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CANONICAL TREES, COMPACT PREFIX-FREE CODES, AND
SUMS OF UNIT FRACTIONS: A PROBABILISTIC ANALYSIS∗

CLEMENS HEUBERGER† , DANIEL KRENN‡ , AND STEPHAN WAGNER§

Abstract. For fixed t ≥ 2, we consider the class of representations of 1 as a sum of unit fractions
whose denominators are powers of t, or equivalently the class of canonical compact t-ary Huffman
codes, or equivalently rooted t-ary plane “canonical” trees. We study the probabilistic behavior of
the height (limit distribution is shown to be normal), the number of distinct summands (normal
distribution), the path length (normal distribution), the width (main term of the expectation and
concentration property), and the number of leaves at maximum distance from the root (discrete
distribution).
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1. Introduction. We consider three combinatorial classes, which all turn out
to be equivalent: partitions of 1 into powers of t, canonical compact t-ary Huffman
codes, and “canonical” t-ary trees; see the precise discussion below. In this paper,
we are interested in the structure of these objects under a uniform random model,
and we study the distribution of various structural parameters, for which we obtain
rather precise limit theorems. Let us first define all three classes precisely and explain
the connections between them. Throughout the paper, t ≥ 2 will be a fixed positive
integer. Figure 1 shows examples in the case t = 2.

1. Partitions of 1 into powers of t (representations of 1 as a sum of unit fractions
whose denominators are powers of t) are formally defined as follows:

CPartition =

{
(x1, . . . , xτ ) ∈ Z

τ
∣∣∣ τ ≥ 0, 0 ≤ x1 ≤ x2 ≤ · · · ≤ xτ ,

τ∑
i=1

1

txi
= 1

}
.

The external size |(x1, . . . , xτ )| of such a representation (x1, . . . , xτ ) is defined
to be the number τ of summands.

2. Second, we consider canonical compact t-ary Huffman codes:

CCode = {C ⊆ {1, . . . , t}∗ | C is prefix-free, compact, and canonical}.
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Fig. 1. All elements of external size 5 (and internal size 4, respectively) in CTree , CCode , and
CPartition for t = 2.

Here, we use the following notions:
• {1, . . . , t}∗ denotes the set of finite words over the alphabet {1, . . . , t}.
• A code C is said to be prefix-free if no word in C is a proper prefix of
any other word in C.

• A code C is said to be compact if the following property holds: if w is a
proper prefix of a word in C, then for every letter a ∈ {1, . . . , t}, wa is
a prefix of a word in C.

• A code C is said to be canonical if the lexicographic ordering of its words
corresponds to a nondecreasing ordering of the word lengths. This con-
dition corresponds to taking equivalence classes with respect to permu-
tations of the alphabet (at each position in the words).

The external size |C| of a code C is defined to be the cardinality of C.
If C ∈ CCode with C = {w1, . . . , wτ} and the property that length(wi) ≤
length(wi+1) holds for all i, then (length(w1), . . . , length(wτ )) ∈ CPartition .
This is a bijection between CCode and CPartition preserving the external size.
This connection can be explained by the Kraft–McMillan inequality [20, 22],
which states that for any prefix-free code C = {w1, . . . , wτ} one must have

τ∑
i=1

t−length(wi) ≤ 1,

and compact codes are precisely those for which equality holds (meaning that
they are optimal in an information-theoretic sense).

3. Finally, both partitions and codes are related to so-called canonical rooted
t-ary trees:

CTree = {T rooted t-ary plane tree | T is canonical}.

Here, we use the following notions:
• t-ary means that each vertex has no or t children.
• Plane tree means that an ordering “from left to right” of the children of
each vertex is specified.

• Canonical means that the following holds for all k: if the vertices of
depth (i.e., distance to the root) k are denoted by v1, . . . , vK from left
to right, then deg(vi) ≤ deg(vi+1) holds for all i.

The external size |T | of a tree is given by the number of its leaves, i.e., the
number of vertices of degree 1.
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1602 C. HEUBERGER, D. KRENN, AND S. WAGNER

If C ∈ CCode , then a tree T ∈ CTree can be constructed such that the vertices
of T are given by the prefixes of the words in C, the root is the vertex
corresponding to the empty word, and the children of a proper prefix w of
a code word are given from left to right by wa for a = 1, . . . , t. This is a
bijection between CCode to CTree preserving the external size.

Further formulations, details, and remarks can be found in the recent paper of Elsholtz,
Heuberger, and Prodinger [11]. We will simply speak of an element in the class C when
the particular interpretation as an element of CPartition , CCode , or CTree is not relevant.
Our proofs will use the tree model; therefore CTree is abbreviated as T .

The external size of an element in C is always congruent to 1 modulo t− 1. This
can easily be seen in the tree model, where the number of leaves τ and the number
of internal vertices n are connected by the identity

τ = 1 + n(t− 1).

Therefore, we will from now on consider the internal size: for a tree T ∈ CTree

the internal size of T is the number n(T ) of internal vertices, for a code C ∈ CCode

the internal size is the number of proper prefixes of words of C, and for a partition
(x1, . . . , xτ ) ∈ CPartition the internal size is defined to be (τ − 1)/(t− 1). We will omit
the word “internal” and will always use the variable n (or n(T ) for a specific element
T ∈ C) to denote the size.

The asymptotics of the number of elements in C of size n has been studied by
various authors; see the historical overview in [11]. Special cases and weaker versions
(without explicit error terms) of the following result, which is given in [11] (building
upon the generating function approach by Flajolet and Prodinger [14]), were obtained
earlier and independently by different authors (Boyd [5], Komlós, Moser, and Nemetz
[19], Flajolet and Prodinger [14], and Tangora [28]).

Theorem 1.1 (see [11]). For t ≥ 2, the number of elements of size n in C is (in
Bachmann–Landau notation) given by

Rρn+1 +Θ(ρn2 ),

where ρ > ρ2 and R are positive real constants depending on t with asymptotic expan-
sions (as t → ∞)

ρ = 2− 1

2t+1
+O

(
t

22t

)
, ρ2 = 1 +

log 2

t
+O

(
1

t2

)
, R =

1

8
+

t− 2

2t+5
+O

(
t2

22t

)
.

In fact, all O-constants can be made explicit and more terms of the asymptotic
expansions in t of ρ, ρ2, and R can be given.

In spite of the fact that the counting problem has been studied independently
by many different authors, to the best of our knowledge the structure of random
elements has not been considered before. Thus the purpose of this contribution is to
study the probabilistic behavior of various parameters of a random element in C of size
n. We always use the uniform random model: whenever a random tree (equivalently,
partition or code) of a given order n is chosen, all elements are considered to be equally
likely:

1. The height h(T ) of a tree T ∈ CTree is defined to be the maximum distance
of a leaf from the root. In the interpretation as a code, this is the maximum
length of a code word. In a representation of 1 as a sum of unit fractions, this
corresponds to the largest denominator used (more precisely, to the largest
exponent of the denominator).
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1603

The height is discussed in section 3. It is asymptotically normally distributed
with mean ∼ μhn and variance ∼ σ2

hn, where

μh =
1

2
+

t− 2

2t+3
+ O

(
t2

22t

)
and σ2

h =
1

4
+

−t2 + 5t− 2

2t+4
+O

(
t3

22t

)
;

cf. Theorem 3.1. Moreover, we prove a local limit theorem.
2. The number of distinct summands of a representation (x1, . . . , xτ ) of 1 as a

sum of unit fractions is denoted by d(x1, . . . , xτ ). In the tree model, this
corresponds to the cardinality d(T ) of the set of depths of leaves in a tree
T ∈ CTree. In the code model, this is the number of distinct lengths of code
words.
The number d(T ) is studied in section 4. It is asymptotically normally dis-
tributed with mean ∼ μdn and variance ∼ σ2

dn, where

μd =
1

2
+

t− 4

2t+3
+O

(
t2

22t

)
and σ2

d =
1

4
+

−t2 + 9t− 14

2t+4
+O

(
t2

22t

)
;

cf. Theorem 4.1. Moreover, a local limit theorem is proved again.
3. The maximum number of equal summands of a representation (x1, . . . , xτ ) of

1 as a sum of unit fractions is denoted by w(x1, . . . , xτ ). In the code model,
this is the maximum number of code words of equal length. In the tree model,
this is the “leaf-width” w(T ), i.e., the maximum number of leaves on the same
level.
The number w(T ) is studied in section 5. We prove that E(w(T )) = μw logn+
O(log logn) with μw = 1/(t log 2)+O(1/t2) and a concentration property; cf.
Theorem 5.1.

4. The (total) path length �(T ) of a tree T ∈ CTree is defined to be the sum of the
depths of all vertices of the tree. In our context, it is perhaps most natural
to consider the external path length �external(T ), though, which is the sum of
depths over all leaves of the tree, as this parameter corresponds to the sum
of lengths of code words in a code C ∈ CCode . Likewise, the internal path
length �internal (T ) is the sum of depths over all nonleaves. Clearly, we have
�external(T ) + �internal (T ) = �(T ), and the relations

�external(T ) =
t− 1

t
�(T ) + n(T ) and �internal (T ) =

1

t
�(T )− n(T )

for t-ary trees are easily proven. Therefore, all distributional results for any
one of those parameters immediately cover all three. The total path length
turns out to be asymptotically normally distributed as well (see Theorem 7.1),
with mean ∼ μtpln

2 and variance ∼ σ2
tpln

3. The coefficients have asymptotic
expansions

μtpl =
t

2
· μh =

t

4
+

t(t− 2)

2t+4
+O

(
t3

22t

)

and

σtpl =
t2

12
+

−t4 + 5t3 − 2t2

3 · 2t+4
+O

(
t5

22t

)
.
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1604 C. HEUBERGER, D. KRENN, AND S. WAGNER

The path length is studied in section 7. Its analysis is based on a generating
function approach for the moments, combined with probabilistic arguments
to obtain the central limit theorem.

5. The number of leaves on the last level (i.e., maximum distance from the root)
of a tree T ∈ CTree is denoted by m(T ). This corresponds to the number of
code words of maximum length and to the number of smallest summands in
a representation of 1 as a sum of unit fractions.
This parameter may appear to be the least interesting of the parameters we
study. However, it is a natural technical parameter when constructing gen-
erating functions for the other parameters. From these generating functions
the probabilistic behavior of m(T ) can be read off without too much effort,
so we do include these results in section 6.
The limit distribution of m(T ) is a discrete distribution with mean 2t+ o(1)
and variance 2t2 + o(1); cf. Theorem 6.1.

A noteworthy feature of the results listed above is the fact that the distributions
we observe are quite different from those that one obtains for other probabilistic
random tree models. Specifically, the parameters differ not only from those of Galton–
Watson trees (which include, among others, uniformly random t-ary trees) but also
from those of recursive trees and general families of increasing trees. See [7] for a
general reference. In particular, the following hold:

• The asymptotic order of the height of a random Galton–Watson tree of or-
der n is only

√
n, and it is known that the limiting distribution (which is

sometimes called a Theta distribution) coincides with the distribution of the
maximum of a Brownian excursion [12]. The height of random recursive trees
(or other families of increasing trees) is even only of order logn and heavily
concentrated around its mean; see [6].

• The path length of random Galton–Watson trees is of order n3/2, and it
follows an Airy distribution (like the area under a Brownian excursion) in the
limit [26]. For recursive trees, the path length is of order n logn with a rather
unusual limiting distribution [21].

• While the height of our canonical trees is greater than that of Galton–Watson
trees, precisely the opposite holds for the width (as one would expect): it is of
order

√
n for Galton–Watson trees [8, 27], with the same limiting distribution

as the height, as opposed to only logn in our setting. For recursive trees, the
width is even of order n/

√
logn; see [9].

Indeed, the structure of our canonical t-ary trees is comparable to that of com-
positions : Counting the number of internal vertices on each level from the root, we
obtain a restricted composition, in which each summand is at most t times the pre-
vious one. In the limit t → ∞ one obtains compositions of n starting with a 1 in
this way. The recent series of papers by Bender and Canfield [1, 2, 3] and Bender,
Canfield, and Gao [4] is concerned with compositions with various local restrictions.
In fact it would be possible to derive the central limit theorems for the height and
the number of distinct summands from Theorem 4 in [2], but in a less explicit fashion
(without precise constants, and further work would still be required for a local limit
theorem). A parameter related to the “leaf-width” (the largest part of a composition)
is also studied in [4], but in addition to the fact that the parameters are not quite
identical, it also seems that the technical conditions required for the main result of
[4] are not satisfied here.

Finally, we offer a remark on numerics and notation. Throughout the paper,
various constants occur in all our major results, and we provide numerical values for
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1605

small t as well as asymptotic formulae for these constants in terms of t. The error
terms that occur in these formulae have an explicit O-constant, which is indicated by
error functions εj(. . .). These functions have the property that |εj(. . .)| ≤ 1 for all
values of the indicated parameters. All results were calculated with the free open-
source mathematics software system SageMath [24] and are available online.1 The
numerical expressions were obtained by using interval arithmetic; therefore they are
reliable results. Each numerical value of this paper is given in such a way that its
error is at most the magnitude of the last indicated digit. It would be possible to
calculate the values with higher accuracy. Determining accurate numerical values and
asymptotic formulae is not just interesting in its own right; it is also important for
some of our theorems: specifically, for all Gaussian limit laws it is crucial to ensure
that the growth constants associated with the variance are nonzero. We will therefore
comment repeatedly on how reliable numerical values can be obtained.

2. The generating function. In this section, we derive the generating function
which will be used throughout the paper.

The analysis of the path length (section 7) also requires results on canonical
forests. For r ≥ 1, we consider the set Fr of canonical forests with r roots. These r
roots are all on the same level and ordered from left to right. The notion “canonical”
introduced for trees here is meant to hold over all connected components of the forest.
This means that a forest may not be seen as a collection of trees but rather as the
subgraph of a canonical tree induced by its vertices of depths ≥ d for some d. In fact,
this is also the interpretation for which we will need results on forests. We will phrase
the generating function in terms of forests, but most other results will be formulated
for trees only.

The height h(T ), the cardinality d(T ) of the set of different depths of leaves, and
the number m(T ) of leaves on the last level of a forest2 T ∈ Fr of size n = n(T )
can be analyzed by studying a multivariate generating function H(q, u, v, w), where
q labels the size n(T ), u labels the number m(T ) of leaves on the last level, v labels
the cardinality d(T ) of the set of depths of leaves, and w labels the height h(T ).

Theorem 2.1. The generating function

H(q, u, v, w) :=
∑
T∈Fr

qn(T )um(T )vd(T )wh(T )

can be expressed as

(2.1) H(q, u, v, w) = a(q, u, v, w) + b(q, u, v, w)
a(q, 1, v, w)

1 − b(q, 1, v, w)

with

a(q, u, v, w) =
∞∑
j=0

vqr�j�urtjwj

j∏
i=1

1− v − q�i�uti

1− q�i�uti
,

b(q, u, v, w) =

∞∑
j=1

vq�j�utjwj

1− q�j�utj

j−1∏
i=1

1− v − q�i�uti

1− q�i�uti
,(2.2)

1The worksheets containing the calculations can be found at http://www.danielkrenn.at/
unit-frac-parameters-full.

2We use the symbol T (instead of F ) for a canonical forest in Fr since we usually look at the
special case r = 1, where T is a tree.
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1606 C. HEUBERGER, D. KRENN, AND S. WAGNER

where �j� := 1 + t+ · · ·+ tj−1.
The functions a(q, u, v, w) and b(q, u, v, w) are analytic in (q, u, v, w) when

|q| < 1

|u|t−1 .

When u = 1, the generating function can be simplified to

(2.3) H(q, 1, v, w) =
a(q, 1, v, w)

1− b(q, 1, v, w)
.

The proof of Theorem 2.1 depends on solving a functional equation for the gener-
ating function. As we will encounter similar functional equations for related generating
functions in section 7, we formulate the relevant result in the following lemma.

Lemma 2.2. Let D ⊆ C be the closed unit disc, and let q ∈ C with |q| < 1. Let
P , R, S, f be bounded functions on D and s be a constant such that |S(u)| ≤ s < 1
for all u ∈ D.

If

(2.4) f(u) = P (u) +R(qut)f(1) + S(qut)f(qut)

holds for all u ∈ D, then

(2.5) f(u) = a(u) + b(u)
a(1)

1− b(1)

holds with

(2.6)

a(u) =

∞∑
j=0

P (q�j�utj )

j∏
i=1

S(q�i�uti),

b(u) =

∞∑
j=1

R(q�j�utj )

j−1∏
i=1

S(q�i�uti)

provided that b(1) 
= 1.
Proof. We iterate the functional equation (2.4) and obtain

f(u) = ak(u) + bk(u)f(1) + ck(u)f(q
�k�utk)

for k ≥ 0 with

ak(u) =
k−1∑
j=0

P (q�j�utj )

j∏
i=1

S(q�i�uti),

bk(u) =

k∑
j=1

R(q�j�utj )

j−1∏
i=1

S(q�i�uti),

ck(u) =

k∏
i=1

S(q�i�uti).

The assumption |q| < 1 implies that limk→∞ q�k�utk = 0 for |u| ≤ 1. Therefore,

lim
k→∞

ak(u) = a(u), lim
k→∞

bk(u) = b(u), lim
k→∞

ck(u) = 0
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1607

for u ∈ D and the functions a(u) and b(u) given in (2.6).
Taking the limit in (2.4), we get

(2.7) f(u) = a(u) + b(u)f(1)

for u ∈ D. Setting u = 1 in (2.7) yields (2.5).
Proof of Theorem 2.1. The proof of Theorem 2.1 follows ideas of Flajolet and

Prodinger [14]; see also [11]. We first consider

Hh(q, u, v) := [wh]H(q, u, v, w) =
∑
T∈Fr

h(T )=h

qn(T )um(T )vd(T )

for some h ≥ 0.
A forest T ′ of height h+ 1 arises from a forest T of height h by replacing j of its

m(T ) leaves on the last level (for some j with 1 ≤ j ≤ m(T )) by internal vertices, each
with t leaves as its children. If j = m(T ), then all old leaves become internal vertices,
so that d(T ′) = d(T ). Otherwise, i.e., if j < m(T ), at least one of them becomes a
new leaf, meaning that we have a new level that contains one or more leaves, and
hence d(T ′) = d(T ) + 1.

For the generating function Hh, this translates to the recursion

(2.8)

Hh+1(q, u, v) =
∑
T∈Fr

h(T )=h

(
m(T )−1∑

j=1

qn(T )+jujtvd(T )+1 + qn(T )+m(T )um(T )tvd(T )

)

=
∑
T∈Fr

h(T )=h

qn(T )vd(T )

(
qutv

1− (qut)m(T )

1− qut
+ (1− v)(qut)m(T )

)

= R(q, qut, v)Hh(q, 1, v) + S(q, qut, v)Hh(q, qu
t, v),

where we set

R(q, u, v) =
uv

1− u
, S(q, u, v) =

1− v − u

1− u
.

Note that the initial value is given by H0(q, u, v) = urv.
Now set

D0 := {(q, u, v, w) ∈ C
4 | |q| < 1/5, |u| ≤ 1, |v − 1| < 1/5, |w| ≤ 1}.

We note that if (q, u, v, w) ∈ D0, we have

|R(q, qut, v)| ≤ 3

10
, |S(q, qut, v)| ≤ 1

2
.

This and (2.8) imply that |Hh(q, u, v)| ≤ (6/5)(4/5)h holds for h ≥ 0 and (q, u, v, w) ∈
D0. Thus H(q, u, v, w) =

∑
h≥0 Hh(q, u, v)w

h converges uniformly for (q, u, v, w) ∈
D0.

Multiplying (2.8) by wh+1 and summing over all h ≥ 0 yields the functional
equation

H(q, u, v, w) = urv + wR(q, qut, v)H(q, 1, v, w) + wS(q, qut, v)H(q, qut, v, w).
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1608 C. HEUBERGER, D. KRENN, AND S. WAGNER

Lemma 2.2 immediately yields (2.1).
Now let

D1 = {(q, u, v, w) ∈ C
4 | |qut−1| < 1}.

We clearly have D0 ⊆ D1. For (q, u, v, w) ∈ D1, we have

lim
k→∞

q�k�utk = lim
k→∞

q−1/(t−1)
(
q1/(t−1)u

)tk
= 0.

Therefore, a(q, u, v, w) and b(q, u, v, w) are analytic in D1.
In the following lemma, we also state a simplified expression and a functional

equation for b(q, u, v, w) in the case v = 1, w = 1.
Lemma 2.3. We have

b(q, u, 1, 1) =

∞∑
j=1

(−1)j−1

j∏
i=1

q�i�uti

1− q�i�uti
=

qut

1− qut
(1− b(q, qut, 1, 1)).

In particular, the coefficient [uj]b(q, u, 1, 1) vanishes if j is not a multiple of t.
Proof. This is an immediate consequence of (2.2).
Next we recall results on the singularities ofH(q, 1, 1, 1); see Proposition 10 of [11].

We use functions εj for modeling explicit O-constants, as was mentioned at the end
of the introduction.

Lemma 2.4. The generating function H(q, 1, 1, 1) has exactly one singularity
q = q0 with |q| < 1 − 0.72

t . This singularity q0 is a simple pole and is positive. For
t ≥ 4, we have

q0 =
1

2
+

1

2t+3
+

t+ 4

22t+5
+

3t2 + 23t+ 38

23t+8
+

7t3

100 · 24t ε1(t).

For t ∈ {2, 3}, the values are given in Table 1. Furthermore, let

Q =
1

2
+

log 2

2t
+

0.06

t2

for t ≥ 6, and let Q be given by Table 1 for 2 ≤ t ≤ 5. Then q0 is the only singularity
q of H(q, 1, 1, 1) with |q| ≤ q0/Q.

Setting U = 1− log 2
t2 for t > 2 and U = 1− 19 log 2

80 for t = 2, we have the estimate

(2.9) U1−t max

(
q0
Q
,
5

6

)
< 1.

These results do not depend on the choice of the number of roots r.
Proof. By [11, Proposition 10], the function 1 − b(q, 1, 1, 1) has a unique simple

zero q = q0 with |q| ≤ 1 − 0.72/t and no further zero for |q| ≤ q0/Q; the asymptotic
estimates for q0 and Q follow from the results given in [11].

At this point, we still have to show that the numerator does not vanish in q0. We
note that q0 ≤ 3/5. Using [11, Lemma 8], we obtain

|a(q0, 1, 1, 1)− 1| ≤ qr0
q0

1− q0
+

∞∑
j=2

q
r�j�
0

j∏
i=1

q
�i�
0

1− q
�i�
0

≤ 9

10
+

83038203

903449750
< 1.
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1609

Table 1

Constants q0 and Q for 2 ≤ t ≤ 10. For the accuracy of these numerical results see the note at
the end of the introduction.

t q0 Q
2 0.5573678720139932 0.7131795784312742
3 0.5206401166257250 0.6307447647757403
4 0.5090030531391631 0.5930691701039086
5 0.5042116835293617 0.5720078345052473
6 0.5020339464245723 0.559428931713329
7 0.5009982119507272 0.550735002693058
8 0.5004941016343997 0.544259198784997
9 0.500245704703080 0.539248917438516

10 0.5001224896234884 0.535257359027998

Therefore,

(2.10) a(q0, 1, 1, 1) = Θ(1)

holds uniformly in r.
For t ≥ 30, the estimate (2.9) follows from the asymptotic expressions. For t ≤ 30,

it is verified individually.
Using this result, we will be able to apply singularity analysis to all our generating

functions in the coming sections. At this point, we restate Theorem 1.1 on the number
of trees taking the notation of Theorem 2.1 into account and extend it to the number
of canonical forests with r roots.

Lemma 2.5. For r ≥ 1, let

(2.11) ν(r) =
a(q0, 1, 1, 1)

q0
∂
∂q b(q, 1, 1, 1)

∣∣∣
q=q0

,

where a(q0, 1, 1, 1) is taken in the version with r roots.
Then

(2.12) ν(r) = Θ(1)

uniformly in r ≥ 1 and the number of canonical forests with r roots of size n is

(2.13)
ν(r)

qn0

(
1 +O(Qn)

)
,

also uniformly in r ≥ 1.
Proof. By singularity analysis [13, 15], Lemma 2.4, and Theorem 2.1, the number

of canonical forests with r roots of size n is

(2.14) −Res

(
H(q, 1, 1, 1)

qn+1
, q = q0

)
+O

((
Q

q0

)n)
=

ν(r)

qn0
+O

((
Q

q0

)n)
.

The O-constant can be chosen independently of r, as a(q, 1, 1, 1) can be bounded
independently of r for |q| = q0/Q.

The estimate (2.10) immediately yields (2.12). Combining this with (2.14) yields
(2.13).
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1610 C. HEUBERGER, D. KRENN, AND S. WAGNER

When analyzing the asymptotic behavior of the height (section 3), the number of
leaves on the last level (section 6), and the path length (section 7), the corresponding
formulae contain the infinite sum b(q, u, 1, w) and its derivatives. In order to perform
the calculations to get the asymptotic expressions in t as well as certifiable numerical
values for particular t, we will work with a truncated sum and bound the error we
make. We define

bJ(q, u, 1, w) = −
∑

1≤j<J

(−1)jwj

j∏
i=1

q�i�uti

1− q�i�uti
.

Note that the variable v encoding the distinct depths of leaves is handled separately
in Lemmata 2.8 and 2.9.

The following lemmata provide the estimates we need.
Lemma 2.6. Let J ∈ N and q, u, w ∈ C with

∣∣qut−1
∣∣ < 1. Set

Q = |w| |q|�J+1� |u|t
J+1

1− |q|�J+1� |u|tJ+1 ,

and suppose that Q < 1 holds. Then

|b(q, u, 1, w)− bJ(q, u, 1, w)| ≤ |w|J
(

J∏
i=1

|q|�i� |u|t
i∣∣1− q�i�uti
∣∣
)

1

1−Q
.

Note that as
∣∣qut−1

∣∣ < 1, the error bound stated in the lemma is decreasing in J .
Proof of Lemma 2.6. Set

R = b(q, u, 1, w)− bJ(q, u, 1, w) = −
∑
j≥J

(−1)jwj

j∏
i=1

q�i�uti

1− q�i�uti
.

As |q�i�uti | is decreasing in i, we have

∣∣∣∣∣wj

j∏
i=1

q�i�uti

1− q�i�uti

∣∣∣∣∣ ≤ |w|j
(

|q|�J+1� |u|t
J+1

1− |q|�J+1� |u|tJ+1

)j−J J∏
i=1

|q|�i� |u|t
i∣∣1− q�i�uti
∣∣

= |w|J Qj−J
J∏

i=1

|q|�i� |u|t
i∣∣1− q�i�uti
∣∣

for j ≥ J . This leads to the bound

|R| ≤ |w|J
(

J∏
i=1

|q|�i� |u|t
i∣∣1− q�i�uti
∣∣
)∑

j≥J

Qj−J = |w|J
(

J∏
i=1

|q|�i� |u|t
i∣∣1− q�i�uti
∣∣
)

1

1−Q
,

which we wanted to show.
We also need to truncate the infinite sums of derivatives of b(q, u, 1, w). This is

done by means of the following lemma.
Lemma 2.7. Let J ∈ N and α, β, γ ∈ N0, and let q ∈ C with |q| ≤ 2

3 . Suppose
• either u = 1, U = 1, and β = 0, or

• u ∈ C with |u| < 1/U − log
√
2

t2 for U defined in Lemma 2.4
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1611

holds. Further, let w ∈ C with |w| ≤ 3
2 . Set

Q =
5

3

1(
6
5

)�J+1�
U tJ+1 − 1

,

and suppose J was chosen such that Q < 1 holds. Then

∣∣∣∣ ∂α+β+γ

∂qα∂uβ∂wγ

(
b(q, u, 1, w)− bJ(q, u, 1, w)

)∣∣∣∣
≤ α!β! γ! (t2/ log

√
2)β6α+γ

(
5

3

)J
(

J∏
i=1

1(
6
5

)�i�
U ti − 1

)
1

1−Q
.

Proof. Let ϑ ∈ C with |ϑ| < 1/U and η ∈ C with |η| ≤ 5
3 . Cauchy’s integral

formula gives

∂α

∂qα
(
b(q, ϑ, 1, η)− bJ(q, ϑ, 1, η)

)
=

α!

2πi

∮
|ξ−q|= 1

6

b(ξ, ϑ, 1, η)− bJ(ξ, ϑ, 1, η)

(ξ − q)α+1
dξ.

The bound on q implies |ξ| ≤ 5
6 . Using the standard estimate for complex integrals,

(2.9) and Lemma 2.6 yield

∣∣∣∣ ∂α

∂qα
(
b(q, ϑ, 1, η)− bJ(q, ϑ, 1, η)

)∣∣∣∣ ≤ α! 6α
(
5

3

)J
(

J∏
i=1

1(
6
5

)�i�
U ti − 1

)
1

1−Q
.

Note that the right-hand side is independent of q, ϑ, and η, and, as J tends to infinity,
this bound is going to zero. Therefore, for fixed ϑ and η, the series ∂α

∂qα b(q, ϑ, 1, η)

converges uniformly on the compact set {q | |q| ≤ 2
3}. Thus, for ϑ with |ϑ| < 1/U

and η with |η| ≤ 5
3 , this function is analytic. Note that this result stays true if ϑ = 1

and U = 1.
We use Cauchy’s integral formula again and obtain

∣∣∣∣ ∂γ

∂wγ

∂α

∂qα
(
b(q, ϑ, 1, w)− bJ(q, ϑ, 1, w)

)∣∣∣∣
=

∣∣∣∣∣ γ!

2πi

∮
|η−w|= 1

6

∂α

∂qα

(
b(q, ϑ, 1, η)− bJ(q, ϑ, 1, η)

)
(η − w)γ+1

dη

∣∣∣∣∣
≤ γ! 6γ

∣∣∣∣ ∂α

∂qα
(
b(q, ϑ, 1, w)− bJ(q, ϑ, 1, w)

)∣∣∣∣
≤ α! γ! 6α+γ

(
5

3

)J
(

J∏
i=1

1(
6
5

)�i�
U ti − 1

)
1

1−Q
.

Note that |w| ≤ 3
2 implies |η| ≤ 5

3 . Moreover, ∂α+γ

∂qα∂wγ b(q, ϑ, 1, w) is analytic in ϑ with

|ϑ| < 1/U . Again, this result stays true if ϑ = 1 and U = 1.
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1612 C. HEUBERGER, D. KRENN, AND S. WAGNER

Using Cauchy’s integral formula once more yields

∣∣∣∣ ∂α

∂qα
∂β

∂uβ

∂γ

∂wγ

(
b(q, u, 1, w)− bJ(q, u, 1, w)

)∣∣∣∣
=

∣∣∣∣∣ β!

2πi

∮
|ϑ−u|= log

√
2

t2

∂α

∂qα
∂γ

∂wγ

(
b(q, ϑ, 1, w)− bJ(q, ϑ, 1, w)

)
(ϑ− u)β+1

dϑ

∣∣∣∣∣
≤ β! (t2/ log

√
2)β

∣∣∣∣ ∂α

∂qα
∂γ

∂wγ

(
b(q, u, 1, w)− bJ(q, u, 1, w)

)∣∣∣∣ ,
which is the desired result after inserting the bound from above.

In section 4 we analyze the distinct depths of leaves. Again, we work with infinite
sums by replacing them with finite sums and bounding the error we make. Similar to
the estimates above, we define

bJ(q, 1, v, 1) =
∑

1≤j<J

vq�j�

1− q�j�

j−1∏
i=1

1− v − q�i�

1− q�i�

and have the following two lemmata.
Lemma 2.8. Let J ∈ N, q ∈ C with |q| < 1 and v ∈ C. Set

Q = |q|t
J

(
1 +

|v|
1− |q|�J�

)
,

and suppose Q < 1 holds. Then

|b(q, 1, v, 1)− bJ(q, 1, v, 1)| ≤
|v| |q|�J�∣∣1− q�J�

∣∣
(

J−1∏
i=1

(
1 +

|v|∣∣1− q�i�
∣∣
))

1

1−Q
.

Proof. Set

R = b(q, 1, v, 1)− bJ(q, 1, v, 1) =
∑
j≥J

vq�j�

1− q�j�

j−1∏
i=1

1− v − q�i�

1− q�i�
.

Let j ≥ J . We have

�j� = �J� + tJ �j − J� ≥ �J� + tJ(j − J).

Therefore, for j ≥ J we obtain

∣∣∣∣∣q�j�

j−1∏
i=1

1− v − q�i�

1− q�i�

∣∣∣∣∣ ≤ |q|�J� |q|t
J (j−J)

(
1 +

|v|
1− |q|�J�

)j−J J−1∏
i=1

(
1 +

|v|∣∣1− q�i�
∣∣
)
.

This leads to the bound

|R| ≤ |v| |q|�J�∣∣1− q�J�
∣∣
(

J−1∏
i=1

(
1 +

|v|∣∣1− q�i�
∣∣
))∑

j≥J

Qj−J ,

which we wanted to show.
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1613

The result of the previous lemma can be extended to derivatives; see below. The
proof is skipped, as it is very similar to the proof of Lemma 2.7.

Lemma 2.9. Let J ∈ N, α ∈ N0, and γ ∈ N0. Further, let q ∈ C with |q| ≤ 2
3 and

v ∈ C with |v| ≤ 3
2 . Set

Q =

(
5

6

)tJ
(
1 +

5
3

1−
(
5
6

)�J�

)
,

and suppose J was chosen such that Q < 1 holds. Then

∣∣∣∣ ∂α+γ

∂qα∂vγ
(
b(q, 1, v, 1)− bJ(q, 1, v, 1)

)∣∣∣∣
≤ α! γ! 6α+γ

5
3(

6
5

)�J� − 1

(
J−1∏
i=1

(
1 +

5
3

1−
(
5
6

)�i�

))
1

1−Q
.

3. The height. We start our analysis with the height h(T ) of a canonical tree
T ∈ T . It turns out that the height is asymptotically (for large sizes n = n(T ))
normally distributed, and we will even prove a local limit theorem for it. Moreover,
we obtain asymptotic expressions for its mean and variance. This will be achieved by
means of the generating function H(q, u, v, w) derived in section 2.

So let us have a look at the bivariate generating function

H(q, 1, 1, w) =
∑
T∈T

qn(T )wh(T ) =
a(q, 1, 1, w)

1− b(q, 1, 1, w)

for the height. We consider its denominator

D(q, w) := 1− b(q, 1, 1, w) =
∑
j≥0

(−1)jwj

j∏
i=1

q�i�

1− q�i�
.

From Lemma 2.4 we know that D(q, 1) has a simple dominant zero q0. We can see
the expansion of D(q, w) around (q0, 1) as perturbation of a meromorphic singularity;
cf. the book of Flajolet and Sedgewick [15, section IX.6]. This yields a central limit
theorem (normal distribution) for the height without much effort. But we can do
better: we can show a local limit theorem for the height. The precise results are
stated in the following theorem.

Theorem 3.1. For a randomly chosen tree T ∈ T of size n the height h(T ) is
asymptotically (for n → ∞) normally distributed, and a local limit theorem holds. Its
mean is μhn+O(1), and its variance is σ2

hn+O(1) with

μh =
∂
∂w b(q0, 1, 1, w)|w=1

q0
∂
∂q b(q, 1, 1, 1)|q=q0

(3.1)

=
1

2
+

t− 2

2t+3
+

2t2 + 3t− 8

22t+5
+

9t3 + 45t2 + 2t− 88

23t+8
+

0.55t4

24t
ε2(t)

and

σ2
h =

1

4
+

−t2 + 5t− 2

2t+4
+

−4t3 + 4t2 + 27t− 14

22t+6
+

0.26t4

23t
ε3(t)

c© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/2

9/
16

 to
 1

46
.2

32
.1

25
.1

60
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



1614 C. HEUBERGER, D. KRENN, AND S. WAGNER

for t ≥ 2.
Recall that “randomly chosen” here and everywhere else in this paper means

“uniformly chosen at random” and that the error functions εj(. . .) are functions with
absolute value bounded by 1; see also the last paragraph of the introduction.

We calculated the values of the constants μh and σ2
h numerically for 2 ≤ t ≤ 30.

Those values can be found in Table 2. Figure 2 shows the result of Theorem 3.1. It
compares the obtained normality with the distribution of the height calculated for
particular values in SageMath.

Table 2

Numerical values of the constants in mean and variance of the height for small values of t; cf.
Theorem 3.1. See also Remark 3.2. For the accuracy of these numerical results see the note at the
end of the introduction.

t μh σ2
h

2 0.5517980333242771 0.3191028720021838
3 0.5330219170893142 0.2640876574238174
4 0.5216130806307567 0.2465933142213578
5 0.5137644952434437 0.2404182939877220
6 0.5084950082062925 0.2396633993742431
7 0.5051047365215813 0.2411570855092153
8 0.5030001253275540 0.2432575483836212
9 0.5017308605343554 0.2452173961787762
10 0.5009832278618640 0.2467757623911673

Remark 3.2. For the (central and local) limit theorem to hold, it is essential that
σ2
h 
= 0, which is why we need reliable numerical values and estimates for large t. As

mentioned earlier, we used interval arithmetic in SageMath [24] in all our numerical
calculations to achieve such results. We used a precision of 53 bits (machine precision)
for the bounds of the intervals. All values are calculated to such a precision that the
error is at most the magnitude of the last digit that occurs. The reason for the varying
number of digits after the decimal point (in, for example, Table 2) are numerical
artifacts. In these cases, we could have given an additional digit at the cost of a
slightly greater error (twice the magnitude of the last digit).

The proof of Theorem 3.1 is split up into several parts. At first, we get asymptotic
normality (central limit theorem) and the constants for mean and variance by using
Theorem IX.9 (meromorphic singularity perturbation) from the book of Flajolet and
Sedgewick [15]. For the local limit theorem we need to analyze the absolute value
of the dominant zero q0(w) of the denominator D(q, w) of the generating function
H(q, 1, 1, w). Going along the unit circle, i.e., taking w = eiϕ, this value has to have
a unique minimum at ϕ = 0.

From the combinatorial background of the problem (nonnegativity of coefficients)
it is clear that

∣∣q0(eiϕ)∣∣ ≥ |q0(1)|. The task showing the uniqueness of this minimum

at ϕ = 0 is again split up: We show that the function
∣∣q0(eiϕ)∣∣ is convex in a region

around ϕ = 0 (central region); see Lemmata 3.4–3.6. For the outer region, where ϕ
is not near 0, we show that zeros of the denominator are larger there. This is done in
Lemma 3.3.

Those lemmata mentioned above showing that the minimum is unique work for
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1615
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Fig. 2. Distribution of the height for t = 2, and n = 30 (top figure) and n = 200 (bottom
figure) inner vertices. On the one hand, this figure shows the true distribution of all trees of the
given size and on the other hand the result on the asymptotic normal distribution (Theorem 3.1 with
only main terms of mean and variance taken into account).

all general t ≥ 30. For the remaining t, precisely, for each t with 2 ≤ t ≤ 30, the same
ideas are used, but the checking is done algorithmically using interval arithmetic and
SageMath [24]. Details are given in Remark 3.8.

So much for the idea of the proof. We start the actual proof by analyzing the
denominator D(q, w). For our calculations we will truncate this infinite sum and use
the finite sum

DJ(q, w) :=
∑

0≤j<J

(−1)jwj

j∏
i=1

q�i�

1− q�i�

instead. Bounds for the tails (difference between the infinite and the finite sum) are
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1616 C. HEUBERGER, D. KRENN, AND S. WAGNER

given by Lemma 2.6. In particular, we write down the special case J = 2 of this
lemma, which will be needed a couple of times in this section. Substituting 1/z for q,
we get

(3.2) |D(1/z, w)−D2(1/z, w)| ≤ |w|2 1

|z − 1|
1

|z|1+t − 1

1

1− |w| /(|z|1+t+t2 − 1)
,

under the assumption that |w| < |z|1+t+t2 − 1. Derivatives of D(q, w) are handled by
Lemma 2.7.

As mentioned earlier, the proof of the local limit theorem for the height for general
t consists of two parts: one for w in the central region (around w = 1) and one for w
in the outer region. The following lemma shows that everything is fine in the outer
region. After that, a couple of lemmata are needed to prove our result for the central
region.

Lemma 3.3. Let w = eiϕ, where ϕ is real with
√
97/96π 2−t/2 < |ϕ| ≤ π. Then

each zero of z �→ D(1/z, w) has absolute value smaller than 2− 1/2t.
Proof. Suppose that we have a zero z0 of the denominator D(1/z, w) for a given w

and that this zero fulfills |z0| ≥ 2− 1/2t. We can extend the equation D(1/z0, w) = 0
to

0 = 1− w

z0 − 1
+D(1/z0, w)−D2(1/z0, w) ,

which can be rewritten as

z0 = 1 + w − (z0 − 1) (D(1/z0, w)−D2(1/z0, w)) .

Taking absolute values and using bound (3.2) obtained from Lemma 2.7 yields

|z0| ≤ |1 + w|+ 1∣∣∣z�2�
0 − 1

∣∣∣
1

1− 1/
(
|z0|�3� − 1

) .
We have the lower bounds

∣∣∣z�2�
0 − 1

∣∣∣ ≥ |z0|t+1 − 1 ≥
(
2− 1

2t

)t+1

− 1 = 2t+1

(
1− 1

2t+1

)t+1

− 1 ≥ 2t

and

∣∣∣z�3�
0 − 1

∣∣∣ ≥ |z0|t
2+t+1 − 1 ≥ 2t

2+t+1

(
1− 1

2t+1

)t2+t+1

− 1 ≥ 807159

16384
≥ 49,

which can be found by using monotonicity and the value at t = 2. Therefore, we
obtain

(3.3) |z0| ≤ |1 + w|+ 49

48

1

2t
.

Since we have assumed |z0| ≥ 2− 1/2t, we deduce

|1 + w| ≥ 2− 97

48

1

2t
.
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1617

On the other hand, using |ϕ| >
√
97/96π 2−t/2 and the inequality |sin(ϕ/4)| ≥

|ϕ| /(
√
2π) for |ϕ| ≤ π (which follows by concavity of the sine on the interval [0, π

4 ]),
we have

|1 + w| =
√
2 + 2 cosϕ = 2

(
1− 2 sin2

ϕ

4

)
≤ 2− 2

π2
ϕ2 < 2− 97

48

1

2t
,

which yields a contradiction.
Now we study the central region more closely. Looking at the assumptions used

in Lemma 3.3, this is when |ϕ| ≤
√
97/96π 2−t/2. As mentioned in the sketch of the

proof, we show that the function
∣∣q0(eiϕ)∣∣ is convex.

We know the location of the dominant and second dominant zeros of the denomi-
nator D(q, 1). As we need those roots for general w (along the unit circle), we analyze
the difference of D(q, w) from D(q, 1). Using Rouché’s theorem then yields a bound
for the dominant zero, which is stated precisely in the following lemma.

Lemma 3.4. Suppose t ≥ 5 and |w − 1| ≤ 1
2 − 5

(
2
3

)t
. Then q �→ D(q, w) has

exactly one root with |q| < 2
3 and no root with |q| = 2

3 .
Proof. We use Rouché’s theorem on the circle |q| = 2

3 . With |w| ≤ 3
2 , |q| =

2
3 ,

and the bound (3.2) (obtained from Lemma 2.7) we get

|D(q, w)−D2(q, w)| ≤
9

2

1

(3/2)1+t − 1

1

1− (3/2)/((3/2)1+t+t2 − 1)
≤ 3.29

(
2

3

)t

= b,

where we took out the factor (2/3)t and used monotonicity together with the value
for t = 5.

With D2(q, w) = 1− wq/(1 − q) we obtain

|D(q, w)−D(q, 1)|
≤ |D(q, w)−D2(q, w)|+ |D2(q, w)−D2(q, 1)|+ |D2(q, 1)−D(q, 1)|

≤ 2b+ |w − 1|
∣∣∣∣ q

1− q

∣∣∣∣ ≤ 2b+ 2 |w − 1| ≤ 1 + 2b− 10

(
2

3

)t

< 1− b.

On the other hand, the Möbius transform q �→ 1− q/(1− q) maps the circle |q| = 2/3
to the circle |z − 1/5| = 6/5. Therefore |1− q/(1− q)| ≥ 1, and so we have

|D(q, 1)| ≥
∣∣∣∣1− q

1− q

∣∣∣∣− |D(q, 1)−D2(q, 1)| ≥ 1− b.

This proves the lemma by Rouché’s theorem and Lemma 2.4.
The previous lemma gives us exactly one value q0(w) for each w in a region around

1. We continue by showing that this function q0 is analytic.

Lemma 3.5. For t ≥ 5 and |w − 1| ≤ 1
2 − 5

(
2
3

)t
, the function q0(w) given

implicitly by D(q0(w) , w) = 0, |q0(w)| < 2
3 , is analytic.

Proof. We follow along the lines of the proof of the analytic inversion lemma; cf.
Flajolet and Sedgewick [15, Chapter IV.7]. Consider the function

σ1(w) =
1

2πi

∮
|q|= 2

3

∂
∂q D(q, w)

D(q, w)
q dq.

Since D(q, w) 
= 0 for all q and w allowed by the assumptions, this function is con-
tinuous. Moreover, using the theorems of Morera and Fubini as well as Cauchy’s
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1618 C. HEUBERGER, D. KRENN, AND S. WAGNER

integral theorem, the function σ1 is analytic. By Lemma 3.4 and by using the residue
theorem we get that σ1(w) equals q fulfilling D(q, w) = 0 and |q| < 2

3 ; i.e., we obtain
σ1(w) = q0(w).

Since we have analyticity of q0 in a region around 1 by Lemma 3.5, we can show
that small changes in w do not matter much; see the following lemma for details.
Later, this is used to estimate the derivative at some point w by the derivative at 1.

Lemma 3.6. Let t ≥ 30 and w = eiϕ, where ϕ ∈ R with |ϕ| ≤
√
97/96π 2−t/2.

We have the inequalities

|q0(w)− q0(1)| ≤
5

2t/2
, |q′0(w)− q′0(1)| ≤

17

2t/2
, and |q′′0 (w)− q′′0 (1)| ≤

102

2t/2
.

Proof. Set d = 1
2 − 5

(
2
3

)t
. By Lemma 3.5 the function q0(w) is analytic for

|w − 1| ≤ d. Therefore, by Cauchy’s integral formula, we get

q
(k)
0 (w) − q

(k)
0 (1) =

k!

2πi

∮
|ζ−1|=d

(
q0(ζ)

(ζ − w)k+1
− q0(ζ)

(ζ − 1)k+1

)
dζ

for k ∈ N0, where q
(k)
0 denotes the kth derivative of q0. For its absolute value we

obtain∣∣∣q(k)0 (w)− q
(k)
0 (1)

∣∣∣ ≤ k! d max
|ζ−1|=d

|q0(ζ)| max
|ζ−1|=d

∣∣∣(ζ − w)−(k+1) − (ζ − 1)−(k+1)
∣∣∣ .

We have |q0(ζ)| < 2
3 by Lemma 3.4. Further, we get

∣∣∣(ζ − w)−(k+1) − (ζ − 1)−(k+1)
∣∣∣ = ∣∣∣∣

∫ w

1

∂

∂ξ
(ζ − ξ)−(k+1) dξ

∣∣∣∣
≤ |w − 1| (k + 1) max

ξ∈[1,w]
|ζ − ξ|−(k+2)

.

Since

|ξ − 1| ≤ |w − 1| =
∣∣eiϕ − 1

∣∣ ≤ ∣∣∣∣i
∫ ϕ

0

eit dt

∣∣∣∣ ≤ |ϕ| ,

we have |ζ − ξ| ≥ d− |ϕ|. Collecting all those results and using d ≤ 1
2 and the bound

given for |ϕ| results in

∣∣∣q(k)0 (w) − q
(k)
0 (1)

∣∣∣ ≤ (k + 1)!

3
|w − 1|

(
1

2
− 5

(
2

3

)t

−
√

97

96
π 2−t/2

)−(k+2)

.

Inserting all bounds gives the estimates stated for k ∈ {0, 1, 2}.
Now we are ready to show that the second derivative of

∣∣q0(eiϕ)∣∣ is positive. To
do so, we show that this second derivative is around 1

8 for ϕ = 0 and use the bounds
of Lemma 3.6 to conclude positivity for w in some region around 1.

Lemma 3.7. If t ≥ 30 and ϕ ∈ R with |ϕ| ≤
√
97/96π 2−t/2, then

d2

dϕ2

∣∣q0(eiϕ)∣∣2 > 0.

Proof. Write

Δw =
∂

∂w
D(q, w)

∣∣∣∣
q=q0(w)

and Δq =
∂

∂q
D(q, w)

∣∣∣∣
q=q0(w)
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1619

and analogously Δqq, Δqw, and Δww for the function D(q, w) derived twice and then
evaluated at q = q0(w). By inserting the asymptotic expansion of q0 (see Lemma 2.4)
into the expressions

(3.4) q′0(w) = −Δw

Δq
and q′′0 (w) =

2ΔqwΔwΔq −ΔqqΔ
2
w −ΔwwΔ

2
q

Δ3
q

obtained by implicit differentiation, we find

q′0(1) = −1

4
+

0.07t

2t
ε4(t) and q′′0 (1) =

1

4
+

0.04t2

2t
ε5(t) .

For the calculations themselves, we used the approximation D3(q, w) of the denomi-
nator D(q, w) together with the bound for the tail given in Lemma 2.7.

Set w = eiϕ. Using the bounds of Lemma 3.6 yields

q0
(
eiϕ

)
=

1

2
+

6

2t/2
ε6(t) ,

q′0
(
eiϕ

)
= −1

4
+

18

2t/2
ε7(t) ,

q′′0
(
eiϕ

)
=

1

4
+

103

2t/2
ε8(t) .

We define x(ϕ) and y(ϕ) to be the real and imaginary parts of q0
(
eiϕ

)
, respec-

tively. Thus

x(ϕ) + i y(ϕ) = q0
(
eiϕ

)
,

x′(ϕ) + i y′(ϕ) = ieiϕ q′0
(
eiϕ

)
and

x′′(ϕ) + i y′′(ϕ) = −eiϕ q′0
(
eiϕ

)
− e2iϕ q′′0

(
eiϕ

)
.

Then, the estimates above lead to

x(ϕ) =
1

2
+

6

2t/2
ε9(t) , y(ϕ) =

6

2t/2
ε10(t) ,

x′(ϕ) =
19

2t/2
ε11(t) , y′(ϕ) = −1

4
+

19

2t/2
ε12(t) ,

x′′(ϕ) =
124

2t/2
ε13(t) , y′′(ϕ) =

124

2t/2
ε14(t) .

These in turn together with

(3.5)
d2

dϕ2

∣∣q0(eiϕ)∣∣2 = 2(x′(ϕ)
2
+ y′(ϕ)

2
+ x(ϕ) x′′(ϕ) + y(ϕ) y′′(ϕ))

give us the second derivative

d2

dϕ2

∣∣q0(eiϕ)∣∣2
∣∣∣∣
ϕ=0

=
1

8
+

144

2t/2
ε15(t) > 0.1206,
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1620 C. HEUBERGER, D. KRENN, AND S. WAGNER

which is what we wanted to show.
Remark 3.8. The ideas in this section presented so far can also be used to show

the uniqueness of the minimum of
∣∣q0(eiϕ)∣∣ at ϕ = 0 for a fixed t. In particular, this

works for t < 30, where some of the results above do not apply.
For the calculations SageMath [24] is used. Further, we use interval arithmetic

for all operations. The checking for fixed t is done in the following way. We start
with the interval [−4, 4] for ϕ. In each step, we check whether the second derivative
(using (3.4) and (3.5)) is positive. If not, then we half each of the bounds of the
interval and repeat the step above. When this stops, we end up with a region around
0 that is convex. For its complementary, we now use a bisection method to show that∣∣q0(eiϕ)∣∣ > |q0(1)|. Note that we can use an approximation DJ(q, w) instead of the
denominator D(q, w), which can be compensated for by taking the bounds obtained
in Lemma 2.7 into account.

For 2 ≤ t ≤ 30, those calculations were done with a positive result; i.e., the
minimum at ϕ = 0 is unique.

Now we have all results together to prove the main theorem of this section.
Proof of Theorem 3.1. We use Theorem IX.9 of Flajolet and Sedgewick [15] and

apply that theorem to the function H(q, 1, 1, w). This gives us the mean and the
variance and as a central limit asymptotic normality. In particular, we obtain

E(h(T )) =
[qn] ∂

∂wH(q, 1, 1, w)|w=1

[qn]H(q, 1, 1, 1)
.

By (2.3), we have

∂

∂w
H(q, 1, 1, w)

∣∣∣∣
w=1

=
a(q, 1, 1, 1) ∂

∂w b(q, 1, 1, w)|w=1

(1− b(q, 1, 1, 1))2
+

∂
∂wa(q, 1, 1, w)|w=1

1− b(q, 1, 1, 1)
.

By singularity analysis, we can extract the asymptotics to get the linear behavior of
this mean and in particular the constant (3.1).

For the local limit, we need a more refined analysis. Recall the notationD(q, w) as
the denominator ofH(q, 1, 1, w), and let q0(w) be given implicitly byD(q0(w) , w) = 0,
|q0(w)| < 2

3 , according to Lemmata 2.4 and 3.4. Set q0 = q0(1) and

cαγ =
∂α+γ

∂qα∂wγ
D(q, w)

∣∣∣∣
q = q0, w = 1

.

Then we obtain the asymptotic formula μhn+O(1) for the mean with

μh =
c01
c10q0

,

and the variance is σ2
hn+O(1) with

σ2
h =

c201c20q0 + c01c
2
10q0 − 2 c01c10c11q0 + c02c

2
10q0 + c201c10

c310q
2
0

.

To calculate the coefficients cαγ we need derivatives of D(q, w). In order to avoid
working with infinite sums, we use the approximations DJ(q, w). Lemma 2.7 shows
that the error made by using those approximations is small. For the calculations
themselves, SageMath [24] was used.
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1621

To show the local limit theorem, we have to show∣∣q0(eiϕ)∣∣ > |q0(1)|

for all nonzero ϕ ∈ [−π, π]; cf. Chapter IX.9 of [15].
Let t ≥ 30. Lemma 3.7 states that

∣∣q0(eiϕ)∣∣ is convex for |ϕ| ≤
√
97/96π 2−t/2;

therefore the minimum at ϕ = 0 is unique for these ϕ.
For all other ϕ, the value of

∣∣q0(eiϕ)∣∣ is greater than 1/(2− 1/2t) > 1/2+ 1/2t+2

by Lemma 3.3. This value itself is greater than 1
2 + 0.1251/2t ≥ |q0(1)|. Therefore

the minimum at ϕ = 0 is unique and the local limit theorem follows for t ≥ 30.
When t < 30, we use an algorithmic approach to check that the minimum at

ϕ = 0 is unique. The details can be found in Remark 3.8.

4. The number of distinct depths of leaves. In this section we study the
number of distinct depths of leaves d(T ) of a canonical tree T ∈ T , motivated by
the interpretation as the number of distinct code word lengths in Huffman codes.
This parameter is also asymptotically normally distributed, and we show a local limit
theorem. The approach is essentially the same as for the height. It is based on the
generating function H(q, u, v, w) from section 2. To analyze the parameter d(T ), we
look at the bivariate generating function

H(q, 1, v, 1) =
∑
T∈T

qn(T )vd(T ) =
a(q, 1, v, 1)

1− b(q, 1, v, 1)

for the number of distinct depths of leaves. Again, we consider its denominator

D(q, v) := 1− b(q, 1, v, 1) = 1−
∑
1≤j

vq�j�

1− q�j�

j−1∏
i=1

1− v − q�i�

1− q�i�

and proceed as in the previous section. Lemma 2.4 tells us the existence of a simple
dominant zero q0 of D(q, 1). Again, we expand the denominator D(q, v) around (q0, 1)
and use Theorem IX.9 from Flajolet and Sedgewick [15] to get asymptotic normality.
The local limit theorem follows from considerations of the dominant zero of D(q, v)
with v on the unit circle. This results in the following theorem.

Theorem 4.1. For a randomly chosen tree T ∈ T of size n the number of distinct
depths of leaves d(T ) is asymptotically (for n → ∞) normally distributed, and a local
limit theorem holds. Its mean is μdn+O(1), and its variance is σ2

dn+O(1) with

μd =
1

2
+

t− 4

2t+3
+

2t2 − t− 14

22t+5
+

9t3 + 27t2 − 76t− 144

23t+8
+

0.06t4

24t
ε16(t)

and

σ2
d =

1

4
+

−t2 + 9t− 14

2t+4
+

−4t3 + 20t2 + 3t− 54

22t+6
+

0.056t4

23t
ε17(t)

for t ≥ 2.
Again, as in the previous section, we calculated the values of the constants μd

and σ2
d numerically for 2 ≤ t ≤ 30, and they are given in Table 3. Figure 3 visualizes

the result of Theorem 4.1 as in the previous section.
As mentioned above, the proof of Theorem 4.1 works analogously to the proof

of Theorem 3.1. It is again spread over several lemmata. There is a one-to-one
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1622 C. HEUBERGER, D. KRENN, AND S. WAGNER

Table 3

Values of the constants in mean and variance of the number of distinct depths of leaves for
small values of t; cf. Theorem 4.1. See also Remark 3.2. For the accuracy of these numerical results
see the note at the end of the introduction.

t μd σ2
d

2 0.4151957394337730 0.2449371766120133
3 0.4869093777539261 0.2893609775712220
4 0.5024588321518999 0.2741197923680785
5 0.5050331956677906 0.2607084483093273
6 0.5043408269340902 0.2530808413006747
7 0.5030838633817897 0.2495578056054622
8 0.5020050053196332 0.2483362931739359
9 0.5012375070905982 0.2482103208441571
10 0.5007377066674932 0.2485046286268308

correspondence between Lemmata 4.2–4.6 and Lemmata 3.3–3.7 in the section for the
height parameter. Due to their similarities, the proofs are skipped a couple of times
and only some differences (for example, the different constants) are mentioned. The
idea of the proof itself is described in the previous section below Theorem 3.1.

To show Theorem 4.1, it is convenient to work with the finite sum

DJ (q, v) := 1−
∑

1≤j<J

vq�j�

1− q�j�

j−1∏
i=1

1− v − q�i�

1− q�i�

instead of the denominator D(q, v) = 1− b(q, 1, u, 1). The error made by this approx-
imation was analyzed at the end of section 2, namely in the Lemmata 2.8 and 2.9.

For the local limit theorem, we split up into the central region around v = 1 and
an outer region. The following lemma covers the latter one.

Lemma 4.2. Let v = eiϕ, where ϕ is real with 2π 2−t/2 < |ϕ| ≤ π. Then each
zero of z �→ D(1/z, v) has absolute value smaller than 2− 1/2t.

The proof follows along the same lines as the proof of Lemma 3.3, but we get the
bound

|z0| ≤ |1 + w|+ 7

2t

instead of (3.3).
Next, we go on to the central region. As a first step, we bound the location of

the dominant zero.
Lemma 4.3. Suppose t ≥ 4 and |v − 1| ≤ 1

2 −5
(
2
3

)t
; then q �→ D(q, v) has exactly

one root with |q| < 2
3 and no root with |q| = 2

3 .
This lemma is proven analogously to Lemma 3.4. The only difference is the bound

|D(q, v)−D2(q, v)| ≤ 3.09

(
2

3

)t

= b,

which is valid for t ≥ 4.
Lemma 4.4. For t ≥ 4 and |v − 1| ≤ 1

2−5
(
2
3

)t
, the function q0(v) given implicitly

by D(q0(v) , v) = 0, |q0(v)| < 2
3 , is analytic.
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1623
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Fig. 3. Distribution of the distinct depths of leaves for t = 2, and n = 30 (top figure) and
n = 200 (bottom figure) inner vertices. On the one hand, this figure shows the true distribution of
all trees of the given size and on the other hand the result on the asymptotic normal distribution
(Theorem 4.1 with only main terms of mean and variance taken into account).

The proof of this analyticity result is the same as that for Lemma 3.5 and is
therefore skipped here.

In the central region around v = 1, small changes in v do not change the location
of the dominant zero much, which is made explicit in the lemma below.

Lemma 4.5. Let t ≥ 30 and v = eiϕ, where ϕ ∈ R with |ϕ| ≤ 2π 2−t/2; then

|q0(v)− q0(1)| ≤
9

2t/2
, |q′0(v)− q′0(1)| ≤

34

2t/2
, and |q′′0 (v)− q′′0 (1)| ≤

202

2t/2
.

Again, the proof works analogously to the proof of the corresponding lemma for
the height parameter.
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1624 C. HEUBERGER, D. KRENN, AND S. WAGNER

In order to prove the local limit theorem we show that the second derivative of∣∣q0(eiϕ)∣∣ is positive. This is stated in the following lemma.

Lemma 4.6. If t ≥ 30 and ϕ ∈ R with |ϕ| ≤ 2π 2−t/2, then

d2

dϕ2

∣∣q0(eiϕ)∣∣2 > 0.

We use the proof of Lemma 3.7 and update the constants.
For a fixed t we can use SageMath [24] and perform calculations with interval

arithmetic. The details, which are stated for the height in Remark 3.8, remain valid.
For integers t fulfilling 2 ≤ t ≤ 30 we showed that

∣∣q0(eiϕ)∣∣ has a unique minimum at
ϕ = 0.

The proof of Theorem 4.1 follows by the same arguments as the proof of Theo-
rem 3.1: We use Theorem IX.9 of Flajolet and Sedgewick [15] applied to the function
H(q, 1, v, 1) to get mean and variance (and asymptotic normality as a central limit,
too). For the local limit theorem the uniqueness of the minimum of

∣∣q0(eiϕ)∣∣ is

shown by a two-fold strategy. The central region with |ϕ| ≤
√
3π 2−t/2 is covered by

Lemma 4.6 (using previous lemmata as prerequisites). Lemma 4.2 discusses the outer
region. For t < 30 the algorithmic approach above is used.

5. The width. In this section, we consider the width, i.e., the maximum number
of leaves on the same level, for which we have the following theorem.

Theorem 5.1. For a randomly chosen tree T ∈ T of size n, we have

E(w(T )) = μw log n+O(log logn)

for the expectation of the width w(T ), where μw is given by

μw =
1

t− 1

(
1

log 2
+

1

4 · 2t log2 2
+

0.2t

4t
ε18(t)

)

for t ≥ 10. For 2 ≤ t ≤ 9, the values of μw are given in Table 4.
Furthermore, we have the concentration property

(5.1) P(|w(T )− μw logn| ≥ σμw log logn) = O

(
1

logσ−2 n

)

for σ > 2.
In Figure 4 one can find the distribution of the leaf-width for a given parameter

set together with the mean found in Theorem 5.1.
First, we sketch the idea of the proof. We consider trees whose width is bounded

by K. The corresponding generating function WK(q) can be constructed by a suitable
transfer matrix, and we quantify the obvious convergence of WK(q) to H(q, 1, 1, 1).
The dominant singularity qK of WK(q) is estimated by truncating the infinite positive
eigenvector of an infinite transfer matrix corresponding to H(q, 1, 1, 1) and applying
methods from Perron–Frobenius theory. Then the probability P(w(T ) ≤ K) can
be extracted from WK(q) using singularity analysis. Our key estimate states that
the singularity qK converges exponentially to q0, from which the main term of the
expectation as well as the concentration property are obtained quite easily. A more
precise result on the distribution of the width would depend on a better understanding
of the behavior of qK as K → ∞, which seems to be quite complicated.
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1625

Table 4

Numerical values of the constants µw for 2 ≤ t ≤ 10; cf. Theorem 5.1. See also Remark 3.2.
For the accuracy of these numerical results see the note at the end of the introduction.

t μw

2 1.710776751014961
3 0.7660531443158307
4 0.4936068552417457
5 0.3650919029615249
6 0.2902388863790219
7 0.2411430286905858
8 0.2063933963643483
9 0.1804647899046739

10 0.1603561167643597

0 5 10 15

0

0.1

0.2

0.3

0.4

leaf-width

p
ro
b
a
b
il
it
y

true values
expectation

Fig. 4. Distribution of the leaf-width for t = 2 and n = 100 inner vertices. On the one hand,
this figure shows the true distribution of all trees of the given size and on the other hand the result on
the expectation of this distribution (Theorem 5.1 with only main term of mean taken into account).

The proof of the theorem depends on the following definitions. Apart from the
width w(T ), we also need the “inner width” w∗(T ) defined to be

w∗(T ) := max
0≤k<h(T )

LT (k)

for a recursive construction. Here, LT (k) denotes the number of leaves at level k.
By definition, the inner width w∗(T ) does not take the leaves on the last level into
account.

For K > 0, we are interested in the generating function

WK(q) :=
∑
T∈T

w(T )≤K

qn(T ).
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1626 C. HEUBERGER, D. KRENN, AND S. WAGNER

We represent WK(q) in terms of the generating functions

WK,r(q) :=
∑
T∈T

w∗(T )≤K
m(T )=tr

qn(T )

for r ≥ 0 so that

WK(q) = 1 +

�K/t�∑
r=1

WK,r(q).

Here, the summand 1 corresponds to the tree of order 1. For all other trees, the
number m(T ) of leaves on the last level is clearly a multiple of t.

Next we set up a recursion for WK,r, 1 ≤ r ≤ N(K), where N(K) := �K/(t −
1) − 1. Let us define the column vector

WK(q) := (WK,1(q), . . . ,WK,N(K))
T

and the “transfer matrix”

MK(q) :=

(
qr

[
r

t
≤ s ≤ r +K

t

])
1≤r≤N(K)
1≤s≤N(K)

,

where the Iversonian notation3

[expr ] =

{
1 if expr is true,

0 if expr is false

popularized by Graham, Knuth, and Patashnik [17] has been used.
We now express WK(q) in terms of MK(q).
Lemma 5.2. For K ≥ t, we have

(5.2) WK(q) = (I −MK(q))−1

⎛
⎜⎜⎜⎝
q
0
...
0

⎞
⎟⎟⎟⎠ .

Proof. As in the proof of Theorem 2.1, a tree T ′ of height h+1 ≥ 2, inner width at
most K, and m(T ′) = rt arises from a tree T of height h, inner width at most K, and
m(T ) = st by replacing r of the st leaves of T on the last level by internal vertices
with t succeeding leaves each. We obviously have r ≤ st. In order to ensure that
w∗(T ′) ≤ K, we have to ensure that st− r ≤ K. We rewrite these two inequalities as

(5.3)
r

t
≤ s ≤ r +K

t
.

If r ≤ N(K), we have r < K/(t − 1) and therefore s < K/(t − 1) by (5.3), i.e.,
s ≤ N(K). This justifies our choice of N(K). The construction above yields s new

3Keep in mind that we also use square brackets for extracting coefficients: [qn]Q(q) gives the nth
coefficient of the power series Q.
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1627

internal vertices in T ′. There is only one tree T ′ of height < 2, namely the star of
order t+ 1, which has one internal vertex (the root). In this case, r = 1.

Translating these considerations into the language of generating functions yields

WK,r(q) = q[r = 1] +

N(K)∑
s=1

qr
[
r

t
≤ s ≤ r +K

t

]
WK,s(q).

Rewriting this in vector form yields (5.2).
We will obtain asymptotic expressions for the coefficients of WK by singular-

ity analysis. To this end, we have to find the singularities of (I − MK(q))−1 as a
meromorphic function in q. In order to do so, we have to consider the zeros of the
determinant det(I −MK(q)). Note that qK is a zero of det(I −MK(q)) if and only if
1 is an eigenvalue of MK(qK). In the next lemma, we collect a few results connecting
MK(q) with Perron–Frobenius theory.

Lemma 5.3. Let K ≥ t and q > 0. Then
1. the matrix MK(q) is a nonnegative, irreducible, primitive matrix;
2. the function q �→ λmax(MK(q)) mapping q to the spectral radius of MK(q) is

a strictly increasing function from (0,∞) to (0,∞);
3. if MK(q)x ≤ x or MK(q)x ≥ x holds componentwise for some positive vector

x, then λmax(MK(q)) ≤ 1 or λmax(MK(q)) ≥ 1, respectively.
Proof. We prove each statement separately.
1. The matrix MK(q) is nonnegative by definition. We note that r

t ≤ r−1 holds

for all r ≥ 2 and r + 1 ≤ r+K
t holds for all r < N(K). This implies that

all subdiagonal, diagonal, and superdiagonal elements of MK(q) are positive.
Thus MK(q) is irreducible. As all diagonal elements are positive, it is also
primitive.

2. This is an immediate consequence of [16, Theorem 8.8.1(b)].
3. Assume thatMK(q)x ≤ x for some positive x. Let yT > 0 be a left eigenvector

of MK(q) to the eigenvalue ρ(MK(q)). Then

ρ(MK(q))yTx = yTMK(q)x ≤ yTx.

The result follows upon division by yTx > 0. The case MK(q)x ≥ x is
analogous.

We consider the infinite matrix

M∞(q) :=
(
qr

[r
t
≤ s

])
1≤r
1≤s

and the infinite determinant det(I −M∞(q)) which is defined to be the limit of the
principal minors det([r = s] − qr

[
r
t ≤ s

]
)1≤r≤N
1≤s≤N

when N tends to ∞; cf. Eaves [10].

For |q| < 1, this infinite determinant converges by Eaves’ sufficient condition.
We now show that the infinite determinant is indeed the denominator of the

generating function H(q, 1, 1, 1).
Lemma 5.4. We have

det(I −M∞(q)) = 1− b(q, 1, 1, 1),

where b(q, 1, 1, 1) is given in Lemma 2.3.
Proof. When expanding the infinite determinant, we take the 1 on the diagonal

in almost all rows and some other entry in rows a1 < a2 < · · · < ak for some k. These
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1628 C. HEUBERGER, D. KRENN, AND S. WAGNER

other entries have to come from −M∞(q). Extracting the sign for these rows yields

det(I −M∞(q)) =
∑
k≥0

(−1)k
∑

1≤a1<a2<···<ak

det(qai [ai ≤ taj ])1≤i,j≤k

=
∑
k≥0

(−1)k
∑

1≤a1<a2<···<ak

qa1+···+ak det([ai ≤ taj])1≤i,j≤k.

We trivially have ai ≤ taj for j ≥ i, so all entries on the diagonal of ([ai ≤ taj ])1≤i,j≤k

and above this diagonal are 1. If a2 ≤ ta1, the first and second rows of ([ai ≤
taj ])1≤i,j≤k are identical, so the determinant vanishes. Therefore, we only have to
consider summands with a2 > ta1. In this case, we clearly have ai > ta1 for all
i ≥ 2; i.e., the first column of ([ai ≤ taj ])1≤i,j≤k is (1, 0, . . . , 0)T . Repeating this
argument, we see that only summands with aj+1 > taj for 1 ≤ j < k contribute to
the determinant. For those summands, the matrix ([ai ≤ taj ])1≤i,j≤k equals ([j ≥
i])1≤i,j≤k and thus has determinant 1.

Therefore, we obtain the representation

det(I −M∞(q)) =
∑
k≥0

(−1)k
∑

a1,...,ak
∀j : aj+1>taj

qa1+···+ak .

With the change of variables a1 =: bk and aj+1− taj =: bk−j for 1 ≤ j < k, we obtain

det(I −M∞(q)) =
∑
k≥0

(−1)k
∑

b1,...,bk≥1

qb1�1�+···+bk�k�

=
∑
k≥0

(−1)k
k∏

j=1

(∑
bj≥1

(q�j�)bj
)

= 1− b(q, 1, 1, 1).

If K tends to infinity, WK(q) tends to H(q, 1, 1, 1), as the restriction on the width
becomes meaningless. For our purposes, we will need a slightly stronger result: we
also need convergence of the numerator and the denominator of WK(q) given by (5.2)
and Cramer’s rule to the numerator a(q, 1, 1, 1) and the denominator 1 − b(q, 1, 1, 1)
of H(q, 1, 1, 1), respectively. We prove this in two steps. The first one is to prove
that the numerator and the denominator of WK(q) tend to the corresponding infinite
determinants. This is stated in the following lemma.

Lemma 5.5. For |q| ≤ 0.6, we have

det(I −MK(q)) = det(I −M∞(q)) +O(qK/(2t)).

The same conclusion holds when the sth columns of both I−MK(q) and I−M∞(q) are
replaced by the vector (q, 0, . . .)T with K − 1 and infinitely many zeros, respectively.
The estimate still holds for the first derivatives with respect to q.

Proof. The infinite determinant det(I −M∞(q)) consists of summands

±
∏
s∈S

qπ(s) = ±q
∑

s∈S π(s) = ±q
∑

s∈S s,

where π : N → N is a bijection such that there are only finitely many nonfixed points
of π and S is a finite subset of N containing all nonfixed points of π. Note that
the complement of S corresponds to those columns where 1 has been chosen on the
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1629

diagonal in the expansion of the determinant. Not all (π, S) will actually occur due
to the Iversonian expression in the definition of M∞(q).

For every k ∈ N, there is a bijection from the set

{
(π, S)

∣∣∣ π : N → N bijective, S ⊆ N finite such that {s ∈ N | π(s) 
= s} ⊆ S

and
∑
s∈S

π(s) = k

}

to the set{
(x1, . . . , xj) ∈ N

j
∣∣∣ j ∈ N,

j∑
i=1

xi = k with pairwise distinct xi

}

of compositions of k with distinct parts: the set S can be recovered as the set of
summands in the composition, and the permutation π can be recovered from the
order of the summands.

As there are at most exp(2
√
k log k) compositions of k with distinct parts by a

result of Richmond and Knopfmacher [23], there are at most that many summands
±qk in the infinite determinant det(I −M∞(q)).

The difference between det(I − M∞(q)) and det(I − MK(q)) consists of those
summands which do not choose the 1 on the diagonal in some row > N(K) or which
choose an entry in some column s and in some row r with s > (r+K)/t. In the latter
case, the 1 on the diagonal cannot be chosen in row s, so that the exponent of q in
this summand is at least r + s > K/t. So all summands in the difference are of the
form ±qk for some k ≥ K/t. By the triangle inequality and the above estimates, we
obtain

|det(I −M∞(q))− det(I −MK(q))| ≤
∑

k≥K/t

exp(2
√
k log k)qk = O(qK/(2t)).

The argument does not change if the sth column of both matrices is replaced by the
column vector (q, 0, . . . , 0)T .

Differentiating the determinant can be done term by term. The error term does
not change, as the bound O(qK/(2t)) is weak enough.

The second step in the proof of the convergence of the numerator and the denom-
inator of WK(q) consists of the following simple lemma.

Lemma 5.6. Let |q| ≤ 0.6. Then the denominator det(I−MK(q)) of WK(q) con-
verges to 1− b(q, 1, 1, 1) with error O(qK/(2t)). The numerator det(I −MK(q))WK(q)
of WK(q) converges to a(q, 1, 1, 1) with the same error. The same is true for the first
derivatives with respect to q.

Proof. The first statement is simply the combination of Lemmata 5.5 and 5.4.
As a formal power series, WK(q) converges to H(q, 1, 1, 1) in view of the fact that

[qn]WK(q) = [qn]H(q, 1, 1, 1) holds for n ≤ (K − 1)/(t − 1) because a canonical tree
with n internal vertices has 1+n(t−1) leaves and therefore width at most 1+n(t−1).

As 1− b(q, 1, 1, 1) has no root with |q| < 1/2 by Lemma 2.4, WK(q) converges to
H(q, 1, 1, 1) for |q| < 1/2. As the denominator is already known to converge to the
denominator 1 − b(q, 1, 1, 1) of H(q, 1, 1, 1), we conclude that the numerators (which
are already known to converge to some infinite determinant) actually have to converge
to a(q, 1, 1, 1).
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1630 C. HEUBERGER, D. KRENN, AND S. WAGNER

By Lemma 5.5, taking derivatives with respect to q does not change the argu-
ment.

In order to obtain information on the roots of det(I −MK(q)) and therefore the
singularities of WK(q), we approximate the Perron–Frobenius eigenvector of MK(q)
by that of the infinite matrix M∞(q). The following lemma gives this eigenvector
explicitly—as we will see in the next section, it has a natural combinatorial interpre-
tation.

Lemma 5.7. For r ≥ 1, we have

(5.4) qr
(
1−

�r/t�−1∑
j=1

[ujt]b(q, u, 1, 1)

)
= [urt]b(q, u, 1, 1).

In particular, if we set pr = [urt]b(q0, u, 1, 1), then (pr)r≥1 is a right eigenvector of
M∞(q0) to the eigenvalue 1, i.e.,

(5.5) M∞(q0) · (pr)r≥1 = (pr)r≥1.

Proof. Multiplying the left-hand side of (5.4) with urt and summing over r ≥ 1
yields

qut

1− qut
−

∑
r≥1
j≥1
jt<r

(qut)r [ujt]b(q, u, 1, 1) =
qut

1− qut
−

∞∑
j=1

[ujt]b(q, u, 1, 1)

∞∑
r=jt+1

(qut)r

=
qut

1− qut
− qut

1− qut

∞∑
j=1

(qut)jt[ujt]b(q, u, 1, 1)

=
qut

1− qut
(1− b(q, qut, 1, 1)) = b(q, u, 1, 1),

where the last equality comes from Lemma 2.3. This concludes the proof of (5.4).
Setting q = q0 in (5.4) and noting that 1 = b(q0, 1, 1, 1) =

∑
r≥1 pr yields

(5.5).
We now use the fact that (pr)r≥1 is an eigenvector of M∞(q) to derive bounds

for its entries.
Proposition 5.8. All constants pr, r ≥ 1, are positive, and we have pr =

Ω(qr∗/r) and pr = O(r2qr∗), where

q∗ = q
1+ 1

t−1

0 .

Proof. As we will see later in the proof of Theorem 6.1, equation (6.2), the
pr are limits of probabilities and therefore a priori nonnegative. In fact, this is a
consequence of Lemma 2.5. Moreover, they sum to 1 as mentioned earlier, and in
view of the eigenvalue equation and the fact that M∞(q) is an irreducible matrix, we
even know that they must be strictly positive.

By the eigenvalue equation (5.5), we have

pr ≥ qr0p�r/t�

for all r ≥ 1. Iterating this yields, with pmin = mins<t ps,

pr ≥ q
∑�logt r�−1

j=0 �r/tj�
0 p�r/t�logt r�� ≥ pminq

∑�logt r�−1

j=0 (1+r/tj)

0

≥ pminq
logt r+

∑∞
j=0 r/tj

0 = pminr
logt q0q

r(1+1/(t−1))
0 .
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1631

As q0 ≥ 1/t by Lemma 2.4, we have logt q0 ≥ −1 and the lower bound follows.
To prove the upper bound, we proceed in two steps. In a first step, we note

that the eigenvalue equation (5.5) together with the fact that
∑

r≥1 pr = 1 yields the
weaker upper bound

pr = qr0
∑

s≥�r/t�
ps ≤ qr0

∑
s≥1

ps = qr0 .

In a second step, we use induction on r and assume that ps ≤ cs2qs∗ for s < r for some
constant c depending on t. Then the eigenvalue equation (5.5) yields

pr ≤ qr0
∑

s≥�r/t�
ps ≤ cqr0

∑
�r/t�≤s<r

s2qs∗ + qr0
∑
r≤s

qs0 ≤ cqr0
∑

�r/t�≤s

s2qs∗ +
1

1− q0
q2r0

= cqr0

(
�r/t2
1− q∗

+
2q∗�r/t
(1− q∗)2

+
q∗(1 + q∗)

(1− q∗)3

)
q
�r/t�
∗ +

1

1− q0
q2r0

≤ cqr0

(
(r + t)2

t2(1 − q∗)
+

2q∗(r + t)

t(1− q∗)2
+

q∗(1 + q∗)

(1 − q∗)3

)
q
r/t
∗ +

1

1− q0
q2r0 .

As t2(1− q∗) > 1 for t ≥ 2 (cf. Lemma 2.4), we obtain

pr ≤ cr2qr0q
r/t
∗ = cr2q

r(1+ 1
t (1+

1
t−1 ))

0 = cr2qr∗

for sufficiently large r.
Lemma 5.9. The generating function WK(q) has a unique singularity qK with

|qK | ≤ 0.6 for K ≥ c1, where c1 is a suitable positive constant depending on t. It is a
simple pole and a zero of det(I −MK(q)). Furthermore,

q0 + c2
1

K
q
K/(t−1)
0 ≤ qK ≤ q0 + c3K

2q
K/(t−1)
0

for suitable positive constants c2, c3 depending on t.
Proof. In the following, c4, c5, . . . denote suitable positive constants depending

on t.
AsH(q, 1, 1, 1) has a unique pole q with |q| ≤ 0.6 by Lemma 2.4 and the numerator

and denominator of WK(q) tend to the numerator and denominator of H(q, 1, 1, 1),
respectively, by Lemma 5.6, WK(q) also has a unique pole with |q| ≤ 0.6 for sufficiently
large K.

We set xK = (p1, . . . , pN(K))
T . If we find a q > 0 such that MK(q)xK ≥ xK ,

then Lemma 5.3 implies that λmax(MK(q)) ≥ 1 and qK < q.
We therefore consider the rth row of MK(q)xK for some 1 ≤ r ≤ N(K). We have

(MK(q)xK)r = qr
∑

r
t ≤s≤ r+K

t

ps ≥ qr
∑

r
t ≤s< r+K

t

ps = qr
(
pr
qr0

− pr+K

qr+K
0

)

= pr

(
q

q0

)r (
1− pr+K

prqK0

)

by the eigenvalue equation (5.5). By Proposition 5.8, we have

pr+K

prqK0
≤ c4r(r +K)2

qr+K
∗
qr∗q

K
0

= c4r(r +K)2q
K/(t−1)
0 ≤ c5K

3q
K/(t−1)
0 .
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1632 C. HEUBERGER, D. KRENN, AND S. WAGNER

Therefore, we have

r

√
1− pr+K

prqK0
=

1(
1− pr+K

prqK0

)−1/r
≥ 1

1 + 2pr+K

rprqK0

≥ 1

1 + c6K2q
K/(t−1)
0

.

This means that for q = q0 + c7K
2q

K/(t−1)
0 , we have MK(q)xK ≥ xK , as desired.

The proof of the lower bound follows along the same lines.
Proof of Theorem 5.1. We choose K large enough so that WK(q) has a unique

singularity qK with |qK | ≤ 0.6 and such that qK/0.6 < 0.99. By singularity analysis
and Lemma 5.6, we have

P(w(T ) ≤ K) =
[qn]WK(q)

[qn]H(q, 1, 1, 1)
= (1 +O(0.6K/2t))

(
qK
q0

)−n−1

(1 +O(0.99n))

for K ≥ c8.
We now estimate

(5.6) E(w(T )) =
∑
K≥0

(1− P(w(T ) ≤ K)).

We use the abbreviation S := 1/qt−1
0 > 1.

First, we consider the summands of (5.6) with SK ≤ n/ log2 n. By Lemma 5.9,
we have (

qK
q0

)n

≥
(
1 + c9

1

SK logS n

)n

≥
(
1 + c10

logn

n

)n

≥ c10 logn.

We conclude that these summands of (5.6) contribute logS n+ O(log logn). Similar
estimates imply that

(5.7) P(w(T )− logS n ≤ −σ logS logn) = O

(
1

logσ−1 n

)

for σ > 1.
Now, we consider the summands of (5.6) with n/ log2 n < SK < n log3 n. These

are O(log logn) summands with each trivially contributing at most 1, so the total
contribution is O(log log n).

Next, we consider the summands of (5.6) with n log3 n ≤ SK ≤ n4t logS . We now
have

qK
q0

≤ 1 + c11
log2 n

SK
≤ 1 + c11

1

n logn
,

and therefore

P(w(T ) ≤ K) ≥ (1 +O(n−|logS 0.6|/(2t))) exp

(
−(n+ 1) log

(
qK
q0

))
≥ 1− c12

1

logn
.

The total contribution of these summands is therefore O(1). Similar estimates imply
that

(5.8) P(w(T )− logS n ≥ σ logS logn) = O

(
1

logσ−2 n

)
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1633

for σ > 2.
Next, we consider the summands of (5.6) with n4t log S < SK ≤ Stn. This time,

we have

qK
q0

≤ 1 + c13
n2

n4
,

and therefore

P(w(T ) ≤ K) = (1 +O(n−2|log 0.6|)) exp

(
−(n+ 1) log

(
qK
q0

))
≥ 1− c14

1

n
.

The total contribution of these summands is therefore O(1).
Finally, we note that all summands with K > tn vanish: any tree with n internal

nodes has at most width tn.
Collecting all terms, we obtain

E(w(T )) = logS n+O(log logn) =
logn

−(t− 1) log q0
+O(log logn).

The combination of (5.7) and (5.8) immediately yields the concentration property
(5.1).

6. The number of leaves on the last level. Analyzing the parameter m(T )
counting the number of leaves of maximum depth (labeled by the variable u in the
generating function H(q, u, v, w)) is the topic of this section. Here, T is a canonical
forest in Fr for some number of roots r. We note that for fixed |u| ≤ 1, the dominant
simple pole q0 of H(q, 1, 1, 1) is also the dominant singularity of H(q, u, 1, 1) and is
still a simple pole. Therefore, m(T ) tends to a discrete limiting distribution; we refer
the reader to section IX.2 of Flajolet and Sedgewick [15]. Note that the number m(T )
is divisible by t unless T has height 0. The result presented in this section is a very
useful tool in proving the central limit theorem for the path length in the following
section.

Theorem 6.1. Let q0, Q, and U be as described in Lemma 2.4 and q∗ be as defined
in Proposition 5.8. For m ≥ 1 such that mt ∈ Z, we set pm = [umt]b(q0, u, 1, 1) as in
Lemma 5.4. Then, for a randomly chosen forest T ∈ Fr of size n, we have

(6.1) P(m(T ) = mt) = pm +O(QnUmt) = pm

(
1 +O

(
Qnm

(
U t

q∗

)m))
= O(Umt)

uniformly in r.
Furthermore, we have E(m(T )) = μm + O(Qn) and V(m(T )) = σ2

m + O(Qn)
uniformly in r. Here,

μm = 2t− t2 − t

2t+1
− t3 + 6t2 − 5t

22t+3
− 3t4 + 32t3 + 61t2 − 56t

23t+8
− t5

3 · 24t+4
+

1.3t4

24t
ε19(t)

and

σ2
m = 2t2 − t4 − 3t2

2t+1
− t5 + 13t4 − 3t3 − 17t2

42t+3

− 3t6 + 59t5 + 215t4 − 89t3 − 208t2

23t+6
+

2t7

24t
ε20(t)
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1634 C. HEUBERGER, D. KRENN, AND S. WAGNER

Table 5

Numerical values of the constants in mean and variance of the number of leaves on the last
level for t ∈ {2, 3}; cf. Theorem 6.1. See also Remark 3.2. For the accuracy of these numerical
results see the note at the end of the introduction.

t μm σ2
m

2 3.3008907135661046 3.4340283494347781
3 5.4223250580971105 10.9926467981432752
4 7.5391743055684431 23.0048877906448059
5 9.6531072700455410 39.9382006717564049
6 11.7525465927985450 61.9509728363450114
7 13.8311837210749625 88.8290211521323761
8 15.8889617566427750 120.2125697911546141
9 17.9291240142580452 155.7621950801096596

10 19.9558689242933884 195.2366537978909468

0 5 10 15 20 25 30

0

0.2

0.4

0.6

leaves on the last level

p
ro
b
a
b
il
it
y

true values
pm

expectation

Fig. 5. Distribution of the leaves on the last level for t = 2 and n = 30 inner vertices. On the
one hand, this figure shows the true distribution of all trees of the given size and on the other hand
the result on the expectation of this distribution (Theorem 6.1 with only main term of mean taken
into account).

for t ≥ 4. For t ∈ {2, 3}, the values of μm and σ2
m are given in Table 5.

Note that by Lemma 2.3, pm = 0 for noninteger m.
Again, we visualize the distribution of the leaves on the last level for a given

parameter set; see Figure 5. This is compared with the mean of Theorem 6.1.
Proof. As the variables v and w do not play any role, we write H(q, u), a(q, u),

and b(q, u) instead of H(q, u, 1, 1), a(q, u, 1, 1), and b(q, u, 1, 1), respectively.
By (2.9), we have U1−tq0/Q < 1; i.e., a(q, u) and b(q, u) are analytic for |q| ≤ q0/Q

and |u| ≤ 1/U by Theorem 2.1. By (2.1) and Lemma 2.4, the meromorphic function
q �→ H(q, u) for fixed u with |u| ≤ 1/U has a unique singularity in {q | |q| ≤ q0/Q},
namely q0, independently of u.

We use Cauchy’s formula, the residue theorem, and the fact that a(q, u) does not
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1635

contribute to the residue at q = q0 to obtain

[qn]H(q, u) =
1

2πi

∮
|q|=1/2

H(q, u)

qn+1
dq

= −Res

(
H(q, u)

qn+1
, q = q0

)
+

1

2πi

∮
|q|=q0/Q

H(q, u)

qn+1
dq

=
b(q0, u)ν(r)

qn0
+

1

2πi

∮
|q|=q0/Q

H(q, u)

qn+1
dq,

where ν(r) has been defined in (2.11).
By Lemma 2.5, the probability generating function Pn(u) of m(T ) is given by

(6.2) Pn(u) = b(q0, u) +O(Qn)

uniformly for |u| ≤ 1/U and uniformly in the number of roots r (it suffices to bound
the numerator and the denominator of H(q, u) separately in order to get a uniform
bound in r). We remark that this proves the nonnegativity of the constants pm, which
we required in the proof of Proposition 5.8.

Expectation and variance follow upon differentiating b(q0, u) with respect to u
and inserting the asymptotic expression for q0. Here, we use the bounds derived in
Lemma 2.7.

In order to compute P(m(T ) = mt), we consider

[umt][qn]H(q, u) = pm
ν(r)

qn0
+

1

(2πi)2

∮
|u|=1/U

∮
|q|=q0/Q

H(q, u)

qn+1umt+1
dq du.

Bounding H(q, u) uniformly in r and using Lemma 2.5 and Proposition 5.8 yields
(6.1), taking into account that

U t

q∗
= 2 +

2

t2
ε21(t)

for t ≥ 30 and that U t/q∗ > 1 remains true for all t ≥ 2.

7. The path length. This section is devoted to the analysis of the path length.
While the external path length is most natural in the setting of Huffman codes, it is
more convenient to work with the total and the internal path lengths, respectively.
As it was pointed out in the introduction, all three are essentially equivalent since
they are (deterministically) related by simple linear equations.

Theorem 7.1. For a randomly chosen tree T ∈ T of size n the total path length
(as well as the internal and the external path lengths) is asymptotically (for n → ∞)
normally distributed. Its mean is asymptotically μtpln

2 + O(n), and its variance is
asymptotically σ2

tpln
3 +O(n2) with

μtpl =
t

2
μh =

t

4
+

t2 − 2t

2t+4
+

2t3 + 3t2 − 8t

22t+6
+

9t4 + 45t3 + 2t2 − 88t

23t+9
+

0.048t5

24t
ε22(t)

and

σ2
tpl =

t2

12
+

−t4 + 5t3 − 2t2

3 · 2t+4
+

−6t5 + 6t4 + 27t3 − 14t2

3 · 22t+6

+
−27t6 − 72t5 + 237t4 + 302t3 − 232t2

3 · 23t+9
+

0.078t7

24t
ε23(t)
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1636 C. HEUBERGER, D. KRENN, AND S. WAGNER

for t ≥ 30.
We determined numerical values of these constants as in the previous sections.

They are given in Table 6. Figure 6 shows the result of Theorem 7.1 for particular
values. It compares the obtained normality with the distribution of the total path
length found by a simulation in SageMath.

Table 6

Values of the constants in mean and variance of the total path length for small values of t; cf.
Theorem 7.1. See also Remark 3.2. For the accuracy of these numerical results see the note at the
end of the introduction.

t μtpl σ2
tpl

2 0.5517980333242771 0.4254704960029117
3 0.7995328756339714 0.7922629722714524
4 1.0432261612615134 1.3151643425139087
5 1.2844112381086093 2.0034857832310170
6 1.5254850246188775 2.8759607924909180
7 1.7678665778255347 3.9388990633171834
8 2.0120005013102160 5.1894943655172528
9 2.2577888724045994 6.6208696968269586
10 2.5049161393093200 8.2258587463722461

We first use a generating functions approach to determine the asymptotic behavior
of the mean and variance. Let us define

Lr(q, u, w) :=
∑
T∈T

�(T )rqn(T )um(T )wh(T )

for the rth moment of the total path length. Note that

L0(q, u, w) = H(q, u, 1, w) = a0(q, u, w) + b(q, u, w)
a0(q, 1, w)

1− b(q, 1, w)

in the notation of Theorem 2.1 but writing a0 instead of a and leaving out the pa-
rameter v.

We are specifically interested in L1 and L2. In analogy to the approach we used
to determine a formula for H(q, u, v, w) in the proof of Theorem 2.1, we obtain a
functional equation for Lr(q, u, w) by first introducing

Lr,h(q, u) = [wh]Lr(q, u, w) =
∑
T∈T

h(T )=h

�(T )rqn(T )um(T ).

Define, for the sake of convenience, the linear operators Φu = u ∂
∂u , Φw = w ∂

∂w ,

and Φq = q ∂
∂q acting on our generating functions. We get the following result for the

generating function of the first moment.
Lemma 7.2. We have

L1(q, u, w) = a1(q, u, w) + b(q, u, w)
a1(q, 1, w)

1− b(q, 1, w)
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1637
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Theorem 7.1
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Theorem 7.1

Fig. 6. Distribution of the total path length for t = 2, and n = 30 (top figure) and n = 200
(bottom figure) inner vertices. On the one hand, this figure shows the true distribution of all trees of
the given size and on the other hand the result on the asymptotic normal distribution (Theorem 7.1
with only main terms of mean and variance taken into account). In order to take into account that
the total path length is always even, we rescale the limit distribution.

with

a1(q, u, w) =

∞∑
j=0

(−1)jwj(ΦuΦwL0)(q, q
�j�utj , w)

j∏
i=1

q�i�uti

1− q�i�uti
.

Proof. Replacing j leaves of depth h by internal vertices, thus creating jt new
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1638 C. HEUBERGER, D. KRENN, AND S. WAGNER

leaves of depth h+ 1, increases the total path length by jt(h+ 1). Thus we get

L1,h+1(q, u) =
∑
T∈T

h(T )=h

m(T )∑
j=1

�(T )qn(T )+jujt +
∑
T∈T

h(T )=h+1

(h+ 1)m(T )qn(T )um(T )

=
qut

1− qut

(
L1,h(q, 1)− L1,h(q, qu

t)
)
+ (h+ 1)u

∂

∂u
L0,h+1(q, u)

and L1,0(q, u) = 0. Then, by multiplying by wh+1 and summing over all h, we obtain

L1(q, u, w) =
qutw

1− qut

(
L1(q, 1, w)− L1(q, qu

t, w)
)
+ΦuΦwL0(q, u, w).

Lemma 2.2 yields the desired formula for L1(q, u, w).
Next, we derive a formula for the generating function of the second moment.
Lemma 7.3. We have

L2(q, u, w) = a2(q, u, w) + b(q, u, w)
a2(q, 1, w)

1− b(q, 1, w)

with

a2(q, u, w) =
∞∑
j=0

(−1)jwj
(
2(ΦuΦwL1)(q, q

�j�utj , w)− (Φ2
uΦ

2
wL0)(q, q

�j�utj , w)
)

×
j∏

i=1

q�i�uti

1− q�i�uti
.

Proof. As in Lemma 7.2, we derive a functional equation for L2(q, u, w). Starting
with a tree T of height h and creating jt new leaves of depth h+1 changes the square
of the total path length from �(T )2 to (�(T ) + jt(h+ 1))

2
. This translates to

L2,h+1(q, u) =
∑
T∈T

h(T )=h

m(T )∑
j=1

�(T )2qn(T )+jujt +
∑
T∈T

h(T )=h+1

(h+ 1)2m(T )2qn(T )um(T )

+2
∑
T∈T

h(T )=h+1

(h+ 1)
(
�(T )−m(T )(h+ 1)

)
m(T )qn(T )um(T )

=
qut

1− qut

(
L2,h(q, 1)− L2,h(q, qu

t)
)

+2(h+ 1)ΦuL1,h+1(q, u)− (h+ 1)2Φ2
uL0,h+1(q, u).

Note that we have L2,0(q, u) = 0. Encoding the height by wh leads to the functional
equation for the generating function

L2(q, u, w) =
qutw

1− qut

(
L2(q, 1, w)− L2(q, qu

t, w)
)

+ 2ΦuΦwL1(q, u, w)− Φ2
uΦ

2
wL0(q, u, w).

Again, Lemma 2.2 finishes this proof.
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1639

In order to determine the asymptotic behavior of mean and variance, one only
needs to find the expansion around the dominating singularity q0 and apply singularity
analysis. The main term of the mean is easy to guess: assuming that the vertices are
essentially uniformly distributed along the entire height, it is natural to conjecture
that �(T ) is typically around tn(T )h(T )/2 and thus of quadratic order. This is indeed
true, and the variance turns out to be of cubic order (terms of degree 4 cancel, as one
would expect). The following lemma substantiates these claims for the mean.

Proposition 7.4. The mean of the total path length is μtpln
2 +O(n) with

μtpl =
t

2
μh.

Proof. By substituting L0 into the functional equation of Lemma 7.2, we get an
explicit expression for L1(q, 1, w), namely

L1(q, 1, w) =
a0(q, 1, w)(Φwb)(q, 1, w)

(1− b(q, 1, w))3

∞∑
j=0

(−1)jwj(Φub)(q, q
�j�, w)

j∏
i=1

q�i�

1− q�i�

+
a0(q, 1, w)

(1− b(q, 1, w))2

∞∑
j=0

(−1)jwj(ΦuΦwb)(q, q
�j�, w)

j∏
i=1

q�i�

1− q�i�

+
(Φwa0)(q, 1, w)

(1− b(q, 1, w))2

∞∑
j=0

(−1)jwj(Φub)(q, q
�j�, w)

j∏
i=1

q�i�

1− q�i�

+
1

1− b(q, 1, w)

∞∑
j=0

(−1)jwj(ΦuΦwa0)(q, q
�j�, w)

j∏
i=1

q�i�

1− q�i�
.

The dominant term in this sum is the first one, with a triple pole at the dominant
singularity q0. The second and third terms, however, are also relevant in the calcula-
tion of the variance, where one further term in the asymptotic expansion is needed in
view of the inevitable cancellation in the main term. Singularity analysis immediately
yields the asymptotic behavior of the mean: since the pole is of cubic order, the order
of the mean is quadratic, i.e., it is asymptotically equal to μtpln

2, where the constant
μtpl is given by

(7.1) μtpl =
(Φwb)(q0, 1, 1)

2(Φqb)(q0, 1, 1)2

∞∑
j=0

(−1)j(Φub)(q0, q
�j�
0 , 1)

j∏
i=1

q
�i�
0

1− q
�i�
0

.

Plugging in the definition of b as a sum, it is possible to simplify this further. One
has

(Φub)(q, u, 1) =

∞∑
k=1

(−1)k−1

(
k∏

h=1

q�h�uth

1− q�h�uth

)
k∑

h=1

th

1− q�h�uth

by logarithmic differentiation and thus

(Φub)(q, q
�j�, 1) =

∞∑
k=1

(−1)k−1

(
k∏

h=1

q�h�+th�j�

1− q�h�+th�j�

)
k∑

h=1

th

1− q�h�+th�j�

=
∞∑
k=1

(−1)k−1

(
j+k∏

i=j+1

q�i�

1− q�i�

)
k∑

h=1

th

1− q�h+j�
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1640 C. HEUBERGER, D. KRENN, AND S. WAGNER

since �h� + th�j� = �h+ j� by definition. Plugging this into (7.1), we find

μtpl =
(Φwb)(q0, 1, 1)

2(Φqb)(q0, 1, 1)2

∞∑
j=0

∞∑
k=1

(−1)j+k−1

(
j+k∏
i=1

q
�i�
0

1− q
�i�
0

)
k∑

h=1

th

1− q
�h+j�
0

.

Substituting � = j + k and interchanging the order of summation, we arrive at

μtpl =
(Φwb)(q0, 1, 1)

2(Φqb)(q0, 1, 1)2

∞∑
�=1

(−1)�−1

(
�∏

i=1

q
�i�
0

1− q
�i�
0

)
�∑

k=1

k∑
h=1

th

1− q
�h+�−k�
0

=
(Φwb)(q0, 1, 1)

2(Φqb)(q0, 1, 1)2

∞∑
�=1

(−1)�−1

(
�∏

i=1

q
�i�
0

1− q
�i�
0

)
�∑

r=1

r∑
h=1

th

1− q
�r�
0

=
(Φwb)(q0, 1, 1)

2(Φqb)(q0, 1, 1)2

∞∑
�=1

(−1)�−1

(
�∏

i=1

q
�i�
0

1− q
�i�
0

)
�∑

r=1

t�r�

1− q
�r�
0

.

Noting now that

(Φqb)(q, 1, 1) =

∞∑
�=1

(−1)�−1

(
�∏

i=1

q�i�

1− q�i�

)
�∑

r=1

�r�

1− q�r�
,

which can be seen by another logarithmic differentiation, we can replace the sum in
the expression for μtpl above by t · (Φqb)(q0, 1, 1), which finally yields

μtpl =
t

2
· (Φwb)(q0, 1, 1)

(Φqb)(q0, 1, 1)
,

and the second fraction is precisely μh; cf. (3.1).
Our next goal is to obtain the asymptotics of the variance, which will again follow

by applying the tools from singularity analysis together with the result for the mean
shown above.

Let us use the abbreviation

Σ(q,M,Φ) =

∞∑
j=0

(−1)j M(j) (Φb)
(
q, q�j�, 1

)(
j∏

i=1

q�i�

1− q�i�

)
,

where M is a function in the variable j and Φ an operator, to simplify the expressions
in the following lemma.
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1641

Lemma 7.5. The variance of the total path length is σ2
tpln

3 +O(n2), where

σ2
tpl =

(Φ2
qb) (q0, 1, 1) (Φwb) (q0, 1, 1)

2

(Φqb) (q0, 1, 1)
5 Σ(q0, j �→ 1,Φu)

2

− (ΦqΦwb) (q0, 1, 1) (Φwb) (q0, 1, 1)

(Φqb) (q0, 1, 1)
4 Σ(q0, j �→ 1,Φu)

2

− (Φwb) (q0, 1, 1)
2

(Φqb) (q0, 1, 1)
4 Σ(q0, j �→ 1,Φu)

(
Σ(q0, j �→ 1,ΦqΦu) + Σ

(
q0, j �→ �j�,Φ2

u

)

+Σ

(
q0, j �→

j∑
i=1

�i�

1− q
�i�
0

,Φu

))

+
(Φwb)(q0, 1, 1)

2

3(Φqb)(q0, 1, 1)3

(
Σ
(
q0, j �→ 2�j + 1� − 1,Φ2

u

)

+Σ

(
q0, j �→ 2t

j∑
i=1

�i�

1− q
�i�
0

,Φu

))

+
(Φ2

wb)(q0, 1, 1)

3(Φqb)(q0, 1, 1)3
Σ
(
q0, j �→ 1,Φu

)2
+

(Φwb)(q0, 1, 1)

3(Φqb)(q0, 1, 1)3
Σ
(
q0, j �→ 1,Φu

)(
Σ
(
q0, j �→ 1,ΦuΦw

)
+Σ

(
q0, j �→ j,Φu

))
.

Proof. In order to calculate the variance, one needs, besides the result of Propo-
sition 7.4, the asymptotic behavior of L2(q, 1, 1) at the dominant singularity. Only
the terms of pole orders 4 and 5 (i.e., highest and second-highest) are needed. More
details on the computation can be found in the appendix. By Lemma 7.3 we obtain

L2(q, 1, 1) =
6a0(q, 1, 1)(Φwb)(q, 1, 1)

2

(1 − b(q, 1, 1))5
Σ
(
q, j �→ 1,Φu

)2
+

4a0(q, 1, 1)(Φwb)(q, 1, 1)
2

(1− b(q, 1, 1))4

(
Σ
(
q, j �→ �j + 1�,Φ2

u

)

+Σ

(
q, j �→

j∑
i=1

t�i�

1− q�i�
,Φu

))

+
8a0(q, 1, 1)(Φwb)(q, 1, 1)

(1− b(q, 1, 1))4
Σ
(
q, j �→ 1,Φu

)
Σ
(
q, j �→ 1,ΦuΦw

)
+

6(Φwa0)(q, 1, 1)(Φwb)(q, 1, 1)

(1 − b(q, 1, 1))4
Σ
(
q, j �→ 1,Φu

)2
+

2a0(q, 1, 1)(Φ
2
wb)(q, 1, 1)

(1− b(q, 1, 1))4
Σ
(
q, j �→ 1,Φu

)2
+

2a0(q, 1, 1)(Φwb)(q, 1, 1)

(1− b(q, 1, 1))4
Σ
(
q, j �→ 1,Φu

)
Σ
(
q, j �→ j,Φu

)
− 2a0(q, 1, 1)(Φwb)(q, 1, 1)

2

(1− b(q, 1, 1))4
Σ
(
q, j �→ 1,Φ2

u

)
+O

(
1

(1− b(q, 1, 1))3

)
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1642 C. HEUBERGER, D. KRENN, AND S. WAGNER

as q tends to q0.
Applying singularity analysis to the highest and second-highest order terms of

both L1 and L2 yields the variance. The terms of order n4 cancel (as expected), and
one finds that the main term of the variance is asymptotically σ2

tpln
3.

In order to obtain expressions (either the asymptotics in t or the values for par-
ticular given t) of μtpl and σ2

tpl we insert the dominant singularity q0 (see Lemma 2.4)
into the formulae obtained in Proposition 7.4 and Lemma 7.5. We remind the reader
again that it is important to establish that σ2

tpl 
= 0, so numerical values and estimates
for large t are needed again. A couple of technical difficulties arise due to the infinite
sums. These are discussed in the following remark.

Remark 7.6. We use SageMath [24] for our calculations. In order to get the
asymptotic expression and values for σ2

tpl in Theorem 7.1 (note that we have μtpl

already due to Proposition 7.4 and the results of section 3), we have to evaluate
infinite sums and insert the dominant singularity q0.

We will explain step by step how this is done:
(a) We start with the expression for σ2

tpl found in Lemma 7.5.
(b) First, let us consider the infinite sums Σ(q0,M,Φ). For a suitable JΣ de-

pending on t, we calculate the first JΣ summands directly and use a bound
for the tails. More precisely, we use

∞∑
j=JΣ

(−1)j M(j) (Φb)
(
q0, q

�j�
0 , 1

)(
j∏

i=1

q
�i�
0

1− q
�i�
0

)

∈ I (Φb)
(
q0, Iq

�JΣ�
0 , 1

)(
JΣ∏
i=1

q
�i�
0

1− q
�i�
0

) ∞∑
j=JΣ

MjQ
j−JΣ

with the interval I = [−1, 1], M(j) ≤ Mj for j ≥ JΣ, and Q = q
�J+1�
0 /(1 −

q
�J+1�
0 ).
Let us consider the bound Mj. If M(j) = �j�, we set Mj = tj/(t − 1) and

analogously for M(j) = �j + 1�. If M(j) =
∑j

i=1 t�i�/(1−q
�i�
0 ), we use Mj =

2tj+1/(1 − q0). Otherwise (M(j) = 1 and M(j) = j), we simply take Mj =
M(j). These choices allow us to find a closed form for

∑∞
j=JΣ

MjQ
j−JΣ .

Proceeding as described above gives an expression consisting of finitely many
summands containing functions b, which will be handled in the following step.

(c) Let us deal with the function b(q, u, w) and its derivatives, which all are
infinite sums. As above, we calculate the first Jb summands directly for a
suitable Jb chosen depending on t. Then we add the bound provided by
Lemmata 2.6 and 2.7 to take care of the tails.
At this point, we end up with a symbolic expression not containing any
(visible or hidden) infinite sums; only the variables t, q0, U and the interval I
occur. Thus, we are almost ready to insert the asymptotic expressions or
values for these parameters.

(d) Now, we are ready to insert the dominant singularity q0. On the one hand,
this can be the asymptotic expansion of q0 as t → ∞ (in our case valid for
t ≥ 30); cf. Lemma 2.4. We choose JΣ = Jb = 3. The result will then again
be an asymptotic expression for σ2

tpl .
On the other hand, we can use a particular value for q0 for given t (which
for us means, more precisely, an interval containing q0). In these cases, we
choose JΣ = Jb = 4 for 8 ≤ t ≤ 30 and higher values for t < 8 (up to
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1643

JΣ = Jb = 14 for t = 2). The resulting σ2
tpl is then computed using interval

arithmetic.
In order to prove asymptotic normality of the total path length, a different, more

probabilistic approach is needed. Standard theorems from analytic combinatorics no
longer apply since the path length grows faster than, for example, the height, so that
mean and variance no longer have linear order.

We number the internal vertices of a random canonical t-ary tree of size n from
1 to n in a natural top-to-bottom, left-to-right way, starting at the root. Let Xk,n

denote the depth of the kth internal vertex vk in a random tree T ∈ T of order n.
Moreover, set Yk,n = Xk+1,n − Xk,n ∈ {0, 1}. In words, Yk,n is 1 if the (k + 1)st
internal vertex has greater distance from the root than the kth, and 0 otherwise. It
is clear that the height can be expressed as

h(T ) = 1 +max
k

Xk,n = 1 +Xn,n = 1 +

n−1∑
k=1

Yk,n,

which would indeed be an alternative approach to the central limit theorem for the
height. More importantly, though, the internal path length can also be expressed in
terms of the random variables Yk,n, namely by

�internal (T ) =

n∑
k=1

Xk,n =

n∑
k=1

k−1∑
j=1

Yj,n =

n−1∑
j=1

(n− j)Yj,n.

Now

n−1�internal (T ) =

n−1∑
j=1

n− j

n
Yj,n

can be seen as a sum of n−1 bounded random variables Zj,n = n−j
n Yj,n. An advantage

of this decomposition over other possible decompositions (e.g., by counting the number
of vertices at different depths) is that the number of variables is not random. Another
important point is that the Zj,n are bounded after rescaling, so that they also have
bounded moments.

Unfortunately, the Zj,n are neither identically distributed (which is not a major
issue) nor independent, which makes standard versions of the central limit theorem
for sums of random variables inapplicable. However, they are almost independent in
that they satisfy a so-called strong mixing condition (inequality (7.2) of the following
lemma).

Lemma 7.7. Let Fs1 be the σ-algebra induced by the random variables Z1,n, Z2,n,
. . . , Zs1,n, and let Gs2 be the σ-algebra induced by the random variables Zs2,n, Zs2+1,n,
. . . , Zn−1,n. There exist constants κ and λ (depending only on t) such that

(7.2) |P(A ∩B)− P(A)P(B)| ≤ κe−λ(s2−s1)

for all 1 ≤ s1 < s2 ≤ n and all events A ∈ Fs1 and B ∈ Gs2 .
The main idea of the proof of the strong mixing condition is simple: events

A ∈ Fs1 describe the shape of the random tree T up to the s1th internal vertex
vs1 , while events B ∈ Gs2 describe the shape of the random tree T from the s2th
internal vertex vs2 on. The probabilities of such events can be calculated by means
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1644 C. HEUBERGER, D. KRENN, AND S. WAGNER

Table 7

Values of rj and nj for the decomposition of a random tree.

j rj nj

1 1 s1 − 1− fλ
2 fλ + 1 + fρ s2 − 1− gλ − (s1 − 1− fλ)
3 gλ + 1 + gρ n− (s2 − 1− gλ)

s1

s2

T1

T2

T3

fλ fρ

gλ gρ

r1 = 1

r2 = 6, fλ = 3, fρ = 2

r3 = 6, gλ = 2, gρ = 3

Fig. 7. Decomposition of canonical trees. This decomposition into T1, T2, and T3 is used in
the proof of Lemma 7.7.

of Lemma 2.5 and Theorem 6.1, and the exponential error terms that one obtains
through this approach yield the estimate (7.2) above.

Proof of Lemma 7.7. For a canonical tree T , let Fλ(T ) and Fρ(T ) be the number of
internal vertices on the same level as vs1 , left and right of vs1 , respectively. Similarly,
let Gλ(T ) and Gρ(T ) be the number of internal vertices on the same level as vs2 , left
and right of vs2 , respectively. For fixed s1, fλ, fρ, s2, gλ, and gρ, there is a bijection
between the following:

• the set of canonical trees T with Fλ(T ) = fλ, Fρ(T ) = fρ, Gλ(T ) = gλ, and
Gρ(T ) = gρ and such that vs1 and vs2 are on different levels, and

• the set of tuples (T1, T2, T3) where Tj is a canonical forest with rj roots, nj

internal vertices, and mjt leaves at the last level, where the values of rj and
nj are given in Table 7, Tj has no isolated roots,4 and mjt ≥ rj+1 holds for
j ∈ {1, 2}.

An illustration can be found in Figure 7.
Here, T1 consists of the first levels of T up to and including the level of vs1 , T2

consists of the levels of T from and including the level of vs1 up to and including the
level of vs2 , and T3 consists of the levels of T from and including the level of vs2 . Note
that the internal vertices of T are partitioned into those of T1, T2, and T3, as the last
level of a forest does not have any internal vertices by definition.

Note that the definition of a canonical forest does allow an arbitrary number of
isolated roots; by definition, those are leaves and not internal vertices. In order to
use Lemma 2.5 and Theorem 6.1 for our cases, we use the simple bijection between
forests with n internal vertices and r roots, all of which are nonisolated, and forests
with n− r internal vertices and rt roots realized by omitting all r roots.

4We define an isolated root to be a root without children.
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1645

With Q = 1
2 + (log 2)/(2t) + 0.06/t2 (Lemma 2.4), q∗ = q

1+1/(t−1)
0 (Proposi-

tion 5.8), and U = 1− (log 2)/t2 (Theorem 6.1), we fix 0 < δ < 1/4 such that

(7.3) δj

(
U

q
1/t
∗

)δj

< Q−j/4

holds for all j ≥ 1. We first compute the probability to have at least m1t ≥ δ(s2− s1)
vertices at the level of vs1 . To do so, we use the decomposition as described above
with the following modification: we do not use the full decomposition into (T1, T2, T3)
but join the latter two to have a decomposition (T1, T23) in the obvious way. By
Lemma 2.5 and Theorem 6.1 we have

ν(1)q−n1
0 O(Um1t) = O(q−n1

0 Um1t)

canonical trees T1 with m1t leaves, and there are

ν(tr2)q
−n2−n3+r2
0 (1 +O(Qn2+n3−r2)) = O(q−n2−n3

0 )

canonical forests T23. Note that we used ν(tr2) = Θ(1) (see Lemma 2.5) and qr20 ≤ 1.
Therefore, using U < 1, we find the desired probability to be

1

ν(1)q−n
0 (1 +O(Qn))

∑
m1≥δ(s2−s1)/t

∑
fλ

O(q−n1
0 Um1tq−n2−n3

0 )

=
∑

m1≥δ(s2−s1)/t

∑
fλ

O(Um1t)

=
∑

m1≥δ(s2−s1)/t

O(m1t U
m1t)

= O
(
δ(s2 − s1)U

δ(s2−s1)
)
= O

(
(s2 − s1)U

δ(s2−s1)
)
.

Analogously, the probability that there are at least δ(s2− s1) vertices at the level
of vs2 is also O

(
(s2 − s1)U

δ(s2−s1)
)
. In particular, the probability that vs1 and vs2

are on the same level is bounded by O
(
(s2 − s1)U

δ(s2−s1)
)
. From now on, we consider

the event W that vs1 and vs2 are on different levels and that there at most δ(s2 − s1)
vertices at each of the levels of vs1 and vs2 , respectively. The previous discussion
shows that

(7.4) P(W ) ≥ 1−O((s2 − s1)U
δ(s2−s1)).

Now let two events A ∈ Fs1 in the σ-algebra generated by Z1,n, . . . , Zs1,n and
B ∈ Gs2 in the σ-algebra generated by Zs2,n, Zs2+1,n, . . . , Zn−1,n be given. The event
A consists of a collection of possible shapes of the random tree T up to the s1th vertex
vs1 , and likewise B consists of a collection of possible shapes of the random tree T
from the s2th vertex vs2 onwards. For ease of presentation, we assume that the events
A and B consist of only one such shape up to s1 and from s2 on, respectively; the
general case follows upon summation over all shapes in A and B. The shapes A and
B uniquely determine Fλ(T ) =: fλ and Gρ(T ) =: gρ, respectively. On the other hand,
Fρ(T ) and Gλ(T ) will be somewhat restricted by the shapes in A and B, respectively.

Using Lemma 2.5, Theorem 6.1, and the bijection into a tree and forests described
above yields the following estimates for the probabilities we are interested in. There,
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1646 C. HEUBERGER, D. KRENN, AND S. WAGNER

the error term O(Qn) in the denominator will always be absorbed by the error term
in the numerator because Qn ≤ Qs2−s−1. We obtain

P(A ∩W ) =
1

ν(1)q−n
0 (1 +O(Qn))

∑
fρ

ν(tr2)q
−n2−n3+r2
0 (1 +O(Qn2+n3−r2))

=
∑
fρ

ν(tr2)

ν(1)
qn1+r2
0 (1 +O(Q(1−δ)(s2−s1)))

using the inequalities Q < 1, r2 ≤ δ(s2 − s1) (since we are in the situation that event
W occurs), and n2 + n3 ≥ s2 − s1. We also get

P(B ∩W ) =
1

ν(1)q−n
0 (1 +O(Qn))

∑
gλ

∑
r3/t≤m2≤δ(s2−s1)/t

ν(1)q−n1−n2
0

× pm2

(
1 +O

(
Qn1+n2m2

(
U t

q∗

)m2
))

=
∑
gλ

∑
r3/t≤m2≤δ(s2−s1)/t

qn3
0 pm2

(
1 +O

(
Q(3/4−δ)(s2−s1)

))

by (7.3) with j = s2 − s1 and the inequalities gλ ≤ δ(s2 − s1) (again because W
occurs) and n1 + n2 ≥ n2 ≥ (1 − δ)(s2 − s1). Similarly, we calculate the probability
that all three events A, B, and W occur simultaneously as

P(A∩B ∩W )

=
1

ν(1)q−n
0 (1 +O(Qn))

∑
fρ,gλ

∑
r3/t≤m2≤δ(s2−s1)/t

ν(tr2)q
−n2+r2
0

× pm2

(
1 +O

(
Qn2−r2m2

(
U t

q∗

)m2
))

=
∑
fρ,gλ

∑
r3/t≤m2≤δ(s2−s1)/t

ν(tr2)

ν(1)
qn1+n3+r2
0 pm2(1 +O(Q(3/4−2δ)(s2−s1))),

where we additionally used r2 ≤ δ(s2 − s1). We conclude that

|P(A ∩W )P(B ∩W )− P(A ∩B ∩W )| ≤
∑
fρ,gλ

∑
r3/t≤m≤δ(s2−s1)

ν(tr2)

ν(1)
qn1+n3+r2
0 pm

×O(Q(3/4−2δ)(s2−s1))

= O(Q(3/4−2δ)(s2−s1))P(A ∩B ∩W ).

Combining this with (7.4) yields the strong mixing property (7.2).
Now we are able to apply the following result of Sunklodas.
Lemma 7.8 (see Sunklodas [25]). Let d, s ∈ (2, 3], κ, λ, c0 be fixed positive

constants. Then there exists a constant K such that for all positive integers n and
random variables X1, X2, . . . , Xn the following holds:

If
1. E(Xj) = 0 for all j,
2. max1≤j≤n E(|Xj |s) ≤ d,
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1647

3. the strong mixing condition

sup
A∈Ft, B∈Gt+τ

1≤t≤n−τ

|P (A ∩B)− P (A)P (B)| ≤ κe−λτ

holds for all τ (where Ft and Gt+τ are the σ-algebras generated by X1, . . . , Xt

and by Xt+τ , . . . , Xn, respectively), and
4. the inequality

B2
n = V

(
n∑

j=1

Xj

)
≥ c0n

holds,
then we have

sup
x

∣∣∣∣P
(

1

Bn

n∑
j=1

Xj < x

)
− Φ(x)

∣∣∣∣ ≤ K(log(Bn/
√
c0))

s−1

Bs−2
n

,

where Φ(x) = (2π)−1/2
∫ x

−∞ e−u2/2 du denotes the distribution function of a standard
normal distribution.

Remark 7.9. Actually, Sunklodas gives a stronger statement where λ is not
necessarily constant, but we will only need this version. Moreover, he technically
considers an infinite sequence X1, X2, . . . of random variables and assumes that the
conditions above hold for all n. However, the statement gives an explicit inequality
for each fixed n, and the proof of this inequality given in [25] only makes use of the
conditions for the same fixed n. This is important for us since we are not considering
an infinite sequence but rather a finite sequence of n random variables that all depend
on n.

Proof of Theorem 7.1. The qualitative behavior of the asymptotics of mean and
variance follows from the moment generating functions L1 and L2 (see Lemmata 7.2
and 7.3) by using the standard tools from singularity analysis [15], as explained earlier.
We get the constants μtpl and σtpl from Proposition 7.4 and Lemma 7.5, respectively,
by inserting either the asymptotic expansion of q0 (cf. Lemma 2.4) or the values of q0
for given t (see also Remark 7.6).

Asymptotic normality follows from Sunklodas’s result (Lemma 7.8) applied to
the sequence Xj = Zj,n − E(Zj,n) =

n−j
n (Yj,n − E(Yj,n)), where Yj,n, Zj,n are defined

as explained earlier in this section. Since |Xj | is bounded by 1, the first condition
of Lemma 7.8 is trivially satisfied (for any s). The second condition (strong mixing
property) is exactly Lemma 7.7, and finally we already know that the variance of the
sum n−1

∑n
j=1 Xj , which is equal to the variance of n−1�internal (T ), is of linear order

because the variance of �internal is of cubic order.
Since the upper bound for Δn in Lemma 7.8 goes to 0 as n → ∞, it fol-

lows that the distribution of �internal (suitably renormalized) converges weakly to
a Gaussian distribution. We can even conclude that the speed of convergence is
O(n−1/2 logn).

Appendix A. Details on the variance of the total path length. In this
appendix, more details of the proof of Lemma 7.5 are given. Some of these calculations
were performed with computer assistance using SageMath [24].
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1648 C. HEUBERGER, D. KRENN, AND S. WAGNER

For any variable z, we write Φz = z ∂
∂z . Such an operator satisfies the following

properties.
Lemma A.1. For any expressions a, b and any variable z, we have

Φz(a+ b) = Φz(a) + Φz(b), Φz(ab) = Φz(a)b + aΦz(b).

Moreover, for a function f we have

Φ2
zf = Φz

(
z
∂f

∂z

)
= z

∂f

∂z
+ z2

∂2f

∂z2
= Φzf + z2

∂2f

∂z2
.

If (z1, . . . , zk) �→ f(z1, . . . , zk) is a k-ary function and a1, . . . , ak are expressions, we
have

Φz(f(a1, . . . , ak)) =
k∑

j=1

∂f

∂zj
(a1, . . . , ak)Φz(aj).

In view of the functions occurring in section 7, we have the following, more specific
properties.

Lemma A.2. Let (q, u, w) �→ f(q, u, w) be a function and j be a nonnegative
integer. We have

Φq(f(q, q
�j�utj , w)) = (Φqf)(q, q

�j�utj , w) +
∂f

∂u
(q, q�j�utj , w)�j�q�j�utj

= (Φqf)(q, q
�j�utj , w) + �j�(Φuf)(q, q

�j�utj , w),

Φu(f(q, q
�j�utj , w)) =

∂f

∂u
(q, q�j�utj , w)tjq�j�utj = tj(Φuf)(q, q

�j�utj , w),

Φw(f(q, q
�j�utj , w)) = (Φwf)(q, q

�j�utj , w).

We also need derivatives of the products appearing throughout this paper.
Lemma A.3. Let

Pj(q, u) =

j∏
i=1

q�i�uti

1− q�i�uti
.

Then we have

ΦuPj(q, u) = pj(q, u)Pj(q, u),

ΦqPj(q, u) = rj(q, u)Pj(q, u)

with

pj(q, u) =

j∑
i=1

ti

1− q�i�uti
,

rj(q, u) =

j∑
i=1

�i�

1− q�i�uti
.

Proof. These results follow since (Φzf) = f(z)/(1 − z) for f(z) = z/(1 −
z).
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1649

Next, we consider the infinite sum

S(q, u, w,M, f) :=
∑
j≥0

(−1)jwjM(j, q, u, w)f(q, q�j�utj , w)Pj(q, u),

where the function M depends on j, q, u, and w and the function f on q, u, and
w. Note that this notion is slightly more general than Σ(q,M,Φ) of section 7. The
relationship between these two is

Σ(q,M,Φ) = S(q, u, w,M,Φb)|u=1,w=1 ,

where b is defined in Theorem 2.1 of this paper.
Taking derivatives yields the following results.
Lemma A.4. We have

ΦqS(q, u, w,M, f) = S(q, u, w,ΦqM, f) + S(q, u, w,M,Φqf) + S(q, u, w,M�j�,Φuf)

+ S(q, u, w,Mrj(q, u), f),

ΦuS(q, u, w,M, f) = S(q, u, w,ΦuM, f) + S(q, u, w,Mtj,Φuf)

+ S(q, u, w,Mpj(q, u), f),

ΦwS(q, u, w,M, f) = S(q, u, w,Mj, f) + S(q, u, w,ΦwM, f) + S(q, u, w,M,Φwf),

where M g(j, q, u, w) is short for (j, q, u, w) �→ M(j, q, u, w) g(j, q, u, w).
We are now on our way to deriving an expression for L2(q, 1, 1) suitable for doing

singularity analysis (cf. the proof of Lemma 7.5). As a first step, using the properties
above we obtain the following expression for L2(q, 1, 1) (only leading terms):

6 (Φwa) (q, 1, 1) (Φwb) (q, 1, 1)S (q, 1, 1, 1, (Φub) (q, 1, 1))
2

(1 − b(q, 1, 1))4

+
8 (Φwb) (q, 1, 1)S (q, 1, 1, 1, (ΦuΦwb) (q, 1, 1))S (q, 1, 1, 1, (Φub) (q, 1, 1)) a (q, 1, 1)

(1 − b(q, 1, 1))4

+
6 (Φwb) (q, 1, 1)

2
S (q, 1, 1, 1, (Φub) (q, 1, 1))

2
a (q, 1, 1)

(1− b(q, 1, 1))5

+
2 (Φ2

wb) (q, 1, 1)S (q, 1, 1, 1, (Φub) (q, 1, 1))
2
a (q, 1, 1)

(1− b(q, 1, 1))4

−
2 (Φwb) (q, 1, 1)

2
S

(
q, 1, 1, 1, (Φ2

ub) (q, 1, 1)
)
a (q, 1, 1)

(1 − b(q, 1, 1))4

+
4 (Φwb) (q, 1, 1)

2
S

(
q, 1, 1, 1, S

(
q, 1, 1, tj, (Φ2

ub) (q, 1, 1)
))

a (q, 1, 1)

(1− b(q, 1, 1))4

+
4 (Φwb) (q, 1, 1)

2 S (q, 1, 1, 1, S (q, 1, 1, pj(q, 1) , (Φub) (q, 1, 1))) a (q, 1, 1)

(1− b(q, 1, 1))4

+
2 (Φwb) (q, 1, 1)S (q, 1, 1, 1, (Φub) (q, 1, 1))S (q, 1, 1, j, (Φub) (q, 1, 1)) a (q, 1, 1)

(1− b(q, 1, 1))4
.

For readability, we have not written the �→ formally needed in the formula above; for
example, the S-function in the first summand should read as

S (q, 1, 1, (j, q, u, w) �→ 1, (q, u, w) �→ (Φub) (q, 1, 1)) .
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1650 C. HEUBERGER, D. KRENN, AND S. WAGNER

Compared to the formula found in the proof of Lemma 7.5, nested S-functions appear.
As a next step, we simplify these nested S-functions by means of the following lemma.

Lemma A.5. We have

S (q, 1, 1, 1, (q, u, w) �→ S (q, u, 1, (j, q, u, w) �→ pj(q, u) , f))

= S

(
q, 1, 1, (j, q, u, w) �→ t

j∑
i=1

�i�

1− q�i�
, f

)

and

S
(
q, 1, 1, 1, (q, u, w) �→ S

(
q, u, 1, (j, q, u, w) �→ tj , f

))
= S

(
q, 1, 1, (j, q, u, w) �→ �j + 1�, f

)
.

Proof. We have

S
(
q,1, 1, 1, (q, u, w) �→ S (q, u, 1, (j, q, u, w) �→ M (j, q, u, w) , f)

)
=

∑
k≥0

(−1)kS(q, q�k�, 1, (j, q, u, w) �→ M(j, q, u, w), f)Pk(q, 1)

=
∑
k≥0

(−1)kPk(q, 1)
∑
j≥0

(−1)jM(j, q, q�k�, w)f(q, q�j�q�k�tj , 1)Pj(q, q
�k�)

=
∑
j,k≥0

(−1)k+jM(j, q, q�k�, w)f(q, q�j+k�, 1)

k∏
i=1

q�i�

1− q�i�

j∏
i=1

q�i�q�k�ti

1− q�i�q�k�ti

=
∑
j,k≥0

(−1)k+jM(j, q, q�k�, w)f(q, q�j+k�, 1)

k∏
i=1

q�i�

1− q�i�

j∏
i=1

q�i+k�

1− q�i+k�

=
∑
j,k≥0

(−1)k+jM(j, q, q�k�, w)f(q, q�j+k�, 1)Pj+k(q, 1).

With the substitution � = j + k, this equals

∑
�≥0

(−1)�f(q, q���, 1)P�(q, 1)

�∑
j=0

M(j, q, q��−j�, w)

= S

(
q, 1, 1, (j, q, u, w) �→

j∑
k=0

M(k, q, q�j−k�, w), f

)
.

We now compute the inner sums occurring in the simplified expressions for the nested
S-functions. The second one is simply

∑j
k=0 t

k = �j + 1�. The first one is

j∑
k=0

pk(q, q
�j−k�) =

j∑
k=0

k∑
i=1

ti

1− q�i�q�j−k�ti
=

∑
1≤i≤k≤j

ti

1− q�i+j−k�
.

With the substitution i+ j − k = �, this equals

∑
1≤i≤i+j−�≤j

ti

1− q���
=

∑
1≤i≤�≤j

ti

1− q���
=

j∑
�=1

1

1− q���

�∑
i=1

ti =

j∑
�=1

t���

1− q���
.
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A PROBABILISTIC ANALYSIS OF CANONICAL TREES 1651

The result now follows.
We continue to rewrite L2(q, 1, 1). Using the previous lemma, we have

L2(q, 1, 1) =
V5(q)

(1− b(q, 1, 1))5
+

V4(q)

(1 − b(q, 1, 1))4
+O((1 − b(q, 1, 1))−3)

for suitable V5(q) and V4(q). Using the fact that b(q0, 1, 1) = 1 and the expression for
Φ2

qf of Lemma A.1, we get

1− b(q, 1, 1) = 1−
(
1 + (q − q0)

∂b

∂q
(q0, 1, 1)

+
(q − q0)

2

2

∂2b

∂q2
(q0, 1, 1) +O

(
(q − q0)

3
))

=

(
1− q

q0

)
(Φqb)(q0, 1, 1)

−
(
1− q

q0

)2Φ2
qb− Φqb

2
(q0, 1, 1) + O((q − q0)

3)

=

(
1− q

q0

)
(Φqb)(q0, 1, 1)

×
(
1−

(
1− q

q0

)
Φ2

qb − Φqb

2Φqb
(q0, 1, 1) +O((q − q0)

2)

)
.

We also have

V5(q) = V5(q0) + (q − q0)
∂V5

∂q
(q0) +O((q − q0)

2)

= V5(q0)−
(
1− q

q0

)
(ΦqV5)(q0) +O((q − q0)

2).

Therefore, we obtain

L2(q, 1, 1) =
V5(q0)

((Φqb)(q0, 1, 1))5

(
1− q

q0

)−5

+

(
− (ΦqV5)(q0)

((Φqb)(q0, 1, 1))5
+

5V5(q0)(Φ
2
qb− Φqb)(q0, 1, 1)

2((Φqb)(q0, 1, 1))6
+

V4(q)

((Φqb)(q0, 1, 1))4

)

×
(
1− q

q0

)−4

+O

((
1− q

q0

)−3)
,

an expression which is suitable for singularity analysis.
Lemma A.6. We have

[qn]

(
1− q

q0

)−5

=
n4q−n

0

24

(
1 +

10

n
+O

(
1

n2

))
= q−n

0

(
n4

24
+

5n3

12
+O(n2)

)
.

The previous lemma follows directly by expanding into a binomial series. We can
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1652 C. HEUBERGER, D. KRENN, AND S. WAGNER

use it to extract coefficients of L2(q, 1, 1) and obtain

[qn]L2(q, 1, 1) = q−n
0

(
V5(q0)

24((Φqb)(q0, 1, 1))5
n4

+

(
5V5(q0)

12((Φqb)(q0, 1, 1))5
− (ΦqV5)(q0)

6((Φqb)(q0, 1, 1))5
+

5V5(q0)(Φ
2
qb− Φqb)(q0, 1, 1)

12((Φqb)(q0, 1, 1))6

+
V4(q)

6((Φqb)(q0, 1, 1))4

)
n3 + O(n2)

)
.

We conclude that the second moment of the total path length is

V5(q0)

24((Φqb)(q0, 1, 1))4a0(q0, 1, 1)
n4

+

(
5V5(q0)

12((Φqb)(q0, 1, 1))4
− (ΦqV5)(q0)

6((Φqb)(q0, 1, 1))4
+

5V5(q0)(Φ
2
qb− Φqb)(q0, 1, 1)

12((Φqb)(q0, 1, 1))5

+
V4(q)

6((Φqb)(q0, 1, 1))3

)
n3

a0(q0, 1, 1)
+O(n2).

Similarly, writing

L1(q, 1, 1) =
E3(q)

(1− b(q, 1, 1))3
+

E2(q)

(1 − b(q, 1, 1))2
+O((1 − b(q, 1, 1))−1)

and performing singularity analysis shows that the expectation is

E3(q0)

2((Φqb)(q0, 1, 1))2a0(q0, 1, 1)
n2

+

(
3E3(q0)

2((Φqb)(q0, 1, 1))2
− (ΦqE3)(q0)

((Φqb)(q0, 1, 1))2
+

3E3(q0)(Φ
2
qb− Φqb)(q0, 1, 1)

2((Φqb)(q0, 1, 1))3

+
E2(q)

(Φqb)(q0, 1, 1)

)
n

a0(q0, 1, 1)
+O(1).

From the results above an expression for the constant σ2
tpl that occurs in the asymp-

totic formula for the variance follows. Using Lemma A.5 to rewrite the nested S-
functions gives the result that was stated in Lemma 7.5.
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