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Abstra
t
A theoreti
al model for the predi
tion of parti
le motion through a traversing New-tonian �uid is proposed. The model is derived by treating the �uid as a 
ontinuumand modelling its motion with the Navier-Stokes momentum- and mass 
onservationequations. Appli
ation of a Representative Elementary Volume (REV) yields expres-sions for the 
onservation equations in terms of averages. The parti
les are assumedrigid and momentum- and mass 
onservation equations are initially derived from New-tonian prin
iples for a single solid, spheri
al parti
le. A summation-based averagingpro
edure is applied to obtain 
onservation expressions in terms of averaged variablesfor the parti
le phase.Using the prin
iple of momentum 
onservation, a 
ollision-sphere model is applied tomodel the transfer of momentum between parti
les. The momentum transfer betweenthe parti
les and the 
ontinuum is modelled using a modi�
ation of an existing repre-sentative unit 
ell model for two-phase motion, mat
hed with an REV-averaged formof the Stokes drag law. In addition, an asymptoti
 mat
hing pro
edure is appliedbetween low- and high Reynolds number �ows. The mat
hing pro
edures render themodel appli
able to a wide range of parti
le volume fra
tions and Reynolds numbers.The theoreti
al model is implemented into a numeri
al 
ode and the numeri
al results,yielded from these simulations, are tested against results obtained through settling tubeexperiments done by the author at the Coun
il for S
ienti�
 and Industrial Resear
h(CSIR) in Stellenbos
h as well as published experimental results from literature.
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Opsomming
'n Teoretiese model vir die voorspelling van partikelbeweging deur 'n omringendedinamiese Newtoniese vloeistof word voorgestel. Die vloeistof momentum- en mas-sabehoud word met die Navier-Stokes momentum- en massabehoudsvergelykings gemo-delleer. Hierdie vergelykings word in terme van gemiddelde vloeistof eienskappe voorge-stel deur 'n verteenwoordigende eenheidsvolume toe te pas. Dit word aanvaar datdie deeltjies solied en bolvormig is. Momentum- en massabehoudsvergelykings virdie deeltjies word afgelei deur, aanvanklik, behoudsvergelykings vir 'n enkele partikel,op grond van Newton se wette, daar te stel. Volume gemiddeldes van bogenoemdedeeltjievergelykings word verkry deur die toepassing van 'n sommasie tegniek.Momentumoordrag tussen individuele deeltjies is gemodelleer deur die beginsel van mo-mentumbehoud en 'n botsing-sfeer model te gebruik. 'n Bestaande verteenwoordigendeeenheidssel model is gewysig om dit van toepassing op twee-fase vloei te maak. 'n Kom-binasie van die laasgenoemde model en die Stokes vergelyking vir die wrywingskrag op'n sfeer, is gebruik om momentumoordrag tussen die deeltjies en die vloeistof te mo-delleer. Daarbenewens is 'n asimptotiese passingstegniek gebruik om 'n passing tussenlae- en hoë Reynolds getal vloeie te bewerkstellig. Die passingsprosedures het tot diegevolg dat die model geskik is vir modellering oor 'n wye spektrum konsentrasie- enReynoldsgetalwaardes.Die vergelykings is geïmplementeer deur 'n rekenaar program in Fortran te ontwikkel.Die afvoer van hierdie simulasies is vergelyk met eksperimentele resultate, afkomstigvan valbuis-eksperimente uitgevoer vir hierdie studie by die Wetenskaplike Navorsingen Nywerheidsraad (WNNR), asook eksperimentele resultate vanuit die literatuur.
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Chapter 1Introdu
tion
1.1 MotivationTwo-phase �ow is be
oming in
reasingly signi�
ant in engineering design and te
hnol-ogy. In addition to its pertinent appli
ations in engineering and prevailing s
ienti�
problems it is also relevant to the interpretation of natural phenomena and thus war-rants further investigation.Empiri
al methods are required to emulate a number of diverse fa
tors, su
h as appa-ratus geometry and physi
al �uid properties. It is therefore vital that engineers ands
ientists grasp the underlying physi
s and theoreti
al modelling fundamental to theseappli
ations in order to design equipment a

urately.Currently, various Computational Fluid Dynami
s (CFD) pa
kages (e.g. FLUENT,CFX) employ two-�uid models to predi
t the behaviour of parti
les immersed in a�uid. The expressions that these two-�uid systems use to model the drag, due tothe relative velo
ity between the two phases, are often based on empiri
al models,derived from pressure-drop experiments in �uidised beds. This presents the need foran alternative model, based purely on the physi
s of the intera
tions.1.2 Ba
kgroundThe following se
tions give a brief overview of the ne
essary ba
kground theory for thisstudy and de�ne the 
on
epts that will be used in later stages of this work. A 
ompleteliterature review is given in Chapter 2. 1
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1.2. Ba
kground 2
1.2.1 Classi�
ation of modelling pro
eduresIshii (1975), Enwald et al. (1997) and Loth (2006) divided the modelling pro
eduresfor two-phase �ows into three 
ategories: Boltzmann -, Lagrangian -, and Eulerianmethods. Sin
e the Boltzmann methods are not dire
tly applied to this study, theywill only be dis
ussed brie�y in Chapter 2. For the time being it su�
es to distinguishbetween the Lagrangian and Eulerian strategies.1.2.1.1 Parti
le phase methodologiesBased on the frame of referen
e, modelling pro
edures for the parti
le phase are dividedinto two 
ategories namely Lagrangian or Eulerian.Lagrangian models treat the �uid phase as a 
ontinuum and 
al
ulate parti
le traje
to-ries. This is done by either tra
king ea
h individual parti
le (i.e. traje
tory 
al
ulation)or by tra
king groups of similar parti
les (i.e. simultaneous parti
le tra
king).The Eulerian des
ription, when applied to the dispersed phase, generally assumes the
hara
teristi
s of the parti
les (e.g. velo
ity) 
an be des
ribed as a 
ontinuum.Eulerian methods may be further subdivided into mixed- and separated-�uid ap-proa
hes. The former assumes a negligible relative velo
ity between phases and de-s
ribes the motion with a single set of 
onservation equations, whereas the latterassumes that phase velo
ities di�er and the motion is modelled with two sets ofmomentum- and mass 
onservation expressions: one set for ea
h phase.1.2.2 Interphase 
ouplingBoth Lagrangian and Eulerian treatments require a des
ription for the intera
tionbetween the phases. The interphase 
oupling for
e, Fpc, is a for
e a
ting on a singleparti
le due to pressure and vis
ous stresses whi
h are the result of disturban
es 
ausedin the �ow due to the presen
e of the parti
le.Su
h a for
e is equal in magnitude and opposite in dire
tion to the hydrodynami
parti
le for
e a
ting on the 
ontinuous phase. It amounts to the hydrodynami
 surfa
efor
es, F surf , minus the 
ontributions from the undisturbed �ow stresses, Fc. Theundisturbed stresses, F c, refer to the stress gradient for
es within the 
ontinuum,whi
h o

ur independent of the presen
e of the parti
le. The 
oupling for
e may be

Stellenbosch University  http://scholar.sun.ac.za



1.3. Obje
tives of this study 3
expressed by

Fpc = F surf − F c = FD + F TR + FAM + FHI , (1.2.1)where FD, F TR, FAM , and FHI , denote the drag-, transverse or lift for
es, the addedmass for
e and the history for
e, respe
tively (Kleinstreuer (2003), Crowe et al. (1998)).For heavy parti
les (ρp ≫ ρc), the interphase for
e is often simpli�ed to in
lude onlythe parti
le drag (negle
ting lift, added mass, and history e�e
ts, sin
e they are pro-portional to ρc) i.e. Fpc = FD. For light parti
les (ρp ≪ ρc) with negligible 
ollisions,the parti
le a

eleration and body for
e 
an be negle
ted.As the number of parti
les in
reases, 
ollisions be
ome more important, leading to dense�ows. The key aspe
t for these �ows is the proper in
orporation of the parti
le-parti
lee�e
ts on the parti
le phase �uid dynami
s. In parti
ular, the parti
le 
ollisions 
ausee�e
tive stresses, whi
h should be in
orporated into the parti
le transport equation.1.3 Obje
tives of this studyThe main obje
tive of this study is to 
reate a mathemati
al model that 
an predi
t themotion of parti
le mixtures in a Newtonian �uid with the potential to be modi�ed infuture work to in
orporate additional �ow regimes (e.g. a non-Newtonian 
ontinuum ormultiple phases). The integration of su
h a model into an existing 
ode 
ould in
reasepredi
tion 
apabilities for industrial appli
ations, while the pro
ess of its derivation
ontributes to an improved 
omprehension of the underlying physi
s that govern them.It is also the obje
tive of this work to provide a model that is 
apable of predi
tinga parti
le vis
osity and stress based on �rst prin
iples, thus eliminating the need forestimating these parameters.1.4 Contributions and publi
ationsA novel method is used to average the parti
le phase and the existing RepresentativeUnit Cell (RUC) model has been modi�ed to in
lude the 
ase of variable parti
le volumefra
tions. The 
urrent model in
ludes parti
le-parti
le intera
tions and is valid for awide range of Reynolds numbers and parti
le volume fra
tions.
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1.5. Overview of this work 4
A simulation 
ode was developed in Fortran and the two-phase �ow equations weresolved numeri
ally. These results 
ompared well with data obtained from settling tubeexperiments at the Coun
il for S
ienti�
 and Industrial Resear
h (CSIR).The appli
ation of these new modelling methods, as applied to low parti
le volume fra
-tions (ǫp ≪ 1), was presented at the International Conferen
e of Numeri
al Analysisand Applied Mathemati
s (ICNAAM) during September 2009 (Wilms et al. (2009)). Itwas expanded into a full arti
le and published in Applied mathemati
s and 
omputa-tion (Smit et al. (2010)). Extension of the drag term to in
lude the parti
le intera
tione�e
ts was presented during September 2010 at ICNAAM (Wilms et al. (2010)).1.5 Overview of this workTheoreti
ally the motion of solid parti
les suspended in a Newtonian �uid is 
ompletelydetermined by requiring the Navier-Stokes equations to be satis�ed at ea
h point ofthe �uid, and equating ea
h parti
le's rate of 
hange of linear and angular momentato the resultant for
e and the resultant torque applied to it. Termed a Lagrangiandes
ription, the extensive pro
essing power required by su
h an approa
h has provedviable only for low Reynolds number s
enarios 
omprising of a relatively small numbersof parti
les. Hen
e, the need for equations based on averaged �ow properties.Averaged expressions, whi
h are valid for all points in the �ow domain, are developedin Chapter 3. Although too 
omplex for a dire
t solution, they provide a good startingpoint for the development of mu
h needed averaging pro
edures whi
h are dis
ussed inChapter 4.Following Ba
hmat and Bear (1986), the mi
ros
opi
 Navier-Stokes expressions, asderived in Chapter 3, are averaged over a Representative Elementary Volume (REV) inChapter 4, yielding equations in volume averaged form. A summation-based averagingmethod for the dis
rete phase is used to 
ope with the dis
ontinuous nature of theparti
les to provide ma
ros
opi
 expressions for the dispersed phase.A 
oupling me
hanism exists between the parti
les for instan
es of in
reased parti
levolume fra
tions whi
h result in parti
le-parti
le 
ollisions. Following the work of Clark(2009), Bird et al. (2002), and Soo (1990), the 
losure of su
h an intera
tion term isdealt with in Chapter 5, using the prin
iple of momentum 
onservation in a Centre OfMass (COM) referen
e frame in 
onjun
tion with a 
ollision sphere model.
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1.5. Overview of this work 5
However, the pro
ess of averaging leaves a number of terms indeterminate. The prob-lem of 
losure for the parti
le-
ontinuum intera
tion is dis
ussed in Chapter 6 andyields an expression in terms of averaged variables by employing an extension of theRepresentative Unitary Cell (RUC) model. The adaptation to the RUC is requiredsin
e it is a simpli�
ation of the REV and was introdu
ed by Du Plessis and Masliyah(1988) for the averaging of single phase �ow through stationary porous media. Chapter6 
on
ludes the development of the dispersed two-phase �ow model.Chapter 7 is dedi
ated to a dis
ussion of the development of a simulation 
ode whi
hnumeri
ally solves the expressions derived in Chapter 6. The results obtained from thisprogram are illustrated in Chapter 8 and 
ompared to experimental work 
ondu
tedat the CSIR in Chapter 9.In addition to the aforementioned experimental veri�
ation, the model is tested againstexperimental data obtained by Ri
hardson and Zaki (1954) in Chapter 10. The work is
on
luded with Chapter 11 wherein 
on
lusions are given and re
ommendations madefor future resear
h topi
s.
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Chapter 2Literature review
2.1 Introdu
tionThere have been many 
ontributors to the advan
ement of two-phase �ow. This 
hapterattempts to provide a ba
kground of the history of this resear
h area and to get thereader a
quainted with terminology, enabling them to distinguish between the various
lassi�
ations s
hemes used in two-phase �ow.Detailed derivations of existing two-phase �ow averaging identities, presented in thispart of the work, are done in preparation for envisaging ideas presented in subsequent
hapters.2.2 Computational Fluid Dynami
s (CFD)developmentAn a

ount of the history of multi-phase Computational Fluid Dynami
s (CFD) isgiven by Ly
kowski (2010) in whi
h the initiation and development of multi-phaseCFD from 1970 to 2010 are dis
ussed. A synopsis of the key 
ontributors is given hereand the reader is referred to Enwald et al. (1997) for a detailed summary on �uidisedbed simulations up until 1997.Up until the 1970's, nu
lear rea
tor li
ensing software applied the Homogeneous Equi-librium Model (HEM), whi
h meant that both phases were modelled as one. Thisstatus quo already began to 
hange during the early 1960's when Solbrig, a student of6
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2.2. Computational Fluid Dynami
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Gidaspow, set out to develop a new set of equations for two-phase �ow whi
h would beequivalent to those developed for single-phase �ow by Bird and his team (Bird et al.(2002)). In 1971 Solbrig su

eeded and the derivation, published in Solbrig and Hughes(1971), was in
orporated into the Seriated Loop (SLOOP) software.In parallel to these developments, Los Alamos S
ienti�
 Laboratory (LASL) developeda similar 
ode 
alled KACHINA. KACHINA was the �rst software to provide sta-ble numeri
al solutions for multidimensional two-phase �uid dynami
s (Amsden et al.(1999)).During the mid 1970's, Spalding (Spalding (1980) and Runshal (2009)) who 
onsultedwith both LASL and Gidaspow, developed the Inter Phase Slip Algorithm (IPSA)(Spalding (1976)): A pro
edure to solve Partial Di�erential Equations (PDE's) similarto that published by Solbrig and Hughes (1971). The method was embedded into thePHOENICS sour
e 
ode in 1978.Systems, S
ien
e and Software (S3) started work in 1975 on a general 
omputer modelof �uidised bed 
oal gasi�
ation 
alled CHEMFLUB, and the 
ompany, JAYCOR,started on a similar sour
e 
ode in the early 1980's 
alled FLAG. These were transient,two-dimensional programs whi
h 
ontained PDE's similar to those in SLOOP (later,STUBE (Solbrig et al. (1976))) and KACHINA sour
e 
odes and in
luded vis
ous stressterms and an expression for the solids pressure. Work terminated on the S3 softwarebefore it was do
umented.KFIX was sour
e 
ode used by LASL for modelling two-dimensional �ow in Loss-of-Fluid Tests (LOFT). Gidaspow had an idea to develop KFIX for the simulation of a�uidised bed and a
quired the sour
e 
ode in 1977 from LASL. It was subsequentlymodi�ed by Gidaspow, Ly
kowski and Galloway, and installed at the Illinois Instituteof Te
hnology (IIT).Modi�
ations to KFIX involved the addition of a stabilising solids pressure term toprevent over 
ompa
tion. The addition of this term is dis
ussed in Bouillard et al.(1992). KFIX would later be known as FLUFIX whi
h in turn was 
oupled with theEROSION/MOD1 software and was designated FLUFIX/MOD2. This was followedby FORCE2, developed by Bab
o
k and Wil
ox (Ding et al. (1993)). These sour
e
odes are available from the Energy S
ien
e and Te
hnology Software Centre (ESTSC)at www.osti.gov/ests
. Additional modi�
ations were made to FLUFIX for the
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2.2. Computational Fluid Dynami
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modelling of dense suspension (i.e. slurry) �ows.In 1985 development on the CFDLIB software started at LASL under Kashiwa (1987).It was only in 1991 that the �rst International Conferen
e on Multi-phase Flow (ICMF)was held in Tsukuba, Japan. It was the �rst of many with the 2010 ICMF held inTampa, USA.In 1991, O'Brien and Syamlal started development on the open sour
e 
ode 
alledMFIX (Multi-phase Flow model with Interphase Ex
hanges). Their obje
tive beingthe development of a 
ode that 
ould yield a reliable model of �uidised bed rea
tors.The �rst version of MFIX applied numeri
al te
hniques found in early versions ofthe previously mentioned IIT 
ode. MFIX was 
ompleted in 1993 and is maintainedby Oak Ridge National Laboratory (ORNL) in partnership with the National EnergyTe
hnology Laboratory (NETL) in the United States. It is available at www.mfix.organd the latest version was released in 2007.After 
ompleting his Ph.D. under Gidaspow in 1985, Syamlal joined Fluent, In
. wherehe took part in furthering the development of the FLUENT pa
kage whi
h was startedin 1983 by a small group at Creare In
 near Fluent In
.'s present headquarters inLebanon, New Hampshire, USA. It was originally 
reated by Swithenbank at She�eldUniversity in the U.K.Work on the 
ode has 
ontinued and is presently known as ANSYS FLUENT 12.0.ANSYS also a
quired the CFX 
ode, formerly FLOW3D, whi
h was developed atHarwell in the U.K. It is now named ANSYS CFX.The Open Sour
e Field Operation and Manipulation (OpenFOAM), C++ based, sour
e
ode is another appli
ation that may be used to model multiple-phase �ows. It isprodu
ed by the UK 
ompany, OpenCFD Ltd., and is based on equations similar tothose used in its ANSYS CFX 
ounterpart. Most �uid dynami
s solver appli
ations inOpenFOAM use the pressure-impli
it split-operator (PISO) or semi-impli
it methodfor pressure-linked equations (SIMPLE) algorithms. These algorithms are iterativepro
edures for solving equations for velo
ity and pressure, PISO being used for transientproblems and SIMPLE for steady-state (Barton (1998)).The majority of sour
e 
odes mentioned above utilise a two-�uid approa
h as modellingpro
edure. Methods applied in formulating the equations for the two-�uid method aredis
ussed in the following se
tions.
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2.3. Classi�
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2.3 Classi�
ation of multi-phase �owsThe numeri
al s
hemes, applied in the sour
e 
odes dis
ussed in Se
tion 2.2, have beendo
umented and 
ategorised by Enwald et al. (1997) in a

ordan
e with Ishii (1975)as a guide line.Ishii set up a 
lassi�
ation whi
h depended on the topology of the �ow and distin-guished between three 
lasses: separated, mixed and dispersed �ows. For the purposeof understanding the 
urrent work on the motion of parti
les in a Newtonian �uid, onlythe sub
ategories of dispersed �ows are listed in Table 2.1.Table 2.1: Di�erent regimes for two-phase dispersed �ows a

ording to Ishii (1975).Class Typi
al regimes Geometry Con�guration ExamplesDispersed �ow Bubbly �ow

bc
bc
bcbc bc
bcb c Gas bubbles in liquid Chemi
al rea
tors

Droplet �ow bc

bc

bc

bc
bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bcbc bc

bc

bc
bc

bc

Liquid droplets in gas Spray 
ooling
Parti
ulate �ow

bc

bc bc

bc

bc
bc

bc

bc

bc

bc

bc

bcbcbc

bc

bc

bc
bcbc

bc

bc

bc

bc

bc

bc
bc

bcbc
bc

bc

bc

bc bcbc

bc bc

bc

bc

bc

bc

bc
bc bc

bc

bc

bc

bc
bc

bc

bc

Solid parti
les in gasor liquid Sedimentation
A

ording to this 
lassi�
ation s
heme, dispersed media are divided into bubbly-,droplet-, and parti
ulate �ows: Bubbly �ow physi
ally manifests as gas bubbles inliquid, whi
h in
ludes the everyday soda drink or the physi
al pro
esses in 
hemi
alrea
tors. Flows in whi
h liquid droplets 
oin
ide within a gas is 
lassi�ed as droplet�ow while parti
ulate �ow, whi
h forms the fo
us of this study, 
onsists of parti
lesdispersed within a gas or a liquid.
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Following Kleinstreuer (2003), Crowe et al. (1998), and Ishii (1975), the �ow of par-ti
les and droplets in �uids 
an be seen as a subset of multi-
omponent, multi-phase�ows. Crowe et al. (1998), de�nes a 
omponent as a 
hemi
al spe
ies su
h as nitro-gen, oxygen or water whereas phase refers to the solid, liquid or vapour state of thematter. Examples of single-phase, single-
omponent �ows in
lude water- and nitro-gen �ows, whereas multi-phase single-
omponent examples in
lude steam-water �ow.Multi-
omponent examples of single- and multi-phase �ows are given by air �ow andair-water �ow, respe
tively. These examples are listed in Table 2.2.Table 2.2: Examples of single- and multi-
omponent, multi-phase �ows (Crowe et al. (1998)).Single-
omponent Multi-
omponentSingle-phase Water �owNitrogen �ow Air �owFlow of emulsionsMulti-phase Steam-water �ow Air-water �owSlurry �owThe study of parti
les in water may therefore be quali�ed as a multi-
omponent exam-ple, sin
e there are two separate 
hemi
al spe
ies involved (i.e. sili
on (Si) parti
lesin water (H2O)). Moreover it may be quali�ed as multi-phase �ow due to the sili
onparti
les being in a solid state and the water being in a liquid state. It follows thatthe fo
us in this work is pla
ed on multi-phase, multi-
omponent regimes and 
on
ernsitself with the motion of dispersed matter (i.e. a parti
ulate phase) in a 
arrier �uid(i.e. a 
ontinuum phase).Multi-phase, multi-
omponent �ows may further be divided into sub
lasses on the basisof how the 
omponents intera
t with the 
arrier phase and with ea
h other. Theseintera
tions are termed 
oupling me
hanisms by various authors (e.g. Loth (2006),Crowe et al. (1998) and Kleinstreuer (2003)) and the 
lassi�
ation of the parti
le phaseis most aptly des
ribed, following Loth (2006), in Figure 2.1.The broadest division is between dispersed and dense �ows and is based on whether itis the 
ontinuum or dispersed phase that dominates the overall motion of the parti
les.Dispersed �ow is partitioned into sparse �ow: where the dispersed-phase motion isa�e
ted by the 
ontinuous phase, but not vi
e versa; and dilute �ow whi
h 
ombines the
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2.3. Classi�
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aforementioned with instan
es where the parti
le e�e
ts on the �uid be
ome signi�
antthrough interphase 
oupling (e.g. drag for
e).

DISPERSED




DILUTE




sparse


One-way 
oupling:Continuous-�uid a�e
ts parti
le motion(e.g. parti
le rotated by vortex)
In
reasingvolumefra
tion

Two-way 
oupling:Above plus parti
le motion a�e
ts
ontinuous-�uid motion(e.g. parti
le wake in
reases dissipation)Three-way 
oupling:Above plus parti
le disturban
e of the �uidlo
ally a�e
ts another parti
le's motion(e.g. drafting of a trailing parti
le)
DENSE

Collision-dominated�ow 



High-frequen
y of 
ollisions(e.g. energeti
 �uidizedbeds)Conta
t-dominated�ow { High-frequen
y of 
onta
t(e.g. nearly settled beds)Figure 2.1: Dilute, dispersed, and dense �ow 
onditions (Loth (2006)).As the parti
le volume fra
tion in
reases, dispersed �ow is subje
t to three-way 
ouplingwhere the parti
le wakes and other lo
al 
ontinuum disturban
es a�e
t the motion ofnearby parti
les. A further in
rease in parti
le volume fra
tion indu
es the last levelof the dispersed regime where four-way 
oupling dominates as parti
le 
ollisions o

urin 
ombination with all of the aforementioned intera
tions.When the parti
le-parti
le intera
tions dominate, the �ow is 
onsidered dense. Theseintera
tions 
an refer to two separate me
hanisms: parti
le-parti
le 
ollisions andparti
le-parti
le dynami
 intera
tions. The former refers to intera
tions where par-ti
les 
an rebound, shatter or 
oales
e, whereas the latter refers to 
ases where theparti
les glide upon ea
h other, 
ausing fri
tion.On
e the �ow domain has been 
ategorised, using 
lassi�
ation pro
edures listed inTable 2.2 and Figure 2.1, a de
ision needs to be made as to whi
h modelling method
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should be applied to adequately represent its motion. The various types of modellingmethods available in literature are subsequently des
ribed.2.4 Classi�
ation of modelling pro
eduresIshii (1975) divided the modelling pro
edures for two-phase �ows into three 
ategories,namely Boltzmann, Lagrangian, and Eulerian methods.Boltzmann theory uses a method analogous to dilute gas kineti
 theory to des
ribethe intera
tions present in gas-parti
le systems (Ahmadi and Ma (1990), Ding andGidaspow (1990)). This method de�nes a mole
ular distribution fun
tion for the 
on-tinuum phase and another for the parti
ulate phase. However, a

ounting for sizedistribution and the 
ollision pro
esses of the solid parti
les with ea
h other and withthe gas mole
ules, proves 
hallenging.The motion of a suspension 
an be viewed in two ways: In the �elds of �uidisation andgas-parti
le transport, separate equations of motion are sought for ea
h of the phases,whereas those interested in the rheology of suspensions often view the suspension as awhole. The two viewpoints should however be equivalent (Gidaspow (1986), Ja
kson(1997)). These diverse modelling approa
hes mainly involve the parti
le phase and a
on
ise dis
ussion follows in the next se
tion.2.5 Parti
le-phase methodologiesBased on the frame of referen
e, the parti
le phase is divided into two 
lassi�
ations
hemes as Eulerian or Lagrangian. The Eulerian approa
h 
an be further 
lassi�ed intomixed or point-for
e approa
hes, while the Lagrangian method is grouped into point-for
e or resolved-surfa
e approa
hes. Table 2.3 shows the various modelling approa
hesfor the two-phase medium.2.5.1 Lagrangian methodThe Lagrangian method, often referred to as the dis
rete method, assumes that ea
hparti
le (or group of parti
les) is represented separately. The properties (su
h as ve-lo
ity) are updated along the path of individual (or 
loud of similar) parti
les.
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Table 2.3: Forms of the in
ompressible unsteady Navier-Stokes momentum equations (Loth(2006)).Dispersed phase approa
h Dispersed phase momentum Continuous phase momentumEulerian withmixed �uid treatment ∂(ρm vm)/∂t+∇ · (ρm vm vm) = ρm g −∇p+ µm∇2 vmwhere ρm = ǫpρp + ǫcρcApplied throughout domainEulerian withpoint-for
e treatment ρp

∂
∂t
(ǫp vp) + ρp∇ · (ǫp vp vp) =

ǫpρp g − ǫp∇(p + pcoll) +

ǫpµc∇2 vp + ǫpFpc/UpApplied throughout the domain ρc
∂
∂t
(ǫc vc) + ρc∇ · (ǫc vc vc) =

ǫcρc g − ǫc∇p + ǫcµc∇2 vc −
ǫpFpc/UpApplied throughout the domainLagrangian withpoint-for
e treatment mp

∂ vp

∂t
= FV ol + FSurfApplied along parti
le traje
to-ries ρc

∂
∂t
(ǫc vc) + ρc∇ · (ǫc vc vc) =

ǫcρc g−ǫc∇p+ǫcµc∇2 vc−NpFpcApplied throughout the domainLagrangian withresolved-surfa
etreatment mp
∂ vp

∂t
= FV ol + FSurf + F ppwhere FSurf =

∫
S
[−p+ τpc]ndSand does not 
ontain F ppApplied along parti
le traje
to-ries ρp

∂ vc

∂t
+ρc vc∇· vc = ρc g−∇p+

µc∇2 vcApplied outside of parti
le vol-umeNote: In the above, Np is the number density of parti
les per unit volume of mixed �uid, Fpc is the interphasefor
e between parti
les and the 
ontinuum, Fpp is the 
oupling for
e between the parti
les, pc is the hydrostati

ontinuum pressure, pcoll is the parti
le 
ollisional pressure and τpc is the shearing stress between the parti
leand the 
ontinuum. The mixture, parti
le and 
ontinuum velo
ities are respe
tively denoted by vm, vp and
vc with the 
orresponding densities given by ρm, ρp and ρc. The parti
le and 
ontinuum volume fra
tions aredenoted by ǫp and ǫc, respe
tively and the 
ombined volume of parti
les is given by Up.In 
ontrast, the Eulerian method averages parti
le properties over a 
omputational vol-ume. In brief, the Eulerian referen
e frame is a stationary measurement of the averageof the system whilst the Lagrangian frame moves with the element it is measuring.For the treatment of surfa
e for
es, the point-for
e method represents the �ow over theparti
le with empiri
al and theoreti
al methods (e.g. by spe
ifying a drag 
oe�
ient) toobtain the for
e on the parti
le. For the resolved-surfa
e approa
h, the �uid dynami
s(e.g. pressure and shear stress distributions) are fully resolved over the entire parti
le'ssurfa
e and then integrated to obtain the overall hydrodynami
 for
es. Hen
e, forthe resolved-surfa
e treatment, high spatial resolution of the 
ontinuous phase is thusrequired over the parti
le surfa
e. Therefore, this method is sometimes 
alled dire
tsimulation. Conversely, the 
ontinuous-�ow grid s
ale 
an be 
ourse with respe
t tothe parti
le size for the point-for
e approa
h, su
h that it is mu
h less demanding in
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terms of 
omputational resour
es. Following Loth (2006), the di�eren
e between thesetwo approa
hes is illustrated in Figures 2.2a and 2.2b.

(a) Point-for
e treatment. (b) Resolved-surfa
e treat-ment.Figure 2.2: Di�erent representations for parti
le treatment where the shaded area representsthe parti
le and the grid represents the 
omputational resolution for the 
ontinuous phasesolution (Loth (2006)).Lagrangian models treat the �uid phase as a 
ontinuum and 
al
ulates parti
le traje
-tories. Typi
al te
hniques whi
h may be applied to solve Lagrangian models in
lude(Wassen and Frank (2000)):Traje
tory Cal
ulation (TC) A large number of parti
le traje
tories are sequen-tially 
omputed. The average properties of the traje
tory segments that 
ross a
omputational 
ell are determined in order to derive ma
ros
opi
 properties forthe dis
rete phase. The TC method is however limited to steady �ows. Parti
le-parti
le 
ollisions have been a

ounted for by Oesterle and Petitjean (1993).Simultaneous Parti
le Tra
king (SPT) The motions of a representative numberof parti
les are 
al
ulated simultaneously. Ea
h simulated parti
le represents a
ertain number of real parti
les with similar 
hara
teristi
s. The ma
ros
opi
properties of the parti
ulate phase for a 
ertain grid 
ell are obtained at any timeby averaging over all parti
les that are lo
ated in that 
ell at that time. Parti
le-parti
le 
ollisions were a

ounted for by Tanaka and Tsuji (1991). In the major-ity of appli
ations, 
ollisions are treated sto
hasti
ally using Dire
t SimulationMonte Carlo (DSMC) methods sin
e deterministi
 models are 
omputationallytoo expensive.
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2.5.2 Eulerian methodThe Eulerian des
ription, applied to the dispersed phase, generally assumes the 
har-a
teristi
s of the parti
les (e.g. velo
ity) may be des
ribed as a 
ontinuum. As listedin Table 2.3, Eulerian te
hniques are subdivided into mixed- and separated-�uid ap-proa
hes.2.5.2.1 Mixed-�uid modelIn the mixed-�uid approa
h, the assumption is made that the di�eren
es in velo
ity andtemperature between the two phases are small in 
omparison to variations in the �eldas a whole. The use of these models results in a single set of momentum 
onservationequations for the �ow mixture as opposed to one set for the 
ontinuous phase and oneset for the dispersed phase. The approa
h is numeri
ally un
ompli
ated and, moreover,is able to 
ope with both dispersed and dense 
onditions.2.5.2.2 Separated-�ow modelThe separated-�uid approa
h for a Eulerian des
ription of the parti
le phase with thepoint for
e assumption assumes that both the 
arrier �uid and the parti
les 
omprisetwo separate, but intermixed, 
ontinua. Therefore, two sets of momentum equationsare required: one for the 
ontinuous phase and the other for the dispersed phase. Theseparated �uid method is also 
alled the two-�uid method. Here the relative velo
itybetween the phases are taken into a

ount and the equations will generally be 
oupled.Su
h an approa
h will be applied in this work and the following se
tion is devotedto introdu
ing the reader to the approa
hes followed by various authors in setting upappropriate models.2.6 Modelling pro
edures for two-�uid modelsGenerally, the 
ontinuum phase is modelled with the Navier-Stokes momentum- andmass 
onservation equations. The 
onstru
tion of a model for the dis
rete phase is,however, approa
hed either with the Navier-Stokes expressions or, alternatively, byusing the kineti
 theory of parti
les. Even though these two approa
hes di�er widely,the results obtained are almost identi
al.
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The appli
ation of the Navier-Stokes relations to the parti
ulate phase requires the for-mulation of des
riptions for various variables whi
h are well de�ned from the mole
ulartheory for �uids, but are relatively unknown for solids. These in
lude the de�nition ofthe solid stress term whi
h in turn requires expressions for the dis
rete phase vis
osityand pressure.Alternatively, the dis
rete phase may be modelled using a kineti
 theory approa
h: Themomentum equation for a single sphere is 
onstru
ted using Newton's se
ond law ofmotion and extended to a

ount for a single parti
le in suspension (Clift et al. (1978),Soo (1990), and Enwald et al. (1997)).2.6.1 Traditional two-�uid formulationIn the absen
e of mass transfer, the 
ontinuity and momentum equations for bothphases are respe
tively given by

∂ρα
∂t

+∇ · (ρα vα) = 0, (2.6.1)and
∂ρα vα
∂t

+∇ · ρα vα vα −∇ · σ
α
− ρα g = 0, (2.6.2)where the dis
rete (or parti
ulate) and 
ontinuum phases are respe
tively denoted by

α = p and α = c. Density and stress are denoted by ρα and σ
α
respe
tively. The lo
alvelo
ity is denoted by vα.As mentioned earlier, the ordinary di�erential equation for ea
h parti
le may be solvedusing a Lagrangian approa
h. Sin
e this is 
omputationally expensive the alternativeis to apply an averaging operator a
tion on the lo
al instantaneous equations.Averaging models may be divided into volume, time, and ensemble averaging methodsand are dis
ussed in Appendix B. Volume averaging, whi
h, due to its physi
al inter-pretability, is the preferred method of averaging in this work, is applied to the massand momentum 
onservation expressions in the following se
tions.The averaging pro
edures for the mass- and momentum 
onservation equations, by wayof the appli
ation of identities given by Equations (B.6.20) to (B.6.25), are reviewedin the following se
tions.
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2.6.1.1 Averaging of the mass 
onservation equationApplying the volume averaging te
hnique to the mass 
onservation equation, yields

∂

∂t
〈ǫαρα〉+∇ · 〈ρα vα〉 = 0. (2.6.3)2.6.1.2 Averaging of the momentum 
onservation equationThe averaging pro
ess for the momentum equation yields various terms whi
h requirefurther modelling in order to a
hieve 
losure. The �rst step is to apply the de�nitionof volume averaging to ea
h term in the momentum 
onservation equation:

〈
∂ρα vα
∂t

〉
+ 〈∇ · ρα vα vα〉 −

〈
∇ · σ

α

〉
−
〈
ρα g

〉
= 0. (2.6.4)This is followed by the appli
ation of Rules (B.6.23), (B.6.24) and (B.6.20) to theaverages of derivatives, to give

∂

∂t
〈ρα vα〉+∇ · 〈ρα vα vα〉 − ∇ ·

〈
σ
α

〉
−
〈
ρα g

〉
=

1

Uo

∫

Sαβ

ρα vαwαβ · nαdS − 1

Uo

∫

Sαβ

ρα vα vα · nαdS +
1

Uo

∫

Sαβ

σ
α
· nαdS.(2.6.5)In the absen
e of 
ombustion or 
ondensation (i.e. when the interfa
e velo
ity, wαβ ,equals that of the velo
ity of the phase itself, vα) Equation (2.6.5) will simplify to

∂

∂t
〈ρα vα〉+∇ · 〈ρα vα vα〉 − ∇ ·

〈
σ
α

〉
−
〈
ρα g

〉
=

1

Uo

∫

Sαβ

σ
α
· nαdS. (2.6.6)

2.6.1.3 Reynolds de
ompositionEquation (2.6.6) 
annot be solved dire
tly as it 
ontains averages of produ
ts of thedependent variables. To obtain a solvable set of equations, it must �rst be rewritteninto expressions 
ontaining produ
ts of the averaged variables. This is done by em-ploying Reynolds de
omposition. Reynolds de
omposition of variables is typi
ally usedin the �eld of single-phase turbulen
e modelling in order to separate the �u
tuating
omponents of the variables from the time-averaged variables. In this instan
e how-ever, the main purpose of the de
omposition is to separate the averages of produ
ts
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into produ
ts of averages. The pro
edure will result in extra terms in the equations,
ontaining produ
ts of the �u
tuating 
omponents. These extra terms are analogousto the Reynolds stress terms in the 
ase of single-phase turbulen
e modelling (Enwaldet al. (1997)). Administering Reynolds de
omposition to a general variable, Ωα, yields

Ωα = 〈Ωα〉α + Ω̃α, (2.6.7)where the de�nition of the intrinsi
 phase average is given by Equation (B.5.4). Theaverage of the deviation term is assumed to be zero, whi
h 
orresponds with the notionthat the volume over whi
h averaging is done is indeed a sensible representation of thema
ros
opi
 average
〈
Ω̃α

〉
= 0. (2.6.8)When Reynolds de
omposition is applied to Equation (2.6.5) it yields

∂

∂t
〈ρα vα〉+∇ · (ρα 〈 vα〉α 〈 vα〉α) +∇ · 〈ρα ṽα ṽα〉 − ∇ ·

〈
σ
α

〉
−
〈
ρα g

〉
=

1

Uo

∫

Sαβ

σ
α
· nαdS. (2.6.9)The term ∇·〈ρα ṽα ṽα〉 is generally referred to as the Reynolds stress term and denotedby σRe

α
(Enwald et al. (1997)). The right-hand side of Equation (2.6.9) is termed theinterfa
ial momentum transfer.The Reynolds stress for the 
ontinuum phase is modelled using a standard Boussinesqapproximation. For a more detailed a

ount of this approa
h the reader is referred tothe work of Enwald et al. (1997), Simonin and Viollet (1989) and Simonin (1995).Turbulen
e models for the parti
ulate phase available in literature are based on thekineti
 theory of granular �ow. Su
h an approa
h to the modelling of the parti
ulatephase uses 
lassi
al results from kineti
 theory of dense gases, 
f. Dartevelle (2003),Chapman and Cowling (1970) in 
ombination with Grad's theory, 
f. Grad (1949), anda linear theory developed by Jenkins and Ri
hman (Jenkins and Ri
hman (1985)).1It remains to be shown how the vis
ous stress term, σ

α
, is modelled for the 
ontinuumand dis
rete phases following the traditional approa
h.1As given in Enwald et al. (1997).
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2.6.1.4 The vis
ous stress, σ

αThe vis
ous stress in Equation (2.6.9) is divided into a pressure, pα, and a vis
ous shearstress term, τ
α
, i.e.

σ
α

= pαI + τ
α
. (2.6.10)In the following two se
tions these two terms are dis
ussed.2.6.1.5 Vis
ous shear stressThe stress tensor for both phases is often modelled using the Newtonian strain-stressrelation:

τ
α

= ξα(∇ · vα)I + 2µα(Sα
− 1

3
(∇ · vα)I), (2.6.11)where the strain-rate tensor is de�ned by

S =
1

2

(
∇ vα + (∇ vα)

T
)
. (2.6.12)In a

ordan
e with Stokes' assumption, the bulk vis
osity, ξα, is 
ommonly set to zeroin both phases (Panton (1984)). In pra
ti
e, the reason for negle
ting the bulk vis
osityis the la
k of reliable measurement te
hniques (Prit
hett et al. (1978)). A theoreti
alexpression is however possible using the kineti
 theory of granular �ow.From the assumption that there is no mass transfer between the phases, it follows that

∇ · vα = 0. The remaining dynami
 vis
osity, µα, is easy to spe
ify for the 
ontinuumphase with mole
ular theory but proves di�
ult for the dis
rete phase.The parti
le vis
osity may be modelled as a fun
tion of the parti
le volume fra
tion(Enwald et al. (1997)). However, the majority of vis
osity models available are formixture vis
osities only. Examples of su
h vis
osity formulae are listed in Table 2.4.It is not obvious how the mixture vis
osity is related to the phase vis
osities, but oftena linear relationship is assumed and the vis
osities are weighted as
µmix = ǫcµc + ǫpµp. (2.6.13)Pressure in the 
ontinuum phase is simply the stati
 
ontinuum pressure. The pressurein the parti
le phase is more di�
ult to interpret.
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Table 2.4: Mixture vis
osities proposed by various authors.Sour
e Mixture vis
osity ConstantsEinstein (1906),Einstein (1911) µmix = µc (1 + 2.5ǫp)) ǫp ≤ 0.03Brinkman (1952),Ros
oe (1952) µmix = µc(1− ǫp)

−2.5Frankel and A
rivos (1967) µmix = µc
9
8

[

(ǫp/ǫp,max)1/3

1−(ǫp/ǫp,max)
1/3

]

ǫp/ǫp,max → 1Vand (1948) µmix = µc

[

2.5ǫp+2.7ǫ2p
1−0.609ǫp

]Eilers (1943) µmix = µc
25
16

[

ǫ2p
(1−ǫp/ǫp,max)2

]Graham (1981) µmix =
[

9
4

(

1
1+0.5ψ

)(

1
ψ
−

1
1+ψ

−
1

1+ψ

2
)

+ 1 + 2.5ǫp
]

ψ =
1−(ǫp/ǫp,max)1/3

ǫp,max)1/3Ishii (1977) µmix = µc(1− ǫp/ǫp,max)
−2.5ǫp,max µp ≫ µcNote: In the above, µmix and µp denote the mixture and parti
le vis
osities, respe
tively. The parti
le- and
ontinuum volume fra
tions are respe
tively denoted by ǫp and ǫc, and ǫp,max is the maximum parti
le volumefra
tion obtainable, whi
h usually falls in the range of 40% (i.e. ǫp,max ≈ 0.4).In literature two di�erent ways of formulating expressions for the parti
le pressureexist. One is based on the kineti
 theory of granular �ow, the other is des
ribed below:The pressure is assumed to 
onsist of the sum of three e�e
ts: The �rst 
orrespondsto momentum transport 
aused by parti
le velo
ity �u
tuations, pp,kin. The se
ond isdue to parti
le intera
tions (i.e. 
ollisions), pp,coll and the third is a 
ontribution fromthe 
ontinuum phase pressure. The pressure gradient in the parti
ulate phase is thus

∇(ǫppp) = ∇(ǫppkin) +∇(ǫppcoll) +∇(ǫppc). (2.6.14)The �rst term on the right-hand side is negle
ted in traditional models. The se
ondterm is referred to as the parti
le 
ollisional pressure gradient. The 
ollisional 
ompo-nent is the dominant pressure in dense regions. This pressure transmits a for
e bothby short 
ollisional impa
ts and by long-duration parti
le-parti
le 
onta
ts. In Se
-tion 2.4 it was stated that the aforementioned modelling methods may be applied to�uidised beds: Experimental results by Campbell and Wang (1991) showed that theparti
le 
ollisional pressure is highest if the bed is not �uidised and parti
les rest onea
h other, when the long duration 
onta
t for
e is high. As 
ontinuum �ow in
reases
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towards the minimum �uidisation velo
ity, the parti
le 
ollisional pressure de
reases asthe drag for
e starts to dominate over the long-duration 
onta
t for
e. Further in
reasein the 
ontinuum velo
ity above the minimum �uidisation velo
ity, 
auses the parti
le
ollisional pressure to in
rease again, now as a result of an in
reasing frequen
y of theshort-duration 
ollisional impa
ts.The 
ontinuum pressure gradient enters into the momentum equations as a buoyante�e
t, i.e. if there is a 
ontinuum pressure gradient through a 
olle
tive of parti
les, itexerts a for
e on the parti
les and thus the parti
le pressure gradient will be redu
edor in
reased depending on the dire
tion of the gas pressure gradient.Several models for the parti
le 
ollisional pressure-gradient term presented in literatureare based on the following formulation

∇(ǫppp,coll) = −G(ǫc)∇ǫc, (2.6.15)where G(ǫc) is the equivalent of a modulus of elasti
ity used in mole
ular theory for theparti
ulate phase. The parti
le 
ollisional pressure-gradient is often referred to as theparti
le-parti
le intera
tion for
e. The main e�e
t of the parti
le-parti
le intera
tionfor
e is only to prevent the dis
rete phase from be
oming too densely pa
ked (Enwaldet al. (1997)).This dis
ussion 
on
ludes the traditional modelling pro
ess for the 
onstitutive lawswhi
h spe
ify how the physi
al parameters of a phase intera
t with one another. Itremains to des
ribe the transport of mass, momentum and energy a
ross the inter-fa
e between the phases. In the following se
tion, interfa
ial momentum transfer isdes
ribed, whereas interfa
ial mass and energy transfer have been ex
luded from thisstudy.2.6.1.6 Momentum transferThe term under 
onsideration here is the interfa
ial momentum transfer from the α-to the β-phase whi
h is given by the right-hand side of Equation (2.6.9)
Mαβ =

1

Uo

∫

Sαβ

σ
α
· nαdS. (2.6.16)
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For the momentum 
onservation equation of the β-phase, the unit ve
tor is given by,
nβ = −nα. It follows that the momentum transfer from the β- to the α-phase is

Mβα = −Mαβ. (2.6.17)For a dispersed �ow, Mαβ is the generalised drag for
e per unit of volume on a sus-pension of parti
les of mean diameter dp and it is normally divided as (Kleinstreuer(2003), Soo (1990), Cro
e et al. (2006) and Enwald et al. (1997))
Mαβ = np (FD + F TR + FAM + FHI + FOT ) , (2.6.18)where np is the number of parti
les per unit volume. The for
es on the right-hand sideof Equation (2.6.18) respe
tively denote the drag for
e, the transverse or lift for
e, theadded mass for
e, the history for
e and other for
es that are yet to be determined.These for
es and their 
ontributions to the total momentum transfer, are dis
ussed inAppendix A.Currently, the stationary drag for
e at the interfa
e is the only one 
onsidered inthe traditional two-�uid model. Empiri
al 
orrelations a

ount for this for
e, by whi
hmomentum transport at the interfa
e is modelled. It is normal to 
onsider the interfa
edrag for
e as a 
ombination of both the shape and the skin drag in a single empiri
alparameter (e.g. van Wa
hem et al. (2004)).Most of the data used for drag for
e 
orrelation in many multi-parti
le systems wereobtained in uniform �uidisation and sedimentation studies: Typi
ally, the drag for
eis determined through experimental measurement of the pressure gradient. Usuallythe experimental measurements are used to 
al
ulate the so-
alled drag fun
tion at theinterfa
e, K, either in a straightforward way, where K = f(∆P ), or as a fun
tion ofthe drag 
oe�
ient for a single parti
le in the suspension, Cds, so K = f(Cds(∆P ))(Gomez and Milioli (2004)).By making use of this methodology, various 
orrelations for K have been proposedin the literature and a detailed a

ount of su
h methods may be viewed in Mazzeiand Lettieri (2007). For instan
e, Ergun (1952) measured pressure gradients in a �xedliquid-solid bed and developed an expression for ∆P . This 
orrelation was later used to
al
ulate K in a straightforward way, i.e. K = f(∆P ). Wen and Yu (1966) developedexperiments on the sedimentation of solid parti
les in a liquid for a large range of solidvolumetri
 fra
tion values. They 
onsidered their own data as well as data from other
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resear
hers and derived a 
orrelation for CDs, valid for 0.01 < ǫp < 0.63. Later this
orrelation was used to indire
tly 
al
ulate K, giving rise to an expression of the type
K = f(CDs(∆P )). Along with work done by Lewis et al. (1949) and Kmie
 (1982),these equations serve as the prevalent equations of 
losure employed to model the dragfor
e in uniformly dispersed emulsions of solid parti
les.The drag for
e a
ting on a single parti
le in a suspension 
an be written as

FD =
1

2
CDsρc| v| v(πd2p/4), (2.6.19)where v is either the apparent relative velo
ity or the relative interstitial velo
ity,depending on the velo
ity on whi
h the drag 
oe�
ient CDs is based. The 
ontributorye�e
t of the stationary drag to the generalised drag is given by

np FD =
3

4dp
(1− ǫc)CDρc| v| v. (2.6.20)To solve averaged momentum equations numeri
ally, the stationary drag for
e is usuallywritten as

np FD = K vr, (2.6.21)where K is referred to as the drag fun
tion. Table 2.5 lists various drag fun
tions usedin literature.
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Table 2.5: Drag fun
tions by various authors.Author Drag fun
tion, K ConstantsGidaspow (1986) 3

4dp
CDs(1− ǫc)ρc| vc − vp|ǫ−1.65

c CDs =

{

24 if Re < 1000

0.44 if Re > 1000Ishii (1977) 3
4dp

CDs(1− ǫc)ρc| vc − vp|ǫc
CD = 24(1 + 0.1(Re)0.75)/Re,

Re = ρc| vp − vc|dp/µmix
µmix : from Ishii (1977) in Table 2.4

Syamlal and O'Brien (1989) 3
4dp

cdρc
1
R2

t
ǫc(1− ǫc)| vp − vc|

2Rt = C1(ǫc)− 0.06Re +
[

(0.06Re)2+

0.12Re (2C2(ǫc)− C1(ǫc)) + C2
1 (ǫc)

]0.5

C1(ǫc) = ǫ4.14c

C2(ǫc) =

{

0.8ǫc1.28 if ǫc < 0.85

ǫ2.65c if ǫc > 0.85.

CD =

(

0.63 + 4.8
√

Rt
Re

)2 Dallavalle (1948)
Re = ρc| vp − vc|dp/µcDi Feli
e (1994) 3

4dp
CDs(1− ǫc)ρc| vp − vc|ǫ

2−β
c

CDs =
(

0.63 + 4.8
√

1
Re

)2

β = 3.7− 0.65exp
[

− (1.5− log(Re))2 /2
]Gidaspow (1994)(based on Ergun) 150

(1−ǫc)
2µc

ǫc(φdp)2
+ 1.75

(1−ǫc)ρc| vp− vc|

φdp
ǫc < 0.8Gibilaro et al. (1985) K =

(

17.3
Re

+ 0.336
) ρc| vp− vc|

dp
(1 − ǫc)ǫ

−1.8
c Re from Ishii and Zuber (1979)

2.6.2 Contemporary dis
rete phase modelling methodsThe equation of motion for a single sphere, moving in an unsteady non-uniform 
om-pressible �uid, was proposed by Maxey and Riley (1983) for the 
ase of low parti
leReynolds number, Re = ρcdp| vp − vc|/µc < 1. It is generally a

epted (Enwald et al.(1997)) that the equation of motion for a single sphere 
an be generalised, in the 
ase
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of in
ompressible �ows at higher Reynolds numbers, as

ρp
πd3p
6

d vp
dt

=
1

2
ρcCDs

πd2p
4

| v′c − vp|( v′c − vp) +
1

2
ρc
πd3p
6

∆A
d

dt
( v′c − vp)

+
3d2p
2

√
πρcµc∆H

∫ t

0

d

dτ
( v′c − vp)

dτ√
t− τ

−
πd3p
6

∇p′ + ρp
πd3p
6

g,(2.6.22)where dp denotes the parti
le diameter, v′c and p′ are the undisturbed 
ontinuumvelo
ity and stati
 
ontinuum pressure at the parti
le lo
ation, respe
tively, i.e. thevelo
ity and pressure of the 
ontinuum phase if the parti
le was not present. Theterms on the right-hand side are identi�ed as the stationary drag, the added mass for
ethe history for
e, the pressure gradient and the gravity for
e, respe
tively. Di�erent
orrelations for the drag 
oe�
ient for a single sphere, CDs, in an in�nite �uid and forthe 
orre
tion 
oe�
ients for the added mass and the history for
es, ∆A and ∆H , 
anbe found in Clift et al. (1978).It 
an be shown that the history for
e is negligible for 
ontinuum-parti
le �ows, pro-vided that ρc/ρp < 0.002 and dp > 1µm (Liang and Mi
haelides (1992) and Vojirand Mi
haelides (1994)). Liang and Mi
haelides (1992) also 
on
luded that the addedmass e�e
t 
an be negle
ted be
ause the added mass term is proportional to the den-sity ratio. It is generally assumed that these 
on
lusions 
an be extended to a singleparti
le in a suspension. Therefore, Equation (2.6.22) 
an be expressed in the followingEulerian form
∂

∂t
(ρp vp) +∇ · (ρp vp vp) =

ρp
τXGp

( v′c − vp)−∇p′ + ρp g + FPP , (2.6.23)where the parti
le relaxation time τXGp is
τXGp =

3

4dp

ρc
ρp

CD| vp − v′c|, (2.6.24)and FPP represents the for
e exerted by other parti
les during 
ollisions. The par-ti
le relaxation time is a 
hara
teristi
 time for the entrainment of parti
les by thesurrounding 
ontinuum.Applying the averaging identities in 
ombination with a Reynolds de
omposition and
p′ = p + p̃, yields the following averaged form of the parti
ulate phase momentum
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onservation equation (Enwald et al. (1997)):

∂

∂t
(ǫpρp vp) +∇ · (ǫpρp vp vp) = −ǫp∇p+∇ · (ǫpτX

p

p
+ ǫpσ

Re

p
) + ǫpρp g + M pI .(2.6.25)The interfa
ial momentum transfer, M cp, is given by K( vc − vp). To 
lose the mo-mentum equations, models for the 
ollisional and kineti
 terms (ǫkτ

Xk
k

+ ǫkσ
Re
k
) area
quired by employing the Maxwell-Boltzmann equation. This method is des
ribed indetail in Enwald et al. (1997) and only a brief outline of the pro
edure and the �nalresults for the 
losed form of the gradient of the parti
le stress will be given here.2.6.3 Turbulen
e models for the parti
ulate phaseThe e�e
tive stress tensor is derived using Boltzmann theory, the Boussinesq approxi-mation, the 
losure model of Jenkins and Ri
hman (1985) and expressions put forwardfor the turbulent vis
osity by Simonin (1995) and Peirano and Le
kner (1998). It isgiven by Enwald et al. (1997) as

ǫp(τ p
+ σRe

p
) = −

(
Pp − ξp∇ · vp

)
I + 2µp

(
S
p
− 1

3
(∇ · vp)I

)
. (2.6.26)In Equation (2.6.26) the e�e
tive pressure is

pp = ǫpρpT (1 + 2ǫpg0(1 + e)) , (2.6.27)where e is the restitution 
oe�
ient whi
h represents the loss of energy during 
ollisionsand varies between zero and one. The bulk vis
osity, ξ, in Equation (2.6.26) is givenby
ξp =

4

3
ǫ2pρpdpg0(1 + e)

√
T

π
. (2.6.28)The radial distribution fun
tion, g0, des
ribes the probability of �nding two parti
lesin 
lose proximity. Its main purpose is to prevent over-
ompa
tion of granular matteras it a
ts as a repulsion fun
tion between parti
les when they are 
lose to ea
h other.This fun
tion is equal to unity for very low parti
le volume fra
tions (ǫp ≪ 1) butin
reases for highly 
on
entrated parti
ulate systems. The fun
tion is, however, notwell known for granular matter and many possible de�nitions exist (Dartevelle (2003)).

Stellenbosch University  http://scholar.sun.ac.za



2.6. Modelling pro
edures for two-�uid models 27
One su
h a de�nition is given by Lun and Savage (1986) as2

g0 = (1− ǫp/ǫp,max) . (2.6.29)The shear vis
osity is given as the sum of a turbulent vis
osity and a 
ollisional vis
osity,
µp = ǫpρp

〈
νt
p + νc

p

〉 and expressions for the turbulent vis
osity is given by Enwald et al.(1997) as
νt
p =

(
1
3
τ tcpkcp +

1
2
τcpT (1 + ǫpg0φc)

)

1 + τcp
2

σc
τp

, (2.6.30)where kcp denotes kineti
 energy whilst σc and φc are de�ned by (1 + e)(3 − e)/5 and
2(1 + e)(3e − 1)/5, respe
tively. The intera
tion time between parti
le motion and
ontinuum phase �u
tuations is denoted by τ tcp and τcp is the parti
le relaxation time.The expression for the 
ollisional vis
osity, νc

p, is de�ned by
νc
p =

4

5
ǫpg0(1 + e)

(
νt
p + dp

√
T

π

)
. (2.6.31)Finally, a transport equation for the granular temperature, or for the turbulent kineti
energy, T , of the parti
ulate phase, kp = 3T/2, is required. This is given by

ǫpρp
D

Dt
(kp) = ∇

(
ǫpρp(K

t
p +Kc

p)∇kp
)
−
(
−ǫp(τ p

+ σRe

p
)
)
∇ · vp

−2ǫpρp
τcp

(2kp − kcp) + ǫpρp
e2 − 1

3τ cp
kp, (2.6.32)where Kt

p and Kc
p are the turbulent and 
ollisional di�usivity 
oe�
ients, respe
tivelyand the time s
ale τ cp = (dp/23g0ǫp)

√
π/T is the parti
le-parti
le 
ollision time, i.e. thetime between two 
onse
utive binary 
ollisions for a given parti
le. The 
ontinuum-parti
le 
ovarian
e, kcp, is de�ned as 〈 ṽp ṽc〉. Various models for 
ontinuum-parti
le
ovarian
e may be found in Yu and Lee (2009).The turbulent di�usivity is modelled as

Kt
p =

3τ tcp
5τcp

kcp + T (1 + ǫpg0ςc)

9
5τcp

+ ξc
τcp

, (2.6.33)where ςc = 3(1+e)2(2e−1)/5 and ξc = (1+e)(49−33e)/100. The 
ollisional di�usivity,
Kc

p, is de�ned by
Kc

p = ǫpg0(1 + e)

(
6

5
Kt

p +
4

3
dp

√
T

π

)
. (2.6.34)2This resembles the vis
osity equation given in Table 2.4 by Ishii (1977).
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Semi-empiri
almodels have been suggested by Simonin (1995) to solve Equation (2.6.32)and the reader is referred to Enwald et al. (1997) for a detailed example and review ofturbulen
e models.It is 
lear that the Boltzmann method for determining parti
le vis
osities and pressuresis 
omplex and still relies on empiri
al data. This may be one of the reasons why thesimpli
ity of the two-�uid model has proved more popular in the development of sour
e
odes to model two-phase �ow.
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Chapter 3Conservation equations
3.1 Introdu
tionThe development of an alternative to existing two-phase �ow models requires obtainingand averaging the 
onservation expressions for the 
ontinuum and dis
rete phases. Inorder to guide the reader from start to �nish, a brief review is given of the well knownNavier-Stokes momentum 
onservation equations for the 
ontinuum phase, followed bya dis
ussion on the development of momentum- and mass 
onservation expressions forthe parti
le phase.3.2 Mass 
onservation for the 
ontinuum phaseThe mass, mc, of an arbitrary material volume, Vc, within the 
ontinuum phase is givenby the integral

mc =

∫∫∫

Vc

ρcdV, (3.2.1)where ρc is the density of the 
ontinuum. Conservation of mass requires that
dmc

dt
=

d

dt

∫∫∫

Vc

ρcdV = 0. (3.2.2)Appli
ation of the Reynolds transport theorem, whi
h may be viewed as a three-dimensional generalisation of the Leibniz theorem whi
h is used to di�erentiate under29
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the integral sign, to Equation (3.2.2), yields

∫∫∫

Vc

[
∂ρc
∂t

+∇ · (ρc vc)
]
dV = 0. (3.2.3)The integrand in Equation (3.2.3) should however be zero for any material volume,even if the size of su
h a volume should tend to zero. It follows that lo
ally at anypoint within a 
ontinuum, for whi
h mass 
onservation holds, the following 
ontinuityexpression holds

∂ρc
∂t

+∇ · (ρc vc) = 0. (3.2.4)Equation (3.2.4) 
on
ludes the derivation and is the mass 
onservation equation perunit volume for the 
ontinuum.3.3 Momentum 
onservation for the 
ontinuumphaseExternal for
es that in�uen
e a 
ontinuum via ve
tor �elds, su
h as gravitation, workon ea
h individual mass point of the 
ontinuum. It is therefore 
alled body for
es.Let f
b
be the total body for
e per unit mass at any point within the 
ontinuum. Theresulting body for
e, F res

b , on a volume Vc of the 
ontinuum is therefore given by
F res

b =

∫∫∫

Vc

ρc f b
dV. (3.3.1)When a 
on
eptual volume is de�ned, the e�e
t of the surrounding surfa
e for
es onsu
h a volume should be taken into 
onsideration. These 
onta
t for
es per unit areaof the 
ontinuum are de�ned as stress and will be denoted by the stress dyad, σ

c
. Theresulting surfa
e for
e on a volume Vc of the 
ontinuum is therefore given by

F Surf =

∫∫
�

�

�

�

∂Vc

nc · σc
dS. (3.3.2)For a general des
ription of the motion of a 
ontinuum the volume Vc is 
onsideredto be a material volume. The internal for
es at every point in a deformable body are
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not ne
essarily equal, and therefore there exists a distribution of stresses throughoutthe body. Newton's se
ond law of motion for the 
onservation of linear and angularmomentum governs this variation of internal for
es throughout the body. These lawsare usually applied to a rigid parti
le but, for the purpose of 
ontinuum me
hani
sare extended to a body of 
ontinuously distributed mass and are referred to as Euler'sequations of motion. Euler's �rst axiom or law (law of balan
e of linear momentum orbalan
e of for
es) states that:In an inertial frame, the time rate of 
hange of linear momentum, P , of anarbitrary portion of a 
ontinuum body is equal to the total applied for
e, F ,a
ting on the 
onsidered portion.It may be expressed as

F =
dP
dt

. (3.3.3)Following Euler's linear momentum prin
iple, as applied on Vc, yields
d

dt

∫∫∫

Vc

ρc vcdV =

∫∫∫

Vc

ρc f b
dV +

∫∫
�

�

�

�

∂Vc

nc · σc
dS. (3.3.4)The divergen
e theorem is applied to the surfa
e integral in Equation (3.3.4), yielding

∫∫∫

Vc

d

dt
(ρc vc − ρc f b

−∇ · σ
c
)dV = 0. (3.3.5)The material volume, however, was 
hosen arbitrarily and Equation (3.3.5) thereforeholds for any volume Vc. It follows that, at any point within the 
ontinuum

d

dt
(ρc vc) = ρc f b

+∇ · σ
c
. (3.3.6)Equation (3.3.6) is 
ommonly known as Cau
hy's di�erential equation for the motion ofany 
ontinuum. It holds in general and may be applied to rigid bodies, elasti
 obje
tsand �uids (i.e. liquids or gasses).Applying the de�nition of the total derivative yields

∂

∂t
(ρc vc) +∇ · (ρc vc vc) = ∇ · σ

c
+ ρc f b

. (3.3.7)
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Equation (3.3.7) is the momentum 
onservation equation per unit volume for the 
on-tinuum phase.3.4 Mass 
onservation for the parti
le phaseConsider a moving parti
le with 
hanging mass as shown in Figure 3.1.

vp(i)Gp(i)

νp(i)

Sp,i

wp(i)

np(i)

Figure 3.1: Solid parti
le.Here Gp(i) is the 
entre of mass of the solid parti
le i moving with velo
ity vp(i), νp(i)is the volume of the parti
le and wp(i) is the velo
ity of a point on the boundary ofparti
le i. Let mp(i)(t) denote the mass of parti
le i at time t. In the absen
e of sour
esand/or sinks within the parti
le, mass-
hange is only due to a mass �ux a
ross itsboundary, i.e. 
ombustion or 
ondensation. The 
hange of mass with respe
t to timeis therefore given by
dmp(i)(t)

dt
=

∫

Sp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS, (3.4.1)where ρp(i) is the density distribution of parti
le i. In Equation (3.4.1) the velo
itydi�eren
e, given by wp(i) − vp(i), is the velo
ity of the parti
le boundary relative to its
entre of mass, Gp(i). The mass of the parti
le is a fun
tion of time only, therefore

dmp(i)

dt
=

∂mp(i)

∂t
+

dxp(i)

dt

∂mp(i)(t)

∂xp(i)

=
∂mp(i)

∂t
. (3.4.2)
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From Equations (3.4.2) and (3.4.1) it therefore follows that

∂mp(i)(t)

∂t
=

∫

Sp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS. (3.4.3)Equation (3.4.3) is the mass 
onservation equation for a single parti
le.3.5 Momentum 
onservation equation for theparti
le phaseFrom Newton's se
ond law the following holds for ea
h parti
le:

mp(i)

d vp(i)
dt

= F , (3.5.1)where F is the resultant for
e exerted on the parti
le. Generally, F in
ludes thegravitational for
e, aerodynami
 drag, buoyan
y, the added mass for
e, the Bassetfor
e, the Magnus e�e
t, and the Sa�man lift for
e. These for
es and their relative
ontributions to the momentum of the parti
les are dis
ussed by Fan and Zhu (1998)and Kleinstreuer (2003). A

ording to Ding and Gidaspow (1990), the last four e�e
tsmay be assumed negligible. The remaining three are grouped into surfa
e for
es, F surf ,and volume for
es, F vol
1:

mp(i)

d vp(i)
dt

= F vol + F surf . (3.5.2)It is assumed in the 
urrent work that the only signi�
ant volume for
e a�e
ting themotion of a parti
le is the weight, FW = mp(i) g, and that the surfa
es for
es maybe 
ombined and written in terms of a stress tensor, σ
p(i)

, integrated over the outersurfa
e area of the parti
le. It then follows that
mp(i)

d vp(i)
dt

= mp(i) g +

∫

Sp(i)

σ
p(i)

· np(i)dS. (3.5.3)Multiplying Equation (3.4.3) by the parti
le velo
ity, vp(i), rewriting the parti
le mass,
mp(i), as a produ
t of its volume, νp(i) and density, ρp(i), and adding the resulting1For a detailed dis
ussion on surfa
e and volume for
es, the reader is referred to Appendix A.
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expression to Equation (3.5.3), yield

ρp(i)νi
d vp(i)
dt

+ vp(i)
∂ρp(i)νi

∂t
= νiρp(i) g +

∫

Sp(i)

σ
p(i)

· np(i)dS +

vp(i)

∫

Sp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS. (3.5.4)The 
hain rule of di�erentiation is applied to the �rst term on the left-hand-side ofEquation (3.5.4)

d

dt
vp(i)( r, t) =

∂

∂t
vp(i)(x, t) +

dx

dt

∂ vp(i)
∂x

+
dy

dt

∂ vp(i)
∂y

+
dz

dt

∂ vp(i)
∂z

, (3.5.5)whi
h may be expressed as
d

dt
vp(i)( r, t) =

∂

∂t
vp(i)( r, t) + vp(i) · ∇ vp(i). (3.5.6)Substitution of Equation (3.5.6) into Equation (3.5.4), yields

∂

∂t

(
vp(i)ρp(i)νi

)
+ ρp(i)νi vp(i) · ∇ vp(i) = νiρp(i) g +

∫

∂νp(i)

σ
p(i)

· np(i)dS + vp(i)

∫

Sp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS, (3.5.7)where mp(i) = ρp(i)νp(i) and the 
hain rule has again been applied to the left-hand sideof the expression.Equation (3.5.7), whi
h is valid for ea
h parti
le, des
ribes the 
hange in momentum ofa parti
le with mass mp(i) = ρp(i)νp(i). The �rst term on the left-hand side of Equation(3.5.7) is the transient term whi
h 
onstitutes the 
hange in the velo
ity and densityof a single parti
le over time. It des
ribes the e�e
t of a

eleration or de
eleration aswell as time dependent 
ombustion or 
ondensation on the momentum of the parti
le.The se
ond term, 
ommonly designated the 
onve
tive term in 
ontinuum dynami
s,indi
ates how the momentum of the parti
le is a�e
ted by a 
hange in the velo
ity ofthe parti
le with a 
hange in its position. The third term, known as the body for
eterm, des
ribes the e�e
t on the momentum of the parti
le from outside for
es whi
ha
t on the 
entre of mass of the parti
le.
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The �rst integral represents the stresses on the parti
le's boundary surfa
e. The se
ondintegral des
ribes the 
hange of momentum of the parti
le due to mass �ow a
ross theparti
le boundary (i.e. 
ombustion or 
ondensation).
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Chapter 4Averaging
4.1 Introdu
tionThe obje
tives of this 
hapter are to quantify the 
on
ept and size range of the Rep-resentative Elementary Volume (REV) and to subsequently apply the REV to deriverules for modelling the transport of various quantities in dispersed media at the ma
ro-s
opi
 level. These averaging rules are then applied to the Navier-Stokes momentumand the mass 
onservation equations whi
h were formulated in Chapter 3.4.2 Arbitrary and Representative ElementaryVolumesSolving the transport phenomena in a two-phase �ow domain 
an be done at mi
ro-s
opi
 level. This is however impra
ti
al sin
e a) it is 
omputationally expensive todetermine and b) quantities 
annot be measured at this level and experimental data for
omparative purposes therefore do not exist. These di�
ulties may however be avoidedby 
onsidering ea
h phase as a 
ontinuum. The a
tual two-phase dis
rete/
ontinuummedium, in whi
h ea
h phase �lls only a portion of the spatial domain, is repla
ed bya virtual model in whi
h the 
ontinuum phase �lls the entire domain.In 
ontrast to the traditional volume averaging models, where both phases are des
ribedas separate 
ontinuums (Ba
hmat and Bear (1986), Whitaker (1967)), the dis
retephase remains separated in this work. And the dis
rete nature is dealt with by repla
ingthe integral de�nition, 
ustomarily used for 
ontinuum averaging, with a summation36
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4.2. Arbitrary and Representative Elementary Volumes 37
pro
edure and a detailed dis
ussion follows in Se
tion 4.6.Average values over Elementary Volumes (EV) are designated as ma
ros
opi
 values ofvariables. For both the dis
rete and 
ontinuum, these ma
ros
opi
 entities are de�nedand allo
ated to the 
entroid of the EV, regardless of whether the 
entroid 
oin
ideswith that phase. Fields of ma
ros
opi
 variables may be obtained by traversing theEV over the entire domain.Any Arbitrary Elementary Volume (AEV) may in prin
iple be sele
ted as an averagingvolume for passing from the mi
ros
opi
 to the ma
ros
opi
 regime. Di�erent AEV'swill however yield di�erent averages depending on the size of the AEV and thereforeneed to be labelled to the parti
ular AEV used for its averaging. This predi
amentis 
ir
umvented by introdu
ing the 
on
ept of a Representative Elementary Volume(REV) (Whitaker (1967), Hassanizadeh and Gray (1979), and Ba
hmat and Bear(1986)).The REV is 
hosen su
h that averaged properties of the 
ontinuum or dis
rete phaseare statisti
ally meaningful, i.e. representative of measured values. It follows thataveraged values of properties obtained from averaging with an REV are independentof the size of the averaging volume.Irrespe
tive of its pla
ement within a domain, the REV should 
ontain both 
ontinuumand parti
le phases and be representative of the entire domain. The 
riteria given inthe work of Ba
hmat and Bear (1986), Whitaker (1967), and Hassanizadeh and Gray(1979) for the sele
tion of sensible general REV dimensions are subsequently dis
ussed.4.2.1 Sele
tion of REV sizeBa
hmat and Bear (1986) stresses that the values of all averaged geometri
al 
hara
ter-isti
s of the mi
rostru
ture of the porous material at any point in the porous mediumdomain be single valued fun
tions of the lo
ation of that point and of time only, butindependent of the size of the REV. It follows that the volume of an AEV, UAEV , maybe regarded as the volume of an REV, Uo, if the porosity, ǫc, satis�es the following
onstraint

∂ǫc
∂ UAEV

= 0, (4.2.1)where ǫc = Uc
Uo , and U c is the volume o

upied by the 
ontinuum. The size of the

Stellenbosch University  http://scholar.sun.ac.za



4.2. Arbitrary and Representative Elementary Volumes 38
REV in a domain (D) is thus determined by the porosity (Ba
hmat and Bear (1986)).Figure 4.1 illustrates the variations of the ratio U c/UAEV as UAEV in
reases in size.

Domain ofmi
ros
opi
inhomogeneity Domain of porous mediumDomain of possiblema
ros
opi
 inhomogeneity
Range for Uo

Inhomogeneousmedia1

0 Umin Umax

Uc
UAEV

Volume UAEV

Homogeneousmediumǫc

Figure 4.1: Variation of porosity in the neighbourhood of a point as a fun
tion of the averagevolume.For small values of UAEV the ratio, U c/UAEV , is one or zero, depending on whether the
entroid of the REV, xo, falls inside the 
ontinuum or the dis
rete phase. As the volumeof UAEV in
reases, large �u
tuations in U c/UAEV o

ur. However, as UAEV 
ontinuesto grow, these �u
tuations gradually abate, until, above some value UAEV = Umin, itde
ays, leaving only small amplitude �u
tuations around some 
onstant value.As illustrated in Figure 4.1, the REV is that volume, U o, within the range of
Umin<UAEV<Umax that will make the ratio, U c/Uo, independent of UAEV , and hen
ea single valued fun
tion of xo only. There usually exists a number of relevant variables.The 
ontinuum des
ription of the pro
ess des
ribed by su
h variables 
an be employedonly if a 
ommon range of the REV 
an be found for all of these.All average properties are assigned to the 
entroid of the REV, xREV , whi
h is illus-trated in Figure 4.2. In Figure 4.2 the REV volume is given by Uo. The se
tion of theREV boundary surfa
e whi
h separates the 
ontinuum phase volume, U c, 
ontainedwithin the REV, from the 
ontinuum phase outside of the REV, is denoted by Scc.Se
tions of the REV boundary surfa
e whi
h 
ut through parti
les and points on par-ti
le surfa
es where parti
les 
onne
t with ea
h other, are given by Spp(i). Similarly,the surfa
es whi
h separate the parti
le volumes, νp(i), from the 
ontinuum are given
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by Spc(i). The inward fa
ing normal unit ve
tors for the parti
le and the 
ontinuumphases are denoted by np(i) and nc(i), respe
tively.

np(i) nc(i)

Scc

Spc(i)

Spc

Spp(i)

REV, U0

xREV

νp(i)

Figure 4.2: The Representative Elementary Volume (REV).The initial averaging pro
edure, whi
h applies the 
on
ept of an REV, averages themass 
onservation equations 
ompletely but yields an integral term in the momentum
onservation expressions in whi
h mi
ros
opi
 variables remain.4.3 Averaging rules for the 
ontinuum phaseVolume averaging for a 
ontinuum, as applied by Whitaker (1967), has been referred toin Chapter 2 and the rules that apply to su
h an averaging method have been derivedin Appendix B. These averaging rules are repeated here in order that the reader may
ompare them with the averaging rules for the parti
ulate phase that will be dis
ussedin Se
tion 4.6.
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Let φ be a property of the 
ontinuum phase, whi
h may be a s
alar, ve
tor or dyadand is assumed to be �nite, 
ontinuous and di�erentiable within an REV with volume
Uo. Using an REV, the following de�nitions are made: The phase average of any
ontinuum property, φ, is de�ned as (Whitaker (1969))

〈φ〉 =
1

Uo

∫

Uc
φdU , (4.3.1)and yields the average of any property φ over the entire REV volume, Uo. The averageof a property taken solely over the 
ontinuum se
tion of the REV, U c, is denoted by

〈φ〉c =
1

Uc

∫

Uc
φdU , (4.3.2)and is related to the phase average presented in Equation (4.3.1) by

〈φ〉 = ǫc 〈φ〉c , (4.3.3)where, ǫc = U c/Uo, signi�es the fra
tion of the total REV volume whi
h is o

upiedby the 
ontinuum phase. At any point within U c, the deviation of φ from the intrinsi
phase average, 〈φ〉c, is de�ned by
φ̃ = φ− 〈φ〉c . (4.3.4)The aforementioned de�nitions are used to derive averaging rules whi
h are listed inTable 4.1 for the 
ontinuum phase. In Table 4.1 the velo
ity, w, refers to the velo
ityat whi
h the 
ontinuum-parti
le interfa
e, Spc, is being displa
ed and nc is the unitve
tor normal to the 
ontinuum phase on Spc, dire
ted into the parti
le phase.4.4 Averaging of the 
ontinuum mass 
onservationequationThe averaging rules, listed in Table 4.1, are applied to the equation for mass 
onser-vation of the 
ontinuum phase, given by Equation (3.2.4). A methodi
al approa
h isapplied to the averaging pro
ess: The transient, 
onve
tive and mass �ux terms ofEquation (3.2.4) are respe
tively labelled as Term 1, Term 2 and Term 3

〈
∂ρc
∂t

〉

︸ ︷︷ ︸Term 1 + 〈∇ · (ρc vc)〉︸ ︷︷ ︸Term 2 = 〈0〉︸︷︷︸Term 3 . (4.4.1)
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Table 4.1: Averaging rules for the 
ontinuum phase

i 〈φ〉 = ǫc 〈φ〉c

ii 〈φ1 + φ2〉 = 〈φ1〉+ 〈φ2〉

iii 〈αφ〉 = α 〈φ〉 , where α is a 
onstant
iv 〈φ1φ2〉c = 〈φ1〉c 〈φ2〉c +

〈
φ̃1φ̃2

〉
c

v 〈∇φ〉 = ∇〈φ〉+ 1
Uo
∫
Spc ncφdS

vi 〈∇φ〉 = ǫc∇〈φ〉c + 1
Uo
∫
Spc ncφ̃dS

vii 〈∇ · φ〉 = ∇ · 〈φ〉+ 1
Uo
∫
Spc nc · φdS

viii
〈
∂φ
∂t

〉
= ∂〈φ〉

∂t
− 1

Uo
∫
Spc nc · wφdSRules viii and i are applied to Term 1, yielding

〈
∂ρc
∂t

〉
=

∂ǫc 〈ρc〉c
∂t

− 1

Uo

∫

Spc
nc · vcρcdS, (4.4.2)where the velo
ity, w, of the interfa
e, Spc, has been repla
ed by the velo
ity, vc, ofthe 
ontinuum phase sin
e it is assumed that these two are equivalent in the absen
eof 
ombustion or 
ondensation.For the averaging of Term 2, appli
ation of averaging Rules vii and i is su

eeded by
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the use of vi and it follows that

〈∇ · (ρc vc)〉 = ∇ · 〈ρc vc〉+
1

Uo

∫

Spc

nc · ρc vcdS,

= ∇ · (ǫc 〈ρc vc〉c) +
1

Uo

∫

Spc

nc · ρc vcdS,

= ∇ · [ǫc (〈ρc〉c 〈 vc〉c + 〈ρ̃c ṽc〉c)] +
1

Uo

∫

Spc

nc · ρc vcdS. (4.4.3)In 
onstru
ting the mass 
onservation equation for the 
ontinuum phase, it was assumedthat 
ontinuum mass would remain un
hanged, hen
e the absen
e of a mass �ux termand the zero value on the right-hand side of Equation (3.2.4). The average of Term 3is given by
〈0〉 = 0. (4.4.4)Equations (4.4.2), (4.4.3) and (4.4.4) are assembled, and it follows that

∂ 〈ρc〉
∂t

+∇ · [ǫc (〈ρc〉c 〈 vc〉c + 〈ρ̃c ṽc〉c)] = 0. (4.4.5)The added assumption of a 
onstant 
ontinuum density, ρc, yields further simpli�
ationof Equation (4.4.5)
∂ǫc
∂t

+∇ · ǫc 〈 vc〉c = 0, (4.4.6)whi
h embodies a des
ription for the 
onservation of 
ontinuum mass in terms of ma
ro-s
opi
 state variables.4.5 Averaging of the 
ontinuum momentum
onservation equationThe approa
h followed in averaging the mass 
onservation equation for the 
ontinuumis repeated here. The momentum 
onservation equation for the 
ontinuum phase wasgiven earlier by Equation (3.3.7) and is repeated here:
∂ρc vc
∂t︸ ︷︷ ︸Term 1 +∇ · (ρc vc vc)︸ ︷︷ ︸Term 2 = ∇ · σ

c︸ ︷︷ ︸Term 3 + ρc g︸︷︷︸Term 4 . (4.5.1)
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Under the assumption that the 
ontinuum density is 
onstant, the appli
ation of Rules
viii and i to the transient term, labelled Term 1 in Equation (4.5.1), yields

ρc

〈
∂ vc
∂t

〉
= ρc

∂ǫc 〈 vc〉c
∂t

− ρc
1

Uo

∫

Spc
nc · vc vcdS. (4.5.2)Appli
ation of averaging Rules vii and i to the 
onve
tion term, labelled Term 2, yields

ρc 〈∇ · ( vc vc)〉 = ρc∇ · 〈 vc vc〉+ ρc
1

Uo

∫

Spc
nc · vc vcdS,

= ρc∇ ·
[
ǫc

(
〈 vc〉c 〈 vc〉c + 〈 ṽc ṽc〉c

)]
+ ρc

1

Uo

∫

Spc
nc · vc vcdS.(4.5.3)The gradient of the underlined term in Equation (4.5.3) is denoted by Enwald et al.(1997) as the Reynolds stress and has been dis
ussed in Chapter 2. Following the"traditional two-�uid derivation" by Enwald et al. (1997) and Hassanizadeh and Gray(1979) in their assumption that the 
ontinuum �ow remains laminar, Equation (4.5.3)simpli�es to

ρc 〈∇ · ( vc vc)〉 = ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) + ρc
1

Uo

∫

Spc
nc · vc vcdS. (4.5.4)Rules vii and i are used in the averaging of the 
ontinuum stress 
ontribution to themomentum, and it follows that Term 3 is given by

〈
∇ · σ

c

〉
= ∇ ·

(
ǫc

〈
σ
c

〉
c

)
+

1

Uo

∫

Spc
nc · σc

dS. (4.5.5)The a

eleration in the body for
e, given by Term 4, is assumed to be gravitationala

eleration, g, and it follows that
ρc
〈
g
〉

= ρc gǫc. (4.5.6)From Equations (4.5.2), (4.5.4), (4.5.5) and (4.5.6), it then follows that
ρc
∂ǫc 〈 vc〉c

∂t
+ ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) = ρc gǫc +∇ · ǫc

〈
σ
c

〉
c
+

1

Uo

∫

Spc
nc · σc

dS, (4.5.7)whi
h is the REV averaged form for the 
onservation of momentum for the 
ontinuumphase.
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4.6 Averaging rules for the parti
le phaseThe parti
le phase is 
omposed of dis
rete, solid, rigid parti
les whi
h are, apart fromwhen they 
ollide, 
ompletely surrounded by the 
ontinuum phase. Due to the disjointnature of the parti
les, the averaging pro
edures developed in Se
tion 4.3 need to beadapted for the parti
ulate phase.De�ne a volumetri
 average of n dis
rete parti
les as

γ =
1

Uo

n∑

i=1

γp(i)νp(i), (4.6.1)and de�ne the intrinsi
 phase average as,
γ p =

1

Up

n∑

i=1

γp(i)νp(i). (4.6.2)The deviation from su
h an averaged quantity is de�ned as
γ̃ = γp(i) − γ p. (4.6.3)The parti
le volume fra
tion, ǫp, is linked to the 
ontinuum volume fra
tion, ǫc, by

ǫp =
Up

Uo
= 1− ǫc = 1 =

1

Uo

n∑

i=1

1νp(i), (4.6.4)where Up =
∑n

i=1 νp(i) is the total solid volume 
ontained within the REV.Although the parti
les are separated, the average values obtained are assumed to bede�ned at the 
entre of the REV, xREV . The averaging rules for the parti
le phase arelisted in Table 4.2.The set of rules given in Table 4.2 di�ers from those given in Table 4.1 in that Rules
vii, viii, and ix do not 
ontain integral terms. This is due to the fa
t that di�erentia-tion is additive and may therefore be taken out of the summation pro
edure used foraveraging the dis
rete phase whereas the Leibniz theorem needs to be applied in orderto di�erentiate under an integral sign in the 
ase of the 
ontinuum phase.
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Table 4.2: Averaging rules for the dis
rete phase.

i γ = ǫpγ
p

ii γ + β = γ + β

iii 
onstantγ = 
onstantγ
iv γ̃ = 0 = γ̃

v ˜̃γ = γ̃

vi γβ
p
= γ pβ

p
+ γ̃β̃

p

vii ∇ · γ = ∇ · γ

viii ∇γ = ∇γ

ix ∂γ
∂t

= ∂
∂t
γ4.7 Averaging of the parti
le mass 
onservationequationEquation (3.4.3) is summed over all parti
les 
ontained either partially or fully withinthe REV:

n∑

i=1

∂mp(i)(t)

∂t
=

n∑

i=1

∫

S(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS(i). (4.7.1)The term on the right-hand side of the integral is the sum of the surfa
e integralsover ea
h solid parti
le's surfa
e. The surfa
e, however, 
onsists of both a parti
le-
ontinuum interfa
e, Spc(i), and a parti
le-parti
le interfa
e, Spp(i), as was illustratedin Figure 4.2. The parti
le-parti
le boundary results due to a parti
le being 
ontained
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only partially within the REV. It follows that Equation (4.7.1) may be expressed as

n∑

i=1

∂mp(i)(t)

∂t
=

n∑

i=1




∫

Spc(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS(i)+

∫

Spp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS(i)




. (4.7.2)The velo
ity of the parti
le boundary does however not exist over the Spp(i) interfa
eand it follows that
n∑

i=1

∂mp(i)(t)

∂t
=

n∑

i=1




∫

Spc(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS(i)−

∫

Spp(i)

ρp(i) vp(i) · np(i)dS(i)




. (4.7.3)In order to evaluate the integral over the parti
le-parti
le interfa
e, the spa
ial averag-ing theorem of Slattery (Whitaker (1967)) is applied to a single parti
le:Consider a solid parti
le i 
rossing the boundary of the REV as shown in Figure 4.3.The REV boundary moves a distan
e ∆x relative to the parti
le 
entre in time ∆t. Let
νp(i)|x denote the volume of the parti
le 
ontained within the REV when the parti
le isat position xi and let νp(i)|(xi+∆x) be the volume at position xi +∆x. Let Spp(i) be thesurfa
e area obtained by the interse
tion of the REV boundary with the parti
le.
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∆x

vp

νp(i)

Spp(i)|t=0

Spp(i)|t=t+∆t

Figure 4.3: Solid parti
le at the REV boundary.Referring to the Figure 4.3 and expressing the di�erentiation in terms of a limit, for ageneral variable φ it follows that
∂

∂x

∫

νp(i)

φdνp = lim
∆x→0

1

∆x




∫

νp(i)|xi+∆x

φdνi −
∫

νp(i)|xi

φdνp(i




= lim
∆x→0

1

∆x

∫

νi|xi+∆x − νp(i)|xi

φdνi. (4.7.4)In the limiting 
ase of ∆x → 0, the in
remental volume element may be expressed as
dνi = ∆xdS i and Equation (4.7.4) redu
es to

∂

∂x

∫

νp(i)

φdνi = lim
∆x→0

1

∆x
∆x

∫

Spp(i)

φdSi, (4.7.5)whi
h, in three-dimensions, may be written as
∇

∫

νp(i)

φdνp =

∫

Spp(i)

φnp(i)dSi, (4.7.6)where np(i) is an outward dire
ted unit ve
tor, perpendi
ular to Spp(i).
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Equation (4.7.6) is applied to Equation (4.7.3), yielding
n∑

i=1

∂mp(i)(t)

∂t
︸ ︷︷ ︸Term 1 =

n∑

i=1

∫

Spc(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dSi

︸ ︷︷ ︸Term 2 −
n∑

i=1

∇ ·
∫

νp(i)

ρp(i) vp(i)dνi

︸ ︷︷ ︸Term 3 .

(4.7.7)From the de�nition of volumetri
 averaging of a non-
onne
ted medium given by Equa-tion (4.6.1), Term 1 may be written as
n∑

i=1

∂mp(i)(t)

∂t
=

∂

∂t

n∑

i=1

ρp(i)νp(i)

= Uo
∂ρp
∂t

, (4.7.8)whi
h, after applying the de�nition for the intrinsi
 average for the parti
le phase,given by Equation (4.6.2), yields
n∑

i=1

∂mp(i)(t)

∂t
= Uo

∂

∂t
(ǫpρp

p) . (4.7.9)Sin
e the sum of integrals, ea
h of whi
h is taken over the parti
le-
ontinuum interfa
eof a single parti
le, may also be written as
n∑

i=1

∫

S(i,pc)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dSi ≡

∫

∑
Spc(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS,(4.7.10)and sin
e the parti
le-
ontinuum interfa
e, Spc, of the REV is 
onstru
ted from theparti
le-
ontinuum interfa
es of all parti
les, 
ontained within the REV, 
ombined:

Spc =
∑

i

Spc(i), (4.7.11)it follows that Term 2 may be simpli�ed as
n∑

i=1

∫

Spc(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS i ≡

∫

Spc

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS.(4.7.12)
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It is assumed that the properties of the parti
le are de�ned at its 
entre: The velo
ityand density of ea
h dis
rete element are therefore by de�nition regarded as 
onstantsfor ea
h individual element and the parti
les are regarded homogeneous. It follows thatTerm 3 may be expressed as

n∑

i=1

∇ ·
∫

νp(i)

ρp(i) vp(i)dνi =

n∑

i=1

∇ · ρp(i) vp(i)νi. (4.7.13)Equation (4.6.1) is applied to Equation (4.7.13) and it follows that
n∑

i=1

∇ ·
∫

νp(i)

ρp(i) vp(i)dνp = Uo∇ · ρp vp. (4.7.14)Finally, the averaging rules are applied, yielding
n∑

i=1

∇ ·
∫

νp(i)

ρp(i) vp(i)dνi = Uo∇ · ǫpρp p vp
p + Uo∇ · ρ̃p ṽp. (4.7.15)It follows that Equation (4.7.7) may then be written as

∂

∂t
(ǫpρp

p) +∇ · ǫpρp p vp
p +∇ · ρ̃p ṽp =

1

Uo

∫

Spc

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS.(4.7.16)Equation (4.7.16) des
ribes the 
hange of the (volumetri
 weighted average) mass perunit volume of all parti
les in the REV. It is de�ned at the 
entroid of the REV. Theintegral term represents the �ux of mass a
ross the 
ontinuum-parti
le interfa
e.If the assumption is made that there are no sudden 
hanges in the mean parti
le velo
ityand density within the REV, the third term on the left-hand side of Equation (4.7.16)may be negle
ted. Equation (4.7.16) may then be written as

∂

∂t
(ǫpρp

p) +∇ · ǫpρp p vp
p =

1

Uo

∫

Spc

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS. (4.7.17)
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If, in addition to previous assumptions, it is assumed that the mass �ux a
ross thesolid surfa
e is zero (i.e. 
ombustion and/or 
ondensation does not o

ur), and thatthe parti
les within the REV have the same densities, the averaged equation for mass
onservation of the dis
rete phase is given by

∂

∂t
(ǫpρp

p) +∇ ·
(
ǫp vp

p
)

= 0. (4.7.18)4.8 Averaging of the parti
le momentum
onservation equationEquation (3.5.7) des
ribes the 
hange in momentum of a parti
le with mass mp(i) =

ρp(i)νp(i). In order to obtain the overall momentum of the parti
les in the REV, Equa-tion (3.5.7) is summed for all n parti
les:
n∑

i=1

∂

∂t

(
vp(i)ρp(i)νp(i)

)
+

n∑

i=1

ρp(i)νp(i) vp(i) · ∇ vp(i) =
n∑

i=1

νp(i)ρp(i) g +

n∑

i=1

∫

∂νp(i)

σ
p(i)

· np(i)dS +

n∑

i=1

vp(i)

∫

Sp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS

︸ ︷︷ ︸Term 1 .

(4.8.1)The same argument that was used for the mass �ux term in Equation (4.7.1) is nowapplied to the integral term, i.e.Term 1 =
n∑

i=1

vp(i)




∫

Spc(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS +

∫

Spp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS




= −
n∑

i=1

vp(i)

∫

Spp(i)

ρp(i) vp(i) · np(i)dS

= −
n∑

i=1

vp(i)∇ ·
∫

νp(i)

ρp(i) vp(i)dν. (4.8.2)
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It was assumed that the density and velo
ity of the parti
le are de�ned at its 
entreof mass and may therefore be removed from the integral term in Equation (4.8.2). Itfollows that Term 1 = −

n∑

i=1

vp(i)∇ · ρp(i) vp(i)νp(i). (4.8.3)Combination of the above result for Term 1 and the underlined term in Equation(4.8.1), yields
∂

∂t

n∑

i=1

(
vp(i)ρp(i)νp(i)

)
+∇ ·

n∑

i=1

(
ρp(i) vp(i) vp(i)

)
νp(i) =

n∑

i=1

νp(i)ρp(i) g +

∑

i

∫

Sp(i)

σ
p(i)

· np(i)dS.(4.8.4)The underlined integral term in Equation (4.8.4) is split into its parti
le-
ontinuumand parti
le-parti
le 
omponents and written in 
ondensed form:
∫

Sp(i)

σ
p(i)

· np(i)dS =

∫

Spc(i)

σ
p(i)

· np(i)dS +

∫

Spp(i)

σ
p(i)

· np(i)dS. (4.8.5)Substitution of Equation (4.8.5) and appli
ation of the de�nition of volume averagingthen yield the following volume averaged momentum 
onservation equation for theparti
ulate phase:
∂

∂t
vpρp +∇ · ρp vp vp = ρp g +

1

Uo

∫

Spc

σ
p(i)

· np(i)dS +
1

Uo

∫

Spp

σ
p(i)

· np(i)dS.(4.8.6)Re
all that, during the averaging of the dis
rete phase mass equation, it was assumedthat all parti
les have the same density and that the density is assumed to remain
onstant with regard to both time and position. Implementing these assumptions and
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applying the averaging rules given in Table 4.2 to the terms in Equation (4.8.6), yield
ρp

∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p + ρp∇ · ṽp ṽp = ǫpρp g +

1

Uo

∫

Spc

σ
p(i)

· np(i)dS +

1

Uo

∫

Spp

σ
p(i)

· np(i)dS. (4.8.7)The average of the produ
t of the velo
ity deviations was termed the Reynolds stressin Se
tion 2.6.1.3. The assumptions made for the 
ontinuum phase presumably holdsfor the dis
rete phase as well and the Reynolds stress is 
onsidered negligible. It followsthat
ρp

∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p = ǫpρp g +

1

Uo

∫

Spc

σ
p(i)

· np(i)dS +

1

Uo

∫

Spp

σ
p(i)

· np(i)dS. (4.8.8)Equation (4.8.8) represents the �nal form for the parti
le momentum 
onservationequation and additional modelling pro
edures are required for the remaining integralterms to be expressed in terms of averaged properties.4.9 Summary and 
on
lusionsIn this 
hapter the 
on
ept of an REV has been introdu
ed and used to derive averagingrules for both phases. These rules have been applied to the 
onservation equationsthat were presented in Chapter 3. Additional modelling pro
edures, required for theexpression of the stress terms σ
c
and σ

p
in Equations (4.5.7) and (4.8.8) in terms ofma
ros
opi
 �ow properties, are dis
ussed in Chapter 5.
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Chapter 5Constitutive modelling
5.1 Introdu
tionThe derivation of 
losure laws is pivotal to a

urate modelling pro
edures. FollowingEnwald et al. (1997), these laws are divided into two 
ategories, namely Constitutivelaws whi
h spe
ify the intera
tion of physi
al parameters within phases and Transferlaws whi
h qualify the intera
tions between phases.Constitutive laws entail the modelling of the 
ontinuum and parti
ulate stress terms,appearing in Equations (4.5.7) and (4.8.8), in terms of �uid properties. The transferlaws are dis
ussed in Chapter 6.5.2 Continuum stressThe 
ontinuum stress, σ

c
, is split into a 
ontinuum pressure, pc, and a 
ontinuum shearstress term, τ

c
, and is expressed as

σ
c

= −pcI + τc. (5.2.1)The 
ontinuum pressure is taken as the hydrostati
 pressure and the shear stress ismodelled using the Newtonian strain-stress relation:
τ
c

= ξc∇ · vcI + 2µc

(
S
c
− 1

3
∇ · vcI

)
, (5.2.2)where ξc denotes the bulk vis
osity and the strain-rate tensor, S
c
, is de�ned by

S
c

= µc

(
∇ vc + (∇ vc)

T
)
. (5.2.3)53
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In Equation (5.2.3), µc is the vis
osity of the 
ontinuum and T denotes the transposeoperator. From the assumption of a 
onstant 
ontinuum density,1 it follows that∇· vc =
0 and the shear stress therefore simpli�es to

τ
c

= µc

(
∇ vc + (∇ vc)

T
)
. (5.2.5)Substitution of Equation (5.2.5) into Equation (5.2.1) yields

σ
c

= −pcI + µc

(
∇ vc + (∇ vc)

T
)
, (5.2.6)whi
h is an expression for the internal 
ontinuum shear stress in terms of �uid proper-ties.5.3 Parti
le stressWhen 
al
ulating the total for
e exerted on a parti
le by a surrounding 
ontinuum andneighbouring parti
les, as was done in Appendix A, the work of Kleinstreuer (2003),Enwald et al. (1997), Soo (1990) and Crowe et al. (1998) were followed in assumingthat these for
es may be added linearly. For this reason it is assumed in this work thatthe parti
le stress, σ

p
, is a linear 
ombination of the stress indu
ed by the 
ontinuumen
ompassing it, σ

c
, and the stress, σ

pp
, instigated by neighbouring parti
les

σ
p

= σ
c
+ σ

pp
. (5.3.1)The 
ontinuum stress has already been dis
ussed in Se
tion 5.2 and it remains to beshown how the parti
le indu
ed stress is modelled.5.3.1 Parti
le indu
ed stressThe form of vis
ous dissipation and stresses, experien
ed by randomly �u
tuating par-ti
les in the dilute se
tions of the �ow domain, are referred to as kineti
 stresses. Anin
rease in the parti
le volume fra
tion results in parti
le 
ollisions and generate 
ol-lisional stresses whi
h, in addition to the kineti
 stresses, will in�uen
e the motion of1For variable densities (i.e. 
ompressible �ow) these terms are usually also negle
ted by theappli
ation of Stokes' assumption, whi
h states that

ξc +
2

3
µc = 0. (5.2.4)In the event of a 
hange of volume there would therefore not exist a resistan
e for
e that 
ould subduesu
h a 
hange.
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the parti
ulate matter. However, a further in
rease in the parti
le volume fra
tion in-du
es protra
ted sliding or abrasive inter-parti
le 
onta
ts, yielding a fri
tional stresswhi
h will dominate as individual parti
le motions are progressively limited. Theseintera
tions are illustrated in Figure 5.1.

Kineti

Collisional & Kineti
 Fri
tionalFigure 5.1: The three main forms of vis
ous dissipation within granular �ow: kineti
,kineti
-
ollisional, and fri
tional.It follows that the parti
le indu
ed stress may be de
omposed into a kineti
-
ollisional
omponent, σkc

pp
, and a fri
tional 
omponent, σf

pp
. This observation was used by Dartev-elle (2003) to 
onstru
t the following expression for the parti
le indu
ed stress

σ
pp

= σkc

pp
+ σf

pp
, (5.3.2)whi
h in the limiting 
ase of dilute �ow, simpli�es to

σ
pp

= σkc

pp
. (5.3.3)Following Enwald et al. (1997) and Dartevelle (2003), σkc

pp
may be expressed as a 
om-bination of kineti
-
ollisional parti
le pressure, pkcp , and a kineti
-
ollisional parti
leshear stress, τkc

p
, as

σkc

pp
= −pkcp I + τkc

p
. (5.3.4)For the purpose of the 
urrent work it is assumed that the small grain size and dilute
on
entrations yield a parti
le pressure whi
h, when 
ompared to the shear, may be
onsidered small enough to be omitted. It follows that the parti
le stress term is given
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by substitution of Equations (5.2.6) and (5.3.4) into Equation (5.3.1) whi
h yields thefollowing expression for the parti
le shear stress:

σ
p

= −pc1 + τ
c
+ τkc

p
. (5.3.5)5.4 Appli
ation of 
onstitutive lawsThe 
onstitutive laws for the 
ontinuum- and the parti
le phases are given by Equa-tions (5.2.6) and (5.3.5), respe
tively. In Se
tions 5.4.1 and 5.4.2, these equations aresubstituted into the averaged momentum equations, given in Chapter 4 by Equations(4.5.7) and (4.8.8) for the 
ontinuum and parti
le phases, respe
tively. In doing so, thestress terms are repla
ed by �uid properties.5.4.1 The 
ontinuumSubstitution of Equation (5.2.1) into the averaged momentum equation for the 
ontin-uum phase, given by Equation (4.5.7), yields

ρc
∂ǫc 〈 vc〉c

∂t
+ ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) = ρc gǫc −∇ (ǫc 〈pc〉c) +∇ ·

(
ǫc
〈
τ
〉
c

)
+

1

Uo

∫

Spc
nc · (−pcI + τ

c
)dS. (5.4.1)When the 
hain rule is applied to the pressure gradient term, ∇(ǫc 〈p〉c), it follows that

ρc
∂ǫc 〈 vc〉c

∂t
+ ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) = ρc gǫc − ǫc∇〈pc〉c − 〈pc〉c ∇ǫc +∇ ·

(
ǫc
〈
τ
〉
c

)
+

1

Uo

∫

Spc
nc ·

(
−pcI + τ

c

)
dS. (5.4.2)Noting that the third term on the right-hand side of Equation (5.4.2) 
ontains thegradient of the porosity, Equation (5.4.2) may be simpli�ed, with the appli
ation of
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Slattery's averaging theorem and expressed as 2

ρc
∂ǫc 〈 vc〉c

∂t
+ ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) = ρc gǫc − ǫc∇〈pc〉c +∇ ·

(
ǫc
〈
τ
〉
c

)
+

1

Uo

∫

Spc
nc ·

(
(−pc + 〈pc〉c)I + τ

c

)
dS. (5.4.4)By applying the de�nition of the deviation in terms of mi
ros
opi
 and averaged values,given by Equation (4.3.4), Equation (5.4.4) may �nally be expressed as

ρc
∂ǫc 〈 vc〉c

∂t
+ ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) = ρc gǫc − ǫc∇〈pc〉c +∇ ·

(
ǫc
〈
τ
〉
c

)
+

1

Uo

∫

Spc
nc ·

(
−p̃cI + τ

c

)
dS. (5.4.5)The averaging pro
edure, dis
ussed in Appendix C, is applied to the expression forthe shear stress in terms of velo
ity, as given by Equation (5.2.5). This allows for thegradient of the 
ontinuum averaged shear stress, whi
h appears on the right-hand sideof Equation (5.4.5), to be written as

∇ · ǫc
〈
τ
pc

〉
c

= µc∇ · [ǫc∇〈 vc〉c] , (5.4.6)and the averaged form of Equation (5.4.5) is thus given by
ρc
∂ǫc 〈 vc〉c

∂t
+ ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) = ρc gǫc − ǫc∇〈pc〉c + µc∇ · [ǫc∇〈 vc〉c] +

1

Uo

∫

Spc
nc ·

(
−p̃cI + τ

c

)
dS. (5.4.7)The remaining surfa
e integral term whi
h appears in Equation (5.4.5) will be 
losedin Chapter 6.2 Averaging Rule vi in Table 4.1 is applied and it is noted that 〈pc〉c is an average and maytherefore be 
ombined with the integrand as follows

〈pc〉c∇ǫc = 〈pc〉c

(
〈∇1〉 −

∫

Spc

1ncdS
)

= −
∫

Spc

〈pc〉c ncdS. (5.4.3)
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5.4.2 The dis
rete phaseSubstitution of Equation (5.3.5) into Equation (4.8.8), yields
ρp

∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p = ǫpρp g +

1

Uo

∫

Spc

(
−pc1 + τ

c
+ τkc

p

)
· np(i)dS +

1

Uo

∫

Spp

(
−pc1 + τ

c
+ τ kc

p

)
· np(i)dS. (5.4.8)The kineti
-
ollisional shear, τkc

p
, 
an physi
ally only o

ur where parti
les 
ome into
onta
t with ea
h other. It follows that su
h a term will only exist on a parti
le-parti
leinterfa
e, Spp. Moreover, the 
ontinuum pressure, pc, and shear, τ

c
, are de�ned onlyat interfa
es and within volumes where the 
ontinuum phase is present. It thereforefollows that Equation (5.4.8) simpli�es to

ρp
∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p = ǫpρp g +

1

Uo

∫

Spp

(
τ kc

p

)
· np(i)dS

+
1

Uo

∫

Spc

(
−pc1 + τ

c

)
· np(i)dS. (5.4.9)Appli
ation of Reynolds de
omposition to the pressure in the integral term on theright-hand side of Equation (5.4.9), yields

ρp
∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p = ǫpρp g −

1

Uo

∫

Spc

〈pc〉c npdS +
1

Uo

∫

Spp

τkc
p
· np(i)dS

− 1

Uo

∫

Spc

(
−p̃c1 + τ

c

)
· ncdS, (5.4.10)where the negative sign in front of the last term on the right-hand side appears dueto the relation between the parti
ulate unit ve
tor and the 
orresponding 
ontinuumunit ve
tor, np = −nc. The divergen
e theorem is applied to the se
ond term on the
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right-hand side of Equation (5.4.10) and it follows that

ρp
∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p = ǫpρp g − ǫp∇〈pc〉c +

1

Uo

∫

Spp

τkc
p
· np(i)dS

− 1

Uo

∫

Spc

(
−p̃c1 + τ

c

)
· ncdS. (5.4.11)Note that the surfa
e integral term whi
h appears in Equation (5.4.5) is present inEquation (5.4.11) also, but with opposite sign. It is through these surfa
e integrals thatmomentum is transferred between phases and dissimilar signs indi
ate that momentumdissipated from one phase is the momentum gained by another. Additional modellingpro
edures, needed to de�ne the transfer laws for the 
losure of the pre
eding surfa
eintegrals, are dis
ussed in Chapter 6.It remains to be shown how the additional surfa
e integral in Equation (5.4.11), whi
hserves as the des
riptor for momentum transfer within the parti
le phase, is 
losed.5.5 Parti
le intera
tionThe parti
le intera
tion e�e
t enters Equation (5.4.10) through the integral expression

Ip =
1

Uo

∫

Spp

τ kc

p
· np(i)dS, (5.5.1)and sin
e Spp =

∑
i Spp(i), it follows that Equation (5.5.1) may be written as the sumof parti
le-parti
le intera
tion for
es experien
ed by ea
h parti
le:

Ip =
1

Uo

∑ ∫

Spp(i)

τ kc

p
· np(i)dS. (5.5.2)The integrand denotes a for
e, F kc

p(i), parallel to an in
remental surfa
e element, dS,on whi
h it a
ts.Subsequent integration over all surfa
e elements where parti
les are in 
onta
t withone another, yields the following expression for the parti
le indu
ed momentum 
on-
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tribution

Ip =
1

Uo

N∑

i=1

F kc
p(i), (5.5.3)where F kc

p(i) is the resultant for
e a
ting on the ith parti
le due to multiple 
ollisions withits neighbours. In the remainder of this se
tion su
h a resultant parti
le intera
tionfor
e, experien
ed by a single parti
le, will be modelled.The initial derivation of a 
losed expression for Equation (5.5.3) is done for a one-dimensional situation. In a

ordan
e with work done by Soo (1990) and Fan and Zhu(1998), the one-dimensional model is expanded to higher dimensions. It should howeverbe noted that the expansion is not mathemati
ally rigourous, but a mere approximationof the aforementioned unidimensional model.The subje
t matter of the following se
tions is aimed at obtaining an expression forthe average 
ollision for
e indu
ed by 
ollisions between a multitude of parti
les. Inorder for this to be done in a 
oherent manner, some de�nitions and terminologies areintrodu
ed and the 
ollisional for
e between two parti
les is 
onsidered.5.5.1 Two-dimensional binary elasti
 
ollisionsThe appli
ation of the Centre Of Mass referen
e frame (COM)3, in 
onjun
tion withan elasti
ity assumption, yields a signi�
ant redu
tion in the 
omplexity of any taskinvolving momentum 
onservation during 
ollisions.In the COM referen
e frame, the observer moves alongside the system's 
entre of massand all measurements are made in referen
e to this position. In the absen
e of externalfor
es a
ting on the system, the total momentum on the system in the COM referen
eis e�e
tively zero at all points in time. If, in addition to the COM frame of referen
e,it is also assumed that kineti
 energy is 
onserved, i.e. that all 
ollisions are elasti
,it also holds that ea
h parti
le's pre- and post 
ollisional speed remains un
hanged.The latter seems obvious for one-dimensional head on 
ollisions but it will be shownthat it indeed holds for the two-dimensional (and for that matter multi-dimensional)
ollisions.3 An invaluable referen
e for COM theory is Chapter IV of Maxwell (1877) and may be downloadedfrom www.forgottenbooks.org. In addition to this, extensive use was made of the OpenCourseWarele
tures, made available by MIT (Lewin (2007)).
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5.5.1.1 The Centre Of Mass (COM)The 
entre of mass possesses the property of having a 
onstant velo
ity, una�e
ted bythe 
hanging motion of its parts. It is mathemati
ally de�ned as

Mtot rCOM =
∑

i

mi ri, (5.5.4)where mi is the mass of a single parti
le and Mtot is the 
ombined mass of all theparti
les within the system. The position of the 
entre of mass is given by rCOMwhereas ri denotes the position of ea
h parti
le. It follows from Equation (5.5.4), thatthe 
onstant velo
ity of the 
entre of mass, vCOM , is given by
vCOM =

1

Mtot

∑

i

mi vp(i) =
1

Mtot

∑

i

P i, (5.5.5)where vp(i) and P i are the velo
ity and momentum of the ith parti
le respe
tively.To an observer, pla
ed at the 
entre of mass, the velo
ity, vCOM , will appear to be zero.It follows that the sum of the momenta will be zero also. This is true independent ofthe dimensionality or elasti
ity of the system. It therefore holds that, in the absen
e ofa net external for
e, the total momentum remains zero before and after a 
ollision inthe COM frame of referen
e and the velo
ity of the COM, vCOM , will be un
hanged.The additional assumption of full elasti
ity (i.e. 
onservation of kineti
 energy), resultsin an unaltered speed for ea
h parti
le before and after impa
t with a separate parti
le.A derivation, supporting this statement follows.5.5.2 The e�e
t of elasti
ityConsider a fully elasti
 
ollision within the COM frame of referen
e, as illustrated inFigure 5.2. For any 
ollision, albeit elasti
 or inelasti
, the following holds in the COMframe of referen
e before impa
t
P 1 + P 2 = m1 vp(1) +m2 vp(2) = 0, (5.5.6)where P 1 and P 2 are the momenta of Parti
les 1 and 2, respe
tively whilst vp(1) and

vp(2) denote their velo
ities. From Equation (5.5.6) it follows that the velo
ities ofthe two parti
les are always in opposite dire
tions in a COM frame and the respe
tivespeeds are inversely proportional to their masses.
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vp(1)

m1

m2
vp(2)

v
′

p(1)

θ

θ

θ

v
′

p(2)

y

xFigure 5.2: Elasti
 two-dimensional 
ollision with spe
ular re�e
tion.Let vp(1) = up(1) i + vp(1) j and let vp(2) = up(2) i + vp(2) j, where up and vp denote the
x and y velo
ity 
omponents, respe
tively. From Equation (5.5.6) it then follows that

m1up(1) +m2up(2) = 0, (5.5.7)and
m1vp(1) +m2vp(2) = 0. (5.5.8)Let the x- and y-
omponents of the momentum resulting from the motion of Parti
les1 and 2 be given by,

P1,x = m1up(1) and P2,x = m2up(2)

P1,y = m1vp(1) and P2,y = m2vp(2).
(5.5.9)Substitution of the expressions for the momentum 
omponents, given by the equalitiesin (5.5.9), into Equations (5.5.7) and (5.5.8), yields the following relations

P1,x = −P2,x, (5.5.10)and
P1,y = −P2,y. (5.5.11)
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For any 
ollision, elasti
 or inelasti
, in any frame, albeit laboratory or COM, thefollowing holds before impa
t

Ek =
1

2
m1| vp(1)|2 +

1

2
m2| vp(2)|2,

=
1

2
m1

(
u2
p(1) + v2p(1)

)
+

1

2
m2

(
u2
p(2) + v2p(2)

)
,

=
1

2m1
m2

1u
2
p(1) +

1

2m1
m2

1v
2
p(1) +

1

2m2
m2

2u
2
p(2) +

1

2m2
m2

2v
2
p(2), (5.5.12)where Ek is the total kineti
 energy prior to the 
ollision. Substitution of the expres-sions given for the x- and y- momentum 
omponents into Equation (5.5.12), yields

Ek =
1

2m1

(
P 2
1,x + P 2

1,y

)
+

1

2m2

(
P 2
2,x + P 2

2,y

)
. (5.5.13)If it is assumed that the 
ollision is viewed in the COM frame of referen
e, Equations(5.5.10) and (5.5.11) may be substituted into Equation (5.5.13), and it follows that

Ek =

(
1

2m1

− 1

2m2

)(
P 2
1,x + P 2

1,y

)
. (5.5.14)A similar expression may be obtained for the post 
ollisional kineti
 energy, E ′

k:
E

′

k =

(
1

2m1

− 1

2m2

)(
P

′2
1,x + P

′2
1,y

)
, (5.5.15)where the primed variables indi
ate that it is taken after impa
t. Under the assumptionthat the 
ollisions are fully elasti
, Equation (5.5.14) may be set equal to Equation(5.5.15) and it follows that

(
P 2
1,x + P 2

1,y

)
=

(
P

′2
1,x + P

′2
1,y

)
. (5.5.16)The above may be written in the form of,

(m1| vp(1)|)2 = (m1| v
′

p(1)|)2, (5.5.17)where | vp(1)|2 = u2
p(1) + v2p(1).Equation (5.5.17) validates the statement made earlier that the pre- and post- 
olli-sional speeds are equal,

| vp(1)| = | v′

p(1)|. (5.5.18)
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In a similar manner it 
an be shown that,

| vp(2)| = | v′

p(2)|. (5.5.19)It follows that, in an elasti
 
ollision, the speed of the individual parti
les do not
hange, though their dire
tions may 
hange, depending on the shapes of the bodiesand the point of impa
t.In the following se
tion it is shown how 
ollisions between two moving obje
ts may besimpli�ed by keeping one of the obje
ts stationary and viewing only the motion of theother. Su
h an approa
h redu
es the 
omplexity of the mathemati
al des
ription ofthe motion between two parti
les signi�
antly and therefore provides a useful tool fordes
ribing the motions of parti
le 
louds.5.5.2.1 Relative mass and velo
itiesWith referen
e to Figure 5.2, it is shown that the 
hange in the x-momentum 
ompo-nent of Parti
le 2 may be expressed relative to that of Parti
le 1.From Equation (5.5.10) it follows that
∆P1,x = −∆P2,x, (5.5.20)where ∆Pi,x = Pi,x − P

′

i,x denotes the 
hange in momentum of Parti
le i due to the
ollision. The 
hange in the x-momentum 
omponent of ea
h parti
le is written interms of its velo
ity 
omponent, yielding
m1∆up(1) = −m2∆up(2). (5.5.21)From Equation (5.5.21) it then follows that

∆up(1) =
1
m1

∆P1,x and ∆up(2) = − 1
m2

∆P1,x,where ∆up denotes the di�eren
e between the pre- and -post 
ollisional values. Sub-tra
tion, yields
∆up(1) −∆up(2) =

1

m∗∆P1,x, (5.5.22)where m∗ = (m1m2)/(m1 +m2) is 
ommonly known as the relative mass. From Equa-tion (5.5.22) it follows that the 
hange in the x-
omponent of momentum for Parti
le2 may be written in terms of relative velo
ity and mass as
m∗ (up(rel)

)
−m∗

(
u

′

p(rel)

)
= ∆P1,x, (5.5.23)
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where up(rel) = up(1) − up(2) and u

′

rel = u
′

p(1) − u
′

p(2) respe
tively denote the pre- andpost 
ollisional x-
omponent of the relative velo
ity. Equation (5.5.23) is rati�
ationfor the observation made by Fan and Zhu (1998), Soo (1990) and Clark (2009) thatthe 
ollision between two moving parti
les is equivalent to the 
ase where a parti
le
ollides with another whi
h possesses the same relative mass and relative velo
ity.If, along with the elasti
ity assumption already made, it is assumed that the 
ollisionsare spe
ular and that the initial velo
ity of Parti
le 2 is parallel to the x-axis, it followsfrom Figure 5.2 that the magnitude of the x-
omponent, u′

p(2), of Parti
le 2's outgoingvelo
ity, v′

p(2), is given by
|u′

p(2)| = | v′

p(2)| cos(2θ) = | vp(2)| cos(2θ), (5.5.24)and sin
e vp(2) = up(2), Equation (5.5.24) may be expressed as
|u′

p(2)| = |up(2)| cos(2θ). (5.5.25)From Figure 5.2 it is seen that the dire
tion of u′

p(2) is opposite to up(2) and it followsthat
u

′

p(2) = −up(2) cos(2θ). (5.5.26)Similarly, the x-
omponent of Parti
le 1's velo
ity is given by
u

′

p(1) = −up(1) cos(2θ). (5.5.27)Combination of equations (5.5.26) and (5.5.27) then yields
u

′

p(rel) = −up(rel) cos(2θ). (5.5.28)Equation (5.5.28) is substituted into Equation (5.5.23) to obtain an expression for the
hange in the x-
omponent of the total momentum in terms of the relative mass andvelo
ity:
∆P1,x = m∗up(rel) (1 + cos(2θ))

= 2m∗up(rel) cos
2 θ. (5.5.29)The x-
omponent of the for
e exerted by Parti
le 2 onto Parti
le 1 is given by

fkc =
dP1,x

dt
≈ ∆Px

∆t
. (5.5.30)In order to derive an expression for the average for
e exerted due to multiple parti
les
olliding with one another, it is ne
essary to average the for
es over a 
ollision sphere.A dis
ussion on averaging te
hniques, whi
h employs the 
on
ept of a 
ollision sphere,follows in the next se
tion.
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5.5.2.2 The 
ollision sphere: a 
ontrol volume formulationWhen two parti
les of radii r1 and r2, possessing the same relative mass -and velo
ity,
ollide, a 
ollisions sphere with radius rc = r1 + r2 may be 
onstru
ted to average thefor
e exerted by one over the other (Clark (2009)). The 
ollision sphere is a 
ontrolvolume analogous to the REV and is illustrated in Figure 5.3.

r2

r1

r1 + r2

VCV

Figure 5.3: Two-dimensional view of a 
ollision sphere formed around Parti
le 1.
The volume of the 
ollision sphere, VCV , is indi
ated by the dashed line in Figure 5.3.One parti
le is 
onsidered to be the 
entral parti
le around whi
h the 
ollision sphereis 
entred and is labelled as a parti
le of Type 1. Type 1 parti
les are made up ofparti
les with radii equal to r1, whereas Type 2 parti
les 
onsist of those parti
les withradii equaling r2. In Figure 5.3 the Type 1 parti
le is taken as the 
entral sphere. AnyType 2 parti
le whi
h 
rosses the border of the 
ollision sphere, will inevitably make
onta
t with the 
entral sphere (Clark (2009)).
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The for
e a
ting on the 
ollision sphere is due to the rate of 
hange of the momentumover the 
ontrol volume and may be expressed as

fkc =
dm∗ vp(rel)

dt
, (5.5.31)wherem∗ is the relative or redu
ed mass and vp(rel) denotes the velo
ity of the parti
les.Equation (5.5.31) is approximated by

fkc ≈
∆
(
m∗ vp(rel)

)

∆t
. (5.5.32)Equation (5.5.32) denotes the for
e that will be exerted by a single parti
le of Type2 onto a parti
le of Type 1 with a relative mass, m∗. The total for
e experien
ed bya parti
le of Type 1 if N2 su
h parti
les were to 
ross the boundary of the 
ollisionsphere is given by

fkc = N2

∆
(
m∗ vp(rel)

)

∆t
. (5.5.33)The volume average of fkc over the 
ollision sphere may then be 
al
ulated by inte-grating over the 
ollision sphere and is given by

F kc =
1

VCV

∫

VCV

N2

∆
(
m∗ vp(rel)

)

∆t
dV. (5.5.34)Following Clark (2009), Soo (1990) and Fan and Zhu (1998), the volume integral isthen redu
ed to a surfa
e integral: 4

F kc =
1

VCV

∫

S

N2∆
(
m∗ vp(rel)

) (
vp(rel) · n

)
dS. (5.5.36)The de�nition of the dot produ
t is applied and it follows that

F kc =
N2

VCV

∫

S⊥

∆
(
m∗ vp(rel)

)
| vp(rel)|dS⊥, (5.5.37)4The relation between the in
remental volume element, dV , and the 
orresponding surfa
e element,

dS, is given by Krause (2005) as
dV = ( v · n) dS∆t. (5.5.35)
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where dS⊥ is the proje
ted area of impa
t normal to the in
oming velo
ity and isillustrated in Figure 5.4.It is assumed that the �ow is 
ompliant with a simple shear regime as illustrated inFigure 5.5. The velo
ity therefore 
onsists of an x-
omponent only whi
h is entirelydependent on the y-dimension (i.e. vp(rel) = u(y)p(rel)) and Equation (5.5.37) may beexpressed as5

F kc =
N2

VCV

∫

S⊥

∆
(
m∗up(rel)

)
up(rel)dS⊥. (5.5.38)The for
e due to the simple shear 
ollisions of a total of N2 Type 2 parti
les on a
entred Type 1 parti
le should also only have an x-
omponent and it is for this reasonthat the ve
tor notation is dropped in 
al
ulations to follow.

dSCV dS⊥

Figure 5.4: Proje
ted Surfa
e element, S⊥.Equation (5.5.38) may thus be written in terms of the x-
omponent of the momentum
hange due to 
ollision, as
F kc =

N2

VCV

∫

S⊥

∆Pxup(rel)dS⊥. (5.5.39)Substitution of Equation (5.5.29) into Equation (5.5.39), yields
F kc =

N2

VCV

∫

S⊥

2m∗u2
p(rel) cos

2 θdS⊥. (5.5.40)5Note that a similar result may be obtained by using the momentum theorem, dis
ussed in Ap-pendix D.
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x

y

z

up(rel)(y) Fixed parti
le

Control Volume (VCV )
(r1 + r2) cosφ

φ

n

r1 + r2

dSCV

rdθr sin θdφ

θ

Figure 5.5: Sphere of Type 1 subje
ted to shear �ow of 
loud of Type 2 parti
les.The in
remental surfa
e area, orientated perpendi
ularly to the x-dire
tion, is given inspheri
al 
oordinates by
dS⊥ = r2 sin θ cos θdθdφ, (5.5.41)and the shear �ow may be expressed as

up(rel) =
∂u

∂y
y =

∂up(rel)

∂y
r sin θ cosφ, (5.5.42)where r, θ, and φ are as illustrated in Figure 5.5. It follows that Equation (5.5.40) maybe written as

F kc =
N2

VCV

∫

S⊥

2m∗(r1 + r2)
4

(
∂up(rel)

∂y

)2

sin3 θ cos2 φ cos3 θdθdφ. (5.5.43)
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Referring to Figure 5.5 it is seen that only the upstream half of the top half of the
ollision sphere is subje
ted to parti
le 
ollisions by a simple shear in�ux of Type 2parti
les. It follows that the 
ollision sphere volume is given by VCV = 2/3π(r1 + r2)

3and that integration should take pla
e over the quarter sphere, subje
ted to the Type2 parti
les, hen
e
F kc =

2N2

2/3π(r1 + r2)3

∫ π/2

0

∫ π/2

0

2m∗(r1 + r2)
4

(
∂up(rel)

∂y

)2

sin3 θ cos2 φ cos3 θdθdφ.(5.5.44)Let the number density of a Type 2 parti
le 
loud be the number of parti
les of Type2 divided by the volume over whi
h they have an impa
t. For the 
ase of parti
les
olliding with the top half sphere the number density is given by
n2 = N2/(2/3π(r1 + r2)

3). (5.5.45)Substitution of the number density into Equation (5.5.44) yields
F kc = 4n2

∫ π/2

0

∫ π/2

0

m∗(r1 + r2)
4

(
∂up(rel)

∂y

)2

sin3 θ cos2 φ cos3 θdθdφ.(5.5.46)Integration of Equation (5.5.46) yields the for
e exerted by the shear �ow of a parti
le
loud of Type 2 on a single parti
le of Type 1:
F kc =

π

12
n2m

∗
(
∂up(rel)

∂y

)2

(r1 + r2)
4. (5.5.47)For the 
ase of identi
al parti
les, the relative mass is given by m∗ = mp(i)/2, and thefor
e given in Equation (5.5.47) may be expressed as

F kc =
π

24

N2

VCV

mp(i)

(
∂up(rel)

∂y

)2

d4p. (5.5.48)The parti
le mass, mp(i), is expressed in terms of its density, ρp, and volume, νp(i).Hen
e, Equation (5.5.48) be
omes
F kc =

π

24

N2

VCV
νp(i)ρp

(
∂up(rel)

∂y

)2

d4p. (5.5.49)The parti
le volume fra
tion is de�ned as ǫp =∑i νp(i)/VCV and after some rearrangingof the terms in Equation (5.5.49) it follows that
F kc =

π

6
d3p

1

4
ǫpρp

(
∂up(rel)

∂y

)2

dp. (5.5.50)
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Equation (5.5.51) may be expressed as,

F kc = νp
ǫpρpdp

4

(
∂up(rel)

∂y

)2

. (5.5.51)The kineti
 
ollisional for
e of Equation (5.5.51) is written in terms of a parti
le shearstress for it to be 
ompared to parti
le shear stresses proposed by Ha� (1983) as givenby Brennen (2005).The proje
ted area of impa
t for the for
e in Equation (5.5.51) is the half 
ir
le per-pendi
ular to the in
oming �ow over the top half of the single sphere. It follows thatAreaproj = 2

∫ π/2

0

∫ π/2

0

d2p sin θ cos θdθdφ =
πd2p
2

. (5.5.52)If the for
e of Equation (5.5.51) is proje
ted onto the half-
ir
le perpendi
ular to the
y-axis, the shear stress exerted onto a single parti
le by its surrounding 
loud is

τkcp =
ǫpρpd

2
p

12

(
∂up(rel)

∂y

)2

. (5.5.53)Equation (5.5.53) bares 
lose resembles to the equations given by Brennen (2005) forthe shear stress term derived by Ha� (1983), namely
τkcHa� = gs(ǫp)ρpd

2
p

(
∂up(rel)

∂y

)2

, (5.5.54)here gs(ǫp) is a fun
tion of the parti
le volume fra
tion. Ha� (1983) required g(ǫp)to tend towards zero as ǫp approa
hes zero. The fun
tion for gs(ǫp) for the Equation(5.5.53) is given by
gs(ǫp) =

ǫp
12

, (5.5.55)and thus the limiting 
ondition as proposed by Ha� (1983) is satis�ed.Equation (5.5.53) may be written in a similar form as Newton's law of vis
osity
τkcp = µp

∂up(rel)

∂y
, (5.5.56)where the parti
le vis
osity is given by, µp = ǫpρpd

2
p/12

∂up(rel)
∂y

.The parti
le phase therefore exhibits non-Newtonian �uid properties sin
e its vis
osityis not 
onstant but a fun
tion of the deformation tensor.
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This provides a basis for the two-�uid treatment of two-phase �ow, where the parti
lephase is not treated as dis
rete but as a �uid from the beginning of the derivation ofthe momentum expressions. In su
h 
ases the parti
le vis
osity is, however, 
hosenfrom one of the many empiri
ally derived vis
osity expressions available (Enwald et al.(1997)).Equation (5.5.56) states that the stress, τkc, is proportional to the velo
ity gradi-ent, ∂urel

∂y
and the 
onstant of proportionality is the parti
le vis
osity, µp. The two-dimensional shear stress and parti
le intera
tion for
e is derived in Appendix E andstated here as
F kc

p(i) =
ǫpρpdp

4

(
∂u

∂y
+

∂v

∂x

)[(
∂u

∂y
+

∂v

∂x

)
i+

(
∂u

∂y
+

∂v

∂x

)
j

]
νi. (5.5.57)Equation (5.5.57) is substituted into Equation (5.5.3) and it follows that

Ip = − 1

Uo

N∑

i=1

ǫpρpdp
4

(
∂u

∂y
+

∂v

∂x

)[(
∂u

∂y
+

∂v

∂x

)
i+

(
∂u

∂y
+

∂v

∂x

)
j

]
νi.(5.5.58)For a 
onstant parti
le diameter and density, this may be expressed in terms of aver-aging notation introdu
ed earlier in Se
tion 4.6

Ip = −ρpdp
4

ǫp

(
∂u

∂y
+

∂v

∂x

)2

n̂.

= −
ǫ2pρpdp

4

(
∂u

∂y
+

∂v

∂x

)2
p

n̂, (5.5.59)where it is assumed that
ǫ̃p

˜(
∂u

∂y
+

∂v

∂x

)2
p

= 0. (5.5.60)It is assumed that Equation (5.5.59) may be 
ast into the following form
Ip = −

ǫ2pρpdp

4

(
∂u p

∂y
+

∂v p

∂x

)2

n̂. (5.5.61)Substitution of Equation (5.5.61) into Equation (5.4.10), yields the following expression
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for momentum 
onservation of the dis
rete phase

ρp
∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p = ǫp gρp − ǫp∇〈pc〉c −

ǫ2pρpdp

4

(
∂u p

∂y
+

∂v p

∂x

)2

n̂

− 1

Uo

∫

Spc

(
−p̃c1 + τ

c

)
· ncdS, (5.5.62)whi
h 
on
ludes the 
onstitutive modelling pro
edure.5.6 Summary and 
on
lusionsIn this 
hapter the 
onstitutive laws have been applied to the 
onservation equationsthat were derived in Chapter 4. Using the prin
iples of momentum 
onservation andfull elasti
ity an expression for parti
le-parti
le intera
tion was established. This in-tera
tion term bares 
lose resemblan
e to the shear stress term derived by Ha� (1983).The �nal averaged form of the 
ontinuum and the parti
le momentum equations aregiven by Equations (5.4.5) and (5.5.62), respe
tively.
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Chapter 6Transfer laws: The RepresentativeUnit Cell
6.1 Introdu
tionThe Representative Unit Cell (RUC) is de�ned as a re
tangular volume of minimumdimensions into whi
h the geometri
 properties of the REV may be embedded. It pro-vides a fa
ility to 
onsider �ow 
onditions within the most elementary 
ontrol volumeof the parti
ular porous medium and still have all the geometri
al properties of themedium at hand for modelling of physi
al phenomena. It is assumed that the averagegeometri
al properties of the parti
le stru
ture within the RUC 
an be resembled by a
ube of parti
le material, lo
ated 
entrally within, and aligned with, the 
ubi
 RUC,as is shown in Figure 6.1.A two-dimensional s
hemati
, in whi
h the se
tions of the RUC is labelled, is given inFigure 6.2. In Figure 6.2 the unit ve
tor, n̂, denotes the dire
tion of the streamwisedire
tion,1 whereas nc and np are outward dire
ted unit ve
tors normal to the 
on-tinuum and parti
le phases, respe
tively. The interstitial �ow dire
tion is given by ñ.The volume of the parti
le phase is given by Up and that of the 
ontinuum is denotedby Uc. The 
ontinuum volume is further divided into a streamwise and a transversese
tion, whi
h are denoted by U|| and U⊥, respe
tively. Surfa
e areas parallel to thestreamwise dire
tion are denoted by S|| and surfa
e areas perpendi
ular to n̂ are given1 The streamwise dire
tion, whi
h will be denoted by n̂ in this work, is the dire
tion of thevolumetri
 average of the mi
ros
opi
 velo
ity in the REV.74
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by S⊥.

dp

d

Uc

Up

Figure 6.1: Representative Unit Cell (RUC).

Up

U||

U⊥

Uc

S||

S||

S⊥

S⊥

nc

nc

np

np

nc

nc

np np

n̂

ñ

ñ

Figure 6.2: Two-dimensional RUC s
hemati
.The RUC was �rst developed by Du Plessis and Masliyah (1988) to model time-independent laminar �ow through a rigid, isotropi
 and 
onsolidated porous mediumof spatially varying porosity. The 1988 version of the RUC model performed well in the
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Dar
y regime of very low intra-pore Reynolds number2 �ow, but its predi
tion of theFor
hheimer inertial e�e
t was not quantitatively 
orre
t. These short
omings were ad-dressed by modelling the gradual in
rease of Reynolds number with �ow re
ir
ulationon the streamwise lee-side surfa
e of the solid material (Du Plessis (1992)).Experimental validation of the 1992 model by Du Plessis et al. (1994) showed that su
ha modelling pro
edure was 
apable of a

urately predi
ting the pressure gradients forboth Dar
y and For
hheimer �ows. With the introdu
tion of streamwise staggering,Lloyd et al. (2004), adapted the RUC to predi
t the Dar
y permeability in anisotropi
media. Up to date the RUC model has 
ontinued to undergo numerous modi�
ationsin an e�ort to in
rease its predi
tive pro�
ien
y.The version of the RUC model used in this work, is the 1997 rendition for a granularmedium (Du Plessis and Diederi
ks (1997)), and not the latest version. The reason thiswas done is that the later modi�
ations severely in
reased the 
omplexity of the modelwhereas the in
rease in its predi
tion 
apabilities, for this work, would be overshadowedby errors made in experimental pro
edures.The appeal of the RUC, and the reason for it being adopted here, is that it 
ontainsfew empiri
al �tting parameters. The result is a model whi
h is appli
able to a broadrange of physi
al pro
esses.In Se
tion 6.2, the 1997 RUC model for single phase �ow is dis
ussed in order toa
quaint the reader with its underlying assumptions. This standard model is thenmodi�ed in Se
tion 6.3 to in
orporate two-phase �ow and in
rease the range of parti
levolume fra
tions for whi
h it may be utilised.6.2 1997 RUC modelThe parti
le-
ontinuum surfa
e integral in Equation (5.5.62) represents the momentumtransfer between the two phases. An overview of the 
losure method for su
h an integralfor a stationary porous medium is given in this se
tion.2The Reynolds number for �ow through a stationary porous medium is de�ned as Re =
ρcǫcdp|vc|/µc.
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The integral to be 
losed is given by

I =
1

Uo

∫

Spc

(
−p̃ nc + τ

c
· nc

)
dS. (6.2.1)The relative importan
e of inertial and vis
ous e�e
ts is given by the dimensionlessReynolds number whi
h is de�ned as

Re =
Inertial for
esVis
ous for
es . (6.2.2)Small Reynolds number values indi
ate slow vis
ous �ows for whi
h it is assumed thatvis
ous for
es, arising from shearing motions of the 
ontinuum, dominate over inertialfor
es (asso
iated with high pressure gradients). An in
rease in the Reynolds numberampli�es the inertial for
es until the For
hheimer regime is rea
hed where su
h inertialfor
es di
tate. An additional surge in the Reynolds number renders the �ow turbulent.It is, however, assumed in this work that the �ow remains laminar and "high Reynoldsnumbers" will refer to the upper limit of Reynolds numbers for whi
h the �ow is stilllaminar.The parti
le-
ontinuum interfa
e, Spc, in Equation (6.2.1) is approximated as theparti
le-
ontinuum interfa
e, Spc, of the RUC and partitioned into its 
onstituent par-allel and transverse regions denoted respe
tively by S|| and S⊥, as illustrated in Figure6.2:

I =
1

Uo

∫

S||

− p̃ ncdS +
1

Uo

∫

S⊥

− p̃ ncdS +
1

Uo

∫

S||

τ
c
· ncdS +

1

Uo

∫

S⊥

τ
c
· ncdS.(6.2.3)Equation (6.2.3) des
ribes the impa
t that the presen
e of the stationary parti
ulatematerial has on the momentum of the 
ontinuum traversing it. In the following se
tions,pressure and shearing e�e
ts will be 
ompared to ea
h other for the two limiting, i.e.Dar
y and For
hheimer, �ow regimes.6.2.1 Modelling vis
ous �owFor the low Reynolds number limit, it is assumed that the 
ontribution to the totalsurfa
e stress is dominated by the shear 
omponent and that, in 
omparison, the pres-sure gradient e�e
t may be 
onsidered negligible. The shear stresses in the transverse

Stellenbosch University  http://scholar.sun.ac.za



6.2. 1997 RUC model 78
pore se
tions of the RUC are dire
ted perpendi
ularly to the streamwise dire
tion andtherefore have a zero 
ontribution in the said dire
tion. These transverse shear stresseswill, however, 
ause interstitial pressure drops. It is assumed that the 
ontribution to
I due to su
h a pressure drop may be in
orporated by integrating the wall shear overthe total parti
le-
ontinuum interfa
e, Spc, instead of only over the streamwise se
tion
S||, i.e.

Io =
1

Uo

∫

S||

(
τ
c
· nc

)
dS + n̂

1

Uo

∫

S⊥

(
nc · τ c

· ñc

)
dS. (6.2.4)In Equation (6.2.4), Io denotes the vis
ous approximation of I and ñc is the unitnormal ve
tor indi
ating the interstitial �ow dire
tion. Let nc be the unit ve
tordire
ted perpendi
ular from the 
ontinuum into the parti
le phase and let n̂ be theunit ve
tor in the streamwise dire
tion as depi
ted in Figure 6.2. Under the �rstfa
e se
ond stress 
onvention, the wall shear stresses in the streamwise and transverse
hannels are respe
tively expressed as

τ ||
c

= τ ||c (−nc n̂), (6.2.5)and
τ⊥
c

= −τ⊥c nc ñ. (6.2.6)Substituting Equations (6.2.5) and (6.2.6) into the relevant integrals of Equation (6.2.4)and assuming that the shear stress dyad is symmetri
, yield
I0 = − 1

Uo

∫

S||

τ ||c n̂dS +
1

Uo

∫

S⊥

− τ⊥c n̂dS. (6.2.7)For the low Reynolds number limit, the wall shear stress, τwc (whi
h is de�ned as thesum of all the wall shear stresses within the RUC, τwc = τ|| + τ⊥) is assumed uniformand 
onstant over the parti
le 
ontinuum interfa
e, Spc, in all 
hannel se
tions and itfollows that
Io = − n̂

Spc

Uo
τwc . (6.2.8)The �ow is assumed Newtonian and the upstream dire
ted shear is therefore given interms of the pore velo
ity pro�le, upore

c , as
τwc = µc

dupore
c

dy
. (6.2.9)
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The velo
ity pro�le for the motion of a 
ontinuum between parallel plates for whi
h ano-slip 
ondition is adopted at the Spc-interfa
es, is

upore
c (y) = − y

2µc

(
dp

dx

)
(dc − y), (6.2.10)where dc is the distan
e between the plates. This type of �ow, generally referred to asplane Poiseuille �ow, is illustrated in Figure 6.3.

wcupore
cdc

Y

X

τwc

τwcFigure 6.3: Plane Poiseuille �ow.Taking the derivative of Equation (6.2.10) with respe
t to y and substituting the resultinto the expression for the shear, given by Equation (6.2.9), yield
τwc =

dc
2

(
−dp

dx

)
. (6.2.11)In order for the shear to be in
orporated into the RUC model it needs to be expressedin terms of the streamwise average pore velo
ity, wc. Su
h a velo
ity is obtained byintegrating over the paraboli
 velo
ity pro�le given by Equation (6.2.10) and dividingthe result by the width of the 
hannel, dc:

wc =
1

dc

∫ dc

0

upore
c dy

=
d2c

12µc

(
−dp

dx

)
. (6.2.12)The pressure gradient in Equation (6.2.11) may thus be expressed in terms of w, yield-ing

τwc =
6µcwc

dc
. (6.2.13)Following Du Plessis (2003), the ratio of the average streamwise pore velo
ity, wc, tothe average interstitial 
ontinuum velo
ity, 〈vc〉c, is given by the ratio of the streamwise
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RUC volume, U||, to the total RUC-volume available for 
ontinuum motion, Uc:

wc

〈vc〉c
≈ Uc

U||
. (6.2.14)It follows that Equation (6.2.13) may be expressed in terms of 〈vc〉c as

τwc =
6µc 〈vc〉c

dc

Uc

U||
. (6.2.15)The ratio between the streamwise and the total 
ontinuum volume is referred to as thetortuosity and denoted by χ = Uc/U||. It follows that Equation (6.2.15) may be givenin terms of the tortuosity as

τwc =
6µc 〈vc〉c χ

dc
. (6.2.16)Substitution of the expression for the wall shear, given by Equation (6.2.16), into Equa-tion (6.2.8) then yields the following 
losed form for the momentum surfa
e integral inthe 
ase of low Reynolds number �ow:

Io = −Spcχ

Uo

6µ 〈vc〉c
dc

n̂c. (6.2.17)Table 6.1 is a summary of the geometri
 
oe�
ients for a granular medium. Substitu-tion of the 
oe�
ients listed in Table 6.1 into Equation (6.2.17), yields the followingexpression for vis
ous �ow in terms of the 
ontinuum -and parti
le volume fra
tions,respe
tively denoted by ǫc and ǫp, and the width of the parti
ulate volume, dp:
Io = −36µc

d2p

ǫ
4/3
p ǫc

(1− ǫ
1/3
p )(1− ǫ

2/3
p )

〈vc〉c n̂c. (6.2.18)
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Table 6.1: Geometri
 
oe�
ients for a granular medium.Coe�
ient Expression

Uo d3

Ac d2 − d2p

U|| Acd

Uc Uo − Up

dp (1− ǫc)
1/3d

dc d− dp = d(1− (1− ǫc)
1/3)

Spc 6d2p = 6(1− ǫc)
2/3d2

S|| 4d2p

S⊥ 2d2p

Sface d2p

χ ǫc

(1−(1−ǫc)2/3)This 
on
ludes the 
losure of Equation (6.2.1) for the vis
ous motion of a Newtonian
ontinuum through a stationary porous medium.6.2.2 Modelling inertial �owWith an in
rease in Reynolds number the predominan
e of the pressure gradient abovethe shear stresses is enhan
ed so that the shear stress 
ontribution in Equation (6.2.1)may be dis
arded, yielding the following form of the momentum transfer integral forthe inertial regime:
I∞ =

1

Uo

∫

S⊥

− p̃ ncdS. (6.2.19)Du Plessis (1993) proposed that the integral I∞ may be modelled by an internal formdrag 
ondition, with cd the drag 
oe�
ient and Sface the surfa
e exposed upstream,relative to the streamwise dire
tion, i.e.
I∞ = − 1

Uo

cdSface
1

2
ρw2

c n̂c. (6.2.20)
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The relationship between the average streamwise 
ontinuum pore velo
ity, wc, and theaverage interstitial 
ontinuum velo
ity, 〈vc〉c (given by Equation (6.2.14)) is applied toEquation (6.2.20) and the geometri
 
oe�
ients (listed in Table 6.1) substituted, toyield

I∞ = −ρccd
2dp

ǫ2cǫp(
1− ǫ

2/3
p

)2 〈vc〉
2
c n̂c. (6.2.21)This 
on
ludes the 
losure of Equation (6.2.1) for the inertial motion of a Newtonian
ontinuum through a stationary porous medium.Equations (6.2.18) and (6.2.21) des
ribe the two limits of laminar 
ontinuum motion.They, however, do not provide information about the transition from low to highReynolds number �ows. This short
oming is addressed by applying an asymptoti
mat
hing te
hnique, �rst des
ribed by Chur
hill and Usagi (1972), through whi
h anequation whi
h embodies the range from the low to the intermediate Reynolds numbersis attained.6.2.3 A general 
losure expressionEquations (6.2.18) and (6.2.21) are 
ombined with the use of the asymptote mat
hingte
hnique (Chur
hill and Usagi (1972)):

I = ( Iso + Is∞)
1
s , (6.2.22)where s is a shifting parameter whi
h, following Du Plessis (2003), is taken as unityfor the 
losure pro
edure. The 
losed form of Equation (6.2.1) is therefore given by

I = −



36µc

d2p

ǫ
4/3
p ǫc

(1− ǫ
1/3
p )(1− ǫ

2/3
p )

〈vc〉c n̂c +
ρccd
2dp

ǫ2cǫp(
1− ǫ

2/3
p

)2 〈vc〉 〈vc〉


 n̂c

= −



36µc

d2p

ǫ
4/3
p ǫc

(1− ǫ
1/3
p )(1− ǫ

2/3
p )

+
ρccd
2dp

ǫ2cǫp(
1− ǫ

2/3
p

)2 || 〈vc〉 ||


 〈 vc〉c . (6.2.23)Equation (6.2.23) is the �nal result for the 
losure of Equation (6.2.1) whi
h is relevantto limiting as well as intermediate Reynolds number �ows.This surmises the appli
ation of the 1997 RUC to the modelling of single phase New-tonian �ow through a stationary porous medium and proves su�
iently a

urate for
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ontinuum volume fra
tions up to 0.8 (Lloyd et al. (2004)). Adaptations made to thismodel to in
orporate two-phase �ow are dis
ussed, and a �nal 
losure model for themomentum transfer between phases given, in the following se
tions.6.3 Adaptation to the 1997 RUCIn this se
tion, the existing RUC model is modi�ed to allow for parti
ulate motion andto in
orporate porosities ex
eeding the 0.8 limiting value of the 1997 rendition.The surfa
e integral term remaining in Equations (5.4.7) and (5.5.62) is similar to thatgiven for single phase �ow by Equation (6.2.1) and subje
ted to the same assumptionsand modelling pro
edures of Se
tion 6.2. The di�eren
e lies in the de�nition of theshear stress, τ

pc
, for two-phase �ow: For the 1997 single phase RUC model, the shearstress was derived from the plane Poiseuille velo
ity pro�le between stationary plateswhereas 
urrent work allows for said plates to move relative to the 
ontinuum. Inse
tions to follow the 
losure pro
edures for the low- and high Reynolds number limitsare dis
ussed. Asymptoti
 mat
hing between these extremes yields an expression forthe momentum transfer integral in terms of averaged variables whi
h is appli
able tointermediate �ows.6.4 Two-phase vis
ous �ow at the low Reynoldsnumber limitThe low Reynolds number regime is treated by dividing it into two 
ategories: Lowand high 
ontinuum volume fra
tions. For small values of ǫc, the drag in the mediumis assumed to be due to �ow through a parti
ulate phase, whereas the drag for highporosity values will be regarded to originate from �ow by a parti
ulate phase. Anasymptoti
 mat
h between these two 
ategories will then yield a 
losed expression forthe Dar
y regime.6.4.1 Low Reynolds number �ow at low porositiesThe modelling pro
edure for low Reynolds numbers follows similar assumptions tothose made in Se
tion 6.2.1. The 
losure of the integral term is given in terms of the
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relative wall shear stress, τwpc as

I�ow through
o = − n̂

Spc

Uo

τwpc. (6.4.1)The relative shear, τwpc, is de�ned in terms of the relative pore velo
ity, upore
pc , as

τwpc = µc

dupore
pc

dy
. (6.4.2)The velo
ity pro�le, upore

pc , for a 
ontinuum phase moving relatively to parallel plates,as illustrated in Figure 6.4, is given by
upore
pc = − y

2µc

(
dp

dx

)
(dc − y). (6.4.3)The shearing stress due to this relative velo
ity is derived similarly to that given byEquation (6.2.9) and may be written in terms of the pressure gradient as

τwpc =
dc
2

(
−dp

dx

)
. (6.4.4)

wpcupore
pcdc

Y

X

τwpc

τwpc

up

upFigure 6.4: Plane Poiseuille �ow for the adapted model.The average streamwise relative pore velo
ity is given by
wpc =

1

dc

∫ dc

0

upore
pc dy

=
d2c

12µc

(
−dp

dx

)
. (6.4.5)The average interstitial relative velo
ity is de�ned as

vpc = 〈vc〉c − vp
p, (6.4.6)
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and is assumed to be related to wpc by

wpc

vpc
≈ Uc

U||
. (6.4.7)It follows that the shear stress for the parti
le-
ontinuum surfa
e integral term is givenby

τwpc =
6µc (〈vc〉c − vp

p)

dc
χ. (6.4.8)Substitution of Equation (6.4.8) into Equation (6.4.1), yields

I�ow through
o = − 36ǫc(1− ǫc)

4/3

d2p (1− (1− ǫc)2/3) (1− (1− ǫc)1/3)
µc

(
〈 vc〉c − vp

p
)
. (6.4.9)Equation (6.4.9) is the drag for
e per RUC volume, Uo, that results from shear inter-a
tion between the two phases for low 
ontinuum volume fra
tions.6.4.2 Low Reynolds number �ow at high porositiesThe drag for
e for vis
ous �ow should, for porosity values 
lose to unity, strive to thatexperien
ed by a single parti
le, i.e. Stokes drag. Equation (6.4.9), however, rapidlytends to zero as porosity tends to one and is therefore subje
t to modi�
ation.This short
oming is dealt with by �rst deriving an expression for Stokes drag overparti
les within an REV. Stokes drag is given by (p.60 Bird et al. (2002)) as

F Stokes = 3πdpµc vpc, (6.4.10)where dp is the parti
le diameter and the relative velo
ity, vpc, is on
e again assumedto be the average relative interstitial velo
ity, whi
h is given by
vpc = 〈 vc〉 − vp

p. (6.4.11)The average of the Stokes for
e over the entire REV is assumed to provide an approxi-mation for the vis
ous drag within the REV due to �ow by a parti
ulate phase and willbe denoted by I�ow by
o . It is attained by adding the for
es for all N parti
les, presentwithin the REV, and dividing through the total REV volume, Uo:

I�ow by
o = − 1

Uo

N∑

i=1

3πdpµc

(
〈 vc〉 − vp

p
)
. (6.4.12)
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Equation (6.4.12) is multiplied and divided by the volume of a single parti
le (νp(i) =
1
6
πd3p) to obtain:

I�ow by
o = − 1

Uo

N∑

i=1

18µc

(
〈 vc〉 − vp

p
)

d2p
νp(i), (6.4.13)whi
h is in the form of the de�nition for the parti
le average, given by Equation (4.6.1).Sin
e vpc was given by Equation (6.4.6) in terms of averages it may be moved outsideof the summation operator. Hen
e the following expression for the average Stokes for
eis given by

I�ow by
o = −

18ǫpµc

(
〈 vc〉 − vp

p
)

d2p
. (6.4.14)Stokes �ow is only valid for Reynolds numbers below 0.1 and denotes the drag forinstan
es where the vis
ous regime is des
ribed by "�ow by" rather than "�ow through"a parti
ulate phase. In the next se
tion an expression for the total vis
ous drag for
efor two-phase �ow, whi
h will be valid for low- and high porosity limits is derived.6.4.3 Total Drag For
e for the Dar
y RegimeThe total vis
ous drag for
e per unit volume for two-phase �ow (whi
h is appli
ableover the entire porosity range) is obtained by adding Equations (6.4.9) and (6.4.14):

Ipco = −µcǫp
d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18


(〈 vc〉c − vp

p
)
. (6.4.15)This is written in terms of the momentum transfer 
oe�
ients for the limiting porosityvalues, β�ow through

o and β�ow by
o , as

Ipco = −
(
β�ow through
o + β�ow by

o

) (
〈 vc〉c − vp

p
)
, (6.4.16)where

β�ow through
o =

36ǫcǫ
4/3
p

d2p

(
1− ǫ

2/3
p

)(
1− ǫ

1/3
p

)µc, (6.4.17)and
β�ow by
o =

18ǫpµc

d2p
. (6.4.18)
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The behaviour of ea
h of the momentum transfer 
oe�
ients of Equations (6.4.17) and(6.4.18), as well as their 
ombined e�e
t for porosity values that range from those ofpa
ked beds (i.e., ǫc ≈ 0.4) to porosities 
orresponding to dilute instan
es of dispersedsolid material within a �uid (i.e. ǫc ≈ 1), are illustrated in Figure 6.5.
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β
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β
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flow by

Figure 6.5: Flow by and �ow through momentum transfer given by Equations (6.4.16) �(6.4.18).From Figure 6.5 it is apparent that β�ow through
o dominates for porosities in the range of

0.4 ≤ ǫc ≤ 0.95. Figure 6.6 is an enlarged view of the porosity range for 0.95 < ǫc ≤ 1.0,showing that Stokes drag di
tates for ǫc > 0.97.The solid line in both Figures 6.5 and 6.6 
onstitutes the e�e
t of the 
ombined drag,given by β�ow through
o +β�ow by

o , and follows the trend of Equation (6.4.17) and Equation(6.4.18) for the ranges of 0.4 ≤ ǫc ≤ 0.95 and ǫc > 0.97, respe
tively. The addition ofthe Stokes drag thus redu
es the rate at whi
h the 
ombined result tends towards zero.
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Figure 6.6: Flow by and �ow through momentum transfer given by Equations (6.4.16) �(6.4.18) for ǫc ≥ 0.95.6.5 High Reynolds number �owFollowing the pro
edure set out in Se
tion 6.2.2, yields the following 
losed form forthe For
hheimer regime
Ipc∞ = −1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2
(
〈 vc〉c − vp

p
)
|| 〈 vc〉c − vp

p||, (6.5.1)where the 
ontinuum velo
ity of Equation (6.2.21) has been repla
ed by the relativevelo
ity.6.6 Asymptoti
 mat
hingAsymptoti
 mat
hing of Equations (6.4.15) and (6.5.1), yields a result for the momen-tum transfer between the parti
le- and the 
ontinuum phases, whi
h is appli
able to
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the intermediate Reynolds numbers:

Ipc = −




µcǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18






s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || 〈 vc〉c − vp
p||




s


1/s

(
〈 vc〉c − vp

p
)
. (6.6.1)For simpli
ity the averaging notation is dropped and the �nal expressions for 
ontinuum-and parti
le momentum 
onservation expressions are thus given respe
tively by

ρc
∂ǫc vc
∂t

+ ρc∇ · (ǫc vc vc) = ρc gǫc − ǫc∇pc + µc∇ · [ǫc∇ vc]−




µcǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(
vc − vp

)
,(6.6.2)and

ρp
∂

∂t
ǫp vp + ρp∇ · ǫp vp vp = ǫp gρp − ǫp∇〈pc〉c −

ǫ2pρpdp

4

(
∂u p

∂y
+

∂v p

∂x

)2

n̂ +





µcǫp

d2p


 36ǫǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18






s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(
vc − vp

)
.(6.6.3)The values of the drag 
oe�
ient, cd, and the asymptoti
 mat
hing parameter, s, areunknown and 
al
ulated retrospe
tively following 
omparison with existing empiri
aldata sets.6.6.1 Setting the �tting parametersThe expression for the momentum transfer between the parti
les and its surrounding
ontinuum, given by Equation (6.6.1), may be written in terms of amomentum transfer
oe�
ient, β, as

I tot = −β
(
vc − vp

)
, (6.6.4)
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where β is given in terms of the Reynolds number for two phase �ow,
Repc = ρcǫcdp|| vc − vp||/µc:
β =





µcǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdµc

d2p

ǫpǫc(
1− ǫ

2/3
p

)2Repc




s


1/s

,(6.6.5)whi
h, in turn, may be expressed as the sum of its Dar
y, βo, and the For
hheimer
omponent, β∞, as
β = (βs

o + βs
∞)1/s , (6.6.6)where

βo =
µcǫp
d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18


 , (6.6.7)and

β∞ =
1

2

cdµc

d2p

ǫpǫc(
1− ǫ

2/3
p

)2Repc. (6.6.8)The in
lination of Equations (6.6.7), (6.6.8) and their 
ombined e�e
t, given by Equa-tion (6.6.6), are illustrated in Figure 6.7 for a pa
ked bed porosity, ǫc = 0.4, and a drag
oe�
ient value, cd = 1.95. From Figure 6.7 it is seen that a de
rease in the value forthe shifting parameter, s, moves the β-
urve 
loser to its asymptotes.A cd-value of 1.9 is re
ommended for pa
ked beds (ǫ ≈ 0.4) by Du Plessis and Woudberg(2008). However, for the limiting values of ǫc → 1, that is: for extremely dilute solu-tions, experimental data given in Chapter 9 suggests a drag 
oe�
ient 
orrespondingto the Stokes drag 
oe�
ient for a single parti
le, cd = 0.44, and a shifting parameter,
s = 0.6.
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Figure 6.7: In�uen
e of shifting parameter, s, on the momentum transfer 
oe�
ient, β.This 
on
ludes the 
losure pro
edure for the momentum 
onservation equations. InChapter 7, Equations (6.6.2) and (6.6.3) will be dis
retised in order to be subje
ted tonumeri
al analysis in Chapter 8.
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Chapter 7Numeri
al 
al
ulation of the �ow �eld
In this 
hapter the formulation for the dis
rete form of the 
onservation equations isdis
ussed and emphasis is pla
ed on the dis
retisation 
on
ept, and in parti
ular, the
ontrol volume formulation. Attention is given to sour
e term linearisation, interpo-lation methods, the upwind s
heme as well as the staggered grid method of Patankar(1980) and the resulting s
alar and ve
tor 
ontrol volumes are illustrated.A detailed review of the Tridiagonal Matrix Algorithm (TDMA), used to solve theequations, is given and 
ombined with an iterative Gauss-Seidel method. Finally, theimplementation of the Semi Impli
it Method for Pressure Linked Equations (SIMPLE)for two-phase �ow will be des
ribed and a s
hemati
 of the algorithm given.7.1 Prin
iple of dis
retisationDis
retisation of the analyti
al equations presented in Chapter 6, is the �rst step takenin rendering them suitable for numeri
al implementation. In order to obtain a dis-
rete representation of the 
onservation expressions, various methods, in
luding �nitedi�eren
e, �nite element, and �nite volume methods, may be applied.The 
urrent work adopts the 
ontrol-volume method for whi
h the domain is dividedinto a number of non-overlapping 
ontrol volumes su
h that there is one 
ontrol volumesurrounding ea
h grid point. The di�erential equation is integrated over ea
h 
ontrolvolume. Pie
ewise pro�les expressing the variation of the dependent variable betweengrid nodes are used to evaluate the required integrals. This approa
h yields a dis
reteequation whi
h 
ontains the values of the dependent variable for a group of grid nodes.92
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The dis
retisation equation, obtained in this manner, expresses the 
onservation prin-
iples for the dependent variable over a 
ontrol volume, just as the di�erential equationexpressed it for an in�nitesimal di�erential element.An attra
tive feature of the 
ontrol-volume formulation is that the resulting solutionwould imply that the integral 
onservation of quantities su
h as mass or momentum isexa
tly satis�ed over any group of 
ontrol volumes and thus over the whole 
al
ulationdomain.Consider a two-dimensional problem and the partial grid shown in Figure 7.1.

u-
ontrol volume
v-
ontrol volumes
alar 
ontrol volumeboundary nodeinternal node

δx

∆xP ∆xE

∆yP

δyn PW ENNW NE
SSW SEw ensnw neswSw Sese

Nw NenW nEsW sE
Figure 7.1: Grid arrangement.The grid nodes of the 
al
ulation domain will be referred to as boundary nodes whereasthe remainder will be known as internal nodes. Around ea
h of these internal nodesa 
ontrol volume exists. Following Pra
ti
e B of Patankar (1980), 
ontrol volumes forthe s
alar values, i.e. pressure- and volume fra
tion values, are 
entred around thenodes, whereas the 
ontrol volumes for the ve
tor quantities for the x- and y dire
tedvelo
ities are staggered to the north and east dire
tions of the s
alar 
ontrol volume,respe
tively, as illustrated in Figure 7.1.
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Grid staggering is done to prevent wavy pressure �elds to be mistaken for uniform�elds sin
e adja
ent, and not alternating nodes, are used in 
al
ulations (Patankar(1980)). The velo
ity 
omponents are 
al
ulated for nodes that lie on the fa
es of thes
alar 
ontrol volume and 
onsequently the di�eren
e between the pressures at nodesE and P are used to 
al
ulate the pressure for
e a
ting on the 
ontrol volume for the
x-
omponent of the velo
ity.Hen
eforth the 
ontrol volumes for the dis
retisation of the pressure and the volumefra
tion quantities will be referred to as s
alar 
ontrol volumes, whereas the 
ontrolvolumes for the x- and y-dire
ted velo
ities, indi
ated by the hat
hed areas in Figure7.1, will be referred to as the u- and v-
ontrol volumes, respe
tively.7.2 Dis
retisation for the momentum 
onservationequationsThe unsteady 
onve
tion-di�usion equations, given in Chapter 6 by Equations (6.6.2)and (6.6.3), are written in terms of their dire
tional 
omponents and, although al-ways implied, the averaging notation is omitted.1 The dire
tional 
omponents of the
ontinuum phase are given by
ρcǫc

∂uc

∂t
+ ρcǫcuc

∂uc

∂x
+ ρcǫcvc

∂uc

∂y
= −ǫc

∂pc
∂x

+ µc
∂

∂x

(
ǫc
∂uc

∂x

)
+ µc

∂

∂y

(
ǫc
∂uc

∂y

)
+ Sx(7.2.1)and

ρcǫc
∂vc
∂t

+ ρcǫcuc
∂vc
∂x

+ ρcǫcvc
∂vc
∂y

= ρcgǫc − ǫc
∂pc
∂y

+ µc
∂

∂x

(
ǫc
∂vc
∂x

)
+ µc

∂

∂y

(
ǫc
∂vc
∂y

)
+ Sy.(7.2.2)The 
orresponding expressions for the parti
ulate phase are

ρpǫp
∂up

∂t
+ ρcǫpup

∂up

∂x
+ ρpǫpvp

∂up

∂y
= −ǫp

∂pc
∂x

−
ǫ2pρpdp

4

(
∂up

∂y
+

∂vp
∂x

)2

− Sx(7.2.3)1For a full derivation the reader is referred to Appendix F.
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and
ρpǫp

∂vp
∂t

+ ρpǫpup
∂up

∂x
+ ρpǫpvp

∂up

∂y
= ǫpgρp − ǫp

∂pc
∂y

−
ǫ2pρpdp

4

(
∂up

∂y
+

∂vp
∂x

)2

− Sy.(7.2.4)The sour
e terms, Sx and Sy, appearing in Equations (7.2.1) - (7.2.4), are respe
tivelygiven by
Sx = −





µcǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(uc − up)(7.2.5)and
Sy = −





µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(vc − vp)(7.2.6)Following Patankar (1980), ea
h of these sour
e terms may be written as a linearfun
tion of the dependent variable, φ, under 
onsideration,
S = Sc+ Spφ. (7.2.7)Sour
e term linearisations for the 
ontinuum phase in the x and y-dire
tions are re-spe
tively given by

Sx = Scxc + Spuc, (7.2.8)and
Sy = Scyc + Spvc, (7.2.9)where

Scxc =





µcǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18






s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

up,(7.2.10)
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and
Scyc =





µcǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

vp.(7.2.11)The Sp 
oe�
ient is given by,
Sp = −





µcǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

.(7.2.12)Sour
e term linearisation for the parti
ulate phase is treated in a similar manner withthe linearisation 
omponents for the x− and y-dire
tions, respe
tively, given by
Sx
p = −Scxp − Spup, (7.2.13)and

Sy
p = −Scyp − Spvp. (7.2.14)Here

Scxp =





µcǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18






s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

uc,(7.2.15)and
Scyp =





µcǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

vc,(7.2.16)and Sp is given by Equation (7.2.12).
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7.3 Dis
retisation of the momentum 
onservationequationsThe u-and v-
ontrol volumes, illustrated in Figure 7.1, are used for the dis
retisationof the x-and y-
omponents of the momentum 
onservation equations, respe
tively, andthe dis
rete equations established from integration over su
h volumes will resemble

aecφ
e = aeec φ

ee + awc φ
w + aNe

c φNe + aSec φSe + bc −
[
ǫEc p

E
c − ǫPc p

P
c

]
∆yP , (7.3.1)and

ancφ
n = anEc φnE + anWc φnW + annc φnn + ascφ

s + bc − [ǫnec pnec − ǫnwc pnwc ] ∆xP , (7.3.2)where, for example, φe will be the u-velo
ity a
ross the e-interfa
e shown in Figure 7.1.7.3.1 The 
ontinuum phaseIn this se
tion a stepwise pro
edure will be presented for the dis
retisation of the x-
omponent of the 
ontinuum momentum 
onservation expression given by Equation(7.2.1). The dis
retisation is begun by integrating ea
h 
omponent of the equationover the u-
ontrol volume illustrated in Figure 7.1 as well as from time t0 to time t.The resulting dis
rete form of ea
h integral expression is listed in Table 7.1. In Table7.1 u0,e
c denotes the 
ontinuum velo
ity a
ross the e-interfa
e at time t = 0.The 
onve
tion and di�usion expressions are denoted by the terms listed in Table 7.2and are substituted into the dis
retised expressions given by the right-hand side 
olumnof Table 7.1. The resulting expressions are reassembled and yield the following for the

x-
omponent of the momentum 
onservation equation for the 
ontinuum phase:
ρcǫ

e
c [u

e
c − u0,e

c ] δxe∆y

∆t
+ FE

c uE
c − F P

c uP
c + F ne

c une
c − F se

c use
c = −ǫec

[
pEc − pPc

]
∆yP

+DE
c

(
∂uc

∂x

)E

∆xE −DP
c

(
∂uc

∂x

)P

∆xP +Dne
c

(
∂uc

∂y

)ne

δyn −Dse
c

(
∂uc

∂y

)se

δys +

Scxcδxe∆yP + Spucδxe∆yP . (7.3.3)
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Table 7.1: Dis
retised expressions for the x-dire
ted 
ontinuum momentum 
onservationequation. Integral expression Dis
retised expression

∫ ne
se

∫ E
P

∫ t
t0
ρcǫc

∂uc
∂t dtdxdy ρcǫ

e
c

[
uec − u0,ec

]
δxe∆yP

∫ t
t0

∫ ne
se

∫ E
P ρcǫcuc

∂uc
∂x dxdydt ρc

[
ǫEc u

2,E
c − ǫPc (u

P
c )

2
]
∆yP∆t

∫ t
t0

∫ E
P

∫ ne
se ρcǫcuc

∂vc
∂y dydxdt ρc [ǫ

ne
c vnec unec − ǫsec vsec usec ] δxe∆t

∫ t
t0

∫ ne
se

∫ E
P −ǫc

∂pc
∂x dxdydt −ǫec

[
pEc − pPc

]
∆yP∆t

∫ t
t0

∫ ne
se

∫ E
P µc

∂
∂x

[
ǫc

∂uc
∂x

]
dxdydt µc

[
ǫEc
(
∂uc
∂x

)E − ǫPc
(
∂uc
∂x

)P ]
∆yP∆t

∫ t
t0

∫ E
P

∫ ne
se µc

∂
∂y

[
ǫc

∂uc
∂y

]
dydxdt µc

[
ǫnec

(
∂uc
∂y

)ne
− ǫsec

(
∂uc
∂y

)se]
δxe∆t

∫ t
t0

∫ ne
se

∫ E
P Scxc dxdydt Scxc δxe∆yP∆t

∫ t
t0

∫ ne
se

∫ E
P Spucdxdydt Spucδxe∆yP∆tThe remaining derivatives in Equation (7.3.3) are dis
retised by assuming that theymay be approximated with a pie
ewise linear pro�le over the 
ontrol volume. Thedis
rete form of these di�erential terms are then given by

(
∂uc

∂x

)P

≈ ue
c − uw

c

∆xP
(7.3.4)

(
∂uc

∂x

)E

≈ uee
c − ue

c

∆xE
(7.3.5)

(
∂uc

∂y

)se

≈ ue
c − uSe

c

δys
(7.3.6)

(
∂uc

∂y

)ne

≈ uNe
c − ue

c

δyn
. (7.3.7)Substitution of the dis
rete approximations, given by Equations (7.3.4)-(7.3.7), into
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Table 7.2: Conve
tion and di�usion 
oe�
ients for the 
ontinuum momentum 
onservationequation. Conve
tion 
oe�
ient Di�usion 
oe�
ient

FP
c = ρcǫ

P
c u

P
c ∆yP DP

c = µcǫ
P
c

∆yP
∆xP

FE
c = ρcǫ

E
c u

E
c ∆yP DE

c = µcǫ
E
c

∆yP
∆xE

F se
c = ρcǫ

se
c vsec δxe Dse

c = µcǫ
se
c

δxe
δys

Fne
c = ρcǫ

ne
c vnec δxe Dne

c = µcǫ
ne
c

δxe
δynthe remaining di�erential terms in Equation (7.3.3), yields

ρcǫ
e
c [u

e
c − u0,e

c ] δxe∆y

∆t
+ FE

c uE
c − F P

c uP
c + F ne

c une
c − F se

c use
c = −ǫec

[
pEc − pPc

]
∆y

+DE
c (uee

c − ue
c)−DP

c (ue
c − uw

c ) +Dne
c

(
unE
c − ue

c

)
−Dse

c

(
ue
c − uSe

c

)
+

Scxcδxe∆yP + Spucδxe∆yP . (7.3.8)Further manipulation of Equation (7.3.8) entails the use of the upwind s
heme fromwhi
h the 
onve
tion terms are 
al
ulated under the assumption that the value of the
x-
omponent 
ontinuum velo
ity, uc, at an interfa
e is equal to its value at the gridpoint on the upwind side of su
h a fa
e (Patankar (1980)). This implies that

uE
c = ue

c if FE
c > 0

uE
c = uee

c if FE
c < 0.The upwind s
heme then implies that,

FE
c uE

c = [[FE
c , 0]]ue

c − [[−FE
c , 0]]uee

c (7.3.9)
F P
c uP

c = [[F P
c , 0]]uw

c − [[−F P
c , 0]]ue

c (7.3.10)
F ne
c une

c = [[F ne
c , 0]]ue

c − [[−F ne
c , 0]]uNe

c (7.3.11)
F se
c use

c = [[F se
c , 0]]uSe

c − [[−F se
c , 0]]ue

c, (7.3.12)where the double bra
ket notation used by Patankar (1980) is adopted to indi
atethe maximum of two values. The terms of the upwind s
heme, listed as Equations
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(7.3.9)-(7.3.12), are substituted into Equation (7.3.8) and it follows that

[
−Spδxe∆yP +

ρcǫ
e
cδxe∆yP
∆t

+ [[FE
c , 0]] +DE

c + [[−F se
c , 0]] +Dse

c + [[−FP
c , 0]] +DP

c + [[Fne
c , 0]] +Dne

c

]
uec =

(
[[−FE

c , 0]] +DE
c

)
ueec +

(
[[FP

c , 0]] +DP
c

)
uwc +

(
[[−Fne

c , 0]] +Dne
c unEc

)
uNe
c +

(
[[F se

c , 0]] +Dse
c uSec

)
uSec −

ǫec
[
pEc − pPc

]
∆yP +

ρcǫ
e
cu

0,e
c δxe∆yP
∆t

+ Scxc δxe∆yP . (7.3.13)Continuity of the �ow is assumed and hen
e F P
c + F se

c = FE
c + F ne

c . Appli
ation ofthis result to Equation (7.3.13), yields
aecu

e
c = aeec u

ee
c + awc u

w
c + aNe

c uNe
c + aSec uSe

c + bc − ǫec
[
pEc − pPc

]
∆yP , (7.3.14)where

aeec = [[−FE
c , 0]] +DE

c (7.3.15)
awc = [[F P

c , 0]] +DP
c (7.3.16)

aNe
c = [[−F ne

c , 0]] +Dne
c (7.3.17)

aSec = [[F se
c , 0]] +Dse

c (7.3.18)
ae,0c =

ρcǫ
e
cδxe∆y

∆t
(7.3.19)

bc = ae,0c ue,0
c + Scxc δxe∆y (7.3.20)

aec = aeec + awc + aNe
c + aSec + ae,0c − Sp. (7.3.21)Equations (7.3.14)-(7.3.21) 
on
lude the derivation of the dis
rete approximation ofthe x-
omponent momentum 
onservation equation, given by Equation (7.2.1).7.3.2 The parti
ulate phaseThe x-
omponent of the parti
le momentum expression is also dis
retised over the u-
ontrol volume, illustrated in Figure 7.1. Let Sd = − ǫ2pρpdp

4

(
∂up
∂y

+ ∂vp
∂x

)2, denote theparti
le intera
tion term. It is assumed that Sd may be treated as a sour
e term andit will therefore be evaluated at e. The dis
rete terms are listed in Table 7.3. Di�usionterms are absent and 
onve
tion is treated in the same manner as for the 
ontinuum.The 
onve
tion expressions are listed in Table 7.4.
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Table 7.3: Dis
retised expressions for the x-dire
ted parti
le momentum 
onservation equa-tion. Integral expression Dis
retised expression

∫ ne
se

∫ E
P

∫ t
t0
ρpǫp

∂up
∂t dtdxdy ρpǫ

e
p

[
uep − u0,ep

]
δxe∆yP

∫ t
t0

∫ ne
se

∫ E
P ρcǫpup

∂up
∂x dxdydt ρp

[
ǫEp u

2,E
p − ǫPp (u

P
p )

2
]
∆yP∆t

∫ t
t0

∫ E
P

∫ ne
se ρpǫpvp

∂up
∂y dydxdt ρp

[
ǫnep vnep unep − ǫsep vsep usep

]
δxe∆t

∫ t
t0

∫ ne
se

∫ E
P −ǫp

∂pc
∂x dxdydt −ǫep

[
pEc − pPc

]
∆yP∆t

∫ t
t0

∫ ne
se

∫ E
P Sddydxdt Sdδxe∆yp∆t

∫ t
t0

∫ ne
se

∫ E
P Scxpdxdydt Scxpδxe∆yP∆t

∫ t
t0

∫ ne
se

∫ E
P Spupdxdydt Spupδxe∆yP∆t

Table 7.4: Conve
tion 
oe�
ients for the parti
ulate momentum equation.Conve
tion 
oe�
ient
FP
p = ρǫPp u

P∆yP

FE
p = ρǫEp u

E∆yP

F se
p = ρǫsep vseδxe

Fne
p = ρǫnep vneδxe
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These 
onve
tion expressions are substituted into the expressions given in Table 7.3and the dis
retised expression for the parti
ulate momentum 
onservation is at thisstage given by
ρpǫ

e
pδxe∆yP

∆t
ue
p + FE

p uE
p − F P

p uP
p + F ne

p une
p − F se

p use
p =

ρpǫ
e
pδxe∆yP

∆t
u0,e
p + Sdδxe∆yP + Scxpδxe∆yP + Spucδxe∆yP − ǫep

[
pEc − pPc

]
∆yP .(7.3.22)The upwind s
heme is applied to Equation (7.3.22) and it follows that

aepu
e
p = aeep u

ee
p + awp u

w
p + aNe

p uNe
p + aSep uSe

p + bp − ǫep
[
pEc − pPc

]
∆yP , (7.3.23)where

aeep = [[−FE
p , 0]] +DE

p (7.3.24)
awp = [[F P

p , 0]] +DP
p (7.3.25)

aNe
p = [[−F ne

p , 0]] +Dne
p (7.3.26)

aSep = [[F se
p , 0]] +Dse

p (7.3.27)
ae,0p =

ρpǫ
e
pδxe∆y

∆t
(7.3.28)

bp = ae,0p ue,0
p +

(
Scxp + Sd

)
δxe∆y (7.3.29)

aep = aeep + awp + aNe
p + aSep + ae,0p − Sp. (7.3.30)Equations (7.3.23)-(7.3.30) represent the �nal dis
retised form of Equation (7.2.3).The dis
rete forms for the x-
omponents of the momentum equations for both phaseshave been derived in detail. The y-
omponents are dis
retised in a similar mannerbut the dis
retisation is done over the v-
ontrol volume indi
ated in Figure 7.1. Theneighbouring nodes for the u-
ontrol volume were given by P , E, se and ne. Theneighbouring nodes for the v-
ontrol volume are given by nw, ne, P , and N and the
orresponding 
onve
tion and di�usion 
oe�
ients are listed in Table 7.5 where the

α-notation 
orresponds to c or p for the 
ontinuum or parti
ulate 
ases, respe
tively.
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Table 7.5: Conve
tion and di�usion 
oe�
ients for y-
ontinuum momentum 
onservationequation. Conve
tion 
oe�
ient Di�usion 
oe�
ient

Fnw
α = ραǫ

nw
α unwα δyn Dnw

c = µcǫ
nw
c

δyn
δxw

Fne
α = ραǫ

ne
α uneα δyn Dne

c = µcǫ
ne
c

δyn
δxe

FP
α = ραǫ

P
αv

P
α∆xP DP

c = µcǫ
P
c

∆xP
∆yP

FN
α = ραǫ

N
α vNα ∆xP DN

c = µcǫ
N
c

∆xP
∆yNThe y-
omponent of the dis
rete momentum 
onservation equation for the 
ontinuumis given by

anc v
n
c = anWc vnWc + anEc vnEc + ascv

s
c + annc vnnc + bc − ǫnc

[
pNc − pPc

]
∆xP , (7.3.31)where

anWc = [[F nw
c , 0]] +Dnw

c (7.3.32)
anEc = [[−F ne

c , 0]] +Dne
c (7.3.33)

asc = [[F P
c , 0]] +DP

c (7.3.34)
annc = [[−FN

c , 0]] +DN
c (7.3.35)

an,0c =
ρcǫ

n
c δxe∆y

∆t
(7.3.36)

bc = an,0c un,0
c + (Scyc + ρcgǫ

n
c ) δxe∆yP (7.3.37)

an = anWc + anEc + asc + annc + ae,0c − Sp. (7.3.38)The y-
omponent of the dis
rete momentum equation for the parti
les is given by
anpv

n
p = anWp vnWp + anEp vnEp + aspv

s
p + annp vnnp + bp − ǫnp

[
pNc − pPc

]
∆xP ,(7.3.39)
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where

anWp = [[F nw
p , 0]] (7.3.40)

anEp = [[−F ne
p , 0]] (7.3.41)

asp = [[F P
p , 0]] (7.3.42)

annp = [[−FN
p , 0]] (7.3.43)

an,0p =
ρpǫ

n
pδxe∆y

∆t
(7.3.44)

bp = an,0p un,0
p +

(
(ρp − ρc)gǫ

n
p + Sd + Scyp

)
δxe∆yP (7.3.45)

an = anWp + anEp + asp + annp + ae,0p − Sp. (7.3.46)This 
on
ludes the dis
retisation for the momentum 
onservation equations. In thefollowing se
tion the dis
retisation for the mass 
onservation equation will be dis
ussed.7.4 Dis
retisation of the mass 
onservation equationThe expression for 
ontinuity of the 
ontinuum was presented in Chapter 4 by Equation(4.4.6) and is restated here:
∂ǫc
∂t

+
∂ǫcuc

∂x
+

∂ǫcvc
∂y

= 0, (7.4.1)where averaging notation has been omitted but is, however, always implied. A dis-
retised expression is derived, using the s
alar-
ontrol volume whi
h is indi
ated bythe shaded se
tion of Figure 7.1. The terms resulting from the integration of Equa-tion (7.4.1) over the s
alar-
ontrol volume are listed in Table 7.6 and the 
onve
tion
oe�
ients are listed in Table 7.7.
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Table 7.6: Dis
retised expressions for 
ontinuum mass 
onservation equation over P -
ontrolvolume. Integral expression Dis
retised expression

∫ n
s

∫ e
w

∫ t
t0

∂ǫc
∂t dtdxdy

(
ǫPc − ǫ0,Pc

)
∆xP∆yP

∫ t
t0

∫ n
s

∫ e
w

∂ǫcuc
∂x dxdydt [(ǫcuc)

e − (ǫuc)
w]∆yP∆t

∫ t
t0

∫ e
w

∫ n
s

∂ǫcvc
∂y dydxdt [(ǫcvc)

n − (ǫcvc)
s] ∆xP∆t

Table 7.7: Conve
tion 
oe�
ients for the 
ontinuum mass 
onservation equation.Conve
tion 
oe�
ient
F e
c = uec∆yP

Fw
c = uwc ∆yP

Fn
c = vnc∆xP

F s
c = vsc∆xP
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Substitution of the 
onve
tion 
oe�
ients into the expressions given on the right-handside of Table 7.6, yields the following dis
rete form for mass 
onservation:

(
ǫPc − ǫ0,Pc

)
∆xP∆yP

∆t
+ ǫecF

e
c − ǫwc F

w
c + ǫncF

n
c − ǫscF

s
c = 0. (7.4.2)The upwind s
heme for the 
ontinuum volume fra
tion is given by

F e
c ǫ

e
c = [[F e

c , 0]]ǫ
P
c − [[−F e

c , 0]]ǫ
E
c (7.4.3)

Fw
c ǫ

w
c = [[Fw

c , 0]]ǫWc − [[−Fw
c , 0]]ǫPc (7.4.4)

F n
c ǫ

n
c = [[F n

c , 0]]ǫ
P
c − [[−F n

c , 0]]ǫ
N
c (7.4.5)

F s
c ǫ

s
c = [[F s

c , 0]]ǫ
S
c − [[−F s

c , 0]]ǫ
P
c . (7.4.6)Reassembling the terms given in Table 7.6 and subsequently applying the upwindexpressions, yield the following dis
retised form of Equation (7.4.1):

aPc ǫ
P = aEc ǫ

E
c + aWc ǫWc + aNc ǫ

N
c + aSc ǫ

S
c + bc, (7.4.7)where

a0,Pc =
∆xP∆yP

∆t
, (7.4.8)

bc = a0,Pc ǫ0,Pc , (7.4.9)
aEc = [[−F e

c , 0]], (7.4.10)
aWc = [[Fw

c , 0]], (7.4.11)
aNc = [[−F n

c , 0]], (7.4.12)
aSc = [[F s

c , 0]], (7.4.13)
aPc = aEc + aWc + aNc + aSc + a0,Pc . (7.4.14)Equations (7.4.7)-(7.4.14) are the dis
rete form of Equation (7.4.1) and will at a laterstage be used to solve the 
ontinuum volume fra
tions.7.5 Pressure and velo
ity 
orre
tionsThe momentum equations 
an be solved only when the pressure �eld is given or issomehow estimated. Unless the 
orre
t pressure �eld is employed, the resulting velo
ity�eld will not satisfy the 
ontinuity equation. Su
h an imperfe
t velo
ity �eld, based on
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a guessed pressure �eld, p∗, will be denoted by u∗ and v∗. The starred velo
ity �eldswill result from the solution of the following dis
retisation equations:

aecu
∗e
c = aeec u

∗ee
c + awc u

∗w
c + aNe

c u∗Ne
c + aSec u∗Se

c + bc − ǫec
[
p∗Ec − p∗Pc

]
∆yP , (7.5.1)and

anc v
∗n
c = anWc vnW∗c + a∗nEc vnEc + a∗sc vsc + a∗nnc vnnc + bc − ǫnc

[
p∗Nc − p∗Pc

]
∆xP . (7.5.2)The 
orre
t velo
ity �eld is denoted by

aecu
e
c = aeec u

ee
c + awc u

w
c + aNe

c uNe
c + aSec uSe

c + bc − ǫec
[
pEc − pPc

]
∆yP , (7.5.3)and

anc v
n
c = anWc vnWc + anEc vnEc + ascv

s
c + annc vnnc + bc − ǫnc

[
pNc − pPc

]
∆xP . (7.5.4)The aim is to improve the guessed pressure p∗ su
h that the resulting starred velo
ity�eld will progressively satisfy the 
ontinuity equation more a

urately. This is a
hievedby introdu
ing the following relations,

pc = p∗c + p
′

c (7.5.5)
uc = u∗

c + u
′

c, (7.5.6)where starred entities are approximations whi
h are subtra
ted from the real values toyield the primed 
orre
tion terms. Subtra
ting Equation (7.5.1) from Equation (7.5.3),yields
aecu

′e
c = aeec u

′ee
c + awc u

′w
c + aNe

c u
′Ne
c + aSec u

′Se
c − ǫec

[
p
′E
c − p

′P
c

]
∆yP . (7.5.7)Following Patankar (1980), all entries on the right hand side of Equation (7.5.7), ex
eptfor the pressure 
orre
tion terms, are dropped. (An extensive dis
ussion on the omissionof these terms is given by Patankar (1980).) The resulting 
orre
tion equation is givenby

aecu
′e
c = ǫec

[
p
′P
c − p

′E
c

]
∆yP , (7.5.8)and may be rewritten as

u
′e
c = d e

c

[
p
′P
c − p

′E
c

]
, (7.5.9)
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where dec = (ǫec∆yP ) / (a

e
c). Substitution of Equation (7.5.6) into Equation (7.5.9) yieldsthe velo
ity-
orre
tion formula:

ue
c = u∗e

c + d e
c

[
p
′P
c − p

′E
c

]
. (7.5.10)Similar equations may be dedu
ed for the neighbouring 
ontrol volumes. These aregiven by Equations (7.5.11)-(7.5.13):

uw
c = u∗w

c + dwc

[
p
′W
c − p

′P
c

] (7.5.11)
vnc = v∗nc + dnc

[
p
′P
c − p

′N
c

] (7.5.12)
vsc = v∗sc + dsc

[
p
′S
c − p

′P
c

]
. (7.5.13)The velo
ity 
orre
tion formulae for the parti
ulate phase are derived in a similarmanner and are given by

ue
p = u∗e

p + d e
p

[
p
′P
c − p

′E
c

] (7.5.14)
uw
p = u∗w

p + dwp

[
p
′W
p − p

′P
p

] (7.5.15)
vnp = v∗np + dnp

[
p
′P
p − p

′N
p

] (7.5.16)
vsp = v∗sp + dsp

[
p
′S
p − p

′P
p

]
, (7.5.17)where dep, in Equation (7.5.14), is given by dep =

(
ǫep∆yP

)
/
(
aep
). Similar equations holdfor dwp , dnp , and dsp.By integrating Equation (7.4.1) over the s
alar-
ontrol volume, illustrated in Figure 7.1,the 
ontinuity equation for the 
ontinuum may now be used to 
onstru
t an equationfor the pressure 
orre
tion. The result is given by

(
ǫPc − ǫ0,Pc

)
∆xP∆yP

∆t
+ ǫecu

e
c∆yP − ǫwc u

w
c ∆yP + ǫnc v

n
c∆xP − ǫscv

s
c∆xP = 0. (7.5.18)Equations (7.5.10)-(7.5.13) are substituted into Equation (7.5.18) and it follows that

aPc p
′P
c = aEc p

′E
c + aWc p

′W
c + aNc p

′N
c + aSc p

′S
c + bc, (7.5.19)
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where

aEc = ǫec∆yPd
e
c (7.5.20)

aWc = ǫwc ∆yPd
w
c (7.5.21)

aNc = ǫnc∆xP d
n
c (7.5.22)

aSc = ǫsc∆xPd
s
c (7.5.23)

aPc = aEc + aWc + aNc + aSc (7.5.24)
bc =

(
ǫ0,Pc − ǫPc

)
∆xP∆yP

∆t
−∆yP (ǫecu

∗e
c − ǫwc u

∗w
c )−∆xP (ǫnc v

∗n
c − ǫscv

∗s
c ).(7.5.25)Equations (7.5.19)-(7.5.25) 
on
lude the derivation of the pressure 
orre
tion equation.Where 
al
ulations of the 
oe�
ients for the dis
rete equations require the values forvariables at lo
ations where they are not expli
itly spe
i�ed, interpolation betweenneighbouring known values are used to approximate them. In this work, velo
itiesfor the 
onve
tion 
oe�
ients were 
al
ulated using the arithmeti
 mean between itsneighbours whereas porosities were approximated using the harmoni
 mean of theiradja
ent values.7.6 RelaxationThe omission of the neighbouring velo
ity terms in the derivation of the p′-equationleads to exaggerated pressure 
orre
tions. To remedy this, Patankar (1980) re
om-mends underrelaxation in the momentum equations: The momentum equations maybe written in trun
ated form as

aeue
α = anbunb + β (7.6.1)and expressed as

ue =
anbunb + β

ae
, (7.6.2)where the nb supers
ript indi
ates the neighbouring nodi of e.If u∗e is added to and subtra
ted from the right-hand side of Equation (7.6.2), it yields

ue = u∗e +

(
anbunb + β

ae
− u∗e

)
, (7.6.3)
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where the 
ontents of the parentheses represent the 
hange in ue produ
ed by the
urrent iteration. This 
hange is modi�ed by the introdu
tion of a relaxation fa
tor α,so that

ue = u∗e + α

(
anbunb + β

ae
− u∗e

α

)
, (7.6.4)or

ae

α
ue = anbunb + β + (1− α)

ae

α
u∗e. (7.6.5)A suitable value of α is found by experien
e and from exploratory 
omputations for agiven problem. The pressure 
orre
tion is underrelaxed by repla
ing Equation (7.5.5)with

pc = αpp
′

c + p∗c , (7.6.6)where Patankar (1980) re
ommends αp = 0.8.7.7 Solution of the dis
retised equationsIn previous se
tions, methods were dis
ussed to dis
retise the governing equations oftwo-phase �ow. This pro
ess resulted in a system of linear algebrai
 equations whi
hneeds to be solved. The 
omplexity of 
omputation depends on the dimensionality ofthe problem, the number of grid nodes and the dis
retisation pra
ti
e.Any valid pro
edure 
an be used to solve the algebrai
 equations, but available 
om-puter resour
es set a 
onstraint. The solution methods may be divided into the 
ate-gories of dire
t and indire
t (or iterative) methods. Dire
t methods in
lude Cramer'smatrix inversion and Gaussian elimination. The number of operations required for thesolution of a system of N equations with N unknowns with a dire
t method is of theorder of N3. It is also required that allN2 
oe�
ients of the set of equations are stored.The 
omputational time is therefore higher than desired.On the 
ontrary, iterative methods are based on the repeated appli
ation of a relativelysimple algorithm whi
h, after a number of repetitions, yields a 
onverged result. Ex-amples of su
h methods in
lude the Ja
obi and Gauss-Seidel point-by-point iterationmethods. The total number of operations are typi
ally in the order of N iterationsper 
y
le. Convergen
e is subje
t to the system of equations 
omplying to fairly exa
t
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riteria. The main advantage of these iterative solution methods is that only non-zero
oe�
ients of the equations need to be stored in memory and thus su
h methods aregenerally more e
onomi
al than their dire
t 
ounterparts.Ja
obian and Gauss-Seidel iterative methods are easy to implement but 
an be slowto 
onverge when the system is large, and are deemed ill-suited for general CFD pro-
edures. An alternative method, developed by L.H. Thomas in 1949, known as theThomas- or the Tridiagonal Matrix Algorithm (TDMA) is used instead (Conte and deBoor (1972)). The TDMA is a dire
t method for one-dimensional situations, but 
an beapplied iteratively to solve multi-dimensional problems and therefore be
ame a popularmethod for CFD 
odes. In the following se
tion the TDMA method is dis
ussed.7.7.1 The Tridiagonal matrix algorithmThe designation, TDMA, refers to the fa
t that when the matrix of the 
oe�
ients ofthe equations is written, all the nonzero 
oe�
ients align along three diagonals of thematrix. The TDMA on its own is a dire
t method and will be des
ribed as one in thisse
tion of the work. It is later 
ombined with the Gauss-Seidel method to form part ofan iterative (or indire
t) method for the 
al
ulation of grid node values.Consider a system of equations that has a tridiagonal form:

φ1 = C1

−β2φ1 +D2φ2 −α2φ3 = C2

−β3φ2 +D3φ3 −α3φ4 = C3

−β4φ3 +D4φ4 −α4φ5 = C4

... = ...

−βnφn−1 +Dnφn −αnφn+1 = Cn

φn+1 = Cn+1(7.7.1)The values of φ1 and φn+1 are known boundary values. Ea
h entry in the set given byEquation (7.7.1) may be written in the following general form:
−βjφj−1 +Djφj − αjφj+1 = Cj, (7.7.2)
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and the set given by Equation (7.7.1) may then be expressed as:

φ2 =
α2

D2
φ3 +

β2

D2
φ1 +

C2

D2
(7.7.3)

φ3 =
α3

D3
φ4 +

β3

D3
φ2 +

C3

D3
(7.7.4)

φ4 =
α4

D4
φ5 +

β4

D4
φ3 +

C4

D4
(7.7.5)

... = ... (7.7.6)
φn =

αn

Dn
φn+1 +

βn

Dn
φn−1 +

Cn

Dn
. (7.7.7)The set given by Equations (7.7.3)-(7.7.7) is solved by forward elimination and thenby ba
k substitution.The forward eliminations 
ommen
e with the elimination of φ2 from Equation (7.7.4)by substituting Equation (7.7.3) into Equation (7.7.4) and subsequently yielding

φ3 =
α3

D3
φ4 +

β3

D3

[
α2φ3 + β2φ1 + C2

D2

]
+

C3

D3
(7.7.8)

=

[
α3

D3 − β3
α2

D2

]
φ4 +



β3

(
β2

D2
φ1 +

C2

D2

)
+ C3

D3 − β3
α2

D2


 . (7.7.9)If the following notation is employed

A2 =
α2

D2
and C

′

2 =
β2

D2
+

C2

D2
, (7.7.10)Equation (7.7.9) may be written as

φ3 =

[
α3

D3 − β3A2

]
φ4 +

[
β3C

′

2 + C3

D3 − β3A2

]
. (7.7.11)Letting

A3 =
α3

D3 − β3A2
and C

′

3 =
β3C

′

2 + C3

D3 − β3A2
, (7.7.12)allows for Equation (7.7.11) to be written as,

φ3 = A3φ4 + C
′

3. (7.7.13)The ba
k-substitution pro
ess begins with the formulation of a general form for there
urren
e relationship of Equation (7.7.13):
φj = Ajφj+1 + C

′

j, (7.7.14)
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where

Aj =
αj

Dj − βjAj−1

(7.7.15)
C

′

j =
βjC

′

j−1 + Cj

Dj − βjAj−1
. (7.7.16)These formulae 
omply to the boundary nodes, j = 1 and j = n+ 1, by setting

A1 = 0 and C
′

1 = φ1

An+1 = 0 and C
′

n+1 = φn+1.For a system of equations to be solved it is required that they be arranged in theform of Equation (7.7.2) and expressions for αj, βj, Dj and C
′

j are identi�ed from thedis
retised expressions. The values of Aj and C
′

j are 
al
ulated starting at j = 2 andgoing up to j = n by applying Equation (7.7.16).Sin
e the value for φn+1 is a spe
i�ed boundary value, the values for φj 
an be obtainedin reverse order by means of the re
urren
e formula given in Equation (7.7.14).7.7.2 Iterative appli
ation of the TDMAIn this se
tion it is illustrated how the TDMA may be applied iteratively to solve asystem of equations. Consider the grid illustrated in Figure 7.2 in 
onjun
tion with ageneral dis
rete equation of the form
aPφP = aWφW + aEφE + aSφS + aNφN + b. (7.7.17)The system is solved by applying the TDMA along a 
hosen line, for example north-south lines. The dis
rete equation is rearranged in the form,
−aSφS + aPφP − aNφN = aWφW + aEφE + b. (7.7.18)The right-hand side of Equation (7.7.18) is assumed to be temporarily known. Equation(7.7.18) is in the form of Equation (7.7.2) where αj ≡ aN , βj ≡ aS, Dj ≡ aP and

Cj ≡ aWφW + aEφE + b.It is now possible to solve in the north-south-dire
tion of the 
hosen line for values
j = 2, 3, 4, ..., n as shown in Figure 7.2.
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xxx
x

xxx
x

y x
Known boundary valuesPoints at whi
h values are 
al
ulatedx Points at whi
h values are 
onsideredto be temporarily known

North

South
n

Figure 7.2: Representation of the line-by-line method.7.8 Assembly of a 
omplete methodThe SIMPLE algorithm gives a method of 
al
ulating pressure and velo
ities. GenerallySIMPLE is applied to solve a single velo
ity value, however, in this work the 
ontinuumand parti
le velo
ities are solved together, as illustrated in the s
hemati
 illustrated inFigure 7.3. The solution pro
edure 
an be surmised as follows:The pressure and velo
ities are initialised and the x-
omponent momentum equationsfor the 
ontinuum and the parti
ulate phase, given by Equations (7.3.14) and (7.3.23),respe
tively, are solved. This is followed by solving the y-
omponent momentum equa-tions for the 
ontinuum and the parti
ulate phase, given by Equations (7.3.31) and(7.3.39), respe
tively. The pressure 
orre
tion is then obtained from Equation (7.5.19)and the pressure and 
ontinuum velo
ities are updated. The pro
ess is repeated untilthe relative per
entage di�eren
e between velo
ity values for two su

essive iterationsfalls below 0.1 %� a 
riterion that for a time step of 0.05 s is usually satis�ed withinthe order of a 100 
y
les.The relative per
entage di�eren
e is obtained by 
al
ulating the sum of the velo
itiesfor ea
h grid row and then determining the mean of these values for the relevant timestep. The same is done for the next time step and the per
entage di�eren
e of thesetwo values, x1 and x2, is 
al
ulated by dividing the absolute di�eren
e of the two valuesby the average value of the same two values as shown in the equation below:
%Di� =

|x1 − x2|
|(x1 + x2)/2|

× 100. (7.8.1)
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The �nal velo
ity values are then used to 
al
ulate the 
ontinuum volume fra
tionsfrom Equation (7.4.7) whereafter the parti
le volume fra
tions follow sin
e ǫc + ǫp = 1.The time is updated with a user-spe
i�ed time step and the new volume fra
tions areused to solve the next round of momentum 
onservation equations.
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Start initialize time Input pressure, velo
ity, 
on
entrationSolve x-dire
tion �uid momentumSolve x-dire
tion parti
le momentumSolve y-dire
tion �uid momentumSolve y-dire
tion parti
le momentumSolve pressure 
orre
tion equation

update pressure and velo
ities

Corre
t pressure and velo
itiesConvergen
e?Solve solid 
on
entration
Convergen
eof ǫp?

time ≤timemax?

Updatetime

Update
ǫp

stop

no yes

no
no yes

yesFigure 7.3: Adapted SIMPLE algorithm for two-phase �ow.
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7.9 Implementation of boundary 
onditionsConsider a two-dimensional problem and the partial grid shown in Figure 7.4.

u-
ontrol volume
v-
ontrol volumes
alar 
ontrol volume

i : u-nodes
j : v-nodes
I : x-dire
tion s
alar nodes
J : y-dire
tion s
alar nodesboundary nodeinternal node

∆x

J/j = 1

j = 2

j = 3

J = 2

J = 3

J = 4

I/i = 1 i = 2 i = 3
I = 2 I = 3 I = 4Figure 7.4: Grid arrangement.Around ea
h of the internal nodes a 
ontrol volume exists and Equation (7.7.17) pro-vides the ne
essary equations for all the unknown values at the internal grid nodes. Fora line along ea
h dimension, two of these equations will however involve the boundarynodes. Following Patankar (1980), attention is fo
used on the left-hand x-dire
tionboundary nodes adja
ent to the internal nodes, I = 2 as illustrated in Figure 7.4. Forthe boundary 
ontrol volume used in Pra
ti
e B (Patankar (1980)), where grid nodesare pla
ed at the 
entres of 
ontrol volumes, the length of the �rst 
ontrol volume iszero, i.e. ∆xI=1 = 0.In this work the boundary 
onditions will 
onsist either of, given values, or a givengradient between the boundary and its internal neighbour. The equation for the left-hand side boundary node is given by,

φ1 = Binφ2 + Cin, (7.9.1)and the boundary expression for the right-hand side boundary is given by,
φN = BoutφN−1 + Cout. (7.9.2)
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If the boundary value is known, B and C are set to zero and the given value, re-spe
tively. In 
ase of a zero gradient 
ondition B = 1 and C = 0. In determining aboundary expression for the pressure the fa
t that the pressure gradient between anytwo nodes is 
onstant is used: In the 
urrent program it is taken into a

ount thatthe pressure gradient between nodes I = 1 and I = 2 is equal to the pressure gradientbetween nodes I = 2 and I = 3. It follows that,

P (1) = P (2)− [P (3)− P (2)]
δxe(1)

δxe(2)
. (7.9.3)The expression is modi�ed in order to in
lude the option of a given pressure value. Itfollows that the resulting boundary expression for the inlet pressure is given by

P (1) = Bin

[
P (2)− [P (3)− P (2)]

δxe(1)

δxe(2)

]
+ Cin, (7.9.4)and the outlet pressure, P (N), is de�ned using the same gradient requirements,

P (N) = Bout

[
P (N − 1) + [P (N − 1)− P (N − 2)]

δxe(N − 1)

δxe(N − 2)

]
+ Cout. (7.9.5)Equations (7.9.1) and (7.9.2) are used to spe
ify the boundary 
onditions for the ve-lo
ity and volume fra
tions, whereas Equations (7.9.4) and (7.9.5) will be used forpressure 
al
ulations.A similar pro
edure is followed for the "top" and "bottom" boundaries.7.10 Con
lusionsThe dis
retised equations and the TDMA method along with the SIMPLE algorithm,illustrated in Figure 7.3, 
an now be implemented. In this work simulations were donein the Fortran programming language and the simulation 
ode was designated Two-phase motion simulation (2PMS). The results from these simulations are dis
ussed inChapter 8.
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Chapter 8Numeri
al simulations
8.1 Introdu
tionThe dis
rete expressions for momentum and mass transfer, derived and implementedinto the SIMPLE algorithm in Chapter 7, were implemented in Fortran and designatedTwo-Phase Motion Simulation (2PMS).In the �rst part of this 
hapter the emphasis is pla
ed on the validation of 2PMSfor elementary �ow simulations to evaluate the fun
tionality of the 
ode. This willbe followed by the validation of the mathemati
al model, derived in Chapters 3-6, forhorizontal and verti
al two-phase �ow 
onditions and, where appli
able, the 
omparisonof said simulated results to analyti
al expressions.In Chapter 9, verti
al simulations, whi
h are performed here for various parti
le sizes,grid geometries, time-steps, and initial volume fra
tion values, will also be veri�ed withphysi
al experiments performed at the Coun
il for S
ienti�
 and Industrial Resear
h(CSIR) in Stellenbos
h.8.2 Basi
 �ow simulationsSimulations were done to ensure that 2PMS 
orre
tly predi
ts the motion of a �uidbetween parallel plates, over a porous bed and through an isotropi
 porous medium.Horizontal �ow simulations were 
ondu
ted with a 200×30 size grid over a �ow domainmeasuring 200 
m in length and 2 
m in width.119
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8.2.1 Plane Poiseuille �owThe program was �rst validated for plane Poiseuille �ow: The input velo
ity at the leftside of the domain, illustrated in Figure 8.1, was set to uc = 0.1 cm/s and the density ofthe �uid was set to approximate that of water at room temperature: ρc = 1000 kg/m3.

uc

200 
m 2 
m
Figure 8.1: Setup for plane Poiseuille �ow simulation.A simulation was done for an open 
hannel with no-slip boundary 
onditions at theupper and lower edges, and zero gradient 
onditions were applied to the in- and outlets.The fully developed velo
ity pro�le obtained from this simulation is 
ompared to theanalyti
al equation for plane Poiseuille �ow in Figure 8.4 from whi
h it 
an be seenthat the numeri
al approximation followed the results of the analyti
al solution 
losely.8.2.2 Flow through a stationary porous mediumFor the same input 
onditions, dimensions and boundary 
onditions, a simulation wasdone in a medium with an isotropi
 parti
le volume fra
tion of, ǫp = 0.5, 
onsisting ofgranular material with a 1 mm diameter and with a density of 2500 kg/m3. The setupfor the simulation is shown in Figure 8.2.

uc ǫp = 0.5

200 
m 2 
m
Figure 8.2: Setup for �ow simulation through a stationary porous medium.
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The drag approximation for slow vis
ous �ow, given by Equation (6.4.15), was assumedto govern and was applied to yield the following expression for �ow through a stationaryporous medium:

µcǫc
∂2uc

∂y2
= ǫc

∂pc
∂x

+
µǫp
d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18


 uc. (8.2.1)Only the Dar
y part of the drag equation was used sin
e the For
hheimer 
omponentrenders the partial di�erential equation analyti
ally unsolvable. The aforementionedomission is justi�ed by the 
hoi
e of input velo
ity whi
h yields a Reynolds number,

Re ≈ 1, whi
h is well within the vis
ous regime.The pressure gradient was obtained from the numeri
al pressure output as 0.0013 Paand the partial di�erential expression given in Equation (8.2.1) was solved to obtain
uc =

dp
dx

exp
[
−

√
Ay√
µǫc

] [
−1 + exp

[√
Ay

µǫc

]] [
− exp

[
2
√
A

µǫc

]
+ exp

[√
Ay

µǫc

]]

A
[
1 + exp

[
2
√
A√

µǫc

]] , (8.2.2)where the 
onstant A in Equation (8.2.2) is given by
A =

µǫp
d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18


 . (8.2.3)As for the plane Poiseuille simulation, the results are illustrated in Figure 8.4 fromwhi
h it follows that the numeri
al values yielded is an a

urate approximation to theanalyti
al solution, given by Equation (8.2.2).8.2.3 Flow past a stationary porous mediumThe �nal veri�
ation for the program was done by examining results yielded for the

x-
omponent �uid velo
ity pro�le when the boundary to the 
hannel is not a solid, but
onsists of a porous medium, as illustrated in Figure 8.3.The analyti
al solution to this problem 
an be obtained from Neale and Nader (1974)but falls outside the s
ope of this resear
h. Their solution is, however, illustrated alongwith the simulated results in Figure 8.4 for �ow past a porous medium with a parti
levolume fra
tion of 0.5. The simulated result appears to be a good approximation ofthat given by Neale and Nader (1974).
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uc

ǫp = 0.5

200 
m 2 
m
Figure 8.3: Setup for �ow simulation past and through a porous medium.
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ity pro�les for �ow in between parallel plates,�ow through a porous bed and �ow over and through a porous bed.Following the satisfa
tory results obtained for �ow pro�les through an open 
hannel aswell as past and through a porous medium, experiments were done for 
ases where thebed did not remain stationary.
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8.3 Two-phase �owIn order to illustrate a simple two-phase �ow example, a deposit, of whi
h the 
on-stituent parti
les have a diameter of 1 mm and a density of ρp = 2500 kg/m3, waspla
ed at the 
entre of a stationary 
ontinuum, with a density of ρc = 1000 kg/m3, andallowed to settle under the in�uen
e of gravity alone. The setup for the simulation isillustrated in Figure 8.5.

3 
m 30 
m
x

y
15 
m

100 
mFigure 8.5: Setup for horizontal two-phase �ow.For the volume fra
tion-, velo
ity pro�le- and intera
tion for
e simulations, illustratedin Figures 8.6-8.10, a grid of 500×500 nodes in the x− and y−dire
tions, respe
tively,was used and all values at the edges of the simulation domain were set to zero.Initially the 
ontinuum and parti
les are at rest and only gravitation is applied to thesystem resulting in the downward motion of the parti
les. At the edges of the depositthe 
ontinuum moves upward as the parti
le phase displa
es it. These phenomena atthe initiation of the settling pro
ess are illustrated at the top of Figures 8.6a, 8.7a,8.8a, 8.9a and 8.10a. The intera
tion for
es between the parti
les as well as thosefor
es between the parti
les and the 
ontinuum enveloping them, for this stage, areshown at the top of Figures 8.9a and 8.10a, respe
tively. The s
ale on these �guresshow the order of magnitude of the for
es per unit volume and from Figures 8.9a and8.10a the intera
tions between phases, whi
h are in the order of 101, dominate theparti
le-parti
le intera
tion whi
h are in the order of 10−2.As the settling motion 
ontinues, slopes are formed at the edges of the deposit asthe parti
les spread to the bottom and the sides, pulling the 
ontinuum along with itas shown in the lower half of Figures 8.6a, 8.7a and 8.8a. Both the intera
tion for
esbetween the phases and the intera
tion for
e between the parti
les themselves in
rease,sin
e these for
es are proportional to the velo
ity. The intera
tion for
es are visiblylarger at the sides than in the middle of the deposit sin
e there is very little motion atthe 
entre. The edges of the deposit therefore settles faster than its 
entre, resulting
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8.3. Two-phase �ow 124
in the steepening of the slope and the widening of the base as illustrated in the upperhalf of Figures 8.6b-8.10b.However, as the slope in
reases, so does the downward velo
ity of the parti
les at the
entre of the deposit, resulting in the �attening of the deposit as illustrated in thebottom half of Figure 8.6b. Where the deposit rea
hes the lateral boundaries of thedomain it 
an be seen from Figure 8.9b and 8.10b that the parti
le-parti
le- and theparti
le-
ontinuum intera
tion for
es sharply in
rease where 
ollisions o

ur with thestationary boundary.
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8.4 Verti
al motionSimulations were done in order to predi
t the verti
al settling motion of an evenlydistributed 3.6 g sample of sili
on parti
les with a density of ρp = 2500 kg/m3 throughwater with a density of ρc = 1000 kg/m3. The depth and width of the water 
olumnthrough whi
h the parti
les fell were set to 1.7 m and 0.150 m, respe
tively and thesetup for the simulation is illustrated in Figure 8.11.

3.6 g

0.150 m
1.7 m

Figure 8.11: Setup for verti
al settling simulation.The verti
al settling simulations done with 2PMS are veri�ed against experimentaldata obtained from settling tube experiments in Chapter 9. In the following se
tionsthe boundary 
onditions applied for the setup of the simulation as well as its stabilitywith regard to the sele
tion of grid size and time step intervals are dis
ussed.8.4.1 Boundary 
onditionsAt the left- and right boundaries of the setup shown in Figure 8.11 it was assumed thatboth the parti
les and the 
ontinuum were at rest (i.e. a no-slip boundary 
onditionwas applied). At the upper boundary it was assumed that a zero-gradient bound-ary 
ondition existed and at the bottom it was assumed that the parti
les and the
ontinuum would be stationary to be representative of the settling tube experimentsperformed in Chapter 9.
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The parti
le volume fra
tion, ǫp, was assumed to be zero at the upper edge of thesetup and was assumed to be equal to one at the left-, right- and base sides. Over all,a zero-gradient pressure 
ondition was applied.The initial guess for the pressure values was set to zero. The input 
ondition for theparti
le volume fra
tion proved problemati
 sin
e the simulation had to represent thephysi
al settling tube experiments for whi
h this value 
ould not be measured. It washowever known that for ea
h of the physi
al experiments a mass of 3.6 g parti
les wereinserted in the form of a single layer into the settling tube. To make the simulations
omparable to these 
onditions the parti
le volume fra
tion was 
hanged a

ordingto the sele
tion of the grid size to always ensure that a single layer entry would berepresentative of a parti
le mass of 3.6 g. The following was used to determine theparti
le volume fra
tion:

ǫp =
mp

ρp∆x∆y(Nx − 2)
, (8.4.1)where mp and ρp denote the mass and density of the parti
les and ∆x, ∆y and Nx arethe grid dimensions for a single 
ell in the x- and y-dire
tions and the total numberof grid nodes in the horizontal dire
tion, respe
tively. The subtra
tion is done toeliminate the two 
ells at the boundaries whi
h were assumed to have a zero parti
levolume fra
tion.The parti
les were released with a zero initial velo
ity and the �uid too was assumedat rest at initiation.8.4.2 Grid geometry and time stepsThe stability of 2PMS with regard to grid and time step sele
tion was analysed usingthree grid sizes of 85× 15, 170× 30, and 340× 60 on a domain 170 cm× 15 cm in size.Three time step intervals of 0.005 s, 0.01 s and 0.05 s were applied to ea
h of the gridallotments and simulations were performed for parti
les 1 mm, 0.75 mm, 0.50 mm, and

0.30 mm in diameter.8.4.2.1 Convergen
e within a time stepDuring ea
h time step, the program was iterated until the per
entage relative di�eren
ebetween the average group velo
ities of two su

essive iterations was less than 0.1%.
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Figure 8.12: Convergen
e within a time step.This was done by 
al
ulating the average group velo
ity for ea
h iteration as
uavg
p (j) =

∑
up(i, j)ǫp(i, j)∑

ǫp(i, j)
, (8.4.2)whi
h yielded the average velo
ity of ea
h 
olumn of the grid, the mean of whi
h is theaverage group velo
ity. The per
entage relative di�eren
e between the average groupvelo
ity for two su

essive iterations, I − 1 and I, was then obtained as

%DIFF =
2|uavg

p (I, t)− uavg
p (I − 1, t)|

|uavg
p (I, t) + uavg

p (I − 1, t)| 100. (8.4.3)In Figure 8.12 an example of the relative di�eren
e 
riteria, given by Equation (8.4.3),at various time steps for a 1mm-diameter parti
le and a time step of 0.01 s is illustrated.8.4.2.2 Grid and time step stabilityFollowing Patankar (1980), the fully impli
it s
heme was used to ensure that the resultfor a simulation is independent of the grid or the time step interval 
hoi
es. Gridindependen
e for a time step of 0.01 s is illustrated in Figure 8.13 and time stepindependen
e is shown in Figure 8.14. Figures 8.13 and 8.14 also show that a terminalgroup velo
ity is rea
hed for ea
h of the simulations after a period of 10 s.
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Figure 8.13: Grid analysis for verti
al settling simulations.
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It was however found that numeri
al di�usion in
reased rapidly as the grid was made
oarser. The numeri
al di�usion for a 1 mm parti
le simulation over a 340×60, 170×30,and a 85× 15 grid is illustrated in Figures 8.15-8.17.
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Figure 8.15: Parti
le volume fra
tion of a 3.6 g sample of 1 mm parti
les over a 340× 60 grid.
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Figure 8.16: Parti
le volume fra
tion of a 3.6 g sample of 1 mm parti
les over a 170× 30 grid.
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Figure 8.17: Parti
le volume fra
tion of a 3.6 g sample of 1 mm parti
les over a 85× 15 grid.

Stellenbosch University  http://scholar.sun.ac.za



8.4. Verti
al motion 138
Following Rafael and Maha�y (1998), a trun
ation error analysis of the fully impli
ittime integration on a staggered mesh yields an equation of the form (for mesh 
ell iand time step n+ 1):

∂φ

∂t
|n+1
i +

∂

∂x
(φuc)|n+1

i =
∂

∂x

{
0.5
(
|uc|∆x+∆tu2

c

) ∂φ
∂t

}
|n+1
i . (8.4.4)The se
ond term on the right-hand side of Equation (8.4.4) represents a di�usive trans-port.A

ording to Rafael and Maha�y (1998), Equation (8.4.4) is not approximating theoriginal expression given by

φρc
∂t

+∇ (φρcuc) = 0, (8.4.5)but is in fa
t approximating, with se
ond order a

ura
y, the transport equation
∂φ

∂t
+

∂

∂x
(φuc) =

∂

∂x

(
Kimpl

∂φ

∂t

)
, (8.4.6)whi
h physi
ally des
ribes a 
onve
tive-di�usive transport of the s
alar φ with a di�u-sion 
oe�
ient, Kimpl, given by

Kimpl = 0.5
(
|u|∆x+∆tu2

)
. (8.4.7)Thus, the �rst order upwind s
heme will always yield a di�usive solution if impli
ittime di�eren
ing is used, the magnitude of whi
h will grow both with in
reasing timestep, ∆t, and 
ell sizes ∆x as illustrated by Figures 8.15-8.17.An additional sour
e of numeri
al di�usion appears in multidimensional �ows when thevelo
ity �eld is skewed with respe
t to the 
omputational grid (Patankar (1980), Rafaeland Maha�y (1998)). In su
h 
ases, the upwind formulation introdu
es additionaldi�usive terms proportional to the 
ross gradients of the s
alar being transported.A

ording to the expression obtained in Equation (8.4.7) for the false numeri
al dif-fusion 
oe�
ients introdu
ed by the upwind solution, it is 
lear that grid size playsan important role in the magnitude of the di�usion a�e
ting the 
onve
tive solution.Therefore, one 
ould, in prin
iple, diminish the in�uen
e of the di�usive terms in thesolution by means of grid re�nement.
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8.4.3 Convergen
e of the average group velo
ity over timeResults show that the parti
les a

elerate from their initial stationary state under thein�uen
e of gravity. During this a

eleration period the parti
les spread out 
onsid-erably. As the parti
le group falls, the surrounding �uid is also set into motion. The�uid 
aught within the group moves faster than the �uid at the front end of the groupand, due to the nature of the equations dis
ussed previously, this results in the frontend of the 
loud being exposed to less drag than the internal se
tions, 
ausing it tomove faster. The e�e
t is an in
rease in the size of the 
loud and a de
rease in its
on
entration. However, numeri
al instabilities, dis
ussed in the previous se
tion, also
ontribute to the di�usion phenomenon. Figure 8.18 shows how the group velo
ity ofthe parti
les tend to zero as the parti
les rea
h the lower boundary of the simulationsetup. The rate at whi
h the velo
ity de
reases appears to be proportional to the sizeof the groups' 
onstituent parti
les.Although the spread of the parti
le 
loud in physi
al experiments may be as
ribed toa di�eren
e in parti
le size and the initial surfa
e tension for
es between the parti
lesand the �uid matter, this 
an not be used to explain the di�usion seen in the numeri
alexperiments sin
e the parti
les are assumed to be of equal size and surfa
e tension isnot in
luded in the expressions used to simulate the motion.At ea
h time step the simulation data for the parti
le velo
ities and the parti
le volumefra
tions were 
aptured and inserted into a Matlab routine (for whi
h an example isgiven below) to determine the average velo
ity of the 
loud. This average was deter-mined by multipli
ation of ea
h grid point velo
ity with its 
orresponding 
on
entrationand dividing by the sum of the 
on
entrations, as given by Equation (8.4.2) and fromFigures 8.13 and 8.14 it is apparent that for ea
h parti
le size, the 
loud rea
hed aterminal velo
ity value after a lapse of 10 s. These terminal velo
ity values will be
ompared to those obtained via experiments with a settling tube in Chapter 9.X=[340 170.00000339 169.74895...2 0.251481 0.00000℄;Y=[ 60 15.00000...2 0.12931
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1 0.00000℄;fid1 = fopen('Por.bin', 'r');fid2 = fopen('Us.bin', 'r');UsAVG = [℄;TIME = [℄;for i=1:1000[Por,
ount℄ = fread(fid1,[63,340℄, 'float32'); %read one time step[Us,
ount℄ = fread(fid2,[63,339℄, 'float32'); %read one time stepPor = reshape(Por, [63,340℄);%
onstru
t matrixUs = reshape(Us, [63,339℄);Por = Por(3:end-1,:)';Us = Us(3:end-1,:)';%
al
ulate average velo
ityusavg=mean(sum(Us(:,2:end-1).*Por(1:end-1,2:end-1))./sum(Por(1:end-1,2:end-1)));UsAVG=[UsAVG usavg ℄;%
al
ulate time steptime=i.*0.01;TIME = [TIME time℄;endplot(flipud(TIME),UsAVG,'-.')xlabel('time [s℄')ylabel('Average parti
le velo
ity [
m/s℄')
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Figure 8.18: Average group velo
ities for verti
al parti
le motion.
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8.4.4 Comparison between analyti
al and numeri
al resultsThe numeri
al results were 
ompared to results obtained when the parti
le momentum
onservation equation at terminal velo
ity, given by Equation (6.6.3), was solved withMatlab's fzero pro
edure whi
h uses a 
ombination of bise
tion, se
ant, and inversequadrati
 interpolation methods to obtain the roots for an expression. In derivingthe solution to the parti
le momentum 
onservation equation it was assumed that thepressure gradient may be approximated with the buoyan
y term:

∇p = ρc g. (8.4.8)However, the former assumption, validated in Appendix A.3.1, should only be appliedto 
ases where the dire
tion of the predominant pressure di�eren
e 
oin
ides with thatof the gravitational for
e a
ting on the parti
les. It was furthermore assumed thatterminal velo
ity was rea
hed. Appli
ation of the aforestated assumptions to Equation(6.6.3) yielded the following for the terminal parti
le velo
ity:
0 = ǫp g (ρp − ρc)−




µǫp

d2p


 36ǫǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

( vc − vp). (8.4.9)Comparisons between the results obtained by 2PMS and those obtained by solving theterminal velo
ity expression, given by Equation (8.4.9), with Matlab's fzero algorithm,are illustrated in Figure 8.19 for asymptoti
 �tting parameters, s = 0.5, s = 0.6, and
s = 0.7. From Figure 8.19 it follows that an in
rease in the value of s, in
reases themagnitude of the group velo
ity with respe
t to the parti
le diameter.The relative error between the results determined with the fzero pro
edure in Matlaband those obtained via 2PMS was determined by

%Error =
V alMatlab − V al2PMS

V alMatlab

× 100, (8.4.10)for whi
h the maximum error was determined as 0.248%. With this small relative error,the predi
tive 
apability of the 
ode was validated.
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Matlab fzero method with s = 0.5
2PMS with s = 0.6
Matlab fzero method with s = 0.6
2PMS with s = 0.7
Matlab fzero method with s = 0.7Figure 8.19: Comparison of Matlab's fzero terminal velo
ity solution to results for terminalvelo
ity obtained with 2PMS for di�erent values of the asymptoti
 �tting parameter, s.8.5 Con
lusionsIn the absen
e of experimental pro
edures to verify the pre
ision of numeri
al predi
-tions for horizontal two phase motion, dis
ussed in Se
tion 8.2, only the simulationsfor whi
h analyti
al results were made available is regarded as reliable. Results werenot veri�ed for the settling of a deposit within a 
ontinuum. However, the trend shownby these horizontal runs do seem to simulate expe
ted physi
al behaviour.Results obtained for verti
al two-phase motion upheld those produ
ed with Matlab'sfzero method. In the next 
hapter it will also be shown that these results 
orrespondwell with physi
al data obtained through settling tube experiments and the programis therefore regarded as a reliable predi
tion me
hanism.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 9Physi
al experiments
In order to further verify the validity of Equations (6.6.2) and (6.6.3), the terminalfall velo
ity of a group of sili
a parti
les were determined with a settling tube whi
his illustrated in Figure 9.2. A settling tube is an instrument that is used to determinethe natural velo
ity with whi
h a group of parti
les settles through a water 
olumn. Inaddition to the settling tube, a 
amera was pla
ed adja
ent to the tube and a video wasmade of the parti
les as they fell through the lower se
tion of the settling tube. The
amera- and the settling tube results were then 
ompared. In the following se
tionsthe settling tube 
omponents, the experimental pro
edure, the sample 
hara
teristi
sand results obtained for the terminal settling of sili
a parti
les are dis
ussed.9.1 Settling tube 
omponentsThe settling tube used in this study is illustrated in Figures 9.2 and 9.3. It measures
1.7 m in length with an inner diameter of 15 
m and 
onsists of the following main
omponents:1. A 
lear a
ryli
 Sample Insertion Plate (SIP) for inserting the sample;2. A rotating 
radle used to hold and lower the insertion plate at the top of thetube;3. A DIP-swit
h that a
tivates the timer;4. A weighing pan at the bottom of the tube;143
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5. The weighing pan is suspended by three thin, 
opper wires from a strain gaugethat is mounted to the wall;6. A strain gauge ampli�er, for amplifying the strain gauge signal;7. An analogue to digital 
onverter 
ard that a

epts the ampli�er and DIP-swit
hsignals and is housed in a PC;8. Software to pro
ess the digitised strain signals.9.1.1 Experimental methodExperiments with the settling tube were performed, following a pro
edure set out bySoltau (2009): A 3.6 g sample of ea
h of the 
ategories of sili
on beads, presentedin Table 9.1, was spread evenly onto the SIP in a layer of approximately one grainthi
kness. Water was applied to the SIP and its sample to ensure adhesion of theparti
les to the plate. The insertion plate and sample were subsequently inverted andpla
ed into the 
radle/
ollar at the top of the tube, the 
amera was a
tivated and the
radle was lowered smoothly by rotation until the insertion plate and sample made
onta
t with the water. Conta
t between the sample and the water, broke the adhesivefor
es and the beads started to fall. Simultaneously, the dip swit
h triggered the timer.After falling the length of the tube, the parti
les settled on the weighing pan and thestrain gauge registered the in
reasing strain due to the a

umulation of parti
les onthe plate. The 
aptured strain provided an instantaneous readout of the sample a

u-mulation. An example result from Soltau (2009) is illustrated in Figure 9.1 where thein
reasing strain is shown as a fun
tion of time after insertion. A 
ompleted experi-ment has the appearan
e of an S shaped 
urve. In Figure 9.1, the lower upward 
urveof the S, signals the �rst arrival of material on the pan at approximately 10 se
ondsand indi
ates the largest parti
les whi
h have settled the fastest. This is followed bya steep slope whi
h denotes rapid settling of the trailing parti
les. Flattening of theslope o

urs after about 40-50 se
onds as the smallest parti
les a

umulate on the pan.After 157 se
onds the entire sample has settled and the strain reading is 
onstant.In the example in Figure 9.1, �fty per
ent of the strain was measured after 34 se
onds,signifying that �fty per
ent of the sample had settled at this stage. The velo
ity forea
h of the per
entiles is determined bySettling velo
ity(m/s) = distan
e parti
le falls(m)/time taken(s), (9.1.1)
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Figure 9.1: Strain output.and the median settling velo
ity for the 50th per
entile would therefore be 1.7 m/34s = 0.05 m/s. The instability seen in the strain re
ord in Figure 9.1 during the �rstfew se
onds is due to a slight disturban
e of the strain gauge when the sediment isinserted and rapidly diminishes. An example of the output of one of the experimentsdone during this study with the 0.015 − 0.025 mm beads is given in Table 9.2. Theparti
le size was determined by the CSIR via an in house developed program. Theprogram 
al
ulates the parti
le size from the Standard Relation Curve whi
h is an em-piri
al 
urve, developed by Fromme in 1977 (Soltau (2009)) and improved by S
hoonees(Soltau (2009)), whi
h relates parti
le size to settling velo
ity as,
Dx = 29730w2

x + 4173wx + 67.38, (9.1.2)where Dx is the xth per
entile grain size (in µm) and wx denotes the xth per
entilesettling velo
ity (in m/s). The results of Equation (9.1.2) are given in the fourth
olumn of Table 9.2.
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ARM STRAIN GAUGEHOOKSPACING RING
SIP ROTATION-COLLAR WITH HOOKSSUSPENDING SAMPLE INSERTIONPLATE (SIP)

OUTPUT TO: AMPLIFIERRECORDERCOMPUTER

SILICAWL
NYLONTHREAD

DIP SWITCH FOR START SIGNAL TORECORDER/COMPUTER
PVC-TUBE WALL

HANDLE TOROTATE COLLAR

bc bcbc bc bcbc bcbcbc bc

SILICA REMOVABLE INSPECTION WINDOWLIGHT SOURCE CAMERA POSITION
OUTLET VALVE

REMARKS:1. EFFECTIVE LENGTH OF TUBE: 170
m2. INSIDE DIAMETER = 15
m3. ABBREVIATIONS:� SIP : SAMPLE INSERTION PLATE� WL : WATER LEVEL(a) S
hemati
 of the settling tube (b) Settling tubeFigure 9.2: Settling tube.
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DIP-swit
hInsertion CollarSuspension WiresStrain Gauge
(a) Upper me
hanism of settling tube

Weighing pan
(b) Lower me
hanism of set-tling tubeFigure 9.3: Me
hanisms of settling tube.The settling tube data were 
orroborated by making a video of the motion of ea
h ofthe experiments.9.2 Camera setupA PowerShot A560 Canon 
amera was pla
ed adja
ent to the settling tube, as shownin Figure 9.4, and the falling parti
les were photographed on a ma
ro setting at 30 fps.

Figure 9.4: Light and 
amera positions.
Camera position
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Referen
e markings were made on the tube and the speeds of the parti
les were 
al
u-lated using Photron FASTCAM viewer software.9.3 Sample 
hara
teristi
sSpheri
al glass beads, ranging from 0.15 mm to 1.0 mm in diameter, were used inthe experiments and the average size of ea
h sample was regarded as the representa-tive sample size for the purpose of 
omparison between experimental, simulated andanalyti
al measurements as shown in Figure 9.4.Table 9.1: Parti
le sizes.Size Range [mm℄ Average [mm℄0.15-0.25 0.20.20-0.30 0.250.25-0.50 0.3750.50-0.75 0.6250.75-1.00 0.875
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The sili
on beads were supplied by the 
ompany, Sigmund Lindner (SiLi), whi
h pro-vided the 
hemi
al 
omposition as 72.5% SiO2, 13% Na2O, 9.06% CaO, 4.22% MgO and0.58% Al2O3. The spe
i�
 weight of the beads were given as 2.50kg/l (i.e. 2.50g/

)and the three larger samples are shown in Figure 9.5.

(a) 0.25− 0.50 mm (b) 0.50− 0.75 mm (
) 0.75− 1.00 mmFigure 9.5: Sili
on beads used for the experiments.
9.4 Experimental results and pro
essingAn example of the strain data for a 3.6 g sample of parti
les, ranging from 0.015 mmto 0.025 mm in diameter, is given in Table 9.2.Table 9.2: Output for strain data for a 3.6g 0.015 − 0.025 mm sample.Per
entage insuspension Per
entage onpan Velo
ity (m/s) Size (µ)95 5 0.0308 224.3790 10 0.0301 220.1284 16 0.0295 216.1575 25 0.0289 212.8850 50 0.0269 201.1025 75 0.0245 187.4116 84 0.0234 181.2910 90 0.0218 172.745 95 0.0200 162.68The per
entages listed in the �rst 
olumn of the table are interpreted as the per
ent-age of the total amount of parti
les whi
h remain in suspension and therefore have a
orresponding velo
ity equal to or slower than those given by the third 
olumn.
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The per
entages listed in the se
ond 
olumn 
orrespond with those portrayed in Figure9.1 and indi
ate those portions of the total amount of parti
les that have settled ontothe weighing pan and thus have a velo
ity equal to or faster than the velo
ity valuesgiven by the third 
olumn.The fourth 
olumn in Table 9.2 indi
ates the sizes of the parti
les that fall in theper
entile 
ategories listed in 
olumns 1 and 2 a

ording to Equation (9.1.2). Sin
e theparti
le sizes are known, the data given by the fourth 
olumn was not used for thiswork. It is, however, apparent from the grain size results for the 0.015 − 0.025 mmsample, listed in Table 9.2 that the empiri
al 
urve provided a fairly a

urate estimateof the parti
le sizes in that it yielded a size range of 0.016 − 0.022 mm for the givenrange of 0.015− 0.025 mm.For ea
h of the sample sizes a minimum of 5 experimental runs were made, the resultsof whi
h are illustrated in Figure 9.6. From the 
lose 
orrelation between the runs itfollows that the experimental pro
edure was su

essful and that the experiments arerepeatable.The per
entage values indi
ated on the x-axis of Figures 9.6a-9.6e denote the per
ent-age of parti
les whi
h fell slower than the 
orresponding velo
ity value on the y-axis.The average velo
ity for ea
h sample set was 
al
ulated using the trapezium rule toobtain the entire area underneath the graph for ea
h run and dividing the said area bythe 90 units it spans on the x-axes. These results are illustrated in Figure 9.8.As dis
ussed previously, digital images of the falling parti
les were taken. The positionsof a portion of the parti
les were digitised relative to markings that have been madeon the tube, and the speeds of the parti
les were 
al
ulated (using the Photron FAST-CAM viewer software). For various parti
les within a single experiment, the distan
etraversed by a parti
le along with the time required for the distan
e to be 
ompletedwas re
orded, as illustrated in Figure 9.7. The average of the speeds obtained wasthen assumed to denote the average speed of the group of parti
les for that spe
i�
experimental run.Various experiments were done for ea
h of the parti
le size ranges, listed in Table9.1, the average of whi
h was used for 
omparative purposes in Figure 9.8. Examplephotographs taken for the 0.75 − 1.00 mm sample are shown in Figure 9.7. The dataobtained from the photographi
 experiments are listed in Appendix G in Table G.1
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and the average velo
ity results for ea
h sample is shown in 
onjun
tion with thesettling tube experiments in Figure 9.8 from whi
h it follows that 
lose 
orrelationbetween photographi
, settling tube, numeri
al and analyti
al results were obtained.The values of the average data obtained for the settling tube and 
amera data alongwith the relative di�eren
e between the results obtained by these methods are listedin Table 9.3.

Stellenbosch University  http://scholar.sun.ac.za



9.4. Experimental results and pro
essing 152

0 20 40 60 80 100
0.01

0.015

0.02

0.025

0.03

0.035

percentage [%]

V
el

oc
ity

 [m
/s

]

(a) Parti
le size: 0.15− 0.25 mm 0 20 40 60 80 100

0.025

0.03

0.035

0.04

percentage [%]

V
el

oc
ity

 [m
/s

]

(b) Parti
le size: 0.20− 0.30 mm

0 20 40 60 80 100
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

percentage [%]

V
el

oc
ity

 [m
/s

]

(
) Parti
le size: 0.25− 0.50 mm 0 20 40 60 80 100
0.085

0.09

0.095

0.1

0.105

0.11

0.115

percentage [%]

V
el

oc
ity

 [m
/s

]

(d) Parti
le size: 0.50− 0.75 mm
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(e) Parti
le size: 0.75− 1.00 mmFigure 9.6: Settling tube data.
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Parti
le 1Parti
le 2

(a) Position 1
Parti
le 1Parti
le 2(b) Position 2Figure 9.7: Parti
le positions.
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Table 9.3: Comparison between 
amera and settling tube data.Parti
lediameter
[mm℄

Average ofsettling tubedata[
m/s℄
Average of
ameradata[
m/s℄
Average ofnumeri
aldata,

s = 0.6[
m/s℄
Relativedi�eren
e:settling tubevs 
amera

[%]

Relativedi�eren
e:settling tubevs numeri
al
[%]

Relativedi�eren
e:settling tubevs numeri
al
[%]0.02 2.47 2.61 1.93 5.61 24.8 30.30.025 3.20 3.32 2.81 3.51 13.0 16.50.0375 4.98 5.00 5.22 0.319 4.69 4.400.0625 9.58 9.68 9.78 1.12 2.13 1.000.0875 13.53 13.3 13.9 1.75 2.88 4.63
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2PMS with s = 0.5
Matlab fzero method with s = 0.5
2PMS with s = 0.6
Matlab fzero method with s = 0.6
2PMS with s = 0.7
Matlab fzero method with s = 0.7
Experimental with Camara (0.02, 0.025, 0.0375, 0.0625, 0.0875)
Settling Tube (0.02, 0.025, 0.0375, 0.0625, 0.0875)Figure 9.8: Correlation between numeri
al simulations, analyti
al solution and experiments.

9.5 Con
lusionsIn Table 9.3, results given by 2PMS, the fzero Matlab pro
edure, as well as 
amera- andsettling tube experimental pro
edures are 
ompared to ea
h other. For ea
h parti
lesize range, used for experiments and listed in Table 9.1, an average was 
al
ulated andasso
iated with the the average obtained from all the experimental results for boththe 
amera and settling tube experiments. These averaged values for the settling tubeand 
amera experiments are listed in 
olumns two and three of Table 9.3, respe
tivelyand the relative di�eren
es between these two methods are listed in 
olumn �ve. Thelargest dis
repan
y was obtained for a parti
le diameter of dp = 0.2 mm.From Figure 9.8 it 
an be seen that the numeri
al results generated by 2PMS for a�tting 
oe�
ient s = 0.6, 
orresponds best to both settling tube- and 
amera exper-
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imental values and the relative per
entage di�eren
es are listed in 
olumns six andseven of Table 9.3, respe
tively. As with the 
omparison between the settling tube andthe 
amera experiments, the greatest di�eren
e was found for parti
les with an averageparti
le diameter of dp = 0.2 mm.It should be noted that the results obtained numeri
ally are very mu
h dependent onthe 
hoi
e of s of whi
h the physi
al signi�
an
e is yet to be determined. However, thenumeri
al output from 2PMS yielded the 
orre
t trend when 
ompared to experimentaldata. Experiments with smaller parti
les proved more di�
ult than those done forlarger parti
les sin
e these were in�uen
ed most by surfa
e tension at the beginningof the experiment and showed a mu
h more di�usive nature as it spread over nearlythe total length of the settling tube during the experiments. This made it di�
ultto determine a value for the average group velo
ity sin
e they did not show groupbehaviour. Experimental results obtained for larger parti
les are thus deemed morea

urate and 
orrelated well with simulations.
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Chapter 10Dis
ussion and re
ommendations
In Chapter 9 the physi
al results from experiments done at the CSIR were 
omparedto predi
tions made for the group terminal velo
ity of di�erent parti
le sizes. In this
hapter the predi
tions made by Equation (6.6.3) for the group terminal velo
ity aretested against the widely referen
ed experimental work of Ri
hardson and Zaki (1954).The results of these experiments were summarised by Con
ha (2009) in a table relat-ing the ratio between the group- and the Stokes velo
ities of a single parti
le to theparti
le diameters. In this 
hapter, the a
tual values of the group velo
ity obtained byRi
hardson and Zaki (1954) in relation to the parti
le diameters and those predi
tedby Equation (6.6.3) are given.The predi
tion 
apabilities of our model is also 
ompared to the empiri
ally models setforth by Ergun, lewis, Wen and Yu, and Kmie
 (Mazzei and Lettieri (2007)).10.1 Empiri
al work by Ri
hardson and Zaki (1954)Ri
hardson and Zaki (1954) examined experimentally the e�e
t of the volume fra
tionof suspended parti
les upon the rate of settlement of the parti
les. They 
on�nedthe experimental work to uniformly sized spheri
al parti
les, greater than 100 µm indiameter. The sedimentation experiments were made with suspensions 
ontained in�at-bottomed Pyrex tubes about 10 
m in height with internal diameters of 1.9, 2.8,3.2, 4.8, and 5 
m. After the tube and its 
ontents attained the temperature of the
hamber, the suspension was agitated and the tube was then orientated in the verti
alposition. The rate at whi
h the sludge line fell was observed. The temperature of the157
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liquid was maintained at 20 ◦C. The physi
al 
hara
teristi
s of the materials used arelisted in Table 10.1.Group velo
ities obtained for the settling of various types of spheri
al parti
les indi�erent types of �uids are listed in Tables 10.2 and 10.3, respe
tively and graphs ofthese values 
an be seen in Appendix H.Correlations between the experimental data of Ri
hardson and Zaki (1954) and thosevalues predi
ted by Equation (6.6.3) for terminal velo
ities, are shown in Figure 10.1.For a perfe
t 
orrelation between the empiri
al and theoreti
al result, the points wouldbe 
entred on the 45◦ line. Points that lie above this line are due to the theoreti
almodel yielding higher values than the experiments and those that o

ur below the lineare under-predi
ting the empiri
al data.Figures 10.1a to 10.1j show the 
orrelation between the experimentally obtained groupsettling velo
ity of di�erent sized spheri
al parti
les at ten separate parti
le volumefra
tions in the range of 0 < ǫp ≤ 0.585 performed by Ri
hardson and Zaki (1954). Inea
h 
ase two theoreti
al approximations are made: Both of whi
h are the solution toEquation (6.6.3) for the s
enario of a terminal velo
ity s
enario but di�er with regardto the drag 
oe�
ient, cd, and the shifting parameter, s.The �rst approximation was made by 
hoosing the shifting fa
tor s = 0.6 and thedrag 
oe�
ient cd = 0.44. The value for cd is 
hosen here to be the value for the drag
oe�
ient of a single sphere and s is based on the best �t that was a
hieved on thebasis of inspe
tion with data obtained during experiments dis
ussed in Chapter 9. Thedrawba
k of this 
hoi
e of shifting parameter is that Equation (6.6.3) is not analyti
alsolvable, but the terminal velo
ity may readily be a
hieved by using any numeri
alintegration te
hnique. In this 
ase the fzero method was applied in Matlab.The se
ond theoreti
al approximation is based on a shifting fa
tor s = 1.0 and a drag
oe�
ient cd = 2.05 whi
h are based on investigations done on foams (Du Plessis(1992), Du Plessis and Masliyah (1988)). This 
hoi
e of s has the bene�t of renderinga quadrati
 equation for whi
h analyti
al solutions are easily obtainable.The higher the value of s, the more 
losely the solution tra
es the asymptoti
 expres-sions, i.e. the more abrupt the transition (Chur
hill and Usagi (1972)). Converselya gradual 
hange-over between extremal solutions will signify that a small s be used.Hen
e, s, is indi
ative of the rate of transition between the 
onstituent predi
tive equa-
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tions. The afore mentioned in�uen
e of the shifting parameter was also dis
ussed inSe
tion 6.6.1 and shown in Figure 6.7. Chur
hill and Usagi (1972) re
ommends thatexperiments should be set up so as to investigate the behaviour in region of the pointwhere the asymptotes of the extreme behaviours meet in order for 
orre
t approxima-tions to be made. It is further re
ommended in this work that the For
hheimer regimebe treated in a similar manner to the Dar
y regime, i.e. that it should be split into alow parti
le volume fra
tion (or single parti
le) and a high volume fra
tion (or porousbed) part and that these should then be mat
hed in a manner similar to that used tomat
h the high and low parti
le volume fra
tion s
enarios for the Dar
y regime.For parti
le volume fra
tions tending to zero, both theoreti
al models 
oin
ide well withthe values obtained by Ri
hardson and Zaki (1954) for velo
ities up to 10 
m/s. On
ethis limit is ex
eeded the theoreti
al model with s = 1 and cd = 2.05 however tends tounder-predi
t the experimental values as is shown in Figure 10.1a. From Figures 10.1bto 10.1f it 
an be seen that for velo
ities up to 1 
m/s both models under-predi
t theresults whereas for higher velo
ities the model with cd = 2.05 and s = 1.0 tends tounder predi
t whilst its 
ounter part mat
hes the data well. As the parti
le volumefra
tion in
reases further so does the a

ura
y of both models as 
an be seen fromFigures 10.1g and 10.1h but tends to over predi
tion of the experimental values as theparti
le volume fra
tion in
reases above ǫp = 0.500 in Figures 10.1i and 10.1j.10.2 Comparisons to empiri
al modelsIn the following se
tions, the predi
tions made by Equation (6.6.3) for the group termi-nal velo
ity are tested against the empiri
al Ergun equation (Ergun (1952)) as well asempiri
al models by Lewis, Wen and Yu, and Kmie
 (Mazzei and Lettieri (2007)) whi
hare based on the aforementioned experimental data of Ri
hardson and Zaki (1954).10.2.1 The Ergun equationThe empiri
al Ergun model is given by

FERGUN =

(
150µcǫ

2
p

d2pǫ
2

+
1.75ρcǫp|| vc − vp||

dpǫc

)(
vc − vp

)
. (10.2.1)The Ergun equation was developed only for pa
ked beds and was never meant toa

ount for large variations in 
on
entration as is found in sedimentation problems.
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In spite of this limitation, it is 
ommonly employed by many resear
hers over a widerange of parti
le volume fra
tions. It is used in the multiphase �ow model, proposedby Gidaspow (1994), whi
h has been adopted as default in the majority of 
ommer
ialCFD 
odes used to date (e.g. Fluent). This 
orrelation is used for values of the
ontinuum volume fra
tion up to 0.80.10.2.2 Lewis, Wen and Yu, and Kmie
 drag for
e 
losuresThe most widespread and popular equations of 
losure employed to model the dragfor
e in uniformly dispersed emulsions of solid parti
les are those based on the work byKmie
 (1982), Lewis et al. (1949), and Wen and Yu (1966). In parti
ular, the equationdeveloped by Lewis is usually adopted as default 
orrelation in most 
ommer
ial CFD
odes when the 
ontinuum volume fra
tion of the suspension ex
eeds the thresholdvalue of 0.80 (a limit suggested by Gidaspow (1994)). Following Mazzei and Lettieri(2007), all three these 
losure relationships 
an be expressed in the following form:

F (ǫc, || vc − vp||) =
3

4
CD(Re)

ρc|| vc − vp||(1− ǫc)

dp
ǫ−α
c . (10.2.2)Here the Reynolds number is de�ned as,

Re(ǫc, || vc − vp||) =
ρcǫdp
µc

|| vc − vp||, (10.2.3)and the drag 
oe�
ient CD(Re) is 
al
ulated using the expression suggested by S
hillerand Naumann (1935):
CD(Re) =





24
Re

(1 + 0.15Re0.687) for Re < 1000

0.44 for Re ≥ 1000.The drag is 
al
ulated for the limiting values of the vis
ous and inertial regimes andan expression for the intermediate range is derived following the asymptoti
 mat
hingte
hnique introdu
ed by Chur
hill and Usagi (1972),
F tot(ǫc, || vc − vp||) =

18µc(1− ǫc)ǫ
−α
c

ǫcd2p
+ 0.33

ρc|| vc − vp||ǫp
dp

ǫ−α
c . (10.2.4)The respe
tive values for α, as proposed by Lewis et al., Wen and Yu, and Kmie
,are 2.65, 2.70 and 2.78, respe
tively. The drag for
e 
losures, given by Equations(10.2.1) and (10.2.4) were implemented in 2PMS and the results were 
ompared to
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those obtained for our model in Figure 10.2. From Figure 10.2 it 
an be seen thatthe models proposed by Lewis and Wen and Yu, yield almost identi
al results. Both,however, overestimate the experimental data. The Ergun equation overestimates thevelo
ities of the smaller parti
les and underestimates the velo
ities yielded for largerparti
le diameters. The results were also 
ompared with the settling tube equation, bysolving Equation (9.1.2) for the velo
ity and obtaining the following expression for thefall velo
ity in terms of the parti
le diameter:

vsettle =
(
−0.702 ∗ 10−1 + 0.336 ∗ 10−5 (235027485 + 2973000dp)

1/2
)
100,(10.2.5)where the multipli
ation with 100 is due to the fa
t that the velo
ities and parti
lediameters in Equation (9.1.2) are in metres per se
ond and mi
rometres, respe
tively.The results obtained for the velo
ities with Equation (10.2.5) yield a good approxima-tion for the experimental trend but tend to underestimate the velo
ity of the largerparti
les. The 
urrent model yielded a good approximation of the experimental datafor the entire range of parti
le diameters, thus ex
eeding the predi
tion 
apabilities ofits 
ounterparts.10.3 Con
lusionsThe results yielded by Equation (6.6.3) produ
ed good predi
tions for both the ex-periments done at the CSIR for this study as well as with the experimental data byRi
hardson and Zaki (1954) and empiri
al models based on this data (e.g. Lewis andWen and Yu). The theoreti
al model however still remains dependent on the shiftingfa
tor s. An e�ort was made not to introdu
e empiri
al 
oe�
ients too early in thedevelopment of the model but after testing it on existing as well as new experimen-tal data it is apparent that the introdu
tion of 
ertain empiri
al 
oe�
ients may beinevitable due to the existen
e of 
ertain geometri
al e�e
ts.
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Table 10.1: Physi
al properties of material used for experiments done by Ri
hardson andZaki (1954). No. dp

[cm]

ρp

[g/cm3]

µc × 102

[g/(cm.s)]

ρc

g/cm31 0.0181 1.0580 20.8000 1.03402 0.0181 1.0580 20.8000 1.03403 0.0096 2.9230 62.0000 1.20804 0.0096 2.9230 62.0000 1.20805 0.0358 1.0580 20.8000 1.03406 0.0358 1.0580 20.8000 1.03407 0.0096 2.9230 20.8000 1.03408 0.0096 2.9230 20.8000 1.03409 0.0096 2.9230 20.8000 1.034010 0.0230 2.6230 62.0000 1.208011 0.0230 2.6230 62.0000 1.208012 0.0128 2.9600 1.8900 2.890013 0.0128 2.9600 1.8900 2.890014 0.0181 1.0580 1.5300 1.001015 0.0181 1.0580 1.5300 1.001016 0.0181 1.0580 1.5300 1.001017 0.1029 2.9760 112.9000 1.221018 0.1029 2.9760 112.9000 1.221019 0.0253 1.0580 2.9100 0.935020 0.0253 1.0580 2.9100 0.935021 0.0096 2.9230 1.6120 2.170022 0.0096 2.9230 1.6120 2.170023 0.0253 2.7800 6.0750 1.135024 0.0253 1.0600 1.0000 1.000025 0.0230 2.6230 1.8900 2.890026 0.0230 2.6230 1.8900 2.890027 0.0230 2.6230 1.8900 2.890028 0.0230 2.6230 1.6120 2.170029 0.0230 2.6230 1.6120 2.170030 0.0230 2.6230 1.6120 2.170031 0.0510 2.7450 6.0750 1.135032 0.1029 2.9760 10.9600 1.153033 0.1029 2.9760 10.9600 1.153034 0.1029 2.9760 10.9600 1.153035 0.0253 2.7800 1.0000 1.000036 0.1029 10.6000 15.0100 0.875037 0.1029 2.9760 1.8900 2.890038 0.1029 2.9760 1.8900 2.890039 0.1029 2.9760 1.8900 2.890040 0.1029 2.9760 1.8390 2.745041 0.1029 2.9760 1.8390 2.745042 0.1029 2.9760 1.8390 2.745043 0.0510 2.7450 1.0000 1.000044 0.1029 2.7450 1.0000 1.000045 0.1029 2.7450 1.0000 1.000046 0.4200 2.8900 15.0100 0.875047 0.1029 10.6000 3.8100 0.818048 0.2466 11.2500 15.0100 0.875049 0.3175 7.7300 15.0100 0.875050 0.4200 2.8900 6.0750 1.135051 0.1029 10.6000 1.0000 1.000052 0.4200 2.8900 1.0000 1.000053 0.3175 7.7300 1.0000 1.000054 0.6350 7.7400 1.0000 1.0000
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Table 10.2: Empiri
al group velo
ities for various solid volume fra
tions and parti
le sizes(Ri
hardson and Zaki (1954)).Nr. Parti
lediameter

[cm]

Reynoldsnumber Velo
ity
ǫp = 0.0

[cm/s]

Velo
ity
ǫp = 0.01

[cm/s]

Velo
ity
ǫp = 0.05

[cm/s]

Velo
ity
ǫp = 0.1

[cm/s]

Velo
ity
ǫp = 0.15

[cm/s]

Velo
ity
ǫp = 0.2

[cm/s]

Velo
ity
ǫp = 0.3

[cm/s]

Velo
ity
ǫp = 0.4

[cm/s]

Velo
ity
ǫp = 0.5

[cm/s]

Velo
ity
ǫp = 0.585

[cm/s]1 0.0181 0.0002 0.0021 0.0020 0.0017 0.0014 0.0011 0.0009 0.0005 0.0003 0.0001 0.00012 0.0181 0.0002 0.0021 0.0020 0.0017 0.0014 0.0011 0.0009 0.0005 0.0003 0.0002 0.00013 0.0096 0.0003 0.0139 0.0134 0.0115 0.0094 0.0076 0.0060 0.0036 0.0020 0.0010 0.00054 0.0096 0.0003 0.0139 0.0134 0.0115 0.0095 0.0077 0.0062 0.0038 0.0022 0.0011 0.00065 0.0358 0.0014 0.0081 0.0078 0.0066 0.0054 0.0043 0.0034 0.0020 0.0011 0.0005 0.00036 0.0358 0.0014 0.0081 0.0078 0.0066 0.0054 0.0043 0.0034 0.0020 0.0011 0.0005 0.00037 0.0096 0.0022 0.0455 0.0438 0.0375 0.0306 0.0247 0.0197 0.0119 0.0067 0.0034 0.00178 0.0096 0.0022 0.0455 0.0438 0.0376 0.0307 0.0249 0.0198 0.0121 0.0068 0.0035 0.00179 0.0096 0.0022 0.0455 0.0438 0.0377 0.0308 0.0250 0.0200 0.0122 0.0069 0.0035 0.001810 0.0230 0.0030 0.0659 0.0634 0.0541 0.0439 0.0352 0.0279 0.0167 0.0092 0.0046 0.002211 0.0230 0.0030 0.0659 0.0634 0.0542 0.0442 0.0355 0.0282 0.0170 0.0095 0.0047 0.002312 0.0128 0.0648 0.0331 0.0318 0.0272 0.0221 0.0177 0.0141 0.0084 0.0047 0.0023 0.001113 0.0128 0.0648 0.0331 0.0319 0.0274 0.0224 0.0181 0.0144 0.0088 0.0049 0.0025 0.001314 0.0181 0.0758 0.0640 0.0616 0.0528 0.0431 0.0347 0.0277 0.0167 0.0094 0.0047 0.002315 0.0181 0.0786 0.0664 0.0638 0.0544 0.0440 0.0352 0.0278 0.0165 0.0091 0.0044 0.002216 0.0181 0.0786 0.0664 0.0639 0.0547 0.0445 0.0359 0.0285 0.0172 0.0096 0.0048 0.002417 0.1029 0.0992 0.8910 0.8533 0.7146 0.5664 0.4430 0.3413 0.1922 0.0991 0.0452 0.020318 0.1029 0.0992 0.8910 0.8542 0.7183 0.5724 0.4502 0.3490 0.1992 0.1043 0.0485 0.022219 0.0253 0.1199 0.1475 0.1418 0.1205 0.0974 0.0778 0.0612 0.0362 0.0197 0.0096 0.004620 0.0253 0.1199 0.1475 0.1418 0.1208 0.0978 0.0783 0.0618 0.0367 0.0201 0.0099 0.004821 0.0096 0.3024 0.2340 0.2254 0.1932 0.1578 0.1274 0.1016 0.0616 0.0346 0.0175 0.008722 0.0096 0.3024 0.2340 0.2256 0.1940 0.1593 0.1293 0.1036 0.0637 0.0363 0.0186 0.009423 0.0253 0.3909 0.8270 0.7972 0.6858 0.5630 0.4570 0.3663 0.2250 0.1282 0.0659 0.033424 0.0253 0.4908 0.1940 0.1872 0.1619 0.1337 0.1093 0.0882 0.0551 0.0320 0.0168 0.008725 0.0230 1.2274 0.3490 0.3371 0.2924 0.2426 0.1992 0.1616 0.1020 0.0599 0.0319 0.016826 0.0230 1.2274 0.3490 0.3369 0.2913 0.2409 0.1970 0.1591 0.0994 0.0578 0.0304 0.015827 0.0230 1.2274 0.3490 0.3382 0.2971 0.2507 0.2095 0.1732 0.1139 0.0702 0.0396 0.022128 0.0230 2.0202 0.6525 0.6312 0.5509 0.4609 0.3816 0.3124 0.2011 0.1209 0.0662 0.035829 0.0230 2.0202 0.6525 0.6309 0.5495 0.4585 0.3786 0.3090 0.1975 0.1179 0.0640 0.034330 0.0230 2.0202 0.6525 0.6316 0.5526 0.4638 0.3854 0.3167 0.2054 0.1247 0.0691 0.037831 0.0510 2.7537 2.8900 2.7980 2.4500 2.0585 1.7125 1.4088 0.9164 0.5579 0.3102 0.170232 0.1029 6.5276 6.0300 5.8333 5.0910 4.2591 3.5269 2.8875 1.8584 1.1174 0.6122 0.331033 0.1029 6.5276 6.0300 5.8468 5.1514 4.3635 3.6613 3.0395 2.0173 1.2567 0.7181 0.405334 0.1029 6.5276 6.0300 5.8509 5.1700 4.3959 3.7032 3.0874 2.0683 1.3025 0.7538 0.431035 0.0253 8.9815 3.5500 3.4588 3.1084 2.7022 2.3304 1.9917 1.4094 0.9454 0.5896 0.363936 0.1029 11.7571 19.6000 19.0714 17.0477 14.7163 12.5973 10.6822 7.4288 4.8845 2.9747 1.792037 0.1029 18.2520 1.1600 1.1278 1.0048 0.8636 0.7359 0.6210 0.4273 0.2775 0.1666 0.098938 0.1029 18.2520 1.1600 1.1296 1.0131 0.8783 0.7553 0.6436 0.4524 0.3011 0.1861 0.113839 0.1029 18.2520 1.1600 1.1271 1.0017 0.8582 0.7288 0.6128 0.4182 0.2691 0.1598 0.093840 0.1029 38.0915 2.4800 2.4224 2.1995 1.9381 1.6955 1.4712 1.0764 0.7504 0.4898 0.316741 0.1029 38.0915 2.4800 2.4170 2.1748 1.8937 1.6359 1.4008 0.9952 0.6707 0.4206 0.261042 0.1029 38.0915 2.4800 2.4185 2.1815 1.9057 1.6520 1.4196 1.0167 0.6915 0.4384 0.275243 0.0510 41.3100 8.1000 7.9301 7.2691 6.4854 5.7486 5.0583 3.8163 2.7567 1.8764 1.266444 0.1029 75.6315 7.3500 7.1475 6.3732 5.4838 4.6781 3.9525 2.7269 1.7764 1.0701 0.637545 0.1029 75.6315 7.3500 7.1475 6.3732 5.4838 4.6781 3.9525 2.7269 1.7764 1.0701 0.637546 0.4200 78.1029 31.9000 31.1586 28.2921 24.9299 21.8088 18.9244 13.8459 9.6529 6.3006 4.073947 0.1029 79.8642 36.1500 35.4021 32.4916 29.0357 25.7811 22.7268 17.2154 12.4927 8.5498 5.802848 0.2466 83.5212 58.1000 56.7213 51.3970 45.1664 39.3994 34.0849 24.7721 17.1378 11.0843 7.101049 0.3175 101.2415 54.7000 53.5201 48.9379 43.5204 38.4437 33.7050 25.2260 18.0543 12.1549 8.112650 0.4200 267.1874 34.0500 33.5137 31.3992 28.8284 26.3390 23.9331 19.3809 15.1914 11.3890 8.484651 0.1029 488.7750 47.5000 46.8222 44.1408 40.8567 37.6499 34.5235 28.5223 22.8798 17.6287 13.505252 0.4200 2041.2000 48.6000 47.9546 45.3948 42.2456 39.1526 36.1200 30.2423 24.6363 19.3316 15.088453 0.3175 2530.4750 79.7000 78.6177 74.3298 69.0601 63.8955 58.8385 49.0673 39.7870 31.0495 24.098954 0.6350 7156.4500 112.7000 111.1481 104.9981 97.4494 90.0574 82.8300 68.8901 55.6896 43.3016 33.4832
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Table 10.3: Theoreti
al group velo
ities for various solid volume fra
tions and parti
le sizesas approximated by Equation (6.6.3).Nr. Parti
lediameter

[cm]

Reynoldsnumber Velo
ity
ǫp = 0.0

[cm/s]

Velo
ity
ǫp = 0.01

[cm/s]

Velo
ity
ǫp = 0.05

[cm/s]

Velo
ity
ǫp = 0.1

[cm/s]

Velo
ity
ǫp = 0.15

[cm/s]

Velo
ity
ǫp = 0.2

[cm/s]

Velo
ity
ǫp = 0.3

[cm/s]

Velo
ity
ǫp = 0.4

[cm/s]

Velo
ity
ǫp = 0.5

[cm/s]

Velo
ity
ǫp = 0.585

[cm/s]1 0.0181 0.0002 0.0021 0.0013 0.0009 0.0007 0.0006 0.0005 0.0003 0.0002 0.0002 0.00012 0.0181 0.0002 0.0021 0.0013 0.0009 0.0007 0.0006 0.0005 0.0003 0.0002 0.0002 0.00013 0.0096 0.0003 0.0139 0.0088 0.0061 0.0046 0.0038 0.0031 0.0023 0.0017 0.0012 0.00094 0.0096 0.0003 0.0139 0.0088 0.0061 0.0046 0.0038 0.0031 0.0023 0.0017 0.0012 0.00095 0.0358 0.0014 0.0080 0.0051 0.0035 0.0027 0.0022 0.0018 0.0013 0.0010 0.0007 0.00056 0.0358 0.0014 0.0080 0.0051 0.0035 0.0027 0.0022 0.0018 0.0013 0.0010 0.0007 0.00057 0.0096 0.0022 0.0455 0.0290 0.0200 0.0153 0.0124 0.0103 0.0074 0.0055 0.0040 0.00308 0.0096 0.0022 0.0455 0.0290 0.0200 0.0153 0.0124 0.0103 0.0074 0.0055 0.0040 0.00309 0.0096 0.0022 0.0455 0.0290 0.0200 0.0153 0.0124 0.0103 0.0074 0.0055 0.0040 0.003010 0.0230 0.0030 0.0656 0.0418 0.0288 0.0220 0.0178 0.0149 0.0107 0.0079 0.0058 0.004411 0.0230 0.0030 0.0656 0.0418 0.0288 0.0220 0.0178 0.0149 0.0107 0.0079 0.0058 0.004412 0.0128 0.0648 0.0323 0.0208 0.0144 0.0110 0.0089 0.0074 0.0054 0.0040 0.0029 0.002213 0.0128 0.0648 0.0323 0.0208 0.0144 0.0110 0.0089 0.0074 0.0054 0.0040 0.0029 0.002214 0.0181 0.0758 0.0649 0.0417 0.0288 0.0221 0.0179 0.0150 0.0108 0.0079 0.0058 0.004415 0.0181 0.0786 0.0649 0.0417 0.0288 0.0221 0.0179 0.0150 0.0108 0.0079 0.0058 0.004416 0.0181 0.0786 0.0649 0.0417 0.0288 0.0221 0.0179 0.0150 0.0108 0.0079 0.0058 0.004417 0.1029 0.0992 0.8714 0.5612 0.3883 0.2975 0.2416 0.2015 0.1455 0.1071 0.0785 0.059318 0.1029 0.0992 0.8714 0.5612 0.3883 0.2975 0.2416 0.2015 0.1455 0.1071 0.0785 0.059319 0.0253 0.1199 0.1428 0.0921 0.0637 0.0488 0.0397 0.0331 0.0239 0.0176 0.0129 0.009720 0.0253 0.1199 0.1428 0.0921 0.0637 0.0488 0.0397 0.0331 0.0239 0.0176 0.0129 0.009721 0.0096 0.3024 0.2220 0.1444 0.1004 0.0771 0.0627 0.0524 0.0379 0.0279 0.0205 0.015522 0.0096 0.3024 0.2220 0.1444 0.1004 0.0771 0.0627 0.0524 0.0379 0.0279 0.0205 0.015523 0.0253 0.3909 0.8819 0.5764 0.4018 0.3091 0.2516 0.2102 0.1522 0.1123 0.0824 0.062224 0.0253 0.4908 0.1941 0.1272 0.0888 0.0683 0.0556 0.0465 0.0337 0.0249 0.0183 0.013825 0.0230 1.2274 -0.3574 -0.2387 -0.1684 -0.1304 -0.1066 -0.0893 -0.0649 -0.0480 -0.0353 -0.026726 0.0230 1.2274 -0.3574 -0.2387 -0.1684 -0.1304 -0.1066 -0.0893 -0.0649 -0.0480 -0.0353 -0.026727 0.0230 1.2274 -0.3574 -0.2387 -0.1684 -0.1304 -0.1066 -0.0893 -0.0649 -0.0480 -0.0353 -0.026728 0.0230 2.0202 0.6796 0.4608 0.3278 0.2550 0.2090 0.1756 0.1281 0.0949 0.0700 0.053029 0.0230 2.0202 0.6796 0.4608 0.3278 0.2550 0.2090 0.1756 0.1281 0.0949 0.0700 0.053030 0.0230 2.0202 0.6796 0.4608 0.3278 0.2550 0.2090 0.1756 0.1281 0.0949 0.0700 0.053031 0.0510 2.7537 3.0429 2.0860 1.4936 1.1661 0.9583 0.8063 0.5898 0.4380 0.3233 0.245032 0.1029 6.5276 6.7538 4.8214 3.5406 2.8056 2.3288 1.9742 1.4604 1.0934 0.8123 0.618333 0.1029 6.5276 6.7538 4.8214 3.5406 2.8056 2.3288 1.9742 1.4604 1.0934 0.8123 0.618334 0.1029 6.5276 6.7538 4.8214 3.5406 2.8056 2.3288 1.9742 1.4604 1.0934 0.8123 0.618335 0.0253 8.9815 4.0706 2.9592 2.1996 1.7560 1.4651 1.2470 0.9280 0.6980 0.5204 0.397136 0.1029 11.7571 22.8815 16.9090 12.7115 10.2214 8.5708 7.3237 5.4839 4.1437 3.1006 2.372537 0.1029 18.2520 1.4041 1.0680 0.8199 0.6684 0.5660 0.4875 0.3697 0.2821 0.2127 0.163738 0.1029 18.2520 1.4041 1.0680 0.8199 0.6684 0.5660 0.4875 0.3697 0.2821 0.2127 0.163739 0.1029 18.2520 1.4041 1.0680 0.8199 0.6684 0.5660 0.4875 0.3697 0.2821 0.2127 0.163740 0.1029 38.0915 2.9777 2.3721 1.8877 1.5778 1.3613 1.1909 0.9265 0.7220 0.5545 0.432541 0.1029 38.0915 2.9777 2.3721 1.8877 1.5778 1.3613 1.1909 0.9265 0.7220 0.5545 0.432542 0.1029 38.0915 2.9777 2.3721 1.8877 1.5778 1.3613 1.1909 0.9265 0.7220 0.5545 0.432543 0.0510 41.3100 9.7926 7.8447 6.2710 5.2585 4.5486 3.9877 3.1137 2.4342 1.8745 1.465144 0.1029 75.6315 19.2420 16.6715 14.2600 12.5900 11.3546 10.3317 8.6294 7.1812 5.8718 4.823045 0.1029 75.6315 19.2420 16.6715 14.2600 12.5900 11.3546 10.3317 8.6294 7.1812 5.8718 4.823046 0.4200 78.1029 38.0488 31.6614 26.1320 22.4390 19.7777 17.6253 14.1637 11.3592 8.9549 7.129847 0.1029 79.8642 43.1555 35.9593 29.7138 25.5372 22.5246 20.0861 16.1597 12.9737 10.2379 8.158048 0.2466 83.5212 66.5872 55.4966 45.8670 39.4259 34.7791 31.0173 24.9591 20.0419 15.8182 12.606449 0.3175 101.2415 64.6485 54.5664 45.5982 39.5280 35.1107 31.5072 25.6404 20.8063 16.5882 13.331150 0.4200 267.1874 39.4882 34.9092 30.4135 27.2511 24.8870 22.9109 19.5724 16.6643 13.9584 11.719951 0.1029 488.7750 52.5990 47.4803 42.1740 38.3909 35.5421 33.1447 29.0480 25.4066 21.9228 18.939652 0.4200 2041.2000 53.4548 49.9617 45.8572 42.8963 40.6731 38.8103 35.6399 32.8134 30.0593 27.611653 0.3175 2530.4750 88.8463 83.3427 76.7600 72.0112 68.4534 65.4799 60.4378 55.9636 51.6190 47.762354 0.6350 7156.4500 131.3540 124.7385 116.2342 110.1158 105.5862 101.8526 95.6594 90.3337 85.3202 80.9810
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Analytical, s=1.0, c
d
=2.05

Correlation Line(a) Correlation for ǫp → 0.
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Analytical, s=0.6, c
d
=0.44

Analytical, s=1.0, c
d
=2.05

Correlation Line(b) Correlation for ǫp = 0.010.Figure 10.1: Correlation between empiri
al data from Ri
hardson and Zaki (1954) andpredi
tions made by Equation (6.6.3).
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Analytical, s=0.6, c
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=0.44

Analytical, s=1.0, c
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=2.05

Correlation Line(
) Correlation for ǫp = 0.050.
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Analytical, s=0.6, c
d
=0.44

Analytical, s=1.0, c
d
=2.05

Correlation Line(d) Correlation for ǫp = 0.100.Figure 10.1: Correlation between empiri
al data from Ri
hardson and Zaki (1954) andpredi
tions made by Equation (6.6.3).
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Analytical, s=0.6, c
d
=0.44

Analytical, s=1.0, c
d
=2.05

Correlation Line(e) Correlation for ǫp = 0.150.
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Analytical, s=0.6, c
d
=0.44

Analytical, s=1.0, c
d
=2.05

Correlation Line(f) Correlation for ǫp = 0.200.Figure 10.1: Correlation between empiri
al data from Ri
hardson and Zaki (1954) andpredi
tions made by Equation (6.6.3).
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Analytical, s=0.6, c
d
=0.44

Analytical, s=1.0, c
d
=2.05

Correlation Line(g) Correlation for ǫp = 0.300.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Richardson and Zaki experimental velocity [cm/s]

C
ur

re
nt

 m
od

el
 te

rm
in

al
 v

el
oc

ity
 [c

m
/s

]

 

 

Analytical, s=0.6, c
d
=0.44

Analytical, s=1.0, c
d
=2.05

Correlation Line(h) Correlation for ǫp = 0.400.Figure 10.1: Correlation between empiri
al data from Ri
hardson and Zaki (1954) andpredi
tions made by Equation (6.6.3).
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Analytical, s=0.6, c
d
=0.44

Analytical, s=1.0, c
d
=2.05

Correlation Line(i) Correlation for ǫp = 0.500.
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Analytical, s=0.6, c
d
=0.44

Analytical, s=1.0, c
d
=2.05

Correlation Line(j) Correlation for ǫp = 0.585.Figure 10.1: Correlation between empiri
al data from Ri
hardson and Zaki (1954) andpredi
tions made by Equation (6.6.3).
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Camera

Figure 10.2: Comparison of the model developed in this work to empiri
al models proposedby Ergun, Lewis, and Wen and Yu and experimental data.
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Chapter 11Con
luding Remarks
The main obje
tive of this work was to address the problem of modelling two-phase�ow. In doing so, a model has been developed to simulate the motion of dis
reteparti
les together with the motion of a Newtonian �uid whi
h 
ontains them. The�uid is modelled with mi
ros
opi
 Navier Stokes equations whi
h are then averagedwith the use of a Representative Unit Volume (REV). The parti
ulate phase momen-tum 
onservation equation was obtained by examining the for
es a
ting on a singlespheri
al parti
le and using a summation method to deal with its dis
rete nature whendetermining averaged quantities.Parti
le-parti
le 
ollisions, due to in
reased volume fra
tions, were established by usingthe prin
iple of momentum 
onservation and full elasti
ity in 
onjun
tion with a 
olli-sion sphere model. The remaining point variables were expressed in terms of averagesby adapting an existing version of the representative unit 
ell (RUC) model to in
ludethe motion of the parti
les.The momentum transfer term was split into a Dar
y and a For
hheimer regime. Thevis
ous regime was then split into very high and very low parti
le volume fra
tions.Equations for the high parti
le volume fra
tions were obtained from the modi�ed RUCmodel whereas the very low parti
le volume fra
tions were modelled with Stokes �owaround a spheri
al parti
le. An asymptoti
 mat
hing te
hnique was then applied tomat
h these extreme volume fra
tions in order to obtain an expression for the vis
ousregime that 
ould also apply to intermediary parti
le volume fra
tions. The asymptoti
mat
hing te
hnique was then again applied to mat
h the Dar
y and the For
hheimerregimes. 171
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The above pro
edure yielded a momentum 
onservation and a mass 
onservation equa-tion for ea
h of the phases. A numeri
al 
ode was developed in Fortran to solve theseequations and was designated Two Phase Flow Simulator (2PMS). In order to demon-strate the predi
tion 
apabilities of 2PMS, experiments were performed at the Coun
ilfor S
ienti�
 and Industrial Resear
h (CSIR): A settling tube was used in 
onjun
tionwith a 
amera to determine the settling velo
ity of �ve di�erent sized ranges of spheri-
al glass parti
les. The data obtained via the settling tube and that obtained with the
amera, 
orresponded well with ea
h other. These results were also a

urately simu-lated with our theoreti
al model and sin
e it was possible to simplify the momentum
onservation equation for the parti
ulate phase for instan
es where a terminal groupvelo
ity had been rea
hed, it was possible to obtain solutions for su
h a limiting ter-minal 
ase with either analyti
al or numeri
al integration methods. The reliability of2PMS was demonstrated when it mat
hed these results a

urately as shown in Chapter8. The a

ura
y of the model was again 
orroborated when it was tested against em-piri
al data obtained by Ri
hardson and Zaki (1954). Not only did the model performwell for the entire range of solid volume 
on
entrations used in these experiments butit remained a

urate through Reynolds number ranging between 0.02 and 7600.The obje
tive of modelling two-phase �ow based purely on the physi
al traits of the
onstituent phases has however only been partially attained. It remains to spe
ify howthe �tting parameter used within the asymptoti
 mat
hing te
hnique is dependent onthe physi
al properties of two-phase motion. In retrospe
t it was 
on
luded that theFor
hheimer regime should also be divided into its limiting 
on
entrations and thatthe expressions derived for ea
h should then be mat
hed as was done with the Dar
ypart of the equation.
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Appendix AFor
es a
ting on a sphere
A.1 Introdu
tionThe resultant for
e a
ting on a sphere, submerged in a 
ontinuum, is divided into avolume and a surfa
e 
omponent. The volume for
es 
onsist of a weight, buoyan
yand an added mass for
e whi
h are denoted by FW , FBuoy and FAM respe
tively.The surfa
e for
es in
lude a drag for
e, FD, a pressure for
e, F P , the Basset, Sa�manand Magnus for
es, respe
tively denoted by FB, F S and FM , and a parti
le-parti
le
ollision for
e whi
h is denoted by F pp. The Basset for
e is often referred to as theHistory for
e. A brief dis
ussion is presented on ea
h and an expression is given for theratio of the velo
ity gradient related for
es with the Stokes drag in order to quantifythe relative importan
e of ea
h.A.2 Volume for
esWeight and buoyan
y are the two main volume for
es a
ting on the parti
le. In addi-tion, the notion of "added" mass has been introdu
ed. The added mass for
e representsa �uid for
e exerted by the �uid parti
les around an a

elerating body. The surround-ing �uid is pulled along with the a

elerating body and the body experien
es a for
eas if its mass is in
reased by the amount of the "added" mass.Added mass is dependent on the density of the �uid and it follows that it may benegle
ted for 
ases where the density of the body is far greater than that of the sur-rounding �uid. If the density of the �uid is, however, 
omparable or greater than that174
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of the body, the added mass may be greater than the mass of the body itself and willhave a signi�
ant e�e
t. However, for the 
urrent study, the 
on
ept of added masswill be negle
ted.The volume of the 
arried mass generally depends on the parti
le geometry, and isgiven by

ma = kmp, (A.2.1)where ma and mp denote the added mass and the parti
le mass, respe
tively, and kis a 
onstant, whi
h, for a sphere, equals 0.5 (Fan and Zhu (1998) and Kleinstreuer(2003)). The real mass, together with the added mass are referred to as the virtualmass of the body, and the virtual mass for
e, F VM is given by
F VM =

1

2
ρcνp

d

dt
( vc − vp), (A.2.2)where ρc and νp denote the density of the 
ontinuum and volume of a parti
le, respe
-tively, whereas the 
ontinuum- and parti
le velo
ities are, respe
tively, given by vc and

vp. The total volume for
e, experien
ed by the spheri
al body, is given by
F V ol = FW + FBuoy + FAM

= νp g(ρp − ρc) +
ρcνp
2

d

dt
( vc − vp), (A.2.3)where ρc is the 
ontinuum density.This 
on
ludes the dis
ussion on volume for
es whi
h a
t on the sphere as a resultof inertia and the di�eren
e in densities between the sphere and its surrounding �uidmatter.A.3 Surfa
e for
esThe surfa
e of the body is exposed to the surrounding �uid and often moves with avelo
ity di�erent to that of the �uid. The vis
osity of the surrounding �uid, the relativevelo
ity of the parti
le, and pressure gradients, indu
e for
es on the surfa
e of the body.The resultant surfa
e for
e, F Surf , is divided into six 
omponents as

F Surf = FD + F P + FB + F S + FM + F pp, (A.3.1)
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where FD, F P , FB denote the drag, pressure and Basset for
es respe
tively. TheSa�man and Magnus for
es are given by, F S and FM , while F pp denotes the parti
leintera
tion for
e.In the following se
tions a brief des
ription will be given of ea
h of the aforementionedsurfa
e for
es.A.3.1 Pressure for
eThe de�nition of the pressure for
e is not 
onsistent within literature: Crowe et al.(1998) and Fan and Zhu (1998) regard the pressure for
e to be due to the stati
pressure only, and argue that the pressure for
e is thus the 
ause of buoyan
y. Buoyan
yis, however, treated by many as a separate for
e to that indu
ed by pressure in thesurrounding �uid. Kleinstreuer (2003), for example, 
lassi�es buoyan
y and pressurefor
es separately by introdu
ing buoyan
y as a surfa
e for
e whilst the pressure for
eis 
lassi�ed as a volume for
e. The pressure for
e in this regard is given by

FP = −νp(i)

(
∇p+∇ · τ

c

)
. (A.3.2)In this work, the approa
h followed by Crowe et al. (1998) and Fan and Zhu (1998) isapplied and the pressure for
e will therefore be regarded as the for
e that arises dueto stati
 pressure di�eren
es within the 
ontinuum.The lo
al pressure gradient in a stationary �uid gives rise to a for
e in the dire
tion ofthe pressure gradient. The net pressure for
e, F P , a
ting on the parti
le is given by(Crowe et al. (1998) and Fan and Zhu (1998)) as

FP =

∫

∂νp(i)

− p npdS, (A.3.3)where np is the outwardly dire
ted normal unit ve
tor on the parti
le wall and ∂νp(i)is the surfa
e area of parti
le i. Following Crowe et al. (1998), the divergen
e theoremis applied to Equation (A.3.3), yielding
F P =

∫

νp(i)

−∇pdν, (A.3.4)
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where νp(i) is the volume of the ith parti
le. Under the assumption that the pressuregradient remains 
onstant over the volume of the parti
le, Equation (A.3.4) may beexpressed as

FP = −∇pνp(i). (A.3.5)The pressure, p, in Equations (A.3.3)-(A.3.5) is the hydrostati
 pressure whi
h is givenby Ar
himedes' prin
iple, i.e. p = ρcgy, where y is the diameter of the parti
le. Itfollows that the pressure gradient is given by
∇p = −ρcg k, (A.3.6)where k is in the dire
tion opposed to gravity (upward). The 
orresponding pressurefor
e is given by
F P = ρc gνp(i). (A.3.7)A.3.1.1 Stati
 and dynami
 pressure 
omponentsFigure A.1 is a simpli�ed depi
tion of �uid entering and exiting a 
ubi
ally shaped
ontrol volume.

∆x

A1 A2v1 v2

p1 p2Figure A.1: Simpli�ed 
onservation of mass.The in�ow and out�ow �uid velo
ities are given by v1 and v2 respe
tively, ∆x is thewidth of the 
ube while p1 and p2 represent the pressures on the left- and right handsides of the volume, respe
tively. The areas over whi
h the �uid enters and exists thevolume are given by A1 and A2. Conservation of momentum for an in
ompressible�uid, yields
F res = mcac, (A.3.8)
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where F res is the resultant for
e a
ting on the �uid, whereas mc and ac denote themass and velo
ity of the 
ubi
 volume, respe
tively.Pressure is de�ned as for
e per unit area, hen
e

p2A2 − p1A1 = mc
v2 − v1
∆t

,
(
p1 +

∆p

∆x
∆x

)
A2 − p1A1 = mc

v1 +
∆v
∆x

∆x− v1

∆t
,where ∆v = v2 − v1. If the in�ow and out�ow areas are equal in size (i.e. A1 = A2) itfollows that

∆p

∆x
Vc = mc

∆x

∆t

∆v

∆x
. (A.3.9)(A.3.10)Dividing the right-hand side of Equation (A.3.9) by the 
ube volume, Vc, and notingthat ∆x/∆t = v, yield the following expression for the pressure gradient

∆p

∆x
= ρcv

∆v

∆x
. (A.3.11)In order to approximate an in�nitesimally small volume, ∆x, is assumed to approa
hzero, and Equation (A.3.11) may be expressed in di�erential form and generalised tove
tor form as

dp

dx
= ρc v ·

d v

dx
. (A.3.12)Integration of the left- and right-hand sides of Equation (A.3.12) with regard to pressureand velo
ity, respe
tively, yields

∫ ptot

po

dp = ρc

∫ v2

v1

v · d v

ptot − po = ρc
1

2

(
v22 − v21

)
. (A.3.13)It follows that

po +
1

2
ρc
(
v22 − v21

)
= ptot. (A.3.14)If v1 = 0 then

po +
1

2
ρcv

2 = ptot, (A.3.15)
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where po denotes the stati
 pressure, ptot denotes the total pressure and the dynami
pressure is denoted by 1

2
ρcv

2. This is identi
al to Bernoulli's equation whi
h was derivedusing energy 
onservation. The total pressure is therefore made up out of two types ofpressures: The �rst is the hydrostati
 pressure whi
h is present when the 
ontinuumis stationary, the se
ond is the pressure due to the motion of the 
ontinuum. Theorientation of the stati
 pressure for
e is shown in Figure A.2.

x

y

θ

d FP

dθ

Low stati
 pressure
High stati
 pressure F P

Figure A.2: Dire
tion of the pressure for
e on a parti
le.
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A.3.2 Basset or History for
eWhereas the added mass for
e a

ounted for the e�e
t that relative a

eleration hadon the volume of the body, the Basset for
e arises from the e�e
t that the a

elerating�uid has upon the surfa
e of the parti
le. The added mass for
e a

ounts for the formdrag during a

eleration. In turn, the Basset for
e a

ounts for the vis
ous drag e�e
tdue to a

eleration. The Basset for
e a

ounts for the e�e
t of past a

eleration onthe resistan
e and is often referred to as the history for
e and denoted by FHI (Croweet al. (1998)). The Basset for
e, FB, is given by (Fan and Zhu (1998))

FB = 6

(
dp
2

)2√
πρcµc

∫ t

0

d/dτ
(
vc − vp

)
√
t− τ

dτ, (A.3.16)here (t− τ) is the time elapsed sin
e the previous instan
e of a

eleration from 0 to t.The parti
le diameter is given by dp whereas µc and ρc are the dynami
 vis
osity andthe density of the surrounding 
ontinuum, respe
tively. The parti
le- and 
ontinuumvelo
ities are denoted by vc and vp, respe
tively.The Basset for
e be
omes substantial at high a

eleration rates. For 
onstant a

el-eration the ratio of the Basset to the Stokes drag, RBS , is given by Wallis (1969)as,
RBS =

√
18

π

ρc
ρp

τS
t
, (A.3.17)where τS is the Stokes relaxation time de�ned as,

τS =
ρpd

2
p

18µc

. (A.3.18)It follows that the Basset for
e may be negligible when the �uid-parti
le density ratiois small and/or the time elapsed sin
e the previous instan
e of a

eleration is mu
hlonger than the Stokes relaxation time.A.3.3 Sa�man for
eIn se
tions where a velo
ity gradient exists, e.g. near a wall or in a region of highshear, a sphere moving at a 
onstant velo
ity is subje
ted to a lift for
e 
aused by thevelo
ity gradient (Johnson (1998)). This lift for
e is termed the Sa�man for
e and was
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originally derived by Sa�man (1965) for the motion of a sphere at a 
onstant velo
ityin a simple shear �ow at low Reynolds numbers as

FS =
Kµc

4
|| vc − vp||d2p

√
1

νc
γ. (A.3.19)The 
onstantK was determined by Fan and Zhu (1998) asK = 6.46. The dynami
- andkinemati
 �uid vis
osities are given by µc and νc, respe
tively. The parti
le diameteris denoted by dp and || vc − vp|| is the magnitude of the relative velo
ity whereas γ isthe magnitude of the shear rate. The Sa�man for
e is orientated perpendi
ular to thedire
tion of �uid motion and is dire
ted away from the region of high shear towardsthe region of low shear as illustrated in Figure A.3.

x

y

vc

F S

Figure A.3: Dire
tion of the Sa�man for
e on a parti
le.The ratio of the Sa�man for
e to the Stokes drag, RSS, is given by Fan and Zhu (1998)as
RSS =

Kdp
12µc

√
1

µc
γ. (A.3.20)
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In a shear �ow, with a 
onstant shear rate, RSS 
an be estimated by

RSS =
Kdp
12µc

√
Rep, (A.3.21)whi
h indi
ates that the Sa�man for
e is negligible at small shear rates or smallReynolds numbers.A.3.4 Magnus for
eParti
le rotation may be 
aused by a) parti
les 
olliding with a rigid boundary, b)parti
les 
olliding with ea
h other, or 
) the presen
e of a strong shear �uid �ow. Inthe low Reynolds number regime su
h a rotation will 
ause some of the surrounding�uid to rotate with the parti
le. Su
h a rotation will result in an in
rease of �uidvelo
ity on the one side of the parti
le and a de
rease on the opposite side as shownin Figure A.4. The parti
le will move towards the region of higher velo
ity. This isknown as the Magnus e�e
t and the for
e is known as the Magnus for
e.

x

y

Ψ

vc

FM

Figure A.4: Dire
tion of the Magnus for
e on a parti
le.The Magnus for
e for a spinning sphere in a uniform �ow-�eld at low Reynolds numbersis given by Fan and Zhu (1998) as
FM =

π

8
d3pρcΨ× vp, (A.3.22)where Ψ denotes the angular velo
ity of the sphere. As seen from Equation (A.3.22),this for
e is independent of the vis
osity of the �uid. The ratio, RMS , of the Magnus
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for
e to the Stokes drag is,

RMS =
d2p
24

ρc
µc

Ψ. (A.3.23)From Equation (A.3.23), the Magnus for
e is negligibly small 
ompared to the dragfor
e when the parti
le size is small or the spin velo
ity is low.A.3.5 Drag for
eDrag for
es on a parti
le may originate from its motion relative to a surrounding
ontinuum. For instan
es of high parti
le volume fra
tions, drag for
es may also be aresult of the relative motion of neighbouring parti
les.A.3.5.1 Drag due to parti
le-
ontinuum intera
tionThe drag for
e due to the relative velo
ity between the parti
le and its surrounding�uid gives rise to a slip velo
ity. Su
h a slip velo
ity 
auses an unbalan
ed pressuredistribution whi
h brings about vis
ous stresses on the surfa
e of the body. For aspheri
al parti
le in a uniform �ow �eld the Stokes drag is given by
FD = CDAf

ρc
2
|| vc − vp||( vc − vp), (A.3.24)where Af denotes the exposed frontal area of the parti
le to the dire
tion of the in-
oming �ow and CD is the drag 
oe�
ient, whi
h is a fun
tion of the parti
le Reynoldsnumber, Rep:

Rep =
ρcdp|| vc − vp||

µc
. (A.3.25)S
hli
hting and Gersten (2000) 
ombined a vast amount of experimental and analyti
alwork on the value of CD by various authors into a single 
urve shown in Figure A.5.Reynolds numbers that fall in the range 700 < Rep < 105 
onstitute the inertial regimefor whi
h the drag 
oe�
ient is given by CD = 0.44. In this range, inertial e�e
tsdominate over vis
ous e�e
ts.For Reynolds numbers lower than the aforementioned range, vis
ous e�e
ts prevailand it was shown by Stokes in 1850 that the drag 
oe�
ient is analyti
ally given by

CD = 24/Rep. The drag 
oe�
ient was obtained under uniform and undisturbed �ow
onditions. The sharp redu
tion in the drag 
oe�
ient at high Rep 
orresponds to the
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Figure A.5: Drag 
oe�
ient, CD, for a smooth sphere.transition from a laminar to a turbulent boundary layer over the parti
le (Fan and Zhu(1998)).However, in pra
ti
e the �ow 
onditions are usually not uniform due to the �uid itselfoften being turbulent even when the relative velo
ity and resulting parti
le Reynoldsnumbers are small. Su
h turbulen
e brings about a 
hange in the wake stru
ture, whi
h
auses the body's surrounding surfa
e pressure distribution to 
hange. The turbulen
e
auses CD to deviate from the S
hli
hting's 
urve in Figure A.5. Apart from turbulen
e,the drag 
oe�
ient 
an also be a�e
ted by the movement of neighbouring parti
les.Studies suggest (Fan and Zhu (1998)) that the drag 
oe�
ient of an individual parti
leunder the in�uen
e of a neighbouring parti
le may be expressed by
CD

CD0

= 1− (1−A) exp

(
−B

l

dp

)
, (A.3.26)where CD0 is the drag 
oe�
ient from the standard 
urve, l is the distan
e betweenthe two intera
ting parti
les, and A and B are empiri
al 
oe�
ients whi
h may befun
tions of Rep and the de�e
ting angle between the dire
tion of the relative velo
ityand the line 
onne
ting the 
entres of the two intera
tive parti
les.
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A.3.5.2 Drag for
e due to parti
le-parti
le intera
tionIntera
tion for
es, F pp, are the result of 
ollisions between parti
les, �ow turbulen
eand/or Brownian motion e�e
ts. Shear �ow 
auses parti
le intera
tion at high 
on
en-trations. An expression for the parti
le intera
tion for
e is derived in Chapter 5 underSe
tion 5.5.In summation the for
es experien
ed by a single parti
le are given by,

mp

d vp
dt

= F V ol + F Surf .

= FW + FAM + FD + FB + F S + FM + F P + F pp, (A.3.27)where the buoyan
y for
e is repla
ed by the pressure gradient for
e and the bassetfor
e, FB, is often referred to as the History for
e.Under the assumption of a symmetri
 stress dyad, the Magnus and Sa�man for
esdisappear. The virtual mass and Basset for
es are regarded as negligible and theremaining for
es are given by
mp

d vp
dt

= mp g +

∫

∂νp

np · σ p
dS, (A.3.28)where the �rst term on the right hand side denotes the weight for
e whilst the pressuregradient, drag and parti
le intera
tion for
es are in
orporated into a symmetri
 stressdyad, σ

p
, whi
h is integrated over the surfa
e of the parti
le.
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B.1 Introdu
tionThe methods 
ommonly used for the averaging of the 
onservation equations are dis-
ussed in this appendix. These in
lude volume-, time-, and ensemble averages: Let
Ω = Ω( r, t) be any parameter (e.g. s
alar, ve
tor or dyad). The property, Ω, is ex-amined at a �xed point in spa
e, r, and time, t. Either one of the phases may bepresent at this time. Volume averaging is performed around the stationary point r ata �xed time t, whereas time averaging is performed at the point r over a time intervalin
luding time t. The ensemble average is regarded as the statisti
al average of theparameter Ω at the point r and at time, t, over an abundant number of experimentsexhibiting the same initial and boundary 
onditions (Enwald et al. (1997)).B.2 Volume averagingLet the two phases under 
onsideration be termed the α- and β-phase, respe
tively.The volume average is taken over the whole volume U o of a Representative ElementaryVolume (REV) (Ba
hmat and Bear (1986)). If the parameter to be averaged exists onlyin the α volume and not in the β volume, an appropriate toggle swit
h is needed when
omputing the integral over the entire volume. To this end a step fun
tion, X( r, t), isde�ned whi
h has a value of unity in the α-phase and is zero in the β-phase.A building blo
k in the 
onstru
tion of X( r, t) is the unit step fun
tion, whi
h in one186
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dimension is given by

H(x− a, t) =





0, if x < α

1, if x ≥ α
(B.2.1)The derivative of the step fun
tion is de�ned as

dH(x− a)

dx
= δ(x− a), (B.2.2)where δ(x− a) is the Dira
 delta fun
tion.Consider the fun
tion Xα(x, t), shown in Figure B.1a. Xα(x, t) is a sum of step fun
-tions, i.e.

Xα(x, t) = H(x− a0) +H(x− a1) +H(x− a2) +H(x− a3). (B.2.3)The derivative whi
h is given by
dXα(x, t)

dx
= δ(x− a0)− δ(x− a1) + δ(x− a2)− δ(x− a3), (B.2.4)and is shown in Figure B.1b.A unit normal ve
tor nα is de�ned whi
h points outward from the α-phase into the

β-phase at the αβ-interfa
e. Equation (B.2.4) may the be written as
dXα(x, t)

dx
= −

3∑

k=0

nα · iδ(x− ak), (B.2.5)where i is the unit ve
tor in the positive x dire
tion. By analogy, Gray and Lee(1976) de�ned the gradient of a three-dimensional distribution, Xα( r, t), where r =

x i+ y j + z k, as
∇Xα( r, t) = nαδ( r − rαβ), (B.2.6)and rαβ denotes the position ve
tor of the αβ-interfa
e.

Stellenbosch University  http://scholar.sun.ac.za



B.2. Volume averaging 188

a_0 a_1 a_2 a_3
0  

1  

x

Xα αα

β β(a) Unit fun
tion.

a_0 a_1 a_2 a_3
x

∂ 
X

α /∂
 x

β βα α

(b) Derivative of unit fun
tionFigure B.1: One-dimensional distribution fun
tion Xα and its derivatives.The volume average of a property, Ω, is de�ned as
〈Ω〉Uo =

1

Uo

∫

Uo

ΩXα( r, t)dU , (B.2.7)where Uo is the averaging volume.
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Let Dp, DV and DS denote the 
hara
teristi
 dimensions of the phases, the averagingvolume and the physi
al system, respe
tively. Whitaker (1969) gives the 
onditionsunder whi
h the volume averaging pro
edure may be applied as:

Dp ≪ DV ≪ DS. (B.2.8)B.3 Time averagingThe time averaging operator is de�ned as
〈Ω〉t =

1

T

∫ t+T/2

t−T/2

ΩXα( r, t)dτ. (B.3.1)A

ording to Delhaye and A
hard (1978)1 and Munkejord and Papin (2005), the timeinterval, T , 
hosen for the averaging must satisfy the following 
onditions:
Tt ≪ T ≪ Tm, (B.3.2)where Tt is the time s
ale of the turbulent �u
tuations and Tm is the time s
ale of themean �ow �u
tuations.B.4 Ensemble averagingThe ensemble average is de�ned by

〈Ω〉e =

∫

̺

ΩXα( r, t)dP (ζ), (B.4.1)where dP (ζ) denotes the probability of observing pro
ess ζ , whereas ̺ is the set of allpossible out
omes.The averaging rules for volume averaging, whi
h, due to its physi
al interpretability, isthe preferred method of averaging in this work, are dis
ussed in the next se
tion.B.5 Averaging prin
iplesThe phase average, 〈Ωα〉, of some property Ω is de�ned by
〈Ωα〉 ( r, t) =

1

Uo

∫

Uo

Ω( r, t)Xα( r, t) dU , (B.5.1)1In Enwald et al. (1997)
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where the volume of integration, Uo = Uα + Uβ is independent of spa
e and time.Physi
ally, the α-phase average is a property of the α-phase only, although the averageis taken over the entire averaging volume o

upied by the α- and β-phases. Be
ause
Xα is zero in the β-phase, Equation (B.5.1) may be written as

〈Ωα〉 ( r, t) =
1

Uo

∫

Uα

Ω( r, t) dU . (B.5.2)
The intrinsi
 phase average, 〈Ωα〉α, of some property Ωα is given by

〈Ωα〉α =
1

Uα

∫

Uα

Ω( r, t)dU . (B.5.3)This type of average des
ribes a property of the α-phase, averaged over that phase only.The average is, however, assigned to the 
entre of the averaging volume, independentof whether or not the 
entre is lo
ated within the parti
ular phase. Comparison ofEquations (B.5.2) and (B.5.3) indi
ates that
〈Ωα( r, t)〉 = ǫα( r, t) 〈Ωα〉α ( r, t), (B.5.4)where

ǫα( r, t) = Uα/Uo =
1

Uo

∫

Uo

Xα( r, t)dU . (B.5.5)From the relation given by Equation (B.5.4) it follows that ǫα is the fra
tion of thevolume o

upied by the α-phase.B.6 Averaging theoremsThe �rst theorem relates the average of a gradient to the gradient of an average and wasdeveloped by Slattery (1967) and Whitaker (1967), independently. If Ω is 
ontinuouswithin the α-phase, this theorem states that
〈∇Ωα〉 = ∇〈Ωα〉+

1

Uo

∫

Sαβ

Ωα nαdS, (B.6.1)
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where Sαβ is the αβ-interfa
e and nα is the normal unit ve
tor dire
ted from the
α-phase into the β-phase. The relation may be proved using the fun
tion Xα: FromEquation (B.5.1) it follows that

〈∇Ωα〉 =
1

Uo

∫

U o

[∇Ωα( r, t)]X
α( r, t)dU . (B.6.2)The 
hain rule is applied to the integrand, yielding

〈∇Ωα〉 =
1

Uo

∫

U o

[∇Ωα( r, t)X
α( r, t)] dU − 1

Uo

∫

Uo

Ωα( r, t)∇Xα( r, t)dU .(B.6.3)Substitution of Equation (5.5.30) into the se
ond term of Equation (B.6.3) then yields
〈∇Ωα〉 =

1

Uo

∫

Uo

[∇Ωα( r, t)X
α( r, t)] dU − 1

Uo

∫

Uo

Ωα( r, t)(−1)nαδ( r − rαβ)dU .(B.6.4)The last step of the proof follows from the fa
t that the last integral in Equation(B.6.4) involves the delta fun
tion whi
h is zero everywhere ex
ept at the αβ-interfa
e,
Sαβ. The value of an integral, of whi
h the integrand is a δ-fun
tion multiplied bysome other quantity, is that quantity evaluated at the singular points of the δ-fun
tion(Munkejord and Papin (2005)). It therefore follows that

1

Uo

∫

U o

Ωα( r, t)nαδ( r − rαβ)dU =
1

Uo

∫

Sαβ

Ωα( r, t)nαdS, (B.6.5)and Equation (B.6.4) simpli�es to
〈∇Ωα〉 =

1

Uo

∫

Uo

[∇Ωα( r, t)X
α( r, t)] dU +

1

Uo

∫

Sαβ

Ωα( r, t)nαdS. (B.6.6)If ∇, on the right-hand side of Equation (B.6.6), is 
onsidered to be ∇ = i ∂
∂x

+ j ∂
∂y

+

k ∂
∂z
, then it may be removed from the integral sin
e the volume of integration has been
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spe
i�ed to be independent of r, hen
e Equation (B.6.6) may be expressed as

〈∇Ωα〉 = ∇




1

Uo

∫

Uo

Ωα( r, t)X
α( r, t)dU



+

1

Uo

∫

Sαβ

Ωα( r, t)nαdS, (B.6.7)Appli
ation of Equation (B.5.1), yields
〈∇Ωα〉 = ∇〈Ωα〉+

1

Uo

∫

Sαβ

Ωα nαdS. (B.6.8)Equation (B.6.8) 
on
ludes the derivation of an expression for the average of a spatialderivative.The se
ond rule relates the average of a time derivative to the time derivative of anaverage, and is given by
〈
∂Ωα

∂t

〉
=

∂

∂t
〈Ωα〉 −

1

Uo

∫

Sαβ

Ωα w · nαdS, (B.6.9)where w is the velo
ity of a point on the αβ-interfa
e. The proof of the relation givenby Equation (B.6.9) 
ommen
es with the appli
ation of the phase average, given byEquation (B.5.1). It follows that the average of the partial time derivative may begiven as
〈
∂Ωα

∂t

〉
=

1

Uo

∫

Uo

∂Ωα

∂t
( r, t)Xα( r, t)dU . (B.6.10)Subsequent appli
ation of the 
hain rule, yields

〈
∂Ωα

∂t

〉
=

1

Uo

∫

Uo

∂

∂t
[Ωα( r, t)X

α( r, t)] dU − 1

Uo

∫

U o

∂Xα( r, t)

∂t
Ωα( r, t)dU . (B.6.11)In view of the assumption that U o is independent of time, the order of di�erentiationand integration in the �rst term on the right side may be reversed and Equation (B.5.1)
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invoked to obtain

〈
∂Ωα

∂t

〉
=

∂

∂t
〈Ωα〉 −

1

Uo

∫

U

∂Xα( r, t)

∂t
Ωα( r, t)dU . (B.6.12)If the α-phase is deforming, Xα will be a fun
tion of time and the last term may benon-zero. The total derivative of Xα is

dXα

dt
=

∂Xα

∂t
+

dx

dt

∂Xα

∂x
+

dy

dt

∂Xα

∂y
+

dz

dt

∂Xα

∂z
. (B.6.13)The fun
tions ∂Xα

∂x
, ∂Xα

∂y
and ∂Xα

∂z
will only be non-zero on the Sβα interfa
e. If dx

dt
, dy

dt
,and dz

dt
, are 
hosen to be the velo
ity 
omponents of the interfa
e, the total derivativebe
omes a substantial derivative that moves with the interfa
e. Be
ause an observermoving with the interfa
ial boundary will see no 
hange, this derivative is zero, i.e.

dXα

dt
= 0 =

∂Xα

∂t
+ w · ∇Xα, (B.6.14)where w is the velo
ity of the phase interfa
e2. It follows that

∂Xα

∂t
= −w · ∇Xα. (B.6.16)Substitution of Equation (B.6.16) into Equation (B.6.12), yields

〈
∂Ωα

∂t

〉
=

∂

∂t
〈Ωα〉+

1

Uo

∫

U o

w( r, t) · ∇Xα( r, t)Ωα( r, t)dU . (B.6.17)Equation (B.2.6) is applied and it follows that
〈
∂Ωα

∂t

〉
=

∂

∂t
〈Ωα〉+

1

Uo

∫

Uo

w( r, t) · (−1)nαδ( r − rαβ)Ωα( r, t)dU . (B.6.18)2In the summary of two-phase �ow, given by Enwald et al. (1997), they 
ite Drew (1983) andpresents the following relation
dXα

dt
= 0 =

∂Xα

∂t
+ vα · ∇Xα, (B.6.15)where vα is the velo
ity of the α-phase. Note that this applies spe
i�
ally to w = vα, i.e. if there isno 
ombustion or 
ondensation.
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As mentioned earlier, the integral involving the delta fun
tion is zero everywhere bar-ring the interfa
e Sαβ. It therefore follows that

〈
∂Ωα

∂t

〉
=

∂

∂t
〈Ωα〉 −

1

Uo

∫

Sαβ

Ωαw · nαdU . (B.6.19)Equation (B.6.19) 
on
ludes the derivation of an expression for the average of a timederivative.The above two derivations exhibit the usefulness of the distribution fun
tion in provingtheorems for lo
al volume averaging. In earlier work by Whitaker, these theorems wereproved using the general transport theorem (Whitaker (1967)).The general averaging rules are given as (Enwald et al. (1997)):
〈f + g〉 = 〈f〉+ 〈g〉 (B.6.20)
〈〈f〉 g〉 = 〈f〉 〈g〉 (B.6.21)

〈
onstant〉 = 
onstant (B.6.22)
〈∇f〉 = ∇〈f〉+ 1

Uo

∫

Sαβ

f nαdS (B.6.23)
〈∇ · f〉 = ∇ · 〈f〉+ 1

Uo

∫

Sαβ

f · nαdS (B.6.24)
〈
∂f

∂t

〉
=

∂ 〈f〉
∂t

− 1

Uo

∫

Sαβ

f w · nαdS. (B.6.25)These averaging identities are applied to the instantaneous 
onservation Equations(2.6.1) and (2.6.2).B.7 Averaging of the 
onservation equationsThe averaging pro
edures for the mass and momentum equations, by way of the appli-
ation of identities given by Equations (B.6.20) to (B.6.25), are reviewed in Chapter 4.
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Appendix CEvaluation of the shear stress
C.1 Introdu
tionThe momentum 
onservation equations require the shear stress, τ

c
, due to 
ontinuummotion, to be evaluated inside the 
ontinuum as well as on the parti
le-
ontinuuminterfa
e, Spc. In this appendix the assumptions made in 
al
ulating expressions forgradients and averages taken of shear stresses at these lo
ations are dis
ussed. Theresults of whi
h are applied in Chapter 5 to the averaged momentum equations.C.2 Evaluation of the stress deviation termNewtonian shear was given by Equation (5.2.5) in Se
tion 5.2 as

τ
c

= µc

(
∇ vc + (∇ vc)

T
)
. (C.2.1)The average of the divergen
e of the shear stress is

〈
∇ · τ

c

〉
=

〈
∇ · µc∇ vc +∇ · µc (∇ vc)

T
〉
. (C.2.2)The vis
osity, µc, is assumed 
onstant and Equation (C.2.2) may therefore be expressedas

〈
∇ · τ

c

〉
= µc

〈
∇2 vc +∇ · (∇ vc)

T
〉
. (C.2.3)The divergen
e of the transpose of the velo
ity gradient, that appears on the right-handside of Equation (C.2.3), is given by

∇ · (∇ vc)
T = ∇ (∇ · vc) , (C.2.4)195
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and is zero due to the assumption of 
ontinuity (i.e. ∇ · vc = 0). It follows thatEquation (C.2.3) simpli�es to

〈
∇ · τ

c

〉
= µc

〈
∇2 vc

〉
. (C.2.5)Equation (C.2.5) may be expressed as

〈
∇ · τ

c

〉
= µc

1

Uo

∫

U c

∇ · (∇ vc) dU . (C.2.6)The divergen
e theorem is applied to Equation (C.2.6) and it follows that
〈
∇ · τ

c

〉
= µc

1

Uo

∫

Scc

nc · (∇ vc) dS + µc
1

Uo

∫

Spc

nc · (∇ vc) dS. (C.2.7)Subsequent appli
ation of Slattery's Averaging Theorem to Equation (C.2.7), yields
〈
∇ · τ

c

〉
= µc

1

Uo
∇ ·

∫

Uo

(∇ vc) dU + µc
1

Uo

∫

Spc

nc · (∇ vc) dS, (C.2.8)and, �nally, Equation (C.2.8) may be expressed as follows with the use of averagingnotation
〈
∇ · τ

c

〉
= µc∇ · 〈∇ vc〉+ µc

1

Uo

∫

Spc

nc · (∇ vc) dS. (C.2.9)Alternatively, the average of the divergen
e of the shear stress may be expressed as
〈
∇ · τ

c

〉
= ∇ ·

〈
τ
c

〉
+

1

Uo

∫

Spc

nc · τ c
dS. (C.2.10)From Equations (C.2.9) and (C.2.10), it follows that

∇ ·
〈
τ
c

〉
+

1

Uo

∫

Spc

nc · τ c
dS = µc∇ · 〈∇ vc〉+ µc

1

Uo

∫

Spc

nc · (∇ vc) dS.(C.2.11)
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The 
ontinuum averaging rules are applied to the �rst term on the right-hand side ofEquation (C.2.11). It follows that
∇ ·
〈
τ
c

〉
+

1

Uo

∫

Spc

nc · τ cdS = µc∇ · [ǫc∇〈 vc〉c] + µc∇ ·




1

Uo

∫

Spc

nc ṽcdS



+

µc
1

Uo

∫

Spc

nc · (∇ vc) dS. (C.2.12)The parti
le-
ontinuum interfa
e, Spc, is 
onstant, and the integration and di�erenti-ation pro
edures may therefore inter
hange in Equation (C.2.12). It follows that
∇ ·
〈
τ
c

〉
+

1

Uo

∫

Spc

nc · τ cdS = µc∇ · [ǫc∇〈 vc〉c] + µc
1

Uo

∫

Spc

∇ · nc ṽc + nc · (∇ vc) dS(C.2.13)It is assumed that the gradient of the 
ontinuum velo
ity deviations, ṽc, is negligiblysmall, allowing Equation (C.2.13) to be written as
∇ ·
〈
τ
c

〉
+

1

Uo

∫

Spc

nc · τ c
dS = µc∇ · [ǫc∇〈 vc〉c] + µc

1

Uo

∫

Spc

nc · (∇ vc) dS.(C.2.14)It follows that the left-hand side terms of Equation (C.2.14), whi
h appear within the
ontinuum momentum 
onservation equation, may be repla
ed by those on the right-hand side of Equation (C.2.14). In addition, the shear stress within the surfa
e integralis equal to the gradient of the velo
ity on the Spc-interfa
e. Following Enwald et al.(1997), Ishii (1977), Gidaspow (1986) and Mazzei and Lettieri (2007), the velo
ity onthe Spc-interfa
e is assumed to adhere to a slip assumption and is therefore a fun
tionof the relative velo
ity between the parti
le and the 
ontinuum. The aforementionedobservations are applied in the averaging and 
losure pro
edures of Equations (5.4.6)and (6.4.2), respe
tively.
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Appendix DMomentum theorem
D.1 Introdu
tionIn the following appendix the momentum theorem is dis
ussed. This dis
ussion supple-ments the dis
ussion given on the derivation for the parti
le-parti
le intera
tion for
ein Chapter 5.D.2 Derivation of the momentum theoremA

ording to the momentum theorem of me
hani
s the time rate of 
hange of themomentum is equal to the sum of the a
ting external for
es

d I

dt
=
∑

F ext. (D.2.1)For a system with n parti
les with masses mi and velo
ities vi it follows that
I =

n∑

i=1

mi vi, (D.2.2)and thus
d

dt

∑
mi vi =

∑
F . (D.2.3)If the parti
les are assumed to form a 
ontinuum with density, ρ(x, y, z, t), the sum
hanges into a volume integral. The rate of 
hange of momentum is then

d I

dt
=

d

dt

∫

V(t)

ρ vdV. (D.2.4)198
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The volume V, whi
h always 
ontains the same parti
les, 
hanges in a time intervalfrom V(t) to V(t+∆t)

d

dt

∫

V(t)

ρ vdV = lim
∆t→0

1

∆t




∫

V(t +∆t)

ρ v(t+∆t)dV −
∫

V(t)

ρ v(t)dV



(D.2.5)A Taylor series expansion is applied to the �rst integrand

ρ v(t+∆t) = ρ v(t) +
∂ρ v

∂t
∆t + ..., (D.2.6)and it follows that

d I

dt
=

∫

V(t)

∂

∂t
(ρ v)dV + lim

∆t→0




1

∆t

∫

∆V(t)

ρ vdV




. (D.2.7)The last integral 
an be 
hanged into a surfa
e integral over the surfa
e S(t) by usingthe relation between the in
remental volume element dV and the 
orresponding surfa
eelement dS
dV = ( v · n) dS∆t. (D.2.8)It follows that

d I

dt
=

∫

V(t)

∂

∂t
(ρ v)dV +

∫

S(t)

ρ v( v · n)dS. (D.2.9)For steady �ows the time rate of 
hange of momentum is given by the surfa
e integralof the last equation (Krause (2005)). The surfa
e, S, of the volume, V, 
onsidered is
alled a 
ontrol surfa
e.
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Appendix EExtension of 
ollisional-kineti
 for
e totwo dimensions
E.1 Introdu
tionIn this appendix the parti
le-parti
le intera
tion for
e of Equation (5.5.51) is extendedto two dimensions.E.2 Newton's lawThe three dimensional form of the Newtonian law is given by

τ = 2µD, (E.2.1)where τ is the stress tensor, µ is a 
onstant of proportionality and D is the rate ofdeformation- or rate of strain tensor whi
h is related to the velo
ity gradient tensor,
∇ v, but unlike ∇ v, is symmetri
.The asymmetri
 velo
ity gradient tensor is divided into a symmetri
 rate of straintensor, D, and an asymmetri
 vorti
ity -or spin tensor, S:

∇ v = D + S, (E.2.2)where
D =

1

2
(∇ v +∇ vT ), (E.2.3)200
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and

S =
1

2
(∇ v −∇ vT ). (E.2.4)The symbol T , whi
h appears in Equations (E.2.3) and (E.2.4), denotes the transposeoperation and the symmetri
 tensor may be expressed in matrix form as

1

2
(∇ v +∇ vT ) =

(
i j k

)



2∂u
∂x

∂v
∂x

+ ∂u
∂y

∂w
∂x

+ ∂u
∂z

∂u
∂y

+ ∂v
∂x

2∂v
∂y

∂w
∂y

+ ∂v
∂z

∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y

2∂w
∂z







i

j

k




.(E.2.5)The spin tensor given in Equation (E.2.4) does however not in�uen
e the vis
osity andit follows that
τ = 2µD

= µ(∇ v +∇ vT ). (E.2.6)To show that this is indeed the same as the law for one dimension: Let the velo
ityhave an x-
omponent only and let this 
omponent only be a fun
tion of the y-dire
tion.It follows that
1

2
(∇ v +∇ vT ) =

(
i j k

)



0 ∂u
∂y

0

∂u
∂y

0 0

0 0 0







i

j

k




. (E.2.7)This is equivalent to
1

2
(∇ v +∇ vT ) =

∂u

∂y
i j +

∂u

∂y
j i. (E.2.8)Finally we have the original one dimensional form:

τ = 2µD



0 τxy 0

τyx 0 0

0 0 0




= (2µ)

(
1

2

)



0 ∂u
∂y

0

∂u
∂y

0 0

0 0 0




, (E.2.9)
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and it follows that

τxy = τyx = µ
∂u

∂y
. (E.2.10)The three dimensional for
e ve
tor is thus given by

f rs

avg
= −n⊥ · ǫpρpdp

4
|∇ v +∇ vT |

(
∇ v +∇ vT

)
νi. (E.2.11)Let the shearrate tensor be denoted by

γ̇ = ∇ u+∇ uT ,

=

(
∂u

∂y
+

∂v

∂x

)
j i+

(
∂u

∂y
+

∂v

∂x

)
i j, (E.2.12)The magnitude of whi
h is given by1

|γ̇| =

√√√√√√
1

2
Tr







0 ∂u
∂y

+ ∂v
∂x

∂u
∂y

+ ∂v
∂x

0


 ·




0 ∂u
∂y

+ ∂v
∂x

∂u
∂y

+ ∂v
∂x

0





,

=
∂u

∂y
+

∂v

∂x
. (E.2.14)The shear stress term is thus given by

τ
p

= µp

[(
∂u

∂y
+

∂v

∂x

)
j i+

(
∂u

∂y
+

∂v

∂x

)
i j

]
, (E.2.15)where the parti
le vis
osity is given by

µp =
ǫpρpd

2
p

12

(
∂u

∂y
+

∂v

∂x

)
. (E.2.16)Equation (E.2.11) may therefore be expressed as

f rs

avg
=

ǫpρpdp
4

(
∂u

∂y
+

∂v

∂x

)[(
∂u

∂y
+

∂v

∂x

)
i+

(
∂u

∂y
+

∂v

∂x

)
j

]
νi. (E.2.17)1The magnitude of any tensor A is de�ned as

|A| =

√
1

2
(A : AT ) =

√
1

2
Tr(AT ·A). (E.2.13)
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Appendix FDire
tional 
omponents of themomentum equations
F.1 Introdu
tionThe mass 
onservation expressions, given by Equations (4.4.6) and (4.7.18), and themomentum 
onservation expressions, given by Equations (6.6.2) and (6.6.3), are refor-mulated and divided into their 
omponent expressions in order to make them suitablefor dis
retisation. The elaborate averaging notation will be dropped here.F.2 De
omposition of ve
tor equations into
omponent formEquation (4.4.6) is multiplied by the 
ontinuum velo
ity, vc, and the result is subtra
tedfrom Equation (6.6.2). A similar operation is performed with Equations (4.7.18) and(6.6.3), yielding the following simpli�ed forms for 
ontinuum- and dis
rete phases,respe
tively:
ρcǫc

∂ vc
∂t

+ ρcǫc vc · ∇ vc = ρc gǫc − ǫc∇pc + µc∇ · [ǫc∇ vc]−




µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18






s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(
vc − vp

)
,(F.2.1)203
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and
ρp

∂

∂t
ǫp vp + ρp∇ · ǫp vp vp = ǫp g (ρp − ρc)−

ǫ2pρpdp

4

(
∂u p

∂y
+

∂v p

∂x

)2

n̂+





µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(
vc − vp

)
.(F.2.2)The x- and y - 
omponents for Equation (F.2.1) are respe
tively given by

ρcǫc
∂uc

∂t
+ ρcǫcuc

∂uc

∂x
+ ρcǫcvc

∂uc

∂y
= −ǫc

∂pc
∂x

+ µc
∂

∂x

(
ǫc
∂uc

∂x

)
+ µc

∂

∂y

(
ǫc
∂uc

∂y

)
−





µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(uc − up) ,(F.2.3)and
ρcǫc

∂vc
∂t

+ ρcǫcuc
∂vc
∂x

+ ρcǫcvc
∂vc
∂y

= ρcgǫc − ǫc
∂pc
∂y

+ µc
∂

∂x

(
ǫc
∂vc
∂x

)
+ µc

∂

∂y

(
ǫc
∂vc
∂y

)
−





µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18






s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(vc − vp) .(F.2.4)The 
orresponding 
omponents for the parti
ulate phase are given as
ρpǫp

∂up

∂t
+ ρcǫpup

∂up

∂x
+ ρpǫpvp

∂up

∂y
= −

ǫ2pρpdp

4

(
∂u

∂y
+

∂v

∂x

)2

+





µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18






s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(uc − up) ,(F.2.5)
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and
ρpǫp

∂vp
∂t

+ ρpǫpup
∂up

∂x
+ ρpǫpvp

∂up

∂y
= ǫpg (ρp − ρc)−

ǫ2pρpdp

4

(
∂up

∂y
+

∂vp
∂x

)2

+





µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(vc − vp) .(F.2.6)Equations (F.2.3), (F.2.4), (F.2.5) and (F.2.6) may now be put into dis
rete form.
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Appendix GExperimental 
amera data
Table G.1: Experimental 
amera data.Minsize[
m℄ Maxsize[
m℄ Average[
m℄ Beginframe Endframe Distan
e[
m℄ Velo
ity[
m/s℄ Averagevelo
ity[
m/s℄0.02 0.03 0.025 979 989 1 3.00 3.470.02 0.03 0.025 993 1002 1 3.33 3.470.02 0.03 0.025 732 741 1 3.33 3.470.02 0.03 0.025 767 775 1 3.75 3.470.02 0.03 0.025 771 780 1 3.33 3.470.02 0.03 0.025 822 831 1 3.33 3.470.02 0.03 0.025 856 866 1 3.00 3.470.02 0.03 0.025 960 969 1 3.33 3.470.02 0.03 0.025 978 988 1 3.00 3.470.02 0.03 0.025 800 808 1 3.75 3.470.02 0.03 0.025 867 877 1 3.00 3.470.025 0.05 0.0375 895 907 2 5.00 5.410.025 0.05 0.0375 911 924 2 4.62 5.410.025 0.05 0.0375 723 734.5 2 5.22 5.410.025 0.05 0.0375 769 780 2 5.45 5.410.025 0.05 0.0375 780 792 2 5.00 5.410.025 0.05 0.0375 807 836 4 4.14 5.410.025 0.05 0.0375 762 775 2 4.62 5.410.025 0.05 0.0375 789 800 2 5.45 5.41Continued on next page206
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Table G.1 � 
ontinued from previous pageMinsize[
m℄ Maxsize[
m℄ Average[
m℄ Beginframe Endframe Distan
e[
m℄ Velo
ity[
m/s℄ Averagevelo
ity[
m/s℄0.025 0.05 0.0375 684 695 2 5.45 5.410.025 0.05 0.0375 728 740 2 5.00 5.410.025 0.05 0.0375 683 695 2 5.00 5.410.025 0.05 0.0375 673 685 2 5.00 5.410.05 0.075 0.0625 453 468 5 10.00 7.260.05 0.075 0.0625 471 487 5 9.38 7.260.05 0.075 0.0625 388 403.5 5 9.68 7.260.015 0.025 0.02 2593 2604 1 2.73 3.330.015 0.025 0.02 1895 1906 1 2.73 3.330.015 0.025 0.02 2121 2134 1 2.31 3.330.015 0.025 0.02 2186 2198 1 2.50 3.330.015 0.025 0.02 1728 1741 1 2.31 3.330.015 0.025 0.02 1743 1755 1 2.50 3.330.015 0.025 0.02 1511 1523 1 2.50 3.330.015 0.025 0.02 1526 1538 1 2.50 3.330.015 0.025 0.02 2181 2194 1 2.31 3.330.015 0.025 0.02 1639 1650 1 2.73 3.330.015 0.025 0.02 1647 1658 1 2.73 3.330.015 0.025 0.02 1811 1822 1 2.73 3.330.015 0.025 0.02 1852 1862 1 3.00 3.330.075 0.1 0.0875 579 591 5 12.50 13.490.075 0.1 0.0875 588 599 5 13.64 13.490.075 0.1 0.0875 1317 1328.5 5 13.04 13.490.075 0.1 0.0875 1322 1333 5 13.64 13.490.075 0.1 0.0875 1269 1280 5 13.64 13.49
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Appendix HComparison between experimentaldata and theoreti
al predi
tion
The following �gures are representative of the data listed in Tables 10.2 and 10.3. The
ir
ular points indi
ate results yielded by the model developed in this work whereasthe starred data points denote the experiments whi
h were done by Ri
hardson andZaki (1954). Corresponding 
olours indi
ate 
orresponding 
onditions (i.e. similarvis
osities and densities).

208
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(a) ǫp = 10−6
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(b) ǫp = 0.010Figure H.1: Comparison between values predi
ted for the group settling velo
ities fromEquation (6.6.3) and experimental data from Ri
hardson and Zaki (1954).
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(
) ǫp = 0.050
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(d) ǫp = 0.100Figure H.1: Comparison between values predi
ted for the group settling velo
ities fromEquation (6.6.3) and experimental data from Ri
hardson and Zaki (1954).

Stellenbosch University  http://scholar.sun.ac.za



Comparison between experimental data and theoreti
al predi
tion 211

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

20

40

60

80

100

120

Particle diameter, d
p
 [cm]

T
er

m
in

al
 s

et
tli

ng
 v

el
oc

ity
 [c

m
/s

]

 

 

Current model
Richardson and Zaki experimental data (1954)

(e) ǫp = 0.150
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(f) ǫp = 0.200Figure H.1: Comparison between values predi
ted for the group settling velo
ities fromEquation (6.6.3) and experimental data from Ri
hardson and Zaki (1954).
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(g) ǫp = 0.300
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(h) ǫp = 0.400Figure H.1: Comparison between values predi
ted for the group settling velo
ities fromEquation (6.6.3) and experimental data from Ri
hardson and Zaki (1954).

Stellenbosch University  http://scholar.sun.ac.za



Comparison between experimental data and theoreti
al predi
tion 213

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−10

0

10

20

30

40

50

60

70

80

90

Particle diameter, d
p
 [cm]

T
er

m
in

al
 s

et
tli

ng
 v

el
oc

ity
 [c

m
/s

]

 

 

Current model
Richardson and Zaki experimental data (1954)

(i) ǫp = 0.500
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(j) ǫp = 0.585Figure H.1: Comparison between values predi
ted for the group settling velo
ities fromEquation (6.6.3) and experimental data from Ri
hardson and Zaki (1954).
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