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Abstract

The m opioid receptor (mOR), the principal target to control pain, belongs to the G

protein-coupled receptors (GPCRs) family, one of the most highlighted protein

families due to their importance as therapeutic targets. The conformational flexibility

of GPCRs is one of their essential characteristics as they take part in ligand

recognition and subsequent activation or inactivation mechanisms. It is assessed

that the intrinsic mechanical properties of the mOR, more specifically its particular

flexibility behavior, would facilitate the accomplishment of specific biological

functions, at least in their first steps, even in the absence of a ligand or any

chemical species usually present in its biological environment. The study of the

mechanical properties of the mOR would thus bring some indications regarding the

highly efficient ability of the mOR to transduce cellular message. We therefore

investigate the intrinsic flexibility of the mOR in its apo-form using all-atom Molecular

Dynamics simulations at the sub-microsecond time scale. We particularly consider

the mOR embedded in a simplified membrane model without specific ions, particular

lipids, such as cholesterol moieties, or any other chemical species that could affect

the flexibility of the mOR. Our analyses highlighted an important local effect due to

the various bendability of the helices resulting in a diversity of shape and volume

sizes adopted by the mOR binding site. Such property explains why the mOR can

interact with ligands presenting highly diverse structural geometry. By investigating

the topology of the mOR binding site, a conformational global effect is depicted: the

correlation between the motional modes of the extra- and intracellular parts of mOR

on one hand, along with a clear rigidity of the central mOR domain on the other
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hand. Our results show how the modularity of the mOR flexibility is related to its pre-

ability to activate and to present a basal activity.

Introduction

G-protein coupled receptors (GPCRs) represent the most important protein

superfamily of cell surface receptors as the target of almost 50% of approved drugs

in the market [1]. They are implicated in a variety of cellular signals as responses

to neurotransmitters or hormones, but also to odorant molecules or to light in the

case of rhodopsin. Structurally, GPCRs consist of a bundle of seven

transmembrane a-helices (H1–H7), a soluble a-helix (H8) in the intracellular

domain, three extracellular loops (EL1–EL3), a N-terminal domain, and three

intracellular loops (IL1–IL3) along with a C-terminal domain in the intracellular

side (Fig. 1). It took seven years until the second resolved GPCR crystallographic

structure [2], i.e., human b2 adrenergic receptor, appeared in literature after the

first one was reported, i.e., bovine rhodopsin in 2000 [3]. Interestingly, the last few

years have seen a dramatic increase in the release of new crystal structures of

various GPCRs in the Protein Data Bank (PDB) [4, 5].

Among the recently available GPCRs in the PDB, the three subtypes of opioid

receptors (ORs), i.e., m, d, and k [6–9], are particularly important for the medical

community as their opioid alkaloids like morphine are the most effective

analgesics for the treatment of pain [10]. More specifically, mOR is the receptor

morphine interacts the most among the three OR subtypes [11]. For this reason,

mOR is the principal target in general anesthesia by administration of compounds

such as fentanyl and its derivatives, even if still limited by several side effects like

addiction and dependence or tolerance [12, 13]. Hence, many studies have already

stressed the need and importance to develop safer and more effective therapeutic

ligands targeting mOR [14, 15].

Although the recent rapid progress in GPCR crystallization represents a

milestone for the pharmaceutical research, each of the three-dimensional (3D)

structures now available in PDB represents a single low energy conformation

without any dynamical information. Besides, most of the crystallized GPCRs were

often resolved at a rather low temperature compared to physiological

temperatures, or were obtained after fusing the protein with the N-terminal T4

lysozyme to facilitate the crystallization [16], both conditions imposing possible

structural constraints on the receptor conformation.

The sudden rise of new crystal structures has provided a rich source of

information for subsequent modeling studies [17, 18] to investigate various

GPCRs related biomedical applications such as new potent ligand discoveries [19]

as well as the elucidation of important dimerization/oligomerization mechanisms

[20].
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Hence, conformational structure and dynamics investigations of GPCRs, with

theoretical methods such as Molecular Dynamics (MD) simulations in a

biologically relevant environment, are of a great interest to understand how the

dynamical properties of GPCRs are related to their biological functions [21, 22].

In order to fully understand the multiple biological roles of GPCRs, it is necessary

to understand the conformational complexity of the highly flexible GPCRs

exhibiting a wide spectrum of conformations that can interconvert throughout

highly complex equilibrium [23–26]. Even after a GPCR forms a complex with an

agonist, it remains in an equilibrium involving several different conformations of

its possible active states [27] as well as many different conformations can play a

role in the signaling mechanism pathways [28]. Furthermore, many factors such

as the role of a dimer- and/or oligomer-state [29], the biological environment, i.e.,

the pH [30, 31], the lipid membrane composition [32, 33], the ion concentrations

on possible voltage-dependent mechanisms [34], all complicate the description of

the GPCR dynamics. Evidently, the emerged picture of GPCRs as highly complex

ensembles of conformations is directly related to their intrinsic flexibility

properties. Recent studies show that GPCRs can induce an activation signal even

in the absence of endogenous agonists [35], which is called the basal activity of

GPCRs and most notably for mOR as its basal activity is potentially playing a role

in addiction and in narcotic dependence [36, 37]. A detailed analysis of the

important physiological role related to the intrinsic flexibility of the mOR is clearly

thus needed.

Theoretical studies on the role of the intrinsic flexibility in GPCRs have already

demonstrated that considering a GPCR in its apo-form can help to better

understand its dynamics and their pre-ability to undergo conformational changes

Fig. 1. Left: Schematic view of the overall structure of a G protein-coupled receptor (GPCR), with
depiction of the connectivity of the intracellular (IL) and extracellular (EL) loops between helices (H).
Right: 3D structure of the reconstructed mOR structure (see ‘‘Methods’’). Color codes of ILs, ELs, and Hs are
identical in both left and right pictures.

doi:10.1371/journal.pone.0115856.g001
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related to their activation mechanism. For instance, MD simulations of the

adenosine A2A receptor showed that the H3 and H4 helices are remarkably more

stable compared to H1, H2, H5, H6, and H7 [38] and revealed the essential role of

several conserved residues for both A2A and A2B adenosine receptors [39]. To

assess the importance of the flexibility properties of the mOR that guide their basal

activity, we focus here on its dynamics at the monomer state to depict the

functional role of the mOR apo-form dynamics. Although MD simulations of the

mOR complexed with antagonists or agonists have recently been performed [40],

MD simulations of the mOR apo-form based on the recent crystal structure

determination of mOR are, to our knowledge, absent in the literature. Only one

MD study of the ligand-free mOR has been recently published [41]. In their paper,

the authors study the influence of the water and the ions in the binding of ligands

but still not deal with the intrinsic flexibility properties and their biological role

without any structural bias due to bilayer components.

In the present paper, we will focus on the underlying functional role of the mOR

flexibility properties by performing sub-microsecond all-atom (AA) MD

simulations without, at purpose, any ligand or any molecular moiety that could

modify the intrinsic flexibility properties of the mOR. In the Methods section, we

will describe the tools used to investigate the intrinsic flexibility of mOR. In

Results, we will show how the dynamical properties of mOR are related to the

communication and interdependence between the domain regions. Our studies

will hence allow depicting how the mOR dynamical properties are associated with

its predisposition to facilitate biological functions as its basal activity. We will next

consider the modularity and the subsequent coupling between the mOR domains

as a way to consider the GPCR structures now becoming popular in literature

[42, 43].

Methods

A. Molecular dynamics simulations

The 3D structure of the mOR was built from the coordinates obtained by X-ray

diffraction structure [6] that are available in the PDB (ID: 4DKL). mOR was

crystallized at a resolution of 2.80 Å with an antagonist covalently bounded, i.e.,

b-funaltrexamine, water molecules, sulfate ions, chloride ions, a cholesterol

molecule, a pentaethylene glycol molecule, and a 1-monooleoyl-rac-glycerol

molecule. To study the intrinsic flexibility of the mOR, all of these species were

removed to conserve only the mOR structure in the Molecular Dynamics (MD)

simulation. Also the T4 lysozyme structure, inserted between H5 and H6 to

enhance crystallogenesis of the mOR, was removed and replaced with the

corresponding six missing residues of the loop IL3, i.e., M264-L265-S266-G267-

S268-K269. The latter sequence comes from the mOR primary sequence of the

mouse from which it was crystallized, i.e., available online in the UniProt database

(ID: P42866) [44]. The missing loop IL3 was constructed with the FALC-Loop

webserver, a protein loop modeling method based on fragment assembly,
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developed by Ko et al. [45]. Among the 2,000 models generated, the best ranking

model according to the FALC-Loop energy scoring, i.e., the DFIRE energy, was

selected as a starting structure.

The mOR 3D structure, 288 residues for 4,728 atoms, was then inserted into a

model bilayer composed of 259 1-palmitoyl-2-oleoylphosphatidylcholine (POPC)

molecules, 17,199 water molecules, and 14 Cl2 for neutralizing the system, for a

total of 88,337 atoms. Our system consists therefore to a simplified model of the

membrane with a one-component lipid, an environment that has already been

proven to be sufficiently valuable to study other GPCRs dynamical properties

[46, 47].

In the membrane model, cholesterol and sodium ions were not, as mentioned

before in the Introduction, considered to let specifically the mOR structure evolve

during the MD simulation thanks to its flexibility properties only and not to any

structural constraint due to components of the membrane environment. Other

studies have highlighted the specific role of these membrane components [48, 49],

but important GPCRs mechanisms have also been studied with simplified model

membranes [44, 45], similar to the one used here.

While building the topology files using VMD [50], we paid a special attention

to the atom type attribution to the sulfur atoms of residues C140 and C217, those

two ones bound together to form the unique disulfide bridge of the crystal

structure of the mOR between H3 and EL2. The latter should effectively be crucial

for the overall dynamics characteristics of the mOR as this disulfide bridge will

retain EL2 closer to H3.

The MD simulations were performed using the NAMD 2.8 package [51] with

the CHARMM22-CMAP [52] force field (FF) for the protein and CHARMM 36

FF for the lipids [53]. The total energy was first minimized in 1,000 steps using the

conjugate gradient to remove contacts that could lead to high energy values. To

provide the fluidity in the tails of the lipids, a first MD run of 1 ns, the melting

lipid step in which the whole system except lipids is frozen, was performed in the

constant volume-temperature (NVT) ensemble using Langevin dynamics [54, 55].

The temperature and the box size were fixed at 310.0 K and at 986986103 Å,

respectively. A time step of 2 fs was used to integrate the equations of motion as

covalent bonds involving hydrogen atoms were fixed by the SHAKE algorithm

[56]. Coulomb interactions were computed with the particle-mesh Ewald (PME)

summation method [57] with a grid of 10061006105 Å, i.e., at least one grid

point per Å in each direction in such a way that the number of grid points is a

multiple of two, three, or five. Van der Waals interactions by Lennard-Jones

potential were smoothed from 10.0 to 12.0 Å by a switching function as

introduced by Steinbach and Brooks [58]. The non-bonded pair list was generated

until 13.5 Å. Periodic boundary conditions were used in the evaluation of the

non-bonded interactions.

To allow rearrangement of the ion-water-lipid environment around the

receptor, the rest of the system, i.e., water molecules and ions, were then relaxed in

a pre-equilibration stage by performing an equilibration of 1,000 steps followed by

a 2 ns MD simulation with identical parameters as in the melting lipid stage
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except that, now, only the receptor coordinates were constrained in the NPT

ensemble, with the pressure maintained at a value of 1.0 atm and the temperature

at 310.0 K with the Langevin integrator. The final coordinates were then

submitted to a 25 ns equilibration stage without any position constraints on the

system. Coordinates were saved every 2 ps. Finally, a production simulation of

0.5 ms was carried out, i.e., a unique but sufficient long simulation to extract

statistical reliable data coming from the mOR structure fluctuations.

B. Analysis of the Molecular Dynamics simulations

The analysis of the MD results regarding the protein flexibility was performed

using the software EUCB [59]. We mainly considered the Root Mean Square

Deviations (RMSD), Root Mean Square Fluctuations (RMSF), angles, and

dihedral angles along the receptor backbone as reported in Results. The Radius of

Gyration (RG) was evaluated with the software Carma, another stand-alone MD

analysis tool adapted for the DCD/PSF format used in NAMD [60]. The

Ramachandran map was plotted with the RAMPAGE webserver [61]. Secondary

structure assessment was performed with the built-in plugin Timeline of VMD

[50]; the corresponding pictures were generated by an in-house Gnuplot script

[62].

Flexibility and geometry analyses of the a-helices were performed with BENDIX

[63], an extension plugin of VMD. In Results, the coarse-grained abstraction of

the a-helices geometry is called a ‘‘BENDIX’’ representation. The BENDIX angle

here corresponds to the maximum angle observed along the considered a-helix,

independently of its position along the helix.

The volume of the binding site was evaluated with the POCASA webserver [64],

POCASA standing for POcket-CAvity Search Application. It is used for the

prediction of ligand binding sites of proteins and is based on the exploration of a

3D grid size of points with a probe sphere. POCASA allows the user to select the

probe radius and the size of the unit grid, i.e., 2.0 Å and 1.0 Å, respectively, in our

case. As several pockets can be found for the target protein, the user has to select

how many ranked pockets will be considered for analysis; five in our case.

POCASA outputs the volume and the ranking of each pocket of the protein.

To modularize the mOR structure according to its flexibility properties, two

approaches were considered, i.e., (i) the Geometrically Stable Substructures

program (GeoStaS) [65] and (ii) the dynamical network analysis strategy

introduced by Sethi and coworkers [66, 67]. Regarding GeoStaS, the first step

consists of searching for similarities between motions of groups of atoms. The

input of GeoStaS is a set of conformations generated by the MD simulation. The

basic assumption of the algorithm is that correlations between parts of a

molecular system are observed if there are similar motions between those

corresponding parts. The particularity of GeoStaS is to produce a trajectory for

each atom of the system, and not only regarding the global conformations. The

algorithm evaluates the similarity between the trajectories. Usually, a similar mode

of motion of two entities, or two atoms, is detected through an evaluation of the
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ensemble of 3N coordinate vectors available in the MD trajectory. At the end of

the process, a cross-correlation matrix is obtained. However, such a method does

not allow detecting properly rotation motions as demonstrated by Romanowska et

al. [65]. Therefore and to optimize their correlation motions, all atom trajectories

are compared by finding an isometry between them, i.e., translation plus rotation

motions. A pairwise similarity matrix of atomic motions is hence created by the

calculation of a geometric similarity of the trajectories using quaternion-based

techniques. The second step is to iteratively cluster the atoms to form domains of

the molecular system by calculating the smallest mutual distance such as described

in [65]. Therefore, the user needs to provide the final number of clusters as a

criterion to stop the algorithm. To critically deduce the final number of cluster, we

used a plot of the distance between the merged clusters versus the iteration

number of the clustering algorithm. A large change in the distance between

clusters acts as a signal that a further merging between clusters is equivalent to

group unrelated clusters. The resolution degree considered in our analysis was

defined at the level of the Ca atoms.

The second approach, the dynamical network analysis strategy, called ‘‘network

approach’’ here below, is implemented as an extension plugin in VMD. As

detailed in Sethi et al. [66], the resolution of the network describing the protein

structure such as one edge corresponds to one residue located on the Ca atom.

Pairs of nodes are connected based on the covariance, and correlation between

pairs of atoms are calculated with Carma from the MD trajectories. Correlation

data are then used to generate the weights for the dynamical network describing

the protein dynamics. The resulting network is thereafter submitted to the

Girvan-Newman algorithm [68] to determine the community substructure, i.e.,

the set of sub-networks that partition the original network. As described in [68],

the Girvan-Newman algorithm is based on the measure of the betweenness

centrality of the network of residues. The betweenness centrality of a node consists

in the number of shortest paths built from all vertices to all others that pass

through the given node. Hence, the centrality measure allows to detect the

important connector-like residues considering the global structure of the network,

without any bias on a maximal distance between pairs of nodes.

The ProDy package [69] was considered together with the Normal Mode

Wizard (NMWiz) VMD plugin. ProDy/NMWiz allows performing essential

dynamics analysis (EDA) [70] of an MD trajectory to extract the principal

conformational changes [71]. We based our analysis on only the Ca atoms of the

mOR structure to compute and visualize the normal modes out of a Principal

Components Analysis (PCA) of the MD data.

Results and Discussion

The stability of the mOR structure modeled in a simplified membrane was

validated according to the convergence of the Root Mean Square Deviation

(RMSD) (S1 Fig.). The structural quality assessment was achieved through the
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Ramachandran plot of the last structures of the MD equilibration protocol (S2

Fig.). In the next sections, we analyze the 0.5 ms production MD data, as described

in Methods, to further investigate the dynamical behavior of mOR. Our analyses

are divided in a hierarchical way regarding the mOR structure. In Section A, we

show that the overall shape of the mOR structure is well preserved at the sub-

microsecond time scale. In Section B, the mOR structure was considered as a set of

seven entities corresponding to the helices. A bendability scale of the different

helices is pointed out. Important consequences at the atomic scale on the binding

site properties, i.e., shape and volume, are demonstrated in Section C.

In Section D, the mOR structure is modularized, according to data extracted

from the MD simulation, with two different approaches. These latters, fitting well

together, are discussed in terms of the basal activity of the mOR and can explain

why the signal transduction is highly efficient during the activation mechanism

according to the intrinsic flexibility of mOR. Finally, in Section E, essential

dynamics analyses are performed and rationalized with the modularization

techniques used in the previous sections.

A. Overall dynamical properties of mOR

To understand how the global conformational state of mOR is evolving with time,

we analyzed various geometrical features of the mOR structure along the 0.5 ms all-

atom MD production phase. First, the RMSD values following the 25 ns

equilibration stage were plotted (S3 Fig.). The plateau reported in S3 Fig. implies

no drastic change in the overall conformation of the mOR structure during the

production trajectory. Additionally, the standard deviation of the RMSD values

between the starting frame of the equilibration and the generated conformations

throughout the MD is very low, i.e., below 0.24 Å. The radius of gyration, an

indicator of the mOR structure compactness, remains almost constant along the

0.5 ms MD production stage (Fig. 2), with an average value of 21.45 Å and a SD of

0.11 Å. It indicates that the overall volume and thus the conformational state of

mOR is not evolving much, preserving therefore the global shape of the mOR.

The secondary structure elements of the mOR are well preserved throughout the

simulation (Fig. 3), especially the seven a-helices, H1 to H7. Even the short coil of

H5 involving the A240-F241-I242 residues, due to a small helix deformability

coming from the presence of a proline at position 244 in the mOR sequence, is

observed along the whole MD run. The short a-helix at the end of the receptor

structure (H8), essential for the recognition between mOR and a G-protein, is

preserved as well. The intracellular loop IL1 presents mainly a turn-type secondary

structure but could be assigned to a coil or even a 310 helix. The short a-helix of

IL2 is mainly conserved, even if a coil-type conformation could be occasionally

adopted. IL3 presents the most varying conformation in terms of secondary

structure. It consists mainly of an alternating coil to turn conformation. We also

noticed that some parts of IL3 can adopt an isolated bridge type secondary

structure, meaning that longer MD runs over several ms can possibly fold IL3 in

On the Modularity of the Intrinsic Flexibility of the m OR

PLOS ONE | DOI:10.1371/journal.pone.0115856 December 30, 2014 8 / 29



Fig. 2. Radius of gyration of the mOR structure along the 0.5 ms all-atom MD simulation.

doi:10.1371/journal.pone.0115856.g002

Fig. 3. Identification of the secondary structure elements of the mOR structure during the 0.5 ms all-
atom MD simulation. Secondary structures are classified according to the color code illustrated below. The
regions for the different helices, ILs and ELs, with respect to the mOR structure are depicted on the right side.

doi:10.1371/journal.pone.0115856.g003
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diverse conformational states. The extracellular loop EL1 switches between turn

and coil; EL2 conserves its b-bridge (extended) whereas EL3 preserves a coil type.

We next investigated the backbone geometrical properties for the different mOR

domains to corroborate the high conservation of the secondary structural

elements. The SD of the averaged dihedral angles between four consecutive Ca

atoms along the mOR backbone conformations generated during the MD

production stage is presented in Fig. 4. The dihedral SDs averaged for the

significant parts of the mOR are reported in Table 1. The small value of the

dihedral SDs averaged over the entire receptor, i.e., 7.9 ,̊ is in agreement with the

conservative behavior of the secondary structure elements as noticed before. Fig. 4

illustrates the profile of the different degrees of torsional ability along the

structure. The ILs and ELs are the most deformable parts of the mOR with mean

SD values of 17.7 and 15.6 ,̊ respectively. More specifically, IL3 and EL2 with

dihedral SD values of 28.1 and 16.0˚are the most deformable loops between all ILs

and ELs, respectively. The a-helices are less deformable with a mean dihedral angle

SD of 5.5˚ for the bundle of the seven helices. H5 is the most deformable helix

with a value of 6.8 .̊ H2 and H3 are the most rigid ones with 5.0 and 4.5˚ values

which are still close to the dihedral value of H5, denoting therefore a rather low

difference of flexibility.

Therefore, we consider that the RMSD convergence, the stability of the gyration

radius, the conservation of the secondary structure assignments, and the very

small SDs around the mean backbone dihedral angles along the MD trajectory for

the different receptor parts are all indicators that the overall shape of the structure

is not strongly evolving with time. Nevertheless, these observations do not mean

that mOR could be prevented from adopting different conformational states that

might explain its flexibility-induced basal activity. In fact, the conformations of

GPCRs are rather close in terms of their global shape as they are in many

transmembrane proteins. The lipid environment of such proteins implies that

large conformational changes in the bilayer would occur in general at a higher

thermodynamic cost, compared to globular proteins in water solution. Indeed, a

more viscous environment, as it is the case for the bilayer environment compared

to water, implies a higher thermodynamic cost due to the needed reorganization

following high conformational changes of a protein. Therefore the conformational

differences are in general small, and thus have to be studied in terms of distances

between sub-modules rather than in terms of the overall shape of the protein, as

mentioned in Introduction for other GPCRs [42–43].

In the next section, we analyze the dynamical behavior of mOR and its possible

biological significance in terms of the components of the receptor. The mOR

structure is subdivided into seven entities corresponding to the helices. Our aim is

to analyze the degree of flexibility of each of the helices, a mechanical feature of

the mOR that could have important structural impact in the vicinity of the

receptor where the orthosteric binding site is localized.
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B. Bendability of the mOR helices

To consider the bendability of the helices, we analyzed the Root Mean Square

Fluctuations (RMSFs) along the backbone of the receptor structure in the 0.5 ms

all-atom MD simulation (Fig. 5). In Table 2, we present the average RMSF for the

significant parts of the structure. The most flexible regions are, as expected, the

ELs and ILs loops with a mean RMSF value of 1.34 and 1.66 Å. The a-helices are

the most rigid parts. In this regard, it is interesting to notice that the degree of

rigidity/flexibility of the seven a-helices can be very different. H2 and H3, the

most rigid helices, show mean RMSF values of only 0.64 and 0.70 Å, respectively.

We had already observed that H2 and H3 are also characterized by the lowest

dihedral angle SDs. In contrast, H1 is the most flexible with a mean RMSF of 1.17

Å, which is almost twice as much as 0.64 Å for H3.

The RMSF analysis gives information about the ability of some parts of the

receptor to deviate from the average structure of mOR during the MD simulation,

Fig. 4. Standard deviation of the mean dihedral angles calculated from the 0.5 ms all-atom MD
production between four consecutives Ca atoms along the mOR backbone.

doi:10.1371/journal.pone.0115856.g004

Table 1. Standard deviation (SD) of the mean dihedral angles computed from sequences of four consecutives Ca atoms along the mOR backbone from the
0.5 ms all-atom MD simulation.

Element SD of the dihedral angles (˚) Element SD of the dihedral angles (˚)

H1 5.09 EL1 8.04

H2 4.97 EL2 15.96

H3 4.48 EL3 22.05

H4 5.90 IL1 8.40

H5 6.75 IL2 9.73

H6 5.67 IL3 28.14

H7 5.88 ELs 15.60

H8 5.03 ILs 17.73

doi:10.1371/journal.pone.0115856.t001
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but not about the capability for these domains to be intrinsically flexible and

about their maximal deformation. We therefore investigated the backbone

deformability for the different secondary structure elements. Indeed, even if the

dihedral angle SDs are very weak, the values depict an average behavior and do

not show that dihedral angles could momentarily divert significantly from their

mean values due to a high deformability of some helices related to microstates of

the mOR structure that could have an important biological role [23–25]. The

capability of some helices to become distorted were calculated by considering the

maximum angle values adopted by the mOR structures represented at the coarse-

grained BENDIX resolution, as explained in Methods. The mean maximum

BENDIX angles for each helices and their SDs are reported in Table 3. The order

Fig. 5. Root Mean Square Fluctuation (RMSF) of the Ca atoms along the mOR structure computed
during the 0.5 ms all-atom MD production. Color codes of ILs, ELs, and Hs are the same as in Figure 1.

doi:10.1371/journal.pone.0115856.g005

Table 2. Mean Root Mean Square Fluctuation (RMSF) computed for the Ca atoms of the mOR backbone from the 0.5 ms all-atom MD simulation.

Element RMSF (Å) Element RMSF (Å)

H1 1.17 EL1 1.00

H2 0.70 EL2 1.25

H3 0.64 EL3 1.82

H4 0.82 IL1 0.81

H5 0.90 IL2 1.19

H6 0.86 IL3 2.30

H7 0.97 ELs 1.34

H8 1.11 ILs 1.66

doi:10.1371/journal.pone.0115856.t002
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of bendability for the seven helices according to the mean maximum BENDIX

angle is H7, H4, H6, H2, H3, H5, and H1, the last one presenting a mean

maximum value still not negligible of 15.0 .̊ It clearly indicates that the helices

could be locally and momentarily highly deformed.

To illustrate the biological implications on how the deformability of the helices

and the time dependence of their inter-distances affect the binding site of mOR, we

analyze, in the following part, how the binding site shape of the mOR can evolve

throughout time.

C. Dynamical properties of the mOR binding site

As described in the Methods, we used the POCASA software as a pocket detection

algorithm on a series of frames recorded during the mOR MD production run.

The analysis was performed each 5 ns of the all-atom 0.5 ms MD trajectory. For

every selected frame, we checked that the principal pocket detected indeed

corresponds to the expected agonist/antagonist binding site by visualizing if the

pocket is located specifically near the residue D147, this last one being well known

to interact with several agonists and/or antagonists of mOR [72]. The POCASA

volume (PV) computed for each selected frame of the all-atom 0.5 ms MD

trajectory is presented in Fig. 6. The observed maximum value is 1297 Å3 at

375 ns, the minimum 231 Å3 being recorded at 270 ns, revealing how the binding

site volume could vary during the simulation. The alignment between the mOR

conformations corresponding to these extreme PV values results in a RMSD value

of 1.22 Å. This value has to be related to the conformations of specific side chains

close to the binding sites. Several side chains could evidently fill the binding site

after having changed their conformations, thus hindering the extension of the

cavity volume towards the inter-helix space. Fig. 7 illustrates a superimposition of

the conformations of the binding site recorded at the 270 and 375th ns frames. In

the figure, we focus on residues located at a maximum distance of 5 Å around

residue D147. In the 270th ns frame, characterized by the minimum PV value,

three additional residues are present, F152 in H3, W293 in H6, and Y326 in H7, as

compared to the 375th ns frame with the maximum PV. As the side chains of the

Table 3.Minimum, maximum, mean, and standard deviation (SD) values of the maximum helix angle value observed using the BENDIX representation for to
the different helices of the mOR structure from the 0.5 ms all-atom MD simulation.

Helix
Mean BENDIX
angle (˚)

Minimum BENDIX
angle (˚) Maximum BENDIX angle (˚) SD of the BENDIX angle (˚)

H1 15.0 5.0 32.2 3.8

H2 27.8 9.1 53.6 6.1

H3 18.8 9.9 32.5 3.4

H4 32.5 13.9 49.6 4.8

H5 17.9 6.8 31.9 3.5

H6 28.5 14.2 42.6 3.8

H7 35.9 21.8 57.8 4.3

doi:10.1371/journal.pone.0115856.t003
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Fig. 6. POCASA binding site volume measured every 5 ns of the 0.5 ms all-atom MD simulation of the
mOR structure.

doi:10.1371/journal.pone.0115856.g006

Fig. 7. Superimposition of the binding site conformations observed at the 270th (green) and 375th

(blue) ns frames, i.e., the frames of the minimum and maximum POCASA volume, respectively, as
deserved during the 0.5 ms all-atom MD simulation of the mOR structure. The three residues labelled, i.e.,
F153, W293, and Y326, are the only ones located in the minimum volume pocket. The corresponding
residues of the binding site conformation related to the maximum POCASA volume are presented in red.

doi:10.1371/journal.pone.0115856.g007
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additional residues W293 and Y326 are translated towards the cavity of the mOR

structure, it is clear why the PV values and also the binding site characteristics can

be influenced by the flexibility of the helices. Interestingly, residue F153 is subject

to a perpendicular rotation in addition to a translational motion, an important

characteristic for an aromatic nature regarding the geometry required for a

plausible interaction of this residue with an aromatic moiety of a ligand.

Such a flexibility implies a variation of the inter-helix distances and hence a

closure/opening of the binding pocket. Let us also stress that exploring the

binding site properties related to the mOR flexibility is very important when one

knows that residue W293 has been found to be essential in the binding of some

most used anesthetics like fentanyl, carfentanyl, alfentanil, or sufentanil but not

for the binding of remifentanyl according to some recent experimental studies

[72]. In this study, it is also observed that Y326 in H7 is an important residue for

agonists and/or antagonists binding. Y326 is active in the binding of fentanyl,

alfentanil or sufentanil but not of carfentanil and remifentanyl.

We also observed that, at the extracellular side of the mOR structure,

conformations corresponding to the extreme PV values can be rather different.

EL2 is differently localized compared to the rest of the receptor. This loop plays an

important role in the opening of the mOR cavity. It affects the available space for

mOR ligands of variable volumes. Also, H6 can adopt different conformational

states, depicting a plausible closing of the mOR cavity. Indeed, the conformational

flexibility of H6 is mainly observed at the extracellular side. We assume that the

bendability of H6 originates from the presence of proline P295, in close vicinity to

W293, allowing H6 to deviate from its average conformation like a pivot. P295 is

normally a highly conserved residue in many GPCRs. It could play a role in the

ligand-induced mechanisms allowing GPCRs to ‘‘be docked’’ by ligands of

different sizes.

The same situation can be observed for helix H7, for which the residue Y326 is

close to proline P333, and which could also act as a pivot to approach Y326 in the

binding to the mOR cavity. The high bendability of H6 and H7, the third and the

first most bendable helices according to our scale of flexibility, is determined from

the BENDIX representations (Table 3). This could be explained in terms of their

biological function, bringing some essential residues, i.e., W293 in H6 or Y326 in

H7, for ligand binding in the mOR cavity thanks to the presence of a proline kink

near these residues.

In Fig. 8, we present the shape of the pocket cavity as gathered with POCASA

every 100th ns frame. It can be clearly seen that for the binding site not only the

volume matters but also of the geometry. Even if several pockets may have a very

similar PV, i.e., a value of 417 Å3 for the 400th ns frame versus 430 Å3 for the 100th

ns frame, their topologies may really be different with a rather spherical shape for

the 100th ns frame compared to a more extended one for the 400th ns frame.

This plasticity of the binding sites observed during the MD simulation is an

explanation of why the mOR could interact with a diversity of ligands exhibiting a

large panel of volume sizes. These results demonstrate that taking into account the

flexibility properties, and more specifically the helix bendability in the case of
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GPCRs, is very important for docking studies as they directly influence the

residues present in the binding cavity.

The correlations between the motions of the different parts of the mOR

structure and potent explanations that could facilitate early ligand binding events

are examined in the following section.

D. Functional significance behind the mOR flexibility

D.1 GeoStaS: A method to modularize the mOR structure

The GeoStaS algorithm, described in Methods, was applied to the all-atom MD

results in order to subdivide the mOR into dynamical domains. The first stage was

to determine the number of domains in the mOR structure using the strategy of

Shao et al. [73]. The distance between merged clusters, called the critical distance

(CD), was thus computed at each clustering iteration (S4 Fig.). The resulting plot

allows determining the number of domains in mOR by selecting the coordinate at

which the CD strongly differs from its previous value. The obtained optimal

number of domains was seven.

In Fig. 9, we illustrate the seven dynamical domains of the mOR structure as

obtained from GeoStaS. The composition of the domains in terms of helices, ILs,

and ELs, as well as the average RMSF per residue for each domain are presented in

Table 4. For the 288 residues of mOR, the dynamical domains gather very different

number of residues, i.e., 38, 74, 24, 54, 57, 31, or only 10 residues. We also noted

that none of the domains correspond to a block of one full helix but are rather

constituted of sets of residues belonging to different helices or to ILs/ELs loops,

disclosing a high natural intercommunication or an interaction aptitude between

sub-domains of mOR. Among the three most populated dynamical domains, i.e.,

D2, D5, and D4, two of them, i.e., D2 and D4, are constituted of residues

belonging only to helices. Moreover, D2 is the only dynamical domain containing

residues from each of the helices of the bundle of mOR. D4 contains also residues

from each of the helices, except H1. Let us also mention that D2 and D4 are

localized by the center of the receptor axis. The obtention of these two domains

suggests that the flexibility of the mOR center is essentially summarized in a pair of

two blocks that are uncoupled from the dynamics of the rest of the receptor. The

Fig. 8. Representation of the pocket binding site as detected with the POCASA software. The shape
comes from the gathering of the positions of the POCASA probe sphere explored every 100th ns frame of the
0.5 ms all-atom MD simulation of the mOR structure. The five pockets illustrate the variation of the binding site
shape during the simulation.

doi:10.1371/journal.pone.0115856.g008
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two lower values of the average RMSF per domain, 0.73 and 0.65 Å, respectively,

correspond to those D2 and D4 domains, illustrating that they are the most rigid

parts of the mOR structure. Moreover, these two domains are, along with D5, the

most populated domains in term of residues, i.e., with 74 and 54 residues,

respectively.

The extracellular side of mOR also involves two dynamical domains, i.e., D5 and

D1. They are among the most flexible parts of the mOR structure according to the

values of their average RMSF per residue value, 1.42 and 1.15 Å, respectively.

Finally, the three least populated dynamical domains in terms of the number of

Fig. 9. Domain subdivisions of the mOR structure as obtained using the GeoStaS algorithm applied to
the 0.5 ms all-atom MD simulation. The seven resulting domains are D1 (red), D2 (green), D3 (blue), D4
(cyan), D5 (pink), D6 (yellow), and D7 (black).

doi:10.1371/journal.pone.0115856.g009

Table 4. Numbers of residues in the helices (H1–H8), ILs, and ELs composing the different domains, i.e., D1 to D7, as determined with the GeoStaS
algorithm applied to the 0.5 ms all-atom mOR MD simulation.

Domain H1 H2 H3 H4 H5 H6 H7 H8 EL1 EL2 EL3 IL1 IL2 IL3 RMSF (Å)

D1 [38] 13 9 1 6 9 1.42

D2 [74] 13 12 9 8 10 6 16 0.73

D3 [24] 5 1 12 6 0.94

D4 [54] 7 13 8 8 14 4 0.65

D5 [57] 7 6 11 16 10 7 1.15

D6 [31] 4 3 5 5 10 4 1.14

D7 [10] 10 2.57

Numbers between brackets correspond to the total number of residues gathered in a domain. The last column reports the mean Root Mean Square
Fluctuation (RMSF) per residue for each domain. The RMSF values were computed over all Ca atoms of the mOR.

doi:10.1371/journal.pone.0115856.t004
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residues in mOR, i.e., D3, D6, and D7, are located in the intracellular part.

Interestingly, D7 mainly represents the longer IL of the receptor, i.e., IL3,

illustrating its possible role as an independent module and implicated as a

recruiter in the recognition of several proteins as reported in literature [74].

Moreover, IL3 is clearly the most flexible compared to the other parts of the

receptor structure according to its mean RMSF per residue value, i.e., 2.57 Å. D3,

with a residue composition consisting of the entire H8 and the intracellular side of

H1, can play a role in the recognition of mOR with a G-protein. H8 is the place

where the G-protein/mOR interactions occur whereas the intracellular section of

H1 can be coupled to helix H8 to leave space for the trimeric G-protein.

Such a subdivision of the mOR structure is directly related to the allosteric

nature of the mOR, i.e., a set of flexible blocks divided into three regions. The first

region, composed of two modules in the extracellular side of mOR, plays a

plausible role in the opening/closing of the structure during the early events of

ligand recognition. The two larger modules in the center are involved in the

transduction of the ligand-induced mechanism to the extracellular side. The last

one contains three modules; among them D3 acting as the transmitter to the G-

protein of ligand messaging and finally the independent module D7 acts like an

arm to interact with a great variety of proteins. The mean RMSF per residue

values support our hypothesis of a more rigid central domain compared to the

intra- and extracellular domains, with a highly flexible D7 module compared to

the other parts of mOR.

D.2 A network-based approach to partition the mOR structure

A complementary approach, i.e., the residue-residue network approach as

described in Methods, was applied to modularize the mOR structure. To construct

the network of residue-residue interactions, each residue was assigned to only one

node. The method was applied to a coarse-grained representation of the mOR

system where each bead is centered on one Ca atoms. Edges of the network were

determined by considering the dynamical information extracted from the MD

results, i.e., a correlation matrix of distances between pairs of beads as explained in

Methods. The nodes were connected together only if they were within a distance

of 4.5 Å, for a minimum time of 75% of the MD production trajectory. Edges

between neighboring Ca atoms along the primary sequence were disregarded to

avoid any bias due to non-relevant correlated motions. The network contained

1936 edges involving 288 nodes, each node corresponding to one residue. The

number of edges and the mean number of edges per residue for the helices, ILs,

and ELs of mOR are presented in Table 5.

As seen from Table 5, helices are in general more connected than ILs/ELs with

higher numbers of edges. It is reported in literature that H3 could have a potential

role in the transduction of the ligand-induced signal. It is thus interesting to note

that H3 is the most connected helix with a mean residue connectivity of 8.2. The

least connected helix is H8 with a mean connectivity of 6.4 per residue. H8 has to

be effectively more independent and free than the other helices in order to

recognize a G-protein during the signaling process. Among the three ILs, IL3 is
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the least connected loop, supporting its potential role as an arm module involved

in the recognition of partner proteins of mOR. The importance of the edges in the

residue-residue interactions was weighted on the correlation data extracted from

the MD simulation as described in Methods. The so-obtained network of the mOR

structure and its weighted version are given in S5 Fig.

From the weighted network, we generated the communities to partition the

mOR structure. Communities are related to the residues that move together by

block as computed from the correlation-based weight network such as explained

in Methods. Twelve communities were identified, resulting therefore to a least

coarse-grained modularization of the mOR structure compared to the GeoStaS

approach discussed above. The composition in terms of helix/ELs/ILs of the

twelve modules is reported in Table 6. Fig. 10 illustrates the subdivision of the

receptor structure into the twelve modules.

As for the GeoStaS algorithm, the modularization leads to various domains in

terms of helices, ILs, and ELs, which are nevertheless less heterogeneous compared

to what is observed with the so-called network due to the least coarse

modularization of mOR. Moreover, the distribution of the residue population

between the modules of the network approach is naturally less scattered. Hence,

the most populated module is M4, composed of 36 residues, and the least

populated one is M1 with 13 residues, whereas the most and least populated

dynamical domains generated using the GeoStaS algorithm did have 74 and 10

residues, respectively. Therefore, some domains obtained with the modularization

approach can almost be assimilated to entire- or half-block of a single helix, IL, or

EL. The M1 module corresponds to the upper-half part of H1, consisting of 13

residues of the entire 30 residues of H1. M2, composed of 17 residues,

corresponds to the entire 14-residue IL3 loop, the three last residues coming from

the extracellular side of H6. Among the 34 residues of H5, 21 coming from its

central part are grouped in module M3 whereas 11 other residues of the

extracellular section of H5 are located in module M7. H5 is principally found in

the M3 and M7 modules, making them weakly heterogeneous composed modules.

A similar but still less homogeneous situation is observed for H6 as for a total of

33 residues, 17 are located in module M9 which is composed of 20 residues, with

the 16 remaining residues dispersed between three modules, i.e., M2, M5, and

Table 5. Number of edges and its mean value per residue in the residue-residue interaction network determined from the all-atom 0.5 ms MD simulation for
the helices, ILs, and ELs of the mOR structure.

Element Total of edges Mean number of edges Element Total of edges Average edge

H1 217 7 H8 77 6.4

H2 232 8 EL1 33 5.5

H3 278 8.2 EL2 88 4.6

H4 176 7 EL3 19 3.2

H5 235 6.9 IL1 32 5.3

H6 234 7.1 IL2 54 5.4

H7 198 7.1 IL3 56 4

doi:10.1371/journal.pone.0115856.t005
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M12. The subdivision of the mOR structure with the network approach does

however not lead to a one-to-one correspondence between module and secondary

structure elements, i.e., helix, IL, or EL. Some modules are still very heterogeneous

in terms of their helix, IL, and EL content like modules M4, M5, M6, M8, M10,

M11, and M12, representing together a number of 199 residues over a total of 288.

The heterogeneity in terms of helix composition of several modules supports

concomitant motions of parts of diverse helices due to their interactions. As a

Table 6. Composition in terms of helices (H1–H8), ILs, and ELs of the different modules, i.e., M1 to M12, as determined through the network modularization
of the all-atom 0.5 ms MD simulation. Numbers between brackets correspond to the total number of residues gathered in each of the modules of the mOR
structure.

Module H1 H2 H3 H4 H5 H6 H7 H8 EL1 EL2 EL3 IL1 IL2 IL3

M1 [13] 13

M2 [17] 3 14

M3 [24] 3 21

M4 [36] 11 13 12

M5 [27] 9 12 6

M6 [33] 9 5 6 13

M7 [15] 11 4

M8 [34] 6 8 17 1 2

M9 [20] 1 17 2

M10 [17] 7 8 2

M11 [28] 7 1 3 12 5

M12 [24] 10 2 4 8

doi:10.1371/journal.pone.0115856.t006

Fig. 10. Modularization of the mOR structure as obtained through the network approach applied to the
0.5 ms MD simulation. The twelve resulting modules are M1 (blue), M2 (red), M3 (gray black), M4 (orange),
M5 (yellow), M6 (brown), M7 (gray), M8 (green), M9 (white), M10 (pink), M11 (cyan), and M12 (purple).

doi:10.1371/journal.pone.0115856.g010

On the Modularity of the Intrinsic Flexibility of the m OR

PLOS ONE | DOI:10.1371/journal.pone.0115856 December 30, 2014 20 / 29



consequence, the flexibility properties of mOR are disclosing an inter-helix

communication related to the allosteric nature of GPCRs and the need to

propagate rapidly throughout the membrane domain the activation message due

to the presence of a ligand.

D.3 Comparison between the GeoStaS and the network-based mOR

modularization

The finer-grained modularization of the mOR structure coming from the network

approach is actually in good agreement with the coarser model obtained from the

GeoStas algorithm. By grouping some modules coming from the network

approach, we did recover a similar subdivision as the one obtained with GeoStaS.

The GeoStaS dynamical domain D1 corresponds to the two M1 and M6 modules

of the network approach, 28 residues are in common among the 38 residues of D1

and the total of 46 residues for both M1 and M6. The M5/M7/M10 modules,

grouping together 59 residues, have 49 of them that are identical with the 57

residues of D5. The extracellular part of the mOR structure then corresponds to

two GeoStaS domains (or five network-related) modules as the pair of domains

D1/D5 was well related to the extracellular side. An interesting connection

between the GeoStaS and the network approach is noticed for the central part of

mOR: paired domains D2/D4, containing a total of 128 residues, have 102 residues

in common with the grouped M3/M4/M8/M9 modules, containing a total of 114

residues.

Regarding the intracellular part of mOR, all of the 10 residues of the D7 domain

are comprised in module M2, composed of 17 residues. This section of mOR

corresponds to loop IL3, confirming its dynamical independency as a recognition

module for partner proteins. In parallel, a good correlation is found between M11

with 28 residues and D3 with 24 ones, for which 22 identical residues constitute

the entire H8 and the extracellular part of H1. Finally, M12 with 24 residues and

D6 with 31 ones share 15 residues. Both GeoStaS and network methods describe

the same modular-related flexibility of mOR, and the GeoStaS modularization is in

a way just a coarse-grained version of the network approach. The two approaches

thus depict a clear separation between the extracellular side, the central section,

and the intracellular part of mOR according to the flexibility properties computed

from the 0.5 ms MD simulation.

We thus understand that the flexibility of the extracellular side as a well-defined

structural block is related to its role in allowing the docking of a large variety of

ligands. The ligands can have very different sizes due to the motion of the EL2

loop and also to the opening/closing of the extracellular sections of the mOR

helices. This observation is correlated with the high variation of the volume of the

binding site as discussed previously, as well as with the role of the helices H6 and

H7 making essential residues available for ligand binding. On the order hand, the

mOR central section is a more rigid part, constituting larger domains or modules

as obtained with both the GeoStaS and network approaches. The less flexible

behavior of the central part of mOR is related to the function of GPCRs. Hence,

once a ligand is docked, the signaling process through the membrane requires
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high communication ability between the helices in order to be effective and to

trigger the allosteric conformation change at the extracellular level. Regarding this

latter receptor part, the independence of IL3 as a flexible block is also related to

the mOR function. IL3 has a well-known role in the interaction mechanisms

between mOR and other proteins. A flexibility unit composed of H8 and the

extracellular part of H1 is associated with the potential role of H8 in the

recognition of a G-protein once the ligand-induced signal is transduced

throughout mOR. The fact that the flexibility of the intracellular section of H1 is

related to the one of H8 can be understood as a functional requirement to leave

space when a G-protein is interacting with mOR.

In the last section, we will focus on the plausible correlated motions of the mOR

domains proposed here above in order to understand the conformational engine

due to mOR intrinsic flexibility properties.

E. Insights on the coupling between the mOR domains

We used the Essential Dynamics Analysis (EDA) technique, also known as

Principal Components Analysis (PCA), to decipher the plausible correlation

between the extracellular, the central, and the intracellular parts, and the

functional significance behind the domain-related flexibility properties of the

mOR structure.

EDA was applied to the all-atom 0.5 ms MD run by considering only the

coordinates of the Ca atoms in constructing the covariance matrix. The first 20,

10, and 5 calculated eigenvectors represent 80, 68 and 54%, respectively, of all

mOR movements supporting the assumption that the functional dynamics of mOR

is dominated by principal collective modes. Among them, the five more

preponderant ones have a value of 23, 11, 9, 6, and 5%, respectively. The motions

resulting from the three first eigenvectors are presented in Fig. 11.

The first mode depicts motions of the extracellular part of helices H1, H2, H4,

H5, H6, H7, and more slightly H3, along with movements of IL2, and especially

IL3 in the intracellular part. This first mode is therefore showing a concomitant

motion between the extra- and intracellular domains of mOR whereas the central

domain is still a very rigid part. The same behavior is observed for the second

mode. However, the direction of the extracellular/intracellular motions shows a

twist motion linked to the previous observation of the different binding site

shapes.

Interestingly, a strong correlation is observed in the third mode between the

extracellular side, for which an opening/closing motion of the mOR cavity is

observed, along with an elongation motion of helix H8 and a large motion of the

H1 extracellular part. Therefore, the third mode supports the allosteric nature of

the mOR by illustrating the coupling motions between a closure of the mOR cavity,

which can be due to a local ligand-induced fit, and a subsequent motion of the H8

surrounding needed to recognize a G-protein.

The EDA analysis of the mOR all-atom MD simulation supports the hypothesis

that the flexibility properties of GPCRs are directly linked to their functions, i.e.,
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the transduction of intracellular message throughout interactions with partner

proteins like G-proteins as well as other partners throughout the flexibility as a

module of the intracellular loops, as especially the IL3 one in the case of mOR.

The rigidity of the central part of mOR is also well related to the GPCR function,

as a weak flexibility of the center of a GPCR allows a better communication

between the helices to rapidly transduce the ligand-induced message in the

extracellular part.

Conclusion

Deciphering the flexibility properties of proteins is one of the current challenges in

molecular modeling. In this study, we have investigated the flexibility properties

of the mOR structure at the ligand-free state in a bilayer environment by

performing a sub-microsecond MD simulation.

We first showed that the overall shape of mOR is highly conserved. However,

the bendability scale of its helices has a clear influence on the conformational state

of its binding sites. More specifically, we rationalized the proximity between

proline and the essential residues to ligand binding. The proline residues induce a

kink in the mOR helices in order to bring together closer the binding residues,

especially in helices H6 and H7.

The study of the mOR binding site dynamics indicated that our MD studies can

provide a diversity of conformations of the binding site leading to a wide variety

of shapes and volume values. As a consequence, MD is not only a valuable

technique to generate alternative conformations of a receptor but also a way to

study specific local deformations of the mOR binding site. Our study also suggests

a high plasticity of the mOR binding site, exhibiting several different shapes with a

high volume variation, accounting for the experimentally known ability of mOR to

bind ligands of different sizes.

Fig. 11. Vector field representation of the three first principal modes obtained from the 0.5 ms all-atom
MD simulation of the mOR structure.

doi:10.1371/journal.pone.0115856.g011
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Next, we illustrated that the flexibility of mOR can be decomposed into a few

domains by applying two different algorithms on the dynamical information

extracted from the all-atom MD simulation. The partitioning of the mOR

structure consists of a few hubs in its intra-, extracellular, and membrane parts.

Such a subdivision demonstrates the mOR ability, as for other GPCRs, to articulate

modules together, a mechanical feature of the GPCR folding that could explain

the rapid transmission of cellular message. Essential Dynamics Analysis has

moreover given a functional significance behind the mOR dynamics as correlated

motions between intra- and extracellular sections of mOR have been depicted,

while the central mOR parts remain very rigid.

As a conclusion, the flexibility properties of mOR predispose to a coupling

between distant domains, which is the motor behind the allosteric behavior and

the ligand-induced conformational changes. The highly rigid modules of the mOR

central part being the mediators to communicate the message of the ligand

presence. The intrinsic flexibility of the mOR could be also one of the explanations

of the ability of this receptor to present a significant basal activity. For this

purpose, long MD simulations, i.e., micro- to milli-second timescale, would be

valuable to observe a certain active form of mOR.

Our approach to study the mOR flexibility in the apo-form thus contributes to

the understanding of the dynamical modes of GPCRs and their biological

implications. As a perspective, we propose that, prior to ligand docking

simulations, alternative conformations of the binding site need to be generated as

we clearly showed how its shape and volume can vary significantly. The

techniques we used to characterize the binding site characteristics could then be

applied to classify its alternative conformations in a library of conformations.

Another perspective is to apply the strategy developed here to perform MD

simulations of several GPCRs in the apo-form. It would supplement the more

usual approach of investigating GPCRs dynamics in their liganted form. Such

simulations could elucidate how the major flexibility properties of GPCRs

influence ligand binding and the characteristics of their binding site, but also

more complex mechanisms such as GPCRs oligomerization or, more generally,

interactions with partner proteins. MD simulations of other GPCRs should

therefore provide structural information about the basal activity of GPCRs.

Supporting Information

S1 Fig. Top: Root Mean Square Deviation (RMSD) between the starting mOR

structure and its subsequent conformations generated during the 25 ns MD

equilibration protocol. RMSD values were computed on all the heavy atoms of

mOR. Grey strips illustrate large RMSD fluctuations. Bottom left: Mean value of

the RMSD between the starting mOR structure and its subsequent conformations

on an increased length simulation windows with a step of 1 ns. RMSD values were

computed over all heavy atoms of mOR. Bottom right: Standard deviation of the

RMSD between the starting mOR structure and its subsequent conformations on
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an increased length simulation windows with a step of 1 ns. RMSD values were

computed over all heavy atoms of mOR.

doi:10.1371/journal.pone.0115856.s001 (TIFF)

S2 Fig. Ramachandran plot of the last nanosecond averaged structures of the

mOR structure generated during the 25 ns MD equilibration protocol. It

indicates that 98.5% of the residues are located in the most favorable regions in

blue according to the w and y angles. Orange points are related to the remaining

1.5% of residues located in the lighter blue allowed regions of the Ramachandran

plot.

doi:10.1371/journal.pone.0115856.s002 (TIFF)

S3 Fig. Root Mean Square Deviation (RMSD) between the starting mOR

structure and its subsequent conformations generated during the MD

simulation, including the 25 ns equilibration stage and the 0.5 ms production

trajectory. RMSD values were computed over all heavy atoms of mOR.

doi:10.1371/journal.pone.0115856.s003 (TIFF)

S4 Fig. Critical distance evolution in function of the clustering steps as

implemented in the GeoStaS algorithm, with focus on the red region of the

principal graph to point out the chosen number of clustering steps, i.e., seven.

The GeoStaS algorithm was applied on the all-atom 0.5 ms MD simulation of the

mOR structure.

doi:10.1371/journal.pone.0115856.s004 (TIFF)

S5 Fig. Left: Unweighted and right: Weighted versions of the mOR residue-residue

interactions network determined from the all-atom 0.5 ms MD simulation of the

mOR structure. Edges between residues, represented as red sphere, are depicted

and superimposed on the mOR structure in green. Low and high weighted edges

are pointed out to apprehend how the residue-residue interaction network is

evolving by taking account the weighted edges.

doi:10.1371/journal.pone.0115856.s005 (TIFF)

S1 Text.

doi:10.1371/journal.pone.0115856.s006 (DOC)
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