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Abstract

The capability and practical use of wheeled mobile robots in real-world appli-
cations have resulted in them being a topic of recent interest. These systems
are most prevalent because of their simple design and ease to control. In many
cases, they also have an ability to move around in an environment without any
human intervention. A main stream of research for wheeled mobile robots is
that of planning motions of the robot under nonholonomic constraints.

A typical motion planning problem is to find a feasible path in the configuration
space of the mobile robot that starts at the given initial state and reaches the
desired goal state while satisfying robot kinematic or dynamic constraints.
A variety of methods have been used to solve various aspects of the motion
planning problem. Depending on the desired quality of the solution, an optimal
path is often sought.

In this dissertation, optimal control is employed to obtain optimal collision-free
paths for two-wheeled mobile robots and manipulators mounted on wheeled
mobile platforms from an initial state to a goal state while avoiding obstacles.
Obstacle avoidance is mathematically modelled using the potential field tech-
nique. The optimal control problem is then solved using an indirect method
approach. This approach employs Pontryagin’s minimum principle where an-
alytical solutions for optimality conditions are derived. Solving the optimality
condition leads to two sets of differential equations that have to be solved si-
multaneously and whose conditions are given at different times. This set of
equations is known as a two-point boundary value problem (TPBVP) and can
be solved using numerical techniques.

An indirect method, namely Leapfrog, is then implemented to solve the TP-
BVP. The Leapfrog method begins with a feasible trajectory, which is divided
into smaller subdivisions where the local optimal controls are solved. The
locally optimal trajectories are added and following a certain scheme of up-
dating the number of subdivisions, the algorithm ends with the generation
of an optimal trajectory along with the corresponding cost. An advantage of
using the Leapfrog method is that it does not depend on the provision of good
initial guesses along a path. In addition, the solution provided by the method
satisfies both boundary conditions at every step. Moreover, in each iteration
the paths generated are feasible and their cost decreases asymptotically.
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ABSTRACT iii

To illustrate the effectiveness of the algorithm numerically, a quadratic cost
with the control objective of steering the mobile robot from an initial state to
a final state while avoiding obstacles is minimized. Simulations and numerical
results are presented for environments with and without obstacles. A com-
parison is made between the Leapfrog method and the BVP4C optimization
algorithm, and also the kinodynamic-RRT* algorithm.

The Leapfrog method shows value for continued development as a path plan-
ning method since it initializes easily, finds kinematically feasible paths without
the need of post processing and where other techniques may fail. To our knowl-
edge the work presented here is the first application of the Leapfrog method to
find optimal trajectories for motion planning on a two-wheeled mobile robot
and mobile manipulator.
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Uittreksel

Die bekwaambheid en praktiese gebruik van robotte met wiele in werklike toe-
passings maak dat dit 'n onderwerp van belang is vir navorsing. Hierdie stelsels
is algemeen vanweé hul eenvoudige ontwerp en gemak van beheer. Hulle het
ook die vermoé om in 'n omgewing rond te beweeg sonder menslike bemidde-
ling. 'n Hoofstroom van navorsing vir wiel-mobiele robotte is die bewegings-
beplanning van 'n robot onderhewig aan nie-holonomiese beperkings.

'n Tipiese bewegingsbeplanning probleem is om 'n haalbare pad in die
konfigurasie-ruimte te vind, vir 'n mobiele robot wat in 'n gegewe aanvangs-
toestand begin en uiteindelik 'n bestemde doeltoestand moet bereik terwyl
kinematiese of dinamiese beperkings bevredig word. 'n Verskeidenheid meto-
des is al gebruik om verskeie aspekte van die bewegingsbeplanning probleem
op te los. Afhangende van die gewensde kwaliteit van die oplossing, word 'n
optimale pad dikwels gesoek.

In hierdie proefskrif word die bewegingsbeplanning probleem vir 'n twee-
wiel mobiele robot en mobiele manipuleerder wat op 'n mobiele platform
met wiele monteer is, beskou. Hindernis-vermyding word wiskundig met die
potensiaalveld-tegniek modelleer. en bewegingsbeplanning word as 'n indirekte
optimale beheerprobleem formuleer. Hierdie benadering gebruik Pontryagin se
minimum-beginsel, waar analitiese oplossings vir optimaliteitsvoorwaardes af-
gelei word. Die oplossing van hierdie optimaliteitsvoorwaardes lei na twee
stelle differensiaalvergelykings wat gelyktydig opgelos moet word, en waarvan
die voorwaardes op verskillende tye gegee word. Hierdie vergelykings staan
bekend as 'n tweepunt-randwaardeprobleem (TPRWP), en kan met numeriese
tegnieke opgelos word.

'n Indirekte metode, naamlik Leapfrog, word dan implementeer om die pro-
bleem op te los. Die Leapfrog-metode begin met 'n haalbare trajek wat in
kleiner onderafdelings verdeel word, waar die lokale optimale beheer opgelos
word. Die lokaal-optimale trajekte word bymekaar gevoeg, en volgens 'n sekere
skema om die aantal onderafdelings op te dateer, eindig die algoritme met die
skep van 'n optimale trajek sowel as die ooreenstemmende koste. 'n Voordeel
van die Leapfrog-metode is dat dit nie van die voorsiening van goeie aanvank-
like skattings vir 'n pad athang nie. Die paaie wat op elke iterasie deur die
metode verskaf word, bevredig ook albei randvoorwaardes. Verder is die paaie
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wat op elke iterasie geskep word haalbaar, en hul koste neem asimptoties af.

Om die doeltreffendheid van die algoritme numeries te demonstreer word
'n kwadratiese koste minimeer, met die beheer-doel om die mobiele robot
van 'n aanvanklike toestand tot by 'n finale toestand te bestuur terwyl hin-
dernisse vermy word. Simulasies en numeriese resultate word vir omge-
wings met en sonder hindernisse aangebied. 'n Vergelyking met die BVP4C-
optimeringsalgoritme word gemaak, asook met die kino-dinamiese RRT*-
algoritme.

Die Leapfrog-metode toon waarde vir verdere ontwikkeling as 'n optimale pad-
beplanningsmetode, aangesien dit maklik inisialiseer, 'n haalbare pad op elke
iterasie skep, en oplossings kan vind waar ander metodes misluk. Sover ons
kennis strek is die werk wat hier aangebied word die eerste aanwending van die
Leapfrog-metode om optimale trajekte te vind vir bewegingsbeplanning van
'n twee-wiel mobiele robot en mobiele manipuleerder.
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Chapter 1

Introduction

In recent years, mobile robots have received a great deal of research attention
and have been increasingly used in many real-world applications. Applications
for mobile robots abound in mining, farming, security, package deliveries, fac-
tory automation, and space exploration. A primary task that the mobile robot
needs to do in these applications is to maneuver itself to move from one point
to another within its environment, without colliding with obstacles. For the
robot to perform its task an efficient motion planning method is required.
Motion planning is an essential topic in mobile robotics and can be defined
informally as finding a feasible (collision-free) path between the given initial
state and final goal state in an environment while satisfying the robot kine-
matic or dynamic (in short, differential) constraints and avoiding collision with
static or moving obstacles [I].

From the literature, path and motion planning problems are two distinct parts
of mobile robotics, but they are intimately related [6]. The task of path plan-
ning methods is to find a geometric path from an initial to a final point. The
motion planning problem, on the other hand, finds a trajectory considering
the robot geometry, motion model and time. The difference between the two
is that a geometric path does not specify how fast a robot should traverse the
path, while a trajectory prescribes how the configuration of the robot evolves
over time [7]. The path planning problem is a subset of the general motion
planning problem. This dissertation focuses on motion planning, i.e. gener-
ating trajectories. The motion and path planning terms, however, are used
interchangeably for convenience.

Common approaches include graph-based methods, potential fields, and
sampling-based methods. The A* algorithm [§] is an example of a graph-
based method which uses a heuristic search that operates over a discretized
search space. Potential fields [9], on the other hand, follow a gradient of a
potential field that guides a robot to its goal. Each of these algorithms has its
own advantages and shortcomings in finding the most efficient solution; these

are discussed in Section [1.1.2]
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Sampling-based methods are popular and have had remarkable success in solv-
ing motion planning problems in a high-dimensional environment. These al-
gorithms include the Rapidly-exploring Random Tree (RRT) and its successor
RRT*. Unfortunately, for RRT it was proved that the cost of the best trajec-
tory returned by the algorithm converges almost surely to a non-optimal path
[10]. Also, the RRT algorithm generates paths consisting of piecewise straight
lines with jagged motion. Post-processing, such as path smoothing [11], is
typically implemented to satisfy the motion constraints and parameterize the
path so that the robot can follow it. The RRT* algorithm is an improvement
of RRT in that the cost of the best path it returns converges to the optimum
almost surely at almost the same order of computational cost [10]. Extensions
of RRT* can be found in [12; [13].

Recent advances in mobile robotics require that the robots perform their tasks
quicker, more accurately, safely, and smoothly. These additional requirements
have shifted the focus of research from designing feasible and optimal solutions
where the robot is modelled as a point (e.g. A* as well as RRT* in its simplest
form) to optimal solutions where the robot model includes differential con-
straints. Describing robot motion by differential constraints is referred to as
kinodynamic motion planning and was introduced in [I4]. Kinodynamic plan-
ning led to the improvement of sampling-based methods to achieve asymptoti-
cally optimal solutions for systems with differential constraints [15} 16} [17; [18].
Despite the long history of robotic motion planning, the inclusion of differ-
ential constraints in the motion planning problem is currently considered an
open challenge [19], especially when it comes to guaranteeing the quality of
the resulting solution and class of dynamical systems (linear vs. nonlinear),
that can be addressed.

Optimal control, often referred to as trajectory optimization, is another family
of motion planning techniques. Optimal control can be considered as the
process of finding control and state laws for a dynamic system over some time
so that the performance of the system is optimal regarding some criterion,
such as control effort, tracking error, energy consumption, or amount of time
taken to reach a target [20]. Nowadays, the advantages of this method are well
established and have been studied, including in the field of optimal motion
planning for mobile robots |21} 22} 23].

Due to the dimensionality and complexity of mobile robot models, however,
solving optimal control problems can generally lead to a much higher computa-
tional overhead and potential numerical instability. In addition, solving path
planning problems using an optimal control approach in an environment with
obstacles can be challenging as obstacles introduce non-convex constraints into
the environment [1].

This dissertation aims to solve motion planning problems by undertaking
mathematical investigations using the optimal control approach. The inten-
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tion is to use methods that are also, as far as possible, mathematically sound
rather than just heuristic. The aim is to find paths that are kinematically
feasible, optimal and at the same time preserve mathematical properties like
smoothness. The Leapfrog algorithm [24] for solving nonlinear optimal control
problems is proposed as a tool to solve the motion planning problem for a two-
wheeled mobile robot and mobile manipulator. These mobile robot platforms
are commonly used in motion planning [25; 26; 27|, and the implication is that
since Leapfrog can be used for these then it should be useful on other systems
with differential constraints, including those with more degrees of freedom. In
previous work, the Leapfrog method has been used within the context of con-
trol systems, that is, to generate control inputs for a system, but not in motion
planning, though its features suggest that it could be useful there. This disser-
tation presents the first study of applying the Leapfrog method to find optimal
trajectories for mobile robot, and mobile manipulator, motion planning. The
capability and effectiveness of the Leapfrog method are demonstrated through
experimental studies.

1.1 Background and Motivation

In this section, an overview of kinematic constraints for a mobile robot is
given. This is followed by a general description of motion planning methods
and a discussion of some of their advantages and disadvantages. An overview
of different approaches to solving the optimal control problem is given, and
motivation is provided for the selection of the Leapfrog method. The funda-

mental problem formulation for motion planning based on optimal control is
then defined.

1.1.1 Kinematic Constraints

Kinematic constraints impose a relationship between the configuration of a
robot and its velocity and can be further classified into holonomic and non-
holonomic constraints. In [28] holonomic is described as the relationship be-
tween the controllable and total degrees of freedom (DoF) of a robot where
the controllable degrees of freedom are equal to the total degrees of freedom.
Otherwise, if the number of controllable degrees of freedom is less than the
total degrees of freedom, it is a nonholonomic constraint. In [I] nonholonomic
constraints are referred to as differential constraints that cannot be completely
integrated.

Differential drive robots are common nonholonomic robot systems. Such robot
platforms are prevalent in motion planning because of simplicity, good ma-
neuverability and the fact that they work well in an indoor environment. A
differential drive comprises of two independent driven wheels and one (or two)
caster wheel(s) to provide balance.
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A

Y-axis

>
X-axis
Figure 1.1: Differential drive robot.

The differential drive robot shown in Figure has 3 DoF in its relative
positioning which are represented by a pose q = [zy¢]T, where (z,y) is the
position, and ¢ is the orientation of the robot. The global reference frame is
given by the inertial basis { X-axis, Y-axis} and {z,,y,} is used as the robot’s
local reference frame. The differential drive, however, can only be controlled in
two dimensions due to its nonholonomic constraint. This constraint exists due
to the fact that, under conditions of no slip, the robot cannot have a velocity
parallel to the direction of its axle. That is, the robot is capable of moving with
a velocity in its body fixed x, direction and rotating with an angular velocity
w, but it cannot have a velocity in its body fixed ¥, direction. Furthermore,
the non-slip constraint [29] is applied to the robot as

Tsing —ycosp = 0. (1.1.1)

Assuming that the mobile robot model neglects external forces such as friction
on the wheels or the possibility of wheel slippage, the mobile robot is said to
satisfy the pure rolling constraint

T cosp + ysinp = v. (1.1.2)

1.1.2 Motion Planning Methods

A motion planning problem is typically solved in the configuration space, C,
in which each configuration of the robot in a trajectory can be mapped to a
point [30]. The position of a mobile robot in configuration space is denoted
by q € C. The obstacle region of the configuration space is C,s C C where
the free space is then defined as Cy..e = C \ Cops. In a configuration space, the
path planning problem can be defined as follows:
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Definition 1.1.1 (Path Planning Problem [19]). Given the initial configura-
tion do € Cyree, goal configuration qy € Ciree and an obstacle set Cops, find a
collision-free path ji, : [0,T] — Cfree such that p,(0) = qo, p.(T) = q; and
pz(t) € Cpree for allt € [0,T).

Figure shows a basic path planning problem in a C-space, where the shaded
region represents obstacle space (Cyps), the white region represents Cy,.. and a
path which connects the start and goal configurations, qo and qy. Definition
1.1.1) is the simplest type of a path planning problem and is reasonably well
understood in literature as finding an obstacle-free “geometric” path. Several
methods have been proposed and applied to this path planning problem. Tra-
ditional approaches include sampling-based methods, graph-based methods,
and artificial potential fields [I].

Figure 1.2: An example of the basic path planning problem [I].

The well-known Dijkstra’s algorithm [3T] and the A* algorithm [32] are ex-
amples of graph-based methods. Graph-based methods are relatively easy to
implement and can return optimal paths. They discretize C-space into a grid,
and perform graph search on the grid vertices, discarding them if they are in
a collision with obstacles. The desired path is then found by performing a
search for a minimum-cost path in the graph. Dijkstra’s algorithm creates a
tree of shortest paths from the starting node to all other nodes in the graph.
Figure shows an example of the algorithm where the shortest path is
obtained from a starting node (A) to a target node (F') in a weighted graph.
From Figure Dijkstra’s algorithm will try to avoid edges with larger
weights and take the shortest path A - C — D — G — F. A major disad-
vantage of the algorithm is the fact that it does a blind (uninformed) search
thereby consuming a lot of time.

The A* algorithm can find an optimal path more efficiently by directing the
search towards the goal using a heuristic function. Consider a 2-D grid as
shown in Figure with a starting cell (top left), a goal cell (bottom right)
and obstacles (shaded region). To reach the target cell from the starting cell,
A* would follow the path (solid line) as shown in Figure [1.3(b)] Even though
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Start Goal

(a) Dijkstra’s algorithm. (b) A* algorithm.
Figure 1.3: Graph-search planners.

paths from graph-based methods are optimal in terms of transition costs in
a graph (in discrete space), they are not necessarily optimal in terms of the
robot operation in continuous space. Therefore these optimal paths need some
post-processing to improve the quality of the path further. In addition, the
memory required to store the grid and the time to search it grow exponentially
with the number of dimensions of the space, which limits the algorithms to
low-dimensional problems.

Sampling-based methods such as probabilistic roadmap (PRM) [33] and
rapidly-exploring random tree (RRT) [19;34] shown in Figure[L.4)are proven to
be reliable in finding collision-free paths relatively quickly in high-dimensional
space. These methods are efficient in practice and have probabilistic com-
pleteness guarantees, i.e., as the number of iterations grows, the probability of
finding a solution path tends to unity, if a solution exists [19]. The PRM deals
with preprocessing the configuration space of a kinematic system to generate
a roadmap that can be used to answer multiple queries quickly. An example
of how to solve a query with a roadmap is shown in Figure where the
solid (blue) line represents the shortest path obtained from the initial state (s)
to the goal state (g) in the graph.

(a) PRM [33]. (b) RRT [1].
Figure 1.4: Sampling-based methods.

The RRT algorithm, on the other hand, is a single query algorithm that grows
a tree from the initial to a goal state, finding a feasible path by adding a
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new edge or vertex in each iteration while avoiding obstacles. Hence it has an
advantage of finding a feasible path relatively quickly, in high-dimensional and
complex environments. The ability of RRT to explore free space is illustrated in
Figurewhere the RRT tree is shown to be growing denser with increasing
iterations. Compared to PRM, RRT always maintains a connected structure
using a small number of edges, while the PRM often suffers in performance
because many extra edges are generated in an attempt to form a connected
roadmap [35].

The sampling-based algorithms mentioned above are only concerned with find-
ing a geometric collision-free path and do not explicitly consider the optimality
of the path against a desired performance index. It was proven in [I0] that,
as the number of samples increases, the probability that the RRT algorithm
converges to a sub-optimal solution increases. This shifted the focus of re-
search on sampling-based methods from producing feasible and collision-free
solutions to achieving high-quality solutions with minimal cost.

Definition 1.1.2 (Optimal Path Planning Problem [10]). Let ¢ : Zcﬁee — R*
be a cost functional, which assigns a non-negative cost to all nontrivial,
collision-free paths. Given an initial configuration o € Cree, a goal configura-
tion qy € Cfree, an obstacle set Cops and a dynamic system, find a collision-free
trajectory pk : [0, ] — Cpree, that solves the Path Planning Problem and
moreover minimizes the cost functional, c.

The question of optimality was addressed in [34] where the RRT* algorithm
was introduced as an improvement to RRT in that the cost of the best path
it returns converges to the optimum almost surely as the number of iterations
increases, and at almost the same order of computational cost [10]. The RRT*
algorithm provides a significant improvement in the quality of the path dis-
covered in the configuration space over its predecessor, the RRT. This line
of work provided other asymptotically optimal solutions for motion planning
algorithms such as PRM* [34].

Even though RRT* guarantees to find the optimal solution asymptotically, the
algorithm suffers from slow convergence, that is, the algorithm has a longer
execution time to produce best paths [30; B7]. This is due to the algorithm
making many additional calls to the local steering procedure that associates
to any pair of configurations a shortest path between them to improve the
discovered paths continuously.

To deal with mobile robot differential constraints, an optimal kinodynamic
motion planning problem is defined, as follows.

Definition 1.1.3 (Optimal Kinodynamic Planning Problem [I5]). Given an
initial configuration qo € Cpree, a goal configuration qf € Cyree, an obstacle set
Cobs and a smooth function f that describes the system dynamics, find a control
u € R™ (m stands for the number of controls) with domain [0,T] such that a
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unique corresponding trajectory pk [0, T] — C\ Cops, with q(t) = £(q(t),u(t))
for allt € [0,T], avoids obstacles, reaches the goal region, and minimizes the

cost functional J(q(t),u(t)) = fOT g(a(t),u(t))dt.

For RRT*, particularly, several extensions have been proposed to deal with
mobile robot differential constraints [15; [16; [19; 38}, [39], but despite this recent
progress in solving kinodynamic-RRT* problems, the question of a systematic
and efficient method to handle generic nonlinear dynamics, which inevitably
involves two-point boundary value problem (TPBVP) solutions, in the RRT*
process, remains [40].

1.1.3 Obstacle Avoidance

Obstacle avoidance is one of the vital aspects of motion planning for mobile
robots as it is necessary for vehicle safety. A variety of obstacle avoidance al-
gorithms have been designed and implemented for mobile robot path planning.
These obstacles can be represented as either static or dynamic (moving) in an
environment. In this section, however, only a brief discussion of the methods
is given. An overview of these obstacle avoidance algorithms for mobile robots
can be found in [29} 4T].

According to literature, the first algorithms proposed for the discussion of
obstacle avoidance are the Bug algorithms introduced in [42} 43]. The Bug
algorithms are known as the simplest obstacle avoidance algorithms. These
algorithms assume only local knowledge of the environment and a global goal.
The basic idea is to follow the contour of each obstacle in the robot’s way,
and if the direction toward the goal is available again, the robot leaves the
obstacle and goes toward the goal. An example of the Bug algorithms is given
in Figure where the robot starts from an initial point (Init) then departs
from that point along the path with shortest distance, toward the goal. The
Bug 2 algorithm has a shorter travel time compared to the Bug 1 algorithm
and is more efficient especially in open spaces (see Figure . However, there
are scenarios where the Bug 2 algorithm may be non-optimal [44].

Init Init
Goal Goal

(a) Bug 1 algorithm. (b) Bug 2 algorithm.
Figure 1.5: Paths generated by Bug algorithms [1].
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Another approach is the artificial potential field (APF) technique introduced
by Khatib [9]. The simple idea behind potential fields is to attract the robot
towards the target while repelling it from the obstacles at the same time.
The APF gained popularity in motion planning for mobile robots due to its
mathematical simplicity and elegance. Figure shows a representation of
total potential field (Uy,;) which consists of an attractive potential field (U,y)
around the goal and a repulsive potential field (U,.,) around the obstacles.

e /
a) Attractive field (Ug4) b) Repulsive field (U..p) c) Combined field
(Utor = Uger + Urep]

Figure 1.6: Representation of a potential field [2].

The main drawback of the method is that it is sensitive to local minima, i.e.,
the robot can become trapped at a point far from the target. Local minima
have the effect of causing planning or navigation of the robot to fail, as the field
will not produce any further progress towards the goal when it is encountered.
Many works on artificial potential fields were developed to overcome this issue
[45; [46]. Solving the local minimum problem has been a serious effort and
an active research topic for potential field methods. Some other extensions to
the potential field include the establishment of the navigation potential-based
function [47] and harmonic potential functions [48] which are local minimum
free.

To deal with the shortcoming of potential fields, Borenstein and Koren pro-
posed the Virtual Force Field method [49]. This method, however, suffers from
similar problems as the potential fields. Later the authors proposed the Vec-
tor Histogram Field (VHF) method [50] for fast obstacle avoidance. The VHF
method is a real-time obstacle avoidance method that permits the detection
of unknown obstacles and avoids collisions while simultaneously steering the
mobile robot towards the target. The VHF solves the problem in two steps
by computing a set of candidate motion directions and then selecting one of
them. A disadvantage of using this method is that it may lead to the robot
being driven far away from its target location. Further details on these steps
can be found in [41].

In other instances where the motion planning problem is formulated as an
optimal or trajectory optimization problem, obstacle avoidance can be a chal-
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lenging task. Because these approaches do not naturally include obstacle
avoidance, obstacles are typically added to the optimal control problem as
constraints such as in [5I] where constrained optimization techniques [52; 53]
are then used to obtain the desired trajectories. Alternatively, the obstacles
can be added in the cost function as in |25} 54} 55] where the optimal control
problem is defined without constraints. Of particular interest in this disser-
tation is the use of Gaussian potential fields added to the cost functional to
avoid obstacles and find optimal paths at the same time.

Sampling-based methods, on the other hand, do not rely on a particular col-
lision detection algorithm. Because the role of a collision detection algorithm
over the functioning of sampling-based algorithms is modular [56]. This ap-
proach provides information on whether a path collides with any obstacle as
it is called several times over the course of planning. Collision checking is the
most expensive operation in sampling-based planning.

1.1.4 Optimal Control

In motion planning, trajectory solutions are often required to be optimal with
respect to some performance measure related to time, path length, or energy.
Many researchers have studied the objective of designing optimal paths for
wheeled mobile robots, the primary use being for minimum time paths which
consist only of straight-line and circular-arc segments. This approach was used
in [57; 58] for planning trajectories for wheeled mobile robots using analytical
solutions. Later on, the problem was solved and refined by [59] and [60] with
the help of optimal control techniques, which revealed scope for application of
optimal control-based methods to mobile robot path planning.

The optimal control approach provides an excellent tool for finding optimal
paths for mobile robot systems. It also offers more general numerical methods
that are useful when solving problems with additional objective functions,
constraints and boundary conditions. The optimal control approach has two
roles in mobile robot motion planning. One is that optimal control defines a
local method that can be used to find shortest paths between any two states, as
is used, for example, in sampling-based algorithms such as kinodynamic-RRT*
[41]. Secondly, it can be used in finding globally optimal trajectories directly
from scratch, i.e., finding satisfactory solutions or a sequence of locally feasible
solutions that converge to the globally optimal solution.

Optimal control problems can be solved either analytically or numerically.
However, optimal control problems are generally nonlinear, and for most ap-
plications it is hard to find analytical solutions. As a result, it is often necessary
to employ numerical methods to solve these problems. Numerical solutions to
optimal control problems are classified as direct and indirect methods. The
basic idea of direct optimization methods is to discretize the control problem,
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and then apply nonlinear programming (NLP) techniques [61] to the resulting
finite-dimensional optimization problem. Compared to other local methods,
direct methods have the advantage of being relatively robust and simple to im-
plement. A drawback is that they provide sub-optimal approximate solutions.
Moreover, their accuracy is less than that of indirect methods [62].

The indirect methods attempt to solve optimal control problems by seeking a
solution to the necessary conditions of optimality derived through the Pontrya-
gin minimum/maximum principle (PMP). The formulation of the necessary
conditions of optimality leads to a TPBVP. Indirect methods are compelling,
due to their rapid convergence to locally optimal solutions. However, deriving
the necessary conditions of optimality is unique to each problem, so developing
a tool for general optimal paths can be challenging. In addition, they may not
find globally optimal solutions without an appropriate initial guess for costates
[63].

The indirect shooting method is believed to be one of the simplest and easiest
indirect methods to implement. The shooting method has been applied to
motion planning for nonholonomic mobile robots in [64], [65] and [66]. In the
shooting method, an initial guess is made of the unknown boundary conditions
at one end of the interval. A TPBVP is then integrated from the initial time
to final time or vice versa using the initial guess, together with the known ini-
tial conditions. Upon completion, the terminal conditions obtained from the
numerical integration are compared to the known terminal conditions and the
transversal conditions. If the integrated terminal conditions differ from the
known terminal conditions by more than a specified tolerance, the unknown
initial conditions are adjusted, and the process is repeated until the differ-
ence between the integrated terminal conditions and the necessary terminal
conditions is less than some specified threshold.

The main drawback with the indirect shooting method is the need to find
a good initial guess. Also, it suffers from slow convergence when the initial
condition is far from the corresponding terminal condition [3]. An extension
to the shooting method, namely the multiple shooting method [67], can be
implemented to correct some of these challenges. In multiple shooting, a time
interval is subdivided into small sub-intervals whose initial state is simultane-
ously updated at each iteration. Even though this method can be accurate, a
good initial guess is required for each sub-interval. There are also constraints
needed to guarantee that the initial and final states match the prescribed initial
and final states. Since the trajectories for each sub-interval are discontinuous
across interfaces of sub-intervals, constraints are used to make sure that the
paths are connected.

The Leapfrog method proposed in [24] can be viewed as an indirect method
for solving TPBVPs. The aim of the Leapfrog algorithm is to solve a global
problem by building approximations from local solutions. First, an initial fea-
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sible path is constructed and subdivided into segments with the corresponding
time interval. Optimal controls are then iteratively computed by building ap-
proximations from local solutions over each sub-interval. Following a midpoint
scheme, the number of segments is updated, and the Leapfrog algorithm ends
with the concatenated local paths as a trajectory from an initial to the desired
final configuration. Under fairly general conditions, the method is convergent
to a critical path, that is, a path that satisfies PMP [4]. It is also assumed
that in each sub-interval local optimal control solutions exist and are unique.

The advantage of using the Leapfrog method over other indirect methods is
that the method converges towards the optimal path, without the need for an
initial guess for adjoint variables [4]. Instead, an initial feasible path is used.
As part of the algorithm, once a feasible path is constructed, an affine approx-
imation of the sub-problem in a subdivision (between nearby points) provides
a good initial guess for adjoint variables. Also, the solution provided by the
method satisfies both boundary conditions at every step, while in multiple
shooting the boundary conditions are satisfied only after the whole iterative
process is completed. Moreover, the paths generated by the Leapfrog method
are feasible on each iteration.

The Leapfrog method also has a quality that is particularly useful for motion
planning, in that it can be interpreted as an anytime computational frame-
work for optimization problems with differential and geometric constraints.
Evidence to this is that the Leapfrog method initially requires a feasible tra-
jectory then incrementally improves it over time towards optimality. If the
time allowed to find an optimal path for a system is not enough, the method
can provide at least a feasible, sub-optimal path. This concept is also appli-
cable to sampling-based methods such as RRT*, once an initial solution has
been achieved.

In [68] it was demonstrated that although the affine approximation embedded
in Leapfrog, and used to provide initial costates, reduces the possibility of
making bad initial guesses for the costates, the approximation provides good
guesses for only some of the costates, due to the nonlinearity characteristics
of the mobile robot. With Leapfrog the initial costate guesses are used for the
success of the local shooting method. In addition, the algorithm is convergent
to a critical solution provided that these local shooting methods produce opti-
mal trajectories. Thus in this dissertation, a gradient-based approach is used
to estimate the initial costate values.

In the work done in [4], a simple shooting scheme was used to solve the local
problem. The approach worked well for the example considered in [4], and
also for the two-wheeled mobile robot planning problem without obstacles in
[69]. In [70] a modified Newton’s shooting method was proposed to improve
the convergence of the Leapfrog method for solving mobile robot path plan-
ning problems in cluttered environments. The numerical simulations showed
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that the proposed approach took less time to compute the optimal path, as
compared to the time required when simple shooting was used.

Overall, the Leapfrog algorithm shows value for continued development as a
numerical method to find optimal paths for mobile robot planning since it
initializes easily, generates kinematically feasible paths on each iteration and,
as the number of iterations of Leapfrog increase, the cost decreases asymptot-
ically.

1.2 Problem Statement

In this section, the path planning problems for a two-wheeled mobile robot
and mobile manipulator are formulated as optimal control problems. These
models are described below as Example and Example [1.2.2

Example 1.2.1 (Two-wheeled Mobile Robot).

Consider the kinematic model of a differential drive mobile robot,

cosp 0 y
q= [sinp 0 [w] , (1.2.1)
0 1

where v and w are control inputs representing the linear and angular velocities
of the robot, respectively. The two-wheeled mobile robot system diagram is
shown in Figure [I.I] Assuming no constraints on the states or the control
variables, and that the initial and final times are fixed, an optimal control
problem for the two-wheeled mobile robot model can be defined as
follows.

Problem 1.2.1. Given an initial configuration o € Cgree and final configu-
ration qf € Cyree, find a set of control inputs u € U C R?, for t € [to,ty] to
minimize the cost functional:

min / 7 () Ru(t)) dt. (1.2.2)

uel to

subject to the kinematic system described by a set of differential equa-
tions:

q(t) = f(q(t),u(t)), (1.2.3)
alte) = qo, alty) =qy,

where [to,tf] is the time interval, q is the state vector and R is a positive
definite matriz.
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As can be noted in Problem the mobile robot planning is performed in
the free configuration space without any obstacles in the workspace. Assuming
that obstacles are represented by a potential field, the optimal control problem
for the two-wheeled mobile robot in the presence of obstacles can be defined
as follows.

Problem 1.2.2. Given an initial configuration qo € Cyree, a final configuration
ds € Cree, and a kinematic system described by a set of differential equations
m Eq. , find a set of control inputs u € R?, fort € [to, ts] that generates
the mobile robot’s collision-free path from an initial configuration to the desired
final configuration by minimizing the cost functional:

ty 1
min / —(u(t)TRu(t) + Frepl.(q)) dt. (1.2.5)
uelU to 2

The cost functional described in ([1.2.5)) includes the obstacle avoidance pa-

rameter which is defined by a Gaussian repulsive field [71]:

Fon(@) = Aryexp { - %(ff—))c} (1.26)

TEP;
where A,., is a positive constant, p is the distance between the robot position
and the center of the i-th obstacle, parameter C' relates to the steepness of the

potential field that represents the obstacle and o, represents the size of the
obstacle.

The optimal control problem is, therefore, modelled as:

min /t ! % <u(t)TRu(t) + 2 Fro, (q)) dt (1.2.7)

q(t) = f(q(t),u(?)),
a(to) = qo, q(ty) = qy.

Example 1.2.2 (Wheeled Mobile Manipulator).

Consider the wheeled mobile manipulator (WMM) that consists of a differ-
ential drive mobile robot described above and a two-link manipulator arm
mounted on top. The manipulator has two joints and two links and is mounted
on the center of the mobile robot base. The joints of the manipulator are
defined by angles 6, and 6y with the length of the first and second links rep-
resented as L; and Lo, respectively. The configuration of the WMM is repre-
sented by q = [x y ¢ 01 0]7. Tts kinematic model is given by
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cosp  —dsing 0 0 v
sin ¢ dcos ¢ 0 0 w
q=1] 0 1 0 0 E (1.2.10)
0 0 roo| |
0 0 o 1|

where v and w are the linear and angular velocities of the mobile platform, 6,
and 0 represent the joint angle velocities, and d represents the offset distance
from the center of the mobile wheels. Figure clarifies.

Y-axis

-
-

J.c X-axis
Figure 1.7: Systematic diagram of an idealized planar mobile manipulator.

Following Example[I.2.1] the mobile manipulator workspace is assumed to have
static obstacles. The optimal control problem for the WMM is then defined
as follows.

Problem 1.2.3. Given an initial configuration qo € Cree, a final configura-
tion qf € Cyree, a kinematic system of the mobile manipulator described in
Eq. , and a cost functional described in Eq. , find a set of con-
trol inputs u € R, for t € [to,ty] that generates the mobile manipulator’s
collision-free path from the initial to the final configuration, avoiding q € Ceps.-

The cost functional considered for this problem is similar to that in Prob-
lem where it penalizes the energy effort and a Gaussian repulsive func-
tion. The difference is that additional inequality constraints are added to the
Gaussian repulsive function to further restrict the mobile manipulator plat-
form from colliding with the obstacles. Hence, the obstacle avoidance function
is slightly different from Eq. ; the formulation can be seen in Chapter @
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1.3 Research Objectives

The aim of this dissertation is to present an efficient optimal control method
to address the motion planning problem for mobile robots. To achieve that,
the following objectives will be addressed in the dissertation:

(1) Model and design optimal control strategies for the two-wheeled mobile
robot and mobile manipulator kinematics models.

(2) Apply the Leapfrog method to perform optimal path planning for both
mobile robots, first in an environment without obstacles, and secondly
in the presence of obstacles.

(3) Perform optimal kinodynamic motion planning for a two-wheeled mobile
robot in the presence of obstacles using RRT* and compare with Leapfrog
numerical solutions.

1.4 Contribution

Generating optimal movements can be achieved by minimizing a variety of
quantities directly or indirectly involving some dynamic capacities of the
robotic systems. Optimal control is a natural formalism for the representation
of such problems. In this dissertation, a numerical optimal control technique,
namely Leapfrog, is proposed to determine optimal paths for mobile robots in
environments with obstacles. The work presented here is the first application
of the Leapfrog method to find optimal trajectories for mobile robot motion
planning.

The Leapfrog method relies on a solution of sub-problems through a given
partition. It is assumed that in each sub-problem, there exists a locally unique
optimal control. Also, the costate vector associated with a sub-problem is
determined uniquely by the control input and the initial state values of the local
optimal trajectory. Following these two assumptions, the Leapfrog method
guarantees local optimality, because the underlying TPBVP is derived from
the necessary conditions for optimality. The global solution is then achieved
by building approximations from the local solutions.

To test the effectiveness of the Leapfrog method, the two-wheeled mobile robot
and mobile manipulator platforms were chosen. The Leapfrog algorithm is not
necessarily limited to these types of robotic systems, and the logical implication
is that it can be applied to any dynamical system described by differential
equations for which a TPBVP can be formulated.

In this dissertation, the Leapfrog method is evaluated in different environments
cluttered with circular obstacles. It is noted that the obstacle set-up to test
Leapfrog is not identical to the environments in which other motion planning
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techniques are tested. For example, sampling-based methods are usually tested
in an environment with walls, narrow passages or using a parking scenario.
However, the obstacle sets show examples at a level of complexity sufficient to
demonstrate the usefulness of the Leapfrog algorithm for robot path planning.

The capability and effectiveness of the Leapfrog method are validated in nu-
merical simulations, showing that the method initializes easily and can con-
verge to a path that satisfies PMP. Real experiments conducted on a Pioneer
3-DX platform demonstrate that the solution obtained by the Leapfrog algo-
rithm is efficient and can be deployed to a real robotic system without any
need for post-processing.

Compared to general indirect methods, the Leapfrog method does not crit-
ically require an initial estimate for costates along a path. The Leapfrog
method can naturally extend to general problems that involve robot differ-
ential constraints, while in existing motion planning algorithms the inclusion
of differential constraints in the motion planning problem is considered an
open challenge [16} [72]. In addition, Leapfrog finds the best path in less time
as compared to the sampling-based kinodynamic-RRT* method. Furthermore,
the path generated by Leapfrog is qualitatively less jagged as compared to that
from kinodynamic-RRT*.

Even though the Leapfrog method shows promising results there are still is-
sues with the implementation of the method, particularly when planning in a
cluttered environment. The paths generated by Leapfrog may be optimal in
some cases but optimality is not guaranteed, that is, the paths can be critical
paths (local minima) but not guaranteed to be optimal (global minima). It
is shown in simulations that Leapfrog does not always converge to a feasi-
ble path in some environments with obstacles when obstacle cost is relatively
low, so selecting the parameters for obstacles is an important step. Another
shortcoming of the method includes the reduction of partition points, which is
important for efficient convergence of the algorithm. Algorithms for efficient
partition point reduction will be considered as future work. In previous work
[4; 73], the Leapfrog method used the affine approximation approach to help
estimate initial costate values. For the mobile robot models considered in this
dissertation, however, the approximation did not provide suitable guesses. As
a result, a different, gradient-based approach is used.

The contributions of this work are as follows.

(i) In Chapter {4} the Leapfrog algorithm is presented as a method to find
optimal trajectories for a two-wheeled mobile robot. It is demonstrated
through simulations in [69] that the Leapfrog method successfully con-
verges and produces kinematically feasible paths in each iteration. In
addition, the cost along the path reduces throughout Leapfrog iterations
with later paths showing improvements over the initial feasible path.
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(i)

(i)

Evidence suggests that the Leapfrog algorithm iterates the feasible path
toward an optimal path. Furthermore, path following experiments using
a real robot are performed, demonstrating the utility of Leapfrog’s paths.

In Chapter , the Leapfrog method is used to find trajectories for a
mobile robot in an environment with obstacles. It is shown that obstacles
in the environment can be represented as a potential field and included
in the cost functional, allowing an optimal control problem to be solved
using Leapfrog, for the required path planning. Though the Leapfrog
method converges to optimal collision-free solutions for many scenarios,
it is also shown that paths with collision may occur when the potential
field parameters are not properly selected.

To improve the performance of the Leapfrog method, the following are
also investigated.

— The Leapfrog algorithm is shown to be capable of converging to-
wards an optimal path using initialization from other path planning
techniques such as the A* and RRT algorithms. With Leapfrog, the
initial feasible path is used to provide a good initial, sub-optimal
guess needed for simple shooting in a subdivision. This work was
published in [74].

— A gradient-based approach is implemented to compute the initial
estimates of the costates. The approach is used due to the inherent
nonlinear characteristics of the mobile robot system, in which the
affine approximation embedded in Leapfrog failed to provide suit-
able costate initialization, causing the local solutions in the subdi-
visions to not converge.

In Chapter [6] the Leapfrog method is used to find paths for a mobile
manipulator in the presence of obstacles. Here, the path planning
problem is more complex (higher dimensionality) compared to that of
the two-wheeled mobile robot considered in previous chapters. This is
due to the higher DoF added by the two-link manipulator mounted on
the mobile robot. Also, inequality constraints are added to the obstacle
avoidance penalty to ensure that collision-free paths are generated. This
work is presented in [75].

In Chapter |7} the kinodynamic-RRT* algorithm is used to find asymp-
totically optimal paths for the two-wheeled mobile robot. The numerical
results are compared to Leapfrog results. The numerical results show
that Leapfrog can improve the quality of the path in less time as com-
pared to kinodynamic-RRT™.
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(v)

In another work, a modified Newton’s shooting method to improve the
convergence of the Leapfrog method for solving mobile robot path plan-
ning problems is proposed [70]. The numerical simulations show that
the proposed approach takes less time to compute the optimal path, as
compared to the time required when simple shooting is used.

The work presented in this dissertation has been published in the following
peer-reviewed conference proceedings and a book chapter:

(1)

(2)

B. T. Matebese, D. J. Withey and M. K. Banda, “Application of
the Leapfrog method to robot path planning,” in IEEE International
Conference on Information and Automation, 2014. [69]

B. Matebese, D. Withey and M. K. Banda, “Path planning with the
Leapfrog method in the presence of obstacles,” in IEEE International
Conference on Robotics and Biomimetics, 2016. [76]

B. Matebese, D. Withey and M. K. Banda, “Initialization of the Leapfrog
algorithm for mobile robot path planning,” in Pattern Recognition As-
sociation of South Africa and Robotics and Mechatronics International
Conference, 2016. [74]

B. Matebese, D. Withey and M. K. Banda, “Modified Newton’s method
in the Leapfrog method for mobile robot path planning”, In: Dash S.,
Naidu P., Bayindir R., Das S. (eds) Artificial Intelligence and Evolu-
tionary Computations in Engineering Systems. Advances in Intelligent
Systems and Computing, vol 668. Springer, Singapore, 2018. [70]

B. Matebese, D. Withey and M. K. Banda, “Optimal paths
for a mobile manipulator using the Leapfrog method”, in IEEE
SAUPEC/RobMech/PRASA Conference, 2019. [75]

1.5 Thesis Outline

Chapter 2 gives an overview of existing motion planning algorithms, such as
sampling-based methods, graph search methods, and potential fields. Discus-
sions on some of their limitations together with approaches to overcome the
issues are given. A general framework for kinodynamic motion planning with
a sampling-based method is also given.

Chapter 3 The notation of methods and some preliminary material that
is relevant to the dissertation are presented. First, the kinematic models of
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a two-wheeled mobile robot and mobile manipulator are derived. Secondly,
the optimal control problem is formulated, and the necessary conditions of
optimality are derived with the aid of calculus of variations and PMP. Lastly,
the numerical methods, Leapfrog and BVP4C, that will be used to solve path
planning as an optimal control problem in the indirect approach framework
are discussed.

Chapter 4 Application of the Leapfrog algorithm is proposed to determine
the optimal control solution in an unobstructed plane environment, for a two-
wheeled mobile robot. The results of the numerical simulation are shown, and
a comparison is made with the BVP4C optimal control algorithm. For the real
experiments, a mobile robot platform is used to traverse a computed trajectory
using path following control, to demonstrate that the computed path can be
traversed by the robot.

Chapter 5 is an extension of the work done in Chapter[d] Firstly, the Leapfrog
method is used to find optimal trajectories for mobile robot path planning in
the presence of obstacles. Due to the obstacles present in the workspace,
a feasible, collision-free, sub-optimal path is needed for the Leapfrog’s first
partition. Secondly, it is demonstrated that the Leapfrog algorithm is capable
of finding optimal paths using different initialization approaches, such as using
sub-optimal paths from RRT and A* planners, to form the initial partition.

Chapter 6 The optimal control problem in motion planning for a mobile
manipulator in the presence of obstacles is presented. The obstacle avoidance
is derived in terms of the distances between the obstacles and parts of the
mobile manipulator. Then the optimal control problem is formulated for the
mobile manipulator’s kinematic system, and necessary conditions of optimality
are derived. For evaluation, the paths generated by the Leapfrog method are
compared to those generated by BVP4C.

Chapter 7 First, the optimal kinodynamic planning is done through the RRT*
algorithm. Here the TPBVP for the two-wheeled mobile robot derived in
Chapter [5] is considered. The kinodynamic-RRT* is tested using some of the
numerical examples presented in Chapter 5] Secondly, the Leapfrog method
is implemented using the path generated by Kinodynamic-RRT* as the ini-
tial partition. A performance comparison is made through simulations where
optimality criteria such as path cost, path length, and runtime are evaluated.

Chapter 8 draws some concluding remarks, and provides a discussion involv-
ing the application of the Leapfrog method to mobile robot path planning and
the prospective future work.
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Chapter 2

Motion Planning Methods

The primary goal of motion planning algorithms is to provide a collision-free
path from an initial state to the desired goal state within the configuration
space of the robot. For a mobile robot to be able to plan a path from its
starting state to a desired goal state, efficient motion planning algorithms are
required.

An essential concept in motion planning algorithms is completeness. A motion
planning algorithm is said to be complete if it finds a path whenever one exists
or reports failure otherwise. The complete algorithms are called exact methods
in the literature since they rely on the exact representation of the obstacles
in the search space [I]. However, complete planning algorithms are difficult
to implement and are computationally challenging. They are restricted to
solving relatively simple problems and are not practical for complex, real-world
applications. A simple version of the problem without dynamics is referred to
as the Piano Mover’s Problem, which was proven to be PSPACE-hard [77].

Research efforts have since shifted to algorithms that provide weaker com-
pleteness guarantees. The well-known graph-search methods such as Dijkstra’s
algorithm [31] and the A* algorithm [32] are examples of resolution complete
algorithms. A planning algorithm is resolution complete if given a discretized
problem, it will find a solution in finite time if one exists or correctly report
that no solution exists within the specified parameters [78]. While popular
graph-search algorithms like A* can guarantee convergence to optimal solu-
tions, they typically suffer from exponentially increasing computational cost
when applied in high-dimensional environments.

Sampling-based methods are popular and have had remarkable success in solv-
ing motion planning problems in high-dimensional environments. These meth-
ods compute candidate solutions based on samples drawn from a given distri-
bution and usually produce a graph or tree. They are also efficient in practice
and have probabilistic completeness guarantees, i.e. as the number of itera-
tions increases, the probability of finding a solution path tends to unity if at

21
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least one solution exists.

RRT is one of the earliest sampling-based methods developed by Lavalle and
Kuffner in [79]. RRT algorithms, however, return a solution once it is found,
without considering the quality. As proven in [10], the cost of the best path re-
turned by RRT converges almost surely to a non-optimal value. More recently,
a sampling-based algorithm called RRT*, which provides asymptotically op-
timal solutions, was proposed in [12]. RRT* improves the path quality in
terms of cost by introducing additional computational procedures. However,
it obtains asymptotic optimality at a slower convergence rate.

Following these developments in optimal motion planning methods, several
methods were proposed with the aim of providing asymptotically optimal so-
lutions for systems with differential constraints [15], [38], [16]. This led to the
improvement of sampling-based methods to achieve not only optimal solutions
but also to include the robot system so that the solutions would be executable
by the robot. However, the majority of the techniques used to solve optimal
motion planning problems with differential constraints address specific classes
of problems, such as linear or linearized systems. It was shown in [40] that the
path obtained through linearization may not be realistic for actual systems
and the path can be sub-optimal due to linearization error.

Also, considerable effort has been directed towards motion planning for
wheeled mobile robots in the presence of obstacles, by employing a poten-
tial field. Artificial potential fields are used to direct the robot by providing
a function over the state space, the gradient of which defines state-dependent
motion vectors to be applied to the robot to move it past obstacles and towards
the goal. In their simplest forms, however, potential fields are susceptible to
local minima, that is the robot can become trapped at a point far from the
target.

In this chapter, an overview of existing motion planning methods is given.
Some of the advantages and challenges related to these methods are also dis-
cussed. A general framework for optimal motion planning for sampling-based
methods with differential constraints is also given.

2.1 Sampling-based Methods

Sampling-based methods have proven to be extremely successful in addressing
motion planning problems in high-dimensional spaces. Probabilistic Roadmaps
(PRMs) [33] and RRT [34] are the main sampling-based methods and have
been successfully used in solving motion planning problems in high-dimensional
scenarios [80].

The PRM developed by Kavraki [33] is a multi-query method that first con-
structs a graph (roadmap) which represents a rich set of collision-free trajec-
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tories. It then answers queries by computing the shortest path that connects
the initial state with the final state through a roadmap. PRMs are valuable
in high-dimensional environments and are challenging when the environment
changes, i.e., for online planning problems. With online planning the environ-
ment that the robot will operate in is unknown. In these applications, the
initial calculation of the roadmap is often computationally expensive, or even
infeasible.

The RRT, developed by Lavalle and Kuffner [34], represents another category
of sampling-based methods, known as single-query methods. In this method,
a tree is grown incrementally from the initial state to a goal state, finding a
feasible path by adding a new edge or vertex in each iteration, while avoid-
ing obstacles. Hence it has an advantage of finding a feasible path relatively
quickly, in high-dimensional and complex scenarios. Compared to PRMs, RRT
is faster because it does not need to sample the configuration space and then
construct a roadmap. In addition, it always maintains a connected structure
even if the number of edges is minimal, while PRMs often suffer in performance
because many extra edges are generated in the attempt to form a connected
roadmap.

A limitation of the RRT algorithm is that it suffers from the difficulty of de-
termining or estimating a metric [35]. The algorithm depends on the existence
of a metric because of the nearest neighbour operation. Given a target vertex,
a distance metric is used to calculate a vertex that is near to the target in the
existing tree. RRT-based methods consider path length in terms of Euclidean
distance. In addition, the method remains ineffective when the configuration
space has narrow passages [80]. This is caused by the number of samples cov-
ering the narrow passage, which may not allow the construction of a feasible
path through it. Approaches to deal with very high dimensions can be found
in [81] and approaches to deal with narrow passages can be found in [82].

Even though PRM and RRT have proved to be efficient, the cost of the best
path returned by these methods converges almost surely to a non-optimal
value. This shifted the focus of research on sampling-based method towards
improving the quality of the paths. To address the issue, in [83] an anytime
algorithm that runs RRT repeatedly to improve the quality of the solution
was presented. In [84] an improved algorithm, namely RRT™*, was intro-
duced. This algorithm returns feasible solutions as quickly as RRT and also
approaches an optimal solution faster than the one presented in [83]. Tt is
shown that as time progresses, its solution approaches a minimum cost.

To deal with optimality in sampling-based methods, in [12] important progress
was achieved by using random graph theory [85] to show that sampling-based
methods such as PRM* and RRT* can achieve asymptotic optimality.
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2.1.1 RRT* Algorithm

Considering the literature on motion planning, the RRT* algorithm was a ma-
jor breakthrough in optimal motion planning for high-dimensional problems
in recent years, compared to other sampling-based methods. The RRT* al-
gorithm inherits the key advantage of RRT, i.e. it explores the unexplored
search space rapidly. In addition, it improves path quality by introducing ad-
ditional computational procedures. Of particular interest in this dissertation
is the RRT* algorithm. Hence in this section details of the algorithm are given.
The RRT* algorithm essentially behaves identically to RRT except that RRT*
considers a neighbourhood of near states when expanding the tree instead of
choosing the nearest one. This procedure is performed within the area of a
ball with radius defined as

r:’r(wy, (2.1.1)

n

where d is the search space dimension, n is the size of the set of vertices,
and T is a planning constant based on the environment [I2]. Furthermore,
adjusting the length of new connections in the rewiring procedure assures that
RRT* improves the path and finds an optimal path as a comparison to RRT.
As the number of iterations increases, RRT* improves its path cost gradually
due to its asymptotic quality. On the other hand, this also slows down the
convergence rate of RRT™.

Following [10], the RRT* algorithm is presented in Algorithm . It begins with
initializing a graph 7 with vertices, V' = z;,;;, and edges, E = ) (line 1). At
each iteration, the algorithm randomly samples a state 2,q4nq from Cypc. and
finds the nearest node z,cqrest in the tree to this sampled state (lines 3-5). The
algorithm then steers the system toward 2z,.,4 to determine z,,,, that is closest
t0 Zrang and stays within some specified distance from z,cqrese. The new node
Znew 18 then added to the set of vertices V' if the trajectory from z,cqrest 0 Znew
is obstacle-free (lines 6-7).

Next, the best parent node for z,., is chosen from nearby nodes in the tree so
that the trajectory from the parent to z,., is obstacle-free and of minimum
cost (lines 8-18). After adding the trajectory segment from the parent to
Znew (line 19); the algorithm rewires the nearby nodes in the tree so that the
forward paths from z,,.,, are of minimum cost (lines 20-26). Then the algorithm
proceeds to the next iteration. The cost of the unique trajectory from the root
vertex to a given vertex z is denoted as Cost(z).

The major advantage that RRT* has over other planning methods is that
it quickly finds a feasible path (not necessarily optimal) then incrementally
improves it over time towards optimality. This indicates that the RRT* algo-
rithm is a powerful tool that can be interpreted as an anytime computational
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Algorithm 1 RRT* Algorithm

1T < {2t} 3 B+ 0
2: while i < N do

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:

Zrand <— Sample(i);
VI« V,E + FE,;
Znearest < Nearest(T, Zrand);
Znew Steer(fznearest; Zrand);
V +— VU {znew};
if CollisionFree(zcarest; Znew) then
Zmin Znearests
Znearby < Near(T, znew, |V |);
for zpcar € Zyearsy do
if CollisionFree(2near, Znew) then
' < Cost(znear) + c(Line(Znear, Znew));
if ¢ < Cost(zpew) then
Zmin € Znear;
end if
end if
end for
E +— EU (Zmin, Znew);
for zncar € Znearby \{#min} do
Znear < Steer(Znew, Znear);
if CollisionFree(2znew, Znear) and
Cost(Znear) > Cost(2new) + c(Line(Znew, Znear)) then
Zparent < Parent(Zpeqr);
E/ — El\{(zparenta Znear)};
E' < E'U{(znew, Znear) };
end if
end for
end if

29: end while
30: return 7' = (V' E')

framework for nonlinear optimization problems [66]. Thus, apart from hav-
ing a probabilistic completeness guarantee it also ensures asymptotic optimal-
ity. Moreover, it was discussed in [12] that RRT* has advantages over other
sampling-based planners in terms of time and space complexities.

2.1.2 Sampling-based Planning with Dynamical

Systems

Motion planning with differential constraints is challenging because of the
combinatorial complexity of the geometry of obstacles, and the nonlinear and
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possibly nonholonomic properties of the system. To deal with such challenges,
the idea of kinodynamic planning was proposed in [I4]. Kinodynamic planning
refers to motion planning problems for which velocity and acceleration bounds
must be satisfied. The first algorithms addressing the kinodynamic motion
planning problem without a steering subroutine were the expansive space trees
(EST) algorithm [86] and the RRT algorithm [19]. Both of these rely on a
forward integration of the dynamics with random control inputs instead of a
point-to-point local planning subroutine. The RRT algorithm is more robust
with nonholonomic constraints and was specifically designed to operate in
nonholonomic environments [79]. It was mentioned in [I] that kinodynamic
planning is not necessarily a form of nonholonomic planning. A problem may
even involve both nonholonomic and kinodynamic planning.

Incorporating differential constraints in RRT* is not as simple as the kino-
dynamic extension to RRT. In the two additional procedures of RRT*, i.e.
choosing the parent and rewiring, two states need to be connected exactly and
optimally. The development of optimal planning and RRT* has renewed in-
terest in sampling-based methods. Preliminary work on extending the RRT*
algorithm to handle systems with differential constraints was done in [15].
Minimum-time solutions were obtained for applications such as the double in-
tegrator and Dubin’s vehicle dynamics, and it was proven that the optimality
guarantee for RRT* in kinodynamic systems holds under certain conditions.
One condition is that the trajectory found by the Steer procedure must be op-
timal in the absence of obstacles. Similarly, the cost estimate used by Nearest
and Near must reflect the optimal cost. The work was also extended to gener-
ate optimal trajectories for minimum-time maneuvering of a high-speed race
car [66].

The original RRT* was developed for systems with simple dynamics, where any
pair of states can be optimally connected by a straight line from z,,cqrest 10 Zrand
in order to generate z,.,. However, when considering the robot’s differential
constraints the steering function is a challenge to solve. The steering function
represents a local planning problem, defined as a two-point boundary value
problem (TPBVP). Solutions to certain classes of TPBVP can be achieved
through optimal control theory. In [66], time-optimal maneuvers for a high-
speed off-road vehicle were successfully generated using the shooting method
[87] to solve the TPBVP. Despite its generality, the shooting method does
not guarantee an exact connection between two states and may lead to a sub-
optimal trajectory.

Several approaches have also been proposed to solve the resulting TPBVPs
associated with the local optimal paths between two nodes in the RRT* pro-
cess, in particular when the differential constraints are linear or linearized. In
[38; B9] a linear quadratic regulator (LQR) is employed as a steering solution.
However, this approach does not have a guarantee of reaching the exact fi-
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nal state, hence optimality is not guaranteed. In [I6] a closed-form analytical
solution of the optimization problem for a TPBVP with fixed final state and
free final time is obtained. This extension method was proven to converge to
optimal solutions for linear systems. However, this approach is only applicable
to a limited class of cost functions.

As an extension to nonlinear systems, a successive approximation approach
named SA-RRT* was proposed in [40]. The authors obtained TPBVP so-
lutions for the same cost described in [I6], however they presented a more
general class of differential equations as compared to [I6]. In their work, it
was confirmed that the path found by the proposed method is more natural
and near-optimal for the dynamics of the system than the trajectory from
other RRT* algorithms. Despite this recent progress, optimal motion plan-
ning that involves generic nonlinear dynamics, which inevitably involves the
computation of TPBVP solutions in the RRT* process, remains a challenge.

2.2 Graph-search Methods

The graph-search methods are known for solving shortest path problems. Tra-
ditional methods for solving this problem are Dijkstra’s algorithm [31] and the
A* algorithm [§].

Dijkstra’s algorithm is one of the earliest graph-search algorithms for finding
shortest paths. The algorithm performs a best first search to build a tree
representing shortest paths from a given source vertex to all other vertices in
the graph. When only a path to a single vertex is required, a heuristic can be
used to guide the search process.

The A* algorithm, on the other hand, can find an optimal path more efficiently
by directing a search towards the goal using heuristic functions. The heuristic
function provides an approximation for the cost of the best route that goes
through each node, and the algorithm employs this heuristic estimate when
determining which node to visit next in its search process. Even though these
paths are optimal on the graph, they are not equivalent to an optimal path
in the continuous environment. Furthermore, the paths are not smooth and
post-processing techniques are required to smooth the paths.

There are several extensions to the A* algorithm that have been developed,
such as an extension to re-planning and anytime planning algorithms. The
most important property of anytime algorithms is that they try to provide
a feasible path, possibly sub-optimal, and continue to improve the solution
while time is available. These algorithms include Anytime A* [8§], Anytime
Repairing A* (ARA*) [89] and Anytime Dynamic A* (ADA*) [90]. While
anytime planning algorithms are useful when good models of the environment
are known a priori, they are less beneficial when prior models are not very



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. MOTION PLANNING METHODS 28

accurate or when the environment is dynamic [91].

2.3 Potential Field Methods

The potential field approach appears to be a bit different in nature as compared
to other motion planning techniques mentioned above. The use of the artificial
potential field was proposed by Khatib [9] and has since gained popularity in
path planning for wheeled mobile robots due to its mathematical simplicity
and elegance. In this approach, a potential field is defined in the configuration
space such that it has a minimum at the goal configuration. In potential
function-driven motion planners, the robot is attracted towards the goal and
repelled from the obstacles at the same time. The resulting force on the robot,
which is the sum of the attractive force due to the goal and repulsive forces
due to the obstacles, represented by

Ftot = Fatt + Frepa (231)

determines the direction and movement. In Eq. (2.3.1), F, and F,, represent
the attractive and repulsive fields, respectively. The most commonly used
attractive field is given by

1
Fatt(q) = §CP2((L qgoal)7 (232)

where ( ia s positive scaling factor, and p(q, Qgea) is the distance between the
robot position q and the goal. The repulsive function is described as

1 ( 1 1 )2 if plq) <

Y N T Y 1 —

Frp(@) =14 2"\o(d ams) 10 P po (2.3.3)
0, if p(a) > po

where 7 is a positive scaling factor, p(q, q.ps) represents the distance between
the robot and the obstacle, and py denotes the distance of influence around
the obstacle.

2.3.1 Potential Fields for Obstacle Avoidance

Potential fields have also gained increased popularity in mobile robotics for ob-
stacle avoidance. However, they are known to suffer from inherent limitations
as discussed in [92]. Local minima represent one of the major issues in em-
ploying these methods, and occur when there is a collinear alignment between
the robot, obstacle and goal position [92]. This would mean that the sum of
the attractive and repulsive forces acting on the robot becomes zero. To over-
come this issue, in [47] a global potential field approach was introduced using
a special function called the navigation function. Unlike other potential field
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methods, the navigation function has only one minimum point (at the goal) so
that there are no local minima, however significant calculations are required.
Other extensions of potential fields were developed such as in [46] where a
navigation potential field was introduced. The other potential field technique
that is guaranteed to be local minimum free is the harmonic potential field [48]
which is based on the Laplace equation. Even though the resulting potential
field does not have local minima, offline computation is required to provide a
solution to the Laplace equation.

The other issue with potential fields is when the goal is too close to an obstacle
which generates a higher repulsive force than the attractive one, preventing
the robot from reaching the goal. This problem is called Goal Non-reachable
with Obstacles Nearby (GNRON) and was identified in [93]. To overcome
this problem, the authors improved the repulsive potential function and later
proposed a new potential field [94]. It is noted from the literature that most of
these extensions to potential fields improve the repulsive potential function to
overcome some limitations. This may cause the repulsive function to become
complex while the attractive function remains unchanged.

In [92] it was demonstrated that there is a possibility that a robot cannot
pass through closely spaced obstacles due to repulsive forces created by the
obstacles. This can be experienced when a robot passes through a door frame
or narrow passage. A Gaussian function can be implemented as a potential
field to overcome some of the issues like GNRON, and problems of no passage
between closely spaced obstacles. In [95] the Gaussian-based potential field
was used to model the attractive force and a high order Gaussian-like func-
tion to model obstacles in order to avoid local minima. Later, [71] employed
the Gaussian function and a modified simulated annealing method for obstacle
avoidance on multi-link robots. In [96] the Gaussian function was used to over-
come the GNRON limitation by adding it to a traditional repulsive function.
These approaches modify the conventional repulsive function to improve its
performance and also to generate fewer occurrences of local minima.

In mathematical terms, the attractive potential field can be formulated as a
Gaussian function as follows:

Fou(q) =1—exp {— %(p%‘”)] : (2.3.4)

Oatt

where 0,4 is a constant that defines the width of the Gaussian function. The
parameter pgoq is defined as the distance from the robot to the goal:

Pgoal = \/(xr - xgoal)2 + (yr - ygoal)27 (235)

where (z,,y,) and (Zgoa; Ygoar) are the positions of the robot and the goal,
respectively. Then the repulsive field F).,. for the i-th obstacle can be described
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as
L)\ :
Frep, (@) = Argpexp | — 5| 57— fori=1,...,n, (2.3.6)
2 Tep;
where n is the number of obstacles, A,., is a positive constant representing the
height of an obstacle, C' determines the steepness of the obstacle representation
within the field, o,.p, is the size of the i-th obstacle and p' is the distance
between the robot and the i-th obstacle:

Pi - \/(xr - xobsi)z + (yr - yobsi)2a (237)

where (Zops;, Yobs;) Tepresents the position of the obstacle. The repulsive field
represented in Eq. (2.3.6)) can also be expressed as

Fr(@) = 3 Fro (@) 235)

The total potential field, F}.;, on the robot is then given by
Ftot(q> - Fatt(q) + Z F’repi (CI) (239)
i=1

As an example, Figure [2.1] shows four obstacles and a goal position as a total
potential field represented by Gaussian functions.

Figure 2.1: Potential field example showing four obstacles and the target generated
by Gaussian functions.

Most potential fields found in the literature, for example the ones defined by
Eq. (2.3.3), ensure that a robot never penetrates the boundaries of the obstacle
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and that the field becomes infinitely large at the center of the obstacle. This,
however, can result in the robot getting stuck in local minima away from the
goal. Gaussian functions, on the other hand, are smooth in nature as shown
in Figure and have finite height with a limited area of influence [97]. In
addition, their derivatives are continuous and smooth functions, which makes
this function suitable as a potential obstacle function for this dissertation.

With Gaussian potential fields, the behaviour of the robot around the obstacle
area can be controlled by adjusting the parameters related to the height and
steepness of the obstacle, that is, A,., and C. By increasing the values of these
parameters the allowed distance between the robot and the obstacle increases,
leading to collision-free paths. Increasing parameter C' on its own can create
a minimum distance between obstacles (see Figure [2.2(d)]) which in turn can
reduce the occurrence of local minima. Figure shows the effect of varying
these parameters.

i Jn
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(c) C =1, Orepr, = 0.4, Apep =1 (d) C =3, Orepy, = 0.4, Apep =1
Figure 2.2: The effect of variance, o,¢p,, height parameter, A,.,, and effective range
parameter, C' on the repulsive field shown in Eq. (2.3.6).
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2.4 Conclusion

In this chapter motion planning methods were discussed. These included
sampling-based methods, graph-search methods, and potential fields. A brief
description of kinodynamic motion planning with sampling-based methods was
given. It was noted that the current set of practical solutions using RRT*
is limited mainly to linear or linearized systems. These systems, however,
do not possess the generality of the original sampling-based method. Hence
the motion planning problem with robot differential constraints has remained
challenging for realistic systems, particularly with nonholonomic constraints.
A brief discussion on graph-search methods together with their extension was
given. Potential field methods for obstacle avoidance were also discussed along
with their inherent limitations.
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Chapter 3

Optimal Control Formulation

Mathematical modelling is essential when designing mobile robot systems. It
generally simplifies a real-world problem and once a model is created, it can
be used to approximate solutions of the system being modelled. In solving the
model, various approaches can be employed including numerical methods for
solving complex problems. An overview of the models implemented for this
dissertation is given in Chapter [} In this chapter, optimal control formulation
and numerical techniques to solve the optimal control motion of the robots are
described.

As mentioned before, the two-wheeled mobile robot platform is one of the
simplest and most-used platforms in mobile robotics applications. Mobile ma-
nipulators, on the other hand, take advantage of the increased mobility and
workspace provided by the mobile base. A mobile manipulator system is typ-
ically composed of a mobile base platform with one (or more) manipulators
mounted on top of the base. Unlike the mobile base platforms, mobile ma-
nipulators have been recently researched and are now becoming commercially-
available tools for industrial use [98; 99]. However, finding optimal trajectories
for both systems is still a challenging problem. Even though there is a differ-
ence between the degrees of freedom of a manipulator and a mobile platform,
most of the algorithms used to find optimal paths for mobile robots can be
implemented for mobile manipulators as well.

Optimal control techniques have been widely studied and implemented as an
approach to finding optimal paths in mobile robot path planning. Solutions
to many optimal control problems for mobile robots cannot be found by ana-
lytical means. Over the years, numerical procedures have been developed to
solve these systems. Numerical methods deal with the study of quantitative
approximations to the solutions of mathematical problems, including consid-
eration of and bounds on the errors involved. Methods for solving differential
equations and integrating functions are required for all numerical methods in
optimal control.

Choosing a method for solving an optimal control problem depends largely on

33
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the type of problem to be solved. Indirect approaches have the advantages
of being simple to understand and producing highly accurate solutions when
they converge. However, available indirect techniques usually face serious con-
vergence difficulties because of the lack of a good initial guess, as discussed
in Chapter [II The Leapfrog method can be viewed as an indirect solution
method. It is relatively simple to implement and works well in practice with
no need for an initial guess.

In this chapter, the optimal control problem is described, and the resulting
two-point boundary value problem (TPBVP) is derived using the first-order
optimality conditions. After that, an overview of indirect methods for solving
TPBVP, including an overview of the Leapfrog method, is done. The aim of
deriving these systems is to formulate a path planning problem as an optimal
control problem for mobile robots, in the chapters to follow.

3.1 Optimal Control

Optimal control theory concerns mathematical optimization methods for de-
riving control policies. The approach of optimal control allows for the solution
of a large class of nonlinear control problems subject to complex state and
control signal constraints. The formulation of the problem involves a set of
differential equations describing the paths of the control variables that mini-
mize a cost functional. There are various types of optimal control problems,
depending on the mathematical description of the system to be controlled, the
performance criterion, the different kinds of constraints and the statement of
what variables are fixed or free.

3.1.1 Optimal Control Problem

A general optimal control problem consists of finding control state histories for
a dynamic system over a period of time to minimize or maximize a cost or per-
formance index. Consider a control system described by ordinary differential
equations (ODEs) of the form

q=flq(t),u),  alto) = q, (3.1.1)

with initial point qg € R”, f: R" x R™ — R™ and control represented by func-
tion u : [tg, tf] — u(t) € U where U is the set of all admissible controls. The
function f now depends on the control u so that the solution q(-) : [tg, ts] = R"
is predicated not only on qg but on u(-) as well.

Definition 3.1.1. A functional J is a rule of correspondence that assigns to
each function q(t) a unique real number [100].
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The cost functional can be written in the form

J(u) = S(q,) + / " Liq(t), u(t))dt. (3.1.2)

to

The function S : R™ — R represents the terminal cost and L : R" x R™ — R is
the running cost. The variable ¢; is the final (or terminal) time which is either
free or fixed and q; = q(ts) is the final state which is either free or fixed or
belongs to some given target set. The cost functional defined above is known
as the Bolza problem. If L(q(t),u(t)) = 0, then the problem is known as the
Mayer problem. If S(q;) = 0, it is known as the Lagrange problem.

The performance index may vary depending on the problem being solved; for
example, it can measure control effort, fuel consumption, energy expenditure
or the time for the system to reach a target. Examples of these different
performance indices are discussed in [20].

Assuming that there are no path constraints on the states or control con-
straints, and the initial and final times are fixed, a general optimal control
problem can be modelled by

min  J(u)

ueld
q(t) = f(a(t), u(?)), (3.1.3)
q(to) = do, q(ty) = qy.

To solve the optimal control problem in Eq. (3.1.3)), necessary conditions for
optimality can be obtained through Pontryagin’s principle.

3.1.2 Necessary Conditions of Optimality

In this section, a set of necessary conditions for the optimality of a solution
of an optimal control problem is derived using the calculus of variations. This
set of necessary conditions is also known as Pontryagin’s minimum principle
PMP)[101]. The method of Lagrange multipliers is used, and the Hamiltonian
function and its boundary conditions are derived. The necessary conditions
presented in this section are with unconstrained control inputs, meaning that
the admissible state and control region are not bounded.

Pontryagin introduced the idea of adjoining functions to append the differ-
ential equations to the objective functional. Hence the following definition is
considered:

Definition 3.1.1. The Pontryagin Minimum Principle [101] states that if u*
and q* are the state and optimal control inputs for Fq. then there exists
a function X, called the costate, that satisfies a certain minimum principle such

that H(q"(t), u"(t), A*(t)) < H(q"(t), u(t), \"(t)).
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The costate function, also known as the adjoint variable, is a Lagrange mul-
tiplier in multivariate calculus. Now considering the optimal control problem

in Eq. , the function
H(q(t),u(t), M) = L(a(t), u(t)) + X(t)"f(a(t), u()) (3.1.4)

is called a Hamiltonian function.

Definition 3.1.2. Any triple (q(-),u(-), A(+)) satisfying the necessary condi-
tions of optimality of Pontryagin’s Minimum Principle is called an extremal.

In literature, the Hamiltonian function in Eq. is sometimes defined as
H(q,u,\) = XTf + XL, where \g > 0 is an additional constant to PMP. A
case where \g > 0 is called a normal extremal and when Ay = 0, the extremal
is abnormal. If Ay > 0, then the Hamiltonian can be normalized so that
Ao = 1. For the work presented in this dissertation, the normalized extremal
is considered.

Assume that the initial time ¢, and final time t; are fixed. The augmented
functional, J,, for this optimal control problem is obtained by adjoining the

constraints imposed by Eq. (3.1.1)) and the performance index in Eq. (3.1.3))
through the Lagrange multipliers A\;(t), ..., A\, (t) as:

Jo(u) = S(qf)+/f{H(q(t),u(t),)\(t))—AT(t)Q}dt. (3.1.5)

to

For a minimum point to exist, the variation of J,, §J,, must be zero on an
extremal. Now consider a variation in u(t), denoted by du. Such a variation
will produce variations in the state dq, and a variation in the cost functional
0J,. This can be expressed as

6J, = Kg—i)éq}t:t + [AT6q]i—y, (3.1.6)

(/OH . OH OH
—+ A" )6 —— —q" oA = )du pdt.
A GG (G -) (5
From the expression in Eq. (3.1.6]), it is observed that the constraints
q'(t) = f(q*(t),u*(t)) (3.1.7)

must be satisfied by an extremal so that the coeflicient of d\(¢) is zero. Since
the Lagrange multipliers are arbitrary, they can be selected to make the coef-
ficients of dq(t) and dq(ts) equal to zero:

A(t) = —%—ZI, (3.1.8)
Aty) = 951 (3.1.9)
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This choice of A(t) results in the following expression for J,, assuming that
the initial state is fixed, so that dq(ty) =0 :

2]
5J, = / {(Z—HcSu}dt. (3.1.10)
to

u

For a minimum, it is necessary that d.J, = 0. Hence

oH
ou
Equations (3.1.7), (3.1.8), (3.1.9) and (3.1.11]) are the necessary conditions of
optimality for the minimum of J we set out to determine. Equation (3.1.7))
is equivalent to the state equation (3.1.1). Equation (3.1.8)) represents the

costate equation, and Eq. (3.1.9) and the initial state condition represent the
boundary conditions or transversal conditions.

0. (3.1.11)

The necessary condition in Eq. (3.1.11)) stands because the terminal time ¢ is
free. If the time ¢; is fixed (prescribed), however, the condition in Eq.
is not part of the optimality system anymore. Then the Hamiltonian must
be a constant, i.e., H(q(t),u(t), A(t)) = a, but this condition is usually not
needed for computations, resulting in a simpler optimality system.

3.1.3 Boundary Conditions

Using the necessary conditions of optimality derived above, a boundary con-
dition can be derived from Eq. . For this research work, the fixed final
time problem will be addressed, hence the following boundary condition is
regarded.

Fixed Final Time: When the final time ¢y is known.

Fixed Final State: In this case both q(¢;) and ¢; are known, and dq;
and dt; both equal zero. Applying this to Eq. (3.1.9) yields

qlty) = ay- (3.1.12)

For other cases of the boundary conditions, refer to [20].

Overall, in order to obtain a solution to the optimal control problem, two sets
of differential equations whose conditions are given at different times have to
be solved simultaneously. Substituting the computed control in Eq.
into the state equation and costate equation , results in a set of
ordinary differential equations where the functions q(¢) and A(¢) must satisfy
the boundary conditions:
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q(to) = qo, q(ty) = qy.

Equation (3.1.13)) is known as a two-point boundary value problem (TPBVP)
where qp and gy represent boundary conditions.

Now putting all the derivations done in this section together, it can be con-
cluded that in order to apply the PMP the following need to be performed:

(i) Define the Hamiltonian function (H).
(ii) Satisfy the necessary conditions of optimality.

(iii) Solve the resulting TPBVP.

3.2 Indirect Methods For Optimal Control
Problems

In most cases, numerical techniques must be employed to solve the TPBVP
described above. When solving a TPBVP using numerical techniques, the
goal is to iteratively solve the given differential equations while they conform
to the set of boundary conditions. General methods to solve the TPBVP are
discussed in Section [I.1.4] which include the indirect methods. In the indirect
methods, the required solution for an optimal control problem is obtained by
numerically solving equations (3.1.7)) to (3.1.11]) which are the optimality con-
ditions. Advantages of indirect methods are that they converge to accurate
solutions, they converge quickly near the optimal solution and they are reli-
able [62]. The disadvantage of indirect methods is the requirement of a good
initial guess for the adjoint states. If the initial guess is too far away from the
optimal solution, the numerical solution of the TPBVP will, in general, fail
to converge. The indirect methods are known to converge to accurate solu-
tions where numerical solutions of the TPBVP are performed by shooting or
collocation techniques.

3.2.1 Shooting Methods

The shooting method [102] is based on the repeated solution of initial value
problems for different initial values. The initial values are iteratively updated
until the boundary conditions are satisfied. Consider a boundary value problem
defined by the system of ordinary differential equations (ODEs):

y(t) =£(y(t),t), to<t<ty (3.2.1)
D(y(to),y(ty)) =0,
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where y = [q A]T € R" is the augmented vector of states and ® : R" x R™ — R
is the value of the solution at ¢ = ¢t;. The shooting methods solve a boundary
value problem in Eq. (3.2.1) by transforming it to an initial value problem
(IVP):

y(t) =1(y(t),1), to<t<ty (3.2.2)
y(to) = s
by attempting to find a correct initial condition y(ty) = s where s is the

prescribed initial vector which leads to an approximate value that satisfies
the boundary conditions. If the solution to Eq. with parameter s is
denoted as y(t; s), then solving Eq. is reduced to finding a solution s of
the nonlinear system of equations

F(s) = ®(s,y(ts;s)) =0. (3.2.3)

This problem is solved iteratively, where on each iteration, ®(s,y(t;s)) must
be evaluated for some s. In order to evaluate the shooting method, the steps
presented in Algorithm [2]are used to update the initial condition for the costate
variables.

Algorithm 2 Shooting Method

1: Choose an initial guess sg and set k = 0.

2: Solve the system in Eq. (3.2.2) with initial state y(ty) = s%*). Compute

F(s®) = (s, y(t; sM)),
and the Jacobian matrix

F(s®) = @, (s®, y(ty; sM) + @y, (s, y(ty; s0)) S(ty),

Jy
where S(tf) = g(tf; sk,
3: If || F(s™®) ||~ 0, STOP.

4: Compute the Newton direction D® from the linear equation

5 Set s*+D = s®) + D)k =k 4+ 1, and go to Step 2.

Even though the shooting method is simple and reliable, it has some lim-
itations. The main drawback with indirect shooting methods is finding an
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initial estimate of the initial costate variables y(ty; s()) that produce a solu-
tion reasonably close to the specified conditions s at final time. The shooting
method gives poor convergence if no good initial guess is available or if the
IVP becomes unstable. Also, it suffers from slow convergence when the initial
condition is far from the corresponding terminal condition. To overcome this
problem, the trajectory must be split up into sub-intervals, and one must apply
the same shooting method for each sub-interval, which results in the method
of multiple-shooting.

The concept of the multiple-shooting method was first proposed in [103] and
later promoted in [67]. The aim of the multiple-shooting method is to solve a
nonlinear equation where the unknowns are not only the initial costate vari-
ables and the final time, as in the shooting method, but also the paired states.
In multiple-shooting the interval ¢ € [to, /] is divided into n sub-intervals
[tiytiz1],i=0,...,n — 1, such that

g <ty < - <tn:tf
Let y;(t; s;) be the solution of the IVP

in each sub-interval ¢ € [t;,¢;11],7=0,1,...,n — 1. Then formulate the set of
equations

Yo(t1; so) — s1
y1(ta;s1) — s2

F(s) = : -0, (3.2.5)

Yn—2(tn-1; Sn—2) — Sn—1
i @(S(};ynfldn;snfl)) .

and solve them by Newton’s method. The outline of the multiple-shooting
method is given in Algorithm [3] The method is also illustrated in Figure [3.1]
The multiple-shooting method is a very accurate method and often performs
better than the single shooting method [62]. However, it still requires good ini-
tial guesses in the sub-intervals taken to converge to an optimal solution. Also,
the number of parameters to be updated in each iteration can be very large,
leading to larger computation times when compared to the single shooting
(provided that it converges).

A similar iterative method to multiple-shooting, namely the Leapfrog method,
was developed to solve a special type of TPBVP arising in geodesics. In
Leapfrog a feasible path with corresponding time interval is subdivided, and
local optimal controls are found separately over each sub-interval. An optimal
local trajectory is obtained in each sub-interval, where the junctions of these
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Figure 3.1: Multiple-shooting method [3].

Algorithm 3 Multiple-Shooting Method

1: Choose an initial guess s = (séo), L sO)T e RV and k= 0.
2: Fori=0,...,n — 1 solve the IVPs

Bi(t) = £(yi0).0), wilts) = 5"

and the sensitivity differential equation

Sl<t) - q)Q(yi(t)?t) Si(t)a Sz(tz) =1 D7

int € [t;, t;11], where the derivative of ® is evaluated at y;.
Compute F(s*)) and F(s®).

3. If || F(s®) ||~ 0, STOP.

4: Compute the Newton direction D® from the linear equation

F(S(k)) D& — —F(S(k)).

5 Set s*tD = s + D)k =k 4+ 1, and go to Step 2.

sub-trajectories are updated through a scheme of midpoint maps. The advan-
tage of using the Leapfrog method is that it does not depend on the provision
of good initial guesses along a path. Also, the optimal solution provided by
the method satisfies both boundary conditions at every step, while in multiple-
shooting the boundary conditions are satisfied after the whole iteration process
is completed. Moreover, the Leapfrog paths are feasible in each iteration.

For the purpose of this research work, the Leapfrog method is chosen to solve
the TPBVP for mobile robot path planning and is compared to BVP4C. The
next section gives an overview of the Leapfrog method and the BVP4C solver.
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3.2.2 The Leapfrog Method

In this section, the Leapfrog method is reviewed, and its convergence proof
is given following the notation, terminology and lines of argument as in [4].
The Leapfrog method, proposed by Kaya and Noakes in 73], can be viewed
as an indirect method for solving TPBVP. In the method, a feasible path
is subdivided, and optimal local paths are found separately over each sub-
interval. The method works in the following manner. Consider the following
optimal control problem in Lagrange form:

min / 7 L(q(t). u(t) dt.

ueld to

q(t) =f(q(t),u(t)),

q(to) = qo, alty) = ay

with the state q(t) : R — R™ and control u(¢) : R — R™. The function
f:R"xR™ — R" is C'-continuous and ¢, and ¢; represent the initial time
and final time, respectively. A solution to X is given by an optimal state
trajectory q(-) and a corresponding control input u(-). Here, we assume that

the problem X has no constraints on the state and control, and the final time
ty is fixed.

Let p, be a piecewise path between the start position z(ty) = qo and terminal
position z(t;) = qy. The path p, is required to be feasible but not necessarily
optimal, and the points qo and qy are not necessarily close to each other either.
The aim is to find a critical trajectory between qy and qy.

Definition 3.2.1. If the trajectory pair (q(-), A(+)) corresponding to control

u(-) satisfies the optimality system in Eq. (3.1.7)-(5.1.11), then it is said to

be a critical trajectory.

The Leapfrog method begins with partitioning the feasible path p, into p
segments, with

20y 215 -+ -y Zp—15%p

as subdivision points with corresponding partition time points
t0<t1<"'<tp:tf.

The partition points are chosen to be closer to each other such that a locally
optimal solution exists from point z;_1 to z;,1,7=1,...,p— 1, which is easily
computable.

Now, let us assume that the local solutions to the following sub-problem &;
can be obtained:

X, = alt) gi}'l(q(t), u(t)),

q(ti—1) = zi—1, d(tiy1) = zit1,

min / M Lo(alt).u(t)) dt.
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where t; 1 is fixed by the solution of X; | for ¢ > 1 and t;, is fixed. The
sub-problem X; can be written as the optimality system associated with ¢ for
t € [ti1,tiy1], with end points q(¢;_1) = 21 and ¢(t;11) = z;41. Through
the optimality conditions an initial value of the costate variable is given by
¢i—1 = A(t;_1) for problem X;.

The Leapfrog method relies on a solution of &; through a given partition where
optimal controls are obtained. Subsequently, the method follows an iterative
process of updating the initial feasible path u, towards the optimal trajectory
while solving the sub-problems X;. In each iteration, k, a local solution between
partition points is solved for ¢ = 1,...,p — 1 and the partition point z; is
adjusted through a midpoint scheme.

Assumption 3.2.1. There ezists a (locally) unique optimal control u
[ti—1,tiv1] — R™ taking the system from z;_q to ziy1.

Let D denote the set of all ordered pairs (z;_1, z;41) such that z;,; can be
reached from z;_; with cost less than 26,

D = {(Zz‘_h Zi—H) e R" x R™: d(Zi_l, Zz'-‘,—l) < 2(5}, (326)

where d is the distance function and > 0 is chosen such that there exists a
local optimal control from z; 1 to z;y;. Then, let the local cost function be
denoted by

7:D — R, (3.2.7)

such that, given (z;_1, z;11) in D, 7(2;_1, zi+1) is the infimum of the cost to get
from Z;i—1 to Zid1-

For (z;_1,2i+1) € D, using Assumption , let Ve i 2y o [tic1, tia] = R?
be the unique local optimal trajectory such that ~., , ... (ti-1) = 21 and
Yei 1,201 (tiv1) = Ziy1. The midpoint 2; = Vzi_l,zm(fi)a between z;_; and z;4q
is then defined by 7(z;_1, 2;) = 7(2i_1, zi41) /2.

To update each z;, i = 1,....p— 1 and t;,, 1 = 1,...,p, set 2o = qp and
zp = qy. Then move z; onto a local optimal path joining z;_; and z;;, obtained
by solving problem X;. The updated point where z; goes in the optimal path
segment is taken to be the point such that the cost of getting from z;_; to that
point is half the cost of getting from z;_; to z;;1 and is reached at the time
average of ¢; 1 and ¢;.

Remark 3.2.1. A different position of zF on the local optimal path is allowed.

ko 4k

v, 17, the costates ¢; are also updated.

Remark 3.2.2. For every update on z

The midpoint scheme is followed for all partition points so that all ¥ and
t¥ are updated, meaning that one iteration, ¥ = 1, of the Leapfrog is done
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and joining the optimal local paths between the partition points denotes ,u,(zl).

Then the iterations are continued until the maximum number of iterations, N,
is reached and Leapfrog convergences. The outline of the Leapfrog method is
given in Algorithm 4]

Algorithm 4 Leapfrog Method

(0)

1: Initialize feasible trajectory p.”’ with zy = qo and 2, = qy.

2: Choose the number of subdivisions p > 0 and final time t; > ¢,.

3: Subd1v1de u mto (p segments with subdivision points

z(()o),z§ ey p 1,zp . Set t(()o) and k£ = 0.

4: for k=1: N do

5 fori=1:p—1do

6 Given zF |, 2F. |, t¥ |, and t¥ . Solve the sub-problem (X;) with
alti1) = 25, alti) = zf_’%, tig = th, and ti =t

7: Let zF' = q(t;) and tF™ = t; such that 7(q(ti_1),q(t;)) =
%T(Q(tifl% qa(tit1))-

8: Set k =k+1

9:  end for

10: end for

11: return p*.

During the Leapfrog iterations, the number of partition segments p is pro-
gressively decreased as the algorithm is executed. The aim is to reduce the
segments to p = 2 for the final iteration. This means that the algorithm ends
with solving problem & between the initial and final states zy and z;. If p
is decreased appropriately, the convergence to a critical trajectory is ensured.
But, it might not be globally optimal, and could be a local minimum. The
method also assures that the cost for trajectory uz ) decreases on each itera-
tion, k. In addition, the trajectory satisfies both boundary conditions at every
step of the iterations where the initial point z; and final point z; are fixed as
they denote the boundary conditions. Moreover, the trajectory ,ugk) generated
in each iteration feasible, as illustrated in Figure [3.2]

3.2.2.1 Initial Feasible Path

Generally, it is far easier to obtain a feasible trajectory than an optimal tra-
jectory. Starting with a feasible trajectory also ensures controllability between
any two states considered along with the feasible trajectory after partitioning.
In previous work [4; [74], the initial partition for the Leapfrog method is chosen
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Figure 3.2: Feasible trajectories formed in each iteration of the Leapfrog method.
The initial feasible path is represented by (+) and the final solution is represented

by ut).

as a straight line between the initial and final states. This approach is easy
to implement, and will often work well, especially for simple boundary value
problems. However, if one considers a path planning problem in the presence
of obstacles, a different initialization technique is needed as Leapfrog requires
a feasible (collision-free) initial path.

3.2.2.2 Initial Guess

In solving a TPBVP the physical information regarding the costates is not
known, and only the boundary conditions for the state are known. Hence
with indirect numerical methods, a good initial guess is required for a solution
to be obtained. With the Leapfrog method, however, once a feasible path is
constructed, the affine approximation of the sub-problem X; in a subdivision
may provide a good initial guess needed for simple shooting in that subdivision.
Hence Leapfrog does not depend on the provision of a good initial guess. Even
though an initial guess of the costates is not crucial in the Leapfrog method,
the guesses are needed for the success of the local shooting method. Also,
the algorithm is convergent to a critical trajectory provided that these local
shooting solutions produce optimal trajectories.

3.2.2.3 Overview of Leapfrog Convergence

The main computation in the Leapfrog method depends on solving the sub-
problem X;. In each subdivision, with the assumption that local optimal con-
trols can easily be calculated, a piecewise optimal trajectory is obtained. Then
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the junctions of these smaller pieces of optimal control trajectories are updated
through a scheme of midpoint maps. It was shown in [4] that under some as-
sumptions the sequence of trajectories converges to a critical trajectory that
satisfies the minimum principle. The proof of the Leapfrog convergence under
such assumptions is also given. In this section, the Leapfrog convergence proof
is reviewed by following the notation, terminology and lines of argument in [4].

As mentioned before, the aim of the Leapfrog method is to find a critical path
from an initial state to a final state. For proving the convergence to a critical
path, it is necessary to consider the local critical trajectory pair (q(), A(+))
obtained by solution of the sub-problem &;. What follows are the tools and
definitions that lead to the convergence to a critical path.

(i) Extremes and Leapfrog splicing

Recall by Assumption that 7., | ..., © [ti—1,tiy1] — R™ is the unique
optimal path from z;_; to z;11. Now let y; = (2;, ¢;) = (q(t;), A(t;)) be between
Yi—1 and Y41, if 2; llesin v, , ..., (-). Let Y be a set of all

Yy = (yoa?/l;--qu);

then y € Y is extreme when y; is between y; ; and y;4q for all 1 < ¢ < p.
Let pi(-) = (72_,.2(-), A(+)) be the optimal trajectory pair from z;_; to z;,
¢t =1,...,p. Then pu, is defined as the concatenation of uy, pto, ..., 1, in the
given order such that p,(to) = p1(to), py(ti) = pi(ts) = pira(ti), i =1,...,p—1,
and 4, (tr) = pip(tp).

Lemma 3.2.1. Ify is extreme, then p, is a critical trajectory.

Proof. Suppose that i, is a critical trajectory. Then by Assumption [3.2.1} the
path from y;_; to y;;1 is optimal which implies that y; is between y;_; and
yir1- Therefore y is extreme.

Suppose that y is extreme, then using induction we prove that p, is critical.
Suppose that p = 2, then p, = ;. Assume that the lemma holds for p < k
and ,u’y“ is composed by concatenating p;,2 = 1,..., k. Let p = k+ 1. The
next Leapfrog step from y;_1 to yry1 gives the local optimal path segment
Yeeor,zps- Note that g is critical, ie., it satisfies the PMP. Parts of the
curves (i and u’; between y;_1 and y overlap (see Figure , so both curves
satisfy the optimality system associated with the optimal control problem X
with the end conditions ¢(tg) = zo and q(tx+1) = zx11 for that portion of the
curve and thus satisfy the PMP. Therefore x5!, which is the concatenation of

y
wi,t=1,...,k+1is a critical trajectory. This completes the proof. O

(ii) Midpoint maps and total cost
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Figure 3.3: Concatenation of the local optimal path p; and the Leapfrog splicing [4].

Define a midpoint map to be any M : D — R? such that M(z;_1, 2;41) = 2.
Recall z; is the midpoint between z;_; and z;;.

For the state-costate space, let X C R?" and Y be the set of all (p + 1)-tuples
vy = (Yo,Y1,.--,Y,) € X! such that y; = (z;,¢;) and 7(z;, 2i41) < 6 for all
1=1,...,p—1.

For 1 < m < p define the midpoint iteration G,, : Y — XP*! such that

Gm(y) = (y07 SR 7ym—17gm7ym+17 s 7yp)’

~
~

where Uy = (Zmy Am)s Z2m = M(Zm-1, Zm+1) and M is given by one or two
cases (see [4]).

Lemma 3.2.2. G,4(y) €Y.

Thus G,, : Y — Y where 1 < m < p. Define a function F' : Y — Y as the
composite

F:Gp—loGp—Qo"'oGh

then F(y) € Y.
The (p + 1)-tuple z is said to have cost a(z) defined by

p

a(z) = Z T(2i-1, 2i)

i=1
and hence

7(20,2p) < a(2).
The function « is continuous, because 7 is continuous (refer to [4] for proof).

Lemma 3.2.3. For1<m <pandally €Y,

a(Gm(y)) < aly).
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If one considers the composition F' = G,,_1 0 G,,_20---0 Gy in Lemma
instead of GG,,, then the following lemma is obtained.

Lemma 3.2.4. Forally €Y,

a(F(y)) < aly).

The following lemma results from Lemma [3.2.4]
(iii) Convergence to a critical trajectory

Lemma 3.2.5. (i) If p1, is a critical trajectory then a(F(y)) = a(y).

(1t) If a(F(y)) = a(y) then u, is a critical trajectory.
The following theorem follows from Lemma and Lemma [3.2.5]

Theorem 3.2.1. The Leapfrog iterations converge to a critical trajectory fi, (o) -

Proof. Note that F(y>)) = (y(*). The theorem follows Lemma [3.2.5] then

a(F(y)) = a(y'™).
O

A detailed proof of the lemmas described in this section can be found in [4].

3.2.3 Collocation Method - BVP4C

Collocation methods, on the other hand, use cubic polynomials to obtain an
approximate solution of TPBVP. Collocation methods are usually applied to
handle boundary value problems which give unstable initial value problems
[1]. A commonly used implementation of a collocation method is the MAT-
LAB solver BVP4C. The function BVP4C divides the time interval [to, t7] in
sub-intervals and discretizes differential equations along the time mesh. To
initialize the solver, an initial mesh and a guess of the solution at the mesh
points are required. The mesh is adapted to obtain the specified accuracy of
the solution for an almost minimal number of mesh points.

The MATLAB solver BVP4C is a built-in function which provides a means
for rapid construction and solution of TPBVP. The solver uses a three-point
Lobatto method of order four called the Simpson formula because it reduces to
Simpson’s quadrature rule [104]. This method uses a collocation formula, and
the collocation polynomial provides a C'-continuous solution that is fourth-
order accurate uniformly over the interval. In [104], BVP4C is described to
solve boundary value problems for ordinary differential equations efficiently.
However, the higher the complexity and nonlinearity of the dynamics, the
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more the difficulty with the solver. Also, the approach requires considerable
assistance in selecting a good initial guess for the states and costate trajectories
in addition to the terminal time for the problem. In motion planning for
wheeled mobile robots, BVP4C solves a TPBVP resulting from deriving the
necessary conditions for the optimal point-to-point motion planning for the
robot.

This approach has been used as an indirect method to obtain optimal trajecto-
ries for two-wheeled mobile robots and mobile manipulators [25; [105; [106]. In
[25] initial guesses for the angular positions and velocities were considered to
be zero and a uniform time mesh with 200 points was considered. The capa-
bility of the method was demonstrated through simulation and experimental
results. The method was seen to be efficient in finding paths for the mobile
robot in the presence of obstacles. To understand how BVP4C can be used,
the following describes the method as it can be used in MATLAB.

The function BVP4C integrates a system of ODEs of the form

dy

subject to a general nonlinear TPBVP condition

g(y(a),y(b),p) =0, (3.2.9)

where q is the independent variable, y is a vector containing the dependent
variables, and p is a vector of unknown parameters.

For this research work, the solver operates on the assumption that the time
period in the problem is fixed, t € [a,b]. The boundary value solver BVP4C
requires three pieces of information: the equation to be solved, its associated
boundary conditions, and an initial guess for the solution.

Remark 3.2.3. The number of ordinary differential equations must equal the
number of boundary conditions such that the problem s solvable.

The MATLAB syntax of the BVP4C function is as follows:
sol = bvpdc(@odefun,@bcfun,solinit,options); (3.2.10)

From above,

- (odefun) is a function that evaluates the TPBVP in the form of a system
of first-order differential equations which can be expressed as

function dydx = odefun(q,y); (3.2.11)

where q is a scalar, and dydx and y are column vectors.
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- (bcfun) computes the residual in the boundary conditions and takes the
form

function res = bcfun(y(a),y(b)); (3.2.12)

- solinit = bvpinit(t,xinit,params); is a structure that contains the
initial guesses for the solution, t represents the points at which the
boundary conditions are imposed, xinit provides the initial guesses to
the solver, and params gives an initial guess for unknown parameters.

- A list of options such as error tolerance, maximum number of mesh
points allowed (Nmax) and display of computation cost statistics is of-
fered. The list can be supplied to the solver using bvpset function

options = bvpset(‘RelTol’, 1079, ‘Nmax’,5000, ‘Stats’, ‘off’);
What is produced by BVP4C is a data structure sol containing the solution
and has the following fields:
sol.q is a mesh selected by BVP4C.
sol.y is a solution computed at the mesh points of sol.q.
For more detailed information, refer to the MATLAB help file for BVP4C.

Remark 3.2.4. The convergence of a solution for BVP4C relies on a good
initial guess. A bad initial guess may result in inaccurate solutions, or no
solutions, or sub-optimal solutions.

3.3 Conclusion

In this chapter, a general optimal control problem was defined, and optimality
conditions were derived using the help of variation techniques and PMP. The
optimality conditions resulted in a TPBVP. An overview of indirect methods
which generally solve the TPBVP was given which included the shooting-based
methods, the Leapfrog method and BVP4C.
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Chapter 4

Leapfrog Paths for a Two-wheeled
Mobile Robot

In this chapter, an optimal control strategy for optimal motion planning for
a two-wheeled mobile robot is presented. This is achieved by formulating the
path planning problem of the mobile robot as an optimal control problem.
The kinematic model for two-wheeled mobile robots described in Chapter [1]is
considered. Its necessary conditions of optimality are derived through PMP
and the resulting TPBVP is solved using the Leapfrog method. In previous
work, the Leapfrog method has been used within the context of control sys-
tems, that is, to generate control inputs for a system. The work presented in
this chapter is the first application of the Leapfrog method to path planning
for mobile robots, which can also be found in [69]. To evaluate the effectiveness
and capability of the Leapfrog method, four different test cases are numerically
solved and compared to BVP4C solutions. The numerical simulations are then
used for experimental studies through path following control.

4.1 Optimal Control Problem Formulation

Given the mobile robot kinematic model in Eq. (1.2.1)) and boundary condi-
tions qo = (X0, Yo, ¥o) and q5 = (X7, ¥, ¢y), find a control u(t) that generates
the mobile robot’s trajectory by minimizing the following objective function:

1 [
J = —/ u'u dt, (4.1.1)
2 /i
where u = [v,w]? is a control input represented by the linear and angular

velocities of the robot, respectively.

In order to minimize the cost function, the necessary conditions must be sat-
isfied. Firstly, the Hamiltonian function is defined as

1
H= 5(1)2 + w?) 4+ A cos g + Aavsing + Asw, (4.1.2)

51
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where A\, Ao, and A3 represent the costate variables.

. H
Using A = ~a the co-state equations are obtained as
q
. 0
A = 0 ) (4.1.3)
A1 Sin @ — Agv cos
OH
and the state equations from q = R as
v COS
q = |vsing]|. (4.1.4)

OH
For the control to be optimal, the necessary condition — = 0 leads to

ou

_|Hy| _ |v+Aicosp+ Agsing
0= |:Hw:| = [ ey , (4.1.5)

where H, and H, are derivatives with respect to control inputs v and w.

Solving for control inputs v and w, Eq. (4.1.5) becomes

m - {_(Al Cosf;; A2 Sin@} . (4.1.6)

Substituting Eq. (4.1.6)) into the state in Eq. (4.1.4) and costate in Eq. (4.1.3)),

gives the following two-point boundary value problem (TPBVP):

[ ] [—IX(1+ cos2p) — $Xosin2p |
y —3A18in2¢ — 2X5(1 — cos 2¢p)
2 —As3
| = 0 : (4.1.7)
A 0
A3 $(A3 — AP)sin 2¢ + A Ag cos 2¢

with the following initial and boundary conditions imposed on the position
and orientation of the robot for ¢y = 0 and t; = 1:

x(0) = xo, x(1) = xy, (4.1.8)
y(0) = y, y(1)=yy, (4.1.9)
©(0) = wo, (1) =gy (4.1.10)
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4.2 Numerical Solutions

In this section, the Leapfrog algorithm is applied to find numerical solutions
to the TPBVP derived in Section [£.1] The simulations were performed using
MATLAB [107] and a MATLAB code [I0§] by C.Y. Kaya was modified to suit
the mobile robot problem. Four different examples are considered in order
to evaluate the Leapfrog algorithm and are compared to numerical solutions
using the MATLAB solver BVP4C. This solver which comes standard with
MATLAB is commonly used to solve optimal control problems for mobile
robots such as in [109], [106], and [110], and it has shown to solve these systems
efficiently. Here, the BVP4C solution is used as a reference or ground truth
and compared to the Leapfrog solution.

To implement the Leapfrog method, first a feasible path defined as z, is chosen
between the robot’s initial and final configurations qo and q;. The feasible
path is then subdivided into p equally spaced partition points along a straight
line. In this case, the feasible path was easy to generate because there are no
obstacles in the robot workspace. An affine approximation, which is part of
the Leapfrog method, then uses the information from the initial feasible path
to compute initial conditions for the costates. For the Leapfrog simulations,
four maximum iterations, i.e., k = 4, are considered with the feasible path zgk)
for:=0,1,...,p where p = 8.

For the BVP4C implementation the initial mesh between the time inter-
val [to,tf] was chosen to be: solinit = bvpinit(linspace(0,ts,N),yinit)
with IV = 8 equally spaced points, where the final time is set to ¢ty = 1 for all
cases which is the same as in the Leapfrog method. The initial conditions for
the states and costates are stored in yinit. If there are no guesses generated
for the costates then values in yinit are taken as a guess. In the simulations
done here, yinit is chosen as a default setting for initial condition guess. Once
the initial mesh and guesses are selected, the TPBVP and boundary conditions
are called and solved numerically.

Even though the examples chosen for this section look simple, the computation
for the differential equations for the mobile robot is numerically challenging.
The aim for the following cases is to illustrate that the Leapfrog method can
find optimal solutions given the robot final configuration to be in an oppo-
site direction as the initial configuration, as demonstrated in the first three
examples.

Case 1: In this simulation, the robot is considered to move from the initial
b i
state at [—1,2, 5] to the state at [1,2, —5] Figure |4.1{ shows the trajectories

generated by both methods with arrows indicating computed orientations at
key positions. As can be seen from Figure the orientation requirement is
resolved by travelling in the forward direction.
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T T T T T T T T T
—+—BVP4C
28} —o— Leapfrog

y-axis (m)

L | | 1 | 1 1 L 1 | 1
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
x-axis (m)

Figure 4.1: The BVP4C and Leapfrog trajectories for Case 1.

Case 2: In this simulation the robot is given the initial state [—1,0, 0] and
desired final state [1,0,7]. The solution trajectories can be seen in Figure
and contain two 90° turns. The first 90° turn is performed in the forward
direction while the second turn is in reverse, completing a direction reversal,
as desired.

T T T T T T T T
1.2F —*— BVP4C
—o— Leapfrog

y-axis (m)

-0.2

| 1 | 1 | 1 1 1 1 L |
-1 08 06 -04 02 0 0.2 0.4 0.6 0.8 1
x-axis (m)

Figure 4.2: The BVP4C and Leapfrog trajectories for Case 2.

Case 3: This case is similar to Case 1, the difference being that the robot
is desired to move in the y-direction with orientation reversal. The initial
state of the robot is [0, 3, 0] and the final state is [0, 1, 7]. An optimal solution
was found using the Leapfrog algorithm and the trajectory can be seen in
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Figure[4.3] The orientation requirement is resolved by travelling in the reverse
direction.

—6— Leapfrog

. . . | .
-1 -05 0 05 1
x-axis (m)

Figure 4.3: The path generated by Leapfrog for Case 3.

On the other hand, the BVP4C solver failed to find a solution for Case 3
and resulted in a state singularity error. To overcome this, a different initial
guess for the costate was chosen as \;, = [1, 1, 1]T. The change resulted in
an optimal solution similar to Leapfrog as shown in Figure [£.4] From this
example, it was confirmed that the success of BVP4C depends on a good
initial guess for the costates. Without a good guess, there is a possibility of
getting no solution or a sub-optimal solution.

—+—BVP4C

. . . |
-1.5 -1 -0.5 0 0.5
x-axis (m)

Figure 4.4: The BVP4C trajectory for Case 3 given different values for the initial
costates.
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™
Case 4: In this case, the initial state is [2,2,0] and the final state [2, 4, §]
The solution trajectories can be seen in Figure 4.5 where the orientation re-
quirement is resolved by travelling in a reverse direction, then a forward direc-
tion.

T
—*— BVP4C
—o— Leapfrog

3.5

y-axis (m)

25

L

1 1 1 1 1 1 1
0.5 1 1.5 2 25 3 3.5
x-axis (m)

N
T

Figure 4.5: BVP4C and Leapfrog trajectories for Case 4.

For comparison, the time of producing the optimal paths from both Leapfrog
and BVP4C is demonstrated in Table together with the path cost which
is noted to be the same for both methods.

Table 4.1: Path cost and CPU time for the simulation results.

CPU time(s
Case | Cost Leapfrog B\(/IZZLC
1 0.502 | 1728.62 1.717
2 0.604 | 35.850 1.775
3 0.502 | 163.14 1.292
4 0.702 | 3316.63 2.069

Mean Square Error (MSE) was then calculated for the position coordinates,
where Leapfrog results were interpolated using the BVP4C coordinates. The
values for the test cases are shown in Table (4.2l

From Table it can be noted that the small MSE values indicate high simi-
larity between the trajectories from the BVP4C and Leapfrog methods.
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Table 4.2: MSE values for simulation results.
Case | MSE (m?)

1 1.3895x107*
1.2571x107°

2
3 -
4 2.7536x 10710

4.3 Mobile Robot Experiments

For the experimental investigations, a Pioneer 3-DX mobile robot shown in
Figure [4.6|is used. This type of mobile robot is a commercial product which is
commonly used for research purposes and has shown to have good maneuvering
and work well indoors on flat surfaces. The robot has two wheels each attached
to a motor, and a caster wheel for balance. The Pioneer 3-DX platform weight

Figure 4.6: Pioneer 3-DX mobile robot [5].

is 9kg, can reach maximum forward or backward speed of 1.6 meters per second
and carry a payload of up to 23 kg. In order for the user to be able to control
the robot, it has an onboard PC, WiFi adapter for wireless connection and
also has a standard serial cable. More information on the specifications of the
mobile platform is available on the Géneration robots website [3].

4.3.1 Path Following Control

In path following, the robot is required to converge to and follow a geometric
path. In this work, the optimal trajectories generated by the Leapfrog method
in the previous section are considered as the reference path. It would be
possible to use Leapfrog velocities as control inputs to the robot, however it is
important to provide feedback control for realistic path following in situations
where the robot experiences slip or the robot control is not accurate enough.
Therefore, a proportional plus derivative (PD) controller was used on the robot.
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The inputs to the PD controller are chosen to be Leapfrog-computed position
information say, P.(t) = [z.,v.,.]T at time ¢, and the sign of Leapfrog-
computed linear velocities, to allow the PD controller to distinguish forward
and reverse directions. Figure [4.7] illustrates how the control inputs to the
robot are computed at each time step.

» Next position

Current position

Initial position

Figure 4.7: Steps on how the position error is computed for the PD controller.

The positional error which is the distance from the current robot location P
to the current point on the path P, with respect to the current robot pose is
computed as follows:

€1 €T,
e2| =Tt |Y:| » (4.3.1)
€3 1

where

. ~1
cosp —singp

T, = |sing cose y| (4.3.2)
0 0 1

(.,Y.,¢.) are the coordinates for the reference path P, which is where the
robot should be on the path and (z,y, ) are the current coordinates for the
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controlled robot. The Cross Track Error (CTE) is then calculated as the y-
value of the positional error, CTE = e,.

Using the PD controller, the steering command is computed as:
a=—kpes — kp(ea —ex(t — 1)) /dt, (4.3.3)

where es(t — 1) is the previous CTE, and kp and kp are the positive constant
proportional and derivative gains, respectively. The next control point is then
computed as

C(t) = R(a)-T(P(t)) Pu(t+1). (4.3.4)

Therefore, the next or desired velocities to send to the robot are calculated as
follows:

v(t+1) = C(t)-z/dt, (4.3.5)
w(t+1) = a/dt. (aisnegated when v is negative) (4.3.6)

To demonstrate the performance of the control strategy, Case 2 in Section [4.2]
is considered.

T T T T T T T T
1k —&— Robot
—o6— Leapfrog

y-axis (m)

-0.5F

| 1 | 1 1 1 | L | L |

-1 08 06 04 02 0 0.2 0.4 0.6 0.8 1
x-axis (m)

Figure 4.8: Mobile robot and Leapfrog trajectories for Case 1.

From Figure [4.8it can be seen that the proposed control law shows good con-
vergence. Table shows the MSE for robot position relative to the Leapfrog
method’s position for Cases 1-4 outlined in Section 4.2

From the MSE values it can be noted that there are only small errors between
the trajectories from the Leapfrog algorithm and those from the robot.
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Table 4.3: MSE values for real experiments.

Case | MSE (m?)
1 1.8538%x107°
2 1.5585x107°
3 2.0727x107°
4 9.5429x1076

4.4 Conclusion

In this chapter, an application of the Leapfrog method to find optimal paths
for a two-wheeled mobile robot was introduced. First, using the mobile robot
kinematic model and a cost functional, an optimal control problem was for-
mulated. Then, the minimum principle of Pontryagin was employed and the
optimality conditions were derived. The TPBVP resulting from the optimality
conditions was then solved using the Leapfrog method. Finally, simulations
were performed for the mobile robot given different positions in each exam-
ple and optimal paths were generated. The simulation results show that the
Leapfrog method can find solutions in cases where the BVP4C approach failed.
This was shown in Case 3 where BVP4C resulted in the generation of a singular
Jacobian while attempting to solve the collocation equations. This was traced
to a problem with the initial guess of the solution. Path following experiments
using a real robot were also performed, where it was shown that the robot was
able to follow the paths generated by the Leapfrog method.
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Chapter 5

Leapfrog Paths for a Two-wheeled
Mobile Robot in the Presence of
Obstacles

In this chapter, the optimal control problem is employed to generate collision-
free paths for the two-wheeled mobile robot in an environment with obstacles.
The problem of planning an optimal path through the optimal control approach
in an environment with obstacles can be challenging to solve, since conventional
optimal control approaches cannot directly be used to deal with the obstacle
avoidance problem. A simplified approach in handling obstacle avoidance is
adding potential fields to the cost functional to be minimized; in that case, the
problem is defined as an optimal control problem without constraints [9; 23;
I11]. This formulation ensures that the robot avoids obstacles and can find
optimal paths at the same time. Therefore, in this work obstacle avoidance
is mathematically modelled using a Gaussian potential field and added to the
cost functional.

Similarly to Chapter [4] the optimal control problem is formulated using the
necessary conditions for optimality derived through PMP, and the resulting
TPBVP is numerically solved using the Leapfrog method. In order to execute
the Leapfrog method an initial feasible path is prescribed. One of the simplest
initialization approaches is to assume that the path is a straight line between
the initial and final states, as in Chapter 4l With obstacles present, however,
a feasible (but not necessarily optimal) path is required. In this chapter, the
trajectories produced by the A* and RRT algorithms are used as initial feasible
paths for Leapfrog. Hence the second part of this chapter is an evaluation
to check if the Leapfrog algorithm is capable of finding a unique path given
different initialization approaches. It will also be checked whether Leapfrog is
unaffected by the specific route taken by the initial path, or if the Leapfrog
result does depend on the method used to generate the initial path.

To evaluate the efficiency of the Leapfrog method, numerical simulations are

61
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done, and a comparison is made with the BVP4C algorithm. The simula-
tion results show that a similar path cost can be obtained with the Leapfrog
approach which forms part of the first part of the chapter.

5.1 Obstacle Avoidance Formulation

Obstacle avoidance is one of the important aspects of solving motion planning
problems. It addresses the problem of how to drive a robot from one state to
another while avoiding collisions with obstacles. There are different methods
that can be used for obstacle avoidance and each has its own advantages and
disadvantages, as mentioned in Chapter [2| Apart from alleviating the known
issues of getting trapped in local minima, GNRON and an inability to deal
with closely spaced obstacles, the potential field methods are known to provide
simple and elegant solutions for obstacle avoidance for mobile robot planning
[9]. For this reason the potential field method is used as an obstacle avoidance
technique in this chapter.

To represent the obstacles, a repulsive field which imposes an area of high po-
tential near obstacles is defined by a Gaussian function. Obstacles represented
by the Gaussian potential field provide a region with finite height surround-
ing the obstacle. Parameters defining this region can be chosen to prevent
collision between the robot path and the obstacle. In addition, the Gaussian
function derivatives are continuous and smooth functions [97] which makes
them suitable as a potential obstacle representation function.

From the literature presented in Chapter [2] it can be noted that Gaussian
potential fields are mostly used to avoid the GNRON problem [96] and to
create a passage between closely spaced obstacles which in turn reduces the
number of local minima [95]. In this work, however, challenges of local minima
are not considered. In the literature it is presented that one can implement
global solutions such as navigation functions [47], harmonic functions [48] and
Simulated Annealing [71] in order to avoid local minima.

Assume that the robot is a point mass in a 2-D workspace with the robot
position q = [z,, y,]7. Each circular obstacle in the workspace is located at
center point (¢, y’,.) with radius 7¢,_.. The repulsive potential function is
therefore given by

Fnf@) = A | - %(ffi)c} (5.11)

TeP;
where A,., is a positive constant, parameter C' relates to the steepness of the
obstacle and o, is the size of the obstacle which is related to ribs. The
distance p’ between the center of the mobile base (z,,y,) and the center of the
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1-th obstacle is given by
o=\ — 2, )2+ (4 — vl (5.1.2)

By computing the repulsive force with respect to a sum over all obstacles in
the workspace, Eq. (5.1.1]) becomes

Frep(q> = Z Frepi (q)7 (513)

where n is the number of obstacles.

The Gaussian potential function defined in Eq. is used to avoid colli-
sions between the robot and the obstacles. With the Gaussian function, the
behaviour of the robot around obstacles can be modified by tuning the param-
eters g,ep,, Arep and C. By tuning these parameters properly, it is possible to
guarantee collision-free paths in the presence of obstacles [112].

5.2 Optimal Control Formulation in the
Presence of Obstacles

In this section, the optimal control problem for the mobile robot in the presence
of obstacles is formulated through the minimum principle where the optimality
conditions will be derived. The resulting TPBVP is then numerically solved
using the Leapfrog method, yielding a critical path for the mobile robot.

The cost function is defined to minimize the energy control inputs and includes
the Gaussian potential function. The cost function of the optimal control
problem is therefore given by

ty n
J=3 / (" Ru+ ) " Fup,(q)] dt, (5.2.1)
to i=1

where u = [v,w]” is the control input vector and R is the control weighting
matrix.

Given the robot kinematic model in Eq. (1.2.1)) and adjoining the constraints to
the cost functional in Eq. (5.2.1)) with Lagrange multiplier, A, the Hamiltonian
function is given by

1 n
H = 5 (Ruv2 + Rogw? + Z Frepi(q)> + Avcos o + Ausing + Asw. (5.2.2)
i=1

0H
Using the control optimality condition — = 0, the optimal velocities are

ou

1] [ o). 529
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The optimality condition for the costate equations is given by

_ZAMP 2—2 Tobs) iy eXp( 2(52)2 )(((Tgi)z)01-

’I"(ip TEP; TEP;

_%_Z: —ZArep (y — yobs)c p( 2((/;;)2 )(((7;;) >0—1

rep rep; rep;

1
5()3 — A% sin 2 + §A1)\2 cos 2
(5.2.4)

The control input u can be solved in terms of the state q and costate A.
Substituting the optimal velocities from Eq. (5.2.3) in the state optimality
condition yields

——)\1(1 + cos 2@) - —)\2 sin 2p
OH
Tox T | TglisinZp - —Az(l — cos2¢) | - (5.2.5)
W

Hence the TPBVP considered becomes:

——)\1(1 + cos 2g0) - —)\2 sin 2

——)\1 sin 2p — —)\2(1 — cos2p)

X

y e : 2y O—1

2 I R R Gl R P (P ) [\

):\1 = Z P o0 3ep oXp 203613 UZepl ’

A

i) v (0= ) o (L0 (W)
Tep rep; rep;

(A3 — A})sin2¢ + 2A1 g cos 2¢

1
2

with boundary conditions q(ty) = qo and q(t;) = qy-.

5.3 Experiments in the Presence of Obstacles

In this section, the optimal control problem for the mobile robot in the pres-
ence of obstacles is numerically solved using the Leapfrog method. For the
simulations, the robot is given an initial position and orientation, and a goal
position and orientation. The robot will plan its path in a workspace with
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circular obstacles each located at center point (z¢,,,y’,,) with radius ¢, for
i = 1,...,n. The positions of the obstacles in the workspace are known to
the robot. The control weighting matrix in the cost function in Eq. is
given by R = diag(1,1), the height of each obstacle is A,., = 1, the steepness
of each obstacle is C' = 1 and the width of each obstacle is represented by
Orep, = Topo. Since the values for the Gaussian parameters need to be chosen
before Leapfrog is executed, several simulations were done and the value of 1
was selected for these parameters.

To evaluate the Leapfrog method, first a path generated by the RRT algorithm
is chosen as an initial feasible partition represented by ugo). To achieve a
faster convergence in the Leapfrog method, a few sets of way-points are chosen
as partition points (p = 8) from the RRT path. Once the initial feasible
path is chosen, the Leapfrog method uses an affine approximation to initialize
values for the costates. However, for the mobile robot model presented in
this section, the approximation did not yield reasonable guesses. In [68] it
is demonstrated that the affine approximation can provide good guesses for
some of the costates. Therefore in this chapter, a gradient approach is used to
calculate initial conditions for the costates as follows:

Tyl — Tk—1
Mp1] = ——— 5.3.1
1,k—1 tk+{ _'tkfl ) ( )
Yk+1 — Yk—1
Aop] = —— " = 5.3.2
2,k—1 tk+q _’tk_1’ ( )
Pk+1 — Pk—1
A3p] = —T—— 5.3.3
Bk ler1 — th1 ( )

The numerical simulations are carried out using MATLAB. For comparison,
the BVP4C method which has shown to be effective in the previous chap-
ter is used. Both the Leapfrog and BVP4C methods use the same Gaussian
parameters and final time (¢;) per problem.

Case 1: In this simulation, the mobile robot is to move from a given initial
state [0,0,7/4] to a final state [1,1,7/4] at total time t; = 4s. The obstacles
are located at center points =, = 0.35, y.,. = 0.45 and 22, = 0.55, y%,, = 0.7,

obs obs
respectively. The radii of the obstacles are rl,, = 0.1 and 72, = 0.1. As it can

be seen in Figure the Leapfrog method is able to plan a critical collision-
free path. It can also be noted that the state trajectory generated by the
BVP4C solver is very similar to the Leapfrog trajectory.

Case 2: For this simulation, the robot is considered to move from an initial
state [0,0,0] to a final state [2,0,0] at total time ¢ty = 5s. The center coordi-

nates of the obstacles are z},. = 0.9, y},. =0, 22, = 1.1, ¥4, =0, 23, = 0.3,

Y3 = —0.35, ad = 1.6, yh, = 0.35 and 25,, = 0.4, y5,, = 0.3 with the radii

obs

ri,, = 0.08, for v = 1,...,5. Figure shows the paths generated by the

obs

Leapfrog method and BVP4C.
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Figure 5.1: The BVP4C and Leapfrog trajectories in the presence of two obstacles
for Case 1.
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Figure 5.2: The trajectories obtained from BVP4C and Leapfrog in the presence of
five obstacles for Case 2.

It is also depicted in Figure [5.2] where there are obstacles between the start
state and final state that the Leapfrog algorithm managed to find a collision-
free path whereas the BVP4C path went over the obstacles resulting in a higher
path cost (see Table . Given a better initial guess, however, the BVP4C
can produce a collision-free path. Hence Case 2 was executed again with a
different initial guess for the costates, A(tg) = [111]7, and the results for
BVP4C are shown in Figure [5.3| where the cost is now matching the Leapfrog
result.

Path costs for the Leapfrog and BVP4C solutions are computed where the
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Figure 5.3: The trajectory obtained from BVP4C using different initial costate values
for Case 2.

forward and angular velocities together with the Gaussian function for each
time point are used to calculate the integrand of Eq. . The resulting
discrete-time function is then integrated numerically using trapz in MATLAB.
Table [5.1] shows the path costs for the cases above together with the execution
times for both the Leapfrog method and BVP4C.

Table 5.1: Numerical evaluation

Method | Case Cost | CPU time(s)
Leapfrog 1 0.502 81.22
2 0.604 135.55
1 0.502 5.29
BVP4C | 2 (Fig.5.2)) | 0.702 9.35
2 (Fig. 5.3]) | 0.604 8.47

5.3.1 Path Following Results

Path following experiments are conducted using a Pioneer 3-DX mobile robot.
A simple proportional plus derivative (PD) controller is implemented where the
paths generated by Leapfrog are taken as inputs. The PD controller then sends
approximate velocities to the robot so that it follows the Leapfrog-computed
position (z,y), and the sign of the Leapfrog-computed forward velocity. The
trajectories obtained from the Pioneer robot and Leapfrog simulation in the
presence of two obstacles (Case 2) are shown in Figure 5.4 From this simula-
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tion, it can be seen that the robot managed to follow the path generated by
the Leapfrog method.

—&— Robot
—o— Leapfrog

0.8

0.4

0.2F

|
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 5.4: The trajectories obtained from the Pioneer robot and Leapfrog simulation
in the presence of obstacles.

Table shows the MSE for robot position relative to the Leapfrog position
for all the cases. In this table it can be noted that the results obtained from the
robot experiments are close to those obtained from the Leapfrog simulations.

Table 5.2: MSE values for real experiments.

Case | MSE (m?)

1 2.1076x107°
2 1.03979 x10-¢
3 3.2580 x107°
4 1.9094 x1076

Concluding the numerical results for this section, it is noted from Table
that the cost values for the Leapfrog method are very close to the BVP4C cost
values. This shows that the Leapfrog method has the capability to perform
well even in the presence of obstacles. In [69] it was shown that the Leapfrog
method can produce solutions in cases where BVP4C encountered singularities.
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5.4 Leapfrog Initial Feasible Path

In Chapter [, the first partition for the Leapfrog method was selected as a
straight line between the initial and final states. However, due to obstacles
present in the robot workspace, a different approach is required to generate a
collision-free initial partition for the Leapfrog method. The main focus of this
section is to demonstrate that the Leapfrog algorithm is capable of finding a
unique critical path using initialization from different path planners. This is
illustrated by using paths generated by the A* and RRT algorithms. It should
be noted that the path produced by these planners does not necessarily need
to be optimal, only feasible. In addition, paths generated by these planners
are not refined by Leapfrog, they provide the initialization trajectories for
the Leapfrog method. The optimal control problem for mobile robot motion
planning in the presence of obstacles is defined as in the previous section.

5.4.1 Simulation Results

To demonstrate the performance of the Leapfrog method, four different sets of
examples are considered. Both A* and RRT build a path in (x,y) coordinates.
To get the orientation ¢, the MATLAB function atan2 is used so that the
resulting orientation is aligned to the path. Since the path generated by A*
is in discrete space, it is first converted to continuous space before its use
in forming the initial partition for Leapfrog. Furthermore, the A* and RRT
methods may produce many way-points which form the initial path. These
points are reduced using B-spline interpolation for faster Leapfrog convergence.
The Leapfrog method is executed for each initialization and the results are
illustrated in the following cases. For each case, the path produced by Leapfrog
together with the paths generated by A* and RRT, are plotted.

Case 3: In the first simulation of this section, the mobile robot is required to
Vs s
move from initial state [0, 0, Z] to final state [1,1, Z] during the overall time

t¢ = 4s while avoiding two obstacles. The obstacle locations are given in Table
[.3] and the results are shown in Figure [5.5]

Table 5.3: Obstacle coordinates for Case 3.

. 7 7 7
Obstacle, ¢ | (2%, ¥ls) | Thps

1 (0.35, 0.45) | 0.1
2 (0.55,0.7) | 0.1

Case 4: In this simulation, three obstacles are considered where their loca-
tion coordinates can be seen in Table[5.4. The mobile robot is expected to find
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Figure 5.5: Paths generated by A* and RRT and the path resulting from the Leapfrog
method for Case 3.

a path from initial state [0,0, %] to final state [4,4, %] within the final time
ty = 5s. The results are shown in Figure [5.6]

Table 5.4: Obstacles coordinates for Case 4.

Obstacle, i (*If;bga yf,bs> Tobs
1 (1, 2) 0.3
2 (2.5,1) | 0.3
3 (2.5,2.6) | 0.3
A |

— A+
—o— Leapfrog

0 1 2 3 4 5

Figure 5.6: Paths generated by A* and RRT and the resulting path resulting from
the Leapfrog method for Case 4.
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For the simulations shown in Figure [5.5| and Figure [5.6|it can be noted that if
there were no obstacles, the resulting optimal path would be a straight line.

Case 5: To intensify the problem in this simulation, the mobile robot is
expected to move from initial state [0, 0, 0] to final state [2, 0, 7] while avoiding
seven obstacles (as defined in Table within the final time ¢; = 4s. For this
example, the robot is expected to complete a direction reversal.

Table 5.5: Obstacles coordinates for Case 5.

Obstacle, i | (2%, 9%.) | T'ps
0 (0.9,0) | 0.08
2 (1.1,0) | 0.08
3 (0.3, -0.35) | 0.08
4 (1.6, -0.35) | 0.08
5 (0.3,0.2) | 0.08
6 (1.6, 0.2) | 0.08
7 (1,0.6) | 008

As can be seen in Figure the Leapfrog method produced a collision-free
path that satisfies the initial and final configuration.

—=—RRT
'
—e— Leapfrog

O

0.4r

0.8

y (m)

-0.6

0 02 04 06 08 1 12 14 16 18 2
x(m)

Figure 5.7: Paths generated by A* and RRT and the resulting path resulting from
the Leapfrog method for Case 5.

It is known through literature that RRT produces different paths every time
the algorithm is executed. Due to this, choosing which path to take for the
Leapfrog initialization can be a challenge. Hence in the following example, two
paths generated by the RRT are used to further test if the Leapfrog method
will find a unique solution.
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Case 6: Given the robot initial state [—0.5, —3, 0] and final state [1.5, 2.5, 0]
a critical path in the presence of obstacles is found (see Figure .

Table 5.6: Obstacles coordinates for Case 6.

- 7 7 7
Obstacle, i | (2%,.,y"s) | Tps

1 (15, 1) | 05
2 (-0.5,-1) | 0.8

For this case, the initial paths considered are generated by RRT, i.e., RRT}
and RRT, as shown in Figure [5.8] As seen in Figure Leapfrog managed
to find a solution given both paths for initialization. This indicates that the
Leapfrog method is not directly tied to the initial path.

/

S— i i
-2 -1 0 1 2 3 4

Figure 5.8: Two paths generated by RRT, a path from A* and the path resulting
from the Leapfrog method for Case 6.

5.5 Discussion

This section discusses the effect that the Gaussian parameters have on generat-
ing collision-free paths. Limitations in the Leapfrog numerical implementation
for mobile robot planning in an environment with obstacles are also discussed.

As mentioned before, with Gaussian functions one can model obstacles with
approximate details of their size and location. This can be achieved by adjust-
ing parameters such as A,.,, C and 0,¢,,. Tuning these parameters can also
ensure that collision-free paths are obtained, though there is no systematic
way to do so [97]. It was observed in simulations with the example of Case
6, initialized using the RRTy path, that during the Leapfrog iterations the
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collision avoidance is not entirely successful, as shown in Figure [5.9, Between
iterations £ = 7 and k = 11 the path goes over the obstacle but with a reduced
cost. The control term in the cost functional can possibly overpower (be higher
than) the Gaussian repulsive parameter, thereby allowing a collision even as
the path cost reduces.

y(m)

(a) ugl) with p = 8 and cost = 11.08. (b) ug) with p =4 and cost = 7.38.

(c) ,ugu) with p =4 and cost = 6.30. (d) ,u,(zl?’) with p = 2 and cost = 5.81.
Figure 5.9: Local paths generated by Leapfrog at iterations £ = 1,7,11 and 13 for
Case 6 with Ayep = 1.

For this simulation, the Gaussian parameters were chosen as A,., = 1, which
means that the cost of crossing the obstacle is relatively low, when compared
to the overall path cost. After increasing the value of the obstacle height to
be A,., = 10, locally feasible paths were achieved in the Leapfrog iterations.
Figure shows the resulting path generated by the Leapfrog when A,., is
increased. Even though the results shown in Figure [5.10| are collision-free, the
cost is higher than those shown in Figure [5.9|

Based on the simulations shown in Figures and the Leapfrog method
can yield collision-free paths provided that the potential field parameters are
defined well.
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(a) ;&) with p = 8 and cost = 12.06. (b) ,ug) with p = 4 and cost =9.18.

y (m)

(c) ,u,(zn) with p =4 and cost = 9.09. (d) ,ugm) with p = 2 and cost = 9.09.

Figure 5.10: Local trajectories generated at Leapfrog iterations k = 1,7,11 and 13
for Case 6 where A, = 10.

From the Leapfrog method’s point of view, it is observed that even though
critically feasible paths can be found using the method, there are some short-
comings in the numerical implementations. The first one is related to the
number of partition points in the feasible path in the first iteration. The
choice of partition points affects the algorithm’s convergence time. The fewer
the partition points the quicker the rate of convergence, especially in the first
iteration. Hence a relatively low number of RRT way-points is used in the
simulations.

The second one is related to the affine approximation for initial costate values.
Due to the nature of the mobile robot’s kinematic model, the affine approxima-
tion for costate initialization did not work. Hence in this chapter, a different
approach to find initial costates was used.

It is also noted that Leapfrog does not necessarily converge to a unique critical
path, as different solutions can be obtained from the same initial feasible path,
as shown in Figures and [5.10, Therefore, Leapfrog’s solution must be
bound to the route of the initial feasible path, to ensure that the solutions in
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the intermediate iterations are collision free.

5.6 Conclusion

In this chapter, path planning for a mobile robot in the presence of obstacles
was presented as an optimal control problem, and a TPBVP was derived. The
Leapfrog method was implemented to determine paths using the necessary
conditions of Pontryagin’s Minimum Principle. The proposed algorithm allows
the robot to plan a collision-free path through static obstacles by minimizing
a cost functional that includes an energy term and the Gaussian potential
function.

Simulations were conducted in Section [5.3| given different case studies, and
comparisons were made with the BVP4C algorithm showing that similar path
costs can be obtained with the Leapfrog approach. In Section [5.4.1] the forma-
tion of the Leapfrog initialization using different path planners, e.g., A* and
RRT, was investigated. It was observed in Case 6 that the Leapfrog method
did not find a unique path. Therefore, it cannot be concluded that Leapfrog’s
best solution is not bound to the route of the initial feasible path. The effects
of the potential field parameters in terms of guaranteeing collision-free paths
were also discussed and demonstrated in the simulations.

From the case studies and numerical results in both Section and Section
[5.4.T], it was shown that the Leapfrog algorithm performed well in environments
with obstacles for the examples presented in this chapter. Also, the path
following experiments confirmed that a physical robot is able to follow the
Leapfrog paths.
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Chapter 6

Leapfrog Paths for a Mobile
Manipulator in the Presence of
Obstacles

In recent years, research has been conducted on motion planning and obstacle
avoidance for wheeled mobile manipulators. Mobile manipulators are robotic
systems that consist of an arm manipulator mounted on a mobile robot plat-
form. These systems have been widely used due to their larger workspace
and ability to reach targets that are initially outside the manipulator’s reach.
The motion planning problem for the mobile manipulator involves finding a
path for the robot from an initial position to the desired goal. The mobile
manipulator has two subsystems connected where the mobile platform is often
associated with nonholonomic constraints, and the manipulator may be holo-
nomic. In general, this complicates the motion planning problem, especially
for mobile manipulators with many degrees of freedom.

In many applications, the mobile manipulator is required to move the end-
effector along a preferred path. A trajectory planning method for a mobile
manipulator was proposed in [I13] while considering a predefined path for the
end-effector. In [I14] a planning and control algorithm for a mobile manipula-
tor to follow the desired end-effector and mobile robot platform was presented.
The control algorithm was tested on two mobile manipulator systems, where
a planar arm was mounted on a differential drive and a car-like robot. A kine-
matic and dynamic model for a nonholonomic mobile manipulator with two
links was considered in [I15]. The motion planning was done through artificial
potential fields where the mobile manipulator was commanded to move the
end-effector while the mobile base was stationary.

In other work, considerable effort has been directed toward finding optimal
paths through optimal control approaches. Due to their highly nonlinear na-
ture, optimal control problems are solved using numerical techniques. The
formulation often leads to a TPBVP which can be solved by indirect methods.

76
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For mobile manipulators, this approach has been applied in [IT0; 113] where
minimizing a cost for mobile manipulator motion planning is considered. In
[113] sub-optimal trajectories for mobile manipulators are presented where the
problem is formulated as an optimal control problem, and an iterative method
based on the gradient function is used. An established TPBVP in [I10] is
solved with the BVP4C function in MATLAB, to find optimal trajectories for
wheeled mobile manipulators in cluttered environments. Of particular interest
from the work by [110] and [I16] is the use of potential fields and formulating
the obstacle avoidance problem.

In this chapter, the Leapfrog algorithm is applied to path planning for mobile
manipulators and represents the first use of the Leapfrog algorithm for this
purpose.

6.1 Optimal Control Formulation for the
Mobile Manipulator in the Presence of
Obstacles

In this section, the optimal control problem for a mobile manipulator is em-
ployed in the presence of obstacles. The performance index considered for
this problem includes minimum energy control effort and a Gaussian poten-
tial function as in the previous chapter. Using PMP, necessary conditions of
optimality are obtained. The resulting TPBVP is solved numerically using
the Leapfrog method. The main focus of this section is to demonstrate that
the Leapfrog algorithm can produce optimal motion trajectories for the mobile
manipulator while avoiding obstacles.

6.1.1 Obstacle Avoidance

In order to guarantee a collision-free path for the mobile manipulator given
an initial and final configuration, first, a repulsive potential function based
on a Gaussian function as defined in Chapter |5 is used. To further restrict
the mobile manipulator platform from colliding with the obstacles, inequality
constraints adopted from [116] and [I17]| are added to the obstacle avoidance
parameters. The obstacle avoidance problem is formulated in such a way that
the mobile platform, the links and joints of the mobile manipulator (see Figure

avoid collision with the obstacles.

This is achieved by using the repulsive potential field based on a Gaussian

function given by
1/ ()*\ ¢
Frep,(d) = Apep exp{ b (L : (6.1.1)

2
Trep;
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Y-axis

Xaxis >
Figure 6.1: Two-link wheeled mobile manipulator.

where A,., is a positive constant, p' is the Euclidean distance between the
robot and the i-th obstacle, C' determines the height of the obstacle and o,
is the size of the obstacle. The obstacle avoidance is also applied with the
inequality constraints from [I16] which further restrict the mobile manipulator
from colliding with obstacles.

Let the distance between the mobile manipulator components and the ¢-th
obstacle centered at (wf,, yl,,) be denoted by p! ;. Taking j and k equal to
zero, the distance between the center of the mobile platform (z,,y,) and the
center of the i-th obstacle is given by

Pho =\ (@ — 2832 + (0 — vy, (6.1.2)

Hence the constraint condition imposed on the mobile base yields
. 1 (:06 0)2 ¢ e i

; ZArep €xp |: - 5 <O’2—7 if p0,0 < Tobs + Tm,
@1,1 =3 =1 rep . ‘

0 if pho = Tops T T'm;

(6.1.3)

where n represents the number of obstacles, and r,, and 7, represent the radii
of the mobile base and the i-the obstacle, respectively.

Assuming that the links of the manipulator are line segments, the distance
of the arm manipulator components from the i-th obstacle is denoted as p;k
where j = 1 is the distance between the links (k = 1 for first and k& = 2 for
the second link) and the obstacle, and j = 2 is the distance from the joints of
the first and second link.
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Taking j = 1, the perpendicular distance between the links and the i-th ob-
stacle is calculated as in [I11] as

'det {Ll cos(p+01) x, — xibs]

. Ly sin(p + 61) Yr — Yl
P11 = L )

‘det {LQ cos(o + 601 +6,) x4+ Lycos(o+6r) — xibs:|

, Lysin(¢ + 61 + 65) Yr + Ly cos(@ + 01) — i,
P12 = Ly

The distance between the joints of the links and the ¢-th obstacle, i.e, j = 2,
is given by

phy =/ (@r + Ly cos(p +01) — 22,)2 + (yr + Lysin(o + 601) — y,,)%,

and

p;,z = \/(-736 - $f>bs)2 + (Ye — y(ins)27
where z. and y. are the end effector coordinates given by

Te = xp+ Lycos(o+61)+ Lacos(p + 01 + 02),
Ye = Yp+ Lysin(o+01) + Losin(p + 01 + 0s).

Then the constraint condition imposed on the manipulator components is ex-
pressed as:

(n - i \2y\ Cq
1
E Apep exp | — 3 ((pl’k) ) ifo0<~y<1
i=1 L .

and pi , <7

i
obs»

i n r 1 i 2\ CF ‘ '
ok = 4 ZArep Xpl =3 ((Cpfzk) ) it v>1and py <75, (6.1.4)
i=1 -

L0 otherwise,

where v is the ratio of the length from the joint to the point where the per-
pendicular line from the obstacles intersect the link AC' in Figure over the
length on the link AB.

The obstacle avoidance derivations can then be added to the cost functional so
that there is collision avoidance between the mobile platform, links, and joints
with the obstacles.
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6.1.2 Optimal Trajectory Formulation

The mobile manipulator problem is simplified by assuming a planar manipula-
tor with two links mounted on a wheeled mobile platform. The joint angles for
the planar manipulator are #; and #,, where the lengths of the links are repre-
sented by L, and L, for the first and second link, respectively. The generalized
coordinates of the mobile manipulator are expressed as q = [z y ¢ 0 o).

To provide an optimal solution to the wheeled mobile manipulator, an optimal
control problem is defined. The aim is to find a control u which determines
the wheeled mobile manipulator’s optimal trajectory given the initial qg and
final q; states by minimizing the cost function

tf . ,
min/ 5 (uTRu + @7, + <I>Z2k> dt, (6.1.5)

ueld to

which penalizes the energy and Gaussian repulsive field. Equation (6.1.5)) is
subjected to the mobile manipulator kinematic system in Eq. (1.2.10)) and the
following boundary conditions are to be satisfied:

a(to) = qo, a(ty) = ay,

where g, tf, qo, and q; represent the initial and final times (fixed), and the
initial and final states (fixed), respectively.

Using the necessary condition for optimality based on PMP and adjoining the

constraints in Eq. (1.2.10)) to the cost functional in Eq. (6.1.5) with Lagrange
multiplier A, the Hamiltonian function is given by

1 . 4
H = 5 (U%Rll + ugRgg + U§R33 + UZR44 + q)ll,l + (I);,k)
+  Ai(ug cosp — ug dsin @) + Ay(uq sin ¢ — ug d cos @)
+ )\3u2 + )\4U3 + )\5U4. (616)
. o ... OH . o
Using the control optimality condition 0 0, the optimal velocities are
u
uy —(Acosp + Agsinp)
uz| _ Adsin g — Aad cos — A3 (6.1.7)
Us _/\4
Uy —/\5
The state equations can be calculated from
oH
1= — 6.1.8
and costate equations from
. OH
A= ———. (6.1.9)
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Substituting the computed control velocities in Eq. (6.1.7)) into the state and
costate equations, results in a set of ordinary differential equations where the
functions q(t) and A(¢) must satisfy the boundary conditions:

m = {flﬁj , (6.1.10)

with q(to) = qo, a(ty) = qy.

To solve the resulting TPBVP for the mobile manipulator, numerical tech-
niques must be employed. When solving numerically, the goal is to iteratively
solve the robot differential equations so that they conform to the set of bound-
ary conditions. For the purpose of this chapter, the Leapfrog method and
BVP4C are used and compared.

6.1.3 Numerical Results

In this section numerical solutions to the TPBVP derived from the previous
section are obtained. To show the efficacy of the Leapfrog method, simulations
for different scenarios for the optimal control and motion planning of the mo-
bile manipulator in the presence of obstacles are presented. For comparison,
numerical solutions generated by BVP4C are considered.

To initialize BVP4C, an initial mesh and a guess of the solution at the mesh
points are required. In the simulations done here, yinit which is part of
a structure that contains the initial guesses for the solution in BVP4C, is
chosen as a default setting for initial guesses for the costates. Once the initial
mesh and guesses are selected, the TPBVP with boundary conditions is solved
numerically.

For the Leapfrog method implementation, first a feasible path defined as /éo)

needs to be generated between the robot’s initial and final configurations. For
the simulations, the initial feasible path is generated using the RRT algorithm.
Similarly to the previous chapter, the way-points from the RRT path are re-
duced through B-spline interpolation to p = 16 partition points which forms
the initial feasible path.

In the simulation, the mobile manipulator is expected to plan a feasible path
from a given starting configuration qq to the desired goal configuration q; while
avoiding obstacles. The parameter values for the obstacle avoidance function
are as follows: the size of each obstacle is 0,¢p, = 1%, the steepness of each
obstacle is C' = 1 and the height of the repellent is A,., = 1. For the mobile
manipulator, the offset distance between the center of the mobile base wheels
and the first joint is d = 0, and the length of the links is L.; = Ly, = 0.3m.

In the figures below, the blue rectangles represent the mobile base platform,
the magenta lines represent the end-effector (EE), and the red and green lines
represent the first and second links, respectively.
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Case 1: Suppose that the mobile manipulator moves from an initial state

qQ = [-0.50.500 — 7] to final state q; = [2 — 0.2 — % —F — 7] at total
time ty = 2s. Also, an obstacle is located at a center point with coordinates

zhs = 0.8,y = 0.4 and has radius r},, = 0.20. For the simple scenario shown

in Figure and Figure[6.3] the paths generated by Leapfrog and BVP4C are
given.

05

y (m)

-05

—link 1
—link 2
— base optimal path
|— path for EE
i I

-0.5 0 0.5 1 15 2
x (m)

Figure 6.2: Path generated by the Leapfrog method for Case 1.
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Figure 6.3: Path obtained from BVP4C for Case 1.

As it can be seen from Figures[6.2]and [6.3] the motion planning for the mobile
manipulator has led to collision-free trajectories in the presence of one obstacle.

Case 2(a): For this case two scenarios are considered. Firstly, it is re-
quired that the mobile manipulator moves from the initial state at qo =
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[—0.5 =30 g 0] to the final state at q; = [1.52.50 —g 0] at total time

t; = 1.9s. The obstacles are located at center points zl,, = 1.5,y%. = 1 and
x?, = —0.5,92%, = 0.8, respectively. The radii of the obstacles are !, = 0.5
and 7%, = 0.5. The paths of the robot are shown in Figure and Figure
6.5, and it can be seen that the generated paths satisfy the initial and final

configurations of the scenario.

link 1

2F link 2

base optimal path
— path for EE

()
5
s
P
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. . :
-3 -2 -1 0 1 2 3 4

link 1
2k link 2
base optimal path
path for EE O
1k
2
0 [ Ll
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>
-1
-2
-3
H I 1 i I H
-3 -2 -1 0 1 2 3 4

Figure 6.5: Path obtained from BVP4C for Case 2(a).

In this simulation, it is shown in Figures[6.4) and [6.5] that the mobile manipula-
tor managed to move among the obstacles properly and the proposed methods
generated collision-free paths.
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Case 2(b): Secondly, the mobile manipulator is required to be moving
from the initial state at qp = [-0.5 =30 —g —g] to the final state at

T , ) .
qr = [1.52500 —5] at total time t; = 1.9s. Figure and Figure

show the paths generated by the Leapfrog method and P4C where the
configurations of the joint angles produce collision-free trajectories.

—link 1
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— base optimal path
— path for EE
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Figure 6.6: Path generated by the Leapfrog method for Case 2(b).
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Figure 6.7: Path obtained from BVP4C for Case 2(b).

Case 3(a): Consider three obstacles located at center points x},, = 1,y}, =
2, 2%, = 2.5,9y%, = 1 and 23, = 2.5,y3, = 2.6 with radius r’,, = 0.3 for

obs obs

i=1,...,3. The first simulation in Figure[6.8|and Figure[6.9 shows the mobile
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manipulator moving from an initial state gy = [0 0 % 0 g] to the desired goal

state at qy = [4 4 Z 0 g] with total time ¢; = 1.9s while avoiding obstacles.

link 1
ar link 2
base optimal path
35| — path for EE

-1 0 1 2 3 4

T T T
link 1
4 ,
link 2
base optimal path Ve,
35 path for EE /
%

g 0 1 2 3 4 5
Figure 6.9: Path obtained from BVP4C for Case 3(a).

As it is seen in Figures and collision-free trajectories were achieved
because the joints and the links of the manipulator managed to move away
from the obstacles. Paths were obtained with both Leapfrog and BVP4C.

Case 3(b): The second simulation in this case is considered where the mobile

s
manipulator is required to move from an initial state qo = [0 0 1 0 0] to the

desired goal state at q; = [4 4 % 0 0] with total time ¢; = 1.9s in the presence
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of obstacles. Figures and show the trajectories of the mobile platform
and the end-effector obtained from the Leapfrog method and BVP4C.
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Figure 6.10: Path generated by the Leapfrog method for Case 3(b).
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Figure 6.11: Path obtained from BVP4C for Case 3(b).

Case 4: In the final scenario, suppose that the mobile manipulator is required

to move from an initial state qp = [-0.2 0.5 —g —2% 5%] to the desired goal

state at q; = [1.2 2 22 2% —13-] with overall time ¢; = 1.2s in the presence
of obstacles. Figures|6.12|and [6.13|show the trajectories of the mobile platform
and the end-effector obtained from the Leapfrog method and BVP4C.

In this simulation, the mobile manipulator was required to start facing in a
different direction as the final state which will require a reversal motion in order
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Figure 6.12: Path generated by the Leapfrog method for Case 4.
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Figure 6.13: Path obtained from BVP4C for Case 4.

to get to the final state. As it can be seen in Figure[6.12] the Leapfrog method
generated a different path for the end-effector as compared to the BVP4C path
in Figure[6.13] The BVP4C solver tried unsuccessfully to achieve convergence
for this case. It gave a warning that it needs more mesh points to get the
solution to a specified accuracy. Hence the motion of the joint configurations
generated by the Leapfrog method is different from the BVP4C solution.

In order to evaluate the performance for the Leapfrog and BVP4C numeri-
cal solutions, the path cost is calculated for each case presented above. This
is done by taking the forward and angular velocities together with the ob-
stacle avoidance term for each time point and used in the calculation of the
integrand. The resulting discrete-time function is then integrated numerically
using trapz() in MATLAB and the results are shown in Table [6.1]
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Table 6.1: Path cost values.

Case | Leapfrog | BVP4C
1 2.46 2.46
2(a) 16.78 16.79
2(b) 15.59 15.59
3(a) 9.01 9.01
3(b) 8.55 8.55
4 11.52 18.56

As it can be seen in Table [6.1] the results obtained show that the Leapfrog
method is capable of producing feasible and paths with similar path costs to
BVP4C.

6.2 Conclusion

In this chapter, the optimal control problem for the motion planning for a
mobile manipulator was presented in an environment with obstacles. First, an
overview of related work on motion planning for mobile manipulator was given.
Then an optimal motion control of the platform’s kinematic system under the
necessary conditions of optimality was derived and the Leapfrog method was
applied to find paths for the derived system. A Gaussian potential function
was applied in the cost function as an obstacle avoidance parameter. For
evaluation, the paths generated by the Leapfrog method were compared to
those generated by BVP4C. Simulations showed that the Leapfrog method is
capable of finding critical, feasible paths in the presence of obstacles.
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Chapter 7

Optimal Kinodynamic Motion
Planning

Over the past decades, motion planning has gained immense popularity and
importance in robotics research. Early methods solved the motion planning
problem by finding feasible and optimal paths from a given initial state to
a final state. In these methods, the robot kinematic or dynamic constraints
were neglected which often caused the generated path to be non-smooth and
not necessarily executable by the robot. To tackle this problem, Donald [14]
proposed the idea of kinodynamic planning, which is achieved by incorporating
the velocities and dynamic constraints during planning.

Kinodynamic motion planning is the problem of finding the optimal robot path
under kinematic or dynamic constraints from a starting configuration to a goal
configuration, and the path has to be collision-free. This approach increases
the complexity of the motion planning problem with the introduction of high-
dimensional spaces and, most importantly, constraints imposed by the system
dynamics. The class of kinodynamic planning problems is at least PSPACE-
hard [77] with exact, time-optimal trajectory planning in state space being
NP-hard [14].

Given its importance, however, kinodynamic planning has attracted a lot of
attention in the robotics community, particularly in sampling-based methods
[19; 86]. Since the RRT* method [10], there has been considerable interest
in solving optimal paths in the context of kinodynamic planning. With kino-
dynamic RRT*, the main focus is on developing an efficient steering function
which involves solving a TPBVP. Solving a TPBVP for nonlinear systems re-
mains challenging and is typically done using numerical techniques [27; 40} [66].

Some effort has been made towards developing effective steering functions for
different types of dynamical systems. Some authors extended RRT* to systems
where linear and quadratic functions represent dynamics and cost, by defining
a suitable steering function based on the LQR principle [16; B38; 39]. Other
work avoids solving a TPBVP and uses methods which find approximate paths

89
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between two states. For example, in [66], the shooting method is used to find
an approximate path between two states in the tree. Despite these challenges,
kinodynamic-RRT* has shown progress in successfully finding optimal paths
for mobile robots [26].

Similar to RRT*, the optimal control approach is a powerful tool in finding
optimal paths for mobile robots in cluttered environments. Through the work
discussed in Chapter[2]on kinodynamic-RRT*, numerical methods arising from
optimal control are used to find local solutions (without consideration of ob-
stacles) for motion planning problems. With a numerical method, such as
Leapfrog, a sequence of feasible local solutions that converges to a critical,
and possibly globally optimal, solution is obtained. It was demonstrated in
the previous chapters that the Leapfrog method can produce critical paths
given two-wheeled mobile robot kinematics, which is a desirable feature for
motion planning. Of particular interest in this chapter, is finding optimal tra-
jectories for the two-wheeled mobile robot model described in Chapter [5] using
the RRT* algorithm. The solutions obtained will then be compared to the
Leapfrog solutions.

In this chapter, the optimal motion planning for the two-wheeled mobile robot
described in Chapter [o|is considered. Given the robot kinematics model, the
initial state, the goal state, and the obstacles, a kinodynamic-RRT* algorithm
is tasked to find a collision-free path for the robot from the initial state to the
goal state with minimum cost, given available information, and without col-
liding with the obstacles. The same strategy applies to the Leapfrog method.
The methods are evaluated in a set of examples with a variety of obstacles.
Performance comparison for optimality criteria such as path cost, runtime and
a total number of tree nodes is done and compared to solutions obtained by
the Leapfrog method.

7.1 Kinodynamic-RRT* Algorithm

This section gives a brief description of the kinodynamic-RRT* algorithm with
reference to the RRT* algorithm described in Chapter [2) where the abstract
form of the algorithm is given in Algorithm[5] The notation used in this section
is adapted from the RRT* algorithm in [66].

The kinodynamic-RRT* algorithm solves an optimal motion planning problem
by growing a tree 7 = (V, ), with vertex set V' of states connected by edges F
of the feasible path segments, to find a path that connects exactly to the goal
state with minimum cost, using the basic algorithmic procedures described
below.

Sample: The Sample function generates a random state zrang € Cyree
from the obstacle-free region of the robot configuration space.
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Algorithm 5 Kinodynamic-RRT*

1: V<« {Zinz’t} ; E <—®
2. T = (V,E),
3: while i < N do

10:
11:
12:
13:

Zrand <— Sample(i);
Znearest < Nearest(T, Zrand);
Znew Steer(fznearest; Zrand);
if CollisionFree(z,,) then
Znearby < Near(T, zpew, |V);
V VU {znew};
Zmin S Parent<Znearbya Znearests Znew);
E «— EU{(Zmin, Znew) };
T < Rewire(Zycarbys Zmins Znew);

end if

14: end while
15: return 7T

Nearest: Given a graph 7 = (V,E) and a state z.4,4, the function
Nearest (7, z;ana) returns a nearest state z; € V from which 24,4 can
be reached with the lowest cost.

Steer: For any given Z,cqrests Zrand € C frees Steer(znearest, zmnd) returns
an optimal path from 2,cqrest 10 Zrandg, When such a path exists.

CollisionFree: The CollisionFree(z,.,) function checks whether the
trajectory lies in an obstacle-free region of the configuration space, con-
sidering the robot size (radius around the robot). It then returns true if
the path lies in Cyee, and false otherwise.

Near: Given a set V' of vertices in the tree and a state z,4,4, the function
Near(T, zrana, |V|) computes the set of states in V' that are inside the
ball centered at z,4nq and with radius r given in Eq. (2.1.1)).

Parent: The function Parent(Z,carby, Znearests Znew) chooses the best par-
ent (z,n) from the set of neighbours, returned by the Near function of
a new node z,., where the chosen parent has the lowest cost to reach

Znew~
Rewire: The function Rewire(Z,carby, Zmin, Znew) checks if the cost to the

nodes in Zyeqrpy is less through 2., as compared to their older costs, and
if so, its parent is changed to z,c..

7.1.1 Kinodynamic-RRT* Implementation

This section describes the implementation of the kinodynamic-RRT* with
its extension to the two-wheeled mobile robot. The differences with the
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kinodynamic-RRT* implemented in this chapter are given, i.e., the sampling,
steering, and the near neighbour functions.

For the algorithm implementation, the sampling strategy Sample is done uni-
formly in 3-dimensional spaces of states ¢ = [z, y, p]T, where the position
(x,y) is sampled from a free space (in meters), and the orientation is within
a range of ¢ € [0,27] rad. Also, the sampling procedure is biased to the goal
which ensures that the path connects exactly to the desired goal state. Goal
biasing [118] is done by attempting to connect a newly added state at the end
of each new segment to the goal, given it is within a predefined vicinity. The
goal biasing is recommended to be less than 10% to maintain the randomness
of the search.

In searching for the near neighbours and nearby vertices within a ball radius,
a Euclidean distance is considered in the Near and Nearest functions since
the orientation of the robot is ignored. However, in other functions of the
algorithms, the full configuration, q, is used.

Computing the Steer function with the robot differential constraints can be a
computational challenge since it results in solving a TPBVP. In this chapter,
the shooting method [I19] is used to solve the resulting TPBVP. The shooting
method, however, has convergence difficulties which may lead to an infeasible
path when finding a solution between two states. For the implementation of
the shooting method, if the maximum number of iterations is reached without
convergence, the connection between the two configurations is regarded as
infeasible, and a new random node is selected.

In order to evaluate a given path between two states, the following cost func-
tional is minimized:

T 1 T n
J :/0 14 Ju’Ru+ ;Frepi(q)]dt. (7.1.1)

Equation represents the trade-off between the arrival time and the ex-
panded control effort and is commonly used for kinodynamic-RRT* planning
[16; 27]. In addition to the cost functional, the obstacle avoidance is repre-
sented by a Gaussian potential function as in Chapter [f

As mentioned in the literature, kinodynamic-RRT* typically solves the TPBVP
without consideration of the obstacles. However, using the cost functional that

includes obstacles will allow a fair comparison of the paths obtained from both
RRT* and the Leapfrog method.

7.1.2 Optimal Control Formulation

This section presents the formulation of the optimal control-based solution for
a two-wheeled mobile robot as in Chapter Considering the two-wheeled
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mobile robot kinematic model and the cost functional , the aim
is to find control input u, and a corresponding state q which minimizes the
cost function and satisfies the boundary conditions, q(ty) = qo and q(ty) = q;-.
Following the typical procedure to generate an optimal path, the Hamiltonian
function is considered as:

1 n
H = [1 + 3 (UTRHU + w! Rogw + Zl me@))] (7.1.2)

+Avcos @ + Ausing + A3 w.

Using the necessary conditions for optimal control, the optimal trajectory plan-
ning for the mobile robot can be achieved by solving the following TPBVP:

m = { _H}}J , (7.1.3)

d(to) = qo, alty) = qy.

For RRT*, the solution of the TPBVP with the boundary conditions in ([7.1.3)
is the optimal path connecting two states in the tree.

7.2 Numerical Results

This section presents a performance comparison between the Leapfrog and
RRT* algorithms, where the best path from a starting state to the desired
goal state is computed. The numerical simulations approximate the solution
of the derived TPBVP, similarly to Chapter |5 for the two-wheeled mobile
robot. The difference in this chapter is the cost functional which penalizes the
duration of the path and energy control inputs and also includes the Gaussian
potential function for obstacle avoidance. In addition, it is noted that RRT*
and Leapfrog have different implementation and execution procedures. How-
ever, the difference does not affect the final solution. This chapter attempts
to compare these methods using measures such as path cost and runtime.

To evaluate the RRT* algorithm and the Leapfrog method for the two-wheeled
mobile robot model, a set of examples in different environments is considered.

The simulations are carried out in MATLAB on an Intel Core i7 computer
with 8Gb RAM.

7.2.1 Kinodynamic-RRT* Simulations

The RRT* simulations are performed using the same random seed, represented
as rng in MATLAB. Fixing rng ensures that the algorithm generates the same
sequence of random numbers every time it runs. For each example, the cost
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and computational time of a path generated within a certain number of nodes
are recorded.

In the plots related to the simulations discussed in this section, the grey regions
represent obstacles, and white regions are the free spaces that the robot can
travel on. The starting and goal poses of the robot are represented in black
and blue, respectively. The red curve represents the best path found for a
given numbers of nodes.

Case 1: In this simulation, the robot is required to find a path from initial
state [0, 0, g] to final state [4, 4, %] with position limits z € [0, 5] and y € [0, 5].
Figure [7.1] shows the paths generated by the RRT* amongst three obstacles.

: o

x (m) x(m)

(a) 26 nodes (b) 200 nodes

x (m)

(c) 500 nodes

Figure 7.1: Paths generated by kinodynamic-RRT* at different numbers of nodes,
where Figure 7.1(a) shows the first path obtained by the algorithm.

The simulations show the path progression of the algorithm from the first path
reached with 26 nodes. It can be observed that the solution improved as the
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Table 7.1: Properties of the solution generated by the kinodynamic-RRT* algorithm
for Case 1.

No. of nodes | Path cost | CPU time (s)
26 33.60 385.31
200 24.42 5410.31
500 23.66 17519.63

number of nodes increased. Table [Z.1] shows the evaluations for the simulation
in Case 1 after it reaches a given maximum number of nodes.

Case 2: In this simulation, the mobile robot is expected to find a path from
initial state [0, 0, 0] to final state [9, 0, 7] while avoiding seven obstacles. Figure
[7.2] shows collision-free paths generated by the kinodynamic-RRT* algorithm
between obstacles.
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y (m
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x (m) x(m)

(a) 57 nodes (b) 200 nodes
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[T N T S - T S SRR A R SR
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x (m)

(c) 500 nodes

Figure 7.2: Paths resulting from kinodynamic-RRT* at different numbers of nodes,
with the initial path obtained by the algorithm shown in Figure 7.2(a).
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Table 7.2: Properties of the solution generated by the kinodynamic-RRT* algorithm
for Case 2.

No. of nodes | Path cost | CPU time (s)
o7 88.68 2494.09
200 84.58 10086.07
500 80.26 49066.53

The overall results show that the RRT* algorithm with the mobile robot system
can produce improvement on the path given more iterations, even though this
may increase the computational time. During the simulations, it was noted
that the RRT* algorithm returns almost the same path after 500 nodes. Hence
for the set of examples considered here the maximum number of nodes used is
500. However, in a case where the robot needs smooth paths due its differential
limitations on sharp turns, a larger number of nodes and increased rewiring
radius can be considered.

The effect of the increased radius in Rewire (Eq. (2.1.1)), on the path quality
and computational time of the algorithm is demonstrated in Figure [7.3] For
this example (Case 1), it shows that the algorithm produced a smoother (less
jagged) path when T = 6 with a cost of 23.66 as compared to when T = 4
with a cost of 26.15, using the same number of nodes.

x (m) x (m)

(a) T =4 and CPU time = 2974.35s  (b) T = 6 and CPU time = 20300.27s.

Figure 7.3: The best path generated by kinodynamic-RRT* at 500 nodes with dif-
ferent values of T.

These simulations show that using a larger value of T can have an efficiency
trade-off. Even though it improved path cost, it also slowed down the conver-
gence rate (measured CPU time) of the algorithm.
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7.2.2 Leapfrog Simulations

To use the Leapfrog method, an initial feasible path is necessary and helps to
provide the initial conditions for the costate variables. Hence in this section,
the Leapfrog method makes use of the first path generated by the kinodynamic-
RRT™ as an initial feasible path. It should be noted that the initial path created
by the kinodynamic-RRT™* is only used for initial partition points, and Leapfrog
is not used to improve kinodynamic-RRT*. Also, the time for Leapfrog execu-
tion includes the time required to generate the first kinodynamic-RRT™ path,
since it is used as the starting point for Leapfrog. It should be noted that the
Leapfrog initial path can be computed using another algorithm, as shown in
Chapter 5 The way-points which form the Leapfrog initial feasible paths are
reduced using B-spline interpolation to p = 16, as in the previous chapter.

The Leapfrog simulations are generated by solving a TPBVP as in the previous
section, together with the cost functional (7.1.1]). The state trajectories (blue)
obtained by the Leapfrog method for Case 1 and Case 2 are shown in Figure[7.4]
and Figure[7.5 To further illustrate the effectiveness of the Leapfrog algorithm
in each simulation, the Leapfrog iterations are shown. The simulations also
display both the initial partition and the path p! obtained as a result of the
first Leapfrog iteration, where the red crosses represent partition points. The
running time and the costs along each iteration of the Leapfrog algorithm are
also reported.
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Figure 7.4: Locally optimal paths ,u,(zk) for k = 1,5,9 and 14 during Leapfrog itera-

tions for Case 1.

It was observed during the Leapfrog execution that at iteration k& = 9, just
after reducing the number of partition points to p = 4, the Leapfrog method
approaches a minimum solution. The paths in Figure and Figure(7.5(d)
are similar but the cost is different by a small margin.
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Figure 7.5: Locally optimal paths puy’ for £k = 1,5,9 and 14 during Leapfrog itera-
tions for Case 2.

The execution time to produce the trajectories for the Leapfrog method is
reported in Table [7.3] together with the path cost.

Table 7.3: Path cost and CPU time for the Leapfrog simulation results.
Case | Cost | CPU time(s)
1 11.65 732.800
2 26.40 3706.583

To conclude the Leapfrog numerical results, the following observations are
made. In the last iteration (k = 14), after reducing the number of partitions
to p = 2, the solution clearly converges and so the algorithm can be terminated.
In this case, the path shape in the figure indicates that this solution is likely
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very close to the optimal solution. It can be observed from the simulations
above that the cost decreases in each iteration. Also, the cost incurred along
the trajectory obtained from Leapfrog is less than the cost along the initial
feasible trajectory. This is some validation that the algorithm iterates from
the initial feasible trajectory towards an optimal trajectory. Moreover, it is
clear that the paths generated on the iterations depicted in the simulations
are feasible.

7.3 Conclusion

In this chapter, a brief overview of the procedures used for the kinodynamic-
RRT* algorithm under robot differential constraints was presented. Numeri-
cal simulations were conducted and showed the effectiveness and efficiency of
Leapfrog and kinodynamic-RRT*. The simulation results depicted that both
methods converge gradually to optimal paths. It was noted that the Leapfrog
method produces less jagged and shorter paths with smaller path cost and
lower execution time, as compared to kinodynamic-RRT*.

Further tests could be conducted in the future to highlight the capability of
the Leapfrog method in generating optimal and collision-free paths in higher-
dimensional environments.
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Conclusion

In this dissertation, an optimal control approach based on the Leapfrog al-
gorithm is proposed for motion planning in mobile robotic systems, and in
particular, for a two-wheeled mobile robot and a mobile manipulator. The
aim is to find optimal trajectories from a given initial state to a desired goal
state in the presence of obstacles. In general, this approach employs Pontrya-
gin’s minimum principle to find the state and costate equations which form a
two-point boundary value problem (TPBVP) for mobile robot optimal motion
control. The Leapfrog method is investigated to find numerical solutions to
the resulting TPBVP. The purpose of this chapter is to summarize the contri-
butions presented in this dissertation underlying the problem described above
and also to give some perspective for future work.

An overview of some of the well-known motion planning algorithms is given in
Chapter[2] These methods include the families of sampling-based, graph search
and potential fields methods. The chapter also gives a short introduction
on the sampling-based approach, RRT*, that addresses mobile kinematic or
dynamic constraints (kinodynamic constraints, in short). Even though these
methods are widely used to plan sub-optimal and optimal trajectories, they
have limitations. Alternative to the traditional planning techniques is the
use of optimal control to find optimal paths for mobile robot motion planning.
Chapter [3| describes the mathematical models to formulate the optimal control
problem and discusses numerical methods including the Leapfrog method.

Chapter [] proposes Leapfrog, a method for solving nonlinear optimal control
problems, to solve the motion planning problem for a two-wheeled mobile
robot. Numerical results are presented and show that the Leapfrog method
is capable of finding optimal trajectories for the two-wheeled mobile robot
kinematic model. Also, the Leapfrog method manages to find paths where
the BVP4C method, used for comparison, failed. Path following experiments
undertaken on a Pioneer 3-DX mobile robot also show that the trajectories
generated by Leapfrog are drivable without any need for post-processing.

Chapter [5| deals with determining optimal paths for the two-wheeled mobile

101
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robot in an environment with obstacles. Obstacle avoidance is represented
by potential fields and added to the cost functional. This approach allows
the robot to plan an optimal collision-free path through static obstacles which
are represented by Gaussian functions. This chapter also focuses on further
investigating parts of the Leapfrog method, such as the initial feasible path, the
initial guess for costate variables and the feasibility of the trajectory generated
by Leapfrog.

In the first part of Chapter [5, optimal paths in the presence of obstacles are
produced using the Leapfrog method. Due to the nature of the kinematic
model for the robot, the affine approximation embedded in Leapfrog does not
always converge to a solution in the sub-problem. A gradient-based approach
is used to obtain the initial condition for the costates.

The second part of Chapter |5|investigates the methods for obtaining the initial
feasible path for the Leapfrog initial partition. It is noted that using the path
generated by different path planners as an initial partition does not affect the
solution obtained by the Leapfrog method. It is also emphasized that the
Leapfrog method is not used to improve these paths but only uses them for
initialization. This is illustrated through simulations.

Lastly, the possibility that the Leapfrog method may not always generate
collision-free paths is investigated. It is shown through simulations (Sec-
tion that the local solutions obtained by Leapfrog in the subdivisions
can collide with obstacles for some environments. It is noted that the paths
can collide with obstacles when the Gaussian parameters are not properly se-
lected for each example. Selecting the Gaussian parameters must be done prior
to executing Leapfrog.

The work presented in Chapters [4] and [J] involves the kinematic model of a
two-wheeled mobile robot, and the Leapfrog method gives promising results.
This caused interest to extend the work and implement the proposed method
for a robot platform with a higher-dimensional planning requirement (5 DoF),
that is, the mobile manipulator. This is achieved in Chapter [6| where the opti-
mal motion planning problem for the mobile manipulator is considered in the
presence of obstacles. To guarantee collision-free paths, additional constraints
in the obstacle avoidance formulation are considered. Through numerical sim-
ulations, it is demonstrated that the Leapfrog method generates collision-free
trajectories on each iteration of its computation for the mobile manipulator.
As with the previous chapters, Leapfrog solutions are compared to those gen-
erated by BVP4C. Though BVP4C has difficulties with the initial guess for
costate values for some cases, the solver converges towards optimal collision-
free paths with similar cost and in less execution time compared to Leapfrog.
For some cases, however, it is observed that the Leapfrog method generated
lower cost paths as compared to BVP4C paths.

In Chapter [7] a general framework for the sampling-based method, RRT*,
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concerning kinodynamic planning is given. The basic concepts and procedures
structuring the algorithm are explained. Numerical simulations for the two-
wheeled mobile robot using kinodynamic-RRT* are conducted and compared
to the Leapfrog method. For a fair comparison between the two methods, the
TPBVP considered in this chapter includes obstacle avoidance, as in the previ-
ous chapters for both methods. Also, the execution of the Leapfrog method’s
initial path is included in the algorithm’s computational time. It is shown
through the simulations that, even though RRT* can find asymptotically op-
timal paths in high-dimensional spaces, the Leapfrog method produces better
paths in terms of cost and within a shorter time, in the environments tested.

8.1 Discussion

This section focuses on some of the issues that were observed when finding
optimal trajectories for mobile robots using the Leapfrog method. Simulation
and experimental results show that the Leapfrog method is capable of finding
kinematically feasible paths in motion planning for wheeled mobile robots.

The following pointers provide practical considerations.

(i) Feasible initial trajectory

Choosing a feasible path for obstacle-free situations like those in Chap-
ter {4} is relatively simple, and a straight line between the initial and final
states can be used for this purpose. For the planning problem with ob-
stacles such as in Chapter [5| the feasible initial paths can be generated
using different path planners, for example A* or RRT. The challenge is
that every time the RRT algorithm is executed, it produces a different
path or no solution if the goal is not reached. As such, not all paths
generated by RRT can be used or tested with Leapfrog. It is shown in
Chapter [5| that the Leapfrog method does not necessarily depend on the
method used to generate the initial path.

With Leapfrog, the number of partition points on the first iteration de-
pends on the initial feasible path constructed and the system model
being solved. The challenge is that paths generated by RRT can have
many way-points (points that form a trajectory). Choosing the number
of partition points has a trade-off between using more partitions points
so that the sub-problem solutions are simple, and convergence time. A
small number of points is better for convergence time, but it is important
that there are enough points so that the sub-problems are easily solved,
otherwise convergence will be slow. This motivated the use of a B-spline
approach to interpolate RRT partition points where a relatively small
number of partition points (e.g., p = 8) are chosen for the initial feasible
paths in Chapters 4 and 5] In Chapters [6] and [7] the number of partition
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(i)

(i)

(v)

points on the first iteration is chosen as p = 16 in order for the method
to converge to a better path.

Partition points reduction

Analyzing when to reduce the partition points required for the algorithm
to converge to the optimal trajectory, is a challenge. With the Leapfrog
method, the number of partition points needs to eventually be reduced
to p = 2 as the solution is approached. If the partition points are reduced
appropriately, the convergence of Leapfrog towards a critical trajectory
is guaranteed [4]. However, reducing the number of partition points too
early or late in the process might lead to algorithm failure or produce sub-
optimal paths. Currently, trial and error is used to reduce the partition
points. One way of overcoming this is to monitor the change in the
path cost after each iteration is achieved and reduce p if the difference
is less than a threshold. This may add to the computational time of the
method’s execution as the number of iterations might increase.

Initial guess

Solving a TPBVP requires boundary conditions on the states and
costates. The boundary conditions for the states are known whereas
there is no prior information regarding the costates. With the Leapfrog
method, the initial conditions of the costates are not required to be es-
timated. As part of the algorithm, an affine approximation helps in
choosing good initial guesses for the costates. In the case of the exam-
ples of the wheeled mobile robot motion planning considered for this
dissertation, however, the affine approximation does not give a suitable
costate estimate. A gradient-based approach is implemented to obtain
the initial condition for the costates.

Feasible paths along each Leapfrog iteration

Solving the motion planning for wheeled mobile robots entails generat-
ing feasible paths between initial and final configurations. This is one
of the benefits one gets from the Leapfrog method. In Chapter [] it is
shown that during the Leapfrog iterations the trajectories produced by
the method are feasible in each iteration. Should the Leapfrog method
fail, or if there is a need to halt execution before it reaches the final iter-
ation for some reason, the intermediate paths generated are still feasible,
though possibly sub-optimal. However, this might not always be true for
cases where obstacles are considered. As shown in Chapter [5], for some
scenarios the local solutions are not collision-free. It is also shown that
by increasing the Gaussian parameter A,., the algorithm will move away
from obstacles as the cost of going onto the obstacle will be high.

The Leapfrog method compared to other methods
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- BVP4C

For this dissertation, the BVP4C is used as a reference or ground
truth to fairly evaluate the Leapfrog method. In Chapter 4| (Case 3)
it is noticed that the BVP4C method generates a singular Jacobian
error while attempting to solve the TPBVP. This is traced to a
problem with the initial guess of the solution. It is noted that an
inappropriate estimate can also cause the solving algorithm to fail
ultimately, yielding no result, as in this case.

Given the limited information as to how the states vary over the
solution space, the initial estimate provided to the BVP4C solver is
arbitrary. The initial guess is used to give the solver a starting point
and can affect the resulting solution so much so that a different
solution may be found by merely varying the initial guess. If a
different initial guess is provided, the solver may successfully find a
solution.

Apart from providing a good guess for the boundary value problem,
setting tolerances can also be an issue when using BVP4C. In the
experiments of Chapter @ (Case 4) the solver struggles to find an
accurate solution and returns a warning. Even though a solution
is found, it has an offset which results in a different solution as
compared to the Leapfrog method.

The numerical solutions presented in this dissertation show that
the BVP4C solver can achieve optimal paths in less time than the
Leapfrog method. However, the BVP4C solver suffers from the ini-
tialization of costates that results in poorer (inaccurate) solutions
or no solution, while the Leapfrog method does not have this limi-
tation.
- Optimal kinodynamic planning

Numerical studies are done for the kinodynamic-RRT* method in
Chapter [7| and the results are compared to those obtained by the
Leapfrog method. From the simulations, it is evident that the
kinodynamic-RRT* generates a collision-free path and improves it
towards optimality as the number of iterations increases. However,
it is observed that the algorithm has a limitation of slow conver-
gence to an optimal solution. As a result, it consumes a lot of
memory and time as the tree becomes larger.

The numerical results also show that the Leapfrog method produces
not only lower-cost paths but with better smoothness and in less
time compared to kinodynamic-RRT™.
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8.2 Concluding Summary

Overall, this dissertation presents an optimal control approach to solve the
motion planning problems for mobile robot systems. The key motivation for
using an optimal control approach is the focus on producing optimal motion
which incorporates differential constraints, smoothness, and obstacle avoidance
in a mathematically precise objective. Hence, the Leapfrog method is proposed
as a tool to solve the motion planning problem for a two-wheeled mobile robot
and mobile manipulator. This led to the key contribution for this dissertation
which is the first application of the Leapfrog method to motion planning of
wheeled mobile robots.

The benefits of using the Leapfrog method is that it initializes easily using a
feasible, sub-optimal path, and can find kinematically feasible, critical, and
possibly globally optimal paths. In addition, it converges to critical paths that
are accurate, as seen in the comparisons with BVP4C. Moreover, the Leapfrog
method finds better solutions that are suitable for typical robot trajectory
following controllers in less time as compared with kinodynamic-RRT*.

The Leapfrog method, however, inherits some limitations from the optimal
control approach in that globally optimal paths are not always guaranteed,
though locally optimal, feasible solutions can be achieved, including in envi-
ronments cluttered with obstacles.

8.3 Future Work

At the end of this dissertation, several matters remain unsolved, and further
developments in motion planning for mobile robots using the Leapfrog method
can be made. In this work, the kinematics of the wheeled mobile robots are con-
sidered. However, it would be interesting to investigate extending the motion
planning approach to include dynamic models. With dynamics, the problem
additionally involves inertia, forces, torque and other components of the robot
motion. Dynamic robot models are better than the kinematic models in terms
of reliability, speed, and accuracy.

The motion planning presented herein develops optimal paths for mobile robots
on a plane. Even though this assumption works well for many indoor envi-
ronments, taking into account a 3D space is needed. This will be an improve-
ment, especially in the mobile manipulator motion planning problem because
the workspace will be extended for the robot to make more motions. Also,
increasing the number of degrees of freedom (for example, 7 DoF) for the ma-
nipulator arm would be interesting to investigate as more tasks can be done.

In motion planning for real-world applications, obstacles are represented in
various forms. In this work, obstacles are modelled as circular obstacles be-
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cause the formulation is simple and requires fewer computations as compared
to other obstacle shapes. Including obstacles with arbitrary shape or size
would improve the approach and also allow the Leapfrog method to be tested
in the same planning scenarios as with other planning methods. Moving to ar-
bitrarily shaped obstacles may require obstacle avoidance methods other than
Gaussian potential fields, to be investigated for use with Leapfrog.
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