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SYNOPSIS

The Sunsat microsatellite is being developed at the University of Stellenbosch. It is
equipped with a high resolution earth imager which requires a sophisticated attitude
determination and control system. Precise control of the satellite is impossible without
high precision attitude sensors. The most accurate attitude sensor presently used by
satellites is the star sensor.

The aim 'of this thesis is to develop a low cost, high precision star sensor for the
Sunsat microsatellite. The development included the selection of electronic and
optical hardware followed by the design, construction and testing of the sensor.
Software algorithms were developed and programmed to control the imager, extract
stars from images and match the observed constellations to a star catalogue. A set of
matching observed and reference vectors are passed to the attitude determination and
control system which calculates the three axis orientation of the satellite.

OPSOMMING

Die Sunsat mikrosatelliet word tans by die Universiteit van Stellenbosch ontwikkel.
Dit is toegerus met 'n hoeresolusie aardwaarnemingskamera en vereis 'n gevorderde
orientasiebepaling-en beheerstelsel. Presiese beheer is onmoontlik sonder akkurate
sensore. 'n Stersensor is die mees akkurate tipe sensor waarmee satelliete tans
toegerus word.

Die doelwit van hierdie tesis is die ontwikkeling van 'n hoe resolusie, laekoste
stersensor vir die Sunsat mikrosatelliet. Die ontwikkeling behels die seleksie van
elektroniese en optiese apparatuur wat gevolg is deur die ontwerp, opbou en toets van
die sensor. Programmatuur algoritrnes is ontwerp om die kamera te beheer, sterre in
fotos te herken en waargenome konstellasies in die sterkatalogus te vind. 'n Stel
waargenome en verwysingsvektore stel die orientasiebepaling-en beheerstelsel in staat
om die orientasie van die satelliet te bereken.
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Introduction

Introduction
The Sunsat microsatellite is being developed at the University of Stellenbosch. One of
the goals of the project is to produce all possible sub systems at the university and in
this way provide masters students with a variety of research topics.

Sunsat is equipped with a high resolution earth imager which requires a sophisticated
attitude determination and control system (ADCS). The ADCS gathers data from earth
horizon sensors, sun sensors and a magnetometer. The need for a higher precision
attitude sensor was identified to improve the pointing accuracy of the earth imager.
The most precise method of determining a satellite's orientation is by means of a star
sensor. The principle of operation is to image stars and match the observed
constellation to a star catalogue. The set of corresponding observed and reference
vectors are used to determine the satellite's orientation. At least three matching pairs
of stars are required for full three axis attitude determination.

A star sensor can be purchased for tens of thousands of US Dollars, but this does not
agree with the Sunsat policy of developing all sub systems, nor does it agree with the
Sunsat budget. The aim of this thesis was to develop a high precision, low cost star
sensor for the Sunsat microsatellite. This includes the design and production of the
electronic hardware and the development of software algorithms. The design should
not be considered as specific to Sunsat and may be adapted to interface other
processors.

The following design specifications were set

• An accuracy of at least I mrad was desired. The accuracy of I mrad means that
the earth imager can be directed with an accuracy no better than I mrad. From a
height of 800 lan, this converts to 800 m on the earth's surface.

• To provide a high probability of finding at least three stars in the image,
magnitude 6 stars should be detectable in a 10' square field of view.

• ADCS requires an orientation update every second
• Overall cost should be minimized
• Power consumption should be minimized

During the past few decades, star sensors have been produced from various devices.
Array CCD's (charged coupled devices) are presently the best suited imagers for star
sensor applications. They are simple to operate, low power and high precision
components.

This document elaborates on the development and testing of the. software and
hardware required to achieve the abovementioned specifications. It is presented as
three sections:

The first section consists of Chapters I to 5 and discusses software and related topics.
The software algorithms required to control the star sensor, recognize stars and
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Notation and Symbols

Notation and Symbols

The following notation and symbols are used throughout the thesis

i

x

x~y

A

AT

f

8

(x)

x

L

I

F

E

B

unit vector

vector

transformation from coordinate system x to y

transformation matrix

transpose of matrix A

focal length

right ascension (RA)

declination (Dec)

true value of x i.e. not the estimated value

approximately equal to

time derivative of x

luminance measured in lumen. sri. m-2

luminous intensity measured in lumen. sri

luminous flux measured in lumen, lum

illumination measured in lux, lum. m-2

lens transmission factor
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