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ABSTRACT 

 

The main objective of this project was the controlled synthesis of graft copolymers via a 

thiol-ene addition mechanism.  The Reversible Addition-Fragmentation chain Transfer 

(RAFT) process was used in all polymerization reactions with the aim to achieve a 

certain degree of control over the molecular weight.  Several synthetic steps were 

required in order to obtain the final graft copolymer and each step was investigated in 

detail.   

 

Firstly, two RAFT agents (cyanovaleric acid dithiobenzoate and dodecyl isobutyric acid 

trithiocarbonate) were synthesized to be used in the various polymerization reactions of 

styrene and butyl acrylate.  This was done successfully and the RAFT agents were used 

to synthesize low molecular weight polystyrene branches of the graft copolymer.  

Different molecular weights were targeted.  It was found that some retardation 

phenomena were present especially at high RAFT agent concentrations.   

 

The polystyrene branches that were synthesized contained RAFT end-groups.  Various 

pathways were explored to modify these RAFT end-groups to form thiol end-groups to 

be used in the thiol-ene addition reaction during the grafting process.  The use of sodium 

methoxide for this purpose proved most successful and no evidence of the formation of 

disulfide bridges due to the initially formed thiols was detected. 

 

Allyl methacrylate (AMA) was chosen as monomer to be used for the synthesis of the 

polymer backbone because it has two double bonds with different reactivities.  For the 

first time, RAFT was used to polymerize AMA via the more reactive double bond to 

obtain linear poly(allyl methacrylate) (PAMA) chains with pendant double bonds.  

However, at higher conversions, gelation occurred and the molecular weight distributions 

were uncontrolled.  NMR was successfully used to study the tacticity parameters of the 

final polymer. 
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Finally, the synthesis of the graft copolymer, PAMA-g-polystyrene, was carried out by 

means of the “grafting onto” approach.  The thiol-functionalized polystyrene branches 

were covalently attached to the pendant double bonds of the PAMA polymer backbone 

via a thiol-ene addition mechanism in the presence of a free radical initiator. A Multi-

Angle Laser Light Scattering (MALLS) detector was utilized in conjunction with Size-

Exclusion Chromatography (SEC) to obtain molecular weight data of the graft 

copolymer.  The percentage grafting, as determined by 1H-NMR, was low. 
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OPSOMMING 

 

Die hoofdoel van hierdie projek is die beheerde sintese van ‘n entkopolimeer via ‘n 

merkaptaan-een addisiereaksie.  Die sogenaamde “Reversible Addition-Fragmentation 

chain Transfer” (RAFT) proses is in al die polimerisasiereaksies gebruik met die doel om 

‘n mate van beheer oor die molekulêre massa van die polimere te verkry.  Verskeie 

stappe (waarvan elkeen ten volle ondersoek is) was nodig om die finale entkopolimeer te 

verkry.   

 

Eerstens is twee RAFT-agente (sianovaleriaansuur ditiobensoaat en dodekielisobottersuur 

tritiokarbonaat) gesintetiseer vir gebruik in verskeie polimerisasiereaksies van stireen en 

butielakrilaat.  Hierdie stap was suksesvol en die RAFT-agente is toe gebruik vir die 

sintese van lae molekulêre massa polistireensytakke vir die entkopolimeer.  Die 

molekulêre massas van die sytakke is gevarieer en daar is gevind dat vertragings in die 

polimerisasiereaksies voorgekom het, veral by hoë konsentrasies van die RAFT-agente. 

 

Die polistireensytakke wat gemaak is, besit almal ‘n RAFT-eindgroep.  Verskeie roetes is 

bestudeer ten einde die RAFT-eindgroepe tot merkaptaan-eindgroepe te modifiseer om 

sodoende tydens ‘n merkaptaan-een addisiereaksie gebruik te word.  Die gebruik van 

natriummetoksied was hier die suksesvolste en daar was geen teken van die vorming van 

disulfiedbrûe as gevolg van die oorspronklik gevormde merkaptane nie.  

 

Allielmetakrilaat (AMA) is gekies as die monomeer wat gebruik sou word vir die sintese 

van die polimeerruggraat omdat die monomeer twee dubbelbindings met verskillende 

reaktiwiteite besit het.  Vir die eerste keer is RAFT gebruik vir die polimerisasie van 

AMA via die meer reaktiewe dubbelbinding om lineêre poli(allielmetakrilaat) (PAMA) 

kettings met dubbelbindings in die sygroepe te verkry.  Gelvorming en onbeheerde 

molekulêre massaverspreiding het egter by hoër monomeeromsettings voorgekom.  KMR 

is susksekvol gebruik om die taktisiteitsparameters van die finale polimeer te bestudeer. 
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Ten slotte is die sintese van die entkopolimeer, PAMA-g-polistireen, uitgevoer deur die 

aanhegting van voorafgevormde sytakke.  Die polistireensytakke met die 

merkaptaaneindgroepe is kovalent geheg aan die dubbelbindings in die sygroepe van die 

PAMA-polimeerruggraat via ‘n merkaptaan-een addisiemeganisme in die 

teenwoordigheid van ‘n vrye radikaalinisieerder.  ‘n Kombinasie van 

gelpermeasiechromatografie en multi-hoeklaserligverstrooiing is gebruik om die 

molekulêre massa van die entkopolimeer te bepaal.  Die persentasie sytakke soos bepaal 

deur 1H-KMR was laag.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



ACKNOWLEDGEMENTS 

 

 

Prof. Sanderson – for his guidance throughout this project; his scientific knowledge was 

instrumental in the completion of this thesis 

 

Dr. Mark Frahn – for all his help in the lab and solving so many of my experimental 

problems 

 

National Research Foundation (NRF) – for funding this project  

 

Margie – for trying to changing my thesis from a grammatical blob to something more 

civilized 

 

Aneli and Erinda – for their administrative assistance  

 

Adam and Calvin – for making sure that there is always equipment and chemicals 

available for everybody to run their endless reactions 

 

Free radical group – for making life in the lab a happy experience; I have made so many 

friends over the last couple of years that I will not try to mention all the names in case I 

forget one or two! 

 

Marius, Moses and AJ – my friends from my Honours year – a year during which I 

learned to love polymer science, thanks in a great deal to their enduring friendship 

 

Angie and Vernon – my two best friends and the people who made life bearable when the 

going got tough (and it got tough many times!) and for their never-ending support 

 

My family – who have stood by me from the beginning of my rather long career as a 

student, words cannot express my gratitude 

Stellenbosch University http://scholar.sun.ac.za



 

LIST OF FIGURES 
 

 

Figure 3.1:  Conversion-time graph for the RAFT-mediated polymerization of styrene in 

toluene at 100oC with DIBTC as RAFT agent and AIBN as initiator. 

 

Figure 3.2:  Semi-logarithmic graph for the RAFT-mediated polymerization of styrene in 

toluene at 100oC with DIBTC as RAFT agent and AIBN as initiator. 

 

Figure 3.3:  Normalized GPC distributions for the RAFT-mediated polymerization of 

styrene in toluene at 100oC with DIBTC as RAFT agent and AIBN as initiator. 

 

Figure 3.4:  Conversion-time graph for the RAFT-mediated polymerization of butyl 

acrylate in toluene at 90oC with DIBTC as RAFT agent and AIBN as initiator. 

 

Figure 3.5:  Normalized GPC distributions for the RAFT-mediated polymerization of 

butyl acrylate in toluene at 90oC with DIBTC as RAFT agent and AIBN as initiator.  

 

Figure 4.1:  1H-NMR spectrum of polystyrene polymerized with DIBTC before and after 

the modification of the RAFT end-group with the use of sodium methoxide. 

 

Figure 4.2:  UV spectrum of polystyrene polymerized with DIBTC before and after the 

modification of the RAFT end-group with the use of sodium methoxide and 1,4-dioxane 

as solvent. 

 

Figure 4.3:  GPC traces of polystyrene polymerized with DIBTC before and after the 

modification of the RAFT end-groups with the use of sodium methoxide without removal 

of oxygen prior to the start of the reaction. 

 

Stellenbosch University http://scholar.sun.ac.za



Figure 4.4: GPC traces of polystyrene polymerized with DIBTC before and after the 

modification of the RAFT end-groups with the use of sodium methoxide and removal of 

oxygen prior to the start of the reaction. 

 

Figure 5.1:  GPC results for the DIBTC-mediated homopolymerization of AMA. 

 

Figure 5.2:  GPC results of the CVADTB-mediated polymerization of allyl methacrylate 

using a dual detector system.  

 

Figure 5.3:  1H-NMR spectrum of PAMA polymerized in the presence of CVADTB, 

AIBN and THF as solvent at 60oC. 

 

Figure 5.4:  Conversion-time graph of the CVADTB-mediated homopolymerization of 

AMA. 

 

Figure 5.5:  Semi-logarithmic plot of monomer consumption over time for the 

CVADTB-mediated homopolymerization of AMA. 

 

Figure 5.6:  Molecular weight versus conversion plot of the CVADTB-mediated 

homopolymerization of AMA. 

 

Figure 5.7:  GPC distributions for the CVADTB-mediated homopolymerization of 

AMA. 

 

Figure 6.1:  GPC data for the graft copolymer synthesized via reaction (1) recorded 

using a dual detector system. 

 

Figure 6.2:  1H-NMR of the graft copolymer synthesized via reaction (1). 

 

Figure 6.3:  GPC chromatograms of the PAMA backbone, polystyrene branches and 

final graft copolymer using an RI detector for reaction (1). 

Stellenbosch University http://scholar.sun.ac.za



Figure A:  1H-NMR spectrum of CVADTB with chloroform as solvent. 

 

Figure B:  1H-NMR spectrum of DIBTC with chloroform as solvent. 

 

Figure C:  1H-NMR spectrum of polystyrene polymerized with DIBTC after end-group 

modification using NaOH. 

 

Figure D:  1H-NMR spectrum of polystyrene polymerized with DIBTC after end-group 

modification using dodecyl amine. 

 

Figure E:   1H-NMR spectrum of polystyrene polymerized with DIBTC after the 

modification of the RAFT end-group using THF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



LIST OF SCHEMES 
 

 

Scheme 1.1:  Flow chart of the experimental procedures followed in this study. 

 

Scheme 2.1:  Free radical initiator decomposition and subsequent addition to monomer. 

 

Scheme 2.2:  Propagation of a radical species through the sequential addition of 

monomer units. 

 

Scheme 2.3:  Free radical termination processes via radical-radical coupling (ktc) and 

disproportionation (ktd). 

 

Scheme 2.4:  Reversible end-capping. 

 

Scheme 2.5:  Reversible chain transfer. 

 

Scheme 2.6:  A copper-based ATRP system with an alkyl chloride initiator. 

 

Scheme 2.7:  Schematic representation of the NMP process. 

 

Scheme  2.8:  SG1 (N-tert-butyl-N-(1-diethylphosphone-2,2-dimethylpropyl) nitroxide). 

 

Scheme 2.9:  Schematic representation of the degenerative transfer process with an alkyl 

iodide as a transfer agent. 

 

Scheme 2.10:  Schematic representation of the RAFT polymerization mechanism. 

 

Scheme 2.11:  General RAFT agent structure. 

 

Stellenbosch University http://scholar.sun.ac.za



Scheme 2.12:  Schematic illustration of the various RAFT end-group modification 

procedures. 

 

Scheme 2.13:  General thiol-ene addition mechanism. 

 

Scheme 2.14:  Oxygen scavenging mechanism of thiol-ene systems. 

 

Scheme 2.15: Homopolymerization of allyl methacrylate through the methacryloyl 

double bonds. 

 
Scheme 2.16:  The proposed secondary structures present in PAMA homopolymer. 

 

Scheme 2.17:  Branched polymers (1) star (2) comb and (3) hyperbranched polymers. 

 

Scheme 2.18:  General structure of a graft copolymer. 

 

Scheme 2.19:  The “grafting from” method. 

 

Scheme 2.20:  The “grafting through” method. 

 

Scheme 2.21:  The “grafting onto” method. 

 

Scheme 2.22:  Schematic representation of a typical MALLS experiment setup.  

 

Scheme 2.23:  SEC separates on the basis of hydrodynamic volume. 
 

Scheme 3.1:   Formation of the Grignard reagent.  

 

Scheme 3.2:  Synthesis of dithiobenzoic acid.   

 

Scheme 3.3:  Synthesis of bis(thiobenzoyl)disulfide. 

 

Stellenbosch University http://scholar.sun.ac.za



Scheme 3.4:  Synthesis of cyanovaleric acid dithiobenzoate. 

 

Scheme 3.5:  Formation of the sulfide anion. 

 

Scheme 3.6:  Addition of carbon disulfide to sulfide anion. 

 

Scheme 3.7:  Formation of the isobutyric acid leaving group. 

 

Scheme 3.8:  Dodecyl isobutyric acid trithiocarbonate. 

 

Scheme 4.1:  Reaction scheme for the RAFT end-group transformation of polystyrene 

synthesized with DIBTC as RAFT agent with the use of sodium methoxide in dioxane.  

 

Scheme 4.2:  Oxidative coupling of the initially formed thiols of RAFT-polymerized 

polystyrene after treatment with sodium methoxide. 

 

Scheme 5.1: Schematic illustration of the crosslinking reaction that may occur during 

AMA homopolymerization. 

 

Scheme 5.2:  Reaction route for the formation of 6-membered lactone rings during AMA 

homopolymerization. 

 

Scheme 6.1:  Reaction scheme for the synthesis of PAMA-g-polystyrene. 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



LIST OF TABLES 
 

 

Table 3.1:  Experimental results for the RAFT-mediated homopolymerization of styrene  

 

Table 3.2:  Experimental results for the RAFT-mediated homopolymerization of butyl 

acrylate 

 

Table 4.1:  Composition of the various reaction mixtures for the RAFT-mediated 

homopolymerizations of styrene  

 

Table 4.2:  Table summarizing the various attempts at the post-polymerization 

modification of the RAFT end-groups 

 

Table 4.3:  Summary of GPC and 1H-NMR data for the RAFT end-group modification 

experiments carried out with sodium methoxide 

 

Table 5.1:  Kinetic and characteristic parameters for the RAFT-mediated 

homopolymerization of AMA 

 

Table 6.1:  Reagents and their quantities used in the synthesis of PAMA-g-polystyrene 

 

Table 6.2:  Molecular weight data of the PAMA polymer backbone, polystyrene 

branches and final graft copolymer as determined by GPC with RI and MALLS detectors 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



LIST OF SYMBOLS 
 

 
oC Degrees Celsius 

dn Change in refractive index 

dc   Change in concentration 

I(θ)   Intensity of scattered light at angle θ 

kd Rate coefficient for initiator dissociation 

ki Rate coefficient for addition of primary radical to monomer 

kp Rate coefficient for chain propagation 

ktc Rate coefficient for radical termination by combination 

ktd Rate coefficient for radical termination by disproportionation 

M Monomer unit 

[M] Monomer concentration 

[M]0   Initial monomer concentration 

[M]t   Monomer concentration at time t 

Mn Number average molecular weight 

R  Free radical 

Rn  Free radical with degree of polymerization equal to n 

t Time 

σ Isotacticity parameter 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



LIST OF ABBREVIATIONS 
 

AIBN Azobisisobutyronitrile 

AMA Allyl Methacrylate 

ATRP Atom Transfer Radical Polymerization 

CCD Chemical Composition Distribution 

CCT Catalytic Chain Transfer 

CVADTB Cyanovaleric Acid Dithiobenzoate 

DIBTC Dodecyl Isobutyric Acid Trithiocarbonate 

DMSO Dimethylsulfoxide 

EDMA Ethylene Glycol Dimethacrylate 

ESI-MS Electrospray Ionization Mass Spectrometry 

ESRS Electron Spin Resonance Spectroscopy 

FTIR Fourier-Transform Infrared Spectroscopy 

GFC Gel Filtration Chromatography 

GPC Gel Permeation Chromatography 

LRP Living Radical Polymerization 

MALLS Multi-Angle Laser Light Scattering 

NMP Nitroxide Mediated Polymerization 

NMR Nuclear Magnetic Resonance Spectroscopy 

PAMA Poly(allyl methacrylate) 

PDI Polydispersity Index 

PMMA Poly(methyl methacrylate) 

RAFT Reversible Addition-Fragmentation Chain Transfer 

RI Refractive Index 

SEC Size Exclusion Chromatography 

SG1 N-tert-butyl-N-(1-diethylphosphone-2,2-dimethylpropyl) nitroxide 

TEMPO 2,2,6,6-Tetramethylpiperdine-1-oxyl nitroxide 

THF Tetrahydrofuran 

UV Ultraviolet Spectroscopy 

 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 1:  INTRODUCTION AND OBJECTIVES 

 

 

                                                          

 

 

 

ABSTRACT 

 

A brief introduction to the study is given, followed by an outline of the thesis and a 

summary of the goals that were set.  A flowchart of the synthetic procedures followed 

throughout the study is also incorporated. 
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1.1  Introduction 
 

 

The requirements of consumers have increased and progressed rapidly in recent times.  

This has led to a definite stress being placed on industries to develop products that are 

capable of performing specific functions under a wide variety of conditions.  

Consequently, industries have been forced to seek new methods and approaches to 

expand their range of raw materials.  This is most evident in polymer science since 

modern polymers are mainly synthetic products.  It has become the task of today’s 

polymer scientists to synthesize new monomers, improve polymerization techniques, and 

discover novel polymerization techniques to produce raw materials that will aid industries 

in satisfying the vast number of requirements of modern consumers. 

 

The development of Living Radical Polymerization (LRP) techniques made possible, for 

the first time, the synthesis of polymers with controlled molecular weights and 

predictable architectures via free radical polymerization1-4.  In this study a specialized 

LRP method, Reversible Addition-Fragmentation Transfer (RAFT)3, is used to design 

new polymers.  Basic monomers are used and design control is achieved by the 

polymerization technique itself.   

 

RAFT, used in conjunction with graft copolymerization, opens up numerous avenues for 

the synthesis of novel branched polymers.  In conventional free radical polymerization 

branching occurs randomly.  The amount and type of branching can have a significant 

effect on the final polymer properties and, since uncontrolled branching during free 

radical polymerization is difficult to detect and/or measure, it becomes complex to 

measure the impact of branching on final material properties5.  In this study, the “grafting 

onto” approach is used to attach branches to the main polymer chain.  The branches are 

synthesized prior to attachment to the main polymer chain, which means that they can be 

easily characterized. In addition, the use of RAFT polymerization for the synthesis of 

both the main polymer chain and the branches prior to the grafting process means that 

near identical structures can be produced.  The result of this capability is that single 
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structure parameters can be isolated and studied, and finally varied to investigate their 

effect on end-material properties. 

 

 

1.2   Objectives 
 

 

The principal objective of this study is to produce end-functionalized polymers using the 

RAFT polymerization process and to use these polymers to synthesize graft copolymers 

with controlled length and distribution.  The use of RAFT as polymerization technique 

enables us to synthesize both the main chain and the branches of the intended graft 

copolymer in a controlled manner.  The fact that the “grafting onto” approach was used 

further enables us to fully characterize the main chain and branches prior to the grafting 

reaction.  The objectives are laid out in more detail below: 

 

• Synthesis and purification of different RAFT agents 

• Synthesis and characterization of low molecular weight polymers using RAFT 

• Investigation into the effect of RAFT agent concentration on the kinetics of 

polymerization 

• Investigation into the modification of RAFT end-groups to produce high yields of 

thiol end-functionalized polymers 

• Purification and characterization of the thiol-end functionalized polymers 

• Study of the polymerization kinetics of the RAFT-mediated homopolymerization 

of allyl methacrylate  

• Investigation into the microstructure of poly(allyl methacrylate) (PAMA), i.e.  

tacticity, degree of gelation, and the possible formation of secondary structures 

• Synthesis and characterization of comb-like graft copolymers via a thiol-ene 

addition reaction 

 

 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 1:  INTRODUCTION AND OBJECTIVES 

 4

1.3 Thesis Outline 
 

 

A flow diagram of the experimental procedures is given in Scheme 1.1. 

 

Chapter 2:  Historical and Theoretical Background 

As the title suggests, this chapter deals with the various synthetic techniques, 

experimental routes and analytical methods that were used in this study.  A brief 

overview of conventional free radical polymerization is followed by a more detailed 

discussion on LRP techniques.  RAFT polymerization is fully discussed with special 

attention given to the post-polymerization modification of RAFT end-groups6. The 

homopolymerization of allyl methacrylate, including potential pitfalls such as gelation7 

and the formation of secondary structures8, is examined.  Finally, thiol-ene addition 

reactions as a possible method for the synthesis of graft copolymers is discussed, 

followed by a look at graft copolymerization and the analytical techniques used to study 

them. 

 

Chapter 3:  RAFT-Mediated Synthesis of Low Molecular Weight Polymers 

The synthesis of two RAFT agents, cyanovaleric acid dithiobenzoate (CVADTB) and 

dodecyl isobutyric acid trithiocarbonate (DIBTC), is discussed.  Complete experimental 

routes and full characterizations are given.  Two monomers were used in this study – 

styrene and butyl acrylate:  These two monomers were polymerized using a specific 

RAFT agent at varying concentrations.  The polymerization kinetics were studied using 

gravimetry and gel permeation chromatography (GPC). 

 

Chapter 4:  Post-Polymerization Modification of RAFT End-Groups 

In this chapter various methods for the modification of RAFT end-groups are discussed.   

Different analytical techniques such as GPC, Ultraviolet (UV) spectrometry and nuclear 

magnetic resonance (NMR) spectroscopy were used to fully characterize the polymer 

after the modification of the RAFT end-group.  In conclusion, certain problem areas are 

highlighted, e.g. the formation of disulfide bridges9.   
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Chapter 5:  RAFT-Mediated Homopolymerization of Allyl Methacrylate 

This chapter deals with the polymerization of allyl methacrylate (AMA) as a potential 

backbone for the attachment of polymer branches in a “grafting onto” reaction.  This is 

made possible by the presence of pendant, unreacted double bonds after polymerization.  

The final polymer is characterized using NMR and the polymerization kinetics studied 

via gravimetry and GPC data. 

 

Chapter 6:  Synthesis of PAMA-g-Polystyrene 

In this chapter the synthesis of the final graft copolymer is discussed.  The synthesis of 

PAMA-g-polystyrene was carried out via the addition of the thiol-end functionalized 

polystyrene branches to the pendant double bonds of the PAMA backbone. The effect of 

branch length on the degree of branching is studied.  

 

Chapter 7:  Conclusions and Recommendations for Future Research 

The achievement of the objectives is evaluated and recommendations are made for future 

work in this field. 
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Scheme 1.1:  Flow chart of the experimental procedures followed in this study. 
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ABSTRACT 

 

This research encompasses a variety of scientific techniques and experimental pathways 

and all these are discussed in detail in this chapter.  An overview of free radical 

polymerization in given followed by a discussion on the various LRP techniques, while 

delving into more detail with RAFT polymerization.  Finally, overviews on allyl 

methacrylate and graft copolymerization are given. 
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2.1 Free Radical Polymerization 
 

 

Free radical polymerization is an example of a chain growth reaction.    The three distinct 

kinetic events of free radical polymerization are:  initiation, propagation and termination. 

 

Free radical polymerization is initiated by primary radicals.  These primary radicals can 

be created by the polymerizable monomer itself, as in the case of styrene, i.e.  

autoinitiation.  More commonly, primary radicals are generated via the decomposition of 

a radical initiator (see Scheme 2.1).  The value kd is unique for all initiators and also 

dependent on the solvent used and the temperature at which the reaction occurs.  

Examples of free radical initiators include peroxides, persulfates, azo-compounds and 

photochemical initiators.  The primary radicals that are generated undergo addition to a 

vinyl monomer, which is normally activated by two groups (X and Y), at least one of 

which must be electron withdrawing1.   

 

 

I-I 2I
kd

I

CH 2 C
X

Y

ki

I CH 2 C

X

Y
 

 
Scheme 2.1:  Free radical initiator decomposition and subsequent addition to monomer. 
 

 

The addition of the primary radicals to the carbon-carbon double bonds of the monomer 

results in the formation of primary propagating radicals, also known as initiating radicals, 

that in turn can propagate further.  Initiator efficiency is however compromised by chain 

transfer reactions (discussed later in this section) as well as the solvent cage effect2 
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whereby primary radicals recombine before initiation can occur.  After initiation, 

additional monomer units can be sequentially added to the active radical species.  This is 

known as propagation and is depicted in Scheme 2.2. 

 

 

n CH2 C
X

Y

kp

I CH2 C

X

Y

I CH2 C

X

Y

CH2 C

X

Y

( )n

 
 
Scheme 2.2:  Propagation of a radical species through the sequential addition of monomer units. 

 

 

It was discovered that substituents on the propagating radical may stabilize the radical 

and thereby increase its reactivity.  Other factors also play a role in the rate of monomer 

addition, e.g. bond strength, steric factors and polarity.  

 

Possible chain transfer events may occur during the propagation process.  Chain transfer 

refers to the process whereby the active radical centre is transferred from the polymer end 

to another molecule present in the system, e.g. monomer, solvent, formed polymer, chain 

transfer agents present in the system or even the initiator.  Chain transfer agents are 

additives that are added to a system to reduce the molecular weight.  Intramolecular chain 

transfer may also occur and this is known as backbiting. These are important side 

reactions in free radical polymerizations as they lead to a reduction in molecular weight 

and a limit is set on the maximum attainable molecular weight.   

 

Termination is defined as the deactivation of propagating radical chain ends via the 

bimolecular processes of radical combination or radical disproportionation3 (see  

Scheme 2.3).  Termination by combination occurs when a propagating radical species 

combines with any other radical species, resulting in a single dead polymer chain.  
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Termination by disproportionation results in two terminated chains – one chain 

containing an unsaturated chain end and the other a saturated chain end. 

 

 

C

X

Y
+ C

X

Y

C

X

Y

C

X

Y

CH C

X

Y

+ CH CH2

Y

ktc

ktd

X

 
 
Scheme 2.3:  Free radical termination processes via radical-radical coupling (ktc) and disproportionation 

(ktd). 

 

 

Although these two termination processes are by far the most common for terminating 

polymerization reactions, termination may also occur by the reaction of a propagating 

radical with a stable radical such as oxygen or with an inhibitor such as phenol which is a 

non-radical species. 

 

 

2.2 Living Radical Polymerization (LRP) 
 

 

Conventional free radical polymerization is a very important commercial process for 

preparing high molecular weight polymers for several reasons, which include:  reactions 

can be carried out under mild reaction conditions, trace amounts of impurities can be 

tolerated and it is suitable for the polymerization of a wide range of vinyl monomers1.  
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However, due to irreversible termination via disproportionation or bimolecular coupling, 

conventional free radical polymerization is limited in its control over molecular weight, 

polydispersity, chain architecture, polymer composition and end-group functionality3.   

 

Living ionic polymerization has been successfully employed in the synthesis of well-

defined polymers with precisely controlled chain architectures4-6.  However, living ionic 

polymerization requires stringent reaction conditions, e.g. inert atmosphere and the 

absence of water and other impurities.  This technique is also limited to a relatively small 

number of monomers. For these reasons, it has become desirable to synthesize well-

defined polymers by a free radical mechanism and consequently from a larger range of 

monomers and under milder reaction conditions.  This has led to the increase in research 

on LRP techniques.  LRP aims to maintain the desirable attributes of conventional free 

radical polymerization, while severely suppressing undesirable characteristics such as 

termination reactions.  This enables the synthesis of polymers with precisely controlled 

molecular weights and complex architectures and compositions, e.g. block copolymers 

and end-functionalized polymers.    

 

Several LRP techniques exist, but all of them possess one unique characteristic:  a 

dynamic equilibrium between a growing free polymer chain and a dormant species7 

established via the addition of a specific compound to the conventional free radical 

polymerization system.  This reduces the number of propagating radicals which in turn 

lowers the probability of irreversible termination.  However, the rate of propagation (kp) 

must be slower than the rate of deactivation to keep the number of monomer addition 

steps between the dormant states as few as possible in order to limit termination and 

chain transfer events.     

 

In summary, to achieve control in radical polymerization systems, two criteria must be 

met: fast initiation in order to allow all polymer chains to grow simultaneously and a low 

concentration of propagating radicals to limit termination events. 
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2.2.1  Mechanism of LRP 
 

 

LRP is obtained by two major classes of processes, reversible end-capping and reversible 

chain transfer. 

 

 

1) Reversible end-capping:  In this case a dormant species (PnX) undergoes 

homolytic bond dissociation to yield an active polymer chain (Pn ) which is 

capable of propagating, and a capping agent (X ).  It has to be noted that only 

a single polymer chain interacts with the capping agent at any given time (see 

Scheme 2.4). 

 

 

 Pn + X Pn X  
 

Scheme 2.4:  Reversible end-capping. 

 

 

2) Reversible chain transfer:  This process involves the reversible transfer of 

the capping agent between more than one polymer chain (Scheme 2.5).  

 

 

Pn + Pm X Pn X + Pm  
 
Scheme 2.5:  Reversible chain transfer. 
 

 

Atom Transfer Radical Polymerization (ATRP) and Nitroxide Mediated Polymerization 

(NMP) are the two main techniques that employ reversible end-capping. 
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Examples of reversible chain transfer processes include degenerative transfer using alkyl 

iodides, Catalytic Chain Transfer (CCT) and Reversible Addition-Fragmentation chain 

Transfer (RAFT).   

 

 

2.2.2 Atom Transfer Radical Polymerization (ATRP) 

  

 

ATRP was discovered independently by Matyjasewski8 and Sawamoto9 in 1995.  

Matyjasewski used the term ATRP whereas Sawamoto called the process transition metal 

catalyzed radical polymerization.  The ATRP process is based on the reversible formation 

of radicals from alkyl halides in the presence of transition metal complexes via a redox 

reaction.  Metals that are most commonly used in ATRP reactions include ruthenium, 

copper and iron, among others.  The ruthenium-based systems require the addition of a 

Lewis acid to become active10, whereas the copper-based systems usually contain 

nitrogen ligands such as bypiridine or multidentate amines11.  Scheme 2.6 illustrates the 

copper-based ATRP process. 

 

 

R Cl     +     Cu(I)L Cl Cu(II)L   +   R

R    +    M Pn

Pn Cl Cu(II)L+ Pn Cl    +    Cu(I)L  
 
Scheme 2.6:  A copper-based ATRP system with an alkyl chloride initiator. 
 

 

ATRP is a very versatile LRP technique, but it does have several significant drawbacks, 

e.g. polymers may contain a relatively high amount of metal ions, poor solubility of the 
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initiating systems in certain common polymerization solvents and sensitivity of the metal 

to other redox reactions in acidic and aqueous media11. 

 

 

2.2.3  Nitroxide Mediated Polymerization (NMP) 
 

 

Ph

I + N

O

N
O

N

O

Ph
Ph

I

Ph Ph

O N

n

 
 
Scheme 2.7:  Schematic representation of the NMP process. 
 

 

NMP is based on the reversible capping of a propagating polymer chain by a stable 

nitroxide compound to form the corresponding N-alkoxyamine and an alkyl radical 

(Scheme 2.7).  The alkyl radical is capable of initiating polymerization whereas the 

nitroxide radical can reversibly cap the growing polymer chain, thereby preventing 

termination.  The most common nitroxide used in NMP is 2,2,6,6-tetramethylpiperdine-1-

oxyl (TEMPO).   
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TEMPO does however suffer from two major limitations:  (1) styrene and its derivatives 

are the only monomers that can effectively be controlled by TEMPO, (2) the presence of 

TEMPO dramatically decreases rates of polymerization and (3) temperatures greater than 

100oC are required to break the nitroxide bond.  In order to overcome these limitations, 

Benoit et al.12 and Hawker et al.13 developed nitroxides with a hydrogen atom on one of 

the α-carbons in contrast to the two quaternary α-carbons present in TEMPO.  These 

nitroxides exhibit living characteristics during the polymerization of acrylates, 

acrylamides, 1,3-dienes and acrylonitrile based monomers13.  An example of this new 

group of nitroxides is N-tert-butyl-N-(1-diethylphosphone-2,2-dimethylpropyl) nitroxide 

(SG1),  as depicted in Scheme 2.8, which has been used for polymerization far below 

100oC14. 

 

 

N
O

P

O

O

O

 
 
Scheme  2.8:  SG1 (N-tert-butyl-N-(1-diethylphosphone-2,2-dimethylpropyl) nitroxide).  
 

 

2.2.4 Degenerative Transfer Using Alkyl Iodides 

 

   

This process is termed degenerative due to the fact that the radical activity is reversibly 

transferred from one polymer chain to another with no effective change in the overall 

energy.  The process is illustrated in Scheme 2.9, where P  represents a propagating 

polymer chain. 
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P +

X

kdeact

kact

+M

+M

+   P X

 
 
Scheme 2.9:  Schematic representation of the degenerative transfer process with an alkyl iodide as a 

transfer agent. 
 

 

Matyjasewski et al.15 examined the use of alkyl iodides as transfer agents to produce 

living polymerizations but, due to the relatively slow rate of chain transfer, control was 

limited and polydispersities were rarely below 1.5.  Alkyl iodides have been successfully 

used in heterogeneous polymerizations16. 

 

 

2.2.5 Catalytic Chain Transfer (CCT) 

 

 

The CCT process is based on the transfer of a hydrogen atom from a free radical species 

to an olefin, catalyzed by certain Co(II) chelates17.  It is used for the synthesis of 

polymers with vinyl end groups which can be used as macromonomers.  The chain 

transfer coefficients of these Co(II) catalysts are high (102-104) compared to those of 

conventional transfer agents, e.g. thiols (10-2-10)18.  This, in combination with the fact 

that the transfer agent is catalytic and not consumed in the process, means that only a 

minute amount of the transfer agent is required in the reaction.   
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2.2.6 Reversible Addition-Fragmentation Chain Transfer (RAFT) 

 

 

2.2.6.1  General 

 

 

After it was patented by Le et al.19 in 1998, the RAFT process has proven to be one of the 

most powerful and versatile of the new LRP techniques.  RAFT involves the use of 

thiocarbonylthio compounds to mediate the polymerization via a reversible chain- 

transfer process20.  The generally accepted mechanism of the RAFT process as described 

by Moad et al.21 is depicted in Scheme 2.10.   

 

The initiation step is the same as in conventional free radical polymerization, i.e. an 

initiator decomposes to form primary radicals, which add to monomer to produce 

propagating radicals (Pn ).  The addition of the propagating radical to the 

thiocarbonylthio compound leads to the formation of an intermediate radical that can 

undergo fragmentation to form a dormant polymeric thiocarbonylthio compound and an 

active radical (R ).  The radical (R ) can add to monomer to form a new polymeric 

radical (Pm ).  A rapid equilibrium is established between the dormant thiocarbonylthio 

compounds and the active propagating radicals.  This provides an equal probability for all 

chains to grow, which leads to the establishment of living characteristics.  Although 

greatly suppressed, termination still occurs via radical-radical coupling.  Evidence for this 

RAFT mechanism has been obtained via Electron Spin Resonance Spectroscopy 

(ESRS)22, 1H-NMR and Electrospray Ionization Mass Spectrometry (ESI-MS)23.   
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Scheme 2.10:  Schematic representation of the RAFT polymerization mechanism. 

 

 

The structure of the RAFT agent is vital for the efficiency of the RAFT process.  A wide 

variety of RAFT agents has been reported: dithioesters24,25, dithiocarbamates26,27, 

trithiocarbonates28,29 and xanthates30,31.  The general molecular structure of RAFT agents 

is illustrated in Scheme 2.11. 
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Scheme 2.11:  General RAFT agent structure. 

 

 

The activating or stabilizing Z-group influences the stability of the intermediate radical.     

The Z-group also modifies the reactivity of the thiocarbonylthio compound towards free 

radical attack.  The rate of addition of radicals to the carbon-sulfur double bond is higher 

when Z = aryl, alkyl or S-alkyl, and lower when Z = O-alkyl or N,N-dialkyl.  If the  

Z-group contains electron-withdrawing groups, the activity of the RAFT agent is 

enhanced32.  The R-group must be a good homolytic leaving group relative to the 

attacking radical Pn  to allow for efficient fragmentation in the desired direction.  The 

rate of fragmentation of the R-group increases with the presence of electron-withdrawing 

and radical-stabilizing groups on R and also by increasing steric hindrance.  Since there is 

no universal RAFT agent, the choice of R- and Z-groups is very important to ensure a fast 

approach to the dynamic equilibrium between the active, growing polymer chains and the 

dormant chains.  This equilibrium allows all polymer chains to grow simultaneously, 

which in turn leads to a narrow molecular weight distribution. 

 

The RAFT process has numerous advantages: 

 

• Reaction conditions are the same as in conventional free radical polymerizations, 

except for the addition of a predetermined amount of a suitable RAFT agent.  The 

same range of monomers, solvents, initiators and temperatures can be used. 

• Polymers with complex molecular architectures (blocks, stars, grafts, telechelics 

etc.) can be synthesized. 

• Molecular weights can be predicted theoretically using a simple equation: 
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0

0
RAFTtheoryn,

]RAFT[
][ MFWMx

FWM +=                                                        Equation 2.1 

 

where RAFTFW  and MFW are the molar masses of the RAFT agent and the 

monomer respectively, 0][M  and 0]RAFT[  are the initial concentrations of the 

monomer and the RAFT agent respectively, and x is the fractional conversion. 

• The RAFT process exhibits living characteristics, i.e. molecular weight increases 

linearly with conversion, active chain ends are preserved and narrow 

polydispersities are obtained. 

• End-group functionalities can be obtained. 

 

 

Disadvantages of the RAFT process include: 

 

• The synthesis of RAFT agents can be expensive and time-consuming. 

• The addition of RAFT agents leads to a decrease in the rate of polymerization. 

 

 

2.2.6.2   RAFT End-Group Modification 

 

 

Polymers produced by RAFT polymerization systems retain the thiocarbonylthio moiety 

present in the initial RAFT agent.  By adjusting the molecular structure of the activating 

and leaving groups, chain-end functionality can be introduced in the polymer.  Examples 

of chain-end functionalities include:  (-OH), (-CO2H), (-CO2Na) and (SO3Na)21.  In 

certain applications the modification of these RAFT end-groups may be advantageous: 

 

• The reactivity of the RAFT end-groups could pose potential problems in 

subsequent processing steps and may have to be deactivated/removed. 
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• Polymers synthesized by the RAFT process are generally coloured.  This is due 

to the presence of the thiocarbonylthio moieties that act as chromophores.  

Colour could be disadvantageous for some end-use applications. 

• RAFT polymers may have foul odours in some cases or release these foul-

smelling sulfur-compounds due to decomposition of the thiocarbonylthio 

compounds. 

 

These problems can largely be solved by the appropriate choice of RAFT agent, but 

synthetic barriers may limit the availability of a desired RAFT agent and thus there has 

been incentive to look for effective methods for the post-polymerization modification of 

the RAFT end-groups.  A variety of methods have been used for the modification of 

RAFT end-groups as shown in Scheme 2.12. 
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Scheme 2.12:  Schematic illustration of the various RAFT end-group modification procedures. 

 

 

RAFT end-groups are unstable at very high temperatures.   Moad et al.33 used thermal 

elimination at temperatures greater than 200oC to remove the trithiocarbonate end-groups 

from polystyrene and poly(butyl acrylate).  This process required however that the 
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polymer must be stable at these very high temperatures required for thermolysis.  Radical 

induced reduction of the RAFT end-groups leads to the formation of hydrocarbon end- 

groups.  Tri-n-butylstannane has been used for this purpose34.  Oxidizing agents (e.g. 

NaOCl, H2O2, tBuOOH)35 and UV irradiation36 have also been successfully employed for 

the modification of RAFT end-groups. 

 

The most common method of transforming the RAFT end-group is via the use of 

nucleophiles such as primary and secondary amines28, borohydride37 and hydroxide38.  In 

this case the carbon-sulfur bond is cleaved and the RAFT end-group is transformed into a 

thiol.  The advantages of producing a thiol functionality are numerous.  Thiols play an 

important role in biological sciences as they forms conjugates with biopolymers such as 

proteins.  Thiols are also used in the synthesis of condensation polymers, e.g. 

polythioesters and polythiourethanes.  Furthermore, the ability of thiols to form crosslinks 

and complex metals has also been exploited for various applications39, 40.   

 

 

2.3 Thiol-Ene Addition Reactions 

 

 

The addition of thiols to unsaturated compounds was first discovered by Posner41 in 1905 

and initially formulated as a free radical chain reaction by Kharasch et al. in 193842. It has 

since become a very important chemical reaction in organic synthesis.  It was later 

discovered that thiols add to unsaturated compounds by nucleophilic and electrophilic 

mechanisms as well.  The nucleophilic addition of thiols to substrates requires the 

presence of a base to catalyze the reaction.  Substrates that can undergo nucleophilic 

thiol-ene addition include polyhalo alkenes and alkynes43.  In the case of the electrophilic 

mechanism, no initiator is present and the thiol-ene addition follows Markovnikov’s rule.  

This reaction requires harsh reaction conditions and a Lewis acid (e.g. AlCl3
44) or a 

protonic acid (e.g. H2SO4
45) is used as a catalyst.  The free radical thiol-ene addition 

reaction follows a stepwise mechanism and the orientation is anti-Markovnikov46, as 

shown in Scheme 2.13.  A thiyl radical is created either via excitation by UV radiation or 
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hydrogen abstraction by a free radical initiator.   The thiyl radical reversibly adds to the 

double bond of the unsaturated compound47.  The formed carbon-centered radical 

abstracts a hydrogen atom from another thiol molecule and the thiyl radical is 

regenerated, thus propagating the radical chain.  Finally, termination occurs by radical-

radical coupling48.  The rate determining step is generally the chain transfer step and 

since it involves the cleavage of a carbon-sulfur bond, it is greatly dependent on the 

structure of the thiol, e.g. aromatic thiols are better chain transfer agents than aliphatic 

thiols due to the resonance stabilization imparted.   

 

 

RSH RS

Initiation

Addition

RS + CH2 CHR' RSCH2CHR'

Chain transfer

RSCH2CHR' + RSH RS + RSCH2CH2R'

Termination

RS + RS RSSR

RS + RSCH2CHR' RSCH2CHR'

RSCH2CHR' + RSCH2CHR' RSCH2CHR'

SR

RSCH2CHR'  
 
Scheme 2.13:  General thiol-ene addition mechanism. 
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A major advantage of thiol-ene addition reactions is the insensitivity toward oxygen 

inhibition, which is generally a problem in free radical reactions.  The negligible oxygen 

inhibition observed in thiol-ene systems is attributed to the formation of peroxy radicals 

created by the reaction of the carbon centered radical with molecular oxygen49.  The 

peroxy radicals abstract hydrogen atoms from other thiol molecules and thus regenerate 

the thiyl radicals which can in turn add to the unsaturated compounds to continue the 

two-step chain process (Scheme 2.14).  

   

 

RS + CH2 CHR' RSCH2CHR'

O2

RSCH2CH

OO

R'

RSH

RSCH2CH

OOH

R'

RS +

 
 
Scheme 2.14:  Oxygen scavenging mechanism of thiol-ene systems. 

 

 

2.4  Polymerization of Allyl Methacrylate 

 

 

Monomers such as ethylene glycol dimethacrylate (EDMA) and divinyl benzene are 

examples of monomers that contain two reactive double bonds and are commonly used as 

cross-linking agents.  These monomers are symmetric in structure and therefore both 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 2:  HISTORICAL AND THEORETICAL BACKGROUND 

 27

double bonds have the same chemical reactivities.  Allyl methacrylate (AMA), however, 

is an asymmetrical divinyl compound containing two double bonds of different chemical 

reactivities:  a highly reactive methacryloyl double bond and a less reactive allyl double 

bond.  AMA has been used as an alternative cross-linking agent to EDMA in the 

synthesis of resin foams, coatings and materials with high water absorption50.  However, 

due to the different reactivities of the double bonds of AMA, selective polymerization 

and cross-linking is now possible.  

 

Anionic homopolymerization of AMA occurs mainly through the more reactive 

methacryloyl double bonds, resulting in linear polymers with pendant allylic double 

bonds51 (Scheme 2.15).  No cross-linking occurs and the polymers that are obtained have 

narrow polydispersities, even at high molecular weights.   

 

 

O

O

O

O
n

 
 
Scheme 2.15: Homopolymerization of allyl methacrylate through the methacryloyl double bonds. 

 

 

Studies on the free radical polymerization of AMA have been performed in bulk52, 

solution53, and emulsion54 systems.  The free radical homopolymerization of AMA also 

leads to the formation of PAMA prepolymers containing pendant allylic double bonds at 

low conversions.  With an increase in conversion however, intermolecular and 

intramolecular reactions gradually lead to crosslinking and eventually the formation of a 

gel.  Secondary reactions may occur during the free radical polymerization of AMA – 

these include the formation of five- and six-membered lactone rings55 (Scheme 2.16), 
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although NMR spectroscopic investigations by Nagelsdiek et al.56 revealed no evidence 

to support this theory. 
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Scheme 2.16:  The proposed secondary structures present in PAMA homopolymer. 
 

 

Recently, there have been studies done on the living free radical polymerization of AMA 

using ATRP during which the gel effect was also observed at higher conversions55,56.  

 

Cohen and Sparrow suggested two ways to delay the onset of crosslinking and gelation57:   

 

• During the early stages of polymerization the reactivity of the less reactive allylic 

double bond has to be decreased, but it must still be capable of crosslinking 

during later stages of the reaction if required. 

• The chain lengths at the early stages of polymerization have to be reduced to 

delay the onset of crosslinking. This can be done by the addition of a chain 

transfer agent, such as lauryl mercaptan58. 

 

The benefits of having an uncrosslinked, soluble polymer with pendant double bonds are 

numerous.  These polymers can undergo crosslinking on demand (e.g. via irradiation) for 

the formation of polymer networks or coatings.  Grafting onto the double bonds is also a 
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feasible approach by which to synthesize various branched copolymers with specific 

properties. 

 

 

2.5 Free Radical Copolymerization 
 

 

There is, as always, a great need for new polymeric materials with novel properties for 

use in specific applications.  There are three ways to generate such polymers – the first 

involves the synthesis of new monomers which can be polymerized to form new 

polymers.  Modification of existing monomers/polymers is another way of creating new 

materials.  Both these methods require great amounts of research, development and 

ultimately money, which can make them economically non-viable.   

 

Copolymerization is a method that uses existing monomers to produce materials with 

unique properties, making this the most widely used method for producing novel 

polymers.  By varying the combination of comonomers as well as the distribution of the 

comonomers, known as the chemical composition distribution (CCD), the properties of 

the copolymer can be varied. 

 

 

There is a variety of copolymers that can be synthesized by free radical means: 

 

 

• Random copolymers:  ABBABAABABABBAAABBABA 

• Block copolymers:  AAAAAAAABBBBBBBBBBBBBBB 

• Alternating copolymers:  ABABABABABABABABABA 

• Gradient copolymers:  AAAABAABBABBBABBABBBB 

• Branched polymers, e.g. comb-, star-, and hyperbranched copolymers (Scheme 

2.17) 
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1 2

3  
 
Scheme 2.17:  Branched polymers (1) star (2) comb and (3) hyperbranched polymers. 
  

 

2.5.1 Graft Copolymerization 
 

 

Graft copolymers comprise a main polymer chain to which one or more side chains are 

covalently bonded.  The simplest graft copolymer can be represented by Scheme 2.18, 

where sequence (A) represents monomer units making up the backbone or main polymer 

chain, sequence (B) is the side chain or graft and (X) is the unit in the backbone to which 

the graft is attached.   
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Scheme 2.18:  General structure of a graft copolymer. 
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There are three basic methods for the synthesis of graft copolymers: 

 

 

2.5.1.1  “Grafting From” Method 
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Scheme 2.19:  The “grafting from” method. 

 

 

The “grafting from” method involves the synthesis of a polymeric backbone with a 

functional monomer incorporated into it.  These functional monomers must be capable of 

acting as the active sites from which the polymerization of a second monomer can be 

initiated.  In certain cases the formed branches can be chemically cleaved and 

characterized59. 

 

 

2.5.1.2 “Grafting Through” Method 
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 Scheme 2.20:  The “grafting through” method. 
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The “grafting through” method is also known as the macromonomer method as it entails 

the synthesis of low molecular weight pre-polymers with functional end-groups that are 

capable of being polymerized.  These macromonomers are copolymerized with other 

monomers to yield graft copolymers.  One of the advantages of the “grafting through” 

method is that the chain lengths of the side chains are entirely dependent on the length of 

the macromonomer and are thus easily controlled.  The frequency of the side chains, 

however, is dependent on the molar ratios of the comonomers and their reactivity ratios. 

Various methods have been used to synthesize macromonomers such as ATRP60, 

addition-fragmentation techniques61 and conventional organic routes62. 

 

 

2.5.1.3 “Grafting Onto” Method 

 

 

X X X

Y
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Scheme 2.21:  The “grafting onto” method. 

 

 

In the “grafting onto” method the polymer backbone and side chains are synthesized 

separately.  The actual grafting process occurs via the reaction of a functional group (e.g. 

–COOH) on the pre-formed side chain, with a complementary functional group (e.g. –

OH) distributed along the polymer backbone63.  The advantage of this method is that the 

side chains can often be fully characterized prior to being grafted onto the polymer 

backbone. 
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2.5.2 Analysis of Branched Polymers 
 

The intrinsic ability of macromolecules to scatter light has led to the development of 

various investigation techniques that can determine physical properties of these 

molecules.  The basic premise of these techniques is that when an incoming light source 

strikes a molecule, it induces an oscillating dipole in the molecule.  The molecule 

subsequently scatters the light in different directions and with different intensities, 

depending on its size and structure.  

 

Classical light scattering employs a static detector set at an angle θ with respect to the 

incident beam, whereas dynamic light scattering uses fast photon counters to measure 

fluctuations in the scattered light (due to constructive and destructive interference) to 

obtain information concerning the hydrodynamic volume of the molecules. 

 

Measuring the variation of scattered light, however, requires the simultaneous detection 

of scattered light intensities at various angles.  This led to the development of multi-angle 

laser light scattering (MALLS) instruments (Scheme 2.22).  A MALLS instrument has a 

range of detectors set at various different angles along the arc of the scattered plane.  

MALLS measurements can give information on molecular conformation, absolute 

molecular weight and root mean square radius. 

 

 

Scattering molecule

Incoming light source

Scattered light

Detector Iθ3

Detector Iθ2

Detector Iθ4

Detector Iθ1

 Iθ

 
 
Scheme 2.22:  Schematic representation of a typical MALLS experiment setup.  
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Size exclusion chromatography (SEC) used in conjunction with MALLS has opened up 

new possibilities for the analysis of macromolecules.  SEC separates polymers according 

to their hydrodynamic volume (Scheme 2.23).  Large molecules penetrate fewer pores 

and elute first, whereas smaller molecules are able to penetrate more pores and thereby 

occupy a larger volume, and this slows their passage through the column and they elute 

later as their specific volume of elution is reached.   

 

 

SEC

Increasing Elution Time
 
Scheme 2.23:  SEC separates on the basis of hydrodynamic volume. 

 

 

The SEC detectors are normally calibrated with polymers of known molecular weight.  

This calibration method can fail however when non-linear polymers or polymers 

consisting of monomeric units different to those of the calibration standards are used.  

This is where MALLS as a type of absolute detector for SEC comes in useful, since it 

does not require a calibration curve; only dn/dc values are required, where dn represents 

the change in refractive index and dc the change in molecular concentration. 

 

A SEC-MALLS setup typically consists of a SEC column, followed by a MALLS 

instrument and finally a differential refractive index (RI) detector.  The SEC column 

separates the molecules according to molecular weight and each elution fraction is then 

subjected to MALLS, which assigns an absolute molecular weight to each fraction.  
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ABSTRACT 

 

Two RAFT agents were synthesized for the purposes of this study.  Cyanovaleric acid 

dithiobenzoate (CVADTB) and dodecyl isobutyric acid trithiocarbonate (DIBTC) were 

produced in good yields and with high purities.  DIBTC was used as RAFT agent to 

polymerize styrene and butyl acrylate.  Low target molecular weights were set to study 

the effect of RAFT agent concentration on polymerization kinetics.  Both monomers 

exhibited living characteristics although some rate retardation phenomena were observed. 
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3.1 Introduction 
 

 

The function of the RAFT agent is to create a dynamic equilibrium between active 

propagating radicals and dormant chains.  Many RAFT agents have been synthesized 

with great structural variety to mediate free radical polymerization reactions of a wide 

range of monomers.  Initially dithioesters were used as RAFT agents1, but later 

trithiocarbonates, dithiocarbamates and xanthates were also synthesized and effectively 

used for RAFT polymerization, as already described in Chapter 2.  

 

Styrene and butyl acrylate are two commonly studied monomers and thus much is known 

about their properties.  These monomers have been widely used in RAFT polymerization 

studies in both homogeneous2-4 and heterogeneous media, i.e. emulsion5-7 and mini-

emulsion8-10.  These factors made styrene and butyl acrylate ideal monomers to use in this 

model study. 

 

 

3.2 Experimental 
 

 

3.2.1 Materials 
 

 

Azo bis(cyanovaleric acid) 75% (Sigma-Aldrich), Aliquot 336 (Fluka), n-dodecyl 

mercaptan 98%+ (Sigma-Aldrich), diethyl ether 99.5% (Merck), dimethylsulfoxide 99% 

(Labchem), chloroform 99% (Labchem), hydrochloric acid 33% (Aldrich), 

bromobenzene 99% (Aldrich), carbon disulfide 99.9% (Aldrich), acetone CP, carbon 

tetrachloride 99.9% (Aldrich), ethyl acetate CP, isopropanol CP, pentane CP, heptane CP, 

hexane CP, sodium hydroxide CP, iodine 99% (Aldrich) and magnesium 98% (Aldrich) 

were used as received.  Tetrahydrofuran (THF) was distilled from lithium aluminium 
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hydride (LiAlH4). Prior to use, the styrene monomer was washed twice with 0.3 M 

aqueous potassium hydroxide solution to remove inhibitors, followed by distillation 

under reduced pressure.  Butyl acrylate monomer was also purified by vacuum 

distillation.  Both monomers were stored at 2oC over molecular sieve.  Toluene was used 

as the solvent in all the polymerization reactions and purification consisted of distillation 

under reduced pressure and storage over molecular sieves at low temperature.  

Azobisisobutyronitrile (AIBN) was recrystallized from methanol and kept at low 

temperature for later use. 

 

 

3.2.2 Synthesis of Cyanovaleric Acid Dithiobenzoate (CVADTB) 
 

 

All the equipment, and the magnesium turnings, was dried in an oven for a minimum 

period of 12 hours prior to use.  The magnesium turnings (5.15 g, 0.21 mol) and a stirrer 

bar were placed in a 250 ml 3-neck reaction vessel with a single crystal of iodine and a 

small amount of dry THF.  Bromobenzene and the remainder of the THF (44.45 g, 0.62 

mol) were placed in two separate dripping funnels.  Approximately 10% of the THF and 

the bromobenzene (39.96 g, 0.25 mol) were added to the reaction mixture. Once the 

brown/yellow colour of the iodine disappeared, the remainder of the THF and the 

bromobenzene were added, while cooling the reaction mixture using an ice bath. On 

completion of the reaction the system was allowed to cool down. It yielded a mixture that 

had a metallic grey/green colour.   

 

 

 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 3:  RAFT-MEDIATED SYNTHESIS OF LOW MOLECULAR WEIGHT 
POLYMERS 

 45

Br

Mg (s), I2

THF

Mg
Br

 
 
Scheme 3.1:   Formation of the Grignard reagent. 

 

 

Carbon disulfide (16.15 g, 0.21 mol) was added in a dropwise fashion to a cooled 

reaction mixture (cooled in an ice bath) using a dripping funnel. The reaction is 

exothermic, and the reaction mixture turned red upon addition of the carbon disulfide.  

Upon completion of the reaction (no more heat-generation), water was added to 

hydrolyze the Grignard reagent.  The unreacted magnesium turnings were filtered off 

prior to the acidification of the reaction mixture with 33% hydrochloric acid.  The colour 

of the mixture changed to purple as the dithiobenzoic acid formed.   

 

 

Mg

Br

1) CS2

2) H2O, H+

S SH

 
 
Scheme 3.2:  Synthesis of dithiobenzoic acid.   

 

 

The dithiobenzoic acid was extracted twice with diethyl ether.  The diethyl ether was 

removed with a rotary evaporator to yield a dark red compound.  Dithiobenzoic acid 
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(25.16 g, 0.16 mol) was transferred into a 250 ml three-neck reaction vessel equipped 

with a dripping funnel. A single crystal of iodine and ethanol (5.92 g, 0.13 mol) was 

added to the reaction vessel.  Twice the molar ratio of dimethyl sulfoxide (25.49 g, 0.32 

mol) was slowly added to the reaction mixture via the dripping funnel.  The excess 

DMSO is required to speed up the reaction.  The reaction mixture was cooled in an ice 

bath. The red/purple bis(thiobenzoyl)disulfide crystals that formed and were filtered off 

and washed with cold ethanol. 

 

 

S SH

+ S

O

I2

Ethanol

S S S S

+  H2O

+  CH3(S)CH3

 
Scheme 3.3:  Synthesis of bis(thiobenzoyl)disulfide. 
 

 

The dithioester RAFT agent was synthesized via the technique described by Le et al.11,12  

Bis(thiobenzoyl)disulfide was reacted with the azo initiator 4,4’-azo-bis(4-cyanovaleric 

acid) in refluxing ethyl acetate (85oC) under a nitrogen atmosphere for approximately  

24 hours.   
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Scheme 3.4:  Synthesis of cyanovaleric acid dithiobenzoate. 
 

 

Typical reaction quantities were the following:  5.00 g (0.016 mol) 

bis(thiobenzoyldisulfide) reacted with 6.00 g (0.016 mol) 4,4’-azo-bis(4-cyanovaleric 

acid) to yield 5.20 g (0.018 mol) cyanovaleric acid dithiobenzoate, corresponding to a 

yield of 56%.  1H-NMR analysis indicated that purities in excess of 95% were obtained 

(see Appendix A). 

 

 

 3.2.3  Synthesis of Dodecyl Isobutyric Acid Trithiocarbonate (DIBTC)     

 

 

S-1-dodecyl-S’-isobutyric acid trithiocarbonate (DIBTC) was synthesized via the method 

described by Lai et al.13 employing phase transfer methodology.  1-Dodecanethiol (8.0 g, 

0.040 mol), Aliquot 336 (tricapryl methyl ammonium chloride, 0.65 g, 0.0016 mol) and 
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acetone (20.0 g, 0.34 mol) were stirred in a 100 ml-reactor.  The reactor was placed in an 

ice bath and the reaction proceeded under a nitrogen atmosphere.  A 50% sodium 

hydroxide solution (3.5 g, 0.043 mol) was added dropwise over a 20 minute period and 

the reaction mixture was stirred for an additional 15 minutes. 

 

 

CH3(CH2)10CH2SH
NaOH

CH3(CH2)10CH2S-
 

 
Scheme 3.5:  Formation of the sulfide anion. 

 

 

A mixture of carbon disulfide (3.1 g, 0.041 mol) and acetone (4.00 g, 0.069 mol) was 

added over 30 minutes, during which time the reaction mixture turned yellow.  

 

 

CH 3(CH 2)10 CH 2S- + C

S

S

CH 3(CH 2)10 CH 2 S S-

S

 
Scheme 3.6:  Addition of carbon disulfide to sulfide anion. 

 

 

Chloroform (7.0 g, 0.06 mol) was added in one portion.  This was followed by the 

dropwise addition of 50% sodium hydroxide solution (16.0 g, 0.2 mol) over 30 minutes, 

after which the reaction was allowed to stir overnight.     
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Scheme 3.7:  Formation of the isobutyric acid leaving group. 

 

  

The reaction mixture was placed in a large beaker and stirred at high revolutions.  

Approximately 60 ml of water was added to the reaction mixture, followed by the 

addition of 10 ml 33% hydrochloric acid to neutralize the reaction. The reaction mixture 

was stirred until the acetone evaporated.  The solids were collected with a Buchner funnel 

and stirred in an excess of isopropanol. After 30 minutes the solids were filtered off and 

the isopropanol solution concentrated by rotary evaporation.  The concentrated solution 

was recrystallized twice from cold hexane to yield 7.2 g (0.020 mol) of the 

trithiocarbonate RAFT agent, corresponding to a yield of 43%. 1H-NMR analysis 

indicated that purity of the product was >95% (see Appendix B). 

 

 

O

HO S

S

S CH2(CH2)10CH3
 

 
Scheme 3.8:  Dodecyl isobutyric acid trithiocarbonate. 
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3.2.4 Synthesis of low molecular weight polystyrene and poly(butyl 

acrylate) 
 

 

Equation 2.1 (Section 2.2.6.1) can be utilized to target specific molecular weight 

polymers when using a RAFT polymerization system.  For the purposes of this study it 

was decided to target molecular weights of 4000 g.mol-1 and 10 000 g.mol-1 for 

monomers, styrene and butyl acrylate.   

 

The styrene polymerizations were carried out at 100oC, with a solvent to monomer ratio 

of 1:1.  The butyl acrylate polymerizations were performed at 90oC, again using a solvent 

to monomer ratio of 1:1.   

 

All reactions were carried out in a 25 ml pear-shaped reaction vessel and under a nitrogen 

atmosphere.   The reaction vessel was equipped with a stirrer bar, a nitrogen inlet, a 

rubber septum and a condenser.  A temperature regulated bath was used to control the 

temperature. The reaction mixtures were degassed for 20 minutes prior to the start of the 

reactions. Samples were taken at regular intervals in order to determine monomer 

conversion. For this, samples were placed in sample pans before being dried in a vacuum 

oven for a minimum period of 12 hours  

 

Conversions were determined gravimetrically and molecular weight analysis was carried 

out by GPC.  The GPC instrument consisted of a Waters 717 plus Autosampler, Waters 

600E System Controller and a Waters 610 Fluid unit.  A Waters 410 refractometer was 

used at 35oC as detector.  THF (HPLC-grade) purged with IR-grade helium was used as 

eluent at a flow rate of 1 mL.min-1. The columns used were two PLgel 5 µm Mixed-C 

columns and a pre-column (PLgel 5 µm guard). The column oven was kept at 30oC and 

the injection volume was 100 µl. The system was calibrated with narrow polystyrene 

standards ranging from 800 to 2x106
 g.mol-1. 
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3.3 Results and Discussion 

 

 

3.3.1  Low Molecular Weight Polystyrene 
 

 

The RAFT-mediated styrene polymerizations were carried out at 100oC.  At this 

temperature it can be assumed that a certain degree of thermal initiation takes place, in 

conjunction with initiation via the free radical initiator AIBN.  This high reaction 

temperature was selected to reduce the reaction time, while still producing polystyrene 

with low polydispersity (PDI) values. 

 

Table 3.1 summarizes the different reagents that were used for the RAFT-mediated 

homopolymerization of styrene as well as the molecular weight data as obtained by GPC.   

 

 
Table 3.1:  Experimental results for the RAFT-mediated homopolymerization of styrene 
 

Styrene Toluene DIBTC AIBN Mn Mn,target
a 

Mass 

(g) 

mmol Mass 

(g) 

mmol Mass 

(g) 

mmol Mass 

(g) 

mmol 

Conv.b 

(%) Calc.c Exp.d 

PDIe 

4000 10 96 10 190 1.12 3.0 0.01 0.06 61 2400 2600 1.23 

10 000 10 96 10 190 0.40 1.1 0.01 0.06 82 8200 7100 1.21 

 
a Target molecular weight at 100% conversion 
b Conversion percentage calculated by gravimetry 
c Calculated molecular weight 
d Experimental molecular weight 
e Polydispersity index 
 

 

The polymerization with the target molecular weight of 10 000 g.mol-1 reached a higher 

conversion than the polymerization with target molecular weight of 4000 g.mol-1, but in 

both cases the polydispersities remained low. 
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Figure 3.1 clearly shows a linear increase of conversion over time for the polystyrene 

polymerization with target molecular weight of 10 000 g.mol-1, but a slow conversion rate 

is visible in the early stages of polymerization with the target molecular weight  

of 4000 g.mol-1.  A similar trend is visible in the semi-logarithmic plot in Figure 3.2.   
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Figure 3.1:  Conversion-time graph for the RAFT-mediated polymerization of styrene in toluene at        

100oC with DIBTC as RAFT agent and AIBN as initiator. 
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Figure 3.2:  Semi-logarithmic graph for the RAFT-mediated polymerization of styrene in toluene at        

100oC with DIBTC as RAFT agent and AIBN as initiator. 
 

 

Various explanations have been given for the retardation phenomena in the RAFT 

process.  Generally speaking, retardation occurs when an unsuitable RAFT agent is used 

or when the concentration of RAFT agent is very high. Cross-termination between 

propagating and intermediate radicals was suggested by Monteiro et al.14 as a possible 

cause of retardation, whereas Barner-Kowollik et al.15 believed that the intermediate 

radical was stable enough to cause no cross-termination.  McLeary et al.16 studied the 

RAFT polymerization of methyl acrylate with cumyl dithiophenylacetate as RAFT agent.  

They observed an inhibition period corresponding to the consumption of the initial RAFT 

agent and termed this period initialization.  Other factors that may cause retardation 

include the inability of the R-group to reinitiate polymerization and the slow 

fragmentation of the intermediate radical.  Sometimes inconsistencies in polymerization 

rates can also be attributed to extraneous factors such as the presence of oxygen in the 

reaction mixture as well as impurities in the initial RAFT agent.   In the case of styrene, 

retardation has been observed, especially when high concentrations of dithiobenzoate 

RAFT agents are used 14,15,17.   
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Intensive investigations are required to determine the exact causes of retardation for a 

specific monomer/RAFT agent combination, but for this study it was sufficient that linear 

trends were observed in the later stages of polymerization and that the polydispersities 

remained low (<1.35) for the entire duration of the reaction.   

 

Figure 3.3 shows a linear increase in molecular weight with conversion.  However, the 

predicted molecular weights for both experiments are overestimated at higher 

conversions.  This may be due to a decrease in initiator efficiency with conversion18. 
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Figure 3.3:  Graph of molecular weight versus conversion for the RAFT-mediated polymerization of 

styrene in toluene at 100oC with DIBTC as RAFT agent and AIBN as initiator. 
 

 

The narrow, well-defined GPC distributions (Figure 3.4) also give a clear indication of 

the good level of control that was obtained.   
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Figure 3.4:  Normalized GPC distributions for the RAFT-mediated polymerization of styrene in toluene 

at 100oC with DIBTC as RAFT agent and AIBN as initiator. 

 

 

3.3.2  Low Molecular Weight Poly(butyl acrylate) 
 

 
Table 3.2:  Experimental results for the RAFT-mediated homopolymerization of butyl acrylate 
 

Butyl 

acrylate 

Toluene DIBTC AIBN Mn Mn,target
a 

Mass 

(g) 

mmol Mass 

(g) 

mmol Mass 

(g) 

mmol Mass 

(g) 

mmol 

Conv.b 

(%) 

Calc.c Exp.d 

PDIe 

4000 10 78 10 190 1.11 3.1 0.01 0.06 72 2900 2700 1.23 

10 000 10 78 10 190 0.39 1.1 0.01 0.06 83 8300 8500 1.21 

 
a Target molecular weight at 100% conversion 
b Conversion percentage calculated by gravimetry 
c Calculated molecular weight 
d Experimental molecular weight 
e Polydispersity index 
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Figure 3.5:  Conversion-time graph for the RAFT-mediated polymerization of butyl acrylate in toluene 

at 90oC with DIBTC as RAFT agent and AIBN as initiator. 
 

 

The RAFT-mediated polymerization of butyl acrylate with target molecular weight  

of 10 000 g.mol-1 shows a rapid increase in conversion over time and reaches a plateau at 

approximately 80% conversion. The reaction with target molecular weight  

of 4000 g.mol-1 has a distinct period of slow conversion early on in the reaction, after 

which it increases and then finally flattens out at ∼70% (see Figure 3.5).  As was the case 

for the RAFT-mediated polymerization of styrene, this retardation phenomenon can be 

ascribed to various factors such as initialization, etc.  These factors were discussed in 

Section 3.3.1.  The retardation is however exacerbated by the fact that AIBN decomposes 

rapidly at 90oC and butyl acrylate cannot self-initiate as styrene can.    

 

Figure 3.6 illustrates the linear increase in molecular weight for poly(butyl acrylate) for 

both target molecular weights, indicating good control.  This is substantiated by the GPC 

results given in Figure 3.7.  Well defined, symmetrical molecular weight distributions 

were obtained with low polydispersities (<1.3). 
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Figure 3.6:  Graph of molecular weight versus conversion for the RAFT-mediated polymerization of 

butyl acrylate in toluene at 90oC with DIBTC as RAFT agent and AIBN as initiator. 
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Figure 3.7:  Normalized GPC distributions for the RAFT-mediated polymerization of butyl acrylate in 

toluene at 90oC with DIBTC as RAFT agent and AIBN as initiator. 
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3.4 Conclusions 
 

 

There is no universal RAFT agent and the effectiveness of a RAFT agent depends 

strongly on the monomer that will be polymerized.  Therefore the structures of the RAFT 

agent, i.e. the R- and Z-groups, have to be carefully chosen.  It has to be noted though 

that the majority of polymerization reactions can be carried out with just two RAFT 

agents:  one RAFT agent for the polymerization of acrylamides, acrylates, and styrenic 

monomers, e.g. DIBTC, and another for the polymerization of vinyl monomers, e.g. 

CVADTB19.  Therefore the successful synthesis of these two RAFT agents should prove 

adequate for the polymerization of all monomers used in this study. 

 

The RAFT-mediated polymerization of both monomers proved successful.  DIBTC was 

used as RAFT agent in both polymerization studies and results showed that polymers 

with low polydispersities and well-defined molecular weight distributions were obtained.  

Styrene and butyl acrylate showed some form of rate retardation in the early stages of 

polymerization, especially in the case of the lower target molecular weight polymers, 

which could be ascribed to a variety of factors.  In the case of this study however, it was 

only required to synthesize polymers with low polydispersities and a known and 

reproducible molecular weight.  In light of these requirements, the RAFT-mediated 

polymerization of both monomers was therefore considered to be successful. 
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ABSTRACT 

 

Various methods for the post-polymerization modification of RAFT end-groups to form 

thiol end-groups were studied.  The use of sodium methoxide proved most successful for 

this purpose as the modification was virtually complete and impurities were only present 

at very low levels.  
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4.1 Introduction 
 

 

Due to the mechanism of the RAFT process, only a small fraction of chains are initiated 

by initiator-derived radicals, whereas the great majority of polymer chains are derived 

from reinitiation from the R-group of the RAFT agent.  However, it is inherent to the 

RAFT process that all polymer chains should theoretically contain a terminal 

thiocarbonylthio moiety.  The thiocarbonylthio moieties at the ends of the polymer chains 

may lead to complications in certain applications due to the potential lability of the 

carbon-sulfur bond.  This is especially true in the case of aqueous RAFT polymerization 

where the presence of water may promote hydrolysis of the RAFT moieties and lead to a 

loss of active chain ends and diminished control1.  Aminolysis of dithioesters in aqueous 

RAFT systems has also been cited as a reason for the failure of some of these systems2.  

By making use of these labile carbon-sulfur bonds, various advantageous possibilities 

also emerge.  One of these advantages is the modification of the RAFT end-groups for 

further chemical reactions, e.g. the synthesis of primary and secondary amine end-

functional polymers3 or for the synthesis of thiol end-functional polymers in the 

production of monolayer-protected clusters of metal nanoparticles4-6.  In this project, the 

aim is to transform the RAFT end-group into a thiol end-group to facilitate the grafting of 

polymer branches onto a polymer backbone via a thiol-ene addition reaction. 

 

 

4.2  Experimental 
 

 

4.2.1  Materials 
 

 

Styrene monomer was washed with two aliquots of a 0.3 M aqueous potassium hydroxide 

solution to remove inhibitors and distilled under reduced pressure prior to use.    Toluene 
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CP, methanol CP and 1,4 dioxane 99% (Merck) were distilled and stored over molecular 

sieves.  THF was distilled from LiAlH4.  DIBTC was prepared as described in Chapter 3.   

Water was distilled and deionized.  Sodium bisulfite 99% (Merck), sodium borohydride 

(NaBH4) 99% (Merck), sodium methoxide 95% (Aldrich) and concentrated hydrochloric 

acid 32% (Merck) were used as received. 

 

 

4.2.2 RAFT-Mediated Polymerization of Styrene  

 

 

Styrene was polymerized using DIBTC as RAFT agent and toluene as a solvent.  The 

reactions were carried out at 100oC under a nitrogen atmosphere.  The target molecular 

weights (employing Equation 2.1) at 100% conversion were 2000 g.mol-1, 4000 g.mol-1 

and 10 000 g.mol-1.  The chemical compositions of the reaction mixtures are given in 

Table 4.1. The reactions were stopped after a specific time period had elapsed, 

corresponding to 50% conversion, by using the kinetic studies described in Chapter 3.  

This was done by placing the reaction vessel in an ice bath.  The solvent was removed 

using a rotary evaporator and the polymer was dried in a vacuum oven at room 

temperature for 24 hours. 

 

 
Table 4.1:  Composition of the various reaction mixtures for the RAFT-mediated homopolymerizations 

of styrene  

 

Styrene Toluene DIBTC AIBN Mn, target
a 

Mass 

(g) 

mmol Mass 

(g) 

mmol Mass 

(g) 

mmol Mass 

(g) 

mmol 

1000 8.0 77 8.0 87 2.32 6.3 0.01 0.06 

2000 20.0 192 20.0 217 2.24 6.0 0.02 0.12 

5000 20.0 192 20.0 217 0.80 2.2 0.02 0.12 
a  Target molecular weight at 50% conversion 
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4.2.3 Modification of RAFT End-Groups 
 

The experimental parameters for the various RAFT end-group modification reactions 

attempted in this study are given in Table 4.2.  These reactions were all at least partially 

unsuccessful, and sodium methoxide was used for all further RAFT end-group 

modification experiments (as described in detail below). 

 

The RAFT-functionalized polystyrene was reacted with a 30-molar excess of sodium 

methoxide with dry 1,4-dioxane as solvent. The reactions were carried out in a 50 ml 

round-bottom reaction flask equipped with a condenser, a nitrogen inlet and a magnetic 

stirrer bar.  The reaction mixtures were degassed for 15 minutes prior to immersion into a 

temperature-regulated oil bath at 60oC.  The reactions were run for approximately  

24 hours under a nitrogen atmosphere.  After a few hours the reaction mixtures gradually 

turned from a pale yellow to a rusty orange colour.  Upon completion of the reaction the 

mixtures were allowed to cool down to room temperature before 5 ml of distilled water 

was added.  Concentrated hydrochloric acid (33%) was added in a dropwise fashion until 

the reaction mixture reached pH ∼7.  The solids were filtered off using a Buchner filter 

and the polymer solution poured into a 10X excess of methanol.  The polymer 

precipitated out of solution and filtration yielded a white powder.  The polymers were 

dried in a vacuum oven for 24 hours prior to analysis.   

 

Molecular weight analysis was done via GPC (specifications given in Section 3.2.4).  

Characterization of the molecular structures of the compounds before and after RAFT 

end-group modification was obtained via 1H-NMR and UV analyses.  The UV data were 

obtained with a Perkin Elmer Lambda 20 UV/VIS spectrometer.  Autozeroing was 

performed using THF references.  Samples were prepared by dissolving 0.5 g of the 

polymer in 5 ml of THF and placing the solution in quartz cuvettes.  A scan profile was 

set to scan from 200 to 500 nm in a single ramp profile. 
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4.3  Results and Discussion 
 

 

The aim of this experiment was the modification of the RAFT end-group of polystyrene 

chains synthesized with DIBTC as RAFT agent to obtain thiol-end functionalized 

polymer chains as illustrated in Scheme 4.1.  The thiol end-group is required for the thiol-

ene addition reaction later in the grafting process of these polymer chains to a PAMA 

backbone, as will be described in Chapter 6. 

 

Numerous different techniques have been successfully employed for the modification of 

RAFT end-groups.  These techniques were mentioned in Chapter 2.  Various RAFT end-

group modification experiments were carried out with mixed results and are summarized 

in Table 4.2.  All reactions were conducted for a minimum period of  

24 hours.  The presence of impurities and byproducts were determined via 1H-NMR.   

 

 
Table 4.2:  Table summarizing the various attempts at the post-polymerization modification of the RAFT 

end-groups 
 

Nr. Compound used for 
RAFT end-group 

removal 

Conc. 
(M)a 

Solvent Temp. 
 (oC) 

Comments 

1.00 Room temp. 1 NaBH4 
2.00 

Ethyl 
acetate 50 

No colour change, 
 impurities present 

3.00 Room temp. Slight colour  
change, byproducts 

2 NaOH 

4.00 

Methanol 

50 Colour change from 
 yellow to clear 

 mixture, byproducts 
1.00 Room temp. 3 CH3(CH2)10CH2NH2 
2.00 

THF 
50 

Complete colour 
 change from yellow
 to clear, byproducts 

4 HCl, sonication 1.00 Ethanol Room temp. No colour change 
 
a Concentration of compound used for RAFT end-group removal 
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The use of NaOH (reaction 2) as described by Schilli et al.7, and the use of primary 

amines (reaction 3) as described by Mayadunne et al.8,9, to modify RAFT end-groups 

were studied under various reaction conditions.  Neither Schilli nor Mayadunne made 

mention of the presence of impurities in their systems, however in this study it was found 

that these methods led to several complications. In most cases the yellow colour of the 

polymer disappeared after treatment with the above chemicals, as would be expected 

when the trithiocarbonate moiety is removed, but further NMR analysis indicated the 

presence of byproducts (see Appendix C and Appendix D).  No successful methods were 

found for the isolation and identification of these byproducts.  This positively showed 

that reaction conditions were not desirable.  The use of a hydride reducing agent, sodium 

borohydride5, yielded no positive results, not even a colour change.  Other, more unusual 

techniques were also implemented to facilitate the removal of the RAFT end-group , such 

as the use of ultrasound for ester hydrolysis10, but similarly proved unsuccessful.   The 

use of thermolysis11 was not considered as it leads to the formation of a carbon-carbon 

double bond at the end of the polymer chain, instead of the desired thiol functionality.   

 

The method found to be most successful for the post-polymerization removal of the 

RAFT end-groups entailed the use of sodium methoxide.  Initially the end-group 

modification experiments were carried out with sodium methoxide in a THF medium 

following the procedure described by Stenzel et al.12, but contrary to their results the 

author observed the presence of a large amount of impurities even though the solvent was 

distilled prior to use (Appendix E).  Attempts at the removal of the impurities from the 

reaction mixture proved ineffective.  Instead a 1,4-dioxane medium was used which 

eliminated this problem and byproducts of the reaction itself, e.g. sodium chloride and 

methanol are easily and completely removed during workup. 
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Scheme 4.1:  Reaction scheme for the RAFT end-group transformation of polystyrene synthesized with 

DIBTC as RAFT agent with the use of sodium methoxide in dioxane.  

 

  

Polystyrene obtained by RAFT polymerization using DIBTC as the RAFT agent has a 

distinctive yellow colour due to the presence of the trithiocarbonate chromophore. 

Therefore, the modification of the RAFT end-group should result in a noticeable colour 

change.  This is observed when the polymer is precipitated out of solution after treatment 

with sodium methoxide as the yellow colour disappears and a completely white polymer 

remains.  The disappearance of colour from the polymer is the first indication that the 

RAFT end-group was successfully modified to form a thiol end-group.  Other techniques 

were used to confirm this result.  1H-NMR was found to be the most effective method. 

The 1H-NMR spectra of RAFT-polymerized polystyrene are shown in Figure 4.1.   
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Figure 4.1:   1H-NMR spectrum of polystyrene polymerized with DIBTC before and after the 

modification of the RAFT end-group with the use of sodium methoxide. 
 

 

Spectrum (A) shows the resonance peaks of polystyrene prior to the modification of the 

RAFT end-groups and spectrum (B) the resonance peaks after modification of the RAFT 

end-groups.  Given that the aim of this experiment was the modification of the RAFT 

end-groups, monitoring the disappearance of specific resonance peaks corresponding to 

protons present in the RAFT end-groups should prove conclusively that the experiment 

was successful.  Peak (e) corresponds to the methylene group directly adjacent to the 
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trithiocarbonate moiety in the RAFT end-group.  This peak is absent in spectrum (B).  

Similarly, peak (f), corresponding to the remaining methylene groups in the RAFT end-

group, almost completely disappears in spectrum (B).  The disappearance of these two 

peaks after treatment with sodium methoxide indicates that the modification of the RAFT 

end-group was indeed successful.  UV spectroscopy was used as a method to confirm 

these results.  
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Figure 4.2:  UV spectrum of polystyrene polymerized with DIBTC before and after the modification of 

the RAFT end-group with the use of sodium methoxide and 1,4-dioxane as solvent. 
 

 

The thiocarbonylthio moiety in the RAFT end-group acts as a UV chromophore and will 

therefore absorb UV radiation.  The UV absorption at approximately 310 nm is indicative 

of the thiocarbonylthio moiety (Figure 4.2).  This absorption disappears after the polymer 
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is treated with sodium methoxide.  This once again substantiates earlier indications from 

the 1H-NMR spectra, that the RAFT end-group modification was successful. 

A serious complication that often arises with the modification of RAFT end-groups after 

polymerization is the possible oxidative coupling of the initially formed thiols to form 

disulfide bridges, as illustrated in Scheme 4.2.  

 
 

HOOC CH2 CH CH2 CH SH

n

SH CH CH2 CH CH2 COOH+

HOOC CH2 CH CH2 CH S

n

S CH CH2 CH CH2 COOH

m

m

 
Scheme 4.2:  Oxidative coupling of the initially formed thiols of RAFT-polymerized polystyrene after 

treatment with sodium methoxide. 
 

 

This phenomenon was studied by Wang et al.13 and recently confirmed by studies done 

by Lima et al.14.  They employed a critical-liquid-chromatography technique developed 

by Jiang et al.15 to study the end-groups of RAFT polymerized polymethacrylate chains 

after treatment with 1-hexylamine.  The RAFT agent that was used, (4-cyano-1-

hydroxylpent-4-yl) dithiobenzoate, contains a hydroxyl end-group, and it was found that 

two of these end-groups were present in some of the polymer chains after treatment with 

1-hexylamine, indicating that oxidative coupling did in fact occur.  Various methods have 
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been suggested and used with a certain degree of success to prevent oxidative coupling or 

to treat it after formation of these disulfide bridges.  A mixture of zinc and acetic acid 

was used to eliminate the disulfide bridges, although in certain cases it only managed to 

diminish them3.  Another method was developed by Lima et al.14 after they established 

that all RAFT-synthesized polymers that they had studied were susceptible to oxidative 

coupling after treatment with 1-hexylamine. Prior distillation of solvents and removal of 

oxygen with freeze-pump-thaw cycles did not prevent the formation of disulfide bridges.  

They added an antioxidant (an aqueous solution of sodium bisulfite, Na2S2O4) to their 

reaction mixtures, which successfully suppressed the formation of disulfide bridges.   

   

A reference experiment was carried out to determine whether oxidative coupling actually 

occurred in the system used in the current study.  The GPC traces for the experiment are 

shown in Figure 4.3.   
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Figure 4.3: GPC traces of polystyrene polymerized with DIBTC before and after the modification of the 

RAFT end-groups with the use of sodium methoxide without removal of oxygen prior to the start of the 

reaction. 
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The conditions for the modification of the RAFT end-groups were identical to those 

described in Section 4.2.3, except that the reaction mixture was not degassed with 

nitrogen prior to the start of the reaction.   

 

The GPC trace of the polymer after treatment with sodium methoxide has a distinct 

shoulder at the high molecular weight side (Figure 4.3).  The molecular weight of the 

shoulder is approximately doubled that of the main peak, indicating that oxidative 

coupling did in fact take place.  The use of sodium bisulfite in similar experiments failed 

to reduce the high molecular weight shoulder and was therefore omitted in all future 

experiments.  

 

Exclusion of oxygen was then attempted.  The modified RAFT end-groups now show no 

coupling (Figure 4.4.) 
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Figure 4.4: GPC traces of polystyrene polymerized with DIBTC before and after the modification of the 

RAFT end-groups with the use of sodium methoxide and removal of oxygen prior to the start of the 

reaction. 
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The GPC results of the experiments that were done with prior degassing of the reaction 

mixture with nitrogen before the onset of the reaction are given in Table 4.3. 

 

 
Table 4.3:  Summary of GPC and 1H-NMR data for the RAFT end-group modification experiments 

carried out with sodium methoxide 

 

Mn
b PDIc Mn, target

a 

Before After Before After 

End-group 
modification 

efficiency (%)d 
1000 900 750 1.38 1.37 >95% 

2000 2100 1900 1.25 1.11 >95% 

5000 4100 3800 1.16 1.09 >95% 
 

a  Target molecular weight at 50% conversion  
b  Molecular weight before and after RAFT end-group modification obtained via GPC at ~ 50% conversion 
c  Polydispersity index before and after RAFT end-group modification  
d Efficiency determined via 1H-NMR 
 

 

Two things become immediately apparent when studying the results:  There is a distinct 

decrease in the polydispersity index (PDI) as well as the molecular weight after removal 

of the RAFT end-group and secondly, both distributions are unimodal.  The PDI values 

of all the polymers were low, indicating that the polymerization was well controlled.  The 

decrease in the PDI is mainly due to the fact that the polymer was precipitated out of 

solution after treatment with sodium methoxide.  The decrease in molecular weight can 

be ascribed to the modification of the RAFT end-group as it corresponds well with the 

molecular weight of the end-group.  A surprising development is that the GPC 

distribution after modification of the RAFT end-group remains unimodal.  There was no 

need for the use of either sodium bisulfite or zinc and acetic acid to prevent oxidative 

coupling of the initially formed thiols (as described in the literature)3,14.  

 

Finally, the end-group modification efficiency was determined by 1H-NMR.  Peak (e) in 

Figure 4.1 which corresponds to the methylene group directly next to the trithiocarbonate 

group, was integrated relative to the peaks of the phenyl rings of the styrene units (d).  It 
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was found that the end-group modification efficiency was virtually complete in the cases 

of all three target molecular weights. 

 

 

4.4 Conclusions 
 

 

Polystyrene was successfully polymerized with DIBTC as RAFT agent to yield a 

polymer with a narrow molecular weight distribution.  Various chemical routes were 

explored for the post-polymerization modification of the RAFT end-groups. The use of 

sodium methoxide for this purpose proved most successful as the other methods quoted in 

the literature5,7-11 either completely failed to modify the end-groups or produced too many 

byproducts and impurities.  GPC, UV and 1H-NMR were used as analytical techniques to 

study the polymer chains after end-group modification.  The end-group modification was 

virtually complete irrespective of the molecular weight of the polystyrene chains.  

Impurities and byproducts were only present at very low levels.  Polymer chains with 

thiol end-groups were obtained.  It was found that oxidative coupling of the initially 

formed thiols only occurred when the reaction mixture was not degassed with nitrogen 

before the onset of the reaction.  There was no need for the addition of antioxidants or 

reducing agents.  This simplifies the reaction and leads to less impurities in the final 

polymer.  In conclusion, a simple yet effective method was developed to modify the 

RAFT end-groups into thiol end-groups via the use of sodium methoxide for future use in 

thiol-ene addition reactions.  

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 4:  POST-POLYMERIZATION MODIFICATION OF RAFT END-GROUPS 

 76

4.5  Bibliography 
 

 

1. McCormick, C.L., Lowe, A.B., Aqueous RAFT Polymerization:  Recent 

Developments in Synthesis of Functional Water-Soluble (Co)polymers with 

Controlled Structures. Accounts of Chemical Research, 2004. 37: p. 312-325. 

2. Thomas, D.B., Convertine, A.J., Hester, R.D., Lowe, A.B., McCormick, C.L., 

Hydrolytic Susceptibility of Dithioester Chain Transfer Agents and Implications 

in Aqueous RAFT Polymerizations. Macromolecules, 2004. 37: p. 1735-1741. 

3. Moad, G., Chong, Y.K., Postma, A., Rizzardo, E., Thang, S.H., Advances in 

RAFT Polymerization: The Synthesis of Polymers with Defined End-Groups. 

Polymer, 2005. 46: p. 8458–8468. 

4. Shan, J., Nuopponen, M., Hua, J.H., Kauppinen, E., Tenhu, H., Preparation of 

Poly(N-isopropylacrylamide)-Monolayer-Protected Gold Clusters: Synthesis 

Methods, Core Size, and Thickness of Monolayer. Macromolecules, 2003. 36: p. 

4526-4533. 

5. Lowe, A.B., Sumerlin, B.S., Donovan, M.S., McCormick, C.L., Facile 

Preparation of Transition Metal Nanoparticles Stabilized by Well-Defined 

(Co)polymers Synthesized via Aqueous Reversible Addition-Fragmentation Chain 

Transfer Polymerization. Journal of the American Chemical Society, 2002. 124: 

p. 11562-11563. 

6. Sumerlin, B.S., Lowe, A.B., Stroud, P.A., Zhang, P., Urban, W., McCormick, 

C.L., Modification of Gold Surfaces with Water-Soluble (Co)polymers Prepared 

via Aqueous Reversible Addition-Fragmentation Chain Transfer (RAFT) 

Polymerization. Langmuir, 2003. 19: p. 5559-5562. 

7. Schilli, C., Lanzendörfer, M.G., Müller, A.H.E., Benzyl and Cumyl 

Dithiocarbamates as Chain Transfer Agents in the RAFT Polymerization of N-

Isopropylacrylamide. In Situ FT-NIR and MALDI-TOF MS Investigation. 

Macromolecules, 2002. 35: p. 6819-6827. 

8. Mayadunne, R.T.A., Rizzardo, E., Chiefari, J., Krstina, J., Moad, G., Postma, A., 

Thang, S.H., Living Polymers by the Use of Trithiocarbonates as Reversible 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 4:  POST-POLYMERIZATION MODIFICATION OF RAFT END-GROUPS 

 77

Addition-Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock 

Copolymers by Radical Polymerization in Two Steps. Macromolecules, 2000. 33: 

p. 243-245. 

9. Mayadunne, R.T.A., Jeffery, J., Moad, G., Rizzardo, E., Living Free Radical 

Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT 

Polymerization): Approaches to Star Polymers. Macromolecules, 2003. 36: p. 

1505-1513. 

10. Tuulmets, A., Salmar, S., Effect of Ultrasound on Ester Hydrolysis in Aqueous 

Ethanol. Ultrasonics Sonochemistry, 2001. 8: p. 209-212. 

11. Postma, A., Davis, T.P., Moad, G., O'Shea, M.S., Thermolysis of RAFT-

Synthesized Polymers. A Convenient Method for Trithiocarbonate Group 

Elimination. Macromolecules, 2005. 38: p. 5371-5374. 

12. Stenzel, M.H., Davis, T.P., Star Polymer Synthesis Using Trithiocarbonate 

Functional beta-Cyclodextrin Cores (Reversible Addition-Fragmentation Chain-

Transfer Polymerization). Journal of Polymer Science: Part A: Polymer 

Chemistry, 2002. 40: p. 4498-4512. 

13. Wang, Z., He, J., Tao, Y., Yang, L., Jiang, H., Yang, Y., Controlled Chain 

Branching by RAFT-Based Radical Polymerization. Macromolecules, 2003. 36: p. 

7446-7452. 

14. Lima, V., Jiang, X., Brokken-Zijp, J., Schoenmakers, P.J., Klumperman, B., Van 

der Linde, R., Synthesis and Characterization of Telechelic Polymethacrylates via 

RAFT Polymerization. Journal of Polymer Science: Part A: Polymer Chemistry, 

2005. 43: p. 959-973. 

15. Jiang, X., Lima, V., Schoenmakers, P.J., Robust Isocratic Liquid 

Chromatographic Separation of Functional Poly(Methyl Methacrylate). Journal 

of Chromatography A, 2003. 1018: p. 19-27. 

 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 5:  RAFT-MEDIATED 

HOMOPOLYMERIZATION OF ALLYL METHACRYLATE 

  

                                                          

 

 

 

ABSTRACT 

 

Cyanovaleric acid dithiobenzoate (CVADTB) was used as RAFT agent in the 

homopolymerization of allyl methacrylate.  Linear polymer chains were obtained at low 

conversions, but at higher conversions gel formation occurred.   
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5.1 Introduction 
 

 

Bifunctional monomers such as divinyl benzene and the dimethacrylate of ethylene 

glycol have two double bonds with equal reactivities. These monomers are generally used 

to prepare crosslinked polymers in a single step1.  Monomers with two double bonds of 

different reactivities can be crosslinked in two separate steps: the more reactive double 

bond is selectively polymerized to obtain a linear polymer chain with pendant double 

bonds, followed by the crosslinking of these pendant double bonds2.  In this case, the 

pendant double bonds of PAMA are studied as potential grafting sites.   

 

 

5.2 Experimental 
 

 

5.2.1 Materials 
 

 

AMA 98% (Fluka) was washed twice with a 0.3 M aqueous potassium hydroxide 

solution to remove inhibitors, followed by distillation under reduced pressure.  DIBTC 

and CVADTB were synthesized as described in Chapter 3.  AIBN was recrystallized 

from methanol and stored at low temperature. THF was distilled from lithium aluminium 

hydride. 

 

 

5.2.2 RAFT-Mediated Synthesis of PAMA Homopolymer 
 

 

All reactions were carried out in a 100 ml three-neck, round bottom reaction flask at 60oC 

or 80oC (see Table 5.1) under a nitrogen atmosphere.  A round bottom flask was equipped 
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with a condenser, a nitrogen inlet, a magnetic stirrer bar and a rubber septum for sample 

extraction. A temperature-controlled oil bath was used to regulate the temperature of the 

reaction mixtures.  The reaction mixtures were degassed with nitrogen for 15 minutes 

prior to the start of the reaction to remove oxygen.  Samples were drawn at regular 

intervals using a glass syringe and placed in sample pans before being dried in a vacuum 

oven for a minimum period of 12 hours.  The quantities of the different reagents for the 

RAFT-mediated polymerizations of AMA are given in Table 5.1. 

 

Conversions were determined gravimetrically and molecular weight analysis was done 

via GPC (specifications given in Section 3.2.4).  1H-NMR was used to study the 

microstructure of the synthesized polymers. 

 

 

5.3 Results and Discussion 
 

 

To the best of the author’s knowledge, the living/controlled homopolymerization of allyl 

methacrylate to produce linear polymers with pendant double bonds has only been carried 

out by the living techniques of anionic polymerization3 and ATRP1,4,5.  It would therefore 

be an interesting study to determine whether the effectiveness of RAFT polymerization 

for this particular monomer mirrors that of ATRP.  

 

Table 5.1 summarizes the various RAFT-mediated homopolymerizations of AMA that 

were carried out. 
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Table 5.1:  Kinetic and characteristic parameters for the RAFT-mediated homopolymerization of AMA 

 
 AMA THF RAFT agenta AIBN 

 Mass 

(g) 

mmol Mass 

(g) 

mmol Type Mass

(g) 

mmol Mass

(g) 

mmol 

Conv. 

at gel 

point 

(%)b  

 

Mn
c 

at gel 

point 

PDId  

at gel 

point 

 
 

1 20.0 159 46.67 647 a 0.117 0.32 0.010 0.06 - - - 

2 20.0 159 46.67 647 b 0.260 2.06 0.010 0.06 42 3600 1.62 

3 20.0 159 46.67 647 b 0.127 1.01 0.010 0.06 27 4800 1.47 

4 20.0 159 46.67 647 b 0.116 0.40 0.010 0.06 17 4600 1.34 

5c 20.0 159 46.67 647 b 0.116 0.40 0.010 0.06 12 3800 1.55 

 
a  RAFT agent (a) is DIBTC and RAFT agent (b) is CVADTB 
b Conversion percentage at gel point  
c Molecular weight at gel point as determined by GPC 
d Polydispersity index at gel point as determined by GPC 
e All reactions were done at 60oC, except reaction (5) which was done at 80oC 
 

 

First, the trithiocarbonate RAFT agent DIBTC was used for the RAFT-mediated 

polymerization of AMA, but large uncontrolled, multimodal distributions were observed. 

This can be explained by the incorrect choice of the R-group.  The importance of 

choosing the correct R- and Z-groups to form a particular RAFT agent has already been 

discussed in Section 2.2.6.1.  The R-group must be a good homolytic leaving group 

compared to the propagating radical to ensure that fragmentation occurs efficiently in the 

desired direction.   

 

Chong et al.6  studied the efficiency of benzyl dithiobenzoate as a RAFT agent where  

R = benzyl.  This RAFT agent functions well where the propagating radical is styrenic or 

acrylic, but is virtually inert when the propagating radical is methacrylic.  The reason for 

this is that the R-group is a poor homolytic leaving group in comparison with the 

propagating methacrylic radical.  This leads to uncontrolled polymerization.  The same 

reasoning can be used to explain the large uncontrolled distributions observed in the GPC 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 5:  RAFT-MEDIATED HOMOPOLYMERIZATION OF ALLYL 
METHACRYLATE 

 82

data for the RAFT-mediated homopolymerization of AMA with DIBTC as RAFT agent, 

as observed in Figure 5.1.  
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Figure 5.1:  GPC results for the DIBTC-mediated homopolymerization of AMA. 
 

 

The PDI increased from 2.5 at the onset of polymerization to 8.4 on completion of the 

reaction.  This implies side reactions involving the allyl groups and less normal RAFT 

chain growth.    

 

CVADTB was used as RAFT agent in all further AMA polymerization reactions and a 

certain degree of success was obtained.       

 

In the case of the CVADTB-mediated polymerization of AMA it was necessary to 

determine whether and to what degree the RAFT agents were incorporated into the 

polymer chains.  GPC analyses were done using a refractive index (RI) detector in 

conjunction with a UV detector.  The UV detector was set at a wavelength of 320 nm as 
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only the RAFT agent absorbs UV light at this wavelength and not the monomer itself.  

This makes it possible to distinguish between polymer chains that have RAFT end-groups 

and polymer chains that do not. 
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Figure 5.2:  GPC results of the CVADTB-mediated polymerization of allyl methacrylate using a dual 

detector system.  
 

 

The UV and RI signals show a good overlay, indicating that the majority of the polymer 

chains contain the RAFT moiety and that the polymerization was indeed RAFT-mediated 

(Figure 5.2). The free radical polymerization2 and copolymerization7 of allyl 

methacrylate leads to the formation of linear polymers with pendant allyl double bonds in 

the early stages of the reaction, i.e. at low conversion.  This is due to the significantly 

lower reactivity of the allyl double bond compared to the high reactivity of the resonance-

stabilized methacryloyl double bond.  With the progress of polymerization the number of 

intermolecular and intramolecular bonds increases gradually until a crosslinked gel 
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eventually forms7.  Figure 5.3 shows the 1H-NMR spectrum of homopolymerized PAMA 

at low conversion. 
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Figure 5.3:  1H-NMR spectrum of PAMA polymerized in the presence of CVADTB, AIBN and THF as 

solvent at 60oC. 
 

 

The 1H-NMR spectrum clearly shows the complete absence of unreacted methacryloyl 

double bonds whereas the resonance signals corresponding to the allyl double bonds are 

present.  This indicates that the PAMA homopolymer is predominantly linear at low 

conversions.  

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 5:  RAFT-MEDIATED HOMOPOLYMERIZATION OF ALLYL 
METHACRYLATE 

 85

Peak (f) and peak (g) correspond to the same proton resonances as peaks (c) and (d) 

respectively, but in the case of peaks (f) and (g) there are no pendant double bonds 

present.  This indicates either the formation of 5- and 6-membered lactone rings and/or 

the presence of intermolecular crosslinking, as depicted in Scheme 5.1 and Scheme 5.2.  

 

 

O O O O O O

O

O

O O

O

O

+

Polymerization

f

g

 
 
Scheme 5.1: Schematic illustration of the crosslinking reaction that may occur during AMA 

homopolymerization. 
 

 

Scheme 5.1 depicts the crosslinking reaction in which the free radical attacks the allyl 

carbon at the α-position.  Another possibility is when radical attack occurs at the β-

position.  By using the integral values for these resonances it was possible to determine a 
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value for the allyl fraction; it was found that Fallyl = 0.93.  This value corresponds well 

with the value obtained by Matsumoto et al.8 who determined it iodometrically.   

 

 

O O O

polym. f

g

O O O

 
Scheme 5.2:  Reaction route for the formation of 6-membered lactone rings during AMA 

homopolymerization. 
 

 

The presence of 5- and 6-membered lactone rings (Scheme 5.2) is very difficult to prove 

in the case of PAMA.   Scheme 5.2 depicts the formation of 6-membered lactone rings 

and, similarly, the formation of 5-membered rings is also possible.  Nagelsdiek et al.4 

found no evidence for the formation of these lactone rings, whereas Paris et al.5 used 

Fourier-Transform Infrared (FTIR) spectroscopy in conjunction with curve-fitting 

analysis to prove otherwise.  For the purpose of the present study it was sufficient to 

conclude that cyclopolymerization and crosslinking reactions were kept to a minimum at 

low conversions and that the polymer chains contained predominantly pendant allyl 

double bonds.   

 

The stereochemical configuration of the monomer units along the polymer chain was also 

analyzed.  The resonance signals of the α-CH3 split into three distinct peaks at 0.87, 1.10 

and 1.25 ppm.  These peaks correspond to syndiotactic (rr), heterotactic (rm, mr) and 

isotactic (mm) triads.  The isotacticity parameter for PAMA (σAMA) was determined using 

the integral values for these resonance signals.  The isotacticity parameter, as defined by 

Bovey9 and Coleman10, is the probability of producing a meso dyad between an i-ending 

propagating radical and an incoming j-monomer.  The value for PAMA σAMA = 0.19 
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corresponds well with that of poly(methyl methacrylate) (PMMA), σMMA = 0.23, as 

obtained by de la Fuente et al.11. 

 

Table 5.1 shows that all CVADTB-mediated reactions led to gelation at low conversions 

and no definite relationship could be established between the concentration of RAFT 

agent used and the molecular weight that was attained before the onset of gelation.  The 

experiments all yielded low molecular weight PAMA, but reaction (4) had the lowest PDI 

and was thus chosen as the model reaction for all further discussions. 

 

Figure 5.4 illustrates the increase in monomer conversion over time.   
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Figure 5.4:  Conversion-time graph of the CVADTB-mediated homopolymerization of AMA. 
 

 

Initially the conversion rate is slow, but at a conversion of approximately 25% there is a 

sudden increase in the conversion rate.  This can be attributed to the formation of 

microgel particles2,12.  These particles form due to the formation of intramolecular and 

intermolecular bonds.  Radicals are trapped inside the gel particles and as a result the 

number of radicals in the system increases dramatically, which in turn leads to an 

increase in the rate of conversion.  As the polymerization progresses there is an increase 

in intramolecular and intermolecular bonds and a crosslinked gel eventually forms at 60% 
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conversion.  It was also observed that when left standing in air at room temperature for 

only a few hours, PAMA started crosslinking, and therefore samples were stored under a 

nitrogen atmosphere. 
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Figure 5.5:  Semi-logarithmic plot of monomer consumption over time for the CVADTB-mediated 

homopolymerization of AMA. 
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Figure 5.6:  Molecular weight versus conversion plot of the CVADTB-mediated homopolymerization of 

AMA. 
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Figure 5.5 also shows a definite increase in monomer consumption at a reaction time of 

approximately 7 hours.  Once again this can be attributed to an increase in the number of 

radicals in the system due to the formation of microgel particles.  At the specific 

conversion where the effect of the microgel particles is first observed, there is a marked 

decrease in the rate of gain in molecular weight as seen in Figure 5.6.  Paris and de la 

Fuente5 attributed this phenomenon to the fact that high molecular weight sol polymers 

have a greater chance of being consumed by the gel network due to reactions between 

radicals and pendant double bonds.  This corresponds well with the observed GPC 

curves, as illustrated in Figure 5.7.  During the GPC process the larger gel particles are 

filtered out in a pre-column and therefore they do not appear in the molecular weight 

data, which now presents a decrease in rate of gain in molecular weight as gel formation 

occurs.  The reason for the decrease is also attributed to the decrease in hydrodynamic 

volume as the polymer intramolecularly crosslinks and is mirrored in a slower rate of 

molecular weight increase and an increase in PDI. 
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Figure 5.7:  GPC distributions for the CVADTB-mediated homopolymerization of AMA. 
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The symmetry of the GPC curves is somewhat lost at higher conversions, but at low 

conversions well-defined, symmetric peaks are observed. Finally, the PDI of the 

polymers remained below 1.4 at low conversions.  At higher conversions the PDI 

increased dramatically to values greater than 7.  

 

 

5.4 Conclusions 
 

 

The polymerization of allyl methacrylate with DIBTC as RAFT agent proved 

unsuccessful.  Polymerization with CVADTB as RAFT agent yielded better results.    

However, linear polymers with pendant double bonds and narrow molecular weight 

distributions (PDI<1.5) were only obtained at low conversions.  At higher conversions 

the formation of microgel particles leads to decreased control as observed by the 

broadening of molecular weight distributions.  Since the aim of this project is to 

synthesize graft copolymers with linear poly(allyl methacrylate) as the backbone, it 

would be necessary to terminate these reactions at low conversions before the onset of 

gelation. 
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ABSTRACT 

 

A range of PAMA-g-polystyrene copolymers were synthesized with branches of different 

molecular weights.  Abnormal GPC behaviour of the branched copolymer was studied 

using an RI and a MALLS detector. 
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6.1  Introduction 
 

 

Graft copolymers are currently used in a many areas such as polymeric emulsifiers, 

compatibilizers, impact-resistant plastics and thermoplastic elastomers1.  The main reason 

for the upsurge in research into synthesizing new graft copolymers is the wide variety of 

structural variables that can be employed to fine-tune the final material properties.  These 

variables include branch length and backbone length, comonomer composition and 

branch distribution.  This enables scientists to create materials with new properties or 

improve the performance of existing materials. 

 

The “grafting through” method makes use of macromonomers that are copolymerized 

with other monomers to create graft copolymers.  The “grafting through” method has 

been successfully applied using RAFT2 or a combination of RAFT and ATRP1. 

 

The “grafting from” approach entails the polymerization of branches from active sites on 

a polymeric backbone.  The advantage of this method is that high graft densities can be 

obtained due to the absence of steric hindrances from previously attached branches, 

which causes problems in the “grafting onto” approach.  This approach does however 

complicate the analysis of the branches.  The “grafting from” technique is currently the 

most widely used RAFT-mediated grafting technique.  Baum and Brittain.3, 4 and Tsujii et 

al.5  were the first to apply RAFT to “grafting to” copolymerization.  RAFT 

polymerizations from surface-functionalized silica particles3-5, plasma treated Teflon 

surfaces6 and ozonolyzed polyimide surfaces7 were also successfully carried out. 

 

In this study, the aim was to use to use a thiol-ene addition reaction to facilitate the 

“grafting onto” method for covalently attaching preformed thiol-functionalized 

polystyrene branches to the pendant double bonds of a PAMA backbone.  The ability of 

thiols to bind to gold surfaces has been exploited previously to synthesize polymer 

brushes using RAFT8-10.  This field has sparked great interest recently due to the potential 
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use of thiol-stabilized gold nanoparticles in applications related to optics and 

electronics11.    

 

 

6.2  Experimental 
 

 

6.2.1  Materials 
 

 

THF was distilled from LiAlH4.  Toluene was distilled under reduced pressure and stored 

over molecular sieve.  AIBN was recrystallized from methanol and stored at low 

temperature for later use.  Polystyrene was synthesized as described in Section 3.2.4 and 

modified as described in Section 4.2.3.  PAMA was synthesized as described in Section 

5.2.2. 

 

 

6.2.2 Synthetic Procedure 
 

 

Styrene polymerized in the presence of DIBTC as RAFT agent was used as the branches 

of the graft copolymer and PAMA was used as the backbone.  In order to obtain 

predominantly linear PAMA chains with pendant allyl double bonds the reaction was 

stopped at an early stage of polymerization, i.e. 4.5 hours.  This was done in order to 

circumvent the problems of gelation12 and other secondary reactions normally associated 

with the later stages of the radical polymerization of allyl methacrylate13.   

 

The graft copolymerization reactions were conducted in a 100 ml three-neck reaction 

flask equipped with a condenser, a rubber septum, a gas inlet and a magnetic stirrer bar.  

The graft copolymerization mixtures consisted of thiol end-functionalized polystyrene 
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branches and PAMA chains as polymer backbones for the “grafting onto” reaction. 

Polystyrene was added in a 25-molar excess with respect to the PAMA homopolymer.  

The reactions were conducted with THF as solvent and AIBN as free radical initiator.  A 

typical reaction mixture is given in Table 6.1.  

 

 
Table 6.1:  Reagents and their quantities used in the synthesis of PAMA-g-polystyrene 

 

Reagent Mass (g) mmol 

PAMA (Mn = 3200) 0.11 0.03 

Polystyrene (Mn = 4800) 4.00 0.83 

THF 30.00 420 

AIBN* 0.06 0.37 

 
*AIBN was added at the start of every reaction and every 24 hours thereafter in aliquots of 0.02 g. 
 

 

The reaction mixtures were degassed for 25 minutes prior to the start of the reaction.  All 

reactions were run at a temperature of 60oC under a nitrogen atmosphere for 72 hours and 

then stopped by placing them in an ice bath. The reaction mixtures were decanted into a 

Petri dish and dried in a vacuum oven at room temperature for 24 hours.  The ungrafted 

polystyrene chains were found to be slightly more soluble (they took longer to dissolve) 

in acetone than the graft copolymer and this fact was exploited to remove these chains.  

After the polymer mixture was dried, it was stirred in acetone for a short period of time to 

selectively remove the ungrafted polystyrene chains.  This was repeated several times 

until no more ungrafted polystyrene chains were observed in the GPC spectra. 

 

Molecular weights and molecular weight distributions were determined using a GPC 

system comprising a Waters 410 Differential Refractometer, Waters 717plus Autosampler, 

Waters 600E System Controller and Wyatt DAWN DSP Multiangle Laser Light 

Scattering (MALLS) detector. The molecular weights and polydispersity data were 
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calculated using the Wyatt ASTRA4.50 software package. The dn/dc values were 

determined over a range of concentrations (0.5, 1, 2, 3, 4, 5 mg/l). The flow rate was set 

at 1 ml/min.  

 

 

6.3 Results and Discussion 
 

 

The general proposed reaction scheme for the synthesis of PAMA-g-polystyrene is given 

in Scheme 6.1.   First, AIBN decomposes to create initiating radicals (step 1).  These 

radicals then react with the thiol-functionalized polystyrene to create thiyl radicals  

(step 2), which, in turn, add to the PAMA chains via the pendant allyl double bonds (step 

3).  Thus there is a sulfur linkage created between the polystyrene branch and the PAMA 

backbone.  Finally, a hydrogen atom is abstracted by the carbon-centered radical from 

another thiol-functionalized polystyrene chain and an additional thiyl radical is created 

(step 4).   
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Scheme 6.1:  Reaction scheme for the synthesis of PAMA-g-polystyrene. 

 

 

GPC was used initially to determine whether the grafting reaction was successful.  A UV 

detector was used in conjunction with an RI detector.  The UV detector was set at a 

wavelength of 254 nm as only the polystyrene side chains absorb UV light at this 
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wavelength, and not the PAMA backbone.  The GPC results for reaction (1) are given as 

an example in Figure 6.1. 

 

 

0 1 2 3 4 5 6 7 8

0.0

0.5

1.0
 RI
 UV

 Log MW

 N
or

m
al

iz
ed

 re
sp

on
se

 
 
Figure 6.1:  GPC data for the graft copolymer synthesized via reaction (1) recorded using a dual detector 

system. 

 

 

The RI and UV signals show a good overlay indicating that the polystyrene side chains 

were successfully attached to the PAMA backbone.  The UV signal does however deviate 

slightly from the RI signal at lower molecular weights signifying that a certain percentage 

of these low molecular weight PAMA chains remained ungrafted or have low extents of 

grafting, so making the RI signal greater than the UV signal. 

 

The 1H-NMR spectrum of the graft copolymer that was synthesized in reaction (1) is 

shown in Figure 6.2. 
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Figure 6.2:  1H-NMR of the graft copolymer synthesized via reaction (1). 

 

 

The resonance peaks (a) and (b) were used to determine the grafting percentage of the 

final graft copolymer as there is too much peak overlap in the rest of the spectrum.  Peaks 

(a) and (b) refer to the same methylene group as illustrated in Figure 6.2, but in the case 

of peak (b) there is no adjacent double bond.  In Section 5.3 it was reported that in the 

homopolymerization of AMA, peak (b) arises due to the formation of lactone rings or 

during crosslinking.  It was also shown that the occurrence of these reactions is very low 

in the early stages of polymerization and the extent of these reactions can be calculated 

using the integrals of peaks (a) and (b).  Thus it can be deduced that any subsequent 

growth of peak (b) relative to peak (a) can be attributed mainly to the attachment of the 

polystyrene chains to the PAMA backbone.  The grafting percentages for the various 

reactions are given in Table 6.2.  It is clear from the results that the grafting percentage 
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increases as the molecular weight of the branches decreases.  Steric hindrance of 

previously attached chains could therefore be shown to be a cause of this phenomenon. 

 

Table 6.2 summarizes the GPC results of the PAMA backbone, the thiol-terminated 

polystyrene branches and the final graft copolymer using a RI detector.  Also included is 

the absolute molecular weight as determined via GPC with a MALLS detector as well as 

the grafting percentage. 

 

 
Table 6.2:  Molecular weight data of the PAMA polymer backbone, polystyrene branches and final graft 

copolymer as determined by GPC with RI and MALLS detectors   

 

PAMA Polystyrene PAMA-g-PS 

(RI)a 

PAMA-g-PS 

(MALLS)b 

Reaction 

Mn PDI Mn PDI Mn PDI Mn PDI 

Graftingc

(%) 

1 3200 1.45 4800 1.11 8700 1.52 17300 1.32 6 

2 3200 1.45 1900 1.11 8200 1.48 20200 1.43 25 

3 3200 1.45 750 1.37 7900 1.43 16800 1.30 49 

 
a Molecular weight data of the graft copolymer using an RI detector 
b Molecular weight data of the graft copolymer as determined using a MALLS detector 
c Grafting percentage as determined by 1H-NMR 
 
 

 

Table 6.2 shows that the molecular weights of the graft copolymers as determined by the 

RI detector are significantly lower than the molecular weights obtained by the MALLS 

detector.  This is because GPC separates polymer molecules on the basis of 

hydrodynamic volume, and it has been reported that branched polymers have smaller 

hydrodynamic volumes compared to their linear counterparts for a given molecular 

weight14.  The phenomenon is exacerbated by the retardation experienced by branched 

polymers during the GPC process.  Polymers with fewer branches experience less 
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retardation and elute earlier than expected.  This is then observed as an apparent increase 

in molecular weight, as illustrated in Figure 6.3.     

 

Figure 6.3 shows the GPC chromatograms of the PAMA backbone, the polystyrene 

branches and the final PAMA-g-polystyrene copolymer of reaction (1).  There is no 

significant broadening of the molecular weight distribution of the graft copolymer when 

compared with the molecular weight distributions of the polymer backbone and branches.  

It can be deduced that inter- and intramolecular crosslinking reactions between the 

PAMA backbones were largely avoided. 
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Figure 6.3:  GPC chromatograms of the PAMA backbone, polystyrene branches and final graft 

copolymer obtained using an RI detector for reaction (1). 
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6.4 Conclusions 
 

 

PAMA-g-polystyrene was successfully synthesized using a thiol-ene addition 

mechanism.  The low branching percentage was attributed to steric hindrance due to 

previously attached chains.  Abnormal GPC behaviour was observed when using a RI 

detector, but the MALLS detector gave more realistic results.   
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7.1  Conclusions 

 

 

A few general conclusions can be drawn from the work done in this study: 

 

 

• Chapter 3 dealt with the successful synthesis of two RAFT agents, CVADTB and 

DIBTC, and described the effect of RAFT agent concentration on the synthesis of 

low molecular weight polymers.  Some retardation phenomena were observed, 

especially at higher RAFT agent concentrations. 

 

• In Chapter 4 the post-polymerization modification of RAFT end-groups to obtain 

thiol end-groups was studied using various techniques proposed in literature.  The 

most successful of these methods was found to be the one in which use was made 

of sodium methoxide in a dry 1,4-dioxane medium.  This method generated only a 

very low amount of impurities and the formation of disulfide bridges between the 

initially formed thiols was successfully suppressed.  Thus, the method of Stenzel 

and Davis1 was successfully modified to effectively remove RAFT end-groups. 

                                                                     

• Chapter 5 described the RAFT-mediated homopolymerization of allyl 

methacrylate.  No references pertaining to this procedure were found in the 

literature.  There were however some problems associated with the procedure 

such as the formation of gels at higher conversions (~40%).  The 

homopolymerization of allyl methacrylate using ATRP achieved higher 

conversions before the onset of gelation (~65%)2.  The microstructure of PAMA 

at low conversions, including its tacticity, was comprehensively analyzed. 

 

• In Chapter 6 the thiol-ene addition reaction as an approach to synthesizing graft 

copolymers was investigated.  The pendant double bonds of PAMA were used as 

active sites onto which the preformed polystyrene branches were covalently 

attached.  Comparative molecular weight data were obtained and studied using 
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GPC with an RI and a MALLS detector.  It was found that the molecular weight 

as determined with the RI detector was much lower than the molecular weight as 

determined by the MALLS detector.  This was explained by the fact that polymers 

with fewer branches experience less retardation during the GPC process and 

therefore elute earlier than expected.  

  

 

7.2  Recommendations 
 

 

The design of new graft polymers could yield great reward due to the wide range of 

structural variables that can be fine-tuned to obtain specific final polymer properties.  

This benefit, used in conjunction with the ability of living radical polymerization 

techniques to produce controlled architectures, opens up a great many avenues for 

researchers to explore.  It is in this light that some recommendations for future work in 

this field are made:   

 

 

• A great number of RAFT agents have already been synthesized and still more are 

continually being designed in order to better understand the RAFT mechanism 

and to obtain superior polymerization characteristics for a wide variety of 

monomers.  This study highlights the need for a suitable RAFT agent to 

polymerize allyl methacrylate, hence research should be carried out into this. 

 

• The retardation phenomenon that is often observed in RAFT polymerization 

systems, especially at high concentrations of RAFT agent3, has been studied in 

detail, but many questions still remain, and hence a more exhaustive investigation 

into the workings of the RAFT mechanism is required to answer them. 

 

• The modification of RAFT end-groups to produce thiol end-groups as described 

in this study was successful and yielded products with few impurities.  However, 
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there are still many RAFT systems where the modification of RAFT end-groups 

has proved troublesome4,5.  Better end-group modification techniques that 

produce fewer impurities are needed.  Also, methods of preventing RAFT end-

group hydrolysis in aqueous systems need to be explored. 

 

• Allyl methacrylate has been effectively polymerized using ATRP6 and living 

anionic polymerization7, but to the author’s knowledge this is the first time that 

this monomer has been polymerized using RAFT.  The fact that allyl methacrylate 

contains two double bonds with different reactivities makes it an attractive 

prospect as a crosslinking agent.  The use of CVADTB generated linear polymer 

chains with pendant, unreacted double bonds, but only at low conversions.  

Detailed investigations are needed to produce linear PAMA chains with high 

molecular weights by delaying the onset of gelation, e.g. through 

copolymerization. 

 

• A reliable method for the synthesis of branched copolymers using a “grafting 

onto” approach via a thiol-ene addition reaction has been established.  Much work 

still has to be done however, in terms of varying the backbone length, branch 

length, branch distribution, etc., and studying their effects on final material 

properties. 

 

• The analysis of architecturally tailored comb polymers is still in its infancy. A 

comprehensive investigative approach has been developed by the Key Centre for 

Polymer Colloids (Sydney) that can be used to deconvolute GPC data of comb 

polymers to obtain information on their hydrodynamic volumes8.  This could be 

used to try to explain the abnormal GPC behaviour, e.g. retardation that is 

experienced by comb polymers. 
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Appendix A:  Cyanovaleric Acid Dithiobenzoate 
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Figure A:  1H-NMR spectrum of CVADTB with chloroform as solvent. 
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Appendix B:  Dodecyl Isobutyric Acid Trithiocarbonate 
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Figure B:  1H-NMR spectrum of DIBTC with chloroform as solvent. 
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Appendix C:  RAFT End-Group Modification using NaOH 

 

 

HO

O

CH2 CH CH2 CH S

S

S CH2(CH 2)10CH3

n

a

a
b

d

a
c

e f

 

8 6 4 2 0

0

100

200

300

400

byproducts a

f

b

c

d

R
es

po
ns

e

ppm

 
 
Figure C:  1H-NMR spectrum of polystyrene polymerized with DIBTC after end-group modification 

using NaOH. 
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Appendix D:  RAFT End-Group Modification using Dodecyl 

Amine 
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Figure D:  1H-NMR spectrum of polystyrene polymerized with DIBTC after end-group modification 

using dodecyl amine. 
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Appendix E:  RAFT End-Group Modification using THF 
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Figure E:   1H-NMR spectrum of polystyrene polymerized with DIBTC after the modification of the 

RAFT end-group using THF. 
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