Q

A CAN Based Distributed Telemetry and Telecommand Network
for a Nanosatellite

Simphiwe Khumalo

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Science in Electronic Engineering
at the University of Stellenbosch
Electrical and Electronic Engineering Department

Supervisors: Professor W.H Steyn and Mr. A. Barnard

March 2008

Copyright ©2008 Stellenbosch University
All rights reserved

Declaration

[, the undersigned, hereby declare that the workasned in this thesis is my own original
work and that | have not previously in its entiretyin part submitted it at any university for a
degree.

Signature:ccceeeeveeeeeeeeeeeeeeiiiinns Date:ccoceeeeiiiiee,

Abstract

A communications protocol is designed for real timentrol and data handling for a
Nanosatellite application. The communication protois based on the Controller Area
Network (CAN) technology. The protocol handles eliént message types such as time
synchronization, telecommand messages, telemetiyuistion, unsolicited telemetry

messages, large file transfers and debug messages.

The design of the protocol entails finding a suegatarget microcontroller in which the
protocol implementation is demonstrated. This rexpuiconsideration of a number of
development factors such as cost, complexity, abdity, reliability and operational
environment (space). The AVR AT90CAN128 microcoléro was chosen as a target

microcontroller as it gave most of the requireddex mentioned above.

The protocol implementation involves developing liewel software drivers, the middleware
and the application programs to demonstrate hagpdiineach supported message. In the
implementation the media access scheme and low yeamunication is provided by the

CAN low level kernel (physical and data link layers

The protocol performance was evaluated by measuhiagsoftware response latencies, the
bus throughputs and the software efficiencies. FPowensumption due to CAN

communication was also measured.

System reliability was tested by loading the CANs bath extreme communication traffic
and letting the system run for a long time. Theeobstion was that messages were handled

consistently.

Opsomming

'n Kommunikasie protokol is ontwerp vir die intydseeheer en data hantering vir 'n
Nanosateliet toepassing. Die kommunikasie protokofjebaseer op die “Controller Area
Network” (CAN) tegnologie. Die kommunikasie protdkwanteer verskillende boodskappe
soos tydsinkronisasie, afstandsbevel, telemetmeraag, ongevraagde telemetrie, groot |éer

oordragte en ontfoutings boodskappe.

Die ontwerp van die protokol behels die vind vangeskikte mikrobeheerder waarop die
protokol gedemonstreer kan word. Dit behels digmeaning van verskeie faktore soos koste,
kompleksiteit, beskikbaarheid, betroubaarheid asdiekoperasionele omgewing (ruimte).
Die AVR AT90CAN128 mikrobeheerder was gekies aamgeslit aan meeste van die

voorafgenoemde vereistes voldoen.

Die implementering van die protokol behels die akkeling van lae vlak sagteware drywers,
die tussenware en die toepassing programmatuur ienhahtering van die ondersteunde
boodskappe te demonstreer. In hierdie implementasid die media toegangsskema en lae

vlak kommunikasie verskaf deur die CAN lae viakrkéFisiese kant data koppel viakke).

Die protokol se doeltreffenheid was geévalueer dbersagteware se reaksietyd, die bus
deurset en sagteware effektiwiteit te meet. Diewthigsverbruik as gevolg van die CAN

kommunikasie is ook gemeet.

Stelsel integriteit is getoets deur die CAN bus awte belaai en die stelsel vir lang,
aaneenlopende periodes van tyd te laat loop. Dieisnd dat die boodskappe konsekwent

hanteer is.

Acknowledgements

| would like to thank the following people and itigtions, on their shoulders | stand:

. | dedicate this work to my Lord, Jesus Christ, fpridance, wisdom, strength and

inspiration.

. The financial assistance of the National Reseamméation (NRF) and Department of

Science & Technology (DST) towards this researdtereby acknowledged.
. My Supervisors: You are the custodians of your jirac
. My family: You trusted my abilities and gave me pag.

. All my colleagues: Your company encouraged me.

Table of Contents

Y 6] 1 T PP PP POPPRRPPP i
(@] 01ST0] 210 011 oo PP i
ACKNOWIEAGEIMENTS ...t e e e e e et e ettt teeeneeeeeeeabbaan e e eeeas)Y
TaDIE OFf CONENTS ...t e e re e e e e e e e e e e e e e e e e Vv
S o T T SR X
LISt Of TADIES....ceeeeeieeeee e e e e Xii
S 0o ol 10] 01/ 1 4 I T PSSR Xiii
@4 o= o) (= 0 1
= = Tod (o [£ 11 T PSSR 1
11 INETOTUCTION ...ttt e e e e e e e n e r e e e e e e e e e aeeas 1
1.2 Project ODJECHIVEScooiiiiieiiir e re e e e e e e e e e e eeeeaenes 2
1.3 Standard Communication BUS ProtoCoOIS... .. oivriiiiiiiiiiiiicec e 3
1.3.1 Inter-Integrated CirCUItAT) INTEITACEoveveeeeeeeeeeeeeeee e emme e eeee e 4
1.3.2 Serial Peripheral INnterface (SPI) ... 4
1.3.3 IHCIOWIIE ..ttt ettt e e e e e e e e e e e e e e mmm e n e 5
1.3.4 Controller Area Network (CAN)......cooii e e e e e e e e e e e e 5
1.3.5 Process Field BUS (Profibus)cooeeeeeiiiiiiiiii e 6
1.4 A preferred Communications Bus and MotivatiQncceeiiieneeeeeiiiiiiieiiiiiees 7
15 Review of Higher Layer Application ProtoColsLfP)...........coovviiiiiiiiiiiiiiiiien 9

1.5.1 Previous CAN-Protocol Developments inthe ESL.......ccccooovviiiiiiiiiiiniiiiiiiiieen) 9

Contents vi

1.5.2 Commercial Higher Layer Application ProtocCols...........ccccoovviiiiiiiiiiiiiiiiiiiiieees 11
R T2 R 7 Y (0] o =] o F TSP UPPPRRPIN 11
1.5.2.2 DEVICENE....coiiiiiiiiiieie ettt e e 15
1.6 THESIS OVEIVIEW....coiiiiiiiieeeeie ettt e e e e e e e e e eeese e e e e e e e e eaeeas 20
(O g F=T o] L= PSP 22
The CAN Protocol Conceptual System DeSIigN......ccueivveeeeeiiriiiiiiiiiiieeeeeeeeeeeeeeeeeesieeeen 22
2.1 Supporting Hardware Consideration............cccoovvvvvieeiiiiiiiiiiinniee e e eeeeeeeeeeeeeeaees 22
2.1.1 Choosing a Target MiCroCONtroller..........cooeuiiiiiieiiiiiiiee e 23
2.1.2 The Other Supporting COMPONENTS. ... coaameeeuuiiiieeeeee e s 26
2.1.3 BUS ArChiteCtUIe OVEIVIEWeeiiiiceeeeieeee it ee e e e 26
2.2 The Protocol Design ConsSiderationccceuuuuuiiiiiiiiieeeeeeeeeeeeeeeeeeeeeesennnneennees 28
2.2.1 The CAN Ildentifier ASSIQNMENTooummmeeeerrrrmniiiaaaeeeeeeeeeeeeeeeeeeerernnnnneeeerennn 28
2.2.2 Message Handling and PrioritiZation ... ceece..oooooiiiiiiiiiiiiiiii e 30
P2 T 01T o AN = 1Y A £ 37
(O 0= o) (= S 39
Detailed Design and Protocol Implementation ... 39
3.1 The SOMWAIE STIUCIUIEceiiiiiei ettt e e e e e e e e 39
3.1.1 CAN INnterrupt HaNAINgGuueiiiii e e e e e e e e ee e e e e e e eeeeenees 42
3.1.2 Node Initialization & CONfiQUIratioNcceeeiiiiiiee e e e e 44
3.1.3 System Control and RESEL ... eeeeeeeee et ree e e e e e eees 45
TNt T A S V1 (=T 0 N 10 11 T SRR 46
3.2 Subsystem Level Message Handling........cccceeevvrvieiiiiiiiiiiiniieeee e eeeeeeeeeeeeeeeee a7

Contents Vil

3.2.1 Subsystem Telemetry ACQUISITION o eeeeerrrrmmmnaaaaaeeeeeeeeaeeeeeeeeeieeeeneeenenne 47
3.2.2 Subsystem Telecommand HandliNg.......cccceeeiiiiiieiiiiiiiiiiiiisee e eeeeeeeeee e 49
3.2.3 DAta TrANSTEIS ...cceiiiiiiiiiiie e ettt e e e e e e e e e e e 50
3.2.4 DEDUQ MESSAQES......cceiiiiiiiiieeees e et eeeeettttbaaa s s s e e e e e eaaaaeeeaaaaaaeaaeeeeeesssrsnnnnns 54
(O g F=T o] L= o PP 55
Protocol Performance and Implementation RESUIS .cce...ciiiieeeiiiiiieieeee e 55
4.1 Hardware Performance MeasuremMeNtscceecceeoooourrreeeeennniinneeeeesesnneeeeeeenes 55
4.2 Software TiIMeE RESPONSE........ccoiiiiiiicceeeemie ettt 56
4.2.1 Main Loop Execution TiMe RESPONSEceeeeieiiiiiiiiiiiiiiiiiiiaa e e e e e e eeeeeeeeeeeeeee 58
4.3 Bus Throughput and Protocol Software Efficiency.........cccoovvviiiiiiiiiiininnnenl 60
4.4 Software Reliability.........ccoooieeiiiii e 62
(O gF=T o (= gl PP PPPT R 64
Conclusion and ReCOMMENAALIONS.........uuiiiiiaeea e e e 64
5.1 CONCIUSION. ..ciiiiiiteie et mmme ettt e e e e e 64
5.2 RECOMMENAALIONSccoiiiiiiiiiiee et e e e e e 66
=11] [ToTe] =1 o] o) YN PP SSUUPRPUPPPPUPOPPUP 68
APPENIX A ettt e e et e e e et e ettt bt b — e e e e e e e e e e eeeeeeeeannrrnes i
Controller Area Network - CAN INfOrmation..............ovveeiiiiiiiiicc e [
AL WRALIS CANT ottt e e e e e s [
A2 CAN SEANAAITS ...t e e e e e e e e e [
A3 HOW CAN WOIKS? ..ottt e e e e e e e e Ii

NG 0 A o 1o T o = SR i

Contents viii

A.3.2 ldentifiers & arbitration............ooiiooeeiiiiii s Ii
A.3.3 REMOLE fTAMES.....coiiiiiiii et ettt e e e mnr e e e e e e e iii
A.3.4 MeSSAQE FOMMIALS......ccciieeiiieeieeeecemmmmm e e e e et e e e e e et e e et e e et s e e e e e eeeeeeseeaaeeeeaeeeeeennnnes ii
A.3.4.1 Format Of @ CAN MESSAQGEuuuruuuuuiiiiiaa e e ettt seeee e e e e ii
A.3.4.2 CAN 2.0A FOIMMAL.....ccoiiiiiiiiiiieieiei et v
A.3.4.3 CAN 2.0B FOIMAALcuiiiiiiiiiis i %
A.3.5 Error detection and fault confinEMENt.............cccviiiiii i vi
A.3.5.1 The CAN EITON PIOCESS ...cevvvrurimmmmmmiaeaaeeeeeaeaeeteeeeaeestrnnnnaa s e e e aaaaaaaaaaaaaaaaaaaeeeees Vi
A.3.5.2 EITOr AELECTION......uuiiiiiiiit st ettt e e e e e e e e e e e e e Vi
A.3.5.3 CAN coNtroller error MOUES.......ccccemreeeieeiiiiieiitee e e e Vii
A.3.5.4 EITOr SIGNAIING ..ciiiiiiiiiiii e e et e a e e e e e e e e e e eaeeeees viii
N G = 1 110 11 o TR PRRPPRP IX
A.3.6.1 BIl SEOMENTS ...ttt ettt e e e e e eea e e e e e e e e e e e aaeeeeeeeerrarane IX
A.3.6.2 Synchronization segment (SYNCh_Se0) ceaa.ciiiieiiiiiiiiiieeeeee e IX
A.3.6.3 Propagation segment (PrOP_SEQ) cceeeeeeeiiieeeiiiieieeeeeiiiiiiis e e e ereeeneaaaaeaaa e IX
A.3.6.4 Phase Segment 1 (Phase_Segl), Phase®e?)(Phase_Seg2)cccccccvvvvciinnnnnnn.
A.3.7 RESYNCRIONIZALION ...ceeiiiiiiiiii et es X
A.3.7.1 Hard reSyNChroNiZationcceeeiiiii i ererre s e e e e e e e eaes X
A.3.8 CAN DUS PNYSICAI [AYETuuiii et e ettt e e e e e e aaes X
A8 1 ISO L1808, et a e e e e e e e e e e e e e e Xi
A.3.8.2 IS0 L1500, e et a e e e e e e e e e e e e Xi

A.3.9 BUS IENQOLNS ... rr e e Xil

Contents iX

N 0 0 T V=T [- PR Xii
A.3.11 CAN IMPIEMENTALIONSuuuuuee s eeees s e e e e e e aeeeeeeeeeeeeessessssnnnanrnsnnnnaeaeas Xil
Y o] o L= T LG = SRS PPPRRR XVi
CAN Baud RAte SEeNGcceeeiiiiiiiiiiii i e e e e e eeee bbb seeeee s e e e e e e e e e e e eeas XVi
Y 0] o 1= T [RSP XX
SOUICE COUR .ottt bttt et e e e e e e e e e e e e e e e smne ettt e e eeeaeaeeeeaaanennans XX
(o= T o] o) (o o] I 110 F= 11 X o300 XXI
(o= 1 I 0 4 STo T o | V2K o PP XXii
(0= 1 0 To | 1 o R UUUPPPPPPTRTPPPRPI xxiii
(o= 1 10 11T o o PP PPPPPPUPPPP PP XXIV
=10 (o 1 0] 11 o T8 XXV
1] 0 IST0 T S o [VPP XXVI

(o= 1] D11 1 1 [0 I TP XXVil

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:
Figure 1.5:
Figure 1.6:
Figure 1.7:
Figure 1.8:
Figure 1.9:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 3.1:

Figure 3.2:

List of Figures

CAN Bus Setup for A Typical Sat@llit.............ccceeeeiieiiiiiieiiieeeeee e 3
SP1 CommuNICatioN SCNEMIEoummvireieeeeeiiiiree e 4
Proposed CAN 11-Bit FramMe....ccce i iieieiiiiiiiiiiiiiiieee e eree e 10
CANOPEN OSI MOUEI ... 13
CANopen device bus Interface............uuvvvveiiiiiiiiiiee e 15
CANopen 11-bit ID-DiStriDUtiON . cceeeeeeeeeeeiice e 15
DSV of =] L] I o To] (oo | 16
DeviceNet Layer MOUE!o 17
A CAN Module SChemMaALiC........cecccmiiriiiieee e 20
SRAM Data MemMOIY Mapcocvucmeeiieieeiiee et e e e 25
Program MemoOry Mapooooomee et ree e 26
A Terminated CAN Bus ArchiteCture.............ccccuvviiiiimiiiieiieeee 27
A 29-Bit ID AllOCALION ... ceee et 28
A Telecommand EXChanQe......ccceeueeiiieeeeeiiiieeeeeeeies e eeee e e 32
Unsolicited Telemetry FOrmat.............uuuveiiiiiiiiiniieeceeeeeeeeeieeeeeeeeeeevieees 33
File Transfer Flow Diagram Example ... 36
Data Throttling MechaniSm..........c...uuuiiiiiiiii e 36
A typical Debug MESSAQEcemmmmmrerunniiiiiaieeeeeeieeieeieeiiieiienn s 37
A CAN/OSI Reference model ... 39
Protocol Software MOAUIESccceeeiiiiiiiiiiiiiiie e 41

Figures

Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 4.1.:
Figure 4.2:
Figure 4.3:
Figure A.1:
Figure A.2:
Figure A.3:

Figure A.4:

Protocol SOftWare StrUCTUIE .. e ceeeeeeeeeee e 41
CAN INEITUPT STIUCTUIE oottt e e s 43
CAN Interrupt FIOW Diagram......ccceeeeeeeeeeeiriiiiiiiaeeeeeeeeeeeeeeeeeesseessneessenenne 44
Code Upload Diagramceeceeeeeeeeeeeeeeeeeeeeernnnnsnn s 52
Code Segment Update and Code Upload..............ocoovviiiiiiiiiiiiiiiecceeeee, 53
SYSIEM TEST SEIUP....evui it ieemme et r et e e e 55
Main Function FIOW DIiagramcee..ooooooeeeeeeeeieeeeeeceiise s 59
CAN BUS THIOUGNPUL.....eetiiiaeeeeeiiiiie e 62
CAN Version 2.0A Message Frameooooviiiiiiiiiiiiineeeeeeeeeeeeeeeeeee v
CAN 2.0B MeSSage FOIMAL.......commmmmeeeeeeeeeiieiieiiiiiiiiinineeeeeeeeeesnaeeeaaaaeeeens Vi
CAN ETTON STALES ...t sttt e e eermne e e s viii
CAN Bit TIMING ..ot e e e e e e e e e e e e e e e e eeeeeeennaes IX

Table 1.1:

Table 1.2:

Table 2.1:

Table 2.2:

Table 2.3:

Table 2.4:

Table 2.5:

Table 4.1:

Table 4.2:

Table 4.3:

Table A.1:

Table A.2:

Table A.3:

Table A.4:

Table A.5:

Xii

List of Tables
Serial BUS COMPAISON......uuuaeeeeeeiiiiiiiiiaae e e e e e e e e e e e e eeeeeeeeenenneeeeeeenna s 9
'DeviceNet Identifier DIStrIDULIONccoervevereeeerereeeeeee s 19
Microcontroller COMPATISON..... o eeeeeeeeiiiiieieaseeeeeeeeeeeeeeeeeesreennneeeennnennnn 22
ATI0CANL28 MeMOTrY MapPPING...... oummmeeeeesnnnnseeeseeeeeeerremmmmmmmmmmnnnmnnnnnnees 24
The Protocol Supported Message TYRES....cooovv i 29
Standard Telecommand ChannelS. oo ...ouviiiiiiii e 31
Standard Telemetry Channelscccooveeeeiiiiiiiiiii e 33
MESSAQE LALENCIES s e e e e e e e e e e e eeeee et seeeeer s s e e e e e e e eeeeaaees 57
Main LOOP EXECULION TIMEuutcammmm oo e e 59
Throughputs and EffICIENCIES .. eeeeeieiiiiiiiiiiiiiii e 61
CAN BUS VOltage LEVEIS.........commmmreeeeeeeeiiiiiiiiiaseseeeeeeaeeeeeeeeesienenneesesennnnnnn Xi
CAN BUS VOltage LEVEIS.........commmmreeeeeeieiiiiiiiiiaaeseeeeeeeeeeeeeesesienenneesessnnnnnnn Xi
Practical Maximum Bus Lengths.......ccccccoooiiiiii Xii
BASICCAN fRALUIES ...ttt e e e e Xiv

FUICAN FEATUIES ... XV

A/D
ACK
ARM
ADCS
CAN
CAN_H
CAN_L
CAL
CiA
CIP
CLK
CMD
CHL
DSP
EEPROM
GPS
HLP
/O

ID

IDX
1ISO
JTAG
LSB
MAC
MMU
MSB
OBC
oSl
PCAN
PCI
PROFIBUS
RISC
RF

SP
SUNSAT
TLM
TLCMD

Xiii

List of Acronyms

Analog to Digital
Acknowledgement
Advanced RISC Machine
Attitude Determination and Control System
Controller Area Network
CAN High
CAN Low
CAN Application Layer
CAN in Automation
Control and Information Protocol
Clock
Command
Channel
Digital Signal Processing
Electrical Erasable Programmable Read Ordgnbty
Global Positioning System
Higher Layer Protocol
Input/Output
Identifier
Index
International Standardization Organization
Joint Test Action Group
Least Significant Bit
Media Access Control
Mass Memory Unit
Most Significant Bit
On-Board Computer
Open Systems Interconnection
PEAK CAN Applications
Peripheral Connection Interface
Process Field Bus
Reduced Instruction Set
Radio Frequency
Stack Pointer
Stellenbosch University Satellite
Telemetry
Telecommand

Chapter 1

Background

1.1 Introduction

The development of satellite applications has exwlover the years and the continuous use
of this technology has expanded over a wide rafgg@alications including communications,
guidance and navigation systems, military and deferacademic research etc. Satellite
development has evolved from large earth orbiteiglites (greater than 1000 kilograms) to
nanosatellites (less than 10 kilograms) and eveallsmfemtosatellites (less than 0.1
kilograms). Nanosatellites are commonly developgdriversities and the research institutes

for research or academic purposes.

One of possibly the most complex satellite projestsr attempted by university students was
the Stellenbosch University Satellite (SUNSAT) [2he research in satellite engineering has
since SUNSAT been going on at the University ofl&osch and a suitable environment
for this type of research was established whertEteetronic Systems Laboratory (ESL) was
formed in 1991 at the Electrical and Electronic iBegring Department. Using the experience
and the tools developed in the ESL, the researofegir reported in this document was

formulated to develop a communications bus ancdpobdtfor a Nanosatellite.

In realizing the successful development of thisjgoba brief study was done on various
existing field bus protocols. However, this stud¢udses on the Controller Area Network
(CAN) as the preferable candidate, since previatsllge developments used CAN bus
successfully and that provides for a space teselinblogy. The CAN bus was chosen for
various other reasons that will be discussed im&é subsections.

The bus protocol in this project was designed aenxklbped completely for a Nanosatellite,
but it is generic enough to be customized and use@ny satellite mission. Though
commercial high layer application protocols, lik&Nbpen, DeviceNet and CANKingdom
could be used, selecting a suitable communicatrotopol to support a specific application
requires an understanding of both the protocol Hred application. Whether generic or

application-specific, a commercial protocol wilbpably limit the optimization of the system.

CHAPTER 1. BACKGROUND

This optimization may be crucial in applicationstiwtight performance, cost, size, weight,

and environmental constraints [3].

A literature survey is done in the following subtsmas to evaluate whether to design and
develop a generic communication bus protocol ocustomize the commercial higher layer
application protocols like CANopen, DeviceNet andNKingdom for a nanosatellite

application.
1.2 Project Objectives

The primary objective of this project was to desigwery basic, efficient, highly reliable and
robust communication protocol for a Nanosatellpelecation. The protocol is robust if it can
quickly detect and recover from errors with a hitggree of certainty. The protocol efficiency
is quantified by the data delivered, compared te tAw network bandwidth [12]. The
protocol reliability is measured by the basic neetd handle extreme communication traffic

under extreme environmental conditions consistently

The protocol should handle all the communicatiangeal time and it should also handle
scheduled messages timely to be executed peribdidapending on the application. An
auxiliary objective will be to demonstrate the @il implementation on a cost effective, low

power microcontroller supporting the chosen commations bus.

An overall objective was to develop a protocol tt facilitate the communication among

all the Nanosatellite subsystems as shown in figule The CAN bus will be the main

communications bus, but a private direct commuigoabetween certain nodes can be
implemented using any of the serial bus interfdwd is seen convenient for the specific
application. For example, the Onboard Computer (DB&s direct access to the Mass
Memory Unit (MMU) using a Serial Peripheral Intexéa(SPI) standard as shown in figure
1.1.

CHAPTER 1. BACKGROUND

ADCS RF
Subsystem Communications Power

Link Node Subsystem
A

Experiment
~dl—p» DSP Node
- GPS/
< propagater |

Mass
Memory Unit

Figure 1.1: CAN Bus Setup for A Typical Satellite

NanoCamera
| inager ™[>

S

ARM Based OBC |~a-SPI

1.3 Standard Communication Bus Protocols

In order to carry out the objectives as set outlia project, a very brief survey was done on
the standard protocols for distributed applicatioMost of the protocols studied were
characterized as primarily addressing three levkfgotocol standardization and these levels
are [12]:

. Medium Access Control (MAC): this low level sub-layer defines the bus sharing an
arbitration layer that is a fundamental part ofrgnammunication network. The reduction in
the complexity of the related wiring harness ised®ined by this part of the communications

protocol.

. Protocol Implementation: this consists of the development of software dsvand
hardware interfacing for the realization of the ickxbs application. This level must suit the
application and it must offer most features that aequired for a simplified protocol

implementation. The CAN bus specification providesst of these features.

. High level Application Standards: this level represents the element of the protocol
that provides cohesion between the applicationspom@nts e.g. sensors, actuators and the

application software. It also provides interopeligbbetween the nodes in a network.

Based on the protocol characterization mentionea@land other factors, including cost,
availability and complexity, the communication standards discussed in the next section

were considered. However, it should be noted thierea large number of other

CHAPTER 1. BACKGROUND

communications bus standards that can be possabididates, but only those that presented

attractive features were considered here.
1.3.1Inter-Integrated Circuit (I °C) Interface

The FC bus is a half-duplex, synchronous, multi-mastes kequiring only two signal wires:
Data (SDA) and Clock (SCL) [16].

I°C uses an addressable communications protoccalioats the master to communicate with
individual slaves using a 7-bit (standard mode)@bit (High Speed mode) address.

The FC bus has three speeds: slow (less than 100Kbgst),(400Kbps), and high-speed
(3.4Mbps), each downward compatible. The true limi’C link distances is the bit-rate and

a bus capacitance of 400 picoFarads (pF).

1.3.2 Serial Peripheral Interface (SPI)

The SPI bus consists of four signals: master @wesin (MOSI), master in slave out (MISO),
serial clock (SCK), and active-low slave selectS)SAs a multi-master/slave protocol,
communication between the master and selected slags the unidirectional MISO and
MOSI lines, to achieve data rates over 1Mbps in dwiplex mode. The data is clocked
simultaneously into the slave and master basecherSCK pulses, provided by the master
[16].

The SPI bus employs a simple shift register dataster scheme: Data is clocked out of and
into the active devices in a first-in, first-ousFaon [FIFO] [17]. SPI devices can transmit and
receive data packets in full duplex mode and themanication scheme is shown in figure

1.2.

MATS|

Shift Register |« MISC Shift Register --|
Y

&

Clock Generator] SCLK

I5S BS .l iss
Mlaster Maode

Slave IMNode

Figure 1.2: SPI Communication Scheme

CHAPTER 1. BACKGROUND

Data transfers are performed in eight/sixteen loitks. All data transfer is synchronized by
the serial clock (SCLK).

A disadvantage of SPI is the requirement to hapars¢e /SS lines for each slave due to its
lack of built-in addressing, resulting in an incged complexity in connectivity as the number
of slaves increases. Provided that extra I/O presaaailable, or extra board space for de-
multiplexer electronics, this may not be a probl&or. small, low-pin-count microcontrollers,

a multi-slave SPI interface might not be a vialdkison [17].

1.3.3 Microwire

Microwire is a 4-wire synchronous bus interfacealeped by National Semiconductor [18].

Similar to SPI, Microwire is a master/slave buifdace, with serial data out of the master
(SO), and serial data in to the master (Sl), asay@al clock (SK). These correspond to SPI's
MOSI, MISO, and SCK signals, respectively. Theralso a chip select signal, which acts
similarly to SPI's /SS lines. As a full-duplex budicrowire is capable of speeds up to
625Kbps or slower (bus capacitance dependant).

Microwire devices come with different protocol stands, based on their data needs. Unlike
SPI, which is based on one byte or two bytes datkgis, Microwire permits a variable data
length packet.

Microwire has the same advantages and disadvantsg8®1 with respect to multiple slaves,
which require multiple chip select lines. In sonmstances, a SPI device will work on a
Microwire bus, as will a Microwire device work ors#1 bus, although this must be reviewed

on a per-device basis.

Both SPI and Microwire are generally limited to looard communications and wires/tracks
of typically no longer than 0.15 meters, althoughder distances (up to 3 meters) can be

achieved given proper capacitance and lower Bsrgi6].

1.3.4 Controller Area Network (CAN)

CAN is a serial asynchronous communications bugopol which efficiently supports a
distributed real time control network. It can asct@espeeds up to 1 Mbps over a distance of 40

meters [13]. It was originally developed for autdiwe applications in the early 1980's, but it

CHAPTER 1. BACKGROUND

has gained popularity over a wide range of appboatincluding satellite applications. The
CAN protocol was internationally standardized ir©3%s ISO 11898-1 and comprises the
data link layer and the physical layer of the seleger ISO/OSI reference model. All other
services such as error signaling, automatic restragsion of erroneous frames are performed

by the CAN controller automatically.

The Controller Area Network protocol provides:

. A multi-master distributed architecture, which albobuilding intelligent and redundant

systems. If one network node is defect the netwsostill able to operate.

. Broadcast communication - A sender of informati@ms$mits to all devices on the bus.
All receiving devices read the message and therdeéfit is relevant to them. This allows a

network-wide coordinated data acquisition capahilit

. Sophisticated error detecting mechanisms and nsitngssion of faulty messages. This
also guarantees data integrity.

. An 11-bit identifier for standard frame format a@8-bit identifier for an extended
frame format for addressing. The addressing is aggspriority based i.e. messages with high

priority are assigned low identifier values.

The CAN presents a wide range of attractive featwigich are not presented here and these

are explained in detail in Appendix A.

The CAN protocol allows an 8-byte data packet facremessage sent on the bus and this is
good for real time short messages but it is a deathge for message blocks larger than 8
bytes.

A higher layer protocol must be developed to imp#atrthe application orientated interface,

since CAN only implements the data link and phyldiecgers.

1.3.5Process Field Bus (Profibus)

Profibus is an international open field bus staddaat was developed in the late 1980’s. It
has evolved for the years and three compatibleantsiof this bus standard have been
developed [20]:

CHAPTER 1. BACKGROUND

. Profibus-FMS (Field Message Specification): The FMS variantuged for a wide

range of general applications.

. Profibus-DP (Decentralized PeripheryJhe DP variant is the high-speed solution of
Profibus. It has been designed and optimized ealbecior communication between

automation systems and decentralized field devices.

. Profibus-PA (Process Automation): The PA variant meets theiabeequirements of

process automation, for chemical process controlicgiions.

The media access control scheme uses a token @asasbitration scheme and the
communication architecture is multi-master and rsi#tve. During design time certain nodes
are designated as masters and certain nodes ass.slBlve communication media is the
shielded twisted pair cable with RS-485 transceaivEl]. The data link, physical and
application layers are implemented in hardwareafbthree Profibus variants. A maximum of
224 bytes per message can be transmitted on tharfssach network can support up to 32
nodes [2]. The maximum speed is 1.5 Mbits/s at @@ers for Profibus-DP. The other

variants achieve a lower bus speed at the sanandes(200m).

1.4 A preferred Communications Bus and Motivation

After a comparative study of the above mentionesidiandards it was decided that the CAN
bus was the best possible choice. A summarized amtipe study for the bus protocols
investigated is presented in table 1.1. The stuady based on the most important features that
will present an efficient protocol development tbe Nanosatellite. The decision was mostly
based on the application; different protocols pneskfferent application specific attractive
features. The choice does not mean the CAN busismimal solution; it has a few
shortcomings, like the packet data length limitedohly 8-bytes. The CAN bus, however,
gave other attractive features required for a katehpplication. These features will be

discussed next:

. System Operability — some subsystems developedoudy for the Nanosatellite
already considered using the CAN bus as the mammamications bus. This provided a

simplified communications architecture and systemfigurability.

CHAPTER 1. BACKGROUND

. Extensive Error Management Capability and RobustreSAN bus provide a built-in
error signaling mechanism, which provides for datagrity with minimal effort to service
these errors in software. Most of the bus standaaisidered above do not provide for
automatic error handling and the system software tbaimplement a full error handling

mechanism with an increase in development time.

. Multi-Master Architecture — most bus standards @nésd in this section implement a
master/slave architecture and only a single matée can initiate the communication. If this
node is defect the whole system will fail. The CAdE architecture makes it easier to add and
remove nodes without changing the protocol strectur

. Broadcast Communication — This provides for systeansparency and coordinated
network wide data consistency. Each message wiisible to all nodes on the network and
each node will choose whether to act on the messageot. The other bus standards
implement a master/slave communication mechanisra point-to-point manner and this

means only the two nodes communicating have at¢odbs data on the bus.

. Message Oriented Addressing — This reduces th@gvivarness, because no address
lines are needed to address each (selected) nddke, for some other bus standards the
wiring harness becomes worse with an increasingbeurof nodes. This limits the network
size and complicates the physical system architectt also becomes simpler to configure
the network with message oriented addressing, agsrino knowledge about other nodes is

required.

In summary, it is clear from a satellite applicatipoint of view that CAN is the most viable
solution. It will provide for system reliability @nextensive error handling. At a bus speed of
1 Mbps the CAN bus is ideal for fast real time cohapplications. However, it is not the
most efficient protocol when transferring large amis of data. The packet size constraint is
not a big problem as it is easy to implement anfragtation mechanism when transmitting
large data blocks. Most of the communication resplion the Nanosatellite will be short real

time messages such as telemetry and telecommakdtpac

A suitable bus connection other than the CAN buy b&used between two point-to-point
nodes if it is deemed the best solution for theumeg application. In this case the
communication must be strictly between these twdeso The OBC and the mass memory

CHAPTER 1. BACKGROUND

unit for the Nanosatellite project typically comnmcate via a SPI connection when a large

amount of data is transferred.

Table 1.1:Serial Bus Comparison

Bus Type | Data Max. cable length | Max Number of| Communic.
Size(bytes) at Max. Speed(Mbits/s) Nodes Method
speed(meters)

1°’C 1 %Board-distances | 3.4 400pF Multi-master
SPI 1 “Board-distances Upto 10 4 Master/Slave
Microwire | variable | “Board-distances | 625 kbits/s Capacitanddlaster/Slave
Profibus | 224 200 15 32 Master/Slave
CAN 8 40 1 128 Multi-master

“The number of nodes is limited by the bus capacétari 400 Pico Farads

*The maximum number of nodes is dependent on thedeiver loading capability and each
microcontroller has a different fan-out. Most CAfdrisceivers support 32 nodes per network
[18].

3practically 3 meters are possible
*Practically 0.15 meters are possible
*The number of nodes is limited by the bus capaciéamnd bit rate [16].

1.5 Review of Higher Layer Application Protocols (HLP)

The choice of CAN bus was not the final decisiorbéomade during the protocol design. A
higher layer protocol is still required to be deped on top of the low level kernel provided
by CAN controller in the form of a physical layedata link layer and error handling

capability. A review was done on the higher laygplecation protocols that already exist.

1.5.1 Previous CAN-Protocol Developments in the ESL

One of the protocols reviewed was the one propbsed.A. Koekemoer [2]. The proposed

protocol can be summarized as follows:

10
CHAPTER 1. BACKGROUND

A dual redundant CAN protocol was proposed, this $etup used an electromechanical relay

to manage the CAN traffic between a CAN primary bod a CAN secondary (backup) bus.

A standard CAN frame format was used and all thesages were identified by an 11-bit
identifier. A typical address mechanism proposeddtemetry and telecommand messages is

shown in figure 1.3.

-4 11-bit arbitration field——m»-——8-byte Data field—»
MSB

B <[x [x[x[n]Y][Y]Y][Y]e

LsB
HEEEEN
D10 < Address » FTLM chi SeT 'DT & »<Physical Dat L]

Figure 1.3: Proposed CAN 11-Bit Frame

Based on figure 1.3, it was proposed that the pobtwill be handled as follows:

. The most significant bit in the 11-bit arbitratidield selects either a telecommand
message (T&T sel. = 0) or a telemetry message (3&T= 1). Since CAN bus uses a bitwise

arbitration, this scheme meant that the telecommagssage would have the highest priority.

. The next four bits from the most significant sideuld be the node address and this

gives a maximum of 16 nodes.
. The next bit is reserved and recommended to be fuifiore compatibility.

. Sixteen different channels are handled by the Adits in the arbitration field. These
4 bits are meaningless if a telemetry messagenis@ethe bus and it is recommended that
they take the sequence: ‘0101’ to minimize bitfatgt

Two bytes of the data field were reserved for stdigeol control within a CAN network but
this sub-protocol control field was eventually msied because the telemetry messages only

used 6 bytes and the telecommand messages used loytlys of the data field.

For a telecommand message on the bus only the mddeess contains meaningful
information. The protocol implemented a maximuni6ftelecommand channels. Each node
used four bytes of the data field to change theistaf each channel to one of the following
states: 00 = reserved and this will have no eféecthe channel, 01 = set the channel, 10 =
reset the channel, 11 = leave the channel unchamged6 telecommand channels were

addressed in one 4-byte packet.

11
CHAPTER 1. BACKGROUND

The proposed scheme above is inefficient in a nurobeays:

1) Using an 11-bit identifier with a few reservatsbnstead of a 29-bit identifier reduces the
number of nodes and channels that can be addressed.

2) Using two bytes of the data field for sub-pratocontrol purposes which eventually were
not used, is not a viable solution given the faet {CAN already has a limited bandwidth of
8-bytes.

3) Telecommand messages do not make full use dftHsmt identifier; the reserved bits and
the other unused bits in the arbitration field cobé used to address a specific channel. The
data field could have been used to set non-disgtettes as suggested, e.g. to setup more
channel control values like a reaction wheel speefrence, calibrating of specific

parameters, etc.

Apparently the protocol only handled telemetry aslécommand messages using the CAN
bus. Large file transfers and code upload were doseg the RS-232 transceiver

(MAX232CWE) interface for testing purposes [2]. Fie transfer or code upload handling

protocol was discussed since the focus was on dhemand and data handling physical
architecture and not the protocol details.

1.5.2 Commercial Higher Layer Application Protocols

A wide range of commercial protocols that are bame€ AN technology exist and a review
of a few was done to evaluate the feasibility ofstomizing these protocols to the
requirements of a Nanosatellite application. Theamercial higher layer protocols that were
considered are CANopen and DeviceNet. Each onebwelly studied and a short summary
about each is given below. CANKingdom is anothghbr layer application protocol based
on the CAN technology, but it was not consideredabse it is designed specifically for

factory machine systems use.

1.5.2.1 CANopen

This high layer protocol is derived from the CAN-{#gation Layer (CAL) technology
developed by Phillips for Medical Systems. To pdavithe interoperability and

interchangeability of different devices to confotm the CANopen protocol requires a

12
CHAPTER 1. BACKGROUND

standardized application layer, device profilesnownication profile, device functionality

and system administration [21]. These componertfuather explained as follows:

. The application layer provides a set of services and the interfaces/éoyedevice on

the network.

. The communication profile provides the means to configure devices and the

communication data and defines how the data isedhagtween devices.
. Device profile gives the device-specific attributes (e.g. I/Cad@ndling, sensors, etc.).

The CANopen protocol derives its functionality fraime following CAL application layer

service elements:

1) CAN-based Message specificatiodMS) - which offers object attributes (data type,
event, domain, data size etc.) about the messagfeeoBAN bus; to design and specify how
the functionality of each device (a node) can leessed through its CAN interface.

2) Network ManagementNMT) — offers services to support network managemnegt,to

initialize, start or stop nodes, detect node faguiThis is done by a master node.

3) Distributor OBT) — offers dynamic distribution of CAN identifiets the nodes on the
network by a master node.

4) Layer ManagementLMT) — offers the ability to change the NMT-address @fode or
change bit-timing and baud rate of the CAN network.

CANopen is built on top of these CAL services ahd CAL standards and profiles are
defined by CAN in Automation (CiA) [22]. The relatiship between OSI network model and
CANopen protocol is illustrated in figure 1.4.

13
CHAPTER 1. BACKGROUND

Device Profile Device Profile | Device Profile :
CiA DSP-401 CiA DSP-404 1 A DSP-xxx :
I_ _________ 1
OS5I Layer 7 I I —l_
Application Communication Profile CiA DS-301
Layer

CAN 2.0A

IS0 11898

Figure 1.4: CANopen OSI Model

The CiA DSP-xxx in figure 1.4 stands for CAN in Autation Device Specification Profiles
and these are standardized by the CiA group [2i8.d0mpletely specifies how to setup and
configure any device that is connected on the CABIto conform to the CANopen protocol.
Users of this protocol must customize their applicato the device specification profiles
provided by CiA [22].

. CANopen Communication

The central concept to the CANopen protocol is diegice Object Dictionary (OD). The
CANopen object dictionary is an ordered groupingobjects (parameters of each CAN
message on the bus e.g. message data type, medsaiifeer, physical data); each object is
addressed using a 16-bit index. To allow individements of structures of data to be
accessed an 8-bit sub-index is defined. For evedgin the network there exists an OD. The
OD contains all parameters about the messageanhaiandled by each node and its behavior
on the network. Optional features in the commuiacapart as well as on the device specific
part can be added (to the object dictionary) asired for a specific application. The master
node stores the object dictionary of all nodegsrapplication code.

The CANopen communication protocol defines four sage types:

14
CHAPTER 1. BACKGROUND

1) Administrative messages - these messages are imapteth based on the Network
management of the CAL application layer servicanelets. The master node transmits all
these messages to the slaves to manage the network.

2) Service Data Objects (SDO) — these messages imptaime transfer of data of any
length, even for data lengths more than 8 bytesharelled by these messages. However,
these messages have a considerable overhead @akgtes of the data field) and only
transmit 4 data bytes maximum in each CAN message.

3) Process Data Object (PDO) — these messages ar¢ousadsfer real time data; in the
case of the satellite application these messagkdeavused for telemetry and telecommand
messaging. These have no protocol overhead inataefiéld and CAN messages can be up to
8 bytes. The data contents in each PDO are defimedgh the CAN 11-bit identifier.

The PDO is described by 2 objects in the Objediathary:

. PDO Communication Parameter - determines CAN 1idbittifier used to address that

specific message.

. PDO Mapping Parameter — this maps the messageetbsthof objects in the Object

dictionary.

4) Predefined messages or Special function objedissetinclude synchronisation used
to synchronize tasks network-wide, particularly feal time control applicationime stamp
messagesare also provided which gives all the nodes a comrime frame.Node/Life
guardingservice is also provided: The master node monttesstate of each node and this is
called node guardingWhen a slave node optionally monitors the statéhefmaster node
after it received the node guard message, it isvknaslife guarding. Emergencgnessages
are triggered by the occurrence of a device intezrrar. Boot-up procesmessages are also
handled as special function objects, where immelyiaafter power-up the master node

commands the slaves to enteriaitializing, pre-operational, operational or stopped state .

The relationship between the CAN communication bus Object Dictionary and the
application software is illustrated in figure 1.5.

15
CHAPTER 1. BACKGROUND

Communication Object Application:
CAN Interface: Dictionary: I/0
} Data T s Applicati bl
PDOs ata Types, Application
> SD0s. Communication Program,]
Special Function Obyjects, Device Profile -
Objects, Application Implementation
NMT Objects Objects

Figure 1.5: CANopen device bus Interface

The messages are addressed using a CAN 11-bitfidewnthich is distributed in 2 parts, the
4-bit function code and the 7-bit node-ID, as shawfigure 1.6.

Bit number

1009|1876 |54 (32|10

P4 >
Function Code Node-ID

Figure 1.6: CANopen 11-bit ID-Distribution

A maximum of 127 nodes is allowed (0 not allowedthe implementation). The function

code determines 16 possible message objects théecaddressed on the bus.

This protocol is not very efficient for satellitgpg@ications as it is not flexible because it
already gives defined and standardized messagds, s@me of these messages may never be
used. The inherent master/salve architecture demgsaa lot of traffic in one central CPU and
this is not reliable in case of a master failurbeTuse of a CAN 11-bit identifier limits
message types and channels to be addressed. Thews® 4 bytes for protocol overhead in
some of the messages is also one of the shortcsrfonghis protocol.

The CANopen protocol has an advantage of modulality to the way it is designed with
device profiles.

1.5.2.2 DeviceNet

DeviceNet is a digital, multi-drop network that omcts and serves as a communication

network between industrial controllers and I/O desi Each device and/or controller is a

16
CHAPTER 1. BACKGROUND

node on the network. DeviceNet is a producer-comsunetwork that supports multiple
communication network architectures and messageifration. DeviceNet systems can be
configured to operate in a master-slave or a nmudtster architecture using peer-to-peer
communication. DeviceNet also has the feature tdinimg electric power from the network.
This allows devices with limited power requirements be powered directly from the

network, reducing the connection points and physiea [23].

DeviceNet uses a trunk-line/drop-line topology tlpabvides separate wire pairs for both
signal and power (8A at 24VDC) distribution asshtiated in figure 1.7. Thick or thin cable
can be used for either trunk lines or drop linesds0-end network length varies with data
rate and cable thickness (maximum trunk lengthQsf deters at maximum baud rate of 500
kbps, the drop length is limited to 6 meters).

Terminator Tap Terminator
/

(1] s

Trunk Line

-
L
Mode| e

Wode anrIﬂ
Node Emd::

Moge) [Mode
Node Node
L7 LY

dern Drgp Shor Drops

Figure 1.7: DeviceNet Topology

The DeviceNet protocol adapts a Control and InfaiomaProtocol (CIP) layer on top of the
CAN low level protocol [24]. CIP messaging is digicobject oriented (each message is
handled as an object on the network). Each objestattributes (data), services (commands)
and behavior (reaction to events). Two differemety of objects are defined in the CIP
specification:Required objectgobjects required by the specification to be ideldi in every
CIP device; these objects include the Identity Ohj@ Message Router object and a Network
object) andApplication-specificobjects (objects that define the data encapsulatethe
device; these objects are specific to the devipe §nd function.)Vendor-specifior user-
defined objects can also be defined by product vendorgher application program for

situations where a product requires functionahgttis not in the specification.

17
CHAPTER 1. BACKGROUND

User and
Applicatio
Layer

Vendor
Specific
Objects

Transport Layer{ CIP Communications: Connected, Unconnected, I/, Explicit

Figure 1.8: DeviceNet Layer Model

The relationship between the DeviceNet network rhaohel the OSI/ISO layer model is
shown in figure 1.8. The transport layer provides CIP standard communication profiles

with which the application layer interfaces.
The following messaging schemes are supportedéipdviceNet protocol:

. Polling: The DeviceNet master node asks each device tomeardeive an update of its

status.

. Strobing: The master node broadcasts a request to all defacesstatus update. Node

numbers can be assigned to prioritize messages.

. Cyclic: Devices automatically send messages on scheduladais and this scheme is
often used in tandem with Change of State messdgimgsure that the device is still

functional.

. Change of State:Devices send messages only when their states ch@higeoccupies
an absolute minimum of time on the network, ancrgd network using Change of
State can often outperform a polling network. Timsthod is the most time efficient,
but can be the least precise way to obtain infaonafrom devices because the

throughput and response times become statistisgdad of deterministic.

18
CHAPTER 1. BACKGROUND

. Explicit Messaging: The explicit-messaging feature is generally usectcémfiguration
instead of processing of data. This feature is tisegdate parameters that change from time

to time but do not change as often as the procssitdelf.

. Fragmented Messageskor data that requires more than maximum 8 bytetatd per
node per request, the data can be divided intonamyber of 6-byte segments (there are 2
bytes of overhead in the data field) and re-assedndl the other end.

The addressing scheme used is an 11-bit CAN identifhe 11-bit identifier is distributed
using an object oriented model, where each messageated as an object and it has

attributes and properties. The information in tddrassing scheme includes [1]:

Device Address- this bit field for the node identification re$eto a media access identifier
(MAC ID) and a maximum of 64 nodes can be addresEkd protocol also implements the

duplicate MAC ID detection algorithm at power-up.

Class ldentifier(Class ID) — the class here refers to a set adéatbjthat represent the same
type of system component. This 1-bit field combingth the Instance ID and Attribute 1D
identifies device data assigned to each objecs dash as presence sensing in discrete 1/0O.

Instance Identifier(Instance ID) — this bit field with class ID anttrédoute ID represents the

actual instance of each object in a class e.geaifspvalue in a calibration table.

Attribute identifier (Attribute ID) — this bit field with class ID anisistance ID combination

gives the status information about an object dtgr flelays, acceleration rate, I/O on or off.

The identifier distribution for the message typeat tDeviceNet protocol supports is generally
predefined as shown in table 1.2. Each message gitgect is completely identified by the 3
message object attributes (class ID, instance D atribute ID).

The supported message types, in a master/slaviegtane example, are grouped as follows:

. Message Groupl:Slave's I/O Change of State or Cyclic Message, €#avO Bit-
Strobe Response Message, Slave's I/O Poll Respbessage

. Message Group2:Master's 1/0O Bit-Strobe Command MessaBeserved for Master's

Use, Master's change of state/cyclic acknowledgesages,Slave's Explicit Response

19
CHAPTER 1. BACKGROUND

Messages, Master's Connected Explicit Request MessaMaster's /O poll

command/change of State/cyclic messa@emglicate MAC ID Check Messages.

Table 1.2:'DeviceNet Identifier Distribution

IDENTIFIER BITS HEX IDENTITY USAGE
10/o|8|7|6]|5|a[3]2]1] 0] RANGE '
Group 1 "
0 Source MAC ID 000 - 3ff |Message Group 1
Message ID 9 P
Group 2

1 (0 MAC ID 400 - 5ff | Message Group 2

Message ID d P

Group 3 i _

1 (1 Message ID Source MAC ID 600 - 7bf | Message Group 3
1|11]1]1 Group(%l‘\:leqs;age D 1700 - 7ef Message Group 4

=1
1 1 1 1 1 1 1 XX | X ¥ | 7f0 - 7ff | Invalid CAN Identifiers

0|9 |8 |7|6|(5|4|3(2(1|0
'Source: New in Version1.3 of Volume 1 of the Deiee Specification [24]

The other message groups (groups 3 & 4) are dependathe application, the specific data
required and the communication architecture. Thwsegroups are defined by device profiles

but can be customized into user application [24].

The DeviceNet protocol provides a number of ativacfeatures like an object oriented
approach to message handling. The modularity idemented by device profiles and the
duplicate node or duplicate identifier detectiogoaithm. The shortcoming of this protocol is
its use of an 11-bit CAN identifier, which addressmly 64 nodes per network, instead of a
29-bit identifier. This limits the number of nodes be addressed. The multi-architecture

nature of this protocol implementation gives theigeer a degree of flexibility.

The predefined identifier allocation leaves theigiesr with only 27 freely available priorities

for each node.

Based on the survey done on the high layer appitairotocols discussed above, it was
decided that although these protocols could be faetthe Nanosatellite application, some of
them are bounded by the standards that must berooed to. This constraint limits the
flexibility and optimization of the protocol thatilwsuit the project requirements. The other
constraint is that these protocols are limited he humber of addressable nodes on the

network and they implement a master/slave architeain top of the CAN protocol.

The ultimate decision was to design a protocol fitsxconception to the implementation so

that most of project requirements could be met.

20
CHAPTER 1. BACKGROUND

1.6 Thesis Overview

In this section a very brief overview of how thetref the thesis is structured and the contents
of each section will be presented. The thesis stgsif five chapters which build onto one
another. A basic knowledge of a CAN bus technoleggssumed throughout the text and

detailed information about the CAN protocol is fdun the appendices section.

The research requirement leading up to this stualy defined when the satellite group in the
ESL embarked on a project to design and build aoslatellite. One of the requirements for
this project was obviously the need to develop aroanications protocol to provide

coordinated network wide onboard communication seed

Finding the communications protocol that will bestit the Nanosatellite application
instigated the research reported in this documEm. first chapter introduces the project by
looking at various options available and conseduesglects the best approach for the
development of the communications protocol. The GAIS was chosen with the motivation

given earlier in this chapter.

With all the tools and the literature survey codeli@ chapter one, the protocol was
conceptualized further when it was decided whiclssages were to be supported by the
protocol and how these messages would be handledpt& two is where most of the
important details about the protocol design areeoed. This chapter looks at the protocol
holistically i.e. protocol design from the concg@ptase to the test platform hardware and the

methodology used to test and debug the protocol.

SREAM Micro- !’
Controller lZI(_. .
—_—r %
FLASH cxD E
CAN_L =
CAN T =] &

Controller =

Driver

Figure 1.9: A CAN Module Schematic

The test platform is based on the AVR AT90CAN128cnmcontroller. The test setup

consisted of two identical nodes and each nodéhealsasic features shown in figure 1.9.

21
CHAPTER 1. BACKGROUND

Chapter 3 is based mainly on the realization ofgt@ocol implementation. In this chapter
the hardware and software interfacing details akeied thoroughly. It is in this chapter that
the conceptual details were evaluated to see whekiee design targets were practically
viable. In this chapter the low level drivers, thetocol software and the application test
software are developed to meet the design spetiiicaSome decisions were also made to
modify the initial ideas and to optimize the praibcAs an example, the way large file
transfers are handled was changed. Originally thessfers were handled by transferring the
complete file and then to wait for an acknowledgetrspecifying the counters for the lost

packets. This was changed to acknowledge everyepacki adding a timeout mechanism.

In chapter 4 various tests were done to evaluaept#rformance of the communications

protocol. The main tests reported on were:
. Measuring the system response times.
. Measuring the protocol efficiency.

. Evaluating the system reliability by loading the I€Aus with different messages and to
leave the communication running for a long timeet@luate consistency of the protocol

response.

. The power consumption on the development boardmeesured and compared to the
theoretically expected power consumption of the @TAN128 CAN controller in active
mode (33mW).

Chapter 5 is the conclusion and recommendationis. citapter draws some final conclusions
about the performance of the protocol. Recommeondsitere made about future work to
further develop and optimize the protocol. Othgomrting information is presented in the

appendices, including the software source code.

Chapter 2

The CAN Protocol Conceptual System Design

2.1 Supporting Hardware Consideration

The choice of the hardware has an influence ord#tailed design of the protocol and this
will be discussed in the subsequent chapters. Thset nmportant factors considered in
choosing the target microcontroller are: low powsemsumption, small foot print and
reliability. Based on these requirements and theerst features needed for the protocol
functionality, table 2.1 presents the low-power mmeontrollers that were considered.

Table 2.1:Microcontroller Comparison

II\:/Ian%:falgture ATMEL-8051 ATMEL-AVR Cygnal-8051 | Dallas Infenion/Siemens | Phillips
amily-Part (C8051F040)| Semi. (C515C-8R/SE) | (P8OC591)
Number (AT89C51CCO3) | (AT90CAN128) (DS80C410)
Power

3.0-55 27-55 27-3.6 3.0-3.6 0-55 5%
Supply[Volts]
Active
Supply 24[5.5 V] 10[3.0 V] 10[2.7 V] 35[3.6V] 25.5[5.5V] 45[5.5]
Current[mA]
Clock Speed 16[16] 25[25] 75[75] 10[1.66] 16[2.66]
MHz[MIPS] 40[5] ' '
Number of
Message 15 15 32 15 15 15
Objects
FLASH
Program 64 128 64 64 64 16
(Kbytes)
RAM 4 + 256 64 + 512

18 4 256 bytes 3
(Kbytes) bytes bytes

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 23

A/D
Channels 8[10] 8[10] 8[12] . 8[10] 6[10]
[Bits]
Timers
3 4 5 4 3 3

All the considered microcontrollers support versi@@AN 2.0A (11-bit identifier version) and
CANZ2.0B (29-bit identifier version).

2.1.1 Choosing a Target Microcontroller

The demonstration platform for the protocol wasliy chosen to be a low-power CMOS 8-
bit microcontroller based on the AVR (AT90CAN12&hanced RISC architecture. The
choice was informed by the availability of the sagimg equipment (in circuit emulators,

programmers, cost effective compilers etc.), th&t om top of the parametric features shown
in table 2.1. This microcontroller provides theldaling attractive features that support

protocol development and each feature is givened tescription as follows:
e Upto 16 MIPS at 16 MHz

* 4 Kbytes Internal SRAM

« 4 Kbytes EPROM

* 128 Kbytes In-System Programmable FLASH memory

* CAN Controller 2.0A and 2.0B

* Watchdog timer with On-chip oscillator

» 8-channel, 10-bit A/D converter

e 53 programmable I/O lines

» Operating voltages: 2.7 to 5.5 V; active supplyrent of 11 mA in a 3.3V supply
(36mW) at 8 MHz.

The chip provides more features but only those @ahatused mostly in the detailed design of

the protocol were considered in detail. The prodideatures were enough since the main

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 24

focus was more on the software development thathenhardware design. The protocol
design would be very basic and no large memoryesdad as the main focus will be to
facilitate the CAN traffic.

Again since the project focus was on software dgwekent it has to be mentioned that the
chip was used as embedded on the DVK9OCAN128 deredat board from ATMEL. This
development board provides extra components ance sofimthem were used for debug
purposes.

The AVR AT90CAN128 has two main memory spaces,Diatga memory and the Program
memory space, and these are linear and reguldraaensin figures 2.1 and 2.2 respectively.
The memory map for this microcontroller is showrtable 2.2. The 128 Kbytes of FLASH
memory is divided into two sections: the 120 Kbyggsgplication section and the 8 Kbytes
Bootloader section. This memory organization makgmssible to program the chip while

the code on the boot section is running.

Table 2.2: AT90CAN128 Memory Mapping

Memory Size Start Address End Address
FLASH 128 Kbytes 0x00000 Ox1FFEFOXFFFE
32 Registers 32 bytes 0x0000 0x001F

I/O Registers 64 bytes 0x0020 O0x005F

External I/O Registers | 160 bytes 0x0060 O0x00FF

Internal SRAM 4 Kbytes 0x0100 Ox10FF

External Memory 0 to 64 Kbytes 0x1100 OxFFFF
EEPROM 1 Kbyte 0x0000 OXOFFF

! Byte addressable? Word (16-bit) addressable

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 25

O=00

Working Registers

D20

150 Redsters

D100

DETACKEMD
Data Stack

Ox100 +
Data Stack Size

Slobal Yariables

mEsiloinfes HSTACKEMND
Crata Stack Size+
Slobal War, Size Harchware Stack

SE initial value

_HEAP_START_

Heap

O:x10FF

Figure 2.1: SRAM Data Memory Map

The Data Stack area is used to dynamically staral keariables, passing function parameters
and saving registers during interrupt routine sing. After the initial software code
compilation, 78 bytes were used for the Data Stakfinally 256 bytes were reserved to this

memory since the application programs will increthgememory requirements.

In the protocol implementation the heap area has lassigned a value of 0 since no dynamic
memory functions are being used. This means tleastdck pointer (SP) initial value points at
the end of SRAM.

The Hardware Stack area is used for storing thetiloms return addresses and a maximum of
512 bytes have been reserved. During the prograscudion the Hardware Stack grows
downwards to the Global Variables area from the BRAnd (Ox10FF). With this
arrangement there is enough SRAM memory availaislgéneral use.

The maximum Bootloader section is 8 Kbytes but ¢lais be less depending on the code size.
The memory is byte addressable for the data merspage and it is both byte and word

addressable for the program FLASH memory.

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 26

FLASH Start - 0x0000

Application Section
(120 Kbytes)

Boot Start Address — OxE000 (8 Kbytes) or OxFCOO0(1Kbyte)

Boot Loader Section
(8 Kbytes)

FLASH End - OXFFFF

Figure 2.2 Program Memory Map
2.1.2 The Other Supporting Components

The test platform consisted of two identical depet@nt DVK90CAN128 boards [4] from

ATMEL each equipped with the CAN controller. Thdsgards are also equipped with the
JTAG interface for parallel programming. The JTAGIEKII programmer was used to

program and debug the software based on the AVRIOUD integrated development

environment (IDE). The AVRSTUDIO 4 is freely avdila on the ATMEL website [4].

The PEAK-System’s PCAN PCI card [5] was also usednalyze the traffic on the CAN

network.

Most of the software drivers are developed in Ghasmain programming language compiled
with CodevisionAVR C compiler [6]. However some dimautines are written in assembler
where optimization for speed was a priority. Thesd assembler routines were easily

compiled using CodevisionAVR C compiler since tbenpiler handles inline assembler.
2.1.3 Bus Architecture Overview

The protocol is designed to work in a distributeANCbus network. The system test setup
consists of two development boards each with a @aibrocontroller as mentioned above.

These CAN microcontrollers are connected to a PEXN card which was used to monitor

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 27

the CAN traffic. The two development boards aradited through the two wire differential
lines (twisted pair cable must be used for noisenumity) designed to meet ISO 11898
specification for CAN communication. The cable isda of two signal wires CAN high
(CAN_H) and CAN low (CAN_L) with a nominal charagtgic line impedance of 120.
Line termination is provided through 12Dtermination resistors that are located at bottsend
of a bus network. A high level connection of thendastration platform is shown in figure
2.3.

Noide

MEU

CAN Controller

)

Transceiver

Node Node

12042 12082 t

Figure 2.3: A Terminated CAN Bus Architecture

Figure 2.3 shows a CAN bus distributed architectame this demonstrates how the test
platform has been setup together with the PCAN¢@d.

The maximum number of CAN nodes, according to thmtration identifier allocation in
section 2.2.1 below, is limited to 256 nodes bwcpcally this is limited by the individual
line driving capability of CAN transceiver (fan-Que normal number of nodes that can be
attached to a single CAN bus is between 32 andl6é. ATMEL AT6660 transceiver was
used as it came embedded on the development bégrdt[speeds of 1Mbps, a maximum
cable length of 40 meters can be used. This isusectne arbitration scheme requires that the
wave front of the signal can propagate to the masiote node and back again before the bit

is sampled, as the transmitting node must morsarwn start bit.

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 28

2.2 The Protocol Design Consideration

This section describes the development of the pobtmom conception to implementation. It
describes how each of the supported message tgplandled by the protocol and the
prioritisation of the message across the netwotie Priority of each of these supported
message types is determined by the CAN 29-bit ifilent

Every CAN message on the network contains a maxinti® bytes of data and this is a
limitation for large file transfers and thus larfges are fragmented into small 8-byte packets
that can be transmitted on the CAN bus. CAN bugdman go up to 1Mbps at 8MHz clock.
These bus considerations are critical to the detsign of the protocol. Another feature of
the CAN bus is a multi-cast and a multi-master iéecture to provide system wide data

transfer consistency.
2.2.1The CAN Identifier Assignment

The most important design requirement for a CANgol is the distribution of the identifier
information across the messages that will be hahdfethe CAN bus. The protocol is based
on CAN 2.0B and it uses the 29-bit ID to implemém supported message types. The
priority of the message on the bus is determinedhgy message ID and it is therefore
important to assign the identifiers during desigmetsuch that the messages intended as high

priority, for example the most time critical messsag

The 29 bit ID is divided into four fields as shownrfigure 2.4 below.

MSB

/ L5B
—\Message Type ><Cmd,-" Chls IﬂdK>< Source Addr‘es>< Dest. Address

5 Bits 8 Bits 8 Bits 8 Bits

Figure 2.4: A 29-Bit ID Allocation

Each of the above fields in the identifier has thkowing meaning based on the message

type it tags:

* Message type field this field identifies what message type is santhe network. There
are 32 possible different message types that cadfeessed. Message type 0 is the highest

priority message.

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 29

e The file command, control, channel or index field this is made specific by the type of
the message sent on the bus; in case of telematryedecommand messages this identifies
the channel and in case of the file or data trangfis field indicates the control or the
command field that specifies what must be done thith data that is read or written to a
specific memory address. This field will changectmtrol flow index which monitors the

incoming data packets.

e The Source and Destination Address fields- each node will be allocated a unique
address to be used as the source during transmgsaitd as a destination address during
receptions. When a node gets a request it sedsatptance filter with the destination address
field to its own node address and accept only feamé@dressed to it and on response the

source and destination fields are swapped andpamss is sent.

The supported message types for this protocol iatedl in table 2.3 below according to

priority from the lowest identifier value.

Time synchronization and debug messages will badm@ast messages as can be seen in table
2.3 below; their destination address is 0. Evergen@n the network must have their
acceptance filters masked to this broadcast addiréssy want to receive these messages.

These broadcast messages will not be acknowledged.

In all transmissions on the CAN bus all the addngssr message identification information
must be carried in the 29-bit arbitration field a&hé 8 byte data field must only be used for
data. All message types except for debug and the 8ynchronization messages will be
acknowledged and this acknowledgement will be asamgss type on its own as can be seen on
table 2.3. The xx symbols indicate an unassigrehigel, source address or a destination
address and these are message packet dependathirdhelumn of table 2.3 gives a brief

idea of what each message type does.

Table 2.3: The Protocol Supported Message Types

Message Type Identifier Range Comment/Description

Time Synchronization 0x0000xx00 Broadcast Unix Time

Telecommand Request OXO0LXXXXXX Command/Request

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 30

Telecommand Response OX02XXXXXX Acknowledgement
Telecommand Not OXO3XXXXXX Command failure Reason
Acknowledgement

Telemetry Request OXO4XXXXXX Request

Telemetry Response OXOSXXXXXX Response

Telemetry Not Acknowledgement OXO6XXXXXX Reason

Unsolicited Telemetry Request OXO7XXXXXX Requespferiodic response
File Header Transfer OXO8XXXXXX Start File transfer

File Header Transfer OXO9XXXXXX Response to initiate file
Acknowledgement transfer

File Data Transfer OXOAXXXXXX Data packets

File Data Transfer OXOBXXXXXX Each data packet
Acknowledgement acknowledged

File Data Transfer Not OXOCXXXXXX Data packet lost
Acknowledgement

Debug Messages 0x0D00xx00 Broadcast string

2.2.2 Message Handling and Prioritization

Each of the message types in table 2.3 are designbd handled in a specific way and a
description of each is detailed in this sectiorborief reasoning as to why each message type

takes a specific priority will also be discussegash message type is described.

* Time Synchronization - For the mission life of the satellite the CANst&gm needs to
communicate accurate and stable system time foodks to synchronize their UNIX time to

a master clock. Time synchronization should be daheregular intervals to keep all

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 31

subsystem events within real time limits and theohsystem on time and accurate. This
would avoid using delayed or old data and to exedasks synchronized with the data

measurements.

The master clock on the OBC or the GPS will broatithe system UNIX time at regular
intervals. The time will be 6 bytes where the filsbytes will determine the time in UNIX
seconds and the next 2 bytes the second fractiomililseconds. Time synchronization
messages have the highest priority on the bus becéime accuracy is an important
parameter for the satellite applications like thtuale determination and control system
(ADCS).

The system time will be incremented every 1 millaed and it can run from a timer interrupt

of a real-time clock on the OBC.

* Telecommand messages In all cases these messages must be less drtequbytes in

the data field and no data fragmentation is requitgach message will be acknowledged
positively or negatively. There are 256 possibledemmand channels and only 15 standard
telecommand channels are currently reserved fontiie and the application program can

expand the list to include user specific telecominamannels.

Table 2.4:Standard Telecommand Channels

TC Channel Number TC Description Approximate size nits)

0x00 Clear the Run Time 0 bytes seconds
0x01 Clear CAN counters 0 bytes -

0x02 Clear Reset Counters 0 bytes -

0x03 Execute code at addres? or 4 bytes Address

These messages are the second highest priorignasecseen on table 2.3. Table 2.4 lists the
standard telecommand channels. These are the slactnnels implemented in the protocol
so far.

If a telecommand request has not been respondaitietoa specific period, the request for the

same channel can be made if the source of the sedaeides to do so.

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 32

A typical telecommand sequence exchange will ldakfigure 2.5 below. The acknowledge
message will be carrying the previous value of theecific channel or just an
acknowledgement saying a command has been exeoutadnot acknowledge message

specifying the reason.

Command Source| [command Destination
Telecommand
Eequest -

o

Telecommand Ack

"

a

Figure 2.5: A Telecommand Exchange

* Telemetry messages- they would be handled the same as the telecoshmeassages
above. The difference is on the data field; while telecommand sends the command data the
telemetry message will contain no data and it retgudata from the destination node. There
will also be 256 possible telemetry channels wifhaf those being the standard telemetry

channels. Table 2.5 lists these standard telerchtgnels.

* Unsolicited Telemetry — the difference from normal telemetry messagesthest
unsolicited telemetry responds periodically forleaeguest. To setup an unsolicited telemetry
request, the repeat value and the repeat periotlmeuspecified. The repeat period will take 4
bytes of the 8- bytes data field and a further @$&wvill determine the repeat value. If there is
a need to cancel an unsolicited telemetry; a reguiéls the same channel and source address
must be made with a period of O or a repeat valuB.dlo setup a request that repeats
indefinitely a repeat value of OXxFFFF must be djesti An Unsolicited telemetry request will

be setup as shown in figure 2. 6.

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN

33

Repeat Period in seconds units

Repeat Value

Data[0] | Data[1]

Data[2] | Data[3] Data[4]

Data[5]

Figure 2.6: Unsolicited Telemetry Format

Note: In future the resolution of the repeat pergash be increased into a millisecond unit

resolution but care must be taken in specifyingrépeat period because the 32 bit variable

representing milliseconds will overflow after apgiroately: (2%(1000))/(86400) ~ 49.71

days. So a repeat period of more 50 days canngpéafied and any period specified close to

overflow would lose that unsolicited telemetry regu

Table 2.5:Standard Telemetry Channels

Channel Number

Telemetry Info/Data

Approximate Size

Units

0x00 Local Clock UNIX Time | 6 bytes Seconds + mdkisnds
0x01 Run Time 4 bytes seconds
0x02 Temperature 2 bytes M 6f °oC
0x03 CAN node Voltage(5V) 2 bytes 100mvV
0x04 CAN node Current 2 bytes mA
0x05 TLM Requests 2 bytes -

0x06 TLM Response (Ack) 2 bytes -

0x07 TLM Response (Nack) 2 bytes -

0x08 TLCMD Requests 2 bytes -

0x09 TLCMD Response (Ack) 2 bytes -

Ox0A TLCMD Response /Nack 2 bytes -

0x0B Reset Count 2 bytes -

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 34

0x0C Frames received 4 bytes -
0x0D Frames transmitted 4 bytes -
Ox0E CAN Buss Off Count 2 bytes -
OxOF CAN Errors 2 bytes -

» File and data transfers— CAN has a small data payload per packet (8 hyt@smum)
which minimizes the bus throughput. Large file sf@ns would then need to be fragmented
into less than or equal to 8 bytes packets. Whiange file is transferred across the CAN bus
a file transfer header is first sent. The headenldv@ontain 4 bytes to specify the memory
start address and the other 4 bytes of the 8 loigtzsfield will determine the total data size of
the file to be transferred.

During the file header transfer, the second figle (control field) of the 29-bit arbitration
field will contain the command to specify what datetion will follow after the header

transfer has been acknowledged by the receiver.

The data transfer will begin immediately after theader acknowledgement and only one
packet of data will be transferred, the transngttimode will then wait for the

acknowledgement of that packet. The control figldhis case will contain the data index
which specifies the packet number being transfearadl this index is monitored against the
acknowledge that comes back. If the acknowledgddxins not the same as the sent index,
the packet will be retransmitted. A retransmit vailso happen if no acknowledge is received
within a specified timeout period. A retransmittbé same packet will be tried for 3 times
after which the whole file is aborted and declavedieliverable. An index sequence count
mechanisms are implemented at the receiver ar ifinicoming index is out of sequence the
packet will be discarded and a not acknowledgenmesgonse will be sent. If the packet with
the same index number is delivered for 3 timesréoeiver will abort the whole file transfer

and declare it undeliverable.

A typical situation that happens during file traersis demonstrated in figure 2.7. The
transmitter of the file would be throttled by thexeiver, this means that the receiver can send
a message that the transmitter must stop sendiag before the file data is completely

received and it can also ask it to continue aft@hée. This throttling process shown in figure

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 35

2.8 below will depend on the available internal 3R#& the receiving node and the FLASH
programming procedure for a specific microcontroldhen FLASH programming applies
and it will also depend at why the receiver decibestop receiving data (e.g. an error on the
file being delivered, the node wants to executéfardnt high priority task or it tries to abort
data transfer because it has detected that thentitiar is faulty). The AT9OCAN128 has a

specific sequence programming the FLASH memory. Sdtgrience is as follows:
1) Fill a temporary buffer

2) Perform a page erase

3) Perform a page write

The AT90CAN128 FLASH memory is organized in paged aach page is 256 bytes in size.
In case of FLASH programming the receiver will tiethe transmitter after every 256 bytes
and after these 256 bytes have been successfullgrgmmmed into FLASH memory, a

continue message will be sent for more data torbgrammed into FLASH memory.

For this microcontroller, programming FLASH andd® from FLASH requires two special
assembler instructions, Store Program Memory (SBM) Load Program Memory (LPM)
respectively. These instructions must reside inside Bootloader section and the interrupt
vector table must reside in the Bootloader secisiwell. This disables the interrupts from
the application section. It is therefore recommehithat caution be taken when programming
or reading from the FLASH for the AT90OCAN128 micomtroller.

When the full data file has been transferred acrbgstransmitter will release the connection
as shown in figure 2.7 below. The receiver of ke will release the connection, reassemble
the whole file and ultimately act upon it basedtba command that was received in the
header. The typical file commands are:

. Program the FLASH
. FLASH Erase
. Execute program

. File read

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN

Zend Header
Start Timer

Timecut
Zend Header
Start Count
Start Timer

Zend Packect OO0
Start Timer

Zend Paclk 01
Start Timer

Timecout
Send Pack 01
Start Count

Start Timer
Send Packst W
Start Timer

Eeleaze
Connection

———Hdr .
i
f‘LOSt f&. Hdr Aclk
AN
—Hdr —
- —— Hdr Ack—
T Paclzet 00 _ .
a—Data Acls T
T Packet 01
j «—Data Ack ~
SLost £
P
T Packet 01 —
a—Data Acls
T Packet N —
a—Data Ack -

| Incr. Seq. Count

[Destination Mode]

Send Header Acly
Feset Seq. Count

Zend Header Acl
Incr. Seq. Count

Zend Data Ack
Eeszet 5eq. Count

Zend Data Aclks

Zend Data Ack

Send Data Ack

Releaze
Connection

Figure 2.7: File Transfer Flow DiagrariExample

Send First CAN
Packect

ol

) 4

Last CAN
acket ACK?

Y

»

Send Next CAN
Packect in
Sequence

Execute Tasks
or Resolve
Network Status

Y ‘Stop Sending’
Received?

Continue
Sending’

»

v

Release
Connection & Exit

Figure 2.8: Transmitter Data Throttling Mechanism

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 37

All file commands will be acknowledged either pogty or negatively depending on

whether the file operation was successful or not.

* Debug Messages- these lowest priority messages will be broadbgsa node which
wants to send certain debug information on thetbua! the nodes. This debug data will be
less or equal to 8 bytes. The typical informatiorthe debug message can be the node status,
a node warning or debug information after a cerigperation and will be used by any

application. Typical debug information message toak like figure 2.9.

Message Type | CHL/Control Source Address Destinddidaress | Data

0x0D 0x00 OxXX 0x00 “String”

Figure 2.9: A typical Debug Message

The 0xXX symbol means any source node can sendiébag information and XX is the
source address. The control or channel field isOOB8cause there is no specific channel
addressed. In fact this field can contain anythorgoroadcast messages but it should always
be O for future compatibility and protocol expamsioJust like the time synchronization this
message is a broadcast message and thereforénoiie acknowledged.

2.3 Timing Analysis

The message priority and arbitration mechanism empinted in the CAN protocol means it
is difficult to deterministically analyse messagehcies on the CAN bus. However, we need
to know the timing requirements of the applicatipnanalyzing the timing behavior of each
message sent on the bus. To do this time analysisotlowing assumptions about the way

messages are sent on the bus are made [1]:
1) A given messagm has a known message length
2) The identifiers of all messages are known

3) Once buffered, messagecannot take longer time thapto be queued for transmission
by the CAN controller.

From the above assumptions, it is possible to ceenthe worst case latencl, of each
message on the bus. The latency [1] is given by:

CHAPTER 2. THE CAN PROTOCOL CONCEPTUAL DESIGN 38

Rn=Jdm+Cn (2-1)

WhereJ, represents the period of time a message waitsqueae (queuing jitter) and this
depends on how fast the CAN controller services titansmit bufferC, is the worst case
time delay to physically transmit a message orbilge This does not include delays because
of contention on the bus. If it is assumed thatdlsge no other messages being transmitted on
the bus and that the time the CPU takes to semacgansmit buffer is negligible compared
to the total physical bus transmit delay then aqua?.1 is simplified to:

Rm=Cn (2.2)
Therefore, for an extended CAN frame,

R = {[stuff bits + total overhead + data bits]}Tx;

R = {[(54+8by)/5] + 67 + &} X Thit (2.3)

Whereb,, is the message size in bytes which ranges from®Mhytes andy;; is the bit time

on the bus. From equation (2.3) above and the maxi CAN bus speed of 1 Mbps at a
maximum data payload of 8 bytes we have the wase enessage latency of 154 us. This
time analysis is a benchmark calculation and it bel used extensively in Chapter 4 when the
time analyses are done on each message type anevdheation of the software drivers

overhead.

Chapter 3

Detailed Design and Protocol Implementation

This chapter presents the detailed system softwlasegn and its implementation. This
includes the description of how the low level drsr@are developed for interfacing with the
hardware. It also looks at the CAN communicatioot@eol in general. Application software
used during the system testing, as presented iptah&our, was implemented to test and

evaluate the CAN protocol.
3.1 The software structure

The relation between the OSI/ISO layer model ardpitoposed CAN bus protocol is shown
in figure 3.1. The CAN controller implements thaienphysical layer and the data link layer
functionalities in hardware. However the softwarvel that interfaces to these layers must

provide a known and stable state during initiaicat

[E Application

(=1

Presantation

Session ~ 1 Logical Link Control (LLC)
Transport 4 - Acceptance filtering
. P - Overload notification
Network | - Recovery management

Data Link Medium Access Control (MAC)
_ P - Data encapsulation/decapsulation -
L hysical |~ - Frame coding (stuffing/de-stufting) || D79 BY
\ . - Error detectionfsignaling
| - Serialization/deserialization
\ Physical Signaling
- Bit encoding/decoding
- Bit timing/synchronization
\ Physical Medium Attachment
\ - Driverfreceiver characteristics

P | Gl | o= | &M

ISO118398

3 Medium Dependent Interface
\ - Connectors/wires

Figure 3.1: A CAN/OSI Reference model

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 40

The physical and data link layers provide the festwequired to implement the kernel of the
CAN bus protocol according to the ISO/OSI referenmadel. This kernel interfaces to the
protocol software drivers by initializing the harare to handle the CAN communication. The
CAN controller provides the hardware features comem for acceptance filtering and

message management.

There is no networking layer (layer 3) in the impéntation of the protocol since there will
only be a single physical bus and it is not requite have any translation and routing of

addresses across the network.

The transport layer (layer 4) is built into the fmaol to ensure the delivery of short messages
and the splitting of messages longer than 8 bywés packets of 8 bytes or less. The

fragmented packets are acknowledged and reassemlilad layer.

There is no session management implemented, asotienunication will not be session
based and if there is a need of a protocol on tapeoCAN protocol like the TCP/IP stack, it

will have to do its own session management as aragpsession layer on the CAN protocol.

The encryption will have to be implemented by tHe®de that has the communication link
with the ground station. In this protocol applicatino such feature is handled onboard the
satellite (i.e. no presentation layer).

For each message to be transmitted or receivedC#i module contains the message
objects in which all the information regarding thessage (e.g. identifier, data bytes, message

length, etc) are stored.

During the initialization of the module the softwadrivers define which message objects
have their acceptance filter masked for receptiahwhich message objects are to be used for
transmission. Only if the CAN controller receivesnessage whose identifier matches the
node destination address (8 bits of the arbitrafield) the message is accepted and the
application is informed by an interrupt.

The software is designed with a modular approacthas/n in figure 3.2. The software starts
from initializing the module and all the 1/0O porasd the peripherals needed for software
functionality e.g. the hardware timers and watchtiogrs, A/D converter etc. This module is
initialized once at the start of the main functaomd from there the main function executes an
infinite loop. On a CAN interrupt the main functidralts the process it was running and

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 41

executes the interrupt and once the interruptrigca the flow control goes back to the main

function and it resumes the task it was executefgre interruption.

Canlnit()
//nitialize the module
TimerInit()
// Initialize Timers
A/D_Init() TimeSynch();
// Initialize A/D canTim();
unsolTIm();
canTc();
canUsrTIm();
- canUsrTc();
Main() canHdrTrms();
// API functions canDataTrns();
// Poll Flags canDebug();
_—— —) Tx/Rx? R
‘ > /IWatchdogTimer 5
//Stay in the loop
‘ A Tx
Y Y r
CanRx();
CanTx(); /I Extract message from message object

CAN Interrupt Handler();
/I Raise the Receive Flag

) J

// Buffer message & |- /IDetermine message type
Transmit pFunct_t();
/l'lmplement callback function

l

Figure 3.2: Protocol Software Modules

The main function calls the CAN receive handlingdtion (CanRx ()) if there is a message
object that has received a valid message anddhdene through polling the global receive
flag in the main function. This flag will be pollaghtil all the message objects have been
serviced. To service a specific message object reegmonding call back function is
implemented in the CAN receive handling routinetH&é routine that services a specific
message type is finished it returns to the recemgine and this routine will return to the

main function as shown in figure 3.2.

Application Programming Interface:
Application functions, System

e Software management

Protocol Software Drivers; E

~" Message Handling Routines.

Acknowledgements, Subsystem
s Handling routines @
Al Low Level D}-werslz

CAN configuration, CAN

Inttialization, ASD initialization,

Timers Initialization, Interrupt
Handling

Data Link Layer

Physical Layer

Figure 3.3: Protocol Software Structure

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 42

The software drivers are developed to sit on tophef physical and data link layers. The
block diagram in figure 3.3 shows the softwaredtrite from the low level device drivers to
the application interface.

3.1.1 CAN interrupt Handling

The CAN controller interrupt for the AT90CAN128 gimates from one of the sources as
shown in the interrupt structure in figure 3.4 eldhe different interrupts that are enabled

and handled for this protocol are the following:

Interrupt on receive complete OK

. Interrupt on transmit complete OK

Interrupt on error (bit error, stuff error, crcarrform error, acknowledge error)

Interrupt on “Bus Off”

There are other interrupts as shown in figure B4, only the necessary interrupts were
enabled for the protocol development. The interrsipticture in figure 3.4 informs the
application of any communication that happens @GAN bus. These interrupts are handled

by the implemented interrupt handling routine aswghin figure 3.5.

In figure 3.4 below CANSTMOB is the register whigives the status of each message object
and this register informs the application throughiaterrupt. The CANSTMOB is an 8-bit
register whose interrupt is enabled by activathmgdpecific bits in the CAN general interrupt
enable register (CANGIE) , for example enable tnaigsion interrupt bit indicated by ENTX

in figure 3.4.

When an interrupt occurs the corresponding bittsirs the CANSIT or CANGIT registers.
CANSIT register indicates the CAN status interrfgata specific message object. CANGIT
register is the general interrupt register whickegithe general interrupt status of the CAN

bus and not the interrupt status of a specific ags®bject.

To acknowledge a message object interrupt, theesponding bits of CANSTMOB register
(TXOK, RXOK etc) must be cleared by the softwarelaation and similarly for the general

interrupt bits.

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON

CANGIE4 CANGIES CAMGIER

[ENTx | [EMRX | [ENERR |

CANSTMOE2.6 | TXOKN]

CANSTMOB.S [RXOK] [:,

CANSTMOE24 |BERRI]

CAMNSTMOB.3 | SERR[i]

LD

CAMIE 1.2

43

CANSTMOB.2
CANSTMOS.1
"‘a'-.Nz'MDE-‘ - CANGIEZ CANGIE! CANGIES CANGIET
T 0 [eRRi) [EnBx | [ENERG | [ENBOFF|
CANGITS [BXOK > _D > canmT
CAMGIT2 |7
CANGIT.2 D rl.:-’
CANGITA
CANGIT.O
CANGIED
CAMGITE | BOFFI >
CAMGITS [OVRTIM > OVRIT

Figure 3.4: CAN Interrupt Structure

If a message has been received causing an intearuogteive flag is raised inside the interrupt
handling routine and the message interrupt flagtrhascleared before returning to the main

function.

If the interrupt flag has not been cleared, thecessor will generate the interrupt again once
the interrupt routine is exit. If the processoreaafs this for a long duration the software will
hang and the watchdog timer will timeout and résetnode. This is avoided in the software
as shown in figure 3.5 by handling all possible Chfterrupts and by only enabling the

required interrupts used by the protocol duringenmdtialization.

The receive flag is a global variable which widl polled in the main function to determine
and service the message object that caused threuptteThe message object is not serviced
inside the interrupt handling routine, becauseitierrupt handling routine must execute as
fast as possible to make sure that no messagdssardue to long duration functions and

large code executed inside an interrupt handlimgtian.

If the main function has serviced the receive ftagill clear this flag and then check if there
are any pending message objects that still nebé serviced. The CAN interrupt structure in

figure 3.4 is presented as a flow diagram as shaviigure 3.5 below. Only the transmit OK,

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 44

receive OK, “Bus Off” and CAN error interruptseaenabled and handled by the interrupt
handling routine. The other interrupts will remalisabled since they are not used for the

protocol.

CAN
Interrupt

4

1. - [Bus
AN Bus ’ 1 C Ieaf I us _UT?fInte:rmpt
OFF? 2. CAN re-initalize ——
' 3. Increment Bus O Count

. Clear Error Interrupt
2. Increment Error
Count

1. Clear TX Interrupt
2, Increment TX]
Count

1. Clear RX Interrupt
2. Raise Rec. Flag
3. Increment X Count

e
S
o

{ Exit Ja

Figure 3.5: CAN Interrupt Flow Diagram

The flow diagram in figure 3.5 is entered if thesean enabled CAN interrupt and once

entered it checks the interrupt source and therugeis handled accordingly.
3.1.2Node Initialization and configuration

In the AVR AT90CAN128 CAN controller there are 15essage objects in total. Each
message object is handled using the CANPAGE registea pointer to select one of the 15
message objects. The message objects are stgpadesand the 15 message objects have the
same layout or format and they all have the samefsegisters used to access the message
object properties that contain all the informatamout the message on the CAN bus (e.g.

identifier, data bytes, message length, etc).

The message object registers have no initial (dgfstate and proper initialization is required
to make sure the node starts with a known statelantransmit message objects transmit as
required and the acceptance filters are setupceive as required. The acceptance filter is a

CAN hardware mechanism that relieves the CPU frawirty to handle each and every

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 45

incoming received CAN message. This allows the @®0nly respond to CAN frames it is

expecting (i.e. matches the message object acaepfdter). To setup the acceptance filter a
29-bit identifier mask is setup to enable the bitshe 29-bit identifier that must be checked
to enable reception. In this protocol the receiviogle sets up the identifier mask to match its
8-bit node address in the destination address.fiélthe destination address matches, the
lowest message object number will accept the highrésrity message based on the identifier
value of the incoming message. This message ohjdicstore all its values until a new

initialization is done and a transmission or remepis completed by that message object.

In this protocol implementation, 11 of the 15 meggsabjects are enabled for reception and 4
are enabled for transmission. The message objeetsemitialized after use so that there is
always an available message object for transmismioaception. The other nodes in the CAN
network can have up to 32 message objects and hese tare divided between being in a
transmit mode or receive mode will depend on th@iegtion. One of the 11 message objects
is enabled for broadcast and the broadcast addseSs so every node will have their

acceptance filter setup to receive the messagdifiéemvith the destination address of 0.

As part of initializing the system designer is riegd to setup all the CAN nodes on the
network to the same baud rate. The maximum bawl trett can be setup on the CAN
network is 1 Mbps. The Bosch CAN specification atothe oscillator tolerance of 0.5 % at
1Mbps. For the AT90CAN128, the maximum oscillat@qguency is 16 MHz and to achieve
baud rates up to 1Mbps a minimum clock frequency dfiHz must be setup in order to
comply with the CAN specification (i.e. one bit enmust be between 8 and 25 time quanta

[1/clock frequency]).
3.1.3 System Control and Reset

The system software is developed to prevent theilpiisy for infinite loops causing the
software to hang and to eliminate any bugs thdtprgvent reliable network communication.
To ensure that the system recovers even in a se where the system hangs due to a
software bug, a watchdog timer is implemented tsetrethe system if such software

malfunctioning happens.

The watchdog timer times out every 2.2 seconddtasdeset at the beginning of the infinite
loop in main function. This watchdog timeout perisadletermined from the total time it takes
to execute the longest time consuming task possibléhe network node. According to the

overall system design, one second sample periothtomattitude determination and control

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 46

(ADCS) system should be allowed for. It was decidleat the watchdog timeout period
should at least be twice this worst case procespempd to give a safety margin and

sufficient processing time for the other tasks.

In the AT90CAN128 microcontroller the watchdog timie clocked from a separate on-chip
oscillator which runs at 1 MHz. In setting up thmeout period of 2.2 seconds this 1MHz

clock is divided by the watchdog prescaler.

Besides this watchdog reset each node can beitdésete is a new code upload. Upon node
bootup, the Bootloader will evaluate the reset seuif the reset is from the code upload
command then the boot-loader will jump to the newli@ation code otherwise the boot-
loader will jump to the normal reset vector whichl yump to the default current application
as shown in figure 3.6. All these Bootloader u@tand functionalities are to be implemented

on the boot-loader section as shown in figure 3.6.

3.1.4 System Timing

The system time is generated from a timer intermipith increments the system time every
one millisecond. The GPS or the OBC master clodk bvoadcast the system UNIX time
every second. All the nodes will synchronize theire to this UNIX time and this time will
be 6 bytes in length (4 bytes time in seconds ar@tes of time in milliseconds). The
receiving nodes do not acknowledge this messageh &ade will also be generating its own
local time from a timer interrupt and this locahé is used by local tasks for time-outs or to
meet dead lines e.g. the unsolicited telemetry agess that will be scheduled on fixed

periods.

In setting up the 1 millisecond timer interrupt ftbe AT90CAN128 chip, Timer0 is used with
a timer prescaler factor of 64. The timer prescéetor of 64 means that we divide the
system clock (the timer is clocked from 8 MHz systelock) by 64 to have a slower timer
increment. The 64 prescaler factor was chosen Beciuivides the 8 MHz clock into an
integer value that is a small enough for the tinegisters, while small prescaler factors (i.e. 8
and 1) give too fast clock frequencies they needtipication factors larger than 255. The
maximum reload value of 255 is possible with ant8tmer register. A prescaler larger than
64 (i.e. 256, 1024) need the floating point muidiglion factors, that are not available in this
8-bit microcontroller, to be loaded on the timegisters. The 64 prescaler gives a time period
of 125 kHz and the timer will increment by 1/125 X4 8 microseconds and when we

multiply this by 125 we get the intended 1 millisad time interval. Since TimerO is an 8 bit

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON a7

timer or counter, we have to start the timer at 2325 = 130 instead of 0 and count to 255.
This means that we get the timer ticks every 12(% & 1.0000 milliseconds. The timer
register gets reloaded automatically every 1 neled on the timer overflow interrupt for
accurate time keeping. The 1 millisecond timerrmiet increments the local node system
time in milliseconds and seconds. However, thellocae time gets synchronized both in
seconds and milliseconds to a periodical time ssordhation message received as a

broadcast message.

3.2 Subsystem Level Message Handling

Every message that is transmitted or received enCAN bus generates an interrupt in the
CAN controller and the application is informed bystinterrupt as explained in section 3.1.1.
In the case of transmission the use of an interstipicture is not necessary because the
transmission is initiated locally. The interruptusture is affected in a sense that a transmit
flag will be raised when the message is transmétatithis flag needs to be cleared otherwise

the software will indefinitely stay in the interrupandling subroutine.

In the case of message reception, an error orsaothunterrupt flag, the interrupt handling
subroutine will handle each of these messages @diogby. If a message is received without
an error, the 16-bit receive status variable flalgy lve raised and the interrupt will return the
control to the main function loop. In the main ftioo loop the received flag variable will be
polled as fast as the main function can executeh lBzessage received will set a bit in the 16-
bit status receive flag variable and a set bit witlicate the message object number that

caused the receive interrupt.

The main function will call the received messagadtag subroutine, passing the message
object number as a parameter. The received mes$saghing routine extracts the message
from the message object and makes the messagd abpable for a new transmission or
reception. The routine determines the message piepdike the message length, the
message type, the source of the message and po#stbchannel. The possible message
types that can be received are those tabled ire tald. The message handling routine
implements the callback function to handle eackived message type. Each message type is
handled at a subsystem level as described in tlosviag subsections.

3.2.1 Subsystem Telemetry Acquisition

In setting up a telemetry request, a message fypafed by the 5 most significant bits of the
29-bit arbitration field. This 5-bit field is folleed by an 8-bit channel which specifies which

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 48

of the possible 256 channels is requested. Theestiqpg node or subsystem will identify
itself in the next 8 bits of the 29-bit arbitratibald as the source address; the requesting node
also specifies the destination address in the & Igignificant bits of the 29-bit arbitration
field.

Each local node will implement a set of standatenetry channels and for this protocol 15
standard channels were implemented and these laesl tam table 2.5. A telemetry channel
number greater than the implemented channels woeild user application channel number
and a user telemetry subroutine handles these sexqgemilar to the standard telemetry
channels. A channel larger than the maximum usanmél number would be invalid and a
not acknowledgement message will be a responagectossmessage. If there is any data in the
data field during a telemetry request nothing Wwél done with the data because a telemetry

request normally contains no data in the data.field

In the AT90CAN128 node, the voltage channel waslemented using the voltage reader
supplied by the DVK90CAN128 development board. Tigut voltage is sampled by the

A/D converter. The voltage values are presentedimV units.

The temperature telemetry channel was measured thenDVK90CAN128 development

board temperature sensor that has a themistoranmigative temperature coefficient (NTC).
The voltages measured over the NTC are found ukiegA/D converter. These measured
voltages are used to calculate the themistor eewist (R). Each themistor resistance

corresponds to a temperature value according tateoqu3.1.

T=R/{In (R/Ro) + R /To} (3.1)

Where, R = Themistor resistanc€] at temperature T (°Kelvin)
[} = Themistor beta-value (4250+£3%)
Ro= Room temperature themistor resistance (1Q838o at 25 °C)
To = Room temperature (298 °Kelvin)

A temperature look up table based on equation 3at wnplemented in software for

temperatures from -40 °C to +65 °C. Temperatureasll °C steps) were used to compute
themistor resistance values. A table of the contgpthemistor values was stored in memory
as a look up table for corresponding temperat@edy positive temperatures were observed
since the development environment was always ireldOther standard telemetry channels
are implemented using the counters that incremedecrement at the change of state of each

channel.

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 49

The message handling mechanism for normal telemmiegsages apply to unsolicited
telemetry messages. In the case of unsolicitedntgly, the request will specify the repeat
period and the repeat count as explained in ch&otdrthe request is invalid, e.g. message
length not equal to 6 bytes or an invalid chanpelcdied, the message reply will be a not-
acknowledge response. Specifying a repeat periddl féconds or a repeat value of 0 will
abort the ongoing unsolicited telemetry requeste Tiherent feature about aborting the
ongoing unsolicited or periodic telemetry requasthat only the node that initially made a
request can abort that request. A maximum of 3b@erunsolicited telemetry requests can
be handled simultaneously; once the periodic reghas reached its repeat value it will
automatically clear the slot and make it availalfighere are 32 periodic requests running
simultaneously, then another request will not Bbewadd and a ‘no slot available’ response
will be sent. The node that made a request musigayn later once a slot becomes available
again. Although unlikely for this to happen, irecommended that polling strategy be applied

by trying every minute until a slot is found.

3.2.2 Subsystem Telecommand Handling

The telecommand messages are high priority shodgsages and therefore are assigned

identifier values which gives them high priority tire bus.

Each node that requires a specific remote tasle tpebformed would send a command on the
CAN bus and it must specify the destination node the addressed channel. A telecommand
request contains a command of not more than 8 hptebe data field. There are 256
addressable telecommand channels and only a fee mwglemented for this protocol as a
means to demonstrate the handling of telecommargbages. The implemented standard
telecommand messages are presented in table 2.4. dimilar manner to the standard
telemetry channels, 15 of the possible 256 araveddor commanding the local node to do
basic telecommand messages e.g. clearing the nablee@or and message counters. If the
addressed telecommand channel number is above 1fillitbe handled by the user
telecommand subroutine and if it is above the marmuser channel number it is an invalid

channel.

On reception of a valid telecommand request theeneitl perform the required action and

send an acknowledgement indicating that the taskde®n performed. Depending on the
telecommand requested, the telecommand resporszkioowledgement may be used to send
telemetry data corresponding to the channel adelde$®r example, if the telecommand is to
clear the CAN error and message counters as patiheofacknowledgement, the current

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 50

counter values may be sent. This is possible becthgstelecommand acknowledgement is a
message type on its own and if this message typsceaved it means a requested command
has been performed and we can use the data fieteléanetry data. It has to be noted that a

maximum of 8 bytes can be sent in a telecommandaadiedge message.

If a telecommand message is unrecognized or invalidelecommand not-acknowledge
message will be a response to this message. Thenss in the data field will specify the

reason why the telecommand was not performed oritwags invalid e.g. the addressed node
Is not allowed to execute the command, the chaisn@bove maximum the user channel or

the specified value is out of the range.

In demonstrating telecommand handling, one AVR neds used to command another AVR

node to clear the counters listed in table 2.4.

3.2.3 Data Transfers

In starting a transmission of a large file, a fileader is sent which specifies a 4-byte start
address and a 4-byte data size. If the start asidspscified tries to access a prohibited
memory or when the specified data length is lontfein the available memory, the
application must respond with a not-acknowledgpaase.

The header must be acknowledged positively withinsacond timeout period before the data
transfer begins. If the header has not been acletgeld the transmitter will retry this process
for 3 times, after which it stops and broadcasteraor message on the bus that the message is

undeliverable.

The transmission of messages larger than 8 bytéseo@AN bus requires the fragmentation
of the message into packets of 8 bytes or lesse @nitagmented packet is sent on the bus,
the transmitter waits for the acknowledgement leetbe next packet is sent and this process
is done until the whole data file is sent overirAgout mechanism is implemented to provide
for a robust transmission of the data. After eacditadpacket is transmitted, an
acknowledgement must be received before a timeeubg of 1 second elapses. If no
corresponding acknowledgement is received withia timeout period a retransmit is done
and this is retried 3 times after which the filedsclared undeliverable. As explained in
section 2.2.2 the transmitter will be throttled, anmg that the receiver can reply with
message to the transmitter telling it to stop semadnore data. The receiver will then send
another message when it is ready to receive mama fihe source of the file data, the

communication process will then resume again.

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 51

The file transfer is delivered as shown graphicallfigure 2.7 and once the complete file has
been delivered it will be assembled by the recenagte. The command that was received in
header will now be executed (e.g. write the data tihe FLASH, update the calibration tables
in the SRAM, or read data from the FLASH and transf to the serial modem link to the
ground station). This is done on the transportrajfethe OSI reference layer as shown in
figure 3.1.

The most important large file operations handledhyprotocol are the following:

. Code Upload & Execution

In programming new application code to the FLASke AT90CAN128 follows a special
sequence and the data is buffered in a page byfpab®n (a page is 256 bytes). This is a
classic case where a node during code upload catil¢hthe transmitting node after a page
buffer has been filled. The data is delivered ey @AN interface and it is first dumped in the
SRAM of the receiving node as shown if figure 3eédolw. When the page buffer size data is
sent the receiving node will send a successful detaption acknowledge with a&top
sending messaferThe sequence that this chip follows to progrdma ELASH is as follows

and this is shown in figure 3.6:

1) Fill the temporary buffer (256 bytes)
2) Perform a page erase

3) Perform a page write

During the FLASH programming sequence the interugators and the CAN communication
routines must reside on the boot section. The CrdtBriupts and routines will be disabled in
running application and a copy of the CAN applicaticode must run in the Bootloader
section. Furthermore, the special Bootloader igit(e.g. the interrupt vectors and CAN
service routines, reset vectors, special FLASH maogning utility routines [program

FLASH, erase FLASH memory, read from FLASH memanyd execute program memory]
etc.) must reside in the boot section to facilitée FLASH programming and to enable the

start of the new application.

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 52

EI:-:_Q_IJGEF

Application Flash Saection
| (120 Khytes)

Y '-I'empurary Buffer /
{2566 bytas)

Boot Loader Section
{BKbytes)
0xFFF //Boot Software

—)

SRAM Bufer

| Module CAM Interfacs |

Figure 3.6 Code Upload Diagram

The data is transferred from the SRAM into the terapy buffer in the FLASH memory and
this temporary storage provides non-volatile steragfore a page erase at a desired address is

performed.

The reason why data is first dumped into the temmyobuffer is because a FLASH erase

operation must be done before writing to a FLASKrasds.

If there is any reset or power down during pagsest a specified address, the code segment
that has been buffered will still be available. SThwvill avoid the corruption of the stable
running application unless a new code segment fifered in non-volatile memory. If the
reset or power down happens during the SRAM to teary buffer transfer happens, then it
will not present a problem because nothing is yased or corrupted in the old application

code segment.

Dummy functions for the programming sequence maetioabove have been provided for in
the protocol implementation and the future appitcatdeveloper must develop these

functions together with the Bootloader software.

Once the complete file is written in FLASH memohg tboot software will jump to the new
application on acode executecommand from a specific address, otherwise thdedbat is

in the Bootloader section will stay executing.islrecommended that once the new code has
been uploaded or a specific part of the code in $HAs updated, the new application can be

started.

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 53

Start Start

-
-4

A N

Get New Page
Contents from
CAN bus

l l

Update data in Fill Temporary
SRAM Page Buffer

l l

Fill Temporary
Page Buffer

l l

Erase Page at a
specified address Write Page

Write Page
N

Read Flash Page
Into SRAM

Erase Page

Figure 3.7a: Small Code Update Figure 3.7b: Code Upload

Figure 3.7: Code Segment Update and Code Upload

Two common update procedure flow charts are shawiigures 3.7. Figure 3.7a describes
updates for small parts of FLASH e.g. a constanietatored in FLASH memory. Figure 3.7b

shows a large code upload at a specified addresdata length.

. Reading Data from Memory

On reception of aréad request headecommand, the local node will evaluate the start
address and the length to see if the requestttriascess a valid memory address. If a request
tries to read from an invalid or a prohibited addrethe application program will sendrent
acknowledgeresponse, specifying that a wrong address isgoactessed. If the request is
valid, the local node acknowledges the header @mitidlize the file transfer as if data transfer
request was done locally (i.e. it will send the dexa message and wait for an
acknowledgement). It will then start to transfee data from the requested address. While
receiving the data, the process can get abortéaraitled by the node that requested the data.

The node being ‘read requested’ will not specifstart address for the data requested, but it

CHAPTER 3. DETAILED DESIGN AND PROTOCOL IMPLEMENTAODON 54

will specify the data length. The node that reqe@she data will store the data in its own

predetermined memory address.

Reading from the FLASH memory would most probal#yfdr the reason that is illustrated in
figure 3.7a above. This figure shows a small pieteode to be updated, e.g. a parameter
table being read from the FLASH to modify and thgrwriting it back to the FLASH.

The temporary buffer is not necessary when reaftmm the FLASH and the code is read
directly form the FLASH memory to the SRAM.

It must be noted that the work on the boot softwapelication is in development in this
protocol and must be further refined to interfadéhvthe data transfers as explained above.
Reporting on the data transfer mechanisms is den® because extensive work was already
done on this, but could not be implemented as tbet Isoftware was not completely
developed due to time constraints. Once the bdbware is developed, then the data can be
programmed into the FLASH. The programming of BiASH needs subroutines to erase
and program the FLASH. The code must reside irBth&tloader section, especially the code
using the SPM and LPM instructions for the AT90CAI8Inicrocontroller.

In testing the large data file transfers in thetg@eol, large blocks (e.g. 2 kbytes) of data were
transferred into the SRAM from the source node mby functions (nothing is done in these
functions, just a return to the caller) were impderted as boot software and the whole

process of file transfer was carried out as explain this section.

3.2.4Debug Messages

These low priority messages were implemented bgdwrasting a text string on the CAN bus
and the nodes receiving this text string will staren a local variable which could be read
and acted upon. These messages are not acknowladdexhn be used by an application that
wants to report anything on the bus or warn otletes about anything happening on the

CAN bus or to warn other nodes about errors oré@adicast a node’s status and health.

Chapter 4

Protocol Performance and Implementation Results

In evaluating the protocol performance, the sofevaesponse time for each supported
message type was measured. The system was alss-t&tséed by continuously sending
messages one after another as fast as possiblebaad/ed when the system software started
to malfunction. The maximum practical bus speed @aigo observed as the messages were
sent from the minimum CAN bus speed (5kbps) tontfaximum CAN bus speed (1Mbps)
but only selected bus speeds were tested as th&ARCA card provided discrete bus speeds
for monitoring and testing. Power consumption isoalmeasured when there is

communication on the CAN bus as well as when CABlibudle.

4.1 Hardware Performance Measurements

As mentioned in the previous chapters, the protoe@s demonstrated on two
DVK90CAN128 development boards and the measuremeens include the other board
components. The two development boards were subpien a 5V DC power supply. The
hardware system setup is shown in figure 4.1 below.

Seeduwinnn g5 . ZEIINIYYS

-
- e Ly A
dm

’ . Y ."_"—":- - 1" v 4 B i
WA~ NN -~ « U i

Figure 4.1: System Test Setup

CHAPTER 4. PROTOCOL PERFORMANCE AND IMPLEMENTATIORESULTS 56

The board current measured when there was no CANnemication on the bus was 42 mA.
When a 2-kilobytes file transfer was initiated dre tCAN bus the current increased from
42mA to 43 mA and when the file transfer was congaléhe current just normalized back to
42mA. These were only possible current measuremegtsding the CAN bus protocol and
the software drivers as this was a developmentdoaad no specific hardware components

were designed.

The expected AVR AT90CAN128 power consumption wtlenmicrocontroller is used in a
board designed for only CAN communication and Natelite application should ideally be
close to the power characteristics shown on pageoB8&he ATO0CAN128 datasheet [4]. The
attractive power consumption for this microcon&olis when it is supplied from a 3.3V
supply and it draws 10mA at 8 MHz

The supply voltage was measured as well on thegumation pads supplied on the board to
compare it with the 5V from the power supply and #ttually measured value was 5V + 0.5
for a number of measurements taken. The voltage alss measured using the voltage
reading capability of the board. The voltage comimg the board was connected to one of
the inputs of the analog to digital converter ai toutput was measured and the
measurements were 5V + 0.3 for a number of measnenthat were taken. The voltage
reading capability was used to supply the voltagjeeras a telemetry data. The board had no

current sensor and thus no current telemetry data measured.

4.2 Software Time Response

The time measurements were based on the maximum li&Npeed of 1 Mbps. The latency
of each of the supported message types was meastiesd one specific message type was
sent on the bus. The timing analyses become comygten more than one message is sent
randomly on the CAN bus. The message priority amsl dbntention arbitration mechanisms
add to the complexity of timing analysis. The laies measured the time it took from
sending a request to the time the total response&ved and these are listed in table 4.1.

The message latencies were measured using one @bth pins in microcontroller. The pin

was pulled high when the transmission started amds$ pulled low when the response was
completely received. The time duration with the pigh was measured for each of the
messages. However, for the broadcast messagesha.dime synchronization and debug

messages, where no response is received, theyateneasured as the time it took to write

CHAPTER 4. PROTOCOL PERFORMANCE AND IMPLEMENTATIORESULTS 57
the message into the transmit buffer until it hagrbtransmitted. This time duration was
measured by pulling an 1/O pin high when the trahsautine is entered and pulled low when

the transmit complete flag has been raised.

Table 4.1:Message Latencies

Message Type Data Size Latency
Normal Telemetry 0 bytes request + 4 bytes response | 900 us
Unsolicited telemetry 6 bytes request + 6 byteparse 1.2ms
Telecommand 4 bytes command + 8 bytes response 100
File Data Transfer 2 Kbyte (256 8-byte messages256| 214 ms

bytes(1 byte acknowledgements)

Time synchronization 6 bytes 468 us

Debug message 8 bytes 300 us

The port pins were used, because the smallestres@ution the system time was setup for
was a millisecond from the timer interrupt routifidis meant that time measurements below
millisecond resolutions needed a software chandbkdrtimer interrupt routine that was used

for system time.

The results in table 4.1 show that the softwarerlo®ad contributes significantly to the
message response latencies. For example the 2 Kibytéransfer without any software

overhead should be transferred as follows:
Total bits = 8-Byte Header + 1-byte Header Ack +
256 (8-byte) data packets + 256(1-byte) data Ack’s (4.1)

The total bits sent for this 2 Kbyte file transfecluding the protocol overhead (start bits +
CRC bits + arbitration bits + stuff bits etc) is:

Total Data in Bits = 154 + 98 + 154*256 + 98* 25@4764 bits (4.2)

CHAPTER 4. PROTOCOL PERFORMANCE AND IMPLEMENTATIORESULTS 58

For a maximum CAN bus speed (1 Mbps) this 2 Kbigetfansfer should take:
64764*1€° = 64.764 ms

This is just a theoretical value and it assumes titva data is transmitted continuously in
sequence without delay between CAN packets. Thaignpractical approach on the CAN
network, because there has to be a software owtrhleigh makes sure the data is stored at a

required location and be transferred in a correquence, thus the need to have the protocol.

Due to the CAN packet data field limit, to transée? Kbyte file on the CAN bus there has to
be a fragmentation of the file into 8-byte pack@étsis fragmentation mechanism will take its
time to fragment the file and send the correctrfragts in sequence. The software also adds a
bit of overhead when it checks the index sequehdkeareceiver end before each packet is
acknowledged. At the transmitter the acknowledgetkex is also checked before the next

packet is sent. The propagation delays are alsmaloided in the theoretical value above.

The message latency of 214 ms is therefore a tieahiglue given the software overhead to
implement the file transfer protocol explained a&oVhe other message latencies are also
within acceptable real time response limits, forample sending a 6-byte time
synchronization message should theoretically té& |is but it takes 468 us because of the

software overhead.

4.2.1 Main Loop Execution Time Response

All the application programming interface routiree handled by the main function using the
flags. The main function just initializes the saodie drivers and then enables the watchdog

timer at the start of the infinite loop as showtiigure 4.2.

CHAPTER 4. PROTOCOL PERFORMANCE AND IMPLEMENTATIORESULTS 59

Start

A
Initialise CAN Module
Initialize A/D
Converter
Set Up Timers

<

A
Kick the Dog

< . Y Call CanRx() to service the
ecelve Flag received Message Object. y e
Raised ? .
Clear Receive Flag.

Service Main function local
tasks.
Service All Flags
Execute Application Functions

Figure 4.2: Main Function Flow Diagram

The CPU will execute this main loop as fast as iptessnd the software was optimized such
that no messages would be lost as a result of a loap that takes too long to service all the
service routines and to execute all required appba tasks.

The main loop frequency was measured with the viotlg events happening with all the

interrupts enabled (timer interrupt always incretimgnthe system time every millisecond):

1) Minimum execution time with no CAN activity on thms (no messages to handle but
just checking flags and servicing interrupts).

2) Maximum execution time with a lot of CAN activityndhe bus (most CAN supported

message types handled on the bus).

Table 4.2:Main Loop Execution Time

Main Loop Event Execution Time

Minimum execution time with no CAN 370 ns (2.70MHz)
messages on the bus

Maximum execution time for a lot of CAN | 19.00 ps
activity handled (52.63KH2z)

CHAPTER 4. PROTOCOL PERFORMANCE AND IMPLEMENTATIORESULTS 60

The loop execution time for each of the above nfianttion events is listed in table 4.2. In
order to quantify how fast the main loop executes eventually determine how frequent the
main loop is polled would depend on the complefdieation code that will be executed from

the main function.

4.3 Bus Throughput and Protocol Software Efficiency

The data rates and the protocol efficiency of t@glete protocol cannot be quantified into a
single deterministic value. The data rate and tiesmission efficiency depend on numerous
CAN protocol factors such as message type, whitdraenes the priority of the message on
the CAN bus, the length of the message, etc. Thatges must be quantified for each
message type and only that message type mustrisetneed on the bus when these values are

measured.

In theory, for a 29-bit identifier message with aximum CAN payload of 8-bytes, it can be

shown that the data efficiency is the ratio of élstual data to the protocol overhead.

Protocol packet overhead is all non-data bits adiethe protocol to ensure proper routing

and reliable transportation (e.g. CRC, stuff latsknowledgements, and arbitration bits)[12].
Efficiency = Actual Data transferred/ (Actual dat@rotocol overhead) (4.3)

Therefore, CAN bus Efficiency = 64 bits/ (64+90)4%£.6 %, but this value looks at the
desired data efficiency without any delays and mgtion that only this data is sent on the
bus. The maximum data throughput would be 416Kbpisei bus speed is 1Mbps for an 8-
byte transfer. As an example of quantifying theadate and the software efficiency we look

at debug message latency discussed above.

It is simple to quantify data transfer rate and ¢bde efficiency like this: An 8-bytes debug
message is transferred in 300 ps. This means weaargferring at 213.33 kbps (64bits/ 300
us) instead of 1Mbps (21.33% effective data r&s)m section 2.3 it was shown that it takes
154 ps to transfer an 8-byte message on the CANabasmaximum bus speed of 1Mbps
excluding the propagation delays and the softwaeshead. For an 8-btye debug message,
which is transferred in 300 us, the Software afficly = 154/300 = 51.33%. The total data
throughput efficiency for an 8-byte debug messagthén the product of the CAN bus and
Software efficiency: Total data throughput effiadgn= 41.6% x 51.33% = 21.3%. This is the
same value as the effective data rate calculatedeabut viewed from efficiency approach.

CHAPTER 4. PROTOCOL PERFORMANCE AND IMPLEMENTATIORESULTS 61

The efficiencies and data rates of the other messgmes can be calculated in the same way
as shown for the debug message above and thesecaletgdated and listed in table 4.3
below.

Table 4.3: Throughputs and Efficiencies

Message Type Effective Data Rate Protocol Software Total Data
(kbps) Efficiency (%) Throughput (%)

Debug Message 213.33 51.33 21.35

Time Synch. 102.56 29.49 12.27

Telemetry 35.55 23.55 9.79

Unsolicited 80.00 23.00 9.57

Telemetry

File Data 86.47 30.26 12.59

Transfers

Telecommand 87.27 25.09 10.44

The general data throughput for different messaggths on the CAN bus is plotted for an
extended frame format and the standard frame foamahown in figure 4.3. These graphs are
plotted with the assumption that there is only amessage on the CAN bus and there are no

priority and bus contention issues.

The implementation specific bus throughput graghgdifferent message types with different
message lengths can be computed like in tabled3a compared to figure 4.3. Different
message types have different fixed message lerdgpending on the application and to
compute data throughputs the length of a message Imeuknown and the transfer speed be
measured. The throughput should be the same aguire f4.3 besides that the transfer speed

would be reduced due to propagation delays anddfierare overhead as discussed above.

CHAPTER 4. PROTOCOL PERFORMANCE AND IMPLEMENTATIORESULTS 62

CAN Bus Throughput
500 ‘ ‘ ‘ ‘

Extended Frame Format(29-bit) |
Standard Frame Format(11-bit) ------- 4: ——————————————

450 -

B00 b T
/O S T

300 S

250 -t S S

200 S A

150 --/f--f -

Maximum Net Bus Throughput [Kbits/second]

1000 /-

50

Data Length Code [bytes]

Figure 4.3: CAN Bus Throughput
4.4 Software Reliability

In testing how reliable the software handled asgble CAN communication, a test was
done where multiple message types were sent orCAlé¢ bus. A total of 8 unsolicited
telemetry requests were made from the PCAN PCI ¢ardun simultaneously. The two
development boards kept requesting telemetry data tach other. One node was setup to
transfer 2 kilobytes of data while it also broadedstime synchronization message. All the
communication described above continued for a loinge and the performance was
consistent.

Different messages were also sent from the PCANcEf@ and the two boards just handled
them efficiently. The messages from the PCAN PCd egere sent using the spacebar on the
keyboard. When the spacebar was pressed indefititelmessages were sent from the PCI
card as quick as the CAN controller embedded orc#nd could transmit the messages, and

the CAN software still preformed as expected andnessages were lost.

The software functionality was tested at most CAIS bpeeds (5kbps to 1Mbps), especially
those that are provided by the PCAN PCI card, agdve the expected performance. Testing

CHAPTER 4. PROTOCOL PERFORMANCE AND IMPLEMENTATIORESULTS 63

the bus performance at non-standard speeds, €dgklips could be done but the tests that
were done at the standard CAN bus speeds (5kkjpdbps) provided by the PCAN PCI card

for monitoring were enough tests for reliable hamgllof messages on the CAN bus. To
compute and setup the bit timings for testing #iedént baud rates the procedure provided in

Appendix B must be followed [8].

Chapter 5

Conclusion and Recommendations

The primary objective of this research project w@slesign a communication protocol that
will handle real time messages onboard a Nanogatéllb achieve this, a survey was done on
various communication bus standards and high agipic layer protocols. The research was
driven by a number of factors specific for the Nsatellite application and these include use

of low power components, cost, flexibility and addility.

51 Conclusion

The communication protocol was designed to handiedsatellite messages on a CAN bus.
The design included specifying the types of messdfje protocol would handle and the
implementation thereof. To implement an efficientd aeliable communications protocol the
CAN bus protocol standard was chosen for the loseanmunication layers as motivated in
chapter one of this document. The CAN specificatamly provided for the low level
communication protocol (physical layer and the datia layer). This meant that the higher
application protocol needed to be designed on tapeoCAN protocol specification to handle

a Nanosatellite application.

A survey was conducted on the higher applicatiorergrotocols including the previous
protocols developed in the ESL and the CAN basedneercial protocols like CANopen and
DeviceNet. It was concluded that these commeraiatopols would limit the flexibility and

the optimization of the Nanosatellite applicatiance these protocols are optimized for
general use. The protocol was then developed fronteption to the implementation with

consideration of specific Nanosatellite requirersent

A low cost test setup was chosen after a surveynarocontrollers supporting a CAN
interface. The test setup was chosen to be an AYWR9(JCA128) 8-bit CMOS

microcontroller which provided attractive featufesg. power consumption of 33mWw at 5V)
and it had a lot of software development suppowto Tdentical AVR development boards
were used in the system setup and a PCAN PCI casdused to monitor the traffic on the

CAN bus. Messages like telemetry, telecommand, syrechronization, debug information

CHAPTER 5. CONCLUSION AND RECOMMENDATIONS 65

and large file transfers were specified as the m@mmunication messages for the

Nanosatellite.

In order to manage the communication on the CAN buoe of the design procedures was to
distribute CAN identifiers according to the prigriof each message on the bus. Low level
hardware drivers, middleware software drivers dreddpplication programs were developed

to evaluate the full protocol functionality.

The performance results of the developed protaoplementation were measured in terms of
software efficiency, bus throughput, software resgolatencies and software reliability under
extreme bus traffic conditions. All the messagesawmndled by the protocol as expected and

the performance measurements are presented irecliapt of this document.
The results can be summarized as follows:

. The software response times for each of the message within the real time limits.
Latencies were as expected greater than theotgtidaterministic values because of the

software overhead.

. The bus throughputs and software efficiencies atkinwthe acceptable limits. These
were further endorsed by the system that reliabtydked all CAN traffic when left to run for

a long time.

. When large messages are transferred, acknowledgiciyand every packet reduced the
protocol efficiency drastically (e.g. file transférus throughputs of 12.59 %) but this
improved reliability, data consistency and reduseftware complexity.

. The power consumption was 42 mA (at 5VDC) when dhavas no CAN

communication and it increased to 43mA when a CAdtkpt was sent. These power
measurements were done with extra development boargponents. More absolute CAN
communication power measurements can be done omesvanode with only components

necessary for CAN communication has been designed.

The AVR microcontroller requires a certain procedtw be followed when programming
large files or when code uploads are needed té&-t#&SH memory. The procedure included
the requirement to develop Bootloader softwareaarthin programming procedures to reside

inside the Bootloader section. The latter will féate the firmware updates or large file

CHAPTER 5. CONCLUSION AND RECOMMENDATIONS 66

transfers. The development of the Bootloader sofiwalso demanded an additional time
frame. It was decided that to demonstrate large tiihnsfers, large data blocks will be
transferred from the SRAM of a source node to tRAM of the destination node. Once the
Bootloader software has been developed a finalstiéfpe to program the data into FLASH
memory. The following subsection recommends howecopdates and large file transfers

should be programmed to FLASH memory.

5.2 Recommendations

This section presents some suggestions for futor& W further optimize the functionality of

the developed communications protocol.

As mentioned above, the software was completelyeldped on the AVR development
boards. It is recommended that a new hardware wnlds#gcompleted, based on an AVR
AT90CAN128 microcontroller to evaluate the protowdien only the necessary components
for the CAN communication are used. Another haréwamnsideration can be to develop the
protocol on a microcontroller that has a large SRANdI FLASH capacity, since the
AT90CAN128 chip provides only 4 kbytes of SRAM at2l8 kbytes of FLASH. A memory
constraint was noted during protocol developmentitamately only 2 kbytes of data could be
used to test large file transfers because of thidd size of SRAM memory. An alternative
to the SRAM constraint would be to connect an @derISRAM as suggested on the
AT90CAN128 data sheet.

When transferring large messages, Bootloader sodtwaust be programmed to transfer data
to the FLASH memory. Dummy subroutines were impletad in the software to show how
the Bootloader software should interface with tihe transfer routines. Assembler low level
code is also presented in Appendix C for the subres that must be implemented in the
Bootloader for the AVR microcontroller. Other micomtrollers may have a different

mechanism of programming FLASH and therefore timepda code will not apply to them.

Another important future consideration will be test the software when the number of
communication nodes increase from the current theames used during testing. This will
increase the CAN communication on a large networkvaluate the software reliability and
software response latencies under extreme comntionickvad which could affect the real

time performance of the system.

CHAPTER 5. CONCLUSION AND RECOMMENDATIONS 67

The protocol was implemented on a single CAN bugsiglal layer and this means if the bus
fails then the whole system fails. It is therefoeeommended that the redundant (backup)
physical bus be developed since the OBC alreadyigee two CAN bus interfaces. However,
a protocol extension is required to accommodatetbkitectural changes as it will affect the

network management and routing of the data betwetwo bus networks.

Bibliography

[1] Lawrenz W., CAN System Engineering: From Theory to Practicapligations’,
1997, Springer-Verlag, New York

[2] Koekemoer J.A., ‘vestigation of a Command and Data Handling Ardtues for
SUNSAT-2 Micro Satellite'Thesis presented in partial fulfillment of thegueements
for the degree-Masters of Science in Electronic ikggying at the University of
Stellebosch, 1999

[3] http://www.embedded.com/97/fe29709.htm.
[4] http://www.atmel.com

[5] http://www.peak-system .com

[6] http://www.hpinfotech.com

[7] CAN for space,
ftp://ftp.estec.esa.nl/pub/wsd/CAN/canspace.htm

[8] http://lwww.avrfreaks.net/index.php?module=Freakicles&func=viewArticles

[9] Tindell, K., Burns, A., Guaranteeing Message Latencies on Controller Area
NetworK. Proceedings of the First International CAN Coefece, Germany,
September, 1994.

[10] Tindell, K., Burns, A., and Welling, A¥,Calculating Controller Area Network (CAN)
Message Response Tiel095

[11] CAN/Ethernet,
http://www.warwick.ac.uk/devicenet/downloads.htm

[12] Upender, B. and Koopman, P.Emibedded Communication Protocol Optigns
Proceedings of Embedded Systems Conference 1998a $iara, pp. 469-480,
October, 1993

[13] Bosch, CAN Specification, Version 2.0, RobBdsch GmbH, Stuttgart, 1991

BIBLIOGRAPHY 69

[14] Woodroffe A.M. and Madle P*Application and experience of CAN as a low cost
OBDH bus system™APLP 2004, Washington D.C. USA, September, 2004

[15] Farr X.C., “Development of A Fault-Tolerant Bus System Sud#afir A High-
Performance Embedded Real-Time Application on SUNSAADCS” Thesis
presented in partial fulfilment of the requirememdr the degree-Masters of Science

in Electronic Engineering at the University of $&bbsch, 2000

[16] Patrick, J.Serial Protocols ComparédEmbedded.com, 2002,
http://www.embedded.com/99006377?_requestid=1098733

[17] IEG (Information and Electronics Group) at the OS8tate University, 2000,
http://www.ece.osu.edu/ie/main/CurrentResearch/S&utilus_chip/

[18] Soffel, V., “Synchronous Microcontroller Communication Interfsxc8PI and
Microwire versusiC”, May, 2003

[19] Wertz, J.R. and Larson, W.JSpgace Mission Analysis and Designhird Edition,
Microcosm, 1999

[20] Profibus Technical Information,
http://www.samson.de/pdf_en/lI453en.pdf

[21] Boterenbrood, H.,CANopen - high level protocol for CAN-Bu¥ersion 3.0,
Amsterdam, March, 2000.

[22] CAN-in-Automation, CANopen, CAL-based Communicat®rofile for Industrial
Systems, CiA DS-301, Version 4.0, June 16 1999.
http://www.can-cia.org/

[23] Rinaldi, J., Wendorf, J. DeviceNet: A Plan faroduct Developers, 2002
http://www.rtaautomation.com/devicenet/494ds/DeMiee in90Days. pdf

[24] http://www.odva.org/

Appendix A

Controller Area Network - CAN Information

A.1 Whatis CAN?

Controller Area Network (CAN) is a serial networkat was originally designed for the
automotive industry, but has also become a popalarin industrial automation as well as
other applications. The CAN bus is primarily usedembedded systems, and as its name
implies, is the network established among microwdietrs. It is a two-wire, half duplex,
high-speed network system and is well suited fayhhspeed applications using short
messages. Its robustness, reliability and the lsoggort from the semiconductor industry are
some of the benefits with CAN.

CAN theoretically addresses up to 2032 (CAN stathdi@me format) or more than 5 million
(CAN extended frame format) devices (assuming as#enwith one identifier) on a single
network. However, due to the practical limitatidntlee hardware (transceivers), the number
of nodes per network is determined by the transceifan-out. It offers high-speed
communication; up to 1 Mbits/s thus allows realdincontrol. In addition, the error
confinement and the error detection capability nsakemore reliable in noise critical

environment.
A.2 CAN standards

The original specification is the Bosch specifioati Version 2.0 of this specification is

divided into two parts:
. Standard CAN (Version 2.0A). Uses 11 bit identsier
. Extended CAN (Version 2.0B). Uses 29 bit identsier

The two parts define different formats of the mgssiiame, with the main difference being

the identifier length.

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION i

There are two ISO standards for CAN. The differeiscen the physical layer, where 1SO
11898 handles high speed applications up to 1Mimitisd. ISO 11519 has an upper limit of
125kbit/second.

A.3 How CAN works?
Introduction

As stated earlier, CAN is a multimaster networkuses CSMA/CD+AMP (Carrier Sense
Multiple Access/Collision Detection with Arbitratioon Message Priority). Before sending a
message the CAN node checks if the bus is bussisét uses collision detection. In these
ways it is similar to Ethernet. However, when amdfhet network detects collision both
sending nodes stop transmitting. They then wadralom time before trying to send again.
This makes Ethernet networks very sensitive to bigh loads. The CAN protocol solves this

problem with the principle of bit wise arbitration.
A.3.1 Principle

Data messages transmitted from any node on a CANdbuwnot contain addresses of either

the transmitting node or of any intended receivinge.

Instead, the content of the message is labellednbigentifier that is unique throughout the
network. All other nodes on the network receive thessage and each performs an
acceptance test on the identifier to determin@efmessage, and thus its content, is relevant

to that particular node.
If the message is relevant, it will be processéldemvise it is ignored.
A.3.2 Identifiers and arbitration

The unique identifier also determines the prioofythe message. The lower the numerical
value of the identifier, the higher the priorityhi$ allows arbitration if two (or more) nodes

compete for access to the bus at the same time.

The higher priority message is guaranteed to gamadtcess as if it were the only message
being transmitted. Lower priority messages are raatally re-transmitted in the next bus
cycle or in a subsequent bus cycle if there ateathier, higher priority messages waiting to

be sent.

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION ii

Each CAN message has an identifier which is 11 (@#&N specification part A) or 29 bits
(part B). This identifier is the principal part tife CAN arbitration field, which is located in
the beginning of each CAN message. The identifleniifies the type of message, but is also

the message priority.

The bits in a CAN message can be sent as eithdér ¢cigow. The low bits are always
dominant, which means that if one node tries talsetow and another node tries to send a
high, the result on the bus will be a low. A traitsimy node always listens on the bus while
transmitting. A node that sends a high in the eabdn field and detects a low knows that it
has lost arbitration. It stops transmitting, legtithe other node, with a higher priority

message, continue uninterrupted.

Two nodes on the network are not allowed to senssages with the same ID. If two nodes
try to send a message with the same ID at the $mmeearbitration will not work. Instead,
one of the transmitting nodes will detect thaisssage is distorted outside of the arbitration
field. The nodes will then use the error handliMdC@&N, which in this case ultimately will

lead to one of the transmitting node being switabidbus-off mode).
A.3.3 Remote frames

There are two kinds of frames in CAN - remote fraraad data frames. Data frames are used

when a node wants to transmit data on the netveortt,are the "normal” frame type.

Remote frames can be described as a request tomafion. A frame with the RTR bit set
(see description of the CAN message format) melaaisthe transmitting node is asking for
information of the type given by the identifier. ode which has the information available
should then respond by sending the informatiorhemietwork.

Depending on the implementation of the CAN conémolithe answer may be sent
automatically. Simpler CAN controllers (BasicCANArcnot respond automatically. In this
case the host microcontroller is made aware oféh®te request and has to send the data.

A.3.4 Message formats
A.3.4.1 Format of a CAN message

In a CAN system, data is transmitted and receive@dguMessage Frames. Message Frames
carry data from a transmitting node to one, or mgeeiving nodes.

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION v

The CAN protocol supports two Message Frame formats
The two formats are:

- Standard CAN (Version 2.0A)

- Extended CAN (Version 2.0B)

Most 2.0A controllers transmit and receive onlyri8ad format messages, although some
(known as 2.0B passive) will receive extended fdrmassages but then ignore them. 2.0B

controllers can send and receive messages in bottafs.
A.3.4.2 CAN 2.0A Format
A Standard CAN (Version 2.0A) Message Frame comsiseven different bit fields:

- A Start of Frame (SOF) field. This is a dominéogic 0) bit that indicates the beginning of

a message frame.

- An Arbitration field, containing an 11 bit messaiglentifier and the Remote Transmission
Request (RTR) bit. A dominant (logic 0), RTR bitlicates that the message is a Data Frame.
A recessive (logic 1) value indicates that the ragesis a Remote Transmission Request
(otherwise known as Remote Frame). A Remote Framaequest by one node for data from

some other nodes on the bus. Remote Frames domaiit a Data Field.

bt Meszagme Frame -~
| 1
Busldie | | Arbimation field_|_ Contml | Data Field | CRCfisld | ACK | EOF | Im | BusIde
;o ! ! ! L L
| [t victgemitier | | | [DLC] Daw 0-3Byes) [15t | |_‘J | |]
1 Y L J] L
SOF) KR | lz@ Dilirvites Delimiter
_Il i

Figure A.1: CAN Version 2.0A Message Frame
Fig CAN 2.0A Message Frame
- A Control Field containing six bits:

* Two dominant bits (rO and rl) that are resenadf@iture use, and

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION v

* A four bit Data Length Code (DLC). The DLC indtes the number of bytes in the Data

Field that follows
- A Data Field, containing from zero to eight bytes

- The CRC field, containing a fifteen-bit cyclicdndancy check code and a recessive

delimiter bit.

- The Acknowledge field, consisting of two bits.€Tfirst is the Slot bit which is transmitted
as a recessive bit, but is subsequently overwrlifedominant bits transmitted from all other

nodes that successfully receive the message. Toaddit is a recessive delimiter bit.
- The End of Frame field, consisting of seven reisesbits.

Following the end of a frame is the Intermissiagldiconsisting of three recessive bits. After
the three bit Intermission period the bus is recaghto be free. Bus Idle time may be of any

arbitrary length including zero.
A.3.4.3 CAN 2.0B Format

The CAN 2.0B format provides a twenty nine (29) idiéntifier as opposed to the 11 bit
identifier in 2.0A.

Version 2.0B evolved to provide compatibility witther serial communications protocols
used in automotive applications in the USA. To cée this, and still provide compatibility

with the 2.0A format, the Message Frame in VerddB has an extended format.
The differences are:

- In Version 2.0B the Arbitration field containsdwdentifier bit fields. The first (the base ID)
is eleven (11) bits long for compatibility with \&on 2.0A. The second field (the ID
extension) is eighteen (18) bits long, to givetaltength of twenty nine (29) bits.

- The distinction between the two formats is masieagian Identifier Extension (IDE) bit.

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION vi

- Messare Frame -

|

[' ' ' ' ' | '
Busldle | | Arhitration field g ol L DauFisld | CRCfisld | ACK | EOE | Ire | Bus Ide
[T 1 1 1 1 1

1
|11 tit Idervities] | [18 bit lebnitier] | | [pLc[Dua 08B ytesy [15 tis | | | |
¥ ¥

[[L
80F SER EIR bl Dedirns Dl
IDE | 1l

St

Figure A.2: CAN 2.0B Message Format

- A Substitute Remote Request (SRR) bit is incluttethe Arbitration Field. The SRR bit is
always transmitted as a recessive bit to ensurg imahe case of arbitration between a
Standard Data Frame and an Extended Data Fram8tahdard Data Frame will always have

priority if both messages have the same base () idbntifier.
All other fields in a 2.0B Message Frame are idshtio those in the Standard format.
A.3.5 Error detection and fault confinement

The error detection, signaling and fault confinetrégfined in the CAN standard makes the
CAN bus very reliable. The built in error detectiohthe controllers together with the error
signaling make sure that the information is cor@utl consistent. Faulty nodes will go to

modes where they do not disturb the traffic onkths.

A.3.5.1 The CAN error process

1. The error is detected by the CAN controller (a $raiiter or a receiver).

2. An error frame is immediately transmitted.

3. The message is cancelled at all.

4. The status of the CAN controllers are updated

5. The message is re-transmitted. If several contol@ve messages to send, normal

arbitration is used.
A.3.5.2 Error detection

Error detection is handled automatically by the Céadwtroller. The detected errors are:

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION vii

. Bit errors:

1. Bit stuffing error - normally a transmitting nodeserts a high after five consecutive
low bits (and a low after five consecutive highhig'is called bit stuffing. A receiving node

that detects more than five consecutive bits veid a bit stuffing violation.

2. Bit error - A transmitting node always reads bdo& thessage as it is sending. If it
detects a different bit value on the bus than iit,send the bit is not part of the arbitration

field or in the acknowledgement field, an errodétected.

. Message errors:
1. Checksum error - each receiving node checks CANsages for checksum errors.
2. Frame error - There are certain predefined bit emlthat must be transmitted at

certain points within any CAN Message Frame. |Eeeiver detects an invalid bit in one of

these positions a Form Error (sometimes also krasva Format Error) will be flagged.

3. Acknowledgement Error - If a transmitter determinleat a message has not been

acknowledged then an ACK Error is flagged.
A.3.5.3 CAN controller error modes
A CAN controller can be in one of three states:

1. Error active - the normal operating mode for a culldr. Messages can be received

and transmitted. Upon detecting an error, an aeiver flag is sent.

2. Error passive - a mode entered when the controsrfrequent problems transmitting
or receiving messages. Messages can be receivedaasdhitted. On detecting an error while

receiving, a passive error flag is sent.

3. Bus off - entered if the controller has serioushpgms with transmitting messages. No
messages can be received or transmitted until tABl Controller is reset by the host

microcontroller or processor.

The state machine is implemented in the CAN colarathich determines the mode of the
controller for counters - the transmit error counéad the receive error counter. The

following rules apply:

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION viii

1. The CAN controller is in error active mode if tramsis less or equal to 127 and if the

receive count is less or equal to 127.

2. It becomes error passive if transmit error courgresater than 127 but less or equal to

255 or if the receive error count is greater than. 1
3. Bus off is entered if transmit error count is gegdhan 255.

Once the CAN controller has entered bus off stataust be reset by the host microcontroller

or processor in order to be able to continue opmrat his is shown graphically in figure A.3

TEC =127 v
REC = 127

TEC 127 end

ERAF= 1 REC g 137
BOFF = [}

Figure A.3: CAN Error States
Source: [1], p91, fig. 41-5

A.3.5.4 Error signaling

When an error is detected by a node it sends an #ag on the bus. This prevents any other
node from accepting the message and ensures @ntsisif data throughout the network.

The active error flag consists of six low bits, @adused if the node transmitting the error
frame is in active error state. As low is dominaltit other nodes will detect bit stuffing
violation and send their own error flags. Aftersthnodes that want to transmit (including the
one sending the interrupted message) will stadat®o. As usual, the node whose message

has the highest priority will win arbitration anelngl its message.

If the CAN controller is in error passive mode th@or frame will consist of six passive

(high) bits. Since the error flag only consistgagsive bits, the bus is not affected. If no other

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION ix

node detected an error, the message will be santearupted. This ensures that a node

having problems with receiving can not block the.bu

All of this advanced error handling is done autdoadly by the CAN controller, without any
need for the host microcontroller to do anythingisTis one of the big advantages of CAN.

A.3.6 Bittiming

CAN has advanced features for coping with the taetays found in long bus lengths (in
comparison to the bit rate) and coping with diffexes in clock crystal frequencies for nodes

on the bus.

The choice of bit timing is very important sinced#écides the bit rate, the sample point and

the ability to resynchronize.
A.3.6.1 Bit segments

Each bit is divided into four segments - the synalration segment, the propagation segment
and the phase segments one and two. Each segnmsigtsaf one or more time quanta.

A time quantum is a fixed amount of time which &rided from the CAN controller clock

with a prescale factor.

Cime bit

[-
-

}(Swne | Propseg Fhase | Phase 2 :(

T Sarpling point
Figure A.4: CAN Bit Timing

A.3.6.2 Synchronization segment (Synch_Seq)

The synchronisation segment is used to synchrahesgarious nodes on the bus. When a bit

is sent on the bus, the leading edge is expectbd within this segment.
This segment is always one time quantum long.
A.3.6.3 Propagation segment (Prop_SeQ)

The Propagation Segment is needed to compensateefdelay in the bus lines.

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION X

The segment size is programmable between 1 amdeSBguanta.

A.3.6.4 Phase Segment 1 (Phase_Segl), Phase Segmepih@se_Seg?2)
These segments can be used lengthened or shokigmeslynchronization.
A.3.7 Resynchronization

Resynchronization is done to compensate for busydeind nodes that have different crystal
frequencies. Synchronisation is normally only domethe edge from recessive to dominant

bus level.
A.3.7.1 Hard resynchronization

When the bus is idle and the controller detect&d bit, it resynchronizes itself so that the
edge is inside the Synch segment. Hard resynctatoizcan only be made for the first bit in

a frame.

. Resynchronisation within a frame

CAN controllers have the ability to synchroniselmhedges as well as within a CAN frame.
The (re)Synchronisation Jump Width (SJW) decides rttaximum number of time quanta

that the controller can resynchronise every bit.
. Resynchronisation of a receiver to a slower transrtier is handled as follows:

If a recessive-to-dominant edge appears inside TIS&tl the edge is less than or equal to
SJW quanta inside, TSEG1 is restarted. If the @dfgemore than SJW quanta inside, TSEG1
is lengthened with SJW quanta.

. Resynchronisation of a receiver to a faster transrtter:

If a recessive-to-dominant edge appears inside TZSEGEG2 is shortened by the number of
guanta necessary to make the edge be outside THE®B&ver, TSEG2 can be shortened no

more than SJW quanta.
A.3.8 CAN bus physical layer

The physical layer is not part of the Bosch CANnd&rd. However, in the ISO standards

transceiver characteristics is included.

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION xi

CAN transmits signals on the CAN bus which consitavo wires, a CAN-High and CAN-
Low. These 2 wires are operating in differentialdepthat is they are carrying inverted
voltages (to decrease noise interference). Thageltevels, as well as other characteristics of

the physical layer, depend on which standard isgoesed.
A.3.8.1 SO 11898

The voltage levels for a CAN network which followitse ISO 11898 (CAN High Speed)

standard are listed in table.

Table A.1: CAN Bus Voltage Levels

Signal Recessive State (Volts) Dominant State @Jolt
Level Min Nominal| Max Min Nominal | Max
CAN-High 2.0 2.5 3.0 2.75 3.5 4.5
CAN-Low 2.0 2.5 3.0 0.5 1.5 2.25

Note that for the recessive state, nominal volfage¢he two wires is the same. This decreases
the power drawn from the nodes through the terngnatesistors. These resistors are {20
and are located on each end of the wires.

A.3.8.2 1S0O 11519

The voltage levels for a CAN network which followlse ISO 11519 (CAN Low Speed)

standard are described in the table below.

Table A.2: CAN Bus Voltage Levels

Signal Recessive State (Volts) Dominant State @Jolt
Level Min Nominal| Max Min Nominal | Max
CAN-High 1.6 1.75 1.9 3.85 4.0 5.0
CAN-Low 3.1 3.25 3.4 0 1.0 1.15

ISO 115519 does not require termination resisiingy are not necessary because the limited

bit rates (maximum 125 kbps) make the bus insemsit reflections.

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION xii

The voltage level on the CAN bus is recessive wherbus is idle.
A.3.9 Bus lengths

The maximum bus length for a CAN network dependshenbit rate used. It is required that
the wave front of the bit signal has time to trateethe most remote node and back again
before the bit is sampled. This means that if the length is near the maximum for the bit

rate used, one should choose the sampling poihtwtmost care.
Below is a table of different bus lengths and tbeesponding maximum bit rates.

Table A.3: PracticalMaximum Bus Lengths

bit rate kbps Bus length (m)
1000 30
300 100
230 250
125 200
62.5 1000
20 2300
10 5000
A.3.10 Media

According to the ISO 11898 standard, the impedariche cable shall be 120 +- 12 It
should be twisted pair, shielded or unshielded. WN®in progress on the single-wire standard
SAE J2411.

A.3.11 CAN implementations
. Different implementations - BasicCAN and FullCAN

There is no standard on how CAN controllers shall ilmplemented or how they shall
communicate with their host microcontroller. Thare two main implementation strategies
for CAN controllers today. They are called BasicCAN FullCAN.

The main difference between these strategies isiht@resting messages are filtered out, that
is how it is decided what messages are interestimg) which are not. There are also
differences in how remote frames are answered,@mthow messages are buffered. The

differences will effect how much load is put on thest microcontroller.

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION Xiii

. BasicCAN

BasicCAN is wusually used in cheaper standalone Cabhtrollers or in smaller

microcontrollers with integrated CAN controller.

A BasicCAN controller normally has two receive lmsff and one transmit buffer. The receive
buffers are arranged in a FIFO structure, and ssagescan be received into one buffer while
the microcontroller is reading the information frahe other buffer. If a message is received
while both receive buffers are full, the oldest ssgges are kept. This means that newer

messages might be lost if the host microcontralters not read the messages fast enough.
A message is sent by writing it to the transmitféuf

Interesting messages are filtered out using twisteg that operate on the message identifier.
Each bit in the identifier is checked against titterf If the message matches the filter it is

stored in one of the receive buffers.

Each bit of the identifier filter can be set tq 'Q' or ‘don't care'. Often the filter only opesat
on eight of the eleven bits in the identifier (stard CAN). This means the three lower bits in
the identifier are always 'don't care'.

When BasicCAN is used it is important to choosenitfiers with utmost care, so that the
window of the filter can be kept as small as pdssiBll messages that are let through the
filter must be read and checked by the microcoletrolhis means that the final filtering is

done in software.

A BasicCAN controller has no support for automdljcanswering remote frames, which
means that the application will have to handle thdris will put extra load on the

microcontroller or processor, but will make suratttihe value returned is updated.

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION xiv

Table A.4: BasicCAN features

Transmit The application fills complete Tx regisbtecluding ID,RTR, data length,

data: every ID can be transmitted

Receive Every masked CAN message can be recéchally two receive
buffers in FIFO structure Global message filterihgs normally not
possible to set up the filter so that only theretéing messages are let

through: final filtering must be done by the apation

Remote Frame | Remote frames are answered by the application
handling

Overrun Keep the oldest message (newer messages will t)e los

philosophy

. FullCAN

FullCAN is used in more expensive, high performa@eéd\ controllers and microcontrollers.
The FullCAN controller has a set of buffers caltadilboxes. On initialization, each mailbox

is assigned an identifier and is set to transmitoeive.

When the CAN controller receives a message it chéwk mailboxes in order to see if there is
a receive mailbox with the same identifier as thessage. If such a mailbox is found, the
message is stored in it and the host controllaoigied. Otherwise the message is discarded.

When transmitting a message, the message lengtdaads written to the transmit mailbox

with the correct identifier.

If a remote message is received the controllerlch#e remote identifier against the transmit
mailboxes. If a match is found, the controller amiétically sends a message with the
identifier and data contained in that mailbox. Timsans that the microcontroller gets a lower
load, and that the software does not have to haediete messages. However, if the mailbox
has not been updated in a long time, the informadient to the network will be old. This has
to be considered when writing the software.

APPENDIX A. CONTROLLER AREA NETWORK — INFORMATION Y

With a FullCAN controller it is possible to filtesut only the exact message types that are
interesting. This type of controller will thereforgive a lower load on the host

microcontroller.

FullCAN controllers have support for automaticaipswering remote frames. This will
decrease the load on the host microcontroller ocgssor, but may also mean that old
information is sent. It is very important to takastinto consideration when writing your

application.

Table A.5: FullCAN features

Transmit Transmit mailboxes initialized once. Odata bytes written before

transmission.

Receive Only messages with the IDs defined in vecaiailboxes can be received
No double buffering for mailboxes. Full acceptafitering (only the
exact message IDs are let through).

Remote Frame | Remote frames are answered automatically by thealtar.

handling

Overrun Keep the newest message (older messages withrtieelBawill be lost).
philosophy

Appendix B

CAN Baud Rate Setting

A method for CAN baud calculations that uses thé®@@TAN128 data sheet CAN example
baud rate settings as a basis is presented hetesifed AVR clock speed and baud rate must

be specified, then use the examples to get the Tptsl, Tph2 and Tsjw values.

Looking at the AT90CAN128 data sheet, page 266i@ed9.12, Examples of CAN Baud
Rate Setting, note the CAN Baud Rate, TQ and Tdditrans. It should be noticed that if you
convert TQ into seconds: BAUD =1/ (TQ * Thit)

Using simple algebra we get this formula for then&iQuanta (TQ) value:
TQ =1/ (BAUD * Thit)

Because Thit must be 8 or higher, an 8 MHz clodkésslowest possible AVR clock for the
maximum 1 mega-baud CAN operation (8000000 / 8B0000). Also because the maximum
AVR clock is 16 MHz (1 / 16000000 = 6.25 E-8), gmallest TQ possible (within the AVR

specifications) with prescaler BRP [5:0] = 0 is@28 microseconds (6.25 E-8seconds).
As per the CAN specification, Thit must be at |dasin 8 to 25.

If you pick a desired baud rate, then use Thityo8 can calculate the required TQ which we
will call TQ8: TQ8 =1/ (BAUD * 8)

Then use Thit = 25 and calculate the required T@hvive will call TQ25 (so you have a
range of possible TQ values). TQ25 =1/ (BAUD 3 25

Examine TQ8 and TQ25 to make sure they are equkrger than CLKio (your AVR /O
clock is the AVR speed taking CLKPR and CKDIV8 irdocount) divided into 1. Any TQ
value for a given Thit (8 to 25) value that is temall means it cannot be used. For an
example, look at the data sheet 8 MHz clock in 2E%amples of CAN Baud Rate Setting.
You will see that at 1 mega-baud an 8 MHz AVR I/lock is 0.125 microseconds and it

matches a TQ8 of 0.125 microseconds. A TQ9 is A 1Imicroseconds, which is a smaller

APPENDIX B. CAN BAUD RATE SETTING Xvii

value than the AVR CLKio which is as fast as theRAWan go at that clock speed. So, TQ9 is
too small to be used at this baud rate and CLKeedpDo not try to use any Thit values that

do not meet the time quanta limitations.

Next take your CLKio frequency (AVR system clockvided by the CLKPR value) and
multiply it by TQ8: TDIV8 = (CLKio * TQ8) — 1

Round TDIV8 off to an integer. This will be theqrered prescaler divider BRP [5:0] bit
value in decimal. Because BRP [5:0] is only 6 byraits, TDIV8 must always be in the 0 and
63 decimal value range. If TDIV8 is larger than &cimal it means you cannot set the
BRP[5:0] to a high enough value for that baud etté@bit = 8. You could use CLKPR to

reduce CLKio if you really wanted to use Thit =88 §ome reason.

Now you can do: TDIV25 = (CLKio * TQ25) — 1 and mu it off to an integer (it must also

be 0 to 63 or it cannot be used).

What TDIV8 and TDIV25 tell you is what range of BR®0] prescaler values are possible
for your desired baud rate. When rounding off tHeIM8 and TDIV25 prescaler values
recalculate the TQ values: TQ8 = TDIV8 + 1 / CLKio

TQ25 =TDIV25 + 1/ CLKio

Note that the original TQ8 and TQ25 values may gkan the above formulas because of the
TDIV8 and TDIV25 round off.

Next there is something else the data sheet thaIPxamples of CAN Baud Rate Setting
can teach us. You will notice that: Thit = Tsyn$prs + Tphsl + Tphs2

Tsyns is the built in 1 TQ long synchronization, [sib its value is fixed as a 1 at all times
which gives us: Thit =1 + Tprs + Tphsl + Tphs2

In fact there is a pattern in the examples tablee Tprs, Tphl, Tph2 and Tsjw values are
always the same for a given Thit value (it doesmatter what the clock speed or baud rate
is). We can take a shortcut here and copy therpattdues for a new baud rate that is not in
the table. The data sheet has Thit values for @01%, 12, 10 and 8. So, using your custom
baud rate pick one of these Thit values and calewaur TQ. Then use CLKio and TQ to

calculate your prescaler division integer. If thregealer division calculation does not need
rounding off into an integer, your baud rate w#i perfect. If there is any remainder to round
off your baud rate will not be perfect (use thetfiflormula to figure out your actual BAUD

APPENDIX B. CAN BAUD RATE SETTING Xviii

rate). Lastly, copy the Tprs, Tphl, Tph2 and Tspiues (CANBT2 and CANBT3) for the
same Thit value as the one you used. This is metboguickly setup what should be a
workable CAN baud setting for CANBT1, CANBT2 and BRBT3 using a custom baud rate
or custom AVR system clock frequency.

Here is a 9600 baud example with an AVR 7.3728 Mbkitem clock and CLKPR of O (i.e.
CLKio = 7.3728 MHz).

TQ = 1/ (BAUD * Thit)

TQ8 = 1/ (9600 * 8) = 1.302 E-05

TQ25 =1/ (9600 * 25) = 4.166 E-06

TDIV = (CLKio * TQ) — 1

TDIV8 = (7372800 * 1.302 E-05) — 1 = 95

TDIV25 = (7372800 * 4.166 E-06) — 1 = 29.72 (roudde 30)

Notice that a TDIV8 of 95 exceeds the BRP [5:0] maxn value of 63, so it is not usable.
However, since TDIV25 is under the 63 maximum vakeeknow it is possible to use other
Thit values higher than 8. Since we have to picknfrthe existing table 20, 16, 15, 12, 10
selection, lets just go to Thit = 16.

TQ16 =1/(9600 * 16) = 6.510 E-06
TDIV16 = (7372800 * 6.510 E-06) — 1 = 47

There is no remainder in TDIV16, so 9600 baud gedect baud rate at this AVR clock
speed with Thit set to 16. If we double check, etreugh we do not have to because of the
perfect baud rate match:

TQ16 = (TDIV16 + 1) / CLKio
TQ16 = (47 + 1) / 7372800 = 6.510 E-06

This tells us BRP [5:0] = 47 decimal which is 1011ldinary and formats into CANBT1 as
1011110 binary or OX5E hex.

Then we just take the existing Tprs, Tphl, Tph2 &sjv values for Thit = 16. So, we get:

APPENDIX B. CAN BAUD RATE SETTING Xix

CANBT1 = Ox5E

CANBT2 = 0x0C
CANBT3 = 0x37

A general alternative to the method above for atiratontrollers is a CAN calculator that
can be downloaded from a free website [11]. In dailsulator you just put the baud rate and
the clock frequency and the calculator will compthe CAN bit timing values with all
possible combinations.

APPENDIX C. SOURCE CODE

Appendix C

Source Code

XX

APPENDIX C. SOURCE CODE XXi

canprotocol _main.c

APPENDIX C. SOURCE CODE XXii

can_msg_drv.c

APPENDIX C. SOURCE CODE XXiii

candriv.c

APPENDIX C. SOURCE CODE XXV

canTimer.c

APPENDIX C. SOURCE CODE XXV

adc_mlib.c

APPENDIX C. SOURCE CODE XXVi

sensor_drv.c

APPENDIX C. SOURCE CODE XXVii

canDemo.c

	Abstract
	Opsomming
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Background
	2 The CAN Protocol Conceptual System Design
	3 Detailed Design and Protocol Implementation
	4 Protocol Performance and Implementation Results
	5 Conclusion and Recommendations
	Bibliography
	A Controller Area Network - CAN Information
	B CAN Baud Rate Setting
	C Source Code

