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ABSTRACT

A severely polluted industrial effluent is generated by the local gelatin-

manufacturing industry. Due to increasingly stringent restrictions on discharge

qualities enforced by the National Water Act of 1998 and National

Environmental Management Act of 1998, as well as increasing trade-effluent

charges implemented via the Local Municipal Bylaws, the industry is

compelled to consider a system to pre-treat the polluted effluent.

A study was undertaken to examine the viability of anaerobic treatment

of the gelatin-manufacturing effluent, since the anaerobic digestion technology

is well recognised for the high success rate in the treatment of high-strength,

complex wastewaters. Various laboratory and pilot-scale studies were done,

using different hybrid Upflow Anaerobic Sludge Blanket (UASB) and contact

designs.

Two mesophilic laboratory-scale hybrid UASB digester designs, fitted

with polyethylene (AD-1) and polyurethane (AD-2), performed well at a

hydraulic retention time (HRT) of 1.0 d. Chemical oxygen demand (COD)

removal efficiencies of up to 90% (avg. 53%) for AD-1 and 83% (avg. 60%) for

AD-2 at organic loading rates (OLR) of 9.56 and 4.62 kg COD.m-3.d-1,

respectively, were obtained. High sulphate (S04) removal efficiencies of up to

96% (avg. 86%) for AD-1 and 98% (avg. 82%) for AD-2 were also achieved,

respectively. A maximum total solid (TS) removal of 65% (avg. 25%) for AD-1

and 62% (avg. 28%) for AD-2 was reported. An average methane content of

80% (AD-1) and 79% (AD-2) with average methane yields per COD removed

of 2.19 and 1.86 m3. kg CODremoved.d-1for AD-1 and AD-2 were found,

respectively.

When the same digesters (AD-1 and AD-2) were combined in a muIti-

phase series configuration, a total COD removal efficiency of up to 97% (avg.

80%) at an OLR of 8.32 kg COD.m-3.d-1,was achieved. Excellent total S04

removals of 96% (avg. 69%) were accomplished. Up to 82% TS (avg. 29%)

was also removed during this study and the biogas consisted of 89% methane

(avg. 79%). For this multi-phase combination up to 92% volatile fatty acids

(VFA) (avg. 48%) were removed, indicating possible selective phase

separation of the respective fatty acid producing/utilising bacterial populations.

Stellenbosch University http://scholar.sun.ac.za



vii

The use of a laboratory-scale UASB bioreactor with recirculation,

resulted in COD removal efficiencies of up to 96% (avg. 51%) at an HRT of 3.0

d, and 95% (avg. 54%) at a HRT of 1.0 d. Low performances were generally

found, with average S04 and TS removals of 59% (max. 97%) and 26% (max.

67%), respectively at an HRT of 1.0 d. The biogas production was very low

throughout the study (0.05 - 0.63 I,d-1).

A pilot-scale UASB reactor (300 I) was constructed and performed

satisfactory with a 58% average COD removal and maximum of 96%. S04

and TS removals up to 96% (avg. 44%) and 93% (avg. 63%), respectively,

were obtained. The methane content of the biogas was 85%. The pilot-scale

studies were conducted under actual field conditions, where various shock and

organic loads had to be absorbed by the system.

The pilot-scale contact configuration (300 I) did not perform satisfactory

as a result of continuous blockages experienced in the feed and recirculation

lines. Maximum COD, S04, VFA and TS removal efficiencies of 41% (avg.

27%), 62% (avg. 41%), 64% (avg. 27%) and 39% (avg. 21%), respectively,

were obtained.

The results of all the studies indicated acceptable COD removals with

increasing OLR's. Indications of the presence of active methanogenic and

sulphate-reducing bacterial populations were apparent throughout the studies.

One possibility for the successful start-up and commissioning of the anaerobic

reactors was the use of a well-adjusted biomass, which consisted of highly

selected and adapted microbial consortium for the specific gelatin-

manufacturing effluent.

It was clear from this study that gelatin-manufacturing effluent can be

treated successfully, especially with the use of the UASB design. A well-

defined data base was constructed which could be of great value for further

upscaling to a full-scale digester.
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UITTREKSEL

'n Hoogs besoedelde industriele uitvloeisel word gegenereer deur die plaaslike

gelatien-vervaardigings industrie. As gevolg van toenemende streng

beperkings op die kwaliteit van uitvloeiselswat bepaal word deur die Nasionale

Water Wet van 1998 en Nasionale Omgewings Bestuurs Wet van 1998, asook

toenemende munisipale heffings wat geimplementeer word via Plaaslike

Munisipale Wette, word die industrie verplig om die uitvloeisel vooraf te

behandel.

'n Studie is onderneem om die lewensvatbaarheid van anaërobe

behandeling van gelatien-vervaardigings uitvloeisel te ondersoek, aangesien

anaërobe verterings tegnologie alombekend is vir die goeie sukses behaal in

die behandeling van hoë-sterkte, komplekse uitvloeisels. Verskeie

laboratorium- en loods-skaal studies is gedoen, met verskillende hibried

Opvloei Anaërobe Slykkombers (OAS) en kontak ontwerpe.

Goeie werksverrigting was verkry by 'n hidroliese retensie tyd (HRT) van

1.0 d met twee mesofiliese laboratorium-skaal hibried OAS verteerder

ontwerpe wat uitgevoer was met poli-etileen (AD-1) en poli-uretaan (AD-2)

materiaal. Chemiese suurstof behoefte (CSB) verwyderings van so hoog as

90% (gem. 53%) vir AD-1 en 83% (gem. 60%) vir AD-2 by organiese

ladingstempo's (OLT) van 9.56 en 4.62 kg CSB.m-3.d-1,was onderskeidelik

verkry. Hoë sulfaat (S04) verwyderings van tot 96% (gem. 86%) vir AD-1 en

98% (gem. 82%) vir AD-2 was ook onderskeidelik verkry. 'n Maksimum totale

vaste stof (TVS) verwydering van 65% (gem. 25%) vir AD-1 en 62% (gem.

28%) vir AD-2 is gerapporteer. 'n Gemiddelde metaan inhoud van 80% (AD-1)

en 79% (AD-2) met 'n gemiddelde metaan opbrengs per CSB verwyder van

2.19 en 1.86 m3.kg CSBverwyder.d-1vir AD-1 en AD-2, was onderskeidelik

gevind.

Met die aanwending van dieselfde twee verteerders (AD-1 en AD-2) in

'n series gekoppelde multi-fase konfigurasie, is 'n totale CSB verwydering so

hoog as 97% (gem. 80%) verkry by 'n OLT van 8.32 kg CSB.m-3.d-1.

Uitstekende totale S04 verwydering van 96% (gem. 69%) is behaal. Tot 82%

TVS (gem. 29%) was vewyder gedurende die studie en die biogas het uit 89%

metaan (gem. 79%) bestaan. Vir die multi-fase kombinasie is 'n maksimum
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van 92% vlugtige vetsure (WS) (gem. 48%) verwyder, wat dui op die

moontlike skeiding van selektiewe fases van die onderskeie vetsuur

produserende/verbruiker bakteriële populasies.

CSB verwydering van tot 96% (gem. 51%) by 'n HRT van 3.0 d en 95%

(gem. 54%) met 'n HRT van 1.0 d was verkry, tydens die gebruik van In

laboratorium-skaal OAS bioreaktor met hersirkulasie. Lae werksverrigting was

oor die algemeen waargeneem, met gemiddelde S04 en TVS verwyderings

van 59% (maks. 97%) en 26% (maks. 67%) by In HRT van 1.0 d. Die biogas

produksie was baie laag gedurende die studie (0.05 - 0.63 I,d-\

In Loods-skaal OAS verteerder was opgerig en bevredigende resultate

was verkry met In gemiddeld van 58% CSB verwydering en maksimum van

96%. S04 en TVS verwyderings so hoog as 96% (gem. 44%) en 93% (gem.

63%) is onderskeidelik verkry. Die metaan inhoud van die biogas was 85%.

Die loods-skaal studie was uitgevoer gedurende ware veld kondisies,

waartydens verskeie skok en organiese ladings deur die sisteem geabsorbeer

is.

Die loods-skaal kontak konfigurasie (300 I) het nie bevredigende

resultate getoon nie, as gevolg van voortdurende blokkasies wat ondervind is

in die toevoer en hersirkulasie pype. Maksimum CSB, S04, WS en TVS

verwyderings van 41% (gem. 27%), 62% (gem. 41%), 64% (gem. 27%) en

39% (gem. 21%) was onderskeidelik verkry.

Die resultate van al die studies het aanvaarbare CSB verwydering

aangedui by toenemende OLT's. Indikasies van aktiewe metanogene en

sulfaat-reduserende bakteriële populasies was ook teenwoordig gedurende die

studies. Die suksesvolle aansit-prosedure en begin van die anaërobe

verteerders kan toegeskryf word aan die gebruik van In goed aangepaste

biomassa, wat uit hoogs selektiewe en aangepaste mikrobiese populasies vir

die spesifieke uitvloeisel bestaan.

Hierdie studie het getoon dat gelatien-vervaardigings uitvloeisel

suksesvol met die OAS ontwerp behandel kan word. In Goed gedefinieerde

data basis kan voorsien word, wat van groot waarde sal wees vir verdere

opgradering na In volskaalse verteerder.
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CHAPTER 1

INTRODUCTION

The conservation of natural water resources enjoys a high priority listing in

both developing and first world countries. South Africa is a semi-arid region,

which makes it imperative that our water resources should be properly

protected, managed and treated, whether to produce water for general

consumption, for specific industrial uses, or to limit the discharge of pollution

into the environment.

Increasing problems experienced with the disposal of high-strength

industrial waste in an environmentally acceptable manner and compliance to

local water quality guidelines prompted research and investigations into

management strategies and treatment of wastewater (Laubscher et al., 1992;

Van Der Merwe & Britz, 1993). Different types of wastewaters are produced

daily which must then be accommodated by the wastewater purification

works. This may present a problem in itself to local authorities, as the

disposal of certain industrial effluents can inhibit the biological treatment

processes, such as anaerobic digestion and biological nutrient removal

plants, resulting in an inefficient and costly treatment process.

One of the most difficult wastewater types to treat is gelatin-

manufacturing effluent. Gelatin has a wide variety of uses, in food processing

from wine fining to confectionery, and in the manufacturing industry from

matches to photography. The problems associated with the disposal of

complex, high-strength wastewaters necessitate industries more and more to

consider suitable pre-treatment methods to minimise the detrimental effect of

the biological processes used in conventional treatment plants (Maree et al.,

1990). There are various treatment options to consider, ranging from physical

to chemical to biological methods.

Leiner Davis Gelatin S.A. (Pty.) Limited (LOG) is the only South African

manufacturing industry of edible and technical gelatin and is situated in West-

Krugersdorp, Gauteng Province. During April 1995, LOG changed their

gelatin-manufacturing process by substituting the lime (Ca(OH)2)process step
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with a sodium hydroxide (NaOH) process step. This was done for economic

and product quality reasons. Following these changes, the local wastewater

purification works at Krugersdorp experienced numerous and complex

problems with the operational side of the plant. The LOG process produces

high effluent volumes, with distinctive peak and low periods in terms of

organic, hydraulic and toxic loads. These effluents are typically highly

alkaline with a high chemical oxygen demand (COD), suspended solid (SS),

sodium (Na), chloride (Cl), ammonia (NH3-N), electrical conductivity (EC) as

well as fats/oils contents (Table 1). High concentrations of sulphate (SO/-),

peroxide (H202) and hexavalent chromium (Cr6+) have also been detected.

Odours are also a major source of irritation and are associated with reduced

sulphur compounds, which are an environmental nuisance rather than a toxic

hazard (Lens et aI., 1998).

The modification of the gelatin-manufacturing process resulted in an

overall decrease in process efficiency and a subsequent increase in

operational costs of the local wastewater purification works. It was clear that

the 12% (v/v) gelatin-manufacturing effluent fraction of the total inflow volume

to the wastewater plant, could be correlated directly to the treatment plant

efficiency (Van Der Merwe-Botha, 1998, Personal communication). The

gelatin-manufacturing effluent contributes furthermore to 65% (m/m) of the

total organic load of the conventional plant. Problems experienced at the

local wastewater purification works included a loss in nitrification and

denitrification ability, reduced ortho-phosphate (P04-P) and COD removal, as

well as biosolids carry-over to the secondary clarifiers. The quality of the

anaerobic sludge also decreased, resulting in lower digester pH and alkalinity

values, decreased biogas production and volatile fatty acid (VFA) removal.

The salinity levels of the gelatin-manufacturing effluent discharged to

the local wastewater purification works has a high conductivity (800 - 1 500

rns.m'). This high electrical conductivity suggests the presence of high

concentrations of ions leading to high total dissolved solid (TOS)

concentrations (Department of Water Affairs and Forestry, 1996). This is

unacceptable to the local authorities as it contributes to the mineralisation of

the receiving water resources and it also has a definite toxic effect on

Stellenbosch University http://scholar.sun.ac.za



3

Table 1. The composition of typical gelatin-manufacturing effluent before

and after modifications to the process (Van Der Merwe-Botha,

1996).

Parameters LOG effluent LOG effluent *Maximum

(before) (after) limit allowed

Ammonia (rnq.l" as N) 7.2 - 75.9 3.3 - 920.0 50

Chemical oxygen demand (rnq.l") 1 500 - 9 600 505 - 31 810 5000

Chlorides (rnq.I") 160 - 1 200 49 - 6146 600

Chromium (rnq.I") NfD 0.1 - 34.6 5

Electrical conductivity (rns.m' ) 92 - 1 200 74 - 3 870 500

Fats, oils & grease (mg.r ) NfD 2.0 - 2134.0 2000

Iron (rnq.l") 0.0 - 0.7 0.0 - 57.5 5

Lead (rnq.I") 0.0 - 0.1 0.0 - 3.9 5

Manganese (mg.r ) 0.1-1.0 0.0 - 5.3 5

pH 7.2 - 12.5 1.8 -13.4 6 - 10

Sodium (mg.r ) 300 - 500 87 - 19 768 400

Soluble ortho-phosphates (mg.r as P) 0.1 - 8.5 0.1 - 23.5 10

Sulphate (rnq.l") NfD 19 - 2 250 1800

Sulphide (rnq.l") NfD 0.10 - 0.30 50

Suspended solids (rnq.I") 300 - 5 900 24 -12 690 1000

Total alkalinity (rnq.I as CaC03) 100 - 2800 20 -16185 -
Zinc (rnq.l") 0.1 - 0.3 0.0 - 3.9 5

* Specific bylaw standards accordmg to the requirements of the Water Act (Act 54 of 1956)

NfD = Not Determined
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microbial activity and nutrient removal. Both the high concentrations of Na

and Cl cause specific ion toxicity and osmotic stress to the microbial

populations of the purification works (Schoeman & Steyn, 1997). It was also

found that biomass disintegration of the natural-occurring algae on the

secondary clarifier walls occurred, again suggesting severe toxic effects

(Schoeman & Steyn, 1997).

It is generally recommended that chromium and sulphide concentration

levels in tannery effluents should be less than 40 and 5 rnq.l", respectively,

prior to discharge (Schoeman & Steyn, 1997). The presence of chromium

and/or heavy metals may possibly inhibit the acidogenic and methanogenic

bacteria as well as specific enzymatic processes of the anaerobic digestion

process. The high amounts of sulphur compounds in the gelatin-

manufacturing effluent also result in an increased growth of filamentous

organisms like Beggiatoa, Thiothrix and Type 021N (Eikelboom, 1975).

These organisms can grow on a number of organic compounds, but may also

gain energy for growth from the oxidation of reduced sulphur compounds, like

hydrogen sulphide (H2S) (Richard, 1989; Lens et al., 1998). Problems were

also experienced with Micothrix parvicella and Type 0092 filamentous

organisms due to high wastewater grease and fat contents. These filaments

result in a high sludge volume index (SVI), poor settling of sludge after the

activated sludge treatment process, sludge foaming and carry-over of the

biosolids during clarification (Jenkins et aI., 1986; Richard, 1989).

Furthermore, the presence of these filamentous organisms indicate the

conversion of sulphates to H2S, which then result in the corrosion of

equipment and inhibition of specific biological activities (Lens et aI., 1998).

It is therefore clear that efficient pre-treatment of this effluent is

extremely important to both the manufacturing/producing industry and the

receiving local authority. As the direct treatment seems to be a complex and

expensive option, the possibility of pre-treating this effluent might provide a

suitable option to increase the efficiency of the total process managed by the

wastewater purification works and ensure a continual disposal facility to the

effluent-producing industry. The idea of such a pre-treatment option has

been well received by the industry, which view this option as an attractive
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alternative to promote their environmental policy, comply with the stricter

pollution control legislation and continue their core business in a suitable

manner.

Against this background, the objective of this study was to find a

suitable pre-treatment option for the biodegradation of the gelatin-

manufacturing effluent, so as to produce an acceptable effluent quality for

disposal to the local wastewater purification facilities.
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CHAPTER 2

LITERATURE REVIEW

A. Gelatin-manufacturing process

In South Africa the main source of gelatin is the bovine hide which is not

suitable for tanning purposes. The reject hides available to the gelatin

industry vary from green masks from local abattoirs through partly processed

or dehaired tannery waste (both wet and dry) to hides preserved by drying,

salting and treatment with sodium meta-bisulphite for short-term preservation

(Maree et aI., 1990). Besides the "non-chrome" waste hides (Fig. 1), by-

products from the leather tanning industries can also be used to produce

gelatin (Cot et al., 1985). These wet or dry by-products embody chrome-

tanned leather splits, trimmings, buffing dust and shavings, containing about

90% water-soluble protein and 5 - 6% Cr203 (chromium (III) oxide) (Cot et aI.,

1985).

The conversion of the insoluble hide collagen into water-soluble gelatin

involves several protein hydrolysis and denaturation processes. Additionally

to the "non-chrome" waste hides, the gelatin-manufacturing industry also uses

a small amount of chrome-tanned leather shavings for extraction of a good

edible food grade gelatin. The use of chrome-tanned leather is undesirable

because chromium strongly stabilises the leather structure and remains

unaffected by ordinary gelatin manufacturing processing conditions (Cot et

aI., 1985). The shavings are mixed with magnesium oxide (MgO) after which

the shavings undergo the same extraction and primary filtration process as

with the "non-chrome" wastes. Carbon treatment is thereafter used to remove

the residual amounts of inorganic compounds such as nitrogen, sulphides

and heavy metals, especially chromium.

The "non-chrome" waste hides are cut into smaller pieces, after

undergoing a mechanical desalting process. To remove all the hair and

epidermis, the hides are placed in processors with sodium sulphide (25 - 30

kg 60% Na2S) and sodium hydroxide (NaOH) at a pH of 12 for several hours.
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Figure 1. A flow diagram of wastewater generation during the operational conversion
of collagen to gelatin (Cole, 1997, Personal communication).
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The hides are then chemically conditioned in alkali pits at a pH of 11 - 12 for 9

- 18 days, depending on their condition. The alkali pits contain 1.1 - 1.8%

sodium hydroxide (44 kg NaOH.r\ of which 0.6% NaOH can be recovered.

During the alkali conditioning the swelling of the hides take place by

denaturation of the collagen peptide chains, thus opening the fibre structure.

The effluent discharge after the alkali conditioning has high pH, chemical

oxygen demand (COD), electrical conductivity (EC) and sodium (Na) values.

The hides are then transferred to washers with reclaimed water to remove

excess alkali, followed by bleaching with hydrogen peroxide (H202) for 8 h.

Bleaching eliminates the surplus sulphide (S2-) of the dehairing process. The

H202 is reduced with sulphur dioxide (S02-gas), since the H202 may cause

corrosion to the metal instruments of the process.

The next step is acidulation with 300 - 350 I sulphuric acid per washer

(22 kg H2S04.r1) for 6 - 8 h, resulting in a reduction of pH and inorganic

contamination. The hides are once again washed in reclaimed water to

change the pH from 1.5 - 3.0. After the acid wash the effluent has a low pH

and high EC and total dissolved solids (TOS) values. The water from the

alkali and acid-pits are disposed together in a sedimentation tank to neutralise

and prevent metal dissociation in the gelatin-manufacturing effluent. This

effluent is then discharged into the sewer system and has to comply with the

effluent discharge standards as specified by the local authorities.

The final denaturation of the collagen proteins (pH 3.0) is achieved by

gently heating (440 - 48°C) the product in fresh water to produce a diluted

solution of gelatin. By increasing the temperature (700
- 80°C), more gelatin

can be extracted with a recovery rate of 4% gelatin. The undissolved

compounds such as fats, fine collagen and suspended solids, are eliminated

by primary (light liquor) filtration. The sodium and sulphate ions are removed

by adding hydrochloric acid (HCI) and NaOH, respectively. Hydrochloric acid

is used as a cation in the ion exchange process and NaOH is used as an

anion to remove the contaminating ions. After the extraction and primary

filtration process 5% of the gelatin can be recovered. The water used in the

ion exchange process is also disposed in the sedimentation tank. This

effluent usually has a high TOS concentration; a high pH and low COD

lj. s.
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values. The gelatin and water (liquid) mixture is circulated in an evaporator to

remove most of the water from the gelatin. Low pressure and high

temperature (± 500G) is maintained in the evaporator to recover a higher

concentration of gelatin (15%).

The secondary (heavy liquor) filtration is a more specialised process

where cellulose filters and a higher temperature are used to remove

unwanted compounds like precipitated albumin. The gelatin is kept at 40° -

45°G at all times to prevent coagulation. The pH of the gelatin is adjusted to

5 or 6 with either ammonia or NaOH to prevent the protein concentrations

present in the gelatin to become unstable. Ultra-high temperature (UHT)

sterilisation takes place at 1400G for 8 sec to prevent any bacterial growth.

After the secondary evaporation, the gelatin is passed through a barrel

(scrape surface heat exchanger votator), with the outer pipe filled with calcium

chloride (GaGI) to cool and coagulate the gelatin in the inner pipe (-100G).

The gelatin is then passed through a noodle plater. The GaGI is retained and

recirculated continuously. In the final process the coagulated gelatin is

passed through a drying belt which is divided into eight compartments to

ensure proper drying of the gelatin. As the temperature increases in each

compartment from 28° - 600G, air is constantly blown into the drying belt. At

the end, 70% moisture is withdrawn and 30% gelatin powder can be

recovered. The dried gelatin then undergo a pre-grinding process and batch

blending. The gelatin must be tested for suitability before the final product

can be despatched.

The gelatin-manufacturing industry uses approximately 58 000 kl water

per month for a 6 day operational week. Up to ± 15% of the water is lost by

evaporation. The total volume of water used is between 1 500 - 2 500 kl.d".

The effluent discharge after certain processes, is shown in Fig. 1. The

quantity of effluent produced per day after the different processes are: alkali

conditioning (70 kLd-1 / 4.5%); ex-alkali washing (300 kLd-1 / 19.2%); acid

wash (540 kLd-1 / 34.6%); fluming of washers (160 kl.d' / 10.3%); ion

exchange (70 kLd-1 /4.5%); secondary filtration (40 kLd-1 / 2.6%); cooling (80

kLd-1 / 5.1%); cleaning of washers (250 kLd-1 / 16.0%) and for washing of

chrome shavings (50 kLd-1 /3.2%).
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B. Treatment options

Industrial wastewater treatment requirements are becoming more stringent in

terms of limiting concentrations of organic and inorganic substances and

suspended solids (Metcalf & Eddy, 1991). Difficulties with the treatment of

gelatin-manufacturing effluent is related to the high organic and suspended

solid loads, as well as high sodium and chloride concentrations. This results

in a complex and highly variable mixture of soluble organic and inorganic

compounds, bacteriological constituents and suspended solids in an aqueous

medium and, thus, a difficult degradable effluent (Maree et al., 1990). The

implementation of effective pre-treatment methods (physical, chemical or

biological) in the South African market will lead to better point-source pollution

control, water savings, resource recovery and effluent volume reductions. By

using these methods to reduce the suspended solid and organic loads, a

facilitation of a reduced gelatin-manufacturing effluent strength may become

possible (Metcalf & Eddy, 1991). The gelatin-manufacturing industry

continuously experiments with different processes to extract the maximum

concentration of gelatin from the hides, hence the effluent quality and quantity

varies continuously. Subsequently, the local wastewater purification works

also have to change processes since the constituents of the gelatin-

manufacturing effluent varies periodically. The disposal of gelatin-

manufacturing effluent will remain a significant concern, if pre-treatment is not

considered. The necessity for pre-treatment and/or other disposal

alternatives for the gelatin-manufacturing effluent is therefore well-motivated.

A variety of alternatives for the partial pre-treatment or total treatment

of gelatin-manufacturing effluent can be adopted in order to reach

environmental quality requirements (Table 1) (Lema et al., 1988; Senior,

1995).
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Table 1. Pre-treatment options (Lema et al., 1988; Senior, 1995).

1. Chemical treatment

• Chemical precipitation

• Chemical oxidation

• Activated carbon adsorption

• Ion exchange

2. Physical treatment

• Sedimentation

• Ultrafiltration

• Reverse osmosis (hyperfiltration)

• Ammonia stripping

• Electrodialysis

• Diffusion dialysis

• Wet-air oxidation

3. Biological processes

• Aerobic treatment

• Anaerobic treatment

4. Combined chemical, physical and/or biological pre-treatment

• Anaerobic digestion combined with ultrafiltration (ADUF)
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B.i. Chemical treatment

Chemical precipitation

This treatment involves the addition of chemicals to alter the physical

state of the dissolved and suspended solids and to facilitate their removal by

sedimentation, as well as the removal of heavy metals (Metcalf & Eddy,

1991). Lime (Ca(OH)2) and alum (AI2(S04)) are most commonly used,

although the addition of flocculants such as ferric chloride (FeCh), sodium

sulphide (Na2S) and ferrous sulphate (FeS04) have also been used

successfully (Chian & De Walle, 1976; Saint-Forte,1992). The addition of

flocculants will cause sludge and solids to settle faster. The removal of solids

will thus reduce the organic loading on a biological system. Due to the

reagents added a large quantity of sludge will be generated, which can be

potentially hazardous. Good improvements in colour, suspended solids, NH/

and heavy cation elimination are obtained, although the maximum reduction

of COD was only 30 - 60% (Harrington & Maris, 1986; Saint-Forte, 1992;

Gaydon & De Haas, 1998). High heavy metal concentrations can inhibit

biological activity (Senior, 1995). The addition of lime, for instance, results in

an increase in pH and this leads to coagulation and formation of insoluble

metal hydroxides and calcium carbonate. The resulting flocs then aid in the

settling of colloidal material (Kang et aI., 1990; Lugowski et aI., 1990; Duncan

et a/., 1995). This treatment option is often the most expensive due to high

operating costs and large amounts of sludge generated that have to be either

disposed of or further treated (Senior, 1995).

Chemical oxidation

Chemical oxidation can be used to either render several contaminants

insoluble, to gasify them or to stabilise them as relatively harmless

substances (Metcalf & Eddy, 1991; Saint-Forte, 1992). The effects of several

chemicals such as chlorine (CI2), ozone (03), calcium hypochlorite (Ca(CIO)2),

potassium permanganate (KMn04), hydrogen peroxide (H202), halogenated

oxidants, etc. have been evaluated (Kang et aI., 1990; Duncan et aI., 1995).

The reduction in COD by Clz, 03, Ca(CIO)2 and KMn04, even at high doses,
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was insufficient « 48%) to give an acceptable treatment efficiency (Lema et

al., 1988).

Low COD removals were achieved with CI2 (between 20 - 30%)

(Loizidou et al., 1993). Chlorine (CI2) provides sufficient disinfection of the

effluent, but can also combine with organic compounds to form materials

which may present health hazards to humans and other life forms (Van Der

Walt, 1997). Excellent iron and colour removals were observed with

Ca(CIO)2, but it also increased the hardness concentrations of the final

effluent.

With H202, as another option, a 35% COD removal was achieved with

the treatment of leachate (Loizidou et al., 1993). However, Van Der Merwe

(1994) achieved a COD removal of 57 - 70% with varying H202

concentrations as post-treatment of baker's yeast effluent. A small

percentage of ammonia can also be oxidised with H202 (Loizidou et aI.,

1993). It can also be considered as a good option for taste and odour control

and treatment (Harrington & Maris, 1986). Chlorine (CI2) and H202 were both

however, not effective in the total removal of taste and odour (Van Der Walt,

1997).

Nickel (Ni) concentrations can be reduced (25 - 75%) by chemical

oxidation with KMn04 and H202. Problems with foaming may occur and this

is an unacceptable complication for a full-scale plant (Senior, 1995). In

addition to foaming, KMn04 treatment also generates 10 - 50% (w/v) more

sludge (Kang et aI., 1990), causing a further disposal problem.

The use of halogenated oxidants as a treatment option leads to the

formation of highly dangerous organic halides, which will upset the microbial

activity in the system (Senior, 1995).

Good colour removal was found with ozone (03) and CI2 (Van Der

Walt, 1997; Ramlall & Nozaic, 1998). Ozone (03) also kills bacteria more

rapidly than Cb (Bessarabov & Grimm, 1998). Ozone (03) is only applicable

to waste streams containing less than 1% oxidisable materials (Enzminger et

aI., 1987). Oxidation of iron (Fe), manganese (Mn) and organic compounds

can also be achieved with 03 (Bessarabov & Grimm, 1998; Ramlall & Nozaic,

1998). Hydrogen peroxide (H202) controls bulking during the initial stage of
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treatment and 03 improves sludge settleability consistently and also stabilises

nutrient removal (Saayman et al., 1997). A combination, known as peroxone

(03 and H202), has a better oxidising capacity than the two separately, and

even more important, no harmful by-products are produced (Enzminger et al.,

1987; Saayman et ai., 1997). The oxidation of the taste and odour

compounds in effluents, were enhanced by the addition of peroxone.

Chemical oxidation is expensive and involves high treatment costs but

depends on the type of unit processes already installed in the treatment plant

(Senior, 1995).

Activated carbon adsorption

Carbon adsorption is the most extensively used physical-chemical

means of removal of refractory organic compounds, as well as residual

amounts of inorganic compounds such as nitrogen, sulphides and heavy

metals (Enzminger et aI., 1987; Metcalf & Eddy, 1991). This method entails

the collection of soluble substances that are in solution, on a suitable carbon

interface (Metcalf & Eddy, 1991). The best results reported were obtained

when combined with biological methods (Chain & De Walle, 1976; Ving et al.,

1987). Better reduction of organic levels (>85%) are achieved by the

adsorption of pollutants on activated carbon (Pohland & Kang, 1975). The

main disadvantage is the need for frequent regeneration of the carbon

columns or an equivalently high consumption of carbon powder (Lema et ai.,

1988; Senior, 1995). Handling and energy costs are high but this treatment

option can be cost effective for the removal of residual organics when the

total dissolved solids in solution are lower than 200 mq.l' (Senior, 1995).

Ion exchange

This is a process where the ions of an insoluble exchange material

(resin) are displaced by the ammonia (NH4+) ions in the effluent. It comprises

of three processes: sorption of heavy metals from the catching bath solution,

regeneration of the resin and electro-precipitation of heavy metals in the

electrolyser (Grebenyuk et aI., 1998). The process may be operated in a

batch or continuous mode. The ions which are displaced by NH4 + displaces,
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vary with the nature of the solution used to regenerate the bed or packed

column. This process produces a relatively low TOS effluent and 80 - 90% of

the NH3/NH/ is removed to produce a reclaimable product (aqueous

ammonia). High concentrations of other cations will reduce the removal of

ammonia (Metcalf & Eddy, 1991).

It was also found that ion exchange is an effective method for the

removal of nickel, chromium and copper (Duncan et aI., 1995; Schoeman &

Steyn, 1995; Grebenyuk et aI., 1998). Filtration as pre-treatment option is,

however, required to prevent the accumulation of suspended solids. Other

problems found are the disposal of the regeneration products and the high

operational costs involved (Metcalf & Eddy, 1991).

B.2. Physical treatment

Sedimentation

Readily settleable solids with a higher gravity than the liquid tend to

settle when the effluent, which is often high in suspended solids, is placed in

a sedimentation tank (Van Der Walt, 1998). This is one of the most

commonly used methods in wastewater treatment. Solids with a lower gravity

(fats, oils and other floating material) will tend to rise. The aim of

sedimentation is thus to remove floating materials and settleable solids. The

solids are generally withdrawn from the bottom (Atlas & Bartha, 1993). These

solids can then be treated via anaerobic digestion and/or by composting prior

to final disposal in landfills or as a soil conditioner (Atlas & Bartha, 1993), thus

decreasing the SS and COD concentrations (Metcalf & Eddy, 1991). With the

use of a sedimentation tank, the load on biological treatment units can be

reduced and the removal of suspended solids is found to be between 50 -

70% (Metcalf & Eddy, 1991). However, initial capital investment and space

requirements are high.

Ultrafiltration

Different cross-flow pressure-driven membrane separation processes

fulfil different functions. These filtration membranes are mainly fabricated
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from poly-ether sulphone or cellulose acetate (Sanderson & Hurndall, 1995;

Nell & Kafaar, 1996; Jacobs & Barnard, 1997). Microfiltration membranes

remove suspended solids and reduce bacteriological activity, but not the

colour and the dissolved organic content of the water. Ultrafiltration, in which

a finer membrane is used, does not affect most soluble cations and anions

such as alkalinity and hardness concentrations, but is capable of removing

medium molecular-mass dissolved organic material and reducing turbidity to

levels of 0.1 nephelometric turbidity units (NTU). Ultrafiltration is thus unable

to desalinate water (Jacobs et aI., 1998). Ultrafiltration can also be used to

remove up to 90% of the COD load in effluents (Swart et al., 1996).

Nanofiltration membranes, which are even finer, can partly desalinate water

(soften it) and can remove substantial quantities of low molecular-mass

organic material, as well as viruses (Buckley et al." 1992; Jacobs & Barnard,

1997). A typical nanofiltration membrane has a sodium chloride retention of

50% and a magnesium sulphate retention of 98% (Sanderson & Hurndall,

1995). The membrane technology also includes the removal of fats and oils,

chromium, iron and sulphate from tannery effluents, as well as the removal of

turbidity from colour colloids (Schoeman & Steyn, 1997). The pH of the

effluent must be more or less neutral, as it can cause hydrolysis of the

membrane over a period of time (Jacobs & Barnard, 1997). The membranes

have a finite life and also show a limited tolerance to the presence of chlorine

(Sanderson & Hurndall, 1995). Another major problem with this method is

membrane fouling, but this can be cleaned with the correct chemical and

enzyme combinations, depending on the type of effluent to be treated (Swart

et al., 1996; Maartens et al., 1998). Pressure-driven membrane processes

are an ideal treatment option to use together with reverse osmosis to produce

a higher quality effluent, but it requires very high running, capital and cleaning

costs (Swart et aI., 1996; Jacobs & Barnard, 1997). The selection of a

suitable filtration technique may pose specific problems due to the variability

of industrial effluents (Buckley et al., 1992).
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Reverse osmosis (hyperfiltration)

Another pre-treatment possibility includes reverse osmosis, which

involves the separation of dissolved solids in a solution. This is a process

whereby water is forced, by pressure, through a semi-permeable membrane

at a pressure greater than the osmotic pressure caused by dissolved salts in

the wastewater (Krug & McDougall, 1988; Metcalf & Eddy, 1991; Sanderson

& Hurndall, 1995). The advantage of this process is almost complete

desalting or the removal of dissolved organic material, which can not be

removed by other demineralisation techniques (Buckley et al., 1992; Juby et

al., 1998). The prediction of the precipitation potential of effluents is difficult

because of the chemical complexity and variability. However, one major

disadvantage of ultrafiltration and reverse osmosis technologies is the

precipitation of trace substances and metals (Buckley et al., 1992). The

reverse osmosis membrane treatment is an effective physical method for

reducing the COD level (80 - 98%) (Chian & De Walle, 1976), the chromium

levels from 80% up to 94%, the cadmium levels up to 99%, the zinc

concentrations up to 94%, as well as for the recovery of 93 - 99% nickel

(Schoeman & Steyn, 1995). However, the zinc recovery in a reverse osmosis

plant is not as economical as for nickel recovery (Schoeman & Steyn, 1995).

With reverse osmosis it was shown that it is possible to reduce the

electrical conductivity in a heavy metal-rich effluent (Schoeman & Steyn,

1995). Reverse osmosis is usually very effective if it is combined with another

pre-treatment method, like ultrafiltration (Schoeman & Steyn, 1997). Due to

scale formation, the pH must be adjusted to a range of 4.0 - 7.5 and removal

of iron and manganese participates are recommended (Metcalf & Eddy,

1991). It is possible to control membrane fouling with regular chemical

cleaning (Schoeman & Steyn, 1995). Prolongation of membrane life

necessitates pre-treatment of the effluent to eliminate suspended solids and

colloidal material (Juby & Schutte, 2000). The type of membrane, pH,

pressure and pre-treatment are important factors in determining the

effectiveness of this process (Kettern, 1992). However, the cost of

purchasing, installing and cleaning the membranes, can be relatively high.
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Ammonia stripping

Ammonia stripping is a possible option to remove excess

concentrations of ammonia (Henry, 1985; Prasad et aI., 1985; Lema et aI.,

1988; Smith & Arab, 1988; Kang et aI., 1990). The high concentrations of

ammonia-nitrogen can be removed from wastewater by increasing the pH, by

the addition of lime, to above 9 (Henry, 1985) or 11 (Lema et al., 1988),

followed by the formation of NH3-gas. By bubbling air through the system,

ammonia removal for atmospheric discharge can also be accomplished

(Smith & Arab, 1988.) Thus, when water contains a volatile gas such as NH3

in excess of its equilibrium level, the NH3 will move from the water into the air

until equilibrium is reached. Ammonia stripping allows the concentration of

NH3-N to be reduced by an overall removal of 60 - 95%, if it is used in

combination with chemical precipitation and biological activated sludge

treatment (Keenan et aI., 1984; Henry, 1985; Lema et aI., 1988). Due to the

high operating and maintenance costs, the application of ammonia air

stripping is limited (Metcalf & Eddy, 1991). The process is very sensitive to

temperature changes, wind speed, aeration rate, lagoon configuration, pH

control, surface area and the ammonia solubility increases with a decrease in

temperature (Smith & Arab, 1988; Saint-Forte, 1992). The disadvantage of

the pH increment, is that carbon dioxide (C02) is absorbed from the air and

the development of carbonate scaling will occur within towers, lagoons and

feed lines (Senior, 1995). Ammonia air stripping can be considered as a cost

effective and unsophisticated system, but stripping towers can be expensive

to build and operational problems include the formation of an adherent scale

in the tower (Smith & Arab, 1988). Lagoons can rather be seen as a lower

cost alternative. The high pH is also advantageous in removing heavy metals

by precipitation and then air stripping the ammonia from the wastewater, thus

minimising ammonia and metal inhibitory effects (Henry, 1985). Air pollution

is also a possibility, as a result of the reaction of ammonia with sulphur

dioxide (S02) (Metcalf & Eddy, 1991).
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Electrodialysis

Electrically driven membrane separation processes are very promising

technologies in the reclamation of water and chemicals from industrial

effluents (Schoeman & Steyn, 1996). These include different methods like,

electrodialysis (ED), electrodialysis reversal (EDR), electro-electrodialysis

(EED) and bipolar electrodialysis (BED) (Schoeman & Steyn, 1996).

Electrodialysis can be effectively applied for the removal of dissolved organic

substances, desalination of brackish waters for potable use and for metal

recovery in the electroplating industry (Schoeman & Steyn, 1996). The

conventional ED also has the potential to be used for cost-effective treatment

of chromium (81% removal), cadmium, copper (92% removal), nickel (97%

removal), silver (95% removal) and zinc electroplating rinse waters for waste

and chemical recovery (Schoeman & Steyn, 1995; Schoeman & Steyn, 1996).

The EED process is also effective for the removal of chromium. The BED

process is effective for the recovery of acid and caustic soda (NaOH)

(Schoeman & Steyn, 1996). The ionic components of a solution are

separated through the semi-permeable ion-selective membranes (Metcalf &

Eddy, 1991).

Application of an electrical potential between the two electrodes

causes an electric current to pass through the solution and a migration of

anions to the positive electrode takes place. As a result of the alternate

spacing between the cation and anion-permeable membrane, precipitation of

salts with low solubility can occur on the membrane surface (Metcalf & Eddy,

1991). Depending on which variant of ED is chosen, the capital costs and

electrical energy usage are relatively high (Schoeman & Steyn, 1996).

Clogging of the membrane by residual colloidal organic matter and metals is

also one of the problems associated with the ED process (Metcalf & Eddy,

1991). To reduce membrane fouling, activated carbon pre-treatment

preceded by chemical precipitation, may be necessary. Regular chemical

cleaning should also be practised to clean fouled membranes (Schoeman &

Steyn, 1995). However, the above methods are expensive to implement and

to maintain.
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Diffusion dialysis

The gelatin-manufacturing factory uses high volumes of acid (H2S04,

HCI) and alkali (NaOH) in the process (Cole, 1997, Personal communication).

Diffusion dialysis could effectively be used to recover acid from spent acid

(Schoeman & Steyn, 1995) produced during the gelatin-manufacturing

process. It was indicated by Schoeman & Steyn (1995), that 74 - 76% HCI

could be recovered using this method. Sulphuric acid (H2S04) recovery was

approximately 75%. Up to 95% iron, nickel and copper could also be

removed from the acid. However, zinc could not be removed effectively by

this method as when compared to other available methods (Schoeman &

Steyn, 1995). For better recovery of acids and caustic soda, the diffusion

dialysis can be combined with a BED process (Schoeman & Steyn, 1996).

The capital costs are also high for implementing this treatment option.

Wet-air oxidation

This technology is also suitable for the pre-treatment of high organic

and salinity wastewater (Neytzell-de Wilde, 1985). Aqueous wastes can be

oxidised into the liquid phase, by using a combination of elevated

temperatures and pressures (Neytzell-de Wilde, 1985). Wastewaters with

high organic or salinity content are quantitatively mixed with compressed air

(Metcalf & Eddy, 1991) and pumped through a heat exchanger where the

temperature is increased from 150° to 200°C (Neytzell-de Wilde, 1985).

About 5 - 10% of the COD may be oxidised at 150°C and at 320°C complete

oxidation would occur in a pressurised reactor (Neytzell-de Wilde, 1985).

After oxidation is initiated, the discontinuation of the steam heating occurs,

and the oxidation products leave the reactor at temperatures between 220°

and 330°C (Neytzell-de Wilde, 1985). These products are re-used to heat the

incoming organic liquor and air. Spent air, carbon dioxide and steam are

removed from the oxidised effluent in a separator. In wet-air oxidation

processes, the organic wastes are used as "free fuel" to heat the incoming

wastewater, but the air which must be supplied to the reactor under pressure,

can be very costly (Neytzell-de Wilde, 1985).
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B.3. Biological processes

One of the most promising treatment options for the removal of organic

substances (colloidal or dissolved) in wastewater is biological degradation.

The objective of biological treatment is mainly to coagulate and remove the

non-settleable colloidal solids and to stabilise the organic matter (Metcalf &

Eddy, 1991). The substances can be converted into gas that can escape to

the atmosphere and be utilised as carbon in biological cell material that can

be removed by settling (Metcalf & Eddy, 1991). Other aims of biological

treatment methods are the nitrification, denitrification, phosphorus removal,

sulphate reduction and waste stabilisation, as well as the reduction in the

volume of biosolids.

Biological processes for treating wastewaters include aerobic, anoxic,

anaerobic, combined aerobic, anoxic and anaerobic methods and pond

(maturation, oxidation, stabilisation) processes. The biological treatment of

industrial wastewater holds several advantages, including: reduced pollution

load to the receiving waters; higher stability of the regional treatment plant;

lower impact of unexpected changes in industrial processes on discharging to

regional treatment plants; less probability of odour nuisance from the sewer

system in the drainage area; the microbial transformations of complex organic

material and possible adsorption of heavy metals by suitable microbes;

reduced overall costs; and better opportunities for the re-use of sludge

(Enzminger et al., 1987; Metcalf & Eddy, 1991; Nowak et a/., 1996).

Aerobic treatment

Aerobic treatment is one of severai alternative biological methods for

the treatment of domestic and industrial effluents (Atlas & Bartha, 1993; Lens

et aI., 1998). This method depends on micro-organisms growing in an

oxygen-rich environment, and their ability to oxidise soluble and colloidal

organic material to carbon dioxide (C02), water (H20), sludge (50 to 60%

biomass), ammonia (NH3) and other cellular materials as shown in the

following reactions (Gough et a/., 1987; Senior, 1995):
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bacteria

COHNS + O2 + nutrients --~ C02 + NH3+ CSH903N + other end-products
(organic matter) (biomass)

bacteria

CSH903N + 502 ---.> 5C02 + 2H20 + NH3 + energy
(biomass)

The empirical formula CSH903N was chosen to represent an bacterial

biomass (Kalyuzhnyi, 1997). The micro-organisms use phosphates and

ammonia-nitrogen for cell maintenance (Knox, 1985; Metcalf & Eddy, 1991).

Only about 75 - 80% of the cell material can be oxidised, the remaining 20 -

25% is composed of inert components and organic compounds that are

generally not biodegradable. Aerobic treatment produces a high quality

effluent, but the start-up phase requires an acclimation period in order to

facilitate the development of a competitive microbial community (Senior,

1995). The disadvantages of this process are the occurrence of foaming,

poor solid-liquid separation, high volumes of sludge which may contain high

levels of heavy metals and thus need to be disposed off as hazardous waste

(Senior, 1995).

There are basically three different types of aerobic treatments (Atlas &

Bartha, 1993). A relatively inexpensive film-flow-type aerobic treatment

system is the trickling filter, where the wastewater percolates through a bed of

porous material covered with a bacterial community (rock or plastic packing).

Aeration is supplied by the porous nature of the bed (Atlas & Bartha, 1993).

The wastewater filter through the porous bed and the effluent and any

biological solids that have became detached from the media, are collected in

an underdrain unit (Metcalf & Eddy, 1991) at the bottom of the filter system

(Mack et aI., 1975). The bacterial community utilises the biodegradable

organic substances in the wastewater, thus reducing the COD and SS

concentrations of the effluent (Matasci et aI., 1986). A drawback of this

treatment system is that a nutrient overload can lead to excess microbial

slime, which subsequently influences the aeration and filtration rates of the

wastewater (Atlas & Bartha, 1993). A relative high incidence of clogging may

also occur (Senior, 1995; Van Niekerk & Rudert, 1998) and the efficiency is

often reduced by colder winter temperatures (Atlas & Bartha, 1993).
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A more advanced aerobic film-flow-type treatment system is the

rotating biological contractor or biodisc system (Atlas & Bartha, 1993).

Closely spaced circular discs of polystyrene or polyvinyl chloride (Metcalf &

Eddy, 1991) are rotated slowly in a trough containing the wastewater. The

partially submerged discs become coated with the bacterial community (Atlas

& Bartha, 1993) as a slime layer over the wetted surface of the discs. The

continuous rotation insures constant aeration and contact with the nutrients in

the wastewater. These systems require less space than the trickling filters,

are efficient for the removal of heavy metals and NH3, are stable in operation,

no pumping, no aeration or recycling of solids are required and no aerosols

are produced (Lugowski et al., 1990; Spengel & Ozombak, 1992; Atlas &

Bartha, 1993), but they require a longer initial start-up.

The most popular aerobic treatment system, is the activated sludge

process. The wastewater containing the biodegradable organic substances is

contained in a mechanically stirred aeration tank (Atlas & Bartha, 1993). A

diverse non-pathogenic heterotrophic community of micro-organisms,

protozoa and filamentous organisms develop and are maintained in the

aerated tank. Well-managed systems are capable of effectively removing

phosphate, nitrogen and carbon, with resultant microbial biomass production

(Ubisi et al., 1997; Banister & Pretorius, 1998). The activated sludge

treatment process is efficient and flexible and can withstand variations in

wastewater flow rate and high organic loads (Atlas & Bartha, 1993). A high

quality effluent can be produced, with COD removals as high as 99% (Chian

& De Walle, 1976; Keenan et al., 1984; Lema et al., 1988; Zhi-rong Hu et al.,

2000). The start-up and operation is fairly quick and simple, with few odour

problems (Metcalf & Eddy, 1991).

The main disadvantages of the aerobic treatment are the high energy

requirements, sludge and foam production, nutrient requirements,

precipitation ability of sludge to adsorb specific organic compounds and toxic

heavy metals, sludge disposal and the large capital investment needed

(Blakey & Maris, 1990; Metcalf & Eddy, 1991; Senior, 1995).
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Anaerobic treatment

One of the oldest forms of biological wastewater treatment is the

anaerobic digestion method (Metcalf & Eddy, 1991). The simplest anaerobic

treatment system is the septic tank, which is popular in rural areas lacking

formal sewer systems (Atlas & Bartha, 1993). These tanks serve as a

combined settling and skimming tank and as an unheated, mixed anaerobic

digester (Metcalf & Eddy, 1991). The residual biosolids settle in the tank,

while the clarified effluent can be distributed to a leaching field, where

dissolved organic material can undergo further treatment (Atlas & Bartha,

1993).

The first official tank was designed in the 1850's to separate and retain

solids and the wastewater plant in Baltimore, Maryland was one of the first to

install separate digestion tanks (Metcalf & Eddy, 1991). Thereafter,

anaerobic digestion was continuously studied and intensively evaluated,

resulting in heat application (Joubert & Britz, 1986; Van Der Merwe & Britz,

1994) and improvement in reactor design, as well as higher removal rates

(Britz et aI., 1990; Metcalf & Eddy, 1991; Guiot et al., 1997). Progress has

been made in understanding the mechanism control of the process, design

and size of the digesters (Metcalf & Eddy, 1991; Van Der Merwe & Britz,

1993). In modern practice, large-scale anaerobic reactors are constructed to

maintain strict anaerobic conditions, produce utilisable biogas and facilitate

the screening and settling of solids.

Anaerobic digestion depends on a microbial consortium for the

biological conversion of organic material in the absence of molecular oxygen

to a variety of end-products including methane (CH4), CO2 and other

metabolites, while less than 3% of the organic matter is transformed into

biomass (Metcalf & Eddy, 1991). The main disadvantages of anaerobic

digestion are: the complexity of the initial start-up process; the long start-up

time needed for biomass development; high ammonia concentrations are

needed for maximum biomass activity; the anaerobic system is sensitive to

heavy metals, solvents and detergents; a large capital lay-out is required; and

the need for strict control of many operational parameters is essential (Atlas &

Bartha, 1993; Backlund et aI., 1998). The pH has to be maintained within the
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range of 6.5 - 7.5, with optimal performance at pH 7.0 and 35°C (Atlas &

Bartha, 1993; Van Der Merwe, 1994; Senior, 1995). pH extremes and the

influx of heavy metals, solvents or other toxic materials can easily upset the

anaerobic digestion process (Atlas & Bartha, 1993). Furthermore, heavy

metal removal in anaerobic processes are not as efficient as in aerobic

processes. Ammonia-nitrogen is not removed and will thus be discharged as

part of the digester effluent creating an oxygen demand in the receiving

waters (Senior, 1995). The sulphates present in the wastewaters are reduced

to hydrogen sulphide which can then result in corrosion, bad odours and the

inhibition of the microbial community in the digester. Hydrogen sulphide can

also be an efficient precipitant for most metals, which then precipitate and

accumulate as inert solids in the sludge blanket or on the filter media.

The main advantages of the anaerobic digestion process are: less

space is required than the aerobic process; there is no oxygen demand, thus

saving on energy costs since no mixing is required (Senior, 1995; Backlund et

a/., 1998); only 2 - 3% of the organic matter is transformed into biomass,

which is an indirect way to decrease the problem of sludge disposal as found

in aerobic processes (Backlund et al., 1998); lower nutrient requirements,

since substances like NH3-N are retained as food for the microbial population,

unlike in the aerobic treatment process; and pathogens and viruses are also

destroyed during the digestion process.

The anaerobic digestion process can handle high organic loads without

previous dilution, bad odours are mainly eliminated since the process takes

place in closed reactors (Backlund et al., 1998), the mineralised anaerobic

sludge can be used as a fertiliser if heavy metal concentrations are low and,

even more important, anaerobic sludge settles more easily than aerobic

sludge, which eliminates the use of flocculants (Lema et al., 1988). The most

important advantage of anaerobic digestion is the production of high-energy

volatile components (biogas) during the transformation of organic matter

(Backlund et al., 1998).

The anaerobic digestion of wastewater is an established technology

and has already been applied successfully at many municipal sewage works

(Augoustinos et a/., 1989). Recently, it has become very popular to use
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anaerobic digestion for the treatment of high organic loads (Braun & Huss,

1982; Silverio et al., 1986; Augoustinos et al., 1989; Ross, 1989; Lin, 1991;

Britz et al., 1992; Ciftci & Ozturk, 1993; Keenan et ai., 1993; Backlund et ai.,

1998) and high salinity effluents (Shipin et al., 1994).

8.4. Combined chemical, physical and/or biological treatments

Combined processes or "hybrid systems" are becoming more popular for the

treatment of industrial wastewater (Dienemann et al., 1990; Abeling &

Seyfried, 1992). A small part of an organic load in wastewater can for

instance, be removed anaerobically, thereby producing methane. The

remaining pollution load can then be removed aerobically. This combined

technology is an efficient economical carbon removal solution

(Venkataramani et al., 1988; Dienemann et ai., 1990; Abeling & Seyfried,

1992).

Biological treatments have furthermore been combined successfully

with physical-chemical treatment methods (Ahiert & Kosson, 1990). Better

removal efficiencies have been found with combined treatments, than with

separate methods (Keenan et aI., 1984). Under normal conditions, physical-

chemical methods can be used to remove metals and hydrolyse part of the

organic material, while the biological methods can be employed to stabilise

the degradable organic matter. Reverse osmosis was reported to be a

popular and successful post-treatment physical-chemical method following a

combined aerobic-anaerobic process (Dienemann et al., 1990). Physical-

chemical processes are also ideal final or polishing treatment options, and

can remove ammonia-nitrogen successfully before biological treatment is

applied (Aynagiotou et al., 1993).

To simplify the presentation, the broad field of combined treatment

options is illustrated as one example that is currently successfully applied in

South Africa. This is the anaerobic digestion technology being combined with

ultrafiltration and generally known as the ADUF process (Ross et ai., 1990).
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Anaerobic digestion combined with ultrafiltration (ADUF)

This treatment method is a recently developed membrane-assisted

process specifically for the treatment of industrial effluents, which, by means

of biomass separation, eliminates the sludge concentration and retention

problems associated with conventional systems (Ross et aI., 1990; Van Der

Merwe, 1994; Neil & Kafaar, 1996; Strohwald, 1996). Successful laboratory

and pilot-scale ADUF studies were done on wine distillery, malting, egg,

brewery, chemical, fruit and maize-processing effluents (Ross et al., 1994;

Nell & Kafaar, 1996; Strohwaid, 1996). Reduction of organic levels of up to

98% were achieved while operating under stable state conditions, and

producing a clear, colloid-free effluent (Sauvegrain et al., 1992; Ahmadun,

1994; Neil & Kafaar, 1996; Strohwaid, 1996).

Solvable problems experienced with some of the applications of the

ADUF technology were: blocking and deterioration of the ultrafiltration

membrane; generation of foam in the digester, which then restricted the

space and the organic loading rates which the digester could handle; clogging

of gas pipelines, water traps and meters; loss of solids from the ADUF

systems; lack of suitable nutrients and alkalinity, which resulted in poor

digester capacity and low organic loading rates; flux decline; and difficulty in

maintaining the desirable balance between substrate feed and permeate

production (Harada et aI., 1994; Van Der Merwe, 1994; Neil & Kafaar, 1996;

Strohwaid, 1996). In total this ADUF combination led to the production of a

fairly pure final effluent which could be either reused, recirculated or disposed

of into a water system.

c. Microbial populations in anaerobic digesters

The decomposition of organic matter to CH4 and CO2 by mixed anaerobic

microbial populations has received a great deal of attention and has provided

useful insights into anaerobic digester bioconversion technology (Zeikus,

1980; Lettinga et al., 1997). The bioconversion of the organic matter is a

stable process when performed under defined environmental conditions, and

is based on the catabolic activities of a diverse, yet substrate specific,
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population of aerobic and anaerobic bacteria (Zeikus, 1980; Silvey et al.,

2000). Certain properties of the microbial populations responsible for the

anaerobic decomposition of the organic matter appears constant regardless

of whether this process is occurring in man-made digesters or in nature. The

properties include a specific population diversity, the effect of certain physical

and chemical conditions on species composition and the physiological

characteristics of the different active species (Zeikus, 1980). The alteration of

several physical and chemical environmental parameters in anaerobic

digesters can influence the microbial metabolism and thus also the digester

performance (Zeikus, 1980; Britz et al., 1997).

The complex organic material (Fig. 2), including the microbial biomass,

serves as a food source for the microbial consortium, and is depolymerised

and converted to easier degradable compounds, biomass, energy and other

gaseous end-products (Balch et al., 1979). Other end-products of the

digestion process include N2, H2S and H2 (Kasan, 1988). The current

biological model (Fig. 3) of a methanogenic mixed-culture digestion consists

of at least five major consecutive, but metabolic independent, trophic bacterial

groups (Gorris et aI., 1989; Tursman & Cork, 1989):

1. Hydrolysis of complex organic polymers, such as carbohydrates,

proteins, lipids, polysaccharides and aromatic 'compounds, into

smaller subunits for use as a source of energy and cell carbon,

which can be easily transported into the bacterial cell. Proteins are

then converted to amino acids, polysaccharides and carbohydrates

to sugar monomers and lipids to long chain fatty acids;

2. Fermentation (acidogenesis) of the smaller subunits resulting from

the hydrolysis process, to identifiable intermediate organic acids,

alcohol, H2 and CO2. These fermentation· products serve as a

source for the next trophic group of non-methanogenic bacteria;

3. ~-oxidation (acetogenesis) of intermediate and long chain fatty acids

(propionate, butyrate, benzoate) and ethanol to acetate, CO2 and

H2;

4. The homo-acetogenic bacteria can then catabolise one-carbon-

compound to acetate as main metabolic product; and
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Figure 2. Conversion of complex organic material to different end-products

during anaerobic digestion (Britz, 1990; Ac = acidogens, As =
acetogens, H-As = homoacetogens, Ma = acetate-utilising

methanogens, MG = H2/C02-utilising methanogens, % =
breakdown of complex substrate to respective metabolites)
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Figure 3. The biological model of the five major consecutive microbiological reactions during the anaerobic

digestion process (Britz, 1989). w.....
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5. Methane formation is the final stage of anaerobic digestion. Two

types of metabolic pathways can be found: acetate is converted to

CH4 and CO2, and CO2 and H2 are converted to CH4 and H20. The

efficient metabolism of each trophic group is thus dependent on the

activity of the other trophic groups.

Hvdrolytic and Acidogenic Bacteria

To degrade complex organic substrates to methane by anaerobic

digestion, other organisms than the methanogenic bacteria are necessary

because of the limited number of substrates catabolised by the methanogens

(Klass, 1984; Pohland & Kim, 2000). The acidogenic population is thus by far

the largest of the trophic groups of bacteria (Forday & Greenfield, 1983).

Many of these bacteria have large substrate ranges, but their substrate

preferences and utilisation patterns are different (Mcinerney & Bryant, 1981).

The hydrolytic (acidogenic) bacteria depolymerise the complex organic

polymers and these products are then fermented to primary (volatile fatty)

acids, such as acetate, propionic and butyrate, with smaller quantities of

formic, valeric, iso-valeric and caproic acids which can also be produced

(Fang, 1997; Okamoto et aI., 2000). Ammonia, hydrogen gas (H2), C02, iso-

butyrate, iso-valerate, n-valerate, 2-methylbutyrate and certain aromatic

compounds are produced from amino acids which are of the smaller sub-units

formed after depolimerisation of the complex organic polymers (Bryant, 1976;

Salminen et al., 2000). Many aromatic compounds are also converted by

bacteria to benzoate (Knoll & Winter, 1989).

The concentration of H2 in the overall anaerobic digestion process

plays a central role as regulator in controlling the proportions of the products

produced by the bacteria (Bryant, 1979). In the presence of hydrogen-

consuming bacteria (methanogenic, homo-acetogenic and sulphate-reducing

bacteria), many bacteria will produce hydrogen for the disposal of excess

electrons generated during the energy yielding oxidations of organic materials

(Forday & Greenfield, 1983). When accumulation of hydrogen, due to the

inhibition of the hydrogen-consuming methanogens occurs, unfavourable

conditions for electron disposal will result (Forday & Greenfield, 1983). Under
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stressed conditions, alternative electron sink products e.g. propionate,

butyrate, succinate and ethanol are formed, which can be an indication of

digester failure. Excessive activity of the acidogenic population can also

result in digester failure (Forday & Greenfield, 1983). Acidogenic bacteria are

tolerant to unionised organic acids, hydrogen ions and hydrogen, while these

compounds are inhibitory to the other trophic groups of bacteria (Forday &

Greenfield, 1983). The formation of acetate, CO2 and H2 are an indication of

efficiently operating metabolic interactions in the anaerobic digestion process.

The partial pressure of hydrogen must, however, be maintained at very low

levels, since the pressure may affect the metabolic pathway of the acidogenic

bacteria (Bryant, 1979; Okamoto et al., 2000).

Most of the acidogenic bacteria are obligate anaerobic, however some

are facultative and can also metabolise organic material via the oxidative

pathway. This is important in anaerobic sewage treatment, as dissolved

oxygen might become toxic to the obligate anaerobic organisms such as the

methanogens (Ueki et ai., 1978; Van Haandel & Lettinga, 1994). Depending

on the original complex organic substrate, the acidogens include members of

the genera Bacillus, Clostridium, Streptococcus, Micrococcus,

Staphylococcus, Pseudomonas, Lactobacillus, Eubacterium, Klebsiella,

Escherichia, Chryseomonas, Xanthomonas, Aerobacter, Acinetobacter,

Synergistis, Bacteroides, Butyrivibrio, Butyribacterium, Propionibacterium,

Acidaminobacter, Bifidobacterium and other Enterobacteriaceae. The

presence of Peptococcus, Peptostreptococcus, Ruminococcus, Caprococcus,

Acetivibrio and Sarcina have also been reported (Siebert & Toerien, 1969;

Scharer & Moo-Young, 1979; Mcinerney & Bryant, 1981; Klass, 1984;

Hakulinen et ai., 1985; De Haast & Britz, 1986; Heijthuijsen & Hansen, 1987;

Joubert & Britz, 1987; McSweeney et ai., 1993; Van Der Merwe, 1994;

Okamoto et ai., 2000).

Acetogenic Bacteria

Further degradation of acidogenic substrates are anaerobically

oxidised to acetate, formate, H2 and CO2 as main metabolic end-products

(Bryant, 1979; Mountford & Bryant, 1982; Klass, 1984; Henson & Smith,
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1985; Hanaki et al., 1981; Fang, 1997; Salminen et al., 2000). Different from

the hydrogen-forming acidogenic bacteria, these bacteria do have an obligate

requirement for the disposal of electrons such as hydrogen (Forday &

Greenfield, 1983). The conversions are extremely sensitive to H2

concentration and the growth of these bacteria can only occur at partial

hydrogen pressures of less than 10-5 atmospheres (Forday & Greenfield,

1983). High hydrogen concentrations can inhibit acetogenesis which then

results in the formation of fermentation products other than acetate (linder,

1984; Labib et al., 1992). The conversion of these products (higher volatile

fatty acids, caproate, butyrate and propionate) to methanogenic substrates

(acetate, H2and C02) is an important step, as the unionised forms of these

acids are toxic to the methanogenic group. Inhibition of the acetogens will

result in a decrease in digester pH, which creates an unfavourable

environment for methanogenic bacteria (Van Haandel & Lettinga, 1994;

Broughton et al., 1998). Since the acetogenic bacteria are the slowest

growing of the trophic groups and hence represent a further rate-limiting step

in the degradation process, which can lead to subsequent digester failure.

The metabolic conversion of the acetogens are only possible if a low

hydrogen partial pressure is maintained (5.8 x 10-5 to 1.6 x 10-6atmospheres)

by the methanogens and sulphate-reducers (Boone & Bryant, 1980; Boone &

Mah,1989).

Due to their hydrogen sensitivity and strict anaerobic growth

requirements, the acetogens have generally not been well identified or

physiologically characterised. On the basis of experimental data collected

using co-cultures, the presence of these bacteria was first discovered in 1967

by Bryant and co-workers. It was found that the acetogens can only be

cultured in the presence of a methanogenic hydrogen-utilising bacterium

(leikus, 1980). A classic example of a hydrogen-producing acetogenic

bacterium is the "S" organism, which was isolated from a Methanobacillus

omelianskii mixed culture (Bryant et al., 1967). After the isolation of the "S"

organism, other strains of acetogens were also characterised. These bacteria

are mostly syntrophic and are also called "obligate proton-reducing bacteria".

These include members of the species of Syntrophomonas, Clostridium,
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Syntrophococcus, Syntrophospora, Syntrophobacter, Syntrophus and

Acetomaculum (Boone & Bryant, 1980; Heyes & Hall, 1983; Diekert et ai.,

1984; Kellum & Drake, 1984; Mountford et ai., 1984; Stieb & Schink, 1985;

Krumholtz & Bryant, 1986; Roy et ai., 1986; Iannotti et ai., 1987; Lux et ai.,

1990; Zhao et al., 1990; Guangsheng et ai., 1992; Wu et ai., 1992; Guiot et

ai., 1997; Harper & Pohland, 1997; Zu et ai., 1997).

Homo-acetogenic Bacteria

The exact role of the homo-acetogenic bacteria in the anaerobic

digestion process is still not fully understood. The homo-acetogenic bacteria

display a mixotrophic metabolism and can utilise hydrogen and carbon

dioxide, as well as other one-carbon compounds, with acetate as a major

metabolic end-product (Britz, 1990). The homo-acetogenic bacteria can also

catabolise complex carbohydrates (Forday & Greenfield, 1983), aromatic

compounds, alcohol and fatty acids (Bache & Pfennig, 1981; Kellum & Drake,

1984; Schink, 1984). Other metabolites, such as acetate, CO2, ethanol,

propionate, butyrate and valerate may also be formed, depending on the

oxidation status of the available substrates (Eichler & Schink, 1984; Dehning

et ai., 1989; Scherer et ai., 2000).

The presence of homo-acetogens in digesters are very important as

they maintain the low hydrogen partial pressure required in an efficiently

operating anaerobic digester (Sam-Soon et ai., 1991). Homo-acetogens,

however, compete with the methanogens for substrates (Conrad & Wetter,

1990). They can also donate hydrogen to the methanogenic bacteria by the

"interspecies hydrogen transfer" phenomenon (Zeikus, 1980; Forday &

Greenfield, 1983). An advantage of the homo-acetogens over the other

bacteria, is their ability to use the bicarbonate (HC03-) ion as electron

acceptor (Balch et al., 1977). The reduction to acetate occurs through CO2

as an intermediate (Bryant, 1979; Diekert & Ritter, 1983; Diekert et ai., 1984).

There are very few easily recognised genera of this strict anaerobic,

hydrogen-oxidising homo-acetogenic trophic group. These include

Acetobacterium, Acetoanaerobium, Acetogenium, Selenomonas, Clostridium,

Eubacterium, Butyribacterium, Pelobacter and Sporomusa (Zeikus, 1980;
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Bache & Pfennig, 1981; Diekert & Ritter, 1983; Forday & Greenfield, 1983;

Eichler & Schink, 1984; Zehnder et a/., 1982; Stieb & Schink, 1985; Dehning

et a/., 1989; Schuppert & Schink, 1990; Zhao et a/., 1990; Buschhorn et a/.,

1992; Guangsheng et a/., 1992; Van Der Merwe, 1994; Okamoto et a/., 2000).

Methanogenic Bacteria

The methanogens (MB) convert acetate, H2 and C02 to methane and

CO2 as metabolic end-products (Ahring & Schmidt, 1992). These

archaebacteria are a more diverse group of bacteria than the other three

trophic groups of the consortium associated with anaerobic digestion. The

methane-forming bacteria show considerable intra-species variations in cell

dimensions (Zeikus, 1980; Forday & Greenfield, 1983; Guiot et a/., 1992) and

are responsible for the terminal reactions in the anaerobic digestion process.

They can thus be seen as "key" organisms in the process.

All the methanogens are obligate anaerobes, requiring an oxidation-

reduction potential of less than -300 mV for growth (Bryant, 1976, Forday &

Greenfield, 1983). Inhibition of methanogenesis can also be caused by

organic overload when the rates of acetbgenesis will exceed

methanogenesis. Unionised volatile fatty acids will then start accumulating in

the bioreactor (Tracey et a/., 1989; NedweIl & Reynolds, 1996; Salminen et

a/., 2000) and thus, cause a decrease in pH as a result of the accumulation of

mainly acetate (NedweIl & Reynolds, 1996). Wide deviations in pH can thus

reduce the anaerobic microbial populations. The sensitivity of anaerobic

digestion to extreme pH is mainly due to the sensitivity of the methanogenic

populations to pH values above 7.8 and below 6.0 (Forday & Greenfield,

1983; Fang, 1997; Lens et a/., 1998). pH control at a neutral value facilitates

more rapid establishment of an active methanogenic population and

subsequent biogas production (Senior, 1995). If a neutral pH is not

maintained, this may lead to the souring of the digester (Forday & Greenfield,
,

1983; Marchaim & Krause, 1993; NedweIl & Reynolds, 1996). The

methanogens are very sensitive organisms, even to the toxicity caused by

organic inhibitors such as toluene or chloroform and by accumulation of

metals present in the wastewater being treated. All this can contribute to the

Stellenbosch University http://scholar.sun.ac.za



37

loss of methanogenic activity of the sludge present inside the anaerobic

digester (Fang, 1997; Ruiz et al., 1998).

This unique group of anaerobic organisms oxidise H2, gaining energy

by reducing CO2 and acetate, as well as one of the methyl groups of either

methanol, methylamines, trimethylamines or formate to produce methane as

major end-product (Zehnder et al., 1980; Zeikus, 1980; Miller & Walin, 1985;

Reeve et al., 1997). The methanogens can grow either autotrophically,

heterotrophically and some even show an amixotrophic pattern (Zeikus,

1980), but they are only able to utilise a limited range of substrates (Zehnder

et al., 1982). Methanogens are thus dependent on the metabolic activities of

the other trophic groups in the anaerobic digestion process, as they do not

ferment carbohydrates directly.

Acetate is the main substrate for methanogenie bacteria, but is a

product of the acidogenic and acetogenic groups (Lens et al., 1998). It is one

of the most important substrates in the anaerobic degradation process

leading to the generation of methane (Weber et al., 1984). As much as 65 to

96% of the total methane produced can originate from acetate (Weber et al.,

1984). There is, however, another thermodynamically more favourable

conversion than the direct conversion of acetate, namely the reduction of

carbon dioxide to methane (Klass, 1984).

Methanogens include members of the genera Methanobacterium,

Methanobrevibacterium, Methanobacillus, Methanothermus, Methanococcus,

Methanosarcina, Methanothrix, Methanolobus, Methanococoides,

Methanomicrobium, Methanogenium, Methanospiri/lum, Methanoplanus,

Methanocorpusculum, Methanoculleus, Methanosaeta and Methanosphaera

(Mcinerney & Bryant, 1981; Henson & Smith, 1985; Krumholtz & Bryant,

1986; Holland et a/., 1987; Zellner & Winter, 1987; Conrad & Wetter, 1990;

Pauss et al., 1990; Winter & Zellner, 1990; Ahring & Schmidt, 1992; Guiot et

al., 1992; Heppner et al., 1992; Kitaura et al., 1992; Reeve, 1992; Wu et al.,

1992; Shin et al., 1996; Harper & Pohland, 1997; Reeve et al., 1997; Zu et al.,

1997).
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Sulphate-Reducing Bacteria

Just as the methanogenic bacteria (MB) are known to be able to

couple the oxidation of molecular hydrogen (H2) with the reduction of CO2 to

yield CH4 as the electron sink product, the sulphate-reducing bacteria (SRB)

are known to couple the oxidation of H2with the reduction of sulphate to yield

hydrogen sulphide (H2S) as the electron sink product (Tursman & Cork,

1989). Thus, the SRB behave similarly to the hydrogenotrophic MB. The

electron donor in each case may be a dissolved gas from an exogenous

source, or through a syntrophic association with an obligate proton/hydrogen-

reducing acetogen. This interspecies hydrogen transfer mechanism can be

seen as a type of intimate association or mutualism.

SRB compete with MB for substrates as well as electron donors, such

as H2 and acetate and normally outcompete the MB when sufficient sulphate

is present in the environment (Fang, 1997; Lens et al., 1998). MB can only

utilise a restricted range of substrates (H2 and acetate), while SRB can utilise

a wider range of substrates (formate, acetate, methanol, pyruvate and H2)

(Fang, 1997) (Fig. 3). For this reason, the interactions between the SRB and

the rest of the microbial community cannot be ignored. The SRB also convert

sulphate into sulphide, which forms insoluble metal sulphides precipitating on

the surface of bacterial cells (Fang & Liu, 1995). SRB can therefore be seen

as more resilient to challenge by novel organic molecules than the MB, and

digestion based upon sulphate reduction can thus be more resilient than

methanogenic digestion (NedweIl & Reynolds, 1996).

In anaerobic digestion, sulphate reduction has generally been regarded

as undesirable due to the production of hydrogen sulphide. Reis et al. (1992)

reported that H2S may have a direct and reversible toxic effect on the

sulphate-reducing bacterial population. In terms of sulphide production,

cytotoxicity, reaction rate kinetics and thermodynamic analysis, sulphate-

reduction also result in the inhibition of acetoclastic methanogenesis, due to

the distribution of sulphide precipitates on biogranule formation (Tursman &

Cork, 1989; Reis et al., 1992; Fang, 1997; Lens et al., 1998).

The production of sulphide during anaerobic digestion also has

beneficial effects through the precipitation of heavy metals as their insoluble
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sulphides thus, preventing biotoxicity by removing the metals from the

microbial environment in the digester (Dvorak et aI., 1992). The operation of

the anaerobic digester at the maximum allowable pH will minimise the

toxicological influence of sulphide:

H2S +--+ H++ HS- +--+ 2H+ + S-2
lowpH highpH

The digester mixed liquid pH is therefore a primary effector in this distribution

(Isa et aI., 1986). Results of batch activity experiments showed that the

methanogenic activity dropped sharply at pH values above 7.7 and below 6,

causing the predominance of sulphate-reducinq bacteria at pH values above

8 (Visser et aI., 1992; Lens et aI., 1998).

Desulfovibrio is one of the most commonly studied genera in the

sulphate-reducing group of bacteria. Other genera of sulphate-reducers

found in anaerobic digesters include members of the genera Desulfomonas,

Desulfotomaculum, Desulfonema, Desulfobacterium, Desulfobacter,

Thermodesulfobacterium, Desulfosarcina, Desulfobotulus, Desulfoarculus,

Desulfomicrobium and Desulfococcus (Mcl nerney & Bryant, 1981; Holland et

aI., 1987; Pfennig, 1989; Vainshtein et aI., 1992; Drzyzga et al., 1993; Tasaki

et aI., 1993; Van Houten et aI., 1996; Harper & Pohland, 1997; Lens et aI.,

1998).

D. Conclusion

Conventional wastewater remediation methods employing physical and

chemical treatment processes have been associated with a number of

intrinsic advantages and disadvantages. The advantages of applying physical

and chemical methods can be summarised as follows: start-up periods are

short; flexible; simple equipment can be used; processes are generally

insensitive to temperature; and many of the methods lend themselves to

automation. The disadvantages include the production of more toxic

intermediates, large amounts of sludge generated by the addition of

chemicals, high investment and operating costs, low levels of efficiency, and

applicability to limited effluent concentration ranges (Lema et aI., 1988;

Stellenbosch University http://scholar.sun.ac.za



40

Edwards et ai., 1998). These physical and chemical methods may become

exceedingly expensive when low effluent pollutant concentrations need to be

achieved (Sun et ai., 1992). Physical and chemical processes alone are

inadequate for the complete treatment of a high-strength, noxious industrial

effluent such as produced by the gelatin-manufacturing industry.

Great potential exists for the combination of various treatment options

for the gelatin-manufacturing effluent, but the most efficient approach is

considered to be biological wastewater treatment (Dall-Bauman et a/., 1990).

Anaerobic digestion is a "clean and green technology" with promising

possibilities for the removal of selective components in wastewater.

Anaerobic digestion is furthermore cost effective over a long term and offers a

viable option for the treatment of high concentration effluents, such as gelatin-

manufacturing effluents.

Future research on anaerobic digestion for specific industrial effluents

holds tremendous challenges in understanding the fundamental and

interdependent microbiology and biochemistry of the digestion process.

Furthermore, the need still exists to design the perfect anaerobic digester,

since all the present digester configurations show some limitations for a

specific industrial effluent. Whatever the means are to improve wastewater

treatment technology, the aspiration remains to engineer the perfect

anaerobic digester, inhabited by the perfect competitive microbial community.
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CHAPTER 3

TREATMENT OF GELATIN-MANUFACTURING EFFLUENT USING

SINGLE-PHASE ANAEROBIC HYBRID DIGESTERS

Summary

Two different anaerobic hybrid laboratory-scale digester designs were used to

evaluate the biological treatment efficiency of a high-strength, highly variable

raw gelatin-manufacturing effluent (AD-1, UASB - polyethylene), as well as

the raw effluent supplemented with anaerobic supernatant (AD-2, UASB -

polyurethane), under mesophilic conditions. No chemical oxygen demand

(COD) standardisation was done on the effluent, as varying batch and

substrate composition were considered important in the simulation of the

actual field conditions. Successful inoculation and start-up of the digesters

resulted in good handling of the highly variable organic loading rates (OLR)

and decreasing hydraulic retention time (HRT), with immediate sulphate (S04)

(91 - 92%) and COD (22 - 30%) removal. During steady state, COD removal

efficiencies of up to 90% (AD-1) and 83% (AD-2) at OLR of 9.56 (AD-1) and

4.62 kg COD.m-3.d-1(AD-2), respectively, were achieved. High S04 removal

efficiencies of up to 96% and 98% were obtained with the AD-1 and AD-2

bioreactors, respectively. The methane content of the biogas varied between

70 and 88% for AD-1 and between 69 and 89% for AD-2. The total methane

yield per COD removed (YCH4) ranged between 0.41 and 7.16 m3.kg

CODremoved.d-1for AD-1 at OLR's of 1.89 to 9.56 kg COD.m-3.d-1,and for AD-2

the methane yield per COD removed varied between 0.45 and 6.75 m3.kg

CODremoved.d-1at OLR's of 1.48 to 9.30 kg COD.m-3.d-1. The digesters were

pre-inoculated with a selected microbial population. This specific treatment

process can be characterised as one having a short start-up period, good

handling of extremely variable loading conditions, with no need for any

additional pre-treatment of the gelatin-manufacturing effluent.

Stellenbosch University http://scholar.sun.ac.za



61

Introduction

South African industries are faced with critical pollution control issues and

need to adopt changing attitudes towards pollution matters. Many of the

problems that effluent producing industries face are attributed to the variable

quality and noxious nature of the process effluents. Local authorities are

increasingly and selectively reluctant to receive these effluents into communal

sewers and industries are often faced with high trade-effluent charges. Under

the new South African water and environmental laws, industries need to

reconsider their water quality management strategies and treatment options

(DEAT & DWAF, 1997) in order to accommodate the stricter water and

pollution control regulations.

The gelatin-manufacturing industry is one of the industries that

receives much attention (DEAT & DWAF, 1997) in terms of its influence on

the treatment processes of the local wastewater purification works and hence,

their compliance to water regulations (Van Der Merwe-Botha, 1998, Personal

communication). During the gelatin-manufacturing process, reject hides

which are not suitable for tanning purposes are conditioned, treated and

processed. This involves a process of protein hydrolysis and denaturation,

where insoluble hide collagen is converted into water soluble gelatin (Maree

et al., 1990). Effluents from the gelatin-manufacturing process have typically

high organic as well as inorganic loads, with chemical oxygen demand (COD)

values ranging between 500 - 77 000 rnq.l". Problems with high suspended

solids, sulphate, fats, lipid emulsions, proteins and salt concentrations also

contribute negatively to the effluent problems. The product process produces

substantial effluent volumes of varying quality, of which the disposal to

biological nutrient removal plants results in costly upsets of the treatment

process (Van Der Merwe-Botha, 1998, Personal communication).

The treatment of gelatin-manufacturing effluent has not received much

attention, hence little treatment data are available in this field. However,

numerous studies have been done on tanning effluent and other high salinity

wastewater types. These effluents are usually treated by means of expensive

physical or chemical pre-treatment methods, such as either electrochemical

methods, ion exchange, carbon adsorption, coagulation or flocculation
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(Talinli, 1994; Garrote et al., 1995; Petruzzelli et al., 1995; Dalmacija et al.,

1996; Rajala & Petrovskaya, 1996). Biological or anaerobic treatment of

gelatin-manufacturing effluents have also been attempted with varying

degrees of success (Maree et al., 1990; Du Plessis et al., 1993; Petruy et al.,

1999; Tommaso et al., 1999).

Water quality managers are reconsidering biological processes with

renewed interest as an alternative treatment option, so as to comply to the

stricter pollution control regulations and satisfy the search for greater

efficiency, economy and the use of natural energy sources. One of the

biological processes involves anaerobic digestion which are well established

for the treatment of high-strength industrial wastewaters. Since McCarty

(1964) introduced the Upflow Anaerobic Filter (UAF) systems in the sixties,

considerable progress has been made on the field of anaerobic reactor

technology for wastewater treatment. This has led to the development of

high-rate anaerobic bioreactor designs, with increased biomass retention and

tolerance to toxic and shock loads, for the treatment of recalcitrant industrial

wastewaters (Stronach et aI., 1987; Lettinga et al., 1997). One of the newer

designs is the anaerobic hybrid process instigated by Guiot & Van Den Berg

(1985) and subsequently upgraded by Joubert & Britz (1987), Britz & Van Der

Merwe (1993) and Guiot et al. (1997). Among these high-rate anaerobic

designs developed and successfully applied in recent years, the Upflow

Anaerobic Sludge Blanket (UASB) bioreactor has become one of the most

extensively used designs for biological treatment of wastewaters (Lettinga et

al., 1997).

Against this background, the aim of this study was to evaluate the

performance of single-phase anaerobic hybrid digesters for the treatment of

raw and nutrient-enriched gelatin-manufacturing effluent.
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Materials and methods

Digester design

Two upflow anaerobic hybrid laboratory-scale digesters (AD-1 and AD-

2), each with a working volume of five litres, and an operating temperature of

35°e, were used to treat raw gelatin-manufacturing effluent. The temperature

was regulated by means of a heating tape and temperature sensitive controls

(Meyer et aI., 1985). The hybrid digesters combined a fixed-film and an

upflow sludge blanket system. The inert porous polyethylene foam (Fig. 1a)

and the polyurethane (Fig. 1b) material were fitted to the upper two thirds of

the inner digester wall. The polyurethane material (Van Rompu et aI., 1990)

had channels of 1.3 x 3.3 cm, edges of 1.3 x 3.0 cm and a back area 1.3 cm

thick. The density of the polyethylene and polyurethane materials were

estimated at 0.77 and 25.7 kg.m-3, respectively (Van Der Merwe, 1994).

The substrate in each case was introduced semi-continuously via a

horizontal inlet at the bottom of each digester by means of a peristaltic pump

(Watson-Marlow 302S) controlled by an electronic timer. The overflow of the

reactor emptied through an U-shaped tube to prevent any atmospheric

oxygen from entering the system. The biogas exited at the top of the digester

via a gas-solid separator and biogas production was determined by means of

a brine displacement system (6N Hel, pH 2.0). The biogas volumes were

corrected to standard temperature and pressure (STP) conditions.

Digester start-up

The digesters were originally seeded using a mixture of anaerobic

sludge (Table 1) and biosolids obtained from other operational digesters, as

well as acclimatised anaerobic and activated sludge from the local

wastewater purification works treating the gelatin-manufacturing effluent.

Initially, a mixture of gelatin-manufacturing effluent and raw sewage were fed

to the digesters. The initial substrate flow rates were set at a hydraulic

retention time (HRT) of 3.0 d and maintained until stable conditions persisted.

Stable state conditions were assumed when, after five volume turnovers,
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Average composition of the anaerobic sludge used for the start-up
process of the laboratoty-scale digesters.

I
Parameters

I
Minimum I Maximum

I
Average I

Temperature (0C) 14.0 24.7 17.8
pH 6.9 7.7 7.4
TAlk (rnq.l" as CaC03) 1 587 6280 3246
TS(%) 0.8 10.7 3.0
TVS(%) 0.6 3.5 1.7
TVS / TS (%) 26.6 91.3 64.5
P04-P (rnq.l" as P) 18.5 112.2 53.2

TKN (rnq.l") 969 3024 1 607
COD (rnq.l") 10110 50240 24635
VFA (rnq.I") 197 1 387 551
VFATAlk 0.05 0.37 0.17
NH3-N (mq.l') 357 814 534

Cu (rnq.I") 0.0 0.0 0.0
Fe (rnq.I") 0.0 0.2 0.1
Co (rnq.l") 0.0 0.0 0.0
Mn (rnq.l") 0.3 1.0 0.6
Cr (rnq.l') 0.0 0.0 0.0
Pb (mg.r1) 0.0 0.3 0.1
Ni (rnq.I") 0.1 0.3 0.2
Cd (rnq.I") 0.0 0.1 0.0
Zn (mg.r1) 0.0 0.1 0.1
Na (mg.r1) 69 95 84
Mg (rnq.l") 34 45 42
Ca (rnq.l') 51 115 84
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operational parameters showed a variation of less than 10%. Subsequently,

the HRT was lowered to 2.0 d and then to 1.0 d for the rest of the study.

Gelatin-manufacturing effluent

The gelatin effluent was obtained from the local gelatin-manufacturing

industry (Leiner Davis Gelatin South Africa (Pty) Ltd), in batches of 75 I and

stored at room temperature until required. No COD standardisation was done

on the effluent in an attempt to simulate the actual field conditions. However,

the pH of the effluent used as digester substrate was adjusted to 6.5 using a

standard 6N HCI solution. By this means, the direct effect of varying COD

concentrations (organic loading rates) on the anaerobic treatment efficiency

could be determined. The gelatin-manufacturing effluent used as digester

substrate was initially supplemented with 100 rnq.l" urea, 100 mq.l" K2HP04,

10 ml acetic acid (CH3COOH) and a sterile trace element solution (Nel et al.,

1985) during the start-up process, so as to stimulate the growth of the specific

microbial consortium and to prevent any nutrient limitations.

Analytical methods

The following parameters were monitored on the digester substrate

and effluent, according to Standard Methods (APHA, AWWA & WEF, 1995):

pH; total alkalinity (TAlk); chemical oxygen demand (COD); total Kjeldahl

nitrogen (TKN); volatile fatty acids (VFA); sulphate (SO/-); total solids (TS);

volatile solids (VS); total non-volatile solids (TNVS) and ortho-phosphate

(P04-P).

Total metals which include most of the heavy metals (Cu, Fe, Co, Mn,

Zn, Ni, Pb, Cr, Cd), as well as calcium and sodium concentrations, were

determined using an Atomic Absorbance Spectrophotometer (Varian Model

250 Plus), equipped with hollow cathode lamps for the different metals,

photoelectric detector with associated electronic amplifying and measuring

equipment. Air/acetylene and nitrous oxide/acetylene burners were used with

air as oxidant and acetylene (or nitrous oxide) as fuel. Pressure reducing

regulators were used for the supply of the fuel and oxidant at appropriate

levels. Control standards of known metal concentrations were prepared with

a matrix similar to the samples, for the construction of a calibration curve.
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Additional standard solutions were analysed between samples to confirm test

control, as well as a blank to confirm the baseline stability. The sample

concentrations were determined by reference to the calibration curve. The

filtered samples (at room temperature) were aspirated into the air/acetylene

or nitrous oxide/acetylene flame and atomised.

Volatile fatty acids (as acetate) were determined according to the

titration method of Moosbrugger et al. (1992). The biogas composition

(methane and carbon dioxide) was determined volumetrically according to the

quantitative biogas carbon dioxide content method of Ross et al. (1992). The

biogas volumes were corrected to STP conditions.

The accuracy of all tested chemical parameters were confirmed by

participation in an inter-laboratory water testing program (SABS Water Check

Proficiency Program).

Experimental phases

The study consisted of two experimental phases, the first during which

the polyethylene hybrid digester (AD-1) was fed with full-strength raw gelatin-

manufacturing effluent and the second where the polyurethane hybrid

digester (AD-2) was fed with a mixture of 80% gelatin-manufacturing effluent

and 20% anaerobic digester supernatant (as nutrient supplement).

Standardisation was applied only to the extent of preparing the substrates

from the same effluent batch, to make direct comparisons possible. The

different batches were, however, not standardised in terms of COD

concentration, in an attempt to simulate the actual field conditions using

bench-scale systems.

Results and discussion

Gelatin-manufacturing effluent composition

The average composition of the different batches of gelatin-

manufacturing effluent, obtained from Leiner Davis Gelatin (Pty.) Ltd, is given

in Table 2. The average composition of the substrate fed to the hybrid
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Table 2. General composition of gelatin-manufacturing effluent obtained
over a 22 month period.

Parameters Minimum Maximum Average ±SO

pH 1.8 13.4 9.8 8.0
EC (ms.rn') 73.9 3870.0 530.7 456.8
TOS (rnq.l') 673 17166 5 100 4427
TAlk (rnq.l' as CaC03) 0 16 185 1 188 1 188
SS (rnq.I") 24 82660 2465 2440
Cl (rnq.I") 49.3 6 145.7 716.7 667.4
P04-P (rnq.l' as P) 0.0 23.5 2.1 2.1
T-P04 (rnq.l" as P) 0.6 14.1 4.1 3.5
COD (mq.I") 505 77336 6323 5818
TKN (rnq.l") 61 4362 588 527
SO/- (mq.I") 19 2250 746 727
NH3-N (rnq.l") 3 920 87 83
Cu (mq.I") 0.0 0.7 0.0 0.0
Fe (rnq.l") 0.0 57.5 1.0 1.0
Co (rnq.I") 0.0 1.6 0.0 0.0
Mn (rnq.I") 0.0 5.3 0.2 0.2
Cr (rnq.l') 0.0 34.6 0.5 0.5
Pb (rnq.l") 0.0 3.9 0.2 0.2
Ni (rnq.I") 0.0 6.5 0.3 0.3
Cd (rnq.l") 0.0 0.9 0.0 0.0
Zn (rnq.l") 0.0 3.9 0.3 0.3
Total metals (rnq.I") 0.2 99.8 2.6 2.4
Na (rnq.I") 10 19768 890 880
Ca (rnq.I") 10 376 160 150
Fats and Oils (mq.I") 2.0 2 134.0 270.6 268.6
SO = Standard deviation
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digesters during the experimental phases, is given in Table 3. The OLR

ranging from 1.89 - 9.56 kg COD.m-3.d-1 for digester AD-1 and from 1.48 -

9.30 kg COD.m-3.d-1 for digester AD-2 clearly show the wide variation of OLR

which a purification works can expect from the gelatin-manufacturing industry.

Since the direct influence of varying batch and substrate composition was

considered important, no standardisation was done on the effluent. The

substrate pH was, however, adjusted to a value of 6.5.

Start-up period

A rapid start-up phase was observed for both digesters, with immediate

S04 (91 - 92%) and COD removal (22 - 30%) at an OLR of 2.21 kg COD.m-

3.d-1. This excellent start-up performance confirmed the successful selection

of an active microbial community which were used as inoculum for the

digesters. VFA production was observed in both digesters during the first 23

days, followed by VFA removal of 50% at an OLR of 2.04 kg COD.m-3.d-1

(AD-1) and 38% at an OLR of 1.76 kg COD.m-3.d-1 (AD-2). The VFA

production then increased again in both digesters up to day 92, and this was

followed by a steady increase in the removal efficiency of the VFA's. At this

stage, VFA removal efficiencies of 26% (AD-1) at an OLR of 4.73 kg COD.m-

3.d-1 and 61% (AD-2) at an OLR of 4.08 kg COD.m-3.d-1, were obtained,

respectively. The effluent pH and alkalinity increased during the start-up

period, also confirming the establishment of an active, balanced microbial

community.

Digester Efficiency (AD-1)

The composition of the substrates used for the AD-1 digester, the

digester effluent and the performance efficiency during the operational period,

are summarised in Tables 4a, band c. The data in Table 4 are arranged

according to the numerical increases in OLR. The prominent variation in OLR

over the 29 week period can clearly be seen (Fig. 2), with the higher OLR

operational conditions found during weeks 9 to 11 and 23 to 25. The data in

Fig. 2 reflects the variation in organic effluent composition which is found

under typical field conditions where balancing facilities are not available.
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Table 3. Average composition of the substrate used during the two experimental phases, obtained over a 29 week period,
from an average of 34 samples.

Parameters Digester AD-1 Substrate Digester AD-2 Substrate
Minimum Maximum Average ±SD Minimum Maximum Average ±SD

HRT (d) 1.0 1.0
pH 6.3 7.0 6.7 0.7 6.9 8.3 7.2 0.7
COD (rnq.I") 1 891 9560 3975 1 935 1 477 9300 3652 2535
OLR (kg COD.m-3.d-1) 1.89 9.56 3.97 1.93 1.48 9.30 3.65 2.53
VFA (mq.l" as acetic acid) 68 3387 722 671 128 2263 816 901
TS (rnq.l") 1400 10800 5485 4100 2100 10 100 5 191 3000
VS (mq.I") 600 4500 2321 1 800 1 000 4400 2276 1 200
TNVS (rnq.l") 600 7000 3164 2500 900 6200 2915 2000
S04 (rnq.l") 169 2300 732 648 58 3000 659 584

P04-P (rnq.l" as P) 0.1 26.8 5.1 3.6 3.3 26.8 11.0 6.2

TKN (mq.l") 153 723 425 242 309 680 465 144
TAlk (rnq.I" as CaC03) 42 1 909 552 468 42 1 909 830 828

Na (mq.I") 206 2557 819 619 201 1 944 800 576
Ca (rnq.l") 183 376 240 60 81 512 253 165
Total metals (rnq.l') 0.6 7.9 2.8 2.2 0.4 6.3 2.3 1.9

SO = Standard deviation

-.j
o
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Table 4a Composition of the substrate used during the single-phase operating conditions of digester AD-1, as a
function of organic loading rate (OLR)*.

Digester Substrate
OLR COD TKN VFA SO;' pH TAlk (mg.r' TS VS TNVS PO.-P Tmetals Na Ca

(kg COD.m-3.d·') (mg.r') (mg.r') (mg.r') (mg.r') as CaCO,) (mg.r') (mg.r') (mg.r') (mg.r') (mg.r') (mg.r') (mg.r')

1.B9 1B91 414 1004 NID 6.5 2B4 10600 4500 6100 3.6 2.30 19B2 NfO
1.9B 1976 226 306 390 6.9 1B6 3300 1400 1900 2.1 3.BO 633 NfO
2.02 2021 320 B6B NfO 6.6 654 3400 BOO 2600 2.1 2.BO 439 205
2.04 2040 410 272 376 6.6 769 4900 1600 3300 B.3 1.31 206 NfO
2.04 2040 350 10B9 169 6.6 699 1400 600 BOO 1.B 1.24 33B NfO
2.13 2133 153 170 1120 6.5 140 5500 1400 4100 2.1 1.43 391 202
2.17 2172 5BO 323 307 6.B 42 3900 1600 2300 6.6 1.69 740 NfO
2.21 2212 5BO 375 365 6.6 416 3900 1600 2300 10.3 1.33 756 NfO
2.37 2367 260 536 750 6.7 160 4600 1700 2900 0.2 2.06 843 NfO
2.45 2445 512 3B3 27B 6.B 749 4000 2100 1900 3.3 1.55 332 NfO
2.46 2459 4B6 357 4B5 6.7 B36 4200 1900 2300 11.5 1.91 735 NfO
2.53 2534 580 204 597 6.8 874 4700 2000 2700 16.6 2.02 955 NfO
2.54 2539 380 68 186 6.9 724 1900 1300 600 0.8 0.56 460 NfO
2.60 2604 NfO 1208 415 6.9 223 3600 2400 1200 1.1 0.91 455 NfO
2.67 2665 269 740 400 6.7 529 5400 1400 4000 7.3 1.41 256 NID
3.18 3183 243 468 330 6.6 128 4300 2300 2000 5.5 NfO NfO NfO
4.09 4094 214 257 364 6.9 368 4300 2500 1800 0.1 1.23 743 NfO
4.39 4393 356 357 630 6.6 235 7800 2600 5200 3.6 3.77 681 183
4.44 4443 293 272 1200 6.7 154 8100 2300 5800 2.7 3.71 2556 316
4.48 4476 417 596 NfO 6.3 195 5900 2600 3300 5.8 2.34 1032 NfO
4.48 4476 505 834 2300 6.6 546 5900 1600 4300 6.0 5.13 439 211
4.62 4619 511 1770 1300 6.9 910 5200 2600 2600 2.2 3.19 657 242
4.71 4709 512 1226 2200 6.6 943 6700 2400 4300 3.0 3.77 953 205
4.73 4729 338 587 290 6.7 716 3400 2000 1400 1.1 3.57 420 NfO
4.89 4890 385 604 850 6.6 258 9700 3400 6300 5.0 5.98 2037 NfO
4.90 4896 523 570 430 6.8 387 7400 3700 3700 2.1 3.34 1096 NfO
5.32 5321 482 1166 NfO 6.6 364 10400 3400 7000 4.7 3.17 1043 376
5.33 5333 842 536 1730 6.5 1356 4600 1600 3000 6.0 4.35 2035 200
5.46 5484 700 3387 460 7.0 903 4400 2400 2000 2.7 4.81 361 317
5.63 5626 431 BOO 4BO 6.6 326 5700 3600 2100 1.5 1.8B 694 NfO
6.22 6215 NfO NfO NfO NfO NfO NID NID NfO NfO NID NfO NfO
6.2B 6277 478 766 NfO 6.7 1910 6300 3500 2800 26.8 2.46 1195 NfO
8.34 B343 723 1208 1830 6.7 990 10800 4300 6500 10.7 7.88 300 185
9.56 9560 335 502 260 6.5 23B 4800 3500 1300 0.1 2.45 460 NfO

Minimum 11.89 1891 153 68 169 6.3 42 1400 600 600 0.1 0.56 206 183
Maximum 9.56 9560 723 3387 2300 7.0 1910 10BOO 4500 7000 26.8 7.88 2556 376
Averace 3.97 3975 425 722 732 6.7 552 54B5 2321 3184 5.1 2.79 819 240

-...(
--"'Above data have been arran!~ed according to numerical increases in OLR. while the numericat structure of time has been disrer:larded for this efficiency evaluation (Fir:l. 2).

N/D = Not Determined
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Table 4b Composition of the digester AD-1 effluent during the single-phase operating conditions at variable organic
loading rates (OLR)*.

Digester Effluent
OLR COD TKN VFA 50/· pH TAlk (mg.r' TS vs TNVS PO.-P Tmetals Na Ca

(kg COD.m".d·') (mg.!"') (mg.!"') (mg.!"') (mg.!"') as CaCO,) (mg.!"') (mg.!"') (mg.!"') (mg.!"') (mg.!"') (mg.!"') (mg.!"')

1.89 1215 366 664 NfO 7.6 1667 4600 700 3900 9.9 1.15 1514 NfO
1.98 618 207 230 23 8.0 1141 2100 400 1700 7.2 0.96 676 NfO
2.02 959 327 247 NfO 8.0 2097 3000 500 2500 5.8 0.72 462 133
2.04 2970 410 1328 343 7.9 1927 4100 1500 2600 43.7 1.58 446 NfO
2.04 944 331 545 14 8.0 1920 3000 800 2200 35.6 0.96 1094 NfO
2.13 587 161 213 110 7.6 1146 4600 800 3800 3.8 1.31 866 363
2.17 2352 615 936 NfO 8.1 102 4100 1300 2800 44.3 4.12 1089 NfO
2.21 1548 717 851 33 8.1 102 4100 1300 2800 42.4 1.43 962 NfO
2.37 779 287 1268 101 8.1 1301 3900 600 3300 3.8 1.12 1213 NfO
2.45 1327 528 538 28 8.0 2091 3900 1200 2700 37.1 1.50 143 NfO
2.46 3507 615 1430 42 8.0 2316 4900 2000 2900 54.5 1.91 1198 NfO
2.53 1307 615 545 35 8.0 1891 3600 1100 2500 41.0 0.85 818 NfO
2.54 1242 349 340 60 7.7 1596 2000 1100 900 15.0 1.59 362 NfO
2.60 865 NfO 1387 20 8.0 1106 2400 1000 1400 17.4 0.92 614 NfO
2.67 1170 272 528 150 8.4 1967 4100 700 3400 6.5 1.08 193 NfO
3.18 639 201 323 25 7.5 968 2600 400 2200 9.0 NfO NfO NfO
4.09 1357 280 647 20 7.9 1592 2600 900 1700 19.7 1.35 477 NfO
4.39 1843 302 323 83 7.9 1640 6300 800 5500 6.4 1.98 1243 83
4.44 2819 331 323 62 7.9 1565 6400 500 5900 6.3 2.26 1463 118
4.48 1112 319 494 NfO 7.5 1264 2800 500 2300 9.7 0.50 650 NfO
4.48 1631 484 970 140 8.4 2009 4300 800 3500 6.7 1.40 413 130
4.62 3557 474 323 175 8.2 2339 3700 1100 2600 4.2 1.62 897 90
4.71 1088 431 409 214 8.4 1879 4200 900 3300 3.5 0.72 998 54
4.73 2935 370 434 20 7.9 1635 2500 1100 1400 14.3 10.44 617 NfO
4.89 2188 353 417 174 8.0 1724 6000 900 5100 7.7 2.23 1607 NfO
4.90 1376 486 374 19 8.0 2088 4100 700 3400 8.9 1.13 993 NfO
5.32 3233 520 1345 NfO 8.2 2730 8600 800 7800 7.7 1.55 1449 216
5.33 1560 688 409 160 8.3 2618 2400 900 1500 7.0 1.48 1594 191
5.46 2424 587 1872 70 8.3 3342 6800 1300 5500 10.4 6.50 340 119
5.63 1444 440 655 43 7.7 1919 3300 1000 2300 9.9 2.70 720 NfO
6.22 2357 NfO NfO NfO NfO NfO NfO NfO NfO NfO NfO NfO NfO
6.28 3447 341 1208 NfO 8.0 2325 5100 2100 3000 58.3 2.69 1135 NfO
8.34 3214 675 817 140 7.8 3318 7300 1500 5800 9.6 3.77 301 133
9.56 957 378 340 20 7.6 1252 1700 400 1300 9.7 1.16 973 NfO

MinimUm! 1.89 587 161 213 14 7.5 102 1700 400 900 3.5 0.50 143 54
Maximum 9.56 3557 717 1872 343 8.4 3342 8600 2100 7800 58.3 10.44 1607 363
Avera!le 3.97 1782 421 689 86 8.0 1775 4094 _jl5_8 ~136 17.5 2.02 860 148
'Above data have been arranaed accordina to numerical increases in OLR, while the numerical structure of time has been disreaarded for this efficiency evaluation (Fiq. 2).
NID = Not Detennined

-.j
N
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Table 4c The influence of variable organic loading rates (OLR) on digester AD-1 performance.

Digester Efficiency
OLR COD COD 50/· Biogas Biogas CHo CH.yield CHo yield VFA TS VS TNVS TKN PO.-P Tmetal Na Ca

(kg COD.m..:s.d·') removal removal rate removal productior yield conten (m3.kg cOO,.,.,..d-1) (m'.kg COD..... d·' removal removal removal removal removal removal removal removal removal
('lo) kg COD.m".d·') ('lo) (lId) (m'·m..:s) ('lo) ('IoJ ('lo) ('lo) ('IoJ {'IoJ {'IoJ (%J ('lo) ('lo)

1.89 35.7 0.68 NID 5.60 1.12 86.4 7.16 2.56 33.9 56.6 84.4 36.1 11.6 0.0 50.0 23.6 NfO
1.98 68.7 1.36 94.1 5.60 1.12 83.2 3.43 2.36 25.0 36.4 71.4 10.5 8.7 0.0 74.7 0.0 NfO
2.02 52.5 1.06 NfO 2.28 0.46 NfO NfO NfO 71.6 11.8 37.5 3.8 0.0 0.0 74.3 0.0 35.1
2.04 0.0 -0.93 8.8 NID NfO NfO NfO NfO 0.0 16.3 6.3 21.2 0.0 0.0 0.0 0.0 NfO
2.04 53.7 1.10 91.7 NfO NfO NfO NfO NfO 50.0 0.0 0.0 0.0 5.5 0.0 22.6 0.0 NID
2.13 72.5 1.55 90.2 1.70 0.34 NfO NfO NfO 0.0 16.4 42.9 7.3 0.0 0.0 8.4 0.0 0.0
2.17 0.0 -0.18 NfO NfO NfO NfO NfO NfO 0.0 0.0 18.8 0.0 0.0 0.0 0.0 0.0 NfO
2.21 30.0 0.66 91.0 NfO NfO NfO NfO NfO 0.0 0.0 18.8 0.0 0.0 0.0 0.0 0.0 NfO
2.37 67.1 1.59 86.5 6.10 1.22 84.1 3.23 2.17 0.0 15.2 64.7 0.0 0.0 0.0 45.6 0.0 NfO
2.45 45.7 1.12 89.9 NfO NfO NfO NfO NfO 0.0 2.5 42.9 0.0 0.0 0.0 3.2 56.9 NfO
2.46 0.0 -1.05 91.3 NfO NfO NfO NfO NfO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NfO
2.53 48.4 1.23 94.1 NfO NfO NfO NfO NfO 0.0 23.4 45.0 7.4 0.0 0.0 57.9 14.3 NfO
2.54 51.1 1.30 67.7 2.30 0.46 76.2 1.35 0.69 0.0 0.0 15.4 0.0 8.0 0.0 0.0 21.3 NID
2.60 66.8 1.74 95.2 1.50 0.30 73.1 0.63 0.42 0.0 33.3 58.3 00 NfO 0.0 0.0 0.0 NfO
2.67 56.1 1.50 62.5 3.07 0.61 NID NfO NfO 28.7 24.1 50.0 15.0 0.0 10.6 23.4 24.6 NID
3.18 79.9 2.54 92.4 8.20 1.64 80.4 2.59 2.07 30.9 39.5 82.6 0.0 17.3 0.0 NfO NfO NfO
4.09 66.9 2.74 94.5 1.60 0.32 69.7 0.41 0.27 0.0 39.5 64.0 5.6 0.0 0.0 0.0 35.8 NID
4.39 58.0 2.55 86.8 6.02 1.20 76.9 1.82 1.05 9.5 19.2 69.2 0.0 15.1 0.0 47.5 0.0 54.9
4.44 36.6 1.62 94.8 6.08 1.22 84.4 3.16 1.16 0.0 21.0 78.3 0.0 0.0 0.0 39.1 42.8 62.5
4.48 75.2 3.36 NfO 6.90 1.38 87.6 1.80 1.35 17.1 52.5 80.8 30.3 23.4 0.0 78.6 37.0 NfO
4.48 63.6 2.85 93.9 4.12 0.82 NfO NfO NfO 0.0 27.1 50.0 18.6 4.2 0.0 72.7 6.0 38.3
4.62 23.0 1.06 86.5 3.89 0.78 NfO NfO NfO 81.7 28.8 57.7 0.0 7.3 0.0 49.2 0.0 62.8
4.71 76.9 3.62 90.3 5.59 1.12 NfO NfO NfO 66.7 37.3 62.5 23.3 15.8 0.0 80.9 0.0 73.7
4.73 37.9 1.79 93.1 3.54 0.71 NfO NfO NfO 26.1 26.5 45.0 00 0.0 0.0 0.0 0.0 NfO
4.89 55.3 2.70 79.5 6.40 1.28 73.1 1.73 0.96 31.0 38.1 73.5 19.0 8.4 0.0 62.7 21.1 NfO
4.90 71.9 3.52 95.6 5.70 1.14 85.1 1.38 0.99 34.3 44.6 81.1 8.1 7.2 0.0 66.2 9.5 NfO
5.32 39.2 2.09 NfO 6.44 1.29 NfO NfO NfO 0.0 17.3 76.5 0.0 0.0 0.0 51.1 0.0 42.4

5.33 70.7 3.77 90.8 3.85 0.77 NID NfO NfO 23.8 47.8 43.8 50.0 0.0 0.0 66.0 21.7 4.5
5.46 55.6 3.04 84.8 11.04 2.21 NID NfO NfO 44.7 0.0 45.8 0.0 16.2 0.0 0.0 5.7 62.4
5.63 74.3 4.18 91.0 5.80 1.16 79.1 1.10 0.82 18.1 42.1 72.2 0.0 0.0 0.0 0.0 0.0 NfO

6.22 62.1 3.86 NfO NfO NfO NfO NfO NfO NID NfO NfO NfO NID NfO NfO NfO NfO

6.28 45.1 2.83 NfO NfO NfO NfO NID NfO 0.0 19.0 40.0 0.0 28.6 0.0 0.0 5.0 NfO

8.34 61.5 5.13 92.3 3.26 0.65 NfO NfO NfO 32.4 32.4 65.1 10.8 6.6 10.7 52.2 0.0 27.9
9.56 90.0 8.60 92.3 8.70 1.74 83.2 0.84 0.76 32.2 64.6 88.6 0.0 0.0 0.0 52.7 0.0 NfO

Minimuml11.89 0.0 -1.05 8.8 1.50 0.30 69.7 0.41 0.27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Maximum 9.56 90.0 8.60 95.6 11.04 2.21 87.6 7.16 2.56 81.7 64.6 88.6 50.0 28.6 10.7 80.9 56.9 73.7
Average 3.97 52.7 2.19 86.0 5.01 1.00 80.2 2.19 1.26 19.9 25.3 52.5 8.1 5.7 0.6 33.7 10.2 42.2 -.J

(JJNID = Not Determined
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over a 29 week period. The dotted line represents the average
OLR.

Stellenbosch University http://scholar.sun.ac.za



75

In Fig. 3, the COD removal and COD removal rates (R-value) are

plotted as a function of the OLR. The highest COD removal (90%), as well as

the highest R-value (8.60 kg COD.m-3.d-1), were found at the higher OLR of

9.56 kg COD.m-3.d-1. The COD removal steadily increased from 40% at an

OLR of 2 - 3 kg COD.m-3.d-1 to 80 % at an OLR of 4.5 - 6.0 kg COD.m-3.d-1

and finally to 88% at an OLR of 6.5 - 10 kg COD.m-3.d-1. Similarly, the R-

value increased as the OLR increased from 2 kg COD.m-3.d-1 at an OLR of 2 -

3 kg COD.m-3.d-1 to 8.6 kg COD.m-3.d-1 at an OLR of 8.5 - 10 kg COD.m-3.d-1.

The data indicates that the polyethylene hybrid digester design (AD-1) clearly

had the potential to maintain a high biomass retention, resulting in an

increased substrate utilisation at higher OLR's (Fig. 3).

The biogas yield of digester AD-1 was, however, found to increase

slowly, but in contrast, the methane yield (both removed and loaded)

decreased as the OLR increased (Fig. 4). The calculation of the methane

yield (loaded) was based on the OLR, whilst the calculation of the methane

yield (removed) was based on the R-values which explains why the CH4 yield

values are decreasing as the OLR and R-values increases. The total

methane yields per COD removed varied between 0.41 and 7.16 m3.kg

CODremoved.d-1for AD-1 at OLR's of 1.89 to 9.56 kg COD.m-3.d-1. The highest

biogas yield (2.21 m3.m-3) was observed at an OLR of 5.46 kg COD.m-3.d-1,

as opposed to the highest methane yield (removed and loaded) at a lower

OLR of 1.89 kg COD.m-3.d-1.

The average percentage methane produced in digester AD-1 was 80%

(Table 4c), with the highest production at an OLR of 4.48 kg COD.m-3.d-1 and

the lowest at 4.09 kg COD.m-3.d-1. The data indicates the presence of an

active methanogenic population, which were able to compete with the

sulphate-reducing bacteria for the available substrates (Lens et al., 1998).

It was apparent from Fig. 5 that the sulphate removal was fairly stable

throughout the study with removal efficiencies up to 96%, showing the

presence of an active SRB community working in balance with the

methanogens. Maree et al. (1990) found that the increase in sulphide was

the one environmental factor that was mostly responsible for digester failure

while treating gelatin-manufacturing effluent. The high sulphide

concentrations led to the inhibition of the methanogenic bacteria, thus acetate
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was not utilised effectively and led to the souring of the digester (Lens et al.,

1998).

The TS and VS removal efficiencies (Fig. 5) generally increased with

an increase in OLR. The highest TS and VS removal efficiencies were again,

as for the COD removal, found at an OLR of 9.56 kg COD.m-3.d-1 (65 and

89%, respectively).

During this study no consistency in TKN, total metals and TNVS

removals were observed (Table 4c). The remaining nitrogen amounts

indicated insufficient protein or amino acid degradation which involves the

production of VFA and ammonia. This also explains why no significant

accumulation of VFA were found which may led to digester failure (Okamoto

et ai., 2000). This was contradictory to the findings of Maree et al. (1990),

who reported a gradual accumulation of VFA, which subsequently became

toxic to the microbial population. However, it was also clear from this study

that significant amounts of VFA, phosphate and nitrogen were still present

and unutilised, in the effluent (Table 4b), suggesting additional alternative

experimentation at shorter HRT's or by using a multi-phase digester

configuration.

The alkalinity of the digester was found to vary between 1 000 and 3

300 mq.I", indicating a good buffering capacity. This exceeded the

recommended limit of 1 500 rnq.l" (Hawkes et ai., 1992). The data in Fig. 6

indicates a steady increase in alkalinity, as a function of increasing OLR's up

to OLR of 8.34 kg COD.m-3.d-1. The alkalinity was then found to decrease

drastically at higher OLR values, suggesting that the threshold buffering

capacity of the system had been reached. In Fig. 7, it can be seen that the

effluent pH remained (to some extent) a function of the VFA concentration in

the effluent, but did not necessarily reflect the increase in OLR (Table 4b).

Digester Efficiency (AD-2)

The composition of the digester substrate, the effluent and the

efficiency during the operational period of 29 weeks, are given in Tables 5a, b

and c. The data in Fig. 8 again illustrates the large variation in OLR's. When

comparing the data of Fig. 2 with the data of Fig. 8, it is clear that the OLR's

for digester AD-1 was generally higher than the OLR's for digester AD-2 (Fig.
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Table 5a Composition of the substrate used during the single-phase operating conditions of digester AD-2, as a
function of organic loading rate (OLR)*.

Digester Substrate
OLR coo TKN VFA so," pH TAlk (mg.r' TS vs TNVS PO,-P Tmetals Na Ca

(kgCOD.m".d·') (mg.r') (mg.r') (mg.r') (mg.r') asCaCO,) (mg.r') (mg.r') (mg.r') (mg.r') (mg.r') (mg.r') (mg.r')
1.48 1477 413 953 NfO 7.2 771 4700 1700 3000 12.6 1.35 1130 NfO I
1.76 1756 446 800 58 7.0 699 2100 1000 1100 16.9 0.91 350 NID
1.87 1868 309 391 410 7.1 541 3100 1300 1800 10.5 3.03 600 NfO
2.04 2040 410 272 376 7.2 769 4900 1600 3300 8.3 1.31 206 NfO
2.11 2111 347 323 550 7.0 583 4000 1400 2600 4.5 0.94 948 NfO
2.17 2172 580 323 307 7.8 42 3900 1600 2300 6.6 1.69 740 NfO
2.21 2212 580 375 365 7.8 416 3900 1600 2300 10.3 1.33 756 NfO
2.45 2445 512 383 278 7.2 749 4000 2100 1900 3.3 1.55 332 NfO
2.46 2459 486 357 485 7.2 836 4200 1900 2300 11.5 1.91 735 NfO
2.53 2534 580 204 597 7.6 874 4700 2000 2700 16.6 2.02 955 NfO ,

2.81 2806 NfO 1753 257 7.3 774 3800 2400 1400 5.3 0.88 392 NfO
2.82 2824 512 477 70 6.9 1242 2100 1200 900 4.6 0.41 485 NfO
2.94 2944 533 1634 2150 7.0 1117 4600 2300 2300 7.6 3.19 516 202
3.09 3086 355 366 580 6.9 381 6200 2100 4100 15.2 2.04 1441 81
3.16 3156 521 834 1700 8.3 1036 5400 1600 3800 4.6 2.58 842 154

I
3.16 3157 347 128 790 7.0 461 6500 1800 4700 14.7 2.93 1642 323
3.19 3186 321 179 1090 6.9 604 6600 2600 4000 11.0 1.20 789 512
3.59 3593 347 1668 200 7.2 1044 4100 2300 1800 3.9 1.31 311 NfO
3.62 3620 365 689 200 7.1 721 4800 2600 2200 14.8 NfO NfO NfO
3.73 3726 360 936 320 7.2 852 5600 2000 3600 15.7 1.37 201 NfO
3.82 3818 448 1208 NfO 7.0 645 5100 2500 2600 14.7 1.74 770 NfO
3.93 3926 511 528 330 7.1 670 6200 2900 3300 4.8 1.84 1286 NfO
4.08 4080 366 1030 260 7.2 1032 3700 2200 1500 12.7 3.96 525 NfO
4.32 4321 440 826 650 7.2 631 7800 2700 5100 10.5 3.77 1936 NfO
4.38 4376 545 596 3000 7.3 894 6300 3200 3100 10.8 3.95 610 196
4.48 4481 676 1064 310 7.1 1165 4300 2300 2000 9.1 2.90 390 325
4.62 4623 370 587 300 6.9 693 4700 3300 1400 14.2 1.67 999 NfO
4.65 4646 537 1447 NfO 7.2 772 9000 2800 6200 9.2 2.34 1157 340
4.77 4775 482 877 360 6.9 733 5300 3200 2100 13.3 2.83 488 NfO
5.00 4997 412 1864 NfO 7.1 1310 6900 2600 4300 4.5 2.58 616 143
5.64 5639 NfO NfO NfO NfO NfO NfO NfO NfO NfO NfO NfO NfO
5.74 5740 607 834 1180 7.6 1299 6400 2400 4000 17.6 5.52 1944 366
6.28 6277 478 766 NfO 7.2 1910 6300 3500 2800 26.8 2.46 1195 NfO
9.30 9300 680 2264 1280 7.2 1108 10100 4400 5700 16.4 6.25 320 144

Minimum i 1.48 1477 309 128 58 6.9 42 2100 1000 900 3.3 0.41 201 81
Maximum 9.30 9300 680 2264 3000 8.3 1910 10100 4400 6200 26.8 6.25 1944 512
~~I!_ 3.65 3652 465 816 659 7.2 829 5191 2276 2915 11.0 2.31 800 253
-Above data have been arranQed accordinQ to numerical increases in OLR. while the numerical structure of time has been disreQarded for this efficiency evaluation (Firl. Bi.
NID = Not Determined

CX)
o
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Table 5b Composition of the digester AD-2 effluent during the single-phase operating conditions at variable organic
loading rates (OLR)*.

Di gester Effluent
OLR COD TKN VFA SO;' pH TAlk {mg.r' TS VS TNVS PO.·p Tmetals Na Ca

(kg COD.m~.d·') (mg.r') (mg.r') (mg.r') (mg.r') IScaCO,) (mg.r') (mg.r') (mg.r') (mg.r') (mg.r') (mg.r') (mg.r')

1.48 777 375 681 N/D 8.1 1731 3300 500 2800 17.7 0.72 1031 N/D
1.76 880 461 494 19 8.0 1921 2800 800 2000 38.4 0.86 698 NID
1.87 547 301 238 12 8.0 1330 1900 300 1600 11.5 0.97 636 N/D
2.04 970 546 562 N/D 7.9 1856 3800 1100 2700 38.3 1.17 449 N/D
2.11 662 370 417 79 7.7 1477 3200 400 2800 7.5 1.18 987 N/D
2.17 1950 615 460 N/D 8.1 95 3600 900 2700 34.1 1.27 699 N/D
2.21 1729 785 579 29 8.1 95 3600 900 2700 30.2 0.92 894 N/D
2.45 1267 589 519 35 8.1 2123 4300 1100 3200 48.3 1.04 130 N/D
2.46 2511 683 1379 48 8.1 2432 5000 2000 3000 59.0 1.64 455 N/D
2.53 1367 990 528 187 8.0 1749 3800 1000 2800 41.4 0.96 151 N/D
2.81 952 N/D 1617 29 8.0 1449 2300 1000 1300 14.1 0.68 471 N/D
2.82 1569 482 664 140 7.5 761 2200 1200 1000 10.9 0.82 405 N/D
2.94 1358 506 562 130 8.0 2392 3200 800 2400 8.0 1.78 768 63
3.09 1257 373 340 94 7.9 1702 5100 600 4500 12.6 1.34 821 193
3.16 763 454 391 202 8.3 2019 3900 700 3200 7.5 0.55 915 62
3.16 1026 363 221 21 8.0 1728 5300 500 4800 11.7 1.78 1692 184
3.19 586 251 281 190 7.7 1196 4000 800 3200 5.1 0.97 989 255
3.59 1279 243 2111 102 7.8 1805 2600 900 1700 13.9 1.46 694 N/D
3.62 695 278 519 20 7.6 1249 2600 500 2100 16.4 N/D N/D N/D
3.73 1107 404 468 90 8.5 2564 3900 900 3000 9.4 0.63 132 N/D
3.82 842 373 596 N/D 7.8 1492 2200 500 1700 19.4 0.46 564 N/D
3.93 891 500 264 9 8.0 2114 3800 500 3300 10.3 0.83 820 N/D
4.08 1481 404 400 20 7.8 1650 2400 1100 1300 25.9 13.94 430 N/D
4.32 1279 403 451 173 8.0 1897 4900 600 4300 12.2 1.65 1461 N/D
4.38 2009 469 1089 90 8.5 2674 3400 700 2700 10.1 1.08 454 171
4.48 2368 592 953 120 8.2 3030 6000 1400 4600 13.3 2.62 361 186
4.62 787 394 494 6 7.6 1527 1800 400 1400 20.7 1.67 1010 N/D
4.65 2499 547 536 N/D 8.2 2625 7800 900 6900 8.8 1.22 2001 331
4.77 1421 483 596 8 7.7 2064 3200 1000 2200 21.2 2.47 469 N/D
5.00 941 363 391 N/D 8.1 2907 4500 800 3700 5.7 0.56 592 39
5.64 1615 N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D
5.74 1546 591 417 150 8.2 3008 2800 900 1900 1.5 1.13 1362 235
6.28 1873 341 1591 NID 7.9 2141 4700 1900 2800 45.0 1.56 1200 N/D
9.30 2628 535 443 140 7.8 2955 6500 1500 5000 15.0 2.45 340 119

Minimum I 1.48 547 243 221 6 7.5 95 1800 300 1000 1.5 0.46 130 39
Maximum 9.30 2628 990 2111 202 8.5 3030 7800 2000 6900 59.0 13.94 2001 331
Avera!le 3.65 1336 471 644 82 8.0 1871 3770 882 2888 19.5 1.64 752 167
'Above data have been arrarlfled accordil1(J to numerical increases in OLR, while the numerical structure of time has been disregarded for this efficiency evaluation (F(Q. 8).
NfO = Not Determined

co_..
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Table 5c The influence of variable organic loading rates (OLR) on digester AD-2 performance.

Diaester Efficienc\l
OLR COD COD SO/' Biogas Biogas CH, CH,yield CHo yield VFA TS VS TNVS TKN PO.-P Tmetal Na Ca

(kg COD.m~.d·'t removal removal rate removal productior yield conten (m3.kg COOrem.d-') (m3.kg COO ..... d·') removal removal removal remova removal removal rem ova removal removal
('lo) I (kg COO.m".d·' /%1 IIJdl /m3.m~ /'/ol 1%1 1%1 1'10) 1%1 ('lo) 1%1 1%1 1%1 1%1

1.48 47.4 0.70 NfO 5.70 1.14 82.8 6.75 3.20 28.6 29.8 70.6 6.7 9.2 0.0 46.7 8.7 NID
1.76 49.9 0.88 67.2 NfO NfO NID NfO NfO 38.3 0.0 20.0 0.0 0.0 0.0 5.5 0.0 NfO
1.87 70.7 1.32 97.1 3.90 0.78 79.1 2.34 1.65 39.1 38.7 76.9 11.1 2.4 0.0 68.0 0.0 NfO
2.04 52.4 1.07 NfO NfO NfO NID NfO NfO 0.0 22.4 31.3 18.2 0.0 0.0 10.7 0.0 NfO
2.11 68.6 1.45 85.6 5.90 1.18 79.7 3.25 2.23 0.0 20.0 71.4 0.0 0.0 0.0 0.0 0.0 NfO
2.17 10.2 0.22 NfO NfO NfO NfO NfO NfO 0.0 7.7 43.8 0.0 0.0 0.0 24.9 5.5 NfO
2.21 21.8 0.48 92.1 NfO NfO NfO NfO NfO 0.0 7.7 43.8 0.0 0.0 0.0 30.8 0.0 NfO
2.45 48.2 1.18 87.4 NfO NfO NfO NfO NfO 0.0 0.0 47.6 0.0 0.0 0.0 32.9 60.8 NfO
2.46 0.0 -0.05 90.1 NfO NfO NID NfO NfO 0.0 0.0 0.0 0.0 0.0 0.0 14.1 38.1 NfO
2.53 46.0 1.17 68.7 NfO NfO NfO NfO NfO 0.0 19.1 50.0 0.0 0.0 0.0 52.5 84.2 NfO
2.81 66.1 1.85 88.7 1.20 0.24 69.7 0.45 0.30 7.8 39.5 58.3 7.1 NfO 0.0 22.7 0.0 NfO
2.82 44.5 1.26 0.0 1.90 0.38 73.8 1.12 0.50 0.0 0.0 0.0 0.0 5.9 0.0 0.0 16.5 NfO
2.94 53.9 1.59 94.0 2.68 0.54 NfO NfO NID 65.6 30.4 65.2 00 5.0 0.0 44.2 0.0 68.7
3.09 59.3 1.83 83.8 3.10 0.62 87.6 1.49 0.88 7.0 17.7 71.4 0.0 0.0 17.5 34.3 43.1 0.0
3.16 75.8 2.39 88.1 2.67 0.53 NfO NfO NID 53.1 27.8 56.3 15.8 12.8 0.0 78.7 0.0 59.7
3.16 67.5 2.13 97.3 5.72 1.14 88.9 2.39 1.61 0.0 18.5 72.2 0.0 00 20.2 39.2 0.0 43.2

3.19 81.6 2.60 82.6 2.00 0.40 NfO NfO NfO 0.0 39.4 69.2 20.0 22.0 53.5 19.2 0.0 50.2

3.59 64.4 2.31 49.0 2.10 0.42 68.9 0.63 0.40 0.0 36.6 60.9 5.6 30.0 0.0 0.0 0.0 NfO
3.62 80.8 2.93 90.0 5.40 1.08 81.6 1.51 1.22 24.7 45.8 80.8 4.5 23.8 0.0 NfO NfO NfO
3.73 70.3 2.62 71.9 3.43 0.69 NfO NfO NfO 50.0 30.4 55.0 16.7 0.0 40.5 54.0 34.2 NID

3.82 77.9 2.98 NfO 6.80 1.36 83.4 1.91 1.49 50.7 56.9 80.0 34.6 16.8 0.0 73.6 26.8 NfO
3.93 77.3 3.04 97.3 4.10 0.82 80.4 1.09 0.84 50.0 38.7 82.8 0.0 2.1 0.0 54.9 36.2 NfO
4.08 63.7 2.60 92.3 1.29 0.26 NfO NID NfO 61.2 35.1 50.0 13.3 0.0 0.0 0.0 18.1 NfO
4.32 70.4 3.04 73.4 5.94 1.19 71.2 1.39 0.98 45.4 37.2 77.8 15.7 8.4 0.0 56.2 24.5 NfO
4.38 54.1 2.37 97.0 3.86 0.77 NfO NfO NfO 0.0 46.0 78.1 12.9 14.0 7.0 72.7 25.6 12.6

4.48 47.2 2.11 61.3 2.71 0.54 NfO NfO NfO 10.4 0.0 39.1 0.0 12.4 cJ.O 9.7 7.6 42.8

4.62 83.0 3.84 98.0 4.10 0.82 82.5 0.88 0.73 15.9 61.7 87.9 0.0 0.0 0.0 0.0 0.0 NfO
4.65 46.2 2.15 NfO 3.83 0.77 NfO NfO NfO 62.9 13.3 67.9 0.0 0.0 4.8 47.9 0.0 2.5

4.77 70.2 3.35 97.8 3.80 0.76 78.9 0.89 0.63 32.0 39.6 68.8 0.0 0.0 0.0 12.7 3.9 NfO

5.00 81.2 4.06 NID 2.46 0.49 NfO NfO NID 79.0 34.8 69.2 14.0 11.8 0.0 78.3 3.9 72.7

5.64 71.4 4.02 NfO NfO NfO NfO NfO NfO NID NfO NfO NfO NfO NID NfO NfO NfO

5.74 73.1 4.19 87.3 6.87 1.37 NfO NfO NfO 50.0 56.3 62.5 52.5 2.6 91.4 79.5 30.0 35.9

6.28 70.2 4.40 NfO NfO NfO NfO NfO NfO 0.0 25.4 45.7 0.0 28.6 0.0 36.6 0.0 NfO
9.30 71.7 6.67 89.1 2.84 0.57 NfO NfO NfO 80.5 35.6 65.9 12.3 21.3 8.2 60.8 0.0 17.1

MinimUml11.48 0.0 -0.05 0.0 1.20 0.24 68.9 0.45 0.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Maximum 9.30 83.0 6.67 98.0 6.87 1.37 88.9 6.75 3.20 80.5 61.7 87.9 52.5 30.0 91.4 79.5 84.2 72.7

Averace 3.65 59.9 2.32 81.8 3.77 0.75 79.2 1.86 1.19 25.8 27.6 58.2 7.9 7.2 7.4 36.3 14.6 36.9
co
NNID = Not Detennined
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Figure 8. The variation in substrate OLR during the study on digester AD-2
over a 29 week period. The dotted line represents the average
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8). Subsequently, AD-1 functioned at a higher average OLR (3.97 kg COD.m-

3.d-1) operating conditions than 'AD-2 (3.65 kg COD.m-3.d-1), with the highest

OLR found during weeks 22 to 24 (9.30 kg COD.m-3.d-1) for digester AD-2.

The COD removal data (Fig. 9) indicated that digester AD-2 gave the

highest COD removal (83%) at an OLR of 4.62 kg COD.m-3.d-1, while the best

R-values (6.67 kg COD.m-3.d-1) were found at the highest OLR of 9.30 kg

COD.m-3.d-1, clearly indicating that the best R-values were obtained at higher

OLR's. The R-value can be considered as the amount of COD (in kg) which

is effectively removed from the substrate COD per reactor volume (rrr') in one

day. The R-value increased as the OLR increased (Fig. 9) from 1.0 kg

COD.m-3.d-1 at an OLR of 1.5 - 2.5 kg COD.m-3.d-1 to 6.67 kg COD.m-3.d-1 at

an OLR of 6.0 - 9.3 kg COD.m-3.d-1. The COD removal was found to steadily

increase from below 60% at an OLR of 1.5 - 2.5 kg COD.m-3.d-1 to 80% at an

OLR of 6.0 - 9.3 kg COD.m-3.d-1. During the study, it was found that higher

COD removal and R-values were obtained for digester AD-1 (90% COD

removal at a R-value of 8.60 kg COD.m-3.d-1), when compared to digester AD-

2 (83% COD removal and a R-value of 6.67 kg COD.m-3.d-1). It can be

concluded that a higher feed load resulted in better digester performance and

treatment efficiencies, thus explaining the better performance of digester AD-

1. The difference in OLR (substrate strength) can be explained by the dilution

effect of the lower-strength supernatant in the digester AD-2 substrate.

The major trends in biogas and methane yields were fairly similar for

both digesters (Fig. 4 and 10), with the highest biogas yield of 1.37 m3.m-3

found at an OLR of 5.74 kg COD.m-3.d-1 (Table 5c). The highest methane

yields (removed and loaded) were observed at a lower OLR (1.48 kg COD.m-

3.d-1). The average percentage methane produced was 79% (Table 5c),

again indicating the presence of an active methanogenic population in the

digester.

In Fig. 11, the S04 removal efficiency, with one major exception, was

found to be stable, with the highest removal of up to 98%. This indicates an

active SRB population present in the digester. The highest TS and VS

removals (Fig. 11) of 62 and 88%, respectively were not found at the highest

OLR, but at an OLR of 4.62 kg COD.m-3.d-1. This could possibly be as a

result of a threshold or saturation value for TS and VS in the system at which
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value the TS and VS release will occur. A steady increase in the trend of TS

and VS removals were observed with increasing OLR's.

Again no consistency in TKN, total metals and TNVS removal

efficiencies were observed (Table Sc). However, the data indicated an

improvement in the removal of heavy metals towards the end of the study at

an OLR of 5.74 kg COD.m-3.d-1. Similarly, no significant VFA accumulation,

which are known to be toxic to the microbial community, was observed.

There was, however, still VFA present in the digester effluent, which could

probably indicate that the concentration of active methanogenic biomass is (

still to low for the maximum conversion of volatile acids to methane gas

(Malina & Pohland, 1992).

The performance tendencies in terms of digester effluent pH and

alkalinity are illustrated in Fig. 12 and 13. The digester alkalinity varied

considerably between 100 and 3 000 rnq.l" (Table Sb), but generally

increased with increasing OLR. The VFA content of the effluent varied

between 221 and 2 111 rnq.l" (Table Sb). The effluent pH also varied

between 7.53 - 8.51 over the spectrum of OLR (Fig. 13).

Microbial Community

It was reported that the type of support material is important in

determining the size and activity of the microbial community colonising the

support material (Britz & Van Der Merwe, 1993; Van Der Merwe & Britz,

1993). The ability of the community bacteria, especially the methanogens,

when operated under upflow stream conditions, to aggregate into dense

particles (granules) is important in the treatment of various industrial

wastewaters (Kim et al., 2000). These granules are known to occasionally

disintegrate in industrial reactors and result in loss of activity and washout of

biomass from the systems (Kosaric et aI., 1990). During the studies on

digester AD-1, dark coloured and fluffy granules were observed. The average

granule diameter was approximately 0.5 - 1.5 mm. Dark granules are typical

of digesters treating effluent with high organic loading rates (Kosaric et al.,

1990). In contrast, only flocs and no granules were observed in digester AD-

2. Although very little is known about the development of sludge granules

under continuous upflow conditions, several researchers have reported the
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presence of bacterial granules in their hybrid digesters (Alibhai & Forster,

1986; Kosaric et ai., 1990; Moosbrugger et ai., 1993). After a continuous

operation of 22 months no signs of clogging in the digesters were observed.

Conclusions

Anaerobic digestion is one of the most promising possibilities for the

treatment of recalcitrant waste (Lettinga et ai., 1997). Therefore, the disposal

strategies must always be based on knowledge of the-interactions between

organic/inorganic chemicals present in the effluent, wastewater variations

over time, digester designs and the condition of the microbial community

present in the specific digester. The data from this study demonstrate the

potential of the anaerobic hybrid digesters with an increased fixed-bed

surface area, to treat a highly variable high-strength, complex and problematic

wastewater. The extent of large variations in most of the operational

parameters for the two digesters are an indication and reflection of the type of

wastewater variation produced by the industry and thus in the substrate fed to

the digesters.

The results obtained in this study show that the use of numerical OLR

increases resulted in a better representation and indication of the

performance efficiency compared to a time function. Higher OLR's generally

resulted in higher COD removal rates and biogas yields. For both digesters it

were found that extreme variations occurred in the COD removal efficiencies

and other parameters, although an increase in biogas yield, alkalinity, TS, VS

and S04 removal, occurred. This could be an indication of the selection of a

suitable and specific microbial community as part of the stabilisation in the

digester and subsequent adaptation and enhancement of the microbial

degradation properties. Since the study was conducted over an extended

period of 29 weeks, it can be assumed that an optimally adapted consortium

of microbes were present. A longer operational period may even have

resulted in more specific species selection.

The data from this study clearly indicates that anaerobic digestion with

upflow anaerobic sludge digester designs can be considered a successful
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pre-treatment method for the generally noxious full-strength gelatin-

manufacturing effluent, without the need for nutrient supplementation.

Implementation of these results on commercial scale, would directly benefit

the industry - by reducing the COD and SS concentration in their effluent and

thereby also reducing the trade effluent charge. The local wastewater

purification works will also benefit by receiving a reduced organic load which

has been anaerobically pre-balanced and treated before disposing off to the

plant.

The results from this study do present the opportunity for further

research. Average concentrations of VFA (689 rnq.l" as acetic acid),

phosphate (18 mq.l" as P) and nitrogen (421 rnq.l") were still present and

unutilised in the effluent, suggesting alternative experimentation at shorter

HRT's or using a multi-phase digester configuration. With cases of such

complex effluents with rate-limiting steps during the treatment process, it will

thus be worthwhile to evaluate multi-phase systems in order to facilitate more

prominent species differentiation with enhanced degrading abilities.
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CHAPTER4

TREATMENT OF GELATIN-MANUFACTURING EFFLUENT USING MULTI-

PHASE ANAEROBIC HYBRID DIGESTERS

Summary

Multi-phase anaerobic digestion has often been reported to be beneficial for

the treatment of complex and high-strength wastewater (Battistoni et al.,

2000). It was found by researchers that phase-separation improves process

stability due to better working conditions for the acidogenic and methanogenic

bacteria (Anderson et al., 1994; Fongsatitkul et al., 1995; Battistoni et al.,

2000). This study was therefore conducted as an extension of the single-

phase digesters to determine the effect of phase-separation on the

performance of the two digesters operated in series, while treating gelatin-

manufacturing effluent. Two anaerobic mesophilic hybrid digesters AD-1

(UASB, polyethylene) and AD-2 (UASB, polyurethane), operated in series,

were evaluated for the treatment of a highly variable raw gelatin-

manufacturing effluent. This was done by coupling the digesters so that

digester AD-2 received the effluent from digester AD-1 which in turn received

the full-strength raw gelatin-manufacturing effluent. No chemical oxygen

demand (COD) standardisation was done on the raw gelatin-manufacturing

effluent so as to simulate actual field conditions. The pH of the raw effluent

from the gelatin-manufacturing industry, was adjusted to 6.5 and the hydraulic

retention time (HRT) set at 1.0 d. In the first section of this study the two

reactors were evaluated separately. The two reactors achieved COD removal

efficiencies of up to 93% (AD-1) and 80% (AD-2) at OLR's of 8.32 (AD-1) and

3.00 kg COD.m-3.d-1(AD-2). High sulphate (S04) removal efficiencies were

also obtained in both separate digesters (97% and 84%, respectively). The

methane content varied between 70 and 84% for digester AD-1 and 39 and

95% for digester AD-2. A methane yield per COD removed of 0.96 m3.kg

CODremoved.d-1at an OLR of 7.56 kg COD.m-3.d-1for digester AD-1 and a
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methane yield per COD removed of 0.56 m3.kg CODremoved.d-1at an OLR of

5.53 kg COD.m-3.d-1 for digester AD-2, were obtained.

In the second section of this study the total removal efficiency of the

multi-phase system was evaluated. The substrate of digester AD-1 and the

effluent of digester AD-2 were used for the calculation of the total removal

efficiencies in this section. A total COD removal efficiency of 97% at an OLR

of 8.32 kg COD.m-3.d-1, was achieved. Total S04 removal of 96% was

obtained at OLR's of 4.33 kg COD.m-3.d-1. Higher total COD and sulphate

removal efficiencies were obtained with the combined digesters than with the

single-phase digestion, as well as with the phase separated digesters.

Introduction

The general performance of the anaerobic digestion process and the wide

diversity of waste that can be treated, has increased steadily over the last few

years, due to an array of breakthroughs related to reactor design, operating

conditions and shock loadings (Austermann-Haun et aI., 1997). This

treatment option has also been evaluated extensively by other scientists

(Guiot & Van Den Berg, 1985; Stronach et aI., 1987; Van Der Merwe & Britz,

1993; Guiot et aI., 1997; Lettinga et aI., 1997; Verstraete & Vandevivere,

1997; Battistoni et a/., 2000).

Substantial proof exists that phasing/staging of the anaerobic process

can improve the overall performance of the biological process (Speece et aI.,

1997; Battistoni et aI., 2000). Separate phasing/staging seems to be the most

effective approach to optimise environmental conditions for each phase, while

using single-phase processes, both classes of organisms are forced to

operate in a common environment (Speece et aI., 1997; Ghosh et aI., 2000).

Potential advantages of phase separation include: improved process stability

due to optimised environmental conditions for both acidogenic and

methanogenic bacteria; altered intermediate product formation; enhanced

volatile solid (VS) reduction efficiency; minimised H2 concentration and

maximised free energy for propionate conversion; minimised inhibitory
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acetate concentrations in the presence of propionate degrading bacteria and

visa versa; increased potential for a better organic loading rate (OLR);

reducing risk of digester overloading; minimised residual volatile fatty acids

(VFA) in the effluents as well as altered energy yields to various classes of

microbial populations (Ghosh & Klass, 1978; Massey & Pohland, 1978; Shin

ef aI., 1992; Fongsatitkul ef aI., 1995; Battistoni ef aI., 2000; Ghosh ef aI.,

2000). Anderson ef al. (1994) studied the changes in microbial populations in

multi-phase digestion systems and confirmed that these designs have

advantages over single-phase systems, especially in terms of the selection

and enrichment of different bacteria in each phase, increased process

stability and that the methanogenic phase is buffered by the first acid phase

(Ghosh ef al., 2000).

The process used by gelatin-manufacturing industries to convert

insoluble hide collagen into water soluble gelatin produces a large volume of

effluent, high in COD, suspended solids (SS), S04 and salts. This result

costly upsets to the treatment processes of the local wastewater purification

process (Van Der Merwe-Botha, 1998, Personal communication). Aiming at

the reduction of the load of the discharged wastewater, it was decided to

evaluate anaerobic digestion as a pre-treatment option for this gelatin-

manufacturing effluent before it is discharged into the municipal wastewater

purification works.

This study was done as an extension to the previous laboratory-scale

single-phase studies (Chapter 3 of this thesis) in an attempt to separate the

dominant microbial populations and establish their interactions in two

separately phased digesters, thereby optimising the nutrient utilising and

metabolite formation dynamics by these specific phase-dominating

populations. The aim of this study was thus to evaluate the performance

efficiencies of both individually operated digesters, as well as the overall

performance of the same two digesters operated in series, while treating raw

gelatin-manufacturing effluent.
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Materials and methods

Digester design

The two digesters were operated in series, each with a working volume

of five litres, and operated at 35°C. The temperature was regulated by means

of a heating tape and temperature sensitive controls (Meyer et al., 1985).

The hybrid digesters combined a fixed-film and an upflow sludge blanket

design. The inert porous polyethylene (AD-1) foam and the polyurethane

(AD-2) materials were fitted to the upper two thirds of each of the inner

digester walls. The polyurethane material (Van Rompu et al., 1990) had

channels of 1.3 x 3.3 cm, edges of 1.3 x 3.0 cm and a back area 1.3 cm thick.

The density of the polyethylene and polyurethane materials were estimated at

0.77 and 25.7 kg.m-3, respectively (Van Der Merwe, 1994).

The substrate was introduced semi-continuously via a horizontal inlet

at the bottom of each digester by means of a peristaltic pump (Watson-

Marlow 302S) controlled by an electronic timer. The final overflow of the

reactor system emptied through an U-shaped tube to prevent any

atmospheric oxygen from entering the system. The biogas exited at the top

of the digester via a gas-solid separator and biogas production was

determined by means of a brine displacement system (6N HCI, pH 2.0). The

biogas volumes were corrected to standard temperature and pressure (STP)

conditions. Stable state conditions were assumed when, after five volume

turnovers, operational parameters showed a variation of less than 10%. The

hydraulic retention time (HRT) was set at 1.0 d for the entire duration of the

experimental study for both digesters.

There was no need for a start-up process since the digesters were

already activated using the same substrate used for the single-phase

digestion reported in Chapter 3 of this thesis.

Gelatin-manufacturing effluent

The gelatin effluent was obtained from a local gelatin-manufacturing

industry in batches of 75 I and were stored at room temperature until required.

In an attempt to simulate the actual field conditions, no standardisation was
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done on the effluent, except for the pH of the substrate which had to be

adjusted to 6.5. The direct influence of varying COD concentrations (organic

loading rates) on the anaerobic treatment efficiency can thus be studied. The

gelatin-manufacturing effluent used as digester substrate was initially

supplemented with 100 rnq.l" urea, 100 rnq.l" K2HP04, 10 ml acetic acid

(CH3COOH) and a sterile trace element solution (Nel et aI., 1985), to

stimulate the growth of the specific microbial consortium and to prevent any

nutrient limitations.

Analytical methods

The following parameters were determined on the digester substrate

and effluent during the experimental study according to Standard Methods

(APHA, AWWA & WEF, 1995): pH; total alkalinity (TAlk); chemical oxygen

demand (COD); total Kjeldahl nitrogen (TKN); chlorides (Cl); ammonia (NH3-

N); volatile fatty acids (VFA); sulphate (SO/-); total solids (TS); volatile solids

(VS); total non-volatile solids (TNVS) and ortho-phosphate (P04-P).

Total heavy metals (Tmetais) comprising of Cu, Fe, Co, Mn, Cr, Pb, Ni,

Zn, Cd, as well as calcium and sodium cocentrations, were determined using

an Atomic Absorbance Spectrophotometer (Varian Model 250 Plus),

equipped with hollow cathode lamps for the different metals, photoelectric

detector with associated electronic amplifying and measuring equipment.

Air/acetylene and nitrous oxide/acetylene burners were used with air as

oxidant and acetylene or nitrous oxide as fuel. Pressure reducing regulators

were used for the supply of the fuel and oxidant at appropriate and prescribed

levels. Control standards of known metal concentrations were prepared with

a matrix similar to the samples, for the construction of a calibration curve.

Additional standard solutions were analysed between samples to confirm test

control, as well as a blank to confirm the baseline stability. The sample

concentrations were determined by reference to the calibration curve. The

filtered samples (at room temperature) were aspirated into the air/acetylene

or nitrous oxide/acetylene flame and atomised.

Volatile fatty acids (as acetate) were determined according to the

titration method of Moosbrugger et al. (1992). The biogas composition
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(methane and carbon dioxide) was determined volumetrically according to the

quantitative biogas carbon dioxide content method of Ross et al. (1992). The

biogas volumes were corrected to standard temperature and pressure (STP)

conditions.

The accuracy of all tested parameters were confirmed by participation

in an inter-laboratory water testing program (SABS Water Check Proficiency

Program).

Experimental phases

During the multi-phase experimental study, the two hybrid digesters

were operated in series, with digester AD-1 (UASB, polyethylene) receiving

the raw gelatin-manufacturing effluent as digester substrate (pH correction to

6.5 with 6N HCI), and digester AD-2 (UASB, polyurethane) receiving the

treated effluent from AD-1, as substrate (pH 6.5). In the first section of the

study the two reactors were evaluated separately to determine if phase-

separation was possible. Thereafter, in the second section of the study the

total removal efficiency of the multi-phase system treating gelatin-

manufacturing, was evaluated.

Results and discussion

Digester substrate

The average composition of the substrate fed to the hybrid digesters

during the multi-phase digestion, is given in Table 1. Since the direct

influence of varying batch and thus substrate composition was considered as

important field and bench parameters, no standardisation was done on the

effluent, with the exception of the pH.

Digester efficiency (AD-1)

The composition of the digester substrate, effluent and digester

efficiency, are given in Tables 2a, band c. The first phase substrate (AD-1)

was used as baseline in all efficiency calculations. The data in Fig. 1 shows
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Table 1. Average composition of the digester substrates used during the
multi-phase experimental studies, over a 48 week period, based
on 100 batches of effluent.

Parameters AO-1 AO-2
Average ±SO Average ±SO

HRT (d) 1 1
OLR (kg COD.m-3.d-1) 4.05 3.34 1.42 1.04
COD (rnq.I") 4172 3341 1 421 1 036
S04 (rnq.l") 564 500 144 131

VFA (rnq.l") 854 719 474 343
TKN (rnq.l") 490 445 499 358
pH 6.3 0.7 6.6 0.7
TAlk (rnq.I" as CaC03) 558 448 995 770

TS (rnq.l") 4458 3200 3194 2000
VS (rnq.l") 1 919 1400 677 500
TNVS (rnq.l") 2540 1 800 2517 1 700
Cl (mq.I") 388.5 298.1 916.4 502.8
NH3 (rnq.I") 60 56 199 141

P04-P (rnq.l" as P) 2.6 2.5 5.0 4.5

Na (rnq.l") 614 506 741 617
Ca (mg.r1) 78 66 68 56
Tmetals (rnq.l") 1.6 1.3 1.3 1.0

SD = Standard deviation
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Table 2a. Composition of the substrate used during multi-phase operating conditions of AD-1, as a function of organic
loading rate (OLR)*.

Digester Substrate
OLR COD TKN VFA 504

2• pH TAlk (mg.r' Cl NH,-N TS VS TNVS PO.-p Tmelals Na ca
(kg COD.m-3.d·1) (mg.r', (mg.r', (mg.r', (mg.r', ... C.C03) (mg.r', (mg.r', (mg.r', (mg.r', (mgr', (mg.r', (mg.r', (mgr', (mg.r',

0.78 781 197 1226 190 7.1 335 NID 15.1 2500 1200 1300 0.8 1.28 312 12
1.81 1813 55 255 380 7.4 327 266.1 45.4 2100 1100 1000 0.3 0.44 357 30
1.92 1917 102 698 120 7.3 273 440.3 69.6 2300 1100 1200 0.3 0.52 298 38
2.03 2027 246 138 84 6.8 277 155.9 76.8 2800 1500 1300 3.7 2.04 139 134
2.03 2030 19 784 630 6.4 88 NID 2.3 1800 700 1100 2.7 1.22 763 117
2.07 2070 43 232 120 7.0 135 N/D 11.3 3000 1100 1900 1.6 0.38 578 19
2.07 2070 198 179 130 7.2 202 521.0 60.2 2600 1200 1400 0.9 0.45 558 58
2.16 2159 113 213 350 6.9 198 345.0 27.5 1700 500 1200 0.5 0.81 234 53
2.38 2377 166 340 590 6.4 152 NID 7.1 3800 1300 2500 0.4 0.47 794 15
2.52 2521 278 465 340 6.8 506 251.5 120.0 2000 1100 900 0.5 0.72 340 40
2.55 2548 279 315 470 7.0 348 837.7 41.5 3400 1400 2000 0.4 1.30 690 81
2.63 2630 267 417 150 7.3 266 91.7 32.0 2800 1600 1000 0.2 1.09 263 10
2.66 2655 258 672 151 7.1 756 NID NID 2000 900 1100 2.9 1.11 575 78
2.73 2734 340 281 380 7.5 268 N/D 6.2 3800 1500 2300 0.6 0.73 1044 23
2.76 2759 304 808 680 7.2 602 N/D NID 3000 600 2400 1.7 2.02 952 120
2.80 2802 4459 2385 550 6.8 597 N/D NID 3700 1300 2400 2.4 1.67 98 32
2.89 2887 264 706 290 7.1 667 NID NID 2500 1100 1400 1.0 1.72 606 31
2.90 2901 317 340 270 7.0 214 NID NID 3700 1500 2200 1.9 3.18 460 130
3.00 2996 330 179 510 7.1 152 378.8 13.1 3100 2000 1100 0.2 0.46 382 38
3.05 3051 289 2128 340 7.0 787 NID NID 3600 1200 2400 3.9 2.06 724 NID
3.17 3170 346 230 480 6.3 358 502.7 11.8 3200 1700 1500 0.5 0.49 444 42
3.29 3294 314 323 790 6.6 189 201.8 29.7 3700 2100 1600 4.9 2.23 287 238
3.39 3387 625 221 740 6.8 248 N/D 43.4 10000 1900 8100 0.9 1.60 794 38
3.42 3418 438 894 300 6.9 808 NID 246.0 4300 1700 2600 2.6 0.72 1023 18
3.42 3418 619 1208 700 6.8 393 NID 8.4 2400 1000 1400 0.5 2.63 582 55
3.51 3513 228 281 160 7.5 310 NID 8.7 3300 2000 1300 0.0 2.04 592 20
3.54 3544 324 494 610 7.2 242 NID 10.9 4100 2300 1800 1.0 1.66 729 63
3.60 3802 309 1388 590 7.5 378 NID 13.8 1300 500 800 0.3 0.43 18 27
3.67 3870 249 374 380 6.9 355 NID 53.2 4400 2000 2400 2.6 1.73 638 47
3.87 3865 583 885 590 6.4 596 NID 226.0 3000 1100 1900 2.4 0.72 282 51
3.90 3899 458 451 210 7.1 477 669.3 68.2 3200 1700 1500 0.3 2.68 392 14
4.15 4152 417 385 130 7.5 349 N/D 7.5 3900 2400 1500 0.3 1.21 510 15
4.33 4333 473 183 1000 7.3 611 N/D NID 5200 1900 3300 14.3 2.91 1000 NID
4.46 4456 665 2391 520 7.0 1022 NID 283.0 2600 1000 1600 0.3 1.29 341 31
5.26 5257 830 2340 900 6.5 2274 NID NID 6400 1900 4500 2.1 1.55 1448 212
5.34 5340 606 1847 1860 7.0 651 NID N/D 7800 2500 5300 5.9 4.59 181 31
5.90 5899 654 1140 410 7.1 963 NID 177.3 3400 2400 1000 0.2 0.63 280 58
6.25 6245 707 1489 1590 7.2 1716 NID NID 6900 2300 4600 5.2 2.89 874 220
6.33 6332 819 1709 1910 7.0 1350 NID NID 8500 2700 5800 4.0 4.89 119 72
6.74 6740 460 1804 270 7.0 1314 NID NID 5500 1900 3600 5.6 1.72 2404 346
6.81 6812 512 494 207 7.0 430 N/D N/D 8000 3800 4200 7.4 2.08 838 184
7.08 7079 637 783 1610 7.0 1143 NID NID 7800 3000 4800 4.6 2.91 1523 245
7.53 7525 606 230 320 7.6 482 NID 70.4 5100 3900 1200 0.8 1.06 47 64
7.56 7562 524 936 140 6.9 721 NID NID 8800 2800 4000 5.8 2.33 1179 82
8.32 8323 567 204 390 7.3 233 NID 14.1 3600 2800 1000 0.2 0.65 386 76
8.56 8559 700 2196 2310 6.6 527 NID N/D 11700 4300 7400 6.0 3.42 178 41
9.26 9260 491 834 230 7.0 920 NID N/D 8900 4100 4800 8.6 2.50 1632 111
9.87 9874 846 2538 1000 6.8 747 NID N/D 12800 6500 6300 12.4 3.95 1230 137

Minimum I 0.78 781 19 136 84 6.3 88 91.7 2.3 1300 500 800 0.0 0.38 18 10
Maximum 9.87 9874 4459 2536 2310 7.6 2274 837.7 283.0 12800 6500 8100 14.3 4.89 2404 346
Average 4.17 4172 490 854 584 7.0 562 388.5 60.0 4458 1919 2540 2.6 1.70 627 78

......
o
N

'Above dala have been arranged according to numerical increases in OLR, while the numerical structure of time have been disregarded for this study's purposes (Fig. 1J.
NID = Not Delermined
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Table 2b. Composition of the digester AD-1 effluent during multi-phase operating conditions at variable organic loading
rates (OLR)*.

Digester Effluent
OLR COD TKN VFA sol' pH TAlk (mg.r' Cl NH,-N TS vs THYS PO.-P Tmetal. Ns Cs

(kg COD.m.) .cr') (mg.r') (mg.r') (mg.r') (mg.r') nC.CO,) (mg.r'l (mg.r') (mg.r') (mg.r'l (mg.r') (mg.r'l (mg.r') (mg.r') (mg.r')
0.78 451 189 579 70 7.4 845 NID 184.6 3100 600 2500 6.1 0.89 851 143
1.81 309 142 128 110 7.3 324 483.9 120.0 1100 200 900 1.3 0.31 191 14
1.92 455 157 323 110 7.6 491 662.2 80.3 1600 300 1300 0.8 0.49 399 44
2.03 1064 260 357 250 7.1 830 576.2 214.7 1800 500 1300 5.6 0.96 241 192
2.03 871 100 432 158 7.5 776 NID 52.0 1700 200 1500 4.5 1.46 595 111
2.07 918 129 355 40 7.1 335 NID 80.2 2900 500 2400 2.4 0.43 717 23
2.07 459 123 128 160 7.5 525 517.5 64.2 1500 200 1300 3.0 0.33 440 53
2.16 984 142 281 240 7.1 405 622.7 61.2 1600 200 1400 2.4 0.74 149 33
2.38 523 131 162 86 6.6 286 NID 87.5 1800 300 1500 2.1 0.24 467 15
2.52 612 255 255 110 7.3 649 619.3 199.0 1500 500 1000 1.2 0.60 363 40
2.55 971 349 204 170 7.7 736 1831.3 165.0 3000 500 2500 2.2 1.14 788 71
2.63 1018 444 272 90 7.3 503 1415.9 250.0 1900 500 1400 0.3 0.95 404 15
2.66 394 264 196 119 7.2 885 NID NID 2000 400 1800 7.9 0.87 530 56
2.73 1481 199 272 250 7.4 503 NID 102.0 2800 300 2500 2.5 0.55 790 12
2.76 850 304 196 23 7.5 871 NID NID 2900 600 2300 4.6 1.51 1012 108
2.80 815 5633 1367 170 7.9 813 NID NID 3100 500 2600 5.5 1.05 94 36
2.89 1362 336 366 110 7.0 1214 NID NID 3400 700 2700 9.7 1.48 1609 156
2.90 948 373 306 14 7.1 1047 NID NID 2500 700 1800 7.5 1.15 360 83
3.00 746 345 204 210 7.3 1284 593.4 292.0 3000 1600 1400 1.2 0.33 412 36
3.05 306 431 417 210 8.3 878 NID NID 3800 400 3400 6.6 1.77 1091 NID
3.17 693 315 162 310 7.2 1020 978.1 207.0 1500 300 1200 0.9 0.31 358 33
3.29 764 303 196 190 7.1 736 1235.1 148.9 2300 500 1800 2.5 0.69 425 82
3.39 813 566 136 142 7.8 858 NID 172.0 1800 300 1500 2.1 1.54 735 43
3.42 1635 324 298 110 7.1 857 NID 246.8 3400 900 2500 5.0 0.51 846 26
3.42 1375 607 636 150 7.5 1218 NID 194.0 2300 400 1900 3.3 1.60 602 57
3.51 536 167 162 90 7.4 203 NID 106.0 1900 400 1500 1.7 0.85 643 22
3.54 3028 313 460 121 7.2 866 NID 176.0 2000 400 1600 3.0 1.60 848 71
3.60 3000 303 536 120 7.7 736 NID 164.0 1800 300 1500 3.6 0.43 458 35
3.67 2415 236 196 190 6.9 709 NID 179.6 3000 700 2300 7.5 0.52 716 46
3.87 1554 502 357 90 6.9 1147 NID 324.0 2900 500 2400 4.2 0.78 407 63
3.90 2501 447 426 92 7.5 869 1481.0 244.3 2300 400 1900 0.5 0.86 736 29
4.15 816 426 230 110 7.7 688 NID 247.0 2200 400 1800 0.5 0.75 647 17
4.33 1982 642 881 52 7.5 2060 NID NID 6100 900 5200 11.9 3.11 1660 NID
4.46 1080 658 1030 60 7.2 1572 NID 332.0 1900 1200 700 2.5 0.67 353 32
5.26 1914 758 417 290 7.4 2027 NID NID 6000 1500 4500 7.0 1.01 1493 48
5.34 2959 726 1260 260 7.1 1712 NID NID 11200 1500 9700 12.2 3.80 763 80
5.90 918 618 672 60 7.3 1550 NID 391.0 2000 800 1200 3.0 0.53 345 47
6.25 2118 643 604 370 7.1 2246 NID NID 5400 1000 4400 8.4 2.20 866 164
6.33 1920 624 1716 176 7.0 1512 NID NID 5400 1000 4400 8.4 2.69 115 60
6.74 1670 469 400 90 7.3 1271 NID NID 5200 800 4400 10.2 1.49 3242 288
6.81 1480 311 247 185 7.7 863 NID NID 2500 600 1900 5.8 1.25 706 64
7.08 3034 569 374 220 7.3 1438 NID NID 5500 1100 4400 8.8 2.40 987 85
7.53 1877 553 417 60 8.0 1494 NID 760.0 1700 700 1000 0.9 0.82 367 64
7.56 2139 460 306 202 7.3 1277 NID NID 5300 1000 4300 8.6 2.42 1220 77
8.32 582 176 179 110 7.3 545 NID 138.0 1400 400 1000 4.2 0.36 277 57
8.56 609 321 1506 169 7.2 881 NID NID 3900 900 3000 4.0 2.09 1018 90
9.26 3693 788 970 90 7.3 1744 NID NID 7600 1800 5800 16.4 3.74 2000 99
9.87 5533 779 1336 110 7.0 1657 NID NID 7800 2100 5700 17.2 4.01 1231 118

Minimum I 0.78 306 100 128 14 6.6 203 483.9 52.0 1100 200 700 0.3 0.24 94 12

Maximum 9.87 5533 5633 1716 370 8.3 2246 1831.3 760.0 11200 2100 9700 17.2 4.01 3242 288

Average 4.17 1421 505 471 146 7.3 998 916.4 200.0 3196 679 2517 5.0 1.26 739 67

'Above data have been arranged according to numerical increases in OLR, while the numerical structure of time have been disregarded for this study's purposes (Fig. 1).

NID = Not Determined

~
ow
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Table 2c. The influence of variable organic loading rates (OLR) on digester AD-1 performance during multi-phase digestion.

Digester Efficiency
OLR COD COD SO;· Biogas Biogas CH. CH. yield CH. yield VFA Cl NH,·N TS VS TNVS TKN PO.·p Tmetal Na Ca

(kg COD.m_'.d·') removal removal rate removal producnon yield content (m'.kg COD~.d·') (m'.kg COD..... cr" removal removal removal removal remeva removal removal removal removal removal removal

% ka COD.m_'.d·' 1%' IUd' m'.m4\ %' 1%' 1%' 1%1 1%1 1%1 1%1 1%1 1%1 1%1 1%1 1%1
0.78 42.3 0.33 63.2 2.39 0.48 NfO NfO NID 52.8 NfO 0.0 0.0 50.0 0.0 3.7 0.0 30.5 0.0 0.0
1.81 83.0 1.50 71.1 2.45 0.49 NfO NfO NfO 50.0 0.0 0.0 47.6 81.8 10.0 0.0 0.0 29.5 46.5 53.6
1.92 76.3 1.46 8.3 NID NfO NfO NfO NfO 53.7 0.0 0.0 30.4 72.7 0.0 0.0 0.0 5.8 0.0 0.0
2.03 47.5 0.96 0.0 NfO NID NfO NfO NfO 0.0 0.0 0.0 35.7 66.7 0.0 0.0 0.0 52.9 0.0 0.0
2.03 57.1 1.16 74.9 0.46 0.09 NfO NfO NfO 44.8 NfO 0.0 5.6 71.4 0.0 0.0 0.0 0.0 22.1 4.8
2.07 55.7 1.15 66.7 2.60 0.52 NfO NfO NfO 0.0 NfO 0.0 3.3 54.5 0.0 0.0 0.0 0.0 0.0 0.0
2.07 77.8 1.61 0.0 NfO NfO NfO NfO NID 28.6 0.7 0.0 42.3 83.3 7.1 38.1 0.0 26.7 21.2 8.6
2.16 54.4 1.18 31.4 NfO NfO NfO NfO NfO 0.0 0.0 0.0 5.9 60.0 0.0 0.0 0.0 8.6 36.4 37.5
2.38 78.0 1.85 85.4 NfO NfO NfO NfO NfO 52.5 NfO 0.0 52.6 76.9 40.0 20.9 0.0 48.9 41.1 0.0
2.52 75.7 1.91 67.6 3.16 0.63 NfO NfO NfO 47.4 0.0 0.0 25.0 54.5 0.0 8.5 0.0 16.7 0.0 0.0
2.55 61.9 1.58 63.8 5.48 1.10 80.8 2.81 1.74 35.1 0.0 0.0 11.8 64.3 0.0 0.0 0.0 12.3 0.0 12.3
2.63 61.3 1.61 40.0 NfO NfO NfO NfO NfO 34.7 0.0 0.0 26.9 68.8 0.0 0.0 0.0 12.8 0.0 0.0
2.66 85.2 2.26 21.2 3.53 0.71 NfO NfO NfO 70.9 NfO NfO 0.0 55.6 0.0 0.0 0.0 21.6 7.8 28.2
2.73 45.8 1.25 34.2 NfO NfO NfO NID NfO 3.0 NfO 0.0 26.3 60.0 0.0 41.4 0.0 24.7 24.3 47.8
2.76 69.2 1.91 96.6 5.25 1.05 NfO NfO NID 75.7 NfO NfO 3.3 0.0 4.2 0.0 0.0 25.2 0.0 10.3
2.80 70.9 1.99 69.1 3.37 0.67 NfO NfO NfO 41.4 NfO NfO 16.2 61.5 0.0 0.0 0.0 37.1 3.6 0.0
2.89 52.1 1.61 62.1 6.53 1.31 84.0 3.42 1.90 48.2 NfO NfO 0.0 36.4 0.0 0.0 0.0 14.0 0.0 0.0

2.90 67.3 1.95 84.8 3.10 0.62 NfO NfO NID 10.0 NID NfO 32.4 53.3 18.2 0.0 0.0 63.8 21.7 36.0
3.00 75.1 2.25 58.8 NfO NfO NfO NfO NfO 0.0 0.0 0.0 3.2 20.0 0.0 0.0 0.0 28.3 0.0 5.0
3.05 90.0 2.75 38.2 3.33 0.67 NfO NfO NfO 60.4 NID NfO 0.0 66.7 0.0 0.0 0.0 14.9 0.0 NfO

3.17 78.1 2.48 35.4 NID NfO NfO NfO NfO 29.6 0.0 0.0 53.1 82.4 20.0 8.8 0.0 36.7 19.4 20.9

3.29 76.8 2.53 75.9 NfO NfO NfO NfO NfO 39.5 0.0 0.0 37.8 76.2 0.0 3.6 49.0 69.1 0.0 65.3

3.39 76.0 2.57 80.8 1.44 0.29 NfO NfO NfO 38.5 NfO 0.0 82.0 84.2 81.5 9.5 0.0 3.8 7.4 0.0

3.42 52.2 1.78 63.3 4.48 0.90 60.0 2.01 1.05 66.7 NfO 0.0 20.9 47.1 3.8 26.1 0.0 29.2 17.3 0.0

3.42 59.8 2.04 78.6 3.68 0.74 NfO NfO NfO 47.2 NfO 0.0 4.2 60.0 0.0 1.9 0.0 39.2 0.0 0.0

3.51 84.7 2.98 43.8 NfO NfO NfO NfO NfO 42.4 NfO 0.0 42.4 80.0 0.0 26.7 0.0 58.3 0.0 0.0

3.54 14.6 0.52 80.2 2.79 0.56 NfO NfO NfO 6.9 NfO 0.0 51.2 82.6 11.1 3.3 0.0 14.0 0.0 0.0

3.60 16.7 0.60 79.7 1.93 0.39 NfO NfO NfO 60.8 NfO 0.0 0.0 40.0 0.0 1.8 0.0 0.0 0.0 0.0

3.67 34.2 1.26 47.2 3.70 0.74 NfO NfO NfO 47.7 NfO 0.0 31.8 65.0 4.2 4.3 0.0 69.9 0.0 2.0

3.87 59.8 2.31 84.7 3.32 0.66 NfO NfO NfO 59.6 NfO 0.0 3.3 54.5 0.0 13.9 0.0 0.0 0.0 0.0

3.90 35.9 1.40 56.2 NfO NfO NfO NfO NfO 5.7 0.0 0.0 28.1 76.5 0.0 2.2 0.0 67.9 0.0 0.0

4.15 80.3 3.34 15.4 NfO NfO NfO NID NfO 40.3 NfO 0.0 43.6 83.3 0.0 0.0 0.0 38.0 0.0 0.0

4.33 54.3 2.35 94.8 8.07 1.61 NfO NfO NfO 0.0 NfO NfO 0.0 52.6 0.0 0.0 16.3 0.0 0.0 NfO

4.46 75.8 3.38 88.5 5.29 1.06 NfO NfO NfO 56.9 NfO 0.0 26.9 0.0 56.3 1.3 0.0 48.1 0.0 0.0

5.26 63.6 3.34 67.8 9.81 1.96 NfO NfO NID 82.2 NfO NfO 6.3 21.1 0.0 8.6 0.0 34.8 0.0 77.3

5.34 44.6 2.38 86.0 9.56 1.91 NfO NfO NfO 31.8 NfO NfO 0.0 40.0 0.0 0.0 0.0 17.2 0.0 0.0

5.90 84.4 4.98 85.4 7.55 1.51 NfO NfO NfO 41.0 NfO 0.0 41.2 66.7 0.0 5.4 0.0 15.9 0.0 19.6

6.25 66.1 4.13 76.7 7.06 1.41 70.7 1.21 0.80 59.4 NfO NfO 21.7 56.5 4.3 9.1 0.0 23.9 0.9 25.5

6.33 69.7 4.41 90.8 4.27 0.85 NfO NfO NfO 0.0 NfO NfO 36.5 63.0 24.1 23.8 0.0 45.0 3.4 16.5

6.74 75.2 5.07 66.7 9.71 1.94 80.8 1.55 1.16 77.8 NfO NfO 5.5 57.9 0.0 0.0 0.0 13.4 0.0 16.7

6.81 78.3 5.33 10.6 10.20 2.04 78.6 1.50 1.18 50.0 NfO NfO 88.8 84.2 54.8 39.2 21.1 39.9 15.8 65.3

7.08 57.1 4.05 86.3 12.81 2.56 81.7 2.59 1.48 52.2 NfO NfO 29.5 63.3 8.3 10.7 0.0 17.5 35.2 65.2

7.53 75.1 5.65 81.3 2.88 0.58 NfO NfO NfO 0.0 NfO 0.0 66.7 82.1 16.7 8.8 0.0 22.6 0.0 0.0

7.56 71.7 5.42 0.0 7.13 1.43 73.1 0.96 0.69 67.3 NfO NfO 22.1 64.3 0.0 12.2 0.0 0.0 0.0 5.8

8.32 93.0 7.74 718 2.67 0.53 NfO NfO NfO 12.5 NfO 0.0 63.2 85.7 0.0 69.0 0.0 44.6 28.1 24.3

8.56 92.9 7.95 92.7 2.59 0.52 NfO NfO NfO 31.4 NfO NfO 86.7 79.1 59.5 54.1 33.9 38.9 0.0 0.0

9.26 60.1 5.57 60.9 10.02 2.00 70.8 1.27 0.77 0.0 NfO NfO 14.6 56.1 0.0 0.0 0.0 0.0 0.0 10.0

9.87 44.0 4.34 89.0 8.27 1.65 69.9 1.33 0.59 47.3 NfO NID 39.1 67.7 9.5 7.9 0.0 0.0 0.0 14.2

Mlnlmumlo.78 14.6 0.33 0.0 0.46 0.09 69.9 0.96 0.59 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Maximum 9.87 93.0 7.95 96.6 12.81 2.56 84.0 3.42 1.90 82.2 0.7 0.0 82.0 85.7 81.5 69.0 49.0 69.9 46.5 77.3

Averaae 4.17 64.6 2.75 61.2 5.17 1.03 77.0 1.86 1.13 38.0 0.1 0.0 26.6 61.5 9.0 9.7 2.5 26.3 7.3 14.6

....>.

~

NfO = Not Oetermined

Stellenbosch University http://scholar.sun.ac.za



2

105

o 6oo
0>

...lol::-0:: 4 .
--'o

.- 8
~

10

o +---~---+--~----+---4----r---1----~--,_---+
o 5 10 15 20 25 30 35 40 45 50

Time (weeks)

Figure 1. Variation in the substrate OLR during the 48 week study of
digester AD-1 during multi-phase digestion. The dotted line
represents the average OLR.
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the time frame of the study and the extreme variations in the substrate OLR

for digester AD-1, over the 48 week study period. Higher OLR operational

conditions (> 7.0 kg COD.m-3.d-1)were found during weeks 2 to 4, 9 to 11, 14

to 17, 22 to 23 and 29 to 31. All data are discussed as a function of OLR due

to the relative insignificance of time during this study. The influence of the

variations in OLR (Fig. 1) on anaerobic treatment efficiency in terms of COD

removal, R-value, biogas and methane yield, pH, total alkalinity and volatile

fatty acid content of the effluent are discussed below.

The highest COD removal (93%) and COD removal rate (R-value)

(7.95 kg COD.m-3.d-1) were found at the higher OLR of 8.32 and 8.56 kg

COD.m-3.d-1, respectively. The R-value increased significantly with the

increasing OLR (Fig. 2). The COD removal efficiency ranged from 15 to 93%

with an average of 65% (Table 2c).

The increase in the substrate OLR was similarly reflected by a

subsequent increase in the biogas yield (Fig. 3). This increased biogas yield

possibly indicates that the microbial community prefer higher OLR's where

more energy was available. The highest biogas yield of 2.56 m3.m-3 reactor

was observed at an OLR of 7.08 kg COD.m-3.d-1,with an irregular production

tendency in the yield at higher OLR's. The maximum methane yields per

COD removed or COD loaded (3.42 and 1.90 m3.kg COD.d-1, respectively)

were obtained at a lower OLR of 2.89 kg COD.m-3.d-1. Thus, as the OLR

increased, the organic loading surpassed the metabolic capacity of the

methanogenic population and, therefore, the methane yield decreased. The

average percentage methane produced was 84% (Table 2c), indicating an

active methanogenic population in the digester, which is able to compete with

the sulphate reducing bacteria (SRB) bacteria. The highest S04 removal

efficiency was 97% at an OLR of 2.76 kg COD.m-3.d-1 (Table 2c).

The TS removal also generally increased throughout the study with the

highest TS removal efficiency of 82%, at an OLR of 3.39 kg COD.m-3.d-1. The

highest VS removal efficiency (86%) was obtained at an OLR of 8.32 kg

COD.m-3.d-1. After the maximum removal of TS and VS had been reached,

further increasing of the OLR's resulted in decreasing TS and VS removals

(Table 2c).
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Figure 2. The COD removal rate (R-value) (. ; -----) and COD removal (. ;
....... ), as a function of OLR for digester AD-1. The solid lines
represent the actual data and the dotted and dashed lines
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The solid lines represent the actual data and the dotted and dashed
lines represent the regression calculations.
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The pH was not strongly influenced by the increase in OLR's (Fig. 4).

An average effluent pH of 7.3 (Table 2b) was obtained during the study. The

effluent alkalinity also showed a strong variation but a general increase was

found with increases in OLR (Fig. 5). The effluent alkalinity varied between

500 - 2 250 rnq.I". The effluent alkalinity decreased drastically at OLR's of>

6.25 kg COD.m-3.d-1 (Table 2b), indicating a depletion of the threshold

buffering capacity of the system. The VFA content of the effluent varied

between 128 and 1 716 mq.I" (Table 2b).

Digester efficiency (AD-2)

The composition of the substrate fed to digester AD-2 and effluent

composition, as well as the digester efficiency are summarised in Tables 3a,

band c. For this study all efficiency calculations were based on the values of

the effluent of digester AD-1, which was used as substrate for digester AD-2.

The data is arranged according to the numerical increases in OLR's. The

data in Fig. 6 again illustrates the large variations in OLR found during the 48

week study period. Digester AD-2 received a substrate with a lower average

OLR (1.42 kg COD.m-3.d-1) than digester AD-1 which received effluent with an

average OLR of 4.17 kg COD.m-3.d-1 (Fig. 1 and 6). The lower OLR could be

explained due to the fact that digester AD-1 already converted most of the

organic material into more readily compounds and methane. The highest

OLR was found during weeks 8 to 10 (OLR > 3.00 kg COD.m-3.d-1).

The highest COD removal (80%) achieved by digester AD-2 was found

at an OLR of 3.00 kg COD.m-3.d-1,whilst the best COD removal rate (R-value)

of 3.53 kg COD.m-3.d-1was found at an OLR of 5.53 kg COD.m-3.d-1. Both

the COD removal and R-values generally increased with increasing OLR (Fig.

7). Negative COD removal rates (Table 3c and Fig. 7) were experienced at

times, especially at the beginning just after digester inoculation. Problems

were also at times experienced with blockages in the multi-phase system,

which led to negative COD removals. This resulted the intake of oxygen

when cleaning the system, thus inhibiting the methanogenic performance

efficiency of the digester.
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function of OLR for digester AD-1 during multi-phase digestion. The
solid line represents the actual data and the dashed lines represent
the regression calculations.
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Table 3a. Composition of the substrate used for digester AD-2 during multi-phase operating conditions, as a function of organic
loading rate (OLR)*.

Digester Substrate
OLR coo TKN VFA SO ..2. pH TAlk (mg.r' Cl NH,-N TS vs TNVS PO.-P Tm_tals N. ca

(kg COO.m-l.d"1 (mg.r') (mg.r') (mg.rt) (mg.r') .. caco,) (mg.r') (mg.r') (mg.r') (mg.rt) (mg.r') (mg.r') (mg.r') (mg.r') (mg.r')
0.31 306 431 417 210 8.3 878 NIO NID 3800 400 3400 6.6 1.77 1091 NfO
0.31 309 142 128 110 7.3 324 483.9 120.0 1100 200 900 1.3 0.31 191 14
0.39 394 264 196 119 7.2 885 NIO NfO 2000 400 1600 7.9 0.87 530 56
0.45 451 189 579 70 7.4 645 NfO 184.6 3100 600 2500 6.1 0.89 851 143
0.46 455 157 323 110 7.6 491 882.2 80.3 1600 300 1300 0.8 0.49 399 44
0.46 459 123 128 160 7.5 525 517.5 64.2 1500 200 1300 3.0 0.33 440 53
0.52 523 131 162 88 6.6 286 NfO 87.5 1800 300 1500 2.1 0.24 467 15
0.54 538 167 162 90 7.4 203 NfO 106.0 1900 400 1500 1.7 0.85 643 22
0.58 582 176 179 110 7.3 545 NfO 138.0 1400 400 1000 4.2 0.36 277 57

,

0.61 609 321 1506 169 7.2 881 NIO NfO 3900 900 3000 4.0 2.09 1018 90
0.61 612 255 255 110 7.3 649 619.3 199.0 1500 500 1000 1.2 0.60 363 40
0.69 693 315 162 310 7.2 1020 978.1 207.0 1500 300 1200 0.9 0.31 358 33
0.75 746 345 204 210 7.3 1264 593.4 292.0 3000 1800 1400 1.2 0.33 412 36
0.76 764 303 196 190 7.1 736 1235.1 148.9 2300 500 1800 2.5 0.69 425 82
0.81 813 588 136 142 7.8 858 NfO 172.0 1800 300 1500 2.1 1.54 735 43
0.82 815 5633 1387 170 7.9 813 NfO NfO 3100 500 2600 5.5 1.05 94 36
0.82 816 426 230 110 7.7 888 NfO 247.0 2200 400 1800 0.5 0.75 647 17
0.85 850 304 196 23 7.5 871 NfO NfO 2900 600 2300 4.6 1.51 1012 108
0.87 871 100 432 158 7.5 776 NfO 52.0 1700 200 1500 4.5 1.46 595 111
0.92 918 618 672 60 7.3 1550 NfO 391.0 2000 800 1200 3.0 0.53 345 47
0.92 918 129 355 40 7.1 335 NfO 80.2 2900 500 2400 2.4 0.43 717 23
0.95 948 373 306 14 7.1 1047 NfO NfO 2500 700 1800 7.5 1.15 360 83
0.97 971 349 204 170 7.7 736 1831.3 165.0 3000 500 2500 2.2 1.14 788 71
0.98 964 142 281 240 7.1 405 622.7 61.2 1600 200 1400 2.4 0.74 149 33
1.02 1018 444 272 90 7.3 503 1415.9 250.0 1900 500 1400 0.3 0.95 404 15
1.06 1064 280 357 250 7.1 830 576.2 214.7 1800 500 1300 5.6 0.96 241 192
1.08 1080 656 1030 60 7.2 1572 NfO 332.0 1900 1200 700 2.5 0.67 353 32
1.38 1375 607 638 150 7.5 1218 NfO 194.0 2300 400 1900 3.3 1.60 602 57
1.38 1382 338 388 110 7.0 1214 NfO NfO 3400 700 2700 9.7 1.48 1609 156
1.48 1480 311 247 185 7.7 863 NfO NfO 2500 600 1900 5.8 1.25 706 64
1.48 1481 199 272 250 7.4 503 NfO 102.0 2800 300 2500 2.5 0.55 790 12
1.55 1554 502 357 90 6.9 1.147 NfO 324.0 2900 500 2400 4.2 0.78 407 63
1.64 1635 324 298 110 7.1 857 NfO 246.8 3400 900 2500 5.0 0.51 846 26
1.67 1670 469 400 90 7.3 1271 NID NIO 5200 800 4400 10.2 1.49 3242 288
1.88 1877 553 417 60 8.0 1494 NIO 760.0 1700 700 1000 0.9 0.82 367 64
1.91 1914 758 417 290 7.4 2027 NfO NfO 6000 1500 4500 7.0 1.01 1493 48
1.92 1920 624 1716 176 7.0 1512 NfO NfO 5400 1000 4400 8.4 2.69 115 80
1.98 1982 642 681 52 7.5 2060 NfO NfO 6100 900 5200 11.9 3.11 1660 NfO
2.12 2118 643 604 370 7.1 2246 NfO NfO 5400 1000 4400 8.4 2.20 866 164
2.14 2139 460 306 202 7.3 1277 NfO NfO 5300 1000 4300 8.6 2.42 1220 77
2.42 2415 238 196 190 6.9 709 NfO 179.6 3000 700 2300 7.5 0.52 716 46
2.50 2501 447 426 92 7.5 869 1461.0 244.3 2300 400 1900 0.5 0.86 738 29
2.96 2959 726 1260 260 7.1 1712 NIO NfO 11200 1500 9700 12.2 3.80 763 80
3.00 3000 303 536 120 7.7 738 NfO 164.0 1800 300 1500 3.6 0.43 458 35
3.03 3028 313 460 121 7.2 866 NIO 176.0 2000 400 1600 3.0 1.60 846 71
3.03 3034 569 374 220 73 1438 NfO NfO 5500 1100 4400 8.8 2.40 987 85
3.69 3693 788 970 90 7.3 1744 NfO NfO 7600 1800 5800 16.4 3.74 2000 99
5.53 5533 779 1336 110 7.0 1657 NfO NfO 7800 2100 5700 17.2 4.01 1231 118

Minimum I 0.31 306 100 128 14 6.6 203 483.9 52.0 1100 200 700 0.3 0.24 94 12
Maximum 5.53 5533 5633 1716 370 8.3 2246 1831.3 760.0 11200 2100 9700 17.2 4.01 3242 288
Average 1.42 1421 499 474 144 7.3 995 916.4 199.4 3194 677 2517 5.0 1.26 741 68

............
o

Above data have been arranged according to numen"csl increasBs in OLR, while the numerical structure of time have been disregarded for this study's purposes (Fig. 6).

N/O = Not Determined
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Table 3b. Composition of the digester AD-2 effluent during multi-phase operating conditions at variable organic loading
rates (OLR)*.

Digester Effluent
OLR COD TKN VFA sot pH TAlk Img.r' Cl NH,·N TS VS TNVS Po,·p Tmetals Na Ca I

(kg COD.m4.d·') (mg.r') (mg.r') (mg.r') (mg.r') os CoCO,} (mg.r') (mg.r') (mg.r') (mg.r') (mg.r') (mg.r') (mg.r') (mgI') (mg.r') I

0.31 254 342 306 196 8.3 1531 NID N/D 4600 300 4300 4.2 2.24 816 NID
0.31 205 143 119 110 7.7 520 472.0 141.0 1100 200 900 3.5 0.27 331 21
0.39 SOS 263 255 108 7.8 1155 N/D N/D 2100 300 1800 13.8 0.98 684 80
0.45 504 179 502 70 7.7 1064 NID 220.1 3200 SOO 2600 10.2 1.73 686 89
0.46 888 166 391 90 6.8 235 658.8 SO.6 1800 300 1500 3.3 0.49 382 43
0.46 343 123 136 1SO 7.9 551 502.0 65.8 1500 200 1300 3.6 0.77 527 55
0.52 344 130 128 44 7.3 383 NID 91.1 1900 300 1600 5.0 0.40 435 16
0.54 275 142 145 120 7.9 499 NID 131.0 1600 200 1400 4.2 0.79 581 22
0.58 235 171 170 70 7.7 708 NID 147.0 1400 200 1200 8.0 0.46 325 52
0.61 427 300 2945 123 7.7 880 NID NID 3400 600 2800 7.3 1.42 795 70
0.61 265 253 153 200 7.3 647 662.4 189.0 1500 400 1100 3.3 0.83 412 55
0.69 330 262 145 290 7.7 882 664.1 185.0 1300 200 1100 3.4 0.30 492 25
0.75 618 314 221 180 7.5 1154 714.2 264.0 1800 300 1500 3.1 0.41 467 35
0.76 559 351 162 190 7.8 866 1638.8 184.2 2500 400 2100 4.8 0.78 609 84
0.81 439 490 136 57 8.2 951 NID 155.0 1800 200 1600 5.3 1.38 661 70
0.82 387 4817 817 114 8.0 1192 NID N/D 3500 200 3300 10.4 0.83 89 20
0.82 2SO 376 187 70 8.0 1039 NID 234.0 2200 300 1900 5.6 0.78 732 20
0.85 408 296 238 54 7.7 1043 NID NID 2700 300 2400 7.6 1.27 914 96
0.87 827 170 162 204 7.3 343 NID 76.0 1900 200 1700 7.6 1.39 622 44
0.92 847 605 409 110 7.7 1S02 N/D 385.0 2300 900 1400 7.6 0.62 398 45
0.92 634 365 328 32 7.7 768 NID 162.8 2700 800 2100 6.3 0.53 904 32
0.95 565 420 323 17 7.8 1953 NID NID 2500 400 2100 13.9 0.90 575 85
0.97 762 436 187 90 7.7 1154 1990.7 224.0 3200 700 2500 6.1 1.26 384 84
0.98 528 180 179 340 7.7 534 552.0 91.5 1400 200 1200 3.4 O.SO 179 75
1.02 341 469 187 45 7.6 857 1502.4 266.5 2200 400 1800 5.1 1.00 464 25
1.06 575 340 187 39 7.8 909 664.1 217.1 1800 400 1400 4.8 0.79 202 103
1.08 641 830 562 70 7.7 1812 NID 316.0 1900 700 1200 6.4 0.77 356 29
1.38 827 S02 502 90 7.8 1523 N/D 284.0 1400 500 900 6.1 1.41 483 52
1.38 1072 374 298 70 7.6 1554 NID NID 4200 400 3800 14.1 1.85 2579 218
1.48 660 259 170 102 7.7 871 NID NID 1900 300 1600 11.5 1.00 537 48
1.48 670 184 238 145 7.6 703 NID 106.0 2500 100 2400 5.7 0.54 770 15
1.55 843 403 213 60 7.2 1187 NID 362.0 2700 600 2100 7.3 0.83 231 81
1.64 851 304 204 150 7.9 865 NID 243.2 3200 500 2700 8.4 0.62 960 40
1.67 1560 471 289 80 7.7 1471 NID N/D 5400 600 4800 14.2 1.32 2808 327
1.88 1549 493 340 60 7.9 1513 NID 569.0 2200 600 1800 7.9 1.07 495 86
1.91 1051 708 289 130 7.8 2518 NID NID 5500 1100 4400 10.3 1.11 1538 19
1.92 1960 572 140 180 7.7 1716 NID NID 5700 500 5200 12.5 2.02 113 78
1.98 1116 694 400 44 8.1 2081 NID NID 5400 500 4900 3.0 2.37 1060 NID
2.12 1240 601 230 160 7.9 2520 N/D N/D 5000 700 4300 11.0 1.54 847 140
2.14 847 375 340 107 8.3 1361 NID N/D 4700 700 4000 13.4 1.61 1195 73
2.42 523 228 145 90 7.6 1243 NID 270.0 3500 1000 2500 9.8 0.89 749 63
2.50 1082 444 315 90 8.1 1151 1393.7 261.5 2400 400 2000 4.0 0.98 795 28
2.96 1306 657 1915 310 7.8 2126 NID NID 7500 700 6800 13.4 2.86 695 70
3.00 600 296 477 110 8.0 1168 N/D 179.0 2600 300 2300 6.7 0.63 731 44 II

3.03 622 286 409 53 7.8 1233 N/D 185.0 2300 300 2000 6.3 1.35 3462 296
3.03 2046 515 494 210 7.6 1691 NID NID 5300 800 4500 12.1 1.87 985 66
3.69 2598 819 349 90 7.9 2171 NID NID 7700 1600 6100 17.3 3.88 2857 99
5.53 2001 671 545 60 7.7 1684 NID NID 6600 1600 5000 12.9 2.40 1138 136 I

Minimum 1 0.31 205 123 119 17 6.8 235 472.0 65.8 1100 100 900 3.0 0.27 89 15
Maximum 5.53 2598 4817 2945 340 8.3 2520 1990.7 569.0 7700 1600 6800 17.3 3.88 3462 327
Averaae 1.42 794 473 375 116 7.7 1200 951.2 210.2 3073 496 2577 7.8 1.16 814 73

..................

• Above data have been arranged according to numerical increases in OLR, while the numerical structure of time have been disregarded for this study's purposes (Fig. 61·
NID = Not Determined
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Table 3c. The influence of variable organic loading rates (OLR) on digester AD-2 digester performance during multi-phase digestion.

Di~ester Efficiency
OLR COD COD sot Biogas Biogas CH. CH. yield CH. yield VFA Cl NH.·N TS VS TNVS TKN PO••P Tmelal Na Ca

(kg COD.m4.cr', removal removal rale remova production yield contem (m'.kg COD ..... d·' (m'.kg COD""",.d·' removal removal remeva removal remova remova remeva remova remova remeva removal
f%1 kg COD.m-l.d·1 f%1 Vd m~.m-3 f%1 f%1 f%1 %J L% % LIII t% %1 (%1 % %

0.31 17.0 0.05 6.7 0.62 0.12 NID NID NID 26.5 NID NID 0.0 25.0 0.0 20.8 36.7 0.0 25.2 NID
0.31 33.7 0.10 0.0 0.06 0.01 NID NID NID 6.7 2.5 0.0 0.0 0.0 0.0 0.0 0.0 12.9 0.0 0.0
0.39 0.0 -0.21 9.2 0.37 0.07 NID NID NID 0.0 NID NID 0.0 25.0 0.0 0.2 0.0 0.0 0.0 0.0
0.45 0.0 -0.05 0.0 0.57 0.11 NfO NID NID 13.2 NfO 0.0 0.0 0.0 0.0 5.3 0.0 0.0 0.0 37.7
0.46 0.0 -0.43 18.2 NID NID NID NID NID 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2 2.3
0.46 25.3 0.12 0.0 NID NID NID NID NID 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.52 34.2 0.18 48.8 NID NID NID NID NID 21.1 NID 0.0 0.0 0.0 0.0 0.9 0.0 0.0 6.9 0.0
0.54 48.9 0.26 0.0 NID NID NID NID NID 10.5 NID 0.0 15.8 SO.O 6.7 14.8 0.0 7.1 9.6 0.0
0.56 59.6 0.35 36.4 0.25 0.05 NID NID NID 4.8 NID 0.0 0.0 SO.O 0.0 2.9 0.0 0.0 0.0 8.9
0.61 29.9 0.18 27.2 0.06 0.01 NID NfO NID 0.0 NID NID 12.8 33.3 6.7 6.6 0.0 32.1 21.9 22.8
0.61 56.7 0.35 0.0 0.46 0.09 NID NfO NID 40.0 0.0 5.0 0.0 20.0 0.0 0.7 0.0 0.0 0.0 0.0
0.69 52.4 0.36 6.5 NID NID NID NID NfO 10.5 32.1 10.6 13.3 33.3 8.3 16.9 0.0 3.2 0.0 26.5
0.75 17.2 0.13 14.3 NID NID NID NID NID 0.0 0.0 2.7 40.0 81.3 0.0 9.1 0.0 0.0 0.0 2.6
0.76 26.8 0.21 0.0 NID NID NID NID NID 17.4 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0
0.81 46.0 0.37 59.9 0.29 0.06 NID NID NID 0.0 NID 9.9 0.0 33.3 0.0 13.4 0.0 10.4 10.0 0.0
0.82 52.5 0.43 32.9 0.06 0.01 NID NID NID 41.1 NID NID 0.0 60.0 0.0 14.5 0.0 21.0 6.1 45.4
0.82 68.1 0.56 36.4 NID NID NID NID NID 18.5 NID 5.3 0.0 25.0 0.0 11.7 0.0 0.0 0.0 0.0
0.85 52.0 0.44 0.0 0.16 0.03 NID NID NID 0.0 NID NID 6.9 so.o 0.0 2.6 0.0 15.9 9.6 10.6
0.87 5.1 0.04 0.0 0.06 0.01 NID NID NID 62.5 NID 0.0 0.0 0.0 0.0 0.0 0.0 4.8 0.0 60.0
0.92 7.7 0.07 0.0 1.14 0.23 NID NID NID 39.2 NID 1.5 0.0 0.0 0.0 2.2 0.0 0.0 0.0 4.4
0.92 30.9 0.28 20.0 0.59 0.12 NID NID NID 7.7 NID 0.0 6.9 0.0 12.5 0.0 0.0 0.0 0.0 0.0
0.95 40.4 0.38 0.0 0.97 0.19 NID NID NfO 0.0 NID NID 0.0 42.9 0.0 0.0 0.0 21.7 0.0 0.0
0.97 21.5 0.21 47.1 0.58 0.12 75.0 2.08 0.45 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.3 0.0
0.98 46.3 0.46 0.0 NID NfO NID NfO NfO 36.4 11.4 0.0 12.5 0.0 14.3 0.0 0.0 18.9 0.0 0.0
1.02 66.5 0.68 SO.O NfO NID NfO NfO NfO 31.2 0.0 0.0 0.0 20.0 0.0 0.0 0.0 0.0 0.0 0.0
1.06 46.0 0.49 84.4 NfO NfO NfO NfO NfO 47.6 0.0 0.0 0.0 20.0 0.0 0.0 13.8 17.7 16.1 46.4
1.08 40.6 0.44 0.0 1.69 0.34 NID NID NID 45.5 NID 4.8 0.0 41.7 0.0 3.9 0.0 0.0 0.0 8.6
1.38 39.9 0.55 40.0 0.34 0.07 NID NID NID 21.3 NID 0.0 39.1 0.0 52.6 0.8 0.0 11.9 19.7 8.0
1.38 22.4 0.31 36.4 0.85 0.17 68.5 2.43 0.54 18.6 NID NID 0.0 42.9 0.0 0.0 0.0 0.0 0.0 0.0
1.48 55.4 0.82 44.9 0.81 0.16 94.2 0.93 0.52 31.0 NID NID 24.0 SO.O 15.8 16.7 0.0 20.0 23.9 24.2
1.48 54.8 0.81 42.0 NID NID NID NID NID 12.5 NfO 0.0 10.7 66.7 4.0 7.6 0.0 1.8 2.5 0.0
1.55 45.8 0.71 33.3 1.51 0.30 NID NfO NID 40.5 NfO 0.0 6.9 0.0 12.5 19.8 0.0 0.0 43.2 0.0
1.64 48.0 0.78 0.0 1.16 0.23 76.5 1.13 0.54 31.4 NID 1.5 5.9 44.4 0.0 6.2 0.0 0.0 0.0 0.0
1.67 6.6 0.11 11.1 1.46 0.29 84.1 11.16 0.74 27.7 NID NfO 0.0 25.0 0.0 0.0 0.0 11.4 13.4 0.0
1.68 17.5 0.33 0.0 0.66 0.13 NID NfO NfO 18.4 NID 25.1 0.0 14.3 0.0 10.7 0.0 0.0 0.0 0.0
1.91 45.1 0.86 55.2 1.46 0.29 NID NID NfO 30.6 NID NfO 8.3 26.7 2.2 6.6 0.0 0.0 0.0 60.0
1.92 0.0 -0.04 0.0 1.80 0.36 NfO NID NID 91.9 NID NID 0.0 50.0 0.0 8.3 0.0 24.9 1.9 0.0
1.98 43.7 0.87 15.4 1.77 0.35 NID NID NID 41.2 NID NID 11.5 44.4 5.8 0.0 74.5 23.8 36.1 NID
2.12 41.5 0.88 56.8 1.28 0.26 39.1 0.57 0.24 62.0 NID NID 7.4 30.0 2.3 6.4 0.0 30.0 2.1 14.6
2.14 60.4 1.27 47.0 1.31 0.26 90.9 0.94 0.56 0.0 NfO NID 11.3 30.0 7.0 18.5 0.0 33.5 2.0 4.9
2.42 78.3 1.89 52.6 0.48 0.10 NfO NID NfO 26.1 NfO 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0
2.50 56.7 1.42 2.2 NID NID NID NID NID 26.0 4.6 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 3.1
2.96 55.9 1.65 0.0 2.05 0.41 NID NID NID 0.0 NfO NID 33.0 53.3 29.9 9.4 0.0 24.7 8.9 12.6
3.00 80.0 2.40 8.3 0.12 0.02 NID NID NID 11.1 NID 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0
3.03 79.5 2.41 56.2 0.74 0.15 NID NID NID 11.1 NID 0.0 0.0 25.0 0.0 8.8 0.0 15.6 0.0 0.0
3.03 32.6 0.99 4.5 1.66 0.33 95.2 1.60 0.52 0.0 NID NID 3.6 27.3 0.0 9.4 0.0 22.1 0.2 23.0
3.69 29.7 1.10 0.0 2.85 0.57 90.5 2.36 0.70 64.0 NID NID 0.0 11.1 0.0 0.0 0.0 0.0 0.0 0.0
5.53 63.8 3.53 45.5 2.44 0.49 80.9 0.56 0.36 59.2 NID NfO 15.4 23.8 12.3 13.9 25.1 40.1 7.6 0.0

Mlnlmum'l 0.31 0.0 -0.43 0.0 0.06 0.01 39.1 0.56 0.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum 5.53 80.0 3.53 84.4 2.85 0.57 95.2 11.16 0.74 91.9 32.1 25.1 40.0 81.3 52.6 20.8 74.5 40.1 51.3 60.0
Average 1.42 39.2 0.63 21.9 0.93 0.19 81.5 2.38 0.52 23.2 4.5 2.2 5.9 24.9 4.0 5.8 3.1 8.9 6.7 9.3
NID = Not Detennined

............
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Figure 6. The variation in substrate OLR during the study on digester AD-2
over the 48 week period. The dotted line indicates the average OLR.
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Figure 7. The COD removal rate (R-value) (. ; -----) and COD removal (. ;
....... ), as a function of OLR for digester AD-2. The solid lines
represent the actual data and the dotted and dashed lines represent
the regression calculations.
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The best biogas yields (0.57 m3.m-3 reactor) were found at an OLR of

3.69 kg COD.m-3.d-1 (Table 3c). The average biogas yield data of digester

AD-2 (0.19 m3.m-3) was also much lower than the biogas yield recorded for

digester AD-1 (1.03 m3.m-3 reactor). This suggests that the first digester (AD-

1) possibly utilised most of the easily degradable compounds and probably

depleted other nutrients before its effluent was fed as substrate to digester

AD-2. The biogas yield increased as the OLR increased while the methane

yield per COD removed decreased with increasing OLR (Fig. 8). Both the

methane yield per COD removed and per COD loaded were the highest

(11.16 and 0.74 m3.kg COD.d-1; respectively) at an OLR of 1.67 kg COD.m-

3.d-1. The methane yield per COD loaded was found to be fairly stable

throughout the study, indicating the selective but consistent use and

conversion of acetate to CH4. This was supported by the low VFA

concentration present in the final effluent. The average methane content of

digester AD-2 was 95% (Table 3c), suggesting that an active and

acclimatised methanogenic population was present in this eco-system.

A S04 removal efficiency of 84% was found at an OLR of 1.06 kg

COD.m-3.d-1 (Table 3c), indicating the presence of an active sulphate reducing

bacterial population. The highest TS and VS removal (40 and 81%,

respectively) were found at an OLR of 0.75 kg COD.m-3.d-1. The effluent pH

and VFA profiles as a function of the OLR, are illustrated in Fig. 9. The

effluent pH (average pH of 7.7) generally remained fairly constant with

increasing OLR. The effluent alkalinity was found to increase significantly

with increased OLR (Table 3b) and ranged between 600 - 2 500 mq.l",

indicating a fairly good buffering capacity (Fig. 10) (Hawkes et al., 1992).

These results suggest that the AD-2 system functioned fairly well under

continuously changing conditions and several extreme organic shock loads.

Total digester efficiency (AD-1 + AD-2)

The total digester performance (Table 4b) was calculated using the

substrate values of digester AD-1 (Table 2a) and the effluent values of

digester AD-2 (Table 4a). This data represent the total treatment efficiency of

the two digesters (AD-1 + AD-2) applied in series. When the data for the total
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Figure 8. The influence of varying OLR's on biogas yield (. ; -----),
methane yield per CODremoved(. ; _ .._ .._) and methane yield per
CODloaded(0 ; ) for digester AD-2. The solid lines represent
the actual data and the dotted and dashed lines represent the
regression calculations.
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Figure 9. The variation of pH (. ; -----) and VFA content (. ; ) in the effluent,
as a function of OLR for digester AD-2. The solid lines represent the
actual data and the dotted and dashed lines represent the regression
calculations.
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Figure 10. The variation of the total alkalinity (. ; -----) of the effluent, as a
function of OLR for digester AD-2. The solid line represents the
actual data and the dashed line represents the regression
calculations.
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Table 4a. Composition of the AD-2 effluent based on the total multi-phase operating conditions using the raw gelatin-
manufacturing effluent (AD-1) as basis for the efficiency calculations*.

Diaester Effluent
OLR COD TKN VFA SO." pH TAlk IRIg.r' Cl NH,·N TS VS TNVS PO.OP Tmetals Na Ca

(kg coo.m4
..r'l (RIg.r', (RIg.r', (RIgI', (RIg.r', .. coco,) (RIg.r', (RIg.r', (RIgI', (RIg.r', (RIg.r', (RIgI', (RIgI', (RIg.r', (RIg.r',

0.78 504 179 502 70 7.7 1064 NID 220.1 3200 600 2600 10.2 1.73 886 89
1.81 205 143 119 110 7.7 520 472.0 141.0 1100 200 900 3.5 0.27 331 21
1.92 888 188 391 90 6.8 235 658.8 80.6 1800 300 1500 3.3 0.49 382 43
2.03 575 340 187 39 7.8 909 664.1 217.1 1800 400 1400 4.8 0.79 202 103
2.03 827 170 162 204 7.3 343 NID 76.0 1900 200 1700 7.6 1.39 622 44
2.07 634 365 328 32 7.7 788 NID 162.8 2700 600 2100 6.3 0.53 904 32
2.07 343 123 136 160 7.9 551 502.0 65.8 1500 200 1300 3.6 0.77 527 55
2.16 528 160 179 340 7.7 534 552.0 91.5 1400 200 1200 3.4 0.60 179 75
2.38 344 130 128 44 7.3 383 NID 91.1 1900 300 1600 5.0 0.40 435 16
2.52 265 253 153 200 7.3 647 662.4 189.0 1500 400 1100 3.3 0.63 412 55
2.55 762 436 187 90 7.7 1154 1990.7 224.0 3200 700 2500 6.1 1.26 384 84
2.63 341 469 187 45 7.6 857 1502.4 266.5 2200 400 1800 5.1 1.00 484 25
2.66 605 263 255 108 7.8 1155 NID NID 2100 300 1800 13.8 0.98 684 60
2.73 670 184 238 145 7.6 703 NID 106.0 2500 100 2400 5.7 0.54 770 15
2.76 408 296 238 54 7.7 1043 N/D NID 2700 300 2400 7.6 1.27 914 96
2.80 387 4817 817 114 8.0 1192 N/D NID 3500 200 3300 10.4 0.83 89 20
2.89 1072 374 298 70 7.6 1554 NID NID 4200 400 3800 14.1 1.65 2579 218
2.90 565 420 323 17 7.8 1953 NID NID 2500 400 2100 13.9 0.90 575 85
3.00 618 314 221 180 7.5 1154 714.2 284.0 1800 300 1500 3.1 0.41 467 35
3.05 254 342 306 196 8.3 1531 NID N/D 4600 300 4300 4.2 2.24 816 NID
3.17 330 262 145 290 7.7 882 664.1 185.0 1300 200 1100 3.4 0.30 492 25
3.29 559 351 162 190 7.8 866 1638.8 184.2 2500 400 2100 4.8 0.78 609 84
3.39 439 490 136 57 8.2 951 NID 155.0 1800 200 1600 5.3 1.38 661 70
3.42 851 304 204 150 7.9 665 NID 243.2 3200 500 2700 8.4 0.62 960 40
3.42 827 602 502 90 7.8 1523 NID 284.0 1400 500 900 6.1 1.41 483 52
3.51 275 142 145 120 7.9 499 N/D 131.0 1600 200 1400 4.2 0.79 581 22
3.54 622 286 409 53 7.8 1233 N/D 185.0 2300 300 2000 6.3 1.35 3462 296
3.60 600 296 477 110 8.0 1168 N/D 179.0 2600 300 2300 6.7 0.63 731 44
3.67 523 228 145 90 7.6 1243 NID 270.0 3500 1000 2500 9.8 0.89 749 63
3.87 843 403 213 60 7.2 1187 NID 362.0 2700 600 2100 7.3 0.83 231 81
3.90 1082 444 315 90 8.1 1151 1393.7 261.5 2400 400 2000 4.0 0.98 795 28
4.15 260 376 187 70 8.0 1039 NID 234.0 2200 300 1900 5.6 0.78 732 20
4.33 1116 694 400 44 8.1 2081 NID NID 5400 500 4900 3.0 2.37 1060 NID
4.46 641 630 562 70 7.7 1812 NID 316.0 1900 700 1200 6.4 077 356 29
5.26 1051 708 289 130 7.8 2518 NID NID 5500 1100 4400 10.3 1.11 1538 19
5.34 1306 657 1915 310 7.8 2126 NID NID 7500 700 6600 13.4 2.66 695 70
5.90 847 605 409 110 7.7 1602 NID 385.0 2300 900 1400 7.6 0.62 398 45
6.25 1240 601 230 160 7.9 2520 NID NID 5000 700 4300 11.0 1.54 847 140
6.33 1960 572 140 180 7.7 1716 N/D NfD 5700 500 5200 12.5 2.02 113 78
6.74 1560 471 289 80 7.7 1471 NID NID 5400 600 4800 14.2 1.32 2808 327
6.81 660 259 170 102 7.7 871 N/D NID 1900 300 1600 11.5 1.00 537 48
7.08 2046 515 494 210 7.6 1691 N/D NID 5300 800 4500 12.1 1.87 985 66
7.53 1549 493 340 60 7.9 1513 N/D 569.0 2200 600 1600 7.9 1.07 495 86
7.56 847 375 340 107 8.3 1361 N/D N/D 4700 700 4000 13.4 1.61 1195 73
8.32 235 171 170 70 7.7 708 NID 147.0 1400 200 1200 8.0 0.46 325 52
8.56 427 300 2945 123 7.7 880 NID NID 3400 600 2800 7.3 1.42 795 70
9.26 2598 819 349 90 7.9 2171 NID NID 7700 1600 6100 17.3 3.88 2657 99
9.87 2001 671 545 60 7.7 1684 NID NID 6600 1600 5000 12.9 2.40 1138 136

MInImum 1 0.78 205 123 119 17 6.8 235 472.0 65.8 1100 100 900 3.0 0.27 89 15
Maximum 9.87 2598 4817 2945 340 8.3 2520 1990.7 569.0 7700 1600 6800 17.3 3.88 3462 327
Averaae 4.17 794 473 375 116 7.7 1200 951.2 210.2 3073 496 2577 7.8 1.16 814 73

~~
-...J

Above dala have been arranged according lo numericalincrease in OLR, while Ihe numerical slructure of time have been disregarded for Ihis study's purposes (Fig. I).
N/D = Not Determined
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Table 4b. The influence of variable organic loading rates (OLR) on the total digestion performance (AD-1 + AD-2) during multi-phase
digestion.

Total Digester Efficiency
OLR COD COD SO.'· Bloga. Bloga. CH. CH. yield CH. yield VFA Cl NH •.N TS VS TNVS TKN PO.·p Tmetll NI C.

(kgCOD.m4.cr') removal remoyal rate removI productlo. yield content (ma.kg coo_crt) (m'.kg coa_.cr') remeva remova remova removi remov. remeva removal removal remova removal removal
% ka COO.m4.dot % Ud ma.n"~ %1 % (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.78 35.5 0.28 63.2 2.96 0.59 NID NID NID 59.0 NID 0.0 0.0 SO.O 0.0 8.8 0.0 0.0 0.0 0.0
1.81 88.7 1.61 71.1 2.51 O.SO NID NID NID 53.3 0.0 0.0 47.6 81.8 10.0 0.0 0.0 38.6 7.1 28.6
1.92 89.3 1.03 85.8 NID NID NID NID NID 82.9 0.0 0.0 52.2 90.9 0.0 0.0 0.0 48.1 0.0 0.0
2.03 71.6 1.45 53.6 NID NID NID NID NID 0.0 0.0 0.0 35.7 73.3 0.0 0.0 0.0 61.3 0.0 23.1
2.03 59.3 1.20 67.6 0.52 0.10 NID NID NID 79.3 NID 0.0 0.0 71.4 0.0 0.0 0.0 0.0 18.6 61.9
2.07 69.4 1.44 73.3 3.19 0.84 NID NID NID 0.0 NID 0.0 10.0 45.5 0.0 0.0 0.0 0.0 0.0 0.0
2.07 83.4 1.73 0.0 NID NID NID NID NfO 23.8 3.6 0.0 42.3 83.3 7.1 37.9 0.0 0.0 5.6 5.2
2.16 75.5 1.63 2.9 NfO NID NID NID NID 16.0 0.0 0.0 17.6 60.0 0.0 0.0 0.0 25.9 23.6 0.0
2.38 85.5 2.03 92.5 NID NID NID NID NID 62.5 NID 0.0 SO.O 76.9 36.0 21.6 0.0 14.9 45.2 0.0
2.52 89.5 2.26 41.2 3.62 0.72 NID NID NID 68.4 0.0 0.0 25.0 63.6 0.0 9.1 0.0 12.5 0.0 0.0
2.55 70.1 1.79 80.9 6.06 121 77.9 4.89 2.19 40.5 0.0 0.0 5.9 SO.O 0.0 0.0 0.0 3.1 44.3 0.0
2.63 87.0 2.29 70.0 NID NID NID NID NID 55.1 0.0 0.0 15.4 75.0 0.0 0.0 0.0 8.3 0.0 0.0
2.66 77.2 2.05 28.5 3.90 0.78 NID NID NID 62.0 NID NID 0.0 66.7 0.0 0.0 0.0 11.7 0.0 0.0
2.73 75.5 2.06 61.8 NID NfO NID NID NID 15.2 NfO 0.0 34.2 93.3 0.0 45.9 0.0 26.0 26.2 34.8
2.76 85.2 2.35 92.1 5.41 1.08 NID NID NID 70.5 NID NID 10.0 SO.O 0.0 2.6 0.0 37.1 4.0 19.8
2.80 66.2 2.42 79.3 3.43 0.69 NID NID NID 65.5 NID NID 5.4 84.6 0.0 0.0 0.0 SO.3 9.4 37.9
2.89 62.9 1.81 75.9 7.38 1.48 86.2 5.85 2.44 57.8 NID NID 0.0 63.6 0.0 0.0 0.0 4.1 0.0 0.0
2.90 80.5 2.34 93.7 4.07 0.81 NID NID NID 5.0 NID NID 32.4 73.3 4.5 0.0 0.0 71.7 0.0 34.7
3.00 79.4 2.38 84.7 NID NID NID NID NID 0.0 0.0 0.0 41.9 85.0 0.0 5.1 0.0 10.9 0.0 7.5
3.05 91.7 2.80 42.4 3.95 0.79 NID NID NID 85.6 NID NIO 0.0 75.0 0.0 0.0 0.0 0.0 0.0 NID
3.17 89.6 2.84 39.6 NID NID NID NID NID 37.0 0.0 0.0 59.4 88.2 26.7 24.1 0.0 38.8 0.0 41.9
3.29 83.0 2.74 75.9 NID NID NID NID NfO SO.O 0.0 0.0 32.4 81.0 0.0 0.0 2.4 65.0 0.0 84.4
3.39 87.0 2.95 92.3 1.73 0.35 NID NID NID 38.5 NID 0.0 82.0 89.5 80.2 21.6 0.0 13.8 16.7 0.0
3.42 75.1 2.57 SO.O 5.84 1.13 78.2 3.14 1.59 77.1 NID 1.1 25.6 70.6 0.0 30.7 0.0 13.9 6.2 0.0
3.42 75.8 2.59 87.1 4.02 0.80 NID NfO NfO 58.5 NID 0.0 41.7 50.0 35.7 2.7 0.0 46.4 17.0 4.9
3.51 92.2 3.24 25.0 NID NID NID NfO NfO 48.5 NID 0.0 51.5 90.0 0.0 37.5 0.0 61.3 1.8 0.0
3.54 82.4 2.92 91.3 3.53 0.71 NID NID NfO 17.2 NID 0.0 43.9 87.0 0.0 11.8 0.0 27.4 0.0 0.0
3.60 83.3 3.00 81.4 2.05 0.41 NID NID NID 65.2 NID 0.0 0.0 40.0 0.0 4.0 0.0 0.0 0.0 0.0
3.67 85.7 3.15 75.0 4.18 0.84 NID NID NID 61.4 NID 0.0 20.5 SO.O 0.0 8.1 0.0 48.6 0.0 0.0
3.87 78.2 3.02 89.8 4.83 0.97 NID NID NID 76.0 NID 0.0 10.0 45.5 0.0 30.9 0.0 0.0 18.0 0.0
3.90 72.2 2.82 57.1 NID NID NID NID NID 30.2 0.0 0.0 25.0 76.5 0.0 3.1 0.0 63.4 0.0 0.0
4.15 93.7 3.89 46.2 NID NID NID NID NID 51.4 NID 0.0 43.6 87.5 0.0 9.8 0.0 35.5 0.0 0.0
4.33 74.2 3.22 95.6 9.84 1.97 NID NID NID 0.0 NID NID 0.0 73.7 0.0 0.0 78.7 18.6 0.0 NID
4.46 85.6 3.82 86.5 6.98 1.40 NID NID NID 76.5 NID 0.0 26.9 30.0 25.0 5.2 0.0 40.3 0.0 5.9
5.26 80.0 4.21 85.6 11.27 2.25 NID NID NID 87.6 NID NID 14.1 42.1 2.2 14.7 0.0 28.4 0.0 90.9
5.34 75.5 4.03 83.3 11.61 2.32 NID NID NID 0.0 NID NID 3.8 72.0 0.0 0.0 0.0 37.7 0.0 0.0
5.90 85.6 5.05 73.2 8.69 1.74 NID NID NID 84.2 NID 0.0 32.4 62.5 0.0 7.5 0.0 1.6 0.0 23.2
6.25 80.1 5.01 89.9 8.34 1.67 54.9 1.78 1.04 84.6 NID NID 27.5 69.6 6.5 15.0 0.0 46.7 3.0 36.4
6.33 69.0 4.37 90.6 6.07 1.21 NID NID NID 91.8 NID NID 32.9 81.5 10.3 30.1 0.0 58.7 5.3 0.0
6.74 76.9 5.18 70.4 11.17 2.23 82.4 12.71 1.90 84.0 NID NID 1.8 88.4 0.0 0.0 0.0 23.3 0.0 5.6
6.81 90.3 6.15 SO.7 11.01 2.20 86.4 2.43 170 65.5 NID NID 76.3 92.1 61.9 49.3 0.0 51.9 35.9 73.7
7.08 71.1 5.03 87.0 14.47 2.89 88.5 4.19 2.00 37.0 NID NID 32.1 73.3 6.3 19.2 0.0 35.7 35.3 73.2
7.53 79.4 5.98 81.3 3.54 0.71 NfO NfO NfO 0.0 NID 0.0 56.9 84.6 0.0 18.6 0.0 0.0 0.0 0.0
7.56 88.8 6.69 23.6 8.44 1.69 82.0 1.88 1.25 63.6 NID NID 30.9 75.0 0.0 28.4 0.0 30.9 0.0 10.5
8.32 97.2 8.09 82.1 2.92 0.58 NfO NfO NID 16.7 NID 0.0 63.2 92.9 0.0 69.9 0.0 29.2 15.6 31.1
8.56 95.0 8.13 94.7 2.65 0.53 NID NfO NID 0.0 NID NfO 70.9 86.0 62.2 57.1 0.0 58.5 0.0 0.0
9.26 71.9 7.26 60.9 12.87 2.57 80.7 3.63 1.47 58.2 NID NID 13.5 61.0 0.0 0.0 0.0 0.0 0.0 10.0
9.87 79.7 7.27 94.0 10.71 2.14 75.4 1.89 0.95 78.5 NfO NID 48.4 75.4 20.6 20.7 0.0 40.2 7.4 0.8

Minimum I 0.78 35.5 0.28 0.0 0.52 0.10 54.9 1.78 0.95 0.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum 9.87 97.2 8.13 95.6 14.47 2.89 88.5 12.71 2.44 91.8 3.6 1.1 82.0 93.3 80.2 69.9 78.7 71.7 45.2 90.9
Average 4.17 80.1 3.38 88.8 6.10 1.22 79.3 4.24 1.65 48.4 0.3 0.0 29.0 71.0 8.2 13.6 1.7 27.9 7.2 15.8

_.._..
CX)

NfO = Not Oetennined
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system is taken into consideration, it was found that the COD removals, R-

values, S04 removals, TS removals, biogas yields, effluent alkalinity's and

effluent VFA removals generally increased with increasing OLR. The muIti-

phase digestion showed optimal removal efficiencies at OLR > 4.00 kg

COD.m-3.d-1(Table 4b). In this study no NH3-N removal was found (Table 4b)

which could possible be ascribed to the breakdown of proteins in the

digestion process present in the gelatin-manufacturing effluent. This aspect

of increased NH3-N (rnq.I") concentrations must be taken into consideration

in any scale-up possibilities and disposal strategies of the final effluent.

Another factor to consider with multi-phase digestion is the fact that the

ammonia released from the degradation of proteins leads to the selection of

the growth of acidifying consortiums in the first phase, which has a significant

influence on the down stream process (Tommaso et aI., 1999).

A total COD removal efficiency of 97% was found at an OLR of 8.32 kg

COD.m-3.d-1(Fig. 11) and S04 removal of 96% at 4.33 kg COD.m-3.d-1(Fig.

13). The methane content varied between 55% and 89% (Table 4b). The

highest methane yields (12.71 m3.kg CODremoved.d-1and 2.44 m3.kg

CODloaded.d-1were observed at OLR's of 6.74 and 2.89 kg COD.m-3.d-1,

respectively (Fig. 12). A VFA removal of up to 92% was observed throughout

the study. No VFA accumulation was observed (Table 4b). The effluent pH

(Fig. 14) and the total alkalinity (Fig. 15) increased throughout the digestion

process as a function of OLR, and an average pH of 7.7 and average total

alkalinity of 1 200 rnq.l" was recorded.

Conclusions

The use of multi-phase anaerobic systems represents an innovative process

in which each digestion stage harbours more or less the separate metabolic

groups of the fermentative and methanogenic bacteria (Ramjeawon et aI.,

1997) and is considered beneficial for the treatment of high-strength

wastewater.
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Figure 11. The total digester performance (AD-1 +AD-2) of the COD removal
rate (R-value) (. ; -----) and COD removal (. ; ....... ) as a function
of OLR. The solid lines represent the actual data and the dotted
and dashed lines represent the regression calculations.
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Figure 12. The influence of varying OLR's on biogas yield (. ; -----), methane
yield per CODremoved(. ; _"_"_) and methane yield per CODloaded
(0 ; ....... ) for the total digester performance. The solid lines
represent the actual data and the dotted and dashed lines
represent the regression calculations.
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lines represent the actual data and the dotted and dashed lines
represent the reeression calculations.
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In this study, large variations were found in most of the operational

performance parameters, which in turn were indicative of the variation in

substrate and the organic load applied to the digesters. For both digesters

(AD-1 and AD-2) therefore, significant and inconsistent variations occurred in

the COD removal efficiencies and other parameters, although an overall

increase in biogas yield, alkalinity, TS, VS, as well as S04 removal, occurred.

This could also be an indication of the natural process selection of a specific

microbial community as part of the stabilisation in the digester.

From the results obtained in this study and data from Chapter 3, the

options and performances of single vs multi-phase anaerobic digestion of

gelatin-manufacturing effluent can be compared (Table 5). Digester AD-1

and digester AD-2 of the single-phase digestion and the total multi-phase

digesters (AD-1 + AD-2) operated at OLR's as high as 9.56, 9.30 and 9.87 kg

COD.m-3.d-1, respectively. Although very good results were obtained with

single-phase digestion, the best digester performance efficiencies were found

during the multi-phase treatment of the gelatin-manufacturing effluent: COD

(97%); biogas production (14.47 I.d-\ biogas yield (2.89 m3.m-3); methane

yield per COD removed (12.71 m3.kg COD.d-\ VFA (92%); TS (82%); VS

(93%) and TNVS (80%). From the data it is clear that the multi-phase system

can be successfully incorporated when a need arises to optimise the

fermentation steps, by separating certain stages in separate digesters.

Hence, the results of the overall process efficiency are better than those of

conventional single-phase processes (Ghosh et al., 2000).

One disadvantage of the use of this technology is, however, the high

capital costs required to implement this type of treatment on commercial

basis. The high capital costs involved in upscaling of a multi-phase reactor

system must be seriously considered especially when comparing and

evaluating the option of achieving good final effluent qualities with a lower

cost single-phase digester with satisfactory final effluent qualities. Although

these bench-scale studies clearly indicated the greater advantage of phase

separation, pilot and full-scale studies will have to be done to address the

economic viability of such treatment systems.
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Table 5. Comparison of the maximum operational efficiency between the
single- and multi-phase anaerobic digestion systems.

Parameters Single phase Multi phase
AD-1 AD-2 Total (AD-1 + AD-2)

Organic Loading Rate (kg COD.m-3.d-1) 9.56 9.30 9.87
COD removal (%) 90.0 83.0 97.2
COD removal rate (kg COD.m-3.d-1) 8.60 6.67 8.13
S04 removal (%) 95.6 98.0 95.6

Biogas production (l.d-1) 11.04 6.87 14.47
Biogas yield (m3.m-3 reactor) 2.21 1.37 2.89
CH4 content (%) 87.6 88.9 88.5

CH4 yield (m3.kg CODremoved.d-1) 7.16 6.75 12.71

CH4 yield (m3.kg CODloaded.d-1) 2.56 3.20 2.44

VFA removal (%) 81.7 80.5 91.8
TS removal (%) 64.6 61.7 82.0

VS removal (%) 88.6 87.9 93.3

TNVS removal (%) 50.0 52.5 80.2

Total metal removal (%) 80.9 79.5 71.7
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CHAPTER 5

TREATMENT OF GELATIN-MANUFACTURING EFFLUENT USING AN

UPFLOW ANAEROBIC SLUDGE BLANKET (UASB) BIOREACTOR

Summary

The gelatin-manufacturing industry produces high volumes of high-strength

effluent with distinctive peak and low periods in terms of organic, hydraulic

and toxic loads. These must then be accommodated by the local wastewater

purification works. As a result of the large volumes of noxious effluent

received, the purification works has in the past experienced many operational

problems. In order to secure the position of the industry and minimise the

toxic load disposed to the wastewater purification works an efficient and cost-

effective pre-treatment technology has to be developed. This will also lead to

the reduction of high municipal trade-effluent charges of the industry and

enable compliance to the legal effluent disposal requirements. Anaerobic

digestion appears to be a feasible and economic option for the treatment of

this effluent, as excellent treatment results were obtained in previous studies

using hybrid reactor designs. The importance of upscaling the digester

design has necessitated further evaluation of other anaerobic process

configurations to treat the gelatin-manufacturing effluent.

During this study, a mesophilic laboratory-scale upflow anaerobic

sludge bed (UASB) bioreactor design with recirculation was evaluated for its

suitability in treating high-strength, highly variable raw gelatin-manufacturing

effluent. Successful inoculation and start-up of the digester resulted in good

handling and led to increases in removal efficiencies. The digester was

operated at a pH of 6.5. Immediate sulphate (S04) (66 - 79%) and chemical

oxygen demand (COD) (45 - 72%) removals were achieved during the start-

up period at a hydraulic retention time (HRT) of 3.0 d. Chemical oxygen

demand (COD), S04 and total solid (TS) removal efficiencies of up to 96, 86

and 79%, respectively, were achieved at the 3.0 d HRT. At an HRT of 1.0 d,
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COD, S04 and TS removal efficiencies of up to 95, 97 and 67%, respectively,

were observed. The biogas production, however, was found to be very low

throughout the study (0.05 - 0.63 I.d-\

Introduction

Different wastewater types are produced daily which must be accommodated

by local wastewater purification works. This often presents a problem to the

local authorities, as the disposal of certain noxious industrial effluents can

inhibit the biological treatment processes, with significant adverse cost and

effluent quality implications. Gelatin-manufacturing effluent specifically, can

be considered as one of the most difficult effluents to treat and poses a

potential environmental pollution hazard due to its highly variable and

complex nature. It is, therefore, imperative that this effluent be treated in an

environmentally responsible manner.

Considerable interest has been shown in the application of anaerobic

digestion, due to it being seen as a "clean technology", its cost-effectiveness

and adaptable nature. The general performance of the anaerobic digestion

process and the wide diversity of wastewaters that can be treated has

increased steadily over the past few years. This is mainly as a result of an

array of breakthroughs related to digester designs, operating conditions and

shock loads, for the treatment of recalcitrant industrial wastewater

(Austermann-Haun et al., 1997; Guiot et al., 1997).

Among the different high-rate anaerobic reactors developed and

successfully applied in recent years, the upflow anaerobic sludge blanket

(UASB) system represents a popular design for the biological treatment of

effluents (Lettinga et al., 1997). The ability of bacterial cells when grown in an

upflow stream, to aggregate into dense particles (granules) is one of the

reasons why the UASB configuration is one of the more suitable designs

(Britz et al., 1999). The microbial "blanket" is retained by its own mass and by

baffles or screens forming the settler unit in the upper portion of the reaction

vessel, whilst gas and liquid escape from the top of the tank. This mode of
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bacterial growth can increase the performances of high-rate digesters, since

the favourable settling properties of granules can minimise biomass wash-out

and the close cell packing improves the metabolite interspecies transfer and

the overall granular activity (Schmidt & Ahring, 1996). However, the

development of sludge granulation and augmentation under continuous

upflow conditions is not yet fully understood as it is a complex process with

many factors involved in this development (Wu et a/., 1985; Van Lier et a/.,

1996; Verstraete et a/., 1996). Granules have been reported to vary in size

from 1 - 3 mm (Fang, 1997) and is known that granules occasionally

disintegrate for unknown reasons and thus result in a washout of biomass

(Kosaric et a/., 1990; Lettinga et a/., 1997).

The advantages of an UASB contact bioreactor design includes: less

dead digester volume (Visser et a/., 1993); higher loading rates; lower HRT's;

the ability to retain high biomass concentrations despite the upflow velocity of

the wastewater; no support material is required for the retention of a high

density of anaerobic activated sludge (Fukuzaki et a/., 1991); and the

production of biogas. The disadvantages of this digester configuration are the

slow start-up time and the dependence on the formation of a well-settleable

granular sludge. This particular design can therefore be seen as an attractive

alternative option to comply with the stricter pollution control regulations

currently enforced on industries and authorities by the National Water Act

(1998) and the National Environmental Management Act (1998).

The aim of this study was to evaluate the operational performance of

an UASB anaerobic bioreactor design for the treatment of full-strength

gelatin-manufacturing effluent. This digester option is the third design (AD-3)

in a series of design tests and comparisons to provide a database for future

full-scale application of the anaerobic biological technology for the treatment

of gelatin-manufacturing effluent.
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Materials and methods

Digester design

A laboratory-scale upflow anaerobic sludge blanket bioreactor (UASB),

with an operational volume of 2.3 litres, was used. The total height of the

digester was 830 mm with an internal diameter of 50 mm. The digester (AD-

3) combined an upflow anaerobic sludge blanket design with a gas/solids

separator at the top of the bioreactor (Fig. 1). The biogas exited at the top,

while the substrate was introduced into the bioreactor at the base. The

overflow of the bioreactor emptied through an U-shaped tube to prevent any

atmospheric oxygen from entering the system. The temperature of the

bioreactor was maintained at 35°C, using a heating tape and an electronic

control unit (Meyer et al., 1985). The substrate was introduced semi-

continuously to the bioreactor by means of a peristaltic pump (Watson-Marlow

302S) controlled by an electronic timer. The upflow velocity within the reactor

was set at 2 m.h" by means of recirculation (Trnovec & Britz, 1998). The

biogas production was measured automatically by means of an electronic

counter with a gas-tight valve. The biogas volumes were corrected to

standard temperature and pressure (STP) conditions.

Digester start-up

The bioreactor was seeded using a mixture of acclimatised and

activated anaerobic sludge, as well as gelatin-manufacturing effluent from the

local wastewater purification works. The biomass in the bioreactor was then

allowed to stabilise for 72 h to allow the bacterial community to acclimatise.

The substrate flow rate was initially set at an hydraulic retention time (HRT) of

3.0 d and was maintained until stable state conditions were observed. After

the start-up phase, the HRT was decreased to 2.0 d and later to 1.0 d where

it was kept constant for the rest of the study.

Digester substrate

Full-strength gelatin-manufacturing effluent obtained from a local

gelatin-manufacturing industry, was used as substrate for the bioreactor. The
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Figure 1. Laboratory-scale upflow anaerobic sludge blanket bioreactor

(Trnovec & Britz, 1998).
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effluent was collected in batches of 75 I and stored at room temperature until

required. No standardisation was done on the effluent, except for the

adjustment of the pH to 6.5 with standard 6 N HCI solution. The composition

of this substrate is given in "Table 2" of Chapter 3 of this thesis. The effluent

was supplemented with 100 rnq.l" urea, 100 rnq.l" K2HP04, 10 ml acetic acid

(CH3COOH) and a sterile trace element solution (Nel et a/., 1985) during the

start-up phase.

Analytical methods

During the experimental study, the following parameters were

monitored on the digester substrate and effluent according to Standard

Methods (APHA, AWWA & WEF, 1995): pH; total alkalinity (TAlk); total solids

(TS); volatile solids (VS); total non-volatile solids (TNVS), chemical oxygen

demand (COD); total Kjeldahl nitrogen (TKN); volatile fatty acids (VFA);

sulphate (SO/-); chlorides (Cl); ammonia (NH3-N) and ortho-phosphate (P04-

P). Heavy (total) metals (Cu, Fe, Co, Cr, Mn, Ni, Pb, Cd, Zn), as well as

sodium, calcium and magnesium, were measured with an Atomic Absorbance

Spectrophotometer (Varian Model250 Plus).

Volatile fatty acids (as acetate) were determined according to the

titration method of Moosbrugger et al. (1992). The biogas composition (CH4

and CO2) was determined volumetrically with a brine displacement system,

according to the quantitative biogas carbon dioxide content method described

by Ross et al. (1992).

Experimental phase

'During this single-phase experimental study, the UASB anaerobic

reactor (AD-3) received full-strength gelatin-manufacturing effluent as

substrate. No standardisation was done on the substrate fed to the digester,

so as to simulate the actual field conditions. The pH of the substrate was

adjusted to 6.5. The bioreactor was operated at an HRT of 3.0 d for 30

weeks, and the HRT was then reduced to 1.0 d for the rest of the study.
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Results and discussion

Digester substrate

The compositions of the digester substrate and effluent as well as the

performance of the anaerobic digester (AD-3) at HRT's of both 3.0 and 1.0 d,

are summarised in Tables 1 and 2.

VAsa bioreactor efficiency

The reactor was started at an initial organic loading rate (OLR) of 1.69

kg COD.m3.d-1 at an HRT of 3.0 d (Fig. 2). The data in Fig. 2 show the

variation of the OLR ranging from 0.16 to 12.94 kg COD.m3.d-1, with an

average OLR of 2.08 kg COD.m3.d-1, during the total experimental study of 75

weeks.

In Fig. 3, the reactor efficiency is plotted as a function of OLR in terms

of the relationship between COD removal (%) and the COD removal rate (R-

value) at a HRT of 1.0 d. The highest COD removal (96%) and best R-value

(2.78 kg COD.m3.d-1) were both found at the OLR of 2.89 kg COD.m3.d-1 at a

HRT of 3.0 d (data not shown). When the reactor was operated at a HRT of

1.0 d, a maximum COD removal of 95% and a R-value of 7.18 kg COD.m3.d-1

were achieved at OLR's of 2.61 and 8.00 kg COD.m3.d-1, respectively. The

average COD removals during the 3.0 d HRT and 1.0 d HRT operations were

very similar (51% and 54%) (Tables 1 and 2). In the case of the HRT of 1.0

d, the R-value showed a good increase as a function of increasing OLR (Fig.

3), whereas the COD removal showed a more gradual increase as a function

of the OLR conditions.

Sulphate (S04) removals of up to 86% and 97% were observed at

HRT's of 3.0 d and 1.0 d, respectively with an average removal of 51%. The

data in Fig. 4 shows the very large variation in S04 removal as a function of

increasing OLR. A more stable removal was found for the period of OLR of 4

- 7 kg COD.m3.d-1, ranging between 70% to 80% S04 removal. The drastic

decrease in S04 removal for OLR period of 7 - 10 kg COD.m3.d-1 can not be

ascribed to OLR increases, but could possibly be due to the adverse
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Table 1. Composition of the digester substrate and effluent, and the digester efficiency obtained during the 30 week
operational period at a HRT of 3.0 d.

IParam:ters
I Substrate Effluent Digester Efficiency (%)
. Mmlmum Maximum Average Minimum Maximum Average Minimum Maximum Average

OLR (kg COD.m-3.d-l) 0.26 3.82 1.28 - - - - - -
COD (rnq.l") 772 11450 3832 89 6958 1672 0 96 51
TKN (rnq.l") 60 906 287 64 697 254 0 82 16
VFA (mq.l") 240 6252 1 991 120 7416 1 819 0 95 24
S04 (rnq.I") 66 2290 484 30 1 820 280 0 86 42
pH 6.2 8.2 7.2 6.9 8.7 8.2 - - -
TAlk (rnq.l") 79 3225 887 269 5045 1734 - - -
Cl (rnq.l") 124 1482 593 186 6151 814 0 79 7
NH3-N (rnq.I") 5 1 110 194 28 1077 242 0 53 5
TS (rnq.l") 1 000 12900 4364 1200 16700 3715 0 79 21
VS (rnq.l") 200 6000 1870 100 2800 789 0 96 51
TNVS (rnq.l") 600 10800 2494 200 15300 2926 0 24 5
P-P04 (rnq.l") 0.0 53.3 5.6 0.5 63.8 9.9 0 83 6
Total metals (rnq.l") 0.6 4.6 1.9 0.3 6.7 1.7 0 83 19
Na (mq.l") 66 2708 774 327 3362 1 061 0 34 4
Ca (rnq.I") 8 914 179 8 691 142 0 80 22
R-value (kg COD.m-3.d-l) - - - - - - -0.72 2.78 0.72
Biogas production (I.d-l) - - - - - - 0.05 0.63 0.30
Biogas Yield (m3.m-3 reactor) - - - - - - 0.00 0.13 0.01
CH4 content - - - - - - 30 89 70

CH4 yield per CODremoved - - - - - - 0.00 1.93 0.08

CH4 yield per CODloaded - - - - - - 0.00 0.54 0.04

-"
CJ.)
01
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Table 2. Composition of the digester substrate and effluent, and the digester efficiency obtained during the 45 week
operational period at a HRT of 100 do

IParameters
I Substrate Effluent Digester Efficiency (%)
oMinimum Maximum Average Minimum Maximum Average Minimum Maximum Average

OLR (kg CODom030d01) 0016 12.94 2.60 - - - - - -
COD (rnq.l") 158 12940 2598 141 10930 1 197 0 95 54

TKN (rnq.l") 66 968 244 65 928 233 0 72 9

VFA (rnq.I") 120 7318 756 96 7054 735 0 87 21

S04 (mq.l") 90 1 550 500 17 975 215 0 97 59

pH 6.4 8.4 7.1 606 807 8.0 - - -
TAlk (rnq.l") 43 1 231 317 64 2145 933 - - -
Cl (mq.l") 27 3390 660 6 2185 452 0 97 40

NH3-N (mq.l") 0 355 76 0 684 176 0 1 0

TS (mq.l") 900 12200 3574 700 9900 2736 0 67 26

VS (rnq.I") 200 7400 1 329 100 7600 650 0 89 57

TNVS (rnq.l") 700 6900 2245 600 6400 2086 0 50 17

P-P04 (mq.l") 0.0 7.9 1.2 000 10.9 1.9 0 72 7

Total metals (mq.l") 0.2 10.8 2.1 0.1 7.3 1.2 0 96 38

Na (rnq.l") 60 2002 510 72 1620 500 0 79 10

Mg (rnq.l") 2 58 18 2 57 17 0 69 11

Ca (mq.l") 6 2000 217 4 1084 176 0 81 22

R-value (kg COD.m-3.d-1) - - - - - - -0.03 7.18 1040

Biogas production (l.d-1) - - - - - - 0.05 0.52 0.29

Biogas Yield (m3.m-3 reactor) - - - - - - DoOD 0.10 0.01

CH4 content - - - - - - 45 90 71

CH4 yield per CODremoved - - - - - - 0.00 0.19 0.01

CH4 yield per CODloaded - - - - - - 0.00 0.17 0.01 ......
(IJ
0>
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Figure 2. The variation in substrate OLR during the study on digester AD-3

over a 75 week period. The dotted line represents the average
OLR. The vertical solid line separates the data of the 3.0 d and
1.0 d HRT studies.
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influence of the introduction of other chemicals at the gelatin-manufacturing

industry.

The variations in the UASB bioreactor effluent pH and the total effluent

alkalinity during the total experimental study, are shown in Fig. 5. During the

study a very high average effluent pH of 8.71 and a fairly good average total

alkalinity of 1 334 rnq.l", were obtained. In a balanced anaerobic digestion

system, the volatile fatty acids are proportionally converted to methane and

carbon dioxide and an optimum operational pH of 6.8 to 7.4, should be

maintained. When the pH in an anaerobic system decreases, the alkalinity

produced in the anaerobic system should provide an efficient buffering

capacity (Malina & Pohland, 1992). If the pH is lower than 6.3 or higher than

7.8, the rate of methanogenesis is known to decrease leading to a lower

operational efficiency (Van Haandel & Lettinga, 1994). During this study, very

little biogas production was observed, which probably relates to the non-

optimal operational pH of the system. This would also influence the methane

production negatively. It was also seen that gas bubbles adhered to the

bacterial floes, which in turn resulted in poor settling properties of the

anaerobic biomass. The biomass and bubbles thereby were lost from the

system via the digester overflow to the open effluent collection flask. This

phenomenon was also reported by other researchers when treating protein

and lipid containing gelatin effluent (Tommaso et al., 1999) and ascribed to

the absence of the formation of suitable granules in the bioreactor.

Conclusions

Anaerobic wastewater treatment processes can provide several advantages

over other aerobic biological, chemical and/or physical applications if a

suitable digester is properly selected, designed and operated for the

treatment of a specific effluent.

The UASB configuration can be utilised to overcome some of the

disadvantages of the other digesters by recycling the biomass of the digester

to obtain an optimal food-biomass contact situation. With this recirculation
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option it will be possible to retain both active microorganisms and undigested

substrate suspended solids, which can promote more extensive

biodegradation of the wastewater particles. The UASB bioreactor retains

most of the advantages of a conventional digester with the extra benefits of

shorter sludge retention times (SRT), smaller reactor volumes, better alkalinity

control, as well as optimal food-biomass contact.

However, one disadvantage of the UASB digester found during this

study, was the poor settleability and retention of the granular biomass within

the digester. Adequate biomass settleability is crucial for successful

operation of this digester configuration. Tommaso et al. (1999) also reported

the washout of biomass when treating a complex protein and lipid containing

gelatin effluent. Usually pre-treatment of the sludge in the bioreactor is

needed before it is recirculated back into the digester, to produce a more

settleable floc. A number of approaches have been developed to enhance

sludge settleability, such as gas stripping, stirred or vacuum degasification, as

well as the addition of coagulants and flocculants to promote floc formation in

the digester (Malina & Pohland, 1992). Petruy et al. (1999) reported that the

inflow of low lipid concentrations (100 mq.I") in the form of milk-fat emulsion

did not affect the COD removal of their expanded granular sludge bed

(EGSB) system. Even a concentration of 100 000 mq.l" was not toxic,

however, a lipid/fat removal mechanism of adsorption into the sludge is

activated under such conditions, which again affects biogas and methane

yields. These reports correspond well with the data from this study which

reflect the relatively high COD removal at a short HRT of 1.0 d, but in

contrast, only low methane yields were obtained.

During this study it was found that the UASB bioreactor had a stable

operation at an HRT of 1.0 d. A good COD removal was also observed

during a 1.0 d HRT operation with an average of 54 % and maximum at 94%.

There are several advantages of this system that must be kept in mind

for upscaling possibilities. These include the fact that the system operation

was stable and a fairly good COD removal was obtained at a HRT of 1.0 d.

Thus, future studies must be done to incorporate and evaluate some of these

approaches to deliver a better granular biomass quality. Further
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experimentation with shorter hydraulic retention times may also improve the

digester efficiencies (Trnovec & Britz, 1998). The use of tailored made

granules, as described by Britz et al. (1999), especially to treat this type of

effluent, can also be evaluated.
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CHAPTER6

PILOT-SCALE ANAEROBIC PRE-TREATMENT OF UNDILUTED GELATIN-

MANUFACTURING EFFLUENT USING AN UASB AND A CONTACT

CONFIGURATION

Summary

Based on the laboratory-scale studies, a pilot-scale digester was evaluated

under actual field conditions, while treating full-strength gelatin-manufacturing

effluent. The pilot-scale anaerobic digester had an operational volume of 300

litre with an alternate UASB- and contact process configuration. In the first

phase, the anaerobic treatment of the gelatin-manufacturing effluent using an

UASB configuration resulted in excellent chemical oxygen demand (COD)

removal efficiencies of up to 96% (average 58%) at a hydraulic retention time

(HRT) of 1.0 d. The organic loading rates (OLR) ranged from 1.42 to 63.09

kg COD.m-3.d-1. The highly variable OLR's applied resulted in extreme

performance variations with total solids (TS), volatile fatty acids (VFA) and

sulphate (S04) removals of up to 93, 80 and 96%, respectively. Biogas

production volumes of up to 176 I.d-1 (average 49 I.d-1) were observed, with

an average methane content of 85%. From the data obtained it was clear

that the microbial community which developed in the UASB system could

handle the highly variable and unfavourable feed composition and shockloads

efficiently and thus this reactor configuration was considered as an

acceptable option for the pre-treatment of the gelatin-manufacturing effluent.

In the second phase, the contact process was used and resulted in

fairly low COD, S04, VFA and TS removal efficiencies of 41,62,64 and 39%,

respectively, at a HRT of 1.0 d. Due to the varying quality of the gelatin-

manufacturing effluent and high solids content (2 900 to 53 800 rnq.I") during

this study, several serious and limiting operational problems were

experienced, one being the constant blocking/obstruction (calcium carbonate

precipitation, grit, hair and fat) in the feed and recirculation lines. The data
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from this study, where the contact configuration was used, indicated that this

configuration was not entirely suitable as a treatment option.

Based on the data obtained using the 300 litre anaerobic pilot plant

and two reactor configurations, it was concluded that gelatin-manufacturing

effluent can be successfully treated under actual field conditions, with highly

variable pH, OLR, TS values and temperature shockloads, using an UASB

digester configuration, while the contact design appeared to be less suitable

for this application.

Introduction

Gelatin-manufacturing wastewater is characterised by a high organic matter

load originating mainly from the hide processing and the chemical addition

during the gelatin-manufacturing process and is thus very difficult to treat. In

addition to a high COD concentration, the wastewater also has high

concentrations of suspended solids (SS), fats, S04 and salts, which may

inhibit biological processes. Currently, biological wastewater treatment

systems offer a number of significant advantages and fewer serious

drawbacks compared to other physical and chemical methods of wastewater

treatment.

The complex nature of the gelatin-manufacturing effluent prescribes

the vital importance of implementing a wastewater pre-treatment step prior to

discharge to the conventional municipal plant. This pre-treatment step must

combine acceptable treatment efficiencies with low maintenance costs and

operational problems. For this reason, anaerobic treatment, with the benefit

of a low energy consumption and low sludge generation system, was selected

to reduce the high organic loads during the pre-treatment of gelatin-

manufacturing effluent.

To determine effective removal efficiencies during wastewater

treatment, several factors have to be considered, namely: the nature of the

organic matter to be removed; the suitability of environmental factors for

anaerobic digestion; the retained amount of viable biomass; the design of the
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anaerobic bioreactor system and the retention time of the sludge in the

anaerobic digester (Van Haandel & Lettinga, 1994).

Taking all these requirements into consideration, it was decided to

evaluate an UASB and a contact configuration to pre-treat the gelatin-

manufacturing effluent. Data from previous studies (Chapters 3, 4 and 5)

showed good removal efficiencies using laboratory-scale digesters treating

the effluent. As a follow-up study, a 300 litre pilot-scale digester was

constructed and operated at actual field conditions.

The aim of this study was to evaluate the stability and overall

performance of a 300 litre pilot-scale reactor treating gelatin-manufacturing

effluent at actual field conditions and to use this useful database for future

full-scale considerations and applications of this technology.

Materials and methods

Digester design

The pilot-scale anaerobic digester had an operational volume of 300

litres and could either be operated as an UASB or as a contact process

configuration by switching the mixing device in the digester on or off (Fig. 1).

The substrate was introduced continuously at the bottom of the reactor by

means of a peristaltic pump (Watson-Marlow 504S) and the biogas exited at

the top of the digester. The biogas production was determined by means of a

brine displacement system (6N HCI, pH 2.0) and the biogas volumes were

corrected to standard temperature and pressure (STP) conditions.

The overflow of the reactor emptied through a U-tube to prevent

atmospheric oxygen from entering the system. For the UASB configuration,

the overflow emptied into a container for sampling purposes only, from there

the overflow went to the inletworks of the purification plant, to be treated with

the rest of the incoming wastewater.

For the contact configuration, the overflow of the digester emptied into

a settling cone (clarifier). The settled sludge (biosolids) from the bottom of

the clarifier was then recirculated back to the digester with the substrate. The
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overflow of the clarifier also went to the inletworks of the purification plant, to

be treated with the rest of the wastewater. The digester consisted of a mixing

device to distribute the biomass evenly throughout the contents of the reactor

so as to maximise the food-biomass contact. Good internal mixing can

minimise dead volume accumulation and flow channeling. Thus, no

consideration was needed for settleability characteristics of anaerobic

microorganisms.

Digester start-up

The pilot-scale digester was seeded with a mixture of anaerobic sludge

and activated sludge obtained from the existing wastewater treatment works

treating the gelatin-manufacturing effluent. Full-strength gelatin-

manufacturing effluent was also added to the digester with a small booster

volume of acetic acid (500 ml). The biomass within the digester was allowed

72 h to for acclimatise. It is important that an appropriate and stable microbial

community must develop to ensure an efficient and reliable biological

treatment performance (Silvey et aI., 2000). The substrate flow rate was set

to 300 I.d-1, thus at an HRT of 1.0 d. After acclimatisation, the digester was

operated firstly in an UASB and then as a contact configuration.

Analytical methods

The following parameters on the digester substrate and effluent were

monitored: temperature; pH; total alkalinity (TAlk); chemical oxygen demand

(COD); total Kjeldahl nitrogen (TKN); volatile fatty acids 01FA as acetate);

sulphate (S042-); chlorides (Cl); ammonia (NH3-N); total solids (TS); volatile

solids (VS); total non-volatile solids (TNVS); ortho-phosphate (P04-P); total

metals (Tmetais); sodium (Na); magnesium (Mg) and calcium (Ca). All

analyses were performed according to Standard Methods (APHA, AWWA &

WEF,1995).

The total metals (Cu; Fe; Co; Mn; Cr; Pb; Ni; Cd and Zn) were

determined, as well as sodium, magnesium and calcium concentrations with

an Atomic Adsorption Spectrophotometer (Varian Model 250 Plus), equipped

with hollow cathode lamps for the different metals, a photoelectric detector
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with associated electronic amplifying and measuring equipment.

Air/acetylene and nitrous oxide/acetylene burners were used with air as

oxidant and acetylene/nitrous oxide as fuel. Standards of known metal

concentrations were used to calibrate the instrument and also to verify the

accuracy of the data obtained.

Volatile fatty acids (as acetate) were determined according to the

titration method of Moosbrugger et al. (1992). The biogas production and

composition was measured volumetrically with a brine displacement system,

according to the quantitative biogas carbon dioxide content method of Ross et

al. (1992). The accuracy of all tested chemical parameters were confirmed by

the participation in an inter-laboratory water testing program (SABS Water

Check Proficiency Program).

Experimental studies

The study consisted of two experimental studies (I and II). In the first

study (I), the pilot-scale digester was operated as an UASB process

configuration for 25 weeks. In the second study (II), the digester was

operated as a contact process configuration for 14 weeks. Since the digester

was started during winter and was made of stainless steel, the need arises to

isolate the digester to maintain a constant temperature at all times. No other

external heat was applied to maintain the digester at a specific temperature.

The performance efficiencies of both the UASB and contact configurations

were evaluated under field conditions at an HRT of 1.0 d.

Results and discussion

Digester substrate

The average composition (Table 2) and large compositional variations

of the gelatin-manufacturing effluent was discussed in detail in Chapter 3 of

this thesis. The pilot-scale digester was fed directly from the gelatin-

manufacturing effluent discharge channel. No standardisation was done on
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the incoming effluent, except for the removal of the harshest non-

biodegradable grit by means of a filter.

Flow patterns

The general flow patterns of the gelatin-manufacturing effluent were

found to be highly variable due to the nature of the gelatin production batch

process. The associated organic load was therefore, as shown in Fig. 2,

found to fluctuate considerably. Process upsets and spills were also found

under field conditions, which contributed to unexpected flow and pollution

load patterns compared to a normal effluent flow pattern. Experience gained

from this study showed that it was important to regulate the volume of the

effluent to ensure sufficient substrate availability for submerged digester feed

at all times and to prevent atmospheric oxygen from entering the anaerobic

system.

Considering the batch nature of the gelatin production process,

upstream flow load equalisation of the biological treatment processes, is

essential to protect the anaerobic digester against possible major organic

shock and toxic overloads (Van Niekerk & Bohmer, 1998).

Experimental study I - UASa process configuration as pilot-scale

In this study the digester was operated at a HRT of 1.0 d. The

composition of the substrate, effluent and the performance efficiency of the

UASB pilot-scale digester are summarised in Table 1.

In Fig. 3, the variation of the operational OLR applied during the study

period ranged from 1.42 to 63.09 kg COD.m-3.d-1. An average OLR of 9.94 kg

COD.m-3.d-1 was fed to the digester over the 25 week operational period.

From the data it can be seen that the digester received several severe

"shocks" in terms of OLR, temperature and pH variations (Fig. 3, 4 and 5).

The data summarised in Fig. 4 shows the variation in the temperature

of the discharged gelatin-manufacturing effluent as well as the temperature of

the digester effluent. Gelatin extraction takes place at temperatures elevated

above and below ambient atmospheric temperature, as reflected by the

typical range of effluent temperatures during the manufacturing process:
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Figure 2. The fluctuations in flow received from the gelatin-manufacturing
industry during a typical 6 day week. The dotted line represents
the average flow.
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Table 1. Composition of the substrate, effluent and digester efficiency during the UASB pilot-scale operating conditions.

- --_.- - -- ------ ---I I Substrate Effluent Digester Efficiency (%)
Parameters Minimum Maximum Average Minimum Maximum Average Minimum Maximum Average
OLR (kg COD.m-3.d-1) 1.42 63.09 9.94
COD (mg.r1) 1 418 63090 9944 445 7130 3388 0 96 58
TKN (mq.l") 151 1 520 538 56 691 326 0 91 42
VFA (mq.l") 216 9530 1 815 636 6000 2042 0 80 49
SOdmg.r1) 130 2300 554 23 2100 447 0 96 44
Temp (0C) 15.5 25.5 21.1 10.0 19.0 14.3 - - -
pH 7.2 12.3 9.7 7.5 10.5 8.3 - - -
TAlk (mq.l" as CaC03) 109 21 833 2663 475 5934 1 373 - - -

Cl (mq.l") 57 724 342 32 1 188 534 0 90 47
NH3 (rnq.l") 4 903 117 10 994 218 0 64 27

TS (rnq.l") 2 900 53 800 13 208 1 700 8 200 3 725 0 93 63
VS (mq.l") 1 300 40600 8436 700 4000 1 608 0 95 72
TNVS (mq.l") 900 29500 4772 900 4200 2116 0 92 48
P-P04 (mq.l") 0.0 7.4 1.6 0.4 8.4 2.4 0 74 6

Total metals (rnq.l") 0.3 5.0 1.8 0.4 4.8 1.8 0 52 22
Na (rnq.l") 58 1 501 535 105 1 230 653 0 81 25
Mg (rnq.l") 0 751 80 1 465 63 0 98 60
Ca (rnq.l") 8 545 128 7 489 147 0 94 43
R-value (kg COD.m-3.d-1) - - - - - - -2.03 59.32 6.56
Biogas production (l.d-1) - - - - - - 3.32 175.54 48.88
Biogas Yield (m3.m-3 reactor) - - - - - - 0.66 35.11 9.78
CH4 content - - - - - - 70 95 85

CH4 yield (m3.kg CODremoved'd-1) - - - - - - 1.53 42.57 1.91

CH4 yield (m3.kg CODloaded.d-1) - - - - - - 0.24 55.21 5.72
......
C11
W
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Figure 3. Variation of the substrate organic load for the pilot-scale digester
over a 25 week period. The dotted line represents the average
OLR.
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Figure 4. The variation of the substrate (. ; _ .._ .._) and effluent (. ; )

temperature. The solid lines represent the actual data and the
dotted and dashed lines represent the regression calculations.
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extraction (44° - 80°C); primary evaporation (50°C); sterilisation (140°C); chill

and extrusion (-10°C) and drying of gelatin (28° - 60°C) (Cole, 1997, Personal

communication). The environmental temperature also influences the

temperature of the gelatin-manufacturing effluent. Sharp and frequent

fluctuations in environmental temperature will affect the performance of the

methane-producing bacteria to a greater extent than variations in operating

temperatures within the mesophilic or thermophilic ranges (Malina & Pohland,

1992). It was, therefore, decided to insulate the digester (Fig. 4) after the

14th week of operation. However, the results indicate that the reactor

insulation did not have a marked effect on the biodegradation performance

and temperature variations (Fig. 6).

Substrate pH is also known to be an important regulatory parameter for

the cellular metabolism of anaerobic digestion systems (Pretorius, 1994). In a

balanced anaerobic digestion system, where volatile fatty acids are converted

to methane and carbon dioxide, a pH of between 6.5 and 7.5 should be

maintained for optimum methane production (Pretorius, 1994). It has,

however, been reported that the best pH for the direct conversion to methane

can also be within a range from 5.5 to 6.0, and if the correct species are

present, even as low as a pH of 3.5 (Matsunaga & Sekine, 1997). The

extreme variations of the substrate pH can be seen in Fig. 5. An average

substrate pH of 9.7 was fed to the digester (Table 1). The effluent pH of the

UASB digester ranged from 7.5 and 10.5 with an average of 8.3 (Table 1).

According to the data in Fig. 7, the methane composition of the biogas

production was more affected at the higher pH values. The methanogens,

however, appeared to have recovered from extreme shock loads within a few

days, where after the methane composition of the biogas increased again

(Fig.7).

In a system where the methanogens are inhibited, the acidogenic

population usually prevail, since they are significantly less sensitive to low or

high pH environments and this will lead to the acidification of the reactor

systems. No acidification of the reactor were, however, reported during this

study. In another gelatin effluent study Maree et al. (1990) reported the

gradual increase in volatile fatty acids and sulphide concentrations which
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Figure 5. The variation of the substrate pH (. ; -----) and digester effluent pH
(. ; ) as a function of time. The solid lines represent the actual
data and the dotted and dashed lines represent the regression
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accumulated to such an extent that the anaerobic system eventually

collapsed. This did not happen during this study.

The UASB pilot-scale reactor as operated in this study performed

relatively well throughout the test period under the highly variable OLR and

other shock conditions. An excellent increase was found in the COD removal

and R-value at the higher OLR's (Fig. 8). COD removals of up to 96% (an

average of 58%) were achieved at an OLR of 10.72 kg COD.m-3.d-1. An

average R-value of 6.56 kg COD.m-3.d-1 was obtained under the same OLR's.

The maximum R-value of 59.32 kg COD.m-3.d-1 was obtained at an OLR of

63.09 kg COD.m-3.d-1.

The biogas yield was found to increase over the experimental period

(Fig. 9). Similar trends were found for increases in OLR (Fig. 10). Week 1 to

7 were part of the start-up phase of the digester (Fig. 9 and 10). The increase

in biogas yield after week 7 indicated the presence of an active digester

population which rapidly adapted the specific substrate. The highest biogas

yields (35.1 and 34.6 m3.m-3 reactor) were observed at an OLR of 10.88 and

26.03 kg COD.m-3.d-1, respectively. The high methane content of the biogas

(85%) suggested the presence of an active methanogenic population which

was able to compete with the sulphate reducing bacteria (SRB) for the

available substrate. S04 removals of up to 96% were obtained during the

study (Table 1), also indicating an active SRB community.

The TS removal was also found to increase with increasing OLR. The

highest TS removal efficiency of 93% was found at an OLR of 34.78 kg

COD.m-3.d-1 (Fig. 11).

The alkalinity of the digester effluent was found to vary between 470 to

5 930 rnq.l" indicating a good buffering capacity (Hawkes et aI., 1992). An

average total alkalinity of 1 370 rnq.l" was obtained during the UASB study

(Fig. 12).

Experimental study /I - Contact process configuration as pilot-scale

The anaerobic contact configuration was originally designed to

overcome some of the limitations/disadvantages of conventional digester

processes, especially in terms of separating and recirculating the effluent
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suspended solids back to the anaerobic reactor (Malina & Pohland, 1992).

The separation and the recirculation of the biomass using this configuration

has the advantage of retaining both the active microorganisms as well as the

slowly biodegradable suspended solids, thus promoting a more complete

biodegradation of wastewater particles. A possible problem that can be

expected while using anaerobic contact systems is that the configuration is

heavily dependent on the settling properties of the anaerobic sludge (Malina

& Pohland, 1992). Active anaerobic sludge flocs are usually associated with

biogas, thus solids settleability may be problematic.

The contact process configuration as used in this study (Fig. 1),

suffered from constant blocking (grit, fat, salts and calcium carbonate) in the

feed and recirculation lines. Relatively poor performances were achieved in

COD, S04, VFA, TS and VS removals, (a maximum of 41, 62, 64, 39 and

60%, respectively) at a HRT of 1.0 d (Table 2). A relatively low digester total

alkalinity (1 257 rnq.l") was apparent throughout the study of 14 weeks,

indicating a poor system buffering capacity. The high reactor effluent pH

(over 8.1) (Table 2) did influence the complete conversion of fatty acids to

methane by inhibiting the rate of methanogenesis, when considering the

optimal pH for methanogenesis is between 6.5 and 7.5 (Pretorius, 1994).

The volume of biogas produced was low, but when biogas production

could be measured an average of 86% methane content was present in the

biogas. This indicated that, although constant blocking was experienced, the

contact configuration could be effective if the current problems could be

eliminated. The high methane production indicated that an active

methanogenic population were present. Furthermore, solid washout occurred

from time to time. Various researchers have previously reported problems

with foaming and scum formation while treating a gelatin effluent containing

high protein and lipid contents (Tommaso et aI., 1999). This again induced

sludge flotation and led to solids and biomass washout.
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Table 2. Composition of the substrate, effluent and digester efficiency during the pilot-scale operating conditions using
the contact configuration. I

IParameters
I I Substrate Effluent Digester Efficiency (%)
. Min~mum Maximum Average Minimum Maximum Average Minimum Maximum Average

OLR (kg COD.m-3.d-1) 1.19 7.60 3.93
COD (rnq.l") 1 192 7604 3934 2351 4503 3479 0 41 27
TKN (mq.l") 136 671 341 159 310 261 0 57 23
VFA (mq.l") 600 6910 2918 938 3828 2 066 0 64 27
S04 (mq.l") 145 345 262 55 425 237 0 62 41
Temp ("C) 23.0 23.5 23.2 18.0 18.8 18.4 - - -
pH 7.7 9.6 8.2 7.6 8.1 8.0 - - -
TAlk (rnq.l" as CaC03) 158 3 026 1094 554 1642 1257 - - -
Cl (rnq.l") 162 508 319 225 698 450 0 17 3
NH3 (rnq.l") 18 635 187 139 220 174 0 65 13

TS (mq.I") 1600 5200 3520 2300 3200 2920 0 38 21
VS (mq.l") 600 3 000 1 780 800 1300 1140 0 60 42
TNVS (rnq.l") 1000 2500 1740 1700 2200 1940 0 12 11
P-P04 (mq.l") 0.0 3.9 1.4 0.3 3.3 1.8 0 29 9

Total metals (rnq.l") 0.6 2.0 1.0 0.5 1.9 1.0 0 52 22
Na (mgX1

) 120 348 256 172 683 428 0 0 0
Mg (rnq.l") 23 292 87 37 85 59 0 73 15
Ca (rnq.l") 76 411 233 172 484 331 0 0 0 I

R-value (kg COD.m-3.d-1) - - - - - - -1.40 3.10 0.46
I

Biogas production (l.d-1) - - - - - - 0.67 1.43 1.05
Biogas Yield (m3.m-3 reactor) - - - - - - 0.00 0.29 0.11
CH4content - - - - - - 82 90 86

CH4yield (m3.kg CODremoved.d-1) - - - - - - -0.41 0.42 0.00

CH4yield (m3.kg CODloaded.d-1) - - - - - - 0.00 0.23 0.13
......
(»w
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Operational Problems

Several major problems were experienced during the studies while using the

UASB and contact process configurations and included the following:

1. The nature of the effluent plays an important role in the determination of

the removal efficiency of the organic matter while being treated

anaerobically. As used in this study, the effluent contained non-

biodegradable material such as hair, grit, fats, reject hide pieces and large

sludge volumes, which are part of the gelatin-manufacturing process. Due

to the nature of the effluent, a filter had to be inserted at the beginning of

the feedline to prevent hair and large grit/solids particles from entering the

system. However, this resulted in clogging of the filter and the filter had to

be cleaned regularly. The result of the filter being clogged was that no

substrate could enter the feedline, thereby causing a vacuum in the

feedline which affected peristaltic pumping negatively;

2. The gelatin-manufacturing industry utilises a batch process and therefore

discharge variable volumes of effluent. To eliminate this problem and to

ensure a submerged system at all times, a sluice was incorporated to

regulate and ensure a regular flow of the effluent, since the digester

system was fed continuously. The sluice channel had to be cleaned daily

to prevent the build-up of solids/sludge/grit in the channel;

3. Problems were also experienced with the blocking of the feedline as the

main channel was situated ± 20 m from the digester. With time, fats and

grit accumulated in the feedline and led to blockages that had to be

removed regularly;

4. As previously stated more problems were experienced during the

operation of the contact process. The solids present in the digester were

forced into the outlet of the digester, which resulted in further down-stream

blockages preventing the effluent to exit the system. This was followed by

an increased pressure in the digester which forced the contents of the

digester in the opposite direction back to the main channel through the

feedline of the digester; and
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5. Another problem experienced during the contact process was at the cone

shaped clarifier. The effluent of the digester exited via the top into the

clarifier. The biosolids were then extracted at the bottom of the clarifier to

be recirculated with a peristaltic pump, back into the digester. These

settled solids often blocked the bottom of the clarifier. Therefore, no

effluent could be recirculated and a vacuum was created in the

recirculation lines, which affected the recirculation pump negatively. It was

vital to clean the clarifier regularly by forcing air or substrate into the

pipelines to remove all blockages.

All these problems emphasised the need for the continuous attention and

monitoring of the pilot-scale digester, especially the contact process, to

prevent failure. The above mentioned problems are typical operational

problems that must be taken into consideration when planning a full-scale

reactor.

Conclusion

Gelatin-manufacturing effluents contain relatively high concentrations

of nominal or slowly biodegradable organic compounds. It was taken that,

due to the highly variable nature and the complex composition of the effluent,

biological breakdown would be a slow process. Hence, it was decided to

evaluate different high-rate anaerobic digester configurations to determine the

ideal design and conditions for optimal biological breakdown. In previous

studies (Chapters 3, 4 and 5) the laboratory-scale UASB and contact

digesters proved that successful breakdown of the compounds can be

obtained.

As a continuance to the results of the laboratory-scale digesters, a 300

litre pilot-scale digester was subsequently evaluated in this study under actual

field conditions. From the results obtained during the two experimental

studies (I and II) it was found that the UASB pilot plant (Study I) can be

efficiently used as a pre-treatment option for this effluent. There was no need

for chemical pre-treatment of the effluent, such as neutralisation of pH, before
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anaerobic digestion. Maximum performance efficiencies were achieved with

COD, TS, VFA and S04 of up to 96, 93, 80 and 96%, respectively for the

UASB configuration. Relatively few operational problems were experienced

with this configuration.

The contact process (Study II) only gave maximum removals of up to

41, 39, 64 and 62% of COD, TS, VFA and S04, respectively. Continuous

operational problems were, however, experienced during the contact process

due to the constant blocking of the reactor system, and specifically, sludge

wash-out was experienced during the different stages while using this

configuration. Tommaso et al. (1999) also reported the wash-out of biomass

while treating a complex protein and lipid containing gelatin effluent using a

similar reactor configuration.

One possible reason for the successful start-up of the anaerobic

digesters can be the use of well-acclimatised sludge, which may already have

a highly selective and adapted microbial consortium for the gelatin-

manufacturing effluent, another good advantage for the construction of a

possible full-scale digester. The problems experienced during this study,

especially with the contact configuration should be addressed appropriately.
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CHAPTER 7

GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

Background

Adequate long term conservation and management of South Africa's water

resources is of vital importance for sustained economic growth and

development. The country is situated in a semi-arid region where rainfall and

waterbodies are unevenly distributed. The rapidly expanding demand arising

from positive population growth and demographic changes has resulted in

water becoming increasingly scarce in many parts of South Africa. Greater

pollution loads and reduced flows in the country's rivers, due to the expanding

demand, will in future place additional pressure on the already limited water

resources. For these reasons water must be treated, whether to produce

water for general consumption, or for specific industrial uses, or to limit the

discharge of pollution into the environment. Nationally, local authorities are

thus forced to implement higher trade-effluent charges, especially to

wastewater producing industries, in an attempt to reduce the pollution load on

conventional purification facilities and to minimise downstream water and

environmental pollution. The purification facilities often experience difficulties

with the treatment of discharged wastewaters, due to the noxious nature of

the effluents. These effluents often inhibit biological treatment processes,

consequently resulting in higher chemical dosing demands, operational

problems and inefficient treatment of the sewage.

One such industrial effluent which has recently received much

attention, is that of the gelatin-manufacturing industry. This is the only

industry in South Africa that produces edible and technical gelatin and is

situated in Krugersdorp, Gauteng. During this process, reject hides received

from abattoirs and tanneries are conditioned, treated and processed.

Insoluble hide collagen is converted into water soluble gelatin through a

process of alkali conditioning, protein hydrolysis and denaturation (Maree et

ai., 1990). The gelatin-manufacturing industry use approximately 57 000 MI
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of water per month, based on a 6 working day operation. The effluent which

the industry produce varies considerably in volume as a result of the large

volume of water consumption. The organic strength also varies from batch to

batch, and typically has an alkaline nature with high concentrations of COD,

SS, fats, lipid emulsions, protein and salts.

The composition of the effluent has a negative influence on the

biological treatment processes of the local wastewater purification works. The

main problems that have been experienced include a loss of nitrification and

denitrification ability, reduced ortho-phosphate (P-P04) and chemical oxygen

demand (COD) removal, as well as biosolid carry-over during secondary

clarification. Approximately 12% (v/v) of the total flow received at this specific

purification works and 65% of the organic load into the purification works, are

contributed by the gelatin-manufacturing industry.

Considering the impact of these high and irregular organic discharges

to the purification works and the subsequent high trade-effluent charges paid

by the industry, it was decided to find a mutually suitable pre-treatment

method to deal with the effluent before discharging to the local purification

works.

Pre-treatment options

Considering the various options available (physical vs chemical vs biological)

for the treatment of industrial effluents, anaerobic biological treatment with

concomitant production of methane has distinct advantages over other

processes. Recognition of these benefits have resulted in the wide

international application of anaerobic processes, mainly because it compares

favourably with the costly physical and chemical technologies.

Very little application data are unfortunately available on the biological

and anaerobic treatment of gelatin-manufacturing effluent (Maree et aI., 1990;

Du Plessis et aI., 1993; Petruy et aI., 1999; Tommaso et ai., 1999).

Numerous studies have, however, been done on the biological treatment of
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similar tannery and high salinity wastewaters (Shipin et al., 1994; Petruzelli et

al., 1995; Dalmacija et al., 1996; Rajala & Petrovskaya, 1996).

The successful improvements of the basic digester design has over the

last decade led to a remarkable improvement in the removal efficiencies of

compounds present in effluents, compared to the conventional anaerobic

systems. Among these designs, UASB digesters have become one of the

most extensively used designs for treatment of high-strength wastewaters

(Lettinga et al., 1997).

Against this background, this study was conducted to evaluate the

performance of different laboratory and pilot-scale anaerobic digester

configurations for the pre-treatment of the gelatin-manufacturing effluent.

This was also done to obtain a suitable database for future reference in

reactor upscaling and application of anaerobic effluent treatment.

Laboratory-scale investigation

Different experimental studies were conducted on laboratory-scale anaerobic

digesters to determine the optimal operational conditions and digester design.

The studies included three single-phase UASB anaerobic digesters (AD-

1;polyethylene, AD-2; polyurethane, AD-3; contact) and a multi-phase unit

(AD-1 + AD-2). For the laboratory-scale studies, with the exception of pH

adjustment to 6.5 and implementation of mesophilic temperatures, no

standardisation was done on the effluent in an attempt to simulate actual field
\

conditions. The laboratory-scale digesters were started at a hydraulic

retention time (HRT) of 3.0 d and the HRT was subsequently decreased to

1.0 d after stable state conditions had been reached. The average

operational efficiencies of the four laboratory-scale systems treating gelatin-

manufacturing effluent, are summarised in Table 1.

Single-phase systems

In the first study (AD-1), an upflow hybrid digester, fitted with

polyethylene foam as fixed-film basis, was evaluated while treating the full-

Stellenbosch University http://scholar.sun.ac.za



Table 1. Comparison of the average digester removal efficiencies of the single, multi-phase and pilot-scale anaerobic
digesters treating the gelatin-manufacturing effluent at an HRT of 1.0 d.

Parameters Single-phase Multi-phase Pilot-scale
AD-1 AD-2 AD-3 UASB Contact

HRT 1 1 1 1 1 1
OLR (kg COD.m-3.d-1) 3.97 3.65 2.60 4.17 9.94 3.93
COD (%) 53 60 54 80 58 27
COD removal rate (kg COD.m-3.d-1) 2.19 2.32 1.40 3.38 6.56 0.46
S04 (%) 86 82 59 69 44 41
Cl (%) NfD NfD 40 0 47 3
NH3-N (%) NfD NfD 0 0 27 13
TKN(%) 6 7 9 14 42 23
P04-P (%) 1 7 7 2 6 9

Biogas production (l.d-1) 5.01 3.77 0.29 6.10 48.88 1.05
Biogas yield (m3.m-3) 1.00 0.75 0.01 1.22 9.78 0.11
CH4 content (%) 80 79 71 79 85 86

CH4 yield (m3.kg CODrem.d-1) 2.19 1.86 0.01 4.24 1.91 0.00

CH4 yield (m3.kg CODload.d-1) 1.26 1.19 0.01 1.65 5.72 0.13

VFA removal (%) 20 26 21 48 49 27
TS removal (%) 25 28 26 29 63 21
VS removal (%) 53 58 57 71 72 42
TNVS removal (%) 8 8 17 8 48 11
Na removal (%) 10 15 10 7 25 0

Mg removal (%) NfD NfD 11 NfD 60 15
Ca removal (%) 42 37 22 16 43 0
Total metal removal (%) 34 36 38 28 22 22 _..

-....I~
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strength gelatin-manufacturing effluent. The highest COD removal (90%) and

organic removal rate (R-value) (8.6 kg COD.m-3.d-1)was observed at an OLR

of 9.56 kg COD.m-3.d-1(Chapter 3). However, other process parameters were

found to vary considerately, both as a function of time and of OLR. These

variations were indicative of the adverse influence of the unstable and

inconsistent substrate composition on the performance of the succeeding

microbial populations. Good results were obtained with S04 removals (up to

96%), indicating the presence of an active SRB community working in

balance with the system methanogenic population. The methane content

varied between 70 and 88%, with an average methane yield per COD

removed of 2.2 m3.kg CODremoved.d-1.The alkalinity of digester AD-1 varied

between 100 to 3 300 rnq.l" showing good buffering capacities to neutralise

possible toxic and I or loads. These alkalinity levels exceeded the

recommended limit of 1 500 mq.l" for a properly balanced and stable system

(Hawkes et aI., 1992). Furthermore, no VFA accumulation was observed

during the study, which is contradictory to other studies where a gradual

accumulation of VFA was reported, which eventually became toxic to the

microbial population. No consistent trends in TKN, total metals and TNVS

removals were observed during the study. These results are contradictory to

the results reported by Maree et al. (1990), who found, while using a different

digester design, failure as a result of increasing sulphide concentrations.

The aim of the second phase of the study was to determine if substrate

nutrient supplementation would contribute to better digester performance and

to prevent digester failure. An upflow hybrid digester (AD-2), fitted with

polyurethane foam received 80% gelatin-manufacturing effluent enriched with

20% supernatant from an existing full-scale sewage sludge digester. The

highest COD removal (83%) and R-value (6.7 kg COD.m-3.d-1)was observed

at OLR of 4.62 and 9.30 kg COD.m-3.d-1, respectively (Chapter 3). The

performance tendencies of digester AD-2 were similar to digester AD-1, but

digester AD-2 only functioned at a relatively lower OLR. The only distinctive

difference between digester AD-1 and digester AD-2 was the granule

formation which was observed in digester AD-1. The granules observed were

fluffy and dark coloured with an average diameter of 0.5 to 1.5 mm. Thus, it
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was concluded that the raw substrate used in this study lent itself to granule

production under the specific conditions of anaerobic dynamics. Even though

the type granules could be classified as a stable high quality granule, it was

clearly consistent in its production cycle and immediately reflected reactor

upset by washout of the granules along with the biomass particles. The

results obtained from these studies on digester AD-1 and digester AD-2,

indicated the feasibility of UASB systems while treating high-strength gelatin-

manufacturing effluent. It was also clear from this study that nutrient

supplementation, using high VFA supernatant with the raw substrate, did not

benefit the total reactor performance and no reason could be argued to

pursue the supplementation project.

It was decided to determine the influence of a higher biomass contact

area in an upflow contact digester configuration during a third study (AD-3)

while treating the same effluent. At an HRT of 1.0 d, the highest COD

removal (95%) and R-value (7.2 kg COD.m-3.d-1)was observed at an OLR of

2.61 and 8.00 kg COD.m-3.d-1, respectively (Chapter 5). The average COD

removals at HRT's set at 3.0 d and 1.0 d, were 51 and 54%, respectively.

The R-value was found to increase rapidly as a function of increasing OLR,

whereas the COD removal showed a more gradual increase. Again the

efficiency tendencies for all the process parameters were fairly similar to

those found for digester AD-1 and digester AD-2. Sulphate removals of

between 86 and 97%, were observed and a very high average pH (8.71) and

very low total alkalinity (933 mq.l") was found in this study and it was

concluded that the alkalinity was not high enough to buffer the system

effectively. During the study very little biogas production was observed, which

probably could be the result of the non-optimal operational pH of the digester.

Furthermore, gas bubbles were found to adhere to the bacterial flocs, which

in turn resulted in biomass carry over and poor settling of the anaerobic

biomass in the reactor. These results corresponds with the data reported by

Petruy et al. (1999) who found that the inflow of low lipid concentrations (100

rnq.l") in the form of milk-fat emulsion did not affect the COD removal of a

EGSB system. Even a concentration of 100 000 rnq.I" was not toxic, but a
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lipid/fat removal of adsorption to the sludge is activated under anaerobic

conditions, which again affects the biogas and methane yields.

It was also found in this study that the contact digester required a

shorter period to stabilise after the start-up period. The digester also

recovered more rapidly from toxic and shock loads, probably due to the

recirculation in the reactor. Cost considerations for upscaling an anaerobic

contact reactor would include: higher capital costs; more intensive operation

and maintenance of the process; higher energy consumption for recirculation

practices and additional sludge settling infrastructures.

Multi-phase system

The same two laboratory-scale digesters used during the single-phase

digestion (AD-1 and AD-2) were connected in series during this study.

Digester AD-1 received the full-strength gelatin-manufacturing effluent as

substrate and digester AD-2 received the effluent from digester AD-1 as

substrate for further digestion. This research was done in an attempt to try

and partially separate the dominant microbial populations and to establish

their interactions in two separate digesters, as well as to demonstrate the

feasibility of a multi-phase system while treating gelatin-manufacturing

effluent. It was originally argued that an increased bacterial activity and

higher density biomass would occur as a result of creating optimum digester

operating conditions for the different microbial populations. This phase

separation could also be seen to represent a specific nutrient separation for

the phase-dominating populations as well as a metabolite production system

for the subsequent dependent populations. Other researchers have already

confirmed the feasibility of using multi-phase separations in UASB biosystems

(Shin et aI., 1992; Fongastitkul et aI., 1995; Speece et aI., 1997).

This multi-phase system showed optimal COD (97%) and S04 (96%)

removal efficiencies at OLR's of 8.3 and 4.3 kg COD.m-3.d-1, respectively.

The methane content varied between 55 and 89%. A significant difference

between the single and multi-phase systems was noticed, namely the

production and removal of VFA's, which occurred in the multi-phase system,

but which was not so clear or incomplete in the single-phase systems. Up to
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92% of the VFA's were removed during this study with the multi-phase

system. Petruy et al. (1999) also found that ammonia released from the

degradation of proteins leads to the selection of an acidifying consortium

during the first phase, which had a significant influence on the downstream

process. The high ammonia gelatin-manufacturing effluent also appeared to

enhance the activity of the acidogenic population in the first digester, with

subsequent high VFA removal in the total process.

From the data generated during the multi-phase study it can be

concluded that the multi-phase system is highly effective for the treatment of

high-strength gelatin-manufacturing effluent. Higher removal efficiencies

were achieved during multi-phase digestion than with the tested single-phase

systems, mainly as a result of the second "finishing" digestion process during

multi-phase digestion. In commercial practise, however, this enhanced

performance would not motivate the additional mechanical and civil costs

associated with the construction of two digesters.

Pilot-scale investigation

The successful application of the different types of hybrid and contact

configurations on laboratory-scale led to the evaluation of the stability and

overall performances of a 300 litre pilot-scale reactor at actual field

conditions. This was also done so as to obtain a useful database for possible

future full-scale application. Again, no standardisation was done on the

effluent, with the exception of the removal of the harshest non-biodegradable

solids.

The 300 litre pilot-scale reactor performed relatively well throughout the

study (Chapter 6), under highly variable shock and organic loads. The COD

removals and R-values increased strongly during OLR's increments. COD

removals of up to 96%, with an average of 58%, were obtained at OLR's of up

to 10.72 kg COD.m-3.d-1. The average R-values (6.56 kg COD.m-3.d-1) were

achieved under similar loading rates. Sulphate and TS removals of up to 96
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and 93%, respectively, were achieved. An average methane content of 85%

was also recorded, suggesting that rate-limiting factors were minimal.

The data generated was of great value for the future planning and

design of a full-scale digester. Many operational problems were experienced

and valuable experience in operating larger digesters gained. These

problems were mainly associated with the clogging and blocking of the

system, pumps, nozzles and recirculation lines, as well as sludge washout.

Concluding remarks

The study on the laboratory-scale investigations proved that the hybrid

design, especially the configuration used in digester AD-1, had the potential

to retain a high portion of the active biomass, and subsequently resulted in

good substrate utilisation by the adapted microbial consortium. The results

also clearly showed that no nutrient supplementation was needed, as it did

not contribute significantly to enhance the digester performance. The data

also showed that at higher organic loads, better digester performance

efficiencies were obtained, thereby also explaining the better performance of

digester AD-1 over digester AD-2.

With the anaerobic contact configuration (AD-3) some of the

disadvantages of this type of design could be overcome by returning the

biomass back into the digester. It would then be possible to retain both the

active microorganisms and undigested suspended solids, which would lead to

a better solid retention time and further biodegradation of the solids. The

major disadvantage of this configuration is the dependence on good biomass

settleability for successful operation and the option of recirculation in the

digester will also increase operational costs of the digester. This

configuration is more suitable for wastewaters with low or intermediate levels

of suspended solids, lipids and proteins. Relatively short HRT's can result in

reduced equalisation capacities when receiving shock loads. It must be taken

into consideration that the digester will serve a multiple purpose on larger
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scale, namely the equalisation (balancing) of peak organic concentrations in

the incoming substrate and the subsequent treatment thereof.

The average results of the three laboratory-scale digesters also

indicated that the conventional UASB anaerobic hybrid digesters with support

material achieved more reliable average treatment results than the UASB

bioreactor. However, according to the effect of the increasing OLR's on the

efficiencies of the different anaerobic digester designs, it is clear that the

digesters reacted in a similar manner.

During the multi-phase digestion good removal efficiencies and phase

separation were achieved. High capital costs will, however, be required to

implement the use of this technology on commercial scale, although the

bench-scale study clearly indicate the greater advantage of phase separation.

Careful consideration should thus be given to the economic viability of pilot to

full-scale systems. The promising results obtained from the different studies,

thus motivated further experimentation to implement a pilot-scale digester.

The pilot-scale digester also revealed valuable information on the

application of shock loads to a single-phase UASB and a contact

configuration at actual field conditions. The pilot-scale studies indicated the

need for mechanical removal of solids in excess of 5 to 10 mm in size, fat and

grit removal of particles bigger than 0.3 mm, equalisation and solid and fats

separation. The application of a contact configuration may also prove to be

successful, if the problems experienced during the field set-up can be clearly

identified and addressed appropriately for full-scale application. This implies

that, in addition to the construction of a large-scale digester, a fully equipped

inletworks with adequate screening and grit removal will have to precede the

digester.

Recommendations

It could be concluded that the UASB design, both on laboratory and

pilot-scale, was feasible for the treatment of the complex high-strength

gelatin-manufacturing effluent. It was shown in this study that highly variable
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gelatin-manufacturing effluent can successfully be treated at actual field

conditions, with fluctuating pH, organic and solid concentrations.

Based on the data obtained in this study, a mutual decision was made

by the management of the gelatin-manufacturing industry and the local

municipal authority, that a full-scale treatment can be applied successfully

(Van Niekerk & Der Merwe-Botha, 1999, Personal communication). The pilot-

seale UASB functioned satisfactorily under field conditions and experienced

relatively few operational problems. Although an average COD removal of

58% was obtained, it was decided to use a 50% COD removal target for full-

scale considerations. This is an acceptable engineering approach which

reduces the risk to the client and the authority and allows for unexpected

negative influences on digester performance and full-scale digester design

inefficiencies. These figures will result in a treated COD of 1 500 to 2 000

rnq.I", which is acceptable both from a downstream treatment point of view

and economic viewpoint. As mentioned, screening to remove solids, grit

removal and equalisation. should be seriously considered to prevent

shockloads from entering the anaerobic system.

This proposed plant upgrading will extend the life of the existing plant

and will allow the local wastewater purification works to produce an

acceptable effluent quality. This full-scale application will also be a good

investment for the gelatin-manufacturing industry, since it will have a positive

impact on the trade-effluent tariffs. The cost structure associated with the

gelatin-wastewater collection and treatment will incorporate capital

redemption, interest on capital loans, operational and maintenance costs.

The use of this technology has been well received by the industry (Van Der

Merwe-Botha, 1999, Personal communication), who view this pre-treatment

plant as an alternative approach to comply with the stricter pollution control

legislations. This approach will also have positive implications for the industry

regarding lower trade-effluent tariffs, the enhancement of the industry's

environmental policy and continuance of their core business in a suitable and

economically viable manner.
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