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Abstrat
A theoretial model for the predition of partile motion through a traversing New-tonian �uid is proposed. The model is derived by treating the �uid as a ontinuumand modelling its motion with the Navier-Stokes momentum- and mass onservationequations. Appliation of a Representative Elementary Volume (REV) yields expres-sions for the onservation equations in terms of averages. The partiles are assumedrigid and momentum- and mass onservation equations are initially derived from New-tonian priniples for a single solid, spherial partile. A summation-based averagingproedure is applied to obtain onservation expressions in terms of averaged variablesfor the partile phase.Using the priniple of momentum onservation, a ollision-sphere model is applied tomodel the transfer of momentum between partiles. The momentum transfer betweenthe partiles and the ontinuum is modelled using a modi�ation of an existing repre-sentative unit ell model for two-phase motion, mathed with an REV-averaged formof the Stokes drag law. In addition, an asymptoti mathing proedure is appliedbetween low- and high Reynolds number �ows. The mathing proedures render themodel appliable to a wide range of partile volume frations and Reynolds numbers.The theoretial model is implemented into a numerial ode and the numerial results,yielded from these simulations, are tested against results obtained through settling tubeexperiments done by the author at the Counil for Sienti� and Industrial Researh(CSIR) in Stellenbosh as well as published experimental results from literature.
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Opsomming
'n Teoretiese model vir die voorspelling van partikelbeweging deur 'n omringendedinamiese Newtoniese vloeistof word voorgestel. Die vloeistof momentum- en mas-sabehoud word met die Navier-Stokes momentum- en massabehoudsvergelykings gemo-delleer. Hierdie vergelykings word in terme van gemiddelde vloeistof eienskappe voorge-stel deur 'n verteenwoordigende eenheidsvolume toe te pas. Dit word aanvaar datdie deeltjies solied en bolvormig is. Momentum- en massabehoudsvergelykings virdie deeltjies word afgelei deur, aanvanklik, behoudsvergelykings vir 'n enkele partikel,op grond van Newton se wette, daar te stel. Volume gemiddeldes van bogenoemdedeeltjievergelykings word verkry deur die toepassing van 'n sommasie tegniek.Momentumoordrag tussen individuele deeltjies is gemodelleer deur die beginsel van mo-mentumbehoud en 'n botsing-sfeer model te gebruik. 'n Bestaande verteenwoordigendeeenheidssel model is gewysig om dit van toepassing op twee-fase vloei te maak. 'n Kom-binasie van die laasgenoemde model en die Stokes vergelyking vir die wrywingskrag op'n sfeer, is gebruik om momentumoordrag tussen die deeltjies en die vloeistof te mo-delleer. Daarbenewens is 'n asimptotiese passingstegniek gebruik om 'n passing tussenlae- en hoë Reynolds getal vloeie te bewerkstellig. Die passingsprosedures het tot diegevolg dat die model geskik is vir modellering oor 'n wye spektrum konsentrasie- enReynoldsgetalwaardes.Die vergelykings is geïmplementeer deur 'n rekenaar program in Fortran te ontwikkel.Die afvoer van hierdie simulasies is vergelyk met eksperimentele resultate, afkomstigvan valbuis-eksperimente uitgevoer vir hierdie studie by die Wetenskaplike Navorsingen Nywerheidsraad (WNNR), asook eksperimentele resultate vanuit die literatuur.
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Chapter 1Introdution
1.1 MotivationTwo-phase �ow is beoming inreasingly signi�ant in engineering design and tehnol-ogy. In addition to its pertinent appliations in engineering and prevailing sienti�problems it is also relevant to the interpretation of natural phenomena and thus war-rants further investigation.Empirial methods are required to emulate a number of diverse fators, suh as appa-ratus geometry and physial �uid properties. It is therefore vital that engineers andsientists grasp the underlying physis and theoretial modelling fundamental to theseappliations in order to design equipment aurately.Currently, various Computational Fluid Dynamis (CFD) pakages (e.g. FLUENT,CFX) employ two-�uid models to predit the behaviour of partiles immersed in a�uid. The expressions that these two-�uid systems use to model the drag, due tothe relative veloity between the two phases, are often based on empirial models,derived from pressure-drop experiments in �uidised beds. This presents the need foran alternative model, based purely on the physis of the interations.1.2 BakgroundThe following setions give a brief overview of the neessary bakground theory for thisstudy and de�ne the onepts that will be used in later stages of this work. A ompleteliterature review is given in Chapter 2. 1
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1.2. Bakground 2
1.2.1 Classi�ation of modelling proeduresIshii (1975), Enwald et al. (1997) and Loth (2006) divided the modelling proeduresfor two-phase �ows into three ategories: Boltzmann -, Lagrangian -, and Eulerianmethods. Sine the Boltzmann methods are not diretly applied to this study, theywill only be disussed brie�y in Chapter 2. For the time being it su�es to distinguishbetween the Lagrangian and Eulerian strategies.1.2.1.1 Partile phase methodologiesBased on the frame of referene, modelling proedures for the partile phase are dividedinto two ategories namely Lagrangian or Eulerian.Lagrangian models treat the �uid phase as a ontinuum and alulate partile trajeto-ries. This is done by either traking eah individual partile (i.e. trajetory alulation)or by traking groups of similar partiles (i.e. simultaneous partile traking).The Eulerian desription, when applied to the dispersed phase, generally assumes theharateristis of the partiles (e.g. veloity) an be desribed as a ontinuum.Eulerian methods may be further subdivided into mixed- and separated-�uid ap-proahes. The former assumes a negligible relative veloity between phases and de-sribes the motion with a single set of onservation equations, whereas the latterassumes that phase veloities di�er and the motion is modelled with two sets ofmomentum- and mass onservation expressions: one set for eah phase.1.2.2 Interphase ouplingBoth Lagrangian and Eulerian treatments require a desription for the interationbetween the phases. The interphase oupling fore, Fpc, is a fore ating on a singlepartile due to pressure and visous stresses whih are the result of disturbanes ausedin the �ow due to the presene of the partile.Suh a fore is equal in magnitude and opposite in diretion to the hydrodynamipartile fore ating on the ontinuous phase. It amounts to the hydrodynami surfaefores, F surf , minus the ontributions from the undisturbed �ow stresses, Fc. Theundisturbed stresses, F c, refer to the stress gradient fores within the ontinuum,whih our independent of the presene of the partile. The oupling fore may be
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1.3. Objetives of this study 3
expressed by

Fpc = F surf − F c = FD + F TR + FAM + FHI , (1.2.1)where FD, F TR, FAM , and FHI , denote the drag-, transverse or lift fores, the addedmass fore and the history fore, respetively (Kleinstreuer (2003), Crowe et al. (1998)).For heavy partiles (ρp ≫ ρc), the interphase fore is often simpli�ed to inlude onlythe partile drag (negleting lift, added mass, and history e�ets, sine they are pro-portional to ρc) i.e. Fpc = FD. For light partiles (ρp ≪ ρc) with negligible ollisions,the partile aeleration and body fore an be negleted.As the number of partiles inreases, ollisions beome more important, leading to dense�ows. The key aspet for these �ows is the proper inorporation of the partile-partilee�ets on the partile phase �uid dynamis. In partiular, the partile ollisions ausee�etive stresses, whih should be inorporated into the partile transport equation.1.3 Objetives of this studyThe main objetive of this study is to reate a mathematial model that an predit themotion of partile mixtures in a Newtonian �uid with the potential to be modi�ed infuture work to inorporate additional �ow regimes (e.g. a non-Newtonian ontinuum ormultiple phases). The integration of suh a model into an existing ode ould inreasepredition apabilities for industrial appliations, while the proess of its derivationontributes to an improved omprehension of the underlying physis that govern them.It is also the objetive of this work to provide a model that is apable of preditinga partile visosity and stress based on �rst priniples, thus eliminating the need forestimating these parameters.1.4 Contributions and publiationsA novel method is used to average the partile phase and the existing RepresentativeUnit Cell (RUC) model has been modi�ed to inlude the ase of variable partile volumefrations. The urrent model inludes partile-partile interations and is valid for awide range of Reynolds numbers and partile volume frations.
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1.5. Overview of this work 4
A simulation ode was developed in Fortran and the two-phase �ow equations weresolved numerially. These results ompared well with data obtained from settling tubeexperiments at the Counil for Sienti� and Industrial Researh (CSIR).The appliation of these new modelling methods, as applied to low partile volume fra-tions (ǫp ≪ 1), was presented at the International Conferene of Numerial Analysisand Applied Mathematis (ICNAAM) during September 2009 (Wilms et al. (2009)). Itwas expanded into a full artile and published in Applied mathematis and omputa-tion (Smit et al. (2010)). Extension of the drag term to inlude the partile interatione�ets was presented during September 2010 at ICNAAM (Wilms et al. (2010)).1.5 Overview of this workTheoretially the motion of solid partiles suspended in a Newtonian �uid is ompletelydetermined by requiring the Navier-Stokes equations to be satis�ed at eah point ofthe �uid, and equating eah partile's rate of hange of linear and angular momentato the resultant fore and the resultant torque applied to it. Termed a Lagrangiandesription, the extensive proessing power required by suh an approah has provedviable only for low Reynolds number senarios omprising of a relatively small numbersof partiles. Hene, the need for equations based on averaged �ow properties.Averaged expressions, whih are valid for all points in the �ow domain, are developedin Chapter 3. Although too omplex for a diret solution, they provide a good startingpoint for the development of muh needed averaging proedures whih are disussed inChapter 4.Following Bahmat and Bear (1986), the mirosopi Navier-Stokes expressions, asderived in Chapter 3, are averaged over a Representative Elementary Volume (REV) inChapter 4, yielding equations in volume averaged form. A summation-based averagingmethod for the disrete phase is used to ope with the disontinuous nature of thepartiles to provide marosopi expressions for the dispersed phase.A oupling mehanism exists between the partiles for instanes of inreased partilevolume frations whih result in partile-partile ollisions. Following the work of Clark(2009), Bird et al. (2002), and Soo (1990), the losure of suh an interation term isdealt with in Chapter 5, using the priniple of momentum onservation in a Centre OfMass (COM) referene frame in onjuntion with a ollision sphere model.
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1.5. Overview of this work 5
However, the proess of averaging leaves a number of terms indeterminate. The prob-lem of losure for the partile-ontinuum interation is disussed in Chapter 6 andyields an expression in terms of averaged variables by employing an extension of theRepresentative Unitary Cell (RUC) model. The adaptation to the RUC is requiredsine it is a simpli�ation of the REV and was introdued by Du Plessis and Masliyah(1988) for the averaging of single phase �ow through stationary porous media. Chapter6 onludes the development of the dispersed two-phase �ow model.Chapter 7 is dediated to a disussion of the development of a simulation ode whihnumerially solves the expressions derived in Chapter 6. The results obtained from thisprogram are illustrated in Chapter 8 and ompared to experimental work ondutedat the CSIR in Chapter 9.In addition to the aforementioned experimental veri�ation, the model is tested againstexperimental data obtained by Rihardson and Zaki (1954) in Chapter 10. The work isonluded with Chapter 11 wherein onlusions are given and reommendations madefor future researh topis.
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Chapter 2Literature review
2.1 IntrodutionThere have been many ontributors to the advanement of two-phase �ow. This hapterattempts to provide a bakground of the history of this researh area and to get thereader aquainted with terminology, enabling them to distinguish between the variouslassi�ations shemes used in two-phase �ow.Detailed derivations of existing two-phase �ow averaging identities, presented in thispart of the work, are done in preparation for envisaging ideas presented in subsequenthapters.2.2 Computational Fluid Dynamis (CFD)developmentAn aount of the history of multi-phase Computational Fluid Dynamis (CFD) isgiven by Lykowski (2010) in whih the initiation and development of multi-phaseCFD from 1970 to 2010 are disussed. A synopsis of the key ontributors is given hereand the reader is referred to Enwald et al. (1997) for a detailed summary on �uidisedbed simulations up until 1997.Up until the 1970's, nulear reator liensing software applied the Homogeneous Equi-librium Model (HEM), whih meant that both phases were modelled as one. Thisstatus quo already began to hange during the early 1960's when Solbrig, a student of6
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2.2. Computational Fluid Dynamis (CFD) development 7
Gidaspow, set out to develop a new set of equations for two-phase �ow whih would beequivalent to those developed for single-phase �ow by Bird and his team (Bird et al.(2002)). In 1971 Solbrig sueeded and the derivation, published in Solbrig and Hughes(1971), was inorporated into the Seriated Loop (SLOOP) software.In parallel to these developments, Los Alamos Sienti� Laboratory (LASL) developeda similar ode alled KACHINA. KACHINA was the �rst software to provide sta-ble numerial solutions for multidimensional two-phase �uid dynamis (Amsden et al.(1999)).During the mid 1970's, Spalding (Spalding (1980) and Runshal (2009)) who onsultedwith both LASL and Gidaspow, developed the Inter Phase Slip Algorithm (IPSA)(Spalding (1976)): A proedure to solve Partial Di�erential Equations (PDE's) similarto that published by Solbrig and Hughes (1971). The method was embedded into thePHOENICS soure ode in 1978.Systems, Siene and Software (S3) started work in 1975 on a general omputer modelof �uidised bed oal gasi�ation alled CHEMFLUB, and the ompany, JAYCOR,started on a similar soure ode in the early 1980's alled FLAG. These were transient,two-dimensional programs whih ontained PDE's similar to those in SLOOP (later,STUBE (Solbrig et al. (1976))) and KACHINA soure odes and inluded visous stressterms and an expression for the solids pressure. Work terminated on the S3 softwarebefore it was doumented.KFIX was soure ode used by LASL for modelling two-dimensional �ow in Loss-of-Fluid Tests (LOFT). Gidaspow had an idea to develop KFIX for the simulation of a�uidised bed and aquired the soure ode in 1977 from LASL. It was subsequentlymodi�ed by Gidaspow, Lykowski and Galloway, and installed at the Illinois Instituteof Tehnology (IIT).Modi�ations to KFIX involved the addition of a stabilising solids pressure term toprevent over ompation. The addition of this term is disussed in Bouillard et al.(1992). KFIX would later be known as FLUFIX whih in turn was oupled with theEROSION/MOD1 software and was designated FLUFIX/MOD2. This was followedby FORCE2, developed by Babok and Wilox (Ding et al. (1993)). These soureodes are available from the Energy Siene and Tehnology Software Centre (ESTSC)at www.osti.gov/ests. Additional modi�ations were made to FLUFIX for the
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2.2. Computational Fluid Dynamis (CFD) development 8
modelling of dense suspension (i.e. slurry) �ows.In 1985 development on the CFDLIB software started at LASL under Kashiwa (1987).It was only in 1991 that the �rst International Conferene on Multi-phase Flow (ICMF)was held in Tsukuba, Japan. It was the �rst of many with the 2010 ICMF held inTampa, USA.In 1991, O'Brien and Syamlal started development on the open soure ode alledMFIX (Multi-phase Flow model with Interphase Exhanges). Their objetive beingthe development of a ode that ould yield a reliable model of �uidised bed reators.The �rst version of MFIX applied numerial tehniques found in early versions ofthe previously mentioned IIT ode. MFIX was ompleted in 1993 and is maintainedby Oak Ridge National Laboratory (ORNL) in partnership with the National EnergyTehnology Laboratory (NETL) in the United States. It is available at www.mfix.organd the latest version was released in 2007.After ompleting his Ph.D. under Gidaspow in 1985, Syamlal joined Fluent, In. wherehe took part in furthering the development of the FLUENT pakage whih was startedin 1983 by a small group at Creare In near Fluent In.'s present headquarters inLebanon, New Hampshire, USA. It was originally reated by Swithenbank at She�eldUniversity in the U.K.Work on the ode has ontinued and is presently known as ANSYS FLUENT 12.0.ANSYS also aquired the CFX ode, formerly FLOW3D, whih was developed atHarwell in the U.K. It is now named ANSYS CFX.The Open Soure Field Operation and Manipulation (OpenFOAM), C++ based, soureode is another appliation that may be used to model multiple-phase �ows. It isprodued by the UK ompany, OpenCFD Ltd., and is based on equations similar tothose used in its ANSYS CFX ounterpart. Most �uid dynamis solver appliations inOpenFOAM use the pressure-impliit split-operator (PISO) or semi-impliit methodfor pressure-linked equations (SIMPLE) algorithms. These algorithms are iterativeproedures for solving equations for veloity and pressure, PISO being used for transientproblems and SIMPLE for steady-state (Barton (1998)).The majority of soure odes mentioned above utilise a two-�uid approah as modellingproedure. Methods applied in formulating the equations for the two-�uid method aredisussed in the following setions.
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2.3. Classi�ation of multi-phase �ows 9
2.3 Classi�ation of multi-phase �owsThe numerial shemes, applied in the soure odes disussed in Setion 2.2, have beendoumented and ategorised by Enwald et al. (1997) in aordane with Ishii (1975)as a guide line.Ishii set up a lassi�ation whih depended on the topology of the �ow and distin-guished between three lasses: separated, mixed and dispersed �ows. For the purposeof understanding the urrent work on the motion of partiles in a Newtonian �uid, onlythe subategories of dispersed �ows are listed in Table 2.1.Table 2.1: Di�erent regimes for two-phase dispersed �ows aording to Ishii (1975).Class Typial regimes Geometry Con�guration ExamplesDispersed �ow Bubbly �ow
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Aording to this lassi�ation sheme, dispersed media are divided into bubbly-,droplet-, and partiulate �ows: Bubbly �ow physially manifests as gas bubbles inliquid, whih inludes the everyday soda drink or the physial proesses in hemialreators. Flows in whih liquid droplets oinide within a gas is lassi�ed as droplet�ow while partiulate �ow, whih forms the fous of this study, onsists of partilesdispersed within a gas or a liquid.
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2.3. Classi�ation of multi-phase �ows 10
Following Kleinstreuer (2003), Crowe et al. (1998), and Ishii (1975), the �ow of par-tiles and droplets in �uids an be seen as a subset of multi-omponent, multi-phase�ows. Crowe et al. (1998), de�nes a omponent as a hemial speies suh as nitro-gen, oxygen or water whereas phase refers to the solid, liquid or vapour state of thematter. Examples of single-phase, single-omponent �ows inlude water- and nitro-gen �ows, whereas multi-phase single-omponent examples inlude steam-water �ow.Multi-omponent examples of single- and multi-phase �ows are given by air �ow andair-water �ow, respetively. These examples are listed in Table 2.2.Table 2.2: Examples of single- and multi-omponent, multi-phase �ows (Crowe et al. (1998)).Single-omponent Multi-omponentSingle-phase Water �owNitrogen �ow Air �owFlow of emulsionsMulti-phase Steam-water �ow Air-water �owSlurry �owThe study of partiles in water may therefore be quali�ed as a multi-omponent exam-ple, sine there are two separate hemial speies involved (i.e. silion (Si) partilesin water (H2O)). Moreover it may be quali�ed as multi-phase �ow due to the silionpartiles being in a solid state and the water being in a liquid state. It follows thatthe fous in this work is plaed on multi-phase, multi-omponent regimes and onernsitself with the motion of dispersed matter (i.e. a partiulate phase) in a arrier �uid(i.e. a ontinuum phase).Multi-phase, multi-omponent �ows may further be divided into sublasses on the basisof how the omponents interat with the arrier phase and with eah other. Theseinterations are termed oupling mehanisms by various authors (e.g. Loth (2006),Crowe et al. (1998) and Kleinstreuer (2003)) and the lassi�ation of the partile phaseis most aptly desribed, following Loth (2006), in Figure 2.1.The broadest division is between dispersed and dense �ows and is based on whether itis the ontinuum or dispersed phase that dominates the overall motion of the partiles.Dispersed �ow is partitioned into sparse �ow: where the dispersed-phase motion isa�eted by the ontinuous phase, but not vie versa; and dilute �ow whih ombines the
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2.3. Classi�ation of multi-phase �ows 11
aforementioned with instanes where the partile e�ets on the �uid beome signi�antthrough interphase oupling (e.g. drag fore).

DISPERSED




DILUTE




sparse


One-way oupling:Continuous-�uid a�ets partile motion(e.g. partile rotated by vortex)
Inreasingvolumefration

Two-way oupling:Above plus partile motion a�etsontinuous-�uid motion(e.g. partile wake inreases dissipation)Three-way oupling:Above plus partile disturbane of the �uidloally a�ets another partile's motion(e.g. drafting of a trailing partile)
DENSE

Collision-dominated�ow 



High-frequeny of ollisions(e.g. energeti �uidizedbeds)Contat-dominated�ow { High-frequeny of ontat(e.g. nearly settled beds)Figure 2.1: Dilute, dispersed, and dense �ow onditions (Loth (2006)).As the partile volume fration inreases, dispersed �ow is subjet to three-way ouplingwhere the partile wakes and other loal ontinuum disturbanes a�et the motion ofnearby partiles. A further inrease in partile volume fration indues the last levelof the dispersed regime where four-way oupling dominates as partile ollisions ourin ombination with all of the aforementioned interations.When the partile-partile interations dominate, the �ow is onsidered dense. Theseinterations an refer to two separate mehanisms: partile-partile ollisions andpartile-partile dynami interations. The former refers to interations where par-tiles an rebound, shatter or oalese, whereas the latter refers to ases where thepartiles glide upon eah other, ausing frition.One the �ow domain has been ategorised, using lassi�ation proedures listed inTable 2.2 and Figure 2.1, a deision needs to be made as to whih modelling method
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2.4. Classi�ation of modelling proedures 12
should be applied to adequately represent its motion. The various types of modellingmethods available in literature are subsequently desribed.2.4 Classi�ation of modelling proeduresIshii (1975) divided the modelling proedures for two-phase �ows into three ategories,namely Boltzmann, Lagrangian, and Eulerian methods.Boltzmann theory uses a method analogous to dilute gas kineti theory to desribethe interations present in gas-partile systems (Ahmadi and Ma (1990), Ding andGidaspow (1990)). This method de�nes a moleular distribution funtion for the on-tinuum phase and another for the partiulate phase. However, aounting for sizedistribution and the ollision proesses of the solid partiles with eah other and withthe gas moleules, proves hallenging.The motion of a suspension an be viewed in two ways: In the �elds of �uidisation andgas-partile transport, separate equations of motion are sought for eah of the phases,whereas those interested in the rheology of suspensions often view the suspension as awhole. The two viewpoints should however be equivalent (Gidaspow (1986), Jakson(1997)). These diverse modelling approahes mainly involve the partile phase and aonise disussion follows in the next setion.2.5 Partile-phase methodologiesBased on the frame of referene, the partile phase is divided into two lassi�ationshemes as Eulerian or Lagrangian. The Eulerian approah an be further lassi�ed intomixed or point-fore approahes, while the Lagrangian method is grouped into point-fore or resolved-surfae approahes. Table 2.3 shows the various modelling approahesfor the two-phase medium.2.5.1 Lagrangian methodThe Lagrangian method, often referred to as the disrete method, assumes that eahpartile (or group of partiles) is represented separately. The properties (suh as ve-loity) are updated along the path of individual (or loud of similar) partiles.
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2.5. Partile-phase methodologies 13
Table 2.3: Forms of the inompressible unsteady Navier-Stokes momentum equations (Loth(2006)).Dispersed phase approah Dispersed phase momentum Continuous phase momentumEulerian withmixed �uid treatment ∂(ρm vm)/∂t+∇ · (ρm vm vm) = ρm g −∇p+ µm∇2 vmwhere ρm = ǫpρp + ǫcρcApplied throughout domainEulerian withpoint-fore treatment ρp

∂
∂t
(ǫp vp) + ρp∇ · (ǫp vp vp) =

ǫpρp g − ǫp∇(p + pcoll) +

ǫpµc∇2 vp + ǫpFpc/UpApplied throughout the domain ρc
∂
∂t
(ǫc vc) + ρc∇ · (ǫc vc vc) =

ǫcρc g − ǫc∇p + ǫcµc∇2 vc −
ǫpFpc/UpApplied throughout the domainLagrangian withpoint-fore treatment mp

∂ vp

∂t
= FV ol + FSurfApplied along partile trajeto-ries ρc

∂
∂t
(ǫc vc) + ρc∇ · (ǫc vc vc) =

ǫcρc g−ǫc∇p+ǫcµc∇2 vc−NpFpcApplied throughout the domainLagrangian withresolved-surfaetreatment mp
∂ vp

∂t
= FV ol + FSurf + F ppwhere FSurf =

∫
S
[−p+ τpc]ndSand does not ontain F ppApplied along partile trajeto-ries ρp

∂ vc

∂t
+ρc vc∇· vc = ρc g−∇p+

µc∇2 vcApplied outside of partile vol-umeNote: In the above, Np is the number density of partiles per unit volume of mixed �uid, Fpc is the interphasefore between partiles and the ontinuum, Fpp is the oupling fore between the partiles, pc is the hydrostationtinuum pressure, pcoll is the partile ollisional pressure and τpc is the shearing stress between the partileand the ontinuum. The mixture, partile and ontinuum veloities are respetively denoted by vm, vp and
vc with the orresponding densities given by ρm, ρp and ρc. The partile and ontinuum volume frations aredenoted by ǫp and ǫc, respetively and the ombined volume of partiles is given by Up.In ontrast, the Eulerian method averages partile properties over a omputational vol-ume. In brief, the Eulerian referene frame is a stationary measurement of the averageof the system whilst the Lagrangian frame moves with the element it is measuring.For the treatment of surfae fores, the point-fore method represents the �ow over thepartile with empirial and theoretial methods (e.g. by speifying a drag oe�ient) toobtain the fore on the partile. For the resolved-surfae approah, the �uid dynamis(e.g. pressure and shear stress distributions) are fully resolved over the entire partile'ssurfae and then integrated to obtain the overall hydrodynami fores. Hene, forthe resolved-surfae treatment, high spatial resolution of the ontinuous phase is thusrequired over the partile surfae. Therefore, this method is sometimes alled diretsimulation. Conversely, the ontinuous-�ow grid sale an be ourse with respet tothe partile size for the point-fore approah, suh that it is muh less demanding in
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2.5. Partile-phase methodologies 14
terms of omputational resoures. Following Loth (2006), the di�erene between thesetwo approahes is illustrated in Figures 2.2a and 2.2b.

(a) Point-fore treatment. (b) Resolved-surfae treat-ment.Figure 2.2: Di�erent representations for partile treatment where the shaded area representsthe partile and the grid represents the omputational resolution for the ontinuous phasesolution (Loth (2006)).Lagrangian models treat the �uid phase as a ontinuum and alulates partile traje-tories. Typial tehniques whih may be applied to solve Lagrangian models inlude(Wassen and Frank (2000)):Trajetory Calulation (TC) A large number of partile trajetories are sequen-tially omputed. The average properties of the trajetory segments that ross aomputational ell are determined in order to derive marosopi properties forthe disrete phase. The TC method is however limited to steady �ows. Partile-partile ollisions have been aounted for by Oesterle and Petitjean (1993).Simultaneous Partile Traking (SPT) The motions of a representative numberof partiles are alulated simultaneously. Eah simulated partile represents aertain number of real partiles with similar harateristis. The marosopiproperties of the partiulate phase for a ertain grid ell are obtained at any timeby averaging over all partiles that are loated in that ell at that time. Partile-partile ollisions were aounted for by Tanaka and Tsuji (1991). In the major-ity of appliations, ollisions are treated stohastially using Diret SimulationMonte Carlo (DSMC) methods sine deterministi models are omputationallytoo expensive.
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2.6. Modelling proedures for two-�uid models 15
2.5.2 Eulerian methodThe Eulerian desription, applied to the dispersed phase, generally assumes the har-ateristis of the partiles (e.g. veloity) may be desribed as a ontinuum. As listedin Table 2.3, Eulerian tehniques are subdivided into mixed- and separated-�uid ap-proahes.2.5.2.1 Mixed-�uid modelIn the mixed-�uid approah, the assumption is made that the di�erenes in veloity andtemperature between the two phases are small in omparison to variations in the �eldas a whole. The use of these models results in a single set of momentum onservationequations for the �ow mixture as opposed to one set for the ontinuous phase and oneset for the dispersed phase. The approah is numerially unompliated and, moreover,is able to ope with both dispersed and dense onditions.2.5.2.2 Separated-�ow modelThe separated-�uid approah for a Eulerian desription of the partile phase with thepoint fore assumption assumes that both the arrier �uid and the partiles omprisetwo separate, but intermixed, ontinua. Therefore, two sets of momentum equationsare required: one for the ontinuous phase and the other for the dispersed phase. Theseparated �uid method is also alled the two-�uid method. Here the relative veloitybetween the phases are taken into aount and the equations will generally be oupled.Suh an approah will be applied in this work and the following setion is devotedto introduing the reader to the approahes followed by various authors in setting upappropriate models.2.6 Modelling proedures for two-�uid modelsGenerally, the ontinuum phase is modelled with the Navier-Stokes momentum- andmass onservation equations. The onstrution of a model for the disrete phase is,however, approahed either with the Navier-Stokes expressions or, alternatively, byusing the kineti theory of partiles. Even though these two approahes di�er widely,the results obtained are almost idential.
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2.6. Modelling proedures for two-�uid models 16
The appliation of the Navier-Stokes relations to the partiulate phase requires the for-mulation of desriptions for various variables whih are well de�ned from the moleulartheory for �uids, but are relatively unknown for solids. These inlude the de�nition ofthe solid stress term whih in turn requires expressions for the disrete phase visosityand pressure.Alternatively, the disrete phase may be modelled using a kineti theory approah: Themomentum equation for a single sphere is onstruted using Newton's seond law ofmotion and extended to aount for a single partile in suspension (Clift et al. (1978),Soo (1990), and Enwald et al. (1997)).2.6.1 Traditional two-�uid formulationIn the absene of mass transfer, the ontinuity and momentum equations for bothphases are respetively given by

∂ρα
∂t

+∇ · (ρα vα) = 0, (2.6.1)and
∂ρα vα
∂t

+∇ · ρα vα vα −∇ · σ
α
− ρα g = 0, (2.6.2)where the disrete (or partiulate) and ontinuum phases are respetively denoted by

α = p and α = c. Density and stress are denoted by ρα and σ
α
respetively. The loalveloity is denoted by vα.As mentioned earlier, the ordinary di�erential equation for eah partile may be solvedusing a Lagrangian approah. Sine this is omputationally expensive the alternativeis to apply an averaging operator ation on the loal instantaneous equations.Averaging models may be divided into volume, time, and ensemble averaging methodsand are disussed in Appendix B. Volume averaging, whih, due to its physial inter-pretability, is the preferred method of averaging in this work, is applied to the massand momentum onservation expressions in the following setions.The averaging proedures for the mass- and momentum onservation equations, by wayof the appliation of identities given by Equations (B.6.20) to (B.6.25), are reviewedin the following setions.
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2.6. Modelling proedures for two-�uid models 17
2.6.1.1 Averaging of the mass onservation equationApplying the volume averaging tehnique to the mass onservation equation, yields

∂

∂t
〈ǫαρα〉+∇ · 〈ρα vα〉 = 0. (2.6.3)2.6.1.2 Averaging of the momentum onservation equationThe averaging proess for the momentum equation yields various terms whih requirefurther modelling in order to ahieve losure. The �rst step is to apply the de�nitionof volume averaging to eah term in the momentum onservation equation:

〈
∂ρα vα
∂t

〉
+ 〈∇ · ρα vα vα〉 −

〈
∇ · σ

α

〉
−
〈
ρα g

〉
= 0. (2.6.4)This is followed by the appliation of Rules (B.6.23), (B.6.24) and (B.6.20) to theaverages of derivatives, to give

∂

∂t
〈ρα vα〉+∇ · 〈ρα vα vα〉 − ∇ ·

〈
σ
α

〉
−
〈
ρα g

〉
=

1

Uo

∫

Sαβ

ρα vαwαβ · nαdS − 1

Uo

∫

Sαβ

ρα vα vα · nαdS +
1

Uo

∫

Sαβ

σ
α
· nαdS.(2.6.5)In the absene of ombustion or ondensation (i.e. when the interfae veloity, wαβ ,equals that of the veloity of the phase itself, vα) Equation (2.6.5) will simplify to

∂

∂t
〈ρα vα〉+∇ · 〈ρα vα vα〉 − ∇ ·

〈
σ
α

〉
−
〈
ρα g

〉
=

1

Uo

∫

Sαβ

σ
α
· nαdS. (2.6.6)

2.6.1.3 Reynolds deompositionEquation (2.6.6) annot be solved diretly as it ontains averages of produts of thedependent variables. To obtain a solvable set of equations, it must �rst be rewritteninto expressions ontaining produts of the averaged variables. This is done by em-ploying Reynolds deomposition. Reynolds deomposition of variables is typially usedin the �eld of single-phase turbulene modelling in order to separate the �utuatingomponents of the variables from the time-averaged variables. In this instane how-ever, the main purpose of the deomposition is to separate the averages of produts
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2.6. Modelling proedures for two-�uid models 18
into produts of averages. The proedure will result in extra terms in the equations,ontaining produts of the �utuating omponents. These extra terms are analogousto the Reynolds stress terms in the ase of single-phase turbulene modelling (Enwaldet al. (1997)). Administering Reynolds deomposition to a general variable, Ωα, yields

Ωα = 〈Ωα〉α + Ω̃α, (2.6.7)where the de�nition of the intrinsi phase average is given by Equation (B.5.4). Theaverage of the deviation term is assumed to be zero, whih orresponds with the notionthat the volume over whih averaging is done is indeed a sensible representation of themarosopi average
〈
Ω̃α

〉
= 0. (2.6.8)When Reynolds deomposition is applied to Equation (2.6.5) it yields

∂

∂t
〈ρα vα〉+∇ · (ρα 〈 vα〉α 〈 vα〉α) +∇ · 〈ρα ṽα ṽα〉 − ∇ ·

〈
σ
α

〉
−
〈
ρα g

〉
=

1

Uo

∫

Sαβ

σ
α
· nαdS. (2.6.9)The term ∇·〈ρα ṽα ṽα〉 is generally referred to as the Reynolds stress term and denotedby σRe

α
(Enwald et al. (1997)). The right-hand side of Equation (2.6.9) is termed theinterfaial momentum transfer.The Reynolds stress for the ontinuum phase is modelled using a standard Boussinesqapproximation. For a more detailed aount of this approah the reader is referred tothe work of Enwald et al. (1997), Simonin and Viollet (1989) and Simonin (1995).Turbulene models for the partiulate phase available in literature are based on thekineti theory of granular �ow. Suh an approah to the modelling of the partiulatephase uses lassial results from kineti theory of dense gases, f. Dartevelle (2003),Chapman and Cowling (1970) in ombination with Grad's theory, f. Grad (1949), anda linear theory developed by Jenkins and Rihman (Jenkins and Rihman (1985)).1It remains to be shown how the visous stress term, σ

α
, is modelled for the ontinuumand disrete phases following the traditional approah.1As given in Enwald et al. (1997).
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2.6. Modelling proedures for two-�uid models 19
2.6.1.4 The visous stress, σ

αThe visous stress in Equation (2.6.9) is divided into a pressure, pα, and a visous shearstress term, τ
α
, i.e.

σ
α

= pαI + τ
α
. (2.6.10)In the following two setions these two terms are disussed.2.6.1.5 Visous shear stressThe stress tensor for both phases is often modelled using the Newtonian strain-stressrelation:

τ
α

= ξα(∇ · vα)I + 2µα(Sα
− 1

3
(∇ · vα)I), (2.6.11)where the strain-rate tensor is de�ned by

S =
1

2

(
∇ vα + (∇ vα)

T
)
. (2.6.12)In aordane with Stokes' assumption, the bulk visosity, ξα, is ommonly set to zeroin both phases (Panton (1984)). In pratie, the reason for negleting the bulk visosityis the lak of reliable measurement tehniques (Prithett et al. (1978)). A theoretialexpression is however possible using the kineti theory of granular �ow.From the assumption that there is no mass transfer between the phases, it follows that

∇ · vα = 0. The remaining dynami visosity, µα, is easy to speify for the ontinuumphase with moleular theory but proves di�ult for the disrete phase.The partile visosity may be modelled as a funtion of the partile volume fration(Enwald et al. (1997)). However, the majority of visosity models available are formixture visosities only. Examples of suh visosity formulae are listed in Table 2.4.It is not obvious how the mixture visosity is related to the phase visosities, but oftena linear relationship is assumed and the visosities are weighted as
µmix = ǫcµc + ǫpµp. (2.6.13)Pressure in the ontinuum phase is simply the stati ontinuum pressure. The pressurein the partile phase is more di�ult to interpret.
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Table 2.4: Mixture visosities proposed by various authors.Soure Mixture visosity ConstantsEinstein (1906),Einstein (1911) µmix = µc (1 + 2.5ǫp)) ǫp ≤ 0.03Brinkman (1952),Rosoe (1952) µmix = µc(1− ǫp)

−2.5Frankel and Arivos (1967) µmix = µc
9
8

[

(ǫp/ǫp,max)1/3

1−(ǫp/ǫp,max)
1/3

]

ǫp/ǫp,max → 1Vand (1948) µmix = µc

[

2.5ǫp+2.7ǫ2p
1−0.609ǫp

]Eilers (1943) µmix = µc
25
16

[

ǫ2p
(1−ǫp/ǫp,max)2

]Graham (1981) µmix =
[

9
4

(

1
1+0.5ψ

)(

1
ψ
−

1
1+ψ

−
1

1+ψ

2
)

+ 1 + 2.5ǫp
]

ψ =
1−(ǫp/ǫp,max)1/3

ǫp,max)1/3Ishii (1977) µmix = µc(1− ǫp/ǫp,max)
−2.5ǫp,max µp ≫ µcNote: In the above, µmix and µp denote the mixture and partile visosities, respetively. The partile- andontinuum volume frations are respetively denoted by ǫp and ǫc, and ǫp,max is the maximum partile volumefration obtainable, whih usually falls in the range of 40% (i.e. ǫp,max ≈ 0.4).In literature two di�erent ways of formulating expressions for the partile pressureexist. One is based on the kineti theory of granular �ow, the other is desribed below:The pressure is assumed to onsist of the sum of three e�ets: The �rst orrespondsto momentum transport aused by partile veloity �utuations, pp,kin. The seond isdue to partile interations (i.e. ollisions), pp,coll and the third is a ontribution fromthe ontinuum phase pressure. The pressure gradient in the partiulate phase is thus

∇(ǫppp) = ∇(ǫppkin) +∇(ǫppcoll) +∇(ǫppc). (2.6.14)The �rst term on the right-hand side is negleted in traditional models. The seondterm is referred to as the partile ollisional pressure gradient. The ollisional ompo-nent is the dominant pressure in dense regions. This pressure transmits a fore bothby short ollisional impats and by long-duration partile-partile ontats. In Se-tion 2.4 it was stated that the aforementioned modelling methods may be applied to�uidised beds: Experimental results by Campbell and Wang (1991) showed that thepartile ollisional pressure is highest if the bed is not �uidised and partiles rest oneah other, when the long duration ontat fore is high. As ontinuum �ow inreases
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2.6. Modelling proedures for two-�uid models 21
towards the minimum �uidisation veloity, the partile ollisional pressure dereases asthe drag fore starts to dominate over the long-duration ontat fore. Further inreasein the ontinuum veloity above the minimum �uidisation veloity, auses the partileollisional pressure to inrease again, now as a result of an inreasing frequeny of theshort-duration ollisional impats.The ontinuum pressure gradient enters into the momentum equations as a buoyante�et, i.e. if there is a ontinuum pressure gradient through a olletive of partiles, itexerts a fore on the partiles and thus the partile pressure gradient will be reduedor inreased depending on the diretion of the gas pressure gradient.Several models for the partile ollisional pressure-gradient term presented in literatureare based on the following formulation

∇(ǫppp,coll) = −G(ǫc)∇ǫc, (2.6.15)where G(ǫc) is the equivalent of a modulus of elastiity used in moleular theory for thepartiulate phase. The partile ollisional pressure-gradient is often referred to as thepartile-partile interation fore. The main e�et of the partile-partile interationfore is only to prevent the disrete phase from beoming too densely paked (Enwaldet al. (1997)).This disussion onludes the traditional modelling proess for the onstitutive lawswhih speify how the physial parameters of a phase interat with one another. Itremains to desribe the transport of mass, momentum and energy aross the inter-fae between the phases. In the following setion, interfaial momentum transfer isdesribed, whereas interfaial mass and energy transfer have been exluded from thisstudy.2.6.1.6 Momentum transferThe term under onsideration here is the interfaial momentum transfer from the α-to the β-phase whih is given by the right-hand side of Equation (2.6.9)
Mαβ =

1

Uo

∫

Sαβ

σ
α
· nαdS. (2.6.16)
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For the momentum onservation equation of the β-phase, the unit vetor is given by,
nβ = −nα. It follows that the momentum transfer from the β- to the α-phase is

Mβα = −Mαβ. (2.6.17)For a dispersed �ow, Mαβ is the generalised drag fore per unit of volume on a sus-pension of partiles of mean diameter dp and it is normally divided as (Kleinstreuer(2003), Soo (1990), Croe et al. (2006) and Enwald et al. (1997))
Mαβ = np (FD + F TR + FAM + FHI + FOT ) , (2.6.18)where np is the number of partiles per unit volume. The fores on the right-hand sideof Equation (2.6.18) respetively denote the drag fore, the transverse or lift fore, theadded mass fore, the history fore and other fores that are yet to be determined.These fores and their ontributions to the total momentum transfer, are disussed inAppendix A.Currently, the stationary drag fore at the interfae is the only one onsidered inthe traditional two-�uid model. Empirial orrelations aount for this fore, by whihmomentum transport at the interfae is modelled. It is normal to onsider the interfaedrag fore as a ombination of both the shape and the skin drag in a single empirialparameter (e.g. van Wahem et al. (2004)).Most of the data used for drag fore orrelation in many multi-partile systems wereobtained in uniform �uidisation and sedimentation studies: Typially, the drag foreis determined through experimental measurement of the pressure gradient. Usuallythe experimental measurements are used to alulate the so-alled drag funtion at theinterfae, K, either in a straightforward way, where K = f(∆P ), or as a funtion ofthe drag oe�ient for a single partile in the suspension, Cds, so K = f(Cds(∆P ))(Gomez and Milioli (2004)).By making use of this methodology, various orrelations for K have been proposedin the literature and a detailed aount of suh methods may be viewed in Mazzeiand Lettieri (2007). For instane, Ergun (1952) measured pressure gradients in a �xedliquid-solid bed and developed an expression for ∆P . This orrelation was later used toalulate K in a straightforward way, i.e. K = f(∆P ). Wen and Yu (1966) developedexperiments on the sedimentation of solid partiles in a liquid for a large range of solidvolumetri fration values. They onsidered their own data as well as data from other
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2.6. Modelling proedures for two-�uid models 23
researhers and derived a orrelation for CDs, valid for 0.01 < ǫp < 0.63. Later thisorrelation was used to indiretly alulate K, giving rise to an expression of the type
K = f(CDs(∆P )). Along with work done by Lewis et al. (1949) and Kmie (1982),these equations serve as the prevalent equations of losure employed to model the dragfore in uniformly dispersed emulsions of solid partiles.The drag fore ating on a single partile in a suspension an be written as

FD =
1

2
CDsρc| v| v(πd2p/4), (2.6.19)where v is either the apparent relative veloity or the relative interstitial veloity,depending on the veloity on whih the drag oe�ient CDs is based. The ontributorye�et of the stationary drag to the generalised drag is given by

np FD =
3

4dp
(1− ǫc)CDρc| v| v. (2.6.20)To solve averaged momentum equations numerially, the stationary drag fore is usuallywritten as

np FD = K vr, (2.6.21)where K is referred to as the drag funtion. Table 2.5 lists various drag funtions usedin literature.
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Table 2.5: Drag funtions by various authors.Author Drag funtion, K ConstantsGidaspow (1986) 3

4dp
CDs(1− ǫc)ρc| vc − vp|ǫ−1.65

c CDs =

{

24 if Re < 1000

0.44 if Re > 1000Ishii (1977) 3
4dp

CDs(1− ǫc)ρc| vc − vp|ǫc
CD = 24(1 + 0.1(Re)0.75)/Re,

Re = ρc| vp − vc|dp/µmix
µmix : from Ishii (1977) in Table 2.4

Syamlal and O'Brien (1989) 3
4dp

cdρc
1
R2

t
ǫc(1− ǫc)| vp − vc|

2Rt = C1(ǫc)− 0.06Re +
[

(0.06Re)2+

0.12Re (2C2(ǫc)− C1(ǫc)) + C2
1 (ǫc)

]0.5

C1(ǫc) = ǫ4.14c

C2(ǫc) =

{

0.8ǫc1.28 if ǫc < 0.85

ǫ2.65c if ǫc > 0.85.

CD =

(

0.63 + 4.8
√

Rt
Re

)2 Dallavalle (1948)
Re = ρc| vp − vc|dp/µcDi Felie (1994) 3

4dp
CDs(1− ǫc)ρc| vp − vc|ǫ

2−β
c

CDs =
(

0.63 + 4.8
√

1
Re

)2

β = 3.7− 0.65exp
[

− (1.5− log(Re))2 /2
]Gidaspow (1994)(based on Ergun) 150

(1−ǫc)
2µc

ǫc(φdp)2
+ 1.75

(1−ǫc)ρc| vp− vc|

φdp
ǫc < 0.8Gibilaro et al. (1985) K =

(

17.3
Re

+ 0.336
) ρc| vp− vc|

dp
(1 − ǫc)ǫ

−1.8
c Re from Ishii and Zuber (1979)

2.6.2 Contemporary disrete phase modelling methodsThe equation of motion for a single sphere, moving in an unsteady non-uniform om-pressible �uid, was proposed by Maxey and Riley (1983) for the ase of low partileReynolds number, Re = ρcdp| vp − vc|/µc < 1. It is generally aepted (Enwald et al.(1997)) that the equation of motion for a single sphere an be generalised, in the ase
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of inompressible �ows at higher Reynolds numbers, as

ρp
πd3p
6

d vp
dt

=
1

2
ρcCDs

πd2p
4

| v′c − vp|( v′c − vp) +
1

2
ρc
πd3p
6

∆A
d

dt
( v′c − vp)

+
3d2p
2

√
πρcµc∆H

∫ t

0

d

dτ
( v′c − vp)

dτ√
t− τ

−
πd3p
6

∇p′ + ρp
πd3p
6

g,(2.6.22)where dp denotes the partile diameter, v′c and p′ are the undisturbed ontinuumveloity and stati ontinuum pressure at the partile loation, respetively, i.e. theveloity and pressure of the ontinuum phase if the partile was not present. Theterms on the right-hand side are identi�ed as the stationary drag, the added mass forethe history fore, the pressure gradient and the gravity fore, respetively. Di�erentorrelations for the drag oe�ient for a single sphere, CDs, in an in�nite �uid and forthe orretion oe�ients for the added mass and the history fores, ∆A and ∆H , anbe found in Clift et al. (1978).It an be shown that the history fore is negligible for ontinuum-partile �ows, pro-vided that ρc/ρp < 0.002 and dp > 1µm (Liang and Mihaelides (1992) and Vojirand Mihaelides (1994)). Liang and Mihaelides (1992) also onluded that the addedmass e�et an be negleted beause the added mass term is proportional to the den-sity ratio. It is generally assumed that these onlusions an be extended to a singlepartile in a suspension. Therefore, Equation (2.6.22) an be expressed in the followingEulerian form
∂

∂t
(ρp vp) +∇ · (ρp vp vp) =

ρp
τXGp

( v′c − vp)−∇p′ + ρp g + FPP , (2.6.23)where the partile relaxation time τXGp is
τXGp =

3

4dp

ρc
ρp

CD| vp − v′c|, (2.6.24)and FPP represents the fore exerted by other partiles during ollisions. The par-tile relaxation time is a harateristi time for the entrainment of partiles by thesurrounding ontinuum.Applying the averaging identities in ombination with a Reynolds deomposition and
p′ = p + p̃, yields the following averaged form of the partiulate phase momentum
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onservation equation (Enwald et al. (1997)):

∂

∂t
(ǫpρp vp) +∇ · (ǫpρp vp vp) = −ǫp∇p+∇ · (ǫpτX

p

p
+ ǫpσ

Re

p
) + ǫpρp g + M pI .(2.6.25)The interfaial momentum transfer, M cp, is given by K( vc − vp). To lose the mo-mentum equations, models for the ollisional and kineti terms (ǫkτ

Xk
k

+ ǫkσ
Re
k
) areaquired by employing the Maxwell-Boltzmann equation. This method is desribed indetail in Enwald et al. (1997) and only a brief outline of the proedure and the �nalresults for the losed form of the gradient of the partile stress will be given here.2.6.3 Turbulene models for the partiulate phaseThe e�etive stress tensor is derived using Boltzmann theory, the Boussinesq approxi-mation, the losure model of Jenkins and Rihman (1985) and expressions put forwardfor the turbulent visosity by Simonin (1995) and Peirano and Lekner (1998). It isgiven by Enwald et al. (1997) as

ǫp(τ p
+ σRe

p
) = −

(
Pp − ξp∇ · vp

)
I + 2µp

(
S
p
− 1

3
(∇ · vp)I

)
. (2.6.26)In Equation (2.6.26) the e�etive pressure is

pp = ǫpρpT (1 + 2ǫpg0(1 + e)) , (2.6.27)where e is the restitution oe�ient whih represents the loss of energy during ollisionsand varies between zero and one. The bulk visosity, ξ, in Equation (2.6.26) is givenby
ξp =

4

3
ǫ2pρpdpg0(1 + e)

√
T

π
. (2.6.28)The radial distribution funtion, g0, desribes the probability of �nding two partilesin lose proximity. Its main purpose is to prevent over-ompation of granular matteras it ats as a repulsion funtion between partiles when they are lose to eah other.This funtion is equal to unity for very low partile volume frations (ǫp ≪ 1) butinreases for highly onentrated partiulate systems. The funtion is, however, notwell known for granular matter and many possible de�nitions exist (Dartevelle (2003)).
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One suh a de�nition is given by Lun and Savage (1986) as2

g0 = (1− ǫp/ǫp,max) . (2.6.29)The shear visosity is given as the sum of a turbulent visosity and a ollisional visosity,
µp = ǫpρp

〈
νt
p + νc

p

〉 and expressions for the turbulent visosity is given by Enwald et al.(1997) as
νt
p =

(
1
3
τ tcpkcp +

1
2
τcpT (1 + ǫpg0φc)

)

1 + τcp
2

σc
τp

, (2.6.30)where kcp denotes kineti energy whilst σc and φc are de�ned by (1 + e)(3 − e)/5 and
2(1 + e)(3e − 1)/5, respetively. The interation time between partile motion andontinuum phase �utuations is denoted by τ tcp and τcp is the partile relaxation time.The expression for the ollisional visosity, νc

p, is de�ned by
νc
p =

4

5
ǫpg0(1 + e)

(
νt
p + dp

√
T

π

)
. (2.6.31)Finally, a transport equation for the granular temperature, or for the turbulent kinetienergy, T , of the partiulate phase, kp = 3T/2, is required. This is given by

ǫpρp
D

Dt
(kp) = ∇

(
ǫpρp(K

t
p +Kc

p)∇kp
)
−
(
−ǫp(τ p

+ σRe

p
)
)
∇ · vp

−2ǫpρp
τcp

(2kp − kcp) + ǫpρp
e2 − 1

3τ cp
kp, (2.6.32)where Kt

p and Kc
p are the turbulent and ollisional di�usivity oe�ients, respetivelyand the time sale τ cp = (dp/23g0ǫp)

√
π/T is the partile-partile ollision time, i.e. thetime between two onseutive binary ollisions for a given partile. The ontinuum-partile ovariane, kcp, is de�ned as 〈 ṽp ṽc〉. Various models for ontinuum-partileovariane may be found in Yu and Lee (2009).The turbulent di�usivity is modelled as

Kt
p =

3τ tcp
5τcp

kcp + T (1 + ǫpg0ςc)

9
5τcp

+ ξc
τcp

, (2.6.33)where ςc = 3(1+e)2(2e−1)/5 and ξc = (1+e)(49−33e)/100. The ollisional di�usivity,
Kc

p, is de�ned by
Kc

p = ǫpg0(1 + e)

(
6

5
Kt

p +
4

3
dp

√
T

π

)
. (2.6.34)2This resembles the visosity equation given in Table 2.4 by Ishii (1977).
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Semi-empirialmodels have been suggested by Simonin (1995) to solve Equation (2.6.32)and the reader is referred to Enwald et al. (1997) for a detailed example and review ofturbulene models.It is lear that the Boltzmann method for determining partile visosities and pressuresis omplex and still relies on empirial data. This may be one of the reasons why thesimpliity of the two-�uid model has proved more popular in the development of soureodes to model two-phase �ow.
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Chapter 3Conservation equations
3.1 IntrodutionThe development of an alternative to existing two-phase �ow models requires obtainingand averaging the onservation expressions for the ontinuum and disrete phases. Inorder to guide the reader from start to �nish, a brief review is given of the well knownNavier-Stokes momentum onservation equations for the ontinuum phase, followed bya disussion on the development of momentum- and mass onservation expressions forthe partile phase.3.2 Mass onservation for the ontinuum phaseThe mass, mc, of an arbitrary material volume, Vc, within the ontinuum phase is givenby the integral

mc =

∫∫∫

Vc

ρcdV, (3.2.1)where ρc is the density of the ontinuum. Conservation of mass requires that
dmc

dt
=

d

dt

∫∫∫

Vc

ρcdV = 0. (3.2.2)Appliation of the Reynolds transport theorem, whih may be viewed as a three-dimensional generalisation of the Leibniz theorem whih is used to di�erentiate under29
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3.3. Continuum momentum onservation 30
the integral sign, to Equation (3.2.2), yields

∫∫∫

Vc

[
∂ρc
∂t

+∇ · (ρc vc)
]
dV = 0. (3.2.3)The integrand in Equation (3.2.3) should however be zero for any material volume,even if the size of suh a volume should tend to zero. It follows that loally at anypoint within a ontinuum, for whih mass onservation holds, the following ontinuityexpression holds

∂ρc
∂t

+∇ · (ρc vc) = 0. (3.2.4)Equation (3.2.4) onludes the derivation and is the mass onservation equation perunit volume for the ontinuum.3.3 Momentum onservation for the ontinuumphaseExternal fores that in�uene a ontinuum via vetor �elds, suh as gravitation, workon eah individual mass point of the ontinuum. It is therefore alled body fores.Let f
b
be the total body fore per unit mass at any point within the ontinuum. Theresulting body fore, F res

b , on a volume Vc of the ontinuum is therefore given by
F res

b =

∫∫∫

Vc

ρc f b
dV. (3.3.1)When a oneptual volume is de�ned, the e�et of the surrounding surfae fores onsuh a volume should be taken into onsideration. These ontat fores per unit areaof the ontinuum are de�ned as stress and will be denoted by the stress dyad, σ

c
. Theresulting surfae fore on a volume Vc of the ontinuum is therefore given by

F Surf =

∫∫
�

�

�

�

∂Vc

nc · σc
dS. (3.3.2)For a general desription of the motion of a ontinuum the volume Vc is onsideredto be a material volume. The internal fores at every point in a deformable body are
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3.3. Continuum momentum onservation 31
not neessarily equal, and therefore there exists a distribution of stresses throughoutthe body. Newton's seond law of motion for the onservation of linear and angularmomentum governs this variation of internal fores throughout the body. These lawsare usually applied to a rigid partile but, for the purpose of ontinuum mehanisare extended to a body of ontinuously distributed mass and are referred to as Euler'sequations of motion. Euler's �rst axiom or law (law of balane of linear momentum orbalane of fores) states that:In an inertial frame, the time rate of hange of linear momentum, P , of anarbitrary portion of a ontinuum body is equal to the total applied fore, F ,ating on the onsidered portion.It may be expressed as

F =
dP
dt

. (3.3.3)Following Euler's linear momentum priniple, as applied on Vc, yields
d

dt

∫∫∫

Vc

ρc vcdV =

∫∫∫

Vc

ρc f b
dV +

∫∫
�

�

�

�

∂Vc

nc · σc
dS. (3.3.4)The divergene theorem is applied to the surfae integral in Equation (3.3.4), yielding

∫∫∫

Vc

d

dt
(ρc vc − ρc f b

−∇ · σ
c
)dV = 0. (3.3.5)The material volume, however, was hosen arbitrarily and Equation (3.3.5) thereforeholds for any volume Vc. It follows that, at any point within the ontinuum

d

dt
(ρc vc) = ρc f b

+∇ · σ
c
. (3.3.6)Equation (3.3.6) is ommonly known as Cauhy's di�erential equation for the motion ofany ontinuum. It holds in general and may be applied to rigid bodies, elasti objetsand �uids (i.e. liquids or gasses).Applying the de�nition of the total derivative yields

∂

∂t
(ρc vc) +∇ · (ρc vc vc) = ∇ · σ

c
+ ρc f b

. (3.3.7)
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3.4. Partile mass onservation 32
Equation (3.3.7) is the momentum onservation equation per unit volume for the on-tinuum phase.3.4 Mass onservation for the partile phaseConsider a moving partile with hanging mass as shown in Figure 3.1.

vp(i)Gp(i)

νp(i)

Sp,i

wp(i)

np(i)

Figure 3.1: Solid partile.Here Gp(i) is the entre of mass of the solid partile i moving with veloity vp(i), νp(i)is the volume of the partile and wp(i) is the veloity of a point on the boundary ofpartile i. Let mp(i)(t) denote the mass of partile i at time t. In the absene of souresand/or sinks within the partile, mass-hange is only due to a mass �ux aross itsboundary, i.e. ombustion or ondensation. The hange of mass with respet to timeis therefore given by
dmp(i)(t)

dt
=

∫

Sp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS, (3.4.1)where ρp(i) is the density distribution of partile i. In Equation (3.4.1) the veloitydi�erene, given by wp(i) − vp(i), is the veloity of the partile boundary relative to itsentre of mass, Gp(i). The mass of the partile is a funtion of time only, therefore

dmp(i)

dt
=

∂mp(i)

∂t
+

dxp(i)

dt

∂mp(i)(t)

∂xp(i)

=
∂mp(i)

∂t
. (3.4.2)
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3.5. Partile momentum onservation 33
From Equations (3.4.2) and (3.4.1) it therefore follows that

∂mp(i)(t)

∂t
=

∫

Sp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS. (3.4.3)Equation (3.4.3) is the mass onservation equation for a single partile.3.5 Momentum onservation equation for thepartile phaseFrom Newton's seond law the following holds for eah partile:

mp(i)

d vp(i)
dt

= F , (3.5.1)where F is the resultant fore exerted on the partile. Generally, F inludes thegravitational fore, aerodynami drag, buoyany, the added mass fore, the Bassetfore, the Magnus e�et, and the Sa�man lift fore. These fores and their relativeontributions to the momentum of the partiles are disussed by Fan and Zhu (1998)and Kleinstreuer (2003). Aording to Ding and Gidaspow (1990), the last four e�etsmay be assumed negligible. The remaining three are grouped into surfae fores, F surf ,and volume fores, F vol
1:

mp(i)

d vp(i)
dt

= F vol + F surf . (3.5.2)It is assumed in the urrent work that the only signi�ant volume fore a�eting themotion of a partile is the weight, FW = mp(i) g, and that the surfaes fores maybe ombined and written in terms of a stress tensor, σ
p(i)

, integrated over the outersurfae area of the partile. It then follows that
mp(i)

d vp(i)
dt

= mp(i) g +

∫

Sp(i)

σ
p(i)

· np(i)dS. (3.5.3)Multiplying Equation (3.4.3) by the partile veloity, vp(i), rewriting the partile mass,
mp(i), as a produt of its volume, νp(i) and density, ρp(i), and adding the resulting1For a detailed disussion on surfae and volume fores, the reader is referred to Appendix A.
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3.5. Partile momentum onservation 34
expression to Equation (3.5.3), yield

ρp(i)νi
d vp(i)
dt

+ vp(i)
∂ρp(i)νi

∂t
= νiρp(i) g +

∫

Sp(i)

σ
p(i)

· np(i)dS +

vp(i)

∫

Sp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS. (3.5.4)The hain rule of di�erentiation is applied to the �rst term on the left-hand-side ofEquation (3.5.4)

d

dt
vp(i)( r, t) =

∂

∂t
vp(i)(x, t) +

dx

dt

∂ vp(i)
∂x

+
dy

dt

∂ vp(i)
∂y

+
dz

dt

∂ vp(i)
∂z

, (3.5.5)whih may be expressed as
d

dt
vp(i)( r, t) =

∂

∂t
vp(i)( r, t) + vp(i) · ∇ vp(i). (3.5.6)Substitution of Equation (3.5.6) into Equation (3.5.4), yields

∂

∂t

(
vp(i)ρp(i)νi

)
+ ρp(i)νi vp(i) · ∇ vp(i) = νiρp(i) g +

∫

∂νp(i)

σ
p(i)

· np(i)dS + vp(i)

∫

Sp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS, (3.5.7)where mp(i) = ρp(i)νp(i) and the hain rule has again been applied to the left-hand sideof the expression.Equation (3.5.7), whih is valid for eah partile, desribes the hange in momentum ofa partile with mass mp(i) = ρp(i)νp(i). The �rst term on the left-hand side of Equation(3.5.7) is the transient term whih onstitutes the hange in the veloity and densityof a single partile over time. It desribes the e�et of aeleration or deeleration aswell as time dependent ombustion or ondensation on the momentum of the partile.The seond term, ommonly designated the onvetive term in ontinuum dynamis,indiates how the momentum of the partile is a�eted by a hange in the veloity ofthe partile with a hange in its position. The third term, known as the body foreterm, desribes the e�et on the momentum of the partile from outside fores whihat on the entre of mass of the partile.
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3.5. Partile momentum onservation 35
The �rst integral represents the stresses on the partile's boundary surfae. The seondintegral desribes the hange of momentum of the partile due to mass �ow aross thepartile boundary (i.e. ombustion or ondensation).
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Chapter 4Averaging
4.1 IntrodutionThe objetives of this hapter are to quantify the onept and size range of the Rep-resentative Elementary Volume (REV) and to subsequently apply the REV to deriverules for modelling the transport of various quantities in dispersed media at the maro-sopi level. These averaging rules are then applied to the Navier-Stokes momentumand the mass onservation equations whih were formulated in Chapter 3.4.2 Arbitrary and Representative ElementaryVolumesSolving the transport phenomena in a two-phase �ow domain an be done at miro-sopi level. This is however impratial sine a) it is omputationally expensive todetermine and b) quantities annot be measured at this level and experimental data foromparative purposes therefore do not exist. These di�ulties may however be avoidedby onsidering eah phase as a ontinuum. The atual two-phase disrete/ontinuummedium, in whih eah phase �lls only a portion of the spatial domain, is replaed bya virtual model in whih the ontinuum phase �lls the entire domain.In ontrast to the traditional volume averaging models, where both phases are desribedas separate ontinuums (Bahmat and Bear (1986), Whitaker (1967)), the disretephase remains separated in this work. And the disrete nature is dealt with by replaingthe integral de�nition, ustomarily used for ontinuum averaging, with a summation36
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4.2. Arbitrary and Representative Elementary Volumes 37
proedure and a detailed disussion follows in Setion 4.6.Average values over Elementary Volumes (EV) are designated as marosopi values ofvariables. For both the disrete and ontinuum, these marosopi entities are de�nedand alloated to the entroid of the EV, regardless of whether the entroid oinideswith that phase. Fields of marosopi variables may be obtained by traversing theEV over the entire domain.Any Arbitrary Elementary Volume (AEV) may in priniple be seleted as an averagingvolume for passing from the mirosopi to the marosopi regime. Di�erent AEV'swill however yield di�erent averages depending on the size of the AEV and thereforeneed to be labelled to the partiular AEV used for its averaging. This prediamentis irumvented by introduing the onept of a Representative Elementary Volume(REV) (Whitaker (1967), Hassanizadeh and Gray (1979), and Bahmat and Bear(1986)).The REV is hosen suh that averaged properties of the ontinuum or disrete phaseare statistially meaningful, i.e. representative of measured values. It follows thataveraged values of properties obtained from averaging with an REV are independentof the size of the averaging volume.Irrespetive of its plaement within a domain, the REV should ontain both ontinuumand partile phases and be representative of the entire domain. The riteria given inthe work of Bahmat and Bear (1986), Whitaker (1967), and Hassanizadeh and Gray(1979) for the seletion of sensible general REV dimensions are subsequently disussed.4.2.1 Seletion of REV sizeBahmat and Bear (1986) stresses that the values of all averaged geometrial harater-istis of the mirostruture of the porous material at any point in the porous mediumdomain be single valued funtions of the loation of that point and of time only, butindependent of the size of the REV. It follows that the volume of an AEV, UAEV , maybe regarded as the volume of an REV, Uo, if the porosity, ǫc, satis�es the followingonstraint

∂ǫc
∂ UAEV

= 0, (4.2.1)where ǫc = Uc
Uo , and U c is the volume oupied by the ontinuum. The size of the
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4.2. Arbitrary and Representative Elementary Volumes 38
REV in a domain (D) is thus determined by the porosity (Bahmat and Bear (1986)).Figure 4.1 illustrates the variations of the ratio U c/UAEV as UAEV inreases in size.

Domain ofmirosopiinhomogeneity Domain of porous mediumDomain of possiblemarosopi inhomogeneity
Range for Uo

Inhomogeneousmedia1

0 Umin Umax

Uc
UAEV

Volume UAEV

Homogeneousmediumǫc

Figure 4.1: Variation of porosity in the neighbourhood of a point as a funtion of the averagevolume.For small values of UAEV the ratio, U c/UAEV , is one or zero, depending on whether theentroid of the REV, xo, falls inside the ontinuum or the disrete phase. As the volumeof UAEV inreases, large �utuations in U c/UAEV our. However, as UAEV ontinuesto grow, these �utuations gradually abate, until, above some value UAEV = Umin, itdeays, leaving only small amplitude �utuations around some onstant value.As illustrated in Figure 4.1, the REV is that volume, U o, within the range of
Umin<UAEV<Umax that will make the ratio, U c/Uo, independent of UAEV , and henea single valued funtion of xo only. There usually exists a number of relevant variables.The ontinuum desription of the proess desribed by suh variables an be employedonly if a ommon range of the REV an be found for all of these.All average properties are assigned to the entroid of the REV, xREV , whih is illus-trated in Figure 4.2. In Figure 4.2 the REV volume is given by Uo. The setion of theREV boundary surfae whih separates the ontinuum phase volume, U c, ontainedwithin the REV, from the ontinuum phase outside of the REV, is denoted by Scc.Setions of the REV boundary surfae whih ut through partiles and points on par-tile surfaes where partiles onnet with eah other, are given by Spp(i). Similarly,the surfaes whih separate the partile volumes, νp(i), from the ontinuum are given
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4.3. Averaging rules for the ontinuum phase 39
by Spc(i). The inward faing normal unit vetors for the partile and the ontinuumphases are denoted by np(i) and nc(i), respetively.

np(i) nc(i)

Scc

Spc(i)

Spc

Spp(i)

REV, U0

xREV

νp(i)

Figure 4.2: The Representative Elementary Volume (REV).The initial averaging proedure, whih applies the onept of an REV, averages themass onservation equations ompletely but yields an integral term in the momentumonservation expressions in whih mirosopi variables remain.4.3 Averaging rules for the ontinuum phaseVolume averaging for a ontinuum, as applied by Whitaker (1967), has been referred toin Chapter 2 and the rules that apply to suh an averaging method have been derivedin Appendix B. These averaging rules are repeated here in order that the reader mayompare them with the averaging rules for the partiulate phase that will be disussedin Setion 4.6.
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4.4. Averaging of the ontinuum mass onservation equation 40
Let φ be a property of the ontinuum phase, whih may be a salar, vetor or dyadand is assumed to be �nite, ontinuous and di�erentiable within an REV with volume
Uo. Using an REV, the following de�nitions are made: The phase average of anyontinuum property, φ, is de�ned as (Whitaker (1969))

〈φ〉 =
1

Uo

∫

Uc
φdU , (4.3.1)and yields the average of any property φ over the entire REV volume, Uo. The averageof a property taken solely over the ontinuum setion of the REV, U c, is denoted by

〈φ〉c =
1

Uc

∫

Uc
φdU , (4.3.2)and is related to the phase average presented in Equation (4.3.1) by

〈φ〉 = ǫc 〈φ〉c , (4.3.3)where, ǫc = U c/Uo, signi�es the fration of the total REV volume whih is oupiedby the ontinuum phase. At any point within U c, the deviation of φ from the intrinsiphase average, 〈φ〉c, is de�ned by
φ̃ = φ− 〈φ〉c . (4.3.4)The aforementioned de�nitions are used to derive averaging rules whih are listed inTable 4.1 for the ontinuum phase. In Table 4.1 the veloity, w, refers to the veloityat whih the ontinuum-partile interfae, Spc, is being displaed and nc is the unitvetor normal to the ontinuum phase on Spc, direted into the partile phase.4.4 Averaging of the ontinuum mass onservationequationThe averaging rules, listed in Table 4.1, are applied to the equation for mass onser-vation of the ontinuum phase, given by Equation (3.2.4). A methodial approah isapplied to the averaging proess: The transient, onvetive and mass �ux terms ofEquation (3.2.4) are respetively labelled as Term 1, Term 2 and Term 3

〈
∂ρc
∂t

〉

︸ ︷︷ ︸Term 1 + 〈∇ · (ρc vc)〉︸ ︷︷ ︸Term 2 = 〈0〉︸︷︷︸Term 3 . (4.4.1)

Stellenbosch University  http://scholar.sun.ac.za



4.4. Averaging of the ontinuum mass onservation equation 41
Table 4.1: Averaging rules for the ontinuum phase

i 〈φ〉 = ǫc 〈φ〉c

ii 〈φ1 + φ2〉 = 〈φ1〉+ 〈φ2〉

iii 〈αφ〉 = α 〈φ〉 , where α is a onstant
iv 〈φ1φ2〉c = 〈φ1〉c 〈φ2〉c +

〈
φ̃1φ̃2

〉
c

v 〈∇φ〉 = ∇〈φ〉+ 1
Uo
∫
Spc ncφdS

vi 〈∇φ〉 = ǫc∇〈φ〉c + 1
Uo
∫
Spc ncφ̃dS

vii 〈∇ · φ〉 = ∇ · 〈φ〉+ 1
Uo
∫
Spc nc · φdS

viii
〈
∂φ
∂t

〉
= ∂〈φ〉

∂t
− 1

Uo
∫
Spc nc · wφdSRules viii and i are applied to Term 1, yielding

〈
∂ρc
∂t

〉
=

∂ǫc 〈ρc〉c
∂t

− 1

Uo

∫

Spc
nc · vcρcdS, (4.4.2)where the veloity, w, of the interfae, Spc, has been replaed by the veloity, vc, ofthe ontinuum phase sine it is assumed that these two are equivalent in the abseneof ombustion or ondensation.For the averaging of Term 2, appliation of averaging Rules vii and i is sueeded by
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the use of vi and it follows that

〈∇ · (ρc vc)〉 = ∇ · 〈ρc vc〉+
1

Uo

∫

Spc

nc · ρc vcdS,

= ∇ · (ǫc 〈ρc vc〉c) +
1

Uo

∫

Spc

nc · ρc vcdS,

= ∇ · [ǫc (〈ρc〉c 〈 vc〉c + 〈ρ̃c ṽc〉c)] +
1

Uo

∫

Spc

nc · ρc vcdS. (4.4.3)In onstruting the mass onservation equation for the ontinuum phase, it was assumedthat ontinuum mass would remain unhanged, hene the absene of a mass �ux termand the zero value on the right-hand side of Equation (3.2.4). The average of Term 3is given by
〈0〉 = 0. (4.4.4)Equations (4.4.2), (4.4.3) and (4.4.4) are assembled, and it follows that

∂ 〈ρc〉
∂t

+∇ · [ǫc (〈ρc〉c 〈 vc〉c + 〈ρ̃c ṽc〉c)] = 0. (4.4.5)The added assumption of a onstant ontinuum density, ρc, yields further simpli�ationof Equation (4.4.5)
∂ǫc
∂t

+∇ · ǫc 〈 vc〉c = 0, (4.4.6)whih embodies a desription for the onservation of ontinuum mass in terms of maro-sopi state variables.4.5 Averaging of the ontinuum momentumonservation equationThe approah followed in averaging the mass onservation equation for the ontinuumis repeated here. The momentum onservation equation for the ontinuum phase wasgiven earlier by Equation (3.3.7) and is repeated here:
∂ρc vc
∂t︸ ︷︷ ︸Term 1 +∇ · (ρc vc vc)︸ ︷︷ ︸Term 2 = ∇ · σ

c︸ ︷︷ ︸Term 3 + ρc g︸︷︷︸Term 4 . (4.5.1)
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Under the assumption that the ontinuum density is onstant, the appliation of Rules
viii and i to the transient term, labelled Term 1 in Equation (4.5.1), yields

ρc

〈
∂ vc
∂t

〉
= ρc

∂ǫc 〈 vc〉c
∂t

− ρc
1

Uo

∫

Spc
nc · vc vcdS. (4.5.2)Appliation of averaging Rules vii and i to the onvetion term, labelled Term 2, yields

ρc 〈∇ · ( vc vc)〉 = ρc∇ · 〈 vc vc〉+ ρc
1

Uo

∫

Spc
nc · vc vcdS,

= ρc∇ ·
[
ǫc

(
〈 vc〉c 〈 vc〉c + 〈 ṽc ṽc〉c

)]
+ ρc

1

Uo

∫

Spc
nc · vc vcdS.(4.5.3)The gradient of the underlined term in Equation (4.5.3) is denoted by Enwald et al.(1997) as the Reynolds stress and has been disussed in Chapter 2. Following the"traditional two-�uid derivation" by Enwald et al. (1997) and Hassanizadeh and Gray(1979) in their assumption that the ontinuum �ow remains laminar, Equation (4.5.3)simpli�es to

ρc 〈∇ · ( vc vc)〉 = ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) + ρc
1

Uo

∫

Spc
nc · vc vcdS. (4.5.4)Rules vii and i are used in the averaging of the ontinuum stress ontribution to themomentum, and it follows that Term 3 is given by

〈
∇ · σ

c

〉
= ∇ ·

(
ǫc

〈
σ
c

〉
c

)
+

1

Uo

∫

Spc
nc · σc

dS. (4.5.5)The aeleration in the body fore, given by Term 4, is assumed to be gravitationalaeleration, g, and it follows that
ρc
〈
g
〉

= ρc gǫc. (4.5.6)From Equations (4.5.2), (4.5.4), (4.5.5) and (4.5.6), it then follows that
ρc
∂ǫc 〈 vc〉c

∂t
+ ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) = ρc gǫc +∇ · ǫc

〈
σ
c

〉
c
+

1

Uo

∫

Spc
nc · σc

dS, (4.5.7)whih is the REV averaged form for the onservation of momentum for the ontinuumphase.
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4.6 Averaging rules for the partile phaseThe partile phase is omposed of disrete, solid, rigid partiles whih are, apart fromwhen they ollide, ompletely surrounded by the ontinuum phase. Due to the disjointnature of the partiles, the averaging proedures developed in Setion 4.3 need to beadapted for the partiulate phase.De�ne a volumetri average of n disrete partiles as

γ =
1

Uo

n∑

i=1

γp(i)νp(i), (4.6.1)and de�ne the intrinsi phase average as,
γ p =

1

Up

n∑

i=1

γp(i)νp(i). (4.6.2)The deviation from suh an averaged quantity is de�ned as
γ̃ = γp(i) − γ p. (4.6.3)The partile volume fration, ǫp, is linked to the ontinuum volume fration, ǫc, by

ǫp =
Up

Uo
= 1− ǫc = 1 =

1

Uo

n∑

i=1

1νp(i), (4.6.4)where Up =
∑n

i=1 νp(i) is the total solid volume ontained within the REV.Although the partiles are separated, the average values obtained are assumed to bede�ned at the entre of the REV, xREV . The averaging rules for the partile phase arelisted in Table 4.2.The set of rules given in Table 4.2 di�ers from those given in Table 4.1 in that Rules
vii, viii, and ix do not ontain integral terms. This is due to the fat that di�erentia-tion is additive and may therefore be taken out of the summation proedure used foraveraging the disrete phase whereas the Leibniz theorem needs to be applied in orderto di�erentiate under an integral sign in the ase of the ontinuum phase.
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Table 4.2: Averaging rules for the disrete phase.

i γ = ǫpγ
p

ii γ + β = γ + β

iii onstantγ = onstantγ
iv γ̃ = 0 = γ̃

v ˜̃γ = γ̃

vi γβ
p
= γ pβ

p
+ γ̃β̃

p

vii ∇ · γ = ∇ · γ

viii ∇γ = ∇γ

ix ∂γ
∂t

= ∂
∂t
γ4.7 Averaging of the partile mass onservationequationEquation (3.4.3) is summed over all partiles ontained either partially or fully withinthe REV:

n∑

i=1

∂mp(i)(t)

∂t
=

n∑

i=1

∫

S(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS(i). (4.7.1)The term on the right-hand side of the integral is the sum of the surfae integralsover eah solid partile's surfae. The surfae, however, onsists of both a partile-ontinuum interfae, Spc(i), and a partile-partile interfae, Spp(i), as was illustratedin Figure 4.2. The partile-partile boundary results due to a partile being ontained

Stellenbosch University  http://scholar.sun.ac.za



4.7. Averaging of the partile mass onservation equation 46
only partially within the REV. It follows that Equation (4.7.1) may be expressed as

n∑

i=1

∂mp(i)(t)

∂t
=

n∑

i=1




∫

Spc(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS(i)+

∫

Spp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS(i)




. (4.7.2)The veloity of the partile boundary does however not exist over the Spp(i) interfaeand it follows that
n∑

i=1

∂mp(i)(t)

∂t
=

n∑

i=1




∫

Spc(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS(i)−

∫

Spp(i)

ρp(i) vp(i) · np(i)dS(i)




. (4.7.3)In order to evaluate the integral over the partile-partile interfae, the spaial averag-ing theorem of Slattery (Whitaker (1967)) is applied to a single partile:Consider a solid partile i rossing the boundary of the REV as shown in Figure 4.3.The REV boundary moves a distane ∆x relative to the partile entre in time ∆t. Let
νp(i)|x denote the volume of the partile ontained within the REV when the partile isat position xi and let νp(i)|(xi+∆x) be the volume at position xi +∆x. Let Spp(i) be thesurfae area obtained by the intersetion of the REV boundary with the partile.
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∆x

vp

νp(i)

Spp(i)|t=0

Spp(i)|t=t+∆t

Figure 4.3: Solid partile at the REV boundary.Referring to the Figure 4.3 and expressing the di�erentiation in terms of a limit, for ageneral variable φ it follows that
∂

∂x

∫

νp(i)

φdνp = lim
∆x→0

1

∆x




∫

νp(i)|xi+∆x

φdνi −
∫

νp(i)|xi

φdνp(i




= lim
∆x→0

1

∆x

∫

νi|xi+∆x − νp(i)|xi

φdνi. (4.7.4)In the limiting ase of ∆x → 0, the inremental volume element may be expressed as
dνi = ∆xdS i and Equation (4.7.4) redues to

∂

∂x

∫

νp(i)

φdνi = lim
∆x→0

1

∆x
∆x

∫

Spp(i)

φdSi, (4.7.5)whih, in three-dimensions, may be written as
∇

∫

νp(i)

φdνp =

∫

Spp(i)

φnp(i)dSi, (4.7.6)where np(i) is an outward direted unit vetor, perpendiular to Spp(i).
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Equation (4.7.6) is applied to Equation (4.7.3), yielding
n∑

i=1

∂mp(i)(t)

∂t
︸ ︷︷ ︸Term 1 =

n∑

i=1

∫

Spc(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dSi

︸ ︷︷ ︸Term 2 −
n∑

i=1

∇ ·
∫

νp(i)

ρp(i) vp(i)dνi

︸ ︷︷ ︸Term 3 .

(4.7.7)From the de�nition of volumetri averaging of a non-onneted medium given by Equa-tion (4.6.1), Term 1 may be written as
n∑

i=1

∂mp(i)(t)

∂t
=

∂

∂t

n∑

i=1

ρp(i)νp(i)

= Uo
∂ρp
∂t

, (4.7.8)whih, after applying the de�nition for the intrinsi average for the partile phase,given by Equation (4.6.2), yields
n∑

i=1

∂mp(i)(t)

∂t
= Uo

∂

∂t
(ǫpρp

p) . (4.7.9)Sine the sum of integrals, eah of whih is taken over the partile-ontinuum interfaeof a single partile, may also be written as
n∑

i=1

∫

S(i,pc)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dSi ≡

∫

∑
Spc(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS,(4.7.10)and sine the partile-ontinuum interfae, Spc, of the REV is onstruted from thepartile-ontinuum interfaes of all partiles, ontained within the REV, ombined:

Spc =
∑

i

Spc(i), (4.7.11)it follows that Term 2 may be simpli�ed as
n∑

i=1

∫

Spc(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS i ≡

∫

Spc

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS.(4.7.12)
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It is assumed that the properties of the partile are de�ned at its entre: The veloityand density of eah disrete element are therefore by de�nition regarded as onstantsfor eah individual element and the partiles are regarded homogeneous. It follows thatTerm 3 may be expressed as

n∑

i=1

∇ ·
∫

νp(i)

ρp(i) vp(i)dνi =

n∑

i=1

∇ · ρp(i) vp(i)νi. (4.7.13)Equation (4.6.1) is applied to Equation (4.7.13) and it follows that
n∑

i=1

∇ ·
∫

νp(i)

ρp(i) vp(i)dνp = Uo∇ · ρp vp. (4.7.14)Finally, the averaging rules are applied, yielding
n∑

i=1

∇ ·
∫

νp(i)

ρp(i) vp(i)dνi = Uo∇ · ǫpρp p vp
p + Uo∇ · ρ̃p ṽp. (4.7.15)It follows that Equation (4.7.7) may then be written as

∂

∂t
(ǫpρp

p) +∇ · ǫpρp p vp
p +∇ · ρ̃p ṽp =

1

Uo

∫

Spc

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS.(4.7.16)Equation (4.7.16) desribes the hange of the (volumetri weighted average) mass perunit volume of all partiles in the REV. It is de�ned at the entroid of the REV. Theintegral term represents the �ux of mass aross the ontinuum-partile interfae.If the assumption is made that there are no sudden hanges in the mean partile veloityand density within the REV, the third term on the left-hand side of Equation (4.7.16)may be negleted. Equation (4.7.16) may then be written as

∂

∂t
(ǫpρp

p) +∇ · ǫpρp p vp
p =

1

Uo

∫

Spc

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS. (4.7.17)
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If, in addition to previous assumptions, it is assumed that the mass �ux aross thesolid surfae is zero (i.e. ombustion and/or ondensation does not our), and thatthe partiles within the REV have the same densities, the averaged equation for massonservation of the disrete phase is given by

∂

∂t
(ǫpρp

p) +∇ ·
(
ǫp vp

p
)

= 0. (4.7.18)4.8 Averaging of the partile momentumonservation equationEquation (3.5.7) desribes the hange in momentum of a partile with mass mp(i) =

ρp(i)νp(i). In order to obtain the overall momentum of the partiles in the REV, Equa-tion (3.5.7) is summed for all n partiles:
n∑

i=1

∂

∂t

(
vp(i)ρp(i)νp(i)

)
+

n∑

i=1

ρp(i)νp(i) vp(i) · ∇ vp(i) =
n∑

i=1

νp(i)ρp(i) g +

n∑

i=1

∫

∂νp(i)

σ
p(i)

· np(i)dS +

n∑

i=1

vp(i)

∫

Sp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS

︸ ︷︷ ︸Term 1 .

(4.8.1)The same argument that was used for the mass �ux term in Equation (4.7.1) is nowapplied to the integral term, i.e.Term 1 =
n∑

i=1

vp(i)




∫

Spc(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS +

∫

Spp(i)

ρp(i)
(
wp(i) − vp(i)

)
· np(i)dS




= −
n∑

i=1

vp(i)

∫

Spp(i)

ρp(i) vp(i) · np(i)dS

= −
n∑

i=1

vp(i)∇ ·
∫

νp(i)

ρp(i) vp(i)dν. (4.8.2)
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It was assumed that the density and veloity of the partile are de�ned at its entreof mass and may therefore be removed from the integral term in Equation (4.8.2). Itfollows that Term 1 = −

n∑

i=1

vp(i)∇ · ρp(i) vp(i)νp(i). (4.8.3)Combination of the above result for Term 1 and the underlined term in Equation(4.8.1), yields
∂

∂t

n∑

i=1

(
vp(i)ρp(i)νp(i)

)
+∇ ·

n∑

i=1

(
ρp(i) vp(i) vp(i)

)
νp(i) =

n∑

i=1

νp(i)ρp(i) g +

∑

i

∫

Sp(i)

σ
p(i)

· np(i)dS.(4.8.4)The underlined integral term in Equation (4.8.4) is split into its partile-ontinuumand partile-partile omponents and written in ondensed form:
∫

Sp(i)

σ
p(i)

· np(i)dS =

∫

Spc(i)

σ
p(i)

· np(i)dS +

∫

Spp(i)

σ
p(i)

· np(i)dS. (4.8.5)Substitution of Equation (4.8.5) and appliation of the de�nition of volume averagingthen yield the following volume averaged momentum onservation equation for thepartiulate phase:
∂

∂t
vpρp +∇ · ρp vp vp = ρp g +

1

Uo

∫

Spc

σ
p(i)

· np(i)dS +
1

Uo

∫

Spp

σ
p(i)

· np(i)dS.(4.8.6)Reall that, during the averaging of the disrete phase mass equation, it was assumedthat all partiles have the same density and that the density is assumed to remainonstant with regard to both time and position. Implementing these assumptions and
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4.9. Summary and onlusions 52
applying the averaging rules given in Table 4.2 to the terms in Equation (4.8.6), yield
ρp

∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p + ρp∇ · ṽp ṽp = ǫpρp g +

1

Uo

∫

Spc

σ
p(i)

· np(i)dS +

1

Uo

∫

Spp

σ
p(i)

· np(i)dS. (4.8.7)The average of the produt of the veloity deviations was termed the Reynolds stressin Setion 2.6.1.3. The assumptions made for the ontinuum phase presumably holdsfor the disrete phase as well and the Reynolds stress is onsidered negligible. It followsthat
ρp

∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p = ǫpρp g +

1

Uo

∫

Spc

σ
p(i)

· np(i)dS +

1

Uo

∫

Spp

σ
p(i)

· np(i)dS. (4.8.8)Equation (4.8.8) represents the �nal form for the partile momentum onservationequation and additional modelling proedures are required for the remaining integralterms to be expressed in terms of averaged properties.4.9 Summary and onlusionsIn this hapter the onept of an REV has been introdued and used to derive averagingrules for both phases. These rules have been applied to the onservation equationsthat were presented in Chapter 3. Additional modelling proedures, required for theexpression of the stress terms σ
c
and σ

p
in Equations (4.5.7) and (4.8.8) in terms ofmarosopi �ow properties, are disussed in Chapter 5.

Stellenbosch University  http://scholar.sun.ac.za



Chapter 5Constitutive modelling
5.1 IntrodutionThe derivation of losure laws is pivotal to aurate modelling proedures. FollowingEnwald et al. (1997), these laws are divided into two ategories, namely Constitutivelaws whih speify the interation of physial parameters within phases and Transferlaws whih qualify the interations between phases.Constitutive laws entail the modelling of the ontinuum and partiulate stress terms,appearing in Equations (4.5.7) and (4.8.8), in terms of �uid properties. The transferlaws are disussed in Chapter 6.5.2 Continuum stressThe ontinuum stress, σ

c
, is split into a ontinuum pressure, pc, and a ontinuum shearstress term, τ

c
, and is expressed as

σ
c

= −pcI + τc. (5.2.1)The ontinuum pressure is taken as the hydrostati pressure and the shear stress ismodelled using the Newtonian strain-stress relation:
τ
c

= ξc∇ · vcI + 2µc

(
S
c
− 1

3
∇ · vcI

)
, (5.2.2)where ξc denotes the bulk visosity and the strain-rate tensor, S
c
, is de�ned by

S
c

= µc

(
∇ vc + (∇ vc)

T
)
. (5.2.3)53
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5.3. Partile stress 54
In Equation (5.2.3), µc is the visosity of the ontinuum and T denotes the transposeoperator. From the assumption of a onstant ontinuum density,1 it follows that∇· vc =
0 and the shear stress therefore simpli�es to

τ
c

= µc

(
∇ vc + (∇ vc)

T
)
. (5.2.5)Substitution of Equation (5.2.5) into Equation (5.2.1) yields

σ
c

= −pcI + µc

(
∇ vc + (∇ vc)

T
)
, (5.2.6)whih is an expression for the internal ontinuum shear stress in terms of �uid proper-ties.5.3 Partile stressWhen alulating the total fore exerted on a partile by a surrounding ontinuum andneighbouring partiles, as was done in Appendix A, the work of Kleinstreuer (2003),Enwald et al. (1997), Soo (1990) and Crowe et al. (1998) were followed in assumingthat these fores may be added linearly. For this reason it is assumed in this work thatthe partile stress, σ

p
, is a linear ombination of the stress indued by the ontinuumenompassing it, σ

c
, and the stress, σ

pp
, instigated by neighbouring partiles

σ
p

= σ
c
+ σ

pp
. (5.3.1)The ontinuum stress has already been disussed in Setion 5.2 and it remains to beshown how the partile indued stress is modelled.5.3.1 Partile indued stressThe form of visous dissipation and stresses, experiened by randomly �utuating par-tiles in the dilute setions of the �ow domain, are referred to as kineti stresses. Aninrease in the partile volume fration results in partile ollisions and generate ol-lisional stresses whih, in addition to the kineti stresses, will in�uene the motion of1For variable densities (i.e. ompressible �ow) these terms are usually also negleted by theappliation of Stokes' assumption, whih states that

ξc +
2

3
µc = 0. (5.2.4)In the event of a hange of volume there would therefore not exist a resistane fore that ould subduesuh a hange.
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5.3. Partile stress 55
the partiulate matter. However, a further inrease in the partile volume fration in-dues protrated sliding or abrasive inter-partile ontats, yielding a fritional stresswhih will dominate as individual partile motions are progressively limited. Theseinterations are illustrated in Figure 5.1.

Kineti
Collisional & Kineti FritionalFigure 5.1: The three main forms of visous dissipation within granular �ow: kineti,kineti-ollisional, and fritional.It follows that the partile indued stress may be deomposed into a kineti-ollisionalomponent, σkc

pp
, and a fritional omponent, σf

pp
. This observation was used by Dartev-elle (2003) to onstrut the following expression for the partile indued stress

σ
pp

= σkc

pp
+ σf

pp
, (5.3.2)whih in the limiting ase of dilute �ow, simpli�es to

σ
pp

= σkc

pp
. (5.3.3)Following Enwald et al. (1997) and Dartevelle (2003), σkc

pp
may be expressed as a om-bination of kineti-ollisional partile pressure, pkcp , and a kineti-ollisional partileshear stress, τkc

p
, as

σkc

pp
= −pkcp I + τkc

p
. (5.3.4)For the purpose of the urrent work it is assumed that the small grain size and diluteonentrations yield a partile pressure whih, when ompared to the shear, may beonsidered small enough to be omitted. It follows that the partile stress term is given
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by substitution of Equations (5.2.6) and (5.3.4) into Equation (5.3.1) whih yields thefollowing expression for the partile shear stress:

σ
p

= −pc1 + τ
c
+ τkc

p
. (5.3.5)5.4 Appliation of onstitutive lawsThe onstitutive laws for the ontinuum- and the partile phases are given by Equa-tions (5.2.6) and (5.3.5), respetively. In Setions 5.4.1 and 5.4.2, these equations aresubstituted into the averaged momentum equations, given in Chapter 4 by Equations(4.5.7) and (4.8.8) for the ontinuum and partile phases, respetively. In doing so, thestress terms are replaed by �uid properties.5.4.1 The ontinuumSubstitution of Equation (5.2.1) into the averaged momentum equation for the ontin-uum phase, given by Equation (4.5.7), yields

ρc
∂ǫc 〈 vc〉c

∂t
+ ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) = ρc gǫc −∇ (ǫc 〈pc〉c) +∇ ·

(
ǫc
〈
τ
〉
c

)
+

1

Uo

∫

Spc
nc · (−pcI + τ

c
)dS. (5.4.1)When the hain rule is applied to the pressure gradient term, ∇(ǫc 〈p〉c), it follows that

ρc
∂ǫc 〈 vc〉c

∂t
+ ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) = ρc gǫc − ǫc∇〈pc〉c − 〈pc〉c ∇ǫc +∇ ·

(
ǫc
〈
τ
〉
c

)
+

1

Uo

∫

Spc
nc ·

(
−pcI + τ

c

)
dS. (5.4.2)Noting that the third term on the right-hand side of Equation (5.4.2) ontains thegradient of the porosity, Equation (5.4.2) may be simpli�ed, with the appliation of
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Slattery's averaging theorem and expressed as 2

ρc
∂ǫc 〈 vc〉c

∂t
+ ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) = ρc gǫc − ǫc∇〈pc〉c +∇ ·

(
ǫc
〈
τ
〉
c

)
+

1

Uo

∫

Spc
nc ·

(
(−pc + 〈pc〉c)I + τ

c

)
dS. (5.4.4)By applying the de�nition of the deviation in terms of mirosopi and averaged values,given by Equation (4.3.4), Equation (5.4.4) may �nally be expressed as

ρc
∂ǫc 〈 vc〉c

∂t
+ ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) = ρc gǫc − ǫc∇〈pc〉c +∇ ·

(
ǫc
〈
τ
〉
c

)
+

1

Uo

∫

Spc
nc ·

(
−p̃cI + τ

c

)
dS. (5.4.5)The averaging proedure, disussed in Appendix C, is applied to the expression forthe shear stress in terms of veloity, as given by Equation (5.2.5). This allows for thegradient of the ontinuum averaged shear stress, whih appears on the right-hand sideof Equation (5.4.5), to be written as

∇ · ǫc
〈
τ
pc

〉
c

= µc∇ · [ǫc∇〈 vc〉c] , (5.4.6)and the averaged form of Equation (5.4.5) is thus given by
ρc
∂ǫc 〈 vc〉c

∂t
+ ρc∇ · (ǫc 〈 vc〉c 〈 vc〉c) = ρc gǫc − ǫc∇〈pc〉c + µc∇ · [ǫc∇〈 vc〉c] +

1

Uo

∫

Spc
nc ·

(
−p̃cI + τ

c

)
dS. (5.4.7)The remaining surfae integral term whih appears in Equation (5.4.5) will be losedin Chapter 6.2 Averaging Rule vi in Table 4.1 is applied and it is noted that 〈pc〉c is an average and maytherefore be ombined with the integrand as follows

〈pc〉c∇ǫc = 〈pc〉c

(
〈∇1〉 −

∫

Spc

1ncdS
)

= −
∫

Spc

〈pc〉c ncdS. (5.4.3)
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5.4.2 The disrete phaseSubstitution of Equation (5.3.5) into Equation (4.8.8), yields
ρp

∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p = ǫpρp g +

1

Uo

∫

Spc

(
−pc1 + τ

c
+ τkc

p

)
· np(i)dS +

1

Uo

∫

Spp

(
−pc1 + τ

c
+ τ kc

p

)
· np(i)dS. (5.4.8)The kineti-ollisional shear, τkc

p
, an physially only our where partiles ome intoontat with eah other. It follows that suh a term will only exist on a partile-partileinterfae, Spp. Moreover, the ontinuum pressure, pc, and shear, τ

c
, are de�ned onlyat interfaes and within volumes where the ontinuum phase is present. It thereforefollows that Equation (5.4.8) simpli�es to

ρp
∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p = ǫpρp g +

1

Uo

∫

Spp

(
τ kc

p

)
· np(i)dS

+
1

Uo

∫

Spc

(
−pc1 + τ

c

)
· np(i)dS. (5.4.9)Appliation of Reynolds deomposition to the pressure in the integral term on theright-hand side of Equation (5.4.9), yields

ρp
∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p = ǫpρp g −

1

Uo

∫

Spc

〈pc〉c npdS +
1

Uo

∫

Spp

τkc
p
· np(i)dS

− 1

Uo

∫

Spc

(
−p̃c1 + τ

c

)
· ncdS, (5.4.10)where the negative sign in front of the last term on the right-hand side appears dueto the relation between the partiulate unit vetor and the orresponding ontinuumunit vetor, np = −nc. The divergene theorem is applied to the seond term on the
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right-hand side of Equation (5.4.10) and it follows that

ρp
∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p = ǫpρp g − ǫp∇〈pc〉c +

1

Uo

∫

Spp

τkc
p
· np(i)dS

− 1

Uo

∫

Spc

(
−p̃c1 + τ

c

)
· ncdS. (5.4.11)Note that the surfae integral term whih appears in Equation (5.4.5) is present inEquation (5.4.11) also, but with opposite sign. It is through these surfae integrals thatmomentum is transferred between phases and dissimilar signs indiate that momentumdissipated from one phase is the momentum gained by another. Additional modellingproedures, needed to de�ne the transfer laws for the losure of the preeding surfaeintegrals, are disussed in Chapter 6.It remains to be shown how the additional surfae integral in Equation (5.4.11), whihserves as the desriptor for momentum transfer within the partile phase, is losed.5.5 Partile interationThe partile interation e�et enters Equation (5.4.10) through the integral expression

Ip =
1

Uo

∫

Spp

τ kc

p
· np(i)dS, (5.5.1)and sine Spp =

∑
i Spp(i), it follows that Equation (5.5.1) may be written as the sumof partile-partile interation fores experiened by eah partile:

Ip =
1

Uo

∑ ∫

Spp(i)

τ kc

p
· np(i)dS. (5.5.2)The integrand denotes a fore, F kc

p(i), parallel to an inremental surfae element, dS,on whih it ats.Subsequent integration over all surfae elements where partiles are in ontat withone another, yields the following expression for the partile indued momentum on-
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tribution

Ip =
1

Uo

N∑

i=1

F kc
p(i), (5.5.3)where F kc

p(i) is the resultant fore ating on the ith partile due to multiple ollisions withits neighbours. In the remainder of this setion suh a resultant partile interationfore, experiened by a single partile, will be modelled.The initial derivation of a losed expression for Equation (5.5.3) is done for a one-dimensional situation. In aordane with work done by Soo (1990) and Fan and Zhu(1998), the one-dimensional model is expanded to higher dimensions. It should howeverbe noted that the expansion is not mathematially rigourous, but a mere approximationof the aforementioned unidimensional model.The subjet matter of the following setions is aimed at obtaining an expression forthe average ollision fore indued by ollisions between a multitude of partiles. Inorder for this to be done in a oherent manner, some de�nitions and terminologies areintrodued and the ollisional fore between two partiles is onsidered.5.5.1 Two-dimensional binary elasti ollisionsThe appliation of the Centre Of Mass referene frame (COM)3, in onjuntion withan elastiity assumption, yields a signi�ant redution in the omplexity of any taskinvolving momentum onservation during ollisions.In the COM referene frame, the observer moves alongside the system's entre of massand all measurements are made in referene to this position. In the absene of externalfores ating on the system, the total momentum on the system in the COM refereneis e�etively zero at all points in time. If, in addition to the COM frame of referene,it is also assumed that kineti energy is onserved, i.e. that all ollisions are elasti,it also holds that eah partile's pre- and post ollisional speed remains unhanged.The latter seems obvious for one-dimensional head on ollisions but it will be shownthat it indeed holds for the two-dimensional (and for that matter multi-dimensional)ollisions.3 An invaluable referene for COM theory is Chapter IV of Maxwell (1877) and may be downloadedfrom www.forgottenbooks.org. In addition to this, extensive use was made of the OpenCourseWareletures, made available by MIT (Lewin (2007)).
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5.5.1.1 The Centre Of Mass (COM)The entre of mass possesses the property of having a onstant veloity, una�eted bythe hanging motion of its parts. It is mathematially de�ned as

Mtot rCOM =
∑

i

mi ri, (5.5.4)where mi is the mass of a single partile and Mtot is the ombined mass of all thepartiles within the system. The position of the entre of mass is given by rCOMwhereas ri denotes the position of eah partile. It follows from Equation (5.5.4), thatthe onstant veloity of the entre of mass, vCOM , is given by
vCOM =

1

Mtot

∑

i

mi vp(i) =
1

Mtot

∑

i

P i, (5.5.5)where vp(i) and P i are the veloity and momentum of the ith partile respetively.To an observer, plaed at the entre of mass, the veloity, vCOM , will appear to be zero.It follows that the sum of the momenta will be zero also. This is true independent ofthe dimensionality or elastiity of the system. It therefore holds that, in the absene ofa net external fore, the total momentum remains zero before and after a ollision inthe COM frame of referene and the veloity of the COM, vCOM , will be unhanged.The additional assumption of full elastiity (i.e. onservation of kineti energy), resultsin an unaltered speed for eah partile before and after impat with a separate partile.A derivation, supporting this statement follows.5.5.2 The e�et of elastiityConsider a fully elasti ollision within the COM frame of referene, as illustrated inFigure 5.2. For any ollision, albeit elasti or inelasti, the following holds in the COMframe of referene before impat
P 1 + P 2 = m1 vp(1) +m2 vp(2) = 0, (5.5.6)where P 1 and P 2 are the momenta of Partiles 1 and 2, respetively whilst vp(1) and

vp(2) denote their veloities. From Equation (5.5.6) it follows that the veloities ofthe two partiles are always in opposite diretions in a COM frame and the respetivespeeds are inversely proportional to their masses.
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vp(1)

m1

m2
vp(2)

v
′

p(1)

θ

θ

θ

v
′

p(2)

y

xFigure 5.2: Elasti two-dimensional ollision with speular re�etion.Let vp(1) = up(1) i + vp(1) j and let vp(2) = up(2) i + vp(2) j, where up and vp denote the
x and y veloity omponents, respetively. From Equation (5.5.6) it then follows that

m1up(1) +m2up(2) = 0, (5.5.7)and
m1vp(1) +m2vp(2) = 0. (5.5.8)Let the x- and y-omponents of the momentum resulting from the motion of Partiles1 and 2 be given by,

P1,x = m1up(1) and P2,x = m2up(2)

P1,y = m1vp(1) and P2,y = m2vp(2).
(5.5.9)Substitution of the expressions for the momentum omponents, given by the equalitiesin (5.5.9), into Equations (5.5.7) and (5.5.8), yields the following relations

P1,x = −P2,x, (5.5.10)and
P1,y = −P2,y. (5.5.11)
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For any ollision, elasti or inelasti, in any frame, albeit laboratory or COM, thefollowing holds before impat

Ek =
1

2
m1| vp(1)|2 +

1

2
m2| vp(2)|2,

=
1

2
m1

(
u2
p(1) + v2p(1)

)
+

1

2
m2

(
u2
p(2) + v2p(2)

)
,

=
1

2m1
m2

1u
2
p(1) +

1

2m1
m2

1v
2
p(1) +

1

2m2
m2

2u
2
p(2) +

1

2m2
m2

2v
2
p(2), (5.5.12)where Ek is the total kineti energy prior to the ollision. Substitution of the expres-sions given for the x- and y- momentum omponents into Equation (5.5.12), yields

Ek =
1

2m1

(
P 2
1,x + P 2

1,y

)
+

1

2m2

(
P 2
2,x + P 2

2,y

)
. (5.5.13)If it is assumed that the ollision is viewed in the COM frame of referene, Equations(5.5.10) and (5.5.11) may be substituted into Equation (5.5.13), and it follows that

Ek =

(
1

2m1

− 1

2m2

)(
P 2
1,x + P 2

1,y

)
. (5.5.14)A similar expression may be obtained for the post ollisional kineti energy, E ′

k:
E

′

k =

(
1

2m1

− 1

2m2

)(
P

′2
1,x + P

′2
1,y

)
, (5.5.15)where the primed variables indiate that it is taken after impat. Under the assumptionthat the ollisions are fully elasti, Equation (5.5.14) may be set equal to Equation(5.5.15) and it follows that

(
P 2
1,x + P 2

1,y

)
=

(
P

′2
1,x + P

′2
1,y

)
. (5.5.16)The above may be written in the form of,

(m1| vp(1)|)2 = (m1| v
′

p(1)|)2, (5.5.17)where | vp(1)|2 = u2
p(1) + v2p(1).Equation (5.5.17) validates the statement made earlier that the pre- and post- olli-sional speeds are equal,

| vp(1)| = | v′

p(1)|. (5.5.18)
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In a similar manner it an be shown that,

| vp(2)| = | v′

p(2)|. (5.5.19)It follows that, in an elasti ollision, the speed of the individual partiles do nothange, though their diretions may hange, depending on the shapes of the bodiesand the point of impat.In the following setion it is shown how ollisions between two moving objets may besimpli�ed by keeping one of the objets stationary and viewing only the motion of theother. Suh an approah redues the omplexity of the mathematial desription ofthe motion between two partiles signi�antly and therefore provides a useful tool fordesribing the motions of partile louds.5.5.2.1 Relative mass and veloitiesWith referene to Figure 5.2, it is shown that the hange in the x-momentum ompo-nent of Partile 2 may be expressed relative to that of Partile 1.From Equation (5.5.10) it follows that
∆P1,x = −∆P2,x, (5.5.20)where ∆Pi,x = Pi,x − P

′

i,x denotes the hange in momentum of Partile i due to theollision. The hange in the x-momentum omponent of eah partile is written interms of its veloity omponent, yielding
m1∆up(1) = −m2∆up(2). (5.5.21)From Equation (5.5.21) it then follows that

∆up(1) =
1
m1

∆P1,x and ∆up(2) = − 1
m2

∆P1,x,where ∆up denotes the di�erene between the pre- and -post ollisional values. Sub-tration, yields
∆up(1) −∆up(2) =

1

m∗∆P1,x, (5.5.22)where m∗ = (m1m2)/(m1 +m2) is ommonly known as the relative mass. From Equa-tion (5.5.22) it follows that the hange in the x-omponent of momentum for Partile2 may be written in terms of relative veloity and mass as
m∗ (up(rel)

)
−m∗

(
u

′

p(rel)

)
= ∆P1,x, (5.5.23)
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where up(rel) = up(1) − up(2) and u

′

rel = u
′

p(1) − u
′

p(2) respetively denote the pre- andpost ollisional x-omponent of the relative veloity. Equation (5.5.23) is rati�ationfor the observation made by Fan and Zhu (1998), Soo (1990) and Clark (2009) thatthe ollision between two moving partiles is equivalent to the ase where a partileollides with another whih possesses the same relative mass and relative veloity.If, along with the elastiity assumption already made, it is assumed that the ollisionsare speular and that the initial veloity of Partile 2 is parallel to the x-axis, it followsfrom Figure 5.2 that the magnitude of the x-omponent, u′

p(2), of Partile 2's outgoingveloity, v′

p(2), is given by
|u′

p(2)| = | v′

p(2)| cos(2θ) = | vp(2)| cos(2θ), (5.5.24)and sine vp(2) = up(2), Equation (5.5.24) may be expressed as
|u′

p(2)| = |up(2)| cos(2θ). (5.5.25)From Figure 5.2 it is seen that the diretion of u′

p(2) is opposite to up(2) and it followsthat
u

′

p(2) = −up(2) cos(2θ). (5.5.26)Similarly, the x-omponent of Partile 1's veloity is given by
u

′

p(1) = −up(1) cos(2θ). (5.5.27)Combination of equations (5.5.26) and (5.5.27) then yields
u

′

p(rel) = −up(rel) cos(2θ). (5.5.28)Equation (5.5.28) is substituted into Equation (5.5.23) to obtain an expression for thehange in the x-omponent of the total momentum in terms of the relative mass andveloity:
∆P1,x = m∗up(rel) (1 + cos(2θ))

= 2m∗up(rel) cos
2 θ. (5.5.29)The x-omponent of the fore exerted by Partile 2 onto Partile 1 is given by

fkc =
dP1,x

dt
≈ ∆Px

∆t
. (5.5.30)In order to derive an expression for the average fore exerted due to multiple partilesolliding with one another, it is neessary to average the fores over a ollision sphere.A disussion on averaging tehniques, whih employs the onept of a ollision sphere,follows in the next setion.
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5.5.2.2 The ollision sphere: a ontrol volume formulationWhen two partiles of radii r1 and r2, possessing the same relative mass -and veloity,ollide, a ollisions sphere with radius rc = r1 + r2 may be onstruted to average thefore exerted by one over the other (Clark (2009)). The ollision sphere is a ontrolvolume analogous to the REV and is illustrated in Figure 5.3.

r2

r1

r1 + r2

VCV

Figure 5.3: Two-dimensional view of a ollision sphere formed around Partile 1.
The volume of the ollision sphere, VCV , is indiated by the dashed line in Figure 5.3.One partile is onsidered to be the entral partile around whih the ollision sphereis entred and is labelled as a partile of Type 1. Type 1 partiles are made up ofpartiles with radii equal to r1, whereas Type 2 partiles onsist of those partiles withradii equaling r2. In Figure 5.3 the Type 1 partile is taken as the entral sphere. AnyType 2 partile whih rosses the border of the ollision sphere, will inevitably makeontat with the entral sphere (Clark (2009)).
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The fore ating on the ollision sphere is due to the rate of hange of the momentumover the ontrol volume and may be expressed as

fkc =
dm∗ vp(rel)

dt
, (5.5.31)wherem∗ is the relative or redued mass and vp(rel) denotes the veloity of the partiles.Equation (5.5.31) is approximated by

fkc ≈
∆
(
m∗ vp(rel)

)

∆t
. (5.5.32)Equation (5.5.32) denotes the fore that will be exerted by a single partile of Type2 onto a partile of Type 1 with a relative mass, m∗. The total fore experiened bya partile of Type 1 if N2 suh partiles were to ross the boundary of the ollisionsphere is given by

fkc = N2

∆
(
m∗ vp(rel)

)

∆t
. (5.5.33)The volume average of fkc over the ollision sphere may then be alulated by inte-grating over the ollision sphere and is given by

F kc =
1

VCV

∫

VCV

N2

∆
(
m∗ vp(rel)

)

∆t
dV. (5.5.34)Following Clark (2009), Soo (1990) and Fan and Zhu (1998), the volume integral isthen redued to a surfae integral: 4

F kc =
1

VCV

∫

S

N2∆
(
m∗ vp(rel)

) (
vp(rel) · n

)
dS. (5.5.36)The de�nition of the dot produt is applied and it follows that

F kc =
N2

VCV

∫

S⊥

∆
(
m∗ vp(rel)

)
| vp(rel)|dS⊥, (5.5.37)4The relation between the inremental volume element, dV , and the orresponding surfae element,

dS, is given by Krause (2005) as
dV = ( v · n) dS∆t. (5.5.35)
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where dS⊥ is the projeted area of impat normal to the inoming veloity and isillustrated in Figure 5.4.It is assumed that the �ow is ompliant with a simple shear regime as illustrated inFigure 5.5. The veloity therefore onsists of an x-omponent only whih is entirelydependent on the y-dimension (i.e. vp(rel) = u(y)p(rel)) and Equation (5.5.37) may beexpressed as5

F kc =
N2

VCV

∫

S⊥

∆
(
m∗up(rel)

)
up(rel)dS⊥. (5.5.38)The fore due to the simple shear ollisions of a total of N2 Type 2 partiles on aentred Type 1 partile should also only have an x-omponent and it is for this reasonthat the vetor notation is dropped in alulations to follow.

dSCV dS⊥

Figure 5.4: Projeted Surfae element, S⊥.Equation (5.5.38) may thus be written in terms of the x-omponent of the momentumhange due to ollision, as
F kc =

N2

VCV

∫

S⊥

∆Pxup(rel)dS⊥. (5.5.39)Substitution of Equation (5.5.29) into Equation (5.5.39), yields
F kc =

N2

VCV

∫

S⊥

2m∗u2
p(rel) cos

2 θdS⊥. (5.5.40)5Note that a similar result may be obtained by using the momentum theorem, disussed in Ap-pendix D.
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x

y

z

up(rel)(y) Fixed partile

Control Volume (VCV )
(r1 + r2) cosφ

φ

n

r1 + r2

dSCV

rdθr sin θdφ

θ

Figure 5.5: Sphere of Type 1 subjeted to shear �ow of loud of Type 2 partiles.The inremental surfae area, orientated perpendiularly to the x-diretion, is given inspherial oordinates by
dS⊥ = r2 sin θ cos θdθdφ, (5.5.41)and the shear �ow may be expressed as

up(rel) =
∂u

∂y
y =

∂up(rel)

∂y
r sin θ cosφ, (5.5.42)where r, θ, and φ are as illustrated in Figure 5.5. It follows that Equation (5.5.40) maybe written as

F kc =
N2

VCV

∫

S⊥

2m∗(r1 + r2)
4

(
∂up(rel)

∂y

)2

sin3 θ cos2 φ cos3 θdθdφ. (5.5.43)
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Referring to Figure 5.5 it is seen that only the upstream half of the top half of theollision sphere is subjeted to partile ollisions by a simple shear in�ux of Type 2partiles. It follows that the ollision sphere volume is given by VCV = 2/3π(r1 + r2)

3and that integration should take plae over the quarter sphere, subjeted to the Type2 partiles, hene
F kc =

2N2

2/3π(r1 + r2)3

∫ π/2

0

∫ π/2

0

2m∗(r1 + r2)
4

(
∂up(rel)

∂y

)2

sin3 θ cos2 φ cos3 θdθdφ.(5.5.44)Let the number density of a Type 2 partile loud be the number of partiles of Type2 divided by the volume over whih they have an impat. For the ase of partilesolliding with the top half sphere the number density is given by
n2 = N2/(2/3π(r1 + r2)

3). (5.5.45)Substitution of the number density into Equation (5.5.44) yields
F kc = 4n2

∫ π/2

0

∫ π/2

0

m∗(r1 + r2)
4

(
∂up(rel)

∂y

)2

sin3 θ cos2 φ cos3 θdθdφ.(5.5.46)Integration of Equation (5.5.46) yields the fore exerted by the shear �ow of a partileloud of Type 2 on a single partile of Type 1:
F kc =

π

12
n2m

∗
(
∂up(rel)

∂y

)2

(r1 + r2)
4. (5.5.47)For the ase of idential partiles, the relative mass is given by m∗ = mp(i)/2, and thefore given in Equation (5.5.47) may be expressed as

F kc =
π

24

N2

VCV

mp(i)

(
∂up(rel)

∂y

)2

d4p. (5.5.48)The partile mass, mp(i), is expressed in terms of its density, ρp, and volume, νp(i).Hene, Equation (5.5.48) beomes
F kc =

π

24

N2

VCV
νp(i)ρp

(
∂up(rel)

∂y

)2

d4p. (5.5.49)The partile volume fration is de�ned as ǫp =∑i νp(i)/VCV and after some rearrangingof the terms in Equation (5.5.49) it follows that
F kc =

π

6
d3p

1

4
ǫpρp

(
∂up(rel)

∂y

)2

dp. (5.5.50)
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Equation (5.5.51) may be expressed as,

F kc = νp
ǫpρpdp

4

(
∂up(rel)

∂y

)2

. (5.5.51)The kineti ollisional fore of Equation (5.5.51) is written in terms of a partile shearstress for it to be ompared to partile shear stresses proposed by Ha� (1983) as givenby Brennen (2005).The projeted area of impat for the fore in Equation (5.5.51) is the half irle per-pendiular to the inoming �ow over the top half of the single sphere. It follows thatAreaproj = 2

∫ π/2

0

∫ π/2

0

d2p sin θ cos θdθdφ =
πd2p
2

. (5.5.52)If the fore of Equation (5.5.51) is projeted onto the half-irle perpendiular to the
y-axis, the shear stress exerted onto a single partile by its surrounding loud is

τkcp =
ǫpρpd

2
p

12

(
∂up(rel)

∂y

)2

. (5.5.53)Equation (5.5.53) bares lose resembles to the equations given by Brennen (2005) forthe shear stress term derived by Ha� (1983), namely
τkcHa� = gs(ǫp)ρpd

2
p

(
∂up(rel)

∂y

)2

, (5.5.54)here gs(ǫp) is a funtion of the partile volume fration. Ha� (1983) required g(ǫp)to tend towards zero as ǫp approahes zero. The funtion for gs(ǫp) for the Equation(5.5.53) is given by
gs(ǫp) =

ǫp
12

, (5.5.55)and thus the limiting ondition as proposed by Ha� (1983) is satis�ed.Equation (5.5.53) may be written in a similar form as Newton's law of visosity
τkcp = µp

∂up(rel)

∂y
, (5.5.56)where the partile visosity is given by, µp = ǫpρpd

2
p/12

∂up(rel)
∂y

.The partile phase therefore exhibits non-Newtonian �uid properties sine its visosityis not onstant but a funtion of the deformation tensor.
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This provides a basis for the two-�uid treatment of two-phase �ow, where the partilephase is not treated as disrete but as a �uid from the beginning of the derivation ofthe momentum expressions. In suh ases the partile visosity is, however, hosenfrom one of the many empirially derived visosity expressions available (Enwald et al.(1997)).Equation (5.5.56) states that the stress, τkc, is proportional to the veloity gradi-ent, ∂urel

∂y
and the onstant of proportionality is the partile visosity, µp. The two-dimensional shear stress and partile interation fore is derived in Appendix E andstated here as
F kc

p(i) =
ǫpρpdp

4

(
∂u

∂y
+

∂v

∂x

)[(
∂u

∂y
+

∂v

∂x

)
i+

(
∂u

∂y
+

∂v

∂x

)
j

]
νi. (5.5.57)Equation (5.5.57) is substituted into Equation (5.5.3) and it follows that

Ip = − 1

Uo

N∑

i=1

ǫpρpdp
4

(
∂u

∂y
+

∂v

∂x

)[(
∂u

∂y
+

∂v

∂x

)
i+

(
∂u

∂y
+

∂v

∂x

)
j

]
νi.(5.5.58)For a onstant partile diameter and density, this may be expressed in terms of aver-aging notation introdued earlier in Setion 4.6

Ip = −ρpdp
4

ǫp

(
∂u

∂y
+

∂v

∂x

)2

n̂.

= −
ǫ2pρpdp

4

(
∂u

∂y
+

∂v

∂x

)2
p

n̂, (5.5.59)where it is assumed that
ǫ̃p

˜(
∂u

∂y
+

∂v

∂x

)2
p

= 0. (5.5.60)It is assumed that Equation (5.5.59) may be ast into the following form
Ip = −

ǫ2pρpdp

4

(
∂u p

∂y
+

∂v p

∂x

)2

n̂. (5.5.61)Substitution of Equation (5.5.61) into Equation (5.4.10), yields the following expression
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for momentum onservation of the disrete phase

ρp
∂

∂t
ǫp vp

p + ρp∇ · ǫp vp p vp
p = ǫp gρp − ǫp∇〈pc〉c −

ǫ2pρpdp

4

(
∂u p

∂y
+

∂v p

∂x

)2

n̂

− 1

Uo

∫

Spc

(
−p̃c1 + τ

c

)
· ncdS, (5.5.62)whih onludes the onstitutive modelling proedure.5.6 Summary and onlusionsIn this hapter the onstitutive laws have been applied to the onservation equationsthat were derived in Chapter 4. Using the priniples of momentum onservation andfull elastiity an expression for partile-partile interation was established. This in-teration term bares lose resemblane to the shear stress term derived by Ha� (1983).The �nal averaged form of the ontinuum and the partile momentum equations aregiven by Equations (5.4.5) and (5.5.62), respetively.
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Chapter 6Transfer laws: The RepresentativeUnit Cell
6.1 IntrodutionThe Representative Unit Cell (RUC) is de�ned as a retangular volume of minimumdimensions into whih the geometri properties of the REV may be embedded. It pro-vides a faility to onsider �ow onditions within the most elementary ontrol volumeof the partiular porous medium and still have all the geometrial properties of themedium at hand for modelling of physial phenomena. It is assumed that the averagegeometrial properties of the partile struture within the RUC an be resembled by aube of partile material, loated entrally within, and aligned with, the ubi RUC,as is shown in Figure 6.1.A two-dimensional shemati, in whih the setions of the RUC is labelled, is given inFigure 6.2. In Figure 6.2 the unit vetor, n̂, denotes the diretion of the streamwisediretion,1 whereas nc and np are outward direted unit vetors normal to the on-tinuum and partile phases, respetively. The interstitial �ow diretion is given by ñ.The volume of the partile phase is given by Up and that of the ontinuum is denotedby Uc. The ontinuum volume is further divided into a streamwise and a transversesetion, whih are denoted by U|| and U⊥, respetively. Surfae areas parallel to thestreamwise diretion are denoted by S|| and surfae areas perpendiular to n̂ are given1 The streamwise diretion, whih will be denoted by n̂ in this work, is the diretion of thevolumetri average of the mirosopi veloity in the REV.74
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by S⊥.

dp

d

Uc

Up

Figure 6.1: Representative Unit Cell (RUC).

Up

U||

U⊥

Uc

S||

S||

S⊥

S⊥

nc

nc

np

np

nc

nc

np np

n̂

ñ
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Figure 6.2: Two-dimensional RUC shemati.The RUC was �rst developed by Du Plessis and Masliyah (1988) to model time-independent laminar �ow through a rigid, isotropi and onsolidated porous mediumof spatially varying porosity. The 1988 version of the RUC model performed well in the
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6.2. 1997 RUC model 76
Dary regime of very low intra-pore Reynolds number2 �ow, but its predition of theForhheimer inertial e�et was not quantitatively orret. These shortomings were ad-dressed by modelling the gradual inrease of Reynolds number with �ow reirulationon the streamwise lee-side surfae of the solid material (Du Plessis (1992)).Experimental validation of the 1992 model by Du Plessis et al. (1994) showed that suha modelling proedure was apable of aurately prediting the pressure gradients forboth Dary and Forhheimer �ows. With the introdution of streamwise staggering,Lloyd et al. (2004), adapted the RUC to predit the Dary permeability in anisotropimedia. Up to date the RUC model has ontinued to undergo numerous modi�ationsin an e�ort to inrease its preditive pro�ieny.The version of the RUC model used in this work, is the 1997 rendition for a granularmedium (Du Plessis and Diederiks (1997)), and not the latest version. The reason thiswas done is that the later modi�ations severely inreased the omplexity of the modelwhereas the inrease in its predition apabilities, for this work, would be overshadowedby errors made in experimental proedures.The appeal of the RUC, and the reason for it being adopted here, is that it ontainsfew empirial �tting parameters. The result is a model whih is appliable to a broadrange of physial proesses.In Setion 6.2, the 1997 RUC model for single phase �ow is disussed in order toaquaint the reader with its underlying assumptions. This standard model is thenmodi�ed in Setion 6.3 to inorporate two-phase �ow and inrease the range of partilevolume frations for whih it may be utilised.6.2 1997 RUC modelThe partile-ontinuum surfae integral in Equation (5.5.62) represents the momentumtransfer between the two phases. An overview of the losure method for suh an integralfor a stationary porous medium is given in this setion.2The Reynolds number for �ow through a stationary porous medium is de�ned as Re =
ρcǫcdp|vc|/µc.
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6.2. 1997 RUC model 77
The integral to be losed is given by

I =
1

Uo

∫

Spc

(
−p̃ nc + τ

c
· nc

)
dS. (6.2.1)The relative importane of inertial and visous e�ets is given by the dimensionlessReynolds number whih is de�ned as

Re =
Inertial foresVisous fores . (6.2.2)Small Reynolds number values indiate slow visous �ows for whih it is assumed thatvisous fores, arising from shearing motions of the ontinuum, dominate over inertialfores (assoiated with high pressure gradients). An inrease in the Reynolds numberampli�es the inertial fores until the Forhheimer regime is reahed where suh inertialfores ditate. An additional surge in the Reynolds number renders the �ow turbulent.It is, however, assumed in this work that the �ow remains laminar and "high Reynoldsnumbers" will refer to the upper limit of Reynolds numbers for whih the �ow is stilllaminar.The partile-ontinuum interfae, Spc, in Equation (6.2.1) is approximated as thepartile-ontinuum interfae, Spc, of the RUC and partitioned into its onstituent par-allel and transverse regions denoted respetively by S|| and S⊥, as illustrated in Figure6.2:

I =
1

Uo

∫

S||

− p̃ ncdS +
1

Uo

∫

S⊥

− p̃ ncdS +
1

Uo

∫

S||

τ
c
· ncdS +

1

Uo

∫

S⊥

τ
c
· ncdS.(6.2.3)Equation (6.2.3) desribes the impat that the presene of the stationary partiulatematerial has on the momentum of the ontinuum traversing it. In the following setions,pressure and shearing e�ets will be ompared to eah other for the two limiting, i.e.Dary and Forhheimer, �ow regimes.6.2.1 Modelling visous �owFor the low Reynolds number limit, it is assumed that the ontribution to the totalsurfae stress is dominated by the shear omponent and that, in omparison, the pres-sure gradient e�et may be onsidered negligible. The shear stresses in the transverse
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6.2. 1997 RUC model 78
pore setions of the RUC are direted perpendiularly to the streamwise diretion andtherefore have a zero ontribution in the said diretion. These transverse shear stresseswill, however, ause interstitial pressure drops. It is assumed that the ontribution to
I due to suh a pressure drop may be inorporated by integrating the wall shear overthe total partile-ontinuum interfae, Spc, instead of only over the streamwise setion
S||, i.e.

Io =
1

Uo

∫

S||

(
τ
c
· nc

)
dS + n̂

1

Uo

∫

S⊥

(
nc · τ c

· ñc

)
dS. (6.2.4)In Equation (6.2.4), Io denotes the visous approximation of I and ñc is the unitnormal vetor indiating the interstitial �ow diretion. Let nc be the unit vetordireted perpendiular from the ontinuum into the partile phase and let n̂ be theunit vetor in the streamwise diretion as depited in Figure 6.2. Under the �rstfae seond stress onvention, the wall shear stresses in the streamwise and transversehannels are respetively expressed as

τ ||
c

= τ ||c (−nc n̂), (6.2.5)and
τ⊥
c

= −τ⊥c nc ñ. (6.2.6)Substituting Equations (6.2.5) and (6.2.6) into the relevant integrals of Equation (6.2.4)and assuming that the shear stress dyad is symmetri, yield
I0 = − 1

Uo

∫

S||

τ ||c n̂dS +
1

Uo

∫

S⊥

− τ⊥c n̂dS. (6.2.7)For the low Reynolds number limit, the wall shear stress, τwc (whih is de�ned as thesum of all the wall shear stresses within the RUC, τwc = τ|| + τ⊥) is assumed uniformand onstant over the partile ontinuum interfae, Spc, in all hannel setions and itfollows that
Io = − n̂

Spc

Uo
τwc . (6.2.8)The �ow is assumed Newtonian and the upstream direted shear is therefore given interms of the pore veloity pro�le, upore

c , as
τwc = µc

dupore
c

dy
. (6.2.9)
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6.2. 1997 RUC model 79
The veloity pro�le for the motion of a ontinuum between parallel plates for whih ano-slip ondition is adopted at the Spc-interfaes, is

upore
c (y) = − y

2µc

(
dp

dx

)
(dc − y), (6.2.10)where dc is the distane between the plates. This type of �ow, generally referred to asplane Poiseuille �ow, is illustrated in Figure 6.3.

wcupore
cdc

Y

X

τwc

τwcFigure 6.3: Plane Poiseuille �ow.Taking the derivative of Equation (6.2.10) with respet to y and substituting the resultinto the expression for the shear, given by Equation (6.2.9), yield
τwc =

dc
2

(
−dp

dx

)
. (6.2.11)In order for the shear to be inorporated into the RUC model it needs to be expressedin terms of the streamwise average pore veloity, wc. Suh a veloity is obtained byintegrating over the paraboli veloity pro�le given by Equation (6.2.10) and dividingthe result by the width of the hannel, dc:

wc =
1

dc

∫ dc

0

upore
c dy

=
d2c

12µc

(
−dp

dx

)
. (6.2.12)The pressure gradient in Equation (6.2.11) may thus be expressed in terms of w, yield-ing

τwc =
6µcwc

dc
. (6.2.13)Following Du Plessis (2003), the ratio of the average streamwise pore veloity, wc, tothe average interstitial ontinuum veloity, 〈vc〉c, is given by the ratio of the streamwise
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6.2. 1997 RUC model 80
RUC volume, U||, to the total RUC-volume available for ontinuum motion, Uc:

wc

〈vc〉c
≈ Uc

U||
. (6.2.14)It follows that Equation (6.2.13) may be expressed in terms of 〈vc〉c as

τwc =
6µc 〈vc〉c

dc

Uc

U||
. (6.2.15)The ratio between the streamwise and the total ontinuum volume is referred to as thetortuosity and denoted by χ = Uc/U||. It follows that Equation (6.2.15) may be givenin terms of the tortuosity as

τwc =
6µc 〈vc〉c χ

dc
. (6.2.16)Substitution of the expression for the wall shear, given by Equation (6.2.16), into Equa-tion (6.2.8) then yields the following losed form for the momentum surfae integral inthe ase of low Reynolds number �ow:

Io = −Spcχ

Uo

6µ 〈vc〉c
dc

n̂c. (6.2.17)Table 6.1 is a summary of the geometri oe�ients for a granular medium. Substitu-tion of the oe�ients listed in Table 6.1 into Equation (6.2.17), yields the followingexpression for visous �ow in terms of the ontinuum -and partile volume frations,respetively denoted by ǫc and ǫp, and the width of the partiulate volume, dp:
Io = −36µc

d2p

ǫ
4/3
p ǫc

(1− ǫ
1/3
p )(1− ǫ

2/3
p )

〈vc〉c n̂c. (6.2.18)
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Table 6.1: Geometri oe�ients for a granular medium.Coe�ient Expression

Uo d3

Ac d2 − d2p

U|| Acd

Uc Uo − Up

dp (1− ǫc)
1/3d

dc d− dp = d(1− (1− ǫc)
1/3)

Spc 6d2p = 6(1− ǫc)
2/3d2

S|| 4d2p

S⊥ 2d2p

Sface d2p

χ ǫc

(1−(1−ǫc)2/3)This onludes the losure of Equation (6.2.1) for the visous motion of a Newtonianontinuum through a stationary porous medium.6.2.2 Modelling inertial �owWith an inrease in Reynolds number the predominane of the pressure gradient abovethe shear stresses is enhaned so that the shear stress ontribution in Equation (6.2.1)may be disarded, yielding the following form of the momentum transfer integral forthe inertial regime:
I∞ =

1

Uo

∫

S⊥

− p̃ ncdS. (6.2.19)Du Plessis (1993) proposed that the integral I∞ may be modelled by an internal formdrag ondition, with cd the drag oe�ient and Sface the surfae exposed upstream,relative to the streamwise diretion, i.e.
I∞ = − 1

Uo

cdSface
1

2
ρw2

c n̂c. (6.2.20)
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6.2. 1997 RUC model 82
The relationship between the average streamwise ontinuum pore veloity, wc, and theaverage interstitial ontinuum veloity, 〈vc〉c (given by Equation (6.2.14)) is applied toEquation (6.2.20) and the geometri oe�ients (listed in Table 6.1) substituted, toyield

I∞ = −ρccd
2dp

ǫ2cǫp(
1− ǫ

2/3
p

)2 〈vc〉
2
c n̂c. (6.2.21)This onludes the losure of Equation (6.2.1) for the inertial motion of a Newtonianontinuum through a stationary porous medium.Equations (6.2.18) and (6.2.21) desribe the two limits of laminar ontinuum motion.They, however, do not provide information about the transition from low to highReynolds number �ows. This shortoming is addressed by applying an asymptotimathing tehnique, �rst desribed by Churhill and Usagi (1972), through whih anequation whih embodies the range from the low to the intermediate Reynolds numbersis attained.6.2.3 A general losure expressionEquations (6.2.18) and (6.2.21) are ombined with the use of the asymptote mathingtehnique (Churhill and Usagi (1972)):

I = ( Iso + Is∞)
1
s , (6.2.22)where s is a shifting parameter whih, following Du Plessis (2003), is taken as unityfor the losure proedure. The losed form of Equation (6.2.1) is therefore given by

I = −



36µc

d2p

ǫ
4/3
p ǫc

(1− ǫ
1/3
p )(1− ǫ

2/3
p )

〈vc〉c n̂c +
ρccd
2dp

ǫ2cǫp(
1− ǫ

2/3
p

)2 〈vc〉 〈vc〉


 n̂c

= −



36µc

d2p

ǫ
4/3
p ǫc

(1− ǫ
1/3
p )(1− ǫ

2/3
p )

+
ρccd
2dp

ǫ2cǫp(
1− ǫ

2/3
p

)2 || 〈vc〉 ||


 〈 vc〉c . (6.2.23)Equation (6.2.23) is the �nal result for the losure of Equation (6.2.1) whih is relevantto limiting as well as intermediate Reynolds number �ows.This surmises the appliation of the 1997 RUC to the modelling of single phase New-tonian �ow through a stationary porous medium and proves su�iently aurate for

Stellenbosch University  http://scholar.sun.ac.za



6.3. Adaptation to the 1997 RUC 83
ontinuum volume frations up to 0.8 (Lloyd et al. (2004)). Adaptations made to thismodel to inorporate two-phase �ow are disussed, and a �nal losure model for themomentum transfer between phases given, in the following setions.6.3 Adaptation to the 1997 RUCIn this setion, the existing RUC model is modi�ed to allow for partiulate motion andto inorporate porosities exeeding the 0.8 limiting value of the 1997 rendition.The surfae integral term remaining in Equations (5.4.7) and (5.5.62) is similar to thatgiven for single phase �ow by Equation (6.2.1) and subjeted to the same assumptionsand modelling proedures of Setion 6.2. The di�erene lies in the de�nition of theshear stress, τ

pc
, for two-phase �ow: For the 1997 single phase RUC model, the shearstress was derived from the plane Poiseuille veloity pro�le between stationary plateswhereas urrent work allows for said plates to move relative to the ontinuum. Insetions to follow the losure proedures for the low- and high Reynolds number limitsare disussed. Asymptoti mathing between these extremes yields an expression forthe momentum transfer integral in terms of averaged variables whih is appliable tointermediate �ows.6.4 Two-phase visous �ow at the low Reynoldsnumber limitThe low Reynolds number regime is treated by dividing it into two ategories: Lowand high ontinuum volume frations. For small values of ǫc, the drag in the mediumis assumed to be due to �ow through a partiulate phase, whereas the drag for highporosity values will be regarded to originate from �ow by a partiulate phase. Anasymptoti math between these two ategories will then yield a losed expression forthe Dary regime.6.4.1 Low Reynolds number �ow at low porositiesThe modelling proedure for low Reynolds numbers follows similar assumptions tothose made in Setion 6.2.1. The losure of the integral term is given in terms of the
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relative wall shear stress, τwpc as

I�ow through
o = − n̂

Spc

Uo

τwpc. (6.4.1)The relative shear, τwpc, is de�ned in terms of the relative pore veloity, upore
pc , as

τwpc = µc

dupore
pc

dy
. (6.4.2)The veloity pro�le, upore

pc , for a ontinuum phase moving relatively to parallel plates,as illustrated in Figure 6.4, is given by
upore
pc = − y

2µc

(
dp

dx

)
(dc − y). (6.4.3)The shearing stress due to this relative veloity is derived similarly to that given byEquation (6.2.9) and may be written in terms of the pressure gradient as

τwpc =
dc
2

(
−dp

dx

)
. (6.4.4)

wpcupore
pcdc

Y

X

τwpc

τwpc

up

upFigure 6.4: Plane Poiseuille �ow for the adapted model.The average streamwise relative pore veloity is given by
wpc =

1

dc

∫ dc

0

upore
pc dy

=
d2c

12µc

(
−dp

dx

)
. (6.4.5)The average interstitial relative veloity is de�ned as

vpc = 〈vc〉c − vp
p, (6.4.6)
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and is assumed to be related to wpc by

wpc

vpc
≈ Uc

U||
. (6.4.7)It follows that the shear stress for the partile-ontinuum surfae integral term is givenby

τwpc =
6µc (〈vc〉c − vp

p)

dc
χ. (6.4.8)Substitution of Equation (6.4.8) into Equation (6.4.1), yields

I�ow through
o = − 36ǫc(1− ǫc)

4/3

d2p (1− (1− ǫc)2/3) (1− (1− ǫc)1/3)
µc

(
〈 vc〉c − vp

p
)
. (6.4.9)Equation (6.4.9) is the drag fore per RUC volume, Uo, that results from shear inter-ation between the two phases for low ontinuum volume frations.6.4.2 Low Reynolds number �ow at high porositiesThe drag fore for visous �ow should, for porosity values lose to unity, strive to thatexperiened by a single partile, i.e. Stokes drag. Equation (6.4.9), however, rapidlytends to zero as porosity tends to one and is therefore subjet to modi�ation.This shortoming is dealt with by �rst deriving an expression for Stokes drag overpartiles within an REV. Stokes drag is given by (p.60 Bird et al. (2002)) as

F Stokes = 3πdpµc vpc, (6.4.10)where dp is the partile diameter and the relative veloity, vpc, is one again assumedto be the average relative interstitial veloity, whih is given by
vpc = 〈 vc〉 − vp

p. (6.4.11)The average of the Stokes fore over the entire REV is assumed to provide an approxi-mation for the visous drag within the REV due to �ow by a partiulate phase and willbe denoted by I�ow by
o . It is attained by adding the fores for all N partiles, presentwithin the REV, and dividing through the total REV volume, Uo:

I�ow by
o = − 1

Uo

N∑

i=1

3πdpµc

(
〈 vc〉 − vp

p
)
. (6.4.12)
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Equation (6.4.12) is multiplied and divided by the volume of a single partile (νp(i) =
1
6
πd3p) to obtain:

I�ow by
o = − 1

Uo

N∑

i=1

18µc

(
〈 vc〉 − vp

p
)

d2p
νp(i), (6.4.13)whih is in the form of the de�nition for the partile average, given by Equation (4.6.1).Sine vpc was given by Equation (6.4.6) in terms of averages it may be moved outsideof the summation operator. Hene the following expression for the average Stokes foreis given by

I�ow by
o = −

18ǫpµc

(
〈 vc〉 − vp

p
)

d2p
. (6.4.14)Stokes �ow is only valid for Reynolds numbers below 0.1 and denotes the drag forinstanes where the visous regime is desribed by "�ow by" rather than "�ow through"a partiulate phase. In the next setion an expression for the total visous drag forefor two-phase �ow, whih will be valid for low- and high porosity limits is derived.6.4.3 Total Drag Fore for the Dary RegimeThe total visous drag fore per unit volume for two-phase �ow (whih is appliableover the entire porosity range) is obtained by adding Equations (6.4.9) and (6.4.14):

Ipco = −µcǫp
d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18


(〈 vc〉c − vp

p
)
. (6.4.15)This is written in terms of the momentum transfer oe�ients for the limiting porosityvalues, β�ow through

o and β�ow by
o , as

Ipco = −
(
β�ow through
o + β�ow by

o

) (
〈 vc〉c − vp

p
)
, (6.4.16)where

β�ow through
o =

36ǫcǫ
4/3
p

d2p

(
1− ǫ

2/3
p

)(
1− ǫ

1/3
p

)µc, (6.4.17)and
β�ow by
o =

18ǫpµc

d2p
. (6.4.18)
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The behaviour of eah of the momentum transfer oe�ients of Equations (6.4.17) and(6.4.18), as well as their ombined e�et for porosity values that range from those ofpaked beds (i.e., ǫc ≈ 0.4) to porosities orresponding to dilute instanes of dispersedsolid material within a �uid (i.e. ǫc ≈ 1), are illustrated in Figure 6.5.
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Figure 6.5: Flow by and �ow through momentum transfer given by Equations (6.4.16) �(6.4.18).From Figure 6.5 it is apparent that β�ow through
o dominates for porosities in the range of

0.4 ≤ ǫc ≤ 0.95. Figure 6.6 is an enlarged view of the porosity range for 0.95 < ǫc ≤ 1.0,showing that Stokes drag ditates for ǫc > 0.97.The solid line in both Figures 6.5 and 6.6 onstitutes the e�et of the ombined drag,given by β�ow through
o +β�ow by

o , and follows the trend of Equation (6.4.17) and Equation(6.4.18) for the ranges of 0.4 ≤ ǫc ≤ 0.95 and ǫc > 0.97, respetively. The addition ofthe Stokes drag thus redues the rate at whih the ombined result tends towards zero.
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Figure 6.6: Flow by and �ow through momentum transfer given by Equations (6.4.16) �(6.4.18) for ǫc ≥ 0.95.6.5 High Reynolds number �owFollowing the proedure set out in Setion 6.2.2, yields the following losed form forthe Forhheimer regime
Ipc∞ = −1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2
(
〈 vc〉c − vp

p
)
|| 〈 vc〉c − vp

p||, (6.5.1)where the ontinuum veloity of Equation (6.2.21) has been replaed by the relativeveloity.6.6 Asymptoti mathingAsymptoti mathing of Equations (6.4.15) and (6.5.1), yields a result for the momen-tum transfer between the partile- and the ontinuum phases, whih is appliable to
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the intermediate Reynolds numbers:

Ipc = −
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1/s

(
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p
)
. (6.6.1)For simpliity the averaging notation is dropped and the �nal expressions for ontinuum-and partile momentum onservation expressions are thus given respetively by

ρc
∂ǫc vc
∂t
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,(6.6.2)and
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(
vc − vp

)
.(6.6.3)The values of the drag oe�ient, cd, and the asymptoti mathing parameter, s, areunknown and alulated retrospetively following omparison with existing empirialdata sets.6.6.1 Setting the �tting parametersThe expression for the momentum transfer between the partiles and its surroundingontinuum, given by Equation (6.6.1), may be written in terms of amomentum transferoe�ient, β, as

I tot = −β
(
vc − vp

)
, (6.6.4)
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where β is given in terms of the Reynolds number for two phase �ow,
Repc = ρcǫcdp|| vc − vp||/µc:
β =





µcǫp

d2p
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1/s

,(6.6.5)whih, in turn, may be expressed as the sum of its Dary, βo, and the Forhheimeromponent, β∞, as
β = (βs

o + βs
∞)1/s , (6.6.6)where

βo =
µcǫp
d2p
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)(
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 , (6.6.7)and

β∞ =
1

2

cdµc

d2p

ǫpǫc(
1− ǫ

2/3
p

)2Repc. (6.6.8)The inlination of Equations (6.6.7), (6.6.8) and their ombined e�et, given by Equa-tion (6.6.6), are illustrated in Figure 6.7 for a paked bed porosity, ǫc = 0.4, and a dragoe�ient value, cd = 1.95. From Figure 6.7 it is seen that a derease in the value forthe shifting parameter, s, moves the β-urve loser to its asymptotes.A cd-value of 1.9 is reommended for paked beds (ǫ ≈ 0.4) by Du Plessis and Woudberg(2008). However, for the limiting values of ǫc → 1, that is: for extremely dilute solu-tions, experimental data given in Chapter 9 suggests a drag oe�ient orrespondingto the Stokes drag oe�ient for a single partile, cd = 0.44, and a shifting parameter,
s = 0.6.
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Figure 6.7: In�uene of shifting parameter, s, on the momentum transfer oe�ient, β.This onludes the losure proedure for the momentum onservation equations. InChapter 7, Equations (6.6.2) and (6.6.3) will be disretised in order to be subjeted tonumerial analysis in Chapter 8.
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Chapter 7Numerial alulation of the �ow �eld
In this hapter the formulation for the disrete form of the onservation equations isdisussed and emphasis is plaed on the disretisation onept, and in partiular, theontrol volume formulation. Attention is given to soure term linearisation, interpo-lation methods, the upwind sheme as well as the staggered grid method of Patankar(1980) and the resulting salar and vetor ontrol volumes are illustrated.A detailed review of the Tridiagonal Matrix Algorithm (TDMA), used to solve theequations, is given and ombined with an iterative Gauss-Seidel method. Finally, theimplementation of the Semi Impliit Method for Pressure Linked Equations (SIMPLE)for two-phase �ow will be desribed and a shemati of the algorithm given.7.1 Priniple of disretisationDisretisation of the analytial equations presented in Chapter 6, is the �rst step takenin rendering them suitable for numerial implementation. In order to obtain a dis-rete representation of the onservation expressions, various methods, inluding �nitedi�erene, �nite element, and �nite volume methods, may be applied.The urrent work adopts the ontrol-volume method for whih the domain is dividedinto a number of non-overlapping ontrol volumes suh that there is one ontrol volumesurrounding eah grid point. The di�erential equation is integrated over eah ontrolvolume. Pieewise pro�les expressing the variation of the dependent variable betweengrid nodes are used to evaluate the required integrals. This approah yields a disreteequation whih ontains the values of the dependent variable for a group of grid nodes.92
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7.1. Priniple of disretisation 93
The disretisation equation, obtained in this manner, expresses the onservation prin-iples for the dependent variable over a ontrol volume, just as the di�erential equationexpressed it for an in�nitesimal di�erential element.An attrative feature of the ontrol-volume formulation is that the resulting solutionwould imply that the integral onservation of quantities suh as mass or momentum isexatly satis�ed over any group of ontrol volumes and thus over the whole alulationdomain.Consider a two-dimensional problem and the partial grid shown in Figure 7.1.

u-ontrol volume
v-ontrol volumesalar ontrol volumeboundary nodeinternal node

δx

∆xP ∆xE

∆yP

δyn PW ENNW NE
SSW SEw ensnw neswSw Sese

Nw NenW nEsW sE
Figure 7.1: Grid arrangement.The grid nodes of the alulation domain will be referred to as boundary nodes whereasthe remainder will be known as internal nodes. Around eah of these internal nodesa ontrol volume exists. Following Pratie B of Patankar (1980), ontrol volumes forthe salar values, i.e. pressure- and volume fration values, are entred around thenodes, whereas the ontrol volumes for the vetor quantities for the x- and y diretedveloities are staggered to the north and east diretions of the salar ontrol volume,respetively, as illustrated in Figure 7.1.
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Grid staggering is done to prevent wavy pressure �elds to be mistaken for uniform�elds sine adjaent, and not alternating nodes, are used in alulations (Patankar(1980)). The veloity omponents are alulated for nodes that lie on the faes of thesalar ontrol volume and onsequently the di�erene between the pressures at nodesE and P are used to alulate the pressure fore ating on the ontrol volume for the
x-omponent of the veloity.Heneforth the ontrol volumes for the disretisation of the pressure and the volumefration quantities will be referred to as salar ontrol volumes, whereas the ontrolvolumes for the x- and y-direted veloities, indiated by the hathed areas in Figure7.1, will be referred to as the u- and v-ontrol volumes, respetively.7.2 Disretisation for the momentum onservationequationsThe unsteady onvetion-di�usion equations, given in Chapter 6 by Equations (6.6.2)and (6.6.3), are written in terms of their diretional omponents and, although al-ways implied, the averaging notation is omitted.1 The diretional omponents of theontinuum phase are given by
ρcǫc

∂uc

∂t
+ ρcǫcuc

∂uc

∂x
+ ρcǫcvc

∂uc

∂y
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∂x

(
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∂uc

∂x
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∂
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(
ǫc
∂uc
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+ Sx(7.2.1)and
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∂vc
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∂y

(
ǫc
∂vc
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)
+ Sy.(7.2.2)The orresponding expressions for the partiulate phase are

ρpǫp
∂up
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∂y
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∂vp
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)2

− Sx(7.2.3)1For a full derivation the reader is referred to Appendix F.
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and
ρpǫp
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− Sy.(7.2.4)The soure terms, Sx and Sy, appearing in Equations (7.2.1) - (7.2.4), are respetivelygiven by
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(vc − vp)(7.2.6)Following Patankar (1980), eah of these soure terms may be written as a linearfuntion of the dependent variable, φ, under onsideration,
S = Sc+ Spφ. (7.2.7)Soure term linearisations for the ontinuum phase in the x and y-diretions are re-spetively given by

Sx = Scxc + Spuc, (7.2.8)and
Sy = Scyc + Spvc, (7.2.9)where
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and
Scyc =
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.(7.2.12)Soure term linearisation for the partiulate phase is treated in a similar manner withthe linearisation omponents for the x− and y-diretions, respetively, given by
Sx
p = −Scxp − Spup, (7.2.13)and
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vc,(7.2.16)and Sp is given by Equation (7.2.12).
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7.3 Disretisation of the momentum onservationequationsThe u-and v-ontrol volumes, illustrated in Figure 7.1, are used for the disretisationof the x-and y-omponents of the momentum onservation equations, respetively, andthe disrete equations established from integration over suh volumes will resemble

aecφ
e = aeec φ

ee + awc φ
w + aNe

c φNe + aSec φSe + bc −
[
ǫEc p

E
c − ǫPc p

P
c

]
∆yP , (7.3.1)and

ancφ
n = anEc φnE + anWc φnW + annc φnn + ascφ

s + bc − [ǫnec pnec − ǫnwc pnwc ] ∆xP , (7.3.2)where, for example, φe will be the u-veloity aross the e-interfae shown in Figure 7.1.7.3.1 The ontinuum phaseIn this setion a stepwise proedure will be presented for the disretisation of the x-omponent of the ontinuum momentum onservation expression given by Equation(7.2.1). The disretisation is begun by integrating eah omponent of the equationover the u-ontrol volume illustrated in Figure 7.1 as well as from time t0 to time t.The resulting disrete form of eah integral expression is listed in Table 7.1. In Table7.1 u0,e
c denotes the ontinuum veloity aross the e-interfae at time t = 0.The onvetion and di�usion expressions are denoted by the terms listed in Table 7.2and are substituted into the disretised expressions given by the right-hand side olumnof Table 7.1. The resulting expressions are reassembled and yield the following for the

x-omponent of the momentum onservation equation for the ontinuum phase:
ρcǫ

e
c [u

e
c − u0,e

c ] δxe∆y

∆t
+ FE

c uE
c − F P

c uP
c + F ne

c une
c − F se

c use
c = −ǫec

[
pEc − pPc

]
∆yP

+DE
c

(
∂uc

∂x

)E

∆xE −DP
c

(
∂uc

∂x

)P

∆xP +Dne
c

(
∂uc

∂y

)ne

δyn −Dse
c

(
∂uc

∂y

)se

δys +

Scxcδxe∆yP + Spucδxe∆yP . (7.3.3)
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Table 7.1: Disretised expressions for the x-direted ontinuum momentum onservationequation. Integral expression Disretised expression
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P Spucdxdydt Spucδxe∆yP∆tThe remaining derivatives in Equation (7.3.3) are disretised by assuming that theymay be approximated with a pieewise linear pro�le over the ontrol volume. Thedisrete form of these di�erential terms are then given by
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. (7.3.7)Substitution of the disrete approximations, given by Equations (7.3.4)-(7.3.7), into

Stellenbosch University  http://scholar.sun.ac.za



7.3. Disretisation of the momentum onservation equations 99
Table 7.2: Convetion and di�usion oe�ients for the ontinuum momentum onservationequation. Convetion oe�ient Di�usion oe�ient
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Scxcδxe∆yP + Spucδxe∆yP . (7.3.8)Further manipulation of Equation (7.3.8) entails the use of the upwind sheme fromwhih the onvetion terms are alulated under the assumption that the value of the
x-omponent ontinuum veloity, uc, at an interfae is equal to its value at the gridpoint on the upwind side of suh a fae (Patankar (1980)). This implies that
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c = ue
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c = uee

c if FE
c < 0.The upwind sheme then implies that,
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c, (7.3.12)where the double braket notation used by Patankar (1980) is adopted to indiatethe maximum of two values. The terms of the upwind sheme, listed as Equations
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(7.3.9)-(7.3.12), are substituted into Equation (7.3.8) and it follows that

[
−Spδxe∆yP +

ρcǫ
e
cδxe∆yP
∆t

+ [[FE
c , 0]] +DE

c + [[−F se
c , 0]] +Dse

c + [[−FP
c , 0]] +DP

c + [[Fne
c , 0]] +Dne

c

]
uec =

(
[[−FE

c , 0]] +DE
c

)
ueec +

(
[[FP

c , 0]] +DP
c

)
uwc +

(
[[−Fne

c , 0]] +Dne
c unEc

)
uNe
c +

(
[[F se

c , 0]] +Dse
c uSec

)
uSec −

ǫec
[
pEc − pPc

]
∆yP +

ρcǫ
e
cu

0,e
c δxe∆yP
∆t

+ Scxc δxe∆yP . (7.3.13)Continuity of the �ow is assumed and hene F P
c + F se

c = FE
c + F ne

c . Appliation ofthis result to Equation (7.3.13), yields
aecu

e
c = aeec u

ee
c + awc u

w
c + aNe

c uNe
c + aSec uSe

c + bc − ǫec
[
pEc − pPc

]
∆yP , (7.3.14)where

aeec = [[−FE
c , 0]] +DE

c (7.3.15)
awc = [[F P

c , 0]] +DP
c (7.3.16)

aNe
c = [[−F ne

c , 0]] +Dne
c (7.3.17)

aSec = [[F se
c , 0]] +Dse

c (7.3.18)
ae,0c =

ρcǫ
e
cδxe∆y

∆t
(7.3.19)

bc = ae,0c ue,0
c + Scxc δxe∆y (7.3.20)

aec = aeec + awc + aNe
c + aSec + ae,0c − Sp. (7.3.21)Equations (7.3.14)-(7.3.21) onlude the derivation of the disrete approximation ofthe x-omponent momentum onservation equation, given by Equation (7.2.1).7.3.2 The partiulate phaseThe x-omponent of the partile momentum expression is also disretised over the u-ontrol volume, illustrated in Figure 7.1. Let Sd = − ǫ2pρpdp

4

(
∂up
∂y

+ ∂vp
∂x

)2, denote thepartile interation term. It is assumed that Sd may be treated as a soure term andit will therefore be evaluated at e. The disrete terms are listed in Table 7.3. Di�usionterms are absent and onvetion is treated in the same manner as for the ontinuum.The onvetion expressions are listed in Table 7.4.
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Table 7.3: Disretised expressions for the x-direted partile momentum onservation equa-tion. Integral expression Disretised expression

∫ ne
se

∫ E
P

∫ t
t0
ρpǫp

∂up
∂t dtdxdy ρpǫ

e
p

[
uep − u0,ep

]
δxe∆yP

∫ t
t0

∫ ne
se

∫ E
P ρcǫpup

∂up
∂x dxdydt ρp

[
ǫEp u

2,E
p − ǫPp (u

P
p )

2
]
∆yP∆t

∫ t
t0

∫ E
P

∫ ne
se ρpǫpvp

∂up
∂y dydxdt ρp

[
ǫnep vnep unep − ǫsep vsep usep

]
δxe∆t

∫ t
t0

∫ ne
se

∫ E
P −ǫp

∂pc
∂x dxdydt −ǫep

[
pEc − pPc

]
∆yP∆t

∫ t
t0

∫ ne
se

∫ E
P Sddydxdt Sdδxe∆yp∆t

∫ t
t0

∫ ne
se

∫ E
P Scxpdxdydt Scxpδxe∆yP∆t

∫ t
t0

∫ ne
se

∫ E
P Spupdxdydt Spupδxe∆yP∆t

Table 7.4: Convetion oe�ients for the partiulate momentum equation.Convetion oe�ient
FP
p = ρǫPp u

P∆yP

FE
p = ρǫEp u

E∆yP

F se
p = ρǫsep vseδxe

Fne
p = ρǫnep vneδxe
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These onvetion expressions are substituted into the expressions given in Table 7.3and the disretised expression for the partiulate momentum onservation is at thisstage given by
ρpǫ

e
pδxe∆yP

∆t
ue
p + FE

p uE
p − F P

p uP
p + F ne

p une
p − F se

p use
p =

ρpǫ
e
pδxe∆yP

∆t
u0,e
p + Sdδxe∆yP + Scxpδxe∆yP + Spucδxe∆yP − ǫep

[
pEc − pPc

]
∆yP .(7.3.22)The upwind sheme is applied to Equation (7.3.22) and it follows that

aepu
e
p = aeep u

ee
p + awp u

w
p + aNe

p uNe
p + aSep uSe

p + bp − ǫep
[
pEc − pPc

]
∆yP , (7.3.23)where

aeep = [[−FE
p , 0]] +DE

p (7.3.24)
awp = [[F P

p , 0]] +DP
p (7.3.25)

aNe
p = [[−F ne

p , 0]] +Dne
p (7.3.26)

aSep = [[F se
p , 0]] +Dse

p (7.3.27)
ae,0p =

ρpǫ
e
pδxe∆y

∆t
(7.3.28)

bp = ae,0p ue,0
p +

(
Scxp + Sd

)
δxe∆y (7.3.29)

aep = aeep + awp + aNe
p + aSep + ae,0p − Sp. (7.3.30)Equations (7.3.23)-(7.3.30) represent the �nal disretised form of Equation (7.2.3).The disrete forms for the x-omponents of the momentum equations for both phaseshave been derived in detail. The y-omponents are disretised in a similar mannerbut the disretisation is done over the v-ontrol volume indiated in Figure 7.1. Theneighbouring nodes for the u-ontrol volume were given by P , E, se and ne. Theneighbouring nodes for the v-ontrol volume are given by nw, ne, P , and N and theorresponding onvetion and di�usion oe�ients are listed in Table 7.5 where the

α-notation orresponds to c or p for the ontinuum or partiulate ases, respetively.
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Table 7.5: Convetion and di�usion oe�ients for y-ontinuum momentum onservationequation. Convetion oe�ient Di�usion oe�ient

Fnw
α = ραǫ

nw
α unwα δyn Dnw

c = µcǫ
nw
c

δyn
δxw

Fne
α = ραǫ

ne
α uneα δyn Dne

c = µcǫ
ne
c

δyn
δxe

FP
α = ραǫ

P
αv

P
α∆xP DP

c = µcǫ
P
c

∆xP
∆yP

FN
α = ραǫ

N
α vNα ∆xP DN

c = µcǫ
N
c

∆xP
∆yNThe y-omponent of the disrete momentum onservation equation for the ontinuumis given by

anc v
n
c = anWc vnWc + anEc vnEc + ascv

s
c + annc vnnc + bc − ǫnc

[
pNc − pPc

]
∆xP , (7.3.31)where

anWc = [[F nw
c , 0]] +Dnw

c (7.3.32)
anEc = [[−F ne

c , 0]] +Dne
c (7.3.33)

asc = [[F P
c , 0]] +DP

c (7.3.34)
annc = [[−FN

c , 0]] +DN
c (7.3.35)

an,0c =
ρcǫ

n
c δxe∆y

∆t
(7.3.36)

bc = an,0c un,0
c + (Scyc + ρcgǫ

n
c ) δxe∆yP (7.3.37)

an = anWc + anEc + asc + annc + ae,0c − Sp. (7.3.38)The y-omponent of the disrete momentum equation for the partiles is given by
anpv

n
p = anWp vnWp + anEp vnEp + aspv

s
p + annp vnnp + bp − ǫnp

[
pNc − pPc

]
∆xP ,(7.3.39)
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where

anWp = [[F nw
p , 0]] (7.3.40)

anEp = [[−F ne
p , 0]] (7.3.41)

asp = [[F P
p , 0]] (7.3.42)

annp = [[−FN
p , 0]] (7.3.43)

an,0p =
ρpǫ

n
pδxe∆y

∆t
(7.3.44)

bp = an,0p un,0
p +

(
(ρp − ρc)gǫ

n
p + Sd + Scyp

)
δxe∆yP (7.3.45)

an = anWp + anEp + asp + annp + ae,0p − Sp. (7.3.46)This onludes the disretisation for the momentum onservation equations. In thefollowing setion the disretisation for the mass onservation equation will be disussed.7.4 Disretisation of the mass onservation equationThe expression for ontinuity of the ontinuum was presented in Chapter 4 by Equation(4.4.6) and is restated here:
∂ǫc
∂t

+
∂ǫcuc

∂x
+

∂ǫcvc
∂y

= 0, (7.4.1)where averaging notation has been omitted but is, however, always implied. A dis-retised expression is derived, using the salar-ontrol volume whih is indiated bythe shaded setion of Figure 7.1. The terms resulting from the integration of Equa-tion (7.4.1) over the salar-ontrol volume are listed in Table 7.6 and the onvetionoe�ients are listed in Table 7.7.
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Table 7.6: Disretised expressions for ontinuum mass onservation equation over P -ontrolvolume. Integral expression Disretised expression

∫ n
s

∫ e
w

∫ t
t0

∂ǫc
∂t dtdxdy

(
ǫPc − ǫ0,Pc

)
∆xP∆yP

∫ t
t0

∫ n
s

∫ e
w

∂ǫcuc
∂x dxdydt [(ǫcuc)

e − (ǫuc)
w]∆yP∆t

∫ t
t0

∫ e
w

∫ n
s

∂ǫcvc
∂y dydxdt [(ǫcvc)

n − (ǫcvc)
s] ∆xP∆t

Table 7.7: Convetion oe�ients for the ontinuum mass onservation equation.Convetion oe�ient
F e
c = uec∆yP

Fw
c = uwc ∆yP

Fn
c = vnc∆xP

F s
c = vsc∆xP
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Substitution of the onvetion oe�ients into the expressions given on the right-handside of Table 7.6, yields the following disrete form for mass onservation:

(
ǫPc − ǫ0,Pc

)
∆xP∆yP

∆t
+ ǫecF

e
c − ǫwc F

w
c + ǫncF

n
c − ǫscF

s
c = 0. (7.4.2)The upwind sheme for the ontinuum volume fration is given by

F e
c ǫ

e
c = [[F e

c , 0]]ǫ
P
c − [[−F e

c , 0]]ǫ
E
c (7.4.3)

Fw
c ǫ

w
c = [[Fw

c , 0]]ǫWc − [[−Fw
c , 0]]ǫPc (7.4.4)

F n
c ǫ

n
c = [[F n

c , 0]]ǫ
P
c − [[−F n

c , 0]]ǫ
N
c (7.4.5)

F s
c ǫ

s
c = [[F s

c , 0]]ǫ
S
c − [[−F s

c , 0]]ǫ
P
c . (7.4.6)Reassembling the terms given in Table 7.6 and subsequently applying the upwindexpressions, yield the following disretised form of Equation (7.4.1):

aPc ǫ
P = aEc ǫ

E
c + aWc ǫWc + aNc ǫ

N
c + aSc ǫ

S
c + bc, (7.4.7)where

a0,Pc =
∆xP∆yP

∆t
, (7.4.8)

bc = a0,Pc ǫ0,Pc , (7.4.9)
aEc = [[−F e

c , 0]], (7.4.10)
aWc = [[Fw

c , 0]], (7.4.11)
aNc = [[−F n

c , 0]], (7.4.12)
aSc = [[F s

c , 0]], (7.4.13)
aPc = aEc + aWc + aNc + aSc + a0,Pc . (7.4.14)Equations (7.4.7)-(7.4.14) are the disrete form of Equation (7.4.1) and will at a laterstage be used to solve the ontinuum volume frations.7.5 Pressure and veloity orretionsThe momentum equations an be solved only when the pressure �eld is given or issomehow estimated. Unless the orret pressure �eld is employed, the resulting veloity�eld will not satisfy the ontinuity equation. Suh an imperfet veloity �eld, based on
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a guessed pressure �eld, p∗, will be denoted by u∗ and v∗. The starred veloity �eldswill result from the solution of the following disretisation equations:

aecu
∗e
c = aeec u

∗ee
c + awc u

∗w
c + aNe

c u∗Ne
c + aSec u∗Se

c + bc − ǫec
[
p∗Ec − p∗Pc

]
∆yP , (7.5.1)and

anc v
∗n
c = anWc vnW∗c + a∗nEc vnEc + a∗sc vsc + a∗nnc vnnc + bc − ǫnc

[
p∗Nc − p∗Pc

]
∆xP . (7.5.2)The orret veloity �eld is denoted by

aecu
e
c = aeec u

ee
c + awc u

w
c + aNe

c uNe
c + aSec uSe

c + bc − ǫec
[
pEc − pPc

]
∆yP , (7.5.3)and

anc v
n
c = anWc vnWc + anEc vnEc + ascv

s
c + annc vnnc + bc − ǫnc

[
pNc − pPc

]
∆xP . (7.5.4)The aim is to improve the guessed pressure p∗ suh that the resulting starred veloity�eld will progressively satisfy the ontinuity equation more aurately. This is ahievedby introduing the following relations,

pc = p∗c + p
′

c (7.5.5)
uc = u∗

c + u
′

c, (7.5.6)where starred entities are approximations whih are subtrated from the real values toyield the primed orretion terms. Subtrating Equation (7.5.1) from Equation (7.5.3),yields
aecu

′e
c = aeec u

′ee
c + awc u

′w
c + aNe

c u
′Ne
c + aSec u

′Se
c − ǫec

[
p
′E
c − p

′P
c

]
∆yP . (7.5.7)Following Patankar (1980), all entries on the right hand side of Equation (7.5.7), exeptfor the pressure orretion terms, are dropped. (An extensive disussion on the omissionof these terms is given by Patankar (1980).) The resulting orretion equation is givenby

aecu
′e
c = ǫec

[
p
′P
c − p

′E
c

]
∆yP , (7.5.8)and may be rewritten as

u
′e
c = d e

c

[
p
′P
c − p

′E
c

]
, (7.5.9)
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where dec = (ǫec∆yP ) / (a

e
c). Substitution of Equation (7.5.6) into Equation (7.5.9) yieldsthe veloity-orretion formula:

ue
c = u∗e

c + d e
c

[
p
′P
c − p

′E
c

]
. (7.5.10)Similar equations may be dedued for the neighbouring ontrol volumes. These aregiven by Equations (7.5.11)-(7.5.13):

uw
c = u∗w

c + dwc

[
p
′W
c − p

′P
c

] (7.5.11)
vnc = v∗nc + dnc

[
p
′P
c − p

′N
c

] (7.5.12)
vsc = v∗sc + dsc

[
p
′S
c − p

′P
c

]
. (7.5.13)The veloity orretion formulae for the partiulate phase are derived in a similarmanner and are given by

ue
p = u∗e

p + d e
p

[
p
′P
c − p

′E
c

] (7.5.14)
uw
p = u∗w

p + dwp

[
p
′W
p − p

′P
p

] (7.5.15)
vnp = v∗np + dnp

[
p
′P
p − p

′N
p

] (7.5.16)
vsp = v∗sp + dsp

[
p
′S
p − p

′P
p

]
, (7.5.17)where dep, in Equation (7.5.14), is given by dep =

(
ǫep∆yP

)
/
(
aep
). Similar equations holdfor dwp , dnp , and dsp.By integrating Equation (7.4.1) over the salar-ontrol volume, illustrated in Figure 7.1,the ontinuity equation for the ontinuum may now be used to onstrut an equationfor the pressure orretion. The result is given by

(
ǫPc − ǫ0,Pc

)
∆xP∆yP

∆t
+ ǫecu

e
c∆yP − ǫwc u

w
c ∆yP + ǫnc v

n
c∆xP − ǫscv

s
c∆xP = 0. (7.5.18)Equations (7.5.10)-(7.5.13) are substituted into Equation (7.5.18) and it follows that

aPc p
′P
c = aEc p

′E
c + aWc p

′W
c + aNc p

′N
c + aSc p

′S
c + bc, (7.5.19)
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where

aEc = ǫec∆yPd
e
c (7.5.20)

aWc = ǫwc ∆yPd
w
c (7.5.21)

aNc = ǫnc∆xP d
n
c (7.5.22)

aSc = ǫsc∆xPd
s
c (7.5.23)

aPc = aEc + aWc + aNc + aSc (7.5.24)
bc =

(
ǫ0,Pc − ǫPc

)
∆xP∆yP

∆t
−∆yP (ǫecu

∗e
c − ǫwc u

∗w
c )−∆xP (ǫnc v

∗n
c − ǫscv

∗s
c ).(7.5.25)Equations (7.5.19)-(7.5.25) onlude the derivation of the pressure orretion equation.Where alulations of the oe�ients for the disrete equations require the values forvariables at loations where they are not expliitly spei�ed, interpolation betweenneighbouring known values are used to approximate them. In this work, veloitiesfor the onvetion oe�ients were alulated using the arithmeti mean between itsneighbours whereas porosities were approximated using the harmoni mean of theiradjaent values.7.6 RelaxationThe omission of the neighbouring veloity terms in the derivation of the p′-equationleads to exaggerated pressure orretions. To remedy this, Patankar (1980) reom-mends underrelaxation in the momentum equations: The momentum equations maybe written in trunated form as

aeue
α = anbunb + β (7.6.1)and expressed as

ue =
anbunb + β

ae
, (7.6.2)where the nb supersript indiates the neighbouring nodi of e.If u∗e is added to and subtrated from the right-hand side of Equation (7.6.2), it yields

ue = u∗e +

(
anbunb + β

ae
− u∗e

)
, (7.6.3)
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where the ontents of the parentheses represent the hange in ue produed by theurrent iteration. This hange is modi�ed by the introdution of a relaxation fator α,so that

ue = u∗e + α

(
anbunb + β

ae
− u∗e

α

)
, (7.6.4)or

ae

α
ue = anbunb + β + (1− α)

ae

α
u∗e. (7.6.5)A suitable value of α is found by experiene and from exploratory omputations for agiven problem. The pressure orretion is underrelaxed by replaing Equation (7.5.5)with

pc = αpp
′

c + p∗c , (7.6.6)where Patankar (1980) reommends αp = 0.8.7.7 Solution of the disretised equationsIn previous setions, methods were disussed to disretise the governing equations oftwo-phase �ow. This proess resulted in a system of linear algebrai equations whihneeds to be solved. The omplexity of omputation depends on the dimensionality ofthe problem, the number of grid nodes and the disretisation pratie.Any valid proedure an be used to solve the algebrai equations, but available om-puter resoures set a onstraint. The solution methods may be divided into the ate-gories of diret and indiret (or iterative) methods. Diret methods inlude Cramer'smatrix inversion and Gaussian elimination. The number of operations required for thesolution of a system of N equations with N unknowns with a diret method is of theorder of N3. It is also required that allN2 oe�ients of the set of equations are stored.The omputational time is therefore higher than desired.On the ontrary, iterative methods are based on the repeated appliation of a relativelysimple algorithm whih, after a number of repetitions, yields a onverged result. Ex-amples of suh methods inlude the Jaobi and Gauss-Seidel point-by-point iterationmethods. The total number of operations are typially in the order of N iterationsper yle. Convergene is subjet to the system of equations omplying to fairly exat
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riteria. The main advantage of these iterative solution methods is that only non-zerooe�ients of the equations need to be stored in memory and thus suh methods aregenerally more eonomial than their diret ounterparts.Jaobian and Gauss-Seidel iterative methods are easy to implement but an be slowto onverge when the system is large, and are deemed ill-suited for general CFD pro-edures. An alternative method, developed by L.H. Thomas in 1949, known as theThomas- or the Tridiagonal Matrix Algorithm (TDMA) is used instead (Conte and deBoor (1972)). The TDMA is a diret method for one-dimensional situations, but an beapplied iteratively to solve multi-dimensional problems and therefore beame a popularmethod for CFD odes. In the following setion the TDMA method is disussed.7.7.1 The Tridiagonal matrix algorithmThe designation, TDMA, refers to the fat that when the matrix of the oe�ients ofthe equations is written, all the nonzero oe�ients align along three diagonals of thematrix. The TDMA on its own is a diret method and will be desribed as one in thissetion of the work. It is later ombined with the Gauss-Seidel method to form part ofan iterative (or indiret) method for the alulation of grid node values.Consider a system of equations that has a tridiagonal form:

φ1 = C1

−β2φ1 +D2φ2 −α2φ3 = C2

−β3φ2 +D3φ3 −α3φ4 = C3

−β4φ3 +D4φ4 −α4φ5 = C4

... = ...

−βnφn−1 +Dnφn −αnφn+1 = Cn

φn+1 = Cn+1(7.7.1)The values of φ1 and φn+1 are known boundary values. Eah entry in the set given byEquation (7.7.1) may be written in the following general form:
−βjφj−1 +Djφj − αjφj+1 = Cj, (7.7.2)
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and the set given by Equation (7.7.1) may then be expressed as:

φ2 =
α2

D2
φ3 +

β2

D2
φ1 +

C2

D2
(7.7.3)

φ3 =
α3

D3
φ4 +

β3

D3
φ2 +

C3

D3
(7.7.4)

φ4 =
α4

D4
φ5 +

β4

D4
φ3 +

C4

D4
(7.7.5)

... = ... (7.7.6)
φn =

αn

Dn
φn+1 +

βn

Dn
φn−1 +

Cn

Dn
. (7.7.7)The set given by Equations (7.7.3)-(7.7.7) is solved by forward elimination and thenby bak substitution.The forward eliminations ommene with the elimination of φ2 from Equation (7.7.4)by substituting Equation (7.7.3) into Equation (7.7.4) and subsequently yielding

φ3 =
α3

D3
φ4 +

β3

D3

[
α2φ3 + β2φ1 + C2

D2

]
+

C3

D3
(7.7.8)

=

[
α3

D3 − β3
α2

D2

]
φ4 +



β3

(
β2

D2
φ1 +

C2

D2

)
+ C3

D3 − β3
α2

D2


 . (7.7.9)If the following notation is employed

A2 =
α2

D2
and C

′

2 =
β2

D2
+

C2

D2
, (7.7.10)Equation (7.7.9) may be written as

φ3 =

[
α3

D3 − β3A2

]
φ4 +

[
β3C

′

2 + C3

D3 − β3A2

]
. (7.7.11)Letting

A3 =
α3

D3 − β3A2
and C

′

3 =
β3C

′

2 + C3

D3 − β3A2
, (7.7.12)allows for Equation (7.7.11) to be written as,

φ3 = A3φ4 + C
′

3. (7.7.13)The bak-substitution proess begins with the formulation of a general form for thereurrene relationship of Equation (7.7.13):
φj = Ajφj+1 + C

′

j, (7.7.14)
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7.7. Solution of the disretised equations 113
where

Aj =
αj

Dj − βjAj−1

(7.7.15)
C

′

j =
βjC

′

j−1 + Cj

Dj − βjAj−1
. (7.7.16)These formulae omply to the boundary nodes, j = 1 and j = n+ 1, by setting

A1 = 0 and C
′

1 = φ1

An+1 = 0 and C
′

n+1 = φn+1.For a system of equations to be solved it is required that they be arranged in theform of Equation (7.7.2) and expressions for αj, βj, Dj and C
′

j are identi�ed from thedisretised expressions. The values of Aj and C
′

j are alulated starting at j = 2 andgoing up to j = n by applying Equation (7.7.16).Sine the value for φn+1 is a spei�ed boundary value, the values for φj an be obtainedin reverse order by means of the reurrene formula given in Equation (7.7.14).7.7.2 Iterative appliation of the TDMAIn this setion it is illustrated how the TDMA may be applied iteratively to solve asystem of equations. Consider the grid illustrated in Figure 7.2 in onjuntion with ageneral disrete equation of the form
aPφP = aWφW + aEφE + aSφS + aNφN + b. (7.7.17)The system is solved by applying the TDMA along a hosen line, for example north-south lines. The disrete equation is rearranged in the form,
−aSφS + aPφP − aNφN = aWφW + aEφE + b. (7.7.18)The right-hand side of Equation (7.7.18) is assumed to be temporarily known. Equation(7.7.18) is in the form of Equation (7.7.2) where αj ≡ aN , βj ≡ aS, Dj ≡ aP and

Cj ≡ aWφW + aEφE + b.It is now possible to solve in the north-south-diretion of the hosen line for values
j = 2, 3, 4, ..., n as shown in Figure 7.2.
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xxx
x

xxx
x

y x
Known boundary valuesPoints at whih values are alulatedx Points at whih values are onsideredto be temporarily known

North

South
n

Figure 7.2: Representation of the line-by-line method.7.8 Assembly of a omplete methodThe SIMPLE algorithm gives a method of alulating pressure and veloities. GenerallySIMPLE is applied to solve a single veloity value, however, in this work the ontinuumand partile veloities are solved together, as illustrated in the shemati illustrated inFigure 7.3. The solution proedure an be surmised as follows:The pressure and veloities are initialised and the x-omponent momentum equationsfor the ontinuum and the partiulate phase, given by Equations (7.3.14) and (7.3.23),respetively, are solved. This is followed by solving the y-omponent momentum equa-tions for the ontinuum and the partiulate phase, given by Equations (7.3.31) and(7.3.39), respetively. The pressure orretion is then obtained from Equation (7.5.19)and the pressure and ontinuum veloities are updated. The proess is repeated untilthe relative perentage di�erene between veloity values for two suessive iterationsfalls below 0.1 %� a riterion that for a time step of 0.05 s is usually satis�ed withinthe order of a 100 yles.The relative perentage di�erene is obtained by alulating the sum of the veloitiesfor eah grid row and then determining the mean of these values for the relevant timestep. The same is done for the next time step and the perentage di�erene of thesetwo values, x1 and x2, is alulated by dividing the absolute di�erene of the two valuesby the average value of the same two values as shown in the equation below:
%Di� =

|x1 − x2|
|(x1 + x2)/2|

× 100. (7.8.1)

Stellenbosch University  http://scholar.sun.ac.za



7.8. Assembly of a omplete method 115
The �nal veloity values are then used to alulate the ontinuum volume frationsfrom Equation (7.4.7) whereafter the partile volume frations follow sine ǫc + ǫp = 1.The time is updated with a user-spei�ed time step and the new volume frations areused to solve the next round of momentum onservation equations.
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7.8. Assembly of a omplete method 116
Start initialize time Input pressure, veloity, onentrationSolve x-diretion �uid momentumSolve x-diretion partile momentumSolve y-diretion �uid momentumSolve y-diretion partile momentumSolve pressure orretion equation

update pressure and veloities

Corret pressure and veloitiesConvergene?Solve solid onentration
Convergeneof ǫp?

time ≤timemax?

Updatetime

Update
ǫp

stop

no yes

no
no yes

yesFigure 7.3: Adapted SIMPLE algorithm for two-phase �ow.
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7.9. Implementation of boundary onditions 117
7.9 Implementation of boundary onditionsConsider a two-dimensional problem and the partial grid shown in Figure 7.4.

u-ontrol volume
v-ontrol volumesalar ontrol volume

i : u-nodes
j : v-nodes
I : x-diretion salar nodes
J : y-diretion salar nodesboundary nodeinternal node

∆x

J/j = 1

j = 2

j = 3

J = 2

J = 3

J = 4

I/i = 1 i = 2 i = 3
I = 2 I = 3 I = 4Figure 7.4: Grid arrangement.Around eah of the internal nodes a ontrol volume exists and Equation (7.7.17) pro-vides the neessary equations for all the unknown values at the internal grid nodes. Fora line along eah dimension, two of these equations will however involve the boundarynodes. Following Patankar (1980), attention is foused on the left-hand x-diretionboundary nodes adjaent to the internal nodes, I = 2 as illustrated in Figure 7.4. Forthe boundary ontrol volume used in Pratie B (Patankar (1980)), where grid nodesare plaed at the entres of ontrol volumes, the length of the �rst ontrol volume iszero, i.e. ∆xI=1 = 0.In this work the boundary onditions will onsist either of, given values, or a givengradient between the boundary and its internal neighbour. The equation for the left-hand side boundary node is given by,

φ1 = Binφ2 + Cin, (7.9.1)and the boundary expression for the right-hand side boundary is given by,
φN = BoutφN−1 + Cout. (7.9.2)
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7.10. Conlusions 118
If the boundary value is known, B and C are set to zero and the given value, re-spetively. In ase of a zero gradient ondition B = 1 and C = 0. In determining aboundary expression for the pressure the fat that the pressure gradient between anytwo nodes is onstant is used: In the urrent program it is taken into aount thatthe pressure gradient between nodes I = 1 and I = 2 is equal to the pressure gradientbetween nodes I = 2 and I = 3. It follows that,

P (1) = P (2)− [P (3)− P (2)]
δxe(1)

δxe(2)
. (7.9.3)The expression is modi�ed in order to inlude the option of a given pressure value. Itfollows that the resulting boundary expression for the inlet pressure is given by

P (1) = Bin

[
P (2)− [P (3)− P (2)]

δxe(1)

δxe(2)

]
+ Cin, (7.9.4)and the outlet pressure, P (N), is de�ned using the same gradient requirements,

P (N) = Bout

[
P (N − 1) + [P (N − 1)− P (N − 2)]

δxe(N − 1)

δxe(N − 2)

]
+ Cout. (7.9.5)Equations (7.9.1) and (7.9.2) are used to speify the boundary onditions for the ve-loity and volume frations, whereas Equations (7.9.4) and (7.9.5) will be used forpressure alulations.A similar proedure is followed for the "top" and "bottom" boundaries.7.10 ConlusionsThe disretised equations and the TDMA method along with the SIMPLE algorithm,illustrated in Figure 7.3, an now be implemented. In this work simulations were donein the Fortran programming language and the simulation ode was designated Two-phase motion simulation (2PMS). The results from these simulations are disussed inChapter 8.
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Chapter 8Numerial simulations
8.1 IntrodutionThe disrete expressions for momentum and mass transfer, derived and implementedinto the SIMPLE algorithm in Chapter 7, were implemented in Fortran and designatedTwo-Phase Motion Simulation (2PMS).In the �rst part of this hapter the emphasis is plaed on the validation of 2PMSfor elementary �ow simulations to evaluate the funtionality of the ode. This willbe followed by the validation of the mathematial model, derived in Chapters 3-6, forhorizontal and vertial two-phase �ow onditions and, where appliable, the omparisonof said simulated results to analytial expressions.In Chapter 9, vertial simulations, whih are performed here for various partile sizes,grid geometries, time-steps, and initial volume fration values, will also be veri�ed withphysial experiments performed at the Counil for Sienti� and Industrial Researh(CSIR) in Stellenbosh.8.2 Basi �ow simulationsSimulations were done to ensure that 2PMS orretly predits the motion of a �uidbetween parallel plates, over a porous bed and through an isotropi porous medium.Horizontal �ow simulations were onduted with a 200×30 size grid over a �ow domainmeasuring 200 m in length and 2 m in width.119
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8.2. Basi �ow simulations 120
8.2.1 Plane Poiseuille �owThe program was �rst validated for plane Poiseuille �ow: The input veloity at the leftside of the domain, illustrated in Figure 8.1, was set to uc = 0.1 cm/s and the density ofthe �uid was set to approximate that of water at room temperature: ρc = 1000 kg/m3.

uc

200 m 2 m
Figure 8.1: Setup for plane Poiseuille �ow simulation.A simulation was done for an open hannel with no-slip boundary onditions at theupper and lower edges, and zero gradient onditions were applied to the in- and outlets.The fully developed veloity pro�le obtained from this simulation is ompared to theanalytial equation for plane Poiseuille �ow in Figure 8.4 from whih it an be seenthat the numerial approximation followed the results of the analytial solution losely.8.2.2 Flow through a stationary porous mediumFor the same input onditions, dimensions and boundary onditions, a simulation wasdone in a medium with an isotropi partile volume fration of, ǫp = 0.5, onsisting ofgranular material with a 1 mm diameter and with a density of 2500 kg/m3. The setupfor the simulation is shown in Figure 8.2.

uc ǫp = 0.5

200 m 2 m
Figure 8.2: Setup for �ow simulation through a stationary porous medium.
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8.2. Basi �ow simulations 121
The drag approximation for slow visous �ow, given by Equation (6.4.15), was assumedto govern and was applied to yield the following expression for �ow through a stationaryporous medium:

µcǫc
∂2uc

∂y2
= ǫc

∂pc
∂x

+
µǫp
d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18


 uc. (8.2.1)Only the Dary part of the drag equation was used sine the Forhheimer omponentrenders the partial di�erential equation analytially unsolvable. The aforementionedomission is justi�ed by the hoie of input veloity whih yields a Reynolds number,

Re ≈ 1, whih is well within the visous regime.The pressure gradient was obtained from the numerial pressure output as 0.0013 Paand the partial di�erential expression given in Equation (8.2.1) was solved to obtain
uc =

dp
dx

exp
[
−

√
Ay√
µǫc

] [
−1 + exp

[√
Ay

µǫc

]] [
− exp

[
2
√
A

µǫc

]
+ exp

[√
Ay

µǫc

]]

A
[
1 + exp

[
2
√
A√

µǫc

]] , (8.2.2)where the onstant A in Equation (8.2.2) is given by
A =

µǫp
d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18


 . (8.2.3)As for the plane Poiseuille simulation, the results are illustrated in Figure 8.4 fromwhih it follows that the numerial values yielded is an aurate approximation to theanalytial solution, given by Equation (8.2.2).8.2.3 Flow past a stationary porous mediumThe �nal veri�ation for the program was done by examining results yielded for the

x-omponent �uid veloity pro�le when the boundary to the hannel is not a solid, butonsists of a porous medium, as illustrated in Figure 8.3.The analytial solution to this problem an be obtained from Neale and Nader (1974)but falls outside the sope of this researh. Their solution is, however, illustrated alongwith the simulated results in Figure 8.4 for �ow past a porous medium with a partilevolume fration of 0.5. The simulated result appears to be a good approximation ofthat given by Neale and Nader (1974).
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uc

ǫp = 0.5

200 m 2 m
Figure 8.3: Setup for �ow simulation past and through a porous medium.
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8.3. Two-phase �ow 123
8.3 Two-phase �owIn order to illustrate a simple two-phase �ow example, a deposit, of whih the on-stituent partiles have a diameter of 1 mm and a density of ρp = 2500 kg/m3, wasplaed at the entre of a stationary ontinuum, with a density of ρc = 1000 kg/m3, andallowed to settle under the in�uene of gravity alone. The setup for the simulation isillustrated in Figure 8.5.

3 m 30 m
x

y
15 m

100 mFigure 8.5: Setup for horizontal two-phase �ow.For the volume fration-, veloity pro�le- and interation fore simulations, illustratedin Figures 8.6-8.10, a grid of 500×500 nodes in the x− and y−diretions, respetively,was used and all values at the edges of the simulation domain were set to zero.Initially the ontinuum and partiles are at rest and only gravitation is applied to thesystem resulting in the downward motion of the partiles. At the edges of the depositthe ontinuum moves upward as the partile phase displaes it. These phenomena atthe initiation of the settling proess are illustrated at the top of Figures 8.6a, 8.7a,8.8a, 8.9a and 8.10a. The interation fores between the partiles as well as thosefores between the partiles and the ontinuum enveloping them, for this stage, areshown at the top of Figures 8.9a and 8.10a, respetively. The sale on these �guresshow the order of magnitude of the fores per unit volume and from Figures 8.9a and8.10a the interations between phases, whih are in the order of 101, dominate thepartile-partile interation whih are in the order of 10−2.As the settling motion ontinues, slopes are formed at the edges of the deposit asthe partiles spread to the bottom and the sides, pulling the ontinuum along with itas shown in the lower half of Figures 8.6a, 8.7a and 8.8a. Both the interation foresbetween the phases and the interation fore between the partiles themselves inrease,sine these fores are proportional to the veloity. The interation fores are visiblylarger at the sides than in the middle of the deposit sine there is very little motion atthe entre. The edges of the deposit therefore settles faster than its entre, resulting
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8.3. Two-phase �ow 124
in the steepening of the slope and the widening of the base as illustrated in the upperhalf of Figures 8.6b-8.10b.However, as the slope inreases, so does the downward veloity of the partiles at theentre of the deposit, resulting in the �attening of the deposit as illustrated in thebottom half of Figure 8.6b. Where the deposit reahes the lateral boundaries of thedomain it an be seen from Figure 8.9b and 8.10b that the partile-partile- and thepartile-ontinuum interation fores sharply inrease where ollisions our with thestationary boundary.

Stellenbosch University  http://scholar.sun.ac.za



Time is 0.01 s

 

 

30 35 40 45 50 55 60 65 70 75
0

0.5

1

1.5

2

2.5

3

3.5

X−dimension [cm]

Y
−

d
im

e
n

s
io

n
 [

c
m

]

Time is 0.24 s

 

 

30 35 40 45 50 55 60 65 70 75
0

0.5

1

1.5

2

2.5

3

3.5

(a) Partile volume frations at t=0.01 s and t=0.24 s.
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(b) Partile veloities at t=0.50 s and t=1.85 s.Figure 8.7: Change in partile veloity pro�le with time.
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(b) Partile-partile fores at t=0.50 s and t=1.85 s.Figure 8.9: Changes in the order of magnitude of partile-partile interation fores per unit volume as a deposit ollapses withina ontinuum.
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Particle−Continuum Friction at time 0.02 s
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8.4. Vertial motion 130
8.4 Vertial motionSimulations were done in order to predit the vertial settling motion of an evenlydistributed 3.6 g sample of silion partiles with a density of ρp = 2500 kg/m3 throughwater with a density of ρc = 1000 kg/m3. The depth and width of the water olumnthrough whih the partiles fell were set to 1.7 m and 0.150 m, respetively and thesetup for the simulation is illustrated in Figure 8.11.

3.6 g

0.150 m
1.7 m

Figure 8.11: Setup for vertial settling simulation.The vertial settling simulations done with 2PMS are veri�ed against experimentaldata obtained from settling tube experiments in Chapter 9. In the following setionsthe boundary onditions applied for the setup of the simulation as well as its stabilitywith regard to the seletion of grid size and time step intervals are disussed.8.4.1 Boundary onditionsAt the left- and right boundaries of the setup shown in Figure 8.11 it was assumed thatboth the partiles and the ontinuum were at rest (i.e. a no-slip boundary onditionwas applied). At the upper boundary it was assumed that a zero-gradient bound-ary ondition existed and at the bottom it was assumed that the partiles and theontinuum would be stationary to be representative of the settling tube experimentsperformed in Chapter 9.
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8.4. Vertial motion 131
The partile volume fration, ǫp, was assumed to be zero at the upper edge of thesetup and was assumed to be equal to one at the left-, right- and base sides. Over all,a zero-gradient pressure ondition was applied.The initial guess for the pressure values was set to zero. The input ondition for thepartile volume fration proved problemati sine the simulation had to represent thephysial settling tube experiments for whih this value ould not be measured. It washowever known that for eah of the physial experiments a mass of 3.6 g partiles wereinserted in the form of a single layer into the settling tube. To make the simulationsomparable to these onditions the partile volume fration was hanged aordingto the seletion of the grid size to always ensure that a single layer entry would berepresentative of a partile mass of 3.6 g. The following was used to determine thepartile volume fration:

ǫp =
mp

ρp∆x∆y(Nx − 2)
, (8.4.1)where mp and ρp denote the mass and density of the partiles and ∆x, ∆y and Nx arethe grid dimensions for a single ell in the x- and y-diretions and the total numberof grid nodes in the horizontal diretion, respetively. The subtration is done toeliminate the two ells at the boundaries whih were assumed to have a zero partilevolume fration.The partiles were released with a zero initial veloity and the �uid too was assumedat rest at initiation.8.4.2 Grid geometry and time stepsThe stability of 2PMS with regard to grid and time step seletion was analysed usingthree grid sizes of 85× 15, 170× 30, and 340× 60 on a domain 170 cm× 15 cm in size.Three time step intervals of 0.005 s, 0.01 s and 0.05 s were applied to eah of the gridallotments and simulations were performed for partiles 1 mm, 0.75 mm, 0.50 mm, and

0.30 mm in diameter.8.4.2.1 Convergene within a time stepDuring eah time step, the program was iterated until the perentage relative di�erenebetween the average group veloities of two suessive iterations was less than 0.1%.
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Figure 8.12: Convergene within a time step.This was done by alulating the average group veloity for eah iteration as
uavg
p (j) =

∑
up(i, j)ǫp(i, j)∑

ǫp(i, j)
, (8.4.2)whih yielded the average veloity of eah olumn of the grid, the mean of whih is theaverage group veloity. The perentage relative di�erene between the average groupveloity for two suessive iterations, I − 1 and I, was then obtained as

%DIFF =
2|uavg

p (I, t)− uavg
p (I − 1, t)|

|uavg
p (I, t) + uavg

p (I − 1, t)| 100. (8.4.3)In Figure 8.12 an example of the relative di�erene riteria, given by Equation (8.4.3),at various time steps for a 1mm-diameter partile and a time step of 0.01 s is illustrated.8.4.2.2 Grid and time step stabilityFollowing Patankar (1980), the fully impliit sheme was used to ensure that the resultfor a simulation is independent of the grid or the time step interval hoies. Gridindependene for a time step of 0.01 s is illustrated in Figure 8.13 and time stepindependene is shown in Figure 8.14. Figures 8.13 and 8.14 also show that a terminalgroup veloity is reahed for eah of the simulations after a period of 10 s.
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0 2 4 6 8 10
0

2

4

6

8

10

12

14

Time, [s]

A
ve

ra
ge

 v
el

oc
ity

, [
cm

/s
]

 

 
∆ t = 0.005 s
∆ t = 0.010 s
∆ t = 0.050 s

d
p
=0.30mm

d
p
=0.50mm

d
p
=0.75mm

d
p
=1.00mm

Figure 8.14: Time analysis for vertial settling simulations.

Stellenbosch University  http://scholar.sun.ac.za



8.4. Vertial motion 134
It was however found that numerial di�usion inreased rapidly as the grid was madeoarser. The numerial di�usion for a 1 mm partile simulation over a 340×60, 170×30,and a 85× 15 grid is illustrated in Figures 8.15-8.17.
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Figure 8.15: Partile volume fration of a 3.6 g sample of 1 mm partiles over a 340× 60 grid.
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Figure 8.16: Partile volume fration of a 3.6 g sample of 1 mm partiles over a 170× 30 grid.
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Figure 8.17: Partile volume fration of a 3.6 g sample of 1 mm partiles over a 85× 15 grid.

Stellenbosch University  http://scholar.sun.ac.za



8.4. Vertial motion 138
Following Rafael and Maha�y (1998), a trunation error analysis of the fully impliittime integration on a staggered mesh yields an equation of the form (for mesh ell iand time step n+ 1):

∂φ

∂t
|n+1
i +

∂

∂x
(φuc)|n+1

i =
∂

∂x

{
0.5
(
|uc|∆x+∆tu2

c

) ∂φ
∂t

}
|n+1
i . (8.4.4)The seond term on the right-hand side of Equation (8.4.4) represents a di�usive trans-port.Aording to Rafael and Maha�y (1998), Equation (8.4.4) is not approximating theoriginal expression given by

φρc
∂t

+∇ (φρcuc) = 0, (8.4.5)but is in fat approximating, with seond order auray, the transport equation
∂φ

∂t
+

∂

∂x
(φuc) =

∂

∂x

(
Kimpl

∂φ

∂t

)
, (8.4.6)whih physially desribes a onvetive-di�usive transport of the salar φ with a di�u-sion oe�ient, Kimpl, given by

Kimpl = 0.5
(
|u|∆x+∆tu2

)
. (8.4.7)Thus, the �rst order upwind sheme will always yield a di�usive solution if impliittime di�erening is used, the magnitude of whih will grow both with inreasing timestep, ∆t, and ell sizes ∆x as illustrated by Figures 8.15-8.17.An additional soure of numerial di�usion appears in multidimensional �ows when theveloity �eld is skewed with respet to the omputational grid (Patankar (1980), Rafaeland Maha�y (1998)). In suh ases, the upwind formulation introdues additionaldi�usive terms proportional to the ross gradients of the salar being transported.Aording to the expression obtained in Equation (8.4.7) for the false numerial dif-fusion oe�ients introdued by the upwind solution, it is lear that grid size playsan important role in the magnitude of the di�usion a�eting the onvetive solution.Therefore, one ould, in priniple, diminish the in�uene of the di�usive terms in thesolution by means of grid re�nement.
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8.4.3 Convergene of the average group veloity over timeResults show that the partiles aelerate from their initial stationary state under thein�uene of gravity. During this aeleration period the partiles spread out onsid-erably. As the partile group falls, the surrounding �uid is also set into motion. The�uid aught within the group moves faster than the �uid at the front end of the groupand, due to the nature of the equations disussed previously, this results in the frontend of the loud being exposed to less drag than the internal setions, ausing it tomove faster. The e�et is an inrease in the size of the loud and a derease in itsonentration. However, numerial instabilities, disussed in the previous setion, alsoontribute to the di�usion phenomenon. Figure 8.18 shows how the group veloity ofthe partiles tend to zero as the partiles reah the lower boundary of the simulationsetup. The rate at whih the veloity dereases appears to be proportional to the sizeof the groups' onstituent partiles.Although the spread of the partile loud in physial experiments may be asribed toa di�erene in partile size and the initial surfae tension fores between the partilesand the �uid matter, this an not be used to explain the di�usion seen in the numerialexperiments sine the partiles are assumed to be of equal size and surfae tension isnot inluded in the expressions used to simulate the motion.At eah time step the simulation data for the partile veloities and the partile volumefrations were aptured and inserted into a Matlab routine (for whih an example isgiven below) to determine the average veloity of the loud. This average was deter-mined by multipliation of eah grid point veloity with its orresponding onentrationand dividing by the sum of the onentrations, as given by Equation (8.4.2) and fromFigures 8.13 and 8.14 it is apparent that for eah partile size, the loud reahed aterminal veloity value after a lapse of 10 s. These terminal veloity values will beompared to those obtained via experiments with a settling tube in Chapter 9.X=[340 170.00000339 169.74895...2 0.251481 0.00000℄;Y=[ 60 15.00000...2 0.12931
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1 0.00000℄;fid1 = fopen('Por.bin', 'r');fid2 = fopen('Us.bin', 'r');UsAVG = [℄;TIME = [℄;for i=1:1000[Por,ount℄ = fread(fid1,[63,340℄, 'float32'); %read one time step[Us,ount℄ = fread(fid2,[63,339℄, 'float32'); %read one time stepPor = reshape(Por, [63,340℄);%onstrut matrixUs = reshape(Us, [63,339℄);Por = Por(3:end-1,:)';Us = Us(3:end-1,:)';%alulate average veloityusavg=mean(sum(Us(:,2:end-1).*Por(1:end-1,2:end-1))./sum(Por(1:end-1,2:end-1)));UsAVG=[UsAVG usavg ℄;%alulate time steptime=i.*0.01;TIME = [TIME time℄;endplot(flipud(TIME),UsAVG,'-.')xlabel('time [s℄')ylabel('Average partile veloity [m/s℄')
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Figure 8.18: Average group veloities for vertial partile motion.
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8.4.4 Comparison between analytial and numerial resultsThe numerial results were ompared to results obtained when the partile momentumonservation equation at terminal veloity, given by Equation (6.6.3), was solved withMatlab's fzero proedure whih uses a ombination of bisetion, seant, and inversequadrati interpolation methods to obtain the roots for an expression. In derivingthe solution to the partile momentum onservation equation it was assumed that thepressure gradient may be approximated with the buoyany term:

∇p = ρc g. (8.4.8)However, the former assumption, validated in Appendix A.3.1, should only be appliedto ases where the diretion of the predominant pressure di�erene oinides with thatof the gravitational fore ating on the partiles. It was furthermore assumed thatterminal veloity was reahed. Appliation of the aforestated assumptions to Equation(6.6.3) yielded the following for the terminal partile veloity:
0 = ǫp g (ρp − ρc)−




µǫp

d2p


 36ǫǫ
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cdρc
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ǫpǫ
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s
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( vc − vp). (8.4.9)Comparisons between the results obtained by 2PMS and those obtained by solving theterminal veloity expression, given by Equation (8.4.9), with Matlab's fzero algorithm,are illustrated in Figure 8.19 for asymptoti �tting parameters, s = 0.5, s = 0.6, and
s = 0.7. From Figure 8.19 it follows that an inrease in the value of s, inreases themagnitude of the group veloity with respet to the partile diameter.The relative error between the results determined with the fzero proedure in Matlaband those obtained via 2PMS was determined by

%Error =
V alMatlab − V al2PMS

V alMatlab

× 100, (8.4.10)for whih the maximum error was determined as 0.248%. With this small relative error,the preditive apability of the ode was validated.
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Matlab fzero method with s = 0.7Figure 8.19: Comparison of Matlab's fzero terminal veloity solution to results for terminalveloity obtained with 2PMS for di�erent values of the asymptoti �tting parameter, s.8.5 ConlusionsIn the absene of experimental proedures to verify the preision of numerial predi-tions for horizontal two phase motion, disussed in Setion 8.2, only the simulationsfor whih analytial results were made available is regarded as reliable. Results werenot veri�ed for the settling of a deposit within a ontinuum. However, the trend shownby these horizontal runs do seem to simulate expeted physial behaviour.Results obtained for vertial two-phase motion upheld those produed with Matlab'sfzero method. In the next hapter it will also be shown that these results orrespondwell with physial data obtained through settling tube experiments and the programis therefore regarded as a reliable predition mehanism.
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Chapter 9Physial experiments
In order to further verify the validity of Equations (6.6.2) and (6.6.3), the terminalfall veloity of a group of silia partiles were determined with a settling tube whihis illustrated in Figure 9.2. A settling tube is an instrument that is used to determinethe natural veloity with whih a group of partiles settles through a water olumn. Inaddition to the settling tube, a amera was plaed adjaent to the tube and a video wasmade of the partiles as they fell through the lower setion of the settling tube. Theamera- and the settling tube results were then ompared. In the following setionsthe settling tube omponents, the experimental proedure, the sample harateristisand results obtained for the terminal settling of silia partiles are disussed.9.1 Settling tube omponentsThe settling tube used in this study is illustrated in Figures 9.2 and 9.3. It measures
1.7 m in length with an inner diameter of 15 m and onsists of the following mainomponents:1. A lear aryli Sample Insertion Plate (SIP) for inserting the sample;2. A rotating radle used to hold and lower the insertion plate at the top of thetube;3. A DIP-swith that ativates the timer;4. A weighing pan at the bottom of the tube;143

Stellenbosch University  http://scholar.sun.ac.za



9.1. Settling tube omponents 144
5. The weighing pan is suspended by three thin, opper wires from a strain gaugethat is mounted to the wall;6. A strain gauge ampli�er, for amplifying the strain gauge signal;7. An analogue to digital onverter ard that aepts the ampli�er and DIP-swithsignals and is housed in a PC;8. Software to proess the digitised strain signals.9.1.1 Experimental methodExperiments with the settling tube were performed, following a proedure set out bySoltau (2009): A 3.6 g sample of eah of the ategories of silion beads, presentedin Table 9.1, was spread evenly onto the SIP in a layer of approximately one grainthikness. Water was applied to the SIP and its sample to ensure adhesion of thepartiles to the plate. The insertion plate and sample were subsequently inverted andplaed into the radle/ollar at the top of the tube, the amera was ativated and theradle was lowered smoothly by rotation until the insertion plate and sample madeontat with the water. Contat between the sample and the water, broke the adhesivefores and the beads started to fall. Simultaneously, the dip swith triggered the timer.After falling the length of the tube, the partiles settled on the weighing pan and thestrain gauge registered the inreasing strain due to the aumulation of partiles onthe plate. The aptured strain provided an instantaneous readout of the sample au-mulation. An example result from Soltau (2009) is illustrated in Figure 9.1 where theinreasing strain is shown as a funtion of time after insertion. A ompleted experi-ment has the appearane of an S shaped urve. In Figure 9.1, the lower upward urveof the S, signals the �rst arrival of material on the pan at approximately 10 seondsand indiates the largest partiles whih have settled the fastest. This is followed bya steep slope whih denotes rapid settling of the trailing partiles. Flattening of theslope ours after about 40-50 seonds as the smallest partiles aumulate on the pan.After 157 seonds the entire sample has settled and the strain reading is onstant.In the example in Figure 9.1, �fty perent of the strain was measured after 34 seonds,signifying that �fty perent of the sample had settled at this stage. The veloity foreah of the perentiles is determined bySettling veloity(m/s) = distane partile falls(m)/time taken(s), (9.1.1)

Stellenbosch University  http://scholar.sun.ac.za



9.1. Settling tube omponents 145

Figure 9.1: Strain output.and the median settling veloity for the 50th perentile would therefore be 1.7 m/34s = 0.05 m/s. The instability seen in the strain reord in Figure 9.1 during the �rstfew seonds is due to a slight disturbane of the strain gauge when the sediment isinserted and rapidly diminishes. An example of the output of one of the experimentsdone during this study with the 0.015 − 0.025 mm beads is given in Table 9.2. Thepartile size was determined by the CSIR via an in house developed program. Theprogram alulates the partile size from the Standard Relation Curve whih is an em-pirial urve, developed by Fromme in 1977 (Soltau (2009)) and improved by Shoonees(Soltau (2009)), whih relates partile size to settling veloity as,
Dx = 29730w2

x + 4173wx + 67.38, (9.1.2)where Dx is the xth perentile grain size (in µm) and wx denotes the xth perentilesettling veloity (in m/s). The results of Equation (9.1.2) are given in the fourtholumn of Table 9.2.
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DIP-swithInsertion CollarSuspension WiresStrain Gauge
(a) Upper mehanism of settling tube

Weighing pan
(b) Lower mehanism of set-tling tubeFigure 9.3: Mehanisms of settling tube.The settling tube data were orroborated by making a video of the motion of eah ofthe experiments.9.2 Camera setupA PowerShot A560 Canon amera was plaed adjaent to the settling tube, as shownin Figure 9.4, and the falling partiles were photographed on a maro setting at 30 fps.

Figure 9.4: Light and amera positions.
Camera position
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9.3. Sample harateristis 148
Referene markings were made on the tube and the speeds of the partiles were alu-lated using Photron FASTCAM viewer software.9.3 Sample harateristisSpherial glass beads, ranging from 0.15 mm to 1.0 mm in diameter, were used inthe experiments and the average size of eah sample was regarded as the representa-tive sample size for the purpose of omparison between experimental, simulated andanalytial measurements as shown in Figure 9.4.Table 9.1: Partile sizes.Size Range [mm℄ Average [mm℄0.15-0.25 0.20.20-0.30 0.250.25-0.50 0.3750.50-0.75 0.6250.75-1.00 0.875
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9.4. Experimental results and proessing 149
The silion beads were supplied by the ompany, Sigmund Lindner (SiLi), whih pro-vided the hemial omposition as 72.5% SiO2, 13% Na2O, 9.06% CaO, 4.22% MgO and0.58% Al2O3. The spei� weight of the beads were given as 2.50kg/l (i.e. 2.50g/)and the three larger samples are shown in Figure 9.5.

(a) 0.25− 0.50 mm (b) 0.50− 0.75 mm () 0.75− 1.00 mmFigure 9.5: Silion beads used for the experiments.
9.4 Experimental results and proessingAn example of the strain data for a 3.6 g sample of partiles, ranging from 0.015 mmto 0.025 mm in diameter, is given in Table 9.2.Table 9.2: Output for strain data for a 3.6g 0.015 − 0.025 mm sample.Perentage insuspension Perentage onpan Veloity (m/s) Size (µ)95 5 0.0308 224.3790 10 0.0301 220.1284 16 0.0295 216.1575 25 0.0289 212.8850 50 0.0269 201.1025 75 0.0245 187.4116 84 0.0234 181.2910 90 0.0218 172.745 95 0.0200 162.68The perentages listed in the �rst olumn of the table are interpreted as the perent-age of the total amount of partiles whih remain in suspension and therefore have aorresponding veloity equal to or slower than those given by the third olumn.
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9.4. Experimental results and proessing 150
The perentages listed in the seond olumn orrespond with those portrayed in Figure9.1 and indiate those portions of the total amount of partiles that have settled ontothe weighing pan and thus have a veloity equal to or faster than the veloity valuesgiven by the third olumn.The fourth olumn in Table 9.2 indiates the sizes of the partiles that fall in theperentile ategories listed in olumns 1 and 2 aording to Equation (9.1.2). Sine thepartile sizes are known, the data given by the fourth olumn was not used for thiswork. It is, however, apparent from the grain size results for the 0.015 − 0.025 mmsample, listed in Table 9.2 that the empirial urve provided a fairly aurate estimateof the partile sizes in that it yielded a size range of 0.016 − 0.022 mm for the givenrange of 0.015− 0.025 mm.For eah of the sample sizes a minimum of 5 experimental runs were made, the resultsof whih are illustrated in Figure 9.6. From the lose orrelation between the runs itfollows that the experimental proedure was suessful and that the experiments arerepeatable.The perentage values indiated on the x-axis of Figures 9.6a-9.6e denote the perent-age of partiles whih fell slower than the orresponding veloity value on the y-axis.The average veloity for eah sample set was alulated using the trapezium rule toobtain the entire area underneath the graph for eah run and dividing the said area bythe 90 units it spans on the x-axes. These results are illustrated in Figure 9.8.As disussed previously, digital images of the falling partiles were taken. The positionsof a portion of the partiles were digitised relative to markings that have been madeon the tube, and the speeds of the partiles were alulated (using the Photron FAST-CAM viewer software). For various partiles within a single experiment, the distanetraversed by a partile along with the time required for the distane to be ompletedwas reorded, as illustrated in Figure 9.7. The average of the speeds obtained wasthen assumed to denote the average speed of the group of partiles for that spei�experimental run.Various experiments were done for eah of the partile size ranges, listed in Table9.1, the average of whih was used for omparative purposes in Figure 9.8. Examplephotographs taken for the 0.75 − 1.00 mm sample are shown in Figure 9.7. The dataobtained from the photographi experiments are listed in Appendix G in Table G.1
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and the average veloity results for eah sample is shown in onjuntion with thesettling tube experiments in Figure 9.8 from whih it follows that lose orrelationbetween photographi, settling tube, numerial and analytial results were obtained.The values of the average data obtained for the settling tube and amera data alongwith the relative di�erene between the results obtained by these methods are listedin Table 9.3.
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(b) Partile size: 0.20− 0.30 mm
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(d) Partile size: 0.50− 0.75 mm
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(e) Partile size: 0.75− 1.00 mmFigure 9.6: Settling tube data.
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Partile 1Partile 2

(a) Position 1
Partile 1Partile 2(b) Position 2Figure 9.7: Partile positions.
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Table 9.3: Comparison between amera and settling tube data.Partilediameter
[mm℄

Average ofsettling tubedata[m/s℄
Average ofameradata[m/s℄
Average ofnumerialdata,

s = 0.6[m/s℄
Relativedi�erene:settling tubevs amera

[%]

Relativedi�erene:settling tubevs numerial
[%]

Relativedi�erene:settling tubevs numerial
[%]0.02 2.47 2.61 1.93 5.61 24.8 30.30.025 3.20 3.32 2.81 3.51 13.0 16.50.0375 4.98 5.00 5.22 0.319 4.69 4.400.0625 9.58 9.68 9.78 1.12 2.13 1.000.0875 13.53 13.3 13.9 1.75 2.88 4.63
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2PMS with s = 0.5
Matlab fzero method with s = 0.5
2PMS with s = 0.6
Matlab fzero method with s = 0.6
2PMS with s = 0.7
Matlab fzero method with s = 0.7
Experimental with Camara (0.02, 0.025, 0.0375, 0.0625, 0.0875)
Settling Tube (0.02, 0.025, 0.0375, 0.0625, 0.0875)Figure 9.8: Correlation between numerial simulations, analytial solution and experiments.

9.5 ConlusionsIn Table 9.3, results given by 2PMS, the fzero Matlab proedure, as well as amera- andsettling tube experimental proedures are ompared to eah other. For eah partilesize range, used for experiments and listed in Table 9.1, an average was alulated andassoiated with the the average obtained from all the experimental results for boththe amera and settling tube experiments. These averaged values for the settling tubeand amera experiments are listed in olumns two and three of Table 9.3, respetivelyand the relative di�erenes between these two methods are listed in olumn �ve. Thelargest disrepany was obtained for a partile diameter of dp = 0.2 mm.From Figure 9.8 it an be seen that the numerial results generated by 2PMS for a�tting oe�ient s = 0.6, orresponds best to both settling tube- and amera exper-
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9.5. Conlusions 156
imental values and the relative perentage di�erenes are listed in olumns six andseven of Table 9.3, respetively. As with the omparison between the settling tube andthe amera experiments, the greatest di�erene was found for partiles with an averagepartile diameter of dp = 0.2 mm.It should be noted that the results obtained numerially are very muh dependent onthe hoie of s of whih the physial signi�ane is yet to be determined. However, thenumerial output from 2PMS yielded the orret trend when ompared to experimentaldata. Experiments with smaller partiles proved more di�ult than those done forlarger partiles sine these were in�uened most by surfae tension at the beginningof the experiment and showed a muh more di�usive nature as it spread over nearlythe total length of the settling tube during the experiments. This made it di�ultto determine a value for the average group veloity sine they did not show groupbehaviour. Experimental results obtained for larger partiles are thus deemed moreaurate and orrelated well with simulations.
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Chapter 10Disussion and reommendations
In Chapter 9 the physial results from experiments done at the CSIR were omparedto preditions made for the group terminal veloity of di�erent partile sizes. In thishapter the preditions made by Equation (6.6.3) for the group terminal veloity aretested against the widely referened experimental work of Rihardson and Zaki (1954).The results of these experiments were summarised by Conha (2009) in a table relat-ing the ratio between the group- and the Stokes veloities of a single partile to thepartile diameters. In this hapter, the atual values of the group veloity obtained byRihardson and Zaki (1954) in relation to the partile diameters and those preditedby Equation (6.6.3) are given.The predition apabilities of our model is also ompared to the empirially models setforth by Ergun, lewis, Wen and Yu, and Kmie (Mazzei and Lettieri (2007)).10.1 Empirial work by Rihardson and Zaki (1954)Rihardson and Zaki (1954) examined experimentally the e�et of the volume frationof suspended partiles upon the rate of settlement of the partiles. They on�nedthe experimental work to uniformly sized spherial partiles, greater than 100 µm indiameter. The sedimentation experiments were made with suspensions ontained in�at-bottomed Pyrex tubes about 10 m in height with internal diameters of 1.9, 2.8,3.2, 4.8, and 5 m. After the tube and its ontents attained the temperature of thehamber, the suspension was agitated and the tube was then orientated in the vertialposition. The rate at whih the sludge line fell was observed. The temperature of the157
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10.1. Empirial work by Rihardson and Zaki (1954) 158
liquid was maintained at 20 ◦C. The physial harateristis of the materials used arelisted in Table 10.1.Group veloities obtained for the settling of various types of spherial partiles indi�erent types of �uids are listed in Tables 10.2 and 10.3, respetively and graphs ofthese values an be seen in Appendix H.Correlations between the experimental data of Rihardson and Zaki (1954) and thosevalues predited by Equation (6.6.3) for terminal veloities, are shown in Figure 10.1.For a perfet orrelation between the empirial and theoretial result, the points wouldbe entred on the 45◦ line. Points that lie above this line are due to the theoretialmodel yielding higher values than the experiments and those that our below the lineare under-prediting the empirial data.Figures 10.1a to 10.1j show the orrelation between the experimentally obtained groupsettling veloity of di�erent sized spherial partiles at ten separate partile volumefrations in the range of 0 < ǫp ≤ 0.585 performed by Rihardson and Zaki (1954). Ineah ase two theoretial approximations are made: Both of whih are the solution toEquation (6.6.3) for the senario of a terminal veloity senario but di�er with regardto the drag oe�ient, cd, and the shifting parameter, s.The �rst approximation was made by hoosing the shifting fator s = 0.6 and thedrag oe�ient cd = 0.44. The value for cd is hosen here to be the value for the dragoe�ient of a single sphere and s is based on the best �t that was ahieved on thebasis of inspetion with data obtained during experiments disussed in Chapter 9. Thedrawbak of this hoie of shifting parameter is that Equation (6.6.3) is not analytialsolvable, but the terminal veloity may readily be ahieved by using any numerialintegration tehnique. In this ase the fzero method was applied in Matlab.The seond theoretial approximation is based on a shifting fator s = 1.0 and a dragoe�ient cd = 2.05 whih are based on investigations done on foams (Du Plessis(1992), Du Plessis and Masliyah (1988)). This hoie of s has the bene�t of renderinga quadrati equation for whih analytial solutions are easily obtainable.The higher the value of s, the more losely the solution traes the asymptoti expres-sions, i.e. the more abrupt the transition (Churhill and Usagi (1972)). Converselya gradual hange-over between extremal solutions will signify that a small s be used.Hene, s, is indiative of the rate of transition between the onstituent preditive equa-
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10.2. Comparisons to empirial models 159
tions. The afore mentioned in�uene of the shifting parameter was also disussed inSetion 6.6.1 and shown in Figure 6.7. Churhill and Usagi (1972) reommends thatexperiments should be set up so as to investigate the behaviour in region of the pointwhere the asymptotes of the extreme behaviours meet in order for orret approxima-tions to be made. It is further reommended in this work that the Forhheimer regimebe treated in a similar manner to the Dary regime, i.e. that it should be split into alow partile volume fration (or single partile) and a high volume fration (or porousbed) part and that these should then be mathed in a manner similar to that used tomath the high and low partile volume fration senarios for the Dary regime.For partile volume frations tending to zero, both theoretial models oinide well withthe values obtained by Rihardson and Zaki (1954) for veloities up to 10 m/s. Onethis limit is exeeded the theoretial model with s = 1 and cd = 2.05 however tends tounder-predit the experimental values as is shown in Figure 10.1a. From Figures 10.1bto 10.1f it an be seen that for veloities up to 1 m/s both models under-predit theresults whereas for higher veloities the model with cd = 2.05 and s = 1.0 tends tounder predit whilst its ounter part mathes the data well. As the partile volumefration inreases further so does the auray of both models as an be seen fromFigures 10.1g and 10.1h but tends to over predition of the experimental values as thepartile volume fration inreases above ǫp = 0.500 in Figures 10.1i and 10.1j.10.2 Comparisons to empirial modelsIn the following setions, the preditions made by Equation (6.6.3) for the group termi-nal veloity are tested against the empirial Ergun equation (Ergun (1952)) as well asempirial models by Lewis, Wen and Yu, and Kmie (Mazzei and Lettieri (2007)) whihare based on the aforementioned experimental data of Rihardson and Zaki (1954).10.2.1 The Ergun equationThe empirial Ergun model is given by

FERGUN =

(
150µcǫ

2
p

d2pǫ
2

+
1.75ρcǫp|| vc − vp||

dpǫc

)(
vc − vp

)
. (10.2.1)The Ergun equation was developed only for paked beds and was never meant toaount for large variations in onentration as is found in sedimentation problems.
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10.2. Comparisons to empirial models 160
In spite of this limitation, it is ommonly employed by many researhers over a widerange of partile volume frations. It is used in the multiphase �ow model, proposedby Gidaspow (1994), whih has been adopted as default in the majority of ommerialCFD odes used to date (e.g. Fluent). This orrelation is used for values of theontinuum volume fration up to 0.80.10.2.2 Lewis, Wen and Yu, and Kmie drag fore losuresThe most widespread and popular equations of losure employed to model the dragfore in uniformly dispersed emulsions of solid partiles are those based on the work byKmie (1982), Lewis et al. (1949), and Wen and Yu (1966). In partiular, the equationdeveloped by Lewis is usually adopted as default orrelation in most ommerial CFDodes when the ontinuum volume fration of the suspension exeeds the thresholdvalue of 0.80 (a limit suggested by Gidaspow (1994)). Following Mazzei and Lettieri(2007), all three these losure relationships an be expressed in the following form:

F (ǫc, || vc − vp||) =
3

4
CD(Re)

ρc|| vc − vp||(1− ǫc)

dp
ǫ−α
c . (10.2.2)Here the Reynolds number is de�ned as,

Re(ǫc, || vc − vp||) =
ρcǫdp
µc

|| vc − vp||, (10.2.3)and the drag oe�ient CD(Re) is alulated using the expression suggested by Shillerand Naumann (1935):
CD(Re) =





24
Re

(1 + 0.15Re0.687) for Re < 1000

0.44 for Re ≥ 1000.The drag is alulated for the limiting values of the visous and inertial regimes andan expression for the intermediate range is derived following the asymptoti mathingtehnique introdued by Churhill and Usagi (1972),
F tot(ǫc, || vc − vp||) =

18µc(1− ǫc)ǫ
−α
c

ǫcd2p
+ 0.33

ρc|| vc − vp||ǫp
dp

ǫ−α
c . (10.2.4)The respetive values for α, as proposed by Lewis et al., Wen and Yu, and Kmie,are 2.65, 2.70 and 2.78, respetively. The drag fore losures, given by Equations(10.2.1) and (10.2.4) were implemented in 2PMS and the results were ompared to
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10.3. Conlusions 161
those obtained for our model in Figure 10.2. From Figure 10.2 it an be seen thatthe models proposed by Lewis and Wen and Yu, yield almost idential results. Both,however, overestimate the experimental data. The Ergun equation overestimates theveloities of the smaller partiles and underestimates the veloities yielded for largerpartile diameters. The results were also ompared with the settling tube equation, bysolving Equation (9.1.2) for the veloity and obtaining the following expression for thefall veloity in terms of the partile diameter:

vsettle =
(
−0.702 ∗ 10−1 + 0.336 ∗ 10−5 (235027485 + 2973000dp)

1/2
)
100,(10.2.5)where the multipliation with 100 is due to the fat that the veloities and partilediameters in Equation (9.1.2) are in metres per seond and mirometres, respetively.The results obtained for the veloities with Equation (10.2.5) yield a good approxima-tion for the experimental trend but tend to underestimate the veloity of the largerpartiles. The urrent model yielded a good approximation of the experimental datafor the entire range of partile diameters, thus exeeding the predition apabilities ofits ounterparts.10.3 ConlusionsThe results yielded by Equation (6.6.3) produed good preditions for both the ex-periments done at the CSIR for this study as well as with the experimental data byRihardson and Zaki (1954) and empirial models based on this data (e.g. Lewis andWen and Yu). The theoretial model however still remains dependent on the shiftingfator s. An e�ort was made not to introdue empirial oe�ients too early in thedevelopment of the model but after testing it on existing as well as new experimen-tal data it is apparent that the introdution of ertain empirial oe�ients may beinevitable due to the existene of ertain geometrial e�ets.
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Table 10.1: Physial properties of material used for experiments done by Rihardson andZaki (1954). No. dp

[cm]

ρp

[g/cm3]

µc × 102

[g/(cm.s)]

ρc

g/cm31 0.0181 1.0580 20.8000 1.03402 0.0181 1.0580 20.8000 1.03403 0.0096 2.9230 62.0000 1.20804 0.0096 2.9230 62.0000 1.20805 0.0358 1.0580 20.8000 1.03406 0.0358 1.0580 20.8000 1.03407 0.0096 2.9230 20.8000 1.03408 0.0096 2.9230 20.8000 1.03409 0.0096 2.9230 20.8000 1.034010 0.0230 2.6230 62.0000 1.208011 0.0230 2.6230 62.0000 1.208012 0.0128 2.9600 1.8900 2.890013 0.0128 2.9600 1.8900 2.890014 0.0181 1.0580 1.5300 1.001015 0.0181 1.0580 1.5300 1.001016 0.0181 1.0580 1.5300 1.001017 0.1029 2.9760 112.9000 1.221018 0.1029 2.9760 112.9000 1.221019 0.0253 1.0580 2.9100 0.935020 0.0253 1.0580 2.9100 0.935021 0.0096 2.9230 1.6120 2.170022 0.0096 2.9230 1.6120 2.170023 0.0253 2.7800 6.0750 1.135024 0.0253 1.0600 1.0000 1.000025 0.0230 2.6230 1.8900 2.890026 0.0230 2.6230 1.8900 2.890027 0.0230 2.6230 1.8900 2.890028 0.0230 2.6230 1.6120 2.170029 0.0230 2.6230 1.6120 2.170030 0.0230 2.6230 1.6120 2.170031 0.0510 2.7450 6.0750 1.135032 0.1029 2.9760 10.9600 1.153033 0.1029 2.9760 10.9600 1.153034 0.1029 2.9760 10.9600 1.153035 0.0253 2.7800 1.0000 1.000036 0.1029 10.6000 15.0100 0.875037 0.1029 2.9760 1.8900 2.890038 0.1029 2.9760 1.8900 2.890039 0.1029 2.9760 1.8900 2.890040 0.1029 2.9760 1.8390 2.745041 0.1029 2.9760 1.8390 2.745042 0.1029 2.9760 1.8390 2.745043 0.0510 2.7450 1.0000 1.000044 0.1029 2.7450 1.0000 1.000045 0.1029 2.7450 1.0000 1.000046 0.4200 2.8900 15.0100 0.875047 0.1029 10.6000 3.8100 0.818048 0.2466 11.2500 15.0100 0.875049 0.3175 7.7300 15.0100 0.875050 0.4200 2.8900 6.0750 1.135051 0.1029 10.6000 1.0000 1.000052 0.4200 2.8900 1.0000 1.000053 0.3175 7.7300 1.0000 1.000054 0.6350 7.7400 1.0000 1.0000
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Table 10.2: Empirial group veloities for various solid volume frations and partile sizes(Rihardson and Zaki (1954)).Nr. Partilediameter

[cm]

Reynoldsnumber Veloity
ǫp = 0.0

[cm/s]

Veloity
ǫp = 0.01

[cm/s]

Veloity
ǫp = 0.05

[cm/s]

Veloity
ǫp = 0.1

[cm/s]

Veloity
ǫp = 0.15

[cm/s]

Veloity
ǫp = 0.2

[cm/s]

Veloity
ǫp = 0.3

[cm/s]

Veloity
ǫp = 0.4

[cm/s]

Veloity
ǫp = 0.5

[cm/s]

Veloity
ǫp = 0.585

[cm/s]1 0.0181 0.0002 0.0021 0.0020 0.0017 0.0014 0.0011 0.0009 0.0005 0.0003 0.0001 0.00012 0.0181 0.0002 0.0021 0.0020 0.0017 0.0014 0.0011 0.0009 0.0005 0.0003 0.0002 0.00013 0.0096 0.0003 0.0139 0.0134 0.0115 0.0094 0.0076 0.0060 0.0036 0.0020 0.0010 0.00054 0.0096 0.0003 0.0139 0.0134 0.0115 0.0095 0.0077 0.0062 0.0038 0.0022 0.0011 0.00065 0.0358 0.0014 0.0081 0.0078 0.0066 0.0054 0.0043 0.0034 0.0020 0.0011 0.0005 0.00036 0.0358 0.0014 0.0081 0.0078 0.0066 0.0054 0.0043 0.0034 0.0020 0.0011 0.0005 0.00037 0.0096 0.0022 0.0455 0.0438 0.0375 0.0306 0.0247 0.0197 0.0119 0.0067 0.0034 0.00178 0.0096 0.0022 0.0455 0.0438 0.0376 0.0307 0.0249 0.0198 0.0121 0.0068 0.0035 0.00179 0.0096 0.0022 0.0455 0.0438 0.0377 0.0308 0.0250 0.0200 0.0122 0.0069 0.0035 0.001810 0.0230 0.0030 0.0659 0.0634 0.0541 0.0439 0.0352 0.0279 0.0167 0.0092 0.0046 0.002211 0.0230 0.0030 0.0659 0.0634 0.0542 0.0442 0.0355 0.0282 0.0170 0.0095 0.0047 0.002312 0.0128 0.0648 0.0331 0.0318 0.0272 0.0221 0.0177 0.0141 0.0084 0.0047 0.0023 0.001113 0.0128 0.0648 0.0331 0.0319 0.0274 0.0224 0.0181 0.0144 0.0088 0.0049 0.0025 0.001314 0.0181 0.0758 0.0640 0.0616 0.0528 0.0431 0.0347 0.0277 0.0167 0.0094 0.0047 0.002315 0.0181 0.0786 0.0664 0.0638 0.0544 0.0440 0.0352 0.0278 0.0165 0.0091 0.0044 0.002216 0.0181 0.0786 0.0664 0.0639 0.0547 0.0445 0.0359 0.0285 0.0172 0.0096 0.0048 0.002417 0.1029 0.0992 0.8910 0.8533 0.7146 0.5664 0.4430 0.3413 0.1922 0.0991 0.0452 0.020318 0.1029 0.0992 0.8910 0.8542 0.7183 0.5724 0.4502 0.3490 0.1992 0.1043 0.0485 0.022219 0.0253 0.1199 0.1475 0.1418 0.1205 0.0974 0.0778 0.0612 0.0362 0.0197 0.0096 0.004620 0.0253 0.1199 0.1475 0.1418 0.1208 0.0978 0.0783 0.0618 0.0367 0.0201 0.0099 0.004821 0.0096 0.3024 0.2340 0.2254 0.1932 0.1578 0.1274 0.1016 0.0616 0.0346 0.0175 0.008722 0.0096 0.3024 0.2340 0.2256 0.1940 0.1593 0.1293 0.1036 0.0637 0.0363 0.0186 0.009423 0.0253 0.3909 0.8270 0.7972 0.6858 0.5630 0.4570 0.3663 0.2250 0.1282 0.0659 0.033424 0.0253 0.4908 0.1940 0.1872 0.1619 0.1337 0.1093 0.0882 0.0551 0.0320 0.0168 0.008725 0.0230 1.2274 0.3490 0.3371 0.2924 0.2426 0.1992 0.1616 0.1020 0.0599 0.0319 0.016826 0.0230 1.2274 0.3490 0.3369 0.2913 0.2409 0.1970 0.1591 0.0994 0.0578 0.0304 0.015827 0.0230 1.2274 0.3490 0.3382 0.2971 0.2507 0.2095 0.1732 0.1139 0.0702 0.0396 0.022128 0.0230 2.0202 0.6525 0.6312 0.5509 0.4609 0.3816 0.3124 0.2011 0.1209 0.0662 0.035829 0.0230 2.0202 0.6525 0.6309 0.5495 0.4585 0.3786 0.3090 0.1975 0.1179 0.0640 0.034330 0.0230 2.0202 0.6525 0.6316 0.5526 0.4638 0.3854 0.3167 0.2054 0.1247 0.0691 0.037831 0.0510 2.7537 2.8900 2.7980 2.4500 2.0585 1.7125 1.4088 0.9164 0.5579 0.3102 0.170232 0.1029 6.5276 6.0300 5.8333 5.0910 4.2591 3.5269 2.8875 1.8584 1.1174 0.6122 0.331033 0.1029 6.5276 6.0300 5.8468 5.1514 4.3635 3.6613 3.0395 2.0173 1.2567 0.7181 0.405334 0.1029 6.5276 6.0300 5.8509 5.1700 4.3959 3.7032 3.0874 2.0683 1.3025 0.7538 0.431035 0.0253 8.9815 3.5500 3.4588 3.1084 2.7022 2.3304 1.9917 1.4094 0.9454 0.5896 0.363936 0.1029 11.7571 19.6000 19.0714 17.0477 14.7163 12.5973 10.6822 7.4288 4.8845 2.9747 1.792037 0.1029 18.2520 1.1600 1.1278 1.0048 0.8636 0.7359 0.6210 0.4273 0.2775 0.1666 0.098938 0.1029 18.2520 1.1600 1.1296 1.0131 0.8783 0.7553 0.6436 0.4524 0.3011 0.1861 0.113839 0.1029 18.2520 1.1600 1.1271 1.0017 0.8582 0.7288 0.6128 0.4182 0.2691 0.1598 0.093840 0.1029 38.0915 2.4800 2.4224 2.1995 1.9381 1.6955 1.4712 1.0764 0.7504 0.4898 0.316741 0.1029 38.0915 2.4800 2.4170 2.1748 1.8937 1.6359 1.4008 0.9952 0.6707 0.4206 0.261042 0.1029 38.0915 2.4800 2.4185 2.1815 1.9057 1.6520 1.4196 1.0167 0.6915 0.4384 0.275243 0.0510 41.3100 8.1000 7.9301 7.2691 6.4854 5.7486 5.0583 3.8163 2.7567 1.8764 1.266444 0.1029 75.6315 7.3500 7.1475 6.3732 5.4838 4.6781 3.9525 2.7269 1.7764 1.0701 0.637545 0.1029 75.6315 7.3500 7.1475 6.3732 5.4838 4.6781 3.9525 2.7269 1.7764 1.0701 0.637546 0.4200 78.1029 31.9000 31.1586 28.2921 24.9299 21.8088 18.9244 13.8459 9.6529 6.3006 4.073947 0.1029 79.8642 36.1500 35.4021 32.4916 29.0357 25.7811 22.7268 17.2154 12.4927 8.5498 5.802848 0.2466 83.5212 58.1000 56.7213 51.3970 45.1664 39.3994 34.0849 24.7721 17.1378 11.0843 7.101049 0.3175 101.2415 54.7000 53.5201 48.9379 43.5204 38.4437 33.7050 25.2260 18.0543 12.1549 8.112650 0.4200 267.1874 34.0500 33.5137 31.3992 28.8284 26.3390 23.9331 19.3809 15.1914 11.3890 8.484651 0.1029 488.7750 47.5000 46.8222 44.1408 40.8567 37.6499 34.5235 28.5223 22.8798 17.6287 13.505252 0.4200 2041.2000 48.6000 47.9546 45.3948 42.2456 39.1526 36.1200 30.2423 24.6363 19.3316 15.088453 0.3175 2530.4750 79.7000 78.6177 74.3298 69.0601 63.8955 58.8385 49.0673 39.7870 31.0495 24.098954 0.6350 7156.4500 112.7000 111.1481 104.9981 97.4494 90.0574 82.8300 68.8901 55.6896 43.3016 33.4832
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Table 10.3: Theoretial group veloities for various solid volume frations and partile sizesas approximated by Equation (6.6.3).Nr. Partilediameter

[cm]

Reynoldsnumber Veloity
ǫp = 0.0

[cm/s]

Veloity
ǫp = 0.01

[cm/s]

Veloity
ǫp = 0.05

[cm/s]

Veloity
ǫp = 0.1

[cm/s]

Veloity
ǫp = 0.15

[cm/s]

Veloity
ǫp = 0.2

[cm/s]

Veloity
ǫp = 0.3

[cm/s]

Veloity
ǫp = 0.4

[cm/s]

Veloity
ǫp = 0.5

[cm/s]

Veloity
ǫp = 0.585

[cm/s]1 0.0181 0.0002 0.0021 0.0013 0.0009 0.0007 0.0006 0.0005 0.0003 0.0002 0.0002 0.00012 0.0181 0.0002 0.0021 0.0013 0.0009 0.0007 0.0006 0.0005 0.0003 0.0002 0.0002 0.00013 0.0096 0.0003 0.0139 0.0088 0.0061 0.0046 0.0038 0.0031 0.0023 0.0017 0.0012 0.00094 0.0096 0.0003 0.0139 0.0088 0.0061 0.0046 0.0038 0.0031 0.0023 0.0017 0.0012 0.00095 0.0358 0.0014 0.0080 0.0051 0.0035 0.0027 0.0022 0.0018 0.0013 0.0010 0.0007 0.00056 0.0358 0.0014 0.0080 0.0051 0.0035 0.0027 0.0022 0.0018 0.0013 0.0010 0.0007 0.00057 0.0096 0.0022 0.0455 0.0290 0.0200 0.0153 0.0124 0.0103 0.0074 0.0055 0.0040 0.00308 0.0096 0.0022 0.0455 0.0290 0.0200 0.0153 0.0124 0.0103 0.0074 0.0055 0.0040 0.00309 0.0096 0.0022 0.0455 0.0290 0.0200 0.0153 0.0124 0.0103 0.0074 0.0055 0.0040 0.003010 0.0230 0.0030 0.0656 0.0418 0.0288 0.0220 0.0178 0.0149 0.0107 0.0079 0.0058 0.004411 0.0230 0.0030 0.0656 0.0418 0.0288 0.0220 0.0178 0.0149 0.0107 0.0079 0.0058 0.004412 0.0128 0.0648 0.0323 0.0208 0.0144 0.0110 0.0089 0.0074 0.0054 0.0040 0.0029 0.002213 0.0128 0.0648 0.0323 0.0208 0.0144 0.0110 0.0089 0.0074 0.0054 0.0040 0.0029 0.002214 0.0181 0.0758 0.0649 0.0417 0.0288 0.0221 0.0179 0.0150 0.0108 0.0079 0.0058 0.004415 0.0181 0.0786 0.0649 0.0417 0.0288 0.0221 0.0179 0.0150 0.0108 0.0079 0.0058 0.004416 0.0181 0.0786 0.0649 0.0417 0.0288 0.0221 0.0179 0.0150 0.0108 0.0079 0.0058 0.004417 0.1029 0.0992 0.8714 0.5612 0.3883 0.2975 0.2416 0.2015 0.1455 0.1071 0.0785 0.059318 0.1029 0.0992 0.8714 0.5612 0.3883 0.2975 0.2416 0.2015 0.1455 0.1071 0.0785 0.059319 0.0253 0.1199 0.1428 0.0921 0.0637 0.0488 0.0397 0.0331 0.0239 0.0176 0.0129 0.009720 0.0253 0.1199 0.1428 0.0921 0.0637 0.0488 0.0397 0.0331 0.0239 0.0176 0.0129 0.009721 0.0096 0.3024 0.2220 0.1444 0.1004 0.0771 0.0627 0.0524 0.0379 0.0279 0.0205 0.015522 0.0096 0.3024 0.2220 0.1444 0.1004 0.0771 0.0627 0.0524 0.0379 0.0279 0.0205 0.015523 0.0253 0.3909 0.8819 0.5764 0.4018 0.3091 0.2516 0.2102 0.1522 0.1123 0.0824 0.062224 0.0253 0.4908 0.1941 0.1272 0.0888 0.0683 0.0556 0.0465 0.0337 0.0249 0.0183 0.013825 0.0230 1.2274 -0.3574 -0.2387 -0.1684 -0.1304 -0.1066 -0.0893 -0.0649 -0.0480 -0.0353 -0.026726 0.0230 1.2274 -0.3574 -0.2387 -0.1684 -0.1304 -0.1066 -0.0893 -0.0649 -0.0480 -0.0353 -0.026727 0.0230 1.2274 -0.3574 -0.2387 -0.1684 -0.1304 -0.1066 -0.0893 -0.0649 -0.0480 -0.0353 -0.026728 0.0230 2.0202 0.6796 0.4608 0.3278 0.2550 0.2090 0.1756 0.1281 0.0949 0.0700 0.053029 0.0230 2.0202 0.6796 0.4608 0.3278 0.2550 0.2090 0.1756 0.1281 0.0949 0.0700 0.053030 0.0230 2.0202 0.6796 0.4608 0.3278 0.2550 0.2090 0.1756 0.1281 0.0949 0.0700 0.053031 0.0510 2.7537 3.0429 2.0860 1.4936 1.1661 0.9583 0.8063 0.5898 0.4380 0.3233 0.245032 0.1029 6.5276 6.7538 4.8214 3.5406 2.8056 2.3288 1.9742 1.4604 1.0934 0.8123 0.618333 0.1029 6.5276 6.7538 4.8214 3.5406 2.8056 2.3288 1.9742 1.4604 1.0934 0.8123 0.618334 0.1029 6.5276 6.7538 4.8214 3.5406 2.8056 2.3288 1.9742 1.4604 1.0934 0.8123 0.618335 0.0253 8.9815 4.0706 2.9592 2.1996 1.7560 1.4651 1.2470 0.9280 0.6980 0.5204 0.397136 0.1029 11.7571 22.8815 16.9090 12.7115 10.2214 8.5708 7.3237 5.4839 4.1437 3.1006 2.372537 0.1029 18.2520 1.4041 1.0680 0.8199 0.6684 0.5660 0.4875 0.3697 0.2821 0.2127 0.163738 0.1029 18.2520 1.4041 1.0680 0.8199 0.6684 0.5660 0.4875 0.3697 0.2821 0.2127 0.163739 0.1029 18.2520 1.4041 1.0680 0.8199 0.6684 0.5660 0.4875 0.3697 0.2821 0.2127 0.163740 0.1029 38.0915 2.9777 2.3721 1.8877 1.5778 1.3613 1.1909 0.9265 0.7220 0.5545 0.432541 0.1029 38.0915 2.9777 2.3721 1.8877 1.5778 1.3613 1.1909 0.9265 0.7220 0.5545 0.432542 0.1029 38.0915 2.9777 2.3721 1.8877 1.5778 1.3613 1.1909 0.9265 0.7220 0.5545 0.432543 0.0510 41.3100 9.7926 7.8447 6.2710 5.2585 4.5486 3.9877 3.1137 2.4342 1.8745 1.465144 0.1029 75.6315 19.2420 16.6715 14.2600 12.5900 11.3546 10.3317 8.6294 7.1812 5.8718 4.823045 0.1029 75.6315 19.2420 16.6715 14.2600 12.5900 11.3546 10.3317 8.6294 7.1812 5.8718 4.823046 0.4200 78.1029 38.0488 31.6614 26.1320 22.4390 19.7777 17.6253 14.1637 11.3592 8.9549 7.129847 0.1029 79.8642 43.1555 35.9593 29.7138 25.5372 22.5246 20.0861 16.1597 12.9737 10.2379 8.158048 0.2466 83.5212 66.5872 55.4966 45.8670 39.4259 34.7791 31.0173 24.9591 20.0419 15.8182 12.606449 0.3175 101.2415 64.6485 54.5664 45.5982 39.5280 35.1107 31.5072 25.6404 20.8063 16.5882 13.331150 0.4200 267.1874 39.4882 34.9092 30.4135 27.2511 24.8870 22.9109 19.5724 16.6643 13.9584 11.719951 0.1029 488.7750 52.5990 47.4803 42.1740 38.3909 35.5421 33.1447 29.0480 25.4066 21.9228 18.939652 0.4200 2041.2000 53.4548 49.9617 45.8572 42.8963 40.6731 38.8103 35.6399 32.8134 30.0593 27.611653 0.3175 2530.4750 88.8463 83.3427 76.7600 72.0112 68.4534 65.4799 60.4378 55.9636 51.6190 47.762354 0.6350 7156.4500 131.3540 124.7385 116.2342 110.1158 105.5862 101.8526 95.6594 90.3337 85.3202 80.9810
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Correlation Line(b) Correlation for ǫp = 0.010.Figure 10.1: Correlation between empirial data from Rihardson and Zaki (1954) andpreditions made by Equation (6.6.3).
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Correlation Line(d) Correlation for ǫp = 0.100.Figure 10.1: Correlation between empirial data from Rihardson and Zaki (1954) andpreditions made by Equation (6.6.3).
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Correlation Line(f) Correlation for ǫp = 0.200.Figure 10.1: Correlation between empirial data from Rihardson and Zaki (1954) andpreditions made by Equation (6.6.3).
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Correlation Line(g) Correlation for ǫp = 0.300.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Richardson and Zaki experimental velocity [cm/s]

C
ur

re
nt

 m
od

el
 te

rm
in

al
 v

el
oc

ity
 [c

m
/s

]

 

 

Analytical, s=0.6, c
d
=0.44

Analytical, s=1.0, c
d
=2.05

Correlation Line(h) Correlation for ǫp = 0.400.Figure 10.1: Correlation between empirial data from Rihardson and Zaki (1954) andpreditions made by Equation (6.6.3).
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Correlation Line(i) Correlation for ǫp = 0.500.

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Richardson and Zaki experimental velocity [cm/s]

C
ur

re
nt

 m
od

el
 te

rm
in

al
 v

el
oc

ity
 [c

m
/s

]

 

 

Analytical, s=0.6, c
d
=0.44

Analytical, s=1.0, c
d
=2.05

Correlation Line(j) Correlation for ǫp = 0.585.Figure 10.1: Correlation between empirial data from Rihardson and Zaki (1954) andpreditions made by Equation (6.6.3).
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Figure 10.2: Comparison of the model developed in this work to empirial models proposedby Ergun, Lewis, and Wen and Yu and experimental data.
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Chapter 11Conluding Remarks
The main objetive of this work was to address the problem of modelling two-phase�ow. In doing so, a model has been developed to simulate the motion of disretepartiles together with the motion of a Newtonian �uid whih ontains them. The�uid is modelled with mirosopi Navier Stokes equations whih are then averagedwith the use of a Representative Unit Volume (REV). The partiulate phase momen-tum onservation equation was obtained by examining the fores ating on a singlespherial partile and using a summation method to deal with its disrete nature whendetermining averaged quantities.Partile-partile ollisions, due to inreased volume frations, were established by usingthe priniple of momentum onservation and full elastiity in onjuntion with a olli-sion sphere model. The remaining point variables were expressed in terms of averagesby adapting an existing version of the representative unit ell (RUC) model to inludethe motion of the partiles.The momentum transfer term was split into a Dary and a Forhheimer regime. Thevisous regime was then split into very high and very low partile volume frations.Equations for the high partile volume frations were obtained from the modi�ed RUCmodel whereas the very low partile volume frations were modelled with Stokes �owaround a spherial partile. An asymptoti mathing tehnique was then applied tomath these extreme volume frations in order to obtain an expression for the visousregime that ould also apply to intermediary partile volume frations. The asymptotimathing tehnique was then again applied to math the Dary and the Forhheimerregimes. 171
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Conluding Remarks 172
The above proedure yielded a momentum onservation and a mass onservation equa-tion for eah of the phases. A numerial ode was developed in Fortran to solve theseequations and was designated Two Phase Flow Simulator (2PMS). In order to demon-strate the predition apabilities of 2PMS, experiments were performed at the Counilfor Sienti� and Industrial Researh (CSIR): A settling tube was used in onjuntionwith a amera to determine the settling veloity of �ve di�erent sized ranges of spheri-al glass partiles. The data obtained via the settling tube and that obtained with theamera, orresponded well with eah other. These results were also aurately simu-lated with our theoretial model and sine it was possible to simplify the momentumonservation equation for the partiulate phase for instanes where a terminal groupveloity had been reahed, it was possible to obtain solutions for suh a limiting ter-minal ase with either analytial or numerial integration methods. The reliability of2PMS was demonstrated when it mathed these results aurately as shown in Chapter8. The auray of the model was again orroborated when it was tested against em-pirial data obtained by Rihardson and Zaki (1954). Not only did the model performwell for the entire range of solid volume onentrations used in these experiments butit remained aurate through Reynolds number ranging between 0.02 and 7600.The objetive of modelling two-phase �ow based purely on the physial traits of theonstituent phases has however only been partially attained. It remains to speify howthe �tting parameter used within the asymptoti mathing tehnique is dependent onthe physial properties of two-phase motion. In retrospet it was onluded that theForhheimer regime should also be divided into its limiting onentrations and thatthe expressions derived for eah should then be mathed as was done with the Darypart of the equation.
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Appendix AFores ating on a sphere
A.1 IntrodutionThe resultant fore ating on a sphere, submerged in a ontinuum, is divided into avolume and a surfae omponent. The volume fores onsist of a weight, buoyanyand an added mass fore whih are denoted by FW , FBuoy and FAM respetively.The surfae fores inlude a drag fore, FD, a pressure fore, F P , the Basset, Sa�manand Magnus fores, respetively denoted by FB, F S and FM , and a partile-partileollision fore whih is denoted by F pp. The Basset fore is often referred to as theHistory fore. A brief disussion is presented on eah and an expression is given for theratio of the veloity gradient related fores with the Stokes drag in order to quantifythe relative importane of eah.A.2 Volume foresWeight and buoyany are the two main volume fores ating on the partile. In addi-tion, the notion of "added" mass has been introdued. The added mass fore representsa �uid fore exerted by the �uid partiles around an aelerating body. The surround-ing �uid is pulled along with the aelerating body and the body experienes a foreas if its mass is inreased by the amount of the "added" mass.Added mass is dependent on the density of the �uid and it follows that it may benegleted for ases where the density of the body is far greater than that of the sur-rounding �uid. If the density of the �uid is, however, omparable or greater than that174
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A.3. Surfae fores 175
of the body, the added mass may be greater than the mass of the body itself and willhave a signi�ant e�et. However, for the urrent study, the onept of added masswill be negleted.The volume of the arried mass generally depends on the partile geometry, and isgiven by

ma = kmp, (A.2.1)where ma and mp denote the added mass and the partile mass, respetively, and kis a onstant, whih, for a sphere, equals 0.5 (Fan and Zhu (1998) and Kleinstreuer(2003)). The real mass, together with the added mass are referred to as the virtualmass of the body, and the virtual mass fore, F VM is given by
F VM =

1

2
ρcνp

d

dt
( vc − vp), (A.2.2)where ρc and νp denote the density of the ontinuum and volume of a partile, respe-tively, whereas the ontinuum- and partile veloities are, respetively, given by vc and

vp. The total volume fore, experiened by the spherial body, is given by
F V ol = FW + FBuoy + FAM

= νp g(ρp − ρc) +
ρcνp
2

d

dt
( vc − vp), (A.2.3)where ρc is the ontinuum density.This onludes the disussion on volume fores whih at on the sphere as a resultof inertia and the di�erene in densities between the sphere and its surrounding �uidmatter.A.3 Surfae foresThe surfae of the body is exposed to the surrounding �uid and often moves with aveloity di�erent to that of the �uid. The visosity of the surrounding �uid, the relativeveloity of the partile, and pressure gradients, indue fores on the surfae of the body.The resultant surfae fore, F Surf , is divided into six omponents as

F Surf = FD + F P + FB + F S + FM + F pp, (A.3.1)
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A.3. Surfae fores 176
where FD, F P , FB denote the drag, pressure and Basset fores respetively. TheSa�man and Magnus fores are given by, F S and FM , while F pp denotes the partileinteration fore.In the following setions a brief desription will be given of eah of the aforementionedsurfae fores.A.3.1 Pressure foreThe de�nition of the pressure fore is not onsistent within literature: Crowe et al.(1998) and Fan and Zhu (1998) regard the pressure fore to be due to the statipressure only, and argue that the pressure fore is thus the ause of buoyany. Buoyanyis, however, treated by many as a separate fore to that indued by pressure in thesurrounding �uid. Kleinstreuer (2003), for example, lassi�es buoyany and pressurefores separately by introduing buoyany as a surfae fore whilst the pressure foreis lassi�ed as a volume fore. The pressure fore in this regard is given by

FP = −νp(i)

(
∇p+∇ · τ

c

)
. (A.3.2)In this work, the approah followed by Crowe et al. (1998) and Fan and Zhu (1998) isapplied and the pressure fore will therefore be regarded as the fore that arises dueto stati pressure di�erenes within the ontinuum.The loal pressure gradient in a stationary �uid gives rise to a fore in the diretion ofthe pressure gradient. The net pressure fore, F P , ating on the partile is given by(Crowe et al. (1998) and Fan and Zhu (1998)) as

FP =

∫

∂νp(i)

− p npdS, (A.3.3)where np is the outwardly direted normal unit vetor on the partile wall and ∂νp(i)is the surfae area of partile i. Following Crowe et al. (1998), the divergene theoremis applied to Equation (A.3.3), yielding
F P =

∫

νp(i)

−∇pdν, (A.3.4)
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where νp(i) is the volume of the ith partile. Under the assumption that the pressuregradient remains onstant over the volume of the partile, Equation (A.3.4) may beexpressed as

FP = −∇pνp(i). (A.3.5)The pressure, p, in Equations (A.3.3)-(A.3.5) is the hydrostati pressure whih is givenby Arhimedes' priniple, i.e. p = ρcgy, where y is the diameter of the partile. Itfollows that the pressure gradient is given by
∇p = −ρcg k, (A.3.6)where k is in the diretion opposed to gravity (upward). The orresponding pressurefore is given by
F P = ρc gνp(i). (A.3.7)A.3.1.1 Stati and dynami pressure omponentsFigure A.1 is a simpli�ed depition of �uid entering and exiting a ubially shapedontrol volume.

∆x

A1 A2v1 v2

p1 p2Figure A.1: Simpli�ed onservation of mass.The in�ow and out�ow �uid veloities are given by v1 and v2 respetively, ∆x is thewidth of the ube while p1 and p2 represent the pressures on the left- and right handsides of the volume, respetively. The areas over whih the �uid enters and exists thevolume are given by A1 and A2. Conservation of momentum for an inompressible�uid, yields
F res = mcac, (A.3.8)
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where F res is the resultant fore ating on the �uid, whereas mc and ac denote themass and veloity of the ubi volume, respetively.Pressure is de�ned as fore per unit area, hene

p2A2 − p1A1 = mc
v2 − v1
∆t

,
(
p1 +

∆p

∆x
∆x

)
A2 − p1A1 = mc

v1 +
∆v
∆x

∆x− v1

∆t
,where ∆v = v2 − v1. If the in�ow and out�ow areas are equal in size (i.e. A1 = A2) itfollows that

∆p

∆x
Vc = mc

∆x

∆t

∆v

∆x
. (A.3.9)(A.3.10)Dividing the right-hand side of Equation (A.3.9) by the ube volume, Vc, and notingthat ∆x/∆t = v, yield the following expression for the pressure gradient

∆p

∆x
= ρcv

∆v

∆x
. (A.3.11)In order to approximate an in�nitesimally small volume, ∆x, is assumed to approahzero, and Equation (A.3.11) may be expressed in di�erential form and generalised tovetor form as

dp

dx
= ρc v ·

d v

dx
. (A.3.12)Integration of the left- and right-hand sides of Equation (A.3.12) with regard to pressureand veloity, respetively, yields

∫ ptot

po

dp = ρc

∫ v2

v1

v · d v

ptot − po = ρc
1

2

(
v22 − v21

)
. (A.3.13)It follows that

po +
1

2
ρc
(
v22 − v21

)
= ptot. (A.3.14)If v1 = 0 then

po +
1

2
ρcv

2 = ptot, (A.3.15)
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where po denotes the stati pressure, ptot denotes the total pressure and the dynamipressure is denoted by 1

2
ρcv

2. This is idential to Bernoulli's equation whih was derivedusing energy onservation. The total pressure is therefore made up out of two types ofpressures: The �rst is the hydrostati pressure whih is present when the ontinuumis stationary, the seond is the pressure due to the motion of the ontinuum. Theorientation of the stati pressure fore is shown in Figure A.2.

x

y

θ

d FP

dθ

Low stati pressure
High stati pressure F P

Figure A.2: Diretion of the pressure fore on a partile.
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A.3.2 Basset or History foreWhereas the added mass fore aounted for the e�et that relative aeleration hadon the volume of the body, the Basset fore arises from the e�et that the aelerating�uid has upon the surfae of the partile. The added mass fore aounts for the formdrag during aeleration. In turn, the Basset fore aounts for the visous drag e�etdue to aeleration. The Basset fore aounts for the e�et of past aeleration onthe resistane and is often referred to as the history fore and denoted by FHI (Croweet al. (1998)). The Basset fore, FB, is given by (Fan and Zhu (1998))

FB = 6

(
dp
2

)2√
πρcµc

∫ t

0

d/dτ
(
vc − vp

)
√
t− τ

dτ, (A.3.16)here (t− τ) is the time elapsed sine the previous instane of aeleration from 0 to t.The partile diameter is given by dp whereas µc and ρc are the dynami visosity andthe density of the surrounding ontinuum, respetively. The partile- and ontinuumveloities are denoted by vc and vp, respetively.The Basset fore beomes substantial at high aeleration rates. For onstant ael-eration the ratio of the Basset to the Stokes drag, RBS , is given by Wallis (1969)as,
RBS =

√
18

π

ρc
ρp

τS
t
, (A.3.17)where τS is the Stokes relaxation time de�ned as,

τS =
ρpd

2
p

18µc

. (A.3.18)It follows that the Basset fore may be negligible when the �uid-partile density ratiois small and/or the time elapsed sine the previous instane of aeleration is muhlonger than the Stokes relaxation time.A.3.3 Sa�man foreIn setions where a veloity gradient exists, e.g. near a wall or in a region of highshear, a sphere moving at a onstant veloity is subjeted to a lift fore aused by theveloity gradient (Johnson (1998)). This lift fore is termed the Sa�man fore and was

Stellenbosch University  http://scholar.sun.ac.za



A.3. Surfae fores 181
originally derived by Sa�man (1965) for the motion of a sphere at a onstant veloityin a simple shear �ow at low Reynolds numbers as

FS =
Kµc

4
|| vc − vp||d2p

√
1

νc
γ. (A.3.19)The onstantK was determined by Fan and Zhu (1998) asK = 6.46. The dynami- andkinemati �uid visosities are given by µc and νc, respetively. The partile diameteris denoted by dp and || vc − vp|| is the magnitude of the relative veloity whereas γ isthe magnitude of the shear rate. The Sa�man fore is orientated perpendiular to thediretion of �uid motion and is direted away from the region of high shear towardsthe region of low shear as illustrated in Figure A.3.

x

y

vc

F S

Figure A.3: Diretion of the Sa�man fore on a partile.The ratio of the Sa�man fore to the Stokes drag, RSS, is given by Fan and Zhu (1998)as
RSS =

Kdp
12µc

√
1

µc
γ. (A.3.20)
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In a shear �ow, with a onstant shear rate, RSS an be estimated by

RSS =
Kdp
12µc

√
Rep, (A.3.21)whih indiates that the Sa�man fore is negligible at small shear rates or smallReynolds numbers.A.3.4 Magnus forePartile rotation may be aused by a) partiles olliding with a rigid boundary, b)partiles olliding with eah other, or ) the presene of a strong shear �uid �ow. Inthe low Reynolds number regime suh a rotation will ause some of the surrounding�uid to rotate with the partile. Suh a rotation will result in an inrease of �uidveloity on the one side of the partile and a derease on the opposite side as shownin Figure A.4. The partile will move towards the region of higher veloity. This isknown as the Magnus e�et and the fore is known as the Magnus fore.

x

y

Ψ

vc

FM

Figure A.4: Diretion of the Magnus fore on a partile.The Magnus fore for a spinning sphere in a uniform �ow-�eld at low Reynolds numbersis given by Fan and Zhu (1998) as
FM =

π

8
d3pρcΨ× vp, (A.3.22)where Ψ denotes the angular veloity of the sphere. As seen from Equation (A.3.22),this fore is independent of the visosity of the �uid. The ratio, RMS , of the Magnus
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fore to the Stokes drag is,

RMS =
d2p
24

ρc
µc

Ψ. (A.3.23)From Equation (A.3.23), the Magnus fore is negligibly small ompared to the dragfore when the partile size is small or the spin veloity is low.A.3.5 Drag foreDrag fores on a partile may originate from its motion relative to a surroundingontinuum. For instanes of high partile volume frations, drag fores may also be aresult of the relative motion of neighbouring partiles.A.3.5.1 Drag due to partile-ontinuum interationThe drag fore due to the relative veloity between the partile and its surrounding�uid gives rise to a slip veloity. Suh a slip veloity auses an unbalaned pressuredistribution whih brings about visous stresses on the surfae of the body. For aspherial partile in a uniform �ow �eld the Stokes drag is given by
FD = CDAf

ρc
2
|| vc − vp||( vc − vp), (A.3.24)where Af denotes the exposed frontal area of the partile to the diretion of the in-oming �ow and CD is the drag oe�ient, whih is a funtion of the partile Reynoldsnumber, Rep:

Rep =
ρcdp|| vc − vp||

µc
. (A.3.25)Shlihting and Gersten (2000) ombined a vast amount of experimental and analytialwork on the value of CD by various authors into a single urve shown in Figure A.5.Reynolds numbers that fall in the range 700 < Rep < 105 onstitute the inertial regimefor whih the drag oe�ient is given by CD = 0.44. In this range, inertial e�etsdominate over visous e�ets.For Reynolds numbers lower than the aforementioned range, visous e�ets prevailand it was shown by Stokes in 1850 that the drag oe�ient is analytially given by

CD = 24/Rep. The drag oe�ient was obtained under uniform and undisturbed �owonditions. The sharp redution in the drag oe�ient at high Rep orresponds to the
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Figure A.5: Drag oe�ient, CD, for a smooth sphere.transition from a laminar to a turbulent boundary layer over the partile (Fan and Zhu(1998)).However, in pratie the �ow onditions are usually not uniform due to the �uid itselfoften being turbulent even when the relative veloity and resulting partile Reynoldsnumbers are small. Suh turbulene brings about a hange in the wake struture, whihauses the body's surrounding surfae pressure distribution to hange. The turbuleneauses CD to deviate from the Shlihting's urve in Figure A.5. Apart from turbulene,the drag oe�ient an also be a�eted by the movement of neighbouring partiles.Studies suggest (Fan and Zhu (1998)) that the drag oe�ient of an individual partileunder the in�uene of a neighbouring partile may be expressed by
CD

CD0

= 1− (1−A) exp

(
−B

l

dp

)
, (A.3.26)where CD0 is the drag oe�ient from the standard urve, l is the distane betweenthe two interating partiles, and A and B are empirial oe�ients whih may befuntions of Rep and the de�eting angle between the diretion of the relative veloityand the line onneting the entres of the two interative partiles.
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A.3.5.2 Drag fore due to partile-partile interationInteration fores, F pp, are the result of ollisions between partiles, �ow turbuleneand/or Brownian motion e�ets. Shear �ow auses partile interation at high onen-trations. An expression for the partile interation fore is derived in Chapter 5 underSetion 5.5.In summation the fores experiened by a single partile are given by,

mp

d vp
dt

= F V ol + F Surf .

= FW + FAM + FD + FB + F S + FM + F P + F pp, (A.3.27)where the buoyany fore is replaed by the pressure gradient fore and the bassetfore, FB, is often referred to as the History fore.Under the assumption of a symmetri stress dyad, the Magnus and Sa�man foresdisappear. The virtual mass and Basset fores are regarded as negligible and theremaining fores are given by
mp

d vp
dt

= mp g +

∫

∂νp

np · σ p
dS, (A.3.28)where the �rst term on the right hand side denotes the weight fore whilst the pressuregradient, drag and partile interation fores are inorporated into a symmetri stressdyad, σ

p
, whih is integrated over the surfae of the partile.
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Appendix BAveraging methods
B.1 IntrodutionThe methods ommonly used for the averaging of the onservation equations are dis-ussed in this appendix. These inlude volume-, time-, and ensemble averages: Let
Ω = Ω( r, t) be any parameter (e.g. salar, vetor or dyad). The property, Ω, is ex-amined at a �xed point in spae, r, and time, t. Either one of the phases may bepresent at this time. Volume averaging is performed around the stationary point r ata �xed time t, whereas time averaging is performed at the point r over a time intervalinluding time t. The ensemble average is regarded as the statistial average of theparameter Ω at the point r and at time, t, over an abundant number of experimentsexhibiting the same initial and boundary onditions (Enwald et al. (1997)).B.2 Volume averagingLet the two phases under onsideration be termed the α- and β-phase, respetively.The volume average is taken over the whole volume U o of a Representative ElementaryVolume (REV) (Bahmat and Bear (1986)). If the parameter to be averaged exists onlyin the α volume and not in the β volume, an appropriate toggle swith is needed whenomputing the integral over the entire volume. To this end a step funtion, X( r, t), isde�ned whih has a value of unity in the α-phase and is zero in the β-phase.A building blok in the onstrution of X( r, t) is the unit step funtion, whih in one186
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B.2. Volume averaging 187
dimension is given by

H(x− a, t) =





0, if x < α

1, if x ≥ α
(B.2.1)The derivative of the step funtion is de�ned as

dH(x− a)

dx
= δ(x− a), (B.2.2)where δ(x− a) is the Dira delta funtion.Consider the funtion Xα(x, t), shown in Figure B.1a. Xα(x, t) is a sum of step fun-tions, i.e.

Xα(x, t) = H(x− a0) +H(x− a1) +H(x− a2) +H(x− a3). (B.2.3)The derivative whih is given by
dXα(x, t)

dx
= δ(x− a0)− δ(x− a1) + δ(x− a2)− δ(x− a3), (B.2.4)and is shown in Figure B.1b.A unit normal vetor nα is de�ned whih points outward from the α-phase into the

β-phase at the αβ-interfae. Equation (B.2.4) may the be written as
dXα(x, t)

dx
= −

3∑

k=0

nα · iδ(x− ak), (B.2.5)where i is the unit vetor in the positive x diretion. By analogy, Gray and Lee(1976) de�ned the gradient of a three-dimensional distribution, Xα( r, t), where r =

x i+ y j + z k, as
∇Xα( r, t) = nαδ( r − rαβ), (B.2.6)and rαβ denotes the position vetor of the αβ-interfae.
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a_0 a_1 a_2 a_3
0  

1  

x

Xα αα

β β(a) Unit funtion.

a_0 a_1 a_2 a_3
x

∂ 
X

α /∂
 x

β βα α

(b) Derivative of unit funtionFigure B.1: One-dimensional distribution funtion Xα and its derivatives.The volume average of a property, Ω, is de�ned as
〈Ω〉Uo =

1

Uo

∫

Uo

ΩXα( r, t)dU , (B.2.7)where Uo is the averaging volume.
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Let Dp, DV and DS denote the harateristi dimensions of the phases, the averagingvolume and the physial system, respetively. Whitaker (1969) gives the onditionsunder whih the volume averaging proedure may be applied as:

Dp ≪ DV ≪ DS. (B.2.8)B.3 Time averagingThe time averaging operator is de�ned as
〈Ω〉t =

1

T

∫ t+T/2

t−T/2

ΩXα( r, t)dτ. (B.3.1)Aording to Delhaye and Ahard (1978)1 and Munkejord and Papin (2005), the timeinterval, T , hosen for the averaging must satisfy the following onditions:
Tt ≪ T ≪ Tm, (B.3.2)where Tt is the time sale of the turbulent �utuations and Tm is the time sale of themean �ow �utuations.B.4 Ensemble averagingThe ensemble average is de�ned by

〈Ω〉e =

∫

̺

ΩXα( r, t)dP (ζ), (B.4.1)where dP (ζ) denotes the probability of observing proess ζ , whereas ̺ is the set of allpossible outomes.The averaging rules for volume averaging, whih, due to its physial interpretability, isthe preferred method of averaging in this work, are disussed in the next setion.B.5 Averaging priniplesThe phase average, 〈Ωα〉, of some property Ω is de�ned by
〈Ωα〉 ( r, t) =

1

Uo

∫

Uo

Ω( r, t)Xα( r, t) dU , (B.5.1)1In Enwald et al. (1997)
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where the volume of integration, Uo = Uα + Uβ is independent of spae and time.Physially, the α-phase average is a property of the α-phase only, although the averageis taken over the entire averaging volume oupied by the α- and β-phases. Beause
Xα is zero in the β-phase, Equation (B.5.1) may be written as

〈Ωα〉 ( r, t) =
1

Uo

∫

Uα

Ω( r, t) dU . (B.5.2)
The intrinsi phase average, 〈Ωα〉α, of some property Ωα is given by

〈Ωα〉α =
1

Uα

∫

Uα

Ω( r, t)dU . (B.5.3)This type of average desribes a property of the α-phase, averaged over that phase only.The average is, however, assigned to the entre of the averaging volume, independentof whether or not the entre is loated within the partiular phase. Comparison ofEquations (B.5.2) and (B.5.3) indiates that
〈Ωα( r, t)〉 = ǫα( r, t) 〈Ωα〉α ( r, t), (B.5.4)where

ǫα( r, t) = Uα/Uo =
1

Uo

∫

Uo

Xα( r, t)dU . (B.5.5)From the relation given by Equation (B.5.4) it follows that ǫα is the fration of thevolume oupied by the α-phase.B.6 Averaging theoremsThe �rst theorem relates the average of a gradient to the gradient of an average and wasdeveloped by Slattery (1967) and Whitaker (1967), independently. If Ω is ontinuouswithin the α-phase, this theorem states that
〈∇Ωα〉 = ∇〈Ωα〉+

1

Uo

∫

Sαβ

Ωα nαdS, (B.6.1)
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where Sαβ is the αβ-interfae and nα is the normal unit vetor direted from the
α-phase into the β-phase. The relation may be proved using the funtion Xα: FromEquation (B.5.1) it follows that

〈∇Ωα〉 =
1

Uo

∫

U o

[∇Ωα( r, t)]X
α( r, t)dU . (B.6.2)The hain rule is applied to the integrand, yielding

〈∇Ωα〉 =
1

Uo

∫

U o

[∇Ωα( r, t)X
α( r, t)] dU − 1

Uo

∫

Uo

Ωα( r, t)∇Xα( r, t)dU .(B.6.3)Substitution of Equation (5.5.30) into the seond term of Equation (B.6.3) then yields
〈∇Ωα〉 =

1

Uo

∫

Uo

[∇Ωα( r, t)X
α( r, t)] dU − 1

Uo

∫

Uo

Ωα( r, t)(−1)nαδ( r − rαβ)dU .(B.6.4)The last step of the proof follows from the fat that the last integral in Equation(B.6.4) involves the delta funtion whih is zero everywhere exept at the αβ-interfae,
Sαβ. The value of an integral, of whih the integrand is a δ-funtion multiplied bysome other quantity, is that quantity evaluated at the singular points of the δ-funtion(Munkejord and Papin (2005)). It therefore follows that

1

Uo

∫

U o

Ωα( r, t)nαδ( r − rαβ)dU =
1

Uo

∫

Sαβ

Ωα( r, t)nαdS, (B.6.5)and Equation (B.6.4) simpli�es to
〈∇Ωα〉 =

1

Uo

∫

Uo

[∇Ωα( r, t)X
α( r, t)] dU +

1

Uo

∫

Sαβ

Ωα( r, t)nαdS. (B.6.6)If ∇, on the right-hand side of Equation (B.6.6), is onsidered to be ∇ = i ∂
∂x

+ j ∂
∂y

+

k ∂
∂z
, then it may be removed from the integral sine the volume of integration has been
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spei�ed to be independent of r, hene Equation (B.6.6) may be expressed as

〈∇Ωα〉 = ∇




1

Uo

∫

Uo

Ωα( r, t)X
α( r, t)dU



+

1

Uo

∫

Sαβ

Ωα( r, t)nαdS, (B.6.7)Appliation of Equation (B.5.1), yields
〈∇Ωα〉 = ∇〈Ωα〉+

1

Uo

∫

Sαβ

Ωα nαdS. (B.6.8)Equation (B.6.8) onludes the derivation of an expression for the average of a spatialderivative.The seond rule relates the average of a time derivative to the time derivative of anaverage, and is given by
〈
∂Ωα

∂t

〉
=

∂

∂t
〈Ωα〉 −

1

Uo

∫

Sαβ

Ωα w · nαdS, (B.6.9)where w is the veloity of a point on the αβ-interfae. The proof of the relation givenby Equation (B.6.9) ommenes with the appliation of the phase average, given byEquation (B.5.1). It follows that the average of the partial time derivative may begiven as
〈
∂Ωα

∂t

〉
=

1

Uo

∫

Uo

∂Ωα

∂t
( r, t)Xα( r, t)dU . (B.6.10)Subsequent appliation of the hain rule, yields

〈
∂Ωα

∂t

〉
=

1

Uo

∫

Uo

∂

∂t
[Ωα( r, t)X

α( r, t)] dU − 1

Uo

∫

U o

∂Xα( r, t)

∂t
Ωα( r, t)dU . (B.6.11)In view of the assumption that U o is independent of time, the order of di�erentiationand integration in the �rst term on the right side may be reversed and Equation (B.5.1)
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invoked to obtain

〈
∂Ωα

∂t

〉
=

∂

∂t
〈Ωα〉 −

1

Uo

∫

U

∂Xα( r, t)

∂t
Ωα( r, t)dU . (B.6.12)If the α-phase is deforming, Xα will be a funtion of time and the last term may benon-zero. The total derivative of Xα is

dXα

dt
=

∂Xα

∂t
+

dx

dt

∂Xα

∂x
+

dy

dt

∂Xα

∂y
+

dz

dt

∂Xα

∂z
. (B.6.13)The funtions ∂Xα

∂x
, ∂Xα

∂y
and ∂Xα

∂z
will only be non-zero on the Sβα interfae. If dx

dt
, dy

dt
,and dz

dt
, are hosen to be the veloity omponents of the interfae, the total derivativebeomes a substantial derivative that moves with the interfae. Beause an observermoving with the interfaial boundary will see no hange, this derivative is zero, i.e.

dXα

dt
= 0 =

∂Xα

∂t
+ w · ∇Xα, (B.6.14)where w is the veloity of the phase interfae2. It follows that

∂Xα

∂t
= −w · ∇Xα. (B.6.16)Substitution of Equation (B.6.16) into Equation (B.6.12), yields

〈
∂Ωα

∂t

〉
=

∂

∂t
〈Ωα〉+

1

Uo

∫

U o

w( r, t) · ∇Xα( r, t)Ωα( r, t)dU . (B.6.17)Equation (B.2.6) is applied and it follows that
〈
∂Ωα

∂t

〉
=

∂

∂t
〈Ωα〉+

1

Uo

∫

Uo

w( r, t) · (−1)nαδ( r − rαβ)Ωα( r, t)dU . (B.6.18)2In the summary of two-phase �ow, given by Enwald et al. (1997), they ite Drew (1983) andpresents the following relation
dXα

dt
= 0 =

∂Xα

∂t
+ vα · ∇Xα, (B.6.15)where vα is the veloity of the α-phase. Note that this applies spei�ally to w = vα, i.e. if there isno ombustion or ondensation.
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As mentioned earlier, the integral involving the delta funtion is zero everywhere bar-ring the interfae Sαβ. It therefore follows that

〈
∂Ωα

∂t

〉
=

∂

∂t
〈Ωα〉 −

1

Uo

∫

Sαβ

Ωαw · nαdU . (B.6.19)Equation (B.6.19) onludes the derivation of an expression for the average of a timederivative.The above two derivations exhibit the usefulness of the distribution funtion in provingtheorems for loal volume averaging. In earlier work by Whitaker, these theorems wereproved using the general transport theorem (Whitaker (1967)).The general averaging rules are given as (Enwald et al. (1997)):
〈f + g〉 = 〈f〉+ 〈g〉 (B.6.20)
〈〈f〉 g〉 = 〈f〉 〈g〉 (B.6.21)

〈onstant〉 = onstant (B.6.22)
〈∇f〉 = ∇〈f〉+ 1

Uo

∫

Sαβ

f nαdS (B.6.23)
〈∇ · f〉 = ∇ · 〈f〉+ 1

Uo

∫

Sαβ

f · nαdS (B.6.24)
〈
∂f

∂t

〉
=

∂ 〈f〉
∂t

− 1

Uo

∫

Sαβ

f w · nαdS. (B.6.25)These averaging identities are applied to the instantaneous onservation Equations(2.6.1) and (2.6.2).B.7 Averaging of the onservation equationsThe averaging proedures for the mass and momentum equations, by way of the appli-ation of identities given by Equations (B.6.20) to (B.6.25), are reviewed in Chapter 4.
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Appendix CEvaluation of the shear stress
C.1 IntrodutionThe momentum onservation equations require the shear stress, τ

c
, due to ontinuummotion, to be evaluated inside the ontinuum as well as on the partile-ontinuuminterfae, Spc. In this appendix the assumptions made in alulating expressions forgradients and averages taken of shear stresses at these loations are disussed. Theresults of whih are applied in Chapter 5 to the averaged momentum equations.C.2 Evaluation of the stress deviation termNewtonian shear was given by Equation (5.2.5) in Setion 5.2 as

τ
c

= µc

(
∇ vc + (∇ vc)

T
)
. (C.2.1)The average of the divergene of the shear stress is

〈
∇ · τ

c

〉
=

〈
∇ · µc∇ vc +∇ · µc (∇ vc)

T
〉
. (C.2.2)The visosity, µc, is assumed onstant and Equation (C.2.2) may therefore be expressedas

〈
∇ · τ

c

〉
= µc

〈
∇2 vc +∇ · (∇ vc)

T
〉
. (C.2.3)The divergene of the transpose of the veloity gradient, that appears on the right-handside of Equation (C.2.3), is given by

∇ · (∇ vc)
T = ∇ (∇ · vc) , (C.2.4)195
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C.2. Evaluation of the stress deviation term 196
and is zero due to the assumption of ontinuity (i.e. ∇ · vc = 0). It follows thatEquation (C.2.3) simpli�es to

〈
∇ · τ

c

〉
= µc

〈
∇2 vc

〉
. (C.2.5)Equation (C.2.5) may be expressed as

〈
∇ · τ

c

〉
= µc

1

Uo

∫

U c

∇ · (∇ vc) dU . (C.2.6)The divergene theorem is applied to Equation (C.2.6) and it follows that
〈
∇ · τ

c

〉
= µc

1

Uo

∫

Scc

nc · (∇ vc) dS + µc
1

Uo

∫

Spc

nc · (∇ vc) dS. (C.2.7)Subsequent appliation of Slattery's Averaging Theorem to Equation (C.2.7), yields
〈
∇ · τ

c

〉
= µc

1

Uo
∇ ·

∫

Uo

(∇ vc) dU + µc
1

Uo

∫

Spc

nc · (∇ vc) dS, (C.2.8)and, �nally, Equation (C.2.8) may be expressed as follows with the use of averagingnotation
〈
∇ · τ

c

〉
= µc∇ · 〈∇ vc〉+ µc

1

Uo

∫

Spc

nc · (∇ vc) dS. (C.2.9)Alternatively, the average of the divergene of the shear stress may be expressed as
〈
∇ · τ

c

〉
= ∇ ·

〈
τ
c

〉
+

1

Uo

∫

Spc

nc · τ c
dS. (C.2.10)From Equations (C.2.9) and (C.2.10), it follows that

∇ ·
〈
τ
c

〉
+

1

Uo

∫

Spc

nc · τ c
dS = µc∇ · 〈∇ vc〉+ µc

1

Uo

∫

Spc

nc · (∇ vc) dS.(C.2.11)
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The ontinuum averaging rules are applied to the �rst term on the right-hand side ofEquation (C.2.11). It follows that
∇ ·
〈
τ
c

〉
+

1

Uo

∫

Spc

nc · τ cdS = µc∇ · [ǫc∇〈 vc〉c] + µc∇ ·




1

Uo

∫

Spc

nc ṽcdS



+

µc
1

Uo

∫

Spc

nc · (∇ vc) dS. (C.2.12)The partile-ontinuum interfae, Spc, is onstant, and the integration and di�erenti-ation proedures may therefore interhange in Equation (C.2.12). It follows that
∇ ·
〈
τ
c

〉
+

1

Uo

∫

Spc

nc · τ cdS = µc∇ · [ǫc∇〈 vc〉c] + µc
1

Uo

∫

Spc

∇ · nc ṽc + nc · (∇ vc) dS(C.2.13)It is assumed that the gradient of the ontinuum veloity deviations, ṽc, is negligiblysmall, allowing Equation (C.2.13) to be written as
∇ ·
〈
τ
c

〉
+

1

Uo

∫

Spc

nc · τ c
dS = µc∇ · [ǫc∇〈 vc〉c] + µc

1

Uo

∫

Spc

nc · (∇ vc) dS.(C.2.14)It follows that the left-hand side terms of Equation (C.2.14), whih appear within theontinuum momentum onservation equation, may be replaed by those on the right-hand side of Equation (C.2.14). In addition, the shear stress within the surfae integralis equal to the gradient of the veloity on the Spc-interfae. Following Enwald et al.(1997), Ishii (1977), Gidaspow (1986) and Mazzei and Lettieri (2007), the veloity onthe Spc-interfae is assumed to adhere to a slip assumption and is therefore a funtionof the relative veloity between the partile and the ontinuum. The aforementionedobservations are applied in the averaging and losure proedures of Equations (5.4.6)and (6.4.2), respetively.
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Appendix DMomentum theorem
D.1 IntrodutionIn the following appendix the momentum theorem is disussed. This disussion supple-ments the disussion given on the derivation for the partile-partile interation forein Chapter 5.D.2 Derivation of the momentum theoremAording to the momentum theorem of mehanis the time rate of hange of themomentum is equal to the sum of the ating external fores

d I

dt
=
∑

F ext. (D.2.1)For a system with n partiles with masses mi and veloities vi it follows that
I =

n∑

i=1

mi vi, (D.2.2)and thus
d

dt

∑
mi vi =

∑
F . (D.2.3)If the partiles are assumed to form a ontinuum with density, ρ(x, y, z, t), the sumhanges into a volume integral. The rate of hange of momentum is then

d I

dt
=

d

dt

∫

V(t)

ρ vdV. (D.2.4)198
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D.2. Derivation of the momentum theorem 199
The volume V, whih always ontains the same partiles, hanges in a time intervalfrom V(t) to V(t+∆t)

d

dt

∫

V(t)

ρ vdV = lim
∆t→0

1

∆t




∫

V(t +∆t)

ρ v(t+∆t)dV −
∫

V(t)

ρ v(t)dV



(D.2.5)A Taylor series expansion is applied to the �rst integrand

ρ v(t+∆t) = ρ v(t) +
∂ρ v

∂t
∆t + ..., (D.2.6)and it follows that

d I

dt
=

∫

V(t)

∂

∂t
(ρ v)dV + lim

∆t→0




1

∆t

∫

∆V(t)

ρ vdV




. (D.2.7)The last integral an be hanged into a surfae integral over the surfae S(t) by usingthe relation between the inremental volume element dV and the orresponding surfaeelement dS
dV = ( v · n) dS∆t. (D.2.8)It follows that

d I

dt
=

∫

V(t)

∂

∂t
(ρ v)dV +

∫

S(t)

ρ v( v · n)dS. (D.2.9)For steady �ows the time rate of hange of momentum is given by the surfae integralof the last equation (Krause (2005)). The surfae, S, of the volume, V, onsidered isalled a ontrol surfae.
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Appendix EExtension of ollisional-kineti fore totwo dimensions
E.1 IntrodutionIn this appendix the partile-partile interation fore of Equation (5.5.51) is extendedto two dimensions.E.2 Newton's lawThe three dimensional form of the Newtonian law is given by

τ = 2µD, (E.2.1)where τ is the stress tensor, µ is a onstant of proportionality and D is the rate ofdeformation- or rate of strain tensor whih is related to the veloity gradient tensor,
∇ v, but unlike ∇ v, is symmetri.The asymmetri veloity gradient tensor is divided into a symmetri rate of straintensor, D, and an asymmetri vortiity -or spin tensor, S:

∇ v = D + S, (E.2.2)where
D =

1

2
(∇ v +∇ vT ), (E.2.3)200
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E.2. Newton's law 201
and

S =
1

2
(∇ v −∇ vT ). (E.2.4)The symbol T , whih appears in Equations (E.2.3) and (E.2.4), denotes the transposeoperation and the symmetri tensor may be expressed in matrix form as

1

2
(∇ v +∇ vT ) =

(
i j k

)



2∂u
∂x

∂v
∂x

+ ∂u
∂y

∂w
∂x

+ ∂u
∂z

∂u
∂y

+ ∂v
∂x

2∂v
∂y

∂w
∂y

+ ∂v
∂z

∂u
∂z

+ ∂w
∂x

∂v
∂z

+ ∂w
∂y

2∂w
∂z







i

j

k




.(E.2.5)The spin tensor given in Equation (E.2.4) does however not in�uene the visosity andit follows that
τ = 2µD

= µ(∇ v +∇ vT ). (E.2.6)To show that this is indeed the same as the law for one dimension: Let the veloityhave an x-omponent only and let this omponent only be a funtion of the y-diretion.It follows that
1

2
(∇ v +∇ vT ) =

(
i j k

)



0 ∂u
∂y

0

∂u
∂y

0 0

0 0 0







i

j

k




. (E.2.7)This is equivalent to
1

2
(∇ v +∇ vT ) =

∂u

∂y
i j +

∂u

∂y
j i. (E.2.8)Finally we have the original one dimensional form:

τ = 2µD



0 τxy 0

τyx 0 0

0 0 0




= (2µ)

(
1

2

)



0 ∂u
∂y

0

∂u
∂y

0 0

0 0 0




, (E.2.9)
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and it follows that

τxy = τyx = µ
∂u

∂y
. (E.2.10)The three dimensional fore vetor is thus given by

f rs

avg
= −n⊥ · ǫpρpdp

4
|∇ v +∇ vT |

(
∇ v +∇ vT

)
νi. (E.2.11)Let the shearrate tensor be denoted by

γ̇ = ∇ u+∇ uT ,

=

(
∂u

∂y
+

∂v

∂x

)
j i+

(
∂u

∂y
+

∂v

∂x

)
i j, (E.2.12)The magnitude of whih is given by1

|γ̇| =

√√√√√√
1

2
Tr







0 ∂u
∂y

+ ∂v
∂x

∂u
∂y

+ ∂v
∂x

0


 ·




0 ∂u
∂y

+ ∂v
∂x

∂u
∂y

+ ∂v
∂x

0





,

=
∂u

∂y
+

∂v

∂x
. (E.2.14)The shear stress term is thus given by

τ
p

= µp

[(
∂u

∂y
+

∂v

∂x

)
j i+

(
∂u

∂y
+

∂v

∂x

)
i j

]
, (E.2.15)where the partile visosity is given by

µp =
ǫpρpd

2
p

12

(
∂u

∂y
+

∂v

∂x

)
. (E.2.16)Equation (E.2.11) may therefore be expressed as

f rs

avg
=

ǫpρpdp
4

(
∂u

∂y
+

∂v

∂x

)[(
∂u

∂y
+

∂v

∂x

)
i+

(
∂u

∂y
+

∂v

∂x

)
j

]
νi. (E.2.17)1The magnitude of any tensor A is de�ned as

|A| =

√
1

2
(A : AT ) =

√
1

2
Tr(AT ·A). (E.2.13)
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Appendix FDiretional omponents of themomentum equations
F.1 IntrodutionThe mass onservation expressions, given by Equations (4.4.6) and (4.7.18), and themomentum onservation expressions, given by Equations (6.6.2) and (6.6.3), are refor-mulated and divided into their omponent expressions in order to make them suitablefor disretisation. The elaborate averaging notation will be dropped here.F.2 Deomposition of vetor equations intoomponent formEquation (4.4.6) is multiplied by the ontinuum veloity, vc, and the result is subtratedfrom Equation (6.6.2). A similar operation is performed with Equations (4.7.18) and(6.6.3), yielding the following simpli�ed forms for ontinuum- and disrete phases,respetively:
ρcǫc

∂ vc
∂t

+ ρcǫc vc · ∇ vc = ρc gǫc − ǫc∇pc + µc∇ · [ǫc∇ vc]−




µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18






s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(
vc − vp

)
,(F.2.1)203
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and
ρp

∂

∂t
ǫp vp + ρp∇ · ǫp vp vp = ǫp g (ρp − ρc)−

ǫ2pρpdp

4

(
∂u p

∂y
+

∂v p

∂x

)2

n̂+





µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(
vc − vp

)
.(F.2.2)The x- and y - omponents for Equation (F.2.1) are respetively given by

ρcǫc
∂uc

∂t
+ ρcǫcuc

∂uc

∂x
+ ρcǫcvc

∂uc

∂y
= −ǫc

∂pc
∂x

+ µc
∂

∂x

(
ǫc
∂uc

∂x

)
+ µc

∂

∂y

(
ǫc
∂uc

∂y

)
−





µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(uc − up) ,(F.2.3)and
ρcǫc

∂vc
∂t

+ ρcǫcuc
∂vc
∂x

+ ρcǫcvc
∂vc
∂y

= ρcgǫc − ǫc
∂pc
∂y

+ µc
∂

∂x

(
ǫc
∂vc
∂x

)
+ µc

∂

∂y

(
ǫc
∂vc
∂y

)
−





µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18






s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(vc − vp) .(F.2.4)The orresponding omponents for the partiulate phase are given as
ρpǫp

∂up

∂t
+ ρcǫpup

∂up

∂x
+ ρpǫpvp

∂up

∂y
= −

ǫ2pρpdp

4

(
∂u

∂y
+

∂v

∂x

)2

+





µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18






s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(uc − up) ,(F.2.5)
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and
ρpǫp

∂vp
∂t

+ ρpǫpup
∂up

∂x
+ ρpǫpvp

∂up

∂y
= ǫpg (ρp − ρc)−

ǫ2pρpdp

4

(
∂up

∂y
+

∂vp
∂x

)2

+





µǫp

d2p


 36ǫcǫ

1/3
p(

1− ǫ
2/3
p

)(
1− ǫ

1/3
p

) + 18





s

+



1

2

cdρc
dp

ǫpǫ
2
c(

1− ǫ
2/3
p

)2 || vc − vp||




s


1/s

(vc − vp) .(F.2.6)Equations (F.2.3), (F.2.4), (F.2.5) and (F.2.6) may now be put into disrete form.
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Appendix GExperimental amera data
Table G.1: Experimental amera data.Minsize[m℄ Maxsize[m℄ Average[m℄ Beginframe Endframe Distane[m℄ Veloity[m/s℄ Averageveloity[m/s℄0.02 0.03 0.025 979 989 1 3.00 3.470.02 0.03 0.025 993 1002 1 3.33 3.470.02 0.03 0.025 732 741 1 3.33 3.470.02 0.03 0.025 767 775 1 3.75 3.470.02 0.03 0.025 771 780 1 3.33 3.470.02 0.03 0.025 822 831 1 3.33 3.470.02 0.03 0.025 856 866 1 3.00 3.470.02 0.03 0.025 960 969 1 3.33 3.470.02 0.03 0.025 978 988 1 3.00 3.470.02 0.03 0.025 800 808 1 3.75 3.470.02 0.03 0.025 867 877 1 3.00 3.470.025 0.05 0.0375 895 907 2 5.00 5.410.025 0.05 0.0375 911 924 2 4.62 5.410.025 0.05 0.0375 723 734.5 2 5.22 5.410.025 0.05 0.0375 769 780 2 5.45 5.410.025 0.05 0.0375 780 792 2 5.00 5.410.025 0.05 0.0375 807 836 4 4.14 5.410.025 0.05 0.0375 762 775 2 4.62 5.410.025 0.05 0.0375 789 800 2 5.45 5.41Continued on next page206
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Table G.1 � ontinued from previous pageMinsize[m℄ Maxsize[m℄ Average[m℄ Beginframe Endframe Distane[m℄ Veloity[m/s℄ Averageveloity[m/s℄0.025 0.05 0.0375 684 695 2 5.45 5.410.025 0.05 0.0375 728 740 2 5.00 5.410.025 0.05 0.0375 683 695 2 5.00 5.410.025 0.05 0.0375 673 685 2 5.00 5.410.05 0.075 0.0625 453 468 5 10.00 7.260.05 0.075 0.0625 471 487 5 9.38 7.260.05 0.075 0.0625 388 403.5 5 9.68 7.260.015 0.025 0.02 2593 2604 1 2.73 3.330.015 0.025 0.02 1895 1906 1 2.73 3.330.015 0.025 0.02 2121 2134 1 2.31 3.330.015 0.025 0.02 2186 2198 1 2.50 3.330.015 0.025 0.02 1728 1741 1 2.31 3.330.015 0.025 0.02 1743 1755 1 2.50 3.330.015 0.025 0.02 1511 1523 1 2.50 3.330.015 0.025 0.02 1526 1538 1 2.50 3.330.015 0.025 0.02 2181 2194 1 2.31 3.330.015 0.025 0.02 1639 1650 1 2.73 3.330.015 0.025 0.02 1647 1658 1 2.73 3.330.015 0.025 0.02 1811 1822 1 2.73 3.330.015 0.025 0.02 1852 1862 1 3.00 3.330.075 0.1 0.0875 579 591 5 12.50 13.490.075 0.1 0.0875 588 599 5 13.64 13.490.075 0.1 0.0875 1317 1328.5 5 13.04 13.490.075 0.1 0.0875 1322 1333 5 13.64 13.490.075 0.1 0.0875 1269 1280 5 13.64 13.49
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Appendix HComparison between experimentaldata and theoretial predition
The following �gures are representative of the data listed in Tables 10.2 and 10.3. Theirular points indiate results yielded by the model developed in this work whereasthe starred data points denote the experiments whih were done by Rihardson andZaki (1954). Corresponding olours indiate orresponding onditions (i.e. similarvisosities and densities).
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Richardson and Zaki experimental data (1954)

(a) ǫp = 10−6
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Richardson and Zaki experimental data (1954)

(b) ǫp = 0.010Figure H.1: Comparison between values predited for the group settling veloities fromEquation (6.6.3) and experimental data from Rihardson and Zaki (1954).

Stellenbosch University  http://scholar.sun.ac.za



Comparison between experimental data and theoretial predition 210

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

20

40

60

80

100

120

Particle diameter, d
p
 [cm]

T
er

m
in

al
 s

et
tli

ng
 v

el
oc

ity
 [c

m
/s

]

 

 

Current model
Richardson and Zaki experimental data (1954)

() ǫp = 0.050
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(d) ǫp = 0.100Figure H.1: Comparison between values predited for the group settling veloities fromEquation (6.6.3) and experimental data from Rihardson and Zaki (1954).
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(e) ǫp = 0.150
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(f) ǫp = 0.200Figure H.1: Comparison between values predited for the group settling veloities fromEquation (6.6.3) and experimental data from Rihardson and Zaki (1954).
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(g) ǫp = 0.300
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(h) ǫp = 0.400Figure H.1: Comparison between values predited for the group settling veloities fromEquation (6.6.3) and experimental data from Rihardson and Zaki (1954).
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(i) ǫp = 0.500
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(j) ǫp = 0.585Figure H.1: Comparison between values predited for the group settling veloities fromEquation (6.6.3) and experimental data from Rihardson and Zaki (1954).
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