)

where

η =
(Ef/Em)− 1

(Ef/Em) + ζ
(F.0.26)

ζ is referred to as the reinforcing factor, it depends on the �bre geometry, the
packing geometry and the loading conditions. As an example, for circular �bres
and square packing geometry, ζ = 2. In the case of in-plane shear modulus,
the Halpin-Tsai semi-empirical model is given by

G12 = Gm
1 + ζηV Ff
1− ηV Ff

(F.0.27)

where

η =
(Gf/Gm)− 1

(Gf/Gm) + ζ
(F.0.28)

ζ is referred to as the reinforcing factor, it depends on the �bre geometry,
the packing geometry and the loading conditions. As an example, for circular
�bres and square packing geometry, ζ = 1.
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Appendix G

Genz Algorithm

The Genz algorithm makes it possible to evaluate Eq. 2.3.3 which is the multi-
variate normal distribution integral by �rst transforming the equation into an
integral over a unit hyper-cube and then using the simple Monte Carlo method
to compute it (Genz, 1992). The transformation is done in three stages. The
�rst stage is a transformation of variables g=(g1, g2, . . . , gn) such that g = Cy
where CCT is the Cholesky decomposition (Stewart, 1998) of the correlation
matrix R. After this transformation, the expression gTR−1g in Eq. 2.3.3 be-
comes,

gTR−1g = yTCTC−TC−1Cy = yTy (G.0.1)

The integral boundaries, β ≤ g ≤ ∞ become β ≤ Cy ≤ ∞ then,

β′ ≤ y ≤ ∞ Where β′i =

(
βi −

i−1∑
j=1

cijyj

)
cii

(G.0.2)

after the transformation Eq. 2.3.3 becomes,

P (F ) =
1√
2π

n

∫ ∞
β′1

exp

(
−y

2
1

2

)∫ ∞
β′2

exp

(
−y

2
2

2

)
. . .

∫ ∞
β′n

exp

(
−y

2
n

2

)
.

(G.0.3)
The second stage is the transformation of variables using yi = Φ−1(zi) where,

Φ(y) =
1√
2π

∫ y

−∞
exp

(
−θ

2

2

)
dθ (G.0.4)

the integral becomes

P (F ) =

∫ 1

d1

∫ 1

d2

. . .

∫ 1

dn

dz (G.0.5)

Where di = Φ(β′i) and 1 = Φ(∞) The last stage is to make the lower limit
equal to zero using the transformation zi = di+ω−i(1−ωi). The �nal integral
becomes

P (F ) = (1− d1)

∫ 1

0

(1− d2)

∫ 1

0

. . . (1− dn)

∫ 1

0

dω (G.0.6)
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where

di = Φ



(
βi −

i−1∑
j=1

cijΦ
−1(dj + ωj(1− dj)

)
cii

 . (G.0.7)

The integral G.0.6 can be easily computed using the following simple Monte
Carlo algorithm developed by Genz (1992):

1. Input the correlation matrix R, the lower integration boundaries which
are reliability indices βi and upper boundaries which are in�nity, the
tolerance ε, the Monte Carlo con�dence factor for the standard error α
and the maximum number of iterations Nmax.

2. Compute the lower triangular Cholesky factor C of R.

3. Initialise: Probability= 0, N = 0, Variance = 0, d1 = Φ

(
a1

c1,1

)
and

f1 = 1− d1.

4. Generate uniform random numbers ω1, ω2, . . . , ωm−1 ∈ [0, 1].

5. For i = 2, 3, . . . , n. Set yi−1 = Φ−1(di−1 + ωi−1(1− di−1)),

di = Φ


ai −

i−1∑
j=1

cijyj

cii

 and fi = (1− di)fi−1

6. Set N = N + 1, δ =
fm − Probability

N
, Probability = Probability + δ,

Variance =
(N − 2)Variance

N
+ δ2 and Error = α

√
Variance

7. Repeat 4, 5 and 6 until Error ≤ ε or N = Nmax.

8. Return Probability, Error and N .
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