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SUMMARY 

Integrative ecosystem service (ES) assessments are crucial to completely assess the benefits of ES 

and to evaluate synergies and trade-offs among ES. Numerous ES studies have investigated 

biophysical ES assessments and economic valuation, although social values (SVs) remain under-

represented. Integrated modelling of SV maps and biophysically modelled services (BpSs) provide 

an integrated approach to incorporating SV into ES assessments, through social-ecological hotspot 

mapping of ES and regression analysis.  

This study aimed to investigate the relationships between recreational users’ social values and 

ecosystem services in the Cape Peninsula of the Western Cape province in South Africa. The 

following four objectives were set to achieve the overall aim of the study: 1) review literature to 

determine the current discourses and state of research on ES determination; 2) investigate the types 

and spatial distribution of social values linked to ecosystems in the Cape Peninsula using a 

participatory mapping exercise; 3) evaluate and quantify the spatial distribution of biophysically 

modelled services in the Cape Peninsula and 4) investigate the relationships of social values and 

distribution of biophysical services within the Cape Peninsula. 

Social values for Ecosystem services (SolVES) was used to model 11 SV for the Cape Peninsula 

based on questionnaire results. The Integrated Valuation of Ecosystem Services and Tradeoffs 

(InVEST) tool was used to model four BpSs based on geospatial biophysical data. A hotspot 

analysis on cumulative SV and BpS layers was conducted using the Getis-Ord Gi* statistic, to 

produce hotspot and coldspot maps of SVs and BpS. A regression analysis using the Ordinary 

Least Squares (OLS) tool was done to determine the relationships between SVs and BpSs  

These findings of the study provided areas of potential trade-offs conflict where there is a 

disconnect between SVs and BpSs, and where SVs and BpSs overlap, but are possibly not 

complementary. The study also highlighted potential areas (where SVs and BpSs values overlap) 

for stakeholder engagement in ES conservation. The weak relationship between biological 

diversity and habitat quality indicated limited respondents’ recognition of habitat quality. These 

findings can be incorporated within the management plans of conservation decision-makers such 

as South African National Parks (SANParks) to improve sustainable and inclusive ES conservation 

and planning, and to ensure SVs are included in ES assessments for the Cape Peninsula.  

Keywords: ecosystem services, social values, PPGIS, SolVES, InVEST, social-ecological 

systems, hotspot analysis, regression analysis. 
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OPSOMMING 

Assesserings van geïntegreerde ekosisteemdienste (ED) is noodsaaklik om die voordele daarvan 

volledig te evalueer en om sinergieë en afwykings tussen dienste te evalueer. Talle ED-studies het 

biofisiese ED-assesserings en ekonomiese waardasie ondersoek, hoewel sosiale waardes (SW’s) 

onderverteenwoordig bly. Geïntegreerde modellering van SW-kaarte en biofisies-gemodelleerde 

dienste (BpS) bied 'n geïntegreerde benadering om SW’s by ES-assesserings in te sluit deur middel 

van sosiaal-ekologiese brandpuntkartering van ED en regressieanalise. 

Hierdie studie het ten doel gehad om die verwantskappe tussen ontspanningsgebruikers se sosiale 

waardes en ekosisteemdienste in die Kaapse Skiereiland van die Wes-Kaap Provinsie in Suid-

Afrika te ondersoek. Die volgende vier doelwitte is gestel om die oorhoofse doel van die studie te 

bereik: 1) hersien literatuur om die huidige diskoerse en stand van navorsing oor ES-bepaling te 

bepaal; 2) ondersoek die tipes en ruimtelike verspreiding van sosiale waardes gekoppel aan 

ekosisteme in die Kaapse Skiereiland deur van 'n deelnemende geografiese inligtingstelseloefening 

gebruik te maak; 3) evalueer en kwantifiseer die ruimtelike verspreiding van biofisies-

gemodelleerde dienste in die Kaapse Skiereiland; en 4) ondersoek die verwantskappe van sosiale 

waardes en verspreiding van biofisiese dienste binne die Kaapse Skiereiland. 

SolVES is gebruik om 11 SW-kaarte te genereer wat op vraelysdata gebaseer is. InVEST is gebruik 

om vier biofisies-gemodelleerde dienste te modelleer gebaseer op georuimtelike biofisiese data.  

'n Warmkolanalise op kumulatiewe SW- en BpS-lae was uitgevoer deur die Getis-Ord Gi*-

statistiek te gebruik om warmkol- en kouekolkaarte van SW’s en BpS’e te produseer. 'n 

Regressieanalise is gedoen deur gebruik te maak van die Ordinary Least Squares (OLS)-instrument 

om die verwantskappe tussen SW’s en BpS’e te bepaal. 

Hierdie bevindinge van die studie het gebiede van potensiële konflik verskaf waar daar 'n skeiding 

tussen SW's en BpS'e is en waar SVs en BpSs oorvleuel, maar moontlik nie komplementêr is. Die 

studie het ook potensiële gebiede (waar die waardes van SW's en BpS'e oorvleuel) waar 

belanghebbendes op die gebied van ES-bewaring kan betrokke raak. Die swak verband tussen 

biologiese diversiteit en habitatkwaliteit het daarop gedui dat beperkte respondente erkenning gee 

aan habitatkwaliteit. Hierdie bevindinge kan opgeneem word in die bestuursplanne van 

bewaringsbesluitnemers soos Suid-Afrikaanse Nasionale Parke (SANParks) om volhoubare en 

inklusiewe ES-bewaring en -beplanning te verbeter, en om te verseker dat SW's by ED-

assesserings vir die Kaapse Skiereiland ingesluit word. 

Sleutelwoorde: ekosisteemdienste, sosiale waardes, PPGIS, SolVES, INVEST, sosiaal-ekologiese 

stelsels, warmkolanalise, regressieanalise 
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CHAPTER 1: INTRODUCTION 

1.1 INTRODUCTION 

An estimated 60% (15 out of 24) of the ecosystem services (ES) globally are being used in an 

unsustainable manner or are being degraded (Millennium Ecosystem Assessment (MEA) 2005). 

According to the MEA (2005: 5), ES entails benefits that people acquire from ecosystems, either 

directly or indirectly and critically supports human well-being for example, mitigating the rise of 

disease and crop production (Costanza et al. 1997; MEA 2005; Hallouin et al. 2018; Talbot et al. 

2018; Cerda et al. 2020). ES thus provides a connection between people and ecosystems (Costanza 

et al. 1997; Reyers et al. 2013). ES are currently facing degradation due to measures used to 

increase the provisioning of other ES, such as mining and food production (Yang et al. 2021; Li et 

al. 2022). Therefore, it is essential to evaluate and monitor the state of ES to inform sustainable 

utilisation (MEA 2005; Crossman et al. 2014; Brown et al. 2014; Harrison et al. 2018). The 

measurement, modelling and monitoring of ecosystem functions provide a basis for ES 

assessments and as a result, a foundation to inform the sustainable utilisation of biodiversity, 

ecosystems, and natural resources overall (Anton et al. 2010). A dominant challenge for ES 

management is managing several ES simultaneously within a landscape (Karimi, Yazdandad & 

Fagerholm 2020; Shaikh et al. 2021), investigating ES synergies and trade-offs have also been a 

crucial focus to assess multiple ES at once (Bagstad et al. 2017; Karimi, Yazdandad & Fagerholm 

2020). Such methods for assessing and managing ES still need to be better incorporated into the 

ES framework (Bagstad et al. 2016). 

The ES framework has increasingly been used as a sustainable natural resource management tool 

to inform spatial planning and conservation-based planning processes (MEA 2005; Crossman et 

al. 2013; Harrison et al. 2018). According to the MEA (2005), and Turner and Daily (2008), the 

ES framework emphasises the persistent function that robust ecosystems serve for the sustainable 

supply of human well-being, poverty mitigation, and economic growth and on a global scale. This 

framework enables a basis for the efficient and adequate conservation of ecosystems that maintain 

critical ES supply (Turner & Daily 2008). Incorporating social values (SVs) information is 

essential to apprise efficient ES assessments and decision frameworks that assist ES-based 

approaches within natural resource management and conservation (Daily et al. 2009; Bryan et al. 

2011; Stanturf et al. 2012; Ives & Kendal 2014; Sherrouse, Semmens & Clement 2014; De Vreese 

et al. 2016; Lin et al. 2017). Numerous ES studies have investigated biophysical ES assessments 

and economic valuation, although SVs remain under-represented (Raymond et al. 2009; 

Vihervaara, Rönkä & Walls 2010; Chan, Satterfield & Goldstein 2012; Nieto-Romero et al. 2014). 
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In this study, SVs for ES can be defined as values (usually corresponding to cultural ES such as 

spiritual and therapeutic values) that people assign to places on the landscape (Sherrouse, Clement 

& Semmens 2011). Biophysical and economic valuation methods cannot encompass the complete 

range of ES that ecosystems provide to people (Karimi, Yazdandad & Fagerholm 2020). 

Consequently, research that incorporates SVs information into ES assessments is required for 

complete ES assessments. Biophysical assessments and economic valuation dominate ES research 

and policy due to the contrasting methods to map, conceptualise and measure SVs (Kenter et al. 

2014). It is now more straightforward to map and model SVs with the GIS application Social 

Values for Ecosystem Services (SolVES) (Sherrouse, Clement & Semmens 2011). SolVES is used 

to evaluate, map, and quantify SVs according to environmental characteristics such as vegetation 

type and elevation (Sherrouse, Clement & Semmens 2011; Van Riper et al. 2017; Sherrouse & 

Semmens 2015). The quantification of SVs comparable to monetary terms provides an opportunity 

for SVs to be better incorporated into ES assessments in a manner that is informative to decision-

makers and scientists (Sherrouse et al. 2011). 

ES assessments serve to assess the influence of policy decisions and to outline benefits and trade-

offs regarding environmental management (Schmidt, Sachse & Walz 2016). ES assessments are 

useful to demonstrate the benefits of ecosystem preservation to various stakeholders and for 

contending biodiversity conservation (Schmidt, Sachse & Walz 2016). Methods and tools used for 

assessing ES are increasing (Harrison et al. 2018). One example is Geographical Information 

Systems (GIS) mapping of ES with GIS software, provided spatially explicit data are available 

(Nemec & Raudsepp-Hearne 2013). Another approach includes ES modelling, where ES models 

evaluate the supply of multiple ES frequently in a particular GIS software environment 

(Vihervaara et al. 2018). Three categories of approaches for assessing ES include economic 

methods, biophysical methods, and socio-cultural approaches, (MEA 2005; Scholte, Van 

Teeffelen & Verburg 2015; Harrison et al. 2018; Vihervaara et al. 2018). The biophysical and 

economic ES modelling tool Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) 

has been used to quantify ES, which is a freely available GIS tool that produces spatially explicit 

estimations of multiple ES (Goldstein et al. 2014; Lin et al. 2017a; Lin et al. 2017b; Kadaverugu, 

Rao & Viswanadh 2020; Sharp et al. 2020). Lin et al. (2017) demonstrated the use of InVEST and 

SolVES to model ES and SV within a social-ecological systems (SES) framework for a more 

integrative ES assessment. 

Incorporating a s SES view within ES assessments provides a basis to ensure SVs are included in 

ES assessments (Reyers et al. 2013). Within SES, ecological and social systems are inextricably 

linked (Ostrom 2009). Many ES studies have acknowledged the concept of SES to comprehend 
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the influential interconnections between environmental and social change (Martínez-Harms & 

Balvanera 2012; Reyers et al. 2013; Bagstad et al. 2017; Lin et al. 2017b; Quintas-Soriano et al. 

2018; Masterson et al. 2019). Integrating social and ecological elements could help conflict 

mitigation and solutions when resolving resource shortages and utilisation change problems 

(Brown & Fagerholm 2015; De Vreese et al. 2016; Lin et al. 2017b). These methods are crucial 

for preventing ES degradation, considering the intensifying impacts of these influences (Climate 

change, urbanisation, habitat destruction, unsustainable resource use, alien invasive species).  

Despite ES being known to arise from elaborate relations between ecological and social systems, 

it is uncertain what exact incorporations of ecological and social contributions are needed to 

produce services. People and ES are also inextricably linked in SES (Alessa, Kliskey & Brown 

2008; Zhu et al. 2010). Consequently, ES should be quantified using biophysically modelled 

services (BpS) and SVs to resolve the increasing demand for ES within communities as well as to 

thoroughly assess the benefits of ES (Cowling et al. 2008; Reyers et al. 2013; De Vreese et al. 

2016; Bagstad et al. 2017; Lin et al. 2017b). BpS are ES that can be assessed with biophysical 

methods (such as flood mitigation and carbon storage) (Sharp et al. 2020). Although BpS and SVs 

modelling have largely been conducted separately (Bagstad et al. 2016), there is a potential for 

SVs and BpS modelling to serve as complementary methods (Bagstad et al. 2016; Lin et al. 2017b; 

Smart et al. 2021).  

Integrated modelling of SVs and BpSs offers a method to identify synergies and trade-offs among 

ES and to integrate SVs into ES assessments (Bagstad et al. 2016). Mapping social-ecological 

hotspots and coldspots has been used as a method for integrated modelling of SVs and BpSs 

(Alessa, Kliskey & Brown 2008; Bagstad et al. 2016; Smart et al. 2021). Social-ecological hotspots 

display spatial correspondence of highly recognised landscape values (i.e., SVs) and high ranking 

in the biophysical environment (Alessa, Kliskey & Brown 2008). Social-ecological coldspots are 

the inverse thereof (Bagstad et al. 2016). Various hotspot depiction approaches have been 

progressively used along with ES mapping. These approaches include quantile cut-offs, such as 

the highest 10, 20 or 30% of values (Alessa, Kliskey & Brown 2008) and statistical methods, e.g., 

the Getis-Ord Gi* statistic (Bagstad et al. 2016). ES studies have also used regression analysis as 

a method to determine relationships between SVs and BpSs, also for concurrent GIS modelling 

(Alessa, Kliskey & Brown 2008; Bagstad et al. 2016). 

GIS techniques have enabled the combination of ecological and social data for the establishment 

of spatial preferences for the managing of ecosystems along with the people which rely on them 

(Alessa, Kliskey & Brown 2008; Whitehead et al. 2014; Lin et al. 2017b; Van Riper et al. 2017). 

GIS enables the visualisation of how ES are scattered throughout the landscape (Nemec & 
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Raudsepp-Hearne 2013). Indicators of ES are selected and mapped to understand where ES are 

situated on a landscape. It is possible to contrast the arrangement of numerous ES to provide a 

comprehensive level of understanding for synergies and trade-offs, and to outline areas of hotspots 

where high allocation of single or several ES exists (Alessa, Kliskey & Brown 2008; Nemec & 

Raudsepp-Hearne 2013; Bagstad et al. 2017).  

Mapping ES using Public Participation GIS (PPGIS) has also recently emerged in the literature 

(Brown & Fagerholm 2015). PPGIS is a joint group of techniques for incorporating public 

comprehension of places which aim to apprise decision-making and land use planning (Sieber 

2006; Dunn 2007; Brown 2012). PPGIS is mainly used for obtaining and investigating SVs for ES 

regarding environmental characteristics (Sherrouse, Clement & Semmens 2011; Brown & 

Fagerholm 2015). Information from social-ecological ES assessments can outline management 

options that enhance human well-being throughout multiple ES and for averting possibly 

substantial degradation resulting from neglecting trade-offs for specific ES (Förster et al. 2015; 

De Vreese et al. 2016; Bagstad et al. 2017). 

1.2 PROBLEM STATEMENT 

Globally, ES are being degraded at an unprecedented rate primarily due to human activities that 

abruptly alter the structure and function of ecosystems and decrease their potential to sustain 

human well-being (MEA 2005; Masterson et al. 2019). The City of Cape Town (CoCT) ES 

assessment by O’Farrell et al. (2012) investigated how anthropogenic transformation would impact 

numerous ES, which is based on the scenario of all undeveloped land which do not fall within 

protected areas converted into formal housing. The scenario revealed that the capacity of all ES 

had been reduced. This specifically related to provisioning services that were explicitly impacted, 

with decreases from 30 to 50% relative to the ES. The study points out the importance of reducing 

regulating ES that are not as threatened as other ES. However, they are possibly more complicated 

when degraded since these ES must be provided in situ. It is possible for provisioning ES to be 

sourced from areas outside the city borders (such as water), although this is unfeasible with the 

majority regulating ES (e.g., flood mitigation). Most ES and the biodiversity and ecological 

infrastructure that underpin them have experienced degradation (O’Farrell et al. 2012). However, 

integrative ES assessments that can ensure the adequate conservation of ES and biodiversity within 

the CoCT are currently lacking (Elmqvist et al. 2013). Particularly ES assessments that use an SES 

framework. 

To ensure the conservation and tailoring of policies for ES regarding current and future use, social 

and ecological factors should be assessed to achieve more complete ES assessments and 
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sustainable natural resource use (Cowling et al. 2008; Reyers et al. 2013). Establishing a 

prosperous assessment for multiple ES for national and local-level policies embedded in BpSs and 

SVs is difficult (Lin et al. 2017b). As a result, conventional approaches for mapping and measuring 

all elements of ES are notably omitted from most natural resource management decision-making 

processes (Villa et al. 2014; Lin et al. 2017b). Applying conservation policies without the 

consideration of local communities’ values can result in social conflicts for management and use 

within the landscape (Ernston 2013). This can frequently be the case when only biophysical and 

economic ES assessments are considered in decision-making (Bagstad et al. 2016; Ernston 2013). 

ES conservation thus also needs to be socially acceptable to avoid such conflicts, by ensuring the 

inclusion of stakeholder SVs in landscape management decision-making (Lin et al. 2017b). 

Additionally, for ES conservation to be socially acceptable, it is also essential to ensure that users 

and stakeholders recognize areas for important ES provision and their value (Elmqvist et al. 2013; 

Ernston 2013). Conservation policy makers have previously neglected SVs because of inadequate 

quantification methods, although one can now potentially evaluate both SVs and BpSs more 

precisely (Bagstad et al. 2016; Lin et al. 2017b). 

These evaluation techniques enable the concurrent modelling of SVs and BpSs to inform decision-

making processes (Bagstad et al. 2016; Lin et al. 2017b). Additionally, several recent studies have 

gained insight into the associations among ecological and social systems through methods that use 

a SES framework (De Vreese et al. 2016; Bagstad et al. 2016; Lin et al. 2017b). To ensure that 

future ES provision is an emphasised public-policy topic, mapped ES assessments of measured ES 

provision and demand should apprise the decision-making process (Maes et al. 2012; Ban et al. 

2013; Brown & Fagerholm 2015; Lin et al. 2017b). Spatially explicit ES assessments can ensure 

policy implementation and management that provide methods to incorporate biodiversity 

conservation and the numerous services supplied by ecosystems (Cowling et al. 2008, Anton et al. 

2010). 

There has been limited research on biophysical and social ES assessment studies conducted for the 

Cape Peninsula. Consequently, information from spatially explicit ES assessments on the state of 

ES and values, and ES synergies and trade-offs within the Cape Peninsula lack. Up-to-date 

information on ES assessments will be crucial for informing future management actions to 

conserve ES, prevent degradation, and ensure that ES conservation measures and strategies are 

socially accepted. Concurrent modelling of SV and ES in the form of hotspot and coldspot ES 

mapping provides a promising method for integrative ES assessments, and to ensure social aspects 

are included in them (Bagstad et al. 2017). 
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This study seeks to answer the following research questions: 

1. What is the spatial distribution of social-ecological hotspots and coldspots within the Cape 

Peninsula? 

2. Do respondents recognise important areas of ES provision? 

3. Can the spatial concurrence or disconnect between SVs and BpS hotspots and coldspots be used 

to identify important synergies and trade-offs among multiple ES relevant to decision-making 

within the Cape Peninsula? 

1.3 AIM(S) AND OBJECTIVES 

This study aims to investigate the relationships between recreational users’ social values and 

ecosystem services in the Cape Peninsula of the Western Cape Province in South Africa.  

To achieve the overall aim of this study, the following objectives have been set: 

1. Review literature to determine the current discourses and state of research on ES 

determination. 

2. Investigate the types and spatial distribution of social values linked to ecosystems in the 

Cape Peninsula using a participatory mapping exercise. 

3. Evaluate and quantify the spatial distribution of biophysically modelled services in the 

Cape Peninsula. 

4. Investigate the relationships of social values and the distribution of biophysically modelled 

services within the Cape Peninsula. 
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1.4 METHODOLOGY AND RESEARCH DESIGN 

An outline of research design is depicted in Figure 1.1. This research is predictive as it uses existing 

methods of integrating SVs and ES to predict relationships between them and subsequent 

significant synergies and trade-offs. The research approach is deductive, as the research uses 

existing methods to map social-ecological hotspots of SVs and BpSs and to model relationships 

thereof. As a result of the approach, a mixed-method approach was used to map and quantify SVs 

and ES in the Cape Peninsula. The study qualitatively analysed SVs to understand perceived SV 

types. The research quantitatively analysed quantified SVs and biophysical variables using hotspot 

and regression analysis methods to identify statistically significant relationships. The study made 

use of primary and secondary data sources, primary data comprised questionnaire survey data 

collected through online questionnaire surveys and secondary data consisted of geospatial 

biophysical data.  
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Figure 1. 1   The research design. 
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1.5 THESIS STRUCTURE 

Four objectives have been set to achieve the overall aim of this study (refer to section 1.3). The 

study is organised into six chapters of which Chapter 2 to Chapter 4 respond to the set objectives. 

Chapter 1 provides an introductory background to the study and problem formulation. The aims, 

objectives, research questions and rationale of this study are given, followed by the study’s 

research methodology and design. 

The next chapter (Chapter 2) responds to Objective 1 where a literature overview covering social-

ecological systems, ecosystem services assessment approaches, ecosystem services relationships 

and mapping of ecosystem services is provided. The state of ES research known in these aspects 

is uncovered and gaps are identified. 

This is succeeded by Chapter 3 which outlines the data used, preparations and analysis procedures.  

The study area description is given first. This is followed by data collection and preparation 

procedures. Questionnaire design and administration are outlined. Data requirements and 

preparation for use in InVEST modelling are then outlined. This includes the creation of SVs maps 

from the questionnaire survey results and biophysical ES modelling (namely carbon storage, 

habitat quality, flood risk mitigation and annual water yield modelling). Then, an analysis of social 

values and BpSs based on hotspots and regression analysis is provided. 

Objectives 2 – 4 are addressed in Chapter 4. Chapter 4 presents the research findings based on the 

data collection and analysis procedures for this research. These results include various maps, 

graphs, and tables. 

Chapter 5 interprets questionnaire results, social values, and biophysically modelled services 

maps, as well as the hotspot and regression analysis. The results are put in the context of other 

studies. The chapter then discusses the implications of these results for future landscape 

management. 

Chapter 6 concludes the study by revising the aims and objectives of the study. The extent to which 

the aims and objectives were met is outlined. Concluding remarks, study limitations and 

recommendations for future research are also provided in this chapter. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter reviews literature covering social-ecological systems (SES), ecosystem services and 

their importance for human well-being and biodiversity. It continues by outlining the state of ES 

research, approaches for ES assessment and public participation GIS (PPGIS) to underpin the 

theoretical framework of this study. The framework of SES and its relevance for this study is 

presented first, followed by a brief background of ES and its importance for human well-being and 

biodiversity. After that, the state of ES research and current trends is offered. Following this, an 

overview of different methods of ES assessments is outlined. Furthermore, the role of PPGIS and 

GIS in ES assessments and mapping is reviewed. This review examines methods to determine ES 

relationships and outline synergies and trade-offs among ES. The chapter concludes with a 

summary of the literature review. 

2.2 SOCIAL-ECOLOGICAL SYSTEMS 

The SES framework explains how interconnections of sophisticated human-environmental 

systems provide a basis to explain global environmental challenges (Berkes, Colding & Folke 

2008; Karimi, Brown & Hockings 2015). The SES framework also outlines evaluating social and 

ecological factors that promote sustainable resource use and management (Ostrom 2009). Within 

an SES, the natural environment is linked with and incorporated into a specific social system which 

consists of a group of governance rules and institutions (Ostrom 2009). An SES is an intelligible 

yet influential and complicated arrangement of social and biophysical factors that frequently link 

in a consistent form at numerous temporal, spatial, and organisational scales to monitor the 

delivery of essential resources (Berkes, Colding & Folke 2008; Ostrom 2009; Karimi, Brown & 

Hockings 2015). Human activities affect ecosystems, where significant alterations produce 

feedbacks which changes prospective management actions. Ecosystems are best understood and 

maintained by incorporating social aspects within biophysical realms where natural resources are 

viewed as complex SES (Ostrom 2009). An effective equilibrium between users (e.g., 

communities) and biological systems that provide resources (e.g., estuarine ecosystems) can be 

achieved through persistent adaptation and ecological resilience (Ostrom 2009).  

The ES concept also focuses on relations between people and the environment, combining social 

and ecological characteristics (Reyers et al. 2013; Rüdisser, Leitinger & Schirpke 2020). The 

inextricable relationships among environmental and social systems highlight that ES assessments 

should focus on the complicated relationship between ecosystem processes, structures, capacities, 
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and the provisioning and evaluation of stakeholders’ benefits with diverse demands (Reyers et al. 

2013; Lin et al. 2017b; Rüdisser, Leitinger & Schirpke 2020). An SES approach is crucial for 

developing effective policy and management measures that conserve ES, which considers both 

social and biophysical dimensions of ES (Reyers et al. 2013; Lin et al. 2017b). However, the 

relationships between social and ecological characteristics of ES remain underrepresented in the 

literature (Lin et al. 2017b; Korpilo et al. 2018). Specifically, the incorporation of SVs has been 

neglected in ES mapping and assessments (Reyers et al. 2013; Bagstad et al. 2016; Korpilo et al. 

2018). The ES concept fits within the research field of SES (Vihervaara, Rönkä & Walls 2010). 

Three dominant fields of ES include ecology and the additional social sciences, economics, natural 

sciences, and interdisciplinary integrations of these, as well as the ecosystem approach 

(Vihervaara, Rönkä & Walls 2010; Wang, Zhang & Cui 2021). Most approaches to ES research 

include economic valuation, spatially explicit methodologies, and conceptual frameworks which 

are used to investigate, assess, and quantify ES (Torres, Tiwari & Atkinson 2021; Wang, Zhang 

& Cui 2021). Economic valuation approaches aim to quantify the value of ES based on monetary 

terms (Torres, Tiwari & Atkinson 2021). Spatially explicit methodologies outline the spatial 

characteristics within the study of ES (Torres, Tiwari & Atkinson 2021). Conceptual framework 

approaches utilise analytical methods to prescribe structure and organisation to advance ES 

research (Torres, Tiwari & Atkinson 2021). Computational modelling (an approach that utilises 

mathematical models for producing predictions and simulations of ecosystems and corresponding 

ES) and non-monetary valuation (an approach to determine the value of ES in units instead of 

monetary terms) approaches occur the least within ES studies (Torres, Tiwari & Atkinson 2021; 

Wang, Zhang & Cui 2021). This is due to their recent emergence in the literature (Torres, Tiwari 

& Atkinson 2021; Wang, Zhang & Cui 2021). Conservation of biodiversity is the leading theme 

within ES research, followed by landscape planning and urbanisation, and land use change (Torres, 

Tiwari & Atkinson 2021). The main research themes of ES include the conservation of biodiversity 

which safeguards the conservation of species, populations, and movement of genes within an 

ecosystem (Torres, Tiwari & Atkinson 2021). Landscape planning and urbanisation is a research 

theme that integrates ES in policy, decision-making and planning (Torres, Tiwari & Atkinson 

2021). Land use change pertains to a research theme which looks at the socioeconomic and 

environmental effects of land use change and urbanisation on ES (Torres, Tiwari & Atkinson 

2021). 

For example, Thapa et al. (2020) investigated the economic value of wetland ES for the Begnas 

Watershed System in Nepal. The economic value of ES provided by the Begnas Watershed System 

was determined through surveys and interviews, integrated with market- and non-market-based 
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valuation methods such as market values and travel expenses. The study concluded that wetland 

ES was valued at 3.91 million USD annually, which is equivalent to 650.67 USD for every 

household and 799.79 USD per hectare. 

Nikodinoska et al. (2018) assessed and mapped regulating and provisioning ES for Uppsala city 

in Sweden. These ES were mapped with GIS biophysical assessment and economic valuation 

methods for agricultural, forest and green urban areas. The study found ES had a monetary value 

of €198 million per year, forests provided 80% of this value, agricultural areas provided 19%, and 

green urban areas provided 1%. In a conceptual framework study, Cortinovis & Geneletti (2019) 

presented a framework for understanding how urban planning decisions impact regulating ES at 

the city scale. The conceptual framework detailed the way demand, capacity, and the provisioning 

of urban regulating ES along with associated benefits are connected to dominant factors influenced 

with urban planning, such as typology and location. The study then demonstrated how planners 

could consider the quantification and geographical distribution of urban regulating ES for 

decision-making at the city scale. 

Both studies by Thapa et al. (2020) and Nikodinoska et al. (2018) focus on the valuation of 

different ES, from an economic perspective. Nikodinoska et al. (2018) make integrated use of both 

biophysical and economic methods of ES assessment and determine the spatial distribution of ES 

using GIS mapping. Both studies present their outputs in monetary terms, while Nikodinoska et 

al. (2018) also link these economic valuations to specific ecosystems from a spatial perspective. 

Cortinovis & Geneletti (2019) also consider the valuation and distribution of ES. However, it 

varies since the study considers how the distribution and demand of ES can be used to inform 

urban planning beyond the valuation of ES. Although these studies provide examples of how ES 

can be assessed and incorporated into planning decisions, they do not evaluate ES in non-monetary 

terms. Not all ES (many regulating and cultural ES) provided by ecosystems constitutes 

marketable commodities that explicitly indicate a monetary value (Schmidt, Sachse & Walz 2016). 

Economic valuation approaches overlook less tangible services such as education and aesthetics, 

while non-monetary approaches still appear limited in the literature (Schmidt, Sachse & Walz 

2016; Torres, Tiwari & Atkinson 2021). Thus, monetary valuation approaches cannot express the 

total value of ES and further research into non-monetary approaches is required (Schmidt, Sachse 

& Walz 2016). Non-monetary approaches can highlight the connection between people’s values 

and ES, which might also improve decision-making and management strategies for ES (Torres, 

Tiwari & Atkinson 2021). 
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Research on ES assessments has also recently increased (Harrison et al. 2018). ES assessments 

have developed into one of the dominant domains of environmental land-use planning and 

conservation from an academic point of view (MEA 2005). As mentioned in the introduction, 

many studies have concentrated on biophysical and monetary methods for assessing ES, however 

studies that focus on socio-cultural approaches are uncommon (Nieto-Romero et al. 2014). Social 

elements outlined in these socio-cultural approaches usually determine whether ES management 

practices succeed or fail (Nieto-Romero et al. 2014). Thus, omitting socio-cultural values from ES 

assessments can result in poor decision-making and planning regarding ES management and 

conservation (Ernston 2013). Further research into methods that integrate these ES assessment 

approaches is required, as there are limited studies that investigate both the social demand and 

biophysical supply of ES (Quintas-Soriano et al. 2014; Bagstad et al. 2016). 

2.3 ECOSYSTEM SERVICES  

Ecosystem services (ES) are described as “the conditions and processes through which natural 

ecosystems, and the species that make them up, sustain and fulfil human life…” (Daily 1997: 3). 

The various conditions and processes of ecosystems become ES when humans benefit from them 

directly or indirectly (Costanza et al. 1997; MEA 2005). ES are derived from ecosystem functions, 

which refers to “habitat, biological or system properties or processes of ecosystems” (Costanza et 

al. 1997: 1). These ecosystem functions thus enable important ES delivery for human welfare 

(Costanza et al.1997). Humans and ecosystems jointly produce ES because of relationships 

between ecological functions, societal management, and demand (Reyers et al, 2013). MEA (2005: 

40) classifies ES into four categories: provisioning, regulating, cultural and supporting services. 

Provisioning services pertain to products from ecosystems such as fibre, water, food, timber, and 

genetic resources (MEA 2005: 40). Regulating services pertain to benefits acquired from 

regulatory ecosystem processes such as regulating climate, floods, disease, and water quality and 

waste treatment (MEA 2005: 40). Cultural services are the intangible benefits of ecosystems such 

as recreation, aesthetic enjoyment, and spiritual fulfilment (MEA 2005: 40). Supporting services 

are those required for producing every other service such as nutrient cycling, pollination, and soil 

formation (MEA 2005: 40).  

Humans depend on these four ES categories for various features of their well-being (such as 

essential resources for a good health, life, and security) and prosperity (Figure 2.1) (MEA 2005; 

Bennett et al. 2015; Rendón et al. 2019; Wang, Zhang & Cui 2021). Therefore, ES are essential 

for socio-economic development and poverty reduction at a local and national level (MEA 2005; 

Bennett et al. 2015; Rendón et al. 2019; Wang, Zhang & Cui 2021).  
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Source: MEA (2005: 6) 

Figure 2. 1   The strength of relationships between categories of ES and aspects of human well-being. 

According to Anton et al. (2010) and Maes et al. (2012), ES are also significant for contending 

biodiversity conservation when these benefits are made clear, as biodiversity plays a substantial 

role in underpinning many ES (MEA 2005; Anton et al. 2010; Reyers et al. 2012 Sandifer, Sutton-

Grier & Ward 2015). Biodiversity conservation, apart from its innate value, is also crucial for 

human well-being (Reyers et al. 2012; Sandifer, Sutton-Grier & Ward 2015). ES provide a 

connection between people and nature, highlighting humans’ interdependence on ecosystem-based 

processes that produces the products that sustain our lives (MEA 2005; Reyers et al. 2013; 

Sandifer, Sutton-Grier & Ward 2015).  

2.3.1 State of ES research 

ES research has received increased attention in the last decade for the purpose of promoting the 

advancement of methods and policies that mainstream the ES framework into decision-making 

and planning (MEA 2005; Seppelt et al. 2011). Most ES studies focus on “function”, which 

explains the functioning of ecosystems, “assessment”, including studies assessing ES states or 

values, and “management”, including studies focusing on specific management concerns 
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(Vihervaara, Rönkä & Walls 2010). For example, Gownaris et al. (2018) examined the ecosystem 

functioning of lakes and water level fluctuations. They used the Least Absolute Shrinkage and 

Selection Operator (LASSO) regression to investigate relationships among ecosystem 

characteristics (such as total biomass and production) and seven physical attributes (for example, 

climatic, hydrologic, and morphologic). The results indicated that yearly water level fluctuations 

had positive relationships with primary and overall production, and negative relationships with 

food chain length, fish diversity, and transfer efficiency. In an ES assessment study, Imran (2021) 

investigated the state of carbon stock for the Bagrote Valley, Pakistan. Carbon stock was modelled 

geospatially using the ES assessment tool InVEST. Carbon stock was estimated based on land 

use/land cover (LULC) data and carbon pools (aboveground and belowground biomass, soil, and 

dead organic matter) (Imran 2021; Sharp et al. 2020: 73). Based on the InVEST modelling, they 

found that carbon stock ranged from 0 to 491 tonnes (t) of carbon/ha. They also recorded that 

dense forests stored the highest amount of carbon (292.1 to 390 t/ha) while sparse forests stored 

the lowest (0.1 to 79.5 t/ha).  

Birgé et al. (2016) investigated how to manage multiple ES to understand cross-scale trade-offs 

among ES adaptively. They presented a framework that considers adaptive management for ES 

which considers cross-scale trade-offs within ES provision. The framework seeks to determine 

important spatiotemporal scales (such as patch and landscape) including internal and cross-scale 

dynamics, management controllability, and ES trade-offs (Birgé et al. 2016). Both Gownaris et al. 

(2018) and Imran (2021) investigated ES and ecosystem function from a biophysical perspective, 

while Birgé et al. (2016) prescribe how to manage multiple ES in a framework study adaptively. 

Gownaris et al. (2018) found positive and negative regression relationships among lake water level 

fluctuations and ecosystem and physical attributes. The findings of Imran (2021) included carbon 

stock maps linked to forest land cover classes.  

These studies provide comprehensive knowledge of ES function, assessment, and management. 

However, these studies overlook the social aspects of these ES focus areas. For example, forests 

also provide cultural, historical, spiritual, and religious ES which are not readily assessed with 

biophysical and economic methods of ES assessment (Bagstad et al. 2016; Beckmann-Wübbelt et 

al. 2021). ES should then not always only be assessed using biophysical assessments such as Imran 

(2021), but also with socio-cultural methods that capture intangible benefits to provide more 

complete ES assessments. Birgé et al. (2016) provide a framework for assessing ES trade-offs with 

adaptive management. However, the study does not account for trade-offs in the form of conflict 

among various stakeholder concerns and values. Various ongoing studies indicate that ES research 
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should include various stakeholders’ SVs in ES assessment and management strategies that seek 

to conserve ES (Ives & Kendal 2014; Lin et al. 2017b).  

More studies tend to focus on assessing ES and management (Vihervaara, Rönkä & Walls 2010). 

For example, Vihervaara, Rönkä & Walls (2010) evaluated the status of ES research on a global 

scale. Of the 353 ES research articles reviewed, 217 articles (61.5%) pertained to “assessment”, 

97 (27.5%) in “management”, while only 39 (11%) fell in the “function” category. Thus 89% of 

these studies fell in the “management” and “assessment” categories. Although ES studies focusing 

on specific management concerns still require a larger focus (Vihervaara, Rönkä & Walls 2010; 

Bagstad et al. 2016). Concerning MEA (2005) defined ES categories, majority studies concentrate 

on provisioning and regulating ES, or a combination of two or more categories (Vihervaara, Rönkä 

& Walls 2010). Cultural ES are considered essential, although tools for their assessment have been 

insufficient (Vihervaara, Rönkä & Walls 2010; Bagstad et al. 2017). Cultural ES subsequently 

have been inadequately considered in numerous ES assessments (Vihervaara, Rönkä & Walls 

2010; Plieninger et al. 2013; Mengist, Soromessa & Legese 2020). Of these, 41 investigated 

provisioning ES, 82 focused on regulating ES, three focused on supporting ES, and only one on 

cultural ES. The rest focused on a combination of these service types (Vihervaara, Rönkä & Walls 

2010). Mengist, Soromessa & Legese (2020) investigated the status of mountain ES research 

globally. The study identified 74 publications including 317 different ES types. Of these 317 ES 

types, 115 (36.3%) belonged to regulating services, 86 (27.1%) to provisioning services, 63 

(19.9%) to supporting services, and cultural ES was the least at 53 (16.7%) (Mengist, Soromessa 

& Legese 2020). Thus, more studies are required which include cultural ES in assessments. 

Regarding the geographical distribution of ES studies, the North American and European scientific 

community dominates ES research (Le Maitre, O'Farrell & Reyers 2007; Vihervaara, Rönkä & 

Walls 2010; Rüdisser, Leitinger & Schirpke 2020; Wang, Zhang & Cui 2021). ES researchers have 

given marine areas and Africa comparably less attention (Vihervaara, Rönkä & Walls 2010; 

Mengist, Soromessa & Legese 2020). Many ES studies also concentrate on biogeographical zones 

instead of states or units such as forest patches or drainage basins (Vihervaara, Rönkä & Walls 

2010). Several studies are constrained to comparably small regions located in individual states 

(Vihervaara, Rönkä & Walls 2010). Using socially demarcated boundaries enables the 

identification of various SES within a landscape (Raudsepp-Hearne, Peterson & Bennett 2010). 

The demand of people benefitting from ES and the provision of ES through biodiversity, function 

and interrelate at various temporal and spatial scales (Anton et al. 2010; Castro et al. 2014; Lee & 

Lautenbach 2016). ES are also facing numerous pressures from human activities which can 
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constrain their ability to sustain human well-being and often cause irreversible damage to 

ecosystems (MEA 2005; Lin et al. 2017b; Mahmoud & Gan 2018). Measures to increase the 

provisioning of specific services, such as crop production and firewood, decrease numerous other 

services (MEA 2005; Raudsepp-Hearne, Peterson & Bennett 2010; Karimi, Yazdandad & 

Fagerholm 2020). A crucial challenge of ecosystem management is establishing a way to manage 

numerous ES throughout landscapes instead of concentrating on a few services separately (MEA 

2005; Raudsepp-Hearne, Peterson & Bennett 2010; Martín-López et al. 2011; Lee & Lautenbach 

2016). As such, resolving this challenge necessitates outlining trade-offs and synergies that occur 

at various scales (MEA 2005; Raudsepp-Hearne, Peterson & Bennett 2010; Lee & Lautenbach 

2016). Consequently, obtaining a fundamental comprehension of the scales where ES function is 

essential for advancing all conservation programmes at the landscape scale (MEA 2005; Anton et 

al. 2010). Conservation plays an essential role to ensure the long-term sustainability of ES (MEA 

2005; Lin et al. 2017b). A multi-disciplinary research method is essential for this, which is possible 

with an integrated ES assessment (MEA 2005; Anton et al. 2010; Crossman et al. 2013; Bagstad 

et al. 2017; Harrison et al. 2018).  

2.4 ECOSYSTEM SERVICE ASSESSMENTS 

ES assessments, aim to evaluate the supply and conditions of ES along with the interlinkages 

among them, and to determine trade-offs and synergies regarding environmental management 

(Nieto-Romero et al. 2014; Schmidt, Sachse & Walz 2016; Bagstad et al. 2017; Harrison et al. 

2018). ES assessments provide practical information for strategies, policies, and ecosystems 

management for stakeholders (Cowling et al. 2008; Nieto-Romero et al. 2014). The number of 

methods and tools created for evaluating ES in particular instances is increasing (Harrison et al. 

2018). Categories of methods for assessing ES include biophysical methods for mapping or 

modelling ES (Buckhard et al. 2018; Vihervaara et al. 2018; Trégarot & Failler 2021), socio-

cultural approaches for comprehending SVs for ES and preferences (Scholte, Van Teeffelen & 

Verburg 2015; Schmidt, Sachse & Walz 2016), and economic methods for evaluating economic 

value for services (Harrison et al. 2018). This research will only focus on biophysical and socio-

cultural methods for ES assessments. Information from ES assessments enables the planning of 

management options that enhance human well-being throughout multiple ES and for averting 

possibly substantial degradation resulting from neglecting indications for certain ES (Bagstad et 

al. 2017). Integrating these various methods provides a basis for an integrative methodological 

framework for assessing ES (Castro et al. 2014; Bagstad et al. 2017).  
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2.4.1 Biophysical Approaches 

Biophysical approaches for mapping ES are used to measure the capability of ecosystems to supply 

ES (i.e., supply) along with the quantity of accumulated yield of this capability for people (i.e., 

use or demand), usually mapped in physical units (e.g., ha, kg, m³) (Burkhard et al. 2018; 

Vihervaara et al. 2018; Trégarot & Failler 2021). Biophysical measurement is established with 

spatial and temporal quantifications of ecosystem processes (Cowling et al. 2008; Burkhard et al. 

2018; Vihervaara et al. 2018). Biophysical methods consist of three essential categories regarding 

the aspects of quantification and the way required information is obtained (Vihervaara et al. 2018). 

Biophysical data are typically obtained either by, “direct observations and measurements, indirect 

methods such as proxies or spatial extrapolation, or by modelling” (Vihervaara et al. 2018: 14). 

The application of direct examinations and quantifications is usually unfeasible for extensive areas 

due to resource constraints and inadequate data (Harrison et al. 2018; Vihervaara et al. 2018). In 

such circumstances, it is essential to examine different modelling and mapping approaches to 

assess ES at the chosen spatial scale (Olosutean 2015; Burkhard et al. 2018; Vihervaara et al. 

2018).  

For example, Kadaverugu, Rao & Viswanadh (2020) quantified flood risk mitigation (rainfall run-

off retention service) of urban green spaces for Hyderabad city, India. They used the InVEST 

model to quantify and map flood risk mitigation, based on elevation, land cover, and soil 

characteristics. The study revealed that run-off retention was higher in vegetated land cover classes 

and open spaces. 

Biophysical models provide details concerning the connection between biophysical aspects 

(processes and functions) which regulate ES provision (Harrison et al. 2018; Vihervaara et al. 

2018). Types of biophysical modelling relevant for ES assessments include phenomenological, 

process-based, state and transition, macro-ecological, statistical ecological, connectivity models, 

and integrated modelling frameworks (Harrison et al. 2018; Vihervaara et al. 2018). Integrated 

modelling tools are particularly suitable for ES mapping and modelling, which can enable the 

evaluation of trade-offs and scenarios for numerous ES (Burkhard et al. 2018; Harrison et al. 2018; 

Vihervaara et al. 2018), although these tools usually need substantial amounts of quantitative data 

and have considerable time requirements (Harrison et al. 2018). The methods are frequently 

grouped into modules, each fitting to assess a specific ecosystem service (Vihervaara et al. 2018). 

Integrated modelling frameworks use GIS software in order to provide maps and to manipulate 

spatial data (Vihervaara et al. 2018). They are normally add-ons to web-based applications, stand-

alone tools, commercial or open-source software packages (Vihervaara et al. 2018). The 
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biophysical integrated modelling tool InVEST has been widely used in ES mapping and valuation 

in numerous studies around the world, mainly to evaluate multiple ES and contrast various 

scenario-based options of possible prospective land-use management (Crossman et al. 2013; 

Posner et al. 2016; Vihervaara et al. 2018; Sharp et al. 2020). However, ES assessment tools such 

as InVEST have parameter values and primary data to model ES mainly for western countries (Leh 

et al. 2013; Cabral et al. 2017; Belete et al. 2018). Further research is still required to adjust these 

parameter values for data scarce regions such as Africa (Leh et al. 2013; Cabral et al. 2017; Belete 

et al. 2018). InVEST is a set of freely available software models that can perform spatially explicit 

mapping often utilised for assessing multiple ES, allowing decision-makers to evaluate trade-offs 

among ES (Sharp et al. 2020). Four ES (among others) that InVEST can model include Carbon 

Storage, Flood Risk Mitigation, Habitat Quality, and Annual Water Yield (Sharp et al. 2020).  

Within the InVEST model, carbon storage is evaluated in terms of the amount of carbon within a 

landscape at any given time (Sharp et al. 2020). The carbon model works by examining four carbon 

pools (aboveground biomass, belowground biomass, soil organic matter, and dead organic matter) 

according to land use/land cover (LULC) type (Sharp et al. 2020: 73). Aboveground biomass 

pertains to all existing plant material on top of the soil (such as plants, shrubs, and trees) (Sharp et 

al. 2020; Yang et al. 2021). Belowground biomass pertains to “the living root systems of the 

aboveground biomass…” (Sharp et al. 2020: 73). Soil organic matter pertains to, “the organic 

component of the soil…” (Sharp et al. 2020: 73). Decaying organic matter includes dead wood 

and litter (Sharp et al. 2020: 73; Yang et al. 2021). The total value of carbon stored within the 

study area is calculated as the sum of all four carbon pools in megagrams (Mg) (Sharp et al. 2020; 

Gong et al. 2021). Regarding the flood risk mitigation model, it calculates the volume of rainfall 

retained by the landscape following a storm event (Sharp et al. 2020; Gong et al. 2021). In the 

model, rainfall-runoff works with precipitation received over the study area along with LULC and 

soil characteristics (Sharp et al. 2020; Gong et al. 2021). Concerning the habitat quality model, it 

evaluates biodiversity status within a landscape by combining LULC and threats data (e.g., roads 

and urban areas) to generate habitat quality maps (Sharp et al. 2020). Habitat quality pertains to 

an ecosystems’ capacity to support environments suitable for biodiversity preservation (Sharp et 

al. 2020). Habitat quality is demeed as, “a continuous variable in the model, ranging from low to 

medium to high…” (Sharp et al. 2020:25). Habitat quality is dependent on existing resources for 

population perseverance, reproduction, and survival (Sharp et al. 2020). Habitat quality is 

calculated based on four elements (Sharp et al. 2020). These four elements include the level of 

land conservation, sensitivity of habitats towards threats, the relative threat, and distance from 

threat to habitat (Sharp et al. 2020). Concerning the Annual Water Yield model, annual water yield 

Stellenbosch University https://scholar.sun.ac.za



20 

 

is estimated as how much run-off water flows from the landscape annually (Sharp et al. 2020). 

Water yield is calculated as total annual evapotranspiration (water lost due to evaporation and plant 

transpiration) subtracted from total annual rainfall (Sharp et al. 2020). 

Various studies investigated ES using biophysical methods. For example, Lin et al. (2017b) 

analysed BpS based on the InVEST model to produce spatially explicit estimations of carbon 

storage, water yield, soil retention habitat quality and nitrogen retention in the Datuan watershed, 

Taiwan. These BpS models were integrated with SVs maps obtained using an online questionnaire 

and the GIS application SolVES. Most of the input biophysical data to map these ES were based 

on LULC, terrain, vegetation, habitat, and soil data. Nyanthi and Musakwa (2020) investigated the 

impact of LULC changes on ES modelled with InVEST within the Nzhelele river catchment, South 

Africa. Carbon sequestration and crop production were modelled based on two different LULC 

input data from 1999 to 2018. The study revealed a spatial increase for both carbon sequestration 

and crop production within the study area and a highly significant correlation between these ES. 

Lin et al. (2017a) investigated systematic conservation planning to conserve habitat quality and 

multiple ES within the Wutu watershed, Taiwan. InVEST was used to model phosphorus retention, 

soil retention, carbon storage, habitat quality, and water yield. They also used local Indicators of 

Spatial Association (LISA) to outline ES hotspots based on the five modelled ES. The conservation 

software Zonation was used for systematic conservation planning based on alternative scenarios 

of ES distribution derived from InVEST outputs. The study found that ES distributions and 

hotspots occurred mainly in forest areas. Scenarios of InVEST ES quantifications and LISA 

hotspots, and LISA ES hotspots, provided more efficient techniques to conserve ES than using 

InVEST ES quantifications in isolation. 

These studies similarly modelled the spatial distribution of multiple ES based on InVEST within 

the study’s findings. Nyanthi and Musakwa (2020) also investigated the temporal changes in ES 

states. All these studies also modelled multiple ES in hydrological features, including watersheds 

and a river catchment. However, Raudsepp-Hearn, Peterson & Bennett (2010) recommend using 

administrative boundaries (such as states) as the study area to model ES since social processes 

form the creation and utilisation of ES. Lin et al. (2017a) and Nyanthi and Musakwa (2020) do not 

integrate SVs data with InVEST modelled BpSs such as in the study of Lin et al. (2017b). Lin et 

al. (2017b) and Bagstad et al. (2017) noted that it is crucial to quantify and map both BpSs and 

SVs for more complete ES assessments and to ensure SVs are incorporated into management 

decisions. More research is required that integrates BpSs and SVs (Lin et al. 2017; Bagstad et al. 

2017). 
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Biophysical quantifications of ES are also jointly associated with other methods and establishes 

the foundation for natural capital accounting and frequently provides a basis for economic and 

social mapping methods and (Cowling et al. 2008; Burkhard et al. 2018; Vihervaara et al. 2018). 

Biophysical methods for assessing ES should assist in evaluating the extent of sustainable use and 

to apprise decision-making with this information (Vihervaara et al. 2018). Biophysical 

measurements and delineation of ES mapping are essential for social and economic mapping and 

evaluation (Cowling et al. 2008; Vihervaara et al. 2018). Economic and social mapping can be 

carried out beyond exact biophysical measurements for isolated studies. However, biophysical ES 

quantifications are necessary to inform sustainable utilisation and planning of ecosystems, natural 

capital accounting, and ES (Vihervaara et al. 2018).  

Biophysical models for assessing ES are crucial for the sustainable management of ES, however, 

Bagstad et al. (2017) and Cowling et al. (2008) contend that biophysical models for assessing ES 

should not be used in isolation when aiming for complete ES assessments. Biophysical models 

cannot encapsulate the full scope of benefits supplied to people by ecosystems (Karimi, Yazdandad 

& Fagerholm 2020). For example, Ma et al. (2019) aimed to comprehensively assess ES provided 

by Dongting Lake Wetland, China. The study modelled multiple ES of snail control and 

schistosomiasis prevention, soil conservation, water yield, and carbon storage using the InVEST 

modelling tool. The study’s results revealed spatial and temporal variations for these multiple ES. 

However, lake ecosystems are also known to provide cultural ES such as aesthetic experiences, 

educational opportunities, and inspirational, spiritual, and symbolic benefits (Schirpke et al. 2021), 

that was not considered in the study of Ma et al. (2019). Biophysical models for assessing ES 

cannot model such intangible benefits due to the intangible and incommensurable characteristics 

of cultural ES (Bagstad et al. 2017).  

Numerous biophysical ES modelling tools have advanced from previous ecological, hydrological, 

and additional biophysical process models, which were demonstrated advantageous in measuring 

provisioning, regulating, and supporting ES (Bagstad et al. 2017). Cultural ES remains more 

complicated to quantify with these models (Bagstad et al. 2017). There are a few cultural ES such 

as the viewshed element of aesthetic values that can be quantified by biophysical models, although 

they are inadequately equipped to quantify all cultural ES (Bagstad et al. 2017). As Semmens, 

Sherrouse & Ancona (2019) pointed out, unlike how provisioning and regulating ES can be 

assessed, it is not possible to assess cultural ES provision supplied by ecosystems from the 

biophysical attributes of the environment without input from cultural ES beneficiaries. Cultural 

ES assessments thus require input from stakeholders to adequately model cultural ES and for more 

complete ES assessments. 
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Researchers are also including socio-cultural valuation approaches for the assessment of cultural 

ES and other ES, to incorporate a wider group of social perspectives into the ES framework 

(Sherrouse, Clement& Semmens 2011; Scholte, Van Teeffelen & Verburg 2015; Schmidt, Sachse 

& Walz 2016).  

2.4.2 Socio-cultural Approaches 

Socio-cultural values of ES pertain to the significance the public, as groups or as individuals, 

assign to ES (Scholte, Van Teeffelen & Verburg 2015) and are regarded as assigned values 

(Schmidt, Sachse & Walz 2016). Social valuation refers to the valuation through people contrary 

to existing proxies such as monetary values (Schmidt, Sachse & Walz 2016). Socio-cultural values 

of ES are usually determined through questionnaires, observation approaches, in-depth interviews, 

document research, approaches to account for spatial factors, expert-based approaches, and focus 

groups (Schmidt, Sachse & Walz 2016; Harrison et al. 2018). For example, Sanyé-Mengual et al. 

(2018) investigated the social acceptance and perceived ES of urban agriculture in Bologna, Italy. 

Preferences for urban agricultural ES were obtained through an on-site quantitative survey 

conducted with Bologna citizens. Survey respondents were asked to rank how much they accept 

the influence of urban agriculture on the environment and socio-cultural ES. Results of the study 

revealed that respondents widely accepted vegetable production, and intensive farming systems 

were least accepted. 

Richards & Tunçer (2018) investigated cultural ES using geo-tagged social media photographs for 

Singapore. The study utilised a machine learning algorithm for evaluating the content of pictures 

captured in Singapore and were grouped using hierarchical clustering. The study found that many 

photographs consisted of nature (animals and plants). These photographs were located mainly in 

specific natural sites, and they were most likely to appear in parks and places with dense vegetation 

cover. Dai et al. (2019) investigated perceptions of cultural ES on social media for urban parks 

within Xuzhou, China. The study used word searching software to review online social media 

comments which were divided into keywords. The study revealed that urban parks are valued for 

different cultural ES, including cultural heritage, aesthetics, education, inspiration, recreation, 

sports, and spiritual satisfaction.  

These socio-cultural ES studies provide straightforward techniques to determine cultural ES and 

preferences of certain areas. However, these methods do not outline where these socio-cultural 

values for ES are located within the study area in a spatially explicit manner (Schmidt, Sachse & 

Walz 2016). Mapping people’s socio-cultural values for ES can be beneficial for ecological 

management and can also be incorporated with biophysical data and used in conservation 
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management and planning (Ives & Kendal 2014). Numerous techniques to collect socio-cultural 

ES values disregard the spatial variations of ES supply (Scholte, Van Teeffelen & Verburg 2015). 

These techniques typically require respondents to broadly describe their socio-cultural values of a 

landscape, with no reference to the specific ecosystems that supply ES (Schmidt, Sachse & Walz 

2016). Subsequently, ecological managers would not be able to derive an understanding of specific 

locations of high and low values (Zhou et al. 2020). They will also not be able to understand what 

the driving factors are for SVs (Zhou et al. 2020). Thus, socio-cultural ES assessments still require 

further research, particularly studies that apply spatially explicit methods to elicit socio-cultural 

values (Karimi, Yazdandad & Fagerholm 2020). 

Within methods to account for spatial factors, most approaches used for mapping socio-cultural 

values of ES use either specific place mapping or generic feature mapping (Scholte, Van Teeffelen 

& Verburg 2015). In specific place mapping, respondents identify where particular values are 

found by marking points on locations as a form of a participatory mapping exercise (Scholte, Van 

Teeffelen & Verburg 2015). These studies offer an understanding of the spatial distribution of ES 

provision and relative corresponding values, where relationships among values and environmental 

characteristics such as elevation, vegetation cover, and/or distance to features, e.g., trail pathways 

or water can be deduced (Scholte, Van Teeffelen & Verburg 2015). Maps depicting ES and 

corresponding values thereof can be remarkably effective in the case of sustainable decision-

making for ecosystems (Sherrouse, Clement & Semmens 2011; Schmidt, Sachse & Walz 2016; 

Van Riper et al. 2017).  

Socio-cultural ES values have also been associated with spatial characteristics through 

participatory mapping, where respondents identify the locations of ES. For example, Sherrouse, 

Clement & Semmens (2011) sent a mail questionnaire survey to residents within the Pike and San 

Isabel (PSI) forests in Colorado, USA, to map the SVs most important to them by using specific 

place mapping and the GIS application SolVES. Respondents were asked to hand-mark points on 

numerous maps of the PSI where they associated their specific SVs. They discerned the many SVs 

that the PSI held for the survey respondents and the relationships of underlying environmental 

characteristics (elevation, slope, distance to features, landforms, and land cover) with these SVs. 

SolVES is a GIS application used for examining and mapping questionnaire-survey response data 

(Sherrouse, Clement & Semmens 2011). SolVES combines and measures the spatial data of SVs 

to inform natural resource managers and stakeholders (Sherrouse & Semmens 2015). SolVES 

additionally enables an understanding of the relationship between the endpoints of ES (the things 

people care about) and the underlying environmental characteristics in protected areas (such as 
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land cover, elevation, terrestrial vegetation, and slope) (Sherrouse & Semmens 2015). SVs 

information can be used to assess the relationship between SVs endpoints to outline the importance 

of SVs intensities relative to physical environmental characteristics and socio-demographic 

factors. SolVES measures and maps SVs in spatial models with non-spatial and spatial responses 

from questionnaire surveys pertaining to public preferences. SolVES afterwards determines a 

measurable value index ranging from 0 to 10, with 10 indicating the greatest value, with the use 

of value allocations obtained from a questionnaire (Sherrouse & Clement 2015: 3). The value index 

is the indicator obtained from values allocated by stakeholders in response to questionnaires and 

subsequently associated with underlying environmental variables. The relationship between SVs 

and environmental attributes such as land cover, vegetation cover, and other physical landscape 

characteristics is examined relative to where respondents marked locations linked with each SV 

type (Sherrouse & Semmens 2015). SolVES additionally examines variations in values along with 

distinct groups of respondents contingent to socio-demographics and other respondent 

characteristics (Sherrouse & Semmens 2015). 

Sherrouse, Clement & Semmens (2011) investigated SVs within a PPGIS context. SVs were 

defined as identical to non-monetary landscape values (values people assign to areas on the 

landscape), and characterised by type (such as historical, intrinsic, and life-sustaining values), 

comparably to monetary valuations. This definition of SVs is then slightly different from the 

broader term “socio-cultural values”. Socio-cultural values pertain to peoples’ values for the full 

range of MEA (2005) ES categories including provisioning, regulating and cultural ES (Scholte, 

Van Teeffelen & Verburg 2015), while SVs mainly pertain to values for cultural ES (Bagstad et 

al. 2016). However, biological diversity pertains to supporting ES, economic values correspond to 

provisioning and cultural ES, and life-sustaining values generally pertain to regulating ES 

(Bagstad et al. 2016). Brown & Reed (2000) explained 13 of these place-based values within a 

forest value typology setting including, “aesthetic, biological diversity, cultural, economic, future, 

historic, intrinsic, learning, life-sustaining, recreation, subsistence, spiritual, and therapeutic” 

values (Brown & Reed 2000: 4). These forest values are also referred to as SVs for ES (Sherrouse, 

Clement & Semmens 2011).  

Specific place mapping uses PPGIS methods to map SVs (Brown & Fagerholm 2015). PPGIS has 

been used to derive GIS social information for incorporation with ecological data within GIS 

(Alessa, Kliskey & Brown 2008; Bagstad et al. 2016). PPGIS aims to include the public in 

participatory procedures using GIS tools for apprising decisions with spatial consequences (Sieber 

2006; Dunn 2007; Brown 2012). An example of using PPGIS includes respondents being asked to 

point out places on a map, either digital or hardcopy, using digital indications, markers, or stickers 
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(Brown 2012). Respondents are recruited through on-site surveys, social media, mailing lists, 

workshops, or online panels (Brown 2012). Within the social sciences, an effort has been made 

for mapping expert and public socio-cultural values of ES using PPGIS (Bagstad et al. 2017). 

These methods ask respondents to map areas where they think ES are provided. PPGIS can also 

comprise a value-allocation exercise which enables respondents to identify the value types most 

important to them (Sherrouse, Clement & Semmens 2011). These SVs mapping methods are 

applicable to comprehend cultural ES, comprising non-use values. SVs mapping subsequently 

provides a method to quantify cultural ES and other ES to apprise environmental planning and 

management (Sherrouse, Clement & Semmens 2011; Bagstad et al. 2016).  

SVs approaches for assessing ES can complement biophysical valuations, although they should 

not be seen as an alternative (Cowling et al. 2008; Scholte, Van Teeffelen & Verburg 2015; 

Bagstad et al. 2017). An SVs focus within planning can occasionally deviate considerably from 

biodiversity planning (Plieninger et al. 2015). A study by Whitehead et al. (2014) investigated a 

scenario of using only the highest ranked areas of SVs as a foundation for conservation planning 

in the Lower Hunter region, Australia. SVs for conservation in this study were defined as areas 

that people perceived as important for biodiversity conservation. These SVs were obtained with a 

community PPGIS questionnaire survey. The study established that more than 50% of the highest 

ranked areas in biodiversity values (represented by distribution data of seven fauna species) would 

not be conserved anymore. 

Nevertheless, researchers have acknowledged socio-cultural ES valuation approaches (Daily et al. 

2009; Sherrouse, Clement & Semmens 2011; Sherrouse, Semmens & Clement 2014; Nahuelhual 

et al. 2016; Schmidt, Sachse & Walz 2016), for the potential to raise awareness of ES, to integrate 

public knowledge in management decision-making, and to encourage local inspiration (Daily et 

al. 2009; Sherrouse, Clement & Semmens 2011; Sherrouse, Semmens & Clement 2014; 

Nahuelhual et al. 2016; Schmidt, Sachse & Walz 2016). However, biophysical and economic ES 

assessment approaches still lead ES research and policy (Nahuelhual et al. 2016; Karimi, 

Yazdandad & Fagerholm 2020). The absence of SVs in ES assessments is intensified through the 

overall association of SVs with cultural ES, which is not sufficiently incorporated within the ES 

framework (Sherrouse, Semmens & Clement 2014; Bagstad et al. 2016). SVs are usually the most 

difficult to evaluate due to their intangible and incommensurable character. At the same time, a 

large focus has been placed on those ES which are readily measured and marketed (García-Díez, 

García-Llorente & González 2020). However, the spatial representation of SVs with participatory 

mapping presents an opportunity to resolve this difficulty (Sherrouse Clement & Semmens 2011; 

Bagstad et al. 2016; García-Díez, García-Llorente & González 2020). Mapping of SVs within ES 
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assessments offers a way to convey cultural ES in a manner comparable to monetary terms of 

economic value (Sherrouse, Clement & Semmens 2011). 

ES assessments are receiving increasing attention, although there is still doubt whether they 

sufficiently assess the benefits of ecosystems (Förster et al. 2014; Posner, Getz & Ricketts 2016). 

ES are made by ecosystems and consumed by people (Reyers et al. 2013). Thus, ES obtained from 

biophysical processes should not be viewed separate from people but rather as intertwined in 

political and social processes (Ernston 2013). As a result, methods of ES assessment that solely 

concentrate on social or biophysical factors will not accurately assess the supply and use of ES 

(Bennet, Peterson & Gordon 2009; Reyers et al. 2013). Inadequate participation of stakeholders 

and their SV within the implementation of ES assessments can separate the outcomes from the 

requirements of decision-makers and existing policy arrangements (Trégarot & Failler 2021).  

Contemporary methods concentrate on ecological production functions, which comprise a group 

of biophysical variables (such as soil type and tree cover) to model the supply of ES (Nemec & 

Raudsepp-Hearne 2013; Reyers et al. 2013; Hamann, Biggs & Reyers 2015). Modelling ES supply 

based on ecological production functions highlights ecological aspects linked to ES supply, 

although it frequently omits the social aspects (Reyers et al. 2013; Hamann, Biggs & Reyers 2015). 

Diaz et al. (2015) also highlights how monetary ES assessments overlook cultural ES (Daiz et al. 

2015). For example, farmers that value agriculture for cultural heritage reasons would not have 

these values captured by monetary methods (Diaz et al. 2015). Another example is the provision 

of drinking water from vegetated watersheds are valued for entitlement reasons and not as a 

commodity ES, thus extending beyond market logic (Diaz et al. 2015). Thus, ES valuation 

approaches need to account for the value systems of all relevant stakeholders for adequate 

consideration of their values and preferences (Diaz et al. 2015). This in turn could reduce conflict 

among stakeholders for ES allocation. Studies that do include social aspects usually do so after 

service production, as quantifications of use or value (Reyers et al. 2013).  

Cowling et al. (2008) state that social ES assessments should be conducted before biophysical ES 

assessments. This is because it determines the owners and beneficiaries of biophysical functions 

which provide ES and subsequently need a biophysical ES assessment. A social ES assessment 

identifies the values, requirements, actions of people, standards, societies, and relevant groups 

within the study area (Cowling et al. 2008). That is, it reveals how a site functions concerning 

socioeconomic characteristics and the reasons for it (Cowling et al. 2008). Omitting the 

comprehension of the social system derived from a social ES assessment could result in inadequate 

targeted implementation (Cowling et al. 2008). Smart et al. (2021) stated that overlooking local 
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community values but still expecting them to conform to planning regulations is unreasonable and 

possibly undermines their cooperation and ability to adhere to land-use regulations. This possibly 

results in the development of controversial, inequitable, and ineffective policies. If possible, data 

should be collected spatially and conform to the biophysical ES assessment scale (Cowling et al. 

2008). 

An SES approach expands the idea of ecological production functions by acknowledging that 

within a human environment, ES production also involves social aspects such as stakeholder 

values, skills, management regimes, and technology (Ernston 2013; Reyers et al. 2013; Hamann, 

Biggs & Reyers 2015). However, this is not evident in the ES framework (Reyers et al. 2013). 

Cultural ES have specifically robust aspects involved in their production (such as recreational 

infrastructure and preferences, sacred site practices and management) which have not been 

adequately modelled with ecological production functions (Reyers et al. 2013).  

Academics producing models to incorporate ES assessments for water and land use decision-

makers have recommended that ES valuation ought to comprise data from biophysical and social 

evaluations (Cowling et al. 2008; Sherrouse, Clement & Semmens 2011; Bagstad et al. 2017; Lin 

et al. 2017b). Integrating an SES approach within ES enables a method of making these ES 

assessments more applicable to decision-making, combining social and biophysical characteristics 

of ES (Lin et al. 2017b; Rüdisser, Leitinger & Schirpke 2020). An SES approach regarding ES 

enables an examination of how human dependencies entail possible services, comprehension of 

trade-offs amid management prescriptions, and the outlining how people rely on ES (Förster et al. 

2015). One method to integrate a social-ecological approach into ES assessments is the concurrent 

modelling of SVs and BpSs (Lin et al. 2017b). As biophysical modelling and SVs mapping of ES 

have mainly taken place separately, simultaneous mapping of biophysical ES and SVs could offer 

a better strategy to incorporate SVs into ES assessments (Bagstad et al. 2017).  

Felipe-Lucia, Comín & Escalera-Reyes (2015) highlights that many social ES assessment studies 

only evaluate cultural ES, not provisioning, regulating, and supporting ES. Although studies have 

noted that making respondents map complicated ecosystem processes, supporting these ES is quite 

cognitively demanding for respondents (Brown & Fagerholm 2015; Bagstad et al. 2017). This 

could affect the efficiency of mapping these ES with the use of PPGIS (Brown & Fagerholm 2015; 

Bagstad et al. 2017). More specifically, Brown & Fagerholm (2015) noted that studies that used 

MEA-defined ES instead of ES indicators relating to uses and values for these ES were fairly 

cognitively demanding for respondents. In response to this, Bagstad et al. (2016) suggested a 

technique which involves simultaneously mapping SVs obtained through PPGIS methods in 

Stellenbosch University https://scholar.sun.ac.za



28 

 

conjunction with those services, which are more accurately assessed biophysically. This technique 

superimposes SVs and BpSs derived hotspot maps and determines possible conflict areas with a 

conflict between these services (Bagstad et al. 2016). This approach offers cultural ES to be more 

equivalent in decision making with more straightforwardly monetised provisioning and regulating 

ES, and to assess multiple ES at once (Bagstad et al. 2016). Mapping SVs and BpSs also outlines 

trade-offs and synergies between many SVs and BpSs (De Vreese et al. 2016; Lin et al. 2017b; 

Smart et al. 2021). 

2.5 ECOSYSTEM SERVICE RELATIONSHIPS 

ES can create synergy, trade-off, or neutral relationships, that is, ES can either be independent or 

negatively or positively related to one another at various spatial scales (Mengist, Soromessa & 

Legese 2020). A trade-off relationship in ES is when the provisioning or value of one or many ES 

are negatively affected by alterations in other services (Castro et al. 2014). That is, the supply or 

value of a single or several ES is increased to the detriment of negatively affecting other services. 

Trade-off relationships also possibly arise in the event of a disconnect between stakeholders’ 

economic and socio-cultural values on one or several services and the biophysical capability of a 

specific landscape to supply ES (Castro et al. 2014). For example, such a trade-off can arise when 

people do not acknowledge the importance (regarding economic and social benefits) of 

groundwater recharge in an arid region (Castro et al. 2014). A synergy relationship entails when 

both ES are increased concurrently (Mengist, Soromessa & Legese 2020). Concerning a neutral 

relationship, it is when there are no interconnections or no impact between ES (Mengist, 

Soromessa & Legese 2020). 

An extensive comprehension of multiple ES is essential in natural resource management to 

increase synergies between ES and to avert unintended and frequently negligent trade-offs and 

(Förster et al. 2015; Lee & Lautenbach 2016). Comprehending ES synergies and trade-offs can 

assist landscape managers in choosing appropriate management interventions at the local level, 

specifically, those that appear because of conflict among different stakeholder concerns (Qiu & 

Turner 2013; Castro et al. 2014; Bagstad et al. 2016; Karimi, Yazdandad & Fagerholm 2020). 

Ernston (2013) provides an example where an unintentional fire occurred within the Tokai Forest, 

Cape Town, which resulted in conflict about the importance of different ES. The Tokai Forest was 

initially a pine plantation that was used for timber production and job creation, although the fire 

in 1998 promoted the growth of fynbos seeds, an indigenous and endangered vegetation. 

The evidence of potential fynbos to grow in the area led to an influential alliance which wanted 

the pines removed, and fynbos replanted. Pine trees undermined the biodiversity of fynbos and 
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affected water quality and quantity in this drought-prone area. Conservation ecologists, non-

governmental organisations (NGOs), and public agencies formed government-funded programmes 

for the purpose of eradicating the pine trees and additional alien invasives. However, this caused 

conflict between conservation biologists and forest user groups. Conservation biologists contended 

that the replantation of fynbos could maintain ecological functions and freshwater streams in the 

watershed area, at the same conserving biodiversity for inherent values and enduring ecosystem-

based adaptation. However, forest users argued for the retention of the pine trees, for recreation, 

access for mushroom picking, and for well-being purposes. This was seemingly more convenient 

with pine trees that provided little underbrush and shade. The pine trees were also associated with 

socio-cultural values linked to identity and belonging since a lot of the users grew up with the pine 

trees, and not fynbos. The pine trees were removed, although a few trees were left for shaded 

walks. 

When managing ecosystems only from an ecological perspective, managers could unknowingly 

make choices that cause counterproductive trade-offs for visitors (Ernston 2013). Elmqvist et al. 

(2013) noted that places with high SVs are not always synergistic with areas essential for ES and 

biodiversity established with scientific analysis or government. Thus, perceptions regarding the 

legitimacy of conservation vary (Elmqvist et al. 2013). To make sure measures to conserve ES are 

applied and accepted by the public and stakeholders, it is crucial to improve communications 

regarding ES, particularly for ES that are less recognised and poorly understood, such as by 

applying social learning (Rüdisser, Leitinger & Schirpke 2020). A biophysical ES assessment 

alone would not have captured the specific SVs linked to the Tokai Forest. 

Such trade-offs motivate assessing multiple elements of ES (Ernston 2013; Castro et al. 2014). 

The question concerning which ES have a greater importance than others, that is, the value of an 

ES, hinges on to a substantial extent upon stakeholders’ values (Ernston 2013; Hauck et al. 2013). 

However, Ernston (2013) acknowledges that “finding the right trade-off” can be difficult. Notably, 

a social ES assessment outlines stakeholders’ concerns and values regarding places to establish 

possible consequences where a specific decision can impact them (Sherrouse, Clement & 

Semmens 2011; Karimi, Yazdandad & Fagerholm 2020). As stated before, there is an inadequacy 

of research examining trade-offs which concurrently consider biophysical ES provision and social 

ES demand (Quintas-Soriano et al. 2014; Bagstad et al. 2016). Multiple techniques to determine 

synergies and trade-offs between ES exist (Bagstad et al. 2016: Lee & Lautenbach 2016; Mengist, 

Soromessa & Legese 2020). The next section provides an overview of techniques for mapping ES 

synergies and trade-offs. 
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2.6 MAPPING ES SYNERGIES AND TRADE-OFFS  

2.6.1 Modelling ES relationships 

Methods to determine relationships between ES include descriptive techniques, correlation 

coefficients, regression analysis and multivariate statistics (Lee & Lautenbach 2016). Regression 

analysis can be used to model, assess, and investigate spatial relationships among ES, with the aim 

of better understanding the aspects behind observed spatial patterns or anticipating spatial 

outcomes (Scott & Janikas 2010; Bagstad et al. 2016). Regression analysis has been widely used 

in studying complex interactions among multiple ES (Alessa, Kliskey & Brown 2008; Bagstad et 

al. 2016; Liu et al. 2019). Alessa, Kliskey & Brown (2008) analysed the relationship between 

biological diversity and net primary productivity using linear regression for the Kenai Peninsula, 

Alaska study area. The study yielded a relatively significant positive relationship, highlighting the 

connection between spatial patterns of net primary productivity and respondents’ perceived 

biological diversity values (Alessa, Kliskey & Brown 2008). Bagstad et al. (2016) used the 

Ordinary Least Squares Regression (OLS) linear regression tool to analyse relationships between 

SVs and BpSs for the PSI forest in the USA. However, the study’s OLS results were non-

significant. This indicated public perceptions of ES provision areas were limited. OLS is the most 

well-known regression approach, which provides a suitable starting point for all spatial regression 

analysis (Environmental Systems Research Institute (ESRI) 2021b). However, Agudelo, Bustos & 

Moreno (2020) argued that modelling multiple ES with a single approach is often not enough. 

Methods should be integrated to meet decision-makers’ requirements (Agudelo, Bustos & Moreno 

2020). Using more than one modelling approach can include a larger number of ES and 

compensate for the weaknesses in other methodologies (Agudelo, Bustos & Moreno 2020). One 

limitation of regression models is that it differentiates multiple ES into dependent and independent 

variables (Lee& Lautenbach 2016). Errors are not accounted for in the independent variable and 

are only considered within the dependent variable (Lee& Lautenbach 2016). Another method to 

determine ES relationships is the social-ecological hotspot mapping of ES (Bagstad et al. 2016). 

2.6.2 Social-ecological hotspot mapping 

Social-ecological hotspot mapping provides a method to identify trade-offs and synergies between 

SVs and other ES (Bagstad et al. 2016). It also provides a means to consider some non-monetary 

cultural ES in quantitative and spatial ES assessments (Bagstad et al. 2016). As stated in the 

introduction, social-ecological hotspots pertain to areas that display spatial correlation of both high 

ranking for ecological conditions and high perceived landscape values (in this case SVs) (Alessa, 

Kliskey & Brown 2008). An example of an SES hotspot can occur within a region highly valued 
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for biological diversity by community members together and biological productivity determined 

through quantitative scientific investigation (Alessa, Kliskey & Brown 2008). In the context of 

this study, social-ecological hotspots are areas with high SVs and BpSs values. Areas with low 

perceived SVs and low BpS values are coldspots.  

Different hotspot analysis methods have been used together with ES mapping. These include 

expert definition, quantile cut-offs such as the top 10, 20 or 30% of values, and statistical methods 

such as the Local Moran’s I and the Getis-Ord Gi* (Bagstad et al. 2017). Expert definition can 

provide reliable information for once-off studies and/or regional or national assessments (Bagstad 

et al. 2017). However, the possibility to provide various information subject to the expert group’s 

organisation and, the relative bias makes expert definition suboptimal for mainstream ES 

assessments (Bagstad et al. 2017). Statistical methods refer to methods used to delineate hot spots 

along with Jenks natural breaks, maximising the variation between classes relative to the clusters 

contained in the data. (Schröter & Remme 2016:). The Getis-Ord Gi* statistic determines spatial 

clustering within the data to outline hotspots or coldspots. The Getis-Ord Gi* statistic determines 

clustering of pixels containing high values (hotspots) and low values (coldspots) according to a 

certain distance (Schröter & Remme 2016). The Getis-Ord Gi* statistic forms part of the Local 

Indicators of Spatial Association (LISA) (Anselin 1995). A LISA refers to any local statistic that 

outlines clusters of similar values above or less than the average which express local patterns of 

spatial dependence, usually referred to as hotspots and coldspots correspondingly (Anselin 1995). 

These include local indicators of local Getis-Ord G and Gi*, Moran’s I, and local Geary’s C 

(Anselin 1995). The Getis-Ord Gi* statistic has been applied across a variety of different fields 

including criminology and has also particularly been used to outline spatial clustering (hotspots) 

of SVs and ES (Bagstad et al. 2016; Li et al. 2017; Smart et al. 2021).  

Spatial clustering methods may overlook crucial small, dispersed, or linear elements such as 

springs or riparian corridors, which could appear as high-value areas in the quantile cut-off method 

(Bagstad et al. 2017). However, quantile cut-off methods frequently overlook landscape 

connectivity among or within the outlined hotspots, which could result in detrimental and serious 

landscape fragmentation (Schröter & Remme 2016; Li et al. 2017). The output hotspots from the 

Getis-Ord Gi* statistic can provide improved continuous hotspots surfaces, representing an 

example of landscape connectivity (Bagstad et al. 2017; Li et al. 2017). Thus, spatial clustering 

approaches provide the opportunity to outline more continuous hotspots (Li et al. 2017; Lin et al. 

2017a). The Getis-Ord Gi* statistic is well suited to evaluate and outline ES hotspots that have 

good spatial connectivity (Bagstad et al. 2017; Li et al. 2017). 
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In a comparative study, Bagstad et al. (2017) evaluated different methods for generating ES 

hotspots and coldspots for six US national forests. ES hotspots and coldspots were mapped based 

on BpSs modelled using Artificial Intelligence for Ecosystem Services (ARIES) and SVs modelled 

using SolVES. For comparison, ES hotspots and coldspots were mapped with, “two quantile 

approaches (top and bottom 10% and 33% of values), two area-based approaches (top and bottom 

10 and 33% of area), and two statistical approaches (Getis-Ord Gi* at α= 0.05 and 0.10 

significance levels)” (Bagstad et al. 2017: 8). The study revealed that these hotspot delineation 

methods differ concerning the degree of conservatism (confidence levels) for hotspot and coldspot 

extents and spatial clustering. The study concluded that statistical hotspots of intermediate 

conservatism (such as Getis-Ord Gi*, α= 0.10) could offer the best ES hotspot and coldspot 

mapping method to apprise landscape-scale management. 

Social-ecological landscape attributes are geographically diverse and budgets for conservation are 

small, and thus geographical focusing on conservation hotspots for biodiversity and ES presents 

an opportunity to improve the effectiveness of conservation (Bagstad et al. 2017). Bagstad et al. 

(2016) mapped social-ecological hotspots for SVs and BpS using the Getis-Ord Gi* statistic for 

PSI forests in Colorado, USA. Hotspot maps were based on SVs modelled using SolVES and BpSs 

modelled based on ARIES. The study demonstrated that hotspots of SVs and BpSs were 

immensely situated in wilderness areas of the PSI. Coldspots of SVs and BpSs were located more 

outside of wilderness areas. The study presented an opportunity for landscape managers to overlay 

the spatial location of prospective management actions above SVs and ES maps. This could 

improve the visualisation of human/landscape relations. 

Smart et al. (2021) mapped hotspots and coldspots based on BpSs and cultural ES with the Getis-

Ord Gi* statistic for Johns Island, South Carolina, USA. Cultural ES were mapped using PPGIS 

stakeholder workshops. BpS were mapped using the InVEST model. The study recorded that 

cultural ES hotspots infrequently (3% of the area) overlapped with hotspots of BpS. The study 

highlighted the significance of stakeholder engagement for mapping cultural ES, which enables 

them to be on equal terms with BpSs in landscape planning.  

2.7 CONCLUSION 

 ES research has been increasing since MEA (2005) development, although ES research that 

evaluates social dimensions of ES, particularly cultural ES, and integrative ES assessments, is still 

lacking. Particularly, ES research that explores ES trade-offs among social and biophysical ES 

assessments lack. This literature review highlighted the importance of evaluating multiple 

dimensions of ES assessments to better identify synergies and trade-offs among ES, and to improve 
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decision-making. Conducting ES assessments in isolation can result in neglecting trade-offs for 

ES and the values of stakeholders. ES assessment studies that also use an SES framework have the 

potential to make ES assessments more applicable to decision making, by incorporating social 

aspects within ES assessments. Regression analysis of ES and social-ecological hotspot mapping 

of ES and SVs provide a preferable approach to identify synergies and trade-offs among ES, and 

to incorporate cultural ES within ES assessments. Statistical methods (such as Getis-Ord Gi*) 

could offer the best method to map ES hotspots. 
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CHAPTER 3: METHODOLOGICAL APPROACH 

This chapter introduces the methodological approach used in the study. It presents how the data 

was collected, pre-processed, and analysed to achieve the overall aim and objectives (specifically 

objectives 2, 3 and 4). The study area description is provided first, and then questionnaire design 

and administration. After that, data pre-processing procedures for input in InVEST modelling are 

given. This is succeeded by an outline of data analysis techniques that incorporate social values 

(SVs), biophysically modelled services (BpSs), hotspot, and regression analysis. 

3.1 STUDY AREA 

The study area is located within the Cape Peninsula, situated in the CoCT in the Western Cape 

Province of South Africa (Figure 3.1). The Cape Peninsula is located at the southwestern tip of 

Africa and includes an area of internationally recognised aesthetic beauty and extraordinary 

biodiversity (Cowling, MacDonald & Simmons 1995). The area is designated by the existing Cape 

Peninsula mountain chain, stretching from Lion’s Head and Signal Hill in the North to Cape Point 

in the South (Helme & Trinder-Smith 2006: 1). The Cape Peninsula covers a ground area of 

470km2 of which approximately 220 km2 is a conservation area called the Table Mountain 

National Park (TMNP), (comprising 80% of the mountain chain) (Cowling, MacDonald & 

Simmons 1995). According to Elmqvist et al. (2013), the TMNP forms a vital conservation area 

for preserving ES and biodiversity that sustains residents (Elmqvist et al. 2013). 

Sites such as Table Mountain, the Silvermine area, and Cape Point within the TMNP were initially 

declared as individual nature reserves, managed by 14 different authorities during the 1900s 

(SANParks 2016). These areas were eventually incorporated into the Cape Peninsula Nature area 

with regards to the Physical planning act in 1983. This was then replaced by the Cape Peninsula 

Protected Natural Environment (CPPNE) with regards to the Environmental Conservation Act in 

1989 (SANParks 2016). However, it was recommended that land within the CPPNE be established 

as a national park in 1998 and managed by a single management authority South African National 

Parks (SANParks) (SANParks 2016). The TMNP was then established in 2004 under declaration 

of the UNESCO serial Cape Floral Region Protected Area World Heritage (CFRPAWHS) 

(SANParks 2016). 

The Cape Peninsula is also largely distinguished physiographically. It has exceptionally great 

topographical diversity, lengthy and abrupt gradients in yearly rainfall, and a large variation of 

nutrient-deficient soils (Cowling, MacDonald & Simmons 1995). Consequently, the Cape 

Peninsula underpins many habitats and ecological groups. The Peninsula falls under the Cape 

Floristic Region (CFR), an area of remarkably high endemism and diversity, including all 
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taxonomic levels and is acknowledged as one of the six major floral kingdoms within the globe 

(Cowling, MacDonald & Simmons 1995). One notable characteristic of the Cape Peninsula is its 

abundance of flora biota (Helme & Trinder-Smith 2006). There are approximately 2285 

indigenous plant species within the Cape Peninsula, the highest concentration of plant species 

within the CFR (Helme & Trinder-Smith 2006). Concerning the Cape Peninsula’s vegetation, it 

mainly consists of fynbos, a fire-driven shrubland, which includes twelve (12) different fynbos 

species in the Peninsula (Helme & Trinder-Smith 2006). Two internationally recognised landscape 

features found here include Table Mountain and Cape Point. The Cape Peninsula has a high 

abundance of fauna for its size, with many amphibian species, reptiles, birds, and terrestrial 

mammals).  The northern section of the Cape Peninsula consists of heavy and light industries, 

dense residential suburbs, and an extensive road network (Okes & O'Riain 2017). The southern 

section of the Peninsula consists of lower levels of urban development since most of the southern 

parts are protected by the TMNP (Okes & O'Riain 2017). The rivers of the Cape Peninsula mostly 

occur within the TMNP protected area. The Cape Peninsula also includes the CoCT (City of Cape 

Town) residential suburbs including the City Bowl, Atlantic Seaboard, Southern Suburbs, and the 

Peninsula. The Peninsula is surrounded by the greater Cape Town area, leading to intensifying 

threats to scenic quality and biodiversity (Cowling, MacDonald & Simmons 1995). 
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Figure 3. 1   (a) The Cape Peninsula study area, (b) the location of the study area within the CoCT, and (c) the 

location of the study area within South Africa. 
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3.2 DATA COLLECTION AND ANALYSIS FRAMEWORK 

Questionnaire data was collected online through Facebook using the SUNSurveys application. The 

questionnaire comprised four sections. The first section consisted of questions relating to 

respondents’ familiarity with the Cape Peninsula. The second section recorded respondents’ 

attitudes towards the uses of the Cape Peninsula. The third section entailed SV allocation and a 

PPGIS mapping exercise by respondents. Regarding the fourth section, it asked for respondents’ 

demographic information. Data from section three served as input data for SolVES analysis. To 

prepare the questionnaire input data for SolVES, the questionnaire data were digitised in ArcGIS. 

SolVES also requires data on environmental characteristics to run along with questionnaire data. 

Data that characterised the study areas’ physical environment was also obtained, such as LULC, 

slope, elevation, and distance to certain features, to explain the physical context of SVs mapping. 

To map the four BpSs of carbon storage, habitat quality, flood risk mitigation annual water yield, 

InVEST required various land cover, biophysical CSV tables, climate, soil and vegetation input 

data. The respective input datasets were obtained from various sources such as government GIS 

data portals and past research. Input data for the four BpS models were prepared in ArcGIS for 

use in InVEST. 

The SolVES questionnaire point and environmental characteristics data were processed to generate 

11 SVs maps based on the generation of a spatially explicit Value Index. The four BpS maps were 

generated using various biophysical equations within InVEST. A regression analysis using the 

Ordinary Least Squares (OLS) tool was done on three independent SV variables and the respective 

value allocation data, and three dependent BpSs variables. This was to determine whether there is 

a relationship between SVs and BpSs. Thereafter, hotspot analysis was carried out on cumulative 

SV and BpS layers using the Getis-Ord Gi* statistic, to produce hotspot and coldspot maps of SVs 

and BpSs. Figure 3.2 depicts the flowchart of the research methodology followed. 
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Figure 3. 2   Generalised research methods and materials flow chart demonstrating how the data for this research 

was collected and analysed. 
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3.2.1 Questionnaire Survey Design 

A questionnaire was used to record opinions about respondents’ familiarity with the Cape 

Peninsula, preferences, and spatial distribution of the SVs. The questionnaire design process is 

based on the methods from Lin et al. (2017b) and the questionnaire comprised four sections. The 

first section sought to document respondents’ familiarity with the Cape Peninsula (for example 

when, and how frequently they visit). In the second section, a five-point Likert scale ranging from 

strongly in favour to strongly oppose, was used to record respondents’ attitudes toward the uses of 

the Cape Peninsula for other types of ES such as recreation (Joshi et al. 2015). Section three 

consisted of two parts, first asking respondents to designate 100 “preference points” throughout 

12 SVs incrementally. The descriptions of these SVs are provided in Table 3.1. The designated 

preference points indicated the extent to which respondents value each SV. The second part of 

section three of the questionnaire comprised a Public Participation Geographical Information 

Systems (PPGIS) mapping exercise, which entailed locating these values on a map of the Cape 

Peninsula. Respondents were asked to select areas on the map that represented designated SVs 

selected in the first part of section three of the questionnaire. The map had an approximate scale 

of 1:110 000 and displayed numerous locations within the Cape Peninsula, for example, Table 

Mountain, Cape Point, and Boulders Beach. Respondents could list up to ten locations they 

preferred, and the SVs assigned to those locations. Section four asked for demographic information 

such as age, gender, and education, to explain the social context of SVs allocations. No personal 

identification information was asked in the questionnaire.  

3.2.1.1 Questionnaire Administration 

The online questionnaire targeted recreational users above eighteen (18) years of age on Facebook. 

For this study, recreational users are those who use the Cape Peninsula for activities such as hiking, 

walking, running, mountain climbing, sight-seeing, picnicking, biking, camping, and swimming. 

A pilot questionnaire survey was conducted before a full-scale survey was launched. The pilot 

questionnaire was sent to the administrator of the Facebook groups. The pilot questionnaire 

received a total of 10 responses. Necessary adjustments to the questionnaire and structure were 

then made based on the pilot survey. The questionnaire was made available on various Facebook 

groups focused on outdoor recreation via Stellenbosch University’s official SUNSurveys platform. 

Administrators of the online Facebook groups were contacted to ask permission to distribute the 

questionnaire. The pilot questionnaire was sent to the administrator of the Facebook groups. The 

pilot questionnaire received a total of 10 responses. The questionnaire was finalised after the pilot 

questionnaire phase. The final questionnaire was administered by making the online SUNSurveys 
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link available to the participating groups. All members of these groups were invited to participate 

in the questionnaire survey. The online SUNsurveys questionnaire posted on Facebook groups was 

open for a period from the beginning of February 2022 to the end of May 2022. The SUNsurveys 

platform also has a feature to prevent duplicates which was used for the questionnaire survey. 

Table 3.1   The 12 social value typology definitions used in this study. These are landscape-

based values that could be assigned to areas on the Cape Peninsula to determine stakeholder 

preferences on the landscape. 

Value typology Explanation of value 

Aesthetic   Scenery, views, sounds, smells etc. 

Biological diversity  Presence of different plant life, wildlife etc. 

Cultural  Place to maintain and pass down insight and knowledge, practices  

and the culture of one's predecessors. 

Economic  Provision of fisheries, recreation, and opportunities for tourism, e.g., 

outfitting and guiding.  

Future  Continuation of the Cape Peninsula's current state for future generations. 

Historic  Historical and natural human history important for oneself, others, or 

the nation. 

Intrinsic  Area itself, notwithstanding other's perceptions on it. 

Learning  Opportunities to study ecosystems with scientific observation or 

experimentation. 

Life-sustaining  Sustainable services such as renewing air, soil and water. 

Recreation  Provision of favourite outdoor recreational activities. 

Spiritual  Sacred, religious, or spiritually personal reasons. 

Therapeutic  Physical and/or mental improvement of people. 

Adapted from Sherrouse, Clement & Semmens (2011: 6) 

In deciding which online platform to distribute the questionnaire, Facebook has the most 

engagement across social media platforms, where 63% of those on Facebook make use of the 

platform at least once daily and 40% use it on numerous occasions during the day (Bonson, Royo 

& Ratkai 2015). This made Facebook a suitable online platform for distributing the questionnaire. 

One drawback frequently experienced with online-based PPGIS questionnaires is low response 

rates (Brown, Kelly & Whitall 2013; Brown & Kyttä 2014). One way to increase participation 

rates is to target populations that are probably more interested in the research focus (Saleh & Bista 
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2017). In this study, recreational users of the Cape Peninsula were targeted, as they presumably 

frequently use the Cape Peninsula. This also ensures that the project is related to their everyday 

life, another factor that can draw more interested participants in PPGIS applications (Tang & Liu 

2016). Compared to online surveys, hardcopy and onsite PPGIS questionnaire surveys generally 

lead to more responses, better mapping engagement, and less respondent bias (Brown & 

Fagerholm 2015). However, due to the COVID-19 pandemic, online survey research was 

encouraged, and the study also received ethical clearance to conduct the research in that manner.  

Internet-based PPGIS applications can, however, improve productivity by decreasing data entry 

time, enhance accuracy in the mapping, and reduce data collection costs (Pocewiz et al. 2012). It 

also enables users to access information about the topic being discussed and to provide comments 

on and express opinions about them, from any place with internet access (Garcia et al. 2020). 

3.2.1.2 Social Values Map Generation  

SolVES was used to generate 11 SV maps with data obtained from questionnaire results. Not all 

12 SVs were mapped since questionnaire respondents mapped no spiritual values. SolVES has 

been used in numerous planning applications, such as forest planning (Sherrouse, Clement & 

Semmens 2011), watershed planning (Petrakis et al. 2020), and to depict social-ecological hotspots 

by integrating BpS models (Bagstad et al. 2016; Lin et al. 2017b). Section three’s spatial and non-

spatial responses functioned as primary questionnaire data inputs for SolVES analysis. 

3.2.2 InVEST Input Data 

InVEST was utilised to generate four BpS maps derived from geospatial biophysical data. These 

four BpS models include Carbon Storage, Annual Water Yield, Habitat Quality, and Flood Risk 

Mitigation. The input data required for these four InVEST models pertain to spatially explicit files 

and tabular datasets that correlate to the biophysical attributes of each land cover (Sharp et al. 

2020). Table 3.2 provides the specific data inputs of the four BpS models. Input data required for 

the four InVEST models was obtained from GIS data portals, reports, government websites, and 

past research. The InVEST tool mainly uses biophysical equations to estimate ES within the 

chosen study area (Sharp et al. 2020). The models then generate maps where pixels contain the ES 

information (Sharp et al. 2020). InVEST can map numerous ES that allows users to assess land 

use trade-offs or management scenarios (Sharp et al. 2020). InVEST has been used frequently in 

applications such as urban planning (Kadaverugu, Rao & Viswanadh 2020), land use planning 

(Goldstein et al. 2014), and systematic conservation planning (Lin et al. 2017a). InVEST has also 

been used to map social-ecological hotspots by integrating social variables (Lin et al. 2017b; Smart 

et al. 2021).  
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Table 3.2   InVEST input data requirements. 

Model Input Data Description Source 

Carbon 

Storage 

Current Land Use/Land 

Cover 

Raster of LULC for each pixel (Sharp et al. 

2020: 75). 

Geoterraimag

e (2021) 

 Carbon pools Comma-separated value (CSV) table of 

LULC classes, comprising information 

pertaining to carbon stored for LULC classes 

(Sharp et al. 2020: 76). 

Prepared 

using Excel. 

Habitat 

Quality 

Current Land Use/Land 

Cover 

Raster of LULC for each pixel. Geoterraimag

e (2021) 

 Threat’s data CSV table of threat sources, such as roads. 

This the threat’s relative weight and their 

impact through space listed in the table 

(Sharp et al. 2020: 30). 

Prepared 

using Excel. 

 Threat’s raster Raster datasets of the threats’ distribution 

and the concentration of each threat. 

CoCT (2022) 

 Land cover sensitivity to 

threats 

CSV table of every LULC that is believed to 

be habitat, and its sensitivity to every threat. 

Prepared 

using Excel. 

 Half-saturation constant The scaling parameter/constant which is set 

by default to 0.5 (Sharp et al. 2020: 33). 

Provided by 

the model. 

Flood Risk 

Mitigation 

Watershed vector Shapefile outlining areas of interest, that are 

hydrological units: watersheds or 

sewersheds. 

ArcGIS 

watershed 

delineation 

tool, derived 

from DEM 

 Digital Elevation Model 

(DEM)  

Light Detection and Ranging (Lidar) 10m 

DEM of the Cape Peninsula in metres. Used 

to delineate the watershed vector. 

CoCT (2022) 

 Land Cover Map Raster of LULC for each pixel. Geoterraimag

e (2021) 

 Soils Hydrological Group 

Raster 

Raster dataset comprising categorical 

hydrological soil groups (Sharp et al. 2020: 

265). Soils hydrological group describes a 

group of soils which are similar in terms of 

run-off potential when facing similar storm 

and cover circumstances. 

Ross et al. 

(2018a) 

 Rainfall depth  Numerical value in mm of a single extreme 

rainfall event. 

Rosenzweig 

et al. (2019) 

 Biophysical table CSV table containing values for each LULC. Prepared 

using Excel. 

Continued Overleaf 
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Table 3.2 continued 

Annual 

Water 

Yield 

Average annual precipitation Raster dataset comprising the average 

annual precipitation (in mm) for every cell 

(Sharp et al. 2020: 110). 

South African 

Weather 

Service 

(SAWS) 

 Average annual reference 

evapotranspiration 

Raster dataset comprising average annual 

evapotranspiration value (in mm) for every 

cell (Sharp et al. 2020: 110). Reference 

evapotranspiration pertains to the possible 

amount of water lost from plant transpiration 

and evaporation (Sharp et al. 2020: 110). 

ORNL DAAC 

(2018) and 

Running 

(2017). 

 Root restrict layer depth Raster dataset comprising average root 

restricting layer depth (mm) value for every 

cell (Sharp et al. 110). Root restricting layer 

depth is defined as the soil depth where root 

penetration is largely prevented due to 

physical or chemical properties (Sharp et al. 

2020: 110).  

CoCT (2022) 

 Plant available water content Raster dataset comprising plant available 

water content value for every cell (Sharp et 

al. 2020: 110). Plant available water content 

pertains to the portion of water which can be 

deposited into the soil for plants to utilise 

(Sharp et al. 2020: 110). 

Hengl et al. 

(2017) 

 Land use/land cover Raster of LULC for each pixel. Geoterraimag

e (2021) 

 Watershed layer Shapefile including one polygon for every 

watershed. 

ArcGIS 

watershed 

delineation 

tool, derived 

from DEM 

 Sub watersheds layer Shapefile including one polygon for every 

subwatershed. 

Same as the 

watershed 

layer. 

 Biophysical table CSV table containing values for each LULC. Prepared 

using Excel. 

 Z parameter A floating-point value which ranges from 1 

to 30 which relates to the periodic 

distribution of rainfall (Sharp et al. 2020: 

111). 

Sharp et al. 

(2020) 
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3.3 DATA PRE-PROCESSING 

3.3.1 Preparing Spatial and Questionnaire Survey Data  

All locations respondents listed with associated SVs were digitised in ArcGIS 10.7 (ArcGIS 

Desktop 2022) in the form of point features, together with value allocation data. The dataset also 

included seven environmental characteristics which could account for spatial variations in SVs 

intensity on the Cape Peninsula (Table 3.3). The datasets selected are relevant to the specific social 

and biophysical context of the study area. 

Table 3.3   Description of environmental layers used in the SolVES analysis and the data source 

of each layer. 

Environmental 

characteristic 

Dataset description Source 

Elevation Light Detection and Ranging (Lidar) Digital 

Elevation Model (DEM) of the Cape Peninsula in 

metres. 

CoCT (2022) 

Distance to 

Trails (DTT) 

Horizontal straight-line distance of every point to 

a trail pathway in metres. 

Derived in ArcGIS 

using Euclidean 

Distance Tool 

Distance to 

Water (DTW) 

Horizontal straight-line distance of every point to 

a water body in metres. 

Derived as was done 

for DTT 

Distance to 

Roads (DTR) 

Horizontal straight-line distance of every point to 

a road in metres. 

Derived as was done 

for DTT 

Land Cover Eight class categorial land cover data. Geoterraimage (2021) 

Slope Percentage slope. Derived from DEM 

Vegetation type Vegetation cover of dominant plant communities 

within the Cape Peninsula. 

South African 

National Biodiversity 

Institute (2018) 

SolVES also requires all the raster datasets to share a common coordinate reference system 

(Sherrouse & Clement 2015). All the datasets were projected to the WGS 1984 UTM Zone 34S 

coordinate system. The environmental characteristics were used to set parameters in SolVES. 

DTW, DTT, DTR, elevation, and slope were set as continuous data. Land cover and vegetation 

type were set to categorical data.  

Analysis was carried out “By Survey Subgroups Across Social Value Types” (Figure 3.3). The 

“Public Use” and “Attitude Preference” settings were left out to analyse all the questionnaire data. 

The approximate scale of the map used in the questionnaire mapping exercise was 1:110 000. This 
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was the scale of the aerial image map that was prepared in ArcGIS for the questionnaire. This was 

part of an aerial image of the CoCT. The SolVES manual recommends setting the output cell size 

to 1:1000 of the map scale, and a cell size of 110 m was subsequently chosen (Sherrouse & 

Semmens 2015). Thus, the SolVES analysis was conducted at a spatial resolution of 110m. The 

search radius determines the extent of the data that was used to calculate SolVES statistics, which 

is by default set to ten times the output cell size, to ensure data near the study area boundary are 

also included. Survey points were weighted by selecting “Yes” by the “Weight Survey Points” 

option. The “Threshold Features” option was chosen to lessen the visibility of high-profile 

structures in the heat maps. 

 

Figure 3. 3   Screenshot of the SolVES Analyse Survey Data Tool. 

 

3.3.2 Input for InVEST models 

3.3.2.1 Carbon Storage 

Two types of input data were prepared for the InVEST Carbon storage model, including a LULC 

raster dataset and a CSV format table of carbon values for the four carbon pools and corresponding 

LULC types. A LULC map for the study area was produced as a required input for the InVEST 
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carbon storage model, LULC data from Geoterraimage (2021) was used. The Geoterraimage 

(2021) LULC data is part of the South African National Land-Cover (SANLC) 2020 dataset which 

was produced from multi-seasonal Sentinel 2 20-metre satellite imagery. The LULC dataset 

consists of 73 land cover classes for various forests, shrubland, waterbodies, wetlands, bare 

surfaces, cultivated and urban area classes (Geoterraimage 2021). The LULC was then reclassed 

using ArcGIS into eight main LULC categories: forests, shrubland, grassland, water bodies, 

wetlands, bare areas, cultivated areas, and urban areas. Table 3.4 describes each of these LULC 

categories.  

Table 3.4   LULC classifications used in the study area and a description of each category. 

Land Cover Description 

Forests Land mainly covered in trees (forests and woodlands). 

Shrubland Bush and shrub cover (Fynbos). 

Grassland Area mainly covered in herbaceous vegetation and natural grass. 

Water bodies Rivers, streams, lakes, reservoirs, and estuaries. 

Wetlands Regions in which the water table remains above the ground for a long time. 

Barren areas Beaches, bare rock surfaces, and sandy areas with no vegetation cover. 

Cultivated areas Land used for crops including croplands, orchards, and vineyards. 

Urban areas Residential, commercial, industrial, and built-up land. 

Adapted from Anderson (1976) 

Figure 3.4 provides a map of these LULC categories for the Cape Peninsula. This LULC data was 

also used to model Habitat Quality, Flood Risk Mitigation and Annual Water Yield. LULC data is 

frequently used as a proxy indicator for the existence of different ES within ES assessments (Sharp 

et al. 2020). 
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Figure 3. 4   The LULC map used to model BpSs in the study area. 

The carbon storage model requires each LULC code (unique integer representing a LULC type, 

for example 1 for forest, 2 for shrubland) from its attribute table to correspond to the carbon data 

from the four carbon pools in a CSV table. A CSV table containing carbon pool parameter values 

was produced in Microsoft Excel (Table 3.5). The table included carbon values for each of the four 

carbon pools (aboveground biomass, belowground biomass, soil carbon and dead decaying wood 

matter) for each LULC type (Sharp et al. 2020: 73). Carbon pool values for the four carbon pools 

were obtained from the IPCC (2006) report. The IPCC (2006) report provides parameter values 

pertaining to the amount of carbon stock stored within the four carbon pools for agriculture, 

forestry, and other land uses. According to Sharp et al. (2020), the IPCC (2006) report offers very 

accurate, but general estimations of the amount of carbon stored in LULC categories. The LULC 

raster data and the CSV table with the carbon parameter values were incorporated to run with the 

InVEST 3.9 software (Sharp et al. 2020). The LULC data were projected to the WGS 1984 UTM 

Zone 34S coordinate system. 
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Table 3.5 Carbon storage (metric tons) for aboveground biomass (C_above), belowground 

biomass (C_below), soil carbon (C_soil) and dead organic matter (C_dead) carbon pools, for 

each LULC type (LULC_Name). 

LULC code LULC_Name C_above C_below C_soil C_dead 

1 Forests 355.46 70 35 12 

2 Shrubland 12.7 13 66.7 0.7 

3 Grassland 29 23 128 4 

4 Waterbodies 1 1 10 0 

5 Wetlands 34.45 16.84 227.16 3.41 

6 Cultivated areas 4.02 0.76 105.14 0 

7 Urban areas 0.01 0 57.63 0 

8 Barren areas 0.4 0.83 245 0 

3.3.2.2 Habitat Quality 

Six types of input data were prepared for the InVEST Habitat Quality model, including a raster 

LULC, a CSV table for threats data, threat raster datasets, a CSV table indicating the sensitivity of 

every habitat to every threat, an accessibility polygon, and a half saturation constant. LULC data 

for the habitat quality model was obtained from Geoterraimage (2021) comprising the eight 

reclassified LULC types. The LULC map is used to investigate the present condition of habitats 

within the study area. To determine which LULC types can be considered habitats within the 

model, each LULC type was assigned a habitat suitability score. In a Microsoft Excel CSV table, 

different habitat suitability scores were assigned to each LULC type, ranging from 0 to 1. Zero 

indicated low habitat suitability, and 1 indicated highest habitat suitability (Table 3.6). Habitat 

suitability scores were adapted based on Hack, Molewiky & Beißler (2020). Forests, shrublands, 

grasslands, waterbodies, and wetlands were assigned high habitat suitability scores, as they are 

relatively untouched from human transformation, while built-up areas, cultivated areas, and barren 

areas were assigned lower habitat suitability scores (Table 3.6).  
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Table 3.6   The habitat suitability scores (HABITAT) assigned to each LULC type within the 

study area. 

LULC NAME HABITAT 

1 Forests 1 

2 Shrubland 1 

3 Grassland 1 

4 Waterbodies 0.8 

5 Wetlands 0.7 

6 Cultivated areas 0.5 

7 Urban areas 0.15 

8 Barren areas 0.2 

 

Habitat quality pertains to the approximate vegetation extent within the study area and the level of 

threats towards these habitats such as agricultural lands, roads, railways, and built-up areas (higher 

impact level of threats result in lower habitat quality, while the inverse can be said about lower-

level impacts of threats) (Sharp et al. 2020). Threats can be thought of as human-modified LULC 

types (for example, urban areas) that trigger habitat fragmentation, edge effects and degradation 

of adjacent habitats. This study considered five threats to habitat quality in the study area including 

paved and unpaved roads, railways, built-up areas, and cultivated areas. These are currently 

threatening biodiversity and ES within the Cape Peninsula according to Cowling et al. (1998), 

Elmqvist et al. (2013) and Okes & O'Riain (2017). These threats were first mapped using vector 

datasets of road and railway networks, agricultural areas, and urban areas obtained from the CoCT 

(2022), indicating the distribution of threats. This vector data was then converted into raster data 

with grid cell values of 0 and 1, where 0 indicated an absence of these threats and 1 a presence. 

Four factors are used to establish the impact of these threats on habitats. These include relative 

impact, maximum effective distance, level of accessibility to habitats, and relative sensitivity of 

each habitat concerning these threats. Firstly, the relative impact of a threat is indicated by the 

extent to which these five threats impact habitats. Some threats impact habitats more than others, 

for example, urban areas can cause double the amount of degradation to adjacent habitats 

compared to agricultural areas (Sharp et al. 2020). The threats are then assigned weight values 

from 0 to 1 on a CSV table, where 1 represents the highest impact, while 0 represents the lowest 

impact on habitat quality (Table 3.7).  
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Table 3.7   List of threats and each of their maximum effective distance (MAX_DIST), the 

relative impact of each threat (WEIGHT) and the distance decay function (DECAY). 

THREAT NAME MAX_DIST WEIGHT DECAY 

Crops 1 0.5 Linear 

Railroads 2 0.9 Linear 

Roads (Paved) 2 1 Linear 

Roads (Unpaved) 2 0.75 Linear 

Urban areas 10 1 Exponential 

 

Values of relative impact were obtained from relevant literature (Hack, Molewiky & Beißler 2020; 

Wu, Sun & Fan 2021). Secondly, the maximum effective distance of the threats indicated the 

maximum distance at which these threats can impact habitats in kilometres (km). In a Microsoft 

Excel CSV table, maximum effective distance values in km were assigned to each threat (Table 

3.7). When the habitats fall within these distances, it is within the degradation zone of these threats. 

The model also assumes that the impact of threats decreases over distance. The threats can be listed 

as linear or exponential distance decay functions (Table 3.7), which explains how these threats 

decay across space. The impact of each exponential threat which originates from a grid cell toward 

a habitat cell is expressed as follows (Sharp et al. 2020: 26): 

𝑖𝑟𝑥𝑦 = 𝑒𝑥𝑝
−(

2.99

𝑑𝑟𝑚𝑎𝑥
)𝑑𝑥𝑦

                                                                                                      Equation 3-1 

While linear threats are expressed as (Sharp et al. 2020: 26): 

𝑖𝑟𝑥𝑦 = 1 − (
𝑑𝑥𝑦

𝑑𝑟𝑚𝑎𝑥
)                                                                                                           Equation 3-2 

where              𝑟           is the impact of the threat; 

                        𝑑𝑥𝑦       represents the linear distance between cells 𝑥 and 𝑦; and 

                       𝑑𝑟𝑚𝑎𝑥    represents the maximum effective distance of the threat 𝑟’s reach. 

Values of relative maximum effective distance are based on Wu, Sun & Fan (2021) and Wang & 

Cheng (2022). These studies determined the maximum effective distance of threats with expert 

knowledge and with the use of empirical values and the level of accessibility is determined by the 

level of legal protection (such as protected areas) for habitats. The model assumes the higher legal 

protection the habitat has, the lower the impacts from threats will be. A polygon layer was used to 
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indicate the level of accessibility, where areas with low accessibility (such as protected areas and 

nature reserves) were assigned values lower than 1. In contrast, areas with high accessibility (such 

as extract reserves) were assigned values of 1. Most of the Cape Peninsula’s habitats are protected 

by the TMNP. GIS-protected area data was obtained from the Department of Forestry, Fisheries, 

and the Environment (2021), indicating protected areas within the Cape Peninsula. Lastly, the 

relative sensitivity of habitats indicated how susceptible the habitats are to threats. The relative 

sensitivity of each habitat was indicated using a CSV table containing LULC types considered 

habitats, and values indicating how sensitive these habitat types are towards specific threats (Table 

3.8). These values can range from 0 to 1, where 0 denotes no sensitivity, and 1 indicates high 

sensitivity towards a specific threat (Sharp et al. 2020). Certain habitats are more impacted by 

threats than others (Sharp et al. 2020). For instance, grassland habitat is quite sensitive to urban 

area threats, although it is relatively less sensitive to road threats. Habitat sensitivity values were 

obtained from Ding et al. (2020) and Wang & Cheng (2022). When a specific habitat is highly 

sensitive towards a threat, it will face higher degradation from that threat. The half saturation 

constant is set to 0.5 by default and gives a degradation score based on the first model run. The 

model should be run a second time and should be set as half of the degradation score.  

Table 3.8 The LULC habitats and their relative sensitivity to each threat. 

Lucode LULC Name Crops Roads 

(paved) 

Roads 

(unpaved) 

Railroads Urban 

areas 

1 Forests 0.8 0.5 0.4 0.8 0.85 

2 Shrubland 0.72 0.78 0.71 0.6 0.69 

3 Grassland 0.75 0.6 0.51 0.6 0.8 

4 Waterbodies 0.76 0.72 0.64 0.51 0.72 

5 Wetlands 0.8 0.84 0.74 0.64 0.8 

6 Cultivated 

areas 

- 0.4 0.2 0.2 0.6 

7 Urban areas 0 0 0 0 0 

8 Barren areas 0.29 0.7 0.6 0.2 0.61 

 

The degradation score for the first run was 0.082257, and thus a value of 0.04111285 was chosen 

as the half-saturation constant for the second and final model run. The half saturation constant aids 

in displaying heterogeneity in quality throughout the landscape (Sharp et al. 2020). The model 
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utilises the half-saturation constant to transform the degradation score into habitat quality scores 

(Sharp et al. 2020). The threat raster datasets, LULC data and relevant CSV tables for threat 

parameters and habitat suitability were all used to run the InVEST Habitat Quality Model. All the 

threat raster datasets were projected to the WGS 1984 UTM Zone 34S coordinate system. 

3.3.2.3 Flood Risk Mitigation 

Five types of input data were prepared for the InVEST Flood Risk Mitigation model, including 

LULC data, a watershed vector, a soils hydrological group raster, rainfall depth and a biophysical 

CSV table. LULC data was obtained from Geoterraimage (2021), consisting of the eight 

reclassified LULC types. The watershed vector for the study area was prepared using the watershed 

tool within ArcGIS (ESRI 2022d). The watershed tool used a DEM obtained from CoCT (2022) 

to delineate a watershed within the study area. This was a 10 m spatial resolution Lidar DEM 

which is freely available from CoCT (2022). The soil hydrological group raster was obtained from 

Ross et al. (2018a), which includes a global hydrological soil groups raster dataset with a spatial 

resolution of 250 m. The raster classifies soils into four different hydrological soil groups: A, B, 

C and D (Table 3.9) (Ross et al. 2018b). These hydrological soil groups are described in Table 3.9. 

Table 3.9   Definition of hydrological soil groups. 

Hydrological 

soil group 

Description 

Group A Soils with a low runoff potential and high rate of water transmission, around 

<10 % clay and 90% sand (Ross et al. 2018b: 2). 

Group B Soils with a relatively low runoff potential and relative rate of water 

transmission, around 50-90% sand and 10-20% clay (Ross et al. 2018b: 2). 

Group C Soils with a high runoff potential, around <50% sand and 20-40% clay (Ross et 

al. 2018b: 2). 

Group D Soils having high runoff potential and low rate of water transmission, around 

40% clay and <50% sand (Ross et al. 2018b: 2). 

Adapted from Ross et al. (2018b) 

According to Rosenzweig et al. (2019), a rainstorm occurrence is one rainfall event of 50 mm or 

higher: thus, a value of 50 mm was chosen for the rainfall depth. The model also requires a 

biophysical CSV table which contains Curve Numbers (CN) information relating to each LULC 

type and soil hydrologic group. The CSV table was produced using Microsoft Excel. CN for each 

LULC type and each hydrological soil group (A, B, C and D) are provided in Table 3.10. CN 

numbers are values with no physical dimension which pertain to observed approximations for the 

measurement of run-off depth following rainfall occurrences. These CN values depend on LULC, 
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soil hydrological groups, and antecedent moisture conditions within a specific geographic location 

(Sharp et al. 2020). These CN values typically range from 0 to 100 indicating tremendous values 

of minimal and significant run-off production, respectively. CN values were obtained from the 

United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS) 

(2007), which provides CN values for various LULC categories. Water bodies and wetlands absorb 

incoming run-off generated from rainfall events instead of overflowing, therefore values for these 

LULC types are set to 1. 

Table 3.10   Curve number values for each LULC type and hydrologic soil group. The Curve 

number values are suffixed with each soil hydrologic group A, B, C, and D. 

Lucode LULC name CN_A CN_B CN_C CN_D 

1 Forests 36 60 73 79 

2 Shrubland 35 56 70 77 

3 Grassland 49 62 74 85 

4 Waterbodies 1 1 1 1 

5 Wetlands 1 1 1 1 

6 Cultivated 

areas 

67 78 85 89 

7 Urban areas 51 68 79 84 

8 Barren areas 77 86 91 94 

 

The LULC data, watershed vector, subwatershed vector, the soil hydrological group raster dataset, 

the rainfall depth, and the biophysical properties were served as inputs to run the InVEST Flood 

Risk Mitigation model. All the datasets were projected to the WGS 1984 UTM Zone 34S 

coordinate system.  

3.3.2.4 Annual Water Yield 

Seven types of input data were prepared for the InVEST Annual Water Yield model, including 

LULC data, watershed and subwatershed vectors, an average annual precipitation raster, an annual 

reference evapotranspiration raster, a biophysical CSV table and a Z parameter. LULC data was 

obtained from Geoterraimage (2021). To generate an average annual precipitation raster, annual 

rainfall data in millimetres (mm) for rainfall stations within the Cape Peninsula was collected for 

the year 2020 from the South African Weather Service (SAWS). The average annual precipitation 

raster was then produced using the Kriging interpolation (ArcGIS for Desktop 2022) method in 
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ArcGIS 7.1, based on point locations of 12 rainfall stations and their annual precipitation amounts 

in mm. Kriging interpolation offers the best method for hydrological modelling compared to other 

geostatistical modelling techniques (Louvet et al. 2016). The watershed vector generated for the 

flood risk mitigation model was also used for the annual water yield model. The average annual 

evapotranspiration raster (in mm) was derived from the existing Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite evapotranspiration data obtained from NASA Oak Ridge 

Laboratory (ORNL) Distributed Archive Center (DAAC) (2018) and Running (2017). The root 

restricting layer depth raster was generated using soil depth data in mm from CoCT (2022). This 

dataset defines the depth of the soil available for plant root growth before reaching bedrock. A 

biophysical CSV table was generated using Microsoft Excel expressing the characteristics of 

LULC and soil cover, a plant evapotranspiration coefficient (Kc) and root depth (Table 3.11).  

Table 3.11 The biophysical table expressing characteristics of soil cover and each LULC type 

and LULC code, a plant evapotranspiration coefficient (Kc), and root depth (mm).  

Lucode  LULC name root_depth Kc LULC_veg 

1 Forests 3500 1 1 

2 Shrubland 2500 1 1 

3 Grassland 2000 0.865 1 

4 Waterbodies -1 1.05 0 

5 Wetlands -1 1.05 0 

6 Cultivated areas 1000 1.1 1 

7 Urban areas -1 0.2 0 

8 Barren areas -1 1 0 

Adapted from Sharp et al. (2020) 

The root restricting layer depth indicates the maximum root depth of vegetated LULC classes, 

indicated in mm (Sharp et al. 2020: 107). This is where 95% of vegetated LULC classes’ root 

biomass exists. Root depth values were obtained from Sharp et al. (2020). Sharp et al. (2020) 

provide the root depth of various vegetated LULC classes. The LULC classes that were not used 

(non-vegetated LULC classes such as urban areas), the value was set to -1 so the root depth field 

for these classes could be ignored. The plant evapotranspiration coefficient is utilised to quantify 

potential evapotranspiration with the use of plant biological attributes to alter the reference 

evapotranspiration, according to alfalfa (steadily growing, sufficiently watered surface of grass 15 
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cm in height). The coefficient consists of a value that goes from 0 to 1.5. Plant evapotranspiration 

coefficient values were obtained from Sharp et al. (2020). 

The seasonal factor (Z parameter) can have values from 1 to 30 (Sharp et al. 2020). The average 

number of yearly rainfall events may be used to estimate the Z parameter, using the formula Z= 

0.2*N, where N is the annual number of rainfall events (Moarrab et al. 2022: 7). The Cape 

Peninsula study area receives an average of 103 rain days per year (Weather Atlas 2022). Thus, 

the Z parameter was set to a value of 20. Plant available water content was approximated in line 

with the physical and chemical characteristics of the soil within the study area (Sharp et al. 2020: 

107). Plant available water content was premised on Hengl et al. (2017), which provided an 

available soil water capacity raster dataset at a spatial resolution of 250 m. The annual reference 

evapotranspiration raster, LULC data, average annual precipitation raster, watershed and 

subwatershed vectors, a biophysical CSV table, and a Z parameter served to run with the InVEST 

Annual Water Yield model. All the datasets were projected to the WGS 1984 UTM Zone 34S. The 

InVEST model resamples all the input raster datasets to match the resolution of the LULC raster. 

Thus, the InVEST analysis was conducted at a 20 m resolution for the four BpS models. 

3.4 DATA ANALYSIS 

3.4.1 SolVES Analysis 

SolVES has a standardised 10-point value index, representing a spatially explicit indicator of SVs 

for ES (Sherrouse & Semmens 2015: 3; Van Riper et al. 2017). The value index enables a 

representation of the 11 SVs measures and their respective spatial distribution and intensity (Table 

3.1) (Van Riper et al. 2017) SolVES produces the value index established with respondents’ 

respective value allocations and the concentration of points listed from the mapping exercise 

(Bagstad et al. 2017). Numerous value maps for the study area consisting of a 10-point value index 

is then generated (Bagstad et al. 2016). To quantify the value index maps, the Maximum Entropy 

software (MaxEnt) generated logistic surface consisting of values between 0 and 1 (the probability 

of respondents designating value to an area) is multiplied with a maximum value index layer 

(Bagstad et al. 2016). The maximum value index layer consists of values between 1 and 10 (relative 

to the maximum density for every SV normalising a weighted kernel density surface) (Bagstad et 

al. 2017) (Figure 3.5). 

SolVES also produces a relative clustering, dispersion, or randomness measure for all digitised 

points with Completely Spatially Random (CSR) testing (Sherrouse & Semmens 2015; Van Riper 

et al. 2017). CSR is quantified with average neighbourhood statistics (Sherrouse & Semmens 2015; 
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Van Riper et al. 2017). The R-value output of the hypothesis test expresses the ratio associated 

with the examined distance amongst points to the estimated distance between them (Sherrouse & 

Semmens 2015; Chen et al. 2020). The z-score quantifies the number of standard deviations that 

the data point is from the average (Sherrouse & Semmens 2015: 38). The R-value and z-score also 

determine whether point patterns are clustered (R-values lower than 1, large negative z-scores) or 

dispersed (R-values larger than 1, positive z-scores) (Sherrouse & Semmens 2015). SolVES then 

uses the digitised points which were weighted by preference point allocations for each SV indicator 

to produce weighted kernel density surfaces (Sherrouse & Semmens 2015). Each of these surfaces 

was standardised and normalised to establish the respective intensity of SVs (Figure 3.5) 

(Sherrouse & Semmens 2015). 

 

Source: Sherrouse & Semmens (2015: 40) 

Figure 3. 5   Summarised procedure flow of SV map production. 

The seven environmental characteristics (elevation, DTT, DTW, DTR, land cover, slope, and 

vegetation type) were analysed using the freely available MaxEnt software (Phillips, Dudík & 

Schapire 2017). MaxEnt is integrated within SolVES which produces a logistic surface layer and 

assign a relative measure of regions of where designate SVs were listed according to point 

locations and inherent environmental characteristics of those locations (Figure 3.5) (Sherrouse & 

Semmens 2015; Van Riper et al. 2017). The logistic surface layer along with associated models 

produced by MaxEnt yield spatial estimations of SVs areas according to point data obtained from 

the participatory mapping exercise (Sherrouse & Semmens 2015). Specifically, this method 

produced maps predicting the locations where the 11 SVs would be assigned. Geographic zones 

outlined through integer zones (0 to 10) pertaining to the value index served to produce zonal 

statistics (majority value for categorical data, mean value for continuous data) that summarised the 

relationship between assigned SVs and the seven environmental characteristics of the Cape 

Peninsula (Sherrouse & Semmens 2015; Van Riper et al. 2017).  
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To determine the predictive power and the suitability of the MaxEnt models predicted for the 

questionnaire population, the digitised points were divided among training and test data. 25% of 

the points were retained as test points and the remaining 75% is used as the training points. An 

Area Under Curve (AUC) calculation within MaxEnt represented the total area for the training and 

test data from the questionnaire points (Sherrouse & Semmens 2015: 4). Training AUC expresses 

the model’s goodness-of-fit of the study area, and the test AUC expresses the model’s predictive 

capability (i.e., how well the models can be transferred to other regions where no survey data 

exists) (Sherrouse & Semmens 2015: 41). If AUC values are over 0.90, the model is considered 

good, if the values are 0.70 to 0.90 the model is useful, and if the values are under 0.70, the model 

is deemed poor (Sherrouse & Semmens 2015). Furthermore, Maxent additionally quantifies the 

contribution of each environmental characteristic (the total of the gain from incorporating every 

environmental layer within each iteration of the training process), as a percentage. The final output 

of the SolVES model is 11 raster datasets that map the Value Index, which calculates the 

comparative value for each SV type within the study area. The 11 SVs layers were also added 

together to generate a single summed SV map, to outline locations of low and high combined SVs. 

3.4.2 InVEST Modelling 

3.4.2.1 Carbon Storage 

Carbon storage was estimated using InVEST by connecting LULC data with the aggregated 

quantity of carbon stored in four carbon pools. The InVEST carbon storage model utilises a map 

of the LULC types, and the amount of carbon stored in carbon pools. The model then maps carbon 

storage densities according to the LULC raster. The carbon density of each LULC type is expressed 

as follows (Sharp et al. 2020): 

𝐶𝑖 = 𝐶𝑖(𝑎𝑏𝑜𝑣𝑒) + 𝐶𝑖(𝑏𝑒𝑙𝑜𝑤) + 𝐶𝑖(𝑑𝑒𝑎𝑑) + 𝐶𝑖(𝑠𝑜𝑖𝑙)                                                               Equation 3-3 

where                    𝑖              is the LULC type; 

                         𝐶𝑖(𝑎𝑏𝑜𝑣𝑒)      represents the carbon density of aboveground biomass in the 𝑖th                                                                                    

LULC     type (tons/ha); 

                           𝐶𝑖(𝑏𝑒𝑙𝑜𝑤)      represents the carbon density of belowground biomass in the 𝑖th                                    

LULC type (tons/ha); 

                       𝐶𝑖(𝑑𝑒𝑎𝑑) represents the carbon density of dead organic matter in the 𝑖th LULC type 

(tons/ha); and 

                 𝐶𝑖(𝑠𝑜𝑖𝑙)   represents the carbon density of soil in the 𝑖th LULC type (tons/ha). 
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The model then approximates the total amount of carbon stored within the study area. The total 

carbon storage within the study area is then calculated as (Sharp et al. 2020): 

𝐶𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐶𝑖
𝑛
𝑖 + 𝐴𝑖                                                                                                                                  Equation 3-4 

where           𝐶𝑡𝑜𝑡𝑎𝑙       represents the total amount of carbon storage within the study area; 

                    𝑛               represents the number of LULC within the study area; and 

                    𝐴𝑖              represents the area of each LULC type (ha). 

The model then outlines raster outputs of carbon storage. Outputs of the Carbon Storage model are 

conveyed as Megagrams (Mg) of carbon per pixel. 

3.4.2.2 Habitat Quality 

Habitat Quality was modelled with forest areas, grasslands, shrublands, water bodies, and wetlands 

selected as habitats within the LULC raster. The model integrates the LULC raster and threat raster 

datasets and parameters to generate Habitat Quality maps. The model calculates the total threat 

according to the four factors of the relative impact of each threat, maximum effective distance, 

level of accessibility, and relative sensitivity of each habitat type to each threat within the study 

area (Sharp et al. 2020: 26).  

The InVEST Habitat Quality model then calculates the total threat level as follows (Sharp et al. 

2020: 27): 

𝐷𝑥𝑗 = ∑ ∑
𝑊𝑅

∑ 𝑊𝑟
𝑅
𝑟=1

× 𝑟𝑦 × 𝑖𝑟𝑥𝑦 × 𝐵𝑥 × 𝑆𝑗𝑟
𝑌𝑟
𝑦=1

𝑅
𝑟=1                                                                            Equation 3-5 

where           𝐷𝑥𝑗          represents the total threat level; 

                       𝑟             represents the threat; 

                       𝑦             indexes every cell on the threat raster of 𝑟; 

                      𝑌𝑟             is the group of grid cells on the threat raster of 𝑟; 

                      𝑊𝑟           is the weight of each threat; 

                      𝑖𝑟𝑥𝑦        is the impact of each threat; 

                      𝐵𝑥             is the level of accessibility within the grid cell 𝑥; and 

                     𝑆𝑗𝑟           is the sensitivity score of the habitat 𝑗 towards threat 𝑟. 
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Habitat quality is subsequently converted from each cell’s degradation score by utilising the half-

saturation function. The higher a grid cell’s degradation score, the lower the habitat quality. Habitat 

quality is then computed as follows (Sharp et al. 2020: 27): 

𝑄𝑥𝑗 = 𝐻𝑗 (1 −
𝐷𝑥𝑗

𝑧

𝐷𝑥𝑗
𝑧 +𝑘𝑧

)                                                                                                                            Equation 3-6 

where                   𝑄𝑥𝑗    represents the quality of habitat within cell 𝑥 of habitat type 𝑗; 

𝐻𝑗     is the habitat suitability score of the LULC type 𝑗                                                                                                                                                 

𝐷𝑋𝐽
𝑍      is the total threat level; and                                                                                                          

𝑧 and 𝑘 are the scaling parameters. 

Based on the LULC types and the five threats, the Habitat Quality model produced a map with 

habitat quality values between 0 and 1, where 0 expresses the lowest quality habitat and 1 expresses 

the best quality habitat (Sharp et al. 2020).  

3.4.2.3 Flood Risk Mitigation 

Flood Risk Mitigation was computed according to the built-up area, soil characteristics and LULC 

types in the study area. Flood Risk Mitigation is calculated as the amount of flood retention and 

run-off production because of green spaces. For each pixel that consisted of a LULC type and soil 

attributes, run-off (in mm) was calculated with the Curve-Number method as follows (Sharp et al. 

2020: 263): 

𝑄𝑝,𝑖 =
(𝑃−𝜆𝑆𝑚𝑎𝑥,𝑖)

2

(𝑃+(1−𝜆)𝑆𝑚𝑎𝑥,𝑖)
 𝑖𝑓 𝑃 > 𝜆𝑆𝑚𝑎𝑥,𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑄𝑝,𝑖 = 0                                                       Equation 3-7 

In which                                

𝑆𝑚𝑎𝑥 =
25400

𝐶𝑁𝑖
− 254                                                                                                                                Equation 3-8 

where                    𝑄  is the estimated run-off; 

                              𝑖 represents each pixel; 

                              𝑃 pertains to the design storm depth; 

                              𝑆𝑚𝑎𝑥,𝑖  (Quantified in mm), represents the possible retention in mm; 

                             𝜆𝑆𝑚𝑎𝑥,𝑖 represents the rainfall depth required to generate run-off; and 

                            𝐶𝑁 represents the Curve Number for each LULC type and soil attributes. 
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Run-off retention for each pixel is subsequently calculated as (Sharp et al. 2020: 264): 

𝑅𝑖 = 1 −
𝑄𝑝,𝑖

𝑃
                                                                                                                                              Equation 3-9 

where                 𝑅𝑖 represents run-off for each pixel. 

Run-off retention volume for each pixel is then calculated as (Sharp et al. 2020: 264): 

𝑅_𝑚3𝑖 = 𝑅𝑖 × 𝑃 × 𝑃𝑖𝑥𝑒𝑙𝐴𝑟𝑒𝑎 × 10−3                                                                                          Equation 3-10 

where                       𝑅_𝑚3𝑖       is the run-off retention for each pixel. 

The model then produces a map of the run-off retention (the amount of water retained per pixel) 

volume in m³. The resulting map is a raster with run-off retention values depicted as dark and light 

blue pixels. These values represent the amount of water retained by the landscape per pixel. 

3.4.2.4 Annual Water Yield 

Annual Water Yield pertains to how much water (mm) is contributed from different areas within 

the study area (Sharp et al. 2020). The ET segment of the annual water balance is estimated with 

average annual precipitation, plant available water content, a Budyko curve (Fu 1981; Zhang et al. 

2004), and a seasonality factor (Z parameter) which expresses the distribution and volume of 

regular rainfall (Sharp et al. 2020: 105). It calculates the amount of run-off water for each pixel as 

precipitation minus water that is lost because of evapotranspiration. The evapotranspiration is 

calculated differently for vegetated and non-vegetated LULC types. The model subsequently 

aggregates and provides the average water yield to the subwatershed level.  

Annual Water Yield was then calculated for every pixel as follows (Sharp et al. 2020: 106): 

𝑌(𝑥) = (1 −
𝐴𝐸𝑇(𝑥)

𝑃(𝑥)
) × 𝑃(𝑥)                                                                                                             Equation 3-11 

where      Y represents the annual water yield for each pixel; 

                𝑥  represents each pixel; 

              𝐴𝐸𝑇(𝑥) represents the actual evapotranspiration for each pixel 𝑥; and 

                𝑃  represents the annual precipitation within pixel 𝑥. 
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Concerning vegetated LULC types, the evapotranspiration segment of the water balance, is derived 

with the Budyko curve as follows (Sharp et al. 2020: 106): 

𝐴𝐸𝑇(𝑥)

𝑃(𝑥)
= 1 +

𝑃𝐸𝑇(𝑥)

𝑃(𝑥)
− [1 + (

𝑃𝐸𝑇(𝑥)

𝑃(𝑥)
)

𝑤

]1/𝑤                                                                                    Equation 3-12 

in which 

𝑃𝐸𝑇(𝑥) = 𝐾𝑐(𝑙𝑥) ∙ 𝐸𝑇0(𝑥)                                                                                                                 Equation 3-13 

where            𝑤(𝑥)     represents the plant-available water coefficient; 

                   𝑃𝐸𝑇(𝑥) represents the potential evapotranspiration; 

                        (𝐾𝑐)(𝑙𝑐) pertains to the plant evapotranspiration coefficient associated to the LULC 

type 𝑙𝑥   within pixel 𝑥; and 

                            𝐸𝑇0(𝑥) represents the reference evapotranspiration within pixel 𝑥. 

The plant-available water coefficient 𝑤(𝑥) represents a dimensionless value which distinguishes 

physical climatic-soil conditions and is calculated as follows (Sharp et al. 2020: 106): 

𝑤(𝑥) = 𝑍
𝐴𝑊𝐶(𝑥)

𝑃(𝑥)
+ 1.25                                                                                                                      Equation 3-14 

where             Z represents the Zhang parameter; 

                      𝐴𝑊𝐶(𝑥) represents the volumetric (mm) plant available water content; and 

                      1.25 represents the lowest value of  𝑤(𝑥), and is considered as the value for bare soil 

(when root depth is 0). 

𝐴𝑊𝐶(𝑥) defines how much water which can be stored and discharged within the soil for a plant 

to consume (Sharp et al. 2020: 107). It is calculated when the plant available water capacity is 

multiplied by the minimum root restrict layer depth and vegetation rooting depth (Sharp et al. 

2020: 107): 

𝐴𝑊𝐶(𝑥) = 𝑀𝑖𝑛(𝑅𝑒𝑠𝑡. 𝑙𝑎𝑦𝑒𝑟. 𝑑𝑒𝑝𝑡ℎ, 𝑟𝑜𝑜𝑡. 𝑑𝑒𝑝𝑡ℎ) ∙ 𝑃𝐴𝑊𝐶                                                 Equation 3-15 

where          𝑅𝑒𝑠𝑡. 𝑙𝑎𝑦𝑒𝑟. 𝑑𝑒𝑝𝑡ℎ is the root restrict layer depth; 

             𝑟𝑜𝑜𝑡. 𝑑𝑒𝑝𝑡ℎ represents the vegetation rooting depth; and 

                𝑃𝐴𝑊𝐶      represents the plant available water capacity. 

Vegetation rooting depth typically pertains to the depth, “at which 95% of a vegetation type’s root 

biomass occur” (Sharp et al. 2020: 107). Plant available water capacity refers to, “the difference 

between field capacity and wilting point” (Sharp et al. 2020: 107).  
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Concerning non-vegetated LULC types, actual evapotranspiration is calculated precisely from the 

reference evapotranspiration as follows (Sharp et al. 2020: 107): 

𝐴𝐸𝑇(𝑥) = 𝑀𝑖𝑛(𝐾𝑐)(𝑙𝑐) ∙ 𝐸𝑇0(𝑥), 𝑃(𝑥))                                                                                       Equation 3-16 

where   𝐸𝑇0(𝑋) represents the reference evapotranspiration; and 

(𝐾𝑐)(𝑙𝑐) represents the evaporation element for every LULC type. 

The model output finally expresses the mean and total annual water yield per pixel in mm. The 

resulting map is a raster with annual water yield values depicted as dark and light blue pixels. 

These values represent how much water runs off on the landscape annually per pixel. 

3.4.3 Hotspot Analysis 

In this study, hotspot analysis extends to contemporary hotspot mapping methods of social and 

biophysical variables (Bagstad et al. 2016; Smart et al. 2021). The Getis-Ord Gi* statistic was used 

to delineate SVs and BpS hotspots, coldspots, and overlapping areas within ArcGIS (Getis & Ord 

2010; ESRI 2021a). The Getis-Ord Gi* will indicate local spatial autocorrelation between summed 

SVs and BpSs values. The Getis-Ord Gi* tool at the α= 0.05 significance level (i.e., 95% 

confidence level) determines statistically significant spatial clustering of high values (hotspots) 

and low values (coldspots) (ESRI 2021a: 1). This study sought to determine clustering in SVs and 

BpSs within the Cape Peninsula study area. The Getis-Ord Gi* statistic computes p-values and z-

scores which determine clustering of high data values (low p-value and high z-score) and low data 

values (low p-value and low negative z-score) (ESRI 2021a: 1). The z-score expresses the 

statistical significance of hotspots outlined through the Gi* statistic (ESRI 2021a: 1). At the 0.05 

significance level, the z-score must be smaller than -1.96 or larger than 1.96 to be designated 

statistically significant (Figure 3.6) (ESRI 2021a :1: Zhu et al. 2010). Therefore, in this study, grid 

cells containing a z-score larger than 1.96 were outlined as hotspots of SVs and BpS values at the 

0.05 significance level, which mapped hotspots of SVs and BpSs.  
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The Getis-Ord Gi* statistic is calculated as follows (ESRI 2021a: 1): 

𝐺𝑖
∗ =  

∑ 𝑤𝑖,𝑗𝑥𝑗−𝑋 ∑ 𝑤𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑗=1

𝑆√
𝑛 ∑ 𝑤𝑖,𝑗

2 −(∑ 𝑤𝑖,𝑗
𝑛
𝑗=1 )²𝑛

𝑗=1

𝑛−1

                                                                                       Equation 3-17 

In which 

𝑋 =
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
                                                                                                                                                 Equation 3-18 

𝑆 = √
∑ 𝑥𝑖

2𝑛
𝑗=1

𝑛
− (𝑋)

2
                                                                                                                             Equation 3-19 

where                     𝑤𝑗                     Represents the attribute value for the feature 𝑗; 

                                                  𝑤𝑖,𝑗                   Represents the spatial weight between feature 𝑖 and 𝑗; and 

                                    𝑛                        Is equivalent to the overall number of features. 

Clusters of low values pertain to grid cell values with a z-score smaller than -1.96, which outlined 

coldspots of SVs and BpSs (Zhu et al. 2010). 

 

Source: (ESRI 2021a: 1) 

Figure 3. 6   P-value and z-scores for 90%, 95% and 99% confidence levels. The blue represents coldspots 

delineated and the red represents hotspots delineated. 

One advantage the Getis-Ord Gi* statistic possesses compared to other hotspot delineation 

approaches, such as Local Moran’s I (Anselin 1995), is that it can, “distinguish between 

hotspots/coldspots of clustered high value and clustered low value clusters” (Bagstad et al. 2016: 
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13). This enables a possible comparison between SVs and BpSs hotspots and coldspots, and 

different suitable management implications can be suggested for these areas. The results will be a 

raster dataset which indicates local BpSs and SVs hotspots and coldspots. The 11 SVs and four 

BpS layers were equally weighted by normalising each layer to values between 0 and 1. The 

normalised 11 SVs and four BpS models were then summed using the Weighted Sum tool in 

ArcGIS (ESRI 2022b), to produce cumulative SV and BpS layers. The hotspot analysis was then 

performed on the cumulative SV and BpS layers using ArcGIS 10.7. 

3.4.4 Regression Analysis 

Following Bagstad et al. (2016), a regression analysis was conducted to compare spatially explicit 

SVs and BpSs. Regression analysis assesses the relationships between two or more feature 

characteristics (Scott & Janikas 2010). To measure the relationship between SVs and ES values, 

three univariate models were produced contrasting SVs (dependent variable, Table 3.1) and BpS 

models (independent variable, Table 3.2). The life-sustaining value (respondent value for 

sustainable services such as renewing air, soil and water) was contrasted with BpS models of (1) 

carbon storage, and (2) water yield. The questionnaire’s definition of the life-sustaining value is 

generally similar to descriptions of regulating ES (Bagstad et al. 2016). As a result, the life-

sustaining value was contrasted to modelled ES of clean air (carbon storage) and water (water 

yield). The biological diversity value was contrasted with (3) habitat quality. Habitat quality is not 

exactly similar to the questionnaire’s definition of biological diversity, although the InVEST 

habitat quality definition comes the closest to biological diversity. 

The Ordinary Least Squares (OLS) linear regression analysis tool within ArcGIS 10.7 was used. 

The regression analysis is calculated as follows (ESRI 2021b: 1):   

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+𝛽3𝑋3 + 𝜀                                                                                 Equation 3-20 

where               Y       is the dependent variable; 

                         β       is the regression coefficient, expressing the significance and type of  __     

___________            relationships the dependent variable has to the independent/exploratory 

_________________variables; 

                         X       is the Independent/Explanatory variables; and 

                         ε       is the divergence of the point from the regression line (random error term).             

The OLS tool produces a global model of relationships between a group of data variables (Scott 

& Janikas 2010). A global model produces a single equation to express the relationship between 
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dependent and independent variables (Scott & Janikas 2010). The OLS tool models a dependent 

variable regarding its relationships to a group of explanatory variables (ESRI 2021b). Every 

independent variable consists of a regression coefficient. The model fit can be evaluated 

concerning six rules: (1) the coefficients contain the anticipated signs; (2) there is no redundancy 

among the independent variables; (3) the coefficients have statistically significant values; (4) the 

residuals (model under/over predictions) are distributed ordinarily; (5) the adjusted R-square value 

is strong; and (6) the residuals are not spatially autocorrelated (Table 3.12) (ESRI 2021b). 

Table 3.12   The six rules of the OLS tool and a description of each. 

OLS rules Explanation of rules 

1. The sign (+/-) linked with each coefficient outlines if a relationship is 

positive or negative. A positive coefficient suggests that the relationship is 

positive. A negative coefficient suggests that the relationship is negative. 

2. Redundancy with independent variables is outlined with a VIF (variance 

inflation factor) value. If any of the variables have a VIF value above 7.5, it 

entails that one or several variables have an identical relationship and should 

be removed from the model. 

3. Probability and Robust probability determine whether the coefficient is 

statistically significant. An asterisk beside the probability expresses whether 

the coefficient is statistically significant. Smaller probabilities have larger 

significance than larger probabilities. 

4. Residuals (model over/under predictions) from a good model fit will have a 

random spatial pattern (no clustering of over/under predictions). The Jarque-

Bera test quantifies if the regression model residuals are ordinally 

distributed. This test should ideally not be statistically significant otherwise 

the model is biased. This could indicate that one or more important 

independent variables are missing. 

5. Adjusted R squared values go from 0 to 1.0 which indicates how much of 

the dependent variables’ variation is described by the model. This evaluates 

model performance. Ideal values would be 0.5 and higher. 

6. Lastly, to determine whether residuals are not spatially autocorrelated 

(clustering of over and under predictions), the Spatial Autocorrelation tool 

within ArcGIS can be used. This tool outlines whether residuals display a 

random spatial pattern. A random spatial pattern of residuals and no 

clustering or dispersion indicates a correctly specified model. The model is 

not reliable if residuals are spatially clustered.  

 

The dependent variable used in the regression analysis was digitised point locations listed by 

questionnaire respondents for the life-sustaining and biological diversity value types. These point 

Adapted from ESRI (2021b) 
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locations were overlaid with the corresponding independent variable BpS layers of carbon storage, 

habitat quality, and annual water yield. Based on Bagstad et al. (2016: 8), the amount of preference 

points designated by every respondent to an SV type was divided by the number of points they 

listed for the SV type. For example, if a respondent designated 50 preference points to the 

biological diversity value, and recorded two points from the map, each point was assigned a value 

of 25. The corresponding BpS values at those point locations were then extracted using ArcGIS’s 

“Extract values by points” tool (ESRI 2022a). This was to determine the strength of the 

relationships between questionnaire life-sustaining and biological diversity value types and BpS 

models of carbon storage, habitat quality and annual water yield. Jarque-Bera values were 

statistically significant for all three relationships. Thus, a Box-Cox power transformation was 

applied to transform the dependent variable for each model (Sakia 1992; Bagstad et al. 2016). The 

Box-Cox transformed tool subsequently decreased Jarque-Bera values for the three relationship 

models. 

The Moran’s I tool within ArcGIS (ESRI 2022c) was used to determine whether model residuals 

were not spatially autocorrelated. The tool uses an I index to determine whether there is spatial 

autocorrelation among a group of features. A Moran’s I index value of -1 indicates a dispersed 

spatial pattern (ESRI 2022c). Values of 0 indicate a random spatial pattern (ESRI 2022c). And a 

value of +1 indicates spatial clustering (spatial autocorrelation) (ESRI 2022c). The tool also 

calculates a z-score to determine statistical significance (i.e., whether there is spatial clustering). 

At α= 0.05, statistical significance is indicated with a z-score of lower than -1.96 and larger than 

1.96 (ESRI 2022c). Spatial autocorrelation of model residuals determines the reliability of OLS 

results, where model residuals that are spatially autocorrelated are not reliable (ESRI 2022c). 

Model residuals that are not spatially autocorrelated indicate reliable OLS results. 

The regression analysis then determined whether the questionnaire population recognised 

important areas of ES provision (Bagstad et al. 2016).  
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CHAPTER 4: RESULTS 

This chapter provides the results of this study based on the questionnaire survey data, social values 

(SVs), biophysically modelled services (BpSs), hotspot and regression analysis of SVs and BpSs. 

The questionnaire survey results are provided first, then the spatial distribution of SVs. This is 

followed by the spatial distribution of BpSs, ecosystem services hotspot and regression analysis.  

4.1 QUESTIONNAIRE SURVEY 

The results of the questionnaire survey demographics are outlined in Figure 4.1. A total of 47 

responses were collected through the online questionnaire survey. Most respondents had a tertiary 

qualification with 30% listing a master’s degree. This was followed by 23% with an honour’s 

degree, 17% possessing an undergraduate degree or a diploma, 7% with a PhD degree and 6% 

with a matric certificate and lower (see Figure 4.1a). Regarding the gender divide, 55% of 

respondents were female while 45% were male (Figure 4.1b). Most of the respondents reside in 

the Southern Suburbs of Cape Town (64%), followed by the City Bowl (18%), Blaauwberg and 

the Peninsula (7% each), and the Atlantic Seaboard at (4%) (Figure 4.1c). For this study, 

occupations were grouped into the following sectors: some of the respondents had jobs in the 

environment and agriculture sector: business, consulting and management; education; media; IT; 

healthcare; engineering and manufacturing; sales; accounting and banking; and law (Figure 4.1d). 

The respondents’ largest job sector were business, consulting, and management (19%), followed 

by the environment and agriculture sector, media, and education (11%) (Figure 4.1d). Next are 

engineering and manufacturing, and healthcare (8% each) (Figure 4.1d). Accountancy, banking 

and finance, law, and sales each made up 4% of the respondents (Figure 4.1d). Retired and 

unemployed respondents each comprised 4% of the respondents (Figure 4.1d). The income groups 

of the respondents were somewhat evenly represented. About 22% of the respondents are within 

the high monthly income category (R30 000-R40 000 per month), and 15% earned over R60 000 

(Figure 4.1e). Those earning between R10 000 and R20 000 and R20 000 and R30 000 also each 

represented 15%. Respondents earning between R0 and R10 000, R40 000 to R50 000, and R50 

000 to R60 000 represented the lowest of the respondents at 11% each (Figure 4.1e). The age 

demographics indicated that most of the respondents were between 46 and 55 years old (36%), the 

least were between 18 and 25 (7%), and 65 years and above (7%) (Figure 4.1f). Those aged 

between 56 and 65 represented 25%. Respondents aged from 26 to 35 and 36 to 45 years each 

represented 11% (Figure 4.1f). 
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Figure 4. 1   Demographics of the questionnaire respondents. The pie graphs depict the respondent demographics for 

(a) education level, (b) gender, (c) residence location, (d) job occupation, (e) level of monthly income, and (f) age. 

To summarise, most of the questionnaire respondents were fairly educated with 30% possessing a 

master’s degree. About 55% of the respondents are female and 45% are male. The majority of the 

respondents reside in the Southern Suburbs of Cape Town (64%). The largest job sector of the 

respondents was within business, consulting, and management, followed by environment and 
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agriculture, and then education. The income groups of the respondents were somewhat equally 

represented, although 22% are within a high monthly income category of R30 000 to R40 000 per 

month. The questionnaire population was generally older and most of the respondents (36%) were 

between 46 and 55 years of age. 

4.2 SPATIAL DISTRIBUTIONS OF SOCIAL VALUES 

Table 4.1 lists SolVES statistics of R-values and z-scores, the number of times relative SVs were 

listed by questionnaire respondents, and the maximum value index expresses the relative 

importance of each SV. A total of 237 points were recorded by the respondents in the questionnaire 

mapping exercise including 11 of the 12 SVs. SV types recorded include aesthetic, biological 

diversity, cultural, economic, future, historic, intrinsic, learning, life-sustaining, recreation, and 

therapeutic values. No spiritual values were registered by the respondents. Biological diversity, 

future, and recreation values were relatively clustered (R-values nearer to 0 than 1, negative z-

score). These SVs had high counts and/or high preference within the Cape Peninsula. Aesthetic, 

cultural, and therapeutic values were relatively dispersed (R-value larger than 1). Cultural values 

had the highest R-value (R-Value= 2.05071) while recreation had the lowest R-value (R-value= 

0.50501). The cultural value also had the highest z-score (Z-score= 4.494085), while recreation 

had the lowest z-score (Z-score= -7.086332). 
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Table 4.1   SolVES statistics of R-values and z-scores, which are indicators of spatial clustering. 

Count expresses the number of times relative SVs were listed by questionnaire respondents. 

Maximum value index expresses the relative importance of each SV, with 10 indicating the highest 

relative importance, and 0 indicating the lowest relative importance. 

Social Value Type Count R-value Z-score Maximum Value 

Index 

Aesthetic 24 1.101531 0.951554 8 

Biological diversity 54 0.542242 -6.435224 10 

Cultural 5 2.05071 4.494085 5 

Economic 10 0.935934 -0.38758 5 

Future 18 0.371774 -5.098979 7 

Historic 6 0.611 -1.821469 5 

Intrinsic 6 0.621335 -1.774442 5 

Learning 19 0.776419 -1.864414 6 

Life-sustaining 18 0.982932 -0.138534 6 

Recreation 56 0.50501 -7.086332 10 

Spiritual 0 - - - 

Therapeutic 21 1.16518 1.448098 6 

 

A maximum value index between 5 and 10 was recorded for all the SVs. Biological diversity and 

recreation recorded the highest value index (Value Index = 10), and then aesthetic values (Value 

Index = 8), and future values (Value Index = 7). This indicates the highest relative importance 

these values represented for the respondents. Cultural, economic, historic, and intrinsic values 

received the lowest maximum value index (Value Index = 5), indicating the lowest relative 

importance of these values to the respondents. Table 4.2 lists SolVES MaxEnt training and test 

AUC statistics. All 11 SVs yielded a training value of over 0.9, indicating models with a good 

suitability fit (training AUC). While the future, learning and therapeutic values had a test AUC 

over 0.8, indicating useful predictability of the models, the remainder of the eight SVs recorded 

test AUC values of over 0.9 (indicating good predictability of the models). 
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Table 4.2 SolVES Maxent training and test AUC statistics, indicating the model fit (training AUC) 

and predictability (test AUC) of the model. 

Social Value Type Training 

AUC 

Test 

AUC 

Aesthetic 0.95 0.95 

Biological 

Diversity 

0.97 0.97 

Cultural 0.97 0.97 

Economic 0.96 0.9 

Future 0.94 0.82 

Historic 0.98 0.96 

Intrinsic 0.93 0.93 

Learning 0.96 0.85 

Life-sustaining 0.96 0.98 

Recreation 0.95 0.93 

Spiritual - - 

Therapeutic 0.92 0.83 

 

Figure 4.2 depicts maps of the spatial distribution of SVs and relative value indices. Aesthetic 

values are relatively clustered around Table Mountain, and the Newlands Forest. Biological 

diversity and recreation values were highly valued at Table Mountain, the Kirstenbosch Gardens, 

the Newlands Forest, the Tokai Forest, and the Silvermine Nature Reserve. Cultural values 

occurred over the smallest spatial gradient and had no large areas of spatial clustering. Economic 

values were somewhat clustered around the Kirstenbosch Gardens, the Newlands Forest, and the 

Tokai Forest. Future values were highly clustered around Table Mountain and Devil’s Peak, the 

Orange Kloof Nature Reserve, and the Silvermine Nature Reserve. Future values were also 

somewhat clustered around the areas of Simon’s Town, Elsie’s Peak, Boulders Beach, and Cape 

Point. Historic values were mainly clustered around Kirstenbosch and the Tokai Forest. Intrinsic 

and therapeutic values generally occurred over a larger spatial distribution compared to the other 

nine SVs, with particular clustering occurring around the areas of Table Mountain, Lion’s head, 

the Kirstenbosch Gardens, the Newlands Forest, the Tokai Forest, and the Silvermine Nature 
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Reserve. Learning values were particularly clustered around Table Mountain, the Newlands 

Forest, Kirstenbosch, and the Tokai Forest. Life-sustaining values were clustered around Table 

Mountain, the Newlands Forest, the Kirstenbosch Gardens, and the Tokai Forest. Figure 4.3 

depicts the sum of all 11 SVs maps as a single summed SV map. High-value indices were located 

around Table Mountain, the Kirstenbosch Gardens, the Newlands Forest, the Tokai Forest, the 

Orange Kloof Nature Reserve, and the Silvermine Nature Reserve.  
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Figure 4. 2   Spatial distributions in (a) Aesthetic, (b) Biological diversity, (c) Cultural, (d) Economic, (e) Future, (f) 

Historic, (g) Intrinsic, (h) Learning, (i) Life-sustaining, (j) Recreation, and (k) Therapeutic values for the Cape 

Peninsula study area. The relative spatial distribution of the value index for the 11 SVs ranges from no value (grey) 

to low value (blue) and high value (red). 
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Figure 4. 3   The summed SVs map. Grey areas consist of no value. Blue areas consist of the lowest summed value 

index. Red areas consist of the highest summed value index. 

Results for relative contribution for each SV are given in Table 4.3. The percent contribution for 

each environmental characteristic reflects the relative importance of the characteristic within 

SolVES for each SV. Distance to Trails (DTT) yielded the highest percent contribution for nine 

out the 11 SVs, namely aesthetic (47.26%), biological diversity (31.05%), cultural (91.52%), 

economic (88.02%), historic (62.02%), intrinsic (69.68%), learning (64.73%), life-sustaining 

(43.43%), and recreation (44.74%) values. Distance to roads (DTR) and Slope recorded a very low 

percent contribution to all 11 SV types. DTR recorded a percentage contribution of 7.89% for 

aesthetic, 6.50% for biological diversity, 0% for cultural and economic values, 0.36% for future, 

2.68% for historic, 1.42% for intrinsic, 1.95% for learning, 0.23% for life-sustaining, and 1.49% 
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for recreation. DTR recorded a 0% percent contribution for cultural, economic, and therapeutic 

values. Slope recorded a percent contribution of 3.36% for aesthetic, 0.36% for biological 

diversity, 3.53% for life sustaining, and 3.54% for recreation. Concerning slope, it recorded a 0% 

percent contribution for cultural, economic, future, historic, intrinsic, learning, and therapeutic 

values. 

Table 4.3   Relative contribution (expressed as a percent) of each environmental characteristic to 

modelling the 11 SVs. 

Social Value 

Type 

DTR  DTT  DTW  Elevation LULC 

type 

Slope  Vegetation 

type 

Aesthetic 7.89 47.26 5.84 26.06 6.34 3.36 3.21 

Biological 

diversity 

6.50 31.05 24.48 12.68 19.18 0.36 5.73 

Cultural 0 91.52 0 0 3.46 0 5.01 

Economic 0 88.02 6.17 0.50 0 0 5.28 

Future 0.36 24.50 7.30 51.96 6.52 0 9.33 

Historic 2.68 62.02 0 0 18.48 0 16.80 

Intrinsic 1.42 69.68 0 0 0.92 0 27.96 

Learning 1.95 64.73 2.44 15.91 0.95 0 13.99 

Life-sustaining 0.23 43.43 0.18 39.60 10.73 3.53 2.28 

Recreation 1.49 44.74 4.88 29.85 8.02 3.54 7.44 

Therapeutic 0 27.44 3.78 30.12 29.75 0 8.89 

 

The other environmental characteristics including Distance to Water (DTW), elevation, LULC 

type, and vegetation type also had a generally low percent contribution towards the 11 SVs (Table 

4.3).   

Elevation recorded a fairly high percent contribution towards the future value (51.96%), and a 

moderately high percent contribution towards life-sustaining (39.60%), recreation (29.85%) and 

therapeutic (30.12%) values. Elevation also recorded a percentage of 26.06% for the aesthetic 

value, 12.68% for biological diversity, 0.50% for the economic value, and 15.91% for the learning 

value. Elevation recorded a 0% percentage contribution for cultural, historic, and intrinsic values. 

When it comes to DTW, it recorded a 5.84% percent contribution for the aesthetic, 24.48% for 
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biological diversity, 6.17% for economic, 7.30% for the future, 2.44% for the learning, 0.18% for 

the life-sustaining, 4.88% for the recreation, and 3.78% for therapeutic values.  DTW recorded a 

0% percent contribution for cultural, historic, and intrinsic values. LULC type recorded a percent 

contribution of 6.34% for aesthetic, 19.18% for biological diversity, 3.46% for cultural, 0% for 

economic, 6.52% for future, 18.48% for historic, 0.92% for intrinsic, 0.95% for learning, 10.73% 

for life-sustaining, 8.02% for recreation, and 29.75% for therapeutic values. Concerning vegetation 

type, it recorded a percent contribution of 3.21% for aesthetic, 5.73% for biological diversity, 

5.01% for cultural, 5.28% for economic, 9.33% for future, 16.80% for historic, 27.96% for 

intrinsic, 13.99% for learning, 2.28% for life-sustaining, 7.44% for recreation, and 8.89% for 

therapeutic values. 

Overall, the results for the spatial distribution of SVs indicated that most of the SVs were clustered 

around Lion’s Head, Table Mountain, Devil’s Peak, the Newlands Forest, the Kirstenbosch 

Gardens, the Tokai Forest, the Silvermine Nature Reserve and Cape Point. Cultural values 

meanwhile, had no apparent clustering. The most valued areas were Table Mountain, the Newlands 

Forest, the Kirstenbosch Gardens, the Tokai Forest, the Orange Kloof Nature Reserve, and the 

Silvermine Nature Reserve. The respondents preferred aesthetic, biological diversity and 

recreation values were preferred the most. Respondents moderately valued future, learning, life-

sustaining, and therapeutic values. Respondents valued cultural, economic, historic, intrinsic and 

spiritual values the least. 

4.3 SPATIAL DISTRIBUTIONS OF BIOPHYSICALLY MODELLED SERVICES 

Results of the spatial distribution of BpSs are shown in Figure 4.4. Maximum carbon stock of 

16.80 t/ha was recorded within the Cape Peninsula. Areas that store large amounts of carbon are 

indicated in dark green, while those areas that store low amounts of carbon are indicated in light 

green. Most of the carbon stock appears to be stored within the forested areas in the Cape 

Peninsula, including the Newlands Forest, the Cecilia Forest, the Tokai Forest, and the Orange 

Kloof Nature Reserve. Carbon stock is also high in certain areas of the Cape Point Nature Reserve 

(in the South of the Cape Peninsula), which consists of wetlands and small forested areas. Fair 

amounts of carbon are also stored in the rest of the TMNP mainly consisting of shrubland. As 

shown in Figure 4.4a, carbon stocks are fairly low around the built-up areas of Cape Town 

lowlands and the Peninsula suburbs, with little to no vegetation within these areas.  
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Figure 4. 4   Spatial distributions in (a) Carbon Storage, (b) Habitat Quality, (c) Flood Risk Mitigation, and (d) 

Annual Water Yield. 

Concerning habitat quality results, they are depicted in Figure 4.4 b. While most of the area in the 

vicinity of the Cape Peninsula recorded high habitat quality values, built-up areas of the Lowlands 

of Cape Town and the residential suburbs adjacent to the TMNP yielded the lowest habitat quality 

values.  

Figure 4.4c depicts the Flood Risk Mitigation model results, indicating rainfall run-off retention 

volume in m³. Run-off retention values ranging from 17.78 m³ to 2.035 m³ were recorded for the 
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study area. Areas of high run-off retention are shown in dark blue, while areas with lower run-off 

retention are indicated in lighter shades of blue. Run-off retention (Flood Risk Mitigation) is high 

among the vegetated areas of the TMNP, and the wetland areas within the Cape Point Nature 

Reserve. These areas retain large amounts of run-off generated from rainfall events. Run-off 

retention is low around the Cape Town city centre, in the middle of the Cape Flats, and within the 

Peninsula suburbs of Noordhoek and Fish Hoek. These areas receive large amounts of run-off 

generated from rainfall events. 

Annual Water Yield model results are presented in Figure 4.4 d. The maximum annual water yield 

for the Cape Peninsula study area is 1236.71 mm. Areas with high water yield are dark blue, while 

areas with lower water yield are light blue. High water yield values are observable around the 

northern parts of the TMNP, and parts of the Southern Suburbs. Water yield values are low in the 

central parts of the TMNP. Low water yield values can also be seen around the Cape Point Nature 

Reserve.  

To summarise, carbon storage was high along the forested areas within the Cape Peninsula. Carbon 

stock was also fairly high within the wetland areas of the Cape Point Nature Reserve. Habitat 

Quality was high within most areas of the TMNP. Flood risk mitigation was high among the 

vegetated areas of the TMNP, and the wetland areas of the Cape Point Nature Reserve. Annual 

Water Yield was high around the northern section of the TMNP, and parts of the Southern Suburb. 

4.4 ECOSYSTEM SERVICE HOTSPOTS/COLDSPOTS 

Results of the BpS and SVs hotspots analysis are presented in Figure 4.5. The map depicts 

statistically significant clusters of high and low BpSs and SVs values at the α = 0.05 significance 

level. Hotspots of BpSs and SVs values are shown in red, while hotspots of BpSs and coldspots of 

SVs are indicated in green. The hotspots of SVs and coldspots of BpSs are indicated in yellow. 

Coldspots of BpSs and SVs are indicated in blue.  

Hotspots of SVs and BpSs occurred mainly around the Newlands Forest, the Kirstenbosch 

Gardens, the Orange Kloof Nature Reserve, and the Tokai Forest. Hotspots of SVs and coldspots 

of BpSs are predominantly distributed around Table Mountain, and in the vicinity of Simon’s 

Town and Boulders Beach. Hotspots of BpSs and coldspots of SVs mostly occur around Hout Bay 

and small areas of Noordhoek. Coldspots of SVs and BpSs are largely distributed around the Cape 

Peninsula. Table 4.4 lists the percent area which each hotspot and coldspot areas occupy of the 

study area. 
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Table 4.4 The percent extent to which each of the SVs and BpS hotspots and coldspots occupies 

the study area. 

Table 4.4 BpS and SVs hotspot area within the Cape Peninsula. 

Hotspot type Percent area of the Cape Peninsula 

BpS hotspot and SVs hotspot 7 

BpS hotspot and SVs coldspot 8 

BpS coldspot and SVs hotspot 11 

BpS coldspot and SVs coldspot 74 

 

When looking at the percent area occupied by each hotspot and coldspot combination, BpSs and 

SVs coldspots occupy the largest area of the Cape Peninsula at 74%, followed by BpS coldspots 

and SVs hotspots (11%), BpSs hotspots and SVs coldspots (8%). BpSs and SVs hotspots occupy 

the smallest area of the Cape Peninsula at only 7%.  
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Figure 4. 5   The spatial distribution of BpS and SVs hotspots and coldspots. Hotspots and coldspots are illustrated 

with a 2×2 colour matrix. 

Overall, hotspots of SVs and BpSs occurred mainly around the Newlands Forest, the Kirstenbosch 

Gardens, the Orange Kloof Nature Reserve, and the Tokai Forest. Hotspots of SVs and coldspots 

of BpSs were mainly distributed around Table Mountain, Simon’s Town, and Boulders Beach. 

Hotspots of BpSs and coldspots of SVs mostly occurred within Hout Bay, and small areas of 

Noordhoek. Coldspots of BpSs and SVs are largely distributed within the Cape Peninsula.  
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4.5 REGRESSION ANALYSIS 

Table 4.5 provides the results of the OLS regression analysis. A negative correlation between the 

Life-sustaining value and carbon storage is recorded. A regression coefficient value of -0.604856 

is recorded for life-sustaining value and carbon storage. This signals that as the values for carbon 

storage increase, value allocations for the life-sustaining value type decrease. On the other hand, 

the life-sustaining value and annual water yield recorded a positive correlation of 0.0168885. This 

means that when the value allocations for life-sustaining value increase, values for annual water 

yield also increase. The biological diversity value was positively correlated to the BpS of Habitat 

quality (a coefficient value of 3.365014 was recorded). This means that when the value allocations 

for biological diversity increase, values for habitat quality also increase.  
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Table 4.5   OLS regression results. 

Dependent variable 

and independent 

variable 

Coefficient Probability Robust 

probability 

Adjusted 

R² value 

Moran’s I 

Index 

Moran’s I 

z-score 

Koenker 

Statistic 

Jarque-Bera 

statistic 

Life-sustaining and  

carbon storage 

-0.604858 0.479794 0.198357 0.061614 -0.479570 -0.977456 3.340122 22.754241 

Life-sustaining and 

annual water yield 

0.0168885 0.249138 0.247105 0.0143024    -0.493633 -1.019050 3.494865    13.329268   

Biological diversity 

and habitat quality 

3.365014 0.542521 0.386841 -0.011917 -0.087195 -0.690894 436.523302 0.012067 

Note: * indicates statistical significance
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The adjusted R-squared value for life-sustaining and carbon storage were low at 0.061614, 

indicating a very weak relationship. This means that carbon storage only explained 6.16% of the 

life-sustaining value. The Adjusted R-squared value for life-sustaining and annual water yield was 

also low at 0.016885, also indicating a very weak relationship. Therefore, annual water yield only 

explained 1.69% of the life-sustaining value. The adjusted R-squared value for biological diversity 

and habitat quality was -0.011917, indicating a very weak relationship. This means the habitat 

quality only explains 1.12% of the biological diversity value. 

The Probability and Robust probability values for all three relationships coefficients were not 

statistically significant. All three relationships did not yield a VIF value. The OLS tool only 

generates a VIF value when the independent variables are two or more. Carbon storage and annual 

water yield were modelled separately according to the life-sustaining value. Habitat quality was 

the only independent variable for the biological diversity dependent variable. All three relationship 

model residuals had non-statistically significant Jarque-Bera values. Concerning the Koenker 

Statistic, all three relationships had non-statistically significant koenker statistic values. This 

indicates that the relationship between the SVs and BpSs were consistent within the study area 

(i.e., the processes within the geographic study area are stationary). 

Concerning the Moran’s I index, the index value for the life sustaining and carbon storage model 

residuals was -0.479570. The Moran’s I index value for the life-sustaining and annual water yield 

model residuals was -0.493633. The Moran’s I z-score value for the life-sustaining and carbon 

storage was -0.977456. The Moran’s I z-score value for the life-sustaining and annual water yield 

was -1.019050. The Moran’s Index value for the biological diversity and habitat quality model 

was -0.087195. The z-score for biological diversity and habitat quality was -0.690894. The 

spatially random Moran’s Index values (values of 0) and non-statistically significant z-scores (less 

than -1.96 and larger than 1.96) indicate model’s residuals recorded a spatially random pattern for 

all three relationships (i.e., there was no spatial autocorrelation among the three model residuals). 

In other words, the OLS results for the three models are reliable according to the random dispersion 

of the model residuals. Although the OLS documentation states that points with less than 30 

features produce unreliable results (ESRI2021b). The life-sustaining value used as the dependent 

variable only had 18 points. Thus, OLS results for the life sustaining and carbon storage, and life 

sustaining annual water yield relationships are overall unreliable. 

To summarise, carbon storage and annual water yield negatively correlated with the life-sustaining 

value. Annual water yield recorded a positive correlation with the life-sustaining value. Habitat 

quality was positively correlated with biological diversity. Carbon storage registered a non-

significant R-squared value of 0.061614 with the life-sustaining value. This indicates a very weak 
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relationship between carbon storage and the life-sustaining value. Annual water yield also yielded 

a non-significant R-squared value of 0.0143024 with the life-sustaining value, indicating a very 

weak relationship. Habitat quality also recorded a non-significant R-squared value of -0.011917, 

highlighting a very weak relationship between habitat quality and biological diversity. Probability 

and Robust probability values were not statistically significant for the life-sustaining value, carbon 

storage and water yield. Probability and Robust probability values for biological diversity habitat 

quality were also not statistically significant. Concerning the Koenker Statistic, all three 

relationships had non-statistically significant Koenker statistic values. All three relationships 

recorded non-statistically significant Jarque-Bera values. All three relationship model residuals 

recorded a random spatial pattern. Although OLS results for the life-sustaining and carbon storage 

and life-sustaining annual water yield relationships are unreliable. 
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CHAPTER 5: DISCUSSION 

This chapter provides a discussion of the results of this study. The results are interpreted and put 

in perspective of existing knowledge. Questionnaire survey results are discussed first, followed by 

the spatial distributions of social values (SVs), biophysically modelled services (BpSs), and 

hotspots and regression analysis.  

5.1 QUESTIONNAIRE SURVEY RESULTS 

To explain the social context of SV allocations, this part of the discussion considers the 

questionnaire survey demographics. This is based on section four of the questionnaire survey 

highlighted in Chapter 3. The study found that questionnaire respondents were generally more 

educated, consisted of more females, most resided in the Southern Suburbs of Cape Town, and 

were mainly older persons. Income groups were somewhat evenly represented, although a few 

respondents earned over R30 000 a month. The large participation of these Southern Suburbs 

participants could be attributed to Southern Suburbs residents comprising a large portion of the 

Facebook groups where the questionnaire was distributed.  

The questionnaire survey population is a very particular group of recreational users of the Cape 

Peninsula. The sample population is small, and as pointed out by Pertrakis et al. (2020), it can 

yield a bias in participation within the demographic variables (Pertrakis et al. 2020). This finding 

aligns with other Public Participatory Geographic Information Systems (PPGIS) studies within 

Canada, Australia, and the USA which concluded that PPGIS respondents were mostly older, male, 

more well educated, and high-income earners (Beverly et al. 2008; Brown & Reed 2009; Raymond 

& Brown 2011). In contrast, there were more female participants than males in this study and 

income groups are somewhat equally represented. However, this is not always the case with small 

sample populations. Donaldson et al. (2016) recorded a much larger sample (n=3247) 

questionnaire survey that looked at the demographics of visitors to Table Mountain National Park 

(TMNP). Their study recorded that most respondents were also generally older and high-income 

earners. The study was conducted within the TMNP. The survey was administered through on-site 

surveys at various sites within the TMNP.  

Socio-demographic variables like age, formal education and gender can affect the number and 

types of cultural ES that questionnaire survey respondents prefer (Brown & Fagerholm 2015; 

Semmens, Sherrouse & Ancona 2019; Zhou et al. 2020; Ma, Chen & Zeng 2021). Also, the 

environmental characteristics of the study area can influence SV allocations (Zhou et al. 2020). 

However, Zhou et al. (2020) highlight that demographics are a direct driving factor, while 
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environmental characteristics are an indirect driver. This is because the SolVES results are mainly 

generated from a questionnaire survey (Sherrouse & Semmens 2015; Zhou et al. 2020).  

Where PPGIS respondents reside in relation to the study area, it can influence the allocation of 

where the respondents map the values, also referred to as spatial discounting (Brown 2016). Spatial 

discounting describes the tendency of people to be near to what they favour and further away from 

what they dislike or fear (Brown, Reed & Raymond 2020). Place values also relate to a person’s 

place attachment for one’s house. For example, Brown & Reed (2002) found that place values 

were clustered around communities where people live. As a result, people which are more familiar 

with the geographic study area can generally provide more accurate PPGIS data including mapped 

values (Brown & Reed 2002). 

Concerning income, it can influence the desired activities of respondents (Dade et al. 2020; 

Petrakis et al. 2020). According to Dade et al. (2020), high income and highly educated residents 

are usually more frequent park visitors, and as a result, benefit from a wide range of cultural ES. 

Age also plays a role in users’ activities (Dade et al. 2020). Younger users often utilise parks for 

fitness activities while older people often tend to use parks for nature appreciation and leisure 

(Dade et al. 2020: 2). This study’s SV allocations and their locations could be characteristic of the 

respondents. Other factors also influence respondents’ SV allocations. SV preferences can vary 

according to the general topography, landscape characteristics and infrastructure (Ma, Chen, & 

Zeng 2021). In addition, spatial variations of SVs can also be contingent on people’s 

environmental worldviews (such as biocentrism and anthropocentrism) (Van Riper & Kyle 2014). 

People with certain worldviews do tend to map different values (Van Riper & Kyle 2014). This 

study did not consider environmental worldviews. 

5.2 SOCIAL VALUE MAPS 

SV maps were generated using SolVES based on the questionnaire survey section three responses. 

The 11 SVs maps generated and relative Value Indices revealed several trends. Overall, high 

perceived SVs were mainly clustered around Table Mountain, the Newlands Forest, the 

Kirstenbosch Gardens, Tokai Forest, Silvermine Nature Reserve, and Cape Point. These are high-

use sites within the Cape Peninsula and are thus popular and well-recognised sites for users 

(Ferreira 2011; Donaldson et al. 2016; Brill, Anderson, & O’Farrell 2022). SolVES studies have 

also found high index value clustering around mountainous areas, forests, nature reserves, 

botanical gardens, and national parks similar to this study (Sherrouse, Clement & Semmens 2011; 

Van Riper et al. 2017; Chen et al. 2020), although the spatial distribution of the value index is not 

always the same for all SolVES studies (Lin et al. 2017b). Other SolVES studies have also 
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indicated high-value index clustering for watershed areas, wetlands, fishponds, and man-made 

features (such as bridges and religious structures) (Lin et al. 2017b; Petrakis et al. 2020; Zhou et 

al. 2020). This indicates that respondents value certain ecological areas more than others. High-

value index clustering did not occur within the study area’s wetland areas and manmade features. 

These areas were thus not as important to this study’s respondents compared to respondents in 

other SolVES studies. 

These sites also generally have good access for the public (Brill, Anderson, & O’Farrell 2022; 

Ferreira 2011). Their popularity and ease of access are likely major driving factors for the high SV 

ratings (Lin et al. 2017b; Petrakis et al. 2020). The spatial distribution of SVs was much lower in 

the southern parts of the Cape Peninsula and the Cape Point Nature Reserve, besides the Boulders 

Beach and Cape Point areas. This could indicate that the respondents do not use these areas 

frequently (Petrakis et al. 2020). Petrakis et al. (2020) highlighted that highly valued areas do not 

necessarily mean that these areas are more important than others. Instead, this is probably 

attributed to their current recognition. Thus, it is also likely that the respondents do not 

acknowledge the southern areas of the Cape Peninsula. However, these southern areas also do not 

have as many attraction sites as the northern section of the Cape Peninsula (Brill, Anderson & O’ 

Farrell 2022). Thus, it could be more likely that there are fewer sites to value in comparison to the 

northern section. Brill, Anderson & O’ Farrell (2022) noted that the northern and central sections 

of the Cape Peninsula have more access points to features compared to the southern section. 

Therefore, this could explain why these areas are favoured based on their accessibility. 

When examining trends of the 11 SV types, aesthetic, biological diversity, and recreation values 

were preferred the most by respondents and had the highest Value Indices. This finding aligns with 

other SolVES studies conducted in the USA (Sherrouse, Semmens, & Clement 2014), Australia 

(Van Riper et al. 2017) and China (Ma, Chen & Zeng 2021). This is most probably due to the Cape 

Peninsula being favoured for its scenic beauty, high biodiversity, and recreational activities such 

as hiking (Brill, Anderson, & O’Farrell P 2022). These values are thus popular on a global scale, 

although these aesthetic, biological diversity and recreation values are not always valued the most, 

as demonstrated by other SolVES studies (Zhang et al. 2019; Chen et al. 2020; Zhou et al. 2020). 

Subsequently, it could be that the respondents recognised and/or favoured these values more than 

others. 

Future, learning, life-sustaining, and therapeutic values were moderately valued with fair 

clustering and Value Indices. The respondents valued cultural, economic, historic, intrinsic, and 

spiritual values the least. These values had low value indices and clustering. These values generally 

tend to be the least popular in other studies as well (Van Riper et al. 2017; Bogdan et al. 2019; 
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Johnson et al. 2019; Petrakis et al. 2020). According to Chen et al. (2020), this could be due to 

these values’ intangibility and effability. Also likely, that the sample of respondents do not 

recognise these values. Cultural, economic, historic, intrinsic, and spiritual values were more 

prevalent in other SolVES studies in China (Zhang et al. 2019; Zhou et al. 2020). This possibly 

indicates that the allocation and recognition of SV types depend on the study area location and 

questionnaire population (Zhou et al. 2020). 

The environmental characteristics used to explain the physical context of SV allocations for the 

Cape Peninsula were elevation, slope, vegetation type, LULC, and distance to roads, trails, and 

water. Distance to Trails (DTT) was the largest contributing environmental characteristic for most 

of the SVs. This signals that the respondents highly valued SVs close to trail pathways. This is 

highly likely due to the respondents being mainly recreational users, presumably making regular 

use of the Cape Peninsula’s hiking trail pathways. Trail pathways could thus be a significant 

driving factor in where respondents listed locations in the mapping exercise (Petrakis et al. 2020). 

These trail pathways also provide access to most of the Cape Peninsula’s ecological areas. 

Accessibility to areas is an essential driver of an area’s high value (Lin et al. 2017b; Brill, 

Anderson, & O’Farrell P 2022). Based on this finding, spatial planning that increases trail 

pathways can therefore strongly foster SVs (Chen et al. 2020). Such environmental characteristics 

can thus be considered important indirect drivers of SVs distributions (Van Riper et al. 2017). 

Elevation, slope, vegetation type, LULC, and distance to roads and water generally recorded a 

very low percent contribution to modelling the 11 SVs. These environmental characteristics were 

thus not substantial driving factors of the spatial variations of SVs compared to DTT. Water bodies 

occupy a very small area of the Cape Peninsula’s land cover (Geoterraimage 2021). Elevation and 

slope are highly variable within the Cape Peninsula (Cowling, MacDonald & Simmons 1995). As 

a result, SV allocations were generally not situated in specific areas of low or high elevation, and 

steep or shallow slopes. These factors could explain their generally low contribution to SVs 

modelling. That is, respondents are more inclined to trail pathways compared to certain types of 

land cover and vegetation types, elevation, and water and roads (Zhou et al. 2020).  

In contrast, other SolVES studies have found higher percent contributions of elevation, slope, 

vegetation type, LULC, and distance to roads and variables to modelling SVs (Van Riper et al. 

2017; Bogdan et al. 2019; Petrakis et al. 2020). However, these studies most likely have completely 

different environmental study site characteristics and spatial distributions of SVs. Petrakis et al. 

(2020) investigated SVs preferences within the Sonoita Creek watershed, Arizona. SVs 

preferences were determined using a mail survey with residents residing in the watershed. They 

found that SVs were generally highly valued along the area’s water bodies (specifically 
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tributaries). Bogdan et al. (2019) investigated SVs in a high-mountain area within Southern 

Carpathians, Romania. SVs preferences were determined through an onsite survey of tourists. 

They revealed that distance to peaks, buildings, main rivers, and elevation significantly contributed 

to modelling SVs. Van Riper et al. (2017) investigated perceived biological diversity values for 

Santa Cruz Island, California. SVs were determined with an on-site survey of visitors to Santa 

Cruz Island. They revealed that biological diversity was highly valued closer to infrastructure, 

viewshed and marine protected areas. The contribution of environmental characteristics could thus 

depend on the study area characteristics in question (Zhou et al. 2019). Thus, Lin et al. (2017b) 

highlighted that the spatial distribution of SVs is highly context specific. This inhibits the potential 

for value transfer (transferring survey data to areas where survey data is not available) to other 

areas that do not have similar socio-demographic and physical environmental characteristics 

(Semmens, Sherrouse & Ancona 2019). 

5.3 SPATIAL DISTRIBUTION OF BPS 

Four spatial distributions of BpSs were modelled with InVEST based on geospatial data. These 

include spatial distributions of carbon storage, habitat quality, flood risk mitigation, and annual 

water yield. Areas of high carbon storage within the Cape Peninsula are forested areas mainly 

consisting of Afromontane, Western Cape Milkwood, and Western Cape Talus Forest species 

(Poulsen & Hoffman 2015). This result is consistent with other InVEST studies recording forested 

areas storing the highest amount of carbon (Irman & Din 2021; Piyathilake et al. 2021). Carbon 

stock was also high in certain Cape Point Nature Reserve areas, consisting of wetlands and small 

forested areas. Forests store more carbon than most ecosystems (Sharp et al. 2020). However, 

forests make up a small area of the Cape Peninsula (Poulsen & Hoffman 2015). According to 

Sharp et al. (2020), forest restoration should be promoted where possible, as this can lead to storing 

large amounts of carbon. This is especially important when considering climate change, as carbon 

storage plays a large role in the regulation of climate (MEA 2005). 

Most of the Cape Peninsula has a high habitat quality, which is well-protected in the TMNP.  Thus, 

these areas also do not experience anthropogenic transformation into agricultural and urban areas. 

Other InVEST habitat quality studies also found habitat quality was the highest within vegetated 

and protected areas (Sharma et al. 2018; Wang & Cheng 2021; Ding et al. 2021). The protected 

area status of the landscape is then important in ensuring high habitat quality (Sharma et al. 2018). 

Most of the urban areas in the Cape Peninsula have a very low habitat quality score. This is also 

consistent with the aforementioned InVEST habitat quality studies (Sharma et al. 2018; Wang & 

Cheng 2021; Ding et al. 2021). These built-up areas pose a high threat to the Cape Peninsula’s 
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biodiversity (Cowling, MacDonald & Simmons 1995). These built-up areas have low habitat 

suitability and generally do not fall within protected areas. Meanwhile, areas within the TMNP 

have high habitat suitability based on vegetated LULC types. Habitats on the Table Mountain 

chain are also located further away from threat sources. Habitat quality is a function of vegetation 

extent, low level of threats, and the level of legal protection from disturbances (Sharp et al. 2020). 

Most of the low-lying areas of the Cape Peninsula consist of urban developments, and thus have a 

lower habitat quality and higher threat level (Okes & O'Riain 2017). 

Flood Risk Mitigation was high along vegetated areas of the TMNP and low within the urban areas 

of the Cape Peninsula. These vegetated areas thus retain larger amounts of run-off water-generated 

rainfall events compared to urban areas. The broader CoCT area including the Cape Peninsula 

does occasionally experience flooding, particularly informal settlements (Jordhus-Lier et al. 2019). 

The impermeability of cities makes these areas particularly vulnerable to flooding. Due to poor 

planning, some of these settlements are in floodplain areas (Jordhus-Lier et al. 2019). To mitigate 

the risk of flooding within these areas, Flood Risk Mitigation can be improved by increasing urban 

blue and green infrastructure (Kadaverugu, Rao & Viswanadh 2020). This consists of vegetation 

and water bodies that absorb water during flooding events (Kadaverugu, Rao & Viswanadh 2020). 

Kadaverugu, Rao & Viswanadh (2020) and Quagliolo, Comino & Pezzoli (2021) also revealed 

high flood risk mitigation within vegetated areas. Kadaverugu, Rao & Viswanadh (2020) also 

recorded high flood risk mitigation within open spaces (playgrounds and grass patches). However, 

this study did not consider open space as a LULC category. 

While Annual Water Yield was high within the northern section of the TMNP and parts of the 

southern suburbs, it was generally low within the southern parts of the Cape Peninsula. This could 

be due to highly variable rainfall patterns within the Cape Peninsula (Shroyer, Kilian, & Jackelman 

2000). Other InVEST annual water yield studies also revealed correlations between high rainfall 

and water yield (Wei et al. 2021). Rainfall is generally very high in the areas of Table Mountain 

and the Southern Suburbs (Shroyer, Kilian, & Jackelman 2000). At the same time, rainfall is much 

lower in the south of the Peninsula (Shroyer, Kilian, & Jackelman 2000). Rainfall does contribute 

largely to the amount of water yield (Sharp et al. 2020). This explains the high water yield within 

the northern section of the TMNP and the adjacent southern suburbs and the low water yield in the 

south of the TMNP.  

Based on a visual assessment, the distribution of the four BpSs is also generally low within the 

urban areas of the Cape Peninsula. The finding is also consistent with other InVEST studies (Hack, 

Molewiky & Beißler 2020; Kadaverugu, Rao & Viswanadh 2020; Imran & Din 2021). This 

emphasises the fact that the spatial distribution of ES has yet to comprehensively inform urban 
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planning for more resilient and green cities (Ahern, Cilliers & Niemelä 2014; Cortinovis & 

Geneletti 2018; La Rosa 2019). 

5.4 HOTSPOT ANALYSIS  

SVs and BpSs hotspots and coldspots were generated with the use of the Getis-Ord Gi* statistic 

based on the spatial distribution of SolVES modelled SVs and InVEST modelled BpSs. BpSs and 

SVs hotspots were located along the Newlands Forest, the Kirstenbosch Gardens, the Orange 

Kloof Nature Reserve, and the Tokai Forest. These areas thus had an overlap of high SV and BpS 

values. These are mainly within forested areas. Forests provide a high amount of ES from a 

biophysical and socio-cultural perspective (Acharya, Maraseni & Cockfield 2019; Cuni-Sanchez 

et al. 2019; Beckmann-Wübbelt et al. 2020).  

Bagstad et al. (2016) and Smart et al. (2021) similarly found BpSs and SVs hotspots within 

forested areas. Although, in contrast, Smart et al. (2021) also found hotspots within farmland, 

marshes, and wetlands. Bagstad et al. (2016) broadly found that SVs and BpSs largely occur in 

wilderness areas, although they included a larger number of BpSs in their hotspot analysis, likely 

resulting in a different and larger spatial distribution of BpS hotspots. Bagstad et al. (2016) also 

had a much larger study area at the landscape scale (9,011km²). While this research’s study area 

was comparably smaller at 470 km2, Smart et al. (2021) had a study area size of 220 km², at the 

local scale. ES relationships can vary according to the scale of the analysis (Lee & Lautenbach 

2016).  

Hotspots of BpS and coldspots of SVs mainly occurred around Hout Bay and small areas of 

Noordhoek. This indicates a disconnect between SVs and BpSs (i.e., SVs and BpSs values do not 

co-occur in these areas). These areas’ SVs coldspots could be attributed to low popularity and 

acknowledgement compared to other sites such as Table Mountain and the Kirstenbosch Gardens. 

This indicates possible trade-offs since the respondents do not value these areas, while these areas 

have high BpS value (Castro et al. 2014). The respondents generally had a larger SVs preference 

within the northern sections of the Cape Peninsula, while these BpS hotspots and SVs coldspots 

areas are in the Central Peninsula. Another reason could be access roads and transport available to 

these areas for visitors and users. Distance to roads did not significantly contribute to modelling 

the 11 SVs. Other studies note that road access is an important feature that fosters SVs (Smart et 

al. 2021; Brill, Anderson, & O’Farrell 2022). Smart et al. (2021) found that respondents 

highlighted that accessibility and lack of public transport impeded their enjoyment of parks. The 

northern sections of the Cape Peninsula are generally easily accessible and close to the southern 

suburbs and the Cape Town city centre (Brill, Anderson, & O’Farrell 2022), while Noordhoek and 
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the surrounding areas are on the far western side of Table Mountain and is thus further away 

compared to the northern section. Smart et al. (2021) found that SVs were located close to current 

residential and commercial developments while BpSs were in remote areas. 

BpS and SVs coldspots occupy the largest area of the Cape Peninsula, followed by BpS coldspots 

and SVs hotspots, BpS hotspots and SVs coldspots, and BpS and SVs hotspots occupy the smallest 

area. That is, there is a limited overlap of SVs hotspots and BpSs hotspots. Bagstad et al. (2016) 

and Smart et al. (2021) also found small SVs and BpSs hotspots within their study site. This could 

possibly be attributed to the Getis-Ord Gi* approach used to map SVs and BpS hotspots. However, 

Lin et al. (2017b) used a quantile-based approach (i.e., the top 10, 20, and 30% of values) using 

the conservation software zonation. They also recorded limited overlap of SVs and BpSs hotspots, 

with SVs and BpSs coldspots occupying the largest proportion of the study area. Concerning the 

limited overlap of SVs and BpSs hotspots, Smart et al. (2021) highlighted the importance of 

stakeholder engagement to map SVs so they can be considered equally to BpS for decision-

making. This generally limited overlap of BpSs and SVs emphasises the importance for better 

cooperation between community planning and conservation (Smart et al. 2021). This adds to the 

growing body of literature indicating that SVs ought to be mapped alongside BpSs, instead of 

evaluating BpSs in isolation (Cowling et al. 2008; Bagstad et al. 2016, Lin et al. 2017b, Smart et 

al. 2021). According to these results of the hotspots analysis, the study also provides possible 

implications for future landscape management. Figure 5.1 provides examples of potential 

management implications for areas of SVs and BpSs hotspots, SVs hotspots and BpSs coldspots, 

BpSs hotspots and SVs coldspots, and BpSs and SVs coldspots. 
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Adapted from Bagstad et al. (2016) and Korpilo et al. (2018). 

Figure 5. 1   Examples of possible management implications for the SVs and BpS hotspot analysis. 

Hotspots of SVs and BpS coldspot values are predominantly distributed around Table Mountain, 

as well as in the vicinity of Simon’s Town and Boulders Beach. These areas mainly consist of bare 

surfaces of rock and sand (Cowling, MacDonald & Simmons 1995). Bare surfaces generally 

produce less ES compared to other types of LULC such as forests and shrubland (Huang et al. 

2019; Sadat, Zoghi & Malekmohammadi 2020). Decision-making based on ES valuation should 

ideally not only be based on BpS assessments in such areas. BpS modelling alone cannot 

adequately capture SVs, as highlighted in the literature review.  The Tokai Forest has been 

associated with conflicts over ES management because certain users’ SVs in this area did not 

correspond to biodiversity priorities. Their SVs rather corresponded to alien invasive vegetation 

namely pine trees, which negatively impacts ES (Elmqvist et al. 2013; Ernston 2013). Therefore, 

it is important to consider that this area possibly has conflicting SVs co-occurring with BpS. These 

values should not be neglected to avoid future conflict over conservation measures. That is, 

tradeoffs can possibly exist even where SVs and BpS co-occur, when SVs are not complementary 

with BpS. Such areas require comprehensive stakeholder engagement to ensure management 

prescriptions for ES are understood and accepted (Rüdisser, Leitinger & Schirpke 2020). 
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Managing ES trade-offs within the TMNP is significantly more difficult when stakeholder SVs 

are associated with alien invasive species (van Wilgen 2012; Ernston 2013). However, this study 

did not examine the correlation between SVs and alien invasives which will require further data 

and analysis. 

Most of the Cape Peninsula was outlined as BpSs and SVs coldspots. This can be due to high-

value clusters of BpSs and SVs generally occupying a small area of the Cape Peninsula. Coldspots 

of BpSs and SVs occupying the majority of the study area have also been recorded in other ES 

hotspots analysis studies (Bagstad et al. 2016; Smart et al. 2021). However, a lot of these coldspot 

areas within the TMNP are nonetheless essential from a biodiversity perspective (Helme & 

Trinder-Smith 2006). The TMNP also includes many cultural and historical resources (Helme & 

Trinder-Smith 2006). Thus, these areas should not be regarded as devoid of value. Instead, these 

areas of significant biodiversity and cultural resources did not come up as high value hotspots. 

Resource extraction and urban development are also prohibited within the TMNP protected area 

(SANParks 2016). Bagstad et al. (2016) also noted that coldspot management strategies can 

include raising awareness of these areas relating to their value. According to Bagstad et al. (2016), 

landscape managers should not assume coldspots do not have value. 

For practical implications of these hotspot analysis findings for ES management and planning of 

the Cape Peninsula, such information can be incorporated within the TMNP management plan. 

South African National Parks (SANParks) manages the TMNP within the Cape Peninsula. The 

TMNP management plan for 2015 to 2025 sets out plans for ecologically sustainable development 

to ensure conservation objectives of the TMNP protected area are met (SANParks 2016). The 

TMNP management plan includes ES as a conservation priority, as part of the plan’s high-level 

biodiversity objective (SANParks 2016). The ES programme within this objective seeks to 

,“identify interactions  of key concern to the park, develop management activities, whether it is to 

act or monitor, and to implement these for continued management of diversity in the park” 

(SANParks 2016: 70). This ES programme, however, does not have set priorities for mapping ES 

trade-offs and synergies to inform planning and decision-making within the TMNP (SANParks 

2016). The priority to map and assess ES synergies and trade-offs can subsequently be 

incorporated into their broader ES programme. This can help to increase ES synergies and mitigate 

trade-offs within the Cape Peninsula, to promote better overall ES conservation and management 

(Qiu & Turner 2013; Castro et al. 2014; Bagstad et al. 2016; Karimi, Yazdandad & Fagerholm 

2020). This study’s method of mapping SVs and BpS hotspots and coldspots could then also form 

part of their broader ES programme. Stakeholder engagement is also a large priority within the 
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management plan to inform planning and projects. However, it does not include stakeholder 

engagement within the ES programme nor maps their SVs for ES. 

One approach to possibly include stakeholder SVs in decision-making could be by including such 

PPGIS questionnaire research within their survey research objectives. The priority to conduct SVs 

mapping questionnaire surveys could thus fall into their “Conduct appropriate research to 

understand and address visitor and recreational users’ expectations” Sub-objective (SANParks 

2016: 94). This forms part of their responsible tourism programme and specifically the service 

quality objective therein. This can ensure the inclusion of users of the Cape Peninsula and their 

SVs preferences to inform planning and projects, and to subsequently carry out more socially 

acceptable conservation planning to prevent trade-offs in the form of stakeholder concerns. The 

management plan also prioritises promoting awareness to people and communities to ensure the 

conservation of the Cape Peninsula (SANParks 2016). Awareness programs can thus be conducted 

for ecological areas within BpSs hotspots and SVs coldspots and BpSs and SVs coldspots to ensure 

stakeholders recognise the value of these areas and thus management thereof. 

5.5 REGRESSION ANALYSIS 

Biological diversity and habitat quality recorded a very weak relationship (r²=-0.011917). Based 

on this OLS result, the respondents did not recognise important areas of habitat quality. The 

biological diversity value was positively correlated to the BpS of habitat quality, although it 

inadequately explained the distribution of habitat quality. The non-statistically significant 

probability and robust probability values, non-statistically significant Koenker and Jarque-Bera 

values no spatial autocorrelation of model residuals indicated a good model fit and reliable results 

(ESRI 2021b). 

The finding of a very weak relationship between biological diversity and habitat quality aligns 

with past studies highlighting the difficulty for respondents to map complex ES types (Brown et 

al. 2011; Brown, Montag & Lyon 2012; Bagstad et al. 2016). The MEA (2005) defines habitat 

quality as a supporting service. Brown & Fagerholm (2015) highlighted that regulating and 

supporting ES are generally the least recognised amongst the public. Further, Bagstad et al. (2016) 

stated that recreational users’ and public comprehension of biodiversity and ecological conditions 

are typically inadequate and inaccurate. This could also explain respondents’ lack of recognition 

of habitat quality in this study. In contrast, Alessa, Kliskey & Brown (2008) found a moderately 

significant relationship between respondent perceptions of biological diversity and areas of high 

ecological value (based on net primary productivity, also a supporting ES). Ruiz-Frau, Edwards-

Jones & Kaiser (2011) noted that technical respondents (such as academics and representatives of 
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environmental groups) tend to map supporting and regulating ES more often. Thus, Alessa, 

Kliskey & Brown (2008) possibly had more technical respondents participating in their survey, 

although they did not record the socio-demographics of the respondents. 

As highlighted in the literature review, it is essential to improve communications about ES, 

particularly for ES that are poorly recognised or poorly understood (Rüdisser, Leitinger & 

Schirpke 2020). This ensures measures to protect ES are applied and accepted by the public and 

stakeholders (Rüdisser, Leitinger & Schirpke 2020). A better understanding of these service types 

can result in higher social value and acknowledgement for such ES (Menzel & Teng 2010.). Since 

the TMNP management plan prioritises promoting awareness to people and communities, 

SANParks could subsequently initiate awareness programmes on such complex ES types to 

promote better understanding and acknowledgement thereof.  
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CHAPTER 6: CONCLUSION 

This chapter offers the synthesis of the study. The aims and objectives of the study are revisited to 

uncover the extent to which they were accomplished. The overall findings of the study are then 

summarised. Recommendations for future research and the limitations of this study are also given. 

Concluding remarks for the study are then offered.  

6.1 REVISITING THE AIM AND OBJECTIVES 

The study aimed to investigate the link between social values and ecosystem services for 

recreational users of the Cape Peninsula. In addition, the spatial distribution between social values 

and ES was modelled. To achieve the overall aim of the study, four objectives were set: 1) review 

literature to determine the current state of research on ES determination; 2) investigate the types 

and spatial distribution of social values linked to ecosystems in the Cape Peninsula using a 

participatory mapping excessive; 3) evaluate and quantify the spatial distribution of modelled 

services in the Cape Peninsula; and 4) investigate the relationship of social values and distribution 

of biophysically modelled services within the Cape Peninsula. 

For Objective 1, a literature overview was done to reveal current trends of ES research. This 

literature review highlighted well-researched areas of ES and ES assessments, and areas that were 

lacking and under-researched. More specifically, the literature revealed comprehensively used 

methods of ES assessment and valuation, and methods which are still underrepresented and 

recently emerging in the literature. Non-monetary approaches for assessing ES are lacking 

compared to monetary approaches. Cultural ES and corresponding SVs also remain 

underrepresented in many ES assessments.  

Regarding Objective 2, a questionnaire survey was conducted targeting select recreational groups 

on Facebook. Questionnaire respondents listed their preferred types of SVs and their location using 

a map of the Cape Peninsula. The listed locations were digitised in ArcGIS and mapped with 

SolVES to provide the spatial distribution of 11 SVs within the Cape Peninsula. The results for 

the spatial distribution of SVs revealed that most of the SVs were clustered around Lion’s Head, 

Table Mountain, Devil’s Peak, the Newlands Forest, the Kirstenbosch Gardens, the Tokai Forest, 

the Silvermine Nature Reserve and Cape Point. Cultural values meanwhile had no apparent 

clustering. Areas that were valued the most overall were Table Mountain, the Newlands Forest, 

the Kirstenbosch Gardens, the Tokai Forest, the Silvermine Nature Reserve, and Cape Point. The 

respondents preferred aesthetic, biological diversity and recreation values the most. Future, 

learning, life-sustaining, and therapeutic values were moderately valued. The least valued were 

cultural, economic, historic, intrinsic, and spiritual values. 
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Objective 3 was achieved by obtaining several geospatial biophysical data as required inputs of 

the BpSs of Carbon Storage, Habitat Quality, Flood Risk Mitigation and Annual Water Yield. This 

input data was then prepared with ArcGIS before being modelled with InVEST. InVEST then 

produced and quantified the spatial distribution of these four BpSs within the Cape. Overall, 

carbon storage was high along the forested areas within the Cape Peninsula. Carbon stock was also 

reasonably high within the wetland areas of the Cape Point Nature Reserve. Habitat Quality was 

high within most areas of the TMNP. Flood risk mitigation was high among the vegetated areas of 

the TMNP, and the wetland areas of the Cape Point Nature Reserve. Annual Water Yield was high 

around the northern section of the Cape Peninsula, and parts of the Southern Suburbs. 

Concerning Objective 4, it was achieved using the Getis-Ord Gi* hotspots analysis tool, which 

outlined the clustering of SVs and BpSs hotspots and coldspots. The Ordinary Least Squares 

regression tool analysed the relationship between biological diversity and the corresponding BpS 

model of Habitat Quality. This was based on the digitised points of biological diversity and life-

sustaining values and their value allocations, and the values of Carbon Storage, Habitat Quality 

and Annual Water Yield at these point locations. With regards to the hotspots analysis results 

overall, hotspots of SVs and BpSs occurred mainly around the Newlands Forest, the Kirstenbosch 

Gardens, the Orange Kloof Nature Reserve, and the Tokai Forest. Hotspots of SVs and coldspots 

of BpSs were mainly distributed around Table Mountain, Simon’s Town, and Boulders Beach. 

Hotspots of BpSs and coldspots of SVs mostly occurred within Hout Bay, and small areas of 

Noordhoek. Coldspots of BpSs and SVs are primarily distributed within the Cape Peninsula.  

Concerning the overall OLS results, carbon storage and annual water yield negatively correlated 

with the life-sustaining value Annual water yield recorded a positive correlation with the life-

sustaining value. Habitat quality was positively correlated with biological diversity. Carbon 

storage registered a non-significant R-squared value of 0.061614 with the life sustaining value. 

Annual water yield also yielded a non-significant R-squared value of 0.0143024 with the life. 

Habitat quality also recorded a non-significant R-squared value of 0.011917. Probability and 

Robust probability values were not statistically significant for the life sustaining value, carbon 

storage and water yield. Biological diversity and habitat quality Probability and Robust probability 

values were also not statistically significant. All three relationships recorded non-statistically 

significant Jarque-Bera values. All three relationships had non-statistically significant koenker 

statistic values All three relationship’s model residuals recorded a random spatial pattern. OLS 

results for the life sustaining and carbon storage, and life sustaining annual water yield 

relationships are overall unreliable. 
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6.2 LIMITATIONS OF THE STUDY 

The questionnaire survey sample was small and focused on a particular group of users, which 

could bias the spatial information collected from the questionnaire (Brown & Fagerholm 2015). 

The SVs preferences of the questionnaire population most likely do not represent the general 

values of all users and visitors to the Cape Peninsula in general. Tourists also comprise a large 

Cape Peninsula user group (Donaldson et al. 2016). However, only residents of the CoCT 

participated in the questionnaire survey. Some users are also not on social media, so they could 

not participate in this study’s online questionnaire. This would require an on-site PPGIS 

questionnaire survey to capture their SVs preferences. The values from other user groups and 

visitors of the Cape Peninsula could be completely different (Chen et al. 2019). Public participation 

processes can fail to be effective in planning and decision-making if they receive limited 

participation (i.e. not including a large sample of the target population) (Brown, Kelly & Whitall 

2013). As a result, this can lead to bias in the SVs data generated by SolVES, based on the 

questionnaire population demographics and the number of questionnaire participants. To improve 

the accuracy and participation of sampling, future studies should include a longer survey 

timeframe, on-site surveys, and multiple samples to prevent subjectivity (Brown G & Kyttä M 

2014; Brown & Fagerholm 2015; Zhao et al. 2019). Given the small sample size limitation, the 

SolVES results for the study area should thus be interpreted with caution (Bagstad et al. 2017). 

The study nevertheless asserts that the spatial distributions of SVs in this study provides a good 

baseline example of how SVs can be considered alongside BpSs in an integrative ES assessment 

for the Cape Peninsula. It also provides a good example of how preferences of SVs can vary and 

cluster throughout the landscape. There have also been no SolVES studies conducted on the Cape 

Peninsula before. 

Secondly, this study used InVEST to map BpSs in the study area since it has been primarily applied 

across research applications (Posner et al. 2016). However, InVEST largely relies on LULC data 

to model BpSs within the chosen study area (Sharp et al. 2020), and good quality InVEST model 

output data largely depends on good quality LULC data (Sharp et al. 2020). This study used LULC 

from Geoterraimage (2021), which had an overall accuracy of 85,47%. The residual errors of the 

data are possibly unevenly distributed throughout the LULC data in some areas. Thus, errors could 

be found in the InVEST BpSs models based on the LULC data used. Each of the input datasets for 

the four BpS models also had various spatial resolutions compared to the LULC raster. The 

InVEST user guide also notes that the four BpS modelling tools of Carbon Storage, Habitat 

Quality, Flood Risk Mitigation and Annual Water Yield have limitations and simplifications of 

their own (Sharp et al. 2020). Maps of Carbon Storage were generated using global carbon pool 
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data. This means that there can be a level of uncertainty in the four BpS maps generated. The 

InVEST output data can be calibrated to create more accurate models (Sharp et al. 2020), although 

this requires field surveys in the study area which is often infeasible for large areas (Vihervaara et 

al. 2018). The InVEST models nevertheless provide a good baseline scenario of the spatial 

distributions of BpS (Sharp et al. 2020). 

Possible errors within the InVEST model can also result in small errors in the hotspot or regression 

analysis (Bagstad et al.2016). One limitation of this study’s OLS regression analysis is that points 

with less than 30 point features produce unreliable results (ESRI2021b). The life-sustaining value 

only had 18 point features. Thus, the OLS results for the life-sustaining and carbon storage, and 

life-sustaining and annual water yield relationships, are overall unreliable. 

6.3 RECOMMENDATIONS FOR FUTURE WORK 

This study did not use a probability sampling approach to select respondents. Respondents were 

targeted recreational groups on Facebook. This is due to difficulties in making physical contact 

because of the COVID-19 pandemic. The sample size of the study was also small. Consequently, 

it is unfeasible to generalise the findings of the study on the linkages between social values and 

ES services for all the users of the Cape Peninsula.  Future studies should use a probabilistic 

sampling strategy that yields a representative sample of the sample population for the Cape 

Peninsula. The survey can also include face-to-face interviews and focus groups over and above 

online surveys. There are also benefits to using an on-site survey together with an online one to 

effectively increase participation rates (Brown 2017). Brown & Fagerholm (2015) also suggests 

the use of quota sampling to obtain increased population representativeness. The questionnaire 

survey of this study was only open for a limited period of four months. Future questionnaire survey 

studies could be conducted over a longer period to provide good temporal information (Brown 

2017). This can also reduce bias by season (Brown 2017).  

Conflict over the removal of alien invasive species and ES management has previously occurred 

within the Cape Peninsula (Ernston 2013; Elmqvist et al. 2013). However, this study did not 

consider the distribution of alien invasives underlying SVs distributions, which is challenging to 

map and requires further analysis (Ismail, Mutang & Peerbhay 2016; Royimani et al. 2019). Future 

studies should also investigate whether SVs preferences are correlated with the spatial distribution 

of alien invasive vegetation such as pines. SVs preferences for alien invasives could potentially 

highlight possible trade-offs with the removal of these species. Removing alien invasive species 

is a part of many ecological strategies and management as they pose a large threat to ES, 

indigenous vegetation, and water security (Rai & Singh 2020). However, these strategies are 
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frequently met with conflict when the public has SVs for them (van Wilgen 2012; Elmqvist et al. 

2013; Ernston 2013; Tebboth et al. 2020). This can help identify possible trade-offs that appear as 

stakeholder conflict early in the decision-making process for alien invasives removal. Numerous 

SolVES studies have investigated underlying environmental variables such as land cover, 

elevation, and distance to features that sought to explain the physical context of SVs (Sherrouse, 

Clement & Semmens 2011; Van Riper et al. 2017; Petrakis et al. 2020), although limited SolVES 

studies have used the spatial distribution of alien invasive species as an environmental variable to 

explain SV allocations. Thus, this provides an interesting opportunity for future SolVES studies 

investigating trade-offs among SVs and ES. 

This study generated hotspots and coldspots of SVs and BpSs based on InVEST and SolVES 

models using the Getis-Ord GI* statistic. Different hotspot-generating methods of ES have been 

compared in a few studies (Schröter & Remme 2016; Bagstad et al. 2017). Very few studies have 

compared ES hotspots generated from different ES modelling tools. Future studies can compare 

hotspot extents generated based on various ES modelling tools. This can help in determining 

optimal ES modelling tools for generating ES hotspots. Future ES hotspot comparative studies 

should also compare different study scales including local, regional, and national scales. The 

influence of scale in ES modelling has not received much research attention (Bagstad et al. 2016). 

ES relationships occurring at numerous scales are crucial in decision-making (Lee & Lautenbach 

2016). Deriving a better understanding of scale for ES modelling can also help determine which 

hotspot delineation methods are best suited for these various scales.  

6.4 CONCLUDING REMARKS 

Based on overall results with the aims and objectives of this study, essential relationships between 

SVs and BpSs were found within the Cape Peninsula. Hotspots SVs and BpS occurred mainly 

around the Newlands Forest, the Kirstenbosch Gardens, the Orange Kloof Nature Reserve, and the 

Tokai Forest. Hotspots of SVs and coldspots of BpSs were primarily distributed around Table 

Mountain, Simon’s Town, Boulders Beach, and Cape Point. Hotspots of BpSs and coldspots of 

SVs mainly occurred within Hout Bay, and small areas of Noordhoek. Coldspots of BpSs and SVs 

were largely distributed within the Cape Peninsula. Possibly trade-offs exist within BpSs and SV 

hotspot areas where SVs and BpSs are not compatible (in this case the Tokai Forest), and where 

there is a disconnect between SVs and BpSs (i.e., BpSs hotspots and SVs coldspots) within 

Noordhoek and Hout Bay. Future ES landscape management for the Cape Peninsula can consider 

the possible examples of management implications highlighted for each of these spatially explicit 

SVs and BpS hotspot and coldspot combinations. Considering these implications of SES-based 
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hotspots for planning and decision-making can increase synergies and mitigate trade-offs among 

ES within the Cape Peninsula. This also allows SVs to be equally considered alongside more easily 

quantified BpSs in decision-making. Such methods can promote overall sustainable and inclusive 

conservation by considering more integrated ES assessments. This study’s OLS results recorded a 

weak relationship between biological diversity and habitat quality. This indicated a possible lack 

of recognition and trade-off for habitat quality within the Cape Peninsula. Awareness programmes 

should be promoted to educate the public on the Cape Peninsula’s ES to acknowledge habitat 

quality and other important BpS. 

To conclude, this study highlighted that SVs information is important for ES assessments, 

especially in the context of ES-based approaches for conservation and management. The study 

also further highlighted the potential of using biophysical and SVs methods together instead of in 

isolated ES assessments. The study’s findings provide useful examples to identify synergies and 

trade-offs among SVs and BpSs within the Cape Peninsula, and to integrate SVs into mainstream 

ES assessments. These findings are based on the social-ecological hotspot mapping and regression 

analysis of ES. These implications based on these findings can also be incorporated within 

management plans for the Cape Peninsula and decision-makers such as SANParks. The 

recommendations for future research should be considered to improve future ES assessments of 

SVs and BpSs. 

Word count: 35 804
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