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Abstract

A theoretical model for the prediction of particle motion through a traversing New-
tonian fluid is proposed. The model is derived by treating the fluid as a continuum
and modelling its motion with the Navier-Stokes momentum- and mass conservation
equations. Application of a Representative Elementary Volume (REV) yields expres-
sions for the conservation equations in terms of averages. The particles are assumed
rigid and momentum- and mass conservation equations are initially derived from New-
tonian principles for a single solid, spherical particle. A summation-based averaging
procedure is applied to obtain conservation expressions in terms of averaged variables

for the particle phase.

Using the principle of momentum conservation, a collision-sphere model is applied to
model the transfer of momentum between particles. The momentum transfer between
the particles and the continuum is modelled using a modification of an existing repre-
sentative unit cell model for two-phase motion, matched with an REV-averaged form
of the Stokes drag law. In addition, an asymptotic matching procedure is applied
between low- and high Reynolds number flows. The matching procedures render the

model applicable to a wide range of particle volume fractions and Reynolds numbers.

The theoretical model is implemented into a numerical code and the numerical results,
yielded from these simulations, are tested against results obtained through settling tube
experiments done by the author at the Council for Scientific and Industrial Research

(CSIR) in Stellenbosch as well as published experimental results from literature.
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Opsomming

'n Teoretiese model vir die voorspelling van partikelbeweging deur 'n omringende
dinamiese Newtoniese vloeistof word voorgestel. Die vloeistof momentum- en mas-
sabehoud word met die Navier-Stokes momentum- en massabehoudsvergelykings gemo-
delleer. Hierdie vergelykings word in terme van gemiddelde vloeistof eienskappe voorge-
stel deur 'n verteenwoordigende eenheidsvolume toe te pas. Dit word aanvaar dat
die deeltjies solied en bolvormig is. Momentum- en massabehoudsvergelykings vir
die deeltjies word afgelei deur, aanvanklik, behoudsvergelykings vir 'n enkele partikel,
op grond van Newton se wette, daar te stel. Volume gemiddeldes van bogenoemde

deeltjievergelykings word verkry deur die toepassing van 'n sommasie tegniek.

Momentumoordrag tussen individuele deeltjies is gemodelleer deur die beginsel van mo-
mentumbehoud en 'n botsing-sfeer model te gebruik. 'n Bestaande verteenwoordigende
eenheidssel model is gewysig om dit van toepassing op twee-fase vloei te maak. 'n Kom-
binasie van die laasgenoemde model en die Stokes vergelyking vir die wrywingskrag op
'n sfeer, is gebruik om momentumoordrag tussen die deeltjies en die vloeistof te mo-
delleer. Daarbenewens is 'n asimptotiese passingstegniek gebruik om ’'n passing tussen
lae- en hoé Reynolds getal vloeie te bewerkstellig. Die passingsprosedures het tot die
gevolg dat die model geskik is vir modellering oor 'n wye spektrum konsentrasie- en

Reynoldsgetalwaardes.

Die vergelykings is geimplementeer deur 'n rekenaar program in Fortran te ontwikkel.
Die afvoer van hierdie simulasies is vergelyk met eksperimentele resultate, afkomstig
van valbuis-eksperimente uitgevoer vir hierdie studie by die Wetenskaplike Navorsing

en Nywerheidsraad (WNNR), asook eksperimentele resultate vanuit die literatuur.

ii
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Skuy Surface area of particle 4, contained within REV . ... ... ..
Speiy  Particle-continuum interface of particles . .. .. ... ... .|
Sppiy  Particle-particle interface of particles .. ... .. ... .. ...

S| Parallel interface of RUC . . . . . . .. . ... . ... . ... ....

uP’"  Velocity profile within RUC channel for single-phase flow . . . .
uber®  Velocity profile within RUC channel for two-phase flow . . . ..
Usgy Total volume of AEV . . . . . ..
U, Total volume of RUC . . . . . . .. ... .. ... . ... ... ...
U, Total volume of REV . . . . . . .. ...
U, Continuum volume of RUC . . . . .. ... ... .. .. .. ... .
U, Particulate volume of RUC . . . ... ... ... ... .. .. ..
U Streamwise volume of RUC . . . ... ... .. ... ... ... .
V. Material volume within continuum . . . ... ... ... .. ... .

Veoy  Control volume . . . . . . ...

Continuum velocity . . . ... ... ...

C
v,, Mixture velocity . .. ... ... o
Y, Particle velocity . . . ... ... .. ... ... ... ... ...
v, Relative velocity, v, = v, —w, .. ... ... ... .. ...
T Centre of REV . . . . . . . ... ...



Stellenbosch University http://scholar.sun.ac.za

Nomenclature xix
w,  Streamwise average pore speed within RUC . . . .. ... ... .. [m-s™!]
wye  Average streamwise relative pore speed . . . . ... |m-s™!]

Greek symbols
B Momentum transfer coefficient . . . .. ... ... . ... ... ... [kg-m™3-s71]
Bllow by Viscous momentum transfer coefficient for high porosities . . . |kg-m™3-s7!]

ﬁﬂow through
o

Viscous momentum transfer coefficient for low porosities . |[kg-m™3-s7!]

B  Momentum transfer coefficient for two-phase inertial flow . ... |[kg-m™3-s7!]
€c Continuum volume fraction . . . . . ... .. ... .. ... ... .. [—]

€p Particle volume fraction or concentration . .. ... ... ... .. [—]

le  Dynamic viscosity of the a-phase . . . . .. ... .. ... .. ... [kg-m~t.s7!]
Le Continuum dynamic viscosity . . . .. ... .. ... ... ..... |kg-m~!-s71]
lmiz Mixture dynamic viscosity . . . .. ... ... ... [kg-m~t-s7!]
L Particle dynamic viscosity . ... ... .. ... ... ... ..... |kg-m~!-s71]

Vklz  Particle volume contained within REV when centroid of particle is at position

Ti o o | m? |
Vpiy ~ Volume of particled . . ... ... .. 00 [m3]
e Continuum density . . ... ... ... ... .. ... ... ... .. |kg-m™3|
pm  Mixture density (pm = €pPp + €cPe) o v | kg-m™3|
Pp Particle density . . . . .. ... ... ... [kg-m~
g, Continuum stress . . . . . . . ... ... |IN-m~2|
g, Total particle stress due to particles and continuum . . . . . . . . [N-m~2|
o Particle stress due to particle presence . . . . ... ... ... ... |IN-m~2|

—pp
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ggp Frictional particles stress . . .. .. ... ... .. .. ... .. ... [N-m~2]
:’;; Kinetic-collisional particles stress . . . . ... ... .. ... ... [N-m~2]
& Bulk viscosity of the alpha phase . . . .. ... . ... ... ... . [N-m~—2|
T, Shear stress for single-phase flow . . .. .. ... .. ... ... .. [N-m~2|
72 Wall shear stress for the RUC . . ... ... ... ... ... ... [N-m~—2|
7l Parallel component of shear stress for single-phase flow . . . . . . [N-m~2|
7.t Transverse component of shear stress for single-phase flow . . . . |[N-m™2]
The Wall shear stress two phase flow for the RUC . . . . ... ... .. |N-m~2|
T Particle-continuum shear stress . . . .. .. ... .. ... ... .. [N-m~2|
Tg Stokes relaxation time . . . . .. ... [s]

X Tortuosity . ... .. ... [—]

Acronyms
AEV Arbitrary Elementary Volume . . . . .. ... ... ... ... ... [—]

EV  Elementary Volume . . ... .. ... ... ... .. ... ...... [—]
REV Representative Elementary Volume . . . . . ... .. ... ... .. [—]
RUC Representative Unitary Cell . . .. ... ... ... .. ... .. [—]

Abbreviations
Re  Reynolds number for single-phase flow . . . ... ... .. ... .. [—]
Re,. Reynolds number for two-phase flow . . ... ... .. .. ... .. [—]
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Chapter 1

Introduction

1.1 Motivation

Two-phase flow is becoming increasingly significant in engineering design and technol-
ogy. In addition to its pertinent applications in engineering and prevailing scientific
problems it is also relevant to the interpretation of natural phenomena and thus war-

rants further investigation.

Empirical methods are required to emulate a number of diverse factors, such as appa-
ratus geometry and physical fluid properties. It is therefore vital that engineers and
scientists grasp the underlying physics and theoretical modelling fundamental to these

applications in order to design equipment accurately.

Currently, various Computational Fluid Dynamics (CFD) packages (e.g. FLUENT,
CFX) employ two-fluid models to predict the behaviour of particles immersed in a
fluid. The expressions that these two-fluid systems use to model the drag, due to
the relative velocity between the two phases, are often based on empirical models,
derived from pressure-drop experiments in fluidised beds. This presents the need for

an alternative model, based purely on the physics of the interactions.

1.2 Background

The following sections give a brief overview of the necessary background theory for this
study and define the concepts that will be used in later stages of this work. A complete

literature review is given in Chapter 2.
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1.2.1 Classification of modelling procedures

Ishii (1975), Enwald et al. (1997) and Loth (2006) divided the modelling procedures
for two-phase flows into three categories: Boltzmann -, Lagrangian -, and Eulerian
methods. Since the Boltzmann methods are not directly applied to this study, they
will only be discussed briefly in Chapter 2. For the time being it suffices to distinguish

between the Lagrangian and Eulerian strategies.

1.2.1.1 Particle phase methodologies

Based on the frame of reference, modelling procedures for the particle phase are divided

into two categories namely Lagrangian or Eulerian.

Lagrangian models treat the fluid phase as a continuum and calculate particle trajecto-
ries. This is done by either tracking each individual particle (i.e. trajectory calculation)

or by tracking groups of similar particles (i.e. simultaneous particle tracking).

The Eulerian description, when applied to the dispersed phase, generally assumes the

characteristics of the particles (e.g. velocity) can be described as a continuum.

Eulerian methods may be further subdivided into mixed- and separated-fluid ap-
proaches. The former assumes a negligible relative velocity between phases and de-
scribes the motion with a single set of conservation equations, whereas the latter
assumes that phase velocities differ and the motion is modelled with two sets of

momentum- and mass conservation expressions: one set for each phase.

1.2.2 Interphase coupling

Both Lagrangian and Eulerian treatments require a description for the interaction
between the phases. The interphase coupling force, £, is a force acting on a single
particle due to pressure and viscous stresses which are the result of disturbances caused

in the flow due to the presence of the particle.

Such a force is equal in magnitude and opposite in direction to the hydrodynamic
particle force acting on the continuous phase. It amounts to the hydrodynamic surface
forces, F,r, minus the contributions from the undisturbed flow stresses, F.. The
undisturbed stresses, F'., refer to the stress gradient forces within the continuum,

which occur independent of the presence of the particle. The coupling force may be
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expressed by

Fpe = Eoy— L= Ep+ Erp+ Eyy+ By, (1.2.1)

-pC

where F'py, Frp, F 4, and Fy;, denote the drag-, transverse or lift forces, the added

mass force and the history force, respectively (Kleinstreuer (2003), Crowe et al. (1998)).

For heavy particles (p, > p.), the interphase force is often simplified to include only
the particle drag (neglecting lift, added mass, and history effects, since they are pro-
portional to p.) i.e. F,.= Fp. For light particles (p, < p.) with negligible collisions,
the particle acceleration and body force can be neglected.

As the number of particles increases, collisions become more important, leading to dense
flows. The key aspect for these flows is the proper incorporation of the particle-particle
effects on the particle phase fluid dynamics. In particular, the particle collisions cause

effective stresses, which should be incorporated into the particle transport equation.

1.3 Objectives of this study

The main objective of this study is to create a mathematical model that can predict the
motion of particle mixtures in a Newtonian fluid with the potential to be modified in
future work to incorporate additional flow regimes (e.g. a non-Newtonian continuum or
multiple phases). The integration of such a model into an existing code could increase
prediction capabilities for industrial applications, while the process of its derivation
contributes to an improved comprehension of the underlying physics that govern them.
It is also the objective of this work to provide a model that is capable of predicting
a particle viscosity and stress based on first principles, thus eliminating the need for

estimating these parameters.

1.4 Contributions and publications

A novel method is used to average the particle phase and the existing Representative
Unit Cell (RUC) model has been modified to include the case of variable particle volume
fractions. The current model includes particle-particle interactions and is valid for a

wide range of Reynolds numbers and particle volume fractions.
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A simulation code was developed in Fortran and the two-phase flow equations were
solved numerically. These results compared well with data obtained from settling tube

experiments at the Council for Scientific and Industrial Research (CSIR).

The application of these new modelling methods, as applied to low particle volume frac-
tions (e, < 1), was presented at the International Conference of Numerical Analysis
and Applied Mathematics (ICNAAM) during September 2009 (Wilms et al. (2009)). It
was expanded into a full article and published in Applied mathematics and computa-
tion (Smit et al. (2010)). Extension of the drag term to include the particle interaction
effects was presented during September 2010 at ICNAAM (Wilms et al. (2010)).

1.5 Overview of this work

Theoretically the motion of solid particles suspended in a Newtonian fluid is completely
determined by requiring the Navier-Stokes equations to be satisfied at each point of
the fluid, and equating each particle’s rate of change of linear and angular momenta
to the resultant force and the resultant torque applied to it. Termed a Lagrangian
description, the extensive processing power required by such an approach has proved
viable only for low Reynolds number scenarios comprising of a relatively small numbers

of particles. Hence, the need for equations based on averaged flow properties.

Averaged expressions, which are valid for all points in the flow domain, are developed
in Chapter 3. Although too complex for a direct solution, they provide a good starting
point for the development of much needed averaging procedures which are discussed in
Chapter 4.

Following Bachmat and Bear (1986), the microscopic Navier-Stokes expressions, as
derived in Chapter 3, are averaged over a Representative Elementary Volume (REV) in
Chapter 4, yielding equations in volume averaged form. A summation-based averaging
method for the discrete phase is used to cope with the discontinuous nature of the

particles to provide macroscopic expressions for the dispersed phase.

A coupling mechanism exists between the particles for instances of increased particle
volume fractions which result in particle-particle collisions. Following the work of Clark
(2009), Bird et al. (2002), and Soo (1990), the closure of such an interaction term is
dealt with in Chapter 5, using the principle of momentum conservation in a Centre Of

Mass (COM) reference frame in conjunction with a collision sphere model.
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However, the process of averaging leaves a number of terms indeterminate. The prob-
lem of closure for the particle-continuum interaction is discussed in Chapter 6 and
yields an expression in terms of averaged variables by employing an extension of the
Representative Unitary Cell (RUC) model. The adaptation to the RUC is required
since it is a simplification of the REV and was introduced by Du Plessis and Masliyah
(1988) for the averaging of single phase flow through stationary porous media. Chapter

6 concludes the development of the dispersed two-phase flow model.

Chapter 7 is dedicated to a discussion of the development of a simulation code which
numerically solves the expressions derived in Chapter 6. The results obtained from this

program are illustrated in Chapter 8 and compared to experimental work conducted
at the CSIR in Chapter 9.

In addition to the aforementioned experimental verification, the model is tested against
experimental data obtained by Richardson and Zaki (1954) in Chapter 10. The work is
concluded with Chapter 11 wherein conclusions are given and recommendations made

for future research topics.
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Chapter 2

Literature review

2.1 Introduction

There have been many contributors to the advancement of two-phase flow. This chapter
attempts to provide a background of the history of this research area and to get the
reader acquainted with terminology, enabling them to distinguish between the various

classifications schemes used in two-phase flow.

Detailed derivations of existing two-phase flow averaging identities, presented in this
part of the work, are done in preparation for envisaging ideas presented in subsequent

chapters.

2.2  Computational Fluid Dynamics (CFD)

development

An account of the history of multi-phase Computational Fluid Dynamics (CFD) is
given by Lyckowski (2010) in which the initiation and development of multi-phase
CFD from 1970 to 2010 are discussed. A synopsis of the key contributors is given here
and the reader is referred to Enwald et al. (1997) for a detailed summary on fluidised

bed simulations up until 1997.

Up until the 1970’s, nuclear reactor licensing software applied the Homogeneous Equi-
librium Model (HEM), which meant that both phases were modelled as one. This
status quo already began to change during the early 1960’s when Solbrig, a student of
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Gidaspow, set out to develop a new set of equations for two-phase flow which would be
equivalent to those developed for single-phase flow by Bird and his team (Bird et al.
(2002)). In 1971 Solbrig succeeded and the derivation, published in Solbrig and Hughes
(1971), was incorporated into the Seriated Loop (SLOOP) software.

In parallel to these developments, Los Alamos Scientific Laboratory (LASL) developed
a similar code called KACHINA. KACHINA was the first software to provide sta-
ble numerical solutions for multidimensional two-phase fluid dynamics (Amsden et al.
(1999)).

During the mid 1970’s, Spalding (Spalding (1980) and Runshal (2009)) who consulted
with both LASL and Gidaspow, developed the Inter Phase Slip Algorithm (IPSA)
(Spalding (1976)): A procedure to solve Partial Differential Equations (PDE’s) similar
to that published by Solbrig and Hughes (1971). The method was embedded into the
PHOENICS source code in 1978.

Systems, Science and Software (5?) started work in 1975 on a general computer model
of fluidised bed coal gasification called CHEMFLUB, and the company, JAYCOR,
started on a similar source code in the early 1980’s called FLAG. These were transient,
two-dimensional programs which contained PDE’s similar to those in SLOOP (later,
STUBE (Solbrig et al. (1976))) and KACHINA source codes and included viscous stress
terms and an expression for the solids pressure. Work terminated on the S* software

before it was documented.

KFIX was source code used by LASL for modelling two-dimensional flow in Loss-of-
Fluid Tests (LOFT). Gidaspow had an idea to develop KFIX for the simulation of a
fluidised bed and acquired the source code in 1977 from LASL. It was subsequently
modified by Gidaspow, Lyckowski and Galloway, and installed at the Illinois Institute
of Technology (IIT).

Modifications to KFIX involved the addition of a stabilising solids pressure term to
prevent over compaction. The addition of this term is discussed in Bouillard et al.
(1992). KFIX would later be known as FLUFIX which in turn was coupled with the
EROSION/MODI1 software and was designated FLUFIX/MOD2. This was followed
by FORCE2, developed by Babcock and Wilcox (Ding et al. (1993)). These source
codes are available from the Energy Science and Technology Software Centre (ESTSC)
at www.osti.gov/estsc. Additional modifications were made to FLUFIX for the
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modelling of dense suspension (i.e. slurry) flows.

In 1985 development on the CFDLIB software started at LASL under Kashiwa (1987).
It was only in 1991 that the first International Conference on Multi-phase Flow (ICMF)
was held in Tsukuba, Japan. It was the first of many with the 2010 ICMF held in
Tampa, USA.

In 1991, O’Brien and Syamlal started development on the open source code called
MFIX (Multi-phase Flow model with Interphase Exchanges). Their objective being
the development of a code that could yield a reliable model of fluidised bed reactors.
The first version of MFIX applied numerical techniques found in early versions of
the previously mentioned IIT code. MFIX was completed in 1993 and is maintained
by Oak Ridge National Laboratory (ORNL) in partnership with the National Energy
Technology Laboratory (NETL) in the United States. It is available at www.mfix.org

and the latest version was released in 2007.

After completing his Ph.D. under Gidaspow in 1985, Syamlal joined Fluent, Inc. where
he took part in furthering the development of the FLUENT package which was started
in 1983 by a small group at Creare Inc near Fluent Inc.’s present headquarters in
Lebanon, New Hampshire, USA. It was originally created by Swithenbank at Sheffield
University in the U.K.

Work on the code has continued and is presently known as ANSYS FLUENT 12.0.
ANSYS also acquired the CFX code, formerly FLOW3D, which was developed at
Harwell in the U.K. It is now named ANSYS CFX.

The Open Source Field Operation and Manipulation (OpenFOAM), C++ based, source
code is another application that may be used to model multiple-phase flows. It is
produced by the UK company, OpenCFD Ltd., and is based on equations similar to
those used in its ANSYS CFX counterpart. Most fluid dynamics solver applications in
OpenFOAM use the pressure-implicit split-operator (PISO) or semi-implicit method
for pressure-linked equations (SIMPLE) algorithms. These algorithms are iterative
procedures for solving equations for velocity and pressure, PISO being used for transient
problems and SIMPLE for steady-state (Barton (1998)).

The majority of source codes mentioned above utilise a two-fluid approach as modelling
procedure. Methods applied in formulating the equations for the two-fluid method are

discussed in the following sections.
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2.3 Classification of multi-phase flows

The numerical schemes, applied in the source codes discussed in Section 2.2, have been
documented and categorised by Enwald et al. (1997) in accordance with Ishii (1975)

as a guide line.

Ishii set up a classification which depended on the topology of the flow and distin-
guished between three classes: separated, mized and dispersed flows. For the purpose
of understanding the current work on the motion of particles in a Newtonian fluid, only

the subcategories of dispersed flows are listed in Table 2.1.

Table 2.1: Different regimes for two-phase dispersed flows according to Ishii (1975).

Class Typical regimes Geometry Configuration Examples
o (@]
Dispersed flow  Bubbly flow 08 Gas bubbles in liquid Chemical reactors
O
e
Droplet flow 'y:-..-} Liquid droplets in gas Spray cooling
. S Solid particles i . .
Particulate flow 1 - o;) lliqfi?]_r icles in gas Sedimentation

According to this classification scheme, dispersed media are divided into bubbly-,
droplet-, and particulate flows: Bubbly flow physically manifests as gas bubbles in
liquid, which includes the everyday soda drink or the physical processes in chemical
reactors. Flows in which liquid droplets coincide within a gas is classified as droplet
flow while particulate flow, which forms the focus of this study, consists of particles

dispersed within a gas or a liquid.
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Following Kleinstreuer (2003), Crowe et al. (1998), and Ishii (1975), the flow of par-
ticles and droplets in fluids can be seen as a subset of multi-component, multi-phase
flows. Crowe et al. (1998), defines a component as a chemical species such as nitro-
gen, oxygen or water whereas phase refers to the solid, liquid or vapour state of the
matter. Examples of single-phase, single-component flows include water- and nitro-
gen flows, whereas multi-phase single-component examples include steam-water flow.
Multi-component examples of single- and multi-phase flows are given by air flow and

air-water flow, respectively. These examples are listed in Table 2.2.

Table 2.2: Examples of single- and multi-component, multi-phase flows (Crowe et al. (1998)).

Single-component Multi-component
. Water flow Air flow
Single-phase Nitrogen flow Flow of emulsions

Air-water flow

Multi-phase | Steam-water flow Slurry flow

The study of particles in water may therefore be qualified as a multi-component exam-
ple, since there are two separate chemical species involved (i.e. silicon (S7) particles
in water (H>0)). Moreover it may be qualified as multi-phase flow due to the silicon
particles being in a solid state and the water being in a liquid state. It follows that
the focus in this work is placed on multi-phase, multi-component regimes and concerns
itself with the motion of dispersed matter (i.e. a particulate phase) in a carrier fluid

i.e. a continuum phase).
(

Multi-phase, multi-component flows may further be divided into subclasses on the basis
of how the components interact with the carrier phase and with each other. These
interactions are termed coupling mechanisms by various authors (e.g. Loth (2006),
Crowe et al. (1998) and Kleinstreuer (2003)) and the classification of the particle phase
is most aptly described, following Loth (2006), in Figure 2.1.

The broadest division is between dispersed and dense flows and is based on whether it
is the continuum or dispersed phase that dominates the overall motion of the particles.
Dispersed flow is partitioned into sparse flow: where the dispersed-phase motion is

affected by the continuous phase, but not vice versa; and dilute flow which combines the
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aforementioned with instances where the particle effects on the fluid become significant

through interphase coupling (e.g. drag force).

One-way coupling:
sparse Continuous-fluid affects particle motion
(e.g. particle rotated by vortex)

DILUTE

Above plus particle motion affects
continuous-fluid motion
(e.g. particle wake increases dissipation) L4

Two-way coupling: ) (

DISPERSED

Three-way coupling:
Above plus particle disturbance of the fluid ) % volume

locally affects another particle’s motion
(e.g. drafting of a trailing particle)

Collision- High-frequency of collisions [
dominated { (e.g. energetic fluidized
flow beds) [ I

DENSE

High-frequency of contact o,
(e.g. nearly settled beds) 0~.‘.‘:

dominated

Contact- {

flow

Figure 2.1: Dilute, dispersed, and dense flow conditions (Loth (2006)).

As the particle volume fraction increases, dispersed flow is subject to three-way coupling
where the particle wakes and other local continuum disturbances affect the motion of
nearby particles. A further increase in particle volume fraction induces the last level
of the dispersed regime where four-way coupling dominates as particle collisions occur

in combination with all of the aforementioned interactions.

When the particle-particle interactions dominate, the flow is considered dense. These
interactions can refer to two separate mechanisms: particle-particle collisions and
particle-particle dynamic interactions. The former refers to interactions where par-
ticles can rebound, shatter or coalesce, whereas the latter refers to cases where the

particles glide upon each other, causing friction.

Once the flow domain has been categorised, using classification procedures listed in

Table 2.2 and Figure 2.1, a decision needs to be made as to which modelling method

fraction

Increasing
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should be applied to adequately represent its motion. The various types of modelling

methods available in literature are subsequently described.

2.4 Classification of modelling procedures

Ishii (1975) divided the modelling procedures for two-phase flows into three categories,

namely Boltzmann, Lagrangian, and Eulerian methods.

Boltzmann theory uses a method analogous to dilute gas kinetic theory to describe
the interactions present in gas-particle systems (Ahmadi and Ma (1990), Ding and
Gidaspow (1990)). This method defines a molecular distribution function for the con-
tinuum phase and another for the particulate phase. However, accounting for size
distribution and the collision processes of the solid particles with each other and with

the gas molecules, proves challenging.

The motion of a suspension can be viewed in two ways: In the fields of fluidisation and
gas-particle transport, separate equations of motion are sought for each of the phases,
whereas those interested in the rheology of suspensions often view the suspension as a
whole. The two viewpoints should however be equivalent (Gidaspow (1986), Jackson
(1997)). These diverse modelling approaches mainly involve the particle phase and a

concise discussion follows in the next section.

2.5 Particle-phase methodologies

Based on the frame of reference, the particle phase is divided into two classification
schemes as Fulerian or Lagrangian. The Eulerian approach can be further classified into
mixed or point-force approaches, while the Lagrangian method is grouped into point-
force or resolved-surface approaches. Table 2.3 shows the various modelling approaches

for the two-phase medium.

2.5.1 Lagrangian method

The Lagrangian method, often referred to as the discrete method, assumes that each
particle (or group of particles) is represented separately. The properties (such as ve-

locity) are updated along the path of individual (or cloud of similar) particles.
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Table 2.3: Forms of the incompressible unsteady Navier-Stokes momentum equations (Loth

(2006)).

Dispersed phase approach

Dispersed phase momentum

Continuous phase momentum

Eulerian with
mixed fluid treatment

Eulerian with
point-force treatment

Lagrangian with
point-force treatment

(P V) /Ot +V - (pm v, V) =

where pn, = €ppp + €cpe
Applied throughout domain

Pp%(ep Qp) + ppV - (& Y, Qp> =
€pPp 9 epV(p + Ppeou) +
epttcV? v, + 6pfpc/up

Applied throughout the domain

17}
mp% = FVol + FSurf
Applied along particle trajecto-
ries

Pm g = Vp+ pm V2 v,

pc%(ecyc) + pCv : (GCQCQC)
€cpcy — €Vp + €pV3u, —
€p£pc/up

Applied throughout the domain

pC% (60 yc) + pCv : (EC yc Qc)
6cpc g_ ecvp+€cﬂcv2 Qc - N;szc
Applied throughout the domain

Jwv

mpa;tp = EVol + ESurf + Epp

ov
—<£+pcv.V-v, = —Vp+
where Foyp = [g[—p+ Tpe|nd S Pp=g; TPV Vo= pPcg— VP

Lagrangian with

2
resolved-surface and does not contain F,, icvhgé outside of particle vol
treatment Applied along particle trajecto- U.III)II(; P

ries

Note: In the above, Np is the number density of particles per unit volume of mixed fluid, F,. is the interphase
force between particles and the continuum, Epp is the coupling force between the particles, p. is the hydrostatic
continuum pressure, p.oy; is the particle collisional pressure and Tpc is the shearing stress between the particle
and the continuum. The mixture, particle and continuum velocities are respectively denoted by v,,, v, and
v, with the corresponding densities given by pm, pp and pc. The particle and continuum volume fractions are
denoted by €, and e, respectively and the combined volume of particles is given by Up.

In contrast, the Eulerian method averages particle properties over a computational vol-
ume. In brief, the Eulerian reference frame is a stationary measurement of the average

of the system whilst the Lagrangian frame moves with the element it is measuring.

For the treatment of surface forces, the point-force method represents the flow over the
particle with empirical and theoretical methods (e.g. by specifying a drag coefficient) to
obtain the force on the particle. For the resolved-surface approach, the fluid dynamics
(e.g. pressure and shear stress distributions) are fully resolved over the entire particle’s
surface and then integrated to obtain the overall hydrodynamic forces. Hence, for
the resolved-surface treatment, high spatial resolution of the continuous phase is thus
required over the particle surface. Therefore, this method is sometimes called direct
simulation. Conversely, the continuous-flow grid scale can be course with respect to

the particle size for the point-force approach, such that it is much less demanding in



Stellenbosch University http://scholar.sun.ac.za
2.5. Particle-phase methodologies

14

terms of computational resources. Following Loth (2006), the difference between these

two approaches is illustrated in Figures 2.2a and 2.2b.

(a) Point-force treatment. (b) Resolved-surface treat-
ment.

Figure 2.2: Different representations for particle treatment where the shaded area represents
the particle and the grid represents the computational resolution for the continuous phase
solution (Loth (2006)).

Lagrangian models treat the fluid phase as a continuum and calculates particle trajec-

tories. Typical techniques which may be applied to solve Lagrangian models include
(Wassen and Frank (2000)):

Trajectory Calculation (TC) A large number of particle trajectories are sequen-
tially computed. The average properties of the trajectory segments that cross a
computational cell are determined in order to derive macroscopic properties for
the discrete phase. The TC method is however limited to steady flows. Particle-

particle collisions have been accounted for by Oesterle and Petitjean (1993).

Simultaneous Particle Tracking (SPT) The motions of a representative number
of particles are calculated simultaneously. Each simulated particle represents a
certain number of real particles with similar characteristics. The macroscopic
properties of the particulate phase for a certain grid cell are obtained at any time
by averaging over all particles that are located in that cell at that time. Particle-
particle collisions were accounted for by Tanaka and Tsuji (1991). In the major-
ity of applications, collisions are treated stochastically using Direct Simulation
Monte Carlo (DSMC) methods since deterministic models are computationally

too expensive.
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2.5.2 Eulerian method

The Eulerian description, applied to the dispersed phase, generally assumes the char-
acteristics of the particles (e.g. velocity) may be described as a continuum. As listed
in Table 2.3, Eulerian techniques are subdivided into mixed- and separated-fluid ap-

proaches.

2.5.2.1 Mixed-fluid model

In the mixed-fluid approach, the assumption is made that the differences in velocity and
temperature between the two phases are small in comparison to variations in the field
as a whole. The use of these models results in a single set of momentum conservation
equations for the flow mixture as opposed to one set for the continuous phase and one
set for the dispersed phase. The approach is numerically uncomplicated and, moreover,

is able to cope with both dispersed and dense conditions.

2.5.2.2 Separated-flow model

The separated-fluid approach for a Eulerian description of the particle phase with the
point force assumption assumes that both the carrier fluid and the particles comprise
two separate, but intermixed, continua. Therefore, two sets of momentum equations
are required: one for the continuous phase and the other for the dispersed phase. The
separated fluid method is also called the two-fluid method. Here the relative velocity
between the phases are taken into account and the equations will generally be coupled.
Such an approach will be applied in this work and the following section is devoted
to introducing the reader to the approaches followed by various authors in setting up

appropriate models.

2.6 Modelling procedures for two-fluid models

Generally, the continuum phase is modelled with the Navier-Stokes momentum- and
mass conservation equations. The construction of a model for the discrete phase is,
however, approached either with the Navier-Stokes expressions or, alternatively, by
using the kinetic theory of particles. Even though these two approaches differ widely,

the results obtained are almost identical.
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The application of the Navier-Stokes relations to the particulate phase requires the for-
mulation of descriptions for various variables which are well defined from the molecular
theory for fluids, but are relatively unknown for solids. These include the definition of
the solid stress term which in turn requires expressions for the discrete phase viscosity

and pressure.

Alternatively, the discrete phase may be modelled using a kinetic theory approach: The
momentum equation for a single sphere is constructed using Newton’s second law of
motion and extended to account for a single particle in suspension (Clift et al. (1978),
Soo (1990), and Enwald et al. (1997)).

2.6.1 Traditional two-fluid formulation

In the absence of mass transfer, the continuity and momentum equations for both

phases are respectively given by

0pa
L2V (pa = 0, 2.6.1
Lo 1 (pa) (2.61)
and
o Vg
BT +V o patqvy—=V-a —pag = 0, (2.6.2)

where the discrete (or particulate) and continuum phases are respectively denoted by
a = p and a = c¢. Density and stress are denoted by p, and o N respectively. The local

velocity is denoted by v,,.

As mentioned earlier, the ordinary differential equation for each particle may be solved
using a Lagrangian approach. Since this is computationally expensive the alternative

is to apply an averaging operator action on the local instantaneous equations.

Averaging models may be divided into volume, time, and ensemble averaging methods
and are discussed in Appendix B. Volume averaging, which, due to its physical inter-
pretability, is the preferred method of averaging in this work, is applied to the mass

and momentum conservation expressions in the following sections.

The averaging procedures for the mass- and momentum conservation equations, by way
of the application of identities given by Equations (B.6.20) to (B.6.25), are reviewed

in the following sections.
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2.6.1.1 Averaging of the mass conservation equation

Applying the volume averaging technique to the mass conservation equation, yields

%<Eapa>+v.<paya> - 0 (2.6.3)

2.6.1.2 Averaging of the momentum conservation equation

The averaging process for the momentum equation yields various terms which require
further modelling in order to achieve closure. The first step is to apply the definition

of volume averaging to each term in the momentum conservation equation:

<8p§tya> (Y povara) = (Vog,) (o) = 0 (2.6.4)

This is followed by the application of Rules (B.6.23), (B.6.24) and (B.6.20) to the

averages of derivatives, to give

%%ya) + V- (o Uy V) —V~<ga> —(pay) =
1 1

1
u /payawagﬂadS—ﬁo /payaya~@ad8+70 /ga-ﬂadS-

Saﬁ Saﬁ Saﬁ
(2.6.5)

In the absence of combustion or condensation (i.e. when the interface velocity, w,g,

equals that of the velocity of the phase itself, v,) Equation (2.6.5) will simplify to

0 1
§<paya>+v.(payaya>—v~<ga>—<pag> = u /ga~@ad8. (2.6.6)

Sas

2.6.1.3 Reynolds decomposition

Equation (2.6.6) cannot be solved directly as it contains averages of products of the
dependent variables. To obtain a solvable set of equations, it must first be rewritten
into expressions containing products of the averaged variables. This is done by em-
ploying Reynolds decomposition. Reynolds decomposition of variables is typically used
in the field of single-phase turbulence modelling in order to separate the fluctuating
components of the variables from the time-averaged variables. In this instance how-

ever, the main purpose of the decomposition is to separate the averages of products
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into products of averages. The procedure will result in extra terms in the equations,
containing products of the fluctuating components. These extra terms are analogous
to the Reynolds stress terms in the case of single-phase turbulence modelling (Enwald

et al. (1997)). Administering Reynolds decomposition to a general variable, €, yields

Q = Qo) + Do, (2.6.7)
where the definition of the intrinsic phase average is given by Equation (B.5.4). The
average of the deviation term is assumed to be zero, which corresponds with the notion

that the volume over which averaging is done is indeed a sensible representation of the

macroscopic average

<s~2a> = 0. (2.6.8)

When Reynolds decomposition is applied to Equation (2.6.5) it yields

O () + V- ({2 2)) 4V () = V- {2,) ~ (pug) =

u% / o n,dS. (269)
Sus

The term V- (p, 0, ?,,) is generally referred to as the Reynolds stress term and denoted
by gfj‘e (Enwald et al. (1997)). The right-hand side of Equation (2.6.9) is termed the

interfacial momentum transfer.

The Reynolds stress for the continuum phase is modelled using a standard Boussinesq
approximation. For a more detailed account of this approach the reader is referred to
the work of Enwald et al. (1997), Simonin and Viollet (1989) and Simonin (1995).

Turbulence models for the particulate phase available in literature are based on the
kinetic theory of granular flow. Such an approach to the modelling of the particulate
phase uses classical results from kinetic theory of dense gases, cf. Dartevelle (2003),
Chapman and Cowling (1970) in combination with Grad’s theory, cf. Grad (1949), and
a linear theory developed by Jenkins and Richman (Jenkins and Richman (1985)).!

It remains to be shown how the viscous stress term, g, is modelled for the continuum

and discrete phases following the traditional approach.

L As given in Enwald et al. (1997).
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2.6.1.4 The viscous stress, g,

The viscous stress in Equation (2.6.9) is divided into a pressure, p,, and a viscous shear

stress term, T, i.e.
g = pai_l';a' (2.6.10)

In the following two sections these two terms are discussed.

2.6.1.5 Viscous shear stress

The stress tensor for both phases is often modelled using the Newtonian strain-stress

relation:

T o= (V) +2u.(8 _l(v. v, )I), (2.6.11)

— — 3 — =

where the strain-rate tensor is defined by

S = s (Vu, +(Vu)"). (2.6.12)

N —

In accordance with Stokes’ assumption, the bulk viscosity, £, is commonly set to zero
in both phases (Panton (1984)). In practice, the reason for neglecting the bulk viscosity
is the lack of reliable measurement techniques (Pritchett et al. (1978)). A theoretical

expression is however possible using the kinetic theory of granular flow.

From the assumption that there is no mass transfer between the phases, it follows that
V- v, = 0. The remaining dynamic viscosity, i, is easy to specify for the continuum

phase with molecular theory but proves difficult for the discrete phase.

The particle viscosity may be modelled as a function of the particle volume fraction
(Enwald et al. (1997)). However, the majority of viscosity models available are for

mixture viscosities only. Examples of such viscosity formulae are listed in Table 2.4.

It is not obvious how the mixture viscosity is related to the phase viscosities, but often

a linear relationship is assumed and the viscosities are weighted as

Pmix = €clle + Epflp. (2.6.13)

Pressure in the continuum phase is simply the static continuum pressure. The pressure

in the particle phase is more difficult to interpret.
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Table 2.4: Mixture viscosities proposed by various authors.

Source Mixture viscosity Constants

Einstein (1906),

Einstein (1911) frmiz = pre (1 + 2.5¢p)) ep < 0.03

Brinkman (1952), o Y

Roscoe (1952) prmiz = pre(l — €p)

Frankel Acri o | (en/epman)'/?

ankel and Acrivos (1967) fimiz = fic2 P -5 ep/Epman — 1

€p/€p,max
2.5ep+2.7€2

Vand (1948) Hmiz = He |: 1*3.6096Pp:|

€2
Eilers (1943) Pomiz = fle 22 [7P]

(175p/5p,7naz)2

—_ 19 1 1 1 2 _ 1—(ep/e ,mam)l/a
Graham (1981) tmie = [$ (s ) (3 - oy — 0 ) +1+ 256 | ¢ = elmman

ep,maz)/3

Ishii (1977) fimiz = pie(1 — € /€pman)~25Pmas Ly > e

Note: In the above, fmiz and pp denote the mixture and particle viscosities, respectively. The particle- and
continuum volume fractions are respectively denoted by €, and ec, and €p maz is the maximum particle volume
fraction obtainable, which usually falls in the range of 40% (i.e. €p,maz ~ 0.4).

In literature two different ways of formulating expressions for the particle pressure

exist. One is based on the kinetic theory of granular flow, the other is described below:

The pressure is assumed to consist of the sum of three effects: The first corresponds
to momentum transport caused by particle velocity fluctuations, p, ki,. The second is
due to particle interactions (i.e. collisions), p, cou and the third is a contribution from

the continuum phase pressure. The pressure gradient in the particulate phase is thus

Viepy) = V(€pprin) + V(€ppeon) + V(€ppe). (2.6.14)

The first term on the right-hand side is neglected in traditional models. The second
term is referred to as the particle collisional pressure gradient. The collisional compo-
nent is the dominant pressure in dense regions. This pressure transmits a force both
by short collisional impacts and by long-duration particle-particle contacts. In Sec-
tion 2.4 it was stated that the aforementioned modelling methods may be applied to
fluidised beds: Experimental results by Campbell and Wang (1991) showed that the
particle collisional pressure is highest if the bed is not fluidised and particles rest on

each other, when the long duration contact force is high. As continuum flow increases



Stellenbosch University http://scholar.sun.ac.za
2.6. Modelling procedures for two-fluid models

21

towards the minimum fluidisation velocity, the particle collisional pressure decreases as
the drag force starts to dominate over the long-duration contact force. Further increase
in the continuum velocity above the minimum fluidisation velocity, causes the particle
collisional pressure to increase again, now as a result of an increasing frequency of the

short-duration collisional impacts.

The continuum pressure gradient enters into the momentum equations as a buoyant
effect, i.e. if there is a continuum pressure gradient through a collective of particles, it
exerts a force on the particles and thus the particle pressure gradient will be reduced

or increased depending on the direction of the gas pressure gradient.

Several models for the particle collisional pressure-gradient term presented in literature

are based on the following formulation
V(epppeor) = —Gle)Vee, (2.6.15)

where G(€.) is the equivalent of a modulus of elasticity used in molecular theory for the
particulate phase. The particle collisional pressure-gradient is often referred to as the
particle-particle interaction force. The main effect of the particle-particle interaction
force is only to prevent the discrete phase from becoming too densely packed (Enwald
et al. (1997)).

This discussion concludes the traditional modelling process for the constitutive laws
which specify how the physical parameters of a phase interact with one another. It
remains to describe the transport of mass, momentum and energy across the inter-
face between the phases. In the following section, interfacial momentum transfer is
described, whereas interfacial mass and energy transfer have been excluded from this

study.

2.6.1.6 Momentum transfer

The term under consideration here is the interfacial momentum transfer from the o-
to the S-phase which is given by the right-hand side of Equation (2.6.9)

1
My = o / o n,dS. (2.6.16)
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For the momentum conservation equation of the S-phase, the unit vector is given by,

ng = —n,. It follows that the momentum transfer from the 8- to the a-phase is

Mg, = —M,s. (2.6.17)

«

For a dispersed flow, M ; is the generalised drag force per unit of volume on a sus-
pension of particles of mean diameter d, and it is normally divided as (Kleinstreuer
(2003), Soo (1990), Croce et al. (2006) and Enwald et al. (1997))

M,s = n(Ep+ Erp+ Fay+ Fyr+ For), (2.6.18)

where n,, is the number of particles per unit volume. The forces on the right-hand side
of Equation (2.6.18) respectively denote the drag force, the transverse or lift force, the
added mass force, the history force and other forces that are yet to be determined.

These forces and their contributions to the total momentum transfer, are discussed in
Appendix A.

Currently, the stationary drag force at the interface is the only one considered in
the traditional two-fluid model. Empirical correlations account for this force, by which
momentum transport at the interface is modelled. It is normal to consider the interface
drag force as a combination of both the shape and the skin drag in a single empirical

parameter (e.g. van Wachem et al. (2004)).

Most of the data used for drag force correlation in many multi-particle systems were
obtained in uniform fluidisation and sedimentation studies: Typically, the drag force
is determined through experimental measurement of the pressure gradient. Usually
the experimental measurements are used to calculate the so-called drag function at the
interface, K, either in a straightforward way, where K = f(AP), or as a function of
the drag coefficient for a single particle in the suspension, Cys, so K = f(Cys(AP))
(Gomez and Milioli (2004)).

By making use of this methodology, various correlations for K have been proposed
in the literature and a detailed account of such methods may be viewed in Mazzei
and Lettieri (2007). For instance, Ergun (1952) measured pressure gradients in a fixed
liquid-solid bed and developed an expression for AP. This correlation was later used to
calculate K in a straightforward way, i.e. K = f(AP). Wen and Yu (1966) developed
experiments on the sedimentation of solid particles in a liquid for a large range of solid

volumetric fraction values. They considered their own data as well as data from other
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researchers and derived a correlation for Cp,, valid for 0.01 < ¢, < 0.63. Later this
correlation was used to indirectly calculate K, giving rise to an expression of the type
K = f(Cps(AP)). Along with work done by Lewis et al. (1949) and Kmiec (1982),
these equations serve as the prevalent equations of closure employed to model the drag

force in uniformly dispersed emulsions of solid particles.

The drag force acting on a single particle in a suspension can be written as

1
FD = §CD8p0| Q| Q(Wd§/4)> (2619)

where v is either the apparent relative velocity or the relative interstitial velocity,
depending on the velocity on which the drag coefficient C'p, is based. The contributory
effect of the stationary drag to the generalised drag is given by

’ (1 —€)Cppe| v v. (2.6.20)

wEp = g
P

To solve averaged momentum equations numerically, the stationary drag force is usually

written as
n,F'p = Ku, (2.6.21)

where K is referred to as the drag function. Table 2.5 lists various drag functions used

in literature.
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Table 2.5: Drag functions by various authors.

Author

Drag function, K

Constants

Gidaspow (1986)

Ishii (1977)

Syamlal and O’Brien (1989)

Di Felice (1994)

Gidaspow (1994)
(based on Ergun)

Gibilaro et al. (1985)

ich(l —€c)pelve — vylec ™

iCDs(l — €c)pel v, — Uy l€c

1y Cape grec(l — )l v, — v

27
1q; Cps(1 = €c)pel vy, — velec

(1—ec)pelv,— v,
#d

2
1504=cc) ke 4 g 75

K = (172 +0.336) p‘ﬂgipf

24 if Re < 1000
Cps = .
0.44 if Re > 1000

Cp = 24(1 4+ 0.1(Re)?5) /Re,
Re = Pc‘ Up — Qc|dp/ﬂmix
tmig © from Ishii (1977) in Table 2.4

2Ry = C1(ec) — 0.06Re + [(0.06Re)?+
0.12Re (2C2(ec) — Ci(ec)) + C2(ee)]*®
Cl(ﬁc) — 6401414

0.8¢.1.28 if e, < 0.85
Ca(ec) = ¢
‘ €2:65 if €. > 0.85.

2
Cp = (0.63 +4.8 %) Dallavalle (1948)

Re = pc|v, — v |dp/pie

Cps = (0.63 + 4.8@)2

B =3.7—0.65exp [~ (15 — log(Re))* /2]
€. < 0.8

Re from Ishii and Zuber (1979)

2.6.2 Contemporary discrete phase modelling methods

The equation of motion for a single sphere, moving in an unsteady non-uniform com-

pressible fluid, was proposed by Maxey and Riley (1983) for the case of low particle

Reynolds number, Re = p.d,| v, — v.|/p. < 1. It is generally accepted (Enwald et al.

(1997)) that the equation of motion for a single sphere can be generalised, in the case
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rdidy, 1 wd? : NN
g g = 3PrCos Y= (Y= v) + SpeFAaZ (Ve = wy)
342 ‘g dr  7d; md;
2 A —(v/, —
N ’ \/W H/O dT(yC yp)m 5 Vp + Pp—7 6 g7
(2.6.22)

where d, denotes the particle diameter, v, and p’ are the undisturbed continuum
velocity and static continuum pressure at the particle location, respectively, i.e. the
velocity and pressure of the continuum phase if the particle was not present. The
terms on the right-hand side are identified as the stationary drag, the added mass force
the history force, the pressure gradient and the gravity force, respectively. Different
correlations for the drag coefficient for a single sphere, Cpg, in an infinite fluid and for
the correction coefficients for the added mass and the history forces, A4 and Ay, can
be found in Clift et al. (1978).

It can be shown that the history force is negligible for continuum-particle flows, pro-
vided that p./p, < 0.002 and d, > 1pum (Liang and Michaelides (1992) and Vojir
and Michaelides (1994)). Liang and Michaelides (1992) also concluded that the added
mass effect can be neglected because the added mass term is proportional to the den-
sity ratio. It is generally assumed that these conclusions can be extended to a single
particle in a suspension. Therefore, Equation (2.6.22) can be expressed in the following

Eulerian form

9 P
5P ) £V - (ppu,0) = (Vo= w,) =V +ppg+ Fpp,  (2.6.23)
Gp
where the particle relaxation time 77, is
3 p
X c
= —C 2.6.24
Tap 4dp,0p D|U _c|> ( )

and Fpp represents the force exerted by other particles during collisions. The par-
ticle relaxation time is a characteristic time for the entrainment of particles by the

surrounding continuum.

Applying the averaging identities in combination with a Reynolds decomposition and

p' = p+ p, yields the following averaged form of the particulate phase momentum
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conservation equation (Enwald et al. (1997)):

Re) +eppp gt Mp[’

0 »
—(€pPp Qp) + V- (eppp Uy Qp) = —Vp+V- (Ep;;( + &2,
(2.6.25)

ot

The interfacial momentum transfer, M, is given by K(v, — v,). To close the mo-

cp?
mentum equations, models for the collisional and kinetic terms (ekgfk + ekgkRe) are
acquired by employing the Maxwell-Boltzmann equation. This method is described in
detail in Enwald et al. (1997) and only a brief outline of the procedure and the final

results for the closed form of the gradient of the particle stress will be given here.

2.6.3 Turbulence models for the particulate phase

The effective stress tensor is derived using Boltzmann theory, the Boussinesq approxi-
mation, the closure model of Jenkins and Richman (1985) and expressions put forward
for the turbulent viscosity by Simonin (1995) and Peirano and Leckner (1998). It is
given by Enwald et al. (1997) as

P

1
o, +2) = —(B—&V 1) L+2 (S — (V- yp)l) . (2.6.26)
In Equation (2.6.26) the effective pressure is

Py = €ppT (14 2e,90(1+€)), (2.6.27)

where e is the restitution coefficient which represents the loss of energy during collisions
and varies between zero and one. The bulk viscosity, £, in Equation (2.6.26) is given
by

4 T
& = gezppdpgo(l—i—e)\/;. (2.6.28)

The radial distribution function, go, describes the probability of finding two particles
in close proximity. [ts main purpose is to prevent over-compaction of granular matter
as it acts as a repulsion function between particles when they are close to each other.
This function is equal to unity for very low particle volume fractions (¢, < 1) but
increases for highly concentrated particulate systems. The function is, however, not

well known for granular matter and many possible definitions exist (Dartevelle (2003)).
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One such a definition is given by Lun and Savage (1986) as?

go = (]- - Ep/ep,ma:(;) . (2629)

The shear viscosity is given as the sum of a turbulent viscosity and a collisional viscosity,
Iy = €pPp <1/It, + 1/;> and expressions for the turbulent viscosity is given by Enwald et al.
(1997) as

Lt ke + L7, T (1 + € .
v = (57ake - +”Tcp(oc e )), (2.6.30)

2 1

where k., denotes kinetic energy whilst o, and ¢, are defined by (1 +¢e)(3 —e)/5 and
2(1 + e)(3e — 1)/5, respectively. The interaction time between particle motion and
continuum phase fluctuations is denoted by Tgp and 7., is the particle relaxation time.

The expression for the collisional viscosity, v, is defined by

4 T
vy = gepgo(l +e) (V; + dp\/;> . (2.6.31)

Finally, a transport equation for the granular temperature, or for the turbulent kinetic

energy, T', of the particulate phase, k, = 37"/2, is required. This is given by

D C €
Ep/)pﬁ(kp> =V (Ep/)p(K;t) + Kp)Vkp) - <_€p(2p + gf )) V- (U
2€,0p e —1
——=(2k, — k. —k,, 2.6.32
oy ( P p) + €pPp 37_;; P ( 6.3 )

where Klt, and K are the turbulent and collisional diffusivity coefficients, respectively
and the time scale 77 = (d,/23g0€,) /7 /T is the particle-particle collision time, i.e. the
time between two consecutive binary collisions for a given particle. The continuum-
particle covariance, kp, is defined as <Qp Qc>. Various models for continuum-particle

covariance may be found in Yu and Lee (2009).

The turbulent diffusivity is modelled as

37l
ﬁkcp + T(]- + 6p90§c)

K = —= , (2.6.33)

5Tep TS

where ¢, = 3(1+¢)?(2e—1)/5 and & = (1+¢)(49—33¢)/100. The collisional diffusivity,

K, is defined by
. 6 4. [T

2This resembles the viscosity equation given in Table 2.4 by Ishii (1977).
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Semi-empirical models have been suggested by Simonin (1995) to solve Equation (2.6.32)
and the reader is referred to Enwald et al. (1997) for a detailed example and review of

turbulence models.

It is clear that the Boltzmann method for determining particle viscosities and pressures
is complex and still relies on empirical data. This may be one of the reasons why the
simplicity of the two-fluid model has proved more popular in the development of source

codes to model two-phase flow.
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Chapter 3

Conservation equations

3.1 Introduction

The development of an alternative to existing two-phase flow models requires obtaining
and averaging the conservation expressions for the continuum and discrete phases. In
order to guide the reader from start to finish, a brief review is given of the well known
Navier-Stokes momentum conservation equations for the continuum phase, followed by
a discussion on the development of momentum- and mass conservation expressions for

the particle phase.

3.2 Mass conservation for the continuum phase

The mass, m,, of an arbitrary material volume, V,, within the continuum phase is given

me = |[[pav. (3:2.1)
Ve

where p. is the density of the continuum. Conservation of mass requires that
dm d
< = — dV = 0. 3.2.2
i =l @22
Ve

Application of the Reynolds transport theorem, which may be viewed as a three-

by the integral

dimensional generalisation of the Leibniz theorem which is used to differentiate under

29
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the integral sign, to Equation (3.2.2), yields

/// {8/)6 ”c)] @ =0 (3.2.3)

The integrand in Equation (3.2.3) should however be zero for any material volume,

even if the size of such a volume should tend to zero. It follows that locally at any
point within a continuum, for which mass conservation holds, the following continuity
expression holds
0pe
ot

Equation (3.2.4) concludes the derivation and is the mass conservation equation per

+V-(pev,) = 0. (3.2.4)
unit volume for the continuum.

3.3 Momentum conservation for the continuum

phase

External forces that influence a continuum via vector fields, such as gravitation, work
on each individual mass point of the continuum. It is therefore called body forces.
Let f be the total body force per unit mass at any point within the continuum. The

resulting body force, £, on a volume V. of the continuum is therefore given by
pre = /// £V, (3.3.1)
V

When a conceptual volume is defined, the effect of the surrounding surface forces on
such a volume should be taken into consideration. These contact forces per unit area
of the continuum are defined as stress and will be denoted by the stress dyad, g, The

resulting surface force on a volume V, of the continuum is therefore given by
Four = # n, - gcdS. (3.3.2)
oV,

For a general description of the motion of a continuum the volume V. is considered

to be a material volume. The internal forces at every point in a deformable body are
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not necessarily equal, and therefore there exists a distribution of stresses throughout
the body. Newton’s second law of motion for the conservation of linear and angular
momentum governs this variation of internal forces throughout the body. These laws
are usually applied to a rigid particle but, for the purpose of continuum mechanics
are extended to a body of continuously distributed mass and are referred to as Euler’s
equations of motion. Euler’s first axiom or law (law of balance of linear momentum or

balance of forces) states that:

In an inertial frame, the time rate of change of linear momentum, P, of an

arbitrary portion of a continuum body is equal to the total applied force, F,

acting on the considered portion.

It may be expressed as

dP
F= = (3.3.3)

Following Euler’s linear momentum principle, as applied on V., yields

%/// eLdV = ///eibdv+ #nc-gcds. (3.3.4)
V. V.

Ve

The divergence theorem is applied to the surface integral in Equation (3.3.4), yielding

///%(pcyc_pcib ~Veg)dv = 0 (3.3.5)
Ve

The material volume, however, was chosen arbitrarily and Equation (3.3.5) therefore

holds for any volume V.. It follows that, at any point within the continuum

d
%(pcyc) = pf,+V-a. (3.3.6)

Equation (3.3.6) is commonly known as Cauchy’s differential equation for the motion of
any continuum. It holds in general and may be applied to rigid bodies, elastic objects

and fluids (i.e. liquids or gasses).

Applying the definition of the total derivative yields

d
5 Peve) + V- (pevevr) = Vg +pef, (3.3.7)
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Equation (3.3.7) is the momentum conservation equation per unit volume for the con-

tinuum phase.

3.4 Mass conservation for the particle phase

Consider a moving particle with changing mass as shown in Figure 3.1.

Wy (s

Figure 3.1: Solid particle.

Here G)(;) is the centre of mass of the solid particle ¢ moving with velocity vy, Vp(@)
is the volume of the particle and w,; is the velocity of a point on the boundary of
particle i. Let my(;)(t) denote the mass of particle 7 at time ¢. In the absence of sources
and/or sinks within the particle, mass-change is only due to a mass flux across its
boundary, i.e. combustion or condensation. The change of mass with respect to time

is therefore given by

dmy i) (1)
% - / Poti) (Wpis) = Vp(i)) * M 4 S, (3.4.1)

Sp(i)

where pp;y is the density distribution of particle . In Equation (3.4.1) the velocity

difference, given by w, ;) — v,;), is the velocity of the particle boundary relative to its

centre of mass, G;). The mass of the particle is a function of time only, therefore
dmpiy) Oy Aoy Omy (t) - Oy

dt ot dt (9£Ep(i) ot

(3.4.2)
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From Equations (3.4.2) and (3.4.1) it therefore follows that

% - / pp@(%(z')—@p(n)'ﬂp(i)d& (3.4.3)

Sp(i)

Equation (3.4.3) is the mass conservation equation for a single particle.

3.5 Momentum conservation equation for the

particle phase

From Newton’s second law the following holds for each particle:

dv,,
Yn(i)
Myp(i) d’; = F, (3.5.1)

where F is the resultant force exerted on the particle. Generally, F includes the
gravitational force, aerodynamic drag, buoyancy, the added mass force, the Basset
force, the Magnus effect, and the Saffman lift force. These forces and their relative
contributions to the momentum of the particles are discussed by Fan and Zhu (1998)
and Kleinstreuer (2003). According to Ding and Gidaspow (1990), the last four effects
may be assumed negligible. The remaining three are grouped into surface forces, I, f,

and volume forces, F, '

d Yp(i)
dt

i) = Eu+ Euyp (3.5.2)

It is assumed in the current work that the only significant volume force affecting the
motion of a particle is the weight, Fy, = m,; g, and that the surfaces forces may

be combined and written in terms of a stress tensor, g, integrated over the outer

(i)’
surface area of the particle. It then follows that

m~dyp(i) = My g+ o nndS (3.5.3)
P 1t p(i) 4 =p(i) —P@)T " o

Sp(i)

Multiplying Equation (3.4.3) by the particle velocity, v,;, rewriting the particle mass,

Mpei), as a product of its volume, v,; and density, p,;), and adding the resulting

IFor a detailed discussion on surface and volume forces, the reader is referred to Appendix A.
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expression to Equation (3.5.3), yield

dv O DU
~p(i) Pp)Vi
Pr(i)Vi i + Uy ot = Vippti) 9 +/ gp(i) . ﬂp(i)dS +
Sp(i)
Qp(i)/ Pp(i) (wp(i) - Qp(i)) : ﬂp(i)ds. (354)

Sp(i)

The chain rule of differentiation is applied to the first term on the left-hand-side of
Equation (3.5.4)

Log(rt) = 2wty + 2050 Z‘“ja;“” 2950 (35.)
which may be expressed as
d
Eﬂp(i)(ﬁ t) = ayp(i)(z, t) + Yoy V U (3.5.6)
Substitution of Equation (3.5.6) into Equation (3.5.4), yields
0
51 (Lo V) + PoiVi Uy - Vi) = vidp g F
/ Ty TS + Uy / Po) (o) = Lpiiy) - iy d S, (35.7)
(i) S

where my,;) = pp@)Vp) and the chain rule has again been applied to the left-hand side

of the expression.

Equation (3.5.7), which is valid for each particle, describes the change in momentum of
a particle with mass my;) = pp(i)Vp(i)- The first term on the left-hand side of Equation
(3.5.7) is the transient term which constitutes the change in the velocity and density
of a single particle over time. It describes the effect of acceleration or deceleration as
well as time dependent combustion or condensation on the momentum of the particle.
The second term, commonly designated the convective term in continuum dynamics,
indicates how the momentum of the particle is affected by a change in the velocity of
the particle with a change in its position. The third term, known as the body force
term, describes the effect on the momentum of the particle from outside forces which

act on the centre of mass of the particle.
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The first integral represents the stresses on the particle’s boundary surface. The second
integral describes the change of momentum of the particle due to mass flow across the

particle boundary (i.e. combustion or condensation).
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Chapter 4

Averaging

4.1 Introduction

The objectives of this chapter are to quantify the concept and size range of the Rep-
resentative Elementary Volume (REV) and to subsequently apply the REV to derive
rules for modelling the transport of various quantities in dispersed media at the macro-
scopic level. These averaging rules are then applied to the Navier-Stokes momentum

and the mass conservation equations which were formulated in Chapter 3.

4.2 Arbitrary and Representative Elementary

Volumes

Solving the transport phenomena in a two-phase flow domain can be done at micro-
scopic level. This is however impractical since a) it is computationally expensive to
determine and b) quantities cannot be measured at this level and experimental data for
comparative purposes therefore do not exist. These difficulties may however be avoided
by considering each phase as a continuum. The actual two-phase discrete/continuum
medium, in which each phase fills only a portion of the spatial domain, is replaced by

a virtual model in which the continuum phase fills the entire domain.

In contrast to the traditional volume averaging models, where both phases are described
as separate continuums (Bachmat and Bear (1986), Whitaker (1967)), the discrete
phase remains separated in this work. And the discrete nature is dealt with by replacing

the integral definition, customarily used for continuum averaging, with a summation

36
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procedure and a detailed discussion follows in Section 4.6.

Average values over Elementary Volumes (EV) are designated as macroscopic values of
variables. For both the discrete and continuum, these macroscopic entities are defined
and allocated to the centroid of the EV, regardless of whether the centroid coincides
with that phase. Fields of macroscopic variables may be obtained by traversing the

EV over the entire domain.

Any Arbitrary Elementary Volume (AEV) may in principle be selected as an averaging
volume for passing from the microscopic to the macroscopic regime. Different AEV’s
will however yield different averages depending on the size of the AEV and therefore
need to be labelled to the particular AEV used for its averaging. This predicament
is circumvented by introducing the concept of a Representative Elementary Volume
(REV) (Whitaker (1967), Hassanizadeh and Gray (1979), and Bachmat and Bear
(1986)).

The REV is chosen such that averaged properties of the continuum or discrete phase
are statistically meaningful, i.e. representative of measured values. It follows that
averaged values of properties obtained from averaging with an REV are independent

of the size of the averaging volume.

Irrespective of its placement within a domain, the REV should contain both continuum
and particle phases and be representative of the entire domain. The criteria given in
the work of Bachmat and Bear (1986), Whitaker (1967), and Hassanizadeh and Gray

(1979) for the selection of sensible general REV dimensions are subsequently discussed.

4.2.1 Selection of REV size

Bachmat and Bear (1986) stresses that the values of all averaged geometrical character-
istics of the microstructure of the porous material at any point in the porous medium
domain be single valued functions of the location of that point and of time only, but
independent of the size of the REV. It follows that the volume of an AEV, U 4gy, may
be regarded as the volume of an REV, U,, if the porosity, €., satisfies the following

constraint
Oe.
= 0, 4.2.1
OU Apv ( )
where €, = Z—Z, and U, is the volume occupied by the continuum. The size of the
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REV in a domain (D) is thus determined by the porosity (Bachmat and Bear (1986)).

Figure 4.1 illustrates the variations of the ratio U./U gy as U gy increases in size.

u . .
Tanv] . ——Domain of porous medium
D(?maln of I Domain of possible
1 - microscopic | jmacroscopic inhomogeneity
inhomogeneity | |
€ I | Inhomogeneous
=~~~ I = T media
|
: Homogeneous I
| medium |
<—Range for U, — |
| | |
| | |
O | | |
Upnin U e Volume U gy

Figure 4.1: Variation of porosity in the neighbourhood of a point as a function of the average
volume.

For small values of U 4gy the ratio, U./ U apy, is one or zero, depending on whether the
centroid of the REV, z, falls inside the continuum or the discrete phase. As the volume
of U apy increases, large fluctuations in U,/ U apy occur. However, as U 4py continues
to grow, these fluctuations gradually abate, until, above some value U agy = Uin, it

decays, leaving only small amplitude fluctuations around some constant value.

As illustrated in Figure 4.1, the REV is that volume, U,, within the range of

U min<U Ay <Umaq, that will make the ratio, U./U,, independent of U 4py, and hence
a single valued function of x, only. There usually exists a number of relevant variables.
The continuum description of the process described by such variables can be employed

only if a common range of the REV can be found for all of these.

All average properties are assigned to the centroid of the REV, xggy, which is illus-
trated in Figure 4.2. In Figure 4.2 the REV volume is given by U,. The section of the
REV boundary surface which separates the continuum phase volume, U, contained
within the REV, from the continuum phase outside of the REV, is denoted by S...
Sections of the REV boundary surface which cut through particles and points on par-
ticle surfaces where particles connect with each other, are given by S,,;). Similarly,

the surfaces which separate the particle volumes, v,(;, from the continuum are given
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by Spey- The inward facing normal unit vectors for the particle and the continuum

phases are denoted by n,; and n, respectively.

Figure 4.2: The Representative Elementary Volume (REV).

The initial averaging procedure, which applies the concept of an REV, averages the
mass conservation equations completely but yields an integral term in the momentum

conservation expressions in which microscopic variables remain.

4.3 Averaging rules for the continuum phase

Volume averaging for a continuum, as applied by Whitaker (1967), has been referred to
in Chapter 2 and the rules that apply to such an averaging method have been derived
in Appendix B. These averaging rules are repeated here in order that the reader may
compare them with the averaging rules for the particulate phase that will be discussed

in Section 4.6.
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Let ¢ be a property of the continuum phase, which may be a scalar, vector or dyad
and is assumed to be finite, continuous and differentiable within an REV with volume
U,. Using an REV, the following definitions are made: The phase average of any
continuum property, ¢, is defined as (Whitaker (1969))

@ = o | edu. (431)

and yields the average of any property ¢ over the entire REV volume, U,. The average
of a property taken solely over the continuum section of the REV, U,, is denoted by

1

@ = o ] edu (13.2)

and is related to the phase average presented in Equation (4.3.1) by

(9) = e(d),, (4.3.3)

where, €. = U./U,, signifies the fraction of the total REV volume which is occupied
by the continuum phase. At any point within U, the deviation of ¢ from the intrinsic

phase average, (¢)_, is defined by

¢ = ¢—(9). (4.3.4)

The aforementioned definitions are used to derive averaging rules which are listed in
Table 4.1 for the continuum phase. In Table 4.1 the velocity, w, refers to the velocity
at which the continuum-particle interface, S,., is being displaced and n, is the unit

vector normal to the continuum phase on &, directed into the particle phase.

4.4 Averaging of the continuum mass conservation

equation

The averaging rules, listed in Table 4.1, are applied to the equation for mass conser-
vation of the continuum phase, given by Equation (3.2.4). A methodical approach is
applied to the averaging process: The transient, convective and mass flux terms of

Equation (3.2.4) are respectively labelled as Term 1, Term 2 and Term 3

<(Z> +(V-(per)) = (0) . (4.4.1)
—_—— ~
S—— Term 2 Term 3
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Table 4.1: Averaging rules for the continuum phase

i () =€ (9),

i {01+ 62) = (81) + (60)
i {(ag) = a(p), where a is a constant
v (9162), = (91), (62). + (610)

v (Vo) =V (o) + g [s, n0dS

vi (VO) =&V (). + 4 [, n.ddS
vl (V-6) =V (6)+ 3 [g, n.-6dS

viii (%) =%~ L[ n.- wods

Rules vz and 7 are applied to Term 1, yielding

dpe B Oec (pe), 1/
<8t> T ot U, Js,, e Leped S,

(4.4.2)

where the velocity, w, of the interface, S,., has been replaced by the velocity, v, of

the continuum phase since it is assumed that these two are equivalent in the absence

of combustion or condensation.

For the averaging of Term 2, application of averaging Rules vii and ¢ is succeeded by
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the use of vi and it follows that

1
<V(pcyc>> = V <pcyc>+7 / ﬂc'pcycd87

Spe
1
= Velelpord) g [ nenuds
Spe
- 1
= V-[ec(<pc>c<yc>c+<pcvc>c)]+u /Qc-pcycd& (4.4.3)
Spe

In constructing the mass conservation equation for the continuum phase, it was assumed
that continuum mass would remain unchanged, hence the absence of a mass flux term

and the zero value on the right-hand side of Equation (3.2.4). The average of Term 3

is given by
(0) =0 (4.4.4)
Equations (4.4.2), (4.4.3) and (4.4.4) are assembled, and it follows that
0 {pe -
o L9l o) (wd, + ()] = 0 (4.4.5)

The added assumption of a constant continuum density, p., yields further simplification
of Equation (4.4.5)
Oe.
ot

which embodies a description for the conservation of continuum mass in terms of macro-

+V-elv,), = 0, (4.4.6)

C

scopic state variables.

4.5 Averaging of the continuum momentum

conservation equation

The approach followed in averaging the mass conservation equation for the continuum
is repeated here. The momentum conservation equation for the continuum phase was

given earlier by Equation (3.3.7) and is repeated here:

0p. v
t ,  N—— —— =

Term 2 Term 3 Term 4
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Under the assumption that the continuum density is constant, the application of Rules

viii and ¢ to the transient term, labelled Term 1 in Equation (4.5.1), yields

ov, B Oe. (v,), 1
pc< ot > - ch Pe uo /:s‘pc n. ycycd& (452)

Application of averaging Rules vii and 7 to the convection term, labelled Term 2, yields

1
pe (V- (v.0,)) = pcV-<ycyc>+/’67/ Be LoLed S,
o Spc

= 2oV [e (e (ot i) + g [ me oS

(4.5.3)

The gradient of the underlined term in Equation (4.5.3) is denoted by Enwald et al.
(1997) as the Reynolds stress and has been discussed in Chapter 2. Following the
"traditional two-fluid derivation" by Enwald et al. (1997) and Hassanizadeh and Gray
(1979) in their assumption that the continuum flow remains laminar, Equation (4.5.3)

simplifies to

pe(V - (v,0,)) = pcv-<ec<gc>c<yc>c>+pcuio / n,-vdS.  (454)

Rules vit and 7 are used in the averaging of the continuum stress contribution to the

momentum, and it follows that Term 3 is given by

<V-gc> = V- <€c <g6>c> + Z/{LO /Spc n,-ods. (4.5.5)

The acceleration in the body force, given by Term 4, is assumed to be gravitational

acceleration, g, and it follows that

Pe <g> = pegec. (4.5.6)
From Equations (4.5.2), (4.5.4), (4.5.5) and (4.5.6), it then follows that

aec <yc>c
Pt

F0Y (e () (vd) = pegectVoee(g,) +

1
u /Sgc-gcdé’, (4.5.7)

which is the REV averaged form for the conservation of momentum for the continuum

phase.
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4.6 Averaging rules for the particle phase

The particle phase is composed of discrete, solid, rigid particles which are, apart from
when they collide, completely surrounded by the continuum phase. Due to the disjoint
nature of the particles, the averaging procedures developed in Section 4.3 need to be

adapted for the particulate phase.

Define a volumetric average of n discrete particles as

_ 1<
T = 2 D vy (4.6.1)
% =1

and define the intrinsic phase average as,

_ 1 ©
TPo= o ) Tl (4.6.2)
Uy i=1
The deviation from such an averaged quantity is defined as

vy o= Vp(i) — P, (463)

The particle volume fraction, €,, is linked to the continuum volume fraction, €., by

U - 1
Ep — p — 1 — EC — 1 — Z 11/])(2)? (464)

where U, = >"" | v is the total solid volume contained within the REV.

Although the particles are separated, the average values obtained are assumed to be
defined at the centre of the REV, z,5,,. The averaging rules for the particle phase are
listed in Table 4.2.

The set of rules given in Table 4.2 differs from those given in Table 4.1 in that Rules
vit, vitt, and tx do not contain integral terms. This is due to the fact that differentia-
tion is additive and may therefore be taken out of the summation procedure used for
averaging the discrete phase whereas the Leibniz theorem needs to be applied in order

to differentiate under an integral sign in the case of the continuum phase.
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Table 4.2: Averaging rules for the discrete phase.

i 7 =€e7"

+
@l

i Y+ B=7
117 constant’y = constant’y

0=7

=
I

v

<
=2

I
N

vi B"=778"+4p
viie, V.-y=V-%¥
viii. Vy =V7q

. 3_7_2_
1T a——a’}/

4.7 Averaging of the particle mass conservation

equation

Equation (3.4.3) is summed over all particles contained either partially or fully within
the REV:

Omyy,(
Z p Z / Pp(i) \ Wp(i) — yp(i)) ' ﬂp(i)d‘g(i)’ (4.7.1)

=1
S

The term on the right-hand side of the integral is the sum of the surface integrals
over each solid particle’s surface. The surface, however, consists of both a particle-
continuum interface, Sy, and a particle-particle interface, S,p@), as was illustrated

in Figure 4.2. The particle-particle boundary results due to a particle being contained
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only partially within the REV. It follows that Equation (4.7.1) may be expressed as

Z 8mp(2

i=1 =1

/ Poti) (Woe) = (i) iy d Sy +

SPC(Z')

/ Pp(i) (wp(i) - Qp(,)) ", dSae |- (47.2)
Spp(i)

The velocity of the particle boundary does however not exist over the S, interface
and it follows that

- Iy (t) &
Z T - / Pp(i) (wp(i) - yp(i)) : ﬂp(i)dS(i)—
=1 i=1
Spe(i)
/ Ppii) Up(i) * ()4 Sy | - (4.7.3)
Spp(i)

In order to evaluate the integral over the particle-particle interface, the spacial averag-

ing theorem of Slattery (Whitaker (1967)) is applied to a single particle:

Consider a solid particle 7 crossing the boundary of the REV as shown in Figure 4.3.
The REV boundary moves a distance Ax relative to the particle centre in time At. Let
Vp(i)l« denote the volume of the particle contained within the REV when the particle is
at position z; and let vp(;)z,+a2) be the volume at position x; + Ax. Let S, be the

surface area obtained by the intersection of the REV boundary with the particle.



Stellenbosch University http://scholar.sun.ac.za
4.7. Averaging of the particle mass conservation equation

47

Spp(i) |t=0

_- Spp(i) ‘t:t—i—At

’

Figure 4.3: Solid particle at the REV boundary.

Referring to the Figure 4.3 and expressing the differentiation in terms of a limit, for a

general variable ¢ it follows that

0 ) 1
or / oty = I A / o / Pt
Vp (i)

Vp(i)

zi+Az Vp(i)lz:

= lim L / odv;. (4.7.4)

Az—0 Az

Vilz;+Ax — Vpd)

T

In the limiting case of Az — 0, the incremental volume element may be expressed as
dv; = Azd S; and Equation (4.7.4) reduces to

Az—0 A

0
p /(ﬁdm = lim —Ax / pd S;, (4.7.5)
' Spp(i)

which, in three-dimensions, may be written as
\Y% / pdv, = / ¢ 1y d S, (4.7.6)
S

where n,;) is an outward directed unit vector, perpendicular to Spp(i)-
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Equation (4.7.6) is applied to Equation (4.7.3), yielding

Imy(i)
Z mp( Z / pp(l Wy — p(l) ZV /Pp(i) Qp(i)dVi-

i=1
N—_—— —
Term 1 Spc(i) Vp(d)

S S

Vv Vv
Term 2 Term 3

(4.7.7)

From the definition of volumetric averaging of a non-connected medium given by Equa-

tion (4.6.1), Term 1 may be written as

- 8mp(,~)(t) 8 -
ZT = E;Pp(i)’/p(i)

i=1
9Py
ot’

which, after applying the definition for the intrinsic average for the particle phase,

= U, (4.7.8)

given by Equation (4.6.2), yields

i 8mp(i) (t) . 8 —p
; T = an (Eppp ) . (479)

Since the sum of integrals, each of which is taken over the particle-continuum interface

of a single particle, may also be written as

Z / Po) (Wos) = Ypi) * Rp(y@Si = / Poti) (Wpis) = Up(i)) * Ry d S,
=1

Sipe) > Speti)
(4.7.10)

and since the particle-continuum interface, S,., of the REV is constructed from the

particle-continuum interfaces of all particles, contained within the REV, combined:
> Speiiy (4.7.11)

it follows that Term 2 may be simplified as

> / Poti) (Wpi) = Ypi) * Ry d Si = / Poti) (Wos) = Up(ay) Ry d S-
=1
Spc(i) Spc
(4.7.12)
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It is assumed that the properties of the particle are defined at its centre: The velocity
and density of each discrete element are therefore by definition regarded as constants
for each individual element and the particles are regarded homogeneous. It follows that

Term 3 may be expressed as

Z V- / Pp(4) yp(i)dui = Z V- Pp(3) Qp(,')l/z‘. (4.7.13)
=1 =1

Vp(4)

Equation (4.6.1) is applied to Equation (4.7.13) and it follows that

Z V. / Poi) Vp@Vp = UV - ppu,. (4.7.14)
i=1
Vp(i)

Finally, the averaging rules are applied, yielding

Z V- / Pp(i) ULpy@Vi = UV - 6pp "0, 7 + UV - Pp 0y, (4.7.15)
i=1
Vp(i)
It follows that Equation (4.7.7) may then be written as

8 _ o - ]-
pr (P ?) +V - epp "0, " +V - ppu, = " / Pp(i) (wp(i) - Qp(z‘)) Ny d S,
Spe

(4.7.16)

Equation (4.7.16) describes the change of the (volumetric weighted average) mass per
unit volume of all particles in the REV. It is defined at the centroid of the REV. The

integral term represents the flux of mass across the continuum-particle interface.

If the assumption is made that there are no sudden changes in the mean particle velocity
and density within the REV, the third term on the left-hand side of Equation (4.7.16)
may be neglected. Equation (4.7.16) may then be written as

o - 1
5 &P ") +V 6pp T, = U /Ppu)(wp(z')—Qp(z'))'ﬂp(i)d&

She
(4.7.17)
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If, in addition to previous assumptions, it is assumed that the mass flux across the
solid surface is zero (i.e. combustion and/or condensation does not occur), and that
the particles within the REV have the same densities, the averaged equation for mass

conservation of the discrete phase is given by

0
a(el,,p—j,,l’)juv-(e,,g—][,l’) = 0. (4.7.18)

4.8 Averaging of the particle momentum

conservation equation

Equation (3.5.7) describes the change in momentum of a particle with mass my;) =
Pp(i)Vp(i)- In order to obtain the overall momentum of the particles in the REV, Equa-

tion (3.5.7) is summed for all n particles:

n a n n
2 57 (L) + D oo Uy Vi) = D VPt 4+
1=1

i=1 =1
Z / %6y 1 d S + Z Up(i) / Pp(i) (wp(i) - Qp(i)) C 1y d S
i=1 =1
V(i) Spi)
Te;rrn 1
(4.8.1)

The same argument that was used for the mass flux term in Equation (4.7.1) is now

applied to the integral term, i.e.

Term 1 = 2 Up(s) / Pp(i) (Mp(i) - Qp(i)) Ny d S+ / Pp(i) (ﬂp(i) - Qp(i)) "y d S
) I Speli) Spp(i) i
=~ two / Pr() Lp(i) * i) S
: Spp(i)
- Zn: CRON / Pr() Lp(iy AV (4.8.2)
i=1
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It was assumed that the density and velocity of the particle are defined at its centre
of mass and may therefore be removed from the integral term in Equation (4.8.2). It
follows that

i=1

Combination of the above result for Term 1 and the underlined term in Equation
(4.8.1), yields

8 n n n
o7 2 (L) + V- 3 (00t Loty L) Vo) = D Vot ot 9 +
i=1 i=1

=1
Z/ %) UNBURE

Sp(i)

(4.8.4)

The underlined integral term in Equation (4.8.4) is split into its particle-continuum

and particle-particle components and written in condensed form:

/ i W@dS = / T Mp@dS + / T @A S
Sp(i) Spc(z‘) Spp(i)
(4.8.5)

Substitution of Equation (4.8.5) and application of the definition of volume averaging
then yield the following volume averaged momentum conservation equation for the

particulate phase:

0 1
5 PtV BT, = Dpgt oo /%p<i>'ﬂp(z'>d5+— /‘7 F Dy d S

(4.8.6)

Recall that, during the averaging of the discrete phase mass equation, it was assumed
that all particles have the same density and that the density is assumed to remain

constant with regard to both time and position. Implementing these assumptions and
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applying the averaging rules given in Table 4.2 to the terms in Equation (4.8.6), yield

9 __ S — 1
ppaepypp +p,V Epyppypp +p,V - V0, = &ppgt o0 / gp(i) . ﬂp(i)ds +
Spe
L dS 4.8.7
u, | Su oo (48.7)

Spp

The average of the product of the velocity deviations was termed the Reynolds stress
in Section 2.6.1.3. The assumptions made for the continuum phase presumably holds
for the discrete phase as well and the Reynolds stress is considered negligible. It follows
that

o o 1
Ppa%ﬂpp‘l‘ppv'epﬂppﬁpp = epppg—l—7 /gp(i)-ﬂp(i)ds—l—

1
70 / g () . ﬂp(z)ds (488)

SPP

Equation (4.8.8) represents the final form for the particle momentum conservation
equation and additional modelling procedures are required for the remaining integral

terms to be expressed in terms of averaged properties.

4.9 Summary and conclusions

In this chapter the concept of an REV has been introduced and used to derive averaging
rules for both phases. These rules have been applied to the conservation equations
that were presented in Chapter 3. Additional modelling procedures, required for the
expression of the stress terms o and g, in Equations (4.5.7) and (4.8.8) in terms of

macroscopic flow properties, are discussed in Chapter 5.
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Chapter 5

Constitutive modelling

5.1 Introduction

The derivation of closure laws is pivotal to accurate modelling procedures. Following
Enwald et al. (1997), these laws are divided into two categories, namely Constitutive
laws which specify the interaction of physical parameters within phases and Transfer

laws which qualify the interactions between phases.

Constitutive laws entail the modelling of the continuum and particulate stress terms,
appearing in Equations (4.5.7) and (4.8.8), in terms of fluid properties. The transfer

laws are discussed in Chapter 6.

5.2 Continuum stress

The continuum stress, o 218 split into a continuum pressure, p., and a continuum shear

stress term, T , and is expressed as

g, = —pl+7. (5.2.1)

The continuum pressure is taken as the hydrostatic pressure and the shear stress is

modelled using the Newtonian strain-stress relation:

1
T, = &V v L+ 2p. (ﬁc —3V yé) ; (5.2.2)

—C

where &. denotes the bulk viscosity and the strain-rate tensor, éc, is defined by

S = p.(Vu.+(Vu)"). (5.2.3)

53
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In Equation (5.2.3), pu, is the viscosity of the continuum and 7" denotes the transpose
operator. From the assumption of a constant continuum density,! it follows that V- v, =

0 and the shear stress therefore simplifies to

o= pe(Vo.+ (Vo)) (5.2.5)

—c

Substitution of Equation (5.2.5) into Equation (5.2.1) yields

g. = _pci + He (V V. + (v QC)T) ) (526)

which is an expression for the internal continuum shear stress in terms of fluid proper-

ties.

5.3 Particle stress

When calculating the total force exerted on a particle by a surrounding continuum and
neighbouring particles, as was done in Appendix A, the work of Kleinstreuer (2003),
Enwald et al. (1997), Soo (1990) and Crowe et al. (1998) were followed in assuming
that these forces may be added linearly. For this reason it is assumed in this work that
the particle stress, a, is a linear combination of the stress induced by the continuum
encompassing it, ol and the stress, g instigated by neighbouring particles

o = o +o

g, g, +a, (5.3.1)
The continuum stress has already been discussed in Section 5.2 and it remains to be

shown how the particle induced stress is modelled.

5.3.1 Particle induced stress

The form of viscous dissipation and stresses, experienced by randomly fluctuating par-
ticles in the dilute sections of the flow domain, are referred to as kinetic stresses. An
increase in the particle volume fraction results in particle collisions and generate col-

lisional stresses which, in addition to the kinetic stresses, will influence the motion of

!For variable densities (i.e. compressible flow) these terms are usually also neglected by the
application of Stokes’ assumption, which states that

2
Letghe = 0. (5.2.4)

In the event of a change of volume there would therefore not exist a resistance force that could subdue
such a change.
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the particulate matter. However, a further increase in the particle volume fraction in-
duces protracted sliding or abrasive inter-particle contacts, yielding a frictional stress
which will dominate as individual particle motions are progressively limited. These

interactions are illustrated in Figure 5.1.

G/O®//@

Kmetlc

‘@
00 0 o Oc@

Colhslonal & Klnetlc

(@%8 8 Frictional

Figure 5.1: The three main forms of viscous dissipation within granular flow: kinetic,
kinetic-collisional, and frictional.

It follows that the particle induced stress may be decomposed into a kinetic-collisional
component, g’;;, and a frictional component, g}fp. This observation was used by Dartev-
elle (2003) to construct the following expression for the particle induced stress

o = o"“+g (5.3.2)

—pp —pp —PP

which in the limiting case of dilute flow, simplifies to
= gk (5.3.3)

Following Enwald et al. (1997) and Dartevelle (2003), a © may be expressed as a com-
bination of kinetic-collisional particle pressure, pp , and a kinetic-collisional particle

shear stress, ch as

For the purpose of the current work it is assumed that the small grain size and dilute
concentrations yield a particle pressure which, when compared to the shear, may be

considered small enough to be omitted. It follows that the particle stress term is given
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by substitution of Equations (5.2.6) and (5.3.4) into Equation (5.3.1) which yields the
following expression for the particle shear stress:

g = —pcijtgc%—;’;? (5.3.5)

—p

5.4 Application of constitutive laws

The constitutive laws for the continuum- and the particle phases are given by Equa-
tions (5.2.6) and (5.3.5), respectively. In Sections 5.4.1 and 5.4.2, these equations are
substituted into the averaged momentum equations, given in Chapter 4 by Equations
(4.5.7) and (4.8.8) for the continuum and particle phases, respectively. In doing so, the

stress terms are replaced by fluid properties.

5.4.1 The continuum

Substitution of Equation (5.2.1) into the averaged momentum equation for the contin-

uum phase, given by Equation (4.5.7), yields

pc% oV (ee (o) (o)) = pegee =V (€ (pe),) +V - <€C @c) -
u% L (—pel +1)dS. (5.4.1)

When the chain rule is applied to the pressure gradient term, V(e. (p),), it follows that

p 2 e () (00 = g~ ¥ (pd), — (), Vet V- (ec(2),) +

ot
u% /S n, - (—pc£+;c) dS. (5.4.2)

Noting that the third term on the right-hand side of Equation (5.4.2) contains the
gradient of the porosity, Equation (5.4.2) may be simplified, with the application of
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Slattery’s averaging theorem and expressed as 2

p 2 T () (1)) = g @V i+ V(e (D)) +

ui/s e <(—Pc+ (pc>c)£+;c> dS. (5.4.4)

By applying the definition of the deviation in terms of microscopic and averaged values,

given by Equation (4.3.4), Equation (5.4.4) may finally be expressed as

de. (),
pc% + ,OCV . (Ec <QC>C <yc>c) = PcY€c — Ecv <pc>c +V- <€c <;>C> +
1 ~
W )s (<pL+1,)dS.  (5.45)

The averaging procedure, discussed in Appendix C, is applied to the expression for
the shear stress in terms of velocity, as given by Equation (5.2.5). This allows for the
gradient of the continuum averaged shear stress, which appears on the right-hand side

of Equation (5.4.5), to be written as

Vee(r,) = neV-[eV (v, (5.4.6)

and the averaged form of Equation (5.4.5) is thus given by

Oec (v,),
pc% + 0V - (e (), (Vo)) = pegec— eV (pe), + eV - [€V (v.) ] +
1 i
U, /s, e <_p0£ * 20) ds. (5:47)

The remaining surface integral term which appears in Equation (5.4.5) will be closed
in Chapter 6.

2 Averaging Rule vi in Table 4.1 is applied and it is noted that (p.), is an average and may
therefore be combined with the integrand as follows

(pe).Vee = (pec), <<V1>—/S 1@Cds>

= —/ (pe), n.dS. (5.4.3)
S

pc
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5.4.2 The discrete phase

Substitution of Equation (5.3.5) into Equation (4.8.8), yields

o __ . 1 c
Prgpr D’ H oV @0, T = gt or /(‘pc?r;ﬁ;];)'ﬂp(i)ds*

Spe
1 C
U, / <_pci+£c+;l;)~@p(i)d8. (5.4.8)

SPP

ke

The kinetic-collisional shear, 77¢, can physically only occur where particles come into

P

contact with each other. It follows that such a term will only exist on a particle-particle
interface, S,,. Moreover, the continuum pressure, p., and shear, T, are defined only
at interfaces and within volumes where the continuum phase is present. It therefore

follows that Equation (5.4.8) simplifies to

o __ o 1 c
ppaepypp_'_ppv . Epyppypp = Epppg+ 7 / <;§ ) . ﬂp(z)dS

o

Spp
1
_'_70 / <_pci T ;c> ) ﬂp(z)dS (549)
Spe

Application of Reynolds decomposition to the pressure in the integral term on the
right-hand side of Equation (5.4.9), yields

o e 1 1 c
T’ + 0V 6T, T, = ppg— T /<Pc>cﬂpd5+7 /Ik F Iy dS

o o

SPC Spp

_z/lt /(‘ﬁci+zc>'ncd8, (5.4.10)

Spe

where the negative sign in front of the last term on the right-hand side appears due
to the relation between the particulate unit vector and the corresponding continuum

unit vector, n, = —n.. The divergence theorem is applied to the second term on the
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right-hand side of Equation (5.4.10) and it follows that

o __ . 1 o
ppaepypp‘i—va . Epyppypp = Epppg_ Epv <pc>c+ U / Ik ) ﬂp(l)dS

SPP
1
A / (~pd+1z,) nds. (5.4.11)

Spe

Note that the surface integral term which appears in Equation (5.4.5) is present in
Equation (5.4.11) also, but with opposite sign. It is through these surface integrals that
momentum is transferred between phases and dissimilar signs indicate that momentum
dissipated from one phase is the momentum gained by another. Additional modelling
procedures, needed to define the transfer laws for the closure of the preceding surface

integrals, are discussed in Chapter 6.

It remains to be shown how the additional surface integral in Equation (5.4.11), which

serves as the descriptor for momentum transfer within the particle phase, is closed.

5.5 Particle interaction

The particle interaction effect enters Equation (5.4.10) through the integral expression

1 kc
I, = u /;p - Ny d S, (5.5.1)

SPP

and since S, = >, Spp(), it follows that Equation (5.5.1) may be written as the sum

of particle-particle interaction forces experienced by each particle:

1 ke
I, = UOZ /;p -y d S. (5.5.2)

Spp(i)

The integrand denotes a force, F' ];fi), parallel to an incremental surface element, d S,

on which it acts.

Subsequent integration over all surface elements where particles are in contact with

one another, yields the following expression for the particle induced momentum con-
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tribution

1
U,

e (5.5.3)

=p(i)

%’\(
I
WE

1=1

where F ];(ci) is the resultant force acting on the i** particle due to multiple collisions with
its neighbours. In the remainder of this section such a resultant particle interaction

force, experienced by a single particle, will be modelled.

The initial derivation of a closed expression for Equation (5.5.3) is done for a one-
dimensional situation. In accordance with work done by Soo (1990) and Fan and Zhu
(1998), the one-dimensional model is expanded to higher dimensions. It should however
be noted that the expansion is not mathematically rigourous, but a mere approximation

of the aforementioned unidimensional model.

The subject matter of the following sections is aimed at obtaining an expression for
the average collision force induced by collisions between a multitude of particles. In
order for this to be done in a coherent manner, some definitions and terminologies are

introduced and the collisional force between two particles is considered.

5.5.1 Two-dimensional binary elastic collisions

The application of the Centre Of Mass reference frame (COM)3, in conjunction with
an elasticity assumption, yields a significant reduction in the complexity of any task

involving momentum conservation during collisions.

In the COM reference frame, the observer moves alongside the system’s centre of mass
and all measurements are made in reference to this position. In the absence of external
forces acting on the system, the total momentum on the system in the COM reference
is effectively zero at all points in time. If, in addition to the COM frame of reference,
it is also assumed that kinetic energy is conserved, i.e. that all collisions are elastic,
it also holds that each particle’s pre- and post collisional speed remains unchanged.
The latter seems obvious for one-dimensional head on collisions but it will be shown
that it indeed holds for the two-dimensional (and for that matter multi-dimensional)

collisions.

3 An invaluable reference for COM theory is Chapter IV of Maxwell (1877) and may be downloaded
from www.forgottenbooks.org. In addition to this, extensive use was made of the OpenCourse Ware
lectures, made available by MIT (Lewin (2007)).
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5.5.1.1 The Centre Of Mass (COM)

The centre of mass possesses the property of having a constant velocity, unaffected by

the changing motion of its parts. It is mathematically defined as
Mt rconr = Zmifia (5'5'4)

where m; is the mass of a single particle and M,, is the combined mass of all the
particles within the system. The position of the centre of mass is given by 7.0,
whereas r; denotes the position of each particle. It follows from Equation (5.5.4), that

the constant velocity of the centre of mass, v/, is given by

1 1
Ycom = M, Zmi Up(i) = M, Z P, (5.5.5)

where v,; and P; are the velocity and momentum of the i" particle respectively.

To an observer, placed at the centre of mass, the velocity, vop,s, Will appear to be zero.
It follows that the sum of the momenta will be zero also. This is true independent of
the dimensionality or elasticity of the system. It therefore holds that, in the absence of
a net external force, the total momentum remains zero before and after a collision in

the COM frame of reference and the velocity of the COM, vop,,, Will be unchanged.

The additional assumption of full elasticity (i.e. conservation of kinetic energy), results
in an unaltered speed for each particle before and after impact with a separate particle.

A derivation, supporting this statement follows.

5.5.2 The effect of elasticity

Consider a fully elastic collision within the COM frame of reference, as illustrated in
Figure 5.2. For any collision, albeit elastic or inelastic, the following holds in the COM

frame of reference before impact
P+ Py = miy,q) +may,ep =0, (5.5.6)

where P, and P, are the momenta of Particles 1 and 2, respectively whilst v,y and
Up() denote their velocities. From Equation (5.5.6) it follows that the velocities of
the two particles are always in opposite directions in a COM frame and the respective

speeds are inversely proportional to their masses.
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Figure 5.2: Elastic two-dimensional collision with specular reflection.
Let w1y = Up(1) & + vp1y J and let v,o) = up2) i + vp2) j, where u;, and v, denote the
x and y velocity components, respectively. From Equation (5.5.6) it then follows that
Mitp) + Moty = 0, (5.5.7)
and
M1y + Matp2y = 0. (5.5.8)

Let the z- and y-components of the momentum resulting from the motion of Particles

1 and 2 be given by,

Pry =miupay and Py = mouy) (5.5.9)

Py =mvpay and Py = mauyo).

Substitution of the expressions for the momentum components, given by the equalities
in (5.5.9), into Equations (5.5.7) and (5.5.8), yields the following relations

P, = —Py,, (5.5.10)

)

and

Py, = -, (5.5.11)
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For any collision, elastic or inelastic, in any frame, albeit laboratory or COM, the

following holds before impact

1 1
Ey, = §m1|2p(1)|2+§m2|2p(2)|2>
1

1
= 3 (Upr) + Vo) + 52 (tpo) + Upz))

1 2,2 1 2 9 1 9 9 1 9 9

where FEj is the total kinetic energy prior to the collision. Substitution of the expres-

sions given for the z- and y- momentum components into Equation (5.5.12), yields

1 1
By = g (Pl +P0) + 5 (P +Fy). (5:5.13)

If it is assumed that the collision is viewed in the COM frame of reference, Equations
(5.5.10) and (5.5.11) may be substituted into Equation (5.5.13), and it follows that

1 1
E, = |— —— ) (P2 +P2). 5.5.14
k (27711 2m2) ( 1Lz + 1,y) ( )

A similar expression may be obtained for the post collisional kinetic energy, E,;:

/ 1 1 / /
E = (— - <P 24+ P 2) 9.1
k (2m1 2m2) 1,1‘ + 1,y ? (5 5 5)

where the primed variables indicate that it is taken after impact. Under the assumption
that the collisions are fully elastic, Equation (5.5.14) may be set equal to Equation
(5.5.15) and it follows that

(PP, +Pt,) = (P{i + Pii,) - (5.5.16)
The above may be written in the form of,
(ma] wyyD? = (mal gy, (5.5.17)

where |Qp(1)|2 = u;2)(1) + Uf)(l)'

Equation (5.5.17) validates the statement made earlier that the pre- and post- colli-

sional speeds are equal,

|2p(1)‘ = ‘Qp(1)|- (5.5.18)
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In a similar manner it can be shown that,

v = 12l (5.5.19)

—Pp
It follows that, in an elastic collision, the speed of the individual particles do not

change, though their directions may change, depending on the shapes of the bodies

and the point of impact.

In the following section it is shown how collisions between two moving objects may be
simplified by keeping one of the objects stationary and viewing only the motion of the
other. Such an approach reduces the complexity of the mathematical description of
the motion between two particles significantly and therefore provides a useful tool for

describing the motions of particle clouds.

5.5.2.1 Relative mass and velocities

With reference to Figure 5.2, it is shown that the change in the z-momentum compo-

nent of Particle 2 may be expressed relative to that of Particle 1.
From Equation (5.5.10) it follows that
AP, = —-APy,, (5.5.20)

where AP, = P, , — Pl-im denotes the change in momentum of Particle ¢ due to the
collision. The change in the z-momentum component of each particle is written in

terms of its velocity component, yielding
mlAup(l) = —mgAup(g). (5.5.21)

From Equation (5.5.21) it then follows that

Aup(l) = milAPLx and Aup(g) = _mLQAPLSU?
where Au, denotes the difference between the pre- and -post collisional values. Sub-

traction, yields
1
Ay = Aupzy = AP, (5.5.22)

where m* = (myms)/(my + msz) is commonly known as the relative mass. From Equa-
tion (5.5.22) it follows that the change in the x-component of momentum for Particle

2 may be written in terms of relative velocity and mass as

m* (up(rel)) —m* <u/ ) = AP ,, (5.5.23)

p(rel)
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where upery = Up(1)y — Upz) and u;el = u;)(l) — u;@) respectively denote the pre- and
post collisional z-component of the relative velocity. Equation (5.5.23) is ratification
for the observation made by Fan and Zhu (1998), Soo (1990) and Clark (2009) that
the collision between two moving particles is equivalent to the case where a particle

collides with another which possesses the same relative mass and relative velocity.

If, along with the elasticity assumption already made, it is assumed that the collisions
are specular and that the initial velocity of Particle 2 is parallel to the x-axis, it follows
from Figure 5.2 that the magnitude of the z-component, u;(z), of Particle 2’s outgoing
velocity, y;@), is given by

[Up)] = [0y@)|cos(20) = | v, cos(20), (5.5.24)
and since v,,9) = Up(2), Equation (5.5.24) may be expressed as

[upe)| = lup(z)] cos(26). (5.5.25)

From Figure 5.2 it is seen that the direction of u;,@) is opposite to u,(2) and it follows
that

Uy = —Up(z)cos(20). (5.5.26)
Similarly, the z-component of Particle 1’s velocity is given by

Upqy = —Up)cos(20). (5.5.27)
Combination of equations (5.5.26) and (5.5.27) then yields

up(rel) = _up(rel)COS(QQ)- (5528)

Equation (5.5.28) is substituted into Equation (5.5.23) to obtain an expression for the
change in the z-component of the total momentum in terms of the relative mass and

velocity:

AP, = muyger (1 + cos(20))

= 2m Up(ren) cos> 6. (5.5.29)
The z-component of the force exerted by Particle 2 onto Particle 1 is given by
dP, AP,
ke 1,z i
=—> = : 5.5.30
/ dt At ( )

In order to derive an expression for the average force exerted due to multiple particles
colliding with one another, it is necessary to average the forces over a collision sphere.
A discussion on averaging techniques, which employs the concept of a collision sphere,

follows in the next section.
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5.5.2.2 The collision sphere: a control volume formulation

When two particles of radii r; and ry, possessing the same relative mass -and velocity,
collide, a collisions sphere with radius r. = r; + r2 may be constructed to average the
force exerted by one over the other (Clark (2009)). The collision sphere is a control

volume analogous to the REV and is illustrated in Figure 5.3.

Figure 5.3: Two-dimensional view of a collision sphere formed around Particle 1.

The volume of the collision sphere, Vey, is indicated by the dashed line in Figure 5.3.
One particle is considered to be the central particle around which the collision sphere
is centred and is labelled as a particle of Type 1. Type 1 particles are made up of
particles with radii equal to r, whereas Type 2 particles consist of those particles with
radii equaling r5. In Figure 5.3 the Type 1 particle is taken as the central sphere. Any
Type 2 particle which crosses the border of the collision sphere, will inevitably make
contact with the central sphere (Clark (2009)).
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The force acting on the collision sphere is due to the rate of change of the momentum

over the control volume and may be expressed as

dm* v
ke ~p(rel)
= — 5.5.31

where m* is the relative or reduced mass and v,y denotes the velocity of the particles.

rel

Equation (5.5.31) is approximated by

*

e A (m” yren)
- At

Equation (5.5.32) denotes the force that will be exerted by a single particle of Type

(5.5.32)

2 onto a particle of Type 1 with a relative mass, m*. The total force experienced by
a particle of Type 1 if Ny such particles were to cross the boundary of the collision

sphere is given by

e~ N, A (" gyen)

f N (5.5.33)

The volume average of ikc over the collision sphere may then be calculated by inte-

grating over the collision sphere and is given by

A (m*uv
Fre = V—iv / NQ—( A;”(“’”)dv. (5.5.34)

Vev

Following Clark (2009), Soo (1990) and Fan and Zhu (1998), the volume integral is

then reduced to a surface integral:

1
Ekc - E /NQA (m* yp(rel)) (yp(rel) . ﬂ) dS (5536)
S

The definition of the dot product is applied and it follows that

kc N2

5T v / A (m" Lyren) | Lpiren|d ST, (5.5.37)

SJ_

“The relation between the incremental volume element, d, and the corresponding surface element,
dS, is given by Krause (2005) as

AV = (v-n)dSAL (5.5.35)
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where d St is the projected area of impact normal to the incoming velocity and is

illustrated in Figure 5.4.

It is assumed that the flow is compliant with a simple shear regime as illustrated in
Figure 5.5. The velocity therefore consists of an z-component only which is entirely
dependent on the y-dimension (i.e. v,y = u(y)perer) and Equation (5.5.37) may be

expressed as®

N.
Fke = V_:V / A (M Up(rery) Up(reyd S (5.5.38)

SJ_

The force due to the simple shear collisions of a total of Ny Type 2 particles on a
centred Type 1 particle should also only have an z-component and it is for this reason

that the vector notation is dropped in calculations to follow.

Figure 5.4: Projected Surface element, S+.

Equation (5.5.38) may thus be written in terms of the z-component of the momentum

change due to collision, as

N,
Fre = Wi / AP, up(renyd S* (5.5.39)

SJ_
Substitution of Equation (5.5.29) into Equation (5.5.39), yields

N.
Fre = V—2 /2m*ui(rel)coszﬁd8L. (5.5.40)
cv

SJ_

5Note that a similar result may be obtained by using the momentum theorem, discussed in Ap-
pendix D.
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(r1 + 7o) cos ¢

Figure 5.5: Sphere of Type 1 subjected to shear flow of cloud of Type 2 particles.

The incremental surface area, orientated perpendicularly to the z-direction, is given in

spherical coordinates by

dST = r?sinfcosfdfde, (5.5.41)

and the shear flow may be expressed as

8u o 8up(rel)

Up(rel) = a—yy = Ty

rsin € cos ¢, (5.5.42)

where r, 6, and ¢ are as illustrated in Figure 5.5. It follows that Equation (5.5.40) may

be written as

N. Dupiren) \*
Fke — 2 /2m*(r1+r2)4< il D) sin® 0 cos® ¢ cos® 0dfdg. (5.5.43)

Vev dy
SJ_
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Referring to Figure 5.5 it is seen that only the upstream half of the top half of the
collision sphere is subjected to particle collisions by a simple shear influx of Type 2
particles. It follows that the collision sphere volume is given by Voy = 2/37(ry + 72)3
and that integration should take place over the quarter sphere, subjected to the Type

2 particles, hence

2N2 /2 w/2 au (rel) 2 .
ch — 2 * 4 plre 39 2 3‘9de )
2/3m(r, +r2)3/0 /0 m*(ry +1r2) 783/ sin” 6 cos” ¢ cos o

(5.5.44)

Let the number density of a Type 2 particle cloud be the number of particles of Type
2 divided by the volume over which they have an impact. For the case of particles

colliding with the top half sphere the number density is given by
Nng = Ng/(2/37’(’(’l“1 —l—’f’g)g). (5545)

Substitution of the number density into Equation (5.5.44) yields

/2 ou (rel) ?
FFe = 4np, / / *(ry +1ry)* (giy) sin® 0 cos? ¢ cos® 0dOd .
(5.5.46)

Integration of Equation (5.5.46) yields the force exerted by the shear flow of a particle
cloud of Type 2 on a single particle of Type 1:

a Te 2
Fke = lngm* (M) (r1 + 7). (5.5.47)

For the case of identical particles, the relative mass is given by m* = m,;)/2, and the

force given in Equation (5.5.47) may be expressed as

N- ou 1 2
phe — T2, plrel) | g4 5.5.48
24 chmp() ( ay Y4 ( )

The particle mass, m,;, is expressed in terms of its density, p,, and volume, v,).

Hence, Equation (5.5.48) becomes

c T N 8u rel 2
rhe — 24Vc2 V(i) P (L) . (5.5.49)

The particle volume fraction is defined as €, = >, v,/ Vo and after some rearranging
of the terms in Equation (5.5.49) it follows that

c ou rel ?
J d§,4 e <%) d, (5.5.50)
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Equation (5.5.51) may be expressed as,

dy (Oupen)
Fhe = Vpeppj ”( ug; ”) . (5.5.51)

The kinetic collisional force of Equation (5.5.51) is written in terms of a particle shear
stress for it to be compared to particle shear stresses proposed by Haff (1983) as given
by Brennen (2005).

The projected area of impact for the force in Equation (5.5.51) is the half circle per-

pendicular to the incoming flow over the top half of the single sphere. It follows that

w/2 pw/2 5 . 7Td12)
Area,.,; = 2/0 /0 d,sinf cos 0dfdy = 5 (5.5.52)

If the force of Equation (5.5.51) is projected onto the half-circle perpendicular to the

y-axis, the shear stress exerted onto a single particle by its surrounding cloud is

& ?
e _ P, (3up(rel)) ' (5.5.53)

P 12 dy

Equation (5.5.53) bares close resembles to the equations given by Brennen (2005) for
the shear stress term derived by Haff (1983), namely

c au rel 2
Thar = gs(ep)ppd§< g(y )) , (5.5.54)

here g4(¢,) is a function of the particle volume fraction. Haff (1983) required g¢(e,)
to tend towards zero as €, approaches zero. The function for gs(e,) for the Equation
(5.5.53) is given by

€
95(e) = 15 (5.5.55)

and thus the limiting condition as proposed by Haff (1983) is satisfied.
Equation (5.5.53) may be written in a similar form as Newton’s law of viscosity

ke Op(ret)

Tp —_ :up ay ,

(5.5.56)

Ay (ret)

where the particle viscosity is given by, p, = epppdf,/ 128—y.

The particle phase therefore exhibits non-Newtonian fluid properties since its viscosity

is not constant but a function of the deformation tensor.
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This provides a basis for the two-fluid treatment of two-phase flow, where the particle
phase is not treated as discrete but as a fluid from the beginning of the derivation of
the momentum expressions. In such cases the particle viscosity is, however, chosen
from one of the many empirically derived viscosity expressions available (Enwald et al.
(1997)).

Equation (5.5.56) states that the stress, 7¢, is proportional to the velocity gradi-
ent, ag—;fl and the constant of proportionality is the particle viscosity, p,. The two-
dimensional shear stress and particle interaction force is derived in Appendix E and

stated here as

d, {Ou Ov ou Ov ou Ov
phe — CpPplp [OU OV ) Y —+— ) j|lvi. (5.5.
L) 1 (31/ + 8:1:) [(ay + 8x) 1+ (8y + 8%) l] V; (5 5 57)

Equation (5.5.57) is substituted into Equation (5.5.3) and it follows that

N
1 €pppdy, (Ou  Ov ou Ov\ . Ju Ov\ .
L - (e (e gu v )
L U, = 4 (aﬂax) Kay+8x)“(8y+8x)4”’

(5.5.58)

For a constant particle diameter and density, this may be expressed in terms of aver-

aging notation introduced earlier in Section 4.6

2
ppdy  (Ou  Ov\~ .
I = — _ -
P T <8y+8x) :
Epyd, (Ou O 2?
pl’P="pP A
— | — 4+ = 5.5.59
where it is assumed that
— 2]7
ou Ov
= + — = 0. 5.5.60
€p<8y + 01') ( )

It is assumed that Equation (5.5.59) may be cast into the following form

_ef,ppdp (8@1’ 8@”)2 N

TR (5.5.61)

L, 1

Substitution of Equation (5.5.61) into Equation (5.4.10), yields the following expression
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for momentum conservation of the discrete phase

e2ppdy <8ﬂp 8@”)2 N

a - —_— ———
Prggcr 0,7+ oV 6T P, = €90, — 6V (pe), — 1 3 + o
1
7 / <—Z5ci+;c> -ndS, (5.5.62)
Spe

which concludes the constitutive modelling procedure.

5.6 Summary and conclusions

In this chapter the constitutive laws have been applied to the conservation equations
that were derived in Chapter 4. Using the principles of momentum conservation and
full elasticity an expression for particle-particle interaction was established. This in-
teraction term bares close resemblance to the shear stress term derived by Haff (1983).
The final averaged form of the continuum and the particle momentum equations are

given by Equations (5.4.5) and (5.5.62), respectively.
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Chapter 6

Transfer laws: The Representative
Unit Cell

6.1 Introduction

The Representative Unit Cell (RUC) is defined as a rectangular volume of minimum
dimensions into which the geometric properties of the REV may be embedded. It pro-
vides a facility to consider flow conditions within the most elementary control volume
of the particular porous medium and still have all the geometrical properties of the
medium at hand for modelling of physical phenomena. It is assumed that the average
geometrical properties of the particle structure within the RUC can be resembled by a
cube of particle material, located centrally within, and aligned with, the cubic RUC,

as is shown in Figure 6.1.

A two-dimensional schematic, in which the sections of the RUC is labelled, is given in
Figure 6.2. In Figure 6.2 the unit vector, n, denotes the direction of the streamwise
direction,’ whereas n, and n, are outward directed unit vectors normal to the con-
tinuum and particle phases, respectively. The interstitial flow direction is given by n.
The volume of the particle phase is given by U, and that of the continuum is denoted
by U.. The continuum volume is further divided into a streamwise and a transverse
section, which are denoted by Uj| and U, respectively. Surface areas parallel to the

streamwise direction are denoted by S| and surface areas perpendicular to 7 are given

! The streamwise direction, which will be denoted by # in this work, is the direction of the
volumetric average of the microscopic velocity in the REV.

74



Stellenbosch University http://scholar.sun.ac.za

6.1. Introduction 75
by SJ_.

s -

. |

i ///’/ : ap B /’// -

e C,t ,,,,,,, -~

Figure 6.1: Representative Unit Cell (RUC).
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Figure 6.2: Two-dimensional RUC schematic.

The RUC was first developed by Du Plessis and Masliyah (1988) to model time-
independent laminar flow through a rigid, isotropic and consolidated porous medium

of spatially varying porosity. The 1988 version of the RUC model performed well in the
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Darcy regime of very low intra-pore Reynolds number? flow, but its prediction of the
Forchheimer inertial effect was not quantitatively correct. These shortcomings were ad-
dressed by modelling the gradual increase of Reynolds number with flow recirculation

on the streamwise lee-side surface of the solid material (Du Plessis (1992)).

Experimental validation of the 1992 model by Du Plessis et al. (1994) showed that such
a modelling procedure was capable of accurately predicting the pressure gradients for
both Darcy and Forchheimer flows. With the introduction of streamwise staggering,
Lloyd et al. (2004), adapted the RUC to predict the Darcy permeability in anisotropic
media. Up to date the RUC model has continued to undergo numerous modifications

in an effort to increase its predictive proficiency.

The version of the RUC model used in this work, is the 1997 rendition for a granular
medium (Du Plessis and Diedericks (1997)), and not the latest version. The reason this
was done is that the later modifications severely increased the complexity of the model
whereas the increase in its prediction capabilities, for this work, would be overshadowed

by errors made in experimental procedures.

The appeal of the RUC, and the reason for it being adopted here, is that it contains
few empirical fitting parameters. The result is a model which is applicable to a broad

range of physical processes.

In Section 6.2, the 1997 RUC model for single phase flow is discussed in order to
acquaint the reader with its underlying assumptions. This standard model is then
modified in Section 6.3 to incorporate two-phase flow and increase the range of particle

volume fractions for which it may be utilised.

6.2 1997 RUC model

The particle-continuum surface integral in Equation (5.5.62) represents the momentum
transfer between the two phases. An overview of the closure method for such an integral

for a stationary porous medium is given in this section.

2The Reynolds number for flow through a stationary porous medium is defined as Re =
pcecdpl”Cl/ﬂc-
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The integral to be closed is given by

[ = — /(—ﬁ@c+gc-gc> ds. (6.2.1)

The relative importance of inertial and viscous effects is given by the dimensionless
Reynolds number which is defined as
Inertial forces

Re = Viscous forces” (6.2.2)
Small Reynolds number values indicate slow viscous flows for which it is assumed that
viscous forces, arising from shearing motions of the continuum, dominate over inertial
forces (associated with high pressure gradients). An increase in the Reynolds number
amplifies the inertial forces until the Forchheimer regime is reached where such inertial
forces dictate. An additional surge in the Reynolds number renders the flow turbulent.
It is, however, assumed in this work that the flow remains laminar and "high Reynolds
numbers" will refer to the upper limit of Reynolds numbers for which the flow is still

laminar.

The particle-continuum interface, S,., in Equation (6.2.1) is approximated as the
particle-continuum interface, S, of the RUC and partitioned into its constituent par-
allel and transverse regions denoted respectively by S| and S, as illustrated in Figure
6.2:

I = L /—]b“ndS—i-i / —]b“nalS—i-i /T -ndS+i /T - n,.dS.

4 U . U, n. U, T, n U, . n

SH S| S|| S|
(6.2.3)

Equation (6.2.3) describes the impact that the presence of the stationary particulate
material has on the momentum of the continuum traversing it. In the following sections,
pressure and shearing effects will be compared to each other for the two limiting, i.e.

Darcy and Forchheimer, flow regimes.

6.2.1 Modelling viscous flow

For the low Reynolds number limit, it is assumed that the contribution to the total
surface stress is dominated by the shear component and that, in comparison, the pres-

sure gradient effect may be considered negligible. The shear stresses in the transverse
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pore sections of the RUC are directed perpendicularly to the streamwise direction and
therefore have a zero contribution in the said direction. These transverse shear stresses
will, however, cause interstitial pressure drops. It is assumed that the contribution to
I due to such a pressure drop may be incorporated by integrating the wall shear over

the total particle-continuum interface, S,., instead of only over the streamwise section

S, ie.
I, = Ui /(;n) dS+’ﬁUio /(@;ﬂ) ds. (6.2.4)
S Sy

In Equation (6.2.4), I, denotes the viscous approximation of I and #, is the unit
normal vector indicating the interstitial flow direction. Let n. be the unit vector
directed perpendicular from the continuum into the particle phase and let n be the
unit vector in the streamwise direction as depicted in Figure 6.2. Under the first
face second stress convention, the wall shear stresses in the streamwise and transverse

channels are respectively expressed as

i = 7l(=nn), (6.2.5)
and
;CL = —Tj@c@. (6.2.6)

Substituting Equations (6.2.5) and (6.2.6) into the relevant integrals of Equation (6.2.4)
and assuming that the shear stress dyad is symmetric, yield
1 1
I, = A /Ty@ds T / — 7 0dS. (6.2.7)
S| Sy

For the low Reynolds number limit, the wall shear stress, 72 (which is defined as the
sum of all the wall shear stresses within the RUC, 7¥ = 7| 4 7.) is assumed uniform
and constant over the particle continuum interface, Sy, in all channel sections and it
follows that

. Spe
I, = —n[j’ofé”. (6.2.8)

The flow is assumed Newtonian and the upstream directed shear is therefore given in
terms of the pore velocity profile, uf"°, as
duIC)OTe

= i (6.2.9)
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The velocity profile for the motion of a continuum between parallel plates for which a

no-slip condition is adopted at the S,.-interfaces, is

ug”(y) = _2/?10 (Z—i) (de —y), (6.2.10)

where d, is the distance between the plates. This type of flow, generally referred to as

plane Poiseuille flow, is illustrated in Figure 6.3.

Y\
w
Te
|
dc i u}g)ore — W,
> X
U 7w r

Figure 6.3: Plane Poiseuille flow.

Taking the derivative of Equation (6.2.10) with respect to y and substituting the result
into the expression for the shear, given by Equation (6.2.9), yield

de ( dp
T = — | —-=]. 6.2.11
¢ 2 < dx) ( )
In order for the shear to be incorporated into the RUC model it needs to be expressed
in terms of the streamwise average pore velocity, w.. Such a velocity is obtained by

integrating over the parabolic velocity profile given by Equation (6.2.10) and dividing
the result by the width of the channel, d.:

1 [

w, = — ub"dy
)
d2

dp
= — ([—=). 2.12
12uc< dx) (62.12)

The pressure gradient in Equation (6.2.11) may thus be expressed in terms of w, yield-
ing
6pcwe

i ) 6.2.13
o= (6:2.13)

Following Du Plessis (2003), the ratio of the average streamwise pore velocity, w., to

the average interstitial continuum velocity, (v.),, is given by the ratio of the streamwise
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RUC volume, U, to the total RUC-volume available for continuum motion, U.:

We. U.

~ C (6.2.14)
(e). Ui
It follows that Equation (6.2.13) may be expressed in terms of (v.), as
6 (ve), Ue
Vo= —t— 6.2.15
. T (6:2.15)

The ratio between the streamwise and the total continuum volume is referred to as the
tortuosity and denoted by X = U./U). It follows that Equation (6.2.15) may be given

in terms of the tortuosity as

L <;k>cx. (6.2.16)

Substitution of the expression for the wall shear, given by Equation (6.2.16), into Equa-
tion (6.2.8) then yields the following closed form for the momentum surface integral in

the case of low Reynolds number flow:

SpeX 611 (Ve), ~
— 2PATele g 2.1
I, U4 R (6.2.17)

Table 6.1 is a summary of the geometric coefficients for a granular medium. Substitu-
tion of the coefficients listed in Table 6.1 into Equation (6.2.17), yields the following
expression for viscous flow in terms of the continuum -and particle volume fractions,

respectively denoted by €. and ¢,, and the width of the particulate volume, d,:

36 e
41—/ -6

(ve), . (6.2.18)
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Table 6.1: Geometric coefficients for a granular medium.

Coefficient | Expression

U, d?

A, d? —d

U Acd

U. U, -0,

d, (1 —e.)'3d

d, d—d,=d(1—(1—¢)"?
Spe 6d2 = 6(1 — e.)*/3d?
Si Ad;

Sy 2d2

S'tace s

This concludes the closure of Equation (6.2.1) for the viscous motion of a Newtonian

continuum through a stationary porous medium.

6.2.2 Modelling inertial flow

With an increase in Reynolds number the predominance of the pressure gradient above
the shear stresses is enhanced so that the shear stress contribution in Equation (6.2.1)
may be discarded, yielding the following form of the momentum transfer integral for

the inertial regime:

j Ui / _ jn,dS. (6.2.19)

S1

Du Plessis (1993) proposed that the integral /. may be modelled by an internal form
drag condition, with ¢4 the drag coefficient and Sy, the surface exposed upstream,

relative to the streamwise direction, i.e.

1 1 -
loo = _Ecdsfaceipwzﬂc- (6220)
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The relationship between the average streamwise continuum pore velocity, w,., and the
average interstitial continuum velocity, (v.), (given by Equation (6.2.14)) is applied to
Equation (6.2.20) and the geometric coefficients (listed in Table 6.1) substituted, to
yield

2

PcCd €:p 2

loo = - < >c
2d, <1 —612,/3)2

This concludes the closure of Equation (6.2.1) for the inertial motion of a Newtonian

7. (6.2.21)

continuum through a stationary porous medium.

Equations (6.2.18) and (6.2.21) describe the two limits of laminar continuum motion.
They, however, do not provide information about the transition from low to high
Reynolds number flows. This shortcoming is addressed by applying an asymptotic
matching technique, first described by Churchill and Usagi (1972), through which an
equation which embodies the range from the low to the intermediate Reynolds numbers

is attained.

6.2.3 A general closure expression

Equations (6.2.18) and (6.2.21) are combined with the use of the asymptote matching
technique (Churchill and Usagi (1972)):

@ =

I = (IH+I,), (6.2.22)

where s is a shifting parameter which, following Du Plessis (2003), is taken as unity

for the closure procedure. The closed form of Equation (6.2.1) is therefore given by

R . L TR e R RIIE:
i = = UCcﬂc Ve) \VUe ﬂc
B (1—a1 - 2y (1)’
36t e3¢ PeCd 2e
= - - + | {ve) 1] (). (6.2.23)

G (1-¢"1 -6 2 (1-6")

Equation (6.2.23) is the final result for the closure of Equation (6.2.1) which is relevant

to limiting as well as intermediate Reynolds number flows.

This surmises the application of the 1997 RUC to the modelling of single phase New-

tonian flow through a stationary porous medium and proves sufficiently accurate for
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continuum volume fractions up to 0.8 (Lloyd et al. (2004)). Adaptations made to this
model to incorporate two-phase flow are discussed, and a final closure model for the

momentum transfer between phases given, in the following sections.

6.3 Adaptation to the 1997 RUC

In this section, the existing RUC model is modified to allow for particulate motion and

to incorporate porosities exceeding the 0.8 limiting value of the 1997 rendition.

The surface integral term remaining in Equations (5.4.7) and (5.5.62) is similar to that
given for single phase flow by Equation (6.2.1) and subjected to the same assumptions
and modelling procedures of Section 6.2. The difference lies in the definition of the
shear stress, Lo for two-phase flow: For the 1997 single phase RUC model, the shear
stress was derived from the plane Poiseuille velocity profile between stationary plates
whereas current work allows for said plates to move relative to the continuum. In
sections to follow the closure procedures for the low- and high Reynolds number limits
are discussed. Asymptotic matching between these extremes yields an expression for
the momentum transfer integral in terms of averaged variables which is applicable to

intermediate flows.

6.4 'Two-phase viscous flow at the low Reynolds

number limit

The low Reynolds number regime is treated by dividing it into two categories: Low
and high continuum volume fractions. For small values of €., the drag in the medium
is assumed to be due to flow through a particulate phase, whereas the drag for high
porosity values will be regarded to originate from flow by a particulate phase. An
asymptotic match between these two categories will then yield a closed expression for

the Darcy regime.

6.4.1 Low Reynolds number flow at low porosities

The modelling procedure for low Reynolds numbers follows similar assumptions to

those made in Section 6.2.1. The closure of the integral term is given in terms of the
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relative wall shear stress, 7. as

S.
flow through ~
Lo e — 7 (6.4.1)
The relative shear, 7., is defined in terms of the relative pore velocity, ub™, as
dupore
_ pc
Toe = e &y (6.4.2)

pore
pc

as illustrated in Figure 6.4, is given by

The velocity profile, u29"¢, for a continuum phase moving relatively to parallel plates,

pore _ __Y d_p d. — 4
ut? () - (6.43)

The shearing stress due to this relative velocity is derived similarly to that given by

Equation (6.2.9) and may be written in terms of the pressure gradient as

d. ( dp
Yo= ——-——. 4.4
w = (-2 (6.4
Y\
s T;‘é
dc | uggre —>wpc
I
V U The F)X

Figure 6.4: Plane Poiseuille flow for the adapted model.

The average streamwise relative pore velocity is given by

I
we = o [y
c JO
d? dp
= — (-2). 6.4.5
12uc< déf) (6:45)

The average interstitial relative velocity is defined as

Upe = (V). —Tp?, (6.4.6)
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and is assumed to be related to wy. by

we U
Vpe Uy

(6.4.7)

It follows that the shear stress for the particle-continuum surface integral term is given
by

6 c c — v, P
o= A (<Uc>zc %) (6.4.8)

Substitution of Equation (6.4.8) into Equation (6.4.1), yields

36€.(1 — €,)4/3 .
C2(1-(1-e)?)(1-(1- e) /3yt (2). — 7). (6.4.9)

]ﬂow through
Lo

Equation (6.4.9) is the drag force per RUC volume, U,, that results from shear inter-

action between the two phases for low continuum volume fractions.

6.4.2 Low Reynolds number flow at high porosities

The drag force for viscous flow should, for porosity values close to unity, strive to that
experienced by a single particle, i.e. Stokes drag. Equation (6.4.9), however, rapidly

tends to zero as porosity tends to one and is therefore subject to modification.

This shortcoming is dealt with by first deriving an expression for Stokes drag over
particles within an REV. Stokes drag is given by (p.60 Bird et al. (2002)) as

EStokes = Sﬂdpﬂcy (6410)

pe;

where d), is the particle diameter and the relative velocity, v,

to be the average relative interstitial velocity, which is given by

is once again assumed

Vpe = () —T," (6.4.11)

The average of the Stokes force over the entire REV is assumed to provide an approxi-
mation for the viscous drag within the REV due to flow by a particulate phase and will
be denoted by I1°%™ Tt is attained by adding the forces for all N particles, present
within the REV, and dividing through the total REV volume, U,:

1

N
E)IOW o= - U 37po,ulc ((QC> - Q_pp) . (6412)
2 =1
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Equation (6.4.12) is multiplied and divided by the volume of a single particle (v, =

gmd3) to obtain:

N —
oW 1 18/"LC <yc> - y P
Jlowby _72 ( = P )yp(i), (6.4.13)
o p

i=1

which is in the form of the definition for the particle average, given by Equation (4.6.1).

Since v, was given by Equation (6.4.6) in terms of averages it may be moved outside
of the summation operator. Hence the following expression for the average Stokes force

is given by

18epptc ({v,) — 1,7
flowby — 2 ()~ ). (6.4.14)
0 d2
p
Stokes flow is only valid for Reynolds numbers below 0.1 and denotes the drag for
instances where the viscous regime is described by "flow by" rather than "flow through"
a particulate phase. In the next section an expression for the total viscous drag force

for two-phase flow, which will be valid for low- and high porosity limits is derived.

6.4.3 Total Drag Force for the Darcy Regime

The total viscous drag force per unit volume for two-phase flow (which is applicable

over the entire porosity range) is obtained by adding Equations (6.4.9) and (6.4.14):

e — _,Ucﬁp 36€c€11)/3 +18 (<U > _ U—p) (6 4 15)
Lo dIQJ (1 _ €§/3> (1 _ 6;)/3) —C/c —p

This is written in terms of the momentum transfer coefficients for the limiting porosity

values, Blow through apq gllow by aq

o= - (ﬁgow through _ gflow by) (<2c>c _ y—pp) ’ (6.4.16)
where
gflow through 36c.c;” Lhe, (6.4.17)
@ (1 - ef,/?’) (1 - e}f”)
and
ghowry 186t (6.4.18)

d2

p
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The behaviour of each of the momentum transfer coefficients of Equations (6.4.17) and
(6.4.18), as well as their combined effect for porosity values that range from those of
packed beds (i.e., €. &~ 0.4) to porosities corresponding to dilute instances of dispersed

solid material within a fluid (i.e. €. ~ 1), are illustrated in Figure 6.5.

flow through
...BO
flow b
""‘Bo Yy
4,
_ Bﬂow through+ flow by
o] o

10° ! ! ! ! !

0.4 0.5 0.6 0.7. 0.8 0.9 1
Porosity, sc

Figure 6.5: Flow by and flow through momentum transfer given by Equations (6.4.16) —
(6.4.18).

From Figure 6.5 it is apparent that giow through dominates for porosities in the range of
0.4 < e. <0.95. Figure 6.6 is an enlarged view of the porosity range for 0.95 < ¢, < 1.0,
showing that Stokes drag dictates for e, > 0.97.

The solid line in both Figures 6.5 and 6.6 constitutes the effect of the combined drag,
given by gilow through 4 gflow by “and follows the trend of Equation (6.4.17) and Equation
(6.4.18) for the ranges of 0.4 < e, < 0.95 and €. > 0.97, respectively. The addition of

the Stokes drag thus reduces the rate at which the combined result tends towards zero.
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flow through
flow b ]
[30 Yy ]
. Bgow through+ ;Iow by 3

10° I I I I I I I I I
0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

Porosity, €,

Figure 6.6: Flow by and flow through momentum transfer given by Equations (6.4.16) —
(6.4.18) for €. > 0.95.

6.5 High Reynolds number flow

Following the procedure set out in Section 6.2.2, yields the following closed form for

the Forchheimer regime

Legpe  €p€2 .
) L pc TP -7 P 6.5.1
=00 2 dp (1 _ 612)/3>2 (<yc>c yp ) || <yc>c yp H? ( )

where the continuum velocity of Equation (6.2.21) has been replaced by the relative

velocity.

6.6 Asymptotic matching

Asymptotic matching of Equations (6.4.15) and (6.5.1), yields a result for the momen-

tum transfer between the particle- and the continuum phases, which is applicable to
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the intermediate Reynolds numbers:

S

1/3
pe | | Hebp 36€.€p
= 2 ( 2/3) ( 1/3) Rl
P 1—¢ 1—¢
s 1/s
Leape €€ Y .
5 sl {ve). — T ((v).— ).  (6.6.1)

2 d, (1 B 61{2}/3)

For simplicity the averaging notation is dropped and the final expressions for continuum-

and particle momentum conservation expressions are thus given respectively by

€. v,
Pegy TPV (€ctev) = pegec — eVpe+ eV - [eVu ] -
s s 1/s
1/3 2
[e€p 36¢€.€p 1 cqpe €p€y
+18 + | = | ve — w,l] Ve— Up) s
d12) <1 _ 6127/3> (1 _ e};/?’) 2 d, (1 B 61!2)/3,)2 P ( p)
(6.6.2)
and
0 eppdy (Our  ouP\?
s s 1/s
1/3 2
HeEp 36eep 1eqpe €p€..
+18 = [ ve — v, V= U,)-
d}% <1 _ 6127/3> (1 _ e};/?’) 2 d, (1 B E;/3)2 p ( p)
(6.6.3)

The values of the drag coefficient, ¢4, and the asymptotic matching parameter, s, are
unknown and calculated retrospectively following comparison with existing empirical

data sets.

6.6.1 Setting the fitting parameters

The expression for the momentum transfer between the particles and its surrounding
continuum, given by Equation (6.6.1), may be written in terms of a momentum transfer

coefficient, 3, as

Ly, = =B (Qc - Qp) ) (6.6.4)
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where (3 is given in terms of the Reynolds number for two phase flow,
Re,. = pcecdeQc - Qp”/luc:

s s 1/s

g = He€p 3660611;/3 418 n 1 cqpee €p€ec

dg <1 _ 612)/3> <1 _ 611)/3> 2 dg <1 B 6}2}/3)

which, in turn, may be expressed as the sum of its Darcy, (,, and the Forchheimer

SReye| | (6.6.5)

component, [, as

B = (B+B82)"", (6.6.6)
where
1/3
[e€p 36€.€p
6, = + 18 ], (6.6.7)
d <1 — 6§/3> <1 — 611;/3)
and

Leape  epec
2
2 dz (1 B ef,/?’)

The inclination of Equations (6.6.7), (6.6.8) and their combined effect, given by Equa-

Boo 5 Repe. (6.6.8)

tion (6.6.6), are illustrated in Figure 6.7 for a packed bed porosity, €. = 0.4, and a drag
coefficient value, ¢; = 1.95. From Figure 6.7 it is seen that a decrease in the value for

the shifting parameter, s, moves the S-curve closer to its asymptotes.

A cg-value of 1.9 is recommended for packed beds (e ~ 0.4) by Du Plessis and Woudberg
(2008). However, for the limiting values of €. — 1, that is: for extremely dilute solu-
tions, experimental data given in Chapter 9 suggests a drag coefficient corresponding
to the Stokes drag coefficient for a single particle, c; = 0.44, and a shifting parameter,
s = 0.6.
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Figure 6.7: Influence of shifting parameter, s, on the momentum transfer coefficient, £.

This concludes the closure procedure for the momentum conservation equations. In
Chapter 7, Equations (6.6.2) and (6.6.3) will be discretised in order to be subjected to

numerical analysis in Chapter 8.
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Chapter 7

Numerical calculation of the flow field

In this chapter the formulation for the discrete form of the conservation equations is
discussed and emphasis is placed on the discretisation concept, and in particular, the
control volume formulation. Attention is given to source term linearisation, interpo-
lation methods, the upwind scheme as well as the staggered grid method of Patankar

(1980) and the resulting scalar and vector control volumes are illustrated.

A detailed review of the Tridiagonal Matrix Algorithm (TDMA), used to solve the
equations, is given and combined with an iterative Gauss-Seidel method. Finally, the
implementation of the Semi Implicit Method for Pressure Linked Equations (SIMPLE)

for two-phase flow will be described and a schematic of the algorithm given.

7.1 Principle of discretisation

Discretisation of the analytical equations presented in Chapter 6, is the first step taken
in rendering them suitable for numerical implementation. In order to obtain a dis-
crete representation of the conservation expressions, various methods, including finite

difference, finite element, and finite volume methods, may be applied.

The current work adopts the control-volume method for which the domain is divided
into a number of non-overlapping control volumes such that there is one control volume
surrounding each grid point. The differential equation is integrated over each control
volume. Piecewise profiles expressing the variation of the dependent variable between
grid nodes are used to evaluate the required integrals. This approach yields a discrete

equation which contains the values of the dependent variable for a group of grid nodes.

92
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The discretisation equation, obtained in this manner, expresses the conservation prin-
ciples for the dependent variable over a control volume, just as the differential equation

expressed it for an infinitesimal differential element.

An attractive feature of the control-volume formulation is that the resulting solution
would imply that the integral conservation of quantities such as mass or momentum is
exactly satisfied over any group of control volumes and thus over the whole calculation

domain.

Consider a two-dimensional problem and the partial grid shown in Figure 7.1.

u-control volume

v-control volume

D scalar control volume

© boundary node

® internal node

Figure 7.1: Grid arrangement.

The grid nodes of the calculation domain will be referred to as boundary nodes whereas
the remainder will be known as internal nodes. Around each of these internal nodes
a control volume exists. Following Practice B of Patankar (1980), control volumes for
the scalar values, i.e. pressure- and volume fraction values, are centred around the
nodes, whereas the control volumes for the vector quantities for the x- and y directed
velocities are staggered to the north and east directions of the scalar control volume,

respectively, as illustrated in Figure 7.1.
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Grid staggering is done to prevent wavy pressure fields to be mistaken for uniform
fields since adjacent, and not alternating nodes, are used in calculations (Patankar
(1980)). The velocity components are calculated for nodes that lie on the faces of the
scalar control volume and consequently the difference between the pressures at nodes
E and P are used to calculate the pressure force acting on the control volume for the

x-component of the velocity.

Henceforth the control volumes for the discretisation of the pressure and the volume
fraction quantities will be referred to as scalar control volumes, whereas the control
volumes for the x- and y-directed velocities, indicated by the hatched areas in Figure

7.1, will be referred to as the u- and v-control volumes, respectively.

7.2 Discretisation for the momentum conservation

equations

The unsteady convection-diffusion equations, given in Chapter 6 by Equations (6.6.2)
and (6.6.3), are written in terms of their directional components and, although al-
ways implied, the averaging notation is omitted.! The directional components of the

continuum phase are given by

+ eu%jL ev% = —e%%— 9 e% + 9 e% + 57
Pce cax pcccay - cax Ncax cax Mcay cay

(7.2.1)

Oue

ot

Pce

and

ov. ov. ov. op. 0 ov. 0 ov.
Pc€e + Pc€cle—H— + Pc€cUe—=— = pPcf€c — € + M + ,U/ca_y €c7— + Sy-

ot oz dy ay  Meor \“or By
(7.2.2)
The corresponding expressions for the particulate phase are
Ouy 0wy | A, e Eppdy (O, L O 2 o
€p—— + Pe€plly— EpUp— = —€ — — 4+ =] -
pp p 8t p p=p 825 pp p-p ay Pax 4 ay 825
(7.2.3)

IFor a full derivation the reader is referred to Appendix F.
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and

vy, Ou,, Ou,,
PpEpE + ﬂpEpup% + PpEpUpa—y = €gpPp — €pa—y T - T

Ope  Eppdy (Ou, Oy’ _ g
oy  Ox ’

(7.2.4)

The source terms, S* and SY, appearing in Equations (7.2.1) - (7.2.4), are respectively

given by
s s 1/s
1/3 2
. [e€p 36€.€p 1 cqpe €p€s
5T = — +18 = sllve = wpll| | (ue —up)
dlz, (1 . 61!2)/3) (1 _ 611)/3) 2 d, <1 _ 6}2}/3) p
(7.2.5)
and
s s 1/s
1/3 2
€ 36€.€p 1 cqpe €p€s
SY =P +18 > v = ll| | (Ve —vp)
G\ (1-2%) (1-4") 2y (p_gp)t '
(7.2.6)

Following Patankar (1980), each of these source terms may be written as a linear

function of the dependent variable, ¢, under consideration,
S = Sc+ Spo. (7.2.7)

Source term linearisations for the continuum phase in the = and y-directions are re-

spectively given by

S* = Sc + Spu,, (7.2.8)
and
SY = Sct+ Spu,, (7.2.9)
where
. sq1/s
St = | |Ee 366, +18 Leape __ntc A E | Up,

‘ d (1 — 6?,/3> (1 — 6;},/3)

2 d, <1 B 6}2}/3)

(7.2.10)
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and
s s 1/s
1/3 2
L€ 36€.€ 1 cyqpe €€
Scl = d2p 2/3 2 1/3 +18 + 2d P23 3llve = o ks
P (1—6p)<1—6p) p(l—q/)
(7.2.11)
The Sp coefficient is given by,
s s 1/s
1/3 2
He€p 36€.€p 1 cqpe €p€s
Sp = — +18 ]| + |3 51l ve = vl
T\ M I P
(7.2.12)

Source term linearisation for the particulate phase is treated in a similar manner with

the linearisation components for the x— and y-directions, respectively, given by

S, = —Sc, — Spuy, (7.2.13)
and
SY = —Scl — Spu,. (7.2.14)
Here
5 s 1/s
1/3 2
. e€p 36¢€.€p 1 cqpe €p€s
Sci = + 18 + |- l|v. — vl u
P 2 2li=e =P C’
d (1 — 612;/3> (1 — 611;/3) 2 dy (1 — 612)/3>
(7.2.15)
and
s s 1/s
1/3 2
L€ 36€.€ 1 cyqpe €pEs
Sey = d2p 2/3 2 1/3 +18 T2 p23 3l = ol e
P \(1-a") (1-4") » (1-a)
(7.2.16)

and Sp is given by Equation (7.2.12).
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7.3 Discretisation of the momentum conservation

equations

The u-and v-control volumes, illustrated in Figure 7.1, are used for the discretisation
of the z-and y-components of the momentum conservation equations, respectively, and

the discrete equations established from integration over such volumes will resemble
G = e e + aVeNe + aSdSe 1 b, — [PpF — FpF] Ayp, (7.3.1)
and
atd” = a4+t +al" o™ + aip® + be — [elplt — Pl Axp, (73.2)

where, for example, ¢° will be the u-velocity across the e-interface shown in Figure 7.1.

7.3.1 The continuum phase

In this section a stepwise procedure will be presented for the discretisation of the x-
component of the continuum momentum conservation expression given by Equation
(7.2.1). The discretisation is begun by integrating each component of the equation
over the u-control volume illustrated in Figure 7.1 as well as from time ¢y to time .
The resulting discrete form of each integral expression is listed in Table 7.1. In Table

7.1 u2¢ denotes the continuum velocity across the e-interface at time ¢ = 0.

The convection and diffusion expressions are denoted by the terms listed in Table 7.2
and are substituted into the discretised expressions given by the right-hand side column
of Table 7.1. The resulting expressions are reassembled and yield the following for the

x-component of the momentum conservation equation for the continuum phase:

pece [ug — ug®] 0z Ay

+ P — Flug + Frup — Froue® = —e [pr —pe | Ayp

At
ac E ac P ac ne ac se
+Df(al;)Aa;E—Df(al;)AprrDQ@(al;) 5%_Dge(6};)5%+

Scldr.Ayp + Spudx.Ayp. (7.3.3)



Stellenbosch University http://scholar.sun.ac.za

7.3. Discretisation of the momentum conservation equations

98

Table 7.1: Discretised expressions for the x-directed continuum momentum conservation

equation.

Integral expression

Discretised expression

J2 [ [ pecc Qe dtdady
t ne FE %
«];fo fse fP Pc€clc oz dmdydt

t E
Jio Jp Jo peecucSedydzdt

Joo S S —ec e dudyat

S S22 JF pegs [ece] dadydt

t rE rne e
«];50 fP fse /’[/Cagy |:ec aay i| dydxdt
Jio S22 I Scxdadydt

«]Z; fsze fPE Spucdxdydt

pect |ug — ul*| bz Ayp

Pe [ECEUEE — ef(uf)z} AypAt

ne,,ne, ne

se,,se, se
Pc [Ec Uc uc

Sclox.AypAt

Spucdr. AypAt

— eXfvsfus’] dx At

The remaining derivatives in Equation (7.3.3) are discretised by assuming that they

may be approximated with a piecewise linear profile over the control volume. The

discrete form of these differential terms are then given by

du.\ " us — ul (7.3.4)
ox Axp e
du.\ " us® — uf

()" o .
Oue\ ™ uf — us°
due\"™ ulNe — ¢

()" o a2 .

Substitution of the discrete approximations, given by Equations (7.3.4)-(7.3.7), into
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Table 7.2: Convection and diffusion coefficients for the continuum momentum conservation
equation.

Convection coefficient | Diffusion coefficient

P P Pﬁ DP PA
Fc = Pc€; U RYpP c — HMc€e Agi

E _ E, E E _ E Ayp
FY = peesur Ayp D = peed 33

se _ se, se se __ sedze
E3¢ = peesfvi®iz, D = pee5,e
ne _ ne,,ne ne _ ne 0xe
E¢ = peertor®da, D = peel® 5,5

the remaining differential terms in Equation (7.3.3), yields

e e ,,05e 5 A
e lte T UOTRY | peyE Rl 4w — = [of —of) Ay

+DF (uf® —uf) — DF (uf — u®) + D" (u”E —uf) — D (uf — ufe) +

C

Scidx.Ayp + Spudr.Ayp. (7.3.8)

Further manipulation of Equation (7.3.8) entails the use of the upwind scheme from
which the convection terms are calculated under the assumption that the value of the
xr-component continuum velocity, u., at an interface is equal to its value at the grid

point on the upwind side of such a face (Patankar (1980)). This implies that
uf =us if FF>0
uf =wu if FF <.

The upwind scheme then implies that,

Fiug = [[F7,0]Jug — [[=FF, 0)Jug’ (7.3.9)
Flug = [[F70]Jug = [[=F, 0]]ug (7.3.10)
Freugs = ([0, 0lug — [[=F2, 0)Jug”® (7.3.11)
Freuy = [[F,0]ug — [[—F, 0]]u, (7.3.12)

where the double bracket notation used by Patankar (1980) is adopted to indicate
the maximum of two values. The terms of the upwind scheme, listed as Equations
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(7.3.9)-(7.3.12), are substituted into Equation (7.3.8) and it follows that

pe€cdreAyp
At
([[=FF, 0] + DE) ug® + ([FF, 0] + DI) u + ([ F2, 0] + DEeug®) ulle + ([F°, 0] + DEul®) ug® —

Cc

—Spbz.Ayp + +[[ES, 0] + DF + [=F<, 0)) + D + [[= ., 0] + DI + [[F°, 0] + D€ | ug =

pcegug765$6AyP
At

e¢ [pf — pl'] Ayp + + Sz Ayp. (7.3.13)

Continuity of the flow is assumed and hence FY' + F5¢ = FF + F"¢. Application of
this result to Equation (7.3.13), yields

alué = al‘ul® + a¥ul + alul + adul + b, — € [pF — pl'] Ayp, (7.3.14)
where

a = [[-FF 0]+ DF (7.3.15)
a? = [[FF,0]]+DF (7.3.16)
ae = [[~E,0]] + D (7.3.17)
ad® = [[F®, 0]+ D (7.3.18)

0 peesoxr. Ay
0 - Heerremd 7.3.19
be = a?®u®’ + Sctdr. Ay (7.3.20)
aé = a®+a® +a¥ +a +a - Sp. (7.3.21)

Equations (7.3.14)-(7.3.21) conclude the derivation of the discrete approximation of

the z-component momentum conservation equation, given by Equation (7.2.1).

7.3.2 The particulate phase

The z-component of the particle momentum expression is also discretised over the wu-

2 2
control volume, illustrated in Figure 7.1. Let S; = —epp:d” <%” + %) , denote the

particle interaction term. It is assumed that S; may be treated as a source term and

it will therefore be evaluated at e. The discrete terms are listed in Table 7.3. Diffusion
terms are absent and convection is treated in the same manner as for the continuum.

The convection expressions are listed in Table 7.4.
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Table 7.3: Discretised expressions for the z-directed particle momentum conservation equa-
tion.

Integral expression Discretised expression

E ot P 0
Jo I Jiy oo Gt dtdzdy | ppe; [“z — Up e] dxeAyp
t L 0 2,E
ftg ff fP pcepup%da:dydt Pp {61}73% - 65(”5)2} AypAt

t rE rne ou
fto Ip Jee PrepUp 7y, dydzdt | py epeupup® — evpupe] dme At

JE e [F —epPedadydt | —eg [pF — pL] AypAt
S S [ Sadydadt Sabdze Ay, At

Juo o [7 Scpddydt Scéx.AypAt

j:; Jo fz;E Spupdrdydt Spuydz. AypAt

Table 7.4: Convection coefficients for the particulate momentum equation.

Convection coeflicient

Ff = pefuPAyp
FIF = peguEAyp

Fj¢ = pefvcoz,

F}¢ = pey“om©ox,
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These convection expressions are substituted into the expressions given in Table 7.3
and the discretised expression for the particulate momentum conservation is at this
stage given by

pPE;JéxeAyP e E_ E P P ne, ne se se
Presdr. Ayp . Y .
2T 0 4 Sydx Ayp + ScpdrAyp + Spudr.Ayp — €, [pf - pf] Ayp.

At r
(7.3.22)

The upwind scheme is applied to Equation (7.3.22) and it follows that

ajul, = aSul’ + alul +a)ul + abu) + b, — € [pf — pl'] Ayp, (7.3.23)
where

al = [[-FF, 0]+ D’ (7.3.24)
a¥ = [[F},0]]+ D} (7.3.25)
a)® = [[-F)° 0]+ Dy (7.3.26)
ay’ = [[F°,0]]+ Dy (7.3.27)

. PreSox. Ay
as’ = ””T (7.3.28)
by = a;'ul’ + (Sck + Sq) dzAy (7.3.29)
ai = af+al+a)’+a)+al’ — Sp. (7.3.30)

Equations (7.3.23)-(7.3.30) represent the final discretised form of Equation (7.2.3).

The discrete forms for the xz-components of the momentum equations for both phases
have been derived in detail. The y-components are discretised in a similar manner
but the discretisation is done over the v-control volume indicated in Figure 7.1. The
neighbouring nodes for the u-control volume were given by P, E, se and ne. The
neighbouring nodes for the v-control volume are given by nw, ne, P, and N and the
corresponding convection and diffusion coefficients are listed in Table 7.5 where the

a-notation corresponds to ¢ or p for the continuum or particulate cases, respectively.
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Table 7.5: Convection and diffusion coefficients for y-continuum momentum conservation
equation.

Convection coefficient | Diffusion coefficient

Dgw — Mcenw 5yn

nw __ nw,,nw
Fa = Patq Uq 6yn C ST

D?e — Mcene%

ne __ ne, ne
Fa - paea ua 5yn C dze

P P, P
F. = pa€, v, Axp

N N, N N
F) = paey vy Axp D' = peel’ 5, F

The y-component of the discrete momentum conservation equation for the continuum

is given by
av? = a™oM" + ol + advl + al o + b — e [pY — pl] Axp,  (7.3.31)
where
a™ = [[F™ 0] + D™ (7.3.32)
a"® = [[-F", 0] + D¢ (7.3.33)
at = [[FF,0]] +DF (7.3.34)
a™ = [[-FN,0]] + DY (7.3.35)
0 peeroT. Ay
0 — Heerremd 7.3.36
be = a®u™" 4+ (Sc¥ + pege) 6w Ayp (7.3.37)
a" = a™ +a® +ad+a + a2 — Sp. (7.3.38)

The y-component of the discrete momentum equation for the particles is given by

n,n __ nW, nW
aptp = @y

nE nE
U, + a, U,

+ ayvy + a,"v," + by, — € [pY — pl] Azp,(7.3.39)
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where

nW nw

ay” = [[F",0]] (7.3.40)
nkE ne

ay” = [[=F0]] (7.3.41)
a; = [[E,0]] (7.3.42)
a™ = [[-EY,0] (7.3.43)
" PrendT Ay

ar’ = ZZT (7.3.44)
by = ayul®+ ((pp — pe)gep + Sa+ Sc¥) bz Ayp (7.3.45)
a" = a4+ a¥ +a+ a4 a7’ — Sp. (7.3.46)

This concludes the discretisation for the momentum conservation equations. In the

following section the discretisation for the mass conservation equation will be discussed.

7.4 Discretisation of the mass conservation equation
The expression for continuity of the continuum was presented in Chapter 4 by Equation
(4.4.6) and is restated here:

Oe,
ot

Oe v,

Oy

Oe U,

ox

— 0, (7.4.1)

where averaging notation has been omitted but is, however, always implied. A dis-
cretised expression is derived, using the scalar-control volume which is indicated by
the shaded section of Figure 7.1. The terms resulting from the integration of Equa-
tion (7.4.1) over the scalar-control volume are listed in Table 7.6 and the convection

coefficients are listed in Table 7.7.
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Table 7.6: Discretised expressions for continuum mass conservation equation over P-control
volume.

Integral expression | Discretised expression

02 B Bttty | (- @) aenup

SE ™ fe fstequdydt | [(ecue) — (euo)”] AypAt

J:Z) fo [r a%;cdydxdt [(ecve)™ — (€cve)®] Az pAt

Table 7.7: Convection coefficients for the continuum mass conservation equation.

Convection coefficient

F =ulAyp

C

FY =uYAyp

F'=vlAzp

C

S __ S
F? =viAxp
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Substitution of the convection coefficients into the expressions given on the right-hand

side of Table 7.6, yields the following discrete form for mass conservation:

(e — e2P) AzpAyp
At

+eFl—eFY 4+ e F— e F) = 0. (7.4.2)

The upwind scheme for the continuum volume fraction is given by

Feeg = [[FE0])el — [[=F2, 0] (7.4.3)
Frel = [[F,0]]e — [[=F, 0)le (7.4.4)
Freg = [[F0]e — [[-F, 0]l (7.4.5)
Freg = [[F7. 0] — [[-F2, O))e; (7.4.6)

Reassembling the terms given in Table 7.6 and subsequently applying the upwind

expressions, yield the following discretised form of Equation (7.4.1):

ale® = a4 alVelV +al el +aled + b, (7.4.7)
where
AzpA
0,P pRYp
P P 7.4.8
aC At Y ( )
b = a’ledr, (7.4.9)
a; = [[-F0], (7.4.10)
aV = [[F®,0]], (7.4.11)
o = (0], (7.4.12)
a; = [[F7,0]] (7.4.13)
a = df +aV +ad +ad+ " (7.4.14)

Equations (7.4.7)-(7.4.14) are the discrete form of Equation (7.4.1) and will at a later

stage be used to solve the continuum volume fractions.

7.5 Pressure and velocity corrections

The momentum equations can be solved only when the pressure field is given or is
somehow estimated. Unless the correct pressure field is employed, the resulting velocity

field will not satisfy the continuity equation. Such an imperfect velocity field, based on
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a guessed pressure field, p*, will be denoted by uv* and v*. The starred velocity fields

will result from the solution of the following discretisation equations:

e *e ee  xee W kW Ne_ *xNe Se  xSe e *F * P
atul® = alul +alul +al uNe + alul® + b — €& [pt —pi] Ayp,  (7.5.1)
and
n, *n nW _ nW *snE nk *S S *nn . nn n * N * P
atv = alV ol + @l aul + a4 b — e [piY = pi] Axp. (7.5.2)

The correct velocity field is denoted by

atul = aful’ 4+ alul +a)ul + alud + b, — € [pY — pl'] Ayp, (7.5.3)
and
av? = a™oM" + "ol + advl + al " + b — e [pY — pl] Axp. (7.5.4)

The aim is to improve the guessed pressure p* such that the resulting starred velocity
field will progressively satisfy the continuity equation more accurately. This is achieved

by introducing the following relations,

pe = Ditp. (7.5.5)
ue = ul+u,, (7.5.6)

where starred entities are approximations which are subtracted from the real values to
yield the primed correction terms. Subtracting Equation (7.5.1) from Equation (7.5.3),
yields

e e __ ee /ee w,,'w Ne, 'Ne Se_ 'Se e 'E 'P
aul = aul’+alu +a. uC+adu]C — € [pc — D ]Ayp. (7.5.7)

Following Patankar (1980), all entries on the right hand side of Equation (7.5.7), except
for the pressure correction terms, are dropped. (An extensive discussion on the omission

of these terms is given by Patankar (1980).) The resulting correction equation is given
by
au’ = € [p/P —plcE} Ayp, (7.5.8)

c c c

and may be rewritten as

we — d@[p’P—p’CE], (7.5.9)
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where df = (e¢Ayp) / (af). Substitution of Equation (7.5.6) into Equation (7.5.9) yields

the velocity-correction formula:

ue = ul+d;s [p;P —p,E} : (7.5.10)

(& c

Similar equations may be deduced for the neighbouring control volumes. These are
given by Equations (7.5.11)-(7.5.13):

W= g [pICW - p’f] (7.5.11)
vt = o4 dn [p’c” — pICN} (7.5.12)
Vo= vt [p’f - p’CP] . (7.5.13)

The velocity correction formulae for the particulate phase are derived in a similar

manner and are given by

uy, = u,+dy _plcp —p/CE- (7.5.14)
wy =yt dy [ —p| (7.5.15)
o=+ dr [pf = p] (7.5.16)

(7.5.17)

s *5 s 'S 'P
U = Y +dp[pp _pp}’

where d7, in Equation (7.5.14), is given by ds = (egAyp) / (a;;). Similar equations hold

for djy, dj, and d.

By integrating Equation (7.4.1) over the scalar-control volume, illustrated in Figure 7.1,
the continuity equation for the continuum may now be used to construct an equation

for the pressure correction. The result is given by

(Ef — ES’P) Aflpryp
At

Equations (7.5.10)-(7.5.13) are substituted into Equation (7.5.18) and it follows that

+ eutAyp — eul Ayp + etvil Axp — evsAzp = 0. (7.5.18)

alpl = afpF +al'p! +aXpN +afpS +o., (7.5.19)
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where
a? = EAypdf (7.5.20)
aV = €Aypd” (7.5.21)
al = Axpd? (7.5.22)
ad = eAxpd: (7.5.23)
al = df +adV +dY +ad (7.5.24)
&F —P) AxpA

be (€2 CA)t pir Ayp (esu’® — efui) — Axp (elvi™ — eXv’®)

(7.5.25)

Equations (7.5.19)-(7.5.25) conclude the derivation of the pressure correction equation.

Where calculations of the coefficients for the discrete equations require the values for
variables at locations where they are not explicitly specified, interpolation between
neighbouring known values are used to approximate them. In this work, velocities
for the convection coefficients were calculated using the arithmetic mean between its
neighbours whereas porosities were approximated using the harmonic mean of their

adjacent values.

7.6 Relaxation

The omission of the neighbouring velocity terms in the derivation of the p’-equation
leads to exaggerated pressure corrections. To remedy this, Patankar (1980) recom-
mends underrelaxation in the momentum equations: The momentum equations may

be written in truncated form as

a“ul, = a"™u™ + (7.6.1)
and expressed as
nb, nb
v = TES (7.6.2)
ae

where the nb superscript indicates the neighbouring nodi of e.

If u* is added to and subtracted from the right-hand side of Equation (7.6.2), it yields

nb, nb
w o= ut (M —u) (7.6.3)

ae
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where the contents of the parentheses represent the change in u® produced by the
current iteration. This change is modified by the introduction of a relaxation factor «,
so that

nb, nb
W = wcia (M —u:f), (7.6.4)
ae
or
Lur = a1 ) S, (7.6.5)
o «

A suitable value of « is found by experience and from exploratory computations for a
given problem. The pressure correction is underrelaxed by replacing Equation (7.5.5)
with

Pe = app;+p2, (7.6.6)

where Patankar (1980) recommends «;, = 0.8.

7.7 Solution of the discretised equations

In previous sections, methods were discussed to discretise the governing equations of
two-phase flow. This process resulted in a system of linear algebraic equations which
needs to be solved. The complexity of computation depends on the dimensionality of

the problem, the number of grid nodes and the discretisation practice.

Any valid procedure can be used to solve the algebraic equations, but available com-
puter resources set a constraint. The solution methods may be divided into the cate-
gories of direct and indirect (or iterative) methods. Direct methods include Cramer’s
matrix inversion and Gaussian elimination. The number of operations required for the
solution of a system of N equations with N unknowns with a direct method is of the
order of N3. It is also required that all N? coefficients of the set of equations are stored.

The computational time is therefore higher than desired.

On the contrary, iterative methods are based on the repeated application of a relatively
simple algorithm which, after a number of repetitions, yields a converged result. Ex-
amples of such methods include the Jacobi and Gauss-Seidel point-by-point iteration
methods. The total number of operations are typically in the order of N iterations

per cycle. Convergence is subject to the system of equations complying to fairly exact
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criteria. The main advantage of these iterative solution methods is that only non-zero
coefficients of the equations need to be stored in memory and thus such methods are

generally more economical than their direct counterparts.

Jacobian and Gauss-Seidel iterative methods are easy to implement but can be slow
to converge when the system is large, and are deemed ill-suited for general CFD pro-
cedures. An alternative method, developed by L.H. Thomas in 1949, known as the
Thomas- or the Tridiagonal Matrix Algorithm (TDMA) is used instead (Conte and de
Boor (1972)). The TDMA is a direct method for one-dimensional situations, but can be
applied iteratively to solve multi-dimensional problems and therefore became a popular
method for CFD codes. In the following section the TDMA method is discussed.

7.7.1 The Tridiagonal matrix algorithm

The designation, TDMA, refers to the fact that when the matrix of the coefficients of
the equations is written, all the nonzero coefficients align along three diagonals of the
matrix. The TDMA on its own is a direct method and will be described as one in this
section of the work. It is later combined with the Gauss-Seidel method to form part of

an iterative (or indirect) method for the calculation of grid node values.

Consider a system of equations that has a tridiagonal form:

1 = O
—fa1 D202 —20s = G
—f3¢2 +D3ps —asps = G

—fagps +Dsds — s = O

_Bn¢n—1 +Dn¢n _an¢n+1 = Cn

¢n+1 = C1n-|—l
(7.7.1)
The values of ¢, and ¢, are known boundary values. Each entry in the set given by

Equation (7.7.1) may be written in the following general form:

_Bj¢j—1 + ngbj — Oéj¢j+1 = Cj (772)
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and the set given by Equation (7.7.1) may then be expressed as:

G2 = _¢3 + g—ZQﬁ + 32 (7.7.3)
¢s = —¢4 + &@ + F (7.7.4)
3
¢y = D—4¢5 + 54 ¢3 + 34 (7.7.5)
= . (7.7.6)
n ; Ch
b = Bt b+ (7.1.7)

The set given by Equations (7.7.3)-(7.7.7) is solved by forward elimination and then
by back substitution.

The forward eliminations commence with the elimination of ¢ from Equation (7.7.4)

by substituting Equation (7.7.3) into Equation (7.7.4) and subsequently yielding

. 53 Qa¢3 + Padpy + Cy Cs
¢35 = ¢4 D, D, + D, (7.7.8)
B as bet Bs (5—1% + S—g) +Cs (7.7.9)
Dy~ Byt | Ds — Bs B
If the following notation is employed
Q2 / 52 Cy
A, = 22 d — 7.1
2 D2 an C2 D2 + = D2 (7 7 0)
Equation (7.7.9) may be written as
Qg B33C5 + Cs ]
= |\=F% + |- 7.7.11
o = | otem) ot B (7-7.10)
Letting
Q3 ’ ,830; -+ 03
A= ——— and (C;=—"—=""—-, 7.7.12
' T Dy oy "7 Dy o (7.12)
allows for Equation (7.7.11) to be written as,
¢35 = Asoy+ Ch. (7.7.13)

The back-substitution process begins with the formulation of a general form for the

recurrence relationship of Equation (7.7.13):

¢; = Ajdj+Cj, (7.7.14)
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where
a .
A = ——1 7.7.15
J Dj o ﬁjAj—l ( )
. B+ G

= 24 7 7.7.16
’ Dj — ;A ( )

These formulae comply to the boundary nodes, 7 = 1 and j = n + 1, by setting

A=0 and C)=¢
A1 =0 and C, ., = dni1.

For a system of equations to be solved it is required that they be arranged in the
form of Equation (7.7.2) and expressions for a;, 8;, D; and C']/- are identified from the
discretised expressions. The values of A; and C';» are calculated starting at 7 = 2 and

going up to j = n by applying Equation (7.7.16).

Since the value for ¢, is a specified boundary value, the values for ¢; can be obtained

in reverse order by means of the recurrence formula given in Equation (7.7.14).

7.7.2 Iterative application of the TDMA

In this section it is illustrated how the TDMA may be applied iteratively to solve a
system of equations. Consider the grid illustrated in Figure 7.2 in conjunction with a

general discrete equation of the form

aP¢P _ anbW + aE¢E + a5¢5 + aNng +b. (7.7.17)

The system is solved by applying the TDMA along a chosen line, for example north-

south lines. The discrete equation is rearranged in the form,
—a%¢° +aP ¢ —aVpV = Vo + aFoF +b. (7.7.18)

The right-hand side of Equation (7.7.18) is assumed to be temporarily known. Equation
(7.7.18) is in the form of Equation (7.7.2) where a; = o, 8; = a®, D; = a” and
C; =a"oV +aPoF + 0.

It is now possible to solve in the north-south-direction of the chosen line for values

J=2,3,4,...,n as shown in Figure 7.2.
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. ANort,l\l .
n
o 3 *—— O O Known boundary values
(G 3 4 3 @ ® Points at which values are calculated
¢ 3 ® N X Points at which values are considered
® 4 ® & to be temporarily known

y South

X
Figure 7.2: Representation of the line-by-line method.

7.8 Assembly of a complete method

The SIMPLE algorithm gives a method of calculating pressure and velocities. Generally
SIMPLE is applied to solve a single velocity value, however, in this work the continuum
and particle velocities are solved together, as illustrated in the schematic illustrated in

Figure 7.3. The solution procedure can be surmised as follows:

The pressure and velocities are initialised and the x-component momentum equations
for the continuum and the particulate phase, given by Equations (7.3.14) and (7.3.23),
respectively, are solved. This is followed by solving the y-component momentum equa-
tions for the continuum and the particulate phase, given by Equations (7.3.31) and
(7.3.39), respectively. The pressure correction is then obtained from Equation (7.5.19)
and the pressure and continuum velocities are updated. The process is repeated until
the relative percentage difference between velocity values for two successive iterations
falls below 0.1 %— a criterion that for a time step of 0.05 s is usually satisfied within

the order of a 100 cycles.

The relative percentage difference is obtained by calculating the sum of the velocities
for each grid row and then determining the mean of these values for the relevant time
step. The same is done for the next time step and the percentage difference of these
two values, z; and x,, is calculated by dividing the absolute difference of the two values

by the average value of the same two values as shown in the equation below:

|21 — 3

%Diff - =
o (21 + 22)/2]

x 100. (7.8.1)
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The final velocity values are then used to calculate the continuum volume fractions
from Equation (7.4.7) whereafter the particle volume fractions follow since €.+ ¢, = 1.
The time is updated with a user-specified time step and the new volume fractions are

used to solve the next round of momentum conservation equations.
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s N
initialize time Input pressure, velocity, concentration
L J
s )
.. Solve z-direction fluid momentum
update pressure and velocities . . .
Solve z-direction particle momentum
L J
s N
Solve y-direction fluid momentum
Solve y-direction particle momentum
N J
s )
Solve pressure correction equation
L J
s N
Correct pressure and velocities
L l J
Convergence?
no
Update ) )
§ Solve solid concentration
P
Convergence
no of €7
yes
time < no

Update
time

timemax?

(

stop

Figure 7.3: Adapted SIMPLE algorithm for two-phase flow.
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7.9 Implementation of boundary conditions

Consider a two-dimensional problem and the partial grid shown in Figure 7.4.

A

. - u-control volume
|
1 7

5 e - . v-control volume

| ;Z

j=3 % ? / |:| scalar control volume
|

J=34 o 4 x i : u-nodes
|
A
|
|
1

J=14

Jj=2 ? | 7 : v-nodes
J=24 o L o 1 e I : z-direction scalar nodes
|
J/j :.4;- - ¢_ I R .QP_ I 'CP' ——. J :y-direction scalar nodes
Iji=1 i=2 i=3 o boundary node

® internal node

Figure 7.4: Grid arrangement.

Around each of the internal nodes a control volume exists and Equation (7.7.17) pro-
vides the necessary equations for all the unknown values at the internal grid nodes. For
a line along each dimension, two of these equations will however involve the boundary
nodes. Following Patankar (1980), attention is focused on the left-hand a-direction
boundary nodes adjacent to the internal nodes, [ = 2 as illustrated in Figure 7.4. For
the boundary control volume used in Practice B (Patankar (1980)), where grid nodes
are placed at the centres of control volumes, the length of the first control volume is

zero, i.e. Ax;—; = 0.

In this work the boundary conditions will consist either of, given values, or a given
gradient between the boundary and its internal neighbour. The equation for the left-

hand side boundary node is given by,
and the boundary expression for the right-hand side boundary is given by,

¢N = Bout¢N—1 + C’out- (792)
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If the boundary value is known, B and C' are set to zero and the given value, re-
spectively. In case of a zero gradient condition B = 1 and C' = 0. In determining a
boundary expression for the pressure the fact that the pressure gradient between any
two nodes is constant is used: In the current program it is taken into account that
the pressure gradient between nodes I = 1 and I = 2 is equal to the pressure gradient
between nodes I = 2 and I = 3. It follows that,

oz (1)
07(2)

P(1) = P(2)—[P(3) - P(2)] (7.9.3)

The expression is modified in order to include the option of a given pressure value. It

follows that the resulting boundary expression for the inlet pressure is given by

0z¢(1)
0z¢(2)

P1) = B, [P(Q)—[P(B)—P@)] ]+cm, (7.9.4)

and the outlet pressure, P(N), is defined using the same gradient requirements,

d0xe(N —1)

P(N) = By [P(N ~DHPN=1) = PN =2 22—

} + Cout. (7.9.5)
Equations (7.9.1) and (7.9.2) are used to specify the boundary conditions for the ve-
locity and volume fractions, whereas Equations (7.9.4) and (7.9.5) will be used for

pressure calculations.

A similar procedure is followed for the "top" and "bottom" boundaries.

7.10 Conclusions

The discretised equations and the TDMA method along with the SIMPLE algorithm,
illustrated in Figure 7.3, can now be implemented. In this work simulations were done
in the Fortran programming language and the simulation code was designated Two-

phase motion simulation (2PMS). The results from these simulations are discussed in
Chapter 8.
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Chapter 8

Numerical simulations

8.1 Introduction

The discrete expressions for momentum and mass transfer, derived and implemented
into the SIMPLE algorithm in Chapter 7, were implemented in Fortran and designated
Two-Phase Motion Simulation (2PMS).

In the first part of this chapter the emphasis is placed on the validation of 2PMS
for elementary flow simulations to evaluate the functionality of the code. This will
be followed by the validation of the mathematical model, derived in Chapters 3-6, for
horizontal and vertical two-phase flow conditions and, where applicable, the comparison

of said simulated results to analytical expressions.

In Chapter 9, vertical simulations, which are performed here for various particle sizes,
grid geometries, time-steps, and initial volume fraction values, will also be verified with
physical experiments performed at the Council for Scientific and Industrial Research
(CSIR) in Stellenbosch.

8.2 Basic flow simulations

Simulations were done to ensure that 2PMS correctly predicts the motion of a fluid
between parallel plates, over a porous bed and through an isotropic porous medium.
Horizontal flow simulations were conducted with a 200 x 30 size grid over a flow domain

measuring 200 cm in length and 2 cm in width.

119
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8.2.1 Plane Poiseuille flow

The program was first validated for plane Poiseuille flow: The input velocity at the left
side of the domain, illustrated in Figure 8.1, was set to u. = 0.1 cm/s and the density of

the fluid was set to approximate that of water at room temperature: p, = 1000 kg/m3.

200 cm

Figure 8.1: Setup for plane Poiseuille flow simulation.

A simulation was done for an open channel with no-slip boundary conditions at the
upper and lower edges, and zero gradient conditions were applied to the in- and outlets.
The fully developed velocity profile obtained from this simulation is compared to the
analytical equation for plane Poiseuille flow in Figure 8.4 from which it can be seen

that the numerical approximation followed the results of the analytical solution closely.

8.2.2 Flow through a stationary porous medium

For the same input conditions, dimensions and boundary conditions, a simulation was
done in a medium with an isotropic particle volume fraction of, €, = 0.5, consisting of
granular material with a 1 mm diameter and with a density of 2500 kg/m3. The setup

for the simulation is shown in Figure 8.2.

2 cm

200 cm

Figure 8.2: Setup for flow simulation through a stationary porous medium.
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The drag approximation for slow viscous flow, given by Equation (6.4.15), was assumed
to govern and was applied to yield the following expression for flow through a stationary

porous medium:

e 0%u, _ . b Ope Ll 36€.6p 1/3
o~ o T & | (1= aP) (1- )

+ 18] u,. (8.2.1)

Only the Darcy part of the drag equation was used since the Forchheimer component
renders the partial differential equation analytically unsolvable. The aforementioned
omission is justified by the choice of input velocity which yields a Reynolds number,

Re ~ 1, which is well within the viscous regime.

The pressure gradient was obtained from the numerical pressure output as 0.0013 Pa

and the partial differential expression given in Equation (8.2.1) was solved to obtain

o oxp [0 [0t exp [Y22]] [ exep [ 244 exep [ 2

A |
A1+ e [2]] - (822

where the constant A in Equation (8.2.2) is given by

1/3
A = Ho 306y +18] . (8.2.3)

dz% <1 — 612)/3> <1 — 611,/3>

As for the plane Poiseuille simulation, the results are illustrated in Figure 8.4 from

which it follows that the numerical values yielded is an accurate approximation to the

analytical solution, given by Equation (8.2.2).

8.2.3 Flow past a stationary porous medium

The final verification for the program was done by examining results yielded for the
x-component fluid velocity profile when the boundary to the channel is not a solid, but

consists of a porous medium, as illustrated in Figure 8.3.

The analytical solution to this problem can be obtained from Neale and Nader (1974)
but falls outside the scope of this research. Their solution is, however, illustrated along
with the simulated results in Figure 8.4 for flow past a porous medium with a particle
volume fraction of 0.5. The simulated result appears to be a good approximation of
that given by Neale and Nader (1974).
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Ue — 2 cm
- e, = 0.5
200 cm

Figure 8.3: Setup for flow simulation past and through a porous medium.
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Figure 8.4: Simulated and analytical velocity profiles for flow in between parallel plates,
flow through a porous bed and flow over and through a porous bed.

Following the satisfactory results obtained for flow profiles through an open channel as
well as past and through a porous medium, experiments were done for cases where the

bed did not remain stationary.
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8.3 Two-phase flow

In order to illustrate a simple two-phase flow example, a deposit, of which the con-
stituent particles have a diameter of 1 mm and a density of p, = 2500 kg/m3, was
placed at the centre of a stationary continuum, with a density of p. = 1000 kg/m?, and
allowed to settle under the influence of gravity alone. The setup for the simulation is

illustrated in Figure 8.5.

15
om 30 cm

ST — .

100 cm

Figure 8.5: Setup for horizontal two-phase flow.

For the volume fraction-, velocity profile- and interaction force simulations, illustrated
in Figures 8.6-8.10, a grid of 500 x 500 nodes in the x— and y—directions, respectively,

was used and all values at the edges of the simulation domain were set to zero.

Initially the continuum and particles are at rest and only gravitation is applied to the
system resulting in the downward motion of the particles. At the edges of the deposit
the continuum moves upward as the particle phase displaces it. These phenomena at
the initiation of the settling process are illustrated at the top of Figures 8.6a, 8.7a,
8.8a, 8.9a and 8.10a. The interaction forces between the particles as well as those
forces between the particles and the continuum enveloping them, for this stage, are
shown at the top of Figures 8.9a and 8.10a, respectively. The scale on these figures
show the order of magnitude of the forces per unit volume and from Figures 8.9a and
8.10a the interactions between phases, which are in the order of 10, dominate the

particle-particle interaction which are in the order of 1072,

As the settling motion continues, slopes are formed at the edges of the deposit as
the particles spread to the bottom and the sides, pulling the continuum along with it
as shown in the lower half of Figures 8.6a, 8.7a and 8.8a. Both the interaction forces
between the phases and the interaction force between the particles themselves increase,
since these forces are proportional to the velocity. The interaction forces are visibly
larger at the sides than in the middle of the deposit since there is very little motion at

the centre. The edges of the deposit therefore settles faster than its centre, resulting
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in the steepening of the slope and the widening of the base as illustrated in the upper
half of Figures 8.6b-8.10b.

However, as the slope increases, so does the downward velocity of the particles at the
centre of the deposit, resulting in the flattening of the deposit as illustrated in the
bottom half of Figure 8.6b. Where the deposit reaches the lateral boundaries of the
domain it can be seen from Figure 8.9b and 8.10b that the particle-particle- and the
particle-continuum interaction forces sharply increase where collisions occur with the

stationary boundary.
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Figure 8.6: Change in particle volume fraction with time.
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Figure 8.9: Changes in the order of magnitude of particle-particle interaction forces per unit volume as a deposit collapses within

a continuum.
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8.4 Vertical motion

Simulations were done in order to predict the vertical settling motion of an evenly
distributed 3.6 g sample of silicon particles with a density of p, = 2500 kg/m? through
water with a density of p, = 1000 kg/m?. The depth and width of the water column
through which the particles fell were set to 1.7 m and 0.150 m, respectively and the

setup for the simulation is illustrated in Figure 8.11.

— -

1.7 m

0.150 m

Figure 8.11: Setup for vertical settling simulation.

The vertical settling simulations done with 2PMS are verified against experimental
data obtained from settling tube experiments in Chapter 9. In the following sections
the boundary conditions applied for the setup of the simulation as well as its stability

with regard to the selection of grid size and time step intervals are discussed.

8.4.1 Boundary conditions

At the left- and right boundaries of the setup shown in Figure 8.11 it was assumed that
both the particles and the continuum were at rest (i.e. a no-slip boundary condition
was applied). At the upper boundary it was assumed that a zero-gradient bound-
ary condition existed and at the bottom it was assumed that the particles and the
continuum would be stationary to be representative of the settling tube experiments

performed in Chapter 9.
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The particle volume fraction, €,, was assumed to be zero at the upper edge of the
setup and was assumed to be equal to one at the left-, right- and base sides. Over all,

a zero-gradient pressure condition was applied.

The initial guess for the pressure values was set to zero. The input condition for the
particle volume fraction proved problematic since the simulation had to represent the
physical settling tube experiments for which this value could not be measured. It was
however known that for each of the physical experiments a mass of 3.6 g particles were
inserted in the form of a single layer into the settling tube. To make the simulations
comparable to these conditions the particle volume fraction was changed according
to the selection of the grid size to always ensure that a single layer entry would be
representative of a particle mass of 3.6 g. The following was used to determine the

particle volume fraction:

_ myp

where m,, and p, denote the mass and density of the particles and Az, Ay and N, are
the grid dimensions for a single cell in the z- and y-directions and the total number
of grid nodes in the horizontal direction, respectively. The subtraction is done to
eliminate the two cells at the boundaries which were assumed to have a zero particle

volume fraction.

The particles were released with a zero initial velocity and the fluid too was assumed

at rest at initiation.

8.4.2 Grid geometry and time steps

The stability of 2PMS with regard to grid and time step selection was analysed using
three grid sizes of 85 x 15, 170 x 30, and 340 x 60 on a domain 170 cm X 15 c¢m in size.
Three time step intervals of 0.005 s, 0.01 s and 0.05 s were applied to each of the grid
allotments and simulations were performed for particles 1 mm, 0.75 mm, 0.50 mm, and

0.30 mm in diameter.

8.4.2.1 Convergence within a time step

During each time step, the program was iterated until the percentage relative difference

between the average group velocities of two successive iterations was less than 0.1%.
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Figure 8.12: Convergence within a time step.

This was done by calculating the average group velocity for each iteration as

Z EP (Z, ])
which yielded the average velocity of each column of the grid, the mean of which is the
average group velocity. The percentage relative difference between the average group

velocity for two successive iterations, I — 1 and I, was then obtained as

2u® (1, ¢) — uws (I — 1,1)|
DIFF = P L 100. 8.4.3
% LD + (I —1,0)] (8.43)

In Figure 8.12 an example of the relative difference criteria, given by Equation (8.4.3),

at various time steps for a 1 mm-diameter particle and a time step of 0.01 s is illustrated.

8.4.2.2 Grid and time step stability

Following Patankar (1980), the fully implicit scheme was used to ensure that the result
for a simulation is independent of the grid or the time step interval choices. Grid
independence for a time step of 0.01 s is illustrated in Figure 8.13 and time step
independence is shown in Figure 8.14. Figures 8.13 and 8.14 also show that a terminal

group velocity is reached for each of the simulations after a period of 10 s.
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Figure 8.13: Grid analysis for vertical settling simulations.

Figure 8.14:

Time, [s]

——————At=0.005s
P ---At=0.010's
1 At=0050s
, d =0.75mm-
d =0.50mm |
P
— d,=0.30mm |
0 2 10

Time analysis for vertical settling simulations.



Stellenbosch University http://scholar.sun.ac.za
8.4. Vertical motion 134

It was however found that numerical diffusion increased rapidly as the grid was made
coarser. The numerical diffusion for a 1 mm particle simulation over a 340 x 60, 170 x 30,
and a 85 x 15 grid is illustrated in Figures 8.15-8.17.
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Following Rafael and Mahaffy (1998), a truncation error analysis of the fully implicit
time integration on a staggered mesh yields an equation of the form (for mesh cell

and time step n + 1):

99
ot

9 w1 _ 9 2y 99 | |ni1
8x(¢uc)|i = 5 {0.5 (Juc|Az + Atu?) 8t}|i : (8.4.4)

|;2+1 +

The second term on the right-hand side of Equation (8.4.4) represents a diffusive trans-

port.

According to Rafael and Mahaffy (1998), Equation (8.4.4) is not approximating the
original expression given by

®pe
ot

+V (dpeus) = O, (8.4.5)

but is in fact approximating, with second order accuracy, the transport equation

9 0 9. 9
+_(¢uc> - %( zmplﬁt)u

5t 5 (8.4.6)

which physically describes a convective-diffusive transport of the scalar ¢ with a diffu-

sion coefficient, K, given by
Kimp = 0.5 (Ju|Az + Atu?) . (8.4.7)

Thus, the first order upwind scheme will always yield a diffusive solution if implicit
time differencing is used, the magnitude of which will grow both with increasing time
step, At, and cell sizes Az as illustrated by Figures 8.15-8.17.

An additional source of numerical diffusion appears in multidimensional flows when the
velocity field is skewed with respect to the computational grid (Patankar (1980), Rafael
and Mahaffy (1998)). In such cases, the upwind formulation introduces additional

diffusive terms proportional to the cross gradients of the scalar being transported.

According to the expression obtained in Equation (8.4.7) for the false numerical dif-
fusion coefficients introduced by the upwind solution, it is clear that grid size plays
an important role in the magnitude of the diffusion affecting the convective solution.
Therefore, one could, in principle, diminish the influence of the diffusive terms in the

solution by means of grid refinement.
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8.4.3 Convergence of the average group velocity over time

Results show that the particles accelerate from their initial stationary state under the
influence of gravity. During this acceleration period the particles spread out consid-
erably. As the particle group falls, the surrounding fluid is also set into motion. The
fluid caught within the group moves faster than the fluid at the front end of the group
and, due to the nature of the equations discussed previously, this results in the front
end of the cloud being exposed to less drag than the internal sections, causing it to
move faster. The effect is an increase in the size of the cloud and a decrease in its
concentration. However, numerical instabilities, discussed in the previous section, also
contribute to the diffusion phenomenon. Figure 8.18 shows how the group velocity of
the particles tend to zero as the particles reach the lower boundary of the simulation
setup. The rate at which the velocity decreases appears to be proportional to the size

of the groups’ constituent particles.

Although the spread of the particle cloud in physical experiments may be ascribed to
a difference in particle size and the initial surface tension forces between the particles
and the fluid matter, this can not be used to explain the diffusion seen in the numerical
experiments since the particles are assumed to be of equal size and surface tension is

not included in the expressions used to simulate the motion.

At each time step the simulation data for the particle velocities and the particle volume
fractions were captured and inserted into a Matlab routine (for which an example is
given below) to determine the average velocity of the cloud. This average was deter-
mined by multiplication of each grid point velocity with its corresponding concentration
and dividing by the sum of the concentrations, as given by Equation (8.4.2) and from
Figures 8.13 and 8.14 it is apparent that for each particle size, the cloud reached a
terminal velocity value after a lapse of 10 s. These terminal velocity values will be

compared to those obtained via experiments with a settling tube in Chapter 9.

X=[340 170.00000
339 169.74895
2 0.25148

1 0.00000] ;

Y=[ 60 15.00000

2 0.12931
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fidl

1 0.00000] ;

fopen(’Por.bin’, ’r’);

£id2 = fopen(’Us.bin’, ’r’);
UsAVG = [];

TIME = [];

for i=1:1000

end
plot
xlab

[Por,count] = fread(fidl, [63,340],
[Us,count] = fread(fid2,[63,339],
Por = reshape(Por, [63,340]);
%construct matrix

Us = reshape(Us, [63,339]);

Por = Por(3:end-1,:)7;

Us = Us(3:end-1,:)’;

%calculate average velocity

usavg=mean (sum(Us (:,2:end-1) .*Por(l:end-1,2:end-1))./sum(Por(l:end-1,2:end-1)));

UsAVG=[UsAVG usavg ];
%#calculate time step
time=i.*0.01;

TIME = [TIME time];

(f1lipud (TIME) ,UsAVG,’-.’)
el(’time [s]?)

’float32’); Yread one time step
’float32’); Yread one time step

ylabel (’Average particle velocity [cm/s]’)

Average velocity, [cm/s]
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== =d =0.95mm
=0.90 mm
=0.85 mm
=0.80 mm
=0.75 mm
=0.70 mm
=0.65 mm
=0.60 mm
=0.55 mm
=0.50 mm
=0.45 mm
=0.40 mm
=0.35 mm
=0.30 mm

—d
===d
—
-=ad
—_—
===d
e
===d
—
===d
e d
-aad

s o o T T © T T T T T T T T T

—d

~
S

Figure 8.18: Average group velocities for vertical particle motion.
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8.4.4 Comparison between analytical and numerical results

The numerical results were compared to results obtained when the particle momentum
conservation equation at terminal velocity, given by Equation (6.6.3), was solved with
Matlab’s fzero procedure which uses a combination of bisection, secant, and inverse
quadratic interpolation methods to obtain the roots for an expression. In deriving
the solution to the particle momentum conservation equation it was assumed that the
pressure gradient may be approximated with the buoyancy term:

Vp = pey. (8.4.8)

However, the former assumption, validated in Appendix A.3.1, should only be applied
to cases where the direction of the predominant pressure difference coincides with that
of the gravitational force acting on the particles. [t was furthermore assumed that
terminal velocity was reached. Application of the aforestated assumptions to Equation
(6.6.3) yielded the following for the terminal particle velocity:

s

0 - ey 36ecy” s
= Epg(pp_pC)_ d—IQ) <1_€2/3> <1_€1/3>+ +
p p
s 1/s
Leape €€
5 v = gl | (= w,) (8.4.9)

2 d, <1 B 61{2}/3)

Comparisons between the results obtained by 2PMS and those obtained by solving the
terminal velocity expression, given by Equation (8.4.9), with Matlab’s fzero algorithm,
are illustrated in Figure 8.19 for asymptotic fitting parameters, s = 0.5, s = 0.6, and
s = 0.7. From Figure 8.19 it follows that an increase in the value of s, increases the

magnitude of the group velocity with respect to the particle diameter.

The relative error between the results determined with the fzero procedure in Matlab

and those obtained via 2PMS was determined by

Valyranay — Val
%Error = - M‘t/l;lM y Z 2PMS % 100, (8.4.10)

for which the maximum error was determined as 0.248%. With this small relative error,

the predictive capability of the code was validated.
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velocity obtained with 2PMS for different values of the asymptotic fitting parameter, s.

8.5 Conclusions

In the absence of experimental procedures to verify the precision of numerical predic-
tions for horizontal two phase motion, discussed in Section 8.2, only the simulations
for which analytical results were made available is regarded as reliable. Results were
not verified for the settling of a deposit within a continuum. However, the trend shown

by these horizontal runs do seem to simulate expected physical behaviour.

Results obtained for vertical two-phase motion upheld those produced with Matlab’s
fzero method. In the next chapter it will also be shown that these results correspond
well with physical data obtained through settling tube experiments and the program

is therefore regarded as a reliable prediction mechanism.
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Chapter 9

Physical experiments

In order to further verify the validity of Equations (6.6.2) and (6.6.3), the terminal
fall velocity of a group of silica particles were determined with a settling tube which
is illustrated in Figure 9.2. A settling tube is an instrument that is used to determine
the natural velocity with which a group of particles settles through a water column. In
addition to the settling tube, a camera was placed adjacent to the tube and a video was
made of the particles as they fell through the lower section of the settling tube. The
camera- and the settling tube results were then compared. In the following sections
the settling tube components, the experimental procedure, the sample characteristics

and results obtained for the terminal settling of silica particles are discussed.

9.1 Settling tube components

The settling tube used in this study is illustrated in Figures 9.2 and 9.3. It measures
1.7 m in length with an inner diameter of 15 cm and consists of the following main

components:

1. A clear acrylic Sample Insertion Plate (SIP) for inserting the sample;

2. A rotating cradle used to hold and lower the insertion plate at the top of the
tube;

3. A DIP-switch that activates the timer;

4. A weighing pan at the bottom of the tube;

143
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5. The weighing pan is suspended by three thin, copper wires from a strain gauge

that is mounted to the wall;
6. A strain gauge amplifier, for amplifying the strain gauge signal;

7. An analogue to digital converter card that accepts the amplifier and DIP-switch

signals and is housed in a PC;

8. Software to process the digitised strain signals.

9.1.1 Experimental method

Experiments with the settling tube were performed, following a procedure set out by
Soltau (2009): A 3.6 g sample of each of the categories of silicon beads, presented
in Table 9.1, was spread evenly onto the SIP in a layer of approximately one grain
thickness. Water was applied to the SIP and its sample to ensure adhesion of the
particles to the plate. The insertion plate and sample were subsequently inverted and
placed into the cradle/collar at the top of the tube, the camera was activated and the
cradle was lowered smoothly by rotation until the insertion plate and sample made
contact with the water. Contact between the sample and the water, broke the adhesive

forces and the beads started to fall. Simultaneously, the dip switch triggered the timer.

After falling the length of the tube, the particles settled on the weighing pan and the
strain gauge registered the increasing strain due to the accumulation of particles on
the plate. The captured strain provided an instantaneous readout of the sample accu-
mulation. An example result from Soltau (2009) is illustrated in Figure 9.1 where the
increasing strain is shown as a function of time after insertion. A completed experi-
ment has the appearance of an S shaped curve. In Figure 9.1, the lower upward curve
of the S, signals the first arrival of material on the pan at approximately 10 seconds
and indicates the largest particles which have settled the fastest. This is followed by
a steep slope which denotes rapid settling of the trailing particles. Flattening of the
slope occurs after about 40-50 seconds as the smallest particles accumulate on the pan.

After 157 seconds the entire sample has settled and the strain reading is constant.

In the example in Figure 9.1, fifty percent of the strain was measured after 34 seconds,
signifying that fifty percent of the sample had settled at this stage. The velocity for

each of the percentiles is determined by

Settling velocity(m/s) = distance particle falls(m)/time taken(s), (9.1.1)
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Figure 9.1: Strain output.

and the median settling velocity for the 50" percentile would therefore be 1.7 m/34
s = 0.05 m/s. The instability seen in the strain record in Figure 9.1 during the first
few seconds is due to a slight disturbance of the strain gauge when the sediment is
inserted and rapidly diminishes. An example of the output of one of the experiments
done during this study with the 0.015 — 0.025 mm beads is given in Table 9.2. The
particle size was determined by the CSIR via an in house developed program. The
program calculates the particle size from the Standard Relation Curve which is an em-
pirical curve, developed by Fromme in 1977 (Soltau (2009)) and improved by Schoonees
(Soltau (2009)), which relates particle size to settling velocity as,

D, = 29730w? + 4173w, + 67.38, (9.1.2)

where D, is the 2" percentile grain size (in um) and w, denotes the ' percentile
settling velocity (in m/s). The results of Equation (9.1.2) are given in the fourth
column of Table 9.2.



ARM STRAIN GAUGE

AMPLIFIER
HOOK OUTPUT TO: RECORDER
N COMPUTER

SPACING RING

ROTATION-COLLAR WITH HOOKS

SIp SUSPENDING SAMPLE INSERTION
HANDLE TO \ /——mﬁw‘—\ [ PLATE (SIP)
ROTATE COLLAR SILICA 1
WL DIP SWITCH FOR START SIGNAL TO
RECORDER,/COMPUTER
- l— PVCO-TUBE WALL
NYLON
V' THREAD
LIGHT SOURCE ——
> CAMERA POSITION
4 REMOVABLE INSPECTION WINDOW

SILICA REMARKS:

1. EFFECTIVE LENGTH OF TUBE: 170cm

2. INSIDE DIAMETER = 15cm
3. ABBREVIATIONS:

e SIP : SAMPLE INSERTION PLATE
OUTLET VALVE ¢ WL : WATER LEVEL

(a) Schematic of the settling tube

Figure 9.2: Settling tube.

(b) Settling tube

1°6

sjuouodwod aqny Sur[}3es

Iv1



Stellenbosch University http://scholar.sun.ac.za
9.2. Camera setup 147
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Figure 9.3: Mechanisms of settling tube.

The settling tube data were corroborated by making a video of the motion of each of
the experiments.

9.2 Camera setup

A PowerShot A560 Canon camera was placed adjacent to the settling tube, as shown

in Figure 9.4, and the falling particles were photographed on a macro setting at 30 fps.

Camera position

Figure 9.4: Light and camera positions.
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Reference markings were made on the tube and the speeds of the particles were calcu-
lated using Photron FASTCAM viewer software.

9.3 Sample characteristics

Spherical glass beads, ranging from 0.15 mm to 1.0 mm in diameter, were used in
the experiments and the average size of each sample was regarded as the representa-
tive sample size for the purpose of comparison between experimental, simulated and

analytical measurements as shown in Figure 9.4.

Table 9.1: Particle sizes.

Size Range [mm| Average [mm)|

0.15-0.25 0.2

0.20-0.30 0.25
0.25-0.50 0.375
0.50-0.75 0.625

0.75-1.00 0.875
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The silicon beads were supplied by the company, Sigmund Lindner (SiLi), which pro-
vided the chemical composition as 72.5% SiOq, 13% NayO, 9.06% CaO, 4.22% MgO and
0.58% AlyO3. The specific weight of the beads were given as 2.50kg/l (i.e. 2.50g/cc)

and the three larger samples are shown in Figure 9.5.

S

(a) 0.25—0.50 m (b) 0.50 — 0.75 mm (c) 0.75 —1.00 mm

Figure 9.5: Silicon beads used for the experiments.

9.4 Experimental results and processing

An example of the strain data for a 3.6 g sample of particles, ranging from 0.015 mm

to 0.025 mm in diameter, is given in Table 9.2.

Table 9.2: Output for strain data for a 3.6g 0.015 — 0.025 mm sample.

Percenta%e in Percentage on Velocity (m/s) Size (1)
suspension pan
95 5 0.0308 224.37
90 10 0.0301 220.12
84 16 0.0295 216.15
75 25 0.0289 212.88
50 50 0.0269 201.10
25 75 0.0245 187.41
16 84 0.0234 181.29
10 90 0.0218 172.74
5 95 0.0200 162.68

The percentages listed in the first column of the table are interpreted as the percent-
age of the total amount of particles which remain in suspension and therefore have a

corresponding velocity equal to or slower than those given by the third column.
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The percentages listed in the second column correspond with those portrayed in Figure
9.1 and indicate those portions of the total amount of particles that have settled onto
the weighing pan and thus have a velocity equal to or faster than the velocity values

given by the third column.

The fourth column in Table 9.2 indicates the sizes of the particles that fall in the
percentile categories listed in columns 1 and 2 according to Equation (9.1.2). Since the
particle sizes are known, the data given by the fourth column was not used for this
work. It is, however, apparent from the grain size results for the 0.015 — 0.025 mm
sample, listed in Table 9.2 that the empirical curve provided a fairly accurate estimate
of the particle sizes in that it yielded a size range of 0.016 — 0.022 mm for the given
range of 0.015 — 0.025 mm.

For each of the sample sizes a minimum of 5 experimental runs were made, the results
of which are illustrated in Figure 9.6. From the close correlation between the runs it
follows that the experimental procedure was successful and that the experiments are

repeatable.

The percentage values indicated on the z-axis of Figures 9.6a-9.6e denote the percent-
age of particles which fell slower than the corresponding velocity value on the y-axis.
The average velocity for each sample set was calculated using the trapezium rule to
obtain the entire area underneath the graph for each run and dividing the said area by

the 90 units it spans on the z-axes. These results are illustrated in Figure 9.8.

As discussed previously, digital images of the falling particles were taken. The positions
of a portion of the particles were digitised relative to markings that have been made
on the tube, and the speeds of the particles were calculated (using the Photron FAST-
CAM viewer software). For various particles within a single experiment, the distance
traversed by a particle along with the time required for the distance to be completed
was recorded, as illustrated in Figure 9.7. The average of the speeds obtained was
then assumed to denote the average speed of the group of particles for that specific

experimental run.

Various experiments were done for each of the particle size ranges, listed in Table
9.1, the average of which was used for comparative purposes in Figure 9.8. Example
photographs taken for the 0.75 — 1.00 mm sample are shown in Figure 9.7. The data
obtained from the photographic experiments are listed in Appendix G in Table G.1



Stellenbosch University http://scholar.sun.ac.za
9.4. Experimental results and processing

151

and the average velocity results for each sample is shown in conjunction with the
settling tube experiments in Figure 9.8 from which it follows that close correlation
between photographic, settling tube, numerical and analytical results were obtained.
The values of the average data obtained for the settling tube and camera data along
with the relative difference between the results obtained by these methods are listed
in Table 9.3.
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Figure 9.6: Settling tube data.
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le 1

icle 2

(a) Position 1 (b) Position 2

Figure 9.7: Particle positions.



Table 9.3: Comparison between camera and settling tube data.

Particle Average of Average of Average of Relative Relative Relative
diameter settling tube camera numerical difference: difference: difference:
data data data, settling tube settling tube settling tube
5s=0.6 VS camera vs numerical vs numerical

[mm] [em/s] [em/s] [em/s] %] 1% 1%

0.02 2.47 2.61 1.93 5.61 24.8 30.3
0.025 3.20 3.32 2.81 3.01 13.0 16.5
0.0375 4.98 5.00 5.22 0.319 4.69 4.40
0.0625 9.58 9.68 9.78 1.12 2.13 1.00
0.0875 13.53 13.3 13.9 1.75 2.88 4.63
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Figure 9.8: Correlation between numerical simulations, analytical solution and experiments.

9.5 Conclusions

In Table 9.3, results given by 2PMS, the fzero Matlab procedure, as well as camera- and
settling tube experimental procedures are compared to each other. For each particle
size range, used for experiments and listed in Table 9.1, an average was calculated and
associated with the the average obtained from all the experimental results for both
the camera and settling tube experiments. These averaged values for the settling tube
and camera experiments are listed in columns two and three of Table 9.3, respectively
and the relative differences between these two methods are listed in column five. The

largest discrepancy was obtained for a particle diameter of d, = 0.2 mm.

From Figure 9.8 it can be seen that the numerical results generated by 2PMS for a

fitting coefficient s = 0.6, corresponds best to both settling tube- and camera exper-
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imental values and the relative percentage differences are listed in columns six and
seven of Table 9.3, respectively. As with the comparison between the settling tube and
the camera experiments, the greatest difference was found for particles with an average

particle diameter of d, = 0.2 mm.

It should be noted that the results obtained numerically are very much dependent on
the choice of s of which the physical significance is yet to be determined. However, the
numerical output from 2PMS yielded the correct trend when compared to experimental
data. Experiments with smaller particles proved more difficult than those done for
larger particles since these were influenced most by surface tension at the beginning
of the experiment and showed a much more diffusive nature as it spread over nearly
the total length of the settling tube during the experiments. This made it difficult
to determine a value for the average group velocity since they did not show group
behaviour. Experimental results obtained for larger particles are thus deemed more

accurate and correlated well with simulations.
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Chapter 10

Discussion and recommendations

In Chapter 9 the physical results from experiments done at the CSIR were compared
to predictions made for the group terminal velocity of different particle sizes. In this
chapter the predictions made by Equation (6.6.3) for the group terminal velocity are
tested against the widely referenced experimental work of Richardson and Zaki (1954).
The results of these experiments were summarised by Concha (2009) in a table relat-
ing the ratio between the group- and the Stokes velocities of a single particle to the
particle diameters. In this chapter, the actual values of the group velocity obtained by
Richardson and Zaki (1954) in relation to the particle diameters and those predicted
by Equation (6.6.3) are given.

The prediction capabilities of our model is also compared to the empirically models set
forth by Ergun, lewis, Wen and Yu, and Kmiec (Mazzei and Lettieri (2007)).

10.1 Empirical work by Richardson and Zaki (1954)

Richardson and Zaki (1954) examined experimentally the effect of the volume fraction
of suspended particles upon the rate of settlement of the particles. They confined
the experimental work to uniformly sized spherical particles, greater than 100 um in
diameter. The sedimentation experiments were made with suspensions contained in
flat-bottomed Pyrex tubes about 10 cm in height with internal diameters of 1.9, 2.8,
3.2, 4.8, and 5 cm. After the tube and its contents attained the temperature of the
chamber, the suspension was agitated and the tube was then orientated in the vertical

position. The rate at which the sludge line fell was observed. The temperature of the

157
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liquid was maintained at 20 °C. The physical characteristics of the materials used are
listed in Table 10.1.

Group velocities obtained for the settling of various types of spherical particles in
different types of fluids are listed in Tables 10.2 and 10.3, respectively and graphs of

these values can be seen in Appendix H.

Correlations between the experimental data of Richardson and Zaki (1954) and those
values predicted by Equation (6.6.3) for terminal velocities, are shown in Figure 10.1.
For a perfect correlation between the empirical and theoretical result, the points would
be centred on the 45° line. Points that lie above this line are due to the theoretical
model yielding higher values than the experiments and those that occur below the line

are under-predicting the empirical data.

Figures 10.1a to 10.1j show the correlation between the experimentally obtained group
settling velocity of different sized spherical particles at ten separate particle volume
fractions in the range of 0 < ¢, < 0.585 performed by Richardson and Zaki (1954). In
each case two theoretical approximations are made: Both of which are the solution to
Equation (6.6.3) for the scenario of a terminal velocity scenario but differ with regard

to the drag coefficient, ¢4, and the shifting parameter, s.

The first approximation was made by choosing the shifting factor s = 0.6 and the
drag coefficient c; = 0.44. The value for ¢4 is chosen here to be the value for the drag
coefficient of a single sphere and s is based on the best fit that was achieved on the
basis of inspection with data obtained during experiments discussed in Chapter 9. The
drawback of this choice of shifting parameter is that Equation (6.6.3) is not analytical
solvable, but the terminal velocity may readily be achieved by using any numerical

integration technique. In this case the fzero method was applied in Matlab.

The second theoretical approximation is based on a shifting factor s = 1.0 and a drag
coefficient ¢; = 2.05 which are based on investigations done on foams (Du Plessis
(1992), Du Plessis and Masliyah (1988)). This choice of s has the benefit of rendering

a quadratic equation for which analytical solutions are easily obtainable.

The higher the value of s, the more closely the solution traces the asymptotic expres-
sions, i.e. the more abrupt the transition (Churchill and Usagi (1972)). Conversely
a gradual change-over between extremal solutions will signify that a small s be used.

Hence, s, is indicative of the rate of transition between the constituent predictive equa-
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tions. The afore mentioned influence of the shifting parameter was also discussed in
Section 6.6.1 and shown in Figure 6.7. Churchill and Usagi (1972) recommends that
experiments should be set up so as to investigate the behaviour in region of the point
where the asymptotes of the extreme behaviours meet in order for correct approxima-
tions to be made. It is further recommended in this work that the Forchheimer regime
be treated in a similar manner to the Darcy regime, i.e. that it should be split into a
low particle volume fraction (or single particle) and a high volume fraction (or porous
bed) part and that these should then be matched in a manner similar to that used to

match the high and low particle volume fraction scenarios for the Darcy regime.

For particle volume fractions tending to zero, both theoretical models coincide well with
the values obtained by Richardson and Zaki (1954) for velocities up to 10 cm/s. Once
this limit is exceeded the theoretical model with s = 1 and ¢; = 2.05 however tends to
under-predict the experimental values as is shown in Figure 10.1a. From Figures 10.1b
to 10.1f it can be seen that for velocities up to 1 cm/s both models under-predict the
results whereas for higher velocities the model with c; = 2.05 and s = 1.0 tends to
under predict whilst its counter part matches the data well. As the particle volume
fraction increases further so does the accuracy of both models as can be seen from
Figures 10.1g and 10.1h but tends to over prediction of the experimental values as the

particle volume fraction increases above €, = 0.500 in Figures 10.1i and 10.1j.

10.2 Comparisons to empirical models

In the following sections, the predictions made by Equation (6.6.3) for the group termi-
nal velocity are tested against the empirical Ergun equation (Ergun (1952)) as well as
empirical models by Lewis, Wen and Yu, and Kmiec (Mazzei and Lettieri (2007)) which

are based on the aforementioned experimental data of Richardson and Zaki (1954).

10.2.1 The Ergun equation

The empirical Ergun model is given by

150p.62  1.75p.6p|| v, — v, ||
Frreun = ( 7 £+ Zpe L ) (v.—v,)- (10.2.1)
D c

The Ergun equation was developed only for packed beds and was never meant to

account for large variations in concentration as is found in sedimentation problems.
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In spite of this limitation, it is commonly employed by many researchers over a wide
range of particle volume fractions. It is used in the multiphase flow model, proposed
by Gidaspow (1994), which has been adopted as default in the majority of commercial
CFED codes used to date (e.g. Fluent). This correlation is used for values of the

continuum volume fraction up to 0.80.

10.2.2 Lewis, Wen and Yu, and Kmiec drag force closures

The most widespread and popular equations of closure employed to model the drag
force in uniformly dispersed emulsions of solid particles are those based on the work by
Kmiec (1982), Lewis et al. (1949), and Wen and Yu (1966). In particular, the equation
developed by Lewis is usually adopted as default correlation in most commercial CFD
codes when the continuum volume fraction of the suspension exceeds the threshold
value of 0.80 (a limit suggested by Gidaspow (1994)). Following Mazzei and Lettieri

(2007), all three these closure relationships can be expressed in the following form:

3 ell Ve — wp[|(1 — €
Fleollv,— ) = Sep(re)? e Bl o g5
P 4 d,
Here the Reynolds number is defined as,
peedy
Re(GC’Hyc_ Qp”) = —||yc_ Qp”’ (1023)

Cc

and the drag coefficient C'p(Re) is calculated using the expression suggested by Schiller
and Naumann (1935):

% (1 +0.15Re%%7)  for Re < 1000
C’D(Re) =
0.44 for Re > 1000.

The drag is calculated for the limiting values of the viscous and inertial regimes and
an expression for the intermediate range is derived following the asymptotic matching
technique introduced by Churchill and Usagi (1972),

18:““0(]- - Ec)ec_a pC||Qc - ypHEPE_a

+0.33 —a
€2 d,

Fiolee [l — gll) = (10.2.4)

The respective values for «, as proposed by Lewis et al., Wen and Yu, and Kmiec,
are 2.65, 2.70 and 2.78, respectively. The drag force closures, given by Equations
(10.2.1) and (10.2.4) were implemented in 2PMS and the results were compared to
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those obtained for our model in Figure 10.2. From Figure 10.2 it can be seen that
the models proposed by Lewis and Wen and Yu, yield almost identical results. Both,
however, overestimate the experimental data. The Ergun equation overestimates the
velocities of the smaller particles and underestimates the velocities yielded for larger
particle diameters. The results were also compared with the settling tube equation, by
solving Equation (9.1.2) for the velocity and obtaining the following expression for the

fall velocity in terms of the particle diameter:

Vsettte = (—0.702 £1071 4 0.336 * 107 (235027485 + 2973000d,)" 2) 100,
(10.2.5)

where the multiplication with 100 is due to the fact that the velocities and particle
diameters in Equation (9.1.2) are in metres per second and micrometres, respectively.
The results obtained for the velocities with Equation (10.2.5) yield a good approxima-
tion for the experimental trend but tend to underestimate the velocity of the larger
particles. The current model yielded a good approximation of the experimental data
for the entire range of particle diameters, thus exceeding the prediction capabilities of

its counterparts.

10.3 Conclusions

The results yielded by Equation (6.6.3) produced good predictions for both the ex-
periments done at the CSIR for this study as well as with the experimental data by
Richardson and Zaki (1954) and empirical models based on this data (e.g. Lewis and
Wen and Yu). The theoretical model however still remains dependent on the shifting
factor s. An effort was made not to introduce empirical coefficients too early in the
development of the model but after testing it on existing as well as new experimen-
tal data it is apparent that the introduction of certain empirical coefficients may be

inevitable due to the existence of certain geometrical effects.
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Table 10.1: Physical properties of material used for experiments done by Richardson and

Zaki (1954).

dp Pp fie x 102 Pe

[cm] [g/cm®] [g/(cm.s)] g/cm?
1 0.0181 1.0580  20.8000 1.0340
2 0.0181 1.0580  20.8000 1.0340
3 0.0096 2.9230 62.0000 1.2080
4 0.0096 2.9230 62.0000 1.2080
5 0.0358 1.0580  20.8000 1.0340
6  0.0358 1.0580 20.8000 1.0340
7 0.0096 2.9230  20.8000 1.0340
8 0.0096 2.9230 20.8000 1.0340
9 0.0096 2.9230 20.8000 1.0340
10 0.0230 2.6230  62.0000 1.2080
11 0.0230 2.6230 62.0000 1.2080
12 0.0128 2.9600 1.8900  2.8900
13 0.0128 2.9600  1.8900  2.8900
14 0.0181 1.0580  1.5300 1.0010
15 0.0181 1.0580 1.5300  1.0010
16 0.0181 1.0580  1.5300 1.0010
17 0.1029 2.9760 112.9000 1.2210
18 0.1029 2.9760 112.9000 1.2210
19 0.0253 1.0580  2.9100  0.9350
20 0.0253 1.0580 2.9100  0.9350
21 0.0096 2.9230 1.6120 2.1700
22 0.0096 2.9230 1.6120 2.1700
23 0.0253 2.7800  6.0750 1.1350
24 0.0253 1.0600  1.0000 1.0000
25 0.0230 2.6230 1.8900  2.8900
26 0.0230 2.6230  1.8900 2.8900
27 0.0230 2.6230 1.8900  2.8900
28 0.0230 2.6230  1.6120 2.1700
29 0.0230 2.6230 1.6120 2.1700
30 0.0230 2.6230 1.6120 2.1700
31 0.0510 2.7450  6.0750  1.1350
32 0.1029 29760 10.9600 1.1530
33 0.1029 2.9760 10.9600 1.1530
34 0.1029 2.9760 10.9600 1.1530
35 0.0253 2.7800 1.0000  1.0000
36 0.1029 10.6000 15.0100 0.8750
37 0.1029 2.9760 1.8900  2.8900
38 0.1029 2.9760 1.8900  2.8900
39 0.1029 2.9760  1.8900 2.8900
40 0.1029 2.9760 1.8390  2.7450
41 0.1029 2.9760  1.8390  2.7450
42 0.1029 2.9760 1.8390  2.7450
43 0.0510 2.7450 1.0000  1.0000
44 0.1029 2.7450  1.0000  1.0000
45 0.1029 2.7450 1.0000  1.0000
46 0.4200 2.8900 15.0100 0.8750
47 0.1029 10.6000  3.8100 0.8180
48 0.2466 11.2500 15.0100 0.8750
49 0.3175 7.7300 15.0100 0.8750
50 0.4200 2.8900 6.0750  1.1350
51 0.1029 10.6000 1.0000  1.0000
52 0.4200 2.8900 1.0000  1.0000
53 0.3175 7.7300 1.0000  1.0000
54 0.6350 7.7400  1.0000 _ 1.0000
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Table 10.2: Empirical group velocities for various solid volume fractions and particle sizes
(Richardson and Zaki (1954)).

Particle R d Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity
Nr. diameter eynlc; i €p = 0.0 €5 =0.01 €5 =0.05 €¢p =0.1 € =0.15 €, =0.2 € =0.3 €¢p =0.4 € =0.5 €p =0.585
[cm] rumber [em/s] [em/s] [cm/s] [cm/s] [cm/s] [cm/s]  [ecm/s] [ecm/s] [cm/s] [cm/s]
1 0.0181 0.0002  0.0021 0.0020 0.0017  0.0014  0.0011 0.0009  0.0005 0.0003 0.0001 0.0001
2 0.0181 0.0002  0.0021 0.0020 0.0017  0.0014  0.0011 0.0009  0.0005 0.0003  0.0002 0.0001
3 0.0096 0.0003  0.0139  0.0134 0.0115  0.0094 0.0076  0.0060 0.0036 0.0020 0.0010 0.0005
4 0.0096 0.0003  0.0139  0.0134 0.0115  0.0095  0.0077  0.0062 0.0038 0.0022 0.0011 0.0006
5 0.0358 0.0014  0.0081 0.0078 0.0066  0.0054  0.0043  0.0034 0.0020 0.0011  0.0005 0.0003
6 0.0358 0.0014  0.0081 0.0078 0.0066  0.0054  0.0043  0.0034 0.0020 0.0011 0.0005 0.0003
7 0.0096 0.0022  0.0455  0.0438 0.0375  0.0306  0.0247  0.0197 0.0119 0.0067  0.0034 0.0017
8 0.0096 0.0022  0.0455  0.0438 0.0376  0.0307  0.0249  0.0198 0.0121 0.0068  0.0035 0.0017
9 0.0096 0.0022  0.0455  0.0438 0.0377  0.0308  0.0250  0.0200 0.0122 0.0069  0.0035 0.0018
10 0.0230 0.0030  0.0659  0.0634 0.0541 0.0439  0.0352  0.0279 0.0167 0.0092 0.0046 0.0022
11 0.0230 0.0030  0.0659  0.0634 0.0542  0.0442 0.0355  0.0282 0.0170 0.0095 0.0047 0.0023
12 0.0128 0.0648  0.0331 0.0318 0.0272  0.0221  0.0177  0.0141 0.0084 0.0047  0.0023 0.0011
13 0.0128 0.0648  0.0331 0.0319 0.0274  0.0224  0.0181 0.0144 0.0088 0.0049 0.0025 0.0013
14 0.0181 0.0758  0.0640  0.0616 0.0528  0.0431  0.0347  0.0277 0.0167 0.0094  0.0047 0.0023
15 0.0181 0.0786  0.0664  0.0638 0.0544  0.0440 0.0352  0.0278 0.0165 0.0091  0.0044 0.0022
16 0.0181 0.0786  0.0664  0.0639 0.0547  0.0445 0.0359  0.0285 0.0172 0.0096 0.0048 0.0024
17 0.1029 0.0992  0.8910  0.8533 0.7146  0.5664  0.4430  0.3413  0.1922  0.0991  0.0452 0.0203
18 0.1029 0.0992  0.8910  0.8542 0.7183  0.5724  0.4502  0.3490 0.1992 0.1043 0.0485 0.0222
19 0.0253 0.1199  0.1475  0.1418 0.1205  0.0974  0.0778  0.0612 0.0362 0.0197  0.0096 0.0046
20 0.0253 0.1199  0.1475  0.1418 0.1208  0.0978  0.0783  0.0618 0.0367 0.0201  0.0099 0.0048
21 0.0096 0.3024  0.2340  0.2254 0.1932  0.1578  0.1274 0.1016 0.0616 0.0346  0.0175 0.0087
22 0.0096 0.3024  0.2340  0.2256 0.1940  0.1593  0.1293  0.1036  0.0637 0.0363  0.0186 0.0094
23 0.0253 0.3909  0.8270  0.7972 0.6858  0.5630  0.4570  0.3663 0.2250 0.1282  0.0659 0.0334
24 0.0253 0.4908  0.1940  0.1872 0.1619  0.1337  0.1093  0.0882 0.0551 0.0320 0.0168 0.0087
25 0.0230 1.2274  0.3490  0.3371 0.2924  0.2426  0.1992  0.1616  0.1020 0.0599  0.0319 0.0168
26 0.0230 1.2274  0.3490  0.3369 0.2913  0.2409  0.1970  0.1591 0.0994 0.0578 0.0304 0.0158
27 0.0230 1.2274  0.3490  0.3382 0.2971 0.2507  0.2095  0.1732 0.1139  0.0702  0.0396 0.0221
28 0.0230 2.0202  0.6525  0.6312 0.5509  0.4609  0.3816  0.3124 0.2011 0.1209 0.0662 0.0358
29 0.0230 2.0202  0.6525  0.6309 0.5495  0.4585  0.3786  0.3090 0.1975 0.1179  0.0640 0.0343
30 0.0230 2.0202  0.6525  0.6316 0.5526  0.4638  0.3854  0.3167 0.2054 0.1247  0.0691 0.0378
31 0.0510 2.7537  2.8900  2.7980 2.4500  2.0585 1.7125 1.4088 0.9164 0.5579  0.3102 0.1702
32 0.1029 6.5276  6.0300  5.8333 5.0910  4.2591  3.5269  2.8875 1.8584 1.1174 0.6122 0.3310
33 0.1029 6.5276  6.0300  5.8468 5.1514  4.3635  3.6613  3.0395 2.0173 1.2567 0.7181 0.4053
34 0.1029 6.5276  6.0300  5.8509 5.1700  4.3959  3.7032  3.0874 2.0683 1.3025 0.7538 0.4310
35 0.0253 8.9815  3.5500  3.4588 3.1084  2.7022  2.3304 1.9917 1.4094 0.9454 0.5896 0.3639
36 0.1029  11.7571 19.6000 19.0714 17.0477 14.7163 12.5973 10.6822 7.4288  4.8845 2.9747 1.7920
37 0.1029  18.2520 1.1600 1.1278 1.0048  0.8636  0.7359  0.6210 0.4273 0.2775 0.1666 0.0989
38 0.1029  18.2520 1.1600 1.1296 1.0131 0.8783  0.7553  0.6436 0.4524 0.3011 0.1861 0.1138
39 0.1029  18.2520 1.1600 1.1271 1.0017  0.8582  0.7288  0.6128 0.4182 0.2691  0.1598 0.0938
40 0.1029  38.0915 2.4800  2.4224 2.1995 1.9381 1.6955 1.4712 1.0764 0.7504  0.4898 0.3167
41 0.1029  38.0915  2.4800  2.4170 2.1748 1.8937  1.6359 1.4008 0.9952  0.6707  0.4206 0.2610
42 0.1029  38.0915 2.4800  2.4185 2.1815 1.9057  1.6520 1.4196  1.0167 0.6915  0.4384 0.2752
43 0.0510  41.3100 8.1000  7.9301 7.2691 6.4854  5.7486  5.0583  3.8163 2.7567 1.8764 1.2664
44 0.1029  75.6315 7.3500 = 7.1475 6.3732  5.4838  4.6781 3.9525  2.7269 1.7764 1.0701 0.6375
45 0.1029  75.6315 7.3500 = 7.1475 6.3732  5.4838  4.6781 3.9525  2.7269 1.7764 1.0701 0.6375
46 0.4200  78.1029 31.9000 31.1586  28.2921 24.9299 21.8088 18.9244 13.8459 9.6529  6.3006 4.0739
47 0.1029  79.8642 36.1500 35.4021  32.4916 29.0357 25.7811 22.7268 17.2154 12.4927 8.5498 5.8028
48 0.2466  83.5212 58.1000 56.7213  51.3970 45.1664 39.3994 34.0849 24.7721 17.1378 11.0843 7.1010
49 0.3175 101.2415 54.7000 53.5201  48.9379 43.5204 38.4437 33.7050 25.2260 18.0543 12.1549  8.1126
50 0.4200 267.1874 34.0500 33.5137  31.3992 28.8284 26.3390 23.9331 19.3809 15.1914 11.3890  8.4846
51 0.1029 488.7750 47.5000 46.8222  44.1408 40.8567 37.6499 34.5235 28.5223 22.8798 17.6287 13.5052
52 0.4200 2041.2000 48.6000 47.9546  45.3948 42.2456 39.1526 36.1200 30.2423 24.6363 19.3316  15.0884
53 0.3175 2530.4750 79.7000 78.6177  74.3298 69.0601 63.8955 58.8385 49.0673 39.7870 31.0495  24.0989

ot
N

0.6350 7156.4500 112.7000 111.1481 104.9981 97.4494 90.0574 82.8300 68.8901 55.6896 43.3016 _ 33.4832
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Table 10.3: Theoretical group velocities for various solid volume fractions and particle sizes
as approximated by Equation (6.6.3).

Particle R d Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity Velocity
Nr. diameter eynlc; i €p = 0.0 €5 =0.01 €5 =0.05 €¢p =0.1 € =0.15 €, =0.2 € =0.3 €¢p =0.4 € =0.5 €p =0.585
[cm] rumber [em/s] [em/s] [cm/s] [cm/s] [cm/s] [cm/s]  [ecm/s] [ecm/s] [cm/s] [cm/s]
1 0.0181 0.0002  0.0021 0.0013 0.0009  0.0007  0.0006  0.0005 0.0003 0.0002 0.0002 0.0001
2 0.0181 0.0002  0.0021 0.0013 0.0009  0.0007  0.0006  0.0005 0.0003 0.0002 0.0002 0.0001
3 0.0096 0.0003  0.0139  0.0088 0.0061 0.0046  0.0038  0.0031 0.0023 0.0017 0.0012 0.0009
4 0.0096 0.0003  0.0139  0.0088 0.0061 0.0046  0.0038  0.0031 0.0023 0.0017 0.0012 0.0009
5 0.0358 0.0014  0.0080  0.0051 0.0035  0.0027  0.0022 0.0018 0.0013 0.0010 0.0007 0.0005
6 0.0358 0.0014  0.0080  0.0051 0.0035  0.0027  0.0022 0.0018 0.0013 0.0010 0.0007 0.0005
7 0.0096 0.0022  0.0455  0.0290 0.0200  0.0153  0.0124  0.0103 0.0074 0.0055  0.0040 0.0030
8 0.0096 0.0022  0.0455  0.0290 0.0200  0.0153  0.0124 0.0103 0.0074 0.0055 0.0040 0.0030
9 0.0096 0.0022  0.0455  0.0290 0.0200  0.0153  0.0124  0.0103 0.0074 0.0055  0.0040 0.0030
10 0.0230 0.0030  0.0656  0.0418 0.0288  0.0220 0.0178  0.0149 0.0107 0.0079 0.0058 0.0044
11 0.0230 0.0030  0.0656  0.0418 0.0288  0.0220 0.0178  0.0149 0.0107 0.0079 0.0058 0.0044
12 0.0128 0.0648  0.0323  0.0208 0.0144  0.0110  0.0089  0.0074 0.0054 0.0040 0.0029 0.0022
13 0.0128 0.0648  0.0323  0.0208 0.0144  0.0110 0.0089  0.0074 0.0054 0.0040 0.0029 0.0022
14 0.0181 0.0758  0.0649  0.0417 0.0288  0.0221  0.0179  0.0150 0.0108 0.0079  0.0058 0.0044
15 0.0181 0.0786  0.0649  0.0417 0.0288  0.0221  0.0179  0.0150 0.0108 0.0079 0.0058 0.0044
16 0.0181 0.0786  0.0649  0.0417 0.0288  0.0221  0.0179  0.0150 0.0108 0.0079 0.0058 0.0044
17 0.1029 0.0992  0.8714  0.5612 0.3883  0.2975  0.2416  0.2015 0.1455 0.1071  0.0785 0.0593
18 0.1029 0.0992  0.8714  0.5612 0.3883  0.2975  0.2416  0.2015 0.1455 0.1071  0.0785 0.0593
19 0.0253 0.1199  0.1428  0.0921 0.0637  0.0488  0.0397  0.0331 0.0239 0.0176  0.0129 0.0097
20 0.0253 0.1199  0.1428  0.0921 0.0637  0.0488  0.0397 0.0331 0.0239 0.0176  0.0129 0.0097
21 0.0096 0.3024  0.2220  0.1444 0.1004  0.0771  0.0627  0.0524 0.0379  0.0279  0.0205 0.0155
22 0.0096 0.3024  0.2220  0.1444 0.1004  0.0771  0.0627  0.0524 0.0379  0.0279  0.0205 0.0155
23 0.0253 0.3909  0.8819  0.5764 0.4018  0.3091  0.2516  0.2102 0.1522 0.1123  0.0824 0.0622
24 0.0253 0.4908  0.1941 0.1272 0.0888  0.0683  0.0556  0.0465 0.0337  0.0249 0.0183 0.0138
25 0.0230 1.2274 -0.3574 -0.2387 -0.1684 -0.1304 -0.1066 -0.0893 -0.0649 -0.0480 -0.0353  -0.0267
26 0.0230 1.2274 -0.3574 -0.2387  -0.1684 -0.1304 -0.1066 -0.0893 -0.0649 -0.0480 -0.0353  -0.0267
27 0.0230 1.2274  -0.3574 -0.2387  -0.1684 -0.1304 -0.1066 -0.0893 -0.0649 -0.0480 -0.0353  -0.0267
28 0.0230 2.0202  0.6796  0.4608 0.3278  0.2550  0.2090 0.1756  0.1281  0.0949  0.0700 0.0530
29 0.0230 2.0202  0.6796  0.4608 0.3278  0.2550  0.2090  0.1756  0.1281  0.0949  0.0700 0.0530
30 0.0230 2.0202  0.6796  0.4608 0.3278  0.2550  0.2090 0.1756  0.1281  0.0949  0.0700 0.0530
31 0.0510 2.7537  3.0429  2.0860 1.4936 1.1661  0.9583  0.8063 0.5898  0.4380 0.3233 0.2450
32 0.1029 6.5276  6.7538  4.8214 3.5406  2.8056  2.3288 1.9742 1.4604 1.0934 0.8123 0.6183
33 0.1029 6.5276  6.7538  4.8214 3.5406  2.8056  2.3288 1.9742  1.4604 1.0934 0.8123 0.6183
34 0.1029 6.5276  6.7538  4.8214 3.5406  2.8056  2.3288 1.9742 1.4604 1.0934 0.8123 0.6183
35 0.0253 8.9815  4.0706  2.9592 2.1996 1.7560 1.4651 1.2470 0.9280 0.6980  0.5204 0.3971
36 0.1029  11.7571 22.8815 16.9090 12.7115 10.2214  8.5708 7.3237  5.4839  4.1437  3.1006 2.3725
37 0.1029  18.2520 1.4041 1.0680 0.8199  0.6684  0.5660  0.4875 0.3697 0.2821  0.2127 0.1637
38 0.1029  18.2520 1.4041 1.0680 0.8199  0.6684  0.5660  0.4875 0.3697 0.2821  0.2127 0.1637
39 0.1029  18.2520 1.4041 1.0680 0.8199  0.6684  0.5660  0.4875 0.3697 0.2821  0.2127 0.1637
40 0.1029  38.0915 2.9777  2.3721 1.8877  1.5778 1.3613 1.1909 0.9265 0.7220  0.5545 0.4325
41 0.1029  38.0915 2.9777  2.3721 1.8877  1.5778 1.3613 1.1909 0.9265 0.7220  0.5545 0.4325
42 0.1029  38.0915 2.9777  2.3721 1.8877  1.5778 1.3613 1.1909  0.9265 0.7220 0.5545 0.4325
43 0.0510  41.3100 9.7926  7.8447 6.2710  5.2585  4.5486  3.9877  3.1137  2.4342 1.8745 1.4651
44 0.1029  75.6315 19.2420 16.6715 14.2600 12.5900 11.3546 10.3317 8.6294 7.1812 5.8718 4.8230
45 0.1029  75.6315 19.2420 16.6715 14.2600 12.5900 11.3546 10.3317 8.6294 7.1812 5.8718 4.8230
46 0.4200  78.1029 38.0488 31.6614 26.1320 22.4390 19.7777 17.6253 14.1637 11.3592 8.9549 7.1298
47 0.1029  79.8642 43.1555 35.9593  29.7138 25.5372 22.5246 20.0861 16.1597 12.9737 10.2379  8.1580
48 0.2466  83.5212 66.5872 55.4966  45.8670 39.4259 34.7791 31.0173 24.9591 20.0419 15.8182 12.6064
49 0.3175 101.2415 64.6485 54.5664 45.5982 39.5280 35.1107 31.5072 25.6404 20.8063 16.5882  13.3311
50 0.4200 267.1874 39.4882 34.9092 30.4135 27.2511 24.8870 22.9109 19.5724 16.6643 13.9584 11.7199
51 0.1029 488.7750 52.5990 47.4803 42.1740 38.3909 35.5421 33.1447 29.0480 25.4066 21.9228 18.9396
52 0.4200 2041.2000 53.4548 49.9617 45.8572 42.8963 40.6731 38.8103 35.6399 32.8134 30.0593 27.6116
53 0.3175 2530.4750 88.8463 83.3427 76.7600 72.0112 68.4534 65.4799 60.4378 55.9636 51.6190 47.7623

ot
N

0.6350 7156.4500 131.3540 124.7385 116.2342 110.1158 105.5862 101.8526 95.6594 90.3337 85.3202 _ 80.9810
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Figure 10.1: Correlation between empirical data from Richardson and Zaki (1954) and
predictions made by Equation (6.6.3).
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Figure 10.1: Correlation between empirical data from Richardson and Zaki (1954) and
predictions made by Equation (6.6.3).
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Chapter 11

Concluding Remarks

The main objective of this work was to address the problem of modelling two-phase
flow. In doing so, a model has been developed to simulate the motion of discrete
particles together with the motion of a Newtonian fluid which contains them. The
fluid is modelled with microscopic Navier Stokes equations which are then averaged
with the use of a Representative Unit Volume (REV). The particulate phase momen-
tum conservation equation was obtained by examining the forces acting on a single
spherical particle and using a summation method to deal with its discrete nature when

determining averaged quantities.

Particle-particle collisions, due to increased volume fractions, were established by using
the principle of momentum conservation and full elasticity in conjunction with a colli-
sion sphere model. The remaining point variables were expressed in terms of averages
by adapting an existing version of the representative unit cell (RUC) model to include

the motion of the particles.

The momentum transfer term was split into a Darcy and a Forchheimer regime. The
viscous regime was then split into very high and very low particle volume fractions.
Equations for the high particle volume fractions were obtained from the modified RUC
model whereas the very low particle volume fractions were modelled with Stokes flow
around a spherical particle. An asymptotic matching technique was then applied to
match these extreme volume fractions in order to obtain an expression for the viscous
regime that could also apply to intermediary particle volume fractions. The asymptotic
matching technique was then again applied to match the Darcy and the Forchheimer

regimes.
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The above procedure yielded a momentum conservation and a mass conservation equa-
tion for each of the phases. A numerical code was developed in Fortran to solve these
equations and was designated Two Phase Flow Simulator (2PMS). In order to demon-
strate the prediction capabilities of 2PMS, experiments were performed at the Council
for Scientific and Industrial Research (CSIR): A settling tube was used in conjunction
with a camera to determine the settling velocity of five different sized ranges of spheri-
cal glass particles. The data obtained via the settling tube and that obtained with the
camera, corresponded well with each other. These results were also accurately simu-
lated with our theoretical model and since it was possible to simplify the momentum
conservation equation for the particulate phase for instances where a terminal group
velocity had been reached, it was possible to obtain solutions for such a limiting ter-
minal case with either analytical or numerical integration methods. The reliability of
2PMS was demonstrated when it matched these results accurately as shown in Chapter
8. The accuracy of the model was again corroborated when it was tested against em-
pirical data obtained by Richardson and Zaki (1954). Not only did the model perform
well for the entire range of solid volume concentrations used in these experiments but

it remained accurate through Reynolds number ranging between 0.02 and 7600.

The objective of modelling two-phase flow based purely on the physical traits of the
constituent phases has however only been partially attained. It remains to specify how
the fitting parameter used within the asymptotic matching technique is dependent on
the physical properties of two-phase motion. In retrospect it was concluded that the
Forchheimer regime should also be divided into its limiting concentrations and that
the expressions derived for each should then be matched as was done with the Darcy

part of the equation.
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Appendix A

Forces acting on a sphere

A.1 Introduction

The resultant force acting on a sphere, submerged in a continuum, is divided into a
volume and a surface component. The volume forces consist of a weight, buoyancy
and an added mass force which are denoted by Fy,, Fp,,, and I, respectively.
The surface forces include a drag force, F'f, a pressure force, F'p, the Basset, Saffman
and Magnus forces, respectively denoted by Fg, Fg and F,,, and a particle-particle
collision force which is denoted by F,. The Basset force is often referred to as the
History force. A brief discussion is presented on each and an expression is given for the
ratio of the velocity gradient related forces with the Stokes drag in order to quantify

the relative importance of each.

A.2 Volume forces

Weight and buoyancy are the two main volume forces acting on the particle. In addi-
tion, the notion of "added" mass has been introduced. The added mass force represents
a fluid force exerted by the fluid particles around an accelerating body. The surround-
ing fluid is pulled along with the accelerating body and the body experiences a force

as if its mass is increased by the amount of the "added" mass.

Added mass is dependent on the density of the fluid and it follows that it may be
neglected for cases where the density of the body is far greater than that of the sur-

rounding fluid. If the density of the fluid is, however, comparable or greater than that
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of the body, the added mass may be greater than the mass of the body itself and will
have a significant effect. However, for the current study, the concept of added mass

will be neglected.

The volume of the carried mass generally depends on the particle geometry, and is

given by
me = km,, (A.2.1)

where m, and m, denote the added mass and the particle mass, respectively, and &
is a constant, which, for a sphere, equals 0.5 (Fan and Zhu (1998) and Kleinstreuer
(2003)). The real mass, together with the added mass are referred to as the virtual

mass of the body, and the virtual mass force, F'y,;, is given by

1 d
EVM = §pcyp£(yc - yp)’ (A22)
where p. and v, denote the density of the continuum and volume of a particle, respec-
tively, whereas the continuum- and particle velocities are, respectively, given by v, and

v,. The total volume force, experienced by the spherical body, is given by

Fyy = Ew+ Fpuyt+ Eau

pelp d
F—(

—— A2.3
2 dt ( )

v.— U

= g(ﬂp —pe) + Le —p)’

where p. is the continuum density.

This concludes the discussion on volume forces which act on the sphere as a result
of inertia and the difference in densities between the sphere and its surrounding fluid

matter.

A.3 Surface forces

The surface of the body is exposed to the surrounding fluid and often moves with a
velocity different to that of the fluid. The viscosity of the surrounding fluid, the relative
velocity of the particle, and pressure gradients, induce forces on the surface of the body.

The resultant surface force, Fg,,;, is divided into six components as

ESurf = ED + EP + EB + ES + EM + Epp’ (A?)]_)
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where F',, Fp, Iy denote the drag, pressure and Basset forces respectively. The
Saffman and Magnus forces are given by, Fg and F),, while I, denotes the particle

interaction force.

In the following sections a brief description will be given of each of the aforementioned

surface forces.

A.3.1 Pressure force

The definition of the pressure force is not consistent within literature: Crowe et al.
(1998) and Fan and Zhu (1998) regard the pressure force to be due to the static
pressure only, and argue that the pressure force is thus the cause of buoyancy. Buoyancy
is, however, treated by many as a separate force to that induced by pressure in the
surrounding fluid. Kleinstreuer (2003), for example, classifies buoyancy and pressure
forces separately by introducing buoyancy as a surface force whilst the pressure force

is classified as a volume force. The pressure force in this regard is given by
Fp = —u (Vp+V:z,)., (A.3.2)

In this work, the approach followed by Crowe et al. (1998) and Fan and Zhu (1998) is
applied and the pressure force will therefore be regarded as the force that arises due

to static pressure differences within the continuum.

The local pressure gradient in a stationary fluid gives rise to a force in the direction of
the pressure gradient. The net pressure force, F'p, acting on the particle is given by
(Crowe et al. (1998) and Fan and Zhu (1998)) as

Fp = / —pn,dS, (A.3.3)
(i)

where n,, is the outwardly directed normal unit vector on the particle wall and Jv,;
is the surface area of particle i. Following Crowe et al. (1998), the divergence theorem

is applied to Equation (A.3.3), yielding
Fp = — Vpdv, (A.3.4)

Vp(i)
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where v,;) is the volume of the it" particle. Under the assumption that the pressure
gradient remains constant over the volume of the particle, Equation (A.3.4) may be

expressed as
EP = —Vpr(i). (A35)

The pressure, p, in Equations (A.3.3)-(A.3.5) is the hydrostatic pressure which is given
by Archimedes’ principle, i.e. p = p.gy, where y is the diameter of the particle. It

follows that the pressure gradient is given by
Vp = —pegk, (A.3.6)

where k is in the direction opposed to gravity (upward). The corresponding pressure

force is given by
EFp = pegvpu- (A.3.7)

A.3.1.1 Static and dynamic pressure components

Figure A.1 is a simplified depiction of fluid entering and exiting a cubically shaped

control volume.

|

v, Ajl A i

__1 _; _2»_2
[

pil  d-—-]--J p
Ax

Figure A.1: Simplified conservation of mass.

The inflow and outflow fluid velocities are given by v, and w, respectively, Az is the
width of the cube while p; and p, represent the pressures on the left- and right hand
sides of the volume, respectively. The areas over which the fluid enters and exists the
volume are given by A; and As. Conservation of momentum for an incompressible
fluid, yields

F.. = mea, (A.3.8)

—Tes
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where F' . is the resultant force acting on the fluid, whereas m. and a, denote the

s

mass and velocity of the cubic volume, respectively.

Pressure is defined as force per unit area, hence

Vg — U1
As —p1Ay = me :
P2Ay — p1Aa m At
Ap v+ RUAL —
—Azx ) Ay —pAy = me Az
(pl + Ar 1’) 2 — P11 m A )

where Av = vy — v;. If the inflow and outflow areas are equal in size (i.e. A; = Ay) it
follows that

&V _ Az Av

(A.3.10)

Dividing the right-hand side of Equation (A.3.9) by the cube volume, V., and noting
that Az/At = v, yield the following expression for the pressure gradient

Ap Av

In order to approximate an infinitesimally small volume, Az, is assumed to approach
zero, and Equation (A.3.11) may be expressed in differential form and generalised to

vector form as

dp dv

Integration of the left- and right-hand sides of Equation (A.3.12) with regard to pressure

and velocity, respectively, yields

Ptot Vo
/ dp = pc / v-dv
Po v1

1

Ptot —Po = ch ('Ug - 'U%) . (A313)

It follows that

1

Pot 5pe (v3=v]) = Dot (A.3.14)

If v; = 0 then

Lo,

Po+ 5PV = Doty (A.3.15)
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where p, denotes the static pressure, p,,; denotes the total pressure and the dynamic
pressure is denoted by % pcv?. This is identical to Bernoulli’s equation which was derived
using energy conservation. The total pressure is therefore made up out of two types of
pressures: The first is the hydrostatic pressure which is present when the continuum
is stationary, the second is the pressure due to the motion of the continuum. The

orientation of the static pressure force is shown in Figure A.2.

Low static pressure

Fp l—) Y
High static pressure x

Figure A.2: Direction of the pressure force on a particle.
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A.3.2 Basset or History force

Whereas the added mass force accounted for the effect that relative acceleration had
on the volume of the body, the Basset force arises from the effect that the accelerating
fluid has upon the surface of the particle. The added mass force accounts for the form
drag during acceleration. In turn, the Basset force accounts for the viscous drag effect
due to acceleration. The Basset force accounts for the effect of past acceleration on
the resistance and is often referred to as the history force and denoted by F; (Crowe
et al. (1998)). The Basset force, Fp, is given by (Fan and Zhu (1998))

(D) tdfdr (v, — v,)
Fp = 6(5) \/wpc,uc/o N dr, (A.3.16)

here (¢ — 7) is the time elapsed since the previous instance of acceleration from 0 to t.
The particle diameter is given by d, whereas p. and p, are the dynamic viscosity and
the density of the surrounding continuum, respectively. The particle- and continuum

velocities are denoted by v, and v, respectively.

The Basset force becomes substantial at high acceleration rates. For constant accel-
eration the ratio of the Basset to the Stokes drag, Rpg, is given by Wallis (1969)
as,

18 Pc TS

R = —_—— A.3.17
BS T Dy 1 ) ( )

where 75 is the Stokes relaxation time defined as,

deg%
1841,

(A.3.18)

Ts

It follows that the Basset force may be negligible when the fluid-particle density ratio
is small and/or the time elapsed since the previous instance of acceleration is much

longer than the Stokes relaxation time.

A.3.3 Saffman force

In sections where a velocity gradient exists, e.g. near a wall or in a region of high
shear, a sphere moving at a constant velocity is subjected to a lift force caused by the

velocity gradient (Johnson (1998)). This lift force is termed the Saffman force and was
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originally derived by Saffman (1965) for the motion of a sphere at a constant velocity

in a simple shear flow at low Reynolds numbers as

K. 1
Fs = —=lle.—ylldy /- (A.3.19)

The constant K was determined by Fan and Zhu (1998) as K = 6.46. The dynamic- and

kinematic fluid viscosities are given by u. and v,, respectively. The particle diameter

is denoted by d, and || v, — v,|| is the magnitude of the relative velocity whereas 7 is
the magnitude of the shear rate. The Saffman force is orientated perpendicular to the
direction of fluid motion and is directed away from the region of high shear towards

the region of low shear as illustrated in Figure A.3.

U,

—

Figure A.3: Direction of the Saffman force on a particle.

The ratio of the Saffman force to the Stokes drag, Rgs, is given by Fan and Zhu (1998)

as
Kd 1
R = L[ —. A.3.20
SS 12, MCW ( )
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In a shear flow, with a constant shear rate, Rgs can be estimated by

Kd
Rgs = 12”” V/ Rey, (A.3.21)

which indicates that the Saffman force is negligible at small shear rates or small

Reynolds numbers.

A.3.4 Magnus force

Particle rotation may be caused by a) particles colliding with a rigid boundary, b)
particles colliding with each other, or ¢) the presence of a strong shear fluid flow. In
the low Reynolds number regime such a rotation will cause some of the surrounding
fluid to rotate with the particle. Such a rotation will result in an increase of fluid
velocity on the one side of the particle and a decrease on the opposite side as shown
in Figure A.4. The particle will move towards the region of higher velocity. This is

known as the Magnus effect and the force is known as the Magnus force.

Figure A.4: Direction of the Magnus force on a particle.

The Magnus force for a spinning sphere in a uniform flow-field at low Reynolds numbers
is given by Fan and Zhu (1998) as

T 3
F, = gdppcix Uy (A.3.22)

where W denotes the angular velocity of the sphere. As seen from Equation (A.3.22),
this force is independent of the viscosity of the fluid. The ratio, Ry;g, of the Magnus
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force to the Stokes drag is,

a2 p
R = 2y, A.3.23
s = gt (4.3.23)

From Equation (A.3.23), the Magnus force is negligibly small compared to the drag

force when the particle size is small or the spin velocity is low.

A.3.5 Drag force

Drag forces on a particle may originate from its motion relative to a surrounding
continuum. For instances of high particle volume fractions, drag forces may also be a

result of the relative motion of neighbouring particles.

A.3.5.1 Drag due to particle-continuum interaction

The drag force due to the relative velocity between the particle and its surrounding
fluid gives rise to a slip velocity. Such a slip velocity causes an unbalanced pressure
distribution which brings about viscous stresses on the surface of the body. For a

spherical particle in a uniform flow field the Stokes drag is given by
Pec
ED = CDAf?HQC_ yp”(yc_ yp)’ (A324)

where A; denotes the exposed frontal area of the particle to the direction of the in-
coming flow and Cp is the drag coefficient, which is a function of the particle Reynolds

number, Rey:

pedpl| v — v,]|

Re, =
P e

(A.3.25)

Schlichting and Gersten (2000) combined a vast amount of experimental and analytical

work on the value of C'p by various authors into a single curve shown in Figure A.5.

Reynolds numbers that fall in the range 700 < Re, < 10° constitute the inertial regime
for which the drag coefficient is given by Cp = 0.44. In this range, inertial effects

dominate over viscous effects.

For Reynolds numbers lower than the aforementioned range, viscous effects prevail
and it was shown by Stokes in 1850 that the drag coefficient is analytically given by
Cp = 24/Re,. The drag coefficient was obtained under uniform and undisturbed flow

conditions. The sharp reduction in the drag coefficient at high Re, corresponds to the
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Re

Figure A.5: Drag coefficient, Cp, for a smooth sphere.

transition from a laminar to a turbulent boundary layer over the particle (Fan and Zhu
(1998)).

However, in practice the flow conditions are usually not uniform due to the fluid itself
often being turbulent even when the relative velocity and resulting particle Reynolds
numbers are small. Such turbulence brings about a change in the wake structure, which
causes the body’s surrounding surface pressure distribution to change. The turbulence
causes C'p to deviate from the Schlichting’s curve in Figure A.5. Apart from turbulence,
the drag coefficient can also be affected by the movement of neighbouring particles.
Studies suggest (Fan and Zhu (1998)) that the drag coefficient of an individual particle

under the influence of a neighbouring particle may be expressed by

Cp

o= 1 (1— A)exp (-Bdi), (A.3.26)

P

where Cpg is the drag coefficient from the standard curve, [ is the distance between
the two interacting particles, and A and B are empirical coefficients which may be
functions of Re, and the deflecting angle between the direction of the relative velocity

and the line connecting the centres of the two interactive particles.
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A.3.5.2 Drag force due to particle-particle interaction

Interaction forces, F' . are the result of collisions between particles, flow turbulence

pp?
and/or Brownian motion effects. Shear flow causes particle interaction at high concen-
trations. An expression for the particle interaction force is derived in Chapter 5 under

Section 5.5.

In summation the forces experienced by a single particle are given by,

dv
mpd—tp = Fyu+ Eguy

= Fy+ Fyy+Fp+ Fp+ Fg+ Fy+ Fp+ F,,, (A3.27)

where the buoyancy force is replaced by the pressure gradient force and the basset

force, F'g, is often referred to as the History force.

Under the assumption of a symmetric stress dyad, the Magnus and Saffman forces
disappear. The virtual mass and Basset forces are regarded as negligible and the
remaining forces are given by

d
mp% = mpg+ /@ -gpdS, (A.3.28)

P

oy,

where the first term on the right hand side denotes the weight force whilst the pressure
gradient, drag and particle interaction forces are incorporated into a symmetric stress

dyad, g, which is integrated over the surface of the particle.
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Averaging methods

B.1 Introduction

The methods commonly used for the averaging of the conservation equations are dis-
cussed in this appendix. These include volume-, time-, and ensemble averages: Let
Q2 = Q(r,t) be any parameter (e.g. scalar, vector or dyad). The property, €, is ex-
amined at a fixed point in space, r, and time, ¢t. Either one of the phases may be
present at this time. Volume averaging is performed around the stationary point r at
a fixed time ¢, whereas time averaging is performed at the point r over a time interval
including time ¢. The ensemble average is regarded as the statistical average of the
parameter () at the point r and at time, £, over an abundant number of experiments

exhibiting the same initial and boundary conditions (Enwald et al. (1997)).

B.2 Volume averaging

Let the two phases under consideration be termed the a- and [-phase, respectively.
The volume average is taken over the whole volume U, of a Representative Elementary
Volume (REV) (Bachmat and Bear (1986)). If the parameter to be averaged exists only
in the a volume and not in the S volume, an appropriate toggle switch is needed when
computing the integral over the entire volume. To this end a step function, X (r,t), is

defined which has a value of unity in the a-phase and is zero in the S-phase.

A building block in the construction of X (r,t) is the unit step function, which in one

186
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dimension is given by

0, ifz < «
H(x —a,t) = (B.2.1)

1, ifz > a

The derivative of the step function is defined as

dH(z — a)

o = 0(x —a), (B.2.2)

where §(z — a) is the Dirac delta function.

Consider the function X(z,t), shown in Figure B.1a. X®(z,t) is a sum of step func-

tions, i.e.

XYz, t) = H@x—a)+Hx—a)+H(x—a)+H(x—a3). (B.2.3)

The derivative which is given by

dX*(z,t)

I = (z—ap) — 6(z — a1) + 0(z — az) — 0(z — ag), (B.2.4)

and is shown in Figure B.1b.

A unit normal vector n, is defined which points outward from the a-phase into the

p-phase at the af-interface. Equation (B.2.4) may the be written as

dX(z,t) ’ .

—a = Z n, - 10(x — ay), (B.2.5)
k=0

where 7 is the unit vector in the positive x direction. By analogy, Gray and Lee
(1976) defined the gradient of a three-dimensional distribution, X*(r,t), where r =

rit+yj+zk, as
VX r,t) = n,0(r— ru), (B.2.6)

and r,s denotes the position vector of the aS-interface.
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Figure B.1: One-dimensional distribution function X and its derivatives.

The volume average of a property, €2, is defined as

), = ui /QXa(f,t)du, (B.2.7)

U,

where U, is the averaging volume.
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Let D,, Dy and Dg denote the characteristic dimensions of the phases, the averaging
volume and the physical system, respectively. Whitaker (1969) gives the conditions

under which the volume averaging procedure may be applied as:

Dp < Dy < Dg. (B28)

B.3 Time averaging

The time averaging operator is defined as
1 t+T/2
), = —/ QXY (r,t)dr. (B.3.1)
T Ji—r)2
According to Delhaye and Achard (1978)! and Munkejord and Papin (2005), the time

interval, 7', chosen for the averaging must satisfy the following conditions:
T, < T < Ty, (B.3.2)

where T} is the time scale of the turbulent fluctuations and 7,,, is the time scale of the

mean flow fluctuations.

B.4 Ensemble averaging

The ensemble average is defined by

@), = [ax(r0ap), (B.4.1)

e
where dP(() denotes the probability of observing process ¢, whereas g is the set of all

possible outcomes.

The averaging rules for volume averaging, which, due to its physical interpretability, is

the preferred method of averaging in this work, are discussed in the next section.

B.5 Averaging principles

The phase average, (€),), of some property €2 is defined by

Q) (rt) = — /Q(f,t)X‘J‘(z,t)du, (B.5.1)

U,

In Enwald et al. (1997)
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where the volume of integration, U, = U, + Up is independent of space and time.

Physically, the a-phase average is a property of the a-phase only, although the average
is taken over the entire averaging volume occupied by the a- and [-phases. Because

X® is zero in the S-phase, Equation (B.5.1) may be written as

1

Q) (r.t) = 7 /Q(f,t)du. (B.5.2)

Ua

The intrinsic phase average, (€,),,, of some property €, is given by

Q). = — /Q(f,t)du. (B.5.3)

This type of average describes a property of the a-phase, averaged over that phase only.
The average is, however, assigned to the centre of the averaging volume, independent
of whether or not the centre is located within the particular phase. Comparison of
Equations (B.5.2) and (B.5.3) indicates that

(Q(r,t) = ealr,t)(Qa), (1,), (B.5.4)
where
e(rt) = UJU, = Lll /Xo‘(f,t)du. (B.5.5)
Z/Io

From the relation given by Equation (B.5.4) it follows that €, is the fraction of the

volume occupied by the a-phase.

B.6 Averaging theorems

The first theorem relates the average of a gradient to the gradient of an average and was
developed by Slattery (1967) and Whitaker (1967), independently. If € is continuous
within the a-phase, this theorem states that

(VQ,) = V(Q,) +

/ Qo dS, (B.6.1)
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where S,p is the af-interface and n, is the normal unit vector directed from the
a-phase into the g-phase. The relation may be proved using the function X“: From
Equation (B.5.1) it follows that

(VL) / VO (1, 8)] X1, H)dU. (B.6.2)

The chain rule is applied to the integrand, yielding

1
U,

/[VQQ(E,t)Xa(g,t)]du—uio /Qa(f,t)VX"(f,t)du.

U, U,

<VQa> =

(B.6.3)

Substitution of Equation (5.5.30) into the second term of Equation (B.6.3) then yields

1 1

) = o [ V(X 0)du - o [ Qulr(-1) b~ rdu

U, U,

(B.6.4)

The last step of the proof follows from the fact that the last integral in Equation
(B.6.4) involves the delta function which is zero everywhere except at the af-interface,
Sap- The value of an integral, of which the integrand is a J-function multiplied by
some other quantity, is that quantity evaluated at the singular points of the J-function
(Munkejord and Papin (2005)). It therefore follows that

1

” / Qa1 8) 101 — rop)dU =

Lll /Qa(f,t)@adé‘, (B.6.5)

u, Sap

and Equation (B.6.4) simplifies to

1

(V) = o

/[VQQ(E,t)Xa(g,t)]du+ui /Qa(f,t)ﬂad& (B.6.6)

U, Sap

If V, on the right-hand side of Equation (B.6.6), is considered to be V = Za% + Za% +

E%, then it may be removed from the integral since the volume of integration has been
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specified to be independent of r, hence Equation (B.6.6) may be expressed as

(VQ,) = V 1 / (r,t)X*(r,t)dU +L11 / Qu(r,t)n,dS, (B.6.7)
U, Sap
Application of Equation (B.5.1), yields
(VQ,) = V{(Q,) + Lllo / Qun,dS. (B.6.8)
Sap

Equation (B.6.8) concludes the derivation of an expression for the average of a spatial

derivative.

The second rule relates the average of a time derivative to the time derivative of an

average, and is given by

N\ 0 1
<0t> = §<Qa> U /Qaw n,dsS, (B.6.9)

where w is the velocity of a point on the afS-interface. The proof of the relation given
by Equation (B.6.9) commences with the application of the phase average, given by
Equation (B.5.1). It follows that the average of the partial time derivative may be

given as

<a;a> - 1,1, 8;1 (z, )X (z, t)dU. (B.6.10)

U,

Subsequent application of the chain rule, yields

< >_ /81& ()X ()] AU — — /MQQ([,t)dU. (B.6.11)

U, ot
In view of the assumption that U/, is independent of time, the order of differentiation

U,

and integration in the first term on the right side may be reversed and Equation (B.5.1)
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invoked to obtain
00,\ 0 1 [0X"(r,1)
<8t> = 5 () " /Tﬁa(Dt)du- (B.6.12)
U

If the a-phase is deforming, X* will be a function of time and the last term may be

non-zero. The total derivative of X¢ is

ax“ 0X® dxoX* dyoX®  dz9X?

- = — . B.6.13
at or " dt ox dt oy | dt 02 (B.6.13)
The functions %X—;, (Egj and &(;(_Za will only be non-zero on the Sg, interface. If ‘fl—f, %,

dz
and %%,

becomes a substantial derivative that moves with the interface. Because an observer

are chosen to be the velocity components of the interface, the total derivative

moving with the interfacial boundary will see no change, this derivative is zero, i.e.

dxe _O_aXa
dt Ot

+w- VX, (B.6.14)

where w is the velocity of the phase interface?. It follows that

0X“
ot

Substitution of Equation (B.6.16) into Equation (B.6.12), yields

- —w-VX* (B.6.16)

<a§;> = %<Qa>+ 1 /w(m)-VX“(E,t)Qa(z,t)du. (B.6.17)

U

Equation (B.2.6) is applied and it follows that

<8§ta> B %ma” 1 /w(fvt)'(_l)ﬂ(ﬁ(t—Eag)Qa(t,t)dU. (B.6.18)

U,

2In the summary of two-phase flow, given by Enwald et al. (1997), they cite Drew (1983) and
presents the following relation
dxe oxX~

a - VT 5

+ v, VX, (B.6.15)

where v, is the velocity of the a-phase. Note that this applies specifically to w = v,,, i.e. if there is
no combustion or condensation.
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As mentioned earlier, the integral involving the delta function is zero everywhere bar-

ring the interface S,g. It therefore follows that
o9 0 1
2 = = Q) — Quw- n,dU. B.6.1
(%2) = gl -g [ fow nau (B.6.19)
Sap

Equation (B.6.19) concludes the derivation of an expression for the average of a time

derivative.

The above two derivations exhibit the usefulness of the distribution function in proving
theorems for local volume averaging. In earlier work by Whitaker, these theorems were

proved using the general transport theorem (Whitaker (1967)).

The general averaging rules are given as (Enwald et al. (1997)):

(f+9) = (f)+{9 (B.6.20)

((fray = (g (B.6.21)

(constant) = constant (B.6.22)

(V) = V(f>+z/1{0 /f@ads (B.6.23)
Sap

(V-f) = V-<f>+u% /f-@ads (B.6.24)
Sap

<88—{> = %_u% /fwﬂads. (B.6.25)
Sap

These averaging identities are applied to the instantaneous conservation Equations
(2.6.1) and (2.6.2).

B.7 Averaging of the conservation equations

The averaging procedures for the mass and momentum equations, by way of the appli-

cation of identities given by Equations (B.6.20) to (B.6.25), are reviewed in Chapter 4.
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Appendix C

Evaluation of the shear stress

C.1 Introduction

The momentum conservation equations require the shear stress, T due to continuum
motion, to be evaluated inside the continuum as well as on the particle-continuum
interface, S,.. In this appendix the assumptions made in calculating expressions for
gradients and averages taken of shear stresses at these locations are discussed. The

results of which are applied in Chapter 5 to the averaged momentum equations.

C.2 Evaluation of the stress deviation term

Newtonian shear was given by Equation (5.2.5) in Section 5.2 as

o= (Ve (Vo)) (C.2.1)

=—C

The average of the divergence of the shear stress is
(Vir) = (VoY +V e (Vu)), (22

The viscosity, ., is assumed constant and Equation (C.2.2) may therefore be expressed

<V-;C> =l <V2QC—|—V' (VQC)T>. (C.2.3)

The divergence of the transpose of the velocity gradient, that appears on the right-hand
side of Equation (C.2.3), is given by

V- (Vy) = V(V- ), (C.2.4)

195
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and is zero due to the assumption of continuity (i.e. V- v, = 0). It follows that

Equation (C.2.3) simplifies to

<V-;C> = (V). (C.2.5)

Equation (C.2.5) may be expressed as

<V-;C> = Mg /V-(Vyc)d?/l. (C.2.6)

The divergence theorem is applied to Equation (C.2.6) and it follows that

<V'£C> = Mcui /ﬂc'(vyc)alé’jwtcz/{L /ﬂc-(Vyc)dS. (C.2.7)

Scc SPC

Subsequent application of Slattery’s Averaging Theorem to Equation (C.2.7), yields

<V'£c> = ucuiv- /(Vyc)dujtucuL /ﬂc~(Vyc)d8, (C.2.8)

UO Spc

and, finally, Equation (C.2.8) may be expressed as follows with the use of averaging

notation

1
<V T > = u.V-(Vu,)+ T / n,-(Vuv,)dS. (C.2.9)
Spe

Alternatively, the average of the divergence of the shear stress may be expressed as
1
<V ' £c> =V <2> +o / n,-1.dS. (C.2.10)
Spe

From Equations (C.2.9) and (C.2.10), it follows that
v-<7>+i / o1 dS = V- (V) e / n, - (Vu,)dS.
—=c uo —C —=c ~c uo 1o Ye
Spc Spc
(C.2.11)
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The continuum averaging rules are applied to the first term on the right-hand side of
Equation (C.2.11). It follows that

1 1 -
vo(z)+ /@c';dS = 1V eV {we) ] + 1V | o /ﬂcycds -

”Cui / n.-(Vu,)dS. (C.2.12)
Spe

The particle-continuum interface, S, is constant, and the integration and differenti-

ation procedures may therefore interchange in Equation (C.2.12). It follows that

1
V'<£c>+ﬁ /ﬂc';cdS = peV-[eV(n), +/~Lc /V n.0,+n. (Vu.)dS

Spe
(C.2.13)

It is assumed that the gradient of the continuum velocity deviations, ., is negligibly

small, allowing Equation (C.2.13) to be written as

Vi(e)tor [ nends = wV eVl tng [ o (Va)ds

o

Spc Spc
(C.2.14)

It follows that the left-hand side terms of Equation (C.2.14), which appear within the
continuum momentum conservation equation, may be replaced by those on the right-
hand side of Equation (C.2.14). In addition, the shear stress within the surface integral
is equal to the gradient of the velocity on the S,.-interface. Following Enwald et al.
(1997), Ishii (1977), Gidaspow (1986) and Mazzei and Lettieri (2007), the velocity on
the S,c-interface is assumed to adhere to a slip assumption and is therefore a function
of the relative velocity between the particle and the continuum. The aforementioned
observations are applied in the averaging and closure procedures of Equations (5.4.6)

and (6.4.2), respectively.



Stellenbosch University http://scholar.sun.ac.za

Appendix D

Momentum theorem

D.1 Introduction

In the following appendix the momentum theorem is discussed. This discussion supple-
ments the discussion given on the derivation for the particle-particle interaction force
in Chapter 5.

D.2 Derivation of the momentum theorem

According to the momentum theorem of mechanics the time rate of change of the

momentum is equal to the sum of the acting external forces

dl
— = > F.. (D.2.1)
For a system with n particles with masses m; and velocities v, it follows that
I = > mu, (D.2.2)
i=1

and thus

d
%Zmiyi = ZE. (D.2.3)

If the particles are assumed to form a continuum with density, p(x,y, z,t), the sum

changes into a volume integral. The rate of change of momentum is then

dl d
= _a . D.2.4
= pr /pde ( )

V(t)
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The volume V, which always contains the same particles, changes in a time interval
from V(t) to V(t + At)

d .1
pr /pydv = AliI—I}oKt / pu(t+ At)dV — /py(t)dV D.2.5)

V(t) V(t + At) V(t)

A Taylor series expansion is applied to the first integrand

pu(t+At) = pult)+ 8;“& +.. (D.2.6)
and it follows that
)dY + = dy (D.2.7)
8t (pu)dv + lim 1 pLEv - -
AV(t)

The last integral can be changed into a surface integral over the surface S(t) by using
the relation between the incremental volume element d) and the corresponding surface
element d S

dV = (v-n)dSAL (D.2.8)
It follows that
I 0
- = /E(py)dwr /py(y-@)d& (D.2.9)
V(t) S(t)

For steady flows the time rate of change of momentum is given by the surface integral
of the last equation (Krause (2005)). The surface, S, of the volume, V), considered is

called a control surface.
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Appendix E

Extension of collisional-kinetic force to

two dimensions

E.1 Introduction

In this appendix the particle-particle interaction force of Equation (5.5.51) is extended

to two dimensions.

E.2 Newton’s law
The three dimensional form of the Newtonian law is given by
T = 2uD, (E.2.1)

where T is the stress tensor, u is a constant of proportionality and D is the rate of
deformation- or rate of strain tensor which is related to the velocity gradient tensor,

V v, but unlike V v, is symmetric.

The asymmetric velocity gradient tensor is divided into a symmetric rate of strain

tensor, D, and an asymmetric vorticity -or spin tensor, S:
Vv = D+5, (E.2.2)
where

1

IS

200
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and
S = %(VQ—VQT). (E.2.4)

The symbol T', which appears in Equations (E.2.3) and (E.2.4), denotes the transpose

operation and the symmetric tensor may be expressed in matrix form as

ou ov ou  Ow ou .
1 29 wTay oo i
_ T — . . ou ov ov ow ov .
Vet Ve (l J E) wta 2, o ta j
ou ow v ow ow
5: T o: T ey 26: k
(E.2.5)

The spin tensor given in Equation (E.2.4) does however not influence the viscosity and
it follows that

I
Il

2puD
= pu(Vu+Vah). (E.2.6)

To show that this is indeed the same as the law for one dimension: Let the velocity
have an z-component only and let this component only be a function of the y-direction.
It follows that

ou
0 5 O i
0 0 O k
This is equivalent to
1 T ou . .~ Ou .
= = — —Jji. E.2.
5(Vu+ Vo) R EL (E.2.8)
Finally we have the original one dimensional form:
T = 2ul
0 74y O 0 &0
1
e 0 0| = (2n <§) &0 0 |, (E.2.9)
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and it follows that

0
Toy = Tyz = ua—;j. (E.2.10)

The three dimensional force vector is thus given by

e = _ni.#wﬁvﬂ (Vo+ Vo). (E.2.11)

<avg -

Let the shearrate tensor be denoted by

7= VQ+VQT>

ou  Ov ou Ov
= — 4+ =] 2 —+— )13 E.2.12
(&y + &B) JLt <8y * 01') td ( )
The magnitude of which is given by!
. 1 0 S+ 0 5t
|f>/| = iTT 5 5 Y ' o 5 Y ’
ou  Ov
= — 4+ —. E.2.14
dy + Ox ( )
The shear stress term is thus given by
ou  Ov Ju  Ov
= —+— ) Je —+— ] iJ E.2.15
T MpKaer&E) l“(aﬂax) 24, ( )
where the particle viscosity is given by
Epppd?) 8” 8’U
_ T I E.2.16
Ho 12 \ 0y o ( )
Equation (E.2.11) may therefore be expressed as
o andy (00 00\ [(0u a0\ (0w a0\ ]
iavg - 4 (8y+&v 8y+8:v Lt 8y+0x L) Vi
(E.2.17)

'The magnitude of any tensor A is defined as

4] = \/%(A:AT) = \/%TT(AT-A). (E.2.13)
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Appendix F

Directional components of the

momentum equations

F.1 Introduction

The mass conservation expressions, given by Equations (4.4.6) and (4.7.18), and the
momentum conservation expressions, given by Equations (6.6.2) and (6.6.3), are refor-
mulated and divided into their component expressions in order to make them suitable

for discretisation. The elaborate averaging notation will be dropped here.

F.2 Decomposition of vector equations into

component form

Equation (4.4.6) is multiplied by the continuum velocity, v,., and the result is subtracted
from Equation (6.6.2). A similar operation is performed with Equations (4.7.18) and

(6.6.3), yielding the following simplified forms for continuum- and discrete phases,

respectively:
Juv,
pC‘SCE + Pc€c U, * VQC = pPec gec — Echc + /J/cv : [Ecv Qc] -
s s 1/s
€ 366061/3 1 cyp. €,€2
Hep 14 +18 + ap. pPCe QHQC_ypH (yc_yp)7

2 d, (1 B 61{2}/3)

d (1 — 612,/3> (1 — 611,/3>

(F.2.1)
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and

) Eppd, (OuP  GvP\? .
Ppaepﬂp‘l’va'epprp = Epﬂ(pp_foc)_ pre? + n+

4 dy Ox
s s 1/s
1/3 2
ey 36€.€p 1 cqpe €p€s
dz% (1 — 6?;/3> (1 — 6119/3) 2 dy (1 — 612,/3>2 ’ ’
(F.2.2)
The 2- and y - components for Equation (F.2.1) are respectively given by
Ou. N O, N O, ope N 0 ou,. N 0 ou,.
c€c c€cUec—(— c€Ve—m— = —€F57— ca_ | e ca | e -
PeCegy T Petelicgy T PeteleTyy or " Hear \“ar ) THay \“ay
s s 1/s
1/3 2
€y 36€.€p 1 cqpe €p€s
— —|—18 = 2||Qc—2|| (uc_up)v
S\ ) e ey
(F.2.3)
and
e%jt eu%jL ev%— e—e%%— 2eavc + ge% —
pC C t pC C Cax pC cvYc ay - pcg C C ay MCaz Cax MCay C ay
s s 1/s
1/3 2
€y 36€.€p 1 cqpe €p€s
Hep +18 || + |= v = vyl (Ve = vp)
dg (1 . 6?;/3> (1 . 6;;/3) 2 dp (1 . 612,/3)2 P
(F.2.4)
The corresponding components for the particulate phase are given as
ou ou ou Eppdy (Ou v\ >
Ppepa—tp + Pcepupa—; + Ppepvpa—yp = —= 1 dy + O +
s s 1/s
€ 36¢.6./ 1cape  €,€
e : +18 e flu—ull] | (=),

d127 (1 — 612;/3> (1 — 611;/3>

2 d, (1 B 6]%/3)

(F.2.5)
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and
Ov Ou Ou exppdy (Ou o, \ >
ppepa—tp + ppepupa—:: + ppepvpg—yp = &9 (pp— Pc) — . 1 8—yp 8—:: +
s s 1/s
1/3 5

UEp 36€.€p 1 cape €p>

He +18 ]| + |5 v, — vl (Ve — 1) -

S\ ) e ey

(F.2.6)

Equations (F.2.3), (F.2.4), (F.2.5) and (F.2.6) may now be put into discrete form.
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Appendix G

Experimental camera data

Table G.1: Experimental camera data.

Min Max Average Distance Velocity Average
Begin End
size size velocity
frame frame

[em] [em] [cm] [em] [em/s] [em/s]
0.02 0.03 0.025 979 989 1 3.00 3.47
0.02 0.03 0.025 993 1002 1 3.33 3.47
0.02 0.03 0.025 732 741 1 3.33 3.47
0.02 0.03 0.025 767 775 1 3.75 3.47
0.02 0.03 0.025 771 780 1 3.33 3.47
0.02 0.03 0.025 822 831 1 3.33 3.47
0.02 0.03 0.025 856 866 1 3.00 3.47
0.02 0.03 0.025 960 969 1 3.33 3.47
0.02 0.03 0.025 978 988 1 3.00 3.47
0.02 0.03 0.025 800 808 1 3.75 3.47
0.02 0.03 0.025 867 877 1 3.00 3.47
0.025 0.05 0.0375 895 907 2 5.00 5.41
0.025 0.05 0.0375 911 924 2 4.62 5.41
0.025 0.05 0.0375 723 734.5 2 5.22 5.41
0.025 0.05 0.0375 769 780 2 5.45 5.41
0.025 0.05 0.0375 780 792 2 5.00 5.41
0.025 0.05 0.0375 807 836 4 4.14 5.41
0.025 0.05 0.0375 762 775 2 4.62 5.41
0.025 0.05 0.0375 789 800 2 5.45 5.41

Continued on next page
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Table G.1 — continued from previous page

Min Max Average Distance Velocity Average
Begin End
size size velocity
frame frame

[em]  fem] [em] [em] [em/s] [em/s]
0.025 0.05 0.0375 684 695 2 5.45 5.41
0.025 0.05 0.0375 728 740 2 5.00 5.41
0.025 0.05 0.0375 683 695 2 5.00 5.41
0.025 0.05 0.0375 673 685 2 5.00 5.41
0.05 0.075 0.0625 453 468 5 10.00 7.26
0.05 0.075 0.0625 471 487 5 9.38 7.26
0.05 0.075 0.0625 388 403.5 5 9.68 7.26
0.015 0.025 0.02 2593 2604 1 2.73 3.33
0.015 0.025 0.02 1895 1906 1 2.73 3.33
0.015 0.025 0.02 2121 2134 1 2.31 3.33
0.015 0.025 0.02 2186 2198 1 2.50 3.33
0.015 0.025 0.02 1728 1741 1 2.31 3.33
0.015 0.025 0.02 1743 1755 1 2.50 3.33
0.015 0.025 0.02 1511 1523 1 2.50 3.33
0.015 0.025 0.02 1526 1538 1 2.50 3.33
0.015 0.025 0.02 2181 2194 1 2.31 3.33
0.015 0.025 0.02 1639 1650 1 2.73 3.33
0.015 0.025 0.02 1647 1658 1 2.73 3.33
0.015 0.025 0.02 1811 1822 1 2.73 3.33
0.015 0.025 0.02 1852 1862 1 3.00 3.33
0.075 0.1 0.0875 579 591 5 12.50 13.49
0.075 0.1 0.0875 588 599 5 13.64 13.49
0.075 0.1 0.0875 1317 1328.5 5 13.04 13.49
0.075 0.1 0.0875 1322 1333 5 13.64 13.49
0.075 0.1 0.0875 1269 1280 5 13.64 13.49
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Appendix H

Comparison between experimental

data and theoretical prediction

The following figures are representative of the data listed in Tables 10.2 and 10.3. The
circular points indicate results yielded by the model developed in this work whereas
the starred data points denote the experiments which were done by Richardson and
Zaki (1954). Corresponding colours indicate corresponding conditions (i.e. similar

viscosities and densities).
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Figure H.1: Comparison between values predicted for the group settling velocities from
Equation (6.6.3) and experimental data from Richardson and Zaki (1954).
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Figure H.1: Comparison between values predicted for the group settling velocities from
Equation (6.6.3) and experimental data from Richardson and Zaki (1954).
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Figure H.1: Comparison between values predicted for the group settling velocities from
Equation (6.6.3) and experimental data from Richardson and Zaki (1954).
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Figure H.1: Comparison between values predicted for the group settling velocities from
Equation (6.6.3) and experimental data from Richardson and Zaki (1954).
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Equation (6.6.3) and experimental data from Richardson and Zaki (1954).
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