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ABSTRACT 
 

 

 
The study described in this dissertation examines the synthesis of mainly acrylate-

based surfactants and their subsequent use as emulsifiers/stabilisers in the emulsion 

polymerisation of styrene. Some acrylamide-based surfactants were also studied, for 

comparison purposes only. Two major types of surfactants, polymerisable (surfactant 

monomers or surfmers) and polymeric, were synthesised, characterised and used in 

emulsion polymerisation reactions. The prepared polymerisable surfactants, 12-

acryloyloxydodecanoic acid (12-ADA) and 11-acrylamidoundecanoic acid (11-AAUA), 

and their sodium salts, had reactive acryloyl functionalities. 

 

As there was a need to control the size of the polymeric surfactants for subsequent 

use in emulsion polymerisation, the RAFT transfer agents 4-cyano-4-

(thiobenzoylthio) pentanoic acid and 4-azobisiso-(thiobenzoylthio) butyronitrile were 

synthesised and used to prepare the respective polymeric surfactants. The novel 

RAFT polymerisations of 12-ADA and 11-AAUA produced oligomeric surfactants 

which could be used in the emulsion polymerisation of styrene.  

 

The effectiveness of all these surfactants as stabilisers or emulsifiers in emulsion 

polymerisation was compared with that exhibited by the conventional surfactant 

sodium dodecyl sulphate (SDS). 

 

Polystyrene latices produced by emulsion polymerisation were first purified and then 

evaluated for stability. The stability tests included subjecting the latices to 

destabilising conditions such as freeze-thaw cycles, addition of electrolyte, and long-

term storage. The surfmers and polymeric surfactants that were synthesised and 

studied were found to be efficient stabilisers for latices. Some of the surfactants, 

particularly 12-ADA (both the acid and Na salt forms) and 11-AAUA, were found to 

produce latices which were remarkably more stable than those stabilised with SDS. It 

was also found that regardless of whether the surfactants were used in their acid or 

salt forms they could stabilise the latex. Furthermore, larger latex particles were 

produced with the polymeric surfactants and the surfmers than with SDS.  



OPSOMMING 

 

In hierdie verhandeling word die sintese van hoofsaaklik akrilaat-gebasseerde sepe 

(Eng. surfactants) en die gebruik daarvan as emulgeerders/stabiliseerders in die 

emulsiepolimerisasie van stireen ondersoek.  Verskeie akrilamied-gebasseerde sepe 

is ook bestudeer, alleenlik om vergelykings te tref.  Twee hooftipes sepe, naamlik 

polimeriseerbaar sepe (monomere of ‘surfmers’) en polimeriese sepe is gesintetiseer, 

gekarakteriseer en in emulsiepolimerisasiereaksies gebruik. Die bereide 

polimeriseerbare sepe, 12-akrielokisidodekanoësuur (12-ADA) en 11-

akrielamidoundekanoësuur (11-AAUA), en die natriumsoute daarvan, het reaktiewe 

akroliel-funksionaliteit besit.  

 

Aangesien die nodig geag is om die grootte van die polimerieeerbare sepe te 

kontrolleer, vir latere gebruik daarvan in emulsiepolimerisasiereaksies, is twee RAFT-

oordragsverbindings: 4-siano-4-(tiobensoïeltio)pentanoësuur en 4-asobisïso-

(tiobensoïeltio)butironitriel gesintetiseer en gebruik om die onderskeie 

polimerieseerbare sepe te berei. Die nuwe RAFT polimerisasie-reaksies van 12-ADA 

en 11-AAUA het oligomeriese sepe gelewer, wat later in the emulsiepolimerisasie 

van strireen gebruik is.   

 

Die doeltreffendheid van al hierdie sepe as stabiliseerders of emulgeerders in 

emulsiepolimerisasie is vergelyk met die doeltreffendheid wat met die konvensionele 

seep natriumdodekielsulfaat (SDS) verkry is. 

 

Die polistireen latekse wat d.m.v emulsiepolimerisasie berei is is eers gesuiwer en 

daarna vir hulle stabiliteit geëvalueer deur blootstelling aan destabiliseringskondisies, 

b.v. vries-ontdooi siklusse, byvoeging van elektroliet, en lang-termyn opberging.  

Daar is bepaal dat die sepe en polimeriseerbare sepe wat berei is effektiewe 

stabiliseerders vir die latekse is. Van die sepe het latekse gelewer wat merkbaar 

meer stabiel was as dié wat met SDS gestabiliseer is. Daar is ook bepaal dat die 

sepe in beide hul suur- en sout-vorms effektief is as lateks-stabiliseerders. Verder is 

groter lateks partikels met hierdie sepe en polimeriese sepe berei, as met SDS.  
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CHAPTER 1 

Introduction and Objectives 
 

1.1.  Surfactants 
Surfactants (surface active agents) are amphiphilic molecules with two components: 

a hydrophobic (water insoluble) part, such as an alkyl group, and a hydrophilic (water 

soluble) head group, such as a sulphate or a carboxyl. At low concentrations 

surfactant molecules organise themselves at the air-water interface with the 

hydrophobic tails away from the water while the head groups interact with water, 

resulting in a reduced surface tension. At a certain concentration, the surface tension 

will remain constant over a wide concentration range. This signifies the critical 

micelle concentration1 (cmc) and the molecules organise themselves into small 

spherical aggregations of molecules, called micelles, which are arranged such that 

the hydrophobic parts are in the centre and the hydrophilic parts on the outside. At 

higher concentrations, however, the organisation may become non-spherical and 

assume other different forms depending on the nature of the surfactant. As 

amphiphilic molecules, surfactants promote interaction between oil and water phases 

through the creation of an oil/water interfacial layer. 

 

Polymeric surfactants are those that have high molecular masses in addition to being 

amphiphilic. When such molecules have few monomeric units and are, therefore, not 

of high molecular mass, they are sometimes referred to as oligomeric surfactants. 

Polymerisable surfactants,2 also called surfactant monomers and abbreviated to 

surfmers, are surfactant molecules which generally carry a reactive group that make 

them polymerisable. 

 

1.2.  Surfactants as emulsifiers and stabilisers 
A typical emulsion polymerisation reaction mixture consists of water, a monomer, a 

water-soluble initiator, and a surfactant which functions as an emulsifier. The role of a 

surfactant in emulsion polymerisation is important and multi-fold: it influences the 
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stabilisation of the starting emulsion, it facilitates contact between the oil and water 

phases, it plays a role in particle nucleation, growth and stabilisation, and in the shelf 

life of the final latex. By careful choice of the type and quantity of surfactant used, 

polymer latex properties can be controlled to a large extent. 

 

Recent research efforts in the field of emulsion polymerisation have focused on the 

development of new, well-defined and tailor-made surfactant molecules, which can 

be used to prepare stable emulsions for specific applications. Most of the methods 

used for preparing polymer latices, including emulsion polymerisation, involve the 

precipitation of polymer from solution during formation. In order to obtain well-formed, 

distinct particles, some form of stabilisation has to be achieved during particle growth 

in order to avoid aggregation. The main methods for stabilising dispersions are 

electrostatic and steric stabilisation. Electrostatic stabilisation relies on coulombic 

repulsive forces from electric charges while steric stabilisation mainly relies on steric 

repulsion introduced by lyophilic chains. Both types of stabilisation provide a 

stabilising layer, which prevents the approach of particles in a range where attractive 

van der Waals’ interactions would otherwise dominate, as illustrated in Figure 1-1.  

 

 

 

Stabilizing polymer 
chains

Steric repulsions
Electrostatic forces

Layer of charges

 
 

 

Figure 1-1.  Electrostatically-stabilised and sterically-stabilised particles. 
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The Derjaguin, Landau, Verwey and Overbeek (DLVO) theory3 shows that, particle 

stabilisation is determined by a balance of Van der Waals’ attractive energy and 

electrical repulsive energy.  The theory is described by the following equation: 

 

VT   = VA + VR                                                                                                       1-1. 

 

Where,  

VT is the total potential, VA the van der Waals’ potential energy, and VR the repulsive 

potential energy, which arises from the repulsion between the electrical double layers 

on the two particles. 

 

In order to prevent the particles in a liquid dispersion from approaching each other 

until they overcome the total potential energy barrier, a physical barrier such as an 

adsorbed layer around the particles is necessary. The thicker the layer, the greater 

the separation of particles, and hence the more stable the dispersion. This steric 

effect can be described as steric stabilisation. When charged particles are 

considered, the electrical double layers that result bring about a repulsive force, 

which is responsible for electrostatic stabilisation. 

 

The use of surfmers for steric or electrostatic stabilisation allows surfactant 

incorporation to occur via a chemical reaction, leading to a strong bonding reaction 

between latex particles and surfactants, so that instead of a physically adsorbed 

layer, a chemically bonded layer results. Such surfactants are expected to produce 

stable latex particles with very few chances for surfactant migration. Polymeric 

surfactants, on the other hand, provide long hydrophobic chains, which show 

reduced surfactant mobility when compared with shorter ones. This occurs through 

adsorption onto the particle surface or incorporation into latex particles. 

 

Although surfactants play a very important role in emulsion polymerisation, such as in 

particle formation and stabilisation of the final latex, they can also have adverse 

effects on a polymerisation process and on the resulting polymerisation reaction 

products. Some surfactants can cause foaming4 and some can migrate to the 

pigment phase5 if they are not strongly bound to the latex particles. In some cases, 

surfactant desorption6 can occur under conditions such as shear stress and freeze-
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thawing cycles, leading to the loss of stabilising moieties.  This would result in the 

coalescence of latex particles. In some plastic films,7 which are not stable, 

surfactants may migrate towards the film surface and affect gloss or concentrate in 

pockets, which could lead to increased water sensitivity and reduced adhesion. 

 

1.3.  Motivation and methodology 
In this study, the acrylate-based surfmer 12-acryloyloxydodecanoic acid (12-ADA) 

was to be prepared, converted to its Na salt and polymerised into oligomers. The 

surfmer, its salt and the oligomers were then to be used respectively as surfactants 

and stabilisers in the emulsion polymerisation of styrene. A controlled polymerisation 

method, reversible addition-fragmentation transfer (RAFT)5 was to be used to 

prepare the oligomers of 12-ADA in an attempt to control the molecular mass of the 

polymer. The use of the moderately soluble oligomers, rather than the comparatively 

insoluble high molecular mass polymers as surfactants was expected to lead to 

latices with controlled properties, such as molecular mass.   Other properties that can 

be controlled are polydispersity, particle size and particle surface functionality. 

•  

The choice of surfmer was based on results of preliminary synthetic tests carried out 

earlier on in this study, which indicated that 12-ADA could be used as a surfactant in 

its acid form as well as in the Na salt form. The tests involved preparing 12-ADA and 

its Na salt and using them in the preparation of polystyrene latices. The latices that 

formed were found to be fairly stable against three freeze-thaw cycles.  

 

The surfmer, its corresponding Na salt and oligomers have not been previously used 

as surfactants in emulsion polymerisation nor have RAFT oligomers of 12-ADA been 

synthesised before. In addition, it was considered that 12-ADA would make an 

interesting case study because it exhibited interesting and unusual properties, such 

as forming supramolecular structures6 – indicating a good potential for its application 

in particle stabilisation.  

 

For further studies, a copolymer of 12-ADA and acrylic acid was to be prepared and 

analysed and used as a polymeric surfactant in the emulsion polymerisation of 
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styrene thus providing comparisons between the use of 12-ADA as a surfmer and as 

a comonomer. 

•  

The synthesis of 12-ADA was to be carried out according to a reported method.7 

Another surfmer, 11-acrylamidoundecanoic acid (11-AAUA), which is structurally 

similar to 12-ADA and has been reported to have been used in salt form as an 

emulsifier,8 was also to be prepared using a reported method9 and then studied. The 

similarity between 12-ADA and the acrylamide 11-AAUA is illustrated in Figure 1-2. 

The reported use of 11-AAUA as an emulsifier was a strong motivation for its 

inclusion in this study.  
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Figure 1-2.  Structures of 12-ADA and 11-AAUA. 

 

1.4.  Objectives 
The overall objective of this study was to prepare, purify and characterise novel 

polymerisable and polymeric surfactants based on the acrylate functionality, use 

them as emulsifiers in the emulsion polymerisation of styrene, and evaluate their role 

as latex stabilisers. This was to be achieved as follows: 

• The surfmers 12-ADA and 11-AAUA and their respective sodium salts were to 

be prepared, and the products purified and analysed. 
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• RAFT chain transfer agents AIBN-RAFT and ACP-RAFT, which are both 

dithio-compounds, were to be prepared, purified and analysed. 

• The surfmers and the RAFT agents were to be used in RAFT polymerisations 

to prepare RAFT oligomers, which were then to be purified and characterised.  

• Copolymers of 12-ADA and acrylic acid were to be prepared using RAFT 

reagents, and analysed. 

• Formulations for the use of surfmers, SDS, RAFT oligomers and copolymers 

as surfactants in the emulsion polymerisation of styrene, were to be 

determined and the respective polymerisations carried out. 

• The resultant PS latices were to be purified and characterised. 

• The stabilities of the prepared latices were to be evaluated using different 

methods, and comparisons made. 

 

1.5.  Layout of dissertation 
Chapter 2 outlines the historical and theoretical background to surfactants and 

emulsion polymerisation.  Properties of surfactant monomers and polymeric 

surfactants are discussed. The most common methods for cleaning and 

characterising polymer latices are also mentioned. 

 

In Chapter 3, the synthesis, purification and analysis of the surfmers 12-ADA and 11-

AAUA and their sodium salts are described. Analytical results are given and 

discussed. 

 

In Chapter 4, preparations of the RAFT polymers by the RAFT polymerisation 

procedure are described. The synthesis and purification of the RAFT reagents 4-

cyano-4-(thiobenzoylthio) pentanoic acid and 4-azobisiso(thiobenzoylthio) 

butyronitrile, and their respective use in the preparation of polymers and copolymers, 

are also discussed. 

 

In Chapter 5, the synthesis, purification (cleaning) and characterisation of polystyrene 

latices, prepared using different surfactants, are described. The pre-emulsion tests 

carried out to determine the extent of emulsification of each polymerisation mixture 
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are outlined. Characterisation of latices using GPC, MALDI-TOF, WAXS, dynamic 

light scattering, SEM and TEM is also decribed. 

 

In Chapter 6 the conclusions are presented and recommendations for possible future 

research are offered.  
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CHAPTER 2 

Historical and Theoretical Background 
 

2.1.  Surfactants 
Surfactants (surface active agents) are molecules with two major components: a 

hydrophobic (water insoluble) chain, such as an alkyl group, and a hydrophilic (water-

soluble) head group, e.g. a sulphate.  At high concentrations they easily organise 

themselves into small spherical aggregations of surfactant molecules, micelles, with 

the hydrophilic part on the outside and the hydrophobic part in the centre.  At yet 

higher concentrations they become non-spherical and form long tubes, or ‘worm-like’ 

arrangements.  Ultimately, they become lamella of organised molecules. Figure 2-1 

illustrates some of the organised assemblies into which surfactants can arrange 

themselves. 

 

 

                                    
 

                micelles                                                             lamella  
 
 
Figure 2-1.  Some organised surfactant assemblies. 

 

Polymers often act as surfactants when they bear both hydrophilic and hydrophobic 

components. Some such polymers have been used as dispersants,1 thickeners2 or 

rheology modifiers.3   Surfactants stick or adhere to surfaces, leading to a change in 

the nature of the surface.   The surface becomes either hydrophobic or hydrophilic, or 

it acquires specific properties, depending on the surface created by a particular liquid 

or substance.  Surfactants are used in many industries, processes and products.  
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They are widely used in detergents, for removing soiling from surfaces.  The 

detergent contains micelles, which adsorb onto the soil, surrounding it. The 

surfactant is rapidly transferred through water and slowly along the surface, so that 

the surface tension is rapidly lowered, resulting in the removal of the soil. Different 

types of surfactants have been synthesised with different end-uses in mind, for 

example: traditional surfactants, which are relatively short-chain; polymerisable 

surfactants, which are also known as surfmers, carry polymerisable moieties such as 

olefinic double bonds; polymeric surfactants, which are obtained by polymerising 

monomers or surfmers, generally leading to long-chain polymers and also nonionic 

surfactants which do not dissociate in water.   Some examples of nonionic 

surfactants are poly (ethylene oxide), poly (oxy ethylene) and alkyl polyglycosides as 

well as some of which are composed of alcohols and fatty acids.   They have been 

used in a variety of applications such as in the reduction of surface tension, to 

improve herbicide absorption and in miniemulsions.4  

2.1.1.  Polymerisable surfactants 

Nowadays, there is a strong need to reduce the use of organic solvents in paints and 

coatings. This is in accordance with the increasing awareness that good 

environmental practices include the use of as few toxic chemicals as possible in the 

chemical and other industries.  In the paint industry, this has led to the increasing 

development and use of water-borne paints in preference to solvent based paints.  . 

Such paints are normally made from a dispersion of latex particles in water and are 

typically produced by emulsion polymerisation. In such a procedure, surfactants are 

used to stabilise the particles during the polymerisation process and also during 

storage. When a water-borne paint is used, the water evaporates and the latex 

particles form a film. However, as surfactants will be left in the film they may, for 

example, aggregate and form water-sensitive areas in the film, which can negatively 

affect the final paint properties in many ways.  One solution to this problem caused 

by such mobile traditional surfactants present in a paint film is to use reactive 

surfmers instead of conventional surfactants.  Surfmers are surfactants that are 

reactive and act as both monomers and stabilisers.  In addition to having a 

hydrophilic part and a hydrophobic part, like all other surfactants, surfmers 

additionally possess reactive bonds.  
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Polymerisable surfactants have generally been prepared by modifying the structure 

and function of conventional surfactants or other active reagents through the 

incorporation of reactive moieties.  Some of the ways in which this has been 

achieved are, through: 

• surface-active initiators (inisurfs),5 in which the polymerisable or reactive 

moiety is a part of the initiator, 

• surface-active monomers (surfmers),6 where the reactive moiety is part of the 

monomer, and 

• surface-active transfer agents (transurfs),7 where the reactive moiety is part of 

a transfer reagent. 

 
2.1.1.1.  Surfactant monomers 
Surfactant monomers (surfmers) have generated much interest due to their dual 

nature; they are both surface-active species and polymerisable monomers.  As 

reactive monomers, surfactant monomers have been used in polymerisation 

reactions, such as emulsion copolymerisation with traditional monomers such as 

styrene, butyl acrylate and acrylic acid.8 Surfmers have also been used in 

heterogeneous polymerisations to replace conventional surfactants, with the aim of 

improving latex properties.9    

 

The relative positions of the three moieties present in a surfmer molecule, i.e. 

hydrophilic head, hydrophobic tail and polymerisable function, are unrestricted.10  

The reactive polymerisable group can be placed at the end of the hydrophobic tail, in 

the middle of the hydrophobic tail, or near the hydrophilic head, as illustrated in 

Figure 2.2. 
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i e 2-2.  Examples of positions of the reactive functionality within a surfmer  

he general requirements for a good surfmer in emulsion polymerisations have been 

stabilisation of 

• in degree of emulsification of the monomer mixture. 

 to 

• ly in the process because, if it does, its 

.  

• 

 

 

he above requirements are general recommendations and each surfmer will have 

 

F gur
 

T

summarised by Schoonbrood and Asua11and De Le Cal et al12 as: 

• It should be a good surfactant, which should lead to efficient 

the polymer particles 

it should allow a certa

• The critical micelle concentration (cmc) of the surfmer should be low so as

limit aqueous-phase polymerisation of the surfmer, so that the production of 

water-soluble polymeric surfactants (polysoaps) will be reduced.  This helps 

with improving latex stability, because the formation of such polysoaps can 

lead to “bridging coagulation”.13 

The surfmer should not react ear

mobility will be limited and it can be buried when the particle grows larger

If the surfmer remains largely unreacted during the polymerisation, it will be 

mobile and will remain on the surface of the particle.  At the very end of the 

polymerisation process all of the surfmer should have reacted and should be

chemically bound to the surface of the polymer particles.  

T

its own specific requirements pertaining to a specific application e.g., surfmers which

bear a maleic functionality were used in PS latices and found to reduce by a factor of 

four the amount of surfactant left in water on flocculation by calcium salts.14   In 

another study, carboxyl functionality was introduced onto the surface of latex 
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particles by use of an azo-carboxy initiator with the surfmer sodium acrylamido

undecanoate.

 

ated 

 

.  Use of surfmers in emulsion polymerisation 

 such as polymer latices.17 

ost of the surfmers used in emulsion polymerisation have a tail-type stabilisation 

e 

en 

ol of surface-

lace of 

 freeze-

15     Another application was the use of bifunctional surfmers termin

with reactive groups at one end and a polymerisable group on the other which were 

prepared and used to attach antibodies.  This was done by allowing reaction between

the polymerisable end and different functional groups on the antibodies.16  

         

2.1.1.2

Surfmers have been used to stabilise colloidal particles

The preparation of polymer latices generally involves the precipitation of the polymer 

product from solution such as in emulsion polymerisation, which is one of the 

industrial processes used.  It is desirable to obtain distinct particles that make up the 

polymer latex. Some form of stabilisation is therefore essential to keep polymer 

particles separated from each other, to avoid them sticking together and leading to 

coagulation. Stabilisation has to be achieved during particle growth to avoid 

aggregation and the formation of coagulum.  As already described in Chapter 1, the 

two main phenomena that provide forces that keep particles apart are electrostatic 

stabilisation, which arises from double layers of charges around particles, and steric 

stabilisation, which is due to steric repulsions brought about by the hydrophilic 

bounce-off barrier of the stabilising chains around polymer particles 

 

M

(see Figure 2.3.).  This, in principle, seems to be most appropriate since the reactiv

function will be positioned in the molecular chain. It has also been found that water-

soluble initiators resulted in higher incorporation of surfmer to the particle surface 

than was achieved with oil-soluble initiators.  Once copolymerisation occurs betwe

surfmer and monomer, the surfactant is not expected to easily desorb.18 Surfmers 

have therefore been used to prepare stable model latex systems.19   

The production of polymer latices of high solids content and the contr

charge density are other areas of focus. Research into surfmers has been 

encouraged by findings such as the following: when surfmers are used in p

conventional surfactants in some polymerisations, marked improvements in 

mechanical stability,20 tolerance to added electrolyte,14water resistance17and

thaw stability21 were reported. Improvements in these properties will therefore lead 
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to better overall latex properties, such as the paint performance of surface coatings. 

Current research is largely focused on the improvement of latex stability, and the 

production of environmentally acceptable and sustainable latices. A new research 

focus area is to find surfactants that are increasingly efficient. Most surfactants are 

currently only about 30% efficient because 70% of surfactants are generally buried 

within the latex particle and do not help in aiding stability.22,23.  

. In one study it was found that the use of surfmers can lead to the preparation of 

surface coatings with reduced sensitivity to moisture.24   Another surfmer, 11-

Acryloyloxy undecyl tri methylammonium bromide (AUTMAB) was used to produce 

nanolatexes which displayed improved gloss when used in paints.25  

 

The most common surfmers used in emulsion polymerisation to date have typically 

contained acrylic, methacrylic, acrylamido, and styrenic polymerisable groups26.  The 

amount of surfmer used is an important factor – it needs to be kept below its cmc to 

discourage the formation of polyelectrolytes. Less reactive functionalities have also 

been used in emulsion polymerisation.27 It has been found, however, that allyl 

surfmers decrease the polymerisation rate of the main monomer. This is attributed to 

a degenerative chain transfer reaction to the allyl function.28

 

For surfmers, which do not easily homopolymerise at the usual polymerisation 

temperatures, copolymerisation with other non-homopolymerising monomers, such 

as maleic anhydride to prepare maleic-based surfactants, has been suggested.29 

When used in the polymerisation of styrene, such copolymers were found to bond to 

the latex. In one study by Urquiola et al.30 different reactivity ratios between the 

surfmer, sodium alkyl allyl sulphosuccinate and vinyl acetate (VA) as the comonomer 

were made use of.  This was found to lead to the reduced polymerisation of VA, while 

the surfmer acted as a transfer agent. Greene et al31 used surfmers of sodium 9- and 

10- acrylamido stearate to stabilise poly (styrene-butadiene) latex. The initiator used 

for the in-situ emulsion copolymerisation of the surfmers was potassium persulphate.  

In these experiments, latex surface coverage by surfactant varied from 20-80%.  The 

latex particles covered with polymerised surfmer at high coverage displayed superior 
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mechanical stability against added electrolyte compared with latex particles covered 

with a non-polymerised surfmer at the same degree of coverage. 

 

The amount of solids incorporated in an emulsion system also has a bearing on the 

coverage of latex with stabilising groups.  A carboxyl-based surfmer used by 

Guillaume and coworkers15 to prepare high-solid content latices with carboxylic 

surface groups resulted in a slow polymerisation rate and the latex particles were 

poorly stabilised because most of the surfmer was found to be adsorbed rather than 

covalently bonded.  The carboxyl surface group coverage was limited to 20-30%, 

with a large part buried inside the particles when the solids content was high.  Chen 

and Chang32 used a surfmer with a vinylic end group for the emulsion polymerisation 

of styrene and found that the polystyrene particles prepared with this surfmer were 

monodisperse and that their size increased with increasing solids content.  They also 

showed that the number of particles increased with increasing surfmer concentration. 

Due to the monodipersity of the polymer particles, a homogeneous mechanism was 

assumed. 

 

In some cases, some surfmers need to be used together with a co-surfactant for the 

successful stabilisation of latex particles.  Fitch and Tsaur17used the styrenic surfmer, 

styrene sodium dodecyl sulphonate ether, together with a classical surfactant, 

sodium dodecyl sulphate (SDS), in order to form monodisperse latex particles of 

polystyrene.  The surfmer alone was not an adequate latex stabiliser.  

 

Maleate and succinate diester surfactants were used by Montoya-Goni et al.33 in the 

emulsion polymerisation of styrene.  High conversions of styrene were obtained with 

maleates, but conversions with succinates varied.  Results of tests carried out to 

determine stability against added electrolyte showed that the succinate-stabilised 

latices were more stable than the maleate-stabilised ones, even though there was 

greater chemical bonding with the maleates and more adsorption with the succinates. 

This implied that while chemical bonding was desirable and should improve some of 

the properties of latices, e.g. reduced migration of surfactant it may be at the 

expense of other properties, such as stability against added electrolyte.  This 

suggests that optimum latex properties can only be obtained by varying property 
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requirements from application to application, in order to attain a delicate balance of 

properties suitable for a specific application.  

2.1.2.  Polymeric surfactants 

Although less well defined than small-molecule surfactants, polymeric surfactants 

probably offer greater opportunities in terms of flexibility, diversity and functionality. 

This is especially true in the light of recent advances in controlled/living radical 

polymerisation chemistry, such as in atom transfer radical polymerisation (ATRP)34 

and, increasingly, reversible addition-fragmentation chain transfer (RAFT)35 

polymerisation (which was made use of in the current project). This new polymer 

chemistry is of great interest as it has empowered synthetic polymer chemists to 

make new tailor-made polymeric surfactants such as well-defined amphiphilic block 

copolymers, many of which exhibit interesting surfactant behaviour. The size of 

polymeric amphiphiles, compared to low molecular mass species, allows for much 

more diverse arrangements of the hydrophobic and hydrophilic segments. The 

structural similarities of the individual polymer fragments in polymeric surfactants and 

conventional low molecular mass surfactants make them behave typically with two 

important properties found in both types of surfactants: the high-solubilisation 

capacity for hydrophobic molecules and low-viscosities of aqueous solutions due to 

the hydrophobic aggregation, which reduces the hydrodynamic radii.36 

 

Despite these similarities, other properties of polymeric surfactants can differ 

considerably from those of standard surfactants, e.g., their intramolecular 

aggregation and the usually low or “missing” critical micelle concentration.37 

Polymeric surfactants have also been found to possess lower diffusion coefficients 

compared to those of classical low-molecular-mass surfactants such as SDS. 

Functional groups can be introduced into the molecular structure of polymeric 

surfactants to produce functionalised polymers, which are capable of undergoing 

further reaction. The functionalisation generally leads to many properties and 

applications such as electrical conduction,38 for the controlled release of drugs,39 and 

to block and graft copolymers40 having varied hydrophobic and hydrophilic 

sequences. The main advantage of the stabilising layers obtained with the block 

copolymer surfactants is that the thickness of the hydrophilic layer on the latex 
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surface can be adjusted as a function of the molecular characteristics (molecular 

mass, composition, structure) of the block copolymer.  

 

2.1.2.1.  Structure of polymeric surfactants 
The molecular architecture of polymeric surfactants generally comprises various 

combinations of polymer and surfactant structures. The most obvious structural 

segments to be varied are the surfactant fragments, with respect to the hydrophilic 

head, and the length and branching of the hydrophobic tail. However, polymeric 

surfactants offer additional variations which are characteristic for polymers but do not 

exist for “small” surfactants, such as their solubility in water to form micellar polymers. 

The molecular architecture can be varied in many respects, e.g., with respect to the 

polymer geometry, the nature of the polymer backbone and the incorporation of 

spacer groups controlling the distance of the surfactant fragments, from the polymer 

backbone.  Some of the general structures of polymeric surfactants are illustrated in 

Figure 2-3. 

 

n nn

tail-type mid-typehead-type
 

Figure 2-3.  Some of the possible molecular arrangements of polymeric surfactants. 

 

Diblock copolymers, with a clear separation of the hydrophilic "head" and the 

hydrophobic "tail" parts, come closest to the architectures of standard surfactants; 

and are sometimes referred to as macrosurfactants.41  Hydrophobic aggregation of 

chains, generally takes place by intermolecular association. In contrast, amphiphilic 

star block opolymers42 and graft polymers preferentially undergo intramolecular 

aggregation.  Amphiphilic dendrimers43 represent the extreme case, i.e., they can 

form intramolecular hydrophobic aggregates comprising the whole macromolecule.  

Micellar polymers are characterised by large, well-separated blocks of hydrophilic 
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and hydrophobic groups and their amphiphilic character is based on the overall 

macromolecular architecture. Alternatively, the hydrophilic and hydrophobic groups 

may be distributed throughout the macromolecule. By attaching the surfactant 

fragments to the backbone in different ways, various polymer geometries are 

realised.  They include "frontal" attachment at the hydrophilic head group “head type; 

"terminal" attachment at the end of the hydrophobic tail “tail-end type”; intermediate 

structures “mid-tail type” and full incorporation into the backbone “main chain type”. 

The aggregation process of polymeric amphiphiles can be improved by the 

incorporation of flexible side-chain spacer groups. There are many variations in 

positioning of the surfactant units in polymeric surfactants. Many types of head 

groups have been used, including: non-ionic, cationic, anionic and zwitterionic ones.  

 

2.1.2.2.  Synthesis of polymeric surfactants 
The fact that block copolymers have components that can exist in different phases 

gives them special colloidal properties, such as surface activity. Amphiphilic 

polymeric surfactants provide chains of stabilising moieties around the surface of 

polymer particles through adsorption. 

 

There are a number of approaches to the synthesis of polymeric surfactants, which 

can be used to stabilise colloidal particles. Polysoaps with well-defined structures can 

be prepared via polyaddition and polycondensation reactions of non-amphiphilic 

reagents.44  One other convenient way to prepare polymeric surfactants is by 

copolymerisation.  Polymerisable surfactants are copolymerised with small and often 

polar hydrophilic comonomers, creating well-defined surfactant fragments in the 

polymers.45   Polymeric surfactants offer more possibilities than low molecular weight 

ones in the tailoring of properties of colloidal materials because more monomers 

such as in copolymers may be used in their synthesis. For example, diblock 

copolymers of 4-vinyl pyridine and sodium methacrylate have been used as effective 

stabilizers for aqueous dispersions.46    Amphiphilic polymeric surfactants many of 

which are block copolymers contain hydrophobic segments which may strongly 

adsorb onto hydrophobic surfaces such as those of polymer latices.47-49
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Other polymeric surfactants can also be prepared by first preparing hydrophilic 

polymers and then modifying the preformed hydrophilic polymers with hydrophobic 

reagents.50 

 

The hydrophilic-lipophilic balance (HLB)51 is one factor that has to be considered 

when preparing polymeric surfactants.  The HLB is a number, which can be assigned 

to an emulsifier and represents the balance of hydrophilic and lipophilic groups in the 

molecule.  Hydrophilic groups increase HLB and lipophilic groups decrease HLB.  

The HLB number has an arbitrary range of 1-40 with the most commonly used 

emulsifiers in the range between 1 and 20.  A generalised equation for HLB is: 

 

  

HLB for a mixture A+B = (HLB of A X fraction of A) + (HLB of B X fraction of B) 

 

Polysoaps are expected to have an appropriate hydrophilic-hydrophobic balance to 

allow for water solubility on the one hand (not just dispersion), and sufficient 

hydrophobic parts to enable aggregation on the other.  A good emulsifier will sit at 

the interface, producing a low interfacial tension.  An optimum balance of lipophilic 

and hydrophilic groups in the molecule is required for a good surfactant and the 

optimum balance needed will depend on the type of emulsion and system. General 

guidelines follow Bancroft’s Rule,52 which states that: “the phase in which the 

emulsifier is preferentially soluble will become the continuous phase of the emulsion”.  

The relative sizes of the hydrophilic and lipophilic groups determine the preferred 

curvature of the interface and thus determine the different phases.  

 

Many methods for the synthesis of polysoaps have been established53-55 covering a 

wide range of preparative polymer chemistry, to meet practical needs. The method 

used for the work-up leading to the final polysoap has to be taken into account when 

selecting a synthesis pathway, as the amphiphilic character of the polysoap can lead 

to practical difficulties e.g. purification of latex from residual reagents and by-

products. 

 

Most systematic investigations of the surfactant fragments in polymeric surfactants 

have been restricted to the influence of the length of the alkyl tails, in analogy to 
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homologous surfactant series. It has been shown that the minimum length of the 

hydrocarbon tail required to produce polysoap properties is about C8.53 There may be 

some polysoap behaviour observed for some shorter chains, but additional 

hydrophobic units need to be present in the backbone. It has also been found that 

hydrophobic counter-ions, such as alkyltrimethylammonium54 ions, induce 

hydrophobic aggregation for short chain "polysoaps," although it has been disputable 

whether the amphiphilic ions favour the hydrophobic aggregation of the polymer, or 

rather the polymer favours the aggregation of the "counter-ions".  There are some 

indications of an optimum length of about C18, beyond which the hydrophobic chains 

are "crystallised" and the hydrophobic aggregates are no longer deemed to be fluid-

like.55 Within these limits, the effects of length variations generally agree well with the 

known effect of similar variations on low molecular mass surfactants. If the length of 

the alkyl tails is increased or if fluorocarbon tails are used in place of hydrocarbon 

ones, then the hydrophobic association of the polysoaps is promoted.  

 

2.1.2.3.  Applications of polymeric surfactants 
Some polymeric surfactants are used in medical applications, examples of which are 

given in the work of Gabizon;56 polymeric micelle-forming surfactants such as poly 

(ethylene-glycol)-phosphatidyl ethanolamine (PEG-PE) were used as drug carriers. 

Such surfactants are illustrated in Figure 2-4.56 Similar polymeric surfactants were 

also used in pharmaceutical applications such as in formulations of insoluble drugs57 

and in catalytic systems such as in the work of Levashov58 who found that some 

polymeric micelles could be used as enzyme-activity regulators. 

 

In colloidal applications, polymeric surfactants are most frequently used as 

dispersants or emulsifiers.59-61   Although several studies have been carried out on 

the use of polymerisable surfactants, which are in fact the precursors of polymeric 

surfactants, the use of polymeric surfactants in emulsion polymerisation is still 

uncommon.  In colloidal applications, improved latex stability and improved 

resistance of film-formed latices to moisture are still the desired goals.  
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Figure 2-4. An illustration of the solubilisation of an insoluble drug (A) and an 

example of a polymeric surfactant (B).56 

 

Although polymeric surfactants are used to stabilise latices, the opposite use for 

flocculation has also been evaluated in wastewater treatment, as described by Yeoh 

and coworkers.62  The researchers reported the successful use of synthetic 

polyelectrolytes in water and wastewater treatment.  Coagulation implies aggregation 

caused by compression of the electrical double layers surrounding colloidal particles, 

whereas flocculation arises from bridging colloidal particles by long-chain polymer 

molecules. The aggregation of the colloidal particles into larger flocculants is 

necessary for successful cleaning by sedimentation.  This involves destabilisation of 

the colloidal particles by addition of inorganic electrolytes and polyelectrolytes. The 
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polyelectrolyte molecules may first serve as a coagulant to reduce the opposite 

charges of colloidal particles, and then as a flocculant to bridge adjacent particles via 

extended segments of adsorbed polymer molecules. Some examples of synthetic 

anionic polyelectrolytes, which are the most widely used, are based on 

polyacrylamide63 and its copolymers.64

 

2.1.2.4.  Copolymeric surfactants  
Most of the work done on polymeric surfactants to date has been with hydrophilic-

hydrophobic diblock copolymers, where the hydrophobic block is permanently 

hydrophobic.  There has also been some interesting work done on hydrophilic-

hydrophilic diblocks, in which the less hydrophilic block can be altered to become 

hydrophobic by changing the external solution conditions, such as solution pH, 

temperature or electrolyte concentration, such as reported by Liu and Armes.65 This 

type of work has been extended to include 'schizophrenic' AB diblock copolymers, 

which can form both micelles with the A block in the micelle core and also reverse 

micelles with the B block in the micelle core in aqueous solution, as described by 

Bütün et al. who investigated tertiary amine methacrylate-based diblock 

copolymers.66   Figure 2-5 illustrates such polymers. 

 

 

 
 

 

Figure 2-5.  Reverse micelles of AB diblock copolymer.66 

 

Other novel polymeric surfactants that have been used in latex synthesis include 

statistical comb copolymers comprising octadecyl side chains and carboxylic acid-

based backbones, produced via conventional free radical copolymerisation.  These 

were used as effective emulsifiers and steric stabilisers in the mini-emulsion 
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polymerisation of styrene, such as reported by Baska and co-workers.67 Diblock 

copolymers, which were amphiphilic were prepared by Burguire and others.68  In this 

work they used both ATRP and/or nitroxide-mediated polymerisation and 

investigated the efficacy of using the block copolymers as polymeric stabilisers in the 

emulsion polymerisation of styrene. 

 

Emulsifiers, which are sensitive to pH have been prepared by the statistical 

copolymerisation of MAA and poly (ethylene glycol) methacrylate (PEGMA) in the 

work done by Drescher and others.69 The polymers were found to behave like 

conventional polyelectrolytes at neutral pH and like amphiphilic surfactants at low pH.  

Furthermore, the pH-dependent surface activity was found to be completely 

reversible.  

 

Banez et al.70 reported on the synthesis of well-defined AB diblock copolymers where 

the A block was low molecular mass PDMS and the B block was made up of 

residues of 2-(dimethylamino) ethyl methacrylate (DMA), and used the copolymers 

as siloxane-based polymeric surfactants.  The copolymers were found to undergo 

self-assembly in solvents, which were good solvents for the A block, but still formed 

micelles in water as expected.  Li et al.71 prepared a PDMS-based ‘ambidextrous’ 

ABC triblock copolymer composed of PMAA-PMMA-PDMS blocks, which was 

subsequently used in preparing PMMA latex in supercritical carbon dioxide 

(sometimes referred to as a “green solvent”).  The PDMS chains provided the 

stabilising moieties while both the neutral MMA and acid MAA were strongly 

adsorbed onto the latex surface due to their solubilities in the supercritical carbon 

dioxide.  Remarkably, on venting the CO2, it was found that the latices could be 

redispersed in water at up to a 40%-solids content.  

 

2.1.2.5.  Self-assembly 
Spontaneous self-assembly in aqueous solution or THF/water mixtures of some 

amphiphilic, multiblock copolymers based on near-monodisperse poly (ethylene 

oxide) and polydisperse poly (methylphenylsilane), have been reported by 

Sommerdijk and others.72  There has been growing interest in the production of 

colloidal cross-linked nanostructures via polymeric surfactants.  Wooley and 

coworkers73 studied the stabilisation of self-assemblies of polymeric surfactants while 
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Zhang74 reported on work done on the preparation of hollow structures, “nanocages,” 

based on cross-linked poly (acrylic acid) from cross-linked micelles.  

 

2.1.2.6. Use of polymeric surfactants in electrokinetic capillary chromatography 
Polymeric surfactants have reportedly been used as pseudo-stationary phases in 

micellar electrokinetic capillary chromatography (MEKC) by Fujimoto and 

coworkers.75 The researchers examined the use of polymers of poly (Na 11-AAUA) 

with a very high molecular mass (>106) as a pseudo-stationary phase.  This mode of 

capillary electrophoresis (CE) is based on the differential distribution of solutes 

between a running buffer phase and a pseudo-stationary phase, allowing the 

separation of uncharged analytes under the influence of an electric field.  

 

2.2.  Heterophase polymerisations 
There are a number of heterophase polymerisation processes that are used to 

prepare polymers industrially.  These include suspension, precipitation, dispersion, 

miniemulsion, macro- and micro-emulsion and inverse emulsion polymerisation 

processes. 

 

Emulsion polymerisation is one of the most important of the heterophase 

polymerisation processes.  Here, the monomer or a mixture of monomers emulsified 

in water is polymerised, generally using a water-soluble initiator.  The simplest 

composition of an emulsion polymerisation includes water, surfactant, a water-

insoluble monomer and a water-soluble initiator. The product of the reaction 

comprises a colloidal dispersion of polymer particles in an aqueous medium, also 

known as the latex.  

 

Suspension polymerisation is a polymerisation in an aqueous system with monomer 

as a dispersed phase. Generally, an oil-soluble initiator is used and the locus of the 

polymerisation is in the monomer droplets.  These droplets subsequently change into 

the polymer phase through polymerisation. 
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In precipitation polymerisation, the polymer is insoluble in the monomer or solvent 

(whichever is the continuous phase).  The locus of the polymerisation is generally in 

the precipitated polymerisation droplets. 

 

In dispersion polymerisation, the monomer is partially soluble in the dispersion 

medium, while the polymer formed is insoluble.  Polymer forms in the dispersed 

droplets or in the continuous phase and adds to the dispersed phase, i.e. the 

stabilised particle, where polymerisation continues. Here, the stabilising agent is 

normally steric, e.g. poly (vinyl alcohol). 

 

In microemulsions, a monomer and a water-soluble initiator are two of the starting 

materials, in addition to water, monomer and surfactant.  Very small particles are 

prepared, containing the polymer.  The mechanism of microemulsion polymerisation 

is well described by Gilbert.76 

 

A miniemulsion polymerisation can be considered to be a special case of emulsion 

polymerisation.  Co-stabilisers and surfactants are generally used to allow small, 

semi-stable emulsion droplets to be formed initially, in the early stages of 

polymerisation, and particles are formed by the entry of a radical into a droplet, which 

provides the locus of polymerisation. 77-80     In a study by Anderson et al.81 the 

influence of surfactant packing was shown to be dependent on particle and surfactant 

sizes.  

2.3.  Emulsion polymerisation 

2.3.1. The development of emulsion polymerisation 

Since the early development of the emulsion polymerisation process, in the early 

1930s, the process has received increasing industrial interest.  This interest has been 

mainly driven by the numerous advantages offered by the process compared to other 

modes of polymerisations.  Initially developed for the synthesis of synthetic rubber, 

emulsion polymerisation is nowadays an economically important process that is 

applicable to a wide variety of monomers, to produce elastomers, thermoplastics, 

and numerous specialty polymers.  A good account of the historical development of 

emulsion polymerisation is given by Gilbert,76 in which the technical history is divided 
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into three periods, which he terms: the “Heroic Age”, “Age of Exploration” and “Age of 

Enlightenment”.   

 

The “Heroic Age“, which was the period around 1930, is reported as the time when 

emulsion polymers were first produced.  This involved the study of natural rubber 

latex and attempts to produce synthetic rubber. It was during this period that the 

synthesis of rubber was attempted by DuPont and resulted in the discovery of 

neoprene.  The first attempts at emulsion polymerisation led to products, which had 

limited applications as they lacked the necessary good latex properties such as 

robustness and good film-forming properties. 

 

The “Age of Exploration“ covered the period from the 1950s to the 1980s. During this 

time there was a rapid growth in the range of emulsion polymerisation products, and 

there was a concerted research effort towards the production of better quality 

products.  Although some basic principles about emulsion polymerisation were 

established, the process could not be developed fully because industrial research 

was mainly carried out via trial-and-error methods, with minimal use of mechanistic 

principles.  This led to an extensive range of formulations, which were usually kept 

secret by the founding industrial companies.  

 

In the “Age of Enlightenment“, new physical techniques for investigation were 

developed, and this subsequently led to a better understanding of the fundamental 

mechanisms that govern the emulsion polymerisation process.  This subsequently 

resulted in the development of knowledge-based, well-formulated products with 

enhanced performance.  

 

The focus of the future is thus on the improvement of existing technologies to 

develop a better understanding of the emulsion polymerisation process while seeking 

ways to further improve the industrial process and produce more value-added 

materials. 

2.3.2.  Advantages of emulsion polymerisation 

Emulsion polymerisation generally proceeds at low viscosities, allowing adequate 

heat dissipation, hence avoiding overheating in reactors.  High monomer conversions 
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are generally realised and thus problems associated with residual monomers are 

reduced.  Generally, high molar mass polymers are produced without using 

modifiers, suggesting that the addition of chain transfer agents (such as in RAFT or 

ATRP processes) can be used to control the molar mass fairly easily. The use of 

water and the absence of organic solvents are advantages in which water constitutes 

an inert and harmless continuous phase.  This helps to maintain a relatively low 

viscosity of the end products and provides for adequate heat transfer.  The 

polymerisation actually takes place in the latex particles that act as numerous micro 

reactors for bulk polymerisation.  The use of functional monomers is possible and 

these are usually used together with other monomers to improve latex properties or 

to create sites for surface modification, or to tailor-make polymer latex for a specific 

application. This offers a possibility for the development of a new materials and 

applications for emulsion polymerisation products. 

2.3.3.  Disadvantages of emulsion polymerisation 

A major disadvantage of emulsion polymerisation is related to the 

compartmentalisation82 of the reaction.  This is when polymerisation occurs 

simultaneously with other processes and in different phases of the same system. 

Furthermore, the heterophase reaction mixtures generally contain several additives, 

such as surfactants and initiator fragments, which may prove difficult to remove, and 

subsequently affect the quality of the final product.  There are a great variety of 

reactants and procedures used in polymerisation recipes and in emulsion 

polymerisation. While this may lead to a wide and exciting range of products, it can 

also make mechanistic studies of reactions complex, due to the heterogeneous 

nature of the process, reactants, intermediates and products.  Removal of the 

aqueous continuous phase, which may be necessary after polymerisation, to isolate 

the polymer, might be difficult to achieve industrially and can result in a significant 

increase in production costs.  

2.3.4.  Emulsion polymerisation conditions 

The most common methods for preparing polymer latices by emulsion polymerisation 

are: batch wise, in continuous stirred tank reactors (CSTR), and by starved feed 

conditions. In single-batch polymerisation, all the polymerisation reagents are added, 

mixed and stirred at the appropriate temperature and the products are then 

recovered after the polymerisation.  In a semi-batch process, a portion of the 
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reactants are added to a reactor at the beginning of the process and the rest of the 

reactants are added during the reaction in a controlled manner, allowing some 

flexibility in process design and operation. In this mode, variables such as 

temperature, polymer composition and particle size distribution can be adjusted by 

controlling feed inputs. Most commercial emulsion products are produced in semi-

batch processes.  In the continuous reactor system, reactants are added throughout 

the process while products are continuously removed.  This system operates in a 

steady-state condition and allows optimisation of production rates. In some of these 

cases, pre-formed latex particles are added to the reactor to replace removed 

particles, to maintain steady-state conditions.  In a starved-feed process, the polymer 

composition is fixed by adding a pre-determined ratio of monomers that allows the 

monomer feed to be the rate-determining step in particle growth. 

2.3.5. Theory and mechanism of emulsion polymerisation 

Emulsion polymerisation is a mechanistically complex process, and it presents many 

scientific challenges in addition to industrial interest. Harkins83 has given a qualitative 

description of emulsion polymerisation processes, while Smith and Ewart84 have 

developed a corresponding mathematical model. Extensive work has subsequently 

been carried out to better understand and quantitatively describe the mechanisms 

involved during the process.  The key issues are the control of the polymerisation 

reaction and design of emulsion polymers.  Piirma85 and Gilbert76 have given good 

overviews on emulsion polymerisation in the literature. 

 

A batch emulsion polymerisation process can commonly be divided into three, time-

separated intervals.  The reaction mixture initially consists of monomer droplets and 

monomer-swollen surfactant micelles dispersed in a continuous aqueous phase.  At 

the start of the polymerisation process the monomers are dispersed into small 

droplets that are stabilised by surfactants, and most of the remaining surfactant 

molecules gather as micelles in the water phase, as illustrated in Figure 2-6.  
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Figure 2-6.  Events that occur at the start of a batch emulsion polymerisation. 

 

The micelles are very small compared to the monomer droplets.  Three different 

stages of emulsion polymerisation can be distinguished. In the first stage, called the 

nucleation step or Interval I, the initial formation of polymer particles occurs and 

monomer-swollen micelles disappear and nascent polymer particles appear.  The 

stage ends when all the micelles have disappeared.  After nucleation, the next stage, 

Interval II, commences and the polymer particles grow at the expense of the 

monomer droplets which decrease in size and it ends when the supply of monomer is 

stopped. Interval III starts only when even the monomer droplets have disappeared.  

Polymerisation continues in Interval III until the monomer present in the particles or 

dissolved in the aqueous phase is depleted. The polymerisation rate in this interval 

decreases gradually.  These events are illustrated in Figure 2-7.   
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Figure 2-7.  The various species present during emulsion polymerisation. 

 

2.3.5.1. Generation of free radical oligomers 

An important step preceding nucleation is the generation of free radical species.  This 

process remains an important issue throughout the course of emulsion 

polymerisation reactions.  The initiator introduced in the recipe is usually water-

soluble, e.g. a persulphate, and dissociates in the aqueous phase to form free radical 

species, as indicated in equation 2-1.  

 

                                  S2O8
2-               2SO4

-  •   2.1 
 
 

Where, 

SO4
-  •   represents a sulphate radical which forms a sulphate end group 

M  a monomer unit and 
. a radical species.    
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The monomers, on the other hand, are sparingly water-soluble, although a sufficient 

amount of monomer is dissolved in the continuous phase to react with the formed 

radical species, as indicated in equation 2-2. 

 
 

                                 SO4
-  •  + M      SO4

-  M •  2.2  
 

 

 

This results in “monomeric” radicals as shown above, which undergo free-radical 

polymerisation or even participate in transfer reactions.  Due to the heterogeneous 

nature of emulsion polymerisation, processes such as the mass-transfer 

phenomenon between the continuous aqueous phase and the dispersed organic 

phase can also occur.  The small oligomeric radicals may enter surfactant micelles 

and monomer droplets, accounting for particle nucleation.  The entry of radicals in 

the particle phase or into already existing polymer particles is one of the key factors 

that leading to latex particle growth and controls emulsion polymerisation kinetics. 

The degree of water solubility and surface activity of the oligomeric radicals play 

important roles with regard to mass-transfer phenomena.  The incorporation of 

monomer units into oligomeric radicals growing in the aqueous phase is limited by a 

critical degree of polymerisation, above which the polymer chains become surface 

active and irreversible entry occurs.  Surface activity is dependent on the nature of 

the monomers available for polymerisation in water.  Since a dynamic equilibrium 

between the aqueous phase and the dispersed organic phase probably exists, each 

oligomeric radical will be characterised by its own partition coefficient.  

 
2.3.5.2. Particle formation 

Nucleation, described as Interval I of emulsion polymerisation, is the period during 

which latex particles are formed.  Goodall86 suggests a nucleation mechanism 

dominated by micellar nucleation, where entry of oligomeric radicals occurs in 

surfactant micelles.  However, this model is not obeyed by a wide range of 

monomers especially those that are significantly water-soluble.  One of the first 

researchers to propose a homogeneous nucleation mechanism was Priest.87 This 

mechanism was later quantitatively treated by Fitch and Tsai,88 and Ugelstad and 

Hansen,89 and developed into the HUFT theory (Hansen-Ugelstad-Fitch-Tsai 
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theory).90 According to this model, radicals add monomer units in the aqueous phase 

until they exceed their water solubility, leading to precipitation, the absorption of 

solvent, and the formation of a precursor polymer particle. The monomer diffuses 

from the droplet phase to swell the newly formed latex particles and polymerisation 

proceeds further.  Surfactant, originating from solution and from micelles, contributes 

to the colloidal stability of the newly nucleated particles. 

 

A coagulative nucleation mechanism, which is just an extension of the homogeneous 

nucleation model, was proposed by Napper91 and others. According to this 

mechanism, the precursor particles formed by homogeneous nucleation are not 

colloidally stable and therefore aggregate or coagulate to form mature stable latex 

particles which may grow further from monomer absorption and eventually surfactant 

adsorption.  Nucleation is thus a very complex but important part of the emulsion 

polymerisation process.  Actually, all mechanisms described above may occur 

simultaneously. The parameters determining which mechanism may dominate the 

others are the monomer solubility, the surfactant concentrations and the quality of 

monomer emulsification.  For instance, homogeneous nucleation is considered to be 

the primary mechanism for monomers with high water-solubilities and/or low 

surfactant levels.  Seeded emulsion polymerisation92 generally follows 

heterogeneous nucleation since pre-formed latex is introduced to the reaction 

mixture right at the start of polymerisation. 

 
2.3.5.3. Particle growth 

Once the particles have been formed, the new polymer phase offers a destination for 

the monomer so that it partitions itself among the monomer droplets, the aqueous 

phase and the polymer particles.  Particle growth occurs during the Intervals II and III 

defined in section 2.3.5.  In these intervals nucleation would have ceased and the 

number of particles would be constant as they were at the end of Interval I. Each 

particle then behaves as a micro-reactor.  During the polymerisation the particles are 

swollen with monomer at a rate, which is usually fast compared with the rate of 

consumption of monomer by polymerisation.  The rate of swelling will depend upon 

diffusion of monomer from the emulsified monomer droplets through the aqueous 

phase into the polymer particles.  At some stage of the polymerisation all the 

monomer droplets will have been consumed and the concentration of monomer in 
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the polymer particles decreases. This will be accompanied by a decrease in the rate 

of polymerisation. 

 

2.3.5.4. Termination 

Termination can often be quite complex, with several reactions occurring 

simultaneously in different loci.  In one case, radical exit can occur through chain 

transfer to monomer.  This occurs when the propagating free radical abstracts a 

hydrogen atom from the monomer, terminating its own growth and producing a 

monomeric radical as follows: 

 

                      Mp •  +   MH                       Pp    +      M1p •              2.3 
      

 

Where,  

Mp • is the propagating oligomeric radical 

MH the monomer showing the H abstracted 

Pp   the polymer formed and 

M1p • is the new monomeric radical.                               

 

The product M1p• can easily diffuse out of the particle and into the aqueous phase, 

where it can undergo termination.  Termination can also occur when a second radical 

enters a growing particle.   

 

2.4.  Control of the radical polymerisation process 
Controlled radical polymerisation leads to the synthesis of polymers with tailor-made 

molecular masses and molecular mass distributions.93 This type of polymerisation 

also leads to the synthesis of polymers with controlled polymer architecture such as 

block copolymers and branched and even star structures. Control of the 

polymerisation can be achieved through “living” polymerisation processes.  For a 

polymerisation to be termed “living,” radical-radical termination as normally occurs in 

free radical polymerisation should be negligible.  Polymerisation conditions are thus 

selected so as to encourage chain transfer during polymerisation.  Most methods for 

achieving “living” radical polymerisation can be used in the synthesis of block 
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copolymers and other structures of complex architecture. The use of these methods 

has however been limited by the fact that the processes are not always compatible 

with all monomers or reaction conditions.   

 

In atom transfer radical polymerisation the use of conventional surfactants such as 

SDS results in high molecular mass and broad distributions.94   Semi-batch 

conditions or mini-emulsions have been proposed to try to overcome some of the 

problems associated with the broad distributions.  

2.4.1.  Reversible Addition-Fragmentation Transfer (RAFT) agents 

RAFT, as one of the methods for controlling radical polymerisation, offers versatility 

in providing polymers of predetermined molecular mass and very narrow 

polydispersities.95   This is achieved by performing the polymerisation in the presence 

of chain transfer agents such as dithio compounds96 which act as RAFT chain 

transfer agents to provide the polymerisation with living characteristics.  Unlike 

ATRP, which has limitations with monomers or initiators containing acid 

functionalities the RAFT method can be used with a wide range of monomers to 

prepare narrow-polydispersity block copolymers.   Some of the monomers that have 

been successfully RAFT polymerized are: 

Acrylics such as Acrylic acid and methyl methacrylate, 

Acrylamides such as N,N-dimethylacrylamide and acylamide, 

Vinyl acetate and styrenes. 

 

RAFT is also tolerant to monomers with functionalities such as –OH, -COOH and –

NR2 .    It has can also be used in aqueous media.  However, to obtain control of 

molecular weight with RAFT agents, the exchange between growing and dormant 

chains should be highly efficient.97   Although RAFT polymerisation has been found to 

be very versatile in terms of suitable monomers, the process is rather slow.  This is 

because the rate of transfer is much greater than the rate of propagation and only 

one monomer unit can be added per addition-fragmentation cycle.  In conversional 

emulsion polymerisation inhibition periods in which little monomer is consumed have 

been reported.98,99   Colloidal destabilisation of monomer droplets or latex particles 

early in the reaction has been reported in water dispersion systems.100   It has also 
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been reported that in water-borne dispersions, RAFT reactions reach a limiting 

conversion before suddenly ceasing polymerisation. 101

 

The RAFT technique relies on a sequence of addition-fragmentation chain transfer 

reactions, as illustrated in Scheme 2-1.102 

 

 

 
 

Scheme 2-1.  Suggested mechanism for RAFT polymerisation. 

 

Using a suitable initiator, an active species Pn• is produced and added to the RAFT 

agent, which in turn undergoes fragmentation, resulting in an oligomeric dithio 

compound, which then releases a radical R• and reinitiates polymerisation to give a 

new active species Pm•. The active species adds to the oligomeric species and 

fragmentation follows, resulting in a new propagating radical Pn•. The reversible 

addition-fragmentation sequence allows transfer between dormant and active chains 

and maintains the “living” character of the polymerisation as there is a large ratio of 

dormant to active chains.  The majority of chains in the product polymer possess the 

RAFT moiety via which polymerisation can be continued in the presence of a second 

monomer, to give a block copolymer.  A requirement for forming a narrow 

polydispersity AB block copolymer in a batch polymerisation is that the first-formed 
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polymeric dithio compound should have a high transfer constant in the subsequent 

polymerisation step, to give the B block.103-104

 

The amounts of RAFT agent and initiator are calculated as proposed by Rizzardo et 

al.105 in the following equation: 

 

                                                                                                                                                 2-4 
[ ]

[ ] ( )
 

where, 

Mn is the target molecular mass of the polymer / oligomer [g/mol] 

MRAFT is the molecular mass of RAFT agent [g/mol] 

[M]0 is the initial concentration of monomer [mol/l]  

Mm is the molecular mass of monomer [g/mol] 

x  is the fractional conversion of monomer   

[RAFT]0 is the initial concentration of RAFT agent [mol/l]  

f          is the efficiency factor (fraction of initiator radicals that will form polymers)  

[I]0 is the initial concentration of the initiator [mol/l]  

kd is the dissociation rate constant of the initiator (dependent on the solvent and 

temperature) [s-1] 

t  is the time of reaction [s]. 

 

If the ratio of [RAFT]0 to [I]0 is chosen as 100:1, and [I]0 in Equation 2.4 is substituted 

with 100.[RAFT]0, and if the initiator efficiency for AIBN is chosen with an efficiency 

factor f of 0,7, then Equation 2.4 can be written as Equation 2.5: 

 

M n = M RAFT +{[M]0.x·M m} / {[RAF T]0 + (2 x 0,7) x 100 [RAFT]0 · (1 – e- k 
d
 t)}           2-5 

 

If [RAFT]0 is made the subject of Equation 2-5 to calculate the initial concentration of 

the RAFT agent, Equation 2-6 results. 

 

[RAFT]0 = {[M]0.x·M m} / {M n - M RAFT} + {1 + (2 x 0,7) x 100 [RAFT]0  (1 – e- k 
d
 t)}     2-6 
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From this, the amount of RAFT agent and thus the initiator concentration can be 

calculated. 

 

2.5.  Functionalised polymer latices 
Functionalised latices are those that have chemical moieties incorporated in them.  

The extent of the functionalisation generally differs from polymer molecule to polymer 

molecule although a random distribution of functional groups is generally aimed for.  

One way of achieving this is by selecting reaction conditions that allow the desired 

functional group to be copolymerised with other monomer units in a random manner.  

In emulsion polymerisation, monomer units bearing such functional groups do not 

always enter the polymer in a random manner as required because of the following 

constraints: 

• functionalising monomer may be withheld until nearly the end of the 

polymerisation reaction, during which time it may enter the polymer, and 

• reaction conditions may be such that the functionalising monomer may 

partition strongly in favour of the dispersion medium rather than the reaction 

loci and will tend to homopolymerise in that medium, if it does at all. 

This phenomenon has been reported with aqueous carboxylated latices in alkaline 

conditions.106

2.5.1.  Carboxylated latices 

The most important chemical grouping used to functionalise polymer latices is the 

carboxylic acid moiety, which is generally incorporated to give carboxylated latices.  

Other functional groups that have been used include sulphonates, hydroxyl moieties 

and amino moieties.  The study of functionalised latices has been encouraged by the 

realisation that, besides such polymers offering interesting latex properties, 

modifications of the functional groups are also possible, and this can be made use of 

in a wide range of reactions. 

 

2.5.1.1.  Mechanism of carboxylated latex formation 

Most monomers usually partition between the continuous aqueous phase, the 

monomer droplets and the latex particles.  However, due to the hydrophilic nature of 

carboxylic monomers and polymers, initiation takes place in the aqueous phase 
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where the monomer concentration is higher than in conventional systems.  In some 

cases, monomer concentration influences the polymerisation rate through interaction 

of the monomer with the initiator itself or with the initiator-derived radicals trapped in 

a “solvent cage” 107.   This behaviour can be expected to have a significant influence 

on the rate of free radical generation.  Carboxylic monomers are generally used as 

functional comonomers in the emulsion polymerisation of monomers with low water 

solubility. The polymerisation scheme in the aqueous phase is therefore complicated 

by the presence of more than one monomer and by the relatively high overall 

monomer concentration in the continuous phase.  As described in Sections 2.1.2 and 

2.1.3, the water solubility and the surface activity of the oligomeric radicals formed in 

the aqueous phase play very important roles in the nucleation process and in the 

radical transfer from the aqueous phase to the particle phase.  However, aqueous 

phase polymerisation is difficult to study in emulsion polymerisation due to the 

presence of the discontinuous particle phase and the partitioning of all (oligomeric) 

species between the phases involved.  Further, the relatively low concentrations of 

oligomeric species hamper a detailed mechanistic study because these species 

cannot be isolated and characterised.  Therefore mechanistic information about the 

aqueous phase in emulsion polymerisation processes can generally not be directly 

obtained.  There are still problems in trying to attain high carboxylic group contents in 

emulsion systems, as it is difficult to maintain emulsion stability with high acid 

content. 

 

2.5.1.2.  Acid group distribution 

Acid groups can be present in latex products as follows:  

• incorporated into copolymer chains inside the polymer particles, i.e. buried, 

• in copolymer chains but residing in the outer shell of the polymer particles, i.e. 

at or near the particle surface, 

• in surface active copolymer chains physically adsorbed onto the polymer 

particle surface, i.e. acting as adsorbed surfactant molecules, 

• in water-soluble copolymer chains with a low surface activity, i.e. dissolved in 

the aqueous phase, or 

• homopolymerised in the aqueous phase. 
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The final distribution of acid groups in latex products is however controlled by several 

factors, the most important of which are: 

•  the reactivities of the monomers, the hydrophilicity of the carboxylic acid 

monomer and its partitioning behaviour, 

• the pH of the reaction mixture, and 

• the manner in which the monomers, and more particularly the functional 

carboxylic ones, are supplied to the reaction mixture. 

 

Useful mechanistic information can be obtained from the determination of the acid 

group distribution.  Effective entry of acid-rich oligomeric radicals will mainly result in 

the incorporation of acid groups chemically bound to the polymer molecules in the 

latex particles.  Monomer units partitioned into the latex particles will copolymerise 

and remain buried inside the particles.  After transfer or termination in the aqueous 

phase, oligomeric radicals will remain dissolved in the aqueous phase or will adsorb 

onto the surface of the latex particles, depending on their surface activity, and 

therefore on their chemical composition. 

 

2.6. Cleaning of latices  
A number of experimental techniques have been used in the study of carboxylated 

latices. These include the procedures used in the synthesis and purification of 

carboxylated latices and those used in the characterisation of the latices.  Due to the 

heterogeneous nature of emulsion polymerisation reactions, the products have to be 

cleaned before any characterisation is undertaken.  The products may contain 

undesirable species such as initiator fragments, oligomeric species, polyelectrolytes 

and added buffers, which make characterisation difficult.  Some of the methods for 

cleaning latices have been described in the literature.108

2.6.1.  Use of ion-exchange resins to clean latices 

Most polymer colloids carry charges generated by ionic functional groups introduced 

during polymerisation.  A mixed-bed, ion-exchange resin removes all electrolyte 

(polymeric and small ions) from the products and it exchanges all the counterions for 

H+ in the case of anionic particles and OH- in the case of cationic particles.  The 

removal of ionic surfactant from the latex during ion exchange may induce 
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coagulation if the residual surface charge density is low and particle size is small.  

These two effects can: 

• reduce the solids content, which, if not measured after ionic exchange, will 

lead to gross errors, and 

• lead to errors in particle size distributions for systems which are not 

monodisperse. 

2.6.2.  Use of dialysis and serum replacement to clean latices 

One way of cleaning latices is by dialysis through a semi-permeable membrane.  The 

membrane is expected to be permeable to small molecules, ions and oligomers, but 

not to colloids.  The water in which the dialysis tube is placed is replaced periodically 

and the conductivity of the dialysate recorded.  It usually takes weeks to obtain clean 

latices.  Latices are considered clean when the water conductivity remains constantly 

low. 

 

In serum replacement, pure water is added to latex to dilute the serum, which is then 

continuously forced out through the membrane.  Measurement of the surfactant 

concentration is done conductometrically.  Clean latex is indicated by low 

conductivities, as close to that of deionised water as possible. 

2.6.3.  Use of centrifugation to clean latices 

In some cases, even dialysis and the use of ion-exchange resins may not be 

sufficient to remove contamination from latex, hence the use of ultracentrifugation is 

also considered.  This technique involves the use of an ultracentrifuge in which the 

latex is spun down to a pellet.  The supernatant serum is then decanted and the 

particles redispersed with ultrasound into clean deionised water.  This is repeated 

until a constant titre is obtained with a suitable titrant.  The major disadvantage 

associated with the use of this cleaning method is that adsorbed stabilisers might be 

removed.  The method is therefore useful only for latices of high stability. 

 

2.7.  Surface functionality 
The control and characterisation of the surface properties of latex are often required 

in efforts to better understand the properties of the latex.  Properties of latices 
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influence their behavior and dictate how they should be handled in manufacturing 

processes, for their prospective uses, for example, the formation of films, as 

coatings, or for use as model colloids.  Because of the small size of a latex particle, 

the high surface area/volume ratio means that a particle's properties are largely 

influenced by its surface characteristics.  The complete characterisation of latex 

requires the determination of the surface charge density and identification of the 

source of that charge because this plays such an important function in the colloidal 

properties of the latex and its stability, as reported by Zhao et al.109 and Ottewill.110   

Much care needs to be taken with characterising polymer latices because the surface 

chemistry may be changed by the cleaning method employed, or simply from 

prolonged storage.    

 

Surface functionality can be introduced by means of the addition of a functional 

monomer in a reaction recipe, or by using techniques such as copolymerisation or 

"shot growth"-type addition, as reported by Sakota et al.111 In Fitch’s review of 

polymer colloids,88 it is suggested that in order to bring about functionality at the 

particle surface, the comonomer should be surface active and insoluble in both the 

polymer and in water.  A study by Vijayendran112 looked at the carboxylation of 

polystyrene.  In the study the effect of hydrophobicity in a number of carboxylated 

acidic monomers, e.g. itaconic acid (IA, CH2=C(COOH)CH2COOH), acrylic and 

methacrylic acids (i.e., AA and MAA, respectively) was investigated.  It was found 

that the more hydrophobic acid (and thus the most soluble in styrene) concentrated 

at the particle core during the polymerisation in the order MAA > AA > IA.  The ease 

of diffusion of the MAA into the styrene was cited as the reason, also noting the lower 

reactivity of the IA.  In a study by Hoy113 and co-workers carried out to investigate the 

way a carboxylated monomer was added in an industrial set-up, the results showed 

that the method of addition had little effect on where the carboxyl groups would be 

finally located.   

 

Post-polymerisation reactions may also be used to modify surface functionality.  One 

important reaction of this type is the oxidation of hydroxyl end-groups to carboxyl 

groups114, which is made use of in latex surface characterisation.  In addition to being 

steric stabilisers, surfactants and emulsifiers can also contribute to stabilising surface 

charge density due to hydrophilic end groups.  Surface species may also be grafted 
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onto the particles, thus increasing the surface charge density as reported by Ryan115 

and Pelton116. 

 

In a study conducted by Stone-Masui and Watillon117, latices prepared in the 

presence of sodium alkyl sulphate or sulphonate surfactants were shown, after 

cleaning by ion exchange, to contain only strong acid groups.  When the same latices 

were prepared in the presence of potassium stearate or sodium laurate however, 

they were found to contain weak acid groups in addition to the strong acid groups. 

This may suggest that not all latices can be cleaned by some methods and tests may 

need to be carried out before one subjects a large quantity of latex to an untried 

cleaning method.  In a study by Fitch and MacCarvill118, analysis of surface groups of 

latex particles showed that sodium dodecyl sulphate and sodium dodecyl sulphonate 

contributed considerably to the number of chemically bound sulphate and sulphonate 

groups respectively.  

 

2.8.  Characterisation of a polymer latex 

2.8.1.  Surface charge density 

The most common methods used to determine charge density of polymer latex are 

conductometric titrations with acid or base119.  The slopes of the titration curves 

obtained can provide information regarding the nature of the surface groups and the 

purity of the latex.  The equivalence point is readily obtained by extrapolation of the 

linear points of the titration curves.  Experimental data from the procedure are used 

to calculate the charge density on the surface of a latex particle.  A sharp end-point is 

characteristic of strong acid groups. 

2.8.2.  Light scattering 

Polymer latices can be characterised by their effect on collimated light rays.120 As the 

refractive index of the disperse phase is different from that of the medium, latex will 

display the Tyndall effect, which occurs when the size of particles that cause scatter 

are larger than the wavelength of the radiation that is scattered, resulting in the latex 

showing a bluish colour.  Static and dynamic light scattering can be used for the 

characterisation of latex particles, especially in determining particle size and 

polydispersity.  The mean diameter of the particle population and the percentage 
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coefficient of variation in the diameter of the particles are based on measurements of 

about 500 particles or until further counting does not change the distribution.  The 

measurements also indicate whether the particle population is monodisperse.  

Neutron scattering121 can also be used to determine the dimensions of a surface 

such as the lyophilic layer, which serves as a steric stabiliser for latex particles. 

2.8.3.  Microscope analysis 

As latex particles are about 10 nm to 1000 nm in size, transmission electron 

miscroscopy (TEM) can be used to investigate the morphology and composition of 

latex particles.  Scanning electron microscopy (SEM) is used to investigate the 

surface of the particles.  TEM can also be used to determine the size of latex 

particles.  Sample preparation for TEM involves microtomy and staining, whereas no 

special sample preparation is necessary for SEM.  Atomic force microscopy (AFM) 

can also be used to examine film surfaces.  

2.8.4.  Nuclear magnetic resonance spectroscopy (NMR) 

NMR spectroscopy has been used to investigate the composition of latices by looking 

at chemical shift patterns.  Signals are observed only when the polymer is in solution.  

2.8.5.  Gel permeation chromatography (GPC) analysis 

Gel permeation chromatography has been successfully used as a method to 

determine molecular mass and molecular mass distributions of polymers.  GPC is a 

form of liquid chromatography in which molecules are separated into their respective 

molecular sizes.  In this process, a dilute solution of a polymer is injected into a 

continuous flow of solvent passing through a column containing microporous gel 

particles.  Larger molecules cannot permeate within the porous beads of the column 

as readily as the small ones, so that the larger molecules cannot pass through small 

pores and are thus eluted first, while small molecules need higher elution times.  It is 

important to make a suitable selection of packings for the different columns.  Different 

molecular fractions have different elution volumes VE, which is the volume of solution 

eluted and is related empirically to the interstitial volume VO and to the volume of 

liquid within the pores Vi as shown in equation 2-7: 

 
VE  = VO  +  k Vi                                                                                        2.7 
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Where, k is a distribution coefficient, which indicates the relative ease with which 

solute molecules penetrate into the pores of the gel.   

 

Although GPC is generally used for most of the molecular mass and MWD 

measurements, the results are not entirely accurate because it is not an absolute 

method.  The method needs to be calibrated using standards such as PS or PMMA 

of low polydispersity, which differ chemically, and therefore have different 

hydrodynamic volumes in the eluent than the sample being measured.  Thus unless 

a universal calibration is used, results are relative.  

2.8.6.  Stability of emulsions 

The stability of latices is measured by the extent of the response of latex to agents of 

instability, such as the addition of electrolytes, freeze-thaw cycles, ultracentrifugation, 

pH changes, temperature changes and even ageing.   

 

Current research is still centred on investigating optimum conditions for the 

production of stable latices using sustainable and environmentally friendly materials.  
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CHAPTER 3 

Synthesis and Characterisation of  

Surfactant Monomers 

3.1.  Introduction 
The synthesis of polymerisable surfactants (surfmers) involves the incorporation of a 

polymerisable functional group into the surfactant molecule.  The selected surfmer 

12-acryloyloxydodecanoic acid (12-ADA) was prepared by the esterification of a 

hydroxy acid, using a modified version of the method described by Finkelmann et al.1 

The surfmer 11-acrylamidoundecanoic acid (11-AAUA) and its corresponding sodium 

salt were prepared according to the method of Fujimoto.2  

 

3.2.  Experimental 

3.2.1.  Materials 

The materials required for the synthesis of 12-ADA and 11-AAUA and their 

corresponding Na salts are tabulated in Table 3.1. 

3.2.2.  Equipment  

Infrared spectra were recorded on a Perkin Elmer FT-IR Paragon model 1000 using 

NaCl windows.  

Proton NMR spectra were obtained on a 300 MHz Varian VXR equipped with a 

Varian magnet or on a 600 MHz Varian Unity-Inova carrying an Oxford magnet. 

Electron spray mass spectra (ESMS) were obtained on a Micromass Quattro (UK).  

Methanol was used to dilute the samples.  A Rheodyne injector was used and the 

flow rate was 15 -20 μl/min.  
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Table 3-1.  Materials used for the synthesis of 12-ADA, 11-AAUA and their Na salts 
 

Surfactant to be 
prepared 

Materials Supplier and material state 

 

3.3.  Synthesis of 12-acryloyloxydodecanoic acid 
The 12-ADA and its sodium salt were prepared according to Scheme 3-1. 
 
 
 

 
12-ADA 

 

11-hydroxydodecanoic acid  

triethylamine  

dichloromethane 

acryloyl chloride 

NaOH 

Conc. HCl 

Silica gel 

 

(Sigma) as supplied 

(Acros) as supplied 

(Merk) as supplied 

(Sigma) as supplied 

(Sigma) as supplied 

 

Prepared as described in Section 3.3.

 
12-ADA Na salt 

 

12-ADA 

absolute ethanol 

NaOH 

Mg 

CCl4

Dried as explained in Section 3.4 

 
11-AAUA 

 

11-Aminoundecanoic acid  

acryloyl chloride 

dil. HCl 

 

 

(Sigma) as supplied 

(Sigma) as supplied 

11-AAUA Na salt 11-AAUA 

 

dry absolute ethanol 

 

NaOH 

Preparation as described in 

Section 3.5. 

Dried as explained in Section 

3.4 
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Scheme 3-1.  Reaction scheme for the preparation of 12-ADA and its Na salt. 

 

3.3.1.  Experimental procedure 

To 10 g (46,2 mmol) of 12-hydroxydodecanoic acid, 25,8 ml (184,9 mmol) of 

triethylamine was added and the mixture dissolved in 40 ml CH2Cl2.  In a round- 

bottomed flask 16,7 ml (184,9 mmol) acryloyl chloride was dissolved in 22 ml CH2Cl2.  
The former mixture was then very slowly added to the acryloyl chloride solution, with 

stirring at -5 ºC.  The resultant mixture was left to stir at 0 ºC for 24 hours.  After this 

period, 11,3 g (282 mmol) of NaOH was dissolved in 25 ml distilled water and added 

to the mixture, with stirring, at -5 ºC.  The reactants were then left to stir for a further 

40 minutes.  The resulting mixture was acidified, by slowly adding concentrated HCl, 

at -5 ºC, until the pH was about 1.  The CH2Cl2 was removed in the dark to reduce 

the chances of premature polymerisation.  The solid yellow product was then washed 

with cold water before being dried overnight in a vacuum oven at room temperature. 

3.3.2.  Purification of 12-ADA 
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The dry surfmer was dissolved in a mixture of 4:1 acetone/methanol, filtered and run 

through a 60-cm-long chromatographic column packed with silica gel, using an 

acetone/methanol solvent mixture.  Different fractions were collected and verified 

using thin-layer chromatography.  The total yield was 76%.  Solvent was removed 

under vacuum in the dark, to avoid unwanted polymerisation.  The product was 

analysed using proton NMR spectroscopy.  The first fraction that emerged from the 

column proved to be 12-ADA. 

 

3.4.  Synthesis of the sodium salt of 12-ADA. 
 
The surfmer 12-ADA was converted to its corresponding sodium salt using the 

procedure illustrated in Scheme 3-1.  

 
Ethanol was dried as follows. First a mixture of the following was boiled under reflux 

for about 2 hours: 1 ml carbon tetrachloride, 5 g Mg and 50 ml absolute ethanol. 

Later, 950 ml absolute ethanol was added and the mixture refluxed for about 5 hours, 

after which it was distilled directly into a flask containing size 3 molecular sieves.   

 

The sodium salt of 12-ADA was prepared by mixing 60,04 mol of surfmer dissolved in 

300 ml of the dry absolute ethanol (prepared as described above), with NaOH 

dissolved in dry ethanol. The solution was stirred overnight at room temperature, 

after which solvent was removed under vacuum, in the dark.  The product was dried 

in a vacuum oven at room temperature.   

3.4.1.  The critical micelle concentration of 12-ADA. 

The sodium salt of 12-acryloyloxydodecanoic acid was dissolved and diluted in 

distilled water to prepare solutions of different concentrations.  The surface interfacial 

tensions of the respective solutions were measured by using a torsion balance.  The 

surface tension decreased with concentration until it remained constant.  The results 

of the measurements are illustrated in Figure 3-1. 
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Figure 3-1. The critical micelle concentration of 12-ADA Na determined using a 

torsion balance. 

 

3.5.  Synthesis of 11-aminoundecanoic acid 

3.5.1.  Experimental procedure 

The surfmer 11-AAUA and its sodium salt were prepared according to the procedure 

illustrated in Scheme 3-2.  An aqueous solution of ethanol (250 ml absolute ethanol / 

35 ml distilled water) was used to dissolve 10 g (50 mmol) 11-aminoundecanoic acid.  

To this solution, 6 g (150 mmol) of NaOH was added carefully, and dissolved.  Then 

6 ml acryloyl chloride (72 mmol) was added dropwise and the reaction mixture stirred 

for approximately three hours at just below 10°C, after which it was filtered. The 

filtrate was then acidified with dilute hydrochloric acid and added to 4 litres of distilled 

water.  The white precipitate that formed was collected after filtration.  The crude 

product was recrystallised from aqueous ethanol, filtered and dried before being 

analysed by Fourier-transform infrared (FTIR), proton nuclear magnetic resonance 

(1H-NMR) and electrospray mass spectrometry (ESMS).  The yield obtained was 85 

wt %.  
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Scheme 3-2.  Reaction scheme for the preparation of 11-AAUA and its Na salt. 

 

3.5.2.  Synthesis of the sodium salt of 11-AAUA  

The sodium salt of 11-AAUA was prepared in a similar manner to the salt of 12-ADA 

(see Section 3.4).  The yield of the Na salt of 11-AAUA was 74%.   

 

3.6.  Results and discussion 
 
The proton NMR spectra of the surfmers 12-ADA and 11-AAUA, dissolved in 

deuterated chloroform were obtained on a Varian Gemini unit.  Figure 3-1 shows the 

spectrum of 12-ADA, in which characteristic signals due to the protons of an acrylate 

are observed.  The chemical shifts due to protons of CH2=CH- relative to the 

tetramethylsilane (TMS) signal are observed at 5,8 to 6,4ppm as expected, while 

those due to the –CH2- of HOOC-CH2- are at about 2,22ppm and the –CH2- of the 

group –CH2-O-C(O)- are around 4,15ppm.  Figure 3-2 shows the proton NMR 
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spectrum of 11-AAUA in which peaks at 5,6 and 6,3ppm are observed.   The signals 

observed at about 5,6-6,3ppm are due to the CH2=CH- protons while the –CH2- 

protons in –HN-CH2- and –CH2-COOH give rise to signals at about 3,3 and 2,3ppm 

respectively.  The signals observed were characteristic of an acrylamide. 

 

The IR spectra of both 12-ADA and 11-AAUA showed characteristic infrared 

absorption frequencies due to C=O at about 1690-1760cm-1 and C=C stretching at 

around 1600-1650 cm-1.  The IR spectra of the sodium salts of 12-ADA and 11-AAUA 

also showed characteristic absorption bands when compared with the corresponding 

acids. 

 

 

 

 

 1.012.023.034.045.0 5 6.0 6 
               

                                                              ppm 

 
Figure 3-2.  1H-NMR spectrum of 12-ADA in CDCl3. 
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Figure 3-3.  1H-NMR spectrum of 11-AAUA in CDCl3. 

 

 

The spectra of the surfmers and their corresponding salts showed absorptions that 

are typical of acrylate and acrylamide groups.  The IR spectra of both 12-ADA and 

11-AAUA showed absorptions due to the C=O absorptions at about 1760 cm-1 and 

the C=C absorptions at about 1650 cm-1.  The spectra of the salts also showed 

typical shifts in their absorptions when compared with their corresponding acids.3  

 
The ESMS spectrum of 12-ADA shown in Figure 3-4 clearly shows that the main 

fragment is the monomer which has a molar mass of 270,06 g/mol, probably due to 

the molecular ion.  It is proposed that the signal with m/z  = 324,55 is therefore due to 

the molar mass of the surfmer plus a small fragment from the cleavage of 12-ADA at 

the weak bond C–O.  The fragment accounts for a mass of about 55 g/mol, which, 

when added to the 270 g/mol, brings the total mass to about m/z  = 325.  
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Figure 3-4.  ESMS spectrum of a fresh sample of 12-ADA. 

 

The surfmers were thus considered to be pure enough to continue with the next 

stage of the synthesis i.e.,  

1) to use the surfmers to prepare RAFT oligomers that would be used as polymeric 

surfactants in the emulsion polymerisation of styrene, and 

2) to use the surfmers as polymerisable surfactants in the emulsion polymerisation 

of styrene.  

 

After 1H-NMR and IR analyses confirmed the double bonds of the surfmer to be still 

present and the structure of 12-ADA confirmed, a closer investigation of the 

properties of the surfmer was undertaken.  On further investigation it was found that 

12-ADA could dissolve in dichloromethane but could not do so after standing for a 

while just a day exposed to the air and natural daylight.  It was further shown that the 

surfmer was not of uniform morphology, as seen in the SEM micrograph in Figure 3-

5.  Analysis of the SEM micrograph also showed 12-ADA to be composed of areas of 

chain-like arrangements and some non-distinct areas.  
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Figure 3-5.  SEM micrograph of 12-ADA which had been standing for 2 days. 

 

This behaviour of 12-ADA may have been due to the molecule undergoing self-

association through intermolecular bonding4 or to the formation of dimers5 or even 

supramolecular structures.6  Such structures may be the result of electrostatic 

interactions such as hydrogen bonds,7 which have been associated with such 

structures, together with liquid crystalline areas created around the hydrophobic 

spaces.  The hydrogen bonding in carboxylic acids such as 12-ADA may lead to 

linkages such as those shown in the hypothetical structure in Figure 3-6.  
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Figure 3-6.  A hypothetical structure of an associated molecule of 12-ADA. 

 

In a molecule of polar and non-polar regions there is a tendency for the non-polar 

regions to associate at the exclusion of the polar ends, as is reported to happen with 

some biomolecules.8  In such a case, this association of non-polar regions is termed 

“hydrophobic bonding”.9  

 

Also, the difficulty in dissolving 12-ADA may be due to the way the molecule 

distributes the polar and hydrophilic carboxylic ends into a solvent, while the non-

polar and hydrophobic olefinic end regions are distributed away from the solvent, as 

illustrated in a “loop” conformation illustrated in Figure 3-7.10  The behaviour of 12-

ADA in this case is not the same as that of a molecule that has a hydrophilic head 

and a hydrophobic tail.    The carboxylic end is expected to preferentially distribute in 

the solvent phase while the olefinic end would be distributed in the air phase. 

 

The surfmer 11-AAUA was expected to behave in the same way as 12-ADA, in 

Figures 3-6 and 3-7, but no such case has been reported for the acrylamide.  The 

differences in the electro-negativities of oxygen and nitrogen might be the cause of 

the different behaviours. 
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Figure 3-7.  Interaction of 12-ADA with solvent at an air/solvent interface. 
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When WAXS analysis of 12-ADA was undertaken the samples were held together by 

aluminium foil to allow irradiation to come from all angles.  Figure 3-8 shows the 

WAXS spectrum obtained for 12-ADA. 
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Figure 3-8.  WAXS spectrum of 12-ADA. 
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The scattering intensity around 2θ = 17 was due to the Al foil used to hold the sample 

in place (established from a WAXS spectrum of the Al foil only).  The scatter due to 

the foil was not considered when examining the crystallinity of samples.  It can be 

seen from the spectrum in Figure 3-8 that the scattering intensity of 12-ADA suggests 

that it is highly crystalline.  The RAFT copolymers 12-ADA/AA (1:1) and 12-ADA/AA 

(1:5) show that the 2θ values of 25,1; 28,2 and 32 show scattering intensities due to 

crystallinity. 
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CHAPTER 4 

Synthesis & Characterisation of RAFT Reagents, 
Polymers and Copolymers 

4.1.  Introduction 
 
Two types of RAFT reagents were prepared, one from the initiator 2,2-

azobisisobutyronitrile (AIBN) and the other from 4,4-azobis(4-cyanovaleric acid) 

(ACP) which were both dithiobenzoates, were prepared as described in the 

literature,1,2 and incorporated as chain transfer agents in RAFT polymerisation 

processes.  The RAFT reagents were used to try to control the radical polymerisation 

of surfmers to prepare oligomers of controlled molecular masses.  In both cases the 

RAFT compounds were prepared by first preparing Grignard reagents, which were 

then converted to dithioacids, and reacted with DMSO to give bis-thiobenzoyl 

disulphide compounds.  The intermediate products were analysed by proton NMR 

before use in the synthesis.  The disulphide compounds were then reacted with azo-

initiator to give the RAFT reagents.  A general outline of the syntheses is given in 

Scheme 4-1.  
Grignard Reagent

Dithioacid

Bis-thiocarbonyl disulfide

ACP-based RAFT reagentAIBN-based RAFT reagent

ACP initiatorAIBN initiator

 
 
Scheme 4-1.  An outline of the syntheses of AIBN- and ACP-based RAFT reagents. 
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4.2.  Synthesis of RAFT reagents 
 

4.2.1.  Materials  

The materials used for the synthesis of the RAFT reagents are tabulated in  

Table 4.1. 

 
Table 4-1.  Materials used for the synthesis of RAFT reagents 

 
RAFT reagent to be prepared 

 
Materials 

 
AIBN-RAFT 

 

AIBN initiator (Sigma) 

Bromobenzene (Acros) 

Carbon disulphide 

Mg turnings 

Diethyl ether 

THF, refluxed and distilled from a 

Na/benzophenone/THF mixture 

 

 
ACP-RAFT 

 

Same as above except for AIBN initiator which was 

replaced by ACP initiator. 

 

4.2.2.  Synthesis of Grignard intermediates and dithioacid 

Magnesium turnings, 2 g (82 mmol), and a crystal of iodine were added to a dry flask.  

Bromobenzene, 8,65 ml (82 mmol) and 100 ml dry THF were added to the flask and 

the contents stirred.  The stirring mixture was warmed to about 30 oC and then the 

temperature was controlled at below 40 oC, using an ice bath.  A greyish-green 

mixture resulted.  When all the Mg turnings had been consumed, the reaction was 

terminated by rapid cooling. Carbon disulphide, 4,95 ml (82 mmol), was added slowly 

to the cooled product while continuing to maintain the temperature below 40 oC.  The 

resulting solution was brown then red.  Water was then added slowly and carefully.  

About 300 ml of water was added, resulting in a precipitate, which was filtered off.  

The THF was removed under vacuum to give a red Grignard reagent which was 

acidified to a pH of 1 with fuming HCl (15 ml) by slowly adding the acid.  The colour 

of the mixture changed from red to a pink/purple colour, which later turned cloudy 
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before giving a persistent pink colour at a pH of 1.  The product, dithiobenzoic acid, 

was extracted with diethyl ether.  The water layer was extracted using 100 ml diethyl 

ether in order to recover remaining dithioacid.  The dark red etherial phase was dried 

with anhydrous magnesium sulphate, filtered, and the ether removed under vacuum 

(using a vacuum pump).  This resulted in a thick, red, oily product, which was 

analysed by 1H-NMR.  Scheme 4-2 summarises the reactions:  

 

 

Br
+

Mg

MgBr
I2

THF

+ CS2

C
S S MgBr

+ H2O
H+

S S H

+ Mg2+ + 2Br-

MgBr

C
S S MgBr

 
 

 

Scheme 4-2.  Synthesis of the dithioacid. 

 

4.2.3.  Synthesis of bis(thiocarbonyl) disulphide 

To the dithiobenzoic acid 25 g (172 mmol) prepared as described in Section 4.2.2, 25 

ml (353 mmol) DMSO, a few crystals of iodine and 100 ml ethanol solvent were 

added at room temperature and the mixture was stirred for about an hour before 

refrigerating it overnight.  The pinkish precipitate that formed was filtered and washed 

with ethanol before being dried in a vacuum oven.  The resulting product, 

bis(thiocarbonyl) disulphide (BTBS), was a pink crystalline product, obtained in a 

yield of 32,5%.  It was analysed by proton NMR.  The synthesis is illustrated in 

Scheme 4-3. 
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Scheme 4-3.  Synthesis of bis (thiocarbonyl) disulphide. 

 

4.2.4. Synthesis of 4-cyano-4-(thiobenzoylthio)pentanoic acid 

The final stage in the preparation of the RAFT reagent 4-cyano-4-

(thiobenzoylthio)pentanoic acid (ACP-RAFT) is illustrated in Scheme 4-4.  It involved 

reacting the bis-thiocarbonyl disuphide with the azo-initiator azobis (4-

cyanopentanoic acid) (ACP).  The disulphide, 4,16 g (13,6 mmol), dissolved in 100 

ml ethyl acetate, was added to the initiator, 5,33 g (14,3 mmol), also dissolved in 100 

ml ethyl acetate.  The reaction mixture was stirred and flushed with nitrogen, after 

which the mixture was allowed to reflux for about 40 hours.  The resulting dark red 

solution was purified by running it through a 60-cm silica gel chromatographic 

column.  A 3:2 mixture of heptane/ethyl acetate was used as the elution solvent.  

Solvent was then removed and the product dried under vacuum.  The pink crystals 

that resulted were analysed using 1H-NMR and ESMS.  The yield obtained was 36%. 

4.2.5.  Synthesis of 4-azobisiso-(thiobenzoylthio)butyronitrile 

The same procedure as described for the RAFT reaction with the azo-initiator, azobis 

(4-cyanovaleric acid) was carried out with the AIBN initiator, as illustrated in Scheme 

4.4.  In this case 4,05 g (13 mmol) bis(thiobenzoyl) disulphide and 3,26 g (19,8 

mmol) AIBN initiator were dissolved in 100 ml ethyl acetate before being refluxed for 

40 hours.  The crude product was again purified by passing it through a silica gel 

column, using a 3:2 heptane/ethyl acetate solvent mixture. Analysis by TLC showed 

that further purification was required.  This was done by using a silica gel 

chromatographic column and was performed by eluting the material with a 5:1 

mixture of heptane/ethyl acetate, in this case.   
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Scheme 4-4.  Synthesis of RAFT reagents from dithioacids. 

 

The resulting RAFT compound was a dark red, oily substance. It was obtained in a 

yield of 28%. Analysis was carried out by means of 1H-NMR and ESMS.   

4.2.6.  Results and Discussion 

The 1H-NMR and ESMS spectra of the RAFT reagents were obtained on a Varian 

300 MHz Jeol NMR spectrophotometer and a Varian ESMS respectively.  Deuterated 

chloroform was used as solvent for both analyses.  The spectra are shown in Figures 

4-1 and 4-2.  
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Figure 4-1.  1H-NMR spectrum of the ACP-RAFT reagent in CDCl3.  
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Figure 4-2.  1H-NMR spectrum of the AIBN-RAFT reagent in CDCl3. 

 
The 1H-NMR of the ACP-based RAFT compound, in Figure 4-1, shows signals due to 

meta- and para- protons of the aromatic ring.  The signals at 1,95ppm are due to the 

methyl protons, while those around 2,4 to 2,7ppm are due to the CH2 protons, and 

those around 2,75 to 2,8ppm result from coupling of the nearby protons.  The 

spectrum of the AIBN-based RAFT reagent shown in Figure 4-2 shows three main 
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signals, between 7,4 and 8ppm.  These are due to aromatic protons in the ortho-, 

meta- and para  of the aromatic ring i.e., two ortho- protons give signals at 7,9ppm, 

the 2 meta- protons at 7,4 and the single para- proton at 7,6ppm.  The large peak at 

about 1,95ppm is due to the CH3 protons. 
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Figures 4-3.  The ESMS spectrum of the AIBN-RAFT reagent. 
 
 

The ESMS spectrum of the AIBN-RAFT reagent, presented in Figure 4.3, shows the 

peaks at m/z = 121 and m/z = 154 related to RAFT fragments, while the peak at 221 

is due to the AIBN-RAFT reagent.   

 

The above spectra of the RAFT compounds prepared from dithioesters and azo-

initiators showed the compounds to be reasonably pure, about 85% for the AIBN-

RAFT and about 90% for the ACP-RAFT, and suitable for use in subsequent 

polymerisation reactions.   
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4.3.  Synthesis of RAFT polymers of styrene  

4.3.1.  Introduction  

Chain transfer agents such as RAFT reagents have been used to control radical 

polymerisation, leading to products with controlled molecular masses and molecular 

mass distributions.3   RAFT agents with the general structure Z-C(S)S-R were chosen 

for use in the study so as to ensure high transfer constants. 4  The Z group activating 

the C=S bond towards radical addition and the R group which needs to be a good 

free-radical leaving group should be capable of re-initiating free radical 

polymerisation.5  The AIBN- and ACP-based RAFT agents have Z and R moieties 

that provide high transfer constants that should lead to oligomers with narrow 

polydispersities.  In addition, the ACP-RAFT agent should lead to the synthesis of 

narrow-polydispersity polymers containing end functionality in a simple single-step 

process, without the need for lengthy protection and de-protection steps.  In order to 

test the effectiveness of the transfer reagents, RAFT polymerisations of a 

conventional monomer such as styrene were carried out. 

4.3.2.  Calculation of quantities of RAFT reagent 

The quantities of RAFT agent and initiator used were calculated from Equation 2.4, 

described in Section 2.4.1, and reported in the literature.6
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see Equation 2.4 (Section 2.4.1) 

where: 

Mn is the target molecular mass of the polymer/oligomer [g/mol] 

MRAFT        is the molecular mass of RAFT agent [g/mol] 

[M]0         is the  initial concentration of monomer [mol/l]  

Mm          is the molecular mass of monomer [g/mol] 

x              is the fractional conversion of monomer  

[RAFT]0  is the  initial concentration of RAFT agent [mol/l]  
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f        is the efficiency factor (fraction of initiator radicals that will form polymers)  

[I]0           is the  initial concentration of the initiator [mol/l] and 

kd            is the dissociation rate constant of the initiator  

t              is the time of reaction [s]. 

  

The ratio of [RAFT]0 to [I]0 was chosen as 10:1 and therefore [I]0 in the above 

equation is substituted with 1/10·[RAFT]0.  The initiator AIBN was estimated to have 

an efficiency factor (f ) of 0,7 in the reaction, resulting in Equation 4.1. 

 

       Mn = MRAFT +{ [M]0.x·Mm } / {[RAFT]0 +2 x 0,7{ [RAFT]0 /10}·(1 – e- k 
d

 t)}  4.1 
 

 

When [RAFT]0 is made the subject of Equation 4.1 we obtain Equation 4.2, from 

which the initial concentration of the RAFT agent can be calculated. 

 

        [RAFT]o = {[M]o X Mm} / {(Mn – MRAFT) 1+ 0,14} (1–  e- k 
d

 t)                      4.2 

 
RAFT polymerisations of styrene and methyl methacrylate were carried out to 

determine the effectiveness of the prepared RAFT reagents in controlling 

polymerisation reactions.  Only once the RAFT reagents had been shown to 

successfully act as effective chain transfer agents in the polymerisations were they to 

be used to prepare oligomeric surfactants of controlled molecular mass and 

polydispersity.  
 

4.3.3.  RAFT polymerisation of styrene 

 
4.3.3.1.  Materials 

The following materials were used for the RAFT polymerisation of styrene: 

destabilised styrene monomer (vacuum distilled), recrystallised AIBN initiator (Sigma) 

and the prepared reagent 4-azobisiso(thiobenzoyl) butyronitrile (AIBN-RAFT). 
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4.3.3.2. Experimental procedure 
 
The RAFT polymerisation of conventional styrene was carried out in bulk in a 3-neck 

flask with 149,37 g (1,43 mol) styrene, 0,23 g (2,8 mmol) AIBN initiator and 1.84 g 

(0,83 mmol) AIBN-RAFT agent.  The flask and reactants were stirred, purged with N2 

and heated to 80 °C.  The reaction was allowed to run for 80 minutes.  At intervals of 

40, 60, 80 and 100 minutes, samples of the flask contents were withdrawn using a 

syringe, and weighed. The samples were rapidly frozen to stop further 

polymerisation, precipitated and dried.  The polymers weighed before being analysed 

by 1H-NMR and GPC.  The results are given and discussed. 

 

4.3.4.  Results and Discussion 

Figure 4-4 illustrates a typical spectrum of the RAFT oligomers obtained during the 

polymerisation of styrene.   
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Figure 4-4.  1H-NMR spectrum of oligomeric AIBN-RAFT PS (obtained after 80 min 

of polymerisation). 

 

The proton shifts due to the RAFT moiety appear in the same region as the protons 

from the aromatic ring of the polystyrene, hence the rather large signal at about δ7,2.  

The CH2 proton signals from the PS appear as expected, at about δ2, while those 

due to the CH3 from the RAFT reagent appear at about δ1,95. 

 

The molar masses of the prepared polymers were determined by GPC.  A plot of the 

molar mass against time, as illustrated in Figure 4.5, shows a linear relationship.  

This is an indication that there was effective control of the molar masses.   
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Figure 4-5.  Variation in molar mass of PS-RAFT oligomers with time. 

 

As can be seen in Figure 4-5 there was a steady increase in the molar masses of 

polymers as polymerisation progressed.   

 

4.4.  Polymerisation of 12-ADA 

4.4.1.  Introduction 

The monomer 12-ADA has poor solubility in the common polymerisation reaction 

solvents.  This may be attributed to some of the reasons discussed in Section 3.6.  

Although not ideal, DMSO and acetic acid, in which 12-ADA is only slightly soluble at 

room temperature, were chosen as the polymerisation solvents.  A polymerisation 

temperature of 75 °C was chosen to enable as efficient a generation of radicals as 

possible, based on the initiator’s dissociation constant in the polymerisation solvent.7  

The aim of the polymerisation was to obtain controlled molecular mass oligomers of 

12-ADA using ACP-RAFT and AIBN-RAFT reagents instead of polymers such as the 
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trimers shown in Figure 4-6. The use of trimers instead of higher oligomers (which 

are usually expected with higher oligomers of high molecular mass) can prevent 

potential solubility problems.   

 

In the calculation of [RAFT]0, the value of Mn can only be seen as an approximation 

since the following assumptions had to be made: 

 

• X  was taken as 1, assuming a complete conversion, 

• f was taken as 0,7 – assuming that 70% of initiator radicals would form 

polymer chains, 8 and 

• the dissociation constant kd of 1,52·10-4 s-1 (which is the kd value for AIBN in 

DMSO at 75 °C) 9 was used for AIBN in acetic acid at 75 °C. 

 

Using these values, together with reaction times, the necessary concentration values 

of RAFT agent and initiator for the oligomerisations were calculated.  
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Figure 4-6.  Structure and molar masses of trimeric oligomers of 12-ADA. 
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4.4.2.  Reaction conditions for RAFT oligomerisation of 12-ADA 

 

A summary of the reaction conditions for the RAFT polymerisations is given in Table 

4.2.  
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Table 4-2.  Reaction conditions used for the RAFT polymerisation of 12-ADA 

 

RUN solvent / 
temperature RAFT reaction time

[h] 
[RAFT] 

[mmol] 

A CH3COOH / 75°C
 
ACP-RAFT 
 

60 
 
0,99 

B CH3COOH / 75°C
 
AIBN-RAFT
 

60 
 
0,99 

C CH3COOH / 75°C No RAFT 60 
 
0 

D DMSO / 75°C 
 
AIBN-RAFT
 

60 
 
0,99 

E DMSO / 75°C 
 
ACP-RAFT 
 

90 
 
0,99 

F DMSO / 75°C 
 
AIBN-RAFT
 

90 
 
0,66 

 

4.4.3.  Experimental procedure 

The procedure described here was applicable to the experimental runs from A to E, 

with the correct concentrations, solvents and RAFT agents substituted (see Table 

4.2.).  In a 3-neck flask, 3,7 mmol 12-ADA and 0,99 mmol RAFT reagent were 

dissolved in 10 ml solvent and degassed for 1 h.  The mixture was heated to 75 °C 

until a homogeneous, oily solution was obtained.  AIBN initiator, 0,33 mmol, 

dissolved in 1 ml of solvent, was degassed and added through a septum.  The 

mixture was stirred for 60 hours at 75 °C under nitrogen, after which the reaction was 

terminated with 5 ml methanol.    

 

After removing most of the acetic acid under vacuum, the product was diluted by 

adding 10 ml dichloromethane.  The reaction mixture was purified by column 

chromatography using silica gel (0,063-0,2 mm/70-230 mesh-Macherey-Nagel). A 
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1:2 mixture of ethyl acetate/dichloromethane was used as elution solvent.  The latter 

solvent mixture was determined by TLC experiments.  

 

An example of the purification procedure used for run D is described here:  Seven 

chromatographic fractions were isolated from the polymerisation in DMSO.  These 

fractions were later divided into three groups based on results of TLC analysis.  The 

first group comprised fractions which were yellowish in colour. The second group 

comprised some that were light brown, while others were pinkish in colour.  The 

solvent had to be changed to methanol for the third group, which comprised darker 

brown fractions of product.  All the three fractions (groups) were then analysed.  For 

each of the products of the RAFT polymerisations in DMSO and acetic acid, a similar 

work-up to the one done for run D was carried out.  The work-up of the 

oligomerisation products using a silica gel column was not very efficient as there was 

no clear distinction between the different fractions along the column.  A small fraction 

of the oligomeric product could not be eluted from the column, which meant that the 

yields were only estimates.  Due to the constraint in the use of the solvents DMSO 

and acetic acid, further problems with drying and analysing the samples were 

encountered. 

 

The products were analysed by 1H-NMR, ESMS and elemental analysis (EA).  The 

results are given in Section 4.4.4. 

4.4.4.  Results and discussion 

Analysis of the products from the polymerisation run D in DMSO by 1H-NMR 

spectroscopy gave representative spectra as shown in Figure 4.7.  The first fraction 

clearly shows proton signals similar to those of the monomer.  The second fraction 

still contained monomer but has an aromatic ring signal.  This could have emanated 

from an attached RAFT moiety which is what must have given the pinkish tint to the 

second group of the eluted products.  The absence of double bonds in the last 

fraction suggests that oligomerisation had occurred and that this was the desired 

polymer, the yield of which was only 26 wt %.  The collective yield of the monomeric 

fractions was 62 wt %, suggesting that the polymer that remained on the column 

could account for around 10%.   
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Figure 4-7.  1H-NMR spectra of fractions of products (dissolved in CDCl3) from 

polymerisation run D.   

 

The oligomers could not be purified further because they could not be dissolved in 

most solvents.  The ESMS spectra of some of the typical oligomers obtained are 

shown in Figure 4.8. 
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Figure 4-8.  ESMS spectra of oligomers from Runs D (top) and B (bottom). 

 

The spectra in Figure 4.8 represent products from run D in DMSO and run B in acetic 

acid.  For the ESMS analysis of product D, which is similar to that of product B, a 

mixture of acetonitrile and methanol was used as solvent, to try to dissolve as much 

of the sample as possible.  The largest peak in both the spectra, at about m/z = 1 

030, relates to the molar mass of the trimer of 12-ADA with the RAFT moiety.  The 

peak at about m/z = 215 relates to the loss of the fragment CH2=CH–C=O, which 

signifies possible cleavage of the weak ester linkage of C–O.  The mass of the 

fragment is 55 g/mol, which when subtracted from the molar mass of 12-ADA of 270 

g/mol gives 215 g/mol. 
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The ESMS spectra also showed a number of low molar mass peaks that could not be 

assigned.  They nonetheless confirmed the presence of trimers and tetramers which 

were possibly some of the lower oligomers produced in the synthesis.  The yields 

(weight fractions) of the polymerisation products were very low.  They ranged 

between 23-27 wt% for the RAFT polymerisations, independent of solvents or 

temperature used, and were about 34 wt% for the polymerisation without RAFT 

agent, which consisted of a product that could not be dissolved in most solvents – 

Illustrating absence of control of the molar mass.  The experimental run without 

RAFT reagent gave a product which could not be dissolved in available solvents, 

precluding analysis by GPC and NMR.  

 

There was no remarkable difference in yield or solubility of the oligomers when 

prepared by using the two different RAFT agents.  Decreasing the [RAFT]0/[I]0 ratio 

from 10 to 6 to get faster initiation did not result in higher yields.  The polymerisation 

of surfmers using DMSO or acetic acid as solvents resulted in some oligomers with a 

RAFT moiety.  One way to overcome the problem of poor solubility was to prepare a 

sodium salt of the oligomeric products.  The salts were expected to be water-soluble.  

 

The sodium salt of the oligomer of Run D was prepared the same way as described 

for the sodium salts of surfmers.  The oligomeric salt dissolved sparingly in 

deuterated water, allowing the 1H-NMR spectrum shown in Figure 4.9 to be obtained. 
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Figure 4-9.  1H-NMR spectrum of oligomeric salts of 12-ADA (top) & 12-ADA surfmer 

(below). 

 

The spectrum was highly magnified to show the presence of the RAFT moiety in the 

oligomer.  The very large peaks are due to D2O in which the salt was dissolved and 

to a trace of acetone which was added to aid solubility.  GPC spectra of the surfmer, 

oligomers and copolymers are shown in Figure 4-10. 

 

Although the products of the polymerisation without RAFT could not dissolve in most 

solvents, some fractions were dissolved in DMAc at a temperature of about 50 °C 

and GPC measurements of these fractions were made.  Both oligomerisation and 

polymerisation products showed double or triple distributions.  The first distribution 

with a lower molecular mass average was probably due to the presence of unreacted 

12-ADA.  The molecular mass and the polydispersity for the non-RAFT 

polymerisation products were found to have the largest average molecular mass and 

polydispersity, as illustrated by the curve designated Lilian 5 in Figure 4-10.  The 

average molecular mass of these polymers and polydispersity were about nM  = 

4900 and wM  = 47000; MWD = 9,6; while the molecular mass and polydispersity of 

the RAFT oligomers were comparably lower, about nM  = 1300 and wM  = 3000; 

MWD = 2,3.  The copolymers had similar molecular masses to those of the oligomers 

although the distributions were relatively higher.   
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Lilian 1- Oligomeric 12-ADA 
Lilian 2- Copolymer 12-ADA/AA 1:1 
Lilian 3- Copolymer 12-ADA/AA 1:5 
Lilian 5- Poly(12-ADA) with no RAFT 
Lilian 6- 12-ADA  

Figure 4-10.  Molar mass of surfactant and oligomers of 12-ADA, measured by GPC. 

 

The homopolymerisation of 12-ADA and its Na salt were not easy; the 

polymerisations were attempted several times, using a variety of conditions.  

Attempts to polymerise in water were unsuccessful.  One of the reasons for the low 

polymerisation rates may be the self-assembly nature of 12-ADA.  The existence of 

associated dimers in 12-ADA may be explained by findings of Lindoy and Atkinson10 

and Aakeroy and Seddon.11  The low polymerisation rates could also have resulted 

from the supramolecular structure formation described by Yang et al.12

 

Elemental analysis of the oligomeric surfactants was carried out to determine their 

molecular masses.  They were found to correspond to the mass of the trimers, which 

was also confirmed using analysis by ESMS.  A Fisons mode 1108 elemental 

analyser was used to record combustion for elemental analysis.  The results of 

elemental analysis of an oligomer of 12-ADA obtained from Run D, described in 

Section 4.4.2, are shown in Table 4.3.  The measured amount of sulphur was much 

lower than the value calculated for the case in which RAFT was attached to each 

oligomer chain.  The measured amount of nitrogen was slightly higher.  These 

discrepancies could be due to impurities (unreacted monomer and recombined 
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initiator).  It could also be evidence that some oligomers had formed without RAFT 

agent attached.  Elemental analysis was therefore considered to be an unreliable 

method for estimating molar masses here. 

 

Table 4.3.  Results of elemental analysis of an oligomer of 12-ADA from Run D 
 
   C [%] H [%] S [%] N [%] 

Trimer 65,2 8,6 6,2 1,4 theoretical 

(calculated) Tetramer 51,7 6,8 4,9 1,1 

Measured  59,2 8,6 3,6 1,8 

  
 

4.5.  Synthesis of copolymers of ADA 

4.5.1.  Copolymerisation of RAFT oligomers with 12-ADA 

The first aim here was to attempt to reinitiate polymerisation of the RAFT oligomers 

of PS13 in order to prepare oligomeric block copolymers of 12-ADA and PS or PMMA, 

as well as copolymers of 11-AAUA with PS. 

 

4.5.1.1.  Experimental procedure 
Polystyrene of molecular mass 4000 g/mol (1,49 g), prepared with AIBN-RAFT 

transfer agent, was used as the starting material.  To a reaction flask containing the 

PS, 1mol/L of 12-ADA was added, under nitrogen, and the mixture heated.  When 

the temperature had reached 75 °C, AIBN initiator (0,062 mmol) was added and 

polymerisation was allowed to progress.  Some samples were withdrawn from the 

reaction flask at different time intervals to monitor the reaction using GPC.  No 

reaction seemed to have occurred after 24 hours (which was more than adequate 

time for the initiator to be still active) and so the reaction was terminated.  The 

reaction was also repeated with ADA in ethyl acetate, and again copolymerisation did 

not occur.  Evidently the secondary carbon thio attachment of the styryl end-group 

would not fragment preferentially to the secondary carbon thio attachment of the 

acrylic-group end of the 12 ADA attachment to lead to the intermediate radical.   

 

It was therefore decided to prepare copolymers of 12-ADA with acrylic acid (AA) for 

possible use as polymeric stabilisers in the emulsion polymerisation of styrene.  This 
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was to be done using a batch copolymerisation.  The copolymers were expected to 

adsorb onto the PS particles. 

4.5.2.  Copolymerisation of 12-ADA with acrylic acid 
 
4.5.2.1.  Introduction 

Copolymers of 12-ADA and AA were prepared in order to first investigate their 

properties and then their use as polymeric surfactants in the emulsion polymerisation 

of styrene.  The RAFT reagent AIBN-RAFT was used in two of the copolymerisations 

to try to control the molecular masses of the copolymers.  One copolymerisation was 

carried out without a transfer agent, as a control experiment.  As there are no 

reported examples of the controlled synthesis of copolymers of 12-ADA, it was 

difficult to predict the reactivity ratios of the monomers with respect to each other in 

the presence of RAFT reagents.  However, reaction conditions were subsequently 

based on copolymerisation reactions of 12-ADA with AA carried out to produce gels 

using a crosslinker, as reported by Karino et al.14   

 

The crosslinked gels were prepared by copolymerising AA and 12-ADA using 

methylenebisacrylamide as the crosslinker.   

 

In order to estimate reactivity ratios for 12-ADA and AA, use was made of a study by 

Uchida et al.15 which involved copolymerisation reactions between AA and stearyl 

acrylate with a crosslinker to form gels.  Here the reactivity ratios of stearyl acrylate 

and AA were quoted as 3:0,5, the total monomer concentration as 3 mol/L, the 

crosslinker was 1 mol % of methylenebisacrylamide and the initiator was 1 mol % 

AIBN.  The reactions were carried out under nitrogen for 24 hours at 60°C.  

 

In this study, copolymers of 12-ADA with AA were prepared using a RAFT transfer 

reagent to try to control the molecular mass during the copolymerisation. Some of the 

properties of the resulting polymers were studied.  The total monomer content was 

also kept at 3 mol/L and the initiator at 1 mol %.   
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4.5.2.2.  Materials 

AA from Acros (vacuum distilled) 

12-ADA (prepared) 

Absolute ethanol 

AIBN initiator from Sigma (recrystallised). 

 
4.5.2.3.  Experimental procedure 

Three copolymerisation reactions were carried out in 25-ml flasks.  The surfmer 12-

ADA and acrylic acid, in quantities tabulated in Table 4.4, were dissolved in 10 ml 

ethanol to promote transfer to solvent.  To the monomer solutions in reactions 2 and 

3, 0,198 g (0,9 mmol) AIBN-RAFT agent was added, with stirring.  The mixture was 

degassed under vacuum by three freeze-thaw cycles and the reaction then brought 

up to 60 °C.  Initiator, dissolved in a little ethanol and degassed, was added through 

the septum as soon as the contents of the flask reached 60 °C.  The polymerisation 

reaction was allowed to continue for 20 hours before being stopped by rapid cooling.  

The specific conditions for each of the three reactions are summarised in Table 4-4. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 85



Table 4-4.  Reaction conditions for the copolymerisation of 12-ADA and AA 

 

Reaction 12-ADA 
(mol) 

AA 
(mol) 

Initiator 
(mol) 

RAFT agent 
(mol) 

Temp 
°C 

1 1,5 1,5 1 0 60 

2 1,5 1,5 1 3 60 

3 0,5 2,5 1 3 60 

 

The product from the copolymerisation without RAFT reagent (reaction 1) formed a 

gel.  It was washed in water and dried in a vacuum oven.  The yield of this 

copolymerisation was 71%.  The products of reactions 2 and 3 were precipitated in 

petroleum ether and dried in a vacuum oven.  The yields of these copolymerisations 

were 42% and 45% respectively.  The copolymers were analysed by GPC and 

WAXS.   

4.5.3.  Analysis of the copolymers 

The copolymers from reactions 2 and 3 were dissolved in dimethyl acetamide 

(DMAc) by leaving them to stir in the solvent overnight at 40 °C.  The solutions were 

filtered and then run through a GPC column at 50 °C.  A refractive index detector was 

used.   

 

Wide angle X-ray scattering is generally used to investigate polymer morphology and 

to deduce structural information.  The wavelengths covered are of about a few 

angstrom units, which are equivalent to those of the inter-atomic distances in 

crystalline phases.  The intensity of X-ray scattering, which is obtained from different 

diffraction patterns, is measured.  The diffraction patterns vary with the angle of 

scatter. 

 

Braggs Law is used and scatter is described by the equation:  

 

             nλ  =  2dsinθ     4.3 
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where: 

n  is the integral number of wavelengths 

λ  is the wavelength 

d  is the spacing between points of scatter 

2θ is the scattering angle. 

 

The samples examined by WAXS were mounted using Al foil to hold samples in 

place while X-rays hit the sample at an angle.  The scatter from the Al foil only was 

obtained.  This was excluded when scatter from each compound was considered.  

The copolymers prepared both with and without using the RAFT polymerisation 

process were also measured.   

4.5.4.  Results and discussion 

The GPC traces for the copolymers 12-ADA/AA 1:1 and 1:5 are illustrated in Figure 

4-10 by the curves Lilian 2 and Lilian 3 respectively.  The copolymer obtained from 

the copolymerisation of 12-ADA and AA without RAFT could not be dissolved to any 

extent in the GPC solvent, namely DMAc, and no suitable solvent could be found.  

The copolymerisations of 12-ADA with AA in the presence of AIBN-RAFT transfer 

agents gave molecular masses, which, although they were higher than those of the 

oligomer of 12-ADA, were obviously less than the copolymer without RAFT – which 

did not even dissolve in the DMAc.  The 1:1 RAFT copolymers had molar mass 

values of around nM  = 1600 and wM  = 15000; MWD = 9,4 while the 1:5 RAFT 

copolymer had values of about nM  = 1300 and wM  = 5700; MWD = 4,4.  
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Figure 4.11.  WAXS spectra of 12-ADA and its copolymers.  

 

The copolymer with a ratio of 1:1 12-ADA/AA gave copolymers that were more 

crystalline (as indicated in Figure 4-11 by the scatter at 25,8 and 28) than the 

copolymer with the 1:5 ratio of 12-ADA/AA.  The copolymer with no RAFT reagent 

gave a product that seemed to be highly amorphous.  When compared with the 

highly-crystalline 12-ADA, it can be seen that copolymerisation led to a loss of 

crystallinity. 
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CHAPTER 5 

Synthesis and Characterisation of Polystyrene 
Latices Prepared by Emulsion Polymerisation 

5.1.  Introduction 
The development of latices containing functional groups has been under investigation 

for a long time. The reason for the interest in these polymers arises from their wide 

variety of properties, which can be achieved through the modification of the surface 

properties of such latices.1  One way of preparing such functionalised latices involves 

the use of functional comonomers that contribute towards the colloidal stability of the 

particles.  Functionalised latices can also be used to modify the properties of 

polymers.2  Carboxylic monomers containing terminal carboxylic acid groups have 

been used as functional monomers in emulsion polymerisation recipes and the 

resulting products are referred to as carboxylated latices.3  

 

There are several advantages associated with incorporating carboxylic acid groups 

into polymers: 

  

• they provide the polymers with sites for post-polymerisation reactions, such as 

for bio-molecule binding,  

• they enhance the chemical and mechanical stability of the latex,  

• they enhance the adhesion of polar substrates, and 

• they control the rheology of the latices.4  

 

In this study, surfmers and oligomeric surfactants containing carboxylic acid groups, 

prepared as described in Chapter 3, are used as particle stabilisers in the 

polymerisation of styrene.  Initially, the extent to which each surfactant emulsifies a 

starting emulsion was estimated by examining the stability of the mixed emulsion just 

prior to polymerisation.  It was considered to be of interest to encapsulate 

nanoparticles in carboxylated latices to create “smart materials”. 
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5.2.  Materials  
In both the pre-emulsion tests and the emulsion polymerisation of styrene the 

following reagents were used: styrene monomer, sodium borate buffer solution (pH 8 

and pH 3 for the surfmers, and pH 8 for oligomers), the appropriate surfactant, and 

K2S2O8 initiator.  Although most carboxylated latices are normally prepared at pH 

values of 3 to 4, a pH 8 buffer was mainly used in these experiments.  This was done 

for two reasons: to ensure an approximately constant pH during the emulsion 

polymerisation process, and because it was found that the acid surfmers and 

oligomeric surfactants (which were not soluble at pH 3) were all soluble to some 

extent in the buffer solution at pH 8.  The buffer solution was prepared from double-

deionised (DDI) water and sodium borate.  In addition to 12-ADA, 11-AAUA, their 

respective Na salts, and the oligomeric surfactants, the conventional surfmer SDS 

was also used as surfactant for both the pre-emulsion and polymerisation 

experiments at a pH of 8.  The reagents used for the emulsion polymerisation of 

styrene using different surfactants are tabulated in Table 5-1. 

 

The surfactants used in the pre-emulsion tests and emulsion polymerisations were: 

12-ADA; 12-ADA Na; 11-AAUA; 11-AAUA Na; SDS; poly (12-ADA); and a 

copolymer, poly (co-ADA/AA).  Sodium borate, (Na2BB4O7.10H2O) buffer solutions at 

pH 8 or pH 3 were used for the surfmers, while only pH 8 buffer was used for the 

oligomers and copolymers. 
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Table 5-1.  Reagents used in the emulsion polymerisation of styrene 
 

Processes 
 

Materials 
 

How obtained 

 

Surfactant 

 

 

Prepared as described in 

Section 3.3. 

Distilled styrene 

(Sigma) 

Washed with KOH and 

vacuum distilled 

 

Potassium 

persulphate 

(Sigma) 

 

Recrystallised from  distilled 

water 

 
Pre-emulsion 

test 

and  

emulsion 

polymerisation 

 

Na borate (Acros) 

buffer solution in 

DDI water (pH 8) 

 

Prepared from 

a primary standard 

 

5.3. Pre-emulsion tests  

5.3.1. Experimental 

Pre-emulsion tests to determine the extent to which emulsification of the reactant 

mixture occurred at room temperature prior to emulsion polymerisation were carried 

out.  To examine the extent to which a surfactant emulsified reactants, each 

surfactant was in turn thoroughly mixed together with the other components of a 

polymerisation recipe and the stability of the mixed emulsion estimated by noting the 

time it took for the mixture to separate into aqueous and oily phases.  Pre-emulsion 

tests were used to “measure” the extent of emulsification in each mixture containing 

the different surfactants, before polymerisation in a procedure such as the one 

reported by Cochin et al.5  The emulsifying efficiency of each surfactant was taken as 

the time it took for the oily and water layers to separate at room temperature.  This 

could be taken as an estimate of the extent of stabilisation of the monomer droplets 

in the system.  For emulsification with the oligomeric surfactants, 0,5 wt % of 

surfactant (w.r.t. weight of monomer) was used.  The tests were performed in 

duplicate, and repeated. 
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For each pre-emulsion test the surfactant was first dissolved in the buffer solution in 

a flask.  Styrene monomer and initiator were then added.  The mixture was stirred 

and purged with N2 gas.  The mixture was left to stir for 1 h, after which the mixture 

was quickly poured into a test tube and left to stand at room temperature.  The time it 

took for the mixture to separate into aqueous and organic layers was noted.   

 
5.3.2. Results and discussion 
A summary of the results of these tests is given in Table 5-2.  The results were fairly 

reproducible to within about ± 3 minutes. 

 
Table 5-2.  Estimation of pre-emulsion stability observed for different surfactants 

 
 

Surfactant 
Conc. of surfactant  
(wt % w.r.t. styrene) 

Time taken for 
separation to occur  

(min) 

SDS 2 160 

12-ADA 2 190 

12-ADA Na 2 24 

11-AAUA 2 16 

11-AAUA Na 2 9 

Poly(ADA-AIBN) 0,5 150 

Poly(ADA-ACP) 0,5 860 

Poly (AAUA) 0,5 130 

Copol(ADA/AA) 0,5 22 

 

From the results it is clear that the emulsion formed with the RAFT oligomer poly 

(ADA-ACP) gave the most stable emulsion.  This may have been partly due to the 

extra hydrogen bonding from the -COOH groups of the longer chain molecules plus 

the -COOH from the ACP-RAFT moiety. The 12-ADA/AA copolymer-stabilised latex 

was not well emulsified in 1 hour.  This could have been due to competing effects 

from the different hydrophobes of AA and 12-ADA.  
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5.4. Emulsion polymerisation of styrene  
 
5.4.1. Materials and polymerisation conditions 

The materials used for emulsion polymerisation are tabulated in Table 5-1.  The 

initiator was only added after the reaction temperature had been increased to 80°C, 

to allow uniform polymerisation.   

 

Typical reaction conditions for the emulsion polymerisation were: 20 min premixing at 

high shear rate (500 rpm) and reaction at 80 ºC for 3 h at low shear rate (300 rpm).  

Similar reactants and conditions were used for the styrene polymerisation with the 

oligomeric surfactants except that the amount of oligomeric surfactant used was 0,5 

wt% of oligomer w.r.t. styrene instead of 1-4 wt% for surfmers. 

 

5.4.2. Experimental procedure 

The surfactant (1-4 wt% for surfmer or 0,5 wt% for oligomer) was first dissolved in 

buffer solution in a flask.  Styrene monomer was then added to the solution of 

surfactant and the contents of the flask stirred and purged with nitrogen.  The content 

of the flask was brought up to 80 °C before the K2S2O8 initiator, which had been 

dissolved in 1 ml of buffer solution and purged with nitrogen, was added through a 

septum.  The reaction mixture was stirred at a high shear rate for the first 20 minutes 

and at a low shear rate for the rest of the reaction.  Each polymerisation was allowed 

to run for a total time of 3 hours before the reaction was stopped by rapid cooling. 

5.4.3. Cleaning of latices 
 
Before any analysis and characterisation of the polystyrene latices could be carried 

out there was need to purify the latices as far as possible.  This was done because, 

by nature of its being a heterogeneous process, a variety of by-products are always 

produced in an emulsion polymerisation process.  These could include: unreacted 

monomer, initiator fragments, added salts, oligomeric species and even 

polyelectrolytes which may be formed by the polymerisation of water-soluble 

monomers, if present in the aqueous phase.   
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Also, polymer latices, like most colloids, have high specific interfacial areas which 

can be easily contaminated through adsorption.  A few latex cleaning methods were 

tried in order to purify the prepared PS latices. 

 

5.4.3.1.  Filtration of latices 
The latices were filtered through a funnel packed with a weighed amount of glass 

wool.  Coagulant left on the glass wool was dried and weighed.  The extent of 

coagulation was estimated for each emulsion polymerisation reaction by weighing the 

amount of dry coagulant resulting from the polymerisation. 

 

5.4.3.2.  Use of ion-exchange resins 
Equal quantities of Dow cationic and anionic exchange resins6 (Sigma) were each 

thoroughly washed with deionised water.  The respective resins were mixed and 

packed into a cylindrical glass column plugged with glass wool at one end.  Using 

large volumes of deionised water, the resins were washed by stirring in a large 

quantity of DDI water, decanting the water and repeating the process until the water 

remained clean and had a low conductance.  The conductivity of eluted water was 

measured and the washing stopped when the water eluted had nearly the same 

conductance as that of the deionised water. In this experiment, the conductivity of the 

eluted water was 1,70 X 1µS before latex was poured down the column and collected 

as eluent. 

 

5.4.3.3.  Dialysis 

A semi-permeable membrane was used to clean the latex by dialysis.7  The latex was 

placed in a tube of dialysis membrane closed at one end and tightly clipped at the 

other to avoid leakages.  The membrane was then placed in a large beaker of 

deionised water and dialysis allowed to proceed.  The water was changed every two 

days over a 2-week period.  The conductance of the water was measured at each 

change.  The latex was deemed clean when the conductivity was low and 

approached that of deionised water. 
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5.4.3.4. Centrifugation 

The use of centrifugation to purify latices has been reported.8  The latices prepared in 

the present study were cleaned with deionised water using an ultracentrifuge 

operating at 1200 rpm.  Freshly deionised water was added to the centrifuged latex 

and the mixture stirred vigorously before being poured into vials, and centrifuged.  

The contaminated water was then decanted.  Each time after centrifuging, freshly 

deionised water was added to the latex and the latex redispersed by stirring.  The 

process was repeated four times for each latex. 

 

5.4.3.5. Coagulation during polymerisation 

The coagulant accumulating from each polymerisation was collected as the residue 

of the filtration of the product latices with glass wool.  This was then dried and 

weighed.  The results of coagulation are summarised in Table 5-3. 

 

Table 5-3.  Coagulation resulting from the use of different surfactants 

•  

Surfactant 
Mass of 

coagulant (mg) 
Mass of 

reactants (mg) 

SDS 8 1,2 x 104

12-ADA 28 1,2 x 104

12-ADA Na 10 1,2 x 104

11-AAUA 12 1,2 x 104

11-AAUA Na 9 1,2 x 104

Poly(ADA-AIBN) 78 0,3 x 104

Poly(ADA-ACP) 42 0,3 x 104

Poly(AAUA-AIBN) 45 0,3 x 104

Copolymer (ADA/AA) 30 0,3 x 104

 

 

5.4.4.  Results of latex cleaning 

Of the described methods for latex cleaning, the use of filtration by glass wool 

followed by use of ion-exchange resins proved to be the most effective for the 

purification of the latices prepared in this study.  Although there are drawbacks 
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associated with the use of most of the cleaning methods that were used,9 it was 

found that the combination of the above two methods offered the best and most 

reasonable compromise, and most of the latices were adequately purified using 

these methods.  Some of the purification methods were too harsh for use with some 

of the latices, especially those stabilised with SDS, the 11-AAUA Na salt and the 12-

ADA Na salt.  These three types of latices could not withstand centrifugation in which 

sonication was used to redisperse the latex after the latex solid had collected at the 

bottom of the vial.  It was difficult to redisperse the latex adequately to give particle 

sizes similar to those prior to the centrifugation.  Also, the SDS latex and the ADA-

ACP-stabilised latex were destabilised by the dialysis treatment.  This was noticed 

when particle sizes of the purified latices were compared before and after dialysis. 

 

5.5. Stability of emulsions 
The stability of an emulsion was tested by introducing external conditions that are 

capable of destabilising the emulsion, followed by an estimation of the extent of the 

coagulation that results.  Such coagulation, which results from the coalescence of 

latex particles, was then used as a measure of instability.  Some of the external 

conditions that can bring about coagulation of particles in latices are mechanical 

agitation, addition of electrolyte and long-term storage. 

 

5.5.1. Mechanical stability of a PS latex 
In order to estimate the mechanical stability of polystyrene latex the following 

procedures were undertaken to agitate the latex: a small amount of latex was added 

to a round-bottom flask, the contents of the flask were frozen and degassed by 

drawing a vacuum before warming and thawing.  The contents were then stirred 

vigorously.  This freeze-degas-thaw process was repeated five times.   

 

The extent of coagulation was measured and estimated as follows: The latex was 

filtered using a piece of weighed glass wool, which was then dried under vacuum 

overnight and reweighed. The masses of latex before and after freeze-thawing the 

samples were compared and interpreted as follows:  
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• the latex was deemed stable if there was no noticeable difference in the mass 

of dry glass wool before and after filtration, 

• it was coagulated if there was 20 wt % precipitation, 

• there was little coagulation  for 10 wt % and less precipitation, and 

• there was some coagulation for 3 wt % or less precipitation. 

 

The above notation was used to summarise the results in Tables 5-4 to 5-6.  The 

percentages given are w.r.t. the amount of total solids.  The results of the freeze-

thaw tests performed on the different latices are tabulated in Table 5-4. 

 

Table 5-4.  Stability of PS latices after five freeze-thawing cycles 
 

Surfactant used in latex Stability of new latex  
on fifth thawing 

 Stability of 12-month-old 
latex on fifth thawing 

SDS coagulation coagulation 

12-ADA stable some coagulation 

12-ADA-Na some coagulation little coagulation 

11-AAUA stable little coagulation 

11-AAUA-Na coagulation coagulation 

Poly (ADA)-RAFT stable stable 

Copolymer (ADA/AA 1:1) stable little coagulation 

 

5.5.2. Stability of latices against electrolytes 

Small quantities of electrolyte were added to small amounts of prepared latex.  The 

mixture was stirred and the extent of coagulation examined after each addition.  The 

electrolytes that were used were NaCl, CaCl2, Na2SO4.  The latex was filtered using 

a piece of weighed glass wool, which was dried under vacuum overnight and 

reweighed.  The respective masses of coagulant produced after electrolyte addition 

were measured and interpreted as described in Section 5.6.1.  A summary of the 

results is tabulated in Table 5-5. 
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Table 5-5.  Results of latex stability tests on adding electrolyte 

 

 
l. coagulation: little coagulation 
 

5.5.3. Stability of latices on storage 

The different latices were examined after different storage times to check for any 

coagulation which may have occurred.  Each of the latices was examined after 

storage in the dark for 6, 18 and 34 months. The results are tabulated in Table 5-6. 

 

Type of 
electrolyte 

added 

electrolyte 
(conc.) 

Stability 
of 12-ADA-
stabilised 

latex 

Stability 
of ADA-AIBN & 

ACP-RAFT 
oligomer- 

stabilised latex 

Stability 
of SDS- stabilised 

latex 

 

 

Stability of 
AAUA-

stabilised 
latex 

 
Sodium 
chloride 

 
 
 

Calcium 
chloride 

 
 
 

Sodium 
sulphate 

0,01M 

0,05M 

0,1M 

0,2M 

 

0,01M 

0,05M 

0,1M 

0,2M 

 

0,01M 

0,05M 

0,1M 

0,2M 

stable 

stable 

stable 

stable 

 

stable 

stable 

stable 

stable 

 

stable 

stable 

stable 

stable 

stable 

stable 

stable 

stable 

 

stable 

stable 

stable 

stable 

 

stable 

stable 

stable 

stable 

stable 

stable 

stable 

stable 

 

l. coagulation 

coagulation 

coagulation 

coagulation 

 

stable 

stable 

stable 

stable 

 

 

stable 

stable 

stable 

stable 

 

stable 

stable 

stable 

l. coagulation 

 

stable 

stable 

stable 

stable 
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Table 5-6.  Resultant coagulation of various latices after periods of storage 

 
 

Surfactant in latex 

 
6 months 

 
18 months 

 
34 months 

12-ADA stable stable stable 

12-ADA-Na stable stable some coagulation 

11-AAUA stable some coagulation some coagulation 

11-AAUA-Na stable some coagulation little coagulation 

Poly(ADA), ACP-
RAFT 

stable stable stable 

Poly(ADA), AIBN-
RAFT 

stable stable some coagulation 

Poly(co-ADA/AA) stable stable little coagulation 

SDS stable coagulation coagulation 

 

5.6. Results and Discussion  
Results of the pre-emulsion tests gave an indication of the extent of emulsification of 

a mixture that occurs when surfactants are stirred together with other starting 

materials prior to polymerisation.  It was found that the emulsion formed from the 

RAFT oligomer poly (ADA-ACP) gave the most stable emulsion (stable over 860 

minutes) followed by the emulsion formed with 12-ADA (stable over 190 minutes).  

This may have been due to the intermolecular associations of which 12-ADA is 

capable of (already described in Section 3.6).  Such associations would no doubt 

lead to some extra emulsification.  The loop conformation of 12-ADA in which the 

hydrophilic parts preferred to distribute themselves in a polar solvent would have 

contributed to maintaining the -COOH groups in the water phase.  In the pre-

emulsion tests, surfactant was first dissolved in buffer before the addition of the other 

components and before the start of the 1 hour of stirring.   
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The extra hydrogen bonding from the -COOH groups of the longer chains plus the -

COOH from the ACP-RAFT moiety may explain the extraordinary extent of 

emulsification of the emulsion mixture by the poly (ADA-ACP) compared to that of the 

AIBN-RAFT.  This observation is further noticed in the stability of latex on prolonged 

periods of storage.   

 

The 12-ADA/AA copolymer-stabilised latex was not well emulsified in the pre-

emulsion tests even though stable latices were obtained on polymerisation.  This 

indicated that some strong stabilising forces may have been achieved through 

copolymerisation, suggesting some inherent stability brought about by the addition of 

12-ADA units, and not from the shorter AA units.  It seems as if loops might have 

been formed as the AA copolymerised in the tail section while the rest of the -COOH 

groups were in the head section. 

 

The freeze-dried latices of 12-ADA, 11-AAUA and the polymeric surfactant-stabilised 

latices remained stable for 34 months, while the SDS, 11-AAUA-Na, 12-ADA Na salt 

and copolymer ADA/AA (1:1)-stabilised latices were not as stable over the same 

period.  Although the Na salts of 12-ADA and 11-AAUA produced relatively more 

stable latices than SDS did, the acid forms and the RAFT polymers (with a higher 

opportunity for H-bonding) seemed to give even more stable particles.  The stability 

of surfmer-stabilised latices against most agitation forces suggests that chemical 

bonding did seem to occur between surfmer and latice particles.  The SDS particles 

showed a significant amount of coagulation 18 months after preparation as shown in 

the SEM micrographs shown later in this chapter.  This may indicate a reduction in or 

loss of stabilisation through some desorption taking place slowly on storage.  

Addition of CaCl2 also coagulated the latex and the destabilisation was even more 

significant in the freeze-thawed SDS-stabilised latex. 

 

Even the oligomers poly (ADA-AIBN) and poly (ADA-ACP) were successfully used as 

surfactants in the emulsion polymerisation of styrene.  The polystyrene latices 

produced were slightly tinted beige, which must have been from the RAFT reagent.  

The reddish colour of the reagent was not apparent during emulsion polymerisation 

which may suggest chemical bonding of the RAFT moiety.  One noticeable aspect of 

the emulsion polymerisations using polymeric surfactants as well as with 12-ADA 

 101



was that more coagulant was obtained with 12-ADA and its oligomers during 

emulsion polymerisation than with the other surfactants, including SDS.  This may 

have been due to the insolubility of 12-ADA in water and of the large polymeric 

surfactants which carried a relatively large hydrophobic moiety. 

 

5.7. Characterisation 
Purified latices were characterised in various ways.  A major limiting factor in using 

some of the standard characterisation methods was found to be the limited solubility 

of some of the prepared compounds in common solvents.   

 

For an approximation of molar mass, matrix-assisted laser desorption/ionisation with 

time of flight (MALDI-TOF) techniques were used.  Light scattering and microscopic 

methods were used to determine the size of the prepared latex particles, their 

polydispersities and their morphology, and to estimate the extent of particle 

stabilisation in latices prepared by emulsion polymerisation.  Wide angle X-ray 

scattering (WAXS) was used to examine the crystallinity of the latices prepared.  

Thermal analysis was used to estimate the thermal properties of the prepared 

compounds.  Purified latices were also titrated, by conductometry, to estimate the 

extent of coverage of particles with surface groups.  Latices were also freeze-dried 

before being coated with gold and analysed by scanning electron microscopy.   

 

SEM results gave indications of particle size, uniformity, coagulation of particles, and 

estimation of stability.   
 

The stability of an emulsion was examined using different methods, to facilitate a 

comparison of the extent of latex stabilities of emulsions prepared with different 

surfactants. 
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5.7.1. Matrix-assisted laser desorption/ionisation with time of flight 
(MALDI-TOF)  
Mass spectrometry offers absolute molar mass analysis regardless of chemical 

nature, and was therefore considered as a useful analytical method to use.  MALDI-

TOF is one of the mass spectrometric methods suitable for polymers because it can 

be used to measure high molecular masses without fragmentation.  The use of 

MALDI-TOF mass spectrometry for characterisation of polymers is well reviewed in a 

book by Pasch and Schrepp.10  The method allows single polymer chains with 

molecular masses below 50 000 g/mol to be resolved, leading to the determination of 

repeat units and end-groups.   

 

For MALDI-TOF analysis the samples were first dissolved in THF or THF/DMAc and 

then mixed with a solid matrix.  They were then irradiated with laser light from a 

MALDI-TOF spectrometer Kratos PC Kompact Maldi 4 model, using a delayed-

extraction negative mode at 20000 volts.  Figures 5-1 to 5-4 show MALDI-TOF 

spectra obtained for some of the surfactants. 

 

 

 

 

Figure 5-1. MALDI-TOF spectrum of 12-ADA-stabilised latex at high resolution. 
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The mass/charge difference between similar peaks such as at 2321 and 2425 was 

found to be 104.  This is consistent with that of styrene units, thus confirming the 

product to constitute mainly polystyrene. 

 

 
 

Figure 5-2.  MALDI-TOF spectrum of styrene latex from copolymer (12-ADA/AA-1:1). 

 

 

 

 

 

 

 

 

 

 

Figure 5-3.  A further-resolved MALDI-TOF spectrum of styrene latex from the 

surfactant (12-ADA/AA-1:1). 

 

The MALDI-TOF results showed the copolymer-stabilised latex from a 1:1 ratio of 12-

ADA to AA (12-ADA/AA-1:1) to correspond to a mass/charge of about 2500 g/mol, as 

shown in Figure 5-2.  The copolymer-stabilised latex was further resolved as shown 

in Figure 5-3.  There were similarities with the 12-ADA-stabilised latex shown in 

Figure 5-1.  The latices were of comparable molar mass.  The presence of AA in the 
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copolymer-stabilised latex probably led to the differences in the peak structures, size 

and number.  Results contribute to confirming that reaction occurred between 12-

ADA and AA, resulting in the copolymer that stabilised the latex, the MALDI-TOF 

spectrum of which is illustrated in Figure 5-3. 

 
5.7.2. Wide angle X-ray scattering (WAXS) analysis 
The samples examined by WAXS were mounted using Al foil to hold samples in 

place while X-rays hit the sample at an angle (as already described in Section 4.5.4).  

The copolymers prepared with and without using the RAFT polymerisation process 

were measured by WAXS.   

 

The WAXS spectra of 12-ADA and its oligomers and polymers of ADA are show n in 

Figure 5-4.  The WAXS spectra of PS latices and 12-ADA are given in Figure 5-5.  

The spectrum of 12-ADA was included in these two figures to allow direct 

comparisons to be made. 

 

The scatter from the Al foil was observed at about 17,0, as expected.  Both the 

oligomeric and polymeric 12-ADA-based compounds exhibited crystallinities that 

differed from the highly-crystalline surfmer 12-ADA.  The RAFT-oligomer appeared to 

have a low crystallinity, as indicated by the absorptions at about 20, 25,5 and 31,8.   
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Figure 5-4.  WAXS spectra of 12-ADA and oligomers and polymers of 12-ADA. 

 

The polymerisation of 12-ADA led to a product of higher amorphicity and lower 

crystallinity compared to the morphology of the surfmer, but there was a large dilution 

effect.  The non-RAFT compound had an even lower crystallinity, similar to the 

crystallinity of the non-RAFT copolymer of 12-ADA/AA. 
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Figure 5-5.  WAXS spectra of PS latices and 12-ADA. 

 

Both the PS latices prepared using 11-AAUA and 12-ADA retained a measure of 

crystallinity, as indicated by the absorptions at about 25, 27,5 and 31,8 shown above.   

 

5.7.3. Thermogravimetric analysis (TGA) 

Thermogravimetric analysis was carried out using a Mettler Toledo DSC 822e 

thermal analyser.  In the TGA mode the thermal analyser measures weight changes 

in a material as it is heated, cooled, or held at a constant temperature in an inert 

atmosphere.  This analysis can give a fast estimation of composition and thermal 

stability.  The results of the TGA analysis of latices prepared with different surfactants 

are illustrated in Figure 5-6. 
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Figure 5-6.  TGA analysis of latices prepared with different surfactants. 

 

The curves observed in Figure 5-6 show that the weight loss of the latices prepared 

from the RAFT oligomeric surfactants was faster than those prepared with surfmers 

and SDS at temperatures 200 0C to 400 0C.  At temperatures greater than 400 0C, all 

the surfmer and SDS-stabilised latices were degraded to 0-5 weight % while the 

oligomer-stabilised latices had a slower weight loss and remained with 10-20 weight 

%.  Although there were no significant differences in the thermal stabilities of all the 

latices, the different degradation rates might suggest different mechanisms of weight 

loss occurring between the oligomer-stabilised latices and the other surfactant-

stabilised latices.  It seems as if the oligomer-stabilised latices were reduced to much 

smaller but perhaps more thermally stable compounds which could withstand 

temperatures of 500 0C. 
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5.7.4. Determination of particle size and polydispersity 

Particle size was determined by dynamic light scattering (DLS) using a Malvern 

Zetasizer.  DLS differs from traditional light scattering techniques in that while the 

latter methods measure the average scattered intensity of particles, DLS makes use 

of the time behaviour of scattered intensities obtained from the suspension of 

particles.   

 

After the latices were prepared and purified they were dispersed in a millimolar NaCl 

diluent and poured into glass cell cuvettes before being the scattered intensities were 

measured at 25 ºC and at 90-degrees angle.  The results are tabulated in Table 5-7.  

Figures 5-7 and 5-8 illustrate respective unimodal and bimodal distributions of 

particle size diameters.   
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Figure 5-7.  A unimodal particle size distribution for the 2 wt % SDS-stabilised latex. 
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Figure 5-8.  A bimodal particle size distribution for the 2 wt % 12-ADA-stabilised 

latex. 
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Figure 5-9. The relationship between particle diameter and surfactant concentration. 
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The average diameters of the latex particles prepared with different surfactants were 

plotted against the weight of surfactant used.  The results are shown in Figure 5-9. 
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Table 5-7.  Latex particle sizes and polydispersities 
 

Surfactant pH 
 

Surfactant 
Wt % 

ZAve(nm) Polydispersity  
Distribution 

SDS 8 1 97 0,04 unimodal 

SDS 8 2 78 0,03 unimodal 

SDS 8 3 71 0,04 unimodal 

SDS 8 4 67 0,01 unimodal 

SDS 3 3 57 0,01 unimodal 

SDS 3 4 54 0,01 unimodal 

ADA 8 1 392 0,17 bimodal 

ADA 8 2 345 0,34 bimodal 

ADA 8 3 307 0,44 bimodal 

ADA 8 4 265 0,50 bimodal 

ADA Na 8 1 299 0.17 unimodal 

ADA Na 8 2 279 0,13 unimodal 

ADA Na 8 3 244 0,12 unimodal 

ADA 3 3 136 0,36 bimodal 

ADA 3 4 188 0,29 bimodal 

AAUA 8 1 388 0,13 unimodal 

AAUA 8 2 347 0,12 unimodal 

AAUA 8 3 314 0,03 unimodal 

AAUA 8 4 266 0,07 unimodal 

AAUA Na 8 1 314 0,05 unimodal 

AAUA Na 8 2 297 0,03 unimodal 

AAUA Na 8 3 255 0,01 unimodal 

AAUA Na 
polyADA-

RAFT 
polyAAUA-

RAFT 
polyADANa-

RAFT 

8 

8 

 

8 

 

8 

4 

0,5 

 

0,5 

 

0,5 

242 

661 

 

344 

 

609 

0,03 

0,20 

 

0,64 

 

0,43 

unimodal 

bimodal 

 

bi/trimodal 

 

bi/trimodal 
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The surfactant SDS was successfully used as a stabiliser for the emulsion 

polymerisation of styrene as indicated by the dynamic light scattering results, which 

showed SDS-stabilised polystyrene particles with diameters of low polydispersity.  

The latices produced when 11-AAUA was used as surfactant in emulsion 

polymerisation also indicated stability through the production of fairly uniform latex 

particles of low dispersity.  However, when 12-ADA was used as surfactant a bimodal 

distribution in the size of particle diameter was shown, as illustrated.  The Na salt of 

12-ADA showed a mainly unimodal distribution unlike the acid which gave a 

predominantly bimodal distribution.  This suggests that the stabilisation mechanism 

for 12-ADA was different from that occurring in the case of SDS and the Na salt of 

12-ADA.  The Na salt with -COONa as opposed to a free -COOH acid does seem to 

sterically-stabilise PS latex particles using a different mechanism (more ionic).  The 

bimodal distribution may suggest that 12-ADA-stabilised latex could be formed by a 

droplet-entry type mechanism in addition to a homogeneous mechanism while the 

12-ADA salt-stabilised latex must have followed a regular droplet entry-type of 

emulsion polymerisation kinetics.  Both the AAUA acid and the corresponding salt-

stabilised latices seemed to follow regular emulsion polymerisation kinetics of the 

droplet-entry type mechanism.  In fact, when used in emulsion polymerisation of 

styrene, the surfmers led to the preparation of latices composed of 12-ADA or 11-

AAUA fragments with styrene units.  After a period of 6 months and more, dynamic 

light scattering measurements showed large particles sizes and polydispersities for 

the SDS-stabilised latices whereas, both the 11-AAUA and 12-ADA-stabilised latex 

particles did not change much over the same period of time.  This indicates a strong 

stabilising effect at play when surfmers are used as emulsifiers in emulsion 

polymerization compared with the conventional SDS.   

 

Generally, larger particle size diameters than those obtained with corresponding 

surfmer-stabilised latex were a common feature with polymeric surfactants.  This can 

be attributed to the lower surfactant concentrations used as well as the relatively 

longer chains of the molecules.  The particle sizes of the RAFT oligomer-stabilised 

and the 12-ADA-stabilised latices showed a large molecular mass distribution, which 

was found to be bimodal in most cases, resulting in even larger polydispersities, as 

shown in Table 5-7.  On analysis by SEM and TEM the latices produced were large 

distinct spherical particles of different sizes, which corroborate the results of the light 
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scattering results.  Two distinct size-populations were evident in the oligomer-

stabilised latices, suggesting that more than a single droplet entry mechanism 

occurred in addition to the normal mechanisms of particle formation.   

 

5.7.5. Surface analysis of PS latices  

In order to try to understand more about the surface properties of latex, the surface 

charge density is usually determined in order to estimate the surface coverage of a 

latex particle with stabilising groups.11   The surface charge of latex particles was 

determined by direct titration using conductometry.  The method involves titrations in 

which conductivity changes in the suspending medium are measured and plotted to 

determine the equivalence point.  Only two latices were analysed using 

conductometry because the method was rather expensive.  The analysis was 

therefore done to test the effectiveness of the analytical method in examining 

surfaces of latice particles. 

 

The surface charge of latex particles due to carboxyl groups as well as due to 

sulphate groups (from the potassium persulphate initiator) was determined by direct 

conductometric titration for 12-ADA and 11-AAUA-stabilised latices.  The 

measurements were done by Interfacial Dynamics Corporation, Tualatin, USA.  The 

experimental data so obtained is illustrated in Figures 5-10 to 5-13 and a summary of 

which is tabulated in Table 5-8.    

 

Conductometric titration results are used to estimate the charge densities of the 

functional groups on the surface of the latex particle.  This allowed a comparison of 

the extent of surfactant cover of the particles to be made.  The Figures 5-10 to 5-13 

are given as recorded at Interfacial Dynamics Corporation.   
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Figure 5-10.  Conductometric titration for carboxyl in 11-AAUA-stabilised latex. 

 

 

 
 

Figure 5-11.  Conductometric titration for sulphate in 11-AAUA-stabilised latex. 
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Figure 5-12.  Conductometric titration for carboxyl in 12-ADA-stabilised latex. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5-13.  Conductometric titration for sulphate in 12-ADA-stabilised latex. 
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Table 5-8.  A summary of conductometric measurements for surfmer-stabilised 

latices 

Sample 
Strong acid  

(μEq/g) 

Weak  acid 

(μEq/g) 

 

AAUA 

 

 

13,9 

 

None 

 
AAUA Na 

 

None 

 

12,7 

 
12-ADA 

 

1,3 

 

None 

 
12-ADA Na 

 

None 

 

13,1 

 

The results showed that there are two sources of surface functional groups, namely 

the strong acid groups from sulphate in the potassium persulphate initiator fragments 

and weak acid groups from the carboxylic acid groups chemically bonded surfmer.  

The figures recorded in μEq/g correspond to the abundance of strong acid (sulphate 

ions and carboxylic acid) groups found on the surface of the latex. 

 

It was however shown, through the titrations, that the 11-AAUA acid-stabilised latex 

had the largest coverage by strong acid groups i.e., 13,9 µEq/g, followed by 12-ADA 

with 1,3 µEq/g.  This suggests that 12-ADA-stabilised latex which seemed more 

stable than the other latices during stability tests may have ’’buried’’ its carboxylic 

acid groups because it did not show any presence of surface groups due to COOH 

but instead showed the strong sulphate groups.  The 12-ADA-stabilised latices 

examined after purification must have had the COOH surface groups at that stage.  

This observation points to the possibility that the carboxylic acid groups may have 

been buried in the latex which even adds credence to the theory of the formation of 

associated molecules which would not leave free carboxyls for measurement by 

titration.  The strong acid groups, which are sulphates, arise from the initiator 

potassium persulphate which was used to initiate emulsion polymerisation.  There 

are more carboxyl acid groups in the Na salt surfmers, which may suggest that the 

Na ions may have had a ’’shielding” effect from burial of the COOH groups.  It seems 
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as if the carboxyl groups as well as the sulphate groups in 12-ADA helped stabilise 

the latex regardless of the location of the groups. 

 

5.7.6. Scanning electron microscopy (SEM) 

Scanning electron microscopy is widely used in the analysis of polymers.  The 

information obtained from such analysis is generally in the form of magnified images 

of the topography of materials.  A limitation of using SEM for polymer analysis is that 

there might be specimen charging, which is bound to occur when non-conductive 

materials are scanned.  Further, the electron beam can cause structural damage 

when it hits the material and this may result in the appearance of artefacts.  

Microscopic analysis on latices that had been previously freeze-dried and gold-

sputtered onto metal sample holders was carried out using a Leica-Leo Stereoscan 

440 Scanning Electron Microscope.  Gold was used as a conductive coating to 

reduce specimen charging.  The micrographs were used to examine particle 

morphology and estimate particle stability.  Examples of some of the SEM 

micrographs obtained are given in Figure 5-14 to Figure 5-20.  

 

 
 

Figure 5-14.  SEM micrograph showing 12-ADA stabilised latex particles, 6 months 

after preparation (1 mm = 80 nm). 
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Figure 5-15.  SEM micrograph of 12-ADA stabilised latex particles, 11 months after 

preparation (1 mm = 100 nm). 

 

 
 

Figure 5-16.  SEM image of AAUA-stabilised latex particles, 6 months after 

preparation (1 mm = 40 nm). 
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Figure 5-17.  SEM image of AAUA-stabilised latex particles, 10 months after 

preparation (1 mm = 100 nm). 

 

 

 
 

Figure 5-18.  SEM image of SDS-stabilised latex particles, 6 months after 

preparation (1 mm = 25 nm). 
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Figure 5-19.  SEM image of SDS-stabilised latex particles, 10 months after 

preparation (1 mm = 75 nm). 

 

 
 

Figure 5-20. SEM image of SDS-stabilised latex particles, 13 months after 

preparation (1 mm = 100 nm). 
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Figure 5-21.  SEM image of poly(12-ADA/ACP-RAFT)-stabilised latex particles, 6 

months after preparation (1 mm = 250 nm). 
 

 
 
Figure 5-22.  SEM image of poly (12-ADA/ACP-RAFT)-stabilised latex particles, 10 

months after preparation (1 mm = 250 nm). 
 

In general, the 12-ADA-stabilised particles maintained their spherical shape even 

after almost a year’s storage as illustrated by the micrographs in Figures 5-14 and 5-

15.  This could also be seen with the 11-AAUA-stabilised particles, in Figures 5-16 
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and 5-17, although these were smaller in size.  The SDS-stabilised particles did not 

maintain the spherical shape for long and coagulation occurred fairly early, as shown 

in Figures 5-18 and 5-19. There was little change in the particle size of latices 

prepared with polymeric surfactants even upon prolonged storage.  Also, the 

spherical shapes of the particles of the latices were also maintained even after harsh 

treatment, such as the addition of electrolytes and five freeze-thaw cycles, as 

indicated by SEM analysis.  This suggests that 12-ADA, 11-AAUA and oligomeric 

surfactants stabilised the latex particles well.  The latex particles were still stable 

even when stored for long periods. 

 

5.7.7. Transmission electron microscopy 

Transmission electron microscopy can be used to provide detailed structural 

information such as atomic dimensions and is capable of obtaining information within 

the range 1-100 nm.  The main disadvantage of using TEM is that it can only be used 

on thin samples, less than 1μm thick.  A TEM sample therefore requires special 

preparation.  In this investigation, specimen samples were prepared by extrusion in a 

mini extruder.  The TEM micrographs of latices prepared using oligomeric surfactants 

are shown in Figure 5-23.  The micrograph illustrates a multimodal distribution. 
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Figure  5.23.  TEM micrograph of poly (12-ADA/ACP-RAFT)-stabilised latex.  

 

It can be seen that the particle diameters ranged from about 300 nm to > 1 μm, which 

suggests a complex mechanism of stabilisation.  Some melting during the TEM 

analysis could have occurred to give the appearance of linkages within the 

molecules.  The TEM results for the oligomer-stabilised latex showing a multimodal 

size distribution helps confirm the SEM results to a large extent. 
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CHAPTER 6 

Conclusions and Recommendations 
 

6.1. Conclusions 
The research work presented in this dissertation has led to new knowledge 

concerning the uses of 12-acryloyloxydodecanoic acid and also its sodium salt as 

surfactant monomers and as starting materials in the synthesis of acrylate-based 

polymeric surfactants of low molecular mass, using the RAFT process.  It has been 

shown that the surfactants produced could be used as emulsifiers and latex 

stabilisers for the emulsion polymerisation of styrene.  In addition to learning more 

about the properties of the surfmer 11-acrylamidoundecanoic acid it was also 

confirmed and its sodium salt could also be used as an emulsifier and stabiliser in the 

emulsion process. 

 

It was shown in Chapters 3 and 4 that the syntheses of the surfmers could be 

achieved relatively easily whereas the novel RAFT polymerisations of the surfmers to 

produce polymeric surfactants and copolymers with acrylic acid were not as easy.  

The work done in this research should provide new information to facilitate the study 

of 12-ADA and its use as a surfmer.  Possible polymerisation conditions for the novel 

RAFT synthesis of acrylate-based 12-ADA have been established determined and 

oligomeric surfactants prepared, although more research can be done in this area in 

future.  Oligomers were successfully prepared by using AIBN or ACP-RAFT chain 

transfer agents confirming the successful use of the prepared RAFT reagents as 

chain transfer agents. The preparation of oligomers with low molecular masses using 

the RAFT process was useful in the synthesis because it was possible to prepare f 

PS oligomers which were moderately soluble in some solvents while the polymers 

without RAFT could not be solubilised.  Thus it can be concluded that in the absence 

of RAFT reagent very high molecular mass compounds are obtained when 12-ADA is 

polymerized. 
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The surfmers and the oligomeric surfactants based on 12-ADA were successfully 

used in the emulsion polymerisation of styrene as evidenced by the distinct spherical 

particles of relatively low particle-size polydispersity of the PS latices produced.  As 

expected of true surfactants, particle size and polydispersity decreased with 

increasing surfactant concentration.  With the oligomers acting as surfactants, the 

particle sizes were large, and the resulting latices were extremely stable for months, 

similarly to the surfmer-stabilised ones.  The SDS-stabilised latices were however not 

as stable, especially under conditions of five freeze-thaw cycles.  The high thermal 

stability of PS latices stabilised by RAFT oligomeric surfactants suggests potential for 

their use in thermal applications.  Conditions for the emulsion polymerisations could 

be varied in future work to establish the best conditions for such syntheses.   

 

Characterisation of the PS latex showed the different properties of the RAFT 

oligomer-stabilised latex compounds.  The RAFT moiety in the RAFT oligomers 

seemed to control molecular mass to some degree through living polymerisation 

mechanisms.  Emulsion polymerisation is well known for producing high molecular 

weight products but the RAFT oligomers led to PS latices of low molecular masses.  

 

It is interesting to note that all of the surfmers and polymeric surfactants studied 

acted as efficient stabilisers, regardless of whether they were used in their acid or 

salt forms.  Larger latex particles were produced with surfmers and polymeric 

surfactants compared with those of SDS-stabilised latices.  The polydispersities of 

12-ADA and 11-AAUA-stabilised latices were also relatively low.  The normal 

polymerisation of 12-ADA gave amorphous polymers which were impossible to 

dissolve in most solvents.  

 

6.2. Recommendations 
It is recommended that the physical and chemical nature of 12-ADA be studied in the 

future, to allow its self-assembling properties to be fully exploited.  There is no doubt 

that the unusual stability it imparted to a PS latex, even under extreme conditions, 

may have something to do with the extra stability of the structure obtained from a 

number of 12-ADA units.   
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Although the focus of the present study was on the use of surfmers and polymeric 

surfactants in the conventional emulsion polymerisation of styrene, it would be 

interesting to extend this work to miniemulsions, in order to produce smaller latex 

particle sizes, which would extend the area of application. 

 

The polymerisation of 12-ADA using the RAFT process can be further studied as 

there is good potential for its use in the production of latices of controlled molecular 

mass and of high thermal stability.  A variation in the amount and type of RAFT 

transfer agent could be undertaken and the products evaluated for their latex-

stabilising properties. 

 

The influence of factors such as polymerisation solvent, pH and variation of RAFT 

concentration can be studied further to help fully understand the polymerisation of 

12-ADA which has a good potential to lead to future “smart materials”. 
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