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Abstract

Lignocellulose is the principal form of biomass in the biosphere and therefore the predomi-

nant renewable source in the environment. However, owing to the chemical and structural

complexity of lignocellulose substrates, the effective and sustainable utilization of

lignocellulose wastes is limited.

Many environments where lignocellulose residues are ordinarily stored can be highly acidic

(e.g. landfills), and under these circumstances biodegradation of the lignocellulose is slow and

unhygienic. Owing to the metabolic activities of the micro-organisms, the initially acidified

habitats rapidly undergoes self-neutralization. A number of pathogenic bacteria (coliforms

and Salmonella sp.) are present during this slow degradation process and it is therefore

imperative to improve the efficiency and hygienic effects of the biodegradation of the

lignocellulose.

Although the fundamentals of biodegradation of lignocellulose have been widely investigated,

many issues still need to be resolved in order to develop commercially viable technology for

the exploitation of these waste products. For example, owing to the complex, heterogeneous

structure of lignocellulose, the degree of solubilization, modification and conversion of the

different components are not clear. Likewise, the overall anaerobic degradation of

lignocellulose is not understood well as yet.

In this study, the emphasis was on the promotion of solid anaerobic digestion of lignocellu-

lose wastes for environmental beneficiation and waste reutilization. The degradation of

lignocellulose in landfill environments was first simulated experimentally. Once the microbial

populations and the degradation products of the system were characterized, the promotion of

anaerobic digestion by use of activated sludge was studied. This included acidogenic

fermentation, as well as recovery of the methanogenic phase. Moreover, special attention was

given to the further disposal of humic acids or humic acid bearing leachates formed in the

digestive system, since these acids pose a major problem in the digestion of the lingocellu-

lose.
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With ultrasonication, approximately 50% of the lower molecular weight fraction of humic

acids could be decomposed into volatile forms, but the higher molecular weight fraction

tended to aggregate into a colloidal form, which could only be removed from the system by

making use of ultrasonically assisted adsorption on preformed aluminium hydroxide floes.

This was followed by an investigation of the microbial degradation of humic acids and the

toxicity of these acids to anaerobic consortia. Further experimental work was conducted to

optimize the biological and abiological treatment of lignocellulose in an upflow anaerobic

sludge blanket (DASB) reactor fed with glucose substrate. The humic acids could be partially

hydrolysed and decomposed by the acid fermentative consortia of the granules in the DASB

reactor.

Finally, solid mesothermophilic lignocellulose anaerobic digestive sludge can be viewed as a

humus-rich hygienic product that can improve the fertility and water-holding capacity of

agricultural soil, nourish plants and immobilize heavy metals in the environment as a bio-

absorbent.
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Abstrak

Lignosellulose is die hoofbron van biomassa in die biosfeer en is daarom ook die belangrikste

hernubare bron in die omgewing. As gevolg van die chemiese en strukturele kompleksiteit

van lignosellulose substrate, is die doeltreffende en volhoubare benutting van lignosellulose

afval egter beperk. Die suurgehalte van die omgewings waar lignosellulose reste gewoonlik

gestoor word, soos opvullingsterreine, kan hoog wees en onder hierdie omstandighede is die

biodegradasie van die lignosellulose stadig en onhigiënies. As gevolg van die metaboliese

aktiwiteite van die mikro-organismes ondergaan die aanvanklik aangesuurde habitatte vinnig

self-neutralisasie. 'n Aantal patogeniese bakterieë (koliforme en Salmonella sp.) is deurgaans

gedurende dié stadige natuurlike proses teenwoordig en dit is dus van die grootste belang om

die effektiwiteit en die higiëne van die bioafbreking van die lignosellulose-substraat te

verhoog.

Alhoewel die grondbeginsels van die bioafbreking van lignosellulose reeds wyd ondersoek is,

moet verskeie probleme nog opgelos word ten einde kommersieel haalbare tegnologie te

ontwikkel vir die ontginning van afvalprodukte. Byvoorbeeld, as gevolg van die komplekse,

heterogene struktuur van lignosellulose, is die graad van solubilisering en die modifikasie en

omskakeling van verskillende komponente nog onduidelik. Net so word die algehele anaero-

biese afbreking van lignosellulose ook nog nie ten volle verstaan nie.

In hierdie ondersoek het die klem geval op die bevordering van soliede anaerobiese digestie

van lignosellulose afval vir omgewingsverbetering en die benutting van die afval. Die

afbreking van lignosellulose in opvullingsterreine is eers eksperimenteel gesimuleer. Nadat

die mikrobiese populasies en die afbrekingsprodukte gekarakteriseer is, is die bevordering van

anaerobiese digestie deur die gebruik van geaktiveerde slyk bestudeer. Dit het asidogeniese

fermentasie ingesluit, sowel as herwinning van die metanogeniese fase. Spesiale aandag is

gegee aan die verdere verwerking van humus sure en humussuurbevattende legate wat in die

digestiewe stelsel gegenereer is, aangesien die sure probleme veroorsaak het met die vertering

van die lignosellulose.

Met ultrasoniese straling is nagenoeg 50% van die lae-molekulêre massafraksie van die

humussure ontbind in vlugtige vorm, maar die hoë-molekulêre massafraksie het geneig om in
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'n kolloïdale vorm te aggregeer, wat slegs uit die stelsel verwyder kon word deur middel van

ultrasonies ondersteunde adsorpsie op voorafgevormde aluminiumhidroksiedvlokkies.

Dit is gevolg deur 'n ondersoek na die mikrobiese afbreking van humus sure en die toksisiteit

van die sure ten opsigte van anaerobiese konsortia. Verdere eksperimentele werk is gedoen

ten opsigte van die biologiese en abiologiese behandeling van lignosellulose in 'n

opwaartsvloeiende anaerobiese slikkombersreaktor (OASK) gevoer met glukosesubstrate. Die

humus sure kon gedeeltelik gehidroliseer en ontbind word deur die suurgistende konsortia van

die granules in die OASK reactor.

Ten slotte kan die vaste termofiliese-mesofiliese anaerobiese lignosellulose verteringslik ook

gesien word as 'n humusryke higiëniese produk wat die vrugbaarheid en die waterhoudende

vermoë van landbougrond kan verhoog, plante kan voed en kan funksioneer as bio-

absorbeerder van swaarmetale in die omgewing.
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Introduction

Chapter 1 Introduction

Newly heightened concerns about or awareness of climatic changes, the depletion of

stratospheric ozone, environmental pollution, wildlife, shrinking biodiversity, health, food

safety, land degradation and pressures on non-renewable resources have been called upon the

world to embrace the sustainable development ethos (163). In nature, agriculture is sustainable

only where the organic wastes are recycled to maintain soil humus and fertility. In practice, on

the one hand, high human activity promotes intense development of soil cultivation, but the

extensive extracting of the existent nutrients of the soil unavoidably brings the soil into a

seriously nutrient-budged status. On the other hand, vast quantities of agricultural and agro-

industrial residues generated as a result of diverse agriculture and industrial practices and

municipal solid wastes/sewage sludge generated in our daily life circle have been seen to

accumulate considerably. Some organic wastes are incinerated, but this practice has been

criticized because of the resulting air pollution and the danger of soil erosion. Another

approach has been the use of chemicals to enhance the digestibility of organic wastes, but

their use could be tedious and costly, and could require further treatment to eliminate side

effects. Alternatively, microbiological treatments were found to be an economical and

environmentally-attractive option for the disposal of organic wastes.

Generally, most agricultural residues and organic fractions of the municipal solids and sewage

sludge can be returned to the soil as nutrients through micro-organism

transformation/decomposition-digestion (including hydrolysis, aerobic, anoxic and anaerobic)

processes. However, in nature, these microbial processes are very slow and, ideally, the

organic wastes must not be returned to the cultivated land in the raw state because that would

be unhygienic for both plants and man. It would also overload the system's capacity to

recycle the carbon in the wastes in the near-absence of on-site herbivores present in a

balanced ecosystem. Every year, the accumulation of the biomass and organic wastes in large

quantities not only results in the deterioration of the environment, but also in the loss of

potentially valuable material which could be processed to yield a number of value-added

products. A sustainable development ethos can be explored by developing a "Four-R

strategy": reduce, re-use, recover, and recycle wastes to conserve our resources and reduce

pollution by emulating, adopting and maximizing the beneficial processes of an ecosystem.

Furthermore, as a countermeasure against the potential post-contamination of "artificial
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manure" or chemical inorganic fertilizers in the environment, the promotion of the hygienic

and value-adding disposal of organic wastes has aroused intensive interest and has been

widely investigated in recent years.

The use of human wastes as a resource in agriculture has a long history. The development of

water-born sewage systems in the beginning of the nineteenth century established crop

irrigation as a preferred means of disposal. Sewage sludge has been, for many years, a

valuable resource material when it is used as a fertilizer and a soil conditioner after

composting. Processing of the raw wastes in composite mixtures in some ancient cultures

reduced bulk, dissipated part of the carbon, sanitized the wastes and conserved nutrients (121).

The main benefits of sludge application in agriculture in the form of compost are: provision of

major plant nutrients (in particular Pand N), increased supply of some of the essential

micronutrients (in particular Zn, Cu Mn and Mo), improvement in the soil structure, and

increased soil water-holding capacity. Sludge can generally be considered as a slow-release

fertilizer material, which can be used as a maintenance fertilizer on perennial crops, such as

sugar-cane, fruit trees and grasses. It can be of particular benefit in the cases where the

availability of nutrients from commercial inorganic fertilizers is low owning to factors like

high leaching losses (in the case ofN03) or high soil-P fixing capacity (139) •

Activated sludge from the biological municipal waste water treatment plant which is free from

heavy-metal and other toxic chemicals could be the best candidate for organic fertilizer.

However, strictly speaking, it is still an intermediate product, which is rich in organics-

digestion micro-organisms and should be stabilized and composted to remove the pathogen

bacteria before application on the land.

On the other hand, because of the abundance of plant lignocellulose in the biosphere and the

importance of different components of plant lignocellulose in industrial processes and

products, it is important to be knowledgeable about its metabolism in various biological

environments. In addition, to make use of the plant lignocellulose wastes before mixing them

with other municipal solid wastes before dumping, can be a commendable waste

management.

Since Omelianske described the degradation of cellulose with methane formation as a specific
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bacterial action in 1906 (185), the anaerobic digestion has historically been used for the

stabilization of raw domestic sludge typically removed by primary sedimentation. More

recently, anaerobic digestion has also been applied to chemically-treated primary sludge

which contains the chemicals added for phosphorus removal and to biological sludge mixtures

containing significant industrial waste contributions and exhibiting significantly different

chemical and physical characteristics. Many efforts to understand the anaerobic digestion

(including the microbiology, the population dynamics, the effects of environmental and

nutritional conditions, feeding characteristics, operational parameters etc.) have been

reviewed by Pavlostathis et al. (196). The anaerobic fermentation of high-solid organic wastes

(such as municipal solid waste and de-watered sewage sludge) has been attempted as an

attractive approach for developing a recycle and or energy producing type of solid waste

management system. The raw primary sludge/thickened sludge mixture, (RAWITWAS), fed

to the anaerobic digesters at the waste water treatment plant in combination with the organic

fraction of municipal solid waste (OFMSW) could be a richer source of organic materials and

hence lead to more effective anaerobic digestion. Anaerobic co-digestion of a RAWITWAS

sewage sludge and OFMSW mixture would take advantage of the inherent microbial

population in sewage sludge to digest the OFMSW and the sludge itself Ultimately, this

would allow for resource recovery through the production of a nutrient-rich compost and

energy recovery through methane bio-gas production. However, complete knowledge and

efficient technology regarding the anaerobic digestion of plant lignocellulose solid wastes

with activated sludge are still scarce.

Therefore, taking the abundance and the accumulation of plant lignocellulose wastes into

account, the accumulation of activated sludge and its potential nutrient capacity for fertilizing

land, and the advantages of anaerobic digestion, makes an effective biological utilization of

plant lignocellulose waste using an anaerobic bio-degradation process a desirable option for

the future. A better understanding of this complex process is of compelling interest due to the

complex and refractory nature of the plant lignocellulose substrate (74) • Consequently, the

objectives of this study were as follows:

• To simulate the microbiological decomposition of plant lignocellulose waste in

landfill situations and to investigate the plant lignocellulose decomposition in sulphate

acidified (landfill) conditions comparable with the controlled anaerobic digestion
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process.

• To promote the anaerobic degradation of plant lignocellulose wastes with activated

sludge using abiological-pretreatment and an integrated two-phase high-solid

anaerobic digestion system.

• To investigate the microbial community involved in the digestion process.

• To investigate the disposal of some complex intermediate products, especially the

humic acids, because of their refractivity to further bio-degradation and their potential

to cause environmental problems.

• To evaluate the hygienic effects of the anaerobic digestion process and the fertility of

the digested solid products as value-added soil conditioner (fertilizer).

• To establish an effective technology to utilize plant lignocellulose waste for

environmental and economical benefits.
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Chapter 2

Background and Theoretical Considerations

In section 1 below, the macro- and micro-structure of lignocellulose is described with respect

to the relationship between the substrate structure and its decomposition process. In section 2,

the fundamentals of anaerobic digestion is extensively discussed; the whole biological

decomposition and anaerobic conversion process of lignocellulose is presented and the special

considerations regarding anaerobic digestion of lignocellulose are discussed. In section 3, the

decomposition of lignocellulose in landfill is described and the investigation's emphasis is

towards the decomposition of lignocellulose in sulphate acidified landfill conditions. In

section 4, the following subjects are addressed: the formation of humic acids (HAs) in the

biological decomposition of lignocellulose; the characteristics and the inhibitory effects of

HAs on the anaerobic digestion of lignocellulose; the biological decomposition and the non-

biological alternative treatment of HAs to reduce its negative influence on the digestion

process and the aqueous environment.

2.1 Lignocellulose structure

The biodegradability of the substances is dependent on its composition and chemical structure

features. Knowledge of the lignocellulose structure is basic to design of the degradation

process.

Lignocellulose is the term used to describe the composite of the predominant polymers of

vascular biomass. It is the principal source of biomass and therefore a renewable resource. A

large proportion ofagroindustrial plant residues (e.g. tobacco dust) and urban waste (e.g. yard

waste) is present in the form of lignocellulose. It is a complex of three classes of polymer:

polysaccharides cellulose, hemicellulose and the phenolic polymer oflignin.

Cellulose is a linear polymer of D-glucose residues (building blocks) held together by ~1-4-

glucosidic linkages; it makes up 50% of the mass of vascular plants and is mainly used in

chemical pulping processes. The ~1-4 linkage causes the polyglucose molecules to adopt a

fully-extended linear configuration, which is attained by flipping each glucose unit 1800

relative to the preceding one. The glucose linkage acts as a functional group and this, with the
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hydroxyl groups, mainly determines the chemical properties of cellulose. The intermolecular

hydrogen bonds also stabilize each cellulose chain. The linear cellulose molecules pack

together to form rod-like structures known as elementary fibrils, protofibrils or micelles,

which are stabilized by intermolecular hydrogen bonds between adjacent cellulose chains.

The micelles, the smallest structural units, are packed into microfibrils, which are each about

10 nm in diameter and up to several micrometres in length.

Hemicellulose is a matrix polysaccharide of the plant cell wall and is made up of xylose,

galactose, mannose, arabinose, glucose and their uronic acids (56, 249). It includes all of the

plant cell polysaccharides excluding pectin and cellulose (258). Hemicellulose is frequently

branched, and sometimes hydroxyl groups of the main chain are acetylated. These two

polymers are physically encrusted with lignin, to which they are covalently linked through

lignin-saccharide bonds that provide mechanical strength and rigidity to plant tissues.

In contrast, lignin is an amorphous three-dimensional aromatic polymer composed of three

phenylpropanoid units: coniferyl alcohol, sinapyl alcohol and p-coumaryl alcohol (52). The

lignin presents in the cell walls and middle lamellae of vascular plants and surrounding

cellulose microfibers, gives rigidity to cell walls and makes plants resistant to pathogen attack

and mechanical stresses. It makes up 15%-30% of the mass of vascular plants. Lignin is

synthesized in plants from coniferyl and coumaryl alcohol through radical coupling mediated

by plant peroxidases. This random chemical coupling results in a complex three-dimensional

phenolic polymer with a variety of bonding arrangements giving ary glycerol-f-aryl ether,

biphenyl, diphenylether, phenylcoumaran, 1,2-diaryl-propane and other such structures (52).

Hemicellulose appears to be associated with both cellulose and lignin (83). While cellulose and

hemicellulose fractions are degradable, some of the lignin components are known to be

resistant to degradation under anaerobic conditions and may hinder degradation of other
components (244).

2.2 Anaerobic digestion of lignocellulose

Traditionally, anaerobic digestion technology was traditionally employed in waste water

treatment to reduce the volume and weight of sludge and to produce corresponding amounts
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of bio-gas. It is gaining environmental and economical importance in organic solid waste

digestion due to the benefits of resource recovery and environmental impacts from the

alternative treatments (e.g. incineration and landfill).

2.2.1 Anaerobic digestion process

2.2.1.1 Microbiology and biochemistry

Anaerobic (methanogenic) fermentation of organic matter is a multistage process (185). In the

first stage, the complex substrates are hydrolyzed into oligosaccharides and monosaccharides,

peptides and amino acids, fatty acids and glycerol, heterocyclic nitrogen compounds, ribose

and inorganic phosphate. In the second stage, acidogenesis occur with the formation of H2,

C02, acetate and other higher organic acids through the activities of the fermentative bacteria.

During the third stage, acetogenesis occurs and the organic acids that are produced in the

previous stage are converted into H2and acetate by acetogenic bacteria. In addition, a fraction

of the available H2and CO2 is converted into acetate by homoacetogenic bacteria. During the

last (fourth) stage, a group of methanogenic bacteria both reduces the CO2 and

decarbonoxylates the acetate to form methane.

Correspondingly, a complete anaerobic digestion process involves a sequence of fermentation

reactions resulting in the stabilization of a complex biomass with methane and carbon dioxide

as the end-products. The overall conversion process is dependent on the activities of four

metabolic groups of bacteria: the hydrolytic, the obligate proton-reducing, the homo-

acetogenic and the methanogenic bacteria. These microbial groups have different

physiologies, growth and metabolic characteristics, and need different environmental

conditions for optimal metabolic activity. The dominant digester organisms can be divided

into two broad functional groups: volatile fatty acid (VFA) producers (acidogens) and VFA

converters (acetogens and methanogens).

Hydrolysis and liquefaction of complex and/or insoluble organics are necessary to convert

these substances into a size and form that can pass through bacterial cell walls for use as

energy or nutrient sources. This is accomplished by extracellular hydrolytic enzymes, which

are produced and excreted by the micro-organisms for this specific liquefaction purpose (140).
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The stabilization of bio-polymers will not occur without this initial hydrolysis step. In an acid

fermentation process, the hydrolyzed bio-polymers are fermented to long chain organic acids,

sugars, amino acids, and eventually to small organic acids, such as volatile fatty acids.

The overall rate of stabilization and methane fermentation can be limited by the hydrolysis

step or the methanogenesis step. The rate limiting step in solid digestion is generally believed

to be solubilization (hydrolysis) of particulate organic matter to soluble substrate. A

successful anaerobic digestion of solid waste is firstly dependent on the hydrolysis of the bio-

polymers into the monomers and the acidogenic production of VFA. It was considered that

the rate-limiting step of the overall methane fermentation for sludge is hydrolysis, the

methanogenesis is the rate-limiting step only in the case of soluble sugars (181, us; As far as

the chemical and structural complexity of the lignocellulose substrate is concerned, the

efficiency of anaerobic digestion of lignocellulose substrate is firstly dependent on the

hydrolysis or breakdown of its large molecular (crystalline) structure. The bio-conversion,

degradation and hydrolysis of crystalline lignin and cellulose is the rate limiting step in

anaerobic digestion of lignocellulose.

Similarly, the overall anaerobic digestion process of the lignocellulose substrate consists of

the four intimately correlated steps:

1) Hydrolysis, biotransformation and degradation process: convert lignocellulose polymers

(lignin, cellulose and hemicellulose) into lignin moieties, reducing sugars (such as

oligosaccharides and monosaccharides), phenolic aldehydes and acids, polyphenols,

peptides and amino acids, fatty acids and glycerol, heterocyclic nitrogen compounds,

ribose and inorganic phosphate; form humic substances. Essentially, no stabilization of

lignocellulose waste occurs during the hydrolysis process; the degradable organic matter

is simply converted into a soluble form that can be utilized by the bacteria. The

stabilization of lignocellulose wastes cannot occur unless this initial hydrolysis step is

conducted properly. The extracellular, hydrolytic enzymes must be produced in sufficient

quantities and make intimate contact with the organics, in order to effect hydrolysis

without limiting the overall stabilization reaction. This emphasizes the requirement of a

large, active population of micro-organisms, a concentrated organic substrate and uniform

mixing and temperature conditions within the reactor. It implies that the pre-treatment of
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lignocellulose substrate is critical to the degradation process. Furthermore, it should be

recognized that not all of the organic components of the lignocellulose are hydrolyzed to

simple compounds that can be assimilated by bacteria because of the structure,

inaccessibility and complex non-hydrolyzable linkages, among other factors, or

humification reactions.

2) Acidogenic fermentation process: the hydrolyzed reducing sugars, phenolic aldehydes and

acids, polyphenols, peptides and amino acids, fatty acids and glycerol are eventually

fermented to smaller organic acids (volatile fatty acids) such as propionic, butyric, and

valeric acid. At this stage, most of the organic material of the lignocellulose is simply

changed in form and a relatively small fraction is actually consumed as energy source (i.e.

stabilized). The population of bacteria responsible for acid production includes facultative

anaerobes, strict or obligate anaerobes or a combination of both. Acetic acid, hydrogen,

and carbon dioxide are also formed during the production of organic acids. Hydrogen is

inhibitory for many of the acid-forming bacteria and must be removed from the system if

acid production is to continue. At the same time, hydrogen is an energy source for some

methanogenic bacteria and is rapidly consumed in the reduction of carbon dioxide to

methane.

3) Hydrogen and acetic acid formation: at this stage, acetogenic bacteria convert propionic,

butyric, and valeric acid to acetate, hydrogen and carbon dioxide. Hydrogen has been

recently shown to playa key role in regulating organic acid production and consumption.

If the partial pressure of hydrogen exceeds about 10-4 atm (106, 65), methane production is

inhibited and the concentration of organic acids (e.g. propionic and butyric) will increase.

A syntrophic association with a large, stable population of C02-redUCingmethanogens

will ensure a low concentration of hydrogen.

4) Methane formation: Waste stabilization occurs during the methanogenic phase by

conversion of the acetic acid into methane, which is separated from the system in gas

form. Carbon dioxide is also produced and either escapes as gas or is converted to

bicarbonate alkalinity. One of the most important characteristics of the methanogenic

phase is that very few substrates can act as an energy source for the methane bacteria.

Presently, it is believed that only formic acid, acetic acid, methanol, and hydrogen can be
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used as energy sources by the various methanogens. Among these, acetic acid and

hydrogen serve as the major substrates for methane formation in the anaerobic digestion.

The anaerobic digestion path of lignocellulose substrate to methane and carbon dioxide is

summarized in Fig.2.1.

Acidogenic Fermentation

Acetogenic Fermentation

Cellulose and other Non-lignin Substrate

Can't be
hydrolyzed

Acetic acid
H2, CO2

Humic substances

Methanogenic StabiIization

I CH,:teo, I ~II

Acidogenic Fermentation

Acetogenic Fermentation

Acetic acid
H2, CO2

Methanogenic Stabilization

I C""ico, I

Fig 2.1 The anaerobic digestion path of lignocellulose substrate to methane and carbon
dioxide(55)
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As can be seen from Fig.2.1, the biological stabilization of the lignocellulose substrate to

methane is a long and complicated process. To ensure a complete stabilization of

lignocellulose substrate, the following points should be taken into account:

1) Because of the complicated macro-and microstructure of lignocellulose, it is difficult to

break it down into simple and soluble substances which can feasibly be utilized by the

anaerobic consortium. Thus, the initial biotransformationlhydrolysis/bio-degradation of

lignocellulose into soluble forms is critical to its further bio-degradation/utilization by an

anaerobic population. This step can be enhanced by pre-treating lignocellulose physically

or chemically, which, to some extent, leads to the rupturing of the rigid structure of

lignocellulose.

2) The lignocellulose cannot be completely hydrolyzed, and a wide variety of intermediary

products are formed. Some of which (e.g. phenolic aldehydes and acids and polyphenols)

are still refractory to anaerobic digestion and some may re-polymerize into polydispersed

polymers of aromatic and aliphatic units (humic substance), which are more complex and

more highly condensed than the lignin polymer. The further utilization/conversion of the

hydrolyzed products by anaerobes may thus be seriously inhibited by these intermediary

products. A special treatment or further degradation of the humic substances formed in

situ, especially of the HAs, is necessary because of the solubility of the HAs in normal

aqueous and terrestrial habitats, and their potential toxicity to the growth of anaerobes.

3) Successful degradation and stabilization of lignocellulose substrate towards methane

production is a consecutive biological decomposition process which involves the

comprehensive activities of different functional micro-organism groups, with each stage

having its specific functional micro-organisms. The presence and the growth of the

particular function micro-organism can be used as an indicator by which the degradation

oflignocellulose can be evaluated.

4) Care must be taken to reduce the pathogenic bacteria to a satisfactory level by designing

and operating the anaerobic digestion process in a hygienic way so that the humus, the
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final solid products of the digestion, can be used in the sustainable development of

agricultural industry.

5) In addition, since landfill is normally used for the disposal of municipal solid wastes and

will be a significant repository of the future, the decomposition of lignocellulose in

landfill should be investigated to obtain the primary knowledge about the decomposition

of lignocelulose in normal waste-management practice.

2.2.1.2 Biotransformation/degradation of organic fatty acids and aromatic compounds in

an anaerobic process.

Predictably, organic fatty acids and aromatic compounds can be the main products in the

ligonocellulose hydrolysis process and can become the principal sources for the anaerobic

digestion. The biotransformation/degradation of these two groups of organics has been of

interest to many investigators.

Organic fa tty acids:

Propionate metabolism by a mesophilic acetogenic bacterium was studied in pure cultures as

well as in co-cultures and tri-cultures with methanogens. Products and inhibitory conditions

observed under various substrate and consortia combinations were explained'f?', Intermediates

and products resulting from the syntrophic degradation of normal and branched C4 to C9 fatty

acids in a methanogenic triculture were presented by Wu et al.(262) Liu and Suflita (153)

examined the ability of Acetobacterium woodii and Eubacterium limosum to degrade methyl

esters of acetate, propionate, butyrate, and isobutyrate under growing and resting cell

conditions. At relatively low concentrations, lactate was rapidly oxidized to acetate, CO2 and

H2 in a fluidized-bed reactor inoculated first with a methanogenic consortium of three species

and subsequently with a Desulfovirio sp. Strain LI. However, under non-sterile conditions

and at high lactate concentrations, a Clostridium sp. culture that converted lactate to

propionate was developed (271).

Wu et al.(263)reported that the syntrophic fatty acid-degrading granules can be produced with

a limited number of key microbial species which possess essential aggregate-forming ability,

- 12-

Stellenbosch University http://scholar.sun.ac.za



Background and Theoretical Consideration

and their association can completely mineralize the major intermediates of anaerobic

digestion, i.e. acetate, propionate and butyrate.

Aromatic compounds:

Aromatic compounds generally undergo a ring reduction step, where the microbes are mostly

produced. This is a result of the induction of a whole sequence of enzymes that convert an

aromatic substrate into either an 'ortho' or a 'para' cyclohexane carboxylic acid derivative,

followed by cleavage of the ring to the end-products CH4, CO2 and aliphatic acids (84).These

ring fission products are then funneled into the Krebs cycle through a variety of pathways

depending on the organism and culture conditions (231,268,20).This has been illustrated with the

degradation of benzoate and phenol, two of the most studied aromatic compounds, because

they are the intermediate products of numerous other aromatic compounds in the anaerobic

catabolism process.

The anaerobic utilization of benzoic acid by methanogenic bacteria was first reported by

Tarvin and Buswell (36),and this was later confirmed by Clark and Fina (47).Other aromatic

compounds, which have been degraded by similar mechanisms, include catechol, pyrogallol,

hydroquinone, caffeic acid, pyrrole and pyridine. The first observation of the anaerobic

degradation of catechol was by Healy and Young (117),and their results showed a ring

cleavage step during the fermentation, with half or more of the substrate carbon being

converted to methane. Hydroquinone was first reported to be degraded anaerobically by

Szewzyk et al.(238).They also investigated the degradation of catechol and again found phenol

to be an intermediate, indicating that reductive dehydroxylation was the primary event during

the degradative pathway.

The key steps of anaerobic phenol metabolism were studied with the help of a denitrifying

Pseudomonas strain, and the rate-limiting intermediates were identified (147).An anaerobic

consortium carboxylated phenol to benzoate at the para-positions and further transformed

benzoate to l-cyclohexene carboxylate and heptanoate. The same consortium carboxylated

the ortho-, but not the meta- and para-, isomers of cresol, fluorophenol and chlorophenol (22).

The biotransformation of benzoate, 4-hydroxybenzoate, and aniline were studied in sediment

slurries amended with multiple electron acceptors, including manganese (lV) and iron (III)
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oxide. Addition of molybdate inhibited the degradation of benzoate, but not that of 4-

hydroxybenzoate (181).Gallert and Winter (89)found that 4-hydroxybenzoate was activated

with coenzyme A (CoA) and then reductively dehydroxylated to benzoyl-CoA in a strictly

anaerobic phenol-degrading mixed culture. The generation of a proton degradient during the

decarbonoxylation of 4-hydroxybenzoate and ATP formation by ft-ATPase was concluded

to be a source of the observed rapid increase in cellular ATP concentrations and an increased

growth yield of 1.8 g/rnol after the addition of 4-hydroxybenzoate to the culture. The

anaerobic benzene degradation was found in microcosms prepared with material from a

contaminated aquifer (61).Complete stoichiometric mineralization of toluene and o-oxylene to

CO2, CH4, and biomass under anaerobic conditions by a methanogenic consortium derived

from a creosote-contaminated sediment after long lag periods (100-255 days) was reported by

Edwards and Grbiz- Galie (72). Seyfried et al. (227)demonstrated that the anaerobic degradation

of toluene by denitrifiers (Pseudomonas sp. Strain T and strain KI72) was initiated by a direct

oxidation of methyl group, with benzaldehyde and benzoate as intermediates.

The enzymatic activities involved in a complete anaerobic oxidation of catechol and

protocatechuate by the sulphate-reducing bacteria Desulfobacterium sp. Strain Cat2 were

determined (101).The anaerobic oxidation of catechol was found to be a C02-dependent

process. Kasami et al.(130)used 13C_NMRspectroscopy to identify the anaerobic pathway for

the conversion of the methyl group syringate and other phenyl methyl ethers to acetic acid by

Clostridium thermoaceticum.

The sulphate reducing strain Desulfococcus sp. Strain Hy5 was able to grow with

hydroquinone as the sole source of carbon and energy (102)with gentisate the first intermediate

in this degradation process. Biotransformation studies of both quinoline and methylquinoline

isomers conducted with sediment slurries under methanogenic conditions at 25°C showed the

production of hydroxlated and methylated intermediates. Comparative metabolic studies with

Clostridium foricoaceticum and Clostridium aceticum revealed acetate to be the major

product of benzaldehyde degradation, with a doubling time of five hours for these species{l03).

In addition, it was found that under denitrifying conditions, aniline was mineralized

completely to N2 and CO2, but two methanogenic cultures, established with anaerobic waste

water digester sludge and estuarine sediment respectively, did not use aniline (62).
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2.2.1.3 Environmental factors and process modifications

(1) Environmental factors

Environmental factors of concern in anaerobic digestion include nutrients (macro and micro),

pH, temperature and toxic materials. For the most part, the methane-forming bacteria are

thought to be the micro-organism most sensitive to environmental changes. If the hydrolysis

of organic polymers is successfully reached, further acidogenic fermentation is a rapid

process. However, methanogens have a slower growth rate than the acidogens upstream in the

food chain, and therefore becomes the rate-limiting step in the overall conversion process.

The environmental factors discussed here therefore mainly take the methanogens into

consideration.

Nutrients: Nutrients must be present in sufficient quantities to ensure an efficient digestion.

The nutrients required in highest concentration are nitrogen and phosphorate. A commonly-

used empirical formula for bacteria is C5H702N (194). Nitrogen is used in the synthesis of

proteins, enzymes, ribonucleic acid (RNA) and deoxyribonucleic acid (DNA). The

phosphorus requirement for bacteria growth is about 117-115 of the nitrogen requirement.

Phosphorus is required for the synthesis of the energy-storage compounds (adenosine

triphosphate-ATP) and RNA and DNA. Domestic sludge usually contains sufficient quantities

of nitrogen (in the form of protein, urea, ammonia) and phosphorus for efficient digestion.

However, the treatment of industrial wastes or municipal wastes containing high percentages

of industrial wastes may require the addition of supplementary nitrogen and/or phosphorus.

Waste high in protein may be of special concern due to the potentially inhibiting levels of

ammonia that may be released during protein degradation.

Other nutrients are required in lower concentrations than nitrogen and phosphorus. These

include iron, nickel, cobalt, sulphur, calcium and some trace organics. The trace metals must

be in solution to be available for bacterial growth. If high concentrations of sulphide are

present, or are produced from sulphate, metal concentrations will decrease because of

precipitation.
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Activated sludge is a mixed culture full of organic - nutrient - removal micro-organisms well

acclimated to the natural or chemical organic waste during the waste water treatment process.

It includes the micro- and macronutrients (6-8% Nand 2% P related to dry matter) necessary

for biological growth (126). In this regard, it can be considered as a nutrient provider for micro-

organism growth.

pH: Maintenance of system pH in the proper range is required for an efficient anaerobic

digestion. The general accepted range for good process efficiency is 6.5-7.6. Anaerobic

conversion of organics to methane is a complex process involving many species of bacteria,

with the methanogens being the most sensitive to pH changes. During system imbalance, the

volatile acids produced by the acetogenic bacteria typically increase at a faster rate than can

be decomposed by the methanogenic bacteria. Unless the system contains sufficient buffer

capacity, the pH will drop to unacceptably low levels, and methane production will decrease

and may eventually cease if the pH drop is of sufficient magnitude or duration. The dominant

buffering system in anaerobic digestion is the bicarbonate system. Maintenance of sufficient

alkalinityguards against failure from pH drops (194).

Temperature: Generally, there are two optimum temperature ranges in anaerobic digestion,

at 30-38°C and 50-56°C in the mesophilic and thermophilic zones respectively. Most

municipal solid waste (MSW) digesters operate in the mesophilic range. However, most

reports confirm that thermophilic digestion can (194): (1) increase organic matter destruction

rates; (2) increase the degree of organic matter destruction; (3) improved dewatering

characteristics; and (4) increase destruction of pathogenic bacteria.

The sludge in the thermophilic reactor contains a stable population of acidic and methane

forming bacteria (63). Research on laboratory and pilot scale has shown that a first - high

loading thermophilic (50-55°C) stage followed by a second mesophilic (35-37°C) stage with

sufficient retention time can improve the performance of the anaerobic digestion (129). There

was major doubts though concerning the stability of thermophilic digestion, such as the higher

accumulation of volatile acids, increased sensitivity to temperature fluctuations and possible

ammonia toxicity. As far as the acidification fermentation process was concerned, the

thermophilic digestion was preferable to mesophilic digestion because the ammonia toxicity

could be diminished by a high organic loading rate permitted by the high digestion rate at
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thermophilic temperature. Therefore, it is desirable to promote the lignocellulose hydrolysis

process with less ammonia toxicity under thermophilic treatment conditions.

Toxicity and inhibition: Whether a substrate is toxic to a biological system or not depends

on the nature of the substance, its concentration, and its acclimation. Many substances will

stimulate the reaction in low concentration, but as the concentration increases, the effect

becomes inhibiting. It should be noted that substances must be soluble to be toxic - a

property that may be used to reduce the toxicity of materials such as heavymetals. Substances

most commonly reported as inhibiting to anaerobic digestion are inorganics such as the alkali

and alkaline-earth metals, heavy metals, ammonia-nitrogen, sulphide and a wide variety of

organic compounds.

1) Ammonia-nitrogen and nitrate: Ammonia-nitrogen and bicarbonate alkalinity is produced

during the digestion of organics containing nitrogen (predominately protein). In the case of

sludge containing high levels of protein like activated sludge, enough ammonia-nitrogen may

be released to cause inhibition. It is therefore better to mix the sludge with high carbohydrate-

content organic matter (e.g. lignocellulose residues) to obtain the ideal CIN ratio for anaerobic

digestion. McCarty (173) reported that concentrations between 50-200 mg/l are beneficial,

mainly because ammonia-nitrogen is an essential nutrient. However, ammonia-nitrogen is

also thought to be toxic in two ways depending on its pH. It may be present in the form of the

ammonium ion NH4+, or as dissolved ammonia gas NH3• It was found that pH and

temperature dramatically affect the concentration of NH3-N in solution. The implication that

NH3-N toxicity may be more of a problem in thermophilic digestion is apparent. The

unionized form of ammonia is the toxic species and the equilibrium shifts toward that species

as the temperature and pH rises. The level of ammonia is believed to become inhibiting in the

dry anaerobic digestion above 4 g NH4-N/kg OS. The total ammonia was measured and the

unionized component was calculated on the basis of the predominant pH in the digester.

Kayhanian and Tchobanoglous (131) have suggested that the inhibiting total ammonia

concentration is at the 100 mg/l level and recommended maintenance of the process below

600 mg/I. In slurry digestion at TS level below 10%, the toxicity of ammonia was very small.

There are even documented cases of successful acclimatization to much larger levels than

5000 mg/l (199). However, there is no escaping the unionized ammonia that is formed at high

pH when the equilibrium shifts toward the unionized species. The unionized ammonia could
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cause inhibition at levels of total ammonia well below the threshold value of 4 glkg cited

previously.

The presence of nitrate is likely to stimulate the denitrification process, and thus inhibits the

methanogenesis. The interactions of methanogens and denitrifiers in the treatment of phenol

containing waste waters have been investigated in an upflow anaerobic sludge blanket

(VASB) reactor using a continuous experiment (80). It was found that methanogenesis

occurred only at chemical oxygen demand of N03--N ratios greater than 3.34. At ratios less

than 3.34, methanogenesis ceased to take place and denitrification became incomplete

because of an insufficient supply of substrate. When Oh et al.(186)studied the acetate

limitation and nitrate accumulation during denitrification, they found that if acetate was added

to the denitrifying activated sludge mixture to obtain a carbon to nitrogen (CIN) ratio in the

range of 2:1 to 3:1, nitrate was completely consumed at the same rate with no nitrite

accumulation, indicating that the nitrate concentration controlled the respiration rate as long

as sufficient substrate was present.

2) Sulphides and sulphate -- Lawrence et al. (149)reported that soluble sulphides in excess of

200 mg/l caused a significant decrease in methane production. It is important to note that

under anaerobic conditions in a mixed culture of bacteria, sulphate is reduced to sulphide.

Therefore, sulphate (in excess of200 mg/l), represents potential sulphide toxicity.

In anaerobic ecosystems containing sulphate, sulphate reduction bacteria (SRB) and

methane-producing bacteria (MPB) are competitors for fermentation intermediates such as

hydrogen and acetate (156,157,260).When the sulphate concentration is high, most of the

electrons could be consumed in sulphate reduction instead of in methane production. It was

found that the competition between sulphate reduction and methanogenesis is governed by the

rate of hydrogen and acetate production and sulphate availability (156).When the sulphate

concentrations are non-limited, but acetate and hydrogen concentrations are limited, methane

production will be inhibited as the SRB lower the hydrogen partial pressure below the

threshold concentration necessary for use by the MPB (156).Additionally, based on the kinetics

of substrate utilization, SRB are predicted to out-compete MPB for hydrogen. The interaction

between sulphate-reduction and methanogenesis was investigated for acetate, methanol and
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formate in six chemostats-containing mixed cultures. The kinetic parameters for the

degradation of these substrates were evaluated (107).

The degradation of cellulose and lignocellulose material was investigated in simulated landfill

column reactors under sulphate reducing and methanogenesis conditions (137).In the sulphate

reducing reactors, methane gas production was effectively suppressed. The carbon dioxide

produced during the sulphate reduction was dissolved in leachate as inorganic carbon (IC),

leading to lower carbon dioxide emission from sulphate reducing reactors. Higher COD in the

leachate from sulphate reducing reactors was probably due to a higher solubilization rate of

cellulose and lignocellulose material. In a batch experiment, the hydrolysis of avicel-

cellulose, filter paper and newspaper was faster under sulphate reducing conditions. The

percentage of organic carbon bio-degradation in sulphate reducing conditions was higher than

that in methanogenic conditions.

3) Heavy metals: It has been realized for a long time that the anaerobic system is particularly

vulnerable to the high loading of heavy metals. The toxicity of heavy metals depends on the

various chemical forms which the metal may assume under anaerobic conditions and at near

neutral pH levels. Work performed by Ghosh (92)showed that although low concentrations of

some heavy metals are extremely toxic, high concentrations could be tolerated if sufficient

sulphide was available for precipitation.

4) Organics: Most of the research on surface-active materials focused on anionic detergents.

The ability of synthetic detergents, especially alkylbenzene sulfonates (ABS), to inhibit

methane production is well known. The adsorption of the detergents on sewage solids prior to

anaerobic digestion of those solids is thought to be the mechanism involved. Chlorinated

hydrocarbons are extremely toxic to anaerobic digestion and have caused inhibition in a

number of treatment plants in England. Hovious et aI.(120) examined the inhibitory

characteristics of many petrochemicals. For example, ethyl benzene was found to cause little

or no inhibition at concentrations from 150-1000 mg/I. However, Chou et al. (46) found that an

ethyl benzene concentration of 200 mg/l reduced activity by 25% with a reduction of 60%

observed at 1000 mg/I. The solvent ethylene dichloride has been reported to severely inhibit

methane fermentation, with inhibition starting at concentrations as low as 5 mg/I.
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For a number of years there have been considerable controversy over whether volatile acids

(VA) were toxic to the methane bacteria. One school of thought was that a VA concentration
above 2000 mg/l was toxic (36, 214). However, extensive research (144, 170, 171, 172) conclusively

showed that VA concentrations of up to 6000 mg/l can be tolerated with no loss in methane

production, provided the pH is maintained in the optimal range. These researchers did show

that VA concentrations of up to 6000 mg/l inhibited the acetogenic bacteria. Thus, pH control

using alkaline substances is a valid procedure in maintaining methane production during

imbalance digestion until the cause of imbalance is found. Andrews and co-workers (2,3) and

Kroeker et al. (142) have postulated that it was the unionized volatile acids, UVA, that are toxic

to the methane bacteria. Inhibition was reported to occur at UVA levels of 30- 60 mg/1. By

using acetic acid, which is by far the predominant intermediate volatile acid as an example,

the following equilibrium holds:

CH3COOH=CH3COO'+W
The concentration of UVA is thus dependent on digester pH. Even though there is still some

controversy as to whether it is the OFA or low pH which inhibits the methane bacteria, it is

clear that high concentrations of volatile acids can be tolerated as long as the pH stays in the

optimum range of6.5-7.6.

The inhibition of anaerobic digestion by terephthalic acid and its aromatic by-products has

been studied (76). It was found that the easily biodegradable compounds of acetic, benzoic and

formic acid found in PTA and DMT waste water can be methanized without problem during

anaerobic treatment since the degradation is not significantly inhibited by 4

carboxylbenzaldehyde as well as terephthalic and p-toluic acid. For PTA wastewater, COD

removals of 40-50% may then be read.Hyobtained at full scale. Higher COD removals would

imply terephthalic acid degradation which can be obtained only after prior removal of acetic

and benzoic acid from the effluent. A two- stage reactor may then be recommended in order

to attain such objectives.

The toxic effect of long chain fatty acids on the acetogenic and methanogenic activity of

granular methanogenic sludge was studied. Capric acid concentrations of between 6.7 and 9

mol/nr' were lethal to both acetogenic and methanogenic bacteria. The H2-producing

acetogenic and methanogenic bacteria recovered faster than the acetotrophic methanogens

(206). The toxicity effects of benzene, chloroform, 1,2-dichloroethane, pentachlorophenol,
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mercury, and zinc on the anaerobic mineralization of acetate in methanogenic sediments from

the Rhine River in the Netherlands, were investigated (251). The anaerobic biodegradability as

well as the potential inhibiting effect of photo-processing efiluents was tested using a batch

reactor. Initially, a partial inhibition of methanogenesis was observed, mainly owing to

competition between sulphate reducing and methane producing bacteria. However, with

prolonged incubation, methanogenesis recovered.

(2) Two-phase anaerobic digestion process

As discussed before, the anaerobic digestion consists of a sequence of fermentation reactions

that results in the stabilization and gasification of complex organic materials to methane and

carbon dioxide. The overall process can generally be divided into two steps: acidification

fermentation (hydrolysis and acidogenesis) and methanogenesis. Accordingly, the dominant

digester organisms can be divided into two broad functional groups: VFA producers

(acidogens) and VFA converters (acetogens and methanogens). When the complex organic

materials such as lignocellulosic residues are to be digested, the rate-limiting step is normally

the hydrolysis of particulate organic matter in the lignocellulosic residues into soluble

substances. Thus, the anaerobic digestion of complex organic materials could be greatly

enhanced by improving the hydrolysis (acidification fermentation stage) rate.

On the other hand, since the anaerobic digestion process is essentially diphasic, the microbial

groups necessary to facilitate the overall digestion have different physiologies and growth and

metabolic characteristics, and need different environmental conditions for optimal metabolic

activities. For example, in the case of temperature, anaerobic digestion is generally operated

in the mesophilic (30-38 0c) or thermophilic (50-60°C) range (194). Although the same

anaerobic microbial process can take place both at the mesophilic and thermophilic

temperatures, the thermophilic process has been found to be superior (especially during

anaerobic digestion of solid waste and slurries) in improving sludge hydrolysis efficiency and

in increasing the disinfecting effect. However, as long as hydrolysis is successful, the

fermentative acidogens normally have higher growing rates than the acetoclastics and the

methanogens. This may lead to a subsequent accumulation of intermediary VFA products

resulting in a fall in pH value, thus deteriorating the stability of the process. In conventional

one-phase thermophilic digesters, a long hydraulic retention time (HRT) is usually used to
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prevent the high production rates of VFA which is caused by fast-growing acidogens and to

create a balance between the VFA conversion rates and the acetogens and methanogens

growing rates. Vice versa, high HRT will suppress hydrolysis and the production of VFA,

thereby affecting the overall efficiency of the high-rate digester. In addition, compared with

the hydrolysis-acidification fermentation micro-organisms, the acetogenic and methanogenic

fermentation bacteria are more sensitive to the environmental changes. Therefore, if the

hydrolysis-acidification fermentation is separated from the coupled acetogenic-methanogenic

fermentation into the different optimal growing environments for each micro-organism group

could substantially enhance the associated biological reactions and provide higher organics

stabilization and gasification rates and greater pathogen kills (96,97,98,48,150)in comparison to

the conventional one-phase high-rate digestion.

The two-phase anaerobic digestion processes have been extensively studied and have been

used to treat industrial waste water (37),dairy industry wastes (100) and municipal solid wastes

(97).Gosh et al.(99)reported that the performance of a full-scale two-phase digestion system

charged with municipal sludge was considerably better than that of a one-phase high-rate

digester.

The one-phase and two-phase anaerobic digestion processes were compared on the basis of

the characteristics of substrate degradation and the bacterial population levels. The chemostat-

type reactors, to which the starch was fed as substrate was used and both processes were

operated under the same experimental conditions (272). Itwas found that the two-phase system

was more stable when exposed to the changes in pH than the one-phase system. At lower

SRT, the C~ recovery and COD removal rates in the two-phase system were higher than the

one-phase system. The concentration of propionate in the effluent of the one-phase system

was 30-50% higher than that in the two-phase system. The concentrations of acetate and

butyrate in the one-phase system were slightly lower than those in the two-phase system. The

population levels of acidogenic bacteria in both systems were in the same order (108 to 1010

MPN/ml). The population levels of hydrogenotrophs were also in the same order as the

acidogenic bacteria in the two-phase system, while the population levels of hydrogenotrophs

were 10 to 100 times less than those of the acidogenic bacteria in the one-phase system. The

number of acetic acid utilizing methanogens in the methanogenic phase of the two-phase
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system were 2-10 times higher than those in the one-phase system. It is suggested that the

one-phase system cannot simply be regarded as the sum of acidogenesis and methanogenesis.

Fongastitkul et al.(87)demonstrated the feasibility of a two-phase anaerobic sludge digestion

process. Process failure and maximum system loading capacity were also investigated. The

performance of a two-phase system composed of a well-mixed continuous-flow acidogenic

reactor and a fluidized sand-bed methanogenic reactor was evaluated as a function of

recycling of the methanogenic reactor effluent to the acidogenic reactor. This system

configuration minimized the overall operational treatment cost (209).At 30 °c, a laboratory-

scale anaerobic expanded granular sludge bed reactor was able to achieve more than 80%

COD removal efficiency at organic loading rates up to 12 g COD Il.d for influents prepared

with ethanol as model substrate at concentrations as low as 100 to 200 g CODII (132).

Rich and Kayhanian (207) introduced a two-stage co-composting process using the

biodegradable fraction of municipal solid waste and waste water treatment plant slugs. The

product (humus) met the U.S. EPA Part 503 rule for land application.

However, there is little information on the application of the two-phase anaerobic digestion in

stabilizing lignocellulose residues with activated sludge.

Furthermore, improving the acidification fermentation efficiency of lignocellulose was

possible by combined pre-treatment, by supplying nutrients with activated sludge and by

high-rate thermophilic digestion. The restoration or development of the methanogenic phase

from the high-rate acidogenic fermentation phase is expected to be the second critical step in

anaerobic stabilizing of lignocellulose waste and this can be made with a two-phase digestion

configuration by adjusting the optimal metabolic environments for the growth of mesophilic

methanogens after the acidogenic phase (process).

(3) UASB configuration and process

Among the anaerobic treatment processes, the upflow anaerobic sludge blanket (UASB) (151)

reactor has become very popular in the anaerobic biological treatment of waste water. The
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implementation of the VASB reactor has been applied to a wide range of industrial and

municipal waste water, as well as landfill leachate.

The advantage of the VASB reactor compared to traditional anaerobic treatment, e.g. the

contact process, is the ability to retain high biomass concentrations despite the upflow

velocity of the waste water and the production of bio-gas. Consequently, the reactor can

operate at short HRT since the sludge retention time is almost independent of the hydraulic

retention time. It can also operate at high organic loading rates because its loading rate is

dependent on the amount of active biomass present in the reactor. Successful operation under

these conditions requires a highly active biomass with good settling abilities. The granules

can be interpreted as a spherical biofilm, and many similarities exist between biofilm

development and granulation. The initial adhesion of granules begins with the initial

adsorption of bacteria or adsorption to inert material such as precipitates. Once the bacterium

is adhered, colonization has started. The granulation process depends on cell divisions and

recruitment of new bacteria from the liquid phase. In VASB reactors, the biomass is retained

as aggregates, called granules, formed by the natural self-immobilization of the bacteria,

which do not employ any supporting materials such as Rasching rings or clay (221).

The metabolic reactions that occur during anaerobic digestion also suggest why the

aggregation of micro-organism into granules would be advantageous. As stated before, the

degradation of complex substrates into methane and carbon dioxide during anaerobic

digestion involves the interaction of at least three metabolic groups. The first group of

fermentative bacteria, the acidogens, conducts initial degradation of biopolymers. The acids

and alcohol thus produced are utilized by a second group of bacteria, namely the acetogens.

The third group of bacteria is the methanogens. Located at the end of the nutrient cascade,

methanogens convert CO2 and H2, acetate and a few other simple compounds into methane.

Because of unfavorable thermodynamics, oxidation of propionate and butyrate is only

possible if H2 is removed efficiently, i.e. a very low hydrogen partial pressure is necessary.

Propionate degradation is only possible below a partial pressure of lO-4 atm H2 (106,65). When

a mixture of acetate, propionate and butyrate is degraded, a clear correlation exists between

the degradation rate of propionate or butyrate and the hydrogen partial pressure. A slight

increase in the partial pressure of hydrogen results in an immediate decrease in the

degradation rate of the two volatile fatty acids (216,217,218,220). Clearly, the close association of

- 24-

Stellenbosch University http://scholar.sun.ac.za



Background and Theoretical Consideration

members of these three groups in a layered granular structure would ensure a high metabolic

activity.

In recent years, a more pronounced understanding of the microbiology of immobilized

anaerobic bacteria and the mechanism of granule formation has been accomplished.

Extracellular polymers (ECP) in the granular sludge are important for the structure and

maintenance ofthe granules, but the inorganic composition seems to be of less importance.

Bacterial ECP is defined as polysaccharide containing structures of bacterial origin lying

outside the integral elements of the outer membrane of Gram-negative cells and the

peptidoglycan of Gram-positive cells. ECP is made of organic residues, phages, lysed cells

and other organic matter excreted by the microbial cells (49, 50). It contains polymers of

saccharides, proteins, lipids, phenols and other nucleic acids. ECP can have different

functions depending on the micro-organism. It can trap soluble nutrients, increase

pathogenicity, or decrease the susceptibility to phagocytosis. ECP also mediates the adhesion

of bacteria in natural ecosystems (235).

The composition of ECP affects the surface properties of the bacterial floes and the physical

properties of the granular sludge (88, 178). Dispersed bacteria are negatively charged and there is

electrostatic repulsion between the cells. The production of ECP can change the surface

charge of the bacteria, resulting in aggregation. The adsorption of bacteria depends on the

surfaces of both the cells and the support to which these cells adhere. The composition of

ECP is of importance for adsorption owing to ECP's influence on the surface charge and

energy. Too much ECP can cause the deterioration in floc formation and, therefore, repulsion

can occur.

The amount of ECP is affected by the conditions under which the granules are grown. The

concentration of ECP is lower in thermophilically grown granules than in those grown

mesophilically (219). The amount ofECP is also influenced by the waste water composition. It

was found that an increase in CIN ratio stimulated the production of extracellullar

polysaccharide, resulting in the improved bacterial attachment to solid surfaces (37). A

decrease in both the protein and polysaccharide content in extracellular material was seen

when the feed of a UASB reactor was changed from sugar-containing waste water to a
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synthetic waste water containing acetate, propionate and butyrate, with the highest lipid

content in the granules in the latter reactor. Shen et al.(230)showed that the addition of iron and

yeast extract to the feed increased the amount of carbohydrates extracted from the granules;

the opposite effect was seen when the iron was absent. Bull et al.(38)showed that addition of

methanol to the feed improved the start-up performance of a fluid-bed reactor treating

synthetic, meat wastewater.

It is not clear whether specific species produce ECP or if several or all species in the granular

sludge can do so. However, it is certain that the acidogenic populations have a greater

influence on the production ofECP.

It was generally agreed that the aceticlastic methanogen, Methanosaeta, was critical for the

structure and maintenance of the granules. However, several investigators have found that

Methanosarcina spp. can have the same important role in granules. Other bacteria are also

important for the granulation process, especially ECP-producing bacteria. Hydrogen-utilizing

bacteria, together with H2-producing syntrophic bacteria, are observed in microcoionies (221).

Microcolonies of syntrophic acetogens in granular structures have been observed within

anaerobic granules (68).Syntrophic microcolonies consisting of acetogens and methanogens

were major structural components of granules developed on brewery waste water (261).

The electron transfer in the microcolonies occurs via interspecies hydrogen transfer, while

interspecies formate transfer may not be essential for interspecies electron transfer. The

microcoionies give an optimal arrangement of the bacteria within the granules for effective

degradation of syntrophic substances such as propionate or butyrate.

The formation and stability of the granules are essential for successful operation (221).When

using the UASB reactor for waste water treatment, it is important to make a preliminary

examination of the seed material and waste water both microbiologically and chemically. The

microbiological analysis should give information about the microbial composition of the

granules or sludge used and the ability to degrade the wastewater. The chemical analysis can

give information about the waste water composition, for instance, if the necessary nutrients

are present.
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The discovery of new abilities for the granular sludge gives new possibilities for the design of

better granules, e.g. for the bioremediation of contaminated groundwater containing

xenobiotics. Also, engineered granules could be created with a higher resistance to the normal

variations seen during treatment of waste water.

Bioavailability is another important factor to be considered when evaluating the anaerobic

degradation process of lignocellulose. Bioavailability refers to the accessibility of a substrate

for the requisite micro-organisms. In general, water-soluble substrates are more bioavailable

and the likelihood of their being biodegradable is higher. Adsorption of substrate to solid

matrices can also affect the susceptibility of the substrate to bio-degradation. It is known that

adsorption of compounds to inert surfaces, such as granular activated carbon, may actually

increase bio-degradation, covalent binding of substrates to humic materials may render the

substrates more recalcitrant. Therefore, to separate the soluble intermediate degradation

products from the insoluble humus can be beneficial to enhancing the process efficiency of

bio-disposal of lignocellulose residues.

In addition to the many successful treatments of foodlbeverage waste water and even high-

strength industrial waste water, the UASB was recently found to be effective in the removal

of simple aromatic chemicals, such as benzoate (Ill) and phenol (79).

As can be predicted, the chemical structure of some components (e.g. soluble humic

substances like HAs) of the leachate from the methanogenic conversion lignocellulose process

are far more complicated than that of fatty acids and simple aromatic compounds. Given the

uncertainty about the anaerobic biodegradability of the HA-bearing leachate in the UASB

reactor, little work was done to treat this particularly complicated leachate with granules

previously developed with none-HA substrate in the UASB reactor. The results thus obtained

can be supplementary to the process designing of a complete anaerobic digestion of

lignocellulose wastes.

2.2.2 Pre-treatment of lignocellulose

As discussed in 2.2.1, the rate-limiting step in lignocellulose digestion is firstly the hydrolysis

of particulate organic matter (cellulose, hemicellulose and lignin) to soluble substrate since
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the structural features of potential substrates affect their hydrolysis efficiency, thereby

affecting their susceptibility to anaerobic digestion. The more complex (e.g. the more

branched) the structure, the more difficult it is for micro-organisms to attack it. Thus the pre-

treatment of lignocellulose is an essential prerequisite to promote the hydrolysis process and

ultimately improves the overall digestion efficiency.

The pre-treatment may include mechanical, chemical, enzymatic and biological methods.

Chemical, enzymatic or microbiological conversion of lignocellulose residues is affected

mainly by lignin and cellulose crystallinity, leading to an ineffective degradation. Lignin

impedes enzymatic and microbiological access to the cellulose, and cellulose crystallinity

affects the attack rate of the mechanism on cellulose.

Numerous pre-treatment methods capable of significantly enhancing the rate and extent of

hydrolysis of pure cellulose found in biomass materials have been described in literature (122).

However, most pre-treatment processes are costly when used separately and have substantial

energy requirements due to the severity of the process. For example, while the hemicellulose

can be readily depolymerized by being heated in the presence of dilute acids (10), the

depolymerization of cellulose into monomeric sugars by strong acids or by commercial

enzymes remains a major economic dilemma because the cellulose is often intimately

associated with lignin which prevents the access to the cellulose (82). Thus, a combined pre-

treatment process could be more economical in the biotreatment of lignocellulose residues

into value-added products such as fuel (energy).

Mechanical pretreatment: Utilize shearing and impacting forces to yield a fine substrate of

low cystallinity index and high specific surface. Ball-milling, two-roll milling, hammer-

milling, colloid-milling, vibrato energy-milling and extrusion are the representative methods

(91, 161,225, 177, 81). In this study, the lignocellulose material was treated in laboratory porcelain

ball milling to reduce the sizes to below 2 mm.

Physical pre-treatment: Increase in pore size and partial hydrolysis of hemicelluloses

(steaming), extensive depolymerization (irradiation), depolymerization and oxidation or

dehydration (pyrolysis). The commonly used methods are steaming, wetting, pulping,
freezing/thawing, irradiation and pyrolysis (184, 159, 114).
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Chemical pre-treatment: Modification of the structure of the lignocellulose, reduction in

crystallinity and increase in surface area. The representative agents are swelling agents

(NaOR, NH3), dilute acids (Hel, H2S04, H3P04), organosolve (such as methanol, ethanol,

butanol, phenol); cellulose-dissolving solvents, aprotic solvents and metal complexes (184, 17,

211,264,253)

2.2.3 Lignocellulose biotransformation/degradation/bydrolysis

Actinomycetes and fungi are known to be able to degrade cellulose and other organic plant

constituents, besides lignin, and to form numerous phenolic and hydroxyl aromatic acids (212,

165). Hemicellulose degradation involves enzymes for both main-chain and side-chain

degradation, though little is known of the details, largely because the hemicelluloses

themselves are so poorly understood and model compounds are generally not yet available.

The degradation of each of these classes of substrate can be better understood with the

availability of individual enzymes, in a pure form, made by genetic engineering methods.

As a natural substance, lignocellulose is even more complex than lignin. Nevertheless,

lignocellulose degradation is a unitary problem because the materials involved are as a first

approximation similar to each other. It is the interactions between degradation organisms and

the substrate that must be studied - analogous to the cases of microbe-plant and microbe-

animal host interactions. This involves studying the synergy between different enzymes

attacking different components, and indeed between those attacking individual components.

Therefore, it is useful to understand the individual degradation process of the particular

constituent before the overall degradation fundamentals about lignocellulose can be

established.

2.2.3.1 Cellulose enzymatic bydrolysis/bio-degradation:

The cellulose in lignocellulose is a much larger resource for the breakdown to sugars than

starch. It also represents a much more complex problem because of its crystallinity and its

mixture with hemicellulose and lignin. The molecular structural features of cellulose, the

elementary fibril and the microfibril are important for the enzymatic degradation of cellulose.

It is well known that both prokaryotic and eukaryotic systems show that the degradation of
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cellulose involves a number of enzymes; in some organisms a large number are involved (15).

Generally, the amorphous regions in the fringe micelles are attacked first in a partially

crystalline cellulose fibril, leading to an enrichment of crystalline regions, which are, in turn,

gradually solubilized after the loosening of their peripheral parts. Most of the work on its bio-

degradation has been done with the filamentous fungus Trichodema reesei (T. reesei)(51) in

which the cellulase is a complex of at least eight proteins that act synergistically and are

subject to complex controls (75). T. reesei produces five or more endo f3-glucanases which

convert the crystalline cellulose to oligocellodextrins that amount to 20-35% of the protein by

weight. In addition, there are at least two cellobiohydrolases components (65-80% of total

protein) which convert these to cellodextrins and cellobiose. Both of these two enzymes are

subject to end product inhibition by cellobiose. Finally, there is a cellobiose that converts the

cellodextrins and cellobiose to glucose and its actions are inhibited by glucose. The whole

complex is also subject to catabolic repression by glucose.

2.2.3.2 Lignin bio-degradation

Fungi are considered to be the most important group of micro-organisms responsible for the

cleavage of lignin. The initial step in lignin degradation by fungi involves the release of the

dilignol components guaiacylglycerol-f-coniferyl ether, pinoresinol, and dehydrodiconyferyl

alcohol, and the formation of primary phenylpropane (C6-C3) units. Among phenolic

aldehydes and acids released by further decomposition of dilignols are, for example,

guaiacylglycerol, coniferyl alcohol, coniferaldehyde and ferulic acid. The C6-C3 units also

undergo oxidation in the side chains to yield a variety of low-MW aromatic acids and

aldehydes, including vanillin, vanillic acid, syrigaldehyde, syringic acid, p-hydroxybenzoic

acid, protocatechnic acid and gallic acid. Additional OH groups may be introduced and

decarboxylation may also occur during this stage, whereas the fungi involved appear to have a

limited capacity for the aromatic ring cleavage of lignin.

Phenolic products are not stable, and may be subject to oxidative conversion to quinones,

which may occur either chemically, e.g. in alkaline media, or more likely operated by

po Iyphenoloxidase enzymes. The consequent, prevalently enzymatic, oxidative

polymerization of mono-, di- and trihydroxyphenols, quinones and aromatic acids may occur

in the absence or presence of amino acids, peptides, proteins, and amino sugars, which may
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undergo condensation reactions with quinones, and thus be covalently incorporated into

humic macromolecules. Oxidative polymerization also involves several other side reactions,

including demethylation, oxidation of aldehyde components to carboxylic acids,

decarboxylation, hydroxylation and coupling of various intermediates.

In natural terrestrial habitats (e.g soils and compost), lignin is degraded by a complex

microflora which includes both eukaryotic and prokaryotic organisms, such as white-rot

fungus, Phanerobaete chrysosporium (P. chrysosporium), because of the high !ignolytic

activities which it exhibits. Mineralization of lignin by white-rot fungi is an established

enzymatic process which occurs during the secondary phase of growth under conditions of

nitrogen or carbon starvation and is mediated by a number of different enzymes, of which

lignin peroxidases and Mn2+ dependent peroxidases are the most important (\36).

The following are major facts known about the degradation of lignin by white-rot fungus P.

chrysosporiuni'i'" :

1) Overall, it is an oxidative rather than a hydrolytic process. Since no enzyme mechanism

has as yet been identified, one hypothesis was that lignin degradation depended upon the

production of free radicals (e.g. single oxygen or hydroxyl radicals) that would effect a
chemical degradation (112).

2) Lignin degradation is not inducible by lignin itself but is triggered by severe carbon or

fixed nitrogen !imitation (135). The biological rational is that lignin is degraded as a stress

response, so that the organism can obtain access to further sources of nutrients and energy

previously made inaccessible by the presence of the lignin. Note that lignin does not

contain nitrogen.

3) The discovery of lignin peroxidases and extracellular haem-containing enzymes, which

can cleave model dimers representing some of the different bond types present in lignin

(P. chrysosporium strain BKM-F-1767 produces a family of such enzymes (136),

immediately raised the issue of how the H202 that they require is generated. This could be

derived from the breakdown of carbohydrates and/or of the products of lignin degradation

and are likely to be coupled to the degradation of cellulose and/or hemicellulose.

4) As a development of the discovery of lignin peroxidases, a mechanism involving the

formation of substrate radical intermediates was proposed (136); such radicals might invade
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the lignin molecule and be the immediate effects of its degradation. A mechanism of this

type would account for the range of bonds cleaved, and makes these enzymes of particular

interest.

5) A second class of enzymes, the manganese peroxidases, oxidizes Mn(II) to Mn(III) and it

is proposed that Mn(lII), chelated to organic acids, functions as an active radical that can

mediate the oxidative depolymerisation oflignin in wood (93).

6) Since peroxidases are implicated in the polymerisation as well as the depolymerisation of

lignin, it has been particularly important to establish whether lignin peroxidases and Mn

peroxidases do indeed have any in vitro depolymerising activity (113, 257).

7) P. chrysosporium and T. reesei clearly have different strategies of action on lignocellulose

since T. reesei does not attack lignin. The present model for lignin degradation in P.

chrysosporium is that the system consists of manganese and lignin peroxidase enzymes

together with the H202 generation system that they require, and that this is coupled to

carbohydrate breakdown.

Actinomycetes are another group of organisms that can degrade lignin materials, although

little is known about their lignocellulose-degrading mechanism (252).Actinomycetes are Gram-

positive bacteria which can be found on almost every natural substrate including soil and

composts, freshwater basins, foodstuffs and the atmosphere (255).Their hyphal growth is well

suited for the colonization of plant biomass and they secrete a range of enzymes active against

lignocellulose (167).Even so, bacterial rates of lignin degradation compare poorly with the

white-rot fungus P. chrysosporium. This difference in lignin degradation rates between fungi

and bacteria is probably due to different strategies of lignin degradation developed by these

two groups of micro-organisms. Early studies (197)indicated that streptomyces strians, in

addition to being able to degrade the cellulose from lignocellulose and thereby contributing to

a substantial weight loss of the substrate, is also able to degrade lignin, although to a much

lesser extent. Organisms of several genera, Streptomyces, Micromonospora,

Thermomonospora and Actinomadura, were identified as being able to grow on grass

lignocellulose (168).The soluble product of lignocellulose has been termed as acid precipitable

polymeric lignin or APPL (53, 198)because it is insoluble when the pH of the medium is

lowered. It has been particularly characterized using high performance liquid chromatography

(HPLC) (26,164)and nuclear magnetic resonance (NMR) spectroscopy (169).
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Element analysis confirmed that pronounced chemical and structural changes in the lignin-

carbonhydrate polymer had occurred during degradation; these included oxidative reactions

and the removal of methoxyl groups from lignin. Gel chromatography of the lignin-

carbonhydrate components showed solubilisation of lower molecular size components,

particularly by Sicyaneus and T mesophila.

It is known that many actinomycetes can utilize aromatic substrates, including lignin-related

phenols. Some can perform transformation that includes hydroxylations, demethylations and

aromatic ring cleavages. Lignin degradation by actinomycete is not as well studied as lignin

degradation by fungi, mainly because lignin solubilization and degradation have been more

difficult to demonstrate with the available techniques than with the fungal system. However, it

is a promising system, which is significantly different from the P. chrysosporium system, and

where different strains have different characteristics. Parallel studies of lignin and

actinomycetes might provide interesting comparisons and suggest avenues of exploitation

utilizing these differences. If the aim is the complete destruction of the lignin component of

lignocellulose, then the choice of a fungal system would seem obvious. However, such

degradation of lignin only occurs during the idiophase, following severe nitrogen and carbon

depletion. In contrast, with actinomycetes, lignin solubilization occurs during primary growth

and has no requirement for the presence of H202. Thus although lignin degradation may have

more limitations, it may have the advantage of making the soluble products of lignin

degradation available rather than totally decompose it to CO2.

Although an arylglycerol-f3-phenol ether was readily degraded by various actinomycetes, the

presence of a substitute on the phenyl ether moiety inhibited or completely prevented its

breakdown.

An important step towards elucidating the system in actinomycetes was to develop a cell-free

system (169). It was shown that supernatants from a T. mesophila strain yielded a soluble

product that was a complex of lignin, carbohydrates (especially pentoses derived from the

hemicellulose) and protein. Chemical analysis and solid-state-13CNMR spectroscopy both

indicated similarities with HA, suggesting that actinomycetes might play an important role in

the process of humification. The NMR spectra revealed an increase in the number of a-aryl

ether linkages, one of the most common linkages in lignin, but there was no evidence of
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extensive demethoxylation. It was found that T mesophila's solubilizing activity can be

induced by either xylan or ball-milled straw, but not to a significant extent by indulin AT (an

industrial lignin). An obvious possibility is that solubilizing activity is primarily xylanolytic

in nature.

2.2.3.3 Lignocellulose degradation

Because of the chemical and structural complexity of the lignocellulose substrate, a

description of the overall process of lignocellulose degradation doesn't yet exist for any

substrate or organism. Thus, the degree of solubilisation and modification of the different

components, the further fate of material that is solubilized and to what extent particular fungi

or actinomycetes have similar effects on the lignocellulose substrate, are not known at the

chemical level.

Lignocellulolytic enzymes comprise families that fall into two categories: hydrolytic and

oxidative. Enzymes of the former category degrade cellulose and hemicellulose and each has

a narrow range of substrate species. In contrast, the oxidative enzymes are non-specific and

act via non-protein mediators. Cellulose degradation occurs during primary metabolism and,

under laboratory conditions lignin mineralization has been characterized as a secondary

metabolic (idiophasic) event, triggered by starvation for C, N or S (136). The crystallinity and

the mixture of cellulose with hemicellulose and lignin make the enzymatic attack on the

lignocellulose more difficult than that on other glucose-based polymers such as starch since

lignin impedes enzymatic and microbiogical access to the cellulose.

Three actinomycetes (Streptomyces sp. EC22, Streptomyces viridosporus T7A and

Thermomonospora fusca BD25) were assessed for their ability to degrade ball-milled wheat

straw (246). All gave maximum levels of solubilized lignocellulose products at the beginning of

the stationary phase of growth (72-96h). Low molecular-mass aromatic compounds extracted

from the acid precipitable polymeric lignin were analyzed by reverse-phase and gas

chromatography. P-coumaric acid (4-hydroxycinnamic acid), protocatechuic acid (3,4-

dihydroxybenzoic acid), gallic acid (3,4,5-trihydroxybenzoic acid), gallic acid methyl ester

(methyl-3,4,5-rihydroxybenzoate) and 4-methoxyphenol were recognized. The infrared

spectra of the three strains were similar to the spectra of HAs, with all APPL extracts showing
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carbonyl, amino, carboxyl, aliphatic and aromatic group vibrations. Peptide linkages of

proteins were also detected. The results suggest a role for actinomycetes in the formation of

humic substances in soils and composts.

In principle, there are at least three routes to improve the degradation performance of

lignocellulose, which can be used separately or in unison. Firstly, growth conditions can be

optimized, whether for individual activities, e.g. extracellular lignin peroxidase production, or

for the overall process of mineralization of lignin to C02. For instance, the conditions under

which lignin, cellulose and hemicellulose are degraded simultaneously were identified by

using ball-milled straw as substrate and sodium acetate as buffer, pH 6 (23).Secondly,

mutations can be introduced. This has been done for cellulase-deficiency (73,74).Cellulase-

deficient mutants that are still able to degrade lignin (perhaps obtaining the required H202

from hemicellulose degradation) might give a nutritionally super feed for cattle since the

cellulose is preserved. Another class of mutant (that would require the development of

transformation methods) would be to couple lignin peroxidase expression to an inducible

promoter such as that for a cellobiohydrolase I (CBH I) gene. Thirdly, one can exploit the

genetic diversity of P. chrysosporium strains and use of their basidiospore-derived progeny in

a programme of crosses. The latter approaches are mainly made at molecular level.

It was found that optimal lignin mineralisation and optimal levels of extracellular lignin

peroxidase are produced under different growth conditions. Indeed, under the conditions used

for optimal lignin degradation, when measuring 14C02release from 14C-labelledDHP or e4C-
lignin) lignocellulose (dimethyl succinate as buffer, pH 4.5, and 2% glucose), no extracellular

lignin peroxidase activity is found (33).However, this result may arise from the entrapment of

lignin peroxidase in polysaccharide slime, which is abundantly produced in the high glucose

media found to be optimal for lignin mineralisation. Thus, the measurement of extracellular

enzyme levels may not be a good measure of the amount of enzyme available for lignin

degradation and it may actually be misleading.

Lignin breakdown and utilization are still primarily based on chemical engineering

approaches (203)with the lignin being recovered in polymeric form. The achievement of this

step by biological methods would require the efficient release of the cellulose and

hemicelluloses, and then the lignin might in principle be recovered either in polymeric form

- 35 -

Stellenbosch University http://scholar.sun.ac.za



Background and Theoretical Consideration

or as monomers that could be converted into useful chemicals. In nature, the function of lignin

solubilization may be primarily to allow the degrading organism to obtain access to the

carbohydrates since the energetic investment in lignin solubilization is rathêr substantial.

Thus, the basidiomycete white-rot fungus, P. chrysosporium, will only degrade lignin if it is

depleted for carbon or nitrogen sources (135).

2.3 Lignocellulose decomposition in landfill

A landfill is a disposal alternative for municipal solid waste (MSW), which typically

comprises 45% to 60% cellulose and hemicellulose in dry weight (Ill, as well as certain

industrial wastes, water and waste water treatment sludge, and agriculture residues. Cellulose

and hemicellulose are the major biodegradable constituents of MSW. A complex series of

biological and chemical reactions begin with the burial of refuse in a landfill, and landfills

represent an active anaerobic ecosystem. The decomposition of lignocellulose to methane in

sanitary landfills is a microbial mediated process that requires the coordinated activity of

several trophic groups of bacteria in a similar pathway that has been documented to occur in

other anaerobic ecosystems.

However, when lignocellulose refuse is placed in a landfill, biological decomposition

resulting in methane formation as described above does not occur immediately. A period

ranging from months to years is necessary for the proper growth conditions and the required

microbiological system to be established. A number of factors, including moisture content and

moisture flow, pH, particle size, inoculation, nutrient concentrations and temperature have

been shown to influence the onset and rate of methane production, and the two variables that

appear to be most critical in controlling refuse methanogenesis are moisture content and pH.

Adequate moisture and a pH around neutral are required for refuse methanogenesis. While

mixed refuse contains all of the microbes required for refuse decomposition, they are

undoubtedly not well distributed among all of the degradable components of refuse. Leachate

recycling and neutralization have been shown to enhance the onset and rate of methane

production in laboratory-scale tests.

There are five distinct but closely related phases (phase1-5) in the degradation of municipal

solid waste (200,201). Accordingly, landfill activity may be conceived to commence with an
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initial lag or adjustment phase (phase I) which endures until sufficient moisture has

accumulated to stimulate reaction opportunity and produce measurable quantities of gas and

leachate. Thereafter, microbial mediation encourages further waste conversion and

stabilization through several more or less discrete and sequential phases, each varying in

intensity and longevity according to prevailing operational circumstances. Hence, the initial

adjustment phase is followed by: a transition phase (phase 2) when the indicated field

capacity is reached; the leachate and gas formation phase (phase 3) when the volatile organic

acids (TVFA) become predominant with a decreased pH, elevated leachate strength (COD),

and high mobility of ionic species; a methane fermentation phase (phase 4) accompanied by

further production and conversion of intermediates to methane and excess carbon dioxide,

reduced leachate strength, a rise in pH, low ORP, accelerated complexation and reduction of

ionic species; and a fmal maturation phase (phase 5) when nutrients often become limited,

less of the available substrate is degraded, gas production decreases, and both organic and

inorganic constituents of the leachate are characteristic of post-stabilization conditions. From

phase I to phase 2, both oxygen and nitrate are consumed, with soluble sugars serving as the

carbon source for microbial activity. All of the trophic groups required for refuse

methanogenesis (cellulolytic, acetogens, and methanogens) are present in fresh refuse, though

there is little change in the populations. From phase 3, carboxylic acids accumulated and the

pH decreases as a result of an imbalance between fermentative activity and acetogenic and

methanogenic activity. There is some cellulose and hemicellulose decomposition in phase 3.

The methanogen population begins to increase, and methane is detected. In phase 4, there is a

rapid increase in the rate of methane production to a maximum value, a decrease in carboxylic

acid concentration, an increase in pH, little hydrolysis of solids and increases in populations

of cellulolytic, acetogenic and methanogenic bacteria. The accumulated carboxylic acid is the

principal substrate supporting methane production in this phase. In phase 5, the methane

concentration, pH, and cellulolytic and methanogenic populations remain at values similar to

those in phase 4. Concurrently, the methane production rate decreases with the depletion of

carboxylic acids. In addition, as carboxylic acid concentration decreases, there is an increase

in the rate of cellulose plus hemicellulose hydrolysis. While acid utilization limits methane

production in phases 3 and 4, solid hydrolysis limits methane production in phase 5.

In conventional landfill sites, the organic matter is degraded to methane and carbon dioxides

as the fmal end products by methane production bacteria (MPB). In the proposed gas control
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strategy, sulfurate is added as an electron acceptor and the degradation of organic matter is

carried out under sulphate reducing conditions by sulfurate reducing bacteria (SRB).

Theoretically the major end products of sulphate reduction are carbon dioxide and sulphide.

The leachate along with the produced sulphide, which will remain in the leachate if a high pH

is maintained, is collected and treated to convert to sulphate and then recycled back to the top

of a landfill site. In addition to the control of methane gas production, sulphate reduction can

also enhance the stabilization of waste, which has been suggested by recent research

considering the wide range of organic substrates used by SRB along with the thermodynamic

and kinetic aspects of sulphate reduction (228). It could be postulated that the freshly added

lignocellulose residues in the landfill also undergo decomposition in the sulphate conditioned

inside system of the landfill.

On the other hand, because sulphur-bearing fuels are still used in many industries, large

volumes of sulphur are emitted into the atmosphere and "acid rain" is formed. Underground,

a large amount of acid drainage from sulphide-ore-mines usually contains high concentration

of sulphate (108). Therefore, it can be deduced that a significant part of the bio-degradation of

lignocellulosic biomass in the earth's biosphere is carried out in sulfurate-dominant habitats.

Most studies on landfill bio-degradation concentrated on phase 4 where the typical anaerobic

ecosystems are populated. However, little is known about the microbial composition and the

degradation of lignocellulose in landfill before phase 4 under the sulphate leaching conditions.

To be aware of the bio-degradation processes of lignocellulose in these sulphate acidified

habitats is thus desirable.

2.4 HA formation, decomposition and further treatment

2.4.1 HA formation and decomposition

When lignocellulose undergoes biotransformationlbio-degradation by micro-organisms,

humic substances (HS) will be formed as a result of re-polymerization of intermediary

degradation products.
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Nowadays, it is generally accepted that the major building blocks of HS originate from

polyphenols of lignin or are synthesized by micro-organisms. HS are believed to form

through a pathway in which the first step consists of the breakdown of aUplant biopolymers,

including lignin, into their monomeric structural units. Possible sources of phenols utilized in

the HS formation include plant lignin, glycosides and tannins, and microbial synthesis.

According to the hypothesis of Flaig et al. (86), after lignin is freed from its linkage with

cellulose during the decomposition of plant residues, the side chains of its building units are

oxidized and demethylated, yielding polyphenols that are converted to quinones by

polyphenoloxidase enzymes. Quinones that originate from lignin, and possibly from other

sources, then react with N-containing compounds and polymerize to produce humic

macromolecules of increasing complexity.

Based on their solubility in acids and alkalis, HS can normally be divided into four fractions:

I) humins, the portion insoluble in both alkalis and acids, consisting of lipid polymers (5\
paraffinic substances, fungal emelanins, and humic matter insoluble due to its high carbon

content; 2) humic acid (HA), the portion that is soluble in dilute alkaline solution and is

precipitated upon acidification to pH 2; 3) fulvic acid (FA), the portion that is soluble at any

pH value, even below pH 2; 4) hymatomelanic acid, the alcohol-soluble potion of HA.

Except for its highly complex structure against further bio-degradation, HS is also stabilized

to degradation by covalent binding of its reactive sites to metals ions and clay minerals when

it enters the soil.

The HS contributes substantially to improving the global soil fertility functions, including

those common to other soil organic matter and soil components and those specific and typical

functions which includes slow release of nutrients (such as N, P, S), high CEC, pH buffer

capacity, specific physiological effects on plant growth and an extended capacity of

interactions with micronutritive and/or microtoxic metal ions and xenobiotic organic

molecules such as pesticides. For example, the extracellular oxido-reductases by some wood-

degrading basidiomycetes and soil microfungi convert aromatic molecules in aromatic

environmental toxicants to action radicals (226), which spontaneously polymerize or covalently

bind to reactive sites of the humus molecule. They become bio-unavailable and thus

ecologically detoxified (27).

- 39-

Stellenbosch University http://scholar.sun.ac.za



Background and Theoretical Consideration

However, HA does not only have a negative influence on the efficiency of the anaerobic

digestion process by rebinding some small readily digestible molecules, thus making them

less accessible to the bacteria attack through its complicated aromatic-condensed macro-

molecular structure; it also presents environmental problems by spreading the ecotoxic

compounds such as heavymetal ions and xenobiotics (213) because of its solubility in common

aquatic environments, its amphipathic characteristics and its highly chemical chelating

reactivity. Therefore, further treatment of HA to improve the anaerobic digestion of

lignocellulose and to relieve the potential environmental problems from the digestion system

is required.

Fakoussa (77) first demonstrated that microbes, above all ftIamentous fungi, could solubilize

solid particles of low rank hard coal (with similar components as HA). Recently, there were

reports of extracellular oxidation and the transformation of solubilized low-rank coal by

wood-rot fungi (204) and the depolymerization of low-rank coal by extracellular fungal enzyme

systems. It was found that the extracellular oxides of white-rot fungi can transform low-rank

coal macromolecules; this increased oxygen availability in the shallower lO-mi cultures

favors catabolism over polymerization. The wood-decaying fungus Nematoloma frowardii

b19, which de-polymerizes the high molecular-mass fraction of coal HAs by forming fuvic-

acid-like compounds, most effectively bleached the medium supplied with the low-rank coal.

Extracellular enzyme activities of oxidases and peroxidases towards 2,2'-azinobis (3-

ethylbenzthiazolinesulphonate) were extractable from the agar medium. Presently, Gramss et

al. (104) found that fungi, some of which are propagated in contaminated soils to control

xenobiotics, metabolize humic extract compounds enzymatically.

In summary, HA can be degraded by some fungi and bacteria, while the fungi decomposition

of HAs was mostly carried out by extracellular enzyme activities. Most research work has

focused on the degradation of humic-like substances by pure microbial cultures, especially by
white-rot fungi such as Phanerochaete chrysosporium (39, 204, 205, 119, 259, 104). However, the

degradation characteristics of HAs by the indigenous mixture culture, and to what extent the

HAs influence the digestion activities of the indigenous anaerobic consortium, remain

unknown.
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2.4.2 Ultrasonic treatment of HA

Ultraviolet irradiation has been found to bring about photo-oxidation of humic materials in

dilute solution (45, 143).Comparatively, ultrasonic irradiation is gaining particular interest

because contrary to other chemical (such as acid hydrolysis, oxidation), thermal or physical

(such as pryolysis, x-ray or y-ray irradiation) decomposition reactions, ultrasonic irradiation

treatment is a non-random process where chain scissions near the center of the largest

molecules are favoured. It is commonly used to break up macromolecules in solution and has

been applied to a wide variety of polymers including both water-soluble and non-water

soluble compounds. Cleavage takes place at certain preferential positions close to the middle

of the chain, giving rise to polymer fractions of fairly definite molecular size distribution.

The first reported investigation of the degradation of polymers by high-power ultrasound was

carried out by Schmid and Rommel (214). The ultrasonic degradation of polymers was

observed in the frequency range of 20 kHz to 1 MHz in various solvents. In general, the

ultrasonic degradation process is a non-random process and the scission of polymer chains in

solution occurs at a preferential position. However, details of the degradation process are still

obscure. Glynn et al. (94, 95) have investigated the ultrasonic degradation mechanism of

polystyrene in solution and proposed a general model for the prediction of the molecular

weight distribution of degraded polymers.

The ultrasonic degradation of water-soluble polymers has been studied by several workers.

Basedowand co-workers (12,14,13)have investigated dextran and poly (ethylene glycol), Ohta et

al.(187)dextran and pullulan, whilst Keqiang et al. (134)have studied hydroxyethylcellulose and

pol(ethylene oxide).

Sonicfication (20kHz) behaviour of waxy rice starch in water has been investigated in terms

of number average molecular weight (Mn) and molecular weight (MW) distribution evaluated

by gel permeation chromatography. The rate of degradation was accelerated at or above the

temperature where gelatinization started. High ultrasonic power also accelerated the

degradation rate. After long sonication, the average molecular weight becomes the limiting

constant value, and the molecular weight distribution tended to be fairly narrow. While

observing the degradation curves of other water soluble a-glucans, dextran and pullulan, it
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was found that branched a-glucans have larger limiting molecular size than unbranched ones
(269)

In addition, ultrasonic irradiation has been applied as an advanced oxidation technology for

water treatment. The uses of ultrasound for the destruction of dilute aqueous solutions of

some organic compounds (alcohols, ketones, aldehydes and phenol) at ambient temperatures

were reported (245). Some studies have been done on the application of ultrasound to the

degradation of contaminated substances in water. Polycyclic aromatic hydrocarbons,

parathion, geosmin, diverse phenols, hydrogen sulphide, chlorinated hydrocarbons and

chlorofluorcarbons have for example been investigated.

Sonochemical decomposition of a series ofhydroxybenzoic acids such as monohydroxy-, 3,4-

dihydroxy-, 3,4,5-trihydroxybenzoic acid, tannic acid and reagent and prepared HAs in water

under argon or air atmosphere was investigated (270). It is suggested that, in the sonolysis

under argon, the main sonochemical decomposition of the substances proceeds via reactions

with OH· radicals in the bulk solution and that the contribution of thermal decomposition in

cavitation bubbles or the interfacial region (between the bubbles and bulk solution) is small.

In the sonolysis under air conditions, the role of oxygen was small in monohydroxybenzoic

acids but increased with increasing numbers of OH groups substituted on the aromatic ring,

suggesting the occurrence of decomposition of polyhydroxybenzoic acids induced by oxygen

molecules at the interface. The chloroform formation potentials of 3-hydroxybenzoic acid and

HA decreased due to the sonication, but the reduction in the potential was less than the

corresponding amounts of decomposition of the initial substances.

(Poly)aspartate(s) and (poly)glutamate(s) are degraded by ultrasonic waves following the

general pattern described for vinyl polymers and biopolymers. Cleavage takes place

exclusively on the backbone, preferentially on the relatively weaker C-N bonds. As a

consequence, the degradation rates increase with the increase in concentration of amide

groups in the polymer. Whereas the limiting molecular weight is found to be scarcely

dependent on either the irradiation conditions or the chemical structure of the polymer, the

degradation rate is significantly affected by the size and shape of the side chain. Specifically,

long linear alkyl side chains appear to be highly effective in accelerating the breaking process.

Degradation is also affected by the presence of hydrogen and disrupting compounds,

particularly when concentrations reach the values at which the helix-to-random coil transition
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takes place. Ultrasonic degradation has been proved to form (poly)I3-L-aspartate(s) and

(poly)y-L-glutamate(s) without altering the chemical constitution of the polymer (179).

Upon ultrasonic irradiation, organic compounds in water are degraded via several

mechanisms. Three main pathways, which involve hydroxyl radical oxidation, pyrolytic

degradation and supercritical water reactions, have been proposed. In the case of aqueous

solution, water vapour present in the bubble is homolytically split to yield H- and OH-

radicals. Chemical substrates present within the vapor phase or in the nearby liquid of the

collapsing bubbles are subject to direct attack by the OH- radical. Volatile compounds go into

the gas phase (i.e, into the gaseous bubble within the aqueous solution) and undergo direct

pyrolysis. Furthermore, it has been found that hydrolysis reactions are accelerated by several

orders of magnitude in the presence of ultrasound. These accelerated reaction rates have been

attributed to the existence of transient supercritical water during ultrasonic irradiation. The

chemical effects of ultrasound are due to the phenomenon of acoustic cavitation. Sound

travels through a liquid as a wave consisting of alternating compression and rarefaction

circles. If the sound wave has a sufficiently high pressure amplitude, it can overcome the

intermolecular forces bonding the fluid. As a result, the liquid will break down and voids will

be created, i.e. a cavitation bubble will be formed. In most liquids, cavitation is initiated at

pre-existing microbubbles or weak spots where there are any type of inhomogeneity in the

fluid. The inhomogeneity can be anything from particles to gas nuclei. These microbubbles

grow sequentially during the compression and rarefaction cycles due to the phenomenon of

rectified diffusion until they reach a critical size; in subsequent compression cycles, these

cavities can collapse violently, releasing a large amount of energy. This rapid implosion is

accompanied by an adiabatic heating of the vapour phase of the bubbles, which yields

localized but transient high temperatures and pressures.

In aqueous sonochemistry, three different reaction sites have been postulated: (1) Interiors of

collapsing cavities where temperatures of several thousand degrees and pressures of hundreds

of atmospheres have been reported to exist. Water vapour is pyrolized to OH- radicals and

hydrogen atoms, and gas-phase pyrolysis and/or combustion reactions of volatile substances

dissolved in water take place. (2) Interfacial regions between the cavitation bubbles and the

bulk solution. Although the temperature is lower than in the bubbles, a high temperature with

a high gradient is still present in this region. Locally condensed OH- radicals in this region

have been reported. (3) Bulk solution at ambient temperature where reactions of Oll- radicals
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or hydrogen atoms that survive migration from interface may occur. Recently, the role of

supercritical water during cavitation has been reported. Using free radicals formed due to

chain scission, the end-functional groups can be introduced; they are very useful for the more

reaction sites of the HA molecule.

2.4.3 Adsorption of HAs on preformed aluminium hydroxide floes with the aid of

ultrasound

As an alternative to lessen the negative influences of HAs on the environment, removing HAs

from the aquatic environment by using common water treatment methods (by absorption on

preformed aluminium hydroxide floes) was promising in practice.

Inwater treatment, flocculation and/or coagulation with aluminium and ferric salts have been

widely used for many years to remove natural organic matter (NOM) including HAs (234, 125,

166). However, extensive knowledge of this in situ water treatment process was limited by the

fact that the adsorption of NOM to aluminium hydroxide floes during a conventional

coagulation/flocculation process is very complex, with flocculation of aluminium hydroxide

particles leading to the formation of larger floes and the adsorption of NOM molecules on

floes going on simultaneously. Therefore, the efforts to optimize this aspect by performing the

adsorption of NOM on preformed aluminium hydroxide floes (28) were necessary. It was

suggested that NOM properties such as hydrophobicity, size and charge density all affect the

adsorption to aluminium hydroxide floc and the extent of solubilization of aluminum; the

strong hydrophobic acids (i.e., humic and fulvic acids) had greater adsorption affinities

towards the aluminium hydroxide floc; the larger molecules had greater adsorption affinity

on aluminium hydroxide than the smaller molecules.

With the art of aluminium slat-flocculation and/or coagulation for NOM removal, it is widely

accepted that adsorption of NOM to crystalline aluminium hydroxide solids occurs through

surface complexation or ligand exchange (59). Studies with freshly formed aluminium

hydroxide precipitate suggested that surface complexation also plays a major role in

aluminium coagulation (125). Freshly precipitated aluminium hydroxide has a high density of

amphoteric surface hydroxyl groups. The reactions between NOM and the surface hydroxyl

groups on aluminium hydroxide can be described by either ligand exchange reactions where
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the surface hydroxyl is displaced or by ionpair formation with protonated surface sites or by a

multistep process combining elements of both (193, 145, 60). In humic matter containing raw

waters, efficient removal of organic colour and organic carbon is accomplished by

coagulation with these metal ions at slightly acidic conditions, e.g. pH 5-5.5 for Al3+ (70,69,162).

The mechanism involved is considered to be the stoichiometric reaction between the poly-

anionic humate colloids and dissolved polycationic hydrolysis species of the metal ions.

Humic macromolecules are subject to complex aggregation and dispersion phenomena in

aqueous media, which are of relevance to their physical behavior and chemical reactivity. The

degree of irregularity and roughness of exposed surfaces of humic macromolecules is

expected to have an important influence on the number, type, and availability of chemically

and physically reactive sites of the HA molecule; on the adsorption capacity of HA; and on

the extent of interactions between HA and metal ions on or in the aluminium hydroxide
structure (279).

Much of the reactivity of the HAs in solutions is attributed to their functional groups that

contain oxygen, including carboxyl, carbonyl, phenolic and methoxyl, carboxyl and phenolic

groups. These groups provide most of the negative charge that adds to the mobility of humic

substances in the environment, and are believed to react with metals (71,9).

In HAs containing waters of high buffer capacity, the flocculation pH is very often close to

the neutral point, where the predominant formation of insoluble hydroxide is expected,

including the "sweep flocculation" due to the enmeshment of particulate matter by the

voluminous hydroxide precipitate (7). Dissolved organic compounds are removed primarily by

sorption onto the hydroxide, based upon several possible mechanisms of adsorption, such as

weak physical sorption, ion exchange or surface complexation. Humic substances are well-

known natural acids, able to form multi-dental chalet complexes with inorganic cations thus

influencing the molecular specification of trace metals significantly (210).

Therefore, the adsorption of HAs by aluminium hydroxide depends on the physical and

chemical surface characteristics and micro-structures of HA and aluminium hydroxide

formed in-situ. Any effects which physically or chemically affect the surface characteristics

and micro-structures of HA and aluminium hydroxide could influence the adsorption
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efficiency. The ultrasonic irradiation, which was known to promote microstreaming (creating

turbulent flow and aiding mass transportation) and acoustic cavitation (producing local high

temperatures and pressures as a result of bubble collapse) in heterogeneous systems (152), may

enhance the flocculation/aggregation efficiency by a variety of physical (erosion,

emulsification, aggregation/flocculation) or chemical (the production of radical and exited

species; single electrontransfer) ultrasound actions on the properties of HA and aluminium

hydroxide floes or the interactions at the solid liquid interface. So far, the idea to explore the

effect of ultrasonic irradiation on HAs removal by aluminium hydroxide is relatively new.

The chemistry of aluminium salts and HAs in an aqueous environment and the effects that

ultrasonic irradiation may contribute to the flocculation/aggregation system are complicated.

The physical and chemical characteristics and structure of HA are dependent on its origin,

Therefore, the removal of HA produced from the acidification fermentation of lignocellulose

residues by preformed aluminium hydroxide with introduction of ultrasound irradiation into

the adsorption processes needs to be evaluated. The comprehensive surface complexation of

HA on preformed aluminium hydroxide applied with ultrasonic irradiation needs to be further

investigated.

2.5 Summary

The lignocellulose is a complex of three classes of polymers, namely cellulose, hemicelllulose

and lignin. Because of the chemical and structural complexity and the intimate association of

these components, biological stabilization of lignocellulose substrate to methane and carbon

dioxide is naturally a slow and complicated route. The studies on microbial lignocellulose

degradation from different laboratories have allowed the formulation of specific

biotechnological goals, each adopting its distinctive approach.

A description of the overall process of lignocellulose degradation does not yet exist for any

substrate and organism. The degradation pathway and products can be quite different with

different micro-organisms and environmental conditions. The general purpose of anaerobic

digestion of lignocellulose is to convert complex organic material to methane, thereby

reducing the organic solids content of the sludge, its putrefaction, and its pathogen content.

Considering the complexity of the chemical characteristics and structure of lignocellulose, the
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following aspects of the overall digestion and utilization of lignocellulose are to be

emphasized.

1) It can be deduced that a significant bio-degradation of lignocellulose biomass in the

earth's biosphere is carried out in sulfurate-dominant habitats. To enhance the knowledge

of the degradation nature of lignocellulose residues in normal solid wastes management

practice and to compare it with the controlled anaerobic digestion process, the biological

decomposition of lignocellulose in sulphate acidified habitats is to be simulated and

evaluated in a simulated landfill reactor.

2) The initial hydrolysis step is kinetically critical to start the anaerobic digestion. This step

can be promoted by pre-treating which, to some extent, leads to the rupture of the rigid

structure of lignocellulose. There are a variety of pre-treatment methods available, the

comprehensive treatment methods are economically acceptable.

3) A wide variety of intermediary products are formed. Some of these products may

polymerize into polydispersed polymers of aromatic and aliphatic units (humic

substance), which are more complex and highly condensed than the lignin polymer, thus

seriously inhibiting the further utilization/conversion of the hydrolyzed products by

anaerobes. The further treatment and investigation of the degradation and/or removal of

humic substances, especially for HAs, formed in situ of anaerobic digestion process, are

necessary.

4) Ultrasonic irradiation is gaining particular interest as a method to decompose

macromolecules in solution and has been applied to a wide variety of polymers including

both water-soluble and non-water soluble compounds. Since the structure of the HAs is

heavily dependent on its origin, it is difficult to compare the results obtained by different

investigators. An investigation of the effects of ultrasonic irradiation on the physical and

chemical characteristics of HAs extracted from the acidification fermentation (anaerobic

composting) of lignocellulose residues is to be conducted. The further bio-degradation

behaviour of HAs, after ultrasonic irradiation treatment, by indigenous micro-organism

from the lignocellulose digester are to be investigated.
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5) Successful degradation and stabilization of lignocellulose substrate towards methane

production is a consecutive microbial process, which involves groups of comprehensive

metabolic activities of different functional micro-organisms. In the initial hydrolysis stage,

fungi, the particularly efficient degradators of major plant polymers, including

actinomycetes, play important roles in solublizing, transforming and decomposing the

large polymers such as cellulose and lignin enzymatically. However, to what extent these

initially developed fungi or actinomycetes can utilize the humic substances (e.g. HAs) or

affect the growth of the subsequent obligatory anaerobic bacterium is not clear.

6) Since the methanogens is highly sensitive to the environmental conditions (such as pH,

temperature, toxic components), even when hydrolyzed, efficient conversion of the

hydrolyzed substances all the way to methane and carbon dioxide is still hard to achieve in

the case of lignocellulose residues, and special consideration must be taken in the

configuration design of the digestion process.

7) Not the whole lignocellulose can be hydrolyzed and digested. Humus, the indigestible part

of the lignocellulose, is considered to have promising applications in soil conditioning

after reducing the pathogen content to the satisfactory level.
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Chapter 3 Experimental Work

3.1 Lignocellulose substrates and activated sludge

Lignocellulose substrates: Clean grass was collected from fresh turf cuttings on the campus

of the University of Stellenbosch in November 1998. It was immediately solar dried, and then

sealed in clean plastic bags before the experiment. The tobacco dust, a mixture of tobacco

leaves and stalks, was collected from a farm in Paarl in October 1998. It was already solar

dried, ground below 2 mm and sealed in thick plastic bags.

Table 3.1 Characteristics of the tested samples

Characteristics Activated Sludge Grass Tobacco Dust
Total Solids (%, TS) 24.6 91.2 94.2

Volatile Solids (% ofTS) 50.71 80.11 71.97
Ash (% ofTS) 49.29 19.89 28.03

Element Composition of Dry Mass
C (%) 29.3 54.9 43.0
N (%) 3.22 2.44 2.37

N03-N (mg/kg) 41 10 308
~-N (mg/kg) 1245 1221 761

K(%) 1.13 1.51 1.70
Ca(%) 1.78 1.19 4.29
Mg(%) 0.22 0.26 0.70

B (mg/kg} 28 23 26
Cu (mg/kg) 754 13 57
Fe (mg/kg) 1.42 0.29 0.57
Zn (mg/kg) 1068 72 761
Na (mg/kg) 1216 915 288

Activated sludge sample: The activated sludge was obtained from the Stellenbosch sewage

treatment plant. This plant is operating on a mixture of domestic and industrial eflluent from

the town. As there are no heavy industries present in Stellenbosch, the eflluent is mostly

organic in nature. Bacteriological breakdown of the organic matter in raw sewage is mainly

carried out by two aeration reactors. The activated sludge used in this experiment was sub-

sampled from the concentrated sludge of the plant. Once sampled, it was sealed and stored

under anoxic conditions at room temperature for about three months to allow some anaerobic

bacteria to grow before it was combined with the lignocellulose substance as the
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microorganism seed and nutrients. Characteristics of the lignocellulose substrates and

activated sludge are shown in table 3.1.

3.2 Pre-treatment of lignocellulose substrate

Solubilization tests: The effects of pre-treatment methods were assayed using a modified

solubilization test (16). The tests were performed in 500 ml gas-tight bottles positioned in the

water bath at 25°C and 55°C for 5 days and 6 hours, respectively. Every 25 g of pretreated

sample was mixed with 250 ml distilled water for five minutes by continuously flushing with

oxygen free gas (Helium92%, Nitrogen Balance) ; the bottles were then tightly sealed and put

into the temperature-controlled water bath. Tests in triplicate were used for each sample. At

the end of testing, 50ml suspensions were collected and centrifuged for 15 min at 3000 rmp.

The supernatant was filtered through 0.45 urn (cellulose acetate, Schleicher & Schuell). The

total solid (TS) and total volatile solid (TVS) of the filtrates were determined according to

Standard Methods (I). Because the soluble mineral salts in grass and tobacco are marginal, the

TVS ofthe filtrate can be considered to be the same as that of soluble organic matter.

Mechanical pretratment: In this study, the two-roll milling method (161) was used in a

laboratory porcelain milling bottle. The volume ratio of dried grass/tobacco dust and porcelain

balls is about 3:2. All the samples were ground below 2 mm (100%) and the fraction between

0.2 mm-0.5 mm (about 40%) was screened for a solubilization test to evaluate the pre-

treatment effects.

Physical pre-treatment: In this study, the freezing/thawing method was employed. The

ground grass/tobacco dust (-2 mm) with a moisture content of around 50% (by adding

distilled water) was frozen overnight in sealed plastic bags. It was then thawed at room

temperature and dried in a temperature-controlled oven at 100-103°C for about 2.5 hours.

Three freezing-thawing cycles were conducted before the solubilization test was performed to

evaluate the pre-treatment effects. At the same time, the identical sample, which had not been

frozen, was also dried in the oven under the same conditions. This parent sample was used as

the control in the solubilization test to compare the pre-treatment results.
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Chemical pre-treatment: In this study, the swelling agent (0.5 M NaOH) was used. This pre-

treatment was realized by substituting distilled water with a 0.5 M NaOH solution in the

solubilization test.

3.3 Acidogenic fermentation test and reactor

Feedstock: The feedstock was prepared by mixing activated sludge and grass/tobacco dust

(2:1 w/w) in a porcelain roller for 2 hours to (1) provide sufficient contact between the

fermentation culture (activated sludge) and the substrate (grass or tobacco dust); (2) get

homogeneous feed for the reactor. The mixture was then sealed in plastic bags and stored in

the freezer as the feedstock.

Laboratory digesters: A batch digester and a two-stage semi-continuous system with leachate

recycling were employed in this study. The batch digester, without solid/leachate separation

unit, was designed to investigate the effects of hydraulic retention time (HRT) and start-up pH

on the fermentation performance, such as oxidation-reduction potential (ORP), pH and

volatile fatty acid (VPA) content. The two-stage semi-continuous system with solid/leachate

separation unit, was designed to study the effects of mass retention time and leachate

recycling on the fermentation performance (ORP, pH, VPA content). Duplicated reactors

were used.

The batch reactor tests were carried out in I-liter gas-tight pressure-tolerant glass bottles. A

rough sketch of the reactor is presented in Fig.3.I(a). The reactor temperature was thermo-

statistically controlled by regulating the temperature of the water bath. The experimental

procedure is as follows:

1) 150 g feedstock was introduced into the reactor

2) The proper volume of feeding medium (tap water, radical water, Ca(OH)2 or NaOH

solution) was supplied to achieve a desired initial TS content of the reactor, with the

headspace volume of the loaded reactor kept at 500-600 ml.

3) The reactor was vacuumed for two minuets before the reactor was flushed and gassed with

oxygen-free gas.

4) The bottles were submerged in the water bath at a temperature between 50 and 55°e.
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Gas production was measured with a wet-gas volume meter. The gas collection apparatus was

assembled according to Standard Methods (I). The composition of the gas, the pH and the

ORP of the solution in the reactor were measured daily after the first period of incubation (at

least 5 days) or every two to four days depending on the operation status of the reactor. When

sampling, the reactor was flushed with oxygen-free gas (such as helium and nitrogen mixture)

to prevent the oxygen contamination. The gas composition and VFA content were analyzed

by Gc. The TS and TVS of the samples were determined according to Standard Methods (I).

The pH and ORP were measured using a PHM 82 Standard pH Meter.

Reactor
Flushing Gas

Water Seal

Temperature
Controller

Fig.3.t (a) Schematic diagram of experimental apparatus (batch reactor)

The two-stage semi-continuous system consists of two identical glass columns (about 1.5

liter) with a water jacket outside and a fme glass sinter at the bottom. The operation

temperature of the reactor was controlled by the temperature ofthe water, which was pumped

from the water bath, in the water jacket. This water was recycled continuously. The whole

column was wrapped in thermo-isolating cloth to prevent heat from escaping. The set-up of

this system is presented in Fig.3.l(b). Each column was started up with 300 g feedstock.

Feeding medium of 300 ml was initially introduced through the first column. The leachate

from the first column was automatically used as the inoculation medium for the second

column. After one week, 10 mlleachate from the second column was sampled and analyzed
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for pH, ORP, TS, TVS and VFA content. Then another 150 g of new feedstock were added to

each column with the addition of 150 ml feeding medium through the first column. During

sampling and loading, the same flushing procedure with oxygen-free gas was conducted to

prevent oxygen contamination.

Water Seal

Recycled Leachate

Bio-gas Collector
Gas Flushing Pipe

Water
Recycling Pump

Wet Gas Meter

Bio-gas
Ligonocellulosic
Substance Packed Layer

/'

Leachate Collecting
and Cycling Container Flushing

Gas Cylinder

Water Bath

Fig.3.1 (b) Schematic diagram of experimental apparatus (semi-continuous module)

3.4 Two-phase digestion experiment and set-up

The same digestion apparatus was used as in the two-stage semi-continuous acidogenic

fermentation system. The collection, pre-conditioning (including pH adjustment, dilution and

reduction with reducing agent) of the leachate from the acidification digester was performed

in a I-liter gas-tight glass pressure vessel. The elution of the methanogenesis reactor using the

pre-conditioned leachate was realized with a micro-tube pump. The set-up of this system is

presented in Fig. 3.2
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Ree c1ed and Diluted Medium

Gas Sampling Point
Bio-gas Collector

Water Seal

Bio-gas

Gas Flushing Pipe

Wel Gas Meter

Water
Recycling Pump

Lignocellulosic Residues
Packed Layer

/

Leachate Collecting
and Cycling Container

Hushing Gas
Cylinder

Fig.3.2 Schematic diagram of laboratory setup for two-phase digestion

Developing the acidogenic phase: At the beginning of the acidification digestion, two

columns were packed with the same weight (200 g) feedstock. On the third day of digestion,

another 120 g and 80 g fresh feedstocks were added into the top and bottom columns,

respectively. The digesters were then left running without interruption for 2-3 weeks until the

start-up of the methanogenic phase.

Starting the methanogenic process: The methanogenic process started after 2-3 weeks SRT

of acidification digestion, operating under mesophilic (35°C - 38°C) condition, semi-

continuously eluted with pH/ORP controlled leachate containing 0.25 gil reducing agent

(Cysteine-HCl).

Leachate preconditioning and dilution: The leachate (about 100 ml) from the acidification

digester was diluted with tap water to bring the final volume to 400 ml. A certain amount of

Cysteine-HCl (0.25 gil) was added to this diluted solution before performing the pH

adjustment using concentrated NaOH (1%) or HCl (1%). Then the solution was purged with a

oxygen-free gas mixture (about 80% CO2 and 20% H2) and recycled through the digestion
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system by the micro-tube pump. Since the leachate producing speeds were generally slow, the

micro recycling pump only worked every other hour and was switched off overnight.

3.5 UASH reactor

The UASB reactor is typically divided into four compartments: (1) the granular sludge bed,

(2) the fluidized zone, (3) the gas-solids separator, and (4) the settling compartment. The

granular sludge bed is located at the bottom of the reactor. The waste water is pumped into the

bottom of the reactor and passes upwards through the granular sludge bed. Here the organic

compounds are biologically degraded and bio-gas is produced. In the top of and just above the

granular sludge bed, a fluidized zone develops because of the production of the bio-gas. In

this zone, further biological degradation can take place. The bio-gas is separated from the

liquid in the gas-liquid separator. Granules with good settling abilities settle back through the

fluidized zone to the granular sludge bed, while flocculated and dispersed bacteria are washed

out of the reactor with the overflow; the treated water is discharged out of the reactor as

qualified eftluent. The thermo-wire or water-jacket is employed to control the digestion

temperature ofthe reactor.

Wet Gas Meter
Water Seal

r----Fluidized Zone

Sludge Bed

Substrate Tank

Recirculation Pump Influent Pump

Influent

Fig.3.3 Schematic diagram ofUASH reactor
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A schematic diagram of the laboratory scale UASB reactor is given in Fig.3.3. The reactor

(according to the design of the Food Science Department of the University of Stellenbosch)

consists of a glass column potion (1.210 liter, 50 mm ID) and a 1.0 liter gas-solid/liquid

separator. The total volume of 2.210 liter was used for calculation of the volumetric loading

and hydraulic retention time. The reactor was operated mesophilically at about 37°C by a

thermo-wire heating system. Bio-gas produced was introduced to a "U"-shaped tube water

seal (l6mm ID, 380 mm long) and was then measured by a wet-gas meter at room

temperature. The gas sample for C~ and C(h analysis was withdrawn using a "T" -shaped

gas-collecting vessel.

3.6 Lignocellulose decomposition in simulated acidified leaching solution (sulphate

acidified landfill reactor)

Simulated acidified leaching solution: A sulphate solution of 0.005 M H2S04 (pH

around 1.80) was used as an acidified leaching solution. It was prepared from 98% H2S04

(AR) and stored in alO-liter graded plastic vessel at room temperature.

Because of the long-term degradation process of landfill, the solar dried turf grass was used as

the lignocellulose residues throughout this study. Its physical and chemical characteristics are

shown in Table 3.l.The seeding agent was collected from the overnight rain-soaked turf grass

and was incubated in the simulated landfill tank for three months. A 2.17 kg mixture (3: 1

weight base) of solar dried grass (moisture content 8.8%) and seeding grass (moisture content

82.5%) was used to load the simulated landfill tank throughout the research.

Simulated landfill reactor: A 18-liter capacity tank was used as the landfill reactor for this

research. A schematic diagram of this reactor is presented in Fig.3.4. The tank was operated at

room temperature. A water distribution system was attached to the inside surface of the lid to

simulate the acidified leaching.

The acidified leaching solution flowed at a rate of 2.0 lid from the reservoir into the reactor

tank 500 mm below through the distribution system. After five days of simulation, another

10.0 litre simulated acidified leaching solution was added to the reservoir and the leachate

collected was continuously recycled back to the reservoir at a rate 2.0 lid. The first leachate
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and gas sample were taken on the 16th day of digestion. Samples were subsequently collected

every three weeks. From the second month of decomposition, 15 g of digested sample was

collected from different positions of the reactor. One gram of sub-sample from the 15 g

sample was used for bacterial enumeration.

Simulated Acidified Solution Reservoir

Perforated Plate

BiG-Gas sampling vessel

Simulated Landfill Tank Rllactor

Waste Solid Packed Layer

Gas Inlet

Recycling Pump

Leachate

Leachate Collector

Fig.3.4 Schematic diagram of simulated landfill set-up

3.7 Ultrasonic treatment of humic acids

Humic acid extraction: The humic acids were extracted from the 4-week-anaerobic-

thermophilically (50oe -55°C)-digested humus from the laboratory digester fed with activated

sludge and tobacco dust (TSo 21-23%, VTSorrSo 57.80%). The following extraction and

purification steps were used:

1) The extraction was performed twice with 0.5 M NaOH under N2 at a ratio of 10:1.5

(NaOHlSolid) in the 2.51dark colored rolling glass bottles for 24 h at room temperature.

2) The 24 hour-NaOH extracting slurry (pH 11.93 to 12.36, ORP -631 mv to -676 mv) was

centrifuged at 5X1000 rpm for 15 min. The supernatant was filtrated by vacuum (Whatman

Filtrate Paper No. 542).

- 57-

Stellenbosch University http://scholar.sun.ac.za



Experimental Work

3) The filtrate was precipitated with 5.85 M Hel at pH 1.07-1.53 and left overnight without

any stirring.

4) The acidified overnight standing precipitate suspension was centrifuged at 5XIOOOrpm for

15 min. The precipitates were washed with 0.1 M Hel and distilled water at a ratio of

2:1(LlS) for 7 times respectively.

5) The supernatant and washing solutions (pH 1.20-1.83) were combined and evaporated

(around 100 dc) in the dark for 4 days to recover the fulvic acid fraction. The precipitates

(humic acids) were immediately freeze-dried (24-36 hours) and stored in the dark at -16 "c.

Ultrasonic irradiation of humic acids (HA): Freeze-dried HA was dissolved in 0.5 M NaOH

solution to the concentration of 1.1Xl03 mg/l and the pH was adjusted to 7.33-7.34 with 1 M

Helor 1 M NaOH. Each 100 ml of this neutralized humic acid solution was then diluted by

50% and was treated with ultrasonic irradiation in a 125 ml round bottom vessel (ID 50 mm)

using the USOsonification probe (USOcontrol KIKA Labortechnik) operating at a frequency

of 30 kHz with cycling set at 1.0 and amplitude set at 100%. The ultrasonic irradiation set-up

is presented in Fig.3.5. The pH and ORP of the solution were measured immediately after

irradiation using a PHM 82 Standard pHIMV Meter).

Ultrasonic Probe
Tap Water inlet

Water Tank for Temperature Buffering

Tap Water outlet

Fig.3.5 Ultrasonic irradiation apparatus

Each 20 ml of treated or untreated solution was filtrated (0.45 urn cellulose acetate,

Schleicher & Schuell) and analyzed for UV-visible absorption within a few hours. The rest of
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the treated or untreated slurries were immediately freeze-dried and stored in the dark at -16

°c before further analysis.

Organisms selected by using HA as single carbon source: Fungal isolates associated with

lignocellulose degradation, bacteria and yeasts from the 10-month simulated lignocellulose

residues landfill reactor were first screened on a 0.67% yeast nitrogen base (YNB) agar

supplied with 0.25 gil, 0.5 gil, 1.0 gil and 2.0 gil of HA respectively. The HA was not pre-

treated with ultrasonic irradiation and was the single carbon source (YNB-HA agar). The

dominant colonies that developed after 3 weeks of incubation were sub-cultured on Malt

Extract agar (MEA), which includes malt extract 7.00 gil, Peptone 1.00 gil, yeast extract 0.50

gil and agar 16.0 gil. Pure cultures were obtained by dilution plating of the dominated

colonies on MEA. The bacterial strains were then sub-cultured on typtose soy agar (TSA),

with the fungi strains maintained on MEA.

Organisms selected by ultrasonic irradiation: The ultrasonic treatment of microorganisms

was conducted on 25 ml of a 10-fold diluted biomass from the above- mentioned landfill

reactor using a USO sonification probe (USO control KIKA Labortechnik) operating at a

frequency of 30KHz with cycling set at 1.0 and amplitude set at 100%. The serially diluted

culture suspensions were then plated on the rose bengal chloramphenicol agar; the

predominant fungi and yeast colonies were sub-cultured and purified on malt extract agar

plates on which bacteria growth was not detected.

All the fungi and yeast colonies for strain identification were maintained on 2% MEA at room

temperature (around 20°C).

Fungal culturing and degradation: Two kinds of medium, 6.7g1l YNB medium plus 1.0 gil

HA as carbon source (YNB-HA) and modified Cezapek-Dox medium (Cezapek-Dox-HA)

(containing 1.0 gil HA, 0.05 gil yeast extract, 0.5 gil NaN03, 1.0 gil K2HP04, 0.5 gil MgS04

7H20, 0.5 gil KCI, O.Olg FeS04.7H20 gil) were used. Both HA with ultrasonic irradiation

and HA without ultrasonic irradiation were added to the medium and autoclaved. The pH of

the medium was adjusted to 6.5-7.0 to ensure the HA added in the medium was soluble. Then

a loopful (3.0 mm ID) of screened fungal spores was aseptically inoculated into a 100mi

volume of culture medium described above and stored in 1000 ml conical flasks. Another set
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of flasks with the same medium were left un-inoculated to serve as sterile controls. The

inoculated flasks (duplicates) and sterile controls were placed in a box with beakers of water

to ensure a proper humidity of the air in the container and was incubated at 28°C in the dark.

At weekly intervals, 10 ml of the mycelia-free culture fluid was aseptically taken from each

flask with a sterilized pipette. By using membrane filtration (pore size 0.45 urn, acetate

cellulose, Schleicher and Schuell) to remove the fine mycelia (hyphae) in the filtrate, changes

in the mycelia-free filtrate in absorbance at 340 nm, the FBB reactivity and the presence of

reducing sugars were determined.

Bacteria, yeast culturing and degradation: A 6.7g11YNB medium plus 1.0 gil HA as carbon

source, modified TS medium (TS-HA) (containing tryptone 17 gil; soy peptone 3.0 gil;

sodium chloride 5.0 gil; di-potassium hydrogen phosphate 2.5 gil, HA 1.0 gil) were used to

monitor the degradation of HA by yeast and bacteria isolates individually. Ten milliliter of

medium in 100 ml conical flasks were each aseptically inoculated with a loopfui (3.0 mm ID)

of bacteria or yeast colonies. Another set of flasks with the same medium was left un-

inoculated to serve as the blank controls. The cultures (duplicates) and sterile controls were

placed in a container with beakers of water inside to maintain a proper humidity of the air in

the container, the container was incubated at 28°C in the dark for 3 weeks. At the end of 3-

week-incubation, changes in absorbance at 340 nm, the FBB reactivity and the presence of

reducing sugars were determined on the cell-free culture fluid (0.22 urn membrane filtration,

acetate cellulose, Schleicher and Schuell).

HA toxicity on anaerobic consortia: A HA stock solution (1.0 gil, pH 7.3-7.5) was

aseptically prepared in Nrphase. The stock solution was aseptically mixed with the modified

TYEG medium, which contained 0.1 gil tryptone, 0.1 gil yeast extract, 0.1 gil glucose, 0.3 gil

cysteine HCI, 10.0 mIll trace elements solution, 10.0 mIll vitamin solution, 5.0 gil NaC03 and

2.0 mIll phosphate solution buffer, to give final HA concentrations ofO.l, 0.05, 0.02, 0.01 and

0.00 mg/l and a [mal volume of 50 ml in 100 ml serum bottles. The bottles were then

inoculated with 1.0 ml of anaerobic cell enrichment culture. This enriched culture was

obtained from the 1.0-month-old TYEG culture, which contained 1.0 gil tryptone, 1.0 gil

yeast extract, 1.0 gil glucose, 0.3g11cysteine HCI, 10.OmIlItrace elements solution, 10.Oml

vitamin solution, 5.0 gil NaC03 and 2.0 ml phosphate solution buffer and was inoculated with

0.1% anaerobic lignocellulose digested sludge from the reactor with 38.5% C02 and 49.1%
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Cl-l, in the headspace. All medium preparations and transfers were carried out under pure N2

conditions. Duplicate culturing bottles were used, maintained in anaerobic atmosphere with

pure N2 and incubated in the dark at 37°C for 3 months. The final anaerobic consortium

growth in 3-month old liquid culture was monitored by measuring the biomass and by

detecting the C02 and C~ contents in the gas phase of the serum bottles with a GC system.

3.8 Removal of humic acids by preformed aluminium hydroxide floes with the aid of

ultrasonic irradiation

Preparation of preformed aluminium hydroxide floes. The method to prepare the preformed

aluminium hydroxide floes was the modified methods used by Bose et al.(28). 500 ml of

standard 200 mg/l aluminium solution made from aluminium sulphate (AR, Merk) using

super-Q water, 100 ml of 10 mM sodium bicarbonate solution (AR, Merk, super-Q water),

and 350 ml of super-Q water were added into a 1000 ml beaker with the pH of the solution

being adjusted to around 7.0 using 0.4 N NaOH or 1.0 N H2S04, and the final volume was

then brought to 1000 ml with super-Q water. This solution was rapidly mixed for 4 min at a

speed set at 6.0 and then slowly mixed for 30 min at a speed set at 1.0 using a IKA ®-WERK

RH magnetic stirrer. This gave a preformed aluminium hydroxide floc solution with 100 mg

AI/I.

Preparation of humic acid solution: 0.45 g freeze-dried humic acids (HA) were firstly

dissolved in 450 ml ofO.5 M NaOR solution, the pH of the solution was adjusted to around

7.0 with 1 M HCI or 1 M NaOH, and the fmal volume was then brought to 500 ml with IMm

sodium bicarbonate solution (pH 7). This produced a 900mg/1 humic acid stock solution with

a pH of around 7.0.

Ultrasonic irradiation treatment:

a) Treatment for preformed aluminium hydroxide floc suspension only: 50 ml evenly mixed

preformed aluminium hydroxide floc suspension at slow stirring was transferred into a 100ml

glass beaker, on which an immediate ultrasonic irradiation was performed using the U50

sonification probe (U50 control KIKA Labortechnik) operating at a frequency of 30 KHz with

cycling set at 1.0 and amplitude set at 100% for 30 to 120 minutes. Ten milliliter of900 mg/I

humic acid stock solution was then immediately introduced to produce a preformed-
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aluminium-hydroxide-humic acid suspension, (marked as suspension A), with a humic acid

content of 150 mg/I. The control suspension, (suspension Ao), was prepared by using the same

amount of untreated preformed aluminium hydroxide floc suspension and humic acid

solution.

b) Treatment for preformed aluminium hydroxide floc and humic acid suspension mixture:

The required volume of900 mg/I humic acid stock solution was supplied with proper volumes

of evenly mixed preformed-aluminium-hydroxide-floc suspension to bring the total volume of

the mixed suspension to 60 ml (marked as suspension B1-B4), so that the desired

concentrations of humic acid (75, 150,300 and 450 mg/I) were obtained. The same ultrasonic

irradiation procedure as that performed on the preformed aluminium hydroxide suspension

was then conducted on these suspensions. The blank controls with the same concentration of

humic acids were made by supplying preformed-aluminium-hydroxide-floc suspension with

proper volumes of 1 mM NaHC03 at pH 7 (marked as solutionf.j-Ca),

Adsorption experiments: After ultrasonic irradiation treatment, suspensions Ao-~, BI-B4, CI-

C4 were respectively transferred to 125ml screw capped plastic bottles and were continuously

mixed on a laboratory roller for 24 hour. As the control experiments, the same procedure was

also performed on suspension Ao and solution CI-C4.

3.9 Chemical or physical analytical methods

The TS and TVS of the samples were determined according to Standard Methods (I) . The pH

and ORP of the leachate was analyzed every other day using a PHM82 STANDARD pH/ORP

METER.

VFA analysis: The VFA was measured by gas chromatography (GC); the sample was

prepared as follows:

1) Centrifuge the sample at 3000 rpm for 15 minutes.

2) Filtrate the supernatant using 0.45 urn membrane filtrate paper.

3) Dilute one part 35% formic acid solution with three parts of the filtrate sample.
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The preferred sample size is 4 ml - dilute 1ml of 35% formic acid with 3 ml aqueous sample.

This sample can be frozen until needed for analysis. The internal standard, hexanol, is added

just before analysis.

The analyses were done on a Varian 3700 gas chromatograph, equipped with a flame

ionization detector (FlO) and a Nukol™ fused silica capillary column (30 x 0.53 mm i.d. and

0.5 urn film thickness) (Supelco, Inc., Bellefonte). The column temperature was initially held

at 105°C for 2 min, then increased at a rate of 8°C.min-1 to 190°C. The injector and detector

temperatures were set at 130°C and 300°C respectively and nitrogen gas was used as carrier

gas at a flow rate of 6.1 ml.min". The results were recorded and integrated on Borwin™

(JMBS Developpements, Grenoble) integration software. All results are expressed in mg.l'

and are the average of duplicate analyses. Only a 10% variation in data was allowed,

otherwise the analysiswas repeated.

The bio-gas yield was measured using a wet-gas meter; the contents of CO2, Cf4 and N2

(during denitrafication ) of the bio-gas were analyzed using GC (GC 580 with TCD detector,

60/80 carboxen-l000 packing, 15 feet xl /8 inch stainless steel columns; 45/60 carboxen-l 000

packing, 2 feet x1/8 inch stainless steel column, helium gas was used as carrier gas and the

flow rate was set at 30 ml/min at 300 kPa. The column and detector temperatures were set at

100°C and 200°C respectively). With injection, the same volume (0.4 ml) of air, pure C02

and Cf4 respectively were injected each time before injection of the sample gas in order to:

(1) check air contamination in the sampling vessel; (2) calculate the absolute percentage of

the CO2and/or Cf4 in the bio-gas of the reactor.

UV-visible absorbances: The changes ofHA, resulting from the ultrasonic irradiation, in UV-

Visible absorbency at 230 nm (154) and 254 nm (59) and the changes of cell or mycelia-free HA

degradation solutions in UV-visible absorbency at 340 nm were determined with a Cary IE

UV-visible spectrophotometer (series 94041466).

The removal efficiency of HA by preformed aluminium hydroxide floes was also determined

via UV-visible absorption at 230 and 254 nm. Five milliliter of each suspension after 24 hour

adsorption experiments was filtrated through a 0.45 urn membrane filter (acetate cellulose,

Schleicher and Schuell). Measured adsorption was then converted to residual concentrations
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according to standard curves obtained from humic acid stock solution at pH 7, and the

removal efficiency was calculated by dividing the decreased amount of humic acid

concentration in liquid phase (filtrate) by the total humic acid concentration in the bulk

system. Triplicate samples were prepared for analysis. The final results used to evaluate the

removal efficiency were mean values of the results determined at 230 nm and those

determined at 254 nm.

The untreated HA was used to make the standard solution for absorbency calibration at 230

nm, 254 nm and 340 nm. The UV-absorption ofHA solution was found linear with respect to

the HA concentrations in solution.

Reactivity to Fast Blue Salt (FBB): The ultrasonic irradiation effects on the HA reactivity

with the FBB or the reactivity of cell or mycelia-free culturing medium with FBB were

performed using the single cell kinetics method on the Cary IE UV-visible spectrophotometer

(series 94041466) according to the procedure of Gramss et al.(I04). Per 1.0 ml ofHA solution

or cell or mycelia-free culture medium was mixed with 0.1 ml of an aqueous solution of 4.21

mM FBB. Increases in absorbency were recorded in duplicate from 0 second to 30 second at

530 nm. The reactivity was determined as the increases of absorbency over the initial 12

seconds.

Detection of the presence of reduced sugars in degradation culturing medium: The presence

of sugars as the possible intermediate degradation products in the fungal culture medium was

tested using the phenol-sulfuric acid methods (67,104).In brief: a mixture of 0.5 ml cell or

mycelia-free culturing medium, 0.5 ml of a 5% (w/v) phenol solution and 2.5 ml of

concentrated H2S04 was left reacting for 10min. Absorbency was determined at 490 nm,

(hexoses and their methylated derivatives) and compared to blank samples in which the

phenol solution had been replaced by water and the blank samples where the test solution was

replaced by water.

E/E6 ratios: The E41E6 ratios of HA were also determined from the absorbency of aqueous

solution exposed to ultrasonic irradiation with a Cary IE UV-visible spectrophotometer

(series 94041466) according to the method of Chen et al (44).
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FT-IR-Spectroscopy: Spectra ofKBr pellets, (1 mg freeze-dried HA sample in 300 mg KBr),

were recorded on a Mattson GALAXY 2020 FT-IR spectrometer (Resolution 8.000, Scans

50, Signal Gain 1, Forward velocity 0.6 cm/s, Reverse Velocity 0.6 cm/s, 600-4000 nm).

IH-Nuclear Magnetic Resonance Spectra (IHNMR): Solutions for lHNMR analysis were

obtained by dissolving -20 mg of the freeze-dried HA sample in 0.5ml deuterium oxide. The

spectra were determined on a Varian VXR 300 NMR Spectrometer.

Gel Permeate Chromatography (GPC) analysis: The ultrasonic irradiation effects on the

molecular size (weight) distribution property of HAs were chromatographically examined by

a HPLC system (Linear UV detector at 240 nm, Phenomenex - Phenogel 100 A and 500 A
300*7.8 mm columns, 20 JlI injection volume, the freeze-dried HAs were dissolved in THF

and were pumped into the system at 1.25 ml/min). Polystyrene with molecular weights of

580, 1060, 3250, 5050, and 10100, respectively, were used to calibrate the device.

Determination of residual Al concentrations: 10ml preformed aluminium hydroxide floc

suspension without addition of humic acids and 24 hour-adsorption suspension mixture of

aluminium hydroxide floc and humic acids were both filtrated through a 0.45 urn membrane

filter (acetate cellulose, Schleicher and Schuell). The residual Al concentrations of the filtrate

were analyzed by atomic absorption spectrophotometer (AA 250 plus). Duplicate samples

were prepared and analyzed. The dilution factors on the residual Al concentrations in different

tested suspensions were considered and the final data used were comparable results under a

same initial Al concentration (Total AI concentration) base.

Microscopy: The ultrasonic irradiation effects on the physical-microstructure and

morphological conformation of HA, the ultrasonic irradiation effects on the microstructure

and the morphology of preformed aluminium hydroxide floc and the humic acids-aluminium

hydroxide floc-absorption-system were carried out using SEM technology. The samples were

quickly freeze-dried and then attached to AI-stubs and coated with a few atoms thick layer of

gold. The observation was conducted using a Topcon ABT-60 scanning electron microscope.

The morphologies of some of the filamentous fungi and bacterial isolates growing on 2%

MEA and in YNB-HA liquid culture were obtained on the Topcon ABT-60 scanning electron
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microscope (SEM). The samples for SEM observation were plugs of 2% MEA containing the

fruiting structures and a few drops of washed biomass from YNB-HA liquid culture, which

were quickly freeze-dried and sputtered with a gold coat.

The morphology of the Gram-negative bacteria consortium and the filamentous structures of

some fungi grown as pure culture were also observed with an epifluorescence microscope on

acridine orange stained samples using a Nikon ECLIPSE E400 microscope, a COHU CCD

camera, and Scion software.

3.10 Microbiological analysis

Fungal biomass assay: The mycelia biomass was obtained by ultra-centrifuging the total

volume of a 3-week culture suspension at 12400 g for 30-45 min using a BECKMAN Model

Jz-21 centrifuge. The mycelia pellets, washed with double distilled water under the same

centrifugation conditions 2-3 times, were freeze-dried. The final dried mass of mycelia pellets

was recorded as the biomass of the fungus.

Bacteria or yeast biomass assay: A membrane filtration method was used to harvest the

bacteria or yeast biomass. The procedure was as follows:

1) Dry the filter paper ( 47 mm, 0.45 urn, acetate cellulose, Schleicher and Schuell) in a

PYREX glass dish in the microwave oven at medium power for 10 minutes. Put tissue

paper between the glass dish and the filter paper to avoid sticking.

2) lmmediately put the filter paper and the glass dish in a desicator and let it cool; weigh the

filter paper just before use on an analytical balance.

3) Accurately record the volume of the cell suspensions; vortex the suspension for 2-3 min;

filter the cell suspension through the filter (exact 5 ml) with the use ofa vacuum pump.

4) Wash the cells three times with the same amount of distilled water.

5) Dry the filter paper with cells in a PYREX glass dish in the microwave oven for 15 mints.

on the same power as before.

6) Cool the filter paper with cells in the desiccator; measure the mass using an analytical

balance.
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Microbial enumeration:

The serial dilution-agar spread plating method (90,35)was used to quantify the viable cells in

the sample. Briefly, this method involves the serial dilution of a bacterial suspension (sample)

in sterile water blanks, which serve as a diluent of known volume. Once diluted, the

suspensions are plated on suitable nutrient media (molten agar). Colonies between 30-300

were counted after 3-4 days incubation at 37°C for aerobic counts.

Anaerobic jars (80% N2 and 20% CO2 as gas phase) were used for the incubation of

(facultative) anaerobic bacteria. The reductant solution (Cysteine-HCI 2.5 gill 0 ml, prepared

under anaerobic conditions and filter sterilized) and anaerobic nutrient medium were prepared

under 100% N2 condition and autoclaved in ~-free gas mixtures (80% N2 and 20% C~)

separately. The reductant solution was added to the culture medium (2mVIOOOml)just before

pouring the medium into the plates, which were inoculated with 0.1 ml of diluted sample. The

inoculation and plate pouring were carried out in an 02-free atmosphere (80% N2 and 20%

CO2). The plates were then immediately incubated in anaerobic jars at 37°C and colonies

were counted after 2-3 weeks. These colonies were considered to be able to grow

anaerobically.

The total bacterial count and acidogens counts were done aerobically, facultatively and

anaerobically. For the anaerobic count, 2 ml of reductant solution, (Cysteine-HCI 2.5 g/l l O

ml, prepared and autoclaved under anaerobic conditions) was added. For the facultative count,

the medium and the plates were prepared under aerobic conditions but the inoculated plates

were incubated in the anaerobic jars (80% N2 and 20% C02 as gas phase) and the colonies

were calculated after 1 week.

A most probable number (MPN) enumeration (116) was performed for the quantification of

methanogens and denitrifiers. A three-tube MPN analysis using 4-fold serial dilutions of the

digested granule sludge was used. The medium used for the dilutions and MPN incubation of

methanogens were performed as described elsewhere (272).The medium included (per liter):

sodium formate 5.0 g; sodium acetate 5.0 g; methanol (100%) 10.0 mmol; trace elements

a)lO.Oml, vitamin solution b)IO.Oml; NaHC03 5.0 g; L-cysteine HCI H20 0.5 g; Na2S·9H20

0.5 g; resazurine 0.002 g; phosphate solution c) (20.0 g K2HP04 in 100.0 ml distilled water)
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2.0 ml . The medium was prepared and autoclaved (except vitamin solution) under 80% N2

and 20% C02 conditions. Culture tubes, which were screw-capped and sealed with butyl

rubber stoppers, were incubated in the anaerobic jars (80% C~ and 20% H2 as gas phase) at

37°C in the dark for 6 weeks and one dilution series per MPN analysis was autoclaved as a

sterile control. Tubes was scored as positive if the methane or N2 (analyzed by GC) in the

tube was detected and the medium in the tube had become more turbid than the control tube.

Trace elements a) include (per liter): Nitrilotriacetic acid 1.5 g; Fe(NH4)2(S04)2·6H20 0.2 g;

Na2Se03 0.2 g; CoCh·6H20 0.1 g; MnS04·2H20 0.1 g; Na2W04·2H20 0.1 g; ZnS04·7H20

0.1 g; AlCb·6H20 0.04 g; NiCh·6H20 0.025 g; H3B03 0.01 g; CuS04·5H20 0.01 g. Vitamin

solution b) include (per liter): p-Aminobenzoic acid 10 mg; Nicotinic acid 10 mg; Calcium

pantothenate 10mg; Pyridoxine hydrochloride 10 mg; Riboflavin 10 mg; Thiamine

hydrochloried 10 mg; Biotin 5 mg; Folic acid 5 mg; a-Lipoic acid 5 mg; Vitamin BI2 5 mg.

There is no need to sterilize this solution, but it would be better to store it at 4 °c in the dark

immediately after use.

Twelve groups of microbial media were included (8, 1):

1) Total anaerobic and aerobic count using TSA which included (gil): Tryptone 17 g; Soy

peptone 3.0 g; Sodium Chloride 5.0 g; di-Potassium hydrogen phosphate 2.5 g, Dextrose 2.5

g; Agar 15.0 g.

2) Fecal coliforms count using M-7 h FC Agar which included (gil): Proteose pepton No.3 or

Polypeptone 5.0 g; Yeast extract 3.0 g; Lactose 10.0 g; d-Mannitol 5.0 g; Sodium Chloride

7.5 g; Sodium Laural Sulphate 0.2 g; Sodium desoxychlolate 0.1 g; Bromcresol purple 0.35 g;

Phenol red 0.3 g; Agar 15.0 g.

3) Total coliforms count using Macconkey Agar which included (gil): Peptone 20.0g; Lactose

10.0g; Bile Salts 5.0g; Sodium Chloride 5.0g; Bromocresol purple O.Olg; Agar 15.0g.

4) Feecal streptococci count using Streptococcus selective agar which included (gil):

Tryptone 15.0 g; Soy peptone 5.0 g; Sodium Chloride 4.0 g; Sodium Citrate 1.0 g; L-crystine

0.2 g; Sodium Sulphite 0.2 g; Dextrose 5.0 g; Sodium Azide 0.2 g; Crystal Violet 0.0002 g;

Agar 13.0 g.
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5) Salmonella sp count using Brilliant Green Agar which included (gil): Peptone 10.0 g;

Yeast Extract 3.0 g; Lactose 10.0 g; Sucrose 10.0 g; Sodium Chloride 5.0 g; Phenol Red 0.08

g; Brilliant Green 0.0125 g; Agar 10.0 g.

6) Soil actinomycetes count using the medium which included (gil): Glycerol 20.0 g; L-

Arginine 2.5g; NaCI 1.0 g; CaC03 0.1 g; FeS04·7H20 0.1 g; MgS04·7H20 0.1 g; Agar 20.0g.

7) Filamentous fungi count using the medium which included (gil): Malt extract (difco) 7.00

g; Peptone (Oxoid) 1.00 g; Yeast extract (Difco) 0.50 g; Penicilling 0.50 g; Streptomycin

sulphate 0.50 g; Agar 16.00 g.

8) Yeast count using Rose Bengal Chloramphenicol Agar which included (gil): Peptone3.0 g;

Soy Peptone 2.0 g; Dextrose 12.85 g; di-Potassium phosphate 0.65 g; Magnesium sulphate

0.50 g; Rose Bengal 0.05 g; Chloramphenicol 0.1 g; Agar 13.0 g.

9) Sulphate reducer count using sulphate -reducing medium (per liter): Sodium Lactate 3.5 g;

MgS04·7H20 2.0 g; Peptone 2.0 g; Na2S04 1.5 g; Beef Extract 1.0 g; K2HP04 0.5 g; CaCh

0.10 g; Reductant solution (Cysteine-HCI 2.5 glI10 ml, prepare and autoclave separately

under anaerobic condition) 2.0 ml; Fe<NH4)2(S04)2·6H20 solution (3.92 glIOO ml, filter

sterilized) 10.0 ml.

10) Denitrifier count using denitrifier medium which included (gil): Nutrient Broth 8.0 g,

KN03 0.5 g.

11) Acidogens count using HYA Agar which included (gil): Proteose Peptone No.3 10.0 g;

Beef Extract 1.0 g; Lactose Solution (5.0 glIO ml, filter sterilized) 10.0 ml; Galactose

Solution (2.5 g/IO ml, filter sterilized) 10.0ml; Glucose Solution (2.5 g/LO ml, filter sterilized)

10.0 ml, Agar 15.0 g.
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Chapter 4

Simulation of Lignocellulose Degradation in Acidified Landfill

Municipal solid wastes are usually disposed of as landfill and therefore landfill will be a

significant repository for the municipal wastes of the future. A significant bio-degradation of

lignocellulose biomass in the earth's biosphere is supposed to occur in the sulfurate-dominant

habitats. However, most investigations of the bio-degradation of lignocellulose have been

focused on the microbial species that grow in a neutral pH. Therefore, in order to enhance our

knowledge of the lignocellulose decomposition under sulphate acidified landfill conditions

and to compare the effects of lignocellulose decomposition with an improved anaerobic

digestion process, the bio-decomposition of lignocellulose in sulphate acidified habitats needs

to be evaluated initially under landfill conditions. In this chapter, the degradation of

lignocellulose residues in "acid rain" was investigated in a simulated landfill tank reactor

leached with a sulphate solution under ambient temperature.

4.1 The changes in pH and ORP during simulation time course

The changes in pH of the leachate produced from the simulated landfill reactor during the

time course are presented in Fig.4.1. It can be seen that the pH of the leachate rapidly

increased from 1.8 to 5.65, then stabilized around 7.0 throughout the rest of the simulation

time. It shows that in the sulphate-acidified environment, the microbial decomposition of

lignocellulose was accompanied by an environment self-neutralization process. This

neutralization effect could be attributed to the microbial activities taking place in the landfill

reactor. This result confirms that those micro-organisms which can tolerate and grow in

highly acidified habitats can be used as the biological alternatives to chemical neutralization

agents for the treatment of sulphate-bearing acidic effluents such as the acidic discharges from

coal refuse piles (108). In this case, microbial activity could present a catalyzing effect on the

increase in pH and the neutralization process. The relatively stabilized pH value at a later

stage indicated that this microbial digestion system was either of a high pH buffering capacity

or that the other metabolic activities which influence the pH of the system were absent or

weak during this simulation period.
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The changes in ORP of the leachate produced from the simulated landfill reactor are

presented in Fig.4.2. The ORP of the leachate decreased from 460 mV (0 day) to -27 mV (16

day), then remained stable between -153 mV and -242 mV during the rest of the simulation

period. The lower ORP at the later stage indicates that the system has been acclimatized to the

development of the anaerobic consortium. It is suggested that, similar to the normal landfill

process, the aerobic metabolic activities were dominant at the initial stage of this acidified

landfill process. However, it can be postulated that besides the oxygen consumption the

sulphate was also consumed at the initial stage according to the higher negative ORP values

of the leachate.

4.2 The changes ofVFA, TVS and bio-gas composition during simulation

The changes in the concentrations oftotal volatile fatty acids (TVFA) and various VFA of the

leachate produced from the simulated landfill reactor are presented in Fig.4.3. The changes in

TVS ofthe leachate produced from the simulated landfill reactor are presented in Fig.4.4.

The results show that the TVS of the leachate increased rapidly in the first ten weeks of

decomposition. From week 10, the TVS decreased slowly and remained relatively stable.

Parallel to the changes in TVS, the TVFA increased rapidly in the first ten weeks of

decomposition. After week 10, the TVFA decreased at a higher rate than TVS, and the acetic,

straight propionic and butyric acids were present as the major components of the VFA in the

leachate.

The changes in the bio-gas composition during the simulated time course are presented in Fig.

4.5. The results show that the N2 proportions of the headspace in the reactor remained stable

throughout the simulation period; the O2 content in the headspace was steadily consumed and

slowly leveled off after week 18; the CO2 proportions increased steadily throughout the

simulation time; no methane was detected during the simulation time period.

From Fig.4.3, Fig.4.4 and Fig.4.5, it can been seen that the increase of CO2 in the bio-gas

corresponds with the decrease of TVFA in the leachate. This might be ascribed to the

activities of sulphate-reducing bacteria, which produce CO2 and H2S using the short chain

organic acids as carbon sources, because at this stage, very little or no methanogens were
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likely to be growing in the system since no methane was found in the bio-gas. Thus other

anaerobic VFA consumers than methanogens might be responsible for the decrease of TVF A

in the leachate.

Considering of the changes in TVFA and TVS, it is suggested that the TVS did not change as

much as the TVF A did, e.g. at a later stage, the TVF A content decreased much more than the

TVS content. This suggests that apart from the short chain fatty acids, a number of complex

organic acids (such as humic acids) were also produced and dissolved into the leachate during

the decomposition process. The complex acids can not easily be used by the micro-organisms,

thus they remain the principal contributors to the TVS of the leachate.

In addition, from Fig.4.3 and Fig.4.5, it can be seen that the rapid decrease of TVF A and

acetic acids did not bring about a rapid rise of C02 in the bio-gas; this is out of what the

fermentation reactions had predicted. One reason could be the occurrence of the sulphate

reduction, which increased the pH of the system by the production of sulfide and OH-. The

increased pH provides a favourable condition for dissolving the produced CO2 in the bio-gas

into the leachate as bicarbonate ions.

4.3 The distribution and compositions of microbial populations during simulated landfill

process.

The total numbers of anaerobic, aerobic and the dominant groups of micro-organisms in the

decomposition system after 8 weeks of landfill were examined. The results are shown in table

4.1.

The results in table 4.1 show that the total aerobic bacterial count remained higher than that of

the total anaerobic bacteria throughout the simulation time, although it declined to some

extent at the later stage of decomposition. Among the total aerobic, anaerobic and facultative

bacterial counts, the total facultative bacterial count stayed the highest and kept increasing

during the simulated process. The increasing growth of the total anaerobic bacteria was

observed with the landfill process over time, although it remained lower than that of the

aerobic and facultative bacteria throughout the process.
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Table 4.1 The counts and distribution of micro-organisms

during the simulated landfill time course

Colony Forming Units g-l solid 8 weeks 12 weeks 20 weeks
Total aerobic (l06) 12.0 11.2 8.4
Total anaerobic (103 ) 0_0 0.2 16.4
Total facultative (106) 28_0 108.4 136_0
Soil actinomycetes (105 ) 10.6 8.8 4.6
Filamentous fungi (106) 14.6 10.8 6.8
Yeast (l05) 78.0 26.0 10_2

Aerobic 105 62.0 18.6 12.4
Acidogenic Facultative 106 64.0 130.0 102_0

Anaerobic 102 0.0 0.2 1.14
Denitrifier (102 ) 0.0 0.2 0.4
Sulphate-reducer (103 ) 0_28 0.86 10.2
Total coliforms (106) 5.64 6.82 7.46
Fecal coliforms (105) 9_0 12.0 10_0
Fecal streptococci (103) 7.4 5_0 7.0
Salmonella sp (l05) 8.2 5_26 4.88

The following results can be deduced from table 4.1:

• Noticeable growth of sulphate reducing bacteria was observed after 14 weeks of

decomposition, although they were already observed at week 8.

• The growing of acidogenic bacteria during the aerobic and facultative phase was

found to be much higher than that during the anaerobic phase.

• Yeast, actinomycetes and filamentous fungi were relatively stable from week 8 to

week 16. After week 16, the counts of these three microbial groups declined slowly.

• The count of denitrifying bacteria was relatively lower than that of other micro-

organisms analyzed so far. This implies that the inorganic nitrate content in this

system might be low.

• The numbers of pathogenic bacteria (total coliforms, fecal coliforms, fecal coliforms

and salmonella sp) were relatively higher from week 8 to week 20, ranging from 103

to 106 • This suggests that a large number of pathogenic bacteria developed and grew
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in this sulphate acidified landfill habitat. A sterilization procedure would therefore be

required before the further utilization of this landfill sludge is accepatble.

The results presented in table 4.1 indicate that aerobic and facultative microorganisms were

the principal microbial metabolic groups to decompose lignocellulose substance during the

initial landfill process (prior to the development of phase 4 of the landfill). Yeast, filamentous

fungi and facultative acidogens were the dominant microbial consortia growing in this young

acidified landfill environment. The consortium of the pathogenic bacteria was also much

higher in this habitat. Further sterilization treatment is compulsory before this digested sludge

can be applied to agriculture land.

4.4 Growth of the microbial population in the simulated landfill system

Each organism has a pH range within which growth is possible, and usually each organism

also has a well-defined pH optimum. Most natural environments have pH values between 5

and 9, and organisms with their optimum pH in this range are very common. Only a few

species can grow at pH values of less than 2 or greater than 10. Especially, fungi as a group

tend to be more acid-tolerant than bacteria. Many fungi grow optimally at pH 5 or below, and

a few grow very well at pH values as low as 2, although their interior pH is close to neutral'<",

Fungi, including yeasts and filamentous species or moulds, are ubiquitously distributed

achlophyllous, heterotrophic organisms with organized nuclei and usually with rigid walls.

Because fungi possess broad enzymatic capabilities, they can actively degrade most complex

natural substances and certain synthetic compounds, including some pesticides. Most fungi

are aerobic or micro-aerophilic, although a few species show a limited anaerobic metabolism

and a few are capable of strict anaerobic growth (239).

A major ecological activity of many fungi, especially members of the basidiomycetes, is the

decomposition of wood, paper, cloth, and other products derived from natural sources.

Basidiomycetes that attack these products are able to utilize cellulose or lignin as carbon and

energy sources. As one component of lignocellulose, lignin is a complex polymer in which

the building blocks are phenolic compounds. The decomposition of lignin in nature occurs

almost exclusively through the degradative activity of certain basidiomycetes called wood-
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rotting fungi. Two types of wood rots are known: brown rot, in which the cellulose is attacked

preferentially and the lignin left unchanged, and white rot, in which both cellulose and lignin

are decomposed (134). The secretion of ligninolytic enzymes by white rot fungi has been

demonstrated in liquid cultures using defined media, complex broth, or submerged

lignocellulose substrates (64, 190) and solid-state cultivation oflignocellulose (25, 208,189).

It was found that filamentous fungi was one of the dominant microbial consortia growing in

this young acidified landfill environment.

The actinomycetes are a large group of filamentous bacteria, usually gram-positive, highly

diverse, aerobic, facultatively aerobic to anaerobic; many of them are hydrocarbon utilizers

and common soil organisms (34). Results showed that the presence of soil organisms might

influence the production of ligninolytic enzymes by white rot fungi (IlO). The results obtained

so far (shown in table 4.1) indicate that the population of soil actinomycetes was slightly less

than that of filamentous fungi. Actinomycetes can be found in almost every natural substrate

including soil and composts, freshwater basins, foodstuffs and the atmosphere (255). Their

hyphal growth is well suited to the colonization of plant biomass and they secrete a range of

enzymes active against lignocellulose (167). The growth of actinomycetes with filamentous

fungi confirms that besides the filamentous fungi, actinomycetes are another group of

organisms that can degrade lignocellulose materials (252) in this highly acidified environmental

milieu.

The yeasts are unicellular fungi and many of them are classified with the ascomycetes which

are commonly found in soil and decaying plant materials. Yeasts usually flourish in habitats

where sugars are present, such as fruits, flowers, and the bark of trees (34). It can be seen that

since yeasts generally grow on sugar-containing natural substances, the evidence of yeast

being detected or not could be used to indicate whether the sugar is formed from the ligno-

polymers or is degraded into VFA during the lignocellulose decomposition process.

Many organisms, including higher plants, algae, fungi, and most bacteria use sulphate as a

sulfur source for biosynthesis. The ability to utilize sulphate as an electron acceptor for

energy-generating processes is, however, restricted to a very special group of obligatory

anaerobic bacteria, namely the sulphate-reducing bacteria. As the required ORP to conduct an
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anaerobic digestion so far concerned (54),sulphate is a much less favourable electron receptor

than 02 and N03-. Sulphate is used as a terminal electron acceptor under anaerobic conditions

by a heterogeneous assemblage of bacteria which utilize organic acids, fatty acids, alcohol

and H2 as electron donors. Certain sulphate reducers will grow completely autotrophically

with CO2 as sole carbon source, H2 as electron-donor, and sulphate as electron acceptor. In

addition to using sulphate as electron acceptor, many sulphate-reducing bacteria grow using

nitrate (N03) as electron acceptor, reducing N03- to ammonia, NH3, or can use certain organic

compounds for energy generation by fermentative pathways in the complete absence of

sulphate or other terminal electron acceptors. The most common fermentable organic

compound is pyruvate, which is converted via the phosphoroclastic reaction to acetate, C02,

and H2. Many sulphate-reducing bacteria are known that are capable of growth on acetate as

sole energy source; they oxidize acetate completely to CO2 and reduce sulphate to sulfide (34).

Sulphate-reducing bacteria also play an important role in the breakdown of propionate (115).

From table 3.1, it can be seen that the N03- level in the lignocellulose sample used was

relatively low. Thus, in our digestion system, the short volatile fatty acids, such as propionic

acid, acetate and CO2were likely the main substrates for the metabolism of sulphate-reducing

bacteria metabolism.

Many fermentative bacteria found during the degradation of complex substance are enteric

bacteria, which include coliform bacteria (54\thus it is suggested that a number of pathogenic

bacteria (especially the coliforms bacteria) that were presented in this decomposition system

were also responsible for the fermentation of the lignocellulose substances.

Finally, since the fungi generally grow at a slower speed and produce fewer propagules than

the bacteria do, the fungi are easily outgrown by bacteria (18).Thus, it can be seen that the

acidogenic bacteria count was found to be much higher than the filamentous fungal count,

although it is suggested that the filamentous fungi played a very important role in hydrolyzing

and decomposing lignin and lignocellulose substances.

Given the results and discussions above, it could be postulated that fungi, soil actinomycetes

and facultative acidogenic bacteria played an important role in this acidific habitat to

decompose the lignocellulose residues. The micro-organisms that most possibly dominated in

this very acidic habitat might be the acidophilic bacteria, the filamentous fungi and the soil
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actinomycetes. Under the metabolic activities of these microorganisms, the habitats were self-

neutralized, the soluble organic acids were produced and the oxygen or other potential

electron-donors were consumed. Thus, the system ORP in the habitats was lowered enough to

stimulate the development of anaerobic bacteria (such as sulphate-reducing bacteria).

4.5 Summary

It was found that there was a number of micro-organisms in this highly acidified environment

that grew on lignocellulose substrate. As a result of the metabolic activities of these

microorganisms, the initially sulphate acidified habitats quickly underwent self-neutralization.

The VFA and bio-gas were analyzed to evaluate the acidification fermentation process of the

lignocellulose substrate with continuous sulphate leaching. Filamentous fungi, soil

actinomycetes and facultative acidogenic bacteria were found to play important roles in this

special acidific decomposition process. The most possible microbial consortia populating this

highly acidic habitats were acidophilic bacteria, filamentous fungi and soil actinomycetes.

The evidence of the yeast being detected or not could indicate whether sugar is formed from

the ligno-polymers or is degraded into VFA during the lignocellulose decompositon process.

After 8-10 weeks of landfill biodegradation, with the production of soluble organic acids and

the consumption of oxygen and other potential oxide, the habitats becomes suitable to the

growth and development of anaerobic bacteria (such as sulphate-reducing bacteria). It is

suggested that a quantity of complex organic acids (such as humic acids) were generated and

dissolved during the decomposition of lignocellulose substrates. These complex organic acids

can not easily be used by the micro-organisms and thus remained the main components of the

TVS of the leachate. The numbers of pathogenic bacteria (total coliforms, fecal coliforms,

fecal coliforms and salmonella sp.) were relatively stable from week 8 to week 20 in the

simulated landfill, ranging from 103 to 106•

These results lead to the conclusion that the degradation of lignocellulose substances in this

highly acidified habitat is possible and the acidified ecosystem can be neutralized by the

metabolic activities of these micro-organisms. However, the slow decomposition process

(over 20 weeks) and the presence of a large number of pathogenic bacteria in the landfill

digestion suggest that it is necessary to enhance the efficiency of the lignocellulose

degradation process in an environmentally and economically beneficial way.
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Chapter 5

Promotion of Anaerobic Digestion of Lignocellulose with Activated Sludge
(The Acidogenic Fermentation Process)

The complete anaerobic digestion process, mediated by a consortium of anaerobic bacteria,

involves a sequence of fermentation reactions resulting in the stabilization (gasification) of

a complex organic substrate with methane and carbon dioxide as the end-products. The

overall conversion process is firstly dependent on the hydrolysis and liquidation of complex

and/or insoluble organics to convert these materials to a size and form that can pass through

bacterial cell walls for use as energy or nutrient sources. As stated in Chapter 2, due to the

complicated macrostructure and microstructure of lignocellulose, it was difficult to break

them down into simple and soluble substances. Thus the initial biotransformation

(hydrolysis) or biodegradation of lignocellulose into soluble forms is critical for its further

biodegradation/utilization by an anaerobic population.

Secondly, after hydrolysis, the ultimate feasibility of the anaerobic stabilization process

strongly depends on the effectiveness of the acidogenic fermentation stage (the volatile fatty

acids produced in this stage provide the substrate for methane generation or could be

reclaimed as the by-products of the liquid fuel), particularly in the case of the digestion of

lignocellulose residues.

However, as can be seen in Chapter 4, the decomposition of lignocellulose in landfill was

noticeably slow and the higher pathogenic bacteria population in the landfill limited the

utilization of the residual sludge for the fertilizing ofland.

In this chapter, therefore, the promotion of acidogenic fermentation· (including the

hydrolysis stage) of lignocellulose substrate by combined pre-treatments and thermophilic

co-digestion with activated sludge was studied.
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5.1 The effects of pre-treatment on the solubility of lignocellulose

The effects of mechanical (roll-milling), physical (freezing/thawing) and chemical (0.5 M

NaOH swelling) pre-treatment at 25°C and 55°C, respectively, were first evaluated by a

solubilization test. The results are reported in Table 5.1. The experimental details can be

referenced in Chapter 3.

Table 5.1 shows that with all the pre-treatment methods higher yields of solubility were

obtained than without pre-treatment. The swelling and the size reduction (roll-milling) were

more effective than the freezing/thawing method. The digestion temperature also had

noticeable affects on the solubility. The solubility increased at higher temperatures.

Generally, roll-milling methods utilize shearing and impacting forces to yield a fme substrate

with a low crystallinity index and a large surface area. Physical pre-treatment increases the

pore size and chemical pre-treatment modifies the structure of the lignocellulose, leading to

reduction in crystallinity and increase in surface area. However, most pre-treatment processes

are costly when used singularly and have substantial energy requirements due to the severity

of the process. Thus, combined pre-treatment processes are possibly more economically

suitable. The best results could be obtained by using these three methods comprehensively

when preparing the feedstock for the acidogenic fermentation tests. In addition to improving

the water solubility of the substrate, these pre-treatment methods would optimize the micro-

organism degradation activity in the fermentation process. For example, as the micro-

organism often attaches and grows at interfaces, the finer the substrate, the more surface areas

are available for the microorganism to attack. Degrading insoluble biopolymers by micro-

organisms is also expected to exhibit some interactions with the particulate substances such as

attachment of the cells or adsorption of the extracellular hydrolytic enzymes to the fibres. It

has been found that during growth in the presence of fibres composed of cellulose or

hemicellulose, various strains of the thermophilic soil bacterium Clostridium thermocel/um

and several newly isolated thermophilic anaerobic soils adhered to the fibers (128). Therefore,

in this study, pre-treatment (roll-milling, freezing/thawing and alkali agent) and thermophilic

digestion were preferably adopted to promote the solubility of lignocellulose and thereby

improving the efficiency of hydrolysis oflignocellulose in the biodegradation process.
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5.2 Batch fermentation experiment

5.2.1 Effect of retention timeon the process performance

One of the important factors for bacterial growth in a digester is retention time. To ensure

efficient conversion of complex organic matter to their metabolites, the micro-organisms in

the digester must be of a sufficient quantity, and they must have an adequate retention time to

allow substrate metabolism. The retention time (RT) is an important parameter for system

design and operation because it directly affects the system costs and more accurately defines

the relationship between the microbial system and the digester operating conditions (202).

The batch system was carried out without a leachate separation unit. The first run was

operated in a simple way with tap water as the seeding medium, no pH control before and

during the fermentation process and with the initial total solid content (TSo) and total volatile

solid content (TVSo) as 21-23% and 60.51 % (for grass + sludge), 57.80% (for tobacco dust +
sludge), respectively. Because the fluidity of leachate in the reactor is very low, the

measurements of pH and ORP were performed on the slurry mixture of the 5 g sample from

the digester and 5 ml distilled water. This mixture was then centrifuged for 15 min at 3000

rmp. The solid residues were washed three times with 10 ml of distilled water by

centrifugation before it underwent TVS analysis. All of these supernatants were collected and

filtered thorough 0045 urn membrane filtrate paper. The filtrate was sampled for VAF

analysis.

The degree of acidification, measured as pH and ORP changes in the digester, are presented in

Fig.5.l.and Fig.5.2. The changes in volatile solid destruction (VSD) (which was calculated as

a percentage of the difference between the TVS of the loaded feedstock and that of the

digested solid residues divided by the TVS of the loaded feedstock) and the CO2 content in

the bio-gas are presented in Fig.5.3 and Fig.5A. The concentrations of VFA in liquid phase

are presented in Fig.5.5(1) and Fig.5.5(2).

The pH of the system quickly decreased from 6.5 during the first 5 days and then stabilized

around 6.30. Parallel to the pH "plateau", the concentrations oftotal VFAs changed little over

time. Correspondingly, the VSD index increased during the first 15 days and then remained

relatively stable.
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The integrated results in pH , VFAs and VSO index above show that: (1) quick decreases in

pH could result from the spontaneous acidification of dissolved substances. With the quick

consumption of easily-digestible fractions of the substrate (the increased VSO index in

Fig.53), the short chain fatty acids (volatile fatty acids, VFAs) were produced and were

accumulated (the stable concentration level oftotal VFAs in Fig.5.5(1) and Fig.5.5(2). A pH

buffer subsystem, mainly governed by the VFAs in the bio-reactor system, was formed, thus

the pH appeared stable at later RT. (2) The acidogenic fermentation process appeared to end

after approximately 15 days of RT; after that no notable changes in pH , VFAs and VSO

index were detected.

Although the RT was prolonged to 31 days, no methane was detected in the head-gas of the

reactor. This showed that the methanogenesis was inhibited. However, the CO2 contents in

the bio-gas increased to some extent during the digestion time. Under anaerobic conditions,

the high CO2 content detected in the head-space of the reactor was largely from the

acidification fermentation process.

The ORP is a measure of the general oxidation state of the system and therefore mainly

depends on the W concentration, the valence status of the metal ions and the dissolved

oxygen concentration. Fermentation, in principle, does not change the ORP of the

environment in which it takes place because this type of energy generation for micro-

organism metabolism is based only on a dismutation of organic molecules without external

electron acceptors being involved. However, the direct measurements of the electrode

potentials in the digester system indicate that the fermentation reduces the environment. This

is probably due to the fact that the substrates of fermentors do not usually show

electrochemical activity (e.g. cellulose), whereas some of the metabolites (H2) will lower

measured electrode potentials (82).Therefore, the negatively-reduced ORP in the reactor was

observed during the process. Therefore, in Fig.5.2, it can be seen that the ORP of the system

tended to be stable or negatively reduced to some extent during the fermentation process.

The individual cultivation conditions can be distinguished easily and exactly by measuring

the oxidation - reduction potential (ORP). The values of ORP in oxic conditions are positive

(higher than 50 mV as standard ORP), whereas ORP values in anaerobic conditions are

negative (less than -50 mV). An ORP around 0 mV are typical of anoxic conditions (126). The
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low ORP (below -50 mV) detected in the reactor confirmed that the process was successfully

carried out under anaerobic conditions.

The results In Fig.5.5(1) and Fig.5.5(2) show that butyric acids were the dominant

components of the young digestion products (early period of the digestion).When

fermentation proceeded, the total VFAs (TVFAs) increased noticeably with the increases of

the individual VFA, although there were some differences in the changes of VFA composition

between the grass-sludge system and tobacco-sludge system in the digestion process. For

example, in the grass-sludge system, during the later stage, the increase of acetic acid was

accompanied by a decrease of the propionic acid - this indicated that some increase of acetic

acid was probably due to the reduction of propionic acid; in the tobacco-sludge dust system,

the acetic production line is above the propionic acid production line throughout the testing

period - this implies that most of the augment of the acetic acid was probably from the direct

fermentation products of the lignocellulose digestion. Another difference found in the

tobacco-sludge system (in Fig.5.5(2)) was that the butyric concentration was much higher

than the other VFA components, even higher than the acetic acid concentration in the later

digestion stage. This indicates that the reduction of butyric acid to acetic acid was probably

inhibited at a later digestion stage or that some acetic acid produced in the early digestion

stage was re-converted into butyric acid by reverse reactions. In addition, this could be

explained by the fact that the growth of the acetogenic bacteria which convert butyric acid

into acetic acid was suppressed by the lower pH (seen from Fig.5.1). It was also found that the

branched and longer VFA content (such as iso-butyric, iso-valeric, valeric acids) were

generally much lower in these acidification products. Since the unpleasant smell from the

fermentation process was mainly due to the branched and/or longer VFA intermediate

products, the fermentation process with less branched VFA production would be favourable

to operate in practice.

5.2.2 Effects of the pH (ORP) conditions of start-up medium

The previous solubilization test demonstrated that alkaline pre-treatment can improve the

solubility of the lignocellulosic organic matter. In addition, because the reduced electro-

chemical conditions were more favorable for the growth of anaerobic micro-organism than

the oxidized conditions, in the second run, the tap water seeding medium was substituted by
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0.5 M Ca(OH)2(pH 8.02, ORP-15 mV), 0.5 M NaOH (pH 11.80, ORP-l46 mV) and catholic

radical water (pHl1.58, ORP -565 mV); the other conditions were kept the same as for the

first run. With tobacco dust as the fed-stock, the profiles of pH, ORP, VSD and CO2 content

in the bio-gas and the VFA content against the RT are presented in Fig.5.6, Fig.5.7, Fig.5.8,

Fig. 5.9 and Fig 5.10.

Fig.5.6 shows that the high initial pH of these three seeding mediums did not induce the

expected increase in the pH of the reactor system. The opposite occurred with the pH

"plateatu" appearing earlier when compared to the first run (Fig.5.1). Furthermore, the pH

values were generally lower than those in the first run. It is likely that more VFA were

produced in a shorter fermentation time with the addition of these alkaline media.

Fig.5.7 shows that the ORP in the reactors started with the radical water (pHIl.58, ORP -565

mV) feeding medium was more stable and more reduced at a later stage than in the reactor

started with the tap water feeding medium (Fig.5.l), although the initial greatly reduced

values of the ORP in the radical water did not reduce the ORP of the digestion system

immediately. The reduced ORP in the reactors starting with 0.5 M Ca(OH)2 (pH 8.02, ORP -

15 mV) and 0.5 M NaOH (pl+I 1.80, ORP -146 mV) appeared relatively stable throughout the

digestion time. It is suggested that the effect of the ORP status of the start-up medium on the

fermentation process was dependent on the initial value of the ORP of the medium. The

radical water, which had a higher reduced ORP value, presented more marked effects on the

fermentation process than 0.5 M Ca(OH)2 (pH 8.02, ORP -15 mV) and 0.5 M NaOH (pH

11.80, ORP -146 mV) from the ORP point of view.

At this stage, methane was not yet detected in the bio-gas of the reactors. However, compared

to the results in Fig.5.l, a higher CO2 content (shown in Fig.5.8) was found in the reactors

starting with NaOH and catholic radical water mediums. It quickly increased to 62% (NaOH

medium) and 67% (catholic radical water medium) and stabilized around 70% (NaOH

medium, catholic radical water medium), whereas less than 30% CO2 was initially detected in

the reactor starting with Ca(OH)2 medium. It is suggested that the addition of Ca(OH)2 could

lead to some CO2 mineralization in the form of CaC03 precipitate on the solid substance

surfaces.
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Fig.5.9(1) and Fig.5.9(2) show that higher VSO values were obtained in the reactor starting

with the NaOH, catholic radical water medium and Ca(OH)2mediums than with the tap water

medium (Fig.5.3) during the early stage of the fermentation process.

The results in Fig. 5.10(1) to Fig.5.10(6) show that the concentration of individual

components of VFA increased greatly when compared to the results in Fig. 5.5(1) and

Fig.5.5(2). It was found that the proportion of acetic acid was greater than the other

components from the start and remained dominant throughout the fermentation process

although the butyric acid is also one of the major products of the digestion. It is suggested

that, besides the improvement in the solubility of the bio-polymers, the initial higher pH and

more reduced ORP conditions in these feeding mediums also greatly promoted the production

of acetic acid (including the butyric acid production) in the acidification process. This point is

further discussed in a separate section (Biochemical Pathways in Acidification

Fermentation).

The acid accumulation and low pH values in the batch reactor in a short RT time (2-3 days)

would inhibit the growth of methanogenic bacteria. However, as far as the VSO index and

VFA production are concerned, the acceleration of the acidification stage was successful.

5. 3. Two-stage semi-continuous system reactor

The low pH value in the batch reactor (without leachate stripping operation, shock loading)

could be partly attributed to the inhibition of acetagenesis by the accumulation of

undissociated VFA. So that the leachate stripping process and stepwise loading effects on the

fermentation process was tested in the two-stage semi-continuous system reactor. a feeding

medium of Ca(OH)2 and NaOH were tested as the initial feeding medium at three different

RT times with or without leachate circulation. The operation parameters and the results (mean

values at steady state of the process) are given in table 5.2.

The results indicate that the leachate circulation improved the volatile solid destruction (VSD)

in 2 weeks of RT, but there was no significant improvement in VSO when RT was extended

to 3-4 weeks. A significant influence ofRT on VSD was observed in the fermentation process

without leachate circulation from 2 weeks of RT to 3 weeks of RT; with the RT increasing
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from 2 weeks to 3 weeks, VSO increased from 20% to 48% (in NaOH medium) and from

16% to 43% (in Ca(OH)2 medium), respectively. Three weeks of RT for the system with

leachate circulation and four weeks ofRT for the system without leachate circulation could be

optimal. Compared with the batch reactor system with no leachate circulation, less differences

in VSO were observed between the systems with the Ca(OH)2 medium and the NaOH

medium in this semi-continuous system reactor.

In spite of the high pH values of the feeding mediums, the pH of the leachate declined below

6.0 after 2 weeks ofRT and slightly increased to around 6.50 after 4 weeks ofRT, but more

reduced ORP and lower pH values were found in the case ofleachate circulation.

When the leachate was circulated, the TVF A concentration increased steadily with increases

of retention time(RT); higher TVF A and more acetic acid were formed at shorter RT. At the

same time, the ratio of acetic acid to butyric acid was much higher when the leachate was

circulated. This showed that more butyric acid might be converted into acetic acid when the

leachate was in contact with the bio-solids of the reactor.

Compared to the results from the batch reactor, about 100/0-46% C02 was detected in the bio-

gas phase of the reactor with 0.5 M NaOH feeding medium; this was lower than the batch

reactor with the same feeding medium. At the same time, small amounts of CH. (1%-2%) was

found at a longer RT stage with or without leachate circulation. This indicated that some acid

build-up inhibition was relieved with the leachate/solid separation operation.

In summary, with the leachate/solid separation operation, the digestion RT could be reduced

by leachate circulation without weakening the performance of the degradation process. Some

acid build-up toxicity for methanogens could be partially relieved. In terms of VFA yield and

volatile solid destruction efficiency, the two-stage semi-continuous system reactor with

leachate recirculation by using solid/leachate separation unit is preferable.

In addition, it was probably due to some leachate being held in the solid matrix that VFA

content sampled from the leachate collector in semi-continuous system reactor were generally

lower than that from the batch reactor.
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5.4. Discussion of biochemical pathways in acidification fermentation.

When the bio-polymers were successfully decomposed to reduced sugars like free glucose by

the microbial ecosystem, the reactions listed in Table 5.3 are considered to be possible. In

order to explain their predominance in the selected biological reactions, their Gibbs Free

Energy Changes are listed as well (54).

In a given bio-chemical environment, excluding the kinetic factors from the outer

environment, the preference for and the dominance of a specific biochemical can be predicted

by the Gibbs free energy changes in that reaction and the population of the micro-organisms

which function as the catalysts for the reaction. The more negative the Gibbs free energy

changes and the larger the microbial population, the easier it is for that reaction to take place

and to be dominant under the given circumstance.

The following information can be obtained from Table 5.3:

• Both conversion of glucose (from the biodegradation of lignocellulose) to butyric acid

(and/or propionic acid), catalyzed by the fermentative bacteria, and its direct conversion to

acetic acid catalyzed by the acetogenic bacteria are thermodynamically favourable

because these reactions both have the strongest negative free energy changes (-264 kJ and

-311 kJ). The butyric acid (and/or propionic acid) and acetic acid are therefore the two

dominant components of the YFA during the acidification process.

• The conversion of butyric and/or propionic acid to acetic acid by acetogenic bacteria is

thermodynamically unfavourable because it has a positive free energy change. This

accounts for the build-up of butyric acid (and/or propionic acid) in the process. The

butyric acid and/or propionic acid proportion in the total production ofYF A was therefore

relatively higher than the acetic acid at the early stage of the fermentation. This remained

the case throughout the whole process when the growth of the actogenic bacteria was too

low to consume the extra butyric acid and/or propionic acid.

• In addition to the short-chain carbonoxylated products, a quantity of C02 and H2 were

produced in the gaseous phase. Consequently, a relatively large proportion of CO2 was
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detected in the bio-gas. Its presence and quantity in the gas phase of the anaerobic digester

can be used, to some extent, as an indicator of the fermentation process and to evaluate the

efficiency of the acidification process before the methanogenic process takes place. The

decline in CO2 proportion and the incline in the acetic concentration at the later stage of

the fermentation might be attributed partially to the formation of acetate by Hy-cleavage

bacteria when H2 accumulation in gaseous products is high in the gaseous products at this

stage. The negative free energy changes of this reaction (-95 kJ) confirm this possibility.

• While the fermentation process can be performed in anoxic circumstance, most acidogenic

bacteria (32) and all acetogenic bacteria (127) are anaerobic. The initially reduced ORP

conditions of the feeding medium with higher oxygen-toxicity-buffering capacity were

beneficial to the growth of acetogenic bacteria. Therefore, when the tap water (ORP +282

mV) was substituted with radical water (ORP -565 mV) or NaOH (ORP -149 mV) as the

feeding medium, the acetic acid content increased markedly and surpassed the butyric acid

level significantly, along with the notable increase in the total volatile fatty acid

production.

• Further, so far as the results obtained are concerned, the initial high pH of the medium did

not show any inhibitory effect on the biological fermentation process. In addition to

improving the solubility of the complex bio-polymers, another reason could be that the

added OIr radical species consumed the existing tt in the system at the start of a formal

fermentation process where a rapid growth of the fermentation bacteria is required. (It was

observed that the pH of the tap water declined from 9.46 to 7.21 or 6.49 when 1.0 g grass

or 1.0 g tobacco dust was added to 200 ml tap water; this implied that there was already a

quantity of radical tt in the fermentation system). This produced an initially-serious tt-
scarce state of the system, which acted as the driving force to induce the fermentation

reactions to take place in a short time. Thereafter, the pH below 6.0 in the digester was

generally detected at the second day of the fermentation, in spite of the higher pH values

at the start of the process. Another possibility would be that the high pH medium added

initially precipitated the existing heavy metals (which was considered toxic to the

microbial growth) from the sludge.
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5.5 Summary

Based on the experimental results obtained the following conclusions are made:

• The combined pre-treatment method was efficient to assist the anaerobic co-digestion of

lignocellulose residues with activated sludge. The mechanical (roil-milling); physical

(freezing/thawing); chemical (alkali wetting agent) pre-treatment procedure increased the

solubility of the lignocellulose residues, thus improving the efficiency of the acidification

fermentation process.

• The influence of retention time (RT) on the destruction of lignocellulose to VFA was

evident. At least 2-3 weeks of RT was required with batch reactor or semi-continuous

system reactor. Generally, 4 weeks of RT was enough. The leachate circulation was

necessary when short retention time was used.

• The highly reduced ORP status of the initial feeding medium (such as NaOH solution or

catholic radical waters) significantly improved the acetic acid and the total VFA in the

fermentation process.

• From the point of view of the VFA production and the destruction of volatile solids, the

acidification process was successful under the experimental conditions.

• Partially because of the high concentration of VFA produced in this acidification

fermentation process, the methanogenesis was inhibited at this stage.

• The alleviating of the methangenic inhibition needed further study, as discussed in

Chapter 6.
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Table 5.1. Pre-treatment Effects

Feeding Methods
Solubilization Yield(TVSrrS %)

25°C 55°C
Grass (-2 mm) Distilled Water 12.4 18.2
Grass (-2 mm) Roll-milling(0.2-0.5 mm) 28.3 33.8
Grass (-2 mm) Freezing/thawing 17.4 22.6
Grass (-2 mm) 0.5 MNaOH 32.7 38.6

Tobacco Dust (-2 mm) Distilled Water 13.5 20.1
Tobacco Dust (-2 mm) Roll-milling(0.2-0.5mm) 32.5 38.2
Tobacco Dust (-2 mm) Freezing/Jhawing 19.2 23.5
Tobacco Dust (-2 mm) 0.5 MNaOH 36.3 42.6

Table 5.3 Biochemical Reaction and its Gibbs Free Energy changes in Acidification

Fermentation

Reactions VGo(kJ)

Reactions Cataly~ed by Fermentative Bacteria

(C6lf1005)1-H2C>---<:6lfI206 -18

C6H12061- 6lf2O-6C021-l2H2 -26

C6H1206-2CH3COC02"1-2W 1-2lf2 -112

C6H12061-2H20 -CH3CH2C02"1-H1-3C021-5H2 -192

C6H1206-2CH3CH2CH2C02" 1-W1-2C021- 2H2 -264

Reactions Catalyzed by Acetogenic Bacteria

CH3CH2 CO2"1-W 1-2H2C>---<:H3CO2" 1-W1-C021-3H2 1-72

CH3CH2CH2 C~""1- H+1-2H20-2CH3 CO2"1-2W1-2H2 1-48

CH3CH20H 1-H20 -CH3 CO2"1-W1-2 H2O 1-10

2C021-4H2-CH3C021-W 1-2H2O -95

2HC03"1-4H21-W - Clf3 CO2"1- 4lf2O -105

C6H12061-4 H20 -2 CH3 C02"1-2HC03"1-4W1-4 H2 -206

C6H1206 1-2 H20 -2 CH3 C02" 1-2W 1-2C~1-4 H2 -216

C6H1206-3 CH3 C~"1-3W -311
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Table 5.2.
Operation conditions and digestion results of two-stage semi-continuous reactor

Runs RT=2 weeks RT=3 weeks RT=4 weeks
OLR(kgVS m-3 d-I) 16_22(T),18.18(G) 11.57(T), 12.12(G) 8.68(T),9.09(G)
Feed TS(%) 21-23 21-23 21-23

TVS(%TS) 57.8(T), 60.5I(G) 57.8(T), 60.51 (G) 57.8(T),60.5I(G)
Feeding Medium: Ca(OH)2, NaOH Ca(OH)2, NaOH Ca(OH)2, NaOH
Concentration(molil) 0.5 0.5 0.5
PH 8.02, 11.80 8.02, 11.80 8.02, 11.80
ORP(mV) -15, -146 -15, -146 -15, -146

VSD(%) 23, 26 48, 56 56, 67
pH 5.4, 5.2 5.8, 5.6 6.0-6.7, 6.0-6.9
ORP -129, -136 -197, -235 -176, -202
TVFA 3904.34,4577.32 5379.34, 6789.33 6046.77, 7074.67
Acetic 2780, 3208 3534, 4738.67 4033.67, 5040--....... Propionic 325.67, 356 610.67, 633.33 713.45, 736.67"-'

Vl- Iso-Butyric 38.67, 53.33 62.67, 85.33 52.67, 82"3
Vl
(!) (!) Butyric 614.67, 797.33 1035.33, 1129.33 949.65, 1073.33~ ta
~ ...c:: Iso-Valeric 145.33, 157.33 166.67, 190.67 157.33, 142.670 g0.g

3 Valerie 0, 5.33 0, 12 0, 0u
t.;:::: Bio- CO2% 38,42 32,35 8 , II~
'0 gas CH4% 0.0 0.0 0.6,1.4<

VSD(%) 16, 20 43, 48 52, 60
pH 5.6, 5.3 6.0, 5.7 6.4-7.1, 6.2-7.3
ORP -126, -132 -201, -242 -168, -195
TVFA 3018.67, 4089.34 4015.66, 5500 5194.865,6902.66
Acetic 1074.67, 1484 1341.33, 2273.33 1942, 3168,-...

0 Propionic 384, 506.670 465.33, 482.67 443.6, 410"-'
Vl-"3 Iso-Butyric 25.335, 220 50.67, 209.33 82.67, 329.33
~ (!) Butyric 1438.67, 1496 1982.33, 2268 2470, 2932~ ta~ ...c:: Iso-Valeric 121.33.33, 182.67 76, 166.67 156.665, 153.330 u
.~ ~

(!)

Valeric 0, 0 0, 0 0, 0u .....:I
t.;::::

Bio- CO2% 32,46 30,42 10, 13~
'0 gas C~% 0,0 0,0 0.4,0.8<

Note:
1.(O)-no leachate circulation; (1)-Ieachate circulation( every other day)
2.(T)-Sludge +Tobacco Dust; (G)-Sludge+Grass
3.The acidification results are the mean values of the four identical reactors (two of which
was fed with sludge + tobacco dust, another two was fed with sludge + grass) under the
steady running conditions.
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Chapter 6

Anaerobic Digestion of Lignocellulose Substrate with Activated Sludge

(Recovery of Methanogenic Phase from High-rate Acidification

Fermentation Phase)

In Chapter 5, the combined pre-treatment method was found to be efficient in increasing the

solubility of the lignocellulose residues, thus improving the efficiency of the acidification

fermentation process. From the VFA production and the VSD point of view, the acidification

process was successful under the experimental conditions. However, partially due to the low

pH value and the high concentration of VFA produced in the high-rate acidification

fermentation process, the methanogenesis was obviously inhibited at this stage. Thus, in this

chapter, the recovery of a methanogenic phase from a high-rate acidification fermentation

phase was studied in a semi-continuous module reactor under methophilic conditions. The

experimental details can be seen in Chapter 3. The effects of the CIN ratio of the substrates in

head loading, the pH and the dilution rates of the recycling leachate on the recovering process

were extensively evaluated under rnethophilic conditions in order to relieve inhibition effects.

6.1 Effects of eiN ratio of the head feeding substrate on the denitrification process in the

acidogenic fennentation stage before the development of the methanogenic stage

During the acidification fermentation process some components of the hydrolyzed-carbons in

the substrate are oxidized to carbon dioxide and others are reduced to short-chain VFA

during the process of releasing electrons or forming hydrogen. From the complete sludge

stabilization and energy recycling points of view, further methanogenic fermentation is

without a doubt preferable to any other anaerobic processes. However, in the presence of

nitrate, denitrifying bacteria will reduce nitrate to nitrogen using a wide variety of substrates

for supplies of carbon and electrons. Furthermore, referring to the data of Gibbs free energy

changes in the bio-chemistry process (54), the denitrification process, with a free energy

change of -1121 kj, is thermodynamically much more favourable than the methanogenic

process with a free energy change of -113 kj. Thus denitrifiers compete with methanogens for

the carbon substrates (acetate) and hydrogen from the acidification process, especially at the

"Bottle Neck" acidification stage featuring the low pH and high H2 content (Ir and H2

- 104 -

Stellenbosch University http://scholar.sun.ac.za



Anaerobic Digestion of Lignocellulose Substrate with Activated sludge

(Recovery of Methanogens Phase from High-rate Acidification Fermentation Phase)

accumulation). It can be seen that the denitrification process was unavoidable during the

anaerobic digestion of nitrate-bearing organic substances. However, it is possible to curtail the

nitrification process to favour the development of the methanogens in the anaerobic digestion

process by providing a proper CIN ratio for the feeding substrate. The interactions of

methanogens and denitrifiers in the treatment of phenol-containing waste waters were

investigated in a UASB reactor using a continuous experimental module (80). It was found that

methanogens only occurred at chemical oxygen demand (COD) IN03- -N ratios greater than

3.34. At ratios less than 3.34, methanogenesis ceased to take place and denitrification became

incomplete because of an insufficient supply of substrate. Oh et al. (186) studied the acetate

limitation and nitrate accumulation during the denitrification. They found that if acetate was

added to the denitrifying activated sludge mixture to obtain a carbon-to nitrogen (CIN) ratio in

the range of 2:1 to 3:1, nitrate was completely consumed at the same rate with no nitrite

accumulation, indicating that the nitrate concentration controlled the respiration rate as long

as sufficient substrate was present. The results also suggested the higher toxicity of the nitrite

on the methanogenesis process when acetate was scarce. Therefore an optimum CIN ratio of

the feeding substrate is also an important factor to secure the success of methanogenesis

process.

Most of the investigations were carried out on waste waters and simple and pure carbon

sources (such as acetate, ethanol, sucrose and phenol) were used. It can be however postulated

that the competition between denitrifiers and methanogens for the carbon source and electrons

also existed during the high solid anaerobic digestion of lignocellulose residues, which would

contain high proportions of nitrate, (e.g. the original component or the bio-oxidation of the

ammonia component of the bio-polymers before anaerobic digestion). As it is difficult to

calculate the available carbon source (such as acetate, ethanol, butyrate and phenol) in

lignocellulose and activated sludge for an accurate determination of CIN ratio of the feeding

materials at the beginning of the digestion, it could be more practical to use the total carbon

source instead of the available carbon in the case of high-solid anaerobic digestion of

lignocellulose residues.

Therefore, the CIN ratio in this study was expressed as the total carbon-CIN-(N03) ratio by

mixing the high nitrate content lignocellulose residues (tobacco dust, 308 mg/kg dry base)

with the low nitrate lignocellulose residues (dry grass, 10 mg/kg dry base). This CIN ratio and
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the RT were simultaneously considered to investigate the denitrification process using a series

of laboratory-batch-acidification reactors (seen in Chapter 3) by monitoring the developed N2

(one of the endproducts) proportion in the bio-gas of the reactor which was flushed with

oxygen free gas, (92% Helium and 8% Nitrogen gas mixture), at the beginning of the

digestion. The optimum CIN (N03) ratio obtained from the batch reactors was then applied to

the primary feeding substrates for the two-phase methanogenic stabilization digester. The

accumulative N2 and CO2 contents in the bio-gas composition are presented in Fig.6.1 and

Fig.6.2 respectively. The methane content was found to be very low throughout the

experimental time and methane detected in the bio-gas after 5 weeks of digestion was less

than 2%. This implies that the methanogens were still inhibited at this stage. The pH, ORP

and TVFA contents at the end of the digestion period (on the 70th day of RT) are presented in

Table 6.1.

The results in Fig.6.1 show that both the CIN ratio of the substrate in the head feeding and the

RT of the acidification process influenced the occurrence and the extent of the denitrification.

The denitrification normally occurred after two weeks of digestion and the extent of the

denitrification (N2 content in the bio-gas) increased with increases of the RT depending on the

CIN ratio. The lower the CIN ratios, the longer RT were needed to complete the

denitrification (N2 content in the bio-gas remained stable).

The results in Fig.6.2 and Table 6.1 show that the CIN ratio also influenced the performance

of the acidification process. The patterns of VFA composition and the changing trends of

VFA fractions appeared similar with the CIN ratio of the primary feed increasing from 31x102

to 91xl02
, although the iso-butyric acid content was notably higher than the propionic acid

content when the CIN ratio was 16xl02
. This difference might be ascribed to some

differences in the acidification properties between the two kinds of lignocellulose materials

used (grass/tobacco dust). At higher CIN ratios, the lignocellulose was more homogeneous in

composition, therefore the patterns of VFA composition and the changing tendency of VFA

fractions appeared similar at higher CIN ratios of the head feeding. In addition, there was a

steady build-up of the acetic acid with the increases of the CIN ratio. Since all the other

VFAs, such as propionic, butyric and valeric acids, should have been converted into acetic

acids before they can be used by denitrifers or methanogens as carbon sources, the
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accumulation of acetic acid at higher CIN ratios could be attributed to the lack of

methanogenic metabolic activity.

At the same RT, higher TVF A and C02 contents were observed in the reactor with higher

CIN ratio. The relatively higher ORP (-186 mV in reactor 1, compared to -297 mV in reactor

4) in the reactor with a lower CIN ratio was probably due to nitrite accumulation, thus

implying an incomplete denitrification. However, the higher accumulation of propionic and

butyric acids was encountered in reactor 3 and reactor 4 with higher CIN ratios, which

indicates the inhibition of acetogens by the acidification products accumulated in these

reactors. It could be postulated that both incomplete denitrification and severe acidification

inhibit the methanogenesis process; the quicker and the more complete the denitrification and

the less rigorous the acidification are, the easier and the faster the turnover of acidification

phase to methanogenic phase. At the lower CIN ratio, the incomplete denitrification was the

dominant inhibitor; at the higher CIN ratio, the accumulation of intermediary acid products

was the dominant inhibitor. In another words, a mild denitrification was beneficial to the

acidification process in that denitrification could "clean up" some acidification products, thus

promoting the acidification process. Therefore, in order to develop a ''healthy'' integrated

acidogenic and methanogenic digestion process, the CIN ratio in the head feeding substrate

should preferentially be taken into consideration. Under the given experimental conditions of

this study, the total Carbon-CIN-(N03) ratio in the range of 31 *10/\2 to 63 *10/\2 was

recommended. The CIN-(N03) ratio of 63*10/\2 was used in the rest of the experiments in this

study. At this CIN-(N03) ratio, 18 days of RT was chosen for the acidification stage.

6.2 Recovery of the methanogenic stage by adjusting the pH and dilution rates

The anaerobic conversion of organics to methane is a complex process involving many

species of bacteria The methanogens are the most sensitive to environmental changes such as

pH, and the inhibitory factors such as the build-up of highly concentrated volatile fatty acids

formed from the faster acidification under thermophilic condition; denitrification; the low pH

and high content of unionized acids or other concentrated toxicants that are often encountered

in a high-rate acidification digester. As a result, the growth of methanogens was seriously
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restrained in the high-rate acidification digesters. It can be seen that besides the C/N-(N03)

ratios of the head feedings, the pH and dilution rates must to be carefully adjusted to prevent

inhibition of the methanegenic process by the low pH, a high content of unionized acids or

other concentrated toxicants.

The experiments were carried out in a semi-continuous methophilic digestion module. Under

the given initially-controlled pH and the dilution conditions, the changes in pH, ORP of the

digester leachate and bio-gas composition were determined in the course of the digestion

time. The results are given in Fig.6.3 to Fig.6.7. The bio-gas yields (m'zkg VS added) on the

2Sth day of methophilic digestion are given in Table 6.2.

As expected, the methanogens were recovered to some extent under the pH adjustment and

leachate dilution conditions (Fig.6.S). Compared to the results from the control reactor and so

far as the methane yields in the bio-gas product were concerned, the recovery of the

methanogenic phase from the acidification phase was satisfactorily achieved by adjusting the

pH and diluting the inhibitory components.

The results in Table 6.2 show that the dilution rate had a greater influence on the bio-gas yield

than the pH for the same digestion time. It is suggested that when the pH was controlled in the

range from 7.2 to 8.2, the dilution rate had a stronger influence on the development and

growth of methanogens. In addition, from Fig.6.3 and Fig.6.4, it can be seen that there were

no marketable changes in pH and ORP values during the digestion time for different dilution

rates. This suggests that a high pH buffering capacity exist in the digestion system. The

digestion system has the ability to resist the pH vibration resulting from dilution or from

microbial activities. This indicates that the inhibitory effect from concentrated unionized

volatile acids or other more complicated organic toxicants were more detrimental to the

growth of methanogens.

According to the results from the control reactor, adjusting the pH of the leachate from the

acidification phase above 7.0 was essential in developing the methanogenic phase in the
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digester; this pH value could go up to 8.0. This is confirmed by the results in Fig.6.5 to

Fig.6.7. It is shown that there was no great difference in the composition of the bio-gas

between these two pH value conditions, although the bio-gas product was slightly lower under

pH 8.2 than under pH 7.2.

Diluting the intermediary acidification products through recycling showed positive effects on

both the acidogenic and the methanogenic phases. It was found that the C02 content of the

bio-gas was much higher during the initial stage of the methanogens digestion with the

dilution process than that without the dilution process. The C& content generally increased

with increases in the dilution rates and the RT. However, when the dilution rate increased

from 1:5 to 1:7, very little increase in C& production was obtained. This suggested that the

dilution process could alleviate the acids-accumulation inhibition and reduce the

concentrations of the intermediary acidification products (such as dissolved phenolic and

humic acids related to lignin) which presented toxicity to the methanogens. Simultaneously,

the dilution process decreased the availability of the nutrients for the growth of the micro-

organisms in the given digestion time. The inhibition of acid accumulation and the toxicity of

intermediary acidification products normally occurred shortly after the high-rate thermophilic

acidogenic digestion. After the methanogens had established, a sufficient quantity of the

substrate (such as acetic acid, CO2) needed to be efficiently provided. Thus, there is an

optimum dilution rate and a high dilution rate would not always lead to the improvement of

the methanogenic phase by prolonging RT.

The denitrification was not completely washed out by a high-rate acidification digestion. It

was still encountered at this stage. However, with the RT prolonged, the denitrification

process quickly leveled off after 10 days of methangens acclimation (Fig.6.7).

6.3 Summary

• The thermophilic high-rate digestion with high solids loading may accelerate the

hydrolysis and acidification digestion process of the lignocellulose bio-polymers.
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However, thermophilic anaerobic micro-organisms are sensitive to environmental changes

and it is easy to accumulate the intermediate acidification products and concentrate other

toxicants in the high-rate digestion process. The preliminary studies in this chapter

demonstrated that diluting the high-rate acidification system and adjusting the pH of the

recycled leachate could recover the methanogenic phase from the high-rate acidogenic

phase.

• The variance in the pH of the recycling leachate between 7 and 8 did not present a marked

influence on the establishment of the methanogens. This implied a pH buffering capacity

in the acidification digestion sludge system.

• Dilution could alleviate the acid-built up inhibition and reduce the concentrations of the

toxic compounds such as lignin related phenolic and humic acids, which were produced in

the process of digestion. Simultaneously, dilution decreased the availability of the

nutrients to the growth of the micro-organisms in the given digestion time; thus a higher

dilution rate did not always generate the positive effects on the methanogenic phase under

a longer RT. An optimum dilution rate exists.

• The integrated digestion configuration composed of a high-rate thermophilic acidogenic

stage followed by a dilution-pHiORP-controlled-mesophilic stage could improve the

biotransformation of lignocellulose residues to the methanogenic phase and thus

ultimately stabilize the digestion system.

• The results also show that the denitrification during the anaerobic digestion of nitrate-

containing lignocellulose residues was unavoidable; there was competition between the

denitrifiers and methanogens for the carbon sources. Increasing the eIN ratio of the

substrate in the head loading could promote the accomplishment of the denitrification

process and shorten the methanogens developing process. In the case of high solid

anaerobic digestion of lignocellulose residues, the bio-available carbon e in the

lignocellulose was difficult to calculate precisely. The eIN ratio in this case was termed as
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total carbon-CIN-(N03) for practical purposes. A suitable total carbon-CIN-(N03) ratio for

the head feedings was another important factor to be adjusted for the development of the

methanogenic phase.

In addition to the environmental factors, the optimum digestion is also dependent on the

microbial populations functioning in the system. Examinations of the distribution and

diversity of microbial populations are essential to understand the microbial reactions behind

the bio-conversion process under the given experimental circumstance and this may

contribute to the effective digestion of the target substances. The microbial investigation of

the microorganisms in the anaerobic digestion system described in this chapter and in Chapter

5 will be discussed in Chapter 7.
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Table 6.1 The acidification digestion results, (pH, ORP and TVFA ), with different CIN

-(N03) ratios on the 70th day of RT

Reactor 1 2 3 4
I

CIN (N03) 16 *101\2 31 *101\2 63*101\2 91*101\2

pH 6.1 5.8 5.1 4.9

ORP(mV) -186 -209 -291 -297

TVFA(mgll) 8986.33 10364 17106.01 24132

Acetic 4680 7226.67 9930.67 11230.33

Propionic 0 610.67 2090 3265.67

Iso-Butyric 1209.67 137.33 150.67 166

Butyric 2846 2088 4608 9102.33

Iso- Valeric 251.33 301.33 326.67 368.33

Table 6.2 Bio-gas yield (m3/kg VS added) and CRt content on the 25th day ofmethophilic

digestion

pH controlled 7.2 7.2 7.2 8.2 8.2 8.2

Dilution Rate ]:3 1:5 1:7 1:3 1:5 1:7

Gas Yield (m'zkg VS added) 0.084 0.113 0.102 0.072 0.107 0.098

C~ Content (%) 37.2 5l.9 44.2 35.1 48.5 39.4

- 112 -

Stellenbosch University http://scholar.sun.ac.za



Anaerobic Digestion of Lignocellulose Substrate with Activated sludge

(Recovery of Methanogens Phase from High-rate Acidification Fermentation Phase)

55
50
45
40
35--~ 30='-'

Z 25
20
IS

lO

5
0

0

75

65

55
,-.._
~ 45='-'
N

0
U 35

25

15

5
0

--+-CfN(N03)= 16*101\2

-CfN(N03)=31·101\2

-CfN(N03)=63·101\2

-CfN(N03)=91·101\2

lO 60 7040
RT (days)

Fig.6.l Effects ofC/N(NOJ) ratios on the accumulative N2% of

20 30 SO

the bio-gas in the acidification batch reactors

-CIN(N03)=16*IQI"2
_'_CIN(N03)=63*10"2

-CIN(N03)=31 *10"2
-CIN(N03)=91 *10"2

lO 20 30 40 SO 60 70

RT (days)

Fig.6.2 Effects of CIN(N03) ratios on the accumulative CO2 %of
the bio-gas in the acidification batch reactors

80

80

- 113-

Stellenbosch University http://scholar.sun.ac.za



Anaerobic Digestion of Lignocellulose Substrate with Activated sludge

(Recovery of Methanogens Phase from High-rate Acidification Fermentation Phase)

:c
Co

--- Dilution Rate= 1:3, pH control=7.2 - Dilution Rate= 1:5, pH control=7.2

-+- Dilution Rate= 1:7, pH control=7.2 ~ Dilution Rate= 1:3, pH control=8.2

_.._ Dilution Rate= 1:5, pH control=8.2 - Dilution Rate= 1:7, pH control=8.29 .-----------------~----------------------~~----------_.

7

6 +----------,~--------_,----------_r----------,_--------~
o S 10 lS 20

RT (days)

Fig.6.3 Changes in pH with RT at different dilution rates

-350

,-._
>
E.__ -400
~
0

-450

-300,---------------------------------------------------------,

--- Dilution Rate= I :3, pH control =7.2

_'_DilutionRate='I:7, pH control =7.2

- Dilution Rate= 1:5, pH control =8.2

- Dilution Rate= I :5, pH control =7.2

-Dilution Rate=Lê, pH control =8.2

--- Dilution Rate= 1:7, pH control =8.2

-500+----------,----------,-----------r----------,----------4
o 5 10 15 20 25

RT(days)

Fig.6.4 Changes in ORP with RT at different dilution rates

- 114 -

Stellenbosch University http://scholar.sun.ac.za



Anaerobic Digestion of Lignocellulose Substrate with Activated sludge

(Recovery of Methanogens Phase from High-rate Acidification Fermentation Phase)

55
SO
45
40
35

,__ 30~..
'-' 256 20

15
10
5
0

5

- no dilution, no pH control

___ Dilution Rate= 1:3

- Dilution Rate= 1:5

-- Dilution Rate= 1:7

10 2515 20
RT (days)

Fig.6.5(1) Changes in CH4(%) with RT at different dilution rates(
pH controlled at 8.2)

55
50
45
40
35

"""':!!. 30'".._,
=t 25u

20
15
10
5
0

5

-- Dilution Rate= 1:3

- Dilution Rate= 1:5

-Dilution Rate=1:7

-no dilution, no pH control

10 15 20 25
RT (days)

Fig.6.5(2)Changes in C~ (%) with RT at different dilution rates
(pH controlled at 7.2)

- 115 -

Stellenbosch University http://scholar.sun.ac.za



Anaerobic Digestion of Lignocellulose Substrate with Activated sludge

(Recovery of Methanogens Phase from High-rate Acidification Fermentation Phase)

85

75

65
,-...
~Cl
'-'

ë 55
U

45

35

2S

5

- Dilution Rate= 1:3

- Dilution Rate= 1:5

-Dilution Rate=1:7

- No dilution, no pH controll

lO 20 2515

RT (days)

Fig.6.6(1) Changes in CO2 (%) with RT at different dilution rates
(pH controlled at 8.2)

85

75

65
"""~Cl
'-'... 550
U

45

35

25
5

- Dilution Rate= 1:3

- Dilution Rate= 1:5

-Dilution Rate=1:7

- No diluiton, no pH control

IS

RT (days)

Fig.6.6(2) Changes in CO2 (%) with RT at different dilution rates
( pH controlled at 7.2)

10 20 25

- 116 -

Stellenbosch University http://scholar.sun.ac.za



Anaerobic Digestion of Lignocellulose Substrate with Activated sludge

(Recovery of Methanogens Phase from High-rate Acidification Fermentation Phase)

16

14

12
.-- 10~Cl
'-'

ZN 8

6

4

2

0

5

-+-- Dilution Rale= 1:3

-- Dilution Rate= I :5

-- Dilution Rale= 1:7

15

RT (days)

Fig.6.7(1) Changes in N2(%) with RT at different dilution rates
( pH controlled at 8.2 )

10 20

14

12

10

.-- 8
~Cl
'-'
N

Z 6

4 -

2 -

0
5

-+- Dilution Rate= 1:3

-Dilution Rate=1:5

-- Dilution Rate= 1:7

15

RT (days)

Fig.6.7(2) Changes in N2 (%) with RT at different dilution rates
( pH controlled at 7.2 )

10 20 25

- 117 -

Stellenbosch University http://scholar.sun.ac.za



The Microbial ecosystem in Anaerobic Digestion of Lignocellulose Residues

Chapter 7

The Microbial ecosystem in Anaerobic Digestion of Lignocellulose Residues

As stated in Chapter 2, the anaerobic ecosystem is the result of complex interactions among

micro-organisms of several species (195), which are: 1) hydrolytic and acidogenic bacteria; 2)

syntrophic acetogenic and homoacetogenic bacteria; 3) hydrogenotrophic bacteria; and 4)

acetoclastic methanogenic bacteria. Generally, the dominant digester organisms can be

functionally grouped into VFA producers (acidogenic fermentative bacteria) and VFA

converters (acetogenic and methanogenic bacteria).

Methanogenic fermentation is a multistage process (185, 54). Because of its critical role in the

gasification and stabilization of bio-solids, the methanogens in anaerobic digesters have been
extensively studied in the past years (274, 124, 272, 155, 275). At the same time, the investigations

directed at the acidogens were also reported (32,41). However, in addition to the obligatory

anaerobes, other microbial consortia may also be present in the digestion system, especially in

the first acidification fermentation phase, and some other micro-organisms may have

additional important roles in the initial stage of fermentation. According to Hungate (123) and

Toerien and Hattingh (243\ for example, there are a small number of protozoa, fungi and yeast

in fermentation bio-digesters. One recent study (30, 31) also reported that anaerobes could

survive in planktonic and biofilm communities in aerated conditions when part of the

communities included facultative or aerobic species, and the numbers and proportions of

anaerobic species increased as the biofilm aged; the oral anaerobes cannot survive oxygen

stress without interacting with facultative/aerobic species as a microbial community.

Further, in the digestion of complex bio-polymers (such as lignocellulose residues) all the

way to the end-product methane, the rate-limiting process is the hydrolysis of the complex

bio-polymers. The pre-treatment of lignocellulose residues (usually includes thermal,

thermochemical, alkaline and ultrasonic methods) was necessary to enhance the hydrolysis

efficiency and thus ultimately improve the methane fermentation efficiency. However the

influence of the initial non-biological conditions resulting from the pre-treatment procedure,

such as the initial pH/ORP and the temperature, on these microbial populations was not very

clear. Therefore, in this chapter, an investigation of the growth of microbial populations was

conducted to evaluate the effects of the initial pH/ORP of the feeding medium, the digestion
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RT and the temperature on the composition of the microbial ecosystems developed in

acidification and two-phase digesters treating lignocellulose residues with activated sludge.

The microbial samples from three kinds of laboratory reactors were analyzed: 1) An anaerobic

acidification fermentation batch reactor treating the mixture of tobacco dust and activated

sludge (1:2 wet weight base) at the TSo and VTSo (%TSo) of 21-23% and 57.80% , the

operation TS of 11-12%, the maximum RT of 31 days, operating at thermophilic (50-55 dc)

and mesophilic (30-37 dc) conditions, respectively. 2) Anaerobic two-stage semi-continuous

acidification reactors treating mixture of Tobacco Dust and Activated Sludge (1:2 wet weight

base) at the TSo and VTSo (%TSo) of 21-23 % and 57.80%, the operation TS of 11-12%, the

maximum RT of 28 days, operating at thermophile (50-55 dc) and mesophilic (30-37 dc)

conditions respectively, with leachate re-circulating. 3) Anaerobic semi-continuous two-phase

integrated reactors for recovering the methanogenic phase from the high-rate acidification

stage, treating a mixture of tobacco dust, grass and activated sludge (1:5:2 on the wet weight

base) at the TSo and VTSo (%TSo) of 21-23% and 71.74%, the maximum RT of 43 days,

operating at mesophilic (30-37 dc) conditions, with leachate re-circulating and a dilution rate

of 1:5. The digestion experimental set -up and microbiological analysis methods can be found

in chapter 3.

The viable microbial organism counts in three types of laboratory digesters under different

digestion conditions are given in table 7.1. The production and composition of VFA in

digester 1 can be seen in Fig.5.5(2) and Fig.5.10(5); the production and composition ofVFA

in digester 2-1 under thermophilic conditions can be referenced in table 5.2. The bio-gas

yield (m3/kg VS added) and methane content in digester 2-2 were 0.113-0.139 and 48.50/0-

52.5%, respectively.

7.1 The effects ofRT on the growth of complex microbial populations in the digester.

The results in table 7.1 generally indicate that over the digestion time, the number of aerobic

microbes decreased in all the systems while the aerobic colonies were washed out of the

system and the anaerobic counts increased and became dominant in the microbial community

of the digestion system. The facultative counts were relatively stable throughout 2-4 weeks of
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digestion, although some increase 10 the methanogenic phase of the digester 2-2 was

witnessed.

The population of the acidogens changed in the same manner as the population of the total

bacteria over the RT of the digestor. This suggests that the acidogens were the principal

microbes in the ecosystem of the digester.

It was found that the facultative counts were higher than the anaerobic counts during the first

two weeks of digestion, which indicates that the facultative acidogens were mainly

responsible for the acidification fermentation at the early stage of the digestion.

A quantity of soil actinomycetes (104-10\ filamentous fungi (104_105) and yeast (0_103) were

also detected in the microflora of the digesters. Higher counts were found at the early stage of

the digestion. With the RT increasing, the digester became more anaerobic and these microbes

gradually leveled off. This suggests that these microbes might perform the important roles in

the initial digestionlhydrolysis of lignocellulose residues.

Typically, the digester community is dependent on the substrate with which it is fed and a

characteristic community is likely to develop for each different substrate with which each

digester is fed. Because the seeding source is from activated sludge (actinomycetes were

found to be one of the most prevalent consortia in the activated sludge process) and the

biomass to be digested is plant lignocellulose, it is reasonable to expect higher populations of

soil actinomycetes, ftlamentous fungi and yeast in the younger microflora of the digesters.

In nature, bacteria rarely exists as mono-cultures. In the vast majority of environments,

populations of bacteria coexist as communities, efficiently occupying all available ecological

niches (4). These communities can only degrade complex substrates by acting in consortia. The

results suggest that the mechanism of degradation of complex substrates such as

lignocellulose is mediated by physical and/or metabolic interactions (e.g. cross-feeding)

between anaerobic and facultative bacteria. Such interactions enable the survival of the

degradative anaerobic species in aerated conditions, especially during the early stage of the

fermentation. Furthermore, many micro-organisms can grow on solid substrates but only

ftlamentous fungi can grow to a significant extent in the absence of free water (180,232,191). The

- 120-

Stellenbosch University http://scholar.sun.ac.za



The Microbial ecosystem in Anaerobic Digestion of Lignocellulose Residues

cultivation of filamentous fungi on solid substrates has been widely used at laboratory scale

for lignocellulose fermentation (21). Bacteria and yeast can grow on solid substrates at

moisture levels of 40-70%, such as in composting and in anaerobic and aerobic ensiling, but

the growth and the propagation of single cell organisms always require free water. Yeast

always grows on solid substrates in symbiosis with other micro-organism in composting,

ensiling and some industrial solid state fermentation processes involving fruit wastes and

other sugar-containing natural substances (163,34). The TSo content of our digesters was 210/0-

23% and much less free water was available at the start of the digestion. The relatively higher

populations of soil actinomycetes and filamentous fungi detected could be attributed to their

original growth from the solid states of the lignocellulose residues before the digestion. When

the lignocellulose residues were hydrolysed, some yeasts were developed with the sugar-

containing intermediate products. Since the mineralization (decomposition) of organic matter

to non-organic molecules is essentially the degradation of particulate, soluble polymers,

whatever further degradation pathway is taken to mineralize the organic matter, the first step

is to hydrolyse the complex polymers to soluble molecules, often to the component

monomeric units. It is after this rate-limiting step that the soluble molecules can be taken up

by bacterial cells and processed further (82). The hydrolysis of polymers takes place outside the

cell membrane without any exception. The unique nutritional status of fungi is that their cells

secrete extracellular enzymes which break down potential food sources which are then

absorbed back into the fungal cells. This suggests that the fungi in our solid state digesters

played a very important hydrolysing role as the primary decomposers in the degradation of

lignocellulose.

Since yeast generally grows on sugar-containing natural substances, the evidence that the

yeast was detected or not could be the signal which indicates whether sugar was produced

from the ligno-polymers or was degraded into VFA during the lignocellulose digestion

process.

7.2 The growth of microbial populations in the digester with the initial feeding media

having different pHlORP.

There were some differences among the digesters with different initial seeding media (tap

water and 0.5 M NaOH), e.g. a higher ratio of acetic acids to butyric acids was observed in
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the digester with 0.5 M NaOH as initial seeding medium than in the digester with tap water as

initial seeding medium. However, there was no marked difference detected in the acidogenic

populations in the microflora growing in these digesters. This suggests that either the

difference in the VFA production between the digesters with different initial feeding media

could be attributed to non-biological effects other than the biological effects of the feeding

medium, or the total cell numbers of the microbial species are not sensitive enough to exhibit

this difference. However, slightly smaller counts of total aerobic soil actinomycetes and

filamentous fungi were detected in the digester with 0.5 M NaOH as initial seeding medium

than with the tap water as medium. This might be explained by the fact that most aerobic

microflora, including soil actinomycetes and filamentous fungi, are considered to be the

indigenous micro-organisms for the lignocellulose residues fed to the digesters. They grow

better in the tap water conditioned environment which is closer to their natural habitat than in

the high alkaline conditioned environment with 0.5 M NaOH.

7.3 The effects of the digestion temperature on the growth of complex microbial

populations in the digester.

The digestion temperature demonstrated an important effect on the growth of pathogenic

microbiological populations. A number of pathogenic bacteria were washed out of the

digesters under thermophilic temperatures; this confirmed that the thermophilic conditions

have better sterilization effects than the mesophilic conditions. Although the other consortia

appeared similar under the thermophilic and mesophilic conditions, from the point of view of

sterilization benefits, the thermophilic digestion was preferable in the first acidification

fermentation stage.

7.4 The effects of the phase-separation configuration on the growth of complex

microbial populations in the digester.

Of all the microbial consortia detected in the digesters, the acidogens are the largest

populations growing in all the digesters. However, very few or no methanogens were found in

most digesters, except for the digester 2-2. This indicates that the methanogens were severely

inhibited under these given digestion conditions. While comparatively higher anaerobic and

facultative colonies were found in digester 2-2, the number of methane-producing micro-
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organisms were found to be much less than the anaerobic count in the recovery phase of

digester 2-2. This confirms that not all of the anaerobic consortia can produce methane.

Additionally, this suggests that the phase separation did not lead to a total separation of

methane-producing bacteria from other microflora. After the acidogenic consortia,

denitrifiers were found to be the second highest dominant population in these digesters. They

may be considered as some of the strong consumers of the VFA substrate in digester 1 and

digester 2-1 when the methanogens were under suppression. The growth of the acidogens

with prolonged RT was accompanied by increases in the production ofTVFA in the digesters

(see Fig.5.5(2) and Fig.5.l0(5) and Table 5.2).

It was thought that the high dilution rate or the phase separation might lead to important

alterations with respect to the distributions of bacteria and the intermediate routes of substrate

degradation. The results in table 7.1 indicate that the phase separation did not lead to a

complete separation of the acid and methane formers. It is suggested that the principle of

phase separation might be that: (I) by shortening the RT to the best time for phase separation,

much larger quantities of fermentative bacteria can be obtained than those in the conventional

digester, so that the potential ability of fermentative bacteria, which is suppressed in the

convertional digester can be brought into full play; (2) by shortening RT to the optimum time

for phase separation, the same large quantities of Hs-utilization acetogens and

hydrogenotrophs can be developed with reasonable proportions; this not only intensifies the

interspecies hydrogen transfer but also promotes the fermentation of substrate directly to

acetic acids instead of shifting to the accumulation of propionic acids and other VFA, so that

the reasonable and constant production of major intermediates such as acetic acids, propionic

acids and butyric acids can be maintained in the acidogensis; (3) when these constant

productions of major intermediates enter into the second phase, it is easy for the bacteria in

the second phase, especially the populations of syntrophic acetogens and hydrogenotrophs, to

establish a harmonious ecosystem(272).Therefore, the efficiency of the second phase can be

enhanced.

7.5 Discussion and summary

• Usually, viable counts give an under-estimate of the true population of the micro-

organisms in the samples because the culture media used can normally only recover small
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or variable parts of the consortia present, especially the obligatory anaerobic

methanogenic bacteria which is more sensitive to the fluctuation of the associated

environment. However, results so far obtained were still meaningful for comparing the

microbial community occurring in the digester system under the given digestion

conditions.

• Microbial flora respond to their abiotic environment and, as a result, establish a favorable

community structure. Because of the complexities of the substrate fed to the digester,

many different microbiological species are necessary to facilitate a complete methane

fermentation of lignocellulose residues. The first consortium of the young microbial

community might be the lignocellulose naturally-indigenous consortum (such as

filamentous fungi) which previously attacked these complex polymers and secreted

extracellular hydrolysis enzymes into the digestion systems. Most of these are aerobic

genera that rapidly exhaust the trace oxygen left in the digester system and generate a

proper anoxic environment for the later development of the anaerobic acidogenic genera.

The acidogens can be considered as the second consortium of the digestion microbial

community which provides the methanogens (the third consortium of the community)

with the suitable carbon source (VFA, C02) and reductants (H2). Not all the acidogens

produce methane, and a densely acidogen-populated community does not always lead to a

higher methanogen population. The two-phase digestion system is more favourable than

the single-phase digestion system. The microbial consortia appeared similar in

thermophilic and mesophilic circumstances, but from the point of view of sterilization

benefits, the thermophilic digestion was preferable to mesophilic digestion.

• Although methane fermentation appears to be limited to a few specific anaerobic bacterial

genera, and because of the wide variety and the complexities of the substrate fed to the

digester, many different microbial species are necessary to facilitate the complete

degradation. In the case of lignocellulose residue digestion, it is likely that the first

consortium of the microbial community was the indigenous lignocellulose decomposition

microorganisms such as filamentous fungi and/or soil actinomycetes which initially

attacked these complex polymers and secreted extracellular hydrolysis enzymes into the

digestion systems. Most of them are aerobic genera which rapidly exhausted the trace

oxygen left in the digester system and generated a suitable anoxic environment for the
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development of the anaerobic acidogenic genera. The acidogenic bacteria can be seen as

the second member of the digestion microbial community which provide the methanogens

(the third part of the community) with the suitable carbon source (volatile fatty acid, C<h)

and reductants (H2).

• A complex microbial community predicted its wide degradation functions and high

adaptability to the fluctuations from the environment and the substrate. Similar to a

diverse microbial consortia coexisting in majority of environments as communities that

degrade complex substrates by acting in concert, these three functional microbial groups

coexisted in the young microbial community of the digestion system to perform the

complete degradation and stabilization of lignocellulose solid residues. As the anoxic

digestion proceeded, the conditions became more favorable for the anaerobic bacteria.

• Not all the acidogens produce methane. A densely-populated acidogens community did

not always lead to a higher methanogens population. It is therefore necessary to adjust the

acidogenic fermentation pathway to methanogenic fermentation. From this point onwards,

the two-phase digestion system is more favourable than the single-phase digestion system.

• Alkaline pre-treatment indicated some effect on the composition of the VFA in the

acidification digester, but its influence on the microbial population communities was not

as evident as expected.

As it was found in Chapter 6, using the dilution process could solve the inhibiting effect of the

concentrated complicated organic intermediate products formed at the high-rate acidification

stage. However, this will not reduce these refractory complicated intermediate products

fundamentally, the special treatment for these compounds (especially the humic acids) needs

further investigation to obtain a complete solution to the inhibitory and potential pollution

problems, and to improve the ultimate digestion efficiency. This will be the subject of the

following chapters.
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Table 7.1. Viable micro-organism counts under different digestion condition

(cfu/g digested solid mixture)

Digester 1 Digester 2-1 Digester 2-2

Seeding Medium Tap Water 0.5MNaOH 0.5MNaOH 0.5MNaOH 0.5MNaOH L-l

Initial pH of the Medium 9.46-9.52 11.8 11.8 11.8 11.8 5.68

Initial ORP ofthe Medium 282-290 mv -146 mv -146 mv -146 mv -146 mv -220mv

Digestion pH 5.26-6.16 5.73-6.56 5.20-6.90 5.68-6.78 4.80-5.68 6.95-7.42

Digestion ORP (mv) -108- -238 -209- -250 -136- -205 -112--220 -160- -220 -348- -374

Digestion Temperature 50-55°C 50-55 °c 50-55°C 35-37 °c 50-55°C 35-37 °c

Digestion RT(weeks) 2 4 2 4 2 4 2 4 2 4

Total Aerobic (lO!) 50.0 3.5 15.0 2.6 20.5 1.80 76.0 16.5 19.6 2.32

Total Anaerobic( 106) 2.2 24.0 4.1 39.0 6.9 34.0 1.82 26.4 17.8 29.1

Total Facultative( 106) 2.9 4.7 2.2 3.34 1.30 3.50 1.50 2.90 34.0 25.0

Soil Actinomycetes( 104
) 16.0 4.5 10.0 2.4 7.60 3.2 8.5 2.4 5.5 0.70

Filamentous Fungi( I04
) 30.0 9.60 12.9 2.0 14.0 2.60 15.5 1.2 21.6 3.10

Yeast(103) 3.3 n.d 4.2 n.d 1.9 n.d 2.1 0.32 0.65 n.d
u Aerobic 106 0.40 0.06 3.3 1.05 2.3 0.13 10.6 2.40 12.8 0.142-a
Q)
on

Anaerobic 106.s 0.56 10.4 0.82 24.3 0.52 22.4 0.31 19.6 2.3 15.4
,J
-< Facultative 106 1.04 0.79 1.26 0.95 0.84 0.41 1.08 1.26 8.60 1.32

Total Coliforms (104
) 0.11 0.04 0.15 0.01 0.08 0.02 11.0 3.9 0.4 0.016

Fecal Coliforms (l03) n.d n.d n.d n.d 0.2 n.d 6.7 1.0 0.1 n.d

Fecal Streptococci (l03) 0.74 n.d 0.30 n.d 0.1 n.d 2.6 1.2 n.d n.d

Salmonella sp (103) n.d n.d n.d n.d n.d n.d 7.0 n.d 0.3 0.11

Denitrifier (104
) 16.0 43.0 30.0 90.0 24.0 72.0 28.0 65.0 9.4 11.8

Methanogens (104
) n.d n.d n.d n.d n.d 0.02 n.d 0.03 0.01 17.6

n.d: not detected

cfu: Colony forming units

Digester I: Acidification Batch Reactor

Digester 2-1 :Semi-continuous two-stage acidification reactors

Digester 2-2: Semi-continuous two-phase methanogens recovery reactors

L-I: Leachate from phase 1 of Digester 2-2
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Chapter 8

Treatment of Humic Acids Extracted from the Acidification Fermentation

of Lignocellulose Residues Using Ultrasonic Irradiation

The anaerobic digestion of high-solid organic wastes (such as municipal solid waste and

dewatered sewage sludge) has been observed as an attractive approach for developing a

recycle or energy-producing type of solid waste management system. However, as far as the

lignocellulose substances are concerned, the formation of humic substances, especially the

water-soluble HAs in the anaerobic digestion process, their complete anaerobic digestion for

energy production and the re-utilization of waste remain intractable problems.

The HAs, the water soluble fraction of humic substances, are not only responsible for the

toxicity in the metabolic activities of the anaerobic consortium, but also present

environmental problems in aqueous and terrestrial environments by spreading the ecotoxic

compounds such as heavy metal ions and xenobiotics because of its amphipathic

characteristics and highly chemical chelating reactivity.

Thus, special care must be taken in the treatment of HAs bearing leachate from the high-solid

anaerobic digestion process of lignocellulose residues

As stated in chapter 6, using the dilution process could solve the inhibiting effect of the

concentrated water-soluble fraction of humic substances formed at the high-rate acidification

stage. However, the dilution process alone could not be used to degrade or decompose these

humic substances. The special treatment and possible degradation fate of these complicated

organic by-products needs further investigation to solve the fundamental inhibitory and

potential pollution problems, thus ultimately improving the proficiency of lignocellulose

digestion.

In this chapter, the effects of ultrasonic irradiation on the chemical and physical

characteristics of HAs extracted from the acidification fermentation process of lignocellulose

residues are investigated.
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8.1 The effects of ultrasonic irradiation on the pH and ORP of the humic acid (HA)

solution

The pH and ORP changes of a HA solution irradiated by ultrasonic irradiation are presented

in Fig.8.1 and Fig.8.2. The results show that by increasing the ultrasonic irradiation time, the

pH of the solution increased slightly from 7.30 to 7.42 and then dropped to 7.18; there was

little change in the ORP of the solution (less than 10 mv) as a result of the ultrasonic

irradiation. In the case of the aqueous solution irradiated by ultrasound, water vapour present

in the ultrasound bubble is homogeneously split to yield H and OH radicals. HA molecules

present in the vapour phase or in the surrounding liquid of the collapsing bubbles are subject

to direct attack by OH radicals, thus accelerating the hydrolysis reactions by several

magnitudes in the presence of ultrasound. Since the HAs behave like weak-acid poly-

electrolytes with a relatively high pH buffering capacity, the changes in pH of the HA

solution could be considered to be outstanding although the apparent changes were slight.

The acidic nature of HA is usually attributed to the ionization behaviors of -COOH and

phenolic OH groups. The changes of the HA in the pH of the solution by ultrasonic irradiation

implies that the ionization behaviour of the acidic functional groups was changed partially by

the reactions between OH and/or H radicals formed in the ultrasonic fields and the acidic

functions of the HA molecules. Oxidation, pyrolysis and/or the mechanical degradation of HA

molecules could be expected in an ultrasonic field. The changes in ORP of the aqueous HA

solution was primarily attributed to the oxidation effects of the ultrasonification. The

oxidation effects were possiblly suppressed by the buffering capacity of the HA, and

consequently, little change in the ORP of the aqueous HA solution was detected.

8.2 The effects of ultrasonic irradiation on the UV absorbance of the humic acid (HA)

solution

The standard UV absorption curves at 230 nm and 254 nm are presented in Fig. 8.3. The

changes of UV absorption at 230 nm and 254 nm are given in Fig.8.4. Fig.8.3 demonstrates

that the UV absorbency of the HA solution at 230 nm and 254 nm has a positive linear

relationship with its concentratio. Fig.8.4 shows that the UV absorption of the HA solution at

230 nm and 254 nm firstly increased with the ultrasonic irradiation, then decreased under

longer ultrasonic irradiation time.
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The absorption of radiation in the UV-vis region of the electromagnetic spectrum arises from

electron transition from bound states (outer valence orbitals) to excited electron states. InHA

molecules, these exceptionally-low energy transitions are associated with the presence of

chromophores, i.e. functional groups containing conjugated double bonds and sulphur,

nitrogen or oxygen atoms with delocalized electronic orbitals. Electron transitions can occur

within the molecular orbitals of chromophores, or the nonchromophore transfer of an electron

from one chromophore to another chromophore, or to a nonchromophore (electron or charge-

transfer excitation). Groups that are not chromophores but affect absorption of chromophores

are called auxochromes, which typically include hydroxyl and amine groups. Despite the fact

that the UV-vis spectra of HA are generally featureless owning to the extended overlap of

absorption of a wide variety of chromophores affected by various substitutions, UV-vis light

absorption of HA appears to increase with an increase in: (1) the degree of condensation of

the aromatic ring (138); (2) the total C content; (3) the molecular weight; (4) the ratio of C in

aromatic rings to C in aliphatic side chains (224, 222); (5) the pH of the solution (248, 24). The

changes of UV absorption in the HA at 230 nm and 254 nm as a result of ultrasonic

irradiation suggest that the structure and/or contents of chromophores, such as OH-, COOH-

substituted benzene rings, the intramolecular electron donor-acceptor complexes and complex

highly unsaturated conjugated chromophores, had been changed by the ultrasonic irradiation.

So far, by comparing the changes in the UV-absorption at 230nm and 254nm (Fig.8.4), with

the changes in pH (Fig.8.1), the ultrasonic irradiation effects in this respect could be ascribed

to the inducing of changes: 1) in the degree of disassociation or protonation of carboxyl and

phenolic hydroxyl groups of HA; 2) in the macromolecular structure of HA resulting in

greater or lesser exposure of chromophores to the light; or the introduction of an auxochrome

to various positions of an aromatic ring.

8.3 The effects of ultrasonic irradiation on the reactivity of the humic acid (HA) solution

with Fast Blue B Salt

Fast Blue B salt reacts with I-naphthol and other hydroxylated aromatic compounds to form

colored products which have absorption in the range of530 nm to 618 nm (256). The changes

of reactivity of the HA solution with FBB salt are presented in Fig.8.5. This indicates that the

reactivity of the HA solution with FBB salt initially increased with the increase of irradiation

time, then declined after 1.0 hour of irradiation. This suggests that the ultrasonic irradiation
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probably increased the I-naphthol (or other hydra-oxylated aromatic-like compounds) content

in the HA solution initially and when the irradiation time was prolonged partially decomposed

it.

8.4 The effects of ultrasonic irradiation on the IR spectra of the humic acid (HA)

solution

The changes of IR spectra are presented in Fig.8.7 (a: 0 h ultrasonic irradiation; b: 0.5 h

ultrasonic irradiation; c: 1.0 h ultrasonic irradiation; d: 1.5 h ultrasonic irradiation; e: 3.0 h

ultrasonic irradiation). The associated dominant peak assignment (236, 223, 222, 40) and the

integrated areas are listed in table 8.1.

Table 8.1. Effect of ultrasonic irradiation on the IR absorption of HA

(integrated peak areas)

-OH-NH, -C'=OOH,C=O of Ketonic
Function C-O orOH o substitution

Aromatic Carbon, Aromatic C'=C, COO-,
Assignment Stretch Arene

CH Stretch Hydrogen-bonded C=O stretch

WaveNumber

(cm-I)
3002-3820 1771-1500 1200-956 900-775

Il) 0.0 177.969 16.831 7.177 0.794a
~

~
30.0 107.834 9.542 3.437 0.891

e
0

~ 60.0 177.548 27.052 6.277 2.601.~
'-':.a 90.0 128.867 17.575 3.659 1.708'6.....

120.0 141.351 12.177 3.423 0.980

The FT-IR spectra of 5 HA samples predominantly exhibited the presence of oxygen-

containing functional groups: broad bands around 3002 to 3820 cm-I, which could be

attributed to the valence vibratios of hydroxyl groups (3400 cm-I) and aromatic C-H bonds

(3295-3006 cm-I); shoulders at 1771-1500 cm-I, which could be attributed to the C-O stretch

of C=OOH and C=O of ketonic carbon, aromatic C=C, C-O stretch of COO- and hydrogen-

bonded C=O ); peak region in 1200-956 cm-I which can be attributed to C-O, C-N and C-C

stretch; peak region in 900-775 cm-I representing the 0 substitution arene groups were

characteristic for all samples. The absorption bands in the 2900 cm-I region were usually
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superimposed on the shoulder of the broad O-H stretching band. It can be seen from the

spectra in Fig.8.7 that the remarkable shifts in these main bands were not found with the

ultrasonic irradiation; however, some small peaks (comparing the detail spectra a, b and c)

such as the peaks around 2900 cm" (the asymmetric and symmetric stretching vibratios of

aliphatic C-H bonds in CH3 and CH2 groups), 2400 ern" (after 1 hour ultrasonic irradiation),

1520 cm-1(Amide II or Aromatic C=C stretching), 1200 cm" (aliphatic C, OH or C-O stretch

of various groups) appeared in the spectra of the samples with ultrasonic irradiation. It can be

seen from the table 8.1 that the intensity (integrated absorbency peak areas) of some

absorption bands exhibited detectable differences due to the ultrasonic irradiation. It

suggested that a greater diversity of chemical components, some weak chemical modifications

in the molecular structure and slight quantity changes in functional groups of HA were

probably induced by the ultrasonic irradiation.

8.5 The effects of ultrasonic irradiation on the tHNMR spectra of the humic acid (HA)

solution

The IHNMR spectra of the initial HA(O) and the 2 hour-irradiated HA(I) are presented in Fig

8.8(a) and Fig 8.8(b). The chemical shifts and corresponding assignments (265, 266) of the

absorbency peaks are summarized in table 8.2.

From the spectra in Fig.8.8, it can be seen that four sharp resonance at 0.88, 1.27, 6.71 and

8.43 ppm were observed in the initial HA sample. Three sharp resonances at 0.85, 1.25 and

8.42 ppm were observed in the HA sample with ultrasonic irradiation. Clearly the sharp signal

at 6.71 ppm disappeared after irradiation. This implies that some special aromatic group (e.g.

phenol) was decomposed by ultrasonic irradiation.

The signal at 2.431-3.135 ppm (protons a to carboxylic acid groups or protons of methyl and

methylene groups a to aromatic rings), appeared after ultrasonic irradiation. In addition, the

results in table 8.2 and Fig.8.8 show that the spectrum at 1.4-1.8 ppm, which arises from a

variety of aliphatic carbons (mainly polymethylene protons and protons attached to aliphatic

carbon f3 to aromatic rings(183)), and the spectrum at 3.0- 4.4 ppm, which largely arises from

the protons attached to carbon a to oxygen, had been changed to some extent by ultrasonic

irradiation. This indicates that the main changes in the chemical structure of HA induced by
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the ultrasonic irradiation took place in the carboxylic acid groups or methylene groups a to

aromatic rings, a variety of aliphatic carbons (mainly polymethylene), aliphatic carbon 13 to

aromatic rings and carbon a to oxygen.

Table 8.2. Chemical shift ranges and tentative assignments of major IH resonances

observed from HA IHNMR spectra

Chemical Shift Integrated Area Tentative Assignments

Rangeïppm)

HA(O) HA(l) HA(O) HA(1)

0.559-1.062 0.393- 24.661 40.298 Terminal methyl groups of methylene chains

1.022

1.022-
Methylene of methylene chains; CH2CH at least

1.062-1.439 24.761 51.709 two carbons or further from aromatic rings or
1.743

polar functional groups

1.439-1.758 11.806 Methylene of alicyclic compounds

1.744- Protons of methyl and methylene groups a to
l.758-2.429 17.851 23.117

2.430 aromatic rings

2.431-
Protons of methyl and methylene groups a to

3.01 aromatic rings; protons a to carboxylic acid
3.135

groups

3.007-4.030 3.136- 98.632 63.493 Protons a to carbon attached to oxygen groups;

4.419 carbohydrates

6.152-7.578 6.138- 33.886 28.647 Aromatic protons including phenols

7.672

8.341-8.508 8.318- 0.725 0.629 Sterically hindered protons of aromatics

8.511

The spectrum at 8.3-8.5 ppm (sterically-hindered protons of aromatics) showed no significant

difference in the results presented in Fig.8.8 (a) and Fig.8.8 (b). However, the resonance

situated at 0.89 ppm (which indicates the methyl groups of alkyl chains at least three carbons

removed from de-shielding groups, e.g. aromatic rings) in Fig.8.8 (a) shifted to 0.39 ppm in

Fig.8.8 (b) after ultrasonic irradiation. This confirmed that the terminal methyl groups of the

methylene chains had been changed, especially in the carboxylic acid groups, methylene

groups a to aromatic rings and some aliphatic carbons (mainly polymethylene), although

there were little changes taking place on the aromatic kernel structure of the HAs.
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For complex macromolecules such as HA, the observed broadness of the bands in the IR

spectrum was probably as a result of the extended overlapping of very similar absorption

arising from individual functional groups of the same type, with different chemical

environments. Although most groups of atoms vibrate with almost the same frequency

irrespective of the molecule to which they are attached, this fact does not mean that the HAs

displaying similar IR spectra, must have similar overall structures, but only that the net

functional group and structure entities may be similar (54). Therefore, it could only be

concluded that the ultrasonic irradiation on the HA might induce the changes in the chemical

environments of the net functional groups and structure entities of the HA macromolecule

from the IR spectra. However, from the IHNMR spectra of the HA samples, it could be

confirmed that the chemical structure ofHA was changed by ultrasonic irradiation.

8.6 The effects of ultrasonic irradiation on the molecular weight and distribution of HA

expressed in gel permeation chromatography (GPC)

Since not all of the HA sample were dissolved in THF, the fraction detected by gel

permeation chromatography (GPC) are hereby referred to as THFS-HA. A fully acceptable

molecular structure of HA could as yet not be obtained and the whole range of known

molecular-weight standards suitable to the HA extracted from the fermentation stage are not

available. Therefore the relative changes in retention time (RT) and absorbency of HA

samples were considered to examine the effects of ultrasonic irradiation on the molecular

weight (MW) ofHA.

The GPC spectra of four THFS-HA samples are plotted in Fig.8.9. The statistically calculated

Weight-Average Molecular Weight (Mw), Number-Average Molecular Weight (Mn), Z-

Average Molecular Weight (Mz) and Polydisp Index (Polydispersity) are described in

table.8.3.

The spectra show that one dominant (at a retention time of 13.62min) and four minor peaks

(at RT=I1.62, with MW around 983; RT=12.78-12.86, with MW around 500; RT=13.14-

13.18 with MW around 430 and RT=14.46 min with MW around 292) of240 nm absorbing

fractions were detected in all the samples. In order to demonstrate the substantial changes in

the spectra, the detail spectra with dominant absorbing area is given in Fig.8.10. Clearly, the
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evident decrease of peak areas (reduced quantity ofTHFS-HA molecules) was observed in all

the THFS-HA samples with ultrasonic irradiation and a shift of the peak to a higher retention

time (reduced molecular weight) was observed in the THFS-HA sample exposed to 1.0 hour

of ultrasonic irradiation. It is suggested that the dominant molecular weight fractions of

THFS-HA were reduced effectively in quantity by ultrasonic irradiation, depending on the

period of irradiation time. The longer irradiation period did not result in an exceptionally

higher reduction effect. Additionally, the results in Fig.8.9 showed that the ultrasonic

irradiation primarily took effect on the dominant molecular-weight fraction (mild molecular

weight) of the HA. The relatively higher absorption intensity of spectra "b", "c" and "d" at a

shorter retention time than that of spectra "a" implied that some mild molecular weight

fraction might aggregate into larger colloidal particles in the ultrasonic irradiation field.

Table 8.3 The statistical molecular weight and distribution of HAs in GPC Data

Irradiation Time Mw Mn Mz Polydispersity 10%at 90%at

(h) Mw Mw

0 465 408 593 1.1386 754 338

1.0 601 468 847 1.2860 1142 331

1.5 607 483 829 1.2561 1116 347

2.0 629 491 858 1.2809 1203 349

In the polydisperse system like HA, the Mw>Mn>Mz and polydispersity> 1. The Mn tends to

be strongly influenced by lower molecular weight components, whereas the Mw and the Mz

tend to emphasize the contribution of the heavier molecules of the mixture. The greater the

value ofpolydipersity, the wider the range of molecular weight (MW) of the HA. From Table

8.3, it can be seen that the values ofMw and Mz in the HA system with ultrasonic irradiation

were noticeably higher than those without ultrasonic irradiation. The polydispersity values of

HA also increased after ultrasonic irradiation, although smaller changes in the Mn and 90% of

the Mw fraction were detected after ultrasonification. These results further indicated that the

wider MW composition range and some large colloidal particles of HA were formed in the

ultrasonic field. This could be explained by the fact that when the ultrasonic irradiation was

applied on the polydispersed system of HA, the lower MW (also the dominant) fraction

decomposed first, some fractions (around 50%, from the spectra in Fig.8.1 0) became volatile

and then disappeared from the system. The larger and heavier MW component (minor fraction
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of the HA system) was difficult to be break down. Vice versa, these large molecules are easy

to flocculate into colloidal particles through inter-molecular absorption, which was possibly

enhanced with the increased quantity of absorbing active sites on the large molecular surface

of HA by ultrasonification. Because of its amphipathic character (hydrophobic and

hydrophilic) this kind of inter-molecular absorption could be ascribed to hydrophobic

absorption, H-bonding absorption, and chemical-bonding absorption.

8.7 The effects of ultrasonic irradiation on the morphology of humic acid (HA)

The effects of ultrasonic irradiation on the shapes, dimensions and aggregation degree of HA

can be investigated using a SEM because the fine structure is frequently revealed with

unusual clarity, and particle boundary relationships can be examined in great detail under a

SEM. As shown in Fig.8.11-a and 8.II-b, the HA consists of curved, closely-knit bundles of

fibres and an irregular sheet (flake)-like structure of varying thickness, with the fibres often

ending and starting in protrusions extending from the plane of the sheet (flake)-like structures.

As can be seen from Fig.8.11-c to Fig.8.11-j, the fibres quickly diminished in number and

completely disappeared after 2.0 hour of ultrasonic irradiation. However, the sheet-like

structure became prominent and there were signs of increasing thickness and orientation of

the multi-layered structures with fme fmger-like protrusions radiating from the surface in

Fig.8.11-i and Fig.8.II-j after 2.0 hours of ultrasonic irradiation. As seen from Fig.8.11-c to

Fig.8.II-h, the flakes appeared to curl together at some points, forming multi-orientation and

dimension structures with some fragmented open spaces and corrugated surfaces. Therefore,

from the micrographs obtained on the SEM, we observed that the overall view of the initial

HA was fibres and bundles of fibres that closely knit together or unite with some sheet

(flake)-like structure. After ultrasonification, the fibre-like structures diminished quickly and

the aggregation of closely-woven flake network structure resembling sponge and the

thickened sheet structure with finger-like protrusions were frequently observed in the HA

with ultrasonic irradiation. These results apparently confirmed the flocculation trend in the

morphological features of HA by ultrasonic irradiation as it was proposed by the GPC

monitoring results.
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8.8 The effects of ultrasonic irradiation on the EJE6 ratios of HA and its relationships

with the UV-absorbency characteristics ofHA

The effects of ultrasonic irradiation on the EJE6 ratios of HA are presented in Fig.8.6. The

changes ofEJE6 ratios in the ultrasonic irradiation time courses were similar to the changes in

UV-absorbency at 230 nm and 254 nm and fast blue B salt (FBB) reactivity, increasing

initially and then decreasing with prolonged ultrasonic irradiation.

As stated in Chapter 2, with ultrasonic irradiation, it is proposed that organic compounds in

water mainly degrade via hydroxyl radical oxidation, pyrolytic degradation, and supercritical

water reactions. In the case of a aqueous solution, water vapour present in the bubble is

homolytically split to yield H and OH radicals. Chemical substrates present within the vapor

phase or in the surrounding liquid of the collapsing bubbles are subjected to direct attack by

OH radicals. Volatile compounds break up into the gas phase (i.e into the gaseous bubble

within the aqueous solution) and undergo direct pyrolysis.

On the one hand, the UV-absorbency at 230 nm and 254 nm was mainly the measurement of

aromatic content in the HA molecules. Under ultrasonic irradiation, the relatively weaker

bonded alkyl side chains, long linear aliphatic side chains and c-o linked aromatic groups

would be preferentially attacked and broken down into the volatile compounds and then

completely escape from the solution in the gas phases with prolonged irradiation time. Thus,

the ratio of aliphatic carbon/aromatic carbon could be altered by the ultrasonic irradiation.

There is a good correlation between the changes in the UV-absorbency at 230 nm and 254 nm

and the FBB reactivity. This indicated that the increase ofUV-absorbency at 230 nm and 254

nm could initially result from the proportion of I-naphthol or other hydra-oxylated aromatic-

like compounds, which are higher than aliphatic compounds in the HA solution. The decrease

in UV-absorbency at 230 nm and 254 nm could result from the decomposition and escalation

of I-naphthol or other hydra-oxylated aromatic-like compounds during the longer irradiation

period, since the aliphatic compounds were easier to decompose than the aromatic-like

compounds in the ultrasonic field.
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On the other hand, the UV-absorbency was also affected by the size and shape of the HA

molecules in the solution. In addition, it has been found in the SEM graphs that both the size

and shape of the HA molecules were affected by the ultrasonic irradiation.

Therefore, the increasing or decreasing of UV-absorbency couId not be ascribed solely to the

chemical changes in the aliphatic and aromatic structures of the HA molecules.

According to Kononova (138), the E41E6ratio is inversely related to the degree of condensation

of the aromatic network in HA. A low E&6 ratio would be indicative of a relatively high

degree of condensation of aromatic constituents in HA, whereas a high ratio would reflect a

low degree of aromatic condensation and the presence of a relatively large proportion of the

aliphatic structure. Schnitzer and Khan (223) suggested that light absorption of aqueous HA

solutions in the visible region of the electromagnetic spectrum increased with: (1) the ratio of

carbon in aromatic nuclie to C in aliphatic side chains; (2) the total C content; and (3) the

molecular weight. Chen et al (44)suggested that: (1) much of the observed visible absorption

by HA may be due to light scattering, which thus may contribute to the lowering of the E&6

ratio in the high MW fraction of HA; (2) the E&6 ratio of HA is primarily governed by

particle sizes and weights, and is not apparently related to the amount of aromatic condensed

rings in the structure; and (3) the effect of pH on absorption and E4/E6ratio is due to the

changes in particle size possibly caused by folding/unfolding, or aggregation/dispersion of the

HA macromolecules. From the results so far obtained in this study, it was found that the

average molecular weight of HA increased with the aggregation/folding of the HA fractions

after ultrasonic irradiation; chemical changes were also detected in a variety of aliphatic

carbons (mainly polymethylene) aliphatic carbon p to aromatic rings and carbon a to oxygen

and carboxylic acid groups or methylene groups a to aromatic rings. However, the chemical

changes and molecular weight changes of HA did not well correlated with the changes of the

E&6 ratios of HA. Therefore, the changes in E&6 of the HA solution under the experimental

conditions could be the overall consequences from the changes in the aromatic

constitutes/aliphatic constitute ratios of HA and the folding/unfolding, or

aggregation/dispersion of the HA macromolecules caused by ultrasonic irradiation.
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8.9 Summary

• Both the chemical and the physical characteristics of HA were changed to some extent by

ultrasonic irradiation, depending on the irradiation time.

• In the polydispersed HA system, the ultrasonic irradiation affected the lower molecular

fraction (dominant fraction) of the HA first. Around 50% of this fraction decomposed into a

volatile form and disappeared from the system. Then, the larger molecular fraction (minor

fraction) tended to aggregated into colloidal form and remained in the system.

• The chemical modifications induced by ultrasonic irradiation mainly occurred in the

carboxylic acid groups, the methylene groups Ct. to aromatic rings, a variety of aliphatic

carbons (mainly polymethylene), aliphatic carbon f3 to aromatic rings and carbon Ct. to oxygen.

• The changes ofE4/E6 in the HA solutions could be the overall consequence of the changes

in the aromatic constitutes/aliphatic constitute ratios of HA and the folding/unfolding, or

aggregation/dispersion of the HA macromolecules caused by ultrasonic irradiation.

• The SEM micrographs showed that: the overall view of the initial HA was fibres and

bundles of fibres that closely knit together or unite with some sheet (flake)-like structure; after

ultrasonication, the fibre structures diminished quickly, and the aggregation of a closely-

woven flake network structure resembling sponge and a thickened sheet structure with finger-

like protrusions was frequently observed.

• There was good correlation between the changes in the UV-absorbency at 230 nm and 254

nm and the FBB reactivity. The effects of ultrasonic irradiation on the HA characteristics

were physically, chemically and time-dependent.

• Ultrasonic irradiation can be employed to treat a HA-containing solution. However, as far

as the treatment efficiency obtained are concerned, the destruction of the HAs solely by

ultrasonic irradiation was not complete. Thus, it is necessary to investigate the co-operative

treating effects of ultrasonic irradiation with other treatment methods, as discussed in the

following chapters.
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Fig.8.7(1) The FT-IR spectra ofHA under different ultrasonic irradiation periods of

time (a=O.Ohour; b=0.5 hour; c=1.0 hour; d=1.5 hour; e=2.0 hour)
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(Treated with 1.0 hour ultrasonic irradiation)
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Fig.8.H Effects of ultrasonic irradiation on the SEM micrographs of HA

(a: 0 hour ultrasonic irradiation, IOOOx; b: 0 hour ultrasonic irradiation, 200Ox)
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Fig.8.11 Effects of ultrasonic irradiation on the SEM micrographs ofHA

(c: 0.5 hour ultrasonic irradiation, 1000x; d: 0.5 hour ultrasonic irradiation, 2000x)
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Fig.8.ll Effects of ultrasonic irradiation on the SEM micrographs of HA

(e: 1.0 hour ultrasonic irradiation, 1000x; f: 1.0 hour ultrasonic irradiation, 5000x)
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Fig.S.U Effects of ultrasonic irradiation on the SEM micrographs of HA

(g: 1.5 hour ultrasonic irradiation, 1000x; h: 1.5 hour ultrasonic irradiation, 2000x)
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Fig.S.ll Effects of ultrasonic irradiation on the SEM micrographs of HA

(i: 2.0 hour ultrasonic irradiation, 1000x; j: 2.0 hour ultrasonic irradiation, 2000x)
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Chapter 9

Effects of Ultrasound on the Adsorption of Humic Acids on the Preformed
Aluminium Hydroxide Floes

In water treatment, flocculation or coagulation with aluminium or ferric salts has been widely

used for many years to remove natural organic matter (NOM), including HAs (234, 125, 166).

However, a good knowledge of this in-situ water treatment process was limited by the fact

that the adsorption of NOM to aluminium hydroxide floes during conventional

coagulation/flocculation processes is very complex, with the flocculation of aluminium

hydroxide particles leading to the formation of larger floes and the adsorption of NOM

molecules on floes occuring simultaneously. Therefore, efforts to optimize this aspect by

performing the adsorption of NOM on preformed aluminium hydroxide floes (28) were

necessary. It was suggested that NOM properties such as hydrophobicity, size, and charge

density all affect the adsorption to the aluminium hydroxide floes, and the solubility of the

aluminium salt. The strong hydrophobic acids (i.e., humic and fulvic acids) had greater

adsorption affinities towards the aluminium hydroxide floes and the larger molecules had

greater adsorption affinity on aluminium hydroxide than the smaller molecules.

The adsorption of HAs by aluminium hydroxide depends on the physical and chemical

surface characteristics and the micro-structures of the HA and the aluminium hydroxide

formed in-situ. Any effort that has an effect on the surface characteristics and micro-structures

ofHA and aluminium hydroxide could influence the adsorption efficiency.

As found in Chapter 8, the chemical and physical characteristics were both changed to some

extent by ultrasonic irradiation, depending on the irradiation time. In the polydispersed HA

system, the ultrasonic irradiation affected the lower molecular fraction (dominant fraction) of

HA first with around 50% of this fraction being decomposed into volatile form and

disappearing from the system. Then the larger molecular fraction (minor fraction) tended to

aggregated into colloidal form and remained in the system. Thus, the ultrasonic irradiation is

supposed to enhance the flocculation/aggregation properties of HA and aluminium hydroxide

floes by a variety of physical (erosion, emulsification, aggregation/flocculation) or chemical

(the production of radical and exited species; single eletrotransfer) ultrasound actions. The
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idea to explore the ultrasonic irradiation in the removal of HAs by aluminium hydroxide is

relatively new.

The chemistry of aluminium salts and HA in an aqueous environment and the effects that

ultrasonic irradiation may have on the flocculation/aggregation system are complicated, and

the physical and chemical characteristics and structure of HA are dependent on the origin of

HA. Therefore the objectives in this chapter were to evaluate the removal of HA, which was

freshly extracted from the acidification fermentation of lignocellulose residues, by preformed

aluminium hydroxide with the introduction of ultrasound irradiation into the adsorption

processes and to investigate the comprehensive surface complexation process of HA on the

preformed aluminium hydroxide applied with ultrasonic irradiation.

9.1 Effects of ultrasonic irradiation pre-treating on the efficiency of HA removal by

preformed aluminium hydroxide floes

The effects of ultrasonic-irradiation-pre-treating suspension Al-~ and B2 on the HAs

removal efficiency by preformed aluminium hydroxide floes are presented in Fig.9.1.

According to the results given ID Fig.9.1, the removal efficiency of HAs was evidently

enhanced by ultrasonic pre-treatment and was irradiation time dependent. The irradiation time

of 90-120 min. was suitable because greater removal efficiency was not gained after 100 min

of irradiation. The performance of preformed aluminium hydroxide floes in the removal of

HAs was also improved to some extent by ultrasonic irradiation. The reason could be that the

fresh surface produced by ultrasonic irradiation on the preformed aluminium hydroxide floes

had a higher absorbing ability than the aged surface. However, the removal efficiency was

comparatively higher with ultrasonic irradiation acting on HAs and the preformed aluminium

hydroxide floes simultaneously. This suggested that the effects that ultrasonic irradiation had

on the preformed aluminium hydroxide and HAs, improved the absorbing or flocculating

behaviours between them, thus enhancing the removal efficiency of the HAs. However, the

ultrasonic irradiation effects that acted on the HA macromolecules, which are physically and

chemically more complicated, were relatively more influential on the absorbing or

flocculating process. In other words, the ultrasonic irradiation improved the HA removal

efficiency by acting, not only on the surface characteristics of the preformed aluminium
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hydroxide and the HAs, but also on the complexation reactivity between them during the

aggregation or flocculation process. Therefore, the improvement in the removal efficiency of

HAs was not so evident when the ultrasonic irradiation was conducted on the preformed

aluminium hydroxide floes alone.

9.2 The effects of HA concentration on the removal efficiency

The effects of HA concentration on the removal efficiency are presented in Fig.9.2. The

influences of HA concentration on the removal efficiency agreed, to some extent, with the

known coagulation theory. The removal efficiency increased steadily to the utmost with the

portions of preformed aluminium hydroxide increasing (the portions of HAs decreasing), then

decreased correspondingly to the phase destabilization caused by the over-dosage of

preformed aluminium hydroxide. Under suitable concentrations ofHA, the removal efficiency

was relatively higher when the HA was pre-treated with ultrasonic irradiation, however, this

effect levered off in the flocculating system with a higher HA concentration. This indicated

that the content of HA in waste water was the basic element that affected the removal

efficiency by preformed aluminium hydroxide floes, while pre-treating with ultrasonic

irradiation could enhance the removal efficiency.

9.3 The effects of ultrasonic irradiation and the HA contents on the residual AI

concentrations in the adsorption system

The residual Al concentrations under different ultrasonic irradiation pre-treatment conditions

and HAs contents in the adsorption system are presented in Fig.9.3 and Fig.9.4. The results

show that there was no strong correlation between the residual Al concentration and the

ultrasonic irradiation time, although some higher residual Al concentrations were observed

with longer ultrasonic irradiation, where some ion-exchange process or re-dissolution of

aluminium hydroxide might take place. However, the presence of the HAs exhibited obvious

effects on the residual Al concentrations in the flocculation system. The residual Al

concentration firstly increased slowly with the dosage of HA to a certain value, then

decreased gradually when the HA dosage was continuously increased. It is suggested that on

the one hand HA had metal dissolution capacity at low concentrations and on the other hand

the multi-valence Al cations might act as bridging agents for the formation of a three-
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dimensional HA matrix or gel through the charged sites (such as COO- and 0-) in the

molecular structures of HA. It is these charged sites that account for the ability of HA to

retain cations in non-leachable forms prevalently by coulombic and electrostatic forces. This

rendered the HAs, at higher concentration, capable of sweeping more free AI species into the

flocculate phase from the bulk solution.

9.4 The effects of ultrasonic irradiation on the morphology of preformed aluminium

hydroxide floes and the HAs-aluminium hydroxide floc-adsorption system

The effects of ultrasonic irradiation on the particle arrangement and morphology of preformed

aluminium hydroxide floes and on the microstructure and the surface complex morphology of

the HAs-aluminium hydroxide-floc adsorption system are shown in the SEM photos

(Fig.9.5(1) to 9.8(2». As can be seen from Fig.9.5(1) to Fig.9.5(2), there was no evident

morphology change in aluminium hydroxide floes before and after 60 min of ultrasonic

irradiation. However, more packed connections between the thin and lateral flake-like floes

was observed in Fig.9.5(2) under 60 min. of ultrasonic irradiation conditions. That is to say,

the aluminium hydroxide floes tend to be more flocculated after ultrasonic irradiation. From

Fig.9.6(1) and Fig.9.6(2) an obvious change occurred in the morphology of aluminium

hydroxide floes; the thin lateral flakes condensed into more dimensional arrangements with

short thick rod-like prominence with vertical orientation (Fig.9.6(2». This demonstrated that

an aggregation or condensation effect was introduced into the preformed aluminium

hydroxide floes system by ultrasonic irradiation. From the surface absorbing point of view,

the dimensional and rough morphological structure of aluminium hydroxide should be more

beneficial to the physical attachment of HA macromolecules. However, as the results in

Fig.9.1 indicate, there was no evident improvement in HA removal efficiency even under the

condition where the preformed aluminium hydroxide was ultrasonically irradiated for as long

as 120 min. This suggests that the chemical (not physical) surface complexation played a

major role in the aggregation or flocculation process. The microstructure and the surface

complex morphology of HAs-aluminium hydroxide floc adsorption system are shown in

Fig.9.7(1) to Fig.9.8(2), as can be seen under microscope: the HAs were found to be removed

by absorbing on to the surface of the preformed aluminium hydroxide floes in the form of

small fragments or aggregated groups. The aggregates of preformed aluminium hydroxide and

HAs tended to be more regular and are closely associated with longer ultrasonic irradiation
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time. This further confirmed the aggregation or condensation effects that ultrasonic irradiation

have on the arrangement of the flocculation system. Accordingly, it might be proposed that

the aggregation or condensation of the flocculation system was one of the reasons that

ultrasonic irradiation enhanced the HAs removal efficiency via preformed aluminium

hydroxide floes.

9.5 Discussion

It has been stated that the removal of HA from the soluble phase to the aluminium hydroxide

surface was expected to occur mainly due to the surface complexation of the electron-

donating functional groups on the HA molecules with the acceptor sites on the aluminium

hydroxide surface. Many of the potential complexing groups on HA molecules are also those

groups that have acidic protons (28).

The surface complexation of three HAs on in-situ formed aluminium hydroxide at a pH of

around 7.0, by pH-titration methods, indicated that the adsorption results can be described by

a Langmuir-equation, including the ligand content of the HAs and an affinity constant for the

hydroxide surface. About 50% of the acidic functions in the HAs are complexing groups,

forming 1:I-compounds. The density of complexing groups increases with molecular weight.

The salicylic acid groups are involved in surface complexation (125).

The general effects of HAs on aluminium flocculation result in a proportional demand of AI-

salts to saturate the complexing sites on the organic molecules (125).

As Chapter 8 indicates, the chemical modifications induced by ultrasonic irradiation mainly

took place in the carboxylic acid groups, the methylene groups a to aromatic rings, a variety

of aliphatic carbons (mainly polymethylene), aliphatic carbon ~ to aromatic rings, and carbon

a to oxygen. It could be postulated that these chemical modifications induced by ultrasonic

irradiation on the HA molecular resulted in more complexing sites, thus strengthening the

association of HA molecules with preformed aluminium hydroxide floes, improving the

removal efficiency of HAs by preformed aluminium hydroxide floes.

The adsorption sites for hydrophilic organics can be generally ascribed to the positively

charged Al sites of the preformed aluminium hydroxide floes, Three adsorption mechanisms
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(223)between preformed aluminium hydroxide floes and humic substances could occur in the

absence of aqueous metals or if the concentration of humic substances is high enough to

consume the residual free metal species: (1) non-specific anion exchange, (2) specific ligand

exchange, and (3) H bonding. The terms non-specific and specific (also called outer- and

inner-sphere) adsorption merely describe the degree of hydration of the adsorbed molecule

(e.g. HAs). Both inner- and outer- sphere adsorption require anion exchange and are therefore

similar reactions. Hydrogen bonding is a sphere case of hydrophobic adsorption, where

interaction with the solid phase (a relatively immobile surface-OH or other attached surface

moleclue) is preferred over the aqueous phase (a rapidly moving H-OH). Ion exchange (also

know as ligand and anion exchange) mechanisms should not require that the exchanging

compounds carry a charge. Because of its amphipathic character (hydrophobic and

hydrophilic) and a wide range of group functions on its molecules, the HA can also be an

exchanging neutral hydrophilic compound acting as an exchanging counter-ion (typical the

proton). The proton as an exchanging counter-ion would be neutralized by surface-OH on the

preformed aluminium hydroxide floes, either by releasing H20 into the bulk solution

following the organic ligand exchange, or by forming a H bond with the surface of preformed

aluminium hydroxide floes. If the binding to the surface is through a H bonding, then the

exchange is not strictly with the surface OH- groups, but rather with the H20 compounds that

are also held by electrostatic forces near the surface. It is known that one important aspect of

ultrasound in heterogeneous systems is microstreaming, which creates turbulent flow and aids

mass transport. Therefore, one reason that ultrasonic irradiation improved the HA removal

efficiency could be ascribed to its enhancing the activity of H20 compounds that are held by

electrostatic forces near the surface of preformed aluminium hydroxide floes and thus

increasing the mass transportation efficiency of this ion exchanging process.

Accordingly, at least two mechanisms took place in the adsorption process. One mechanism

was rapid, which involved the interaction between the positive charges of floes and the

negative charges of the polyanionic HAs. The second mechanism was much slower and might

have involved an exchange process consisting of the floes giving up OH- for the anionic sites

of the HAs. The one mechanism of an electrostatic nature led to the rapid neutralization of the

positive charge of the floes; the other mechanism involved an exchange of the hydroxide

groups of the floes for the anionic groups of the humic substances. The ultrasonic irradiation

did not only provide more complexing sites for the neutralization of the positive charge of the
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floes but also increased the activities of exchanging species of the floes or enhanced their

transportation efficiency for anionic groups of the HAs during the exchanging process.

9.6 Summary

Flocculation and/or coagulation with aluminium and ferric salts are widely used in the

removal of natural organic matter (NOM), including HAs, in water treatment. Introduction of

the ultrasonic irradiation into the process of flocculation and/or coagulation of HA by

preformed aluminium hydroxide obviously improved the removal efficiency of HA. The

effect was more evident when the ultrasonic irradiation was applied on the HA and the

preformed aluminium hydroxide floes simultaneously. Aggregation or condensation of the

flocculation system was one of the reasons that ultrasonic irradiation enhanced the HAs'

removal efficiency via preformed aluminium hydroxide floes. The ultrasonic irradiation could

not only provide more complexing sites for the neutralization of the positive charge of the

floes but could also increase the activities of exchanging species of the floes or enhance their

transportation efficiency for anionic groups of the HAs during the ion-exchanging process.

The results obtained in this chapter indicate that the direct removal of HAs from the aqueous

environment by preformed aluminium hydroxide floes was improved by ultrasonic irradiation

pre-treatment. In addition to the abiological methods to remove HAs from the environment,

further investigation of the effects of ultrasonic irradiation on the biodegradation

characteristics of HAs are needed in order to fmalize the biological stabilization of the

lignocellulose waste digestion.
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Fig.9.5(1) Preformed aluminium hydroxide floes
(500x, no ultrasonic irradiation)

Fig.9.5(2) Preformed aluminium hydroxide floes
(50Ox, ultrasonic irradiation, 60 min.)
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Fig.9.6(1) Preformed aluminium hydroxide floes
(lOOOx, ultrasonic irradiation, 90 min.)

Fig.9.6(2) Preformed aluminium hydroxide floes
(4000x, ultrasonic irradiation, 90 min.)
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Fig.9.7(1) HAs and preformed aluminium hydroxide floes
(1000x, ultrasonic irradiation, 60 min.)

Fig.9.7(2) HAs and preformed aluminium hydroxide floes
(4000x, ultrasonic irradiation, 60 min.)
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Fig.9.8(1) HAs and prefonned aluminium hydroxide floes
(SOOx,ultrasonic irradiation, 90 min.)

Fig.9.8(2) HAs and preformed aluminium hydroxide floes
(lOOOx,ultrasonic irradiation, 90 min.)
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Chapter 10

Humic Acid Degradation by LignoceUuJose-degradating Micro-organisms

and Its Toxicity to Anaerobic Microbial Consortia

It was found that the humic acids (HAs) could be degraded by some fungi and bacteria,
especially the white-rot fungi such as Phanerochaete chrysosporium (39, 204, 205, 119, 259, 104). As

was stated in Chapter 7, many micro-organsims such as filamentous fungi, yeast and

facultative and anaerobic fermentative bacteria were able to survive and grow in

environments containing HAs. However, the possibility of HA degradation by these

indigenous micro-organisms in the lignocellulose digester and its influence on the activities of

the anaerobic microbial remained unknown.

In addition, the fungal decomposition of HAs was mostly carried out through extracelluar

enzyme activities. The ultrasonic irradiation of aqueous solutions results in the formation of

free radicals (OH· and H·) due to the homogenous sonolysis of water. The OH· radical is

extremely reactive and is capable of oxidizing most chemical compounds dissolved in water.

This oxidizing effect rising from the ultrasonic irradiation was similar to the extracellular

enzyme oxidation activity of the micro-organisms. Besides being used as a pre-treatment

method to enhance the anaerobic digestion of waste activated sludge (by increasing the

hydrolysis rate of waste activated sludge) (254), ultrasonic irradiation showed (240) the

possibility of enhancing the growth and enzymatic activities of the micro-organisms in

activated sludge. Therefore, the HA degradation process by micro-organism could be

enhanced by the application of ultrasonic irradiation both on the HA and on the target

degradation micro-organisms. However, little work has been found on this subject, and as was

discussed in Chapter 8, so far as the treatment effects obtained were concerned, the

destruction of HAs solely by ultrasonic irradiation was not considered complete. Thus, the

combined effects of ultrasonic irradiation and bio-degradation of HAs need further

investigation.

This chapter reports attempts that were made to investigate (1) the degradability of HAs by

the indigenous microbial isolates from the anaerobic lignocellulose digestion reactor from

which the HAs were extracted and (2) the HA toxicity on the anaerobic lignocellulose
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digestion micro-organisms. The results obtained should provide some information about the

extent to which these indigenously-produced HAs could be degraded by the indigenous

lignocellulose degradation micro-organisms and of the extent to which the efficiency of the

anaerobic lignocellulose digestion process could be inhibited by the HAs.

At the same time, the potential of ultrasonic irradiation on the degradation of HA by

lignocellulose-degradation-associated fungi, bacteria and yeast were explored.

10.1 Screening the HAs degradative micro-organism by HAs and ultrasonic irradiation

YNB-HA agar and ultrasonic irradiation were used to screen the micro-organisms that can

degrade the HAs and can tolerate the stress of the ultrasonic irradiation. It was found that the

mycelial growth of fungi on YNB-HA agar was much less and weaker than those growing on

a comparable malt extract agar. Therefore, it was easy to count the colonies growing on YNB-

HA agar. The 3-week colonies developing on YNB-HA agar under stepwise-increasing HA

concentrations are shown in Fig. I 0.1. The results indicate a relatively small difference

(although almost an order of magnitude) in the number of colonies developing on YNB-HA

agar (l4xl05 to 3.8xl05) with increasing HA concentration from 0.25 to 2.0 gil. Although the

carbohydrate resources present in the inoculum allowed for some limited growth of the micro-

organisms without using HAs, the clear zones in the agar where the colonies grew indicated

that some HA had been utilized as the growing carbon source by the micro-organisms. In

contrast, the mycelia growth was much faster, more dense and larger on rose bengal

chloramphenicol agar inoculated with 0.1 ml diluted culture suspension, the same as the

inoculation of YNB-HA agar but being applied with the ultrasonic irradiation The 2-day

colonies developing on this agar at different ultrasonic irradiation time are shown in Fig. I 0.2.

It was found that the fungi and the yeast growing in the simulated landfill reactor were not

totally killed by 30 kHz ultrasound irradiation as expected. In fact, the growth of the fungi and

yeast was enhanced to some extent with ultrasound irradiation duration from 0-40 min.,

although it showed some decrease in growth under 60 minutes ultrasound irradiation

conditions. It is possible to postulate that some fungi or yeast could tolerate the stress of

exposure to ultrasound to some extent and some enzyme activities or metabolism functions in

this mixed culture system could be improved by this mid-intensity ultrasound irradiation.
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10.2 Microscopy morphology

Ten soil-born filamentous fungi and one gram-negative bacterial isolate, which can grow

under the HA-present conditions, were included in this study. The typical morphology of the

bacteria cell and the filamentous structure of some fungi were observed by an epifluorescence

microscope of acridine orange stained samples using a Nikon ECLIPSE E400 microscope.

The morphologies, under electric microscopy, of some filamentous fungal and bacterial

isolates growing on 2% malt extract agar (2% MEA) and in YNB-HA liquid culture were

obtained on a Topcon ABT -60 scanning electron microscope (SEM). The samples for SEM

study were a plug of 2% MEA containing the fruiting structures and a few drops of washed

bio-mass from the YNB-HA liquid culture. The samples were freeze-dried and sputtered with

a gold coat. The morphologies of these micro-organisms are shown in appendix 10.1.

The dominant morphologies of bacteria (growing on TSA) and filamentous fungi growing on

2% MEA and in YNB-HA Liquid culture were well observed under a SEM. As can be seen

from appendix 10.1, photo 5, on 2% MEA, the conidiophore of Aspergillus parasities (A.

parasities) is roughened, its conidia is prominently echinulated and its hyaline conidiophore is

well demonstrated under the epifluorescence microscope (appendix 10.1, photo 3). However,

the conidiophores and conidia of A. parasities growing in YNB-HA liquid culture look

smooth probably because of the HA macromolecular absorbing layer (appendix 10.1, photo 4

and photo 6) which covers the surface of the hyphae, conidiophores and conidia of the fungi.

Similarly, most hyphae surfaces of the Acremonium gene and the Trichoderma gene growing

in YNB-HA liquid culture (appendix 10.1, photo 16 and photo 14) did not appear as clean as

those growing on 2% MEA (appendix 10.1 photo 15 and photo 13). This demonstrated that

"bio-absorbing" was likely one of the mechanisms by which the filamentous fungi de-

coloured the HA containing liquid.

In contrast, although the bacteria in the YNB-HA liquid culture (likely growing inside the HA

macromolecular structures) appeared much smaller than those growing on TSA (appendix

10.1, photo 2). The obvious morphological differences between the bacteria and the fungi

indicated their different growing model in the HA solution. The formation of compact conidia

clusters on the ends of the phialide bundle of Trichoderma gene were frequently viewed under

the SEM (appendix 10.1, photo 13), with the cluster of phial ides and single terminal conidia
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being observed under an epifluorescence microscope (appendix 10.1, photo 11). The

structures of terminally solitory aleurioconidia and conidia chain of Humicola fuscoatra var.

fuscoatra were normally observed under the SEM (appendix 10.1, photo 9.10) with its hyaline

mycelium being detected under an epifluorescence microscope (appendix 10.1, photo 7). The

multi-septate macro-conida of the Fusarium gene was clearly seen under the epifluorescence

microscope (appendix 10.1, photo 8). The awl-shaped, erect, slender phialides from the

substratum, smooth-walled, guttuliform conidia of Acremonium gene were well observed

under the SEM (appendix 10.1, photo 15 and photo 17).

It can be seen that the morphology and surface details of the bacterial cells and filamentous

fungi fruiting structures on the HA free medium (2% MEA and TSA) and HA mended

medium (YNB-HA) were well illustrated under the microscopes. Simultaneously, a "vivid"

structural difference between the bacteria and filamentous fungi during their degradation or

de-colourization of macromolecular HA was observed under the SEM and the epifluorescence

nucroscope.

10.3 Micro-organism growth and HA decoloration

All the tested fungal and bacterial isolates demonstrated growth in HA-containing medium,

except the yeast isolate. The biomass and the pH developed by fungal and bacterial isolates in

the 3-week culture medium are presented in Table 10.1. Firstly, the results show that the

fungal and bacterial isolates could not only grow in HA containing environment but could

also utilize HA as their carbon and energy source. However, in spite of the fact that the yeast

isolate could sustain the stresses of the ultrasonic vibration and exhibited some larger growth

by mid-intensity ultrasonic irradiation on the environment containing HA and other carbon

source, it could not survive in the environment with no other carbon source other than the HA.

Secondly, no substantial differences in biomass growth were detected among the tested fungal

isolates after 3 weeks of incubation. However, relatively higher values of bio-mass (46.31-

58.4 mg/g HA) were found in the medium with the ultrasound treated HA as the carbon and

energy source. Thirdly, the biomass yield of the bacterial culture was unexpectedly higher

than the biomass of most fungi. Fourthly, the pH of the culture medium did not notably shift

after 3 weeks of incubation by the fungal or bacterial isolates and this indicated that there was

a buffering capacity in these microbial systems.
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Compared with the control (without inoculation) sample, the spectrophotometric absorbance

of cell- or mycelia-free HA medium at 340 nm was reduced to some extent by both the fungal

and bacterial cultures. The reduced percentages based on the absorbance of the control sample

are presented in table 10.2. AH fungal isolates reduced absorbance at 340 nm gradually

through the incubation time course. After 3 weeks of incubation., fungal strains and the gram-

negative bacteria consortium reduced the absorbance (340 nm) of ceU- or mycelia-free HA

medium by 10.27-16.31 % and 8.96-10.88 % (average value). It can be seen that the

difference in absorbance reduction was not as big as as the difference in biomass between the

ultrasonicly-treated HA medium and the un-treated HA medium. This was probably due to the

formation of some other optical absorbing substances, which impaired the absorbance

measurement, during the process in which fungi or bacteria metabolically attacked the HA

molecules.

10.4 Reactivity to Fast Blue B Salt (FBB)

In both culture fluids (YNB and modified Cezapek-Dox medium) of the four fungal isolates,

the reactivity of mycelia-free HA medium with FBB was reduced to some extent (69.2%-

57.2%) according to table 10.3. Unexpectedly, in the culture fluids of the gram-negative

bacterial consortium., the reactivity of cell-free HA medium with FBB increased exceptionally

(116%-124%) compared with the control sample. According to Grarnss et al. (104), this

increase was associated with the rise in alkalinity resulting from the conversion processes of

the bacterial nutrient broth. However, the further noticeable difference in our study was that

the reaction of the bacterial fluid-HA medium with FBB was found to be quite unstable

during the course of the reaction The reactivity changed from 10.31-8.26 in the first 0.1 min.

to 0.73-1.97 in the later 0.9 min., compared with that of the control sample, which changed

from 3.29-2.91 in the first 0.1 min to l.52-1.08 in the later 0.9 min. In the bacterial culture

medium where the HA was not previously treated with ultrasonic irradiation., even several big

sharp absorbing peaks were observed during one minute of dynamically spectrophotometrical

monitoring of FBB reactivity process. This implied that a big variety of the FBB reactive

compounds were formed in the bacterial isolate culture medium as a result of the metabolic

activity of the bacteria
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10.5 The presence of hexoses detennined by colorimetric methods

The net absorbances (490 nm) of the fungal or bacterial solution plus 0.5% phenol and

concentrated H2S04, compared to the absorbances (490 nm) of the control solution (0.5 %

phenol and concentrated H2S04), the absorbances of which were assumed to be 0, are

presented in table 10.4. A positive value indicates the production or accumulation ofhexoses

and their methylated derivatives in the culture medium; a negative value indicates the

consumption ofhexoses and their methylated derivatives in the tested culture medium. As can

be seen from table 10.4, the presence or accumulation of hexoses and their methylated

derivatives were detected in most fungal culture fluids, with a relatively higher content in the

HA medium which was pre-treated by ultrasonic irradiation. In contrast, the relatively higher

negative value of the net absorbance was found in the bacterial culture fluids. This implied

that most hexoses and their methylated derivatives were consumed by bacterial metabolic

activity.

10.6 HA toxicity on the anaerobic consortium

At the end of the 3-month anaerobic incubation, the cell masses and the C02 and C~

contents in the headspace of the 50 ml anaerobic cultures, supplied with different

concentrations of HAs were measured. The results (in Fig.1O.3 and Fig.IO.4) indicate that the

cell masses decreased dramatically when the HA concentration in the culture was above 0.1

gil. The production of CH4 totally levelled off when the HA concentration in the culture

reached 0.05 gil, although the production of CO2 could still be detected in the headspace

throughout the incubation period even when the HA concentration in the culture was as high

as 0.1 gil.

The anaerobic bio-degradation of organic polymers, provided it can be digested, is carried out

by the three groups of bacteria: the hydrolytic and fermentative bacteria; the obligate proton-

reducing acetogens and the methanogens. Purging the cultures with pure nitrogen allows the

culture to begin in an oxygen and C02 free atmosphere and it will remain this way if the

organism cannot initiate growth and produce CO2 anaerobically. Therefore, the C~

concentration in the closed culture vessels can be considered as one of the growth indexes of

- 171 -

Stellenbosch University http://scholar.sun.ac.za



HA Degradation by Lignocellulose-degradating Micro-organisms and Its Toxicity to Anaerobic microbial
Consortia

the anaerobic orgarusm provided the culture medium IS weU buffered with HC03 and

phosphate solution buffer.

The results obtained so far imply that among the three groups of bacteria consortiums, the

methanogens are the most sensitive to the toxicity of HAs. However, the fermentative

consortiums can survive and grow properly on the readily obtainable carbon source (such as

glucose) in dilute HA solutions, and can even survive in the environment where the

concentration of HA was as high as 0.1 gil. This could be one of the reasons why the

methanogenic stage was difficult to reach, with the fermentation stage proceeding without

difficulty during the anaerobic degradation of lignocellulose substances.

Since organic substrates cannot be fermented further than to acetate and H2, the complete

mineralisation of organic matter under anaerobic conditions depends on other physiological

bacterial consortia Nevertheless, fermenting bacteria play a central role in the anaerobic

community since they are the important organisms that can hydrolyse and utilize polymers

(polysaccharides, proteins, etc.) in this system. All of the other important microbial players in

anaerobic communities (sulphate reducers, methanogens) are capable of using only a limited

number of low molecular weight substrate (54). The terminal mineralization depends on the

activity of fermenting bacteria for substrate supply. Therefore, a complete anaerobic digestion

of lignocellulose can be obtained by dilution or cleavage of the refractory humic substances,

such as HA, when the fermentation is successful. This subject has been also discussed in

Chapter 6.

10.7 Discussion

A careful companson of the reduction percentages in absorbance at 340 nm, the FBB

reactivity and the biomass yields of the individual fungal cultures and bacteria isolates failed

to give a good correlation between these three indexes. This means that the slow, but

progressive, degradation of HA by these micro-organisms was the result of the biochemical

activities provided by both the isolated fungi and bacteria Provided that the changes arose

from abiotic conditions such as pH, incubation temperature and oxygen availability and that

the humidity was normalized, the reductions in FBB reactivity were attributed to the

aromatic-ring cleavage of the HAs~ the reductions in optical absorbance at 340 nm were
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associated with the qualitative and/or quantitative break-down of the HA macromolecules; the

increase of bio-mass indicated the extent to which the HA was involved or consumed in the

growth processes of the fungi or bacteria; the changes in concentrations of hexoses and their

methylated derivatives implied the production, accumulation or consumption of the

intermediate products in the culture fluids. Since the abiotic conditions for the same batch

experiments were closely controlled during the investigation, the comparisons made between

these indexes were able to provide an outline of the degrading abilities of the fungal and

bacterial consortia

Theoretically, in a medium with the target compound as the only carbon source, only the

organisms with the corresponding degrading ability will grow. In general, fungi grow more

slowly and produce fewer propagates than bacteria Even though they are the major degraders

in nature, they do not use the degraded products such as reduced sugars as a carbon source for

growth. That is to say, the fungi may produce many potential biodegradation enzymes capable

of degrading complex pollutants such as HAs, yet they do not use these break-down products

for their sustained growth. Therefore, a relatively higher presence and accumulation of

hexoses and their methylated derivatives were detected in most fungal cultures than in the

bacterial cultures.

The bio-degradation strategies can be divided into three general categories: the target

compound is used as carbon source; the target compound is enzymatically attacked but not

used as carbon source (co-metabolism); and the target compound is taken up and concentrated

within the organism (bioaccumulation). Although fungi participate in all three strategies, they

are often more proficient at cometalbolism and bioaccumulation than at using complex

substances, such as xenobiotics, as sole carbon sources (18). Therefore, many fungi need a

supplemented carbon source for sustained growth. As a result, the decolouration rate was

slower at later incubation stages in the batch experiments.

However, owing to the following reasons, the fungi remain best biodegraders in nature.

Firstly, the mycelial growth pattern gives a competitive advantage over single cells such as

bacteria and yeasts, especially with respect to the colonization of insoluble substrates: fungi

can rapidly ramify through substrates, literally digesting their way along by secreting a battery

of extracellular degrading enzymes; hypha! penetration provides a mechanical adjunct to the
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chemical breakdown effected by the secreted enzymes; and the branch-like and network

structures of the filamentous fungi maximize both mechanical and enzymatic contact with the

environment. Secondly, the extracellular nature of the degrading enzymes enables fungi to

tolerate higher concentrations of toxic chemicals than would be possible if these compounds

had to be brought into the cell. Finally, since the relevant enzymes are induced by nutritional

signals independent of the target compound during secondary metabolism, they can act

independently of the concentration of the substrate, and their frequently non-specific nature

means that they can act on chemically diverse substrates (18). It was therefore noticed that the

absorbance reduction percentages were higher in the fungal cultures than those in the bacterial

cultures while the bacterial biomass was found to be comparable to or even a little higher than

most of the fungal biomass. This was possible because some parts of the HAs, which were not

degraded by the fungi but were physically absorbed in the mycelia structure, were washed out

of the biomass but were not included in the filtrate of the culture fluids that was measured for

absorbance.

Bacteria can directly assimilate low molecular weight orgarucs such as hexose sugars.

Polymers and organic particles are hydrolyzed by membrane-bound hydrolytic enzymes.

Similarly, when only polymers are available, bacteria must have exoenzymatic activity(82). In

other words, quite different from fungi which can have three ways to "degrade" the polymer-

like HAs from an aquatic environment by three different ways, the bacteria have only one

way of degrading the polymer-like HAs, i.e. exoenzymatically hydrolyze-metabolize,

(catabolic and/or anabolic), with the exoenzymatical hydrolysis being the most important step.

Little is known about the types of enzymes that slowly degrade humic material, but it can be

surmised that a variety of enzymes must be involved and that they may be relatively non-

specific. Oxidative enzymes playa major role in the degradation of bio-polymers, but in some

cases organic acids and chelators excreted by the fungus also contribute to the process. The

reduction of FBB reactivity of cell or mycelia-free culture fluids could be ascribed to the

oxidative-enzymatical breaking down of the aromatic structures of the original HA and/or the

further digestion of the hydroxylated aromatic compounds from the degradation of HAs.

In the batch culture, the synthesis of many fungal products and enzymes is not correlated with

growth but is triggered by the limitation of an essential nutrient. For example, both the
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secondary metabolite production and the production of lignolytic enzymes are correlated with

the idiophase of the growth (18). Similar cases could exist in the fungal degradation of HA.

Accordingly, it was found that the HA was slowly decolourized by the in the growing fungi.

The application of ultrasonic irradiation on the bio-degradation of HA has a twofold effect.

Firstly, the cavitation and micro-streaming will bring about the physical breakdown of the

polymer molecular structure, the colloidal fractions of polydispersed molecular system; The

production of radical and excited species and the single electrontransfer in the homogeneous

phase or at the solid liquid interface will induce chemical oxidation of some functional groups

of bio-polymers. Secondly, the cavitation and micro-streaming effects on the polymer

structure will simultaneously act on the micro-organism system, which will cause the

weakening or enhancing of the growth of the micro-organism in the system. The efficient

physically break-down of the polymer molecular structure was not well confirmed by the

previous work under the sonification conditions used in Chapter 8, but a certain growth

enhancement of some fungi and yeast under the same ultrasonic conditions was confirmed in

this chapter. It can be postulated that the benefits of ultrasonic irradiation to improve the bio-

degradation of HA by fungi and bacteria, although not highly evident, mainly resulted from

the chemical oxidation of HA functional groups or from the colliding of the polydispersed HA

molecular fractions. As most exoenzymies have oxidation functions, the chemical oxidation

effects of ultrasonic irradiation are beneficial to the exoenzymatical hydrolysis of HA by

bacteria or fungi. As far as the mycelial structure of filamentous fungi is concerned, the

colloidal effects of ultrasound on the flocculation of polydispersed HA molecules also make

them easier to be absorbed in the mycelial net structure of the filamentous fungi. In addition,

it was reported that the larger HA molecules tended to be preferentially degraded in favour of

a relative enrichment of smaller molecules (273).

10.8 Summary

The HA extracts from the acidification fermentation of lignocellulose residues were exposed

to fungal, bacterial and yeast isolates, which were screened by a HA-carbon source and

ultrasonic irradiation for three weeks in static aerobic culturing conditions at 28°C in the

dark. Its toxicity on an anaerobic consortium was tested. The degradation process of the HAs
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was investigated by monitoring the absorbance at 340 nm, the FBB reactivity, the reducing

sugar contents in the culturing solution and the biomass yields.

The following conclusion can be made:

1) The fungal and bacterial isolates (except the yeasts) from the lignocellulose waste

degradation process could grow in the medium with HAs as the sole carbon source and

degrade the HAs to some extent.

2) The enhancement of the biological decomposition of HAs by ultrasonic irradiation could

be attributed to the chemical oxidation effects, which are beneficial to the exoenzymatical

hydrolysis of HA by bacteria or fungi, and the colloidal effects of ultrasound on the

polydispersed HA macromolecules, which made the absorption of HAs into mycelial net

structures of the filamentous fungi easier.

3) Some fungi or yeast could sustain the stress of the ultrasound vibration to some extent

with their growths being enhanced in less than 40 minutes of ultrasonic irradiation.

4) Among the three functional groups of anaerobic bacterial consortia, the methanogens are

the most sensitive to the toxicity of HA. However, the fermentative consortium can survive

and grow on the readily obtainable carbon source (such as glucose) in HA solutions even

when the concentration ofHA was as high as 0.1 gil.

10.9 Further research work on HA degradation

Among the anaerobic treatment processes, the upflow anaerobic sludge blanket (UASB) (151)

has become very popular for the anaerobic biological treatment of waste water because of the

beneficial energy and substance flowing channel in the granules for the mutual growth of the

anaerobic methane-producing consortium. Thus, the UASB reactor is another promising

technological development for the treatment of HA-bearing leacahte. Therefore further

attention will be drawn to the investigation of the degradation efficiency of the HAs bearing

leachate from the high-solid anaerobic digestion process of lignocellulose residues in the

UASB reactor.
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Table.Ifl.I The developed biomass and pH ofthe medium by fungi and bacteria isolates

after 3 weeks of incubation

Ct:_zapek-Dox-HA Medium YNB-HA Medium TS-HA Medium

Microbial HA (0) HA(I) HA (0) HA (1) HA (0) HA (1)

Isolate Biomass BiOmlSS Biomass Biomass Biomass Biomass
pH pH pH pH pH pH

(mglgHAlrng/g HA mg!gHA (mgig HA) (mgigHA) (mglgHA)

Control 6.83 0.0 7.07 0.0 6.12 0.0 6.26 0.0 6.76 0.0 6.67 0.0

Trichoderma 1 7.19 22.3 7.26 45.6 6.23 18.5 6.29 50.2

Trichoderma 2 7.08 15.0 7.16 36.6 6.35 18.1 6.27 60.9

Trichoderma 3 7.08 16.4 7.19 40.0 6.45 14.8 6.33 56.3

Trichoderma 4 7.19 17.8 7.26 44.3 6.30 19.5 6.24 62.5

Trichoderma 5 7.07 10.6 7.14 43.0 6.11 12.0 6.20 59.0

Trichoderma 6 7.13 18.3 7.15 46.7 6.33 12.5 6.24 63.5

Aspergillus
7.16 14.2 7.15 54.9 6.26 23.2 6.32 54.1

Parasities

Fusarium
7.31 9.8 7.40 51.1 6.38 11.3 6.35 64.1

Oxysporum

Acrimonium 7.16 8.9 7.21 43.0 6.28 16.1 6.19 51.3

Humicola

Fuscoatra var 7.25 10.8 7.32 57.9 6.35 14.9 6.41 62.1

Fuscotra

Gram-negative
8.44 65.5 8.60 83.3

Bacteria

Average 7.162 14.41 7.224 46.31 6.304 16.09 6.284 58.4 8.44 65.5 8.60 83.3

Note: HA(O)- The HA without pretreated by ultrasonic irradiation

HA(l)- The HA pretreated by ultrasonic irradiation (at 30 kHz for 2 hours)
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Table 10. 2. The reductions in absorbance (340 nm) of cell or mycelia free culture fluids

during incubation

Cezapek-Dox-HA Medium YNB-HA Medium IS-HA Medium

Microbial HA (0) HA(I) HA (0) HA (1) HA (0) HA (I)

Isolate Time(week) Time(week) Time(week) Time(week) Time(week) Time(week)

1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 3.0 3.0

Trichoderma I 2.70 6.91 9.31 3.40 9.65 16.2 3.31 6.02 15.8 5.61 9.36 18.3

Trichoderma 2 2.54 6.72 10.5 4.82 10.0 15.8 4.20 6.18 17.3 5.82 10.4 16.9

Trichoderma 3 3.11 6.04 9.34 4.09 9.26 14.1 4.09 7.24 14.6 5.12 9.22 15.5

Trichoderma 4 1.80 6.25 11.95 4.01 10.96 17.3 5.10 7.89 15.9 6.38 9.62 18.9

Trichoderma 5 2.63 6.10 11.04 3.86 8.21 14.8 4.26 8.65 14.2 5.69 10.22 15.2

Trichoderma 6 2.04 6.13 11.25 4.10 9.63 14.2 5.10 7.88 13.8 6.21 9.95 16.3

Aspergillus 10.2
5.41 12.30 6.89 9.53 5.69 4.98 8.26 16.76 8.21 12.64 18.36

Parasities 6

Fusarium
4.01 8.35 9.68 5.33 8.26 14.68 6.12 9.10 14.08 7.68 9.23 15.83

Oxysporum

Acrimonium 1.35 5.59 7.65 3.21 8.22 10.35 3.68 6.02 12.64 4.22 9.64 14.11

Hurnicola

Fuscoatra var 3.64 5.38 9.68 4.85 7.04 14.25 5.01 7.25 10.38 5.98 7.49 13.66

Fuscotra

Gram-negative
8.96 10.88

Bacteria

Average 2.92 6.77 10.27 4.46 9.08 14.74 4.59 7.45 14.55 6.09 9.78 16.31 8.96 10.88

Note: HA(O)- The HA without pretreated by ultrasonic irradiation

HA(I)- The HA pretreated by ultrasonic irradiation (at 30 kHz for 2 hours)
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Table 10.3. The changes in FBB reactivity of cell or mycelia free culture fluids in during

incubation

Cezapek-Dox-HA Medium YNB-HA Medium TS-HA Medium

HA (0) HA (I) HA(O) HA(l) HA (0) HA (1)
Microbial

Isolate Time Time Time Time Time Time

(week) (week) (week) (week) (week) (week)

1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 3.0 3.0

Control with
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

HA

Trichoderma 1 0.91 0.74 0.59 0.84 0.65 0.52 0.93 0.85 0.64 0.89 0.68 0.54

Trichoderma 2 0.95 0.78 0.65 0.82 0.69 0.58 0.94 0.78 0.67 0.82 0.71 0.56

Trichoderma 3 0.91 0.80 0.71 0.84 0.72 0.60 0.93 0.74 0.62 0.90 0.69 0.58

Trichoderma 4 0.88 0.75 0.68 0.79 0.66 0.53 0.91 0.69 0.57 0.86 0.62 0.54

Trichoderma 5 0.93 0.82 0.75 0.86 0.72 0.64 0.89 0.71 0.62 0.83 0.64 0.52

Trichoderma 6 0.90 0.84 0.72 0.88 0.76 0.61 0.92 0.78 0.65 0.86 0.70 0.56

Aspergillus
0.86 0.80 0.69 0.82 0.73 0.59 0.89 0.76 0.63 0.82 0.64 0.53

Parasities

Fusarium
0.90 0.83 0.71 0.85 0.68 0.62 0.91 0.89 0.68 0.88 0.79 0.60

Oxysporum

Acrimonium 0.94 0.86 0.75 0.89 0.72 0.65 0.92 0.83 0.74 0.90 0.74 0.63

Humicola

Fuscoatra var 0.89 0.80 0.69 0.84 0.75 0.60 0.91 0.87 0.76 0.85 0.71 0.66

Fuscotra

Gram-negative
1.16 1.24

Bacteria

Average 0.91 0.80 0.69 0.84 0.71 0.59 0.92 0.79 0.66 0.86 0.69 0.57 1.16 1.24

Note: HA(O)- The HA without pretreated by ultrasonic irradiation

HA( 1)- The HA pretreated by ultrasonic irrad iation (at 30kHz for 2 hours)
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Table 10.4 Colorimetric determination of hexoses (net changes of absorbances (490nm)

based on the control) in cell or mycelia free cnlture fluids after 3-week of incubation

Microbial Cezapek-Dox-HA Medium YNB-HA Medium TS-HA Medium

Isolate HA (0) HA(I) HA (0) HA (1) HA (0) HA (1)

Control with
0.0 0.0 0.0 0.0 0.0 0.0

HA

Trichoderma 1 -0.09296 0.08575 0.11965 0.2212

Trichoderma 2 0.01595 0.34335 -0.03195 0.1605

Trichoderma 3 0.52395 1.04325 -0.2152 0.12005

Trichoderma 4 0.28055 0.3368 0.120365 0.26403

Trichoderma 5 0.4135 0.5095 0.03905 0.1643

Trichoderma 6 -0.13325 0.64517 0.024006 0.51365

Aspergillus
0.13835 1.0419 -0.04355 0.001

Parasities

Fusarium
-0.039 0.4737 -0.02205 0.05815

Oxysporum

Acrimonium -0.03655 0.13835 0.01024 0.02138

Humicola

Fuscoatra var 0.01683 0.41537 0.00983 0.01352

Fuscotra

Gram-negative
0.0883 -2.3556

Bacteria

Average 0.108737 0.503314 0.001039 0.153778 0.0883 -2.3556

Note: HA(O)- The HA without pretreated by ultrasonic irradiation

HA(l)- The HA pretreated by ultrasonic irradiation (at 30 kHz for 2 hours)

- 180 -

Stellenbosch University http://scholar.sun.ac.za



HA Degradation by Lignocellulose-degradating Micro-organisms and Its Toxicity to Anaerobic microbial
Consortia

16

14 •
12

--ve- 10'-'

ë=Q 8.......
Cl
Q

6ëu
4

2

0
0 0.5 1.5 2

HA concentration (gIl)

Fig.IO.1 The colony growth on YNB-HA agar

35

30

25
""'on
<:>-.... 20
Cl

5u... 15Cle
ëu

10

5

0
0

-+- Fungi colony
_ Yeast Colony

10 20 30 40 50
Ultrasonic Irradiation Time (min.)

Fig.IO.2 Ultrasonic effects on colony growth of fungi and yeast

60

- 181 -

Stellenbosch University http://scholar.sun.ac.za



HA Degradation by Lignocellulose-degradating Micro-organisms and lts Toxicity to Anaerobic microbial
Consortia

300

250

200,...,
"Si,
Ei!
'-' 150'"'"Ol
Ei!
0
S 100

50

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

HA (gil)

Fig.IO.3 Anaerobic biomass yield under different HA
concentrations

50

45

40

,..., 35~co
'-'..

30É=0 25'"'"Ol
toll 206
i5

15

10

5

0

0

-C02

---.-CH4

0.02 0.04 0.06 0.08 0.1

HA(g/I)

Fig.IO.4 Anaerobic bio-gas composition under different HA
concentrations

- 182 -

Stellenbosch University http://scholar.sun.ac.za



HA Degradation by Lignocellulose-degradating Micro-organisms and lts Toxicity to Anaerobic microbial
Consortia

Appendix 10.1 Microscopy morphology of bacteria and fungi isolates
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Notes:

• Photo 1: Rod-shape gram-negative bacteria consortiwn (SEM, 2000x, TS-HA medium)
• Photo 2: Rod-shape gram-negative bacteria consortiwn (epifluorescence microscope, 600x,

TSA agar)
• Photo 3: Hyphae structure of Aspergillus gene (epifluorescence microscope, 600x, 2%

MEA)
• Photo 4: Hyphae structure of Aspergillus gene in HA degradation culture (SEM 2000x,

YNB-HA medium)
• Photo 5: Conidia heads of Aspergillus gene (SEM 2000x, 2% MEA)
• Photo 6: Hyphae structure and conidia heads of Aspergillus gene in HA degradation

culture (SEM 590Ox,YNB-HA mediwn)
• Photo 7: Hyphae structure and aleurioconidia of Hurnicola gene(epifluorescence

microscope, 600x, 2% MEA)
• Photo 8: Hyphae and multi-septate macro-conidia of Fusariwn gene (epifluorescence

microscope, 600x, 2% MEA)
• Photo 9: Hyphae structure and aleurioconidia of Humicola gene (SEM 2000x, 2% MEA)
• Photo 10: Terminally solitory aleurioconidia and conidia chain of Humicola gene (SEM

4000x, 2% MEA)
• Photo Il: Hyphae structure, conidiaphore and conidia of Trichoderma gene

(epifluorescence microscope, 600x, 2% MEA)
• Photo 12: Conidiaphore, conidia phialides and conidia of Trichoderma gene (SEM 4000x,

2%MEA)
• Photo 13: Conidiaphore, bundles of phialides and conida of Trichoderma gene (SEM

2000x, 2% MEA)
• Photo 14: Hyphae structure of Trichoderma gene in HA degradation culture (SEM 2000x,

YNB-HA medium)
• Photo 15: Hyphae structure, conidiaphore, awl shaped, erect slender phialides of

Acremonium gene (SEM 500x, 2% MEA).
• Photo 16: Hyphae structure, conidiaphore, slender phialides of Acremonium gene in HA

degradation culture (SEM 2000x, YNB-HA medium).
• Photo 17: Smooth-walled, guttuliform conidia of Acremoniwn gene (SEM 5000x, 2%

MEA).
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Chapter 11

A Primary Study on the Co-degradation of Humic Acids in the UASB

Reactor Fed with Glucose Substrate

The upflow anaerobic sludge blanket (UASB) (151) has become very popular in the anaerobic

biological treatment of waste-water. The UASB reactor has been implemented to treat a wide

range of industrial and municipal waste-water, as weUas landfill leachate.

Due to the ubiquity of HAs in lignocellulose decomposition environment and the effective

usage of UASB in treating high-strength organic effluents, expanding the use of the UASB

reactor to the disposal of HAs-bearing effluents from the lignocellulose decomposition

process is drawing researching attention. It is necessary to evaluate the potential of the bio-

degradation of HAs in a UASB reactor.

Furthermore, it is known that the development of granular sludge is the key factor for the

successful operation of UASB reactors, and the characteristics of the substrate on which the

bacteria grow substantially affects the granulation process. Without any doubt, the effects of

HAs on the granulation process of the UASB reactor cannot be ignored. However, because

some of the chemical structures of the HAs are as yet undetermined and complex, it will be a

challenge to investigate the influence of the HA on the UASB process thoroughly in theory

and in technology for the application ofUASB reactor to HA-bearing waste waters.

To investigate all the above-mentioned subjects would be time-consuming. In this chapter, the

investigation on the potential of co-degradation of HAs with glucose in UASB reactor is

presented.

A schematic diagram of the laboratory scale UASB reactor is given in Chapter 3.

The seeding granules were provided by the Department Food Science of the University of

Stellenbosch. The continuous experiment initially started with the feeding solution which was

composed of 1.0 gil glucose as carbon source, 0.5 gil urea as nitrogen source, 0.5 gil K2HP04

as phosphorus source, 1.0 ml/I trace element solution, 0.25 gil cysteine-HCl, 0.25 gil Na2S
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.9H20 and 2.5 gil NaHC03. After 14 days of operation and with COD loading gradually

increasing from 0.67 g/l.h' to 1.37 g/l.h" by reducing HRT, the reactor was switched to the

HAs medium which consisted of a glucose-HAs solution plus 0.5 gil urea, 0.5 gil and 1.0 mVI

trace element solution. The COD strength of the feeding influent was kept at 2.0 gil, with the

HA content being increased gradually by adding the concentrated HA solution, which had the

COD strength of2xl 04 mgll, from 0.0 mVIto 50 mVIover a operation period of 125 days.

The reactor was operated at a steady sate for 25 days after each stepwise increase of the HA

concentration, and the COD loading increased from 1.37 g/l.h' to 3.28 gil h-I by reducing the

HRT. Samples of granules were then taken from the reactor for bio-activity analysis. The

COD, VSS, pH and alkalinity of the effiuent were measured by procedures described in

Standard Methods (I).

The measurement of the reactivity of the digestion solution with the Fast Blue B Salt (FBB),

and the detection of the presence of the reduced sugars in the digestion solution in the reactor,

were made using methods described in Chapter 3.

The VFA and bio-gas analyseswere done following the GC methods presented in Chapter 3.

The bio-activity analysis and the specific methanogenic activity (SMA) tests were performed

using a 120 ml vial. All procedures, other than those described here, are based on the Hungate

technique (176). The medium used for the incubation of the methanogens include (per liter):

carbon source (glucose and sodium acetate respectively) with equivalent COD strength of2.0

g, ~CI 1.0 g, trace elements solution 10.0 ml, vitamin solution 10.0 ml; NaHC03 5.0 g; L-

cysteine-HCI·H20 0.5g; Na2S·9H20 0.5 g; resazurine 0.002 g; phosphate solution (pH 7) 2.0

ml. Each sludge sample taken from the VASB reactor was washed with phosphate buffer

(4%) to remove extra substrate originated from the reactor medium. All vials were incubated

at 37°C. The headspace volumes of the vials were 50 ml. Except for the vials for the H2-

utilizing methanogenic activity test (in this case, no other carbon source except the carbon

source of H2 20% and CO2 80% was supplied), 80% N2 and 20% CO2 were used as the

headspace gas. Bio-gas volume production in each vial was monitored with glass syringes,

and the C~ content in the headspace of the vials was measured using GC over 25 days of
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incubation. The specific methanogenic activity (SMA) in each vial was calculated by dividing

the accumulative methane production by the VSS amount of the tested granule sludge sample.

11.1 The effects ofDAs on the pH and alkalinity of the VASB digestion system

The changes in the pH and alkalinity with gradually increasing HAs content during the reactor

operation time course are presented in Fig.ll.l and Fig.11.2.

The results in Fig.ll.l indicate that the presence of HAs did not noticeably affect the pH of

the digestion solution in the UASB reactor throughout the operation period. In fact, it shows a

buffering capacity for the optimum anaerobic digestion pH range of 6.5-7.4 in the reactor. As

can be seen in Fig.ll.1, noticeable variations in the operation pH of the reactor were usually

observed when HA was absent in the reactor.

The results in Fig.ll.2 indicate that the alkalinity of the reactor increased steadily from 3000

mg/l to 513 0 mg/l with the increase of HA concentration in the reactor. With the presence of

HAs in the reactor, the alkalinity of the digestion solution in the reactor appeared stable when

compared to the reactor in which no HAs was supplied.

Generally, the bicarbonate ion, HC03-, is the major source of alkalinity in the anaerobic

digesters for the neutral pH range. It is produced during digestion by the breakdown of

nitrogenous compounds (such as urea) to NH3 and then by the reaction of NH3 with CO2

developed from the fermentation or the methanogenesis process in the reactor. Besides HC03,

volatile acid can be another important contributor to the alkalinity of the system. Under stable

operation conditions, the volatile acids produced can be neutralized by the bicarbonate

alkalinity. Thus the digestion system can be maintained in a neutral pH range to prevent the

inhibitory effect of acidification and the total alkalinity of the system is determined mainly by

the concentration of HC03 - formed during the digestion process. Since alkalinity is measured

by titration with acid to pH 4.0-4.3, any compound that reacts with W will be measured as

part of the alkalinity. HAs, which are supposed to be the weak acids, may without doubt

contribute to the alkalinity of the tested sample. The fact that the HA structures can be

chemically altered and that the new intermediate compounds may be formed during the

digestion process, make it difficult to specify the main causes of alkalinity inclination by
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HAs. However, the stable pH and the increases in the alkalinity of the digestion solution in

the VASB reactor supplied with HAs suggest that the presence of HAs in the VASB reactor

improves the pH buffering capacity of the digestion system. This is essential to develop a

well-balanced anaerobic digestion process in the VASB reactor. Based on this point, the HA

can be considered not very detrimental to the operation of the VASB reactor.

11.2 The bio-modifications ofthe HAs in the UASB reactor

It has been found that the HAs may improve the pH buffering capacity of the VASB digestion

system. For the purpose of assaying metabolic modifications of the HAs in the VASB reactor,

the hydrolysis/degradation of HAs in the VASB reactor, the C~ production in the bio-gas of

the VASB reactor, were assayed under stable conditions.

The reactivity of the VASB digestion solution (effluent) with Fast Blue B salt (FBB) under

different HA concentrations during the digestion time course is presented in Fig.II.3. The

presence of the reduced sugars in the effluent of the reactor under different HA contents was

also monitored during the digestion process. The results are shown in Fig.IIA.

Fast Blue B salt (FBB) can react with I-naphthol and other hydroxylated aromatic compounds

to form coloured products of which the absorbance is in the range of 530-618 nm. The HA

needs to be hydrolyzed/decomposed by the micro-consortium of the granule sludge in the

VASB reactor before it can be used as a carbon source by the other three groups of bacteria

(acidogens, acetogens and methanogens) in the VASB reactor. Therefore, the data of the FBB

reactivity of the digestion solution, and the presence of reduced sugar in the reactor solution

are useful indicators of the hydrolyzation/decomposition process of HAs.

The results in Fig.II.3 indicate that the reactivity of FBB with the digestion solution in the

VASB reactor inclines gradually with the increase of HA concentration during the operation

time course. This suggests that some proportion of the HAs were decomposed into naphthol

or other hydroxylated aromatic compounds in the VASB reactor.

As can be seen in Fig.IIA, reduced sugars are also found in the digestion solution of the

VASB reactor and they tend to escalate with the increase of HA concentration. This indicates
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that besides the naphthol or other hydroxylated aromatic compounds, reduced sugar was also

produced in the partial degradation of HAs in the UASB reactor.

From results presented in Fig.I1.3 and Fig.I lA, it can be postulated that some hydrolyzation

or decomposition of HAs was taking place in the UASB reactor. This implies a potential

application of the UASB gradual sludge to the degradation ofHA compounds.

In order to investigate the influence of HAs on the acidogenic fermentation process of the

UASB reactor, the production and composition of the volatile fatty acids (VFA) of the

digestion solution in the reactor fed with different concentrations of HAs, in the form of

COD, were monitored on the 25th day of stable operation. The results are presented in

Fig.11.5.

As shown in Fig. 11.5, the characteristics ofVFA composition profiles are very similar under

different HA concentrations. Acetate, butyrate and propionate are the main constitutes of the

VFA in the digestion solution. However, the accumulation of acetate was more evident when

the HA concentration in the reactor was high. A significant accumulation of more oxidized

fermentative products, the acetic acids, was detected with the increases of HA concentration.

This suggests that the presence of HAs might induce the release of a large amount of electrons

during the fermentation process and thus catalyze the oxidation of glucose and other larger

VFA to acetic acids.

11.4 The influences ofDAs on the methanogenesis process of the UASB reactor

The influence of HAs on the methanogenesis process of the UASB reactor was investigated

by monitoring the methane production of the bio-gas and the special methanogenic activities

of the granular sludge which was previously fed with HA bearing solutions in the UASB

reactor.

The methane productions of the bio-gas under different HA feeding concentrations are

presented in Fig.ll.6. The results show that the methane yields of the UASB reactor decline
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noticeably with the increases of the HA concentration. When the HA concentration was high,

up to 50% COD, the methanogens were greatly inhibited; little methane was detected during

25 days of operation. This confirms that the HAs may inhibit the activity of the methanogens

in the UASB reactor.

The specific methanogen activities of the UASB granules growing in the UASB reactor fed

with different concentrations of HA are shown in Fig.11.7 to Fig.I1.9. It includes

fermentative methanogen activity (glucose-fed), acetic-utilization methanogen (acetate-fed)

activity and H2-utilization methanogen (H2 20% and C02 80% - fed) activity.

As shown in Fig.II. 7 to Fig.l1.9, the glucose fermentation methanogen activity and H2-

utilization methanogen activity are found to be higher than the acetate-utilization activity. The

interesting result is that the concentration of HA at which the UASB granule was grown did

not exhibit noticeable deteriorating effects on the specific methanogen activity of the granule

as had been encountered in the UASB reactor. This indicates that the inhibiting effects of the

HAs on the UASB granules are reversabie. The methanogenesis is released when the granules

are fed with easy-digestible carbon sources which are free of HAs. As it was reported, the H2-

producing acetogenic and methanogenic bacteria recovered faster than the acetotrophic

methanogens (206).

11.5 The effects of the HAs on the COD removal efficiency of the UASB reactor

In order to investigate the influence of the HAs on the COD removal efficiency of the UASB

reactor, the COD of the etlluent of the reactor was assayed under stable operational

conditions. The COD removal efficiency against the HA concentration is presented in

Fig.ll.IO. It can be seen that the COD removal efficiency of the reactor appeared to be

slightly reduced by HAs. The COD removal efficiency of the reactor gradually decreased with

the increases ofHA concentration in the feeding solution, while the C~ production decreased

remarkably under the same conditions. The fact that the low COD removal efficiency did not

correlated well with the poor C~ production could suggest that an amount of COD in the

reactor can be considered to be removed in the form of Cll, and CO2. Some of the HAs, which

might be abiotically absorbed in the granule structure, were then calculated as the removed

COD. Therefore, it was found that a large amount of removed COD did not confirm a
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corresponding amount of C~ production of the UASB reactor. Presumably, most of the

removed COD, associated with the HAs, is rather considered as the absorbed COD by the

granular sludge rather than as the bio-digested COD in the reactor.

Furthermore, although the detection of naphthol or other hydroxylated aromatic compounds

and reduced sugars in the UASB reactor implies that the HAs may, to some extent, undergo

hydrolysis or decomposition by the granular consortium in the reactor. The cleavage of the

aromatic ring of the HA molecular structure is theoretically difficulty for the anaerobic

bacteria; only the side chains of the molecule can possibly be split off by the microbiological

activities and reduced to methane by the granules in the reactor. Therefore, most of the

removed COD associated with HAs is possibly mainly the absorbed COD by the granular

sludge rather than the digested COD.

11.6 Discussion

The biological information of the seeding material (granular sludge) and chemical

characteristics of the feeding substances (HAs) are both essential to understand the influences

of HAs on the UASB process and their potential decomposition in the UASB reactor.

11.6.1 Chemical molecular structure ofDAs

The structure of the HAs is heavily dependent on their origin. The HAs were normally

considered to be formed as the biologically-inert intermediate products of lignocellulose

residues by an anaerobic or aerobic digestion process. Although there might be some quantity

differences in the molecular functional groups of the HAs derived from different origins, the

HAs generally consist of a number of aromatic, phenolic, quinonic, and heterocyclic "building

blocks" that are randomly condensed or linked by aliphatic, oxygen, nitrogen, and sulphur

bridges. The macromolecular structure of the HA usually bears aliphatic, glucidic, amino

acidic, and lipidic surface chains as well as chemically active functional groups of various

natures (mainly carboxylic, but also phenolic and alcoholic hydroxyls, carbonyls, etc.) which
render the humic polymer acidic (236; 148).
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Oxidative, reductive, and hydrolytic cleavage by inorganic chemicals, as well as by zinc dust

distillation, also reveals that humic substances consist of polycyclic aromatics to which

saccharides, peptides and phenols are attached (237).Cleavage products include phenols,

phenolic acids, benzene carboxylic acids and alphatie carboxylic acids (233,78).The chemical

reactivity of HA is linked to its high content of oxygen-containing functional groups,

including COOH, phenolic and/or enolic OH, alcoholic OH, and the CvO double bonds of

quinones, hydroquinone, and a,J3-unsaturated ketones (237).The acidity and cation exchange

capacity of HA has mainly been attributed to the presence of dissociable I-t ions in aromatic

and alphatie COOH and phenolic OH groups (223).

11.6.2 Marco- and micro-biological structure ofthe UASB granule

In UASB reactors, the biomass is retained as aggregates, called granules, formed by the

natural self-immobilization of the bacteria. The formation and stability of the granules are

essential for successful operation.

The metabolic reactions that occur during anaerobic digestion suggest that there are

advantages in the aggregation of micro-organism into granules. As stated previously, the

degradation of complex substrates into methane and carbon dioxide during anaerobic

digestion involves the interaction of at least three metabolic groups. The first group of

fermentative bacteria, namely the acidogens, conducts initial degradation of biopolymers. The

acids (and alcohol) so produced are utilized by a second group of bacteria, the acetogens. The

third group of bacteria is the methanogens. Located at the end of the nutrient cascade,

methanogens convert C02 and H2, acetate, and a few other simple compounds into methane.

Because of unfavourable thermodynamics, oxidation of propionate and butyrate is only

possible if H2 is removed efficiently, i.e. a very low hydrogen partial pressure is necessary.

Propionate degradation is only possible below a partial pressure of 10-4 atm H2 (106.57).In

granules degrading a mixture of acetate, propionate, and butyrate, a clear correlation exists

between the degradation rate of propionate or butyrate and the hydrogen partial pressure. A

slight increase in the partial pressure of hydrogen results in an immediate decrease in the

degradation rate of the two volatile fatty acids (216,217,218,220).Clearly, the close association of

members of these three groups in a layered granular structure would ensure a high metabolic
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activity. The influence of HAs on the activities of UASB granules could involve these three

layer groups of bacterial consortia.

A fairly distinct localization of bacteria within granules grown on carbohydrate-containing

waste-water was found. The hydrolytic and/or acidogenic bacteria were predominant in the

outer part of the granules, whereas methanosaeta-like bacteria dominated in the inner part of

granules (115). An even more structured pattern was observed in granules grown on glucose or

sucrose. It was found that the syntrophic bacterial consortia were located between an external,

predominantly acidogenic layer, also including hydrogen-consuming bacteria and a core of

acetate utilizers, creating optimal nutritional conditions for all its members (158, 160). In

granules grown on complex waste waters, an internal organization may be beneficial for an

optimum degradation of substrate and intermediates. An aggregate granular is a stable

metabolic arrangement that creates optimal conditions for all its members. It can be deduced

that the more complex the substrate to be degraded, the more highly-structured the internal

organization of the granules required for a successful internal energy and substrate

transportation. The presence of HAs in the previously formed granules which was fed with a

simple carbon source such as glucose may not greatly affect the basic structures of the well-

formed granules; however, it may interfere with the energy and substrate transmission in the

granule metabolic process.

11.6.3 Implications from co-consideration of structure properties of HAs and the UASB

granule

The condensed aromatic, phenolic, quinonic, and heterocyclic structure of the HA makes it

highly resistant to biodegradation, so that the HAs are essentially refractory to digestion and

are likely to be toxic to the anaerobic consortium in the UASB reactor. However, owning to

the granule's layered microstructure, the most toxicity-sensitive methanogens populated in the

interior of the granule can be shielded from being exposed to the toxic pollutants (e.g.HAs) by

the outer layer of the granules which are mostly composed of fermentative (hydrolysis) and

acidogenic bacteria. These bacteria, which are capable of converting glucose and some other

complex substrates into fatty acids, exhibited mild resistance to toxicity of HAs, as was

found in Chapter 10: the fermentative consortia could survive and grow properly even when

the HA concentration was as high as 0.1 gil.
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The decreases in the reactivity of the digestion solution of the UASB reactor with FBB as

well as the presence and the accumulation of reduced sugar with the increases in HA

concentration, furthermore confirmed that the outer layer fermentative (hydrolysis) and

acidogenic bacteria remained active and responsible for the partial degradation of HA even

when being exposed to a high concentration level of HAs.

The surface chains structure, such as aliphatic, glucidic, amino acidic, and lipidic chains,

predicted the possibility that the HAs are partially hydrolyzed or decomposed by some special

enzymes secreted by the fermentation or by the acidogenic consortia at the outer layers of the

granules. A certain amount of reduced sugar was found in the digestion solution.

The chemically active oxygen-containing functional groups, such as the carboxylic, phenolic

and alcoholic hydroxyl functions of the macromolecule of HAs, determine the high chemical

reactivity, weak acidity and strong ion cation exchange (chelating) capacity of HAs. Thus the

chemical properties of the digestion system, such as pH buffering capacity, alkalinity, and the

reactivity of the fermentation products (volatile fatty acids) in the UASB reactor, could

obviously be influenced by the presence of chemically active HAs. For example, the increase

of alkalinity of the digestion solution in the UASB reactor by HA may be a result of the

dissolving of CO2 induced by the weak acidity ofHA.

It was reported that fermenting bacteria were capable of channeling electrons from anaerobic

oxidations via HAs towards iron reduction (19). The oxidation of propionic acid to acetic acids

was observed with the presence of HAs. A similar phenomenon noticed in this study was that

the accumulation of acetic acids under the same HRT and COD loading conditions became

more evident when the HA concentration in the UASB reactor was increasing (Fig.ll.5). The

HAs were likely to act as readily accessible electron acceptors during the glucose

fermentation process in that the decreased propionate (butyrate) to acetate ratio in the

acidogen fermentation products of UASB reactor was observed with the presence of HAs

throughout the digestion period. This can be confirmed by the fact that the increased

formation of acetic acids is energetically most favourable for the fermenting bacteria, and the

reduction of HAs is in accordance with the general concept that the energetically most

favourable electron acceptors (such as HAs) are utilized first. In addition, anaerobic oxidation
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of [1,2_14C] vinyl chloride and [1,2_14C] dichloroethene to 14C02 under HA reducing

conditions demonstrated that waterborne contaminants can be oxidized by using HA

compounds as electron acceptors (29).This suggested that natural aquatic systems have a much

larger capacity for contaminant oxidation, due to the readily electron accepting property of

HAs, than previously thought. In substances, the anaerobic digestion of organic substrate to

methane is composed of a series of oxidation-reduction processes; any substance that

contributes to the electron provision or depletion may exert regulative effects on the

efficiency and products profile of this methanogenic process. Since the quinoid moieties of

HAs and low-molecular-weight quinones are considered redox mediators in the chemical

reduction of iron or manganese species, or of organic pollutants, the mechanisms of HAs as a

redox mediator may be related to its abundantly quinoid aromatic structure. However,

biologically, the mechanism of the HAs as active electron ( e.g. H2 ) acceptors during the

methanogenic process (e.g., the potentials of HAs in regulating the catabolism and anabolism

processes of methanogens) needs to be explored in detail in the near future by using pure

methanogen cultures.

The toxicity of aromatic pollutants to the methanogens was dependent on the nature of the

chemically functional group of the pollutants; the more hydrophobic the functional group of

an aromatic chemical, the higher the toxicity to the methanogenic activity. The large amount

of polycyclic aromatic chain structure ofHA renders it hydrophobic, while the high content of

oxygen-containing functional groups, including COOH, phenolic and/or enolic OH, alcoholic

OH, and the c=o double bonds of quinons, hydroquinone, and a,l3-unsaturated ketones

render it hydrophilic. Thus, HA can be regarded, to some extent, as an aromatic-structured

hydrophobic polymer with a large variety of hydrophilic oxygen-containing functions on the

surface chains. At this point, it can be postulated that the toxicity of HA is not as severe as

that of other strictly hydrophobic aromatic pollutants such as the eresols and phenols.

Therefore, as found in the special methanogens activity assays, the methanogenic activity

inhibited by the HA can easily be recovered by feeding the system with appropriate substrate

(such as glucose, acetate, H2/C02).

It is known that substrate depletion in the centre of a microbial aggregate can be caused by

reduced diffusional fluxes and that this may impair the overall metabolic rates of the involved

micro-organism s (247).This problem is dealt with in nature by the development of syntrophic

- 201 -

Stellenbosch University http://scholar.sun.ac.za



A Primary Study on the Co-degradation of Humic Acids in the UASB Reactor Fed with Glucose Substrate

relationships by the forming of mixed microbial consortia, in which the involved micro-

organisms share a common spatial microniche (43). Among these, the anaerobic granule is a

typical example of a microbial aggregate. It is widely accepted that the metabolic efficiency

and the growth yield of the syntrophic acetogenic bacteria, which produce hydrogen, strongly

depend on the rate of H2 removal by a consuming species such as a methanogen; this process

is called interspecies hydrogen transfer. In anaerobic systems, low hydrogen partial pressure

can only be achieved by interspecies transferring of molecular hydrogen from hydrogen-

producing bacteria to hydrogen-oxidizing methanogens. Thus, in granule sludge,

microcolonies consisting of syntrophic, propionate, or butyrate degraders and hydrogen-

utilizing methanogens have frequently been observed.

Owing to their hydrophobic and their hydrophilic properties, HAs may influence the

interspecies electron and substance transfer among the anaerobic bacterial functional groups

by absorbing at the inter-surfaces of the microniches located in the juxtapositioning structure

of the UASB granule. At these interfaces, the transportation of bio-gas (C02 and H2) and

substrate (VFAs) often takes place. As a readily accessible electron acceptor, HA may reduce

H2 by absorption, which was confirmed by chemical reduction of HAs with H2, thus

accelerating the formation of acetate and catalyzing the oxidation of propioate to acetate. The

accumulation of acetic acid may also be intensified at the interfaces between syntrophic acid

fermentation consortia and methanogenic consortia because of the absorption of HAs at these

interfaces. This may lead to serious substrate (including H2) depletion in the centre of the

granule. Therefore, it was found that the methane production decreased, whereas the acetate

content increased with the presence and increase of HA. From this point, the inhibitory effect

of HA on the methanogenic activity can therefore be probably attributed to the accumulation

of acetate, the fermentation product in the vicinity of acidogen and acetogen consortia and the

substrate and H2 depletion in the centre of the granule where the methanogen was mostly

growing.

Furthermore, as it is suggested by Fick's first law of diffusion [i.e. J= -D(dc/dx)] that either a

short distance x or a large X-H2 (X-VFAs) concentration difference between the acetogen and

the methanogen cell surface improves the interspecies metabolite transport step of the

syntrophic reaction (43). However, pushing the diffusion metabolite transport by large values

for this concentration difference would result in a product inhibition of the acetogenic partial
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reactions by high XH2 (X-VFAs) and, thus, limit the overall carbon and electron flux.

Therefore, it was found that the accumulation of acetate with the presence of HAs did not lead

to an appropriate methanogen production.

It is also possible that the HAs may be absorbed on the surface of the extracellular polymer

(ECP) constitute of the granules, affecting the substrate and bio-gas transferring process

between the granule and its outside nutrient-providing milieu in the UASB reactor. For

example, it was reported that the sorption of phenanthrene to the soil humic fractions may

result in a higher concentration of substrate in the vicinity of the bacterial cells and, therefore,

may increase its bioavailability (187). Thus, it can be assumed that the removed COD

associated with the HA absorbing on the ECP can rather be considered to be the COD

physically trapped in the granular matrix rather than the biological digested COD.

The pore size and porosity of the ECP matrix affects cell activity through its regulation of

substrate and bio-gas transport. Substrate transporting limitations owing to the high absorbing

capacity of HAs on the surface of ECP may result in autolysis of the cores of the granules,

producing hollow granules. The porosity of the granules, possibly as an effect of bacterial

lysis, gives an inactive core of rather large granules, and thus decreases the interior

methanogenic activity (6).

11.7 Summary

According to the results presented in this chapter, the following conclusions can be drawn:

1) Based on the highly chemically-heterogeneous structures of the HA macromolecule, HAs

can be partiaUy hydrolyzed and decomposed by the acid fermentative consortium in the

UASB granules.

2) Instead of inhibiting the activities of the fermentative consortium of the UASB granule,

HA probably plays a mediating role in the electron and substrate interspecies transfer

among a variety of juxtaposed microniches located along the structure ofUASB granule.
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3) Owning to the granules layered microstructure, the most toxicity-sensitive methanogens

growed in the interior of the granule can be shielded from being completely exposed to the

HAs by the outer layer hydrolic and acidogenic fermentative bacteria. The methanogenic

activity inhibited by the HAs can easily be recovered by feeding with a proper substrate

(such as glucose, acetate, H2/C02).

4) The inhibiting effects of HAs on the methanogenic activity of the granule probably

resulted from the accumulation of fermentative products (such as acetate) at the inter-

faces between the fermentative acidogen consortium and the methanogen consortium

owing to the high absorbing capacity of HAs at these interfaces or on the surface of the

ECP constitutes of the granules.

5) The treatment of HA bearing waste water is possible from this primary study. However,

the influences of HAs on the granulation process, granule microstructure and interspecies

transfer which are closely associated with the core methanogenic process in the UASB

granule needs to be extensively investigated before a robust UASB granule which can

function effectively for the HA-containing waste water.

Further work on these aspects was beyond the scope of this investigation and in the

penultimate chapter, the important issue of exploiting the lignocellulose solid anaerobic

digestion sludge for the agricultural purpose is discussed.
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Fig.ll.2 Influence ofHA on the alkalinity of the UASB digestion solution
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Chapter 12

Applicability of Solid Anaerobic Lignocellulose Digestion Sludge to Soil

Conditioning

Ideally, natural systems are typically in a steady state as determined by environmental and

geological factors. In reality, agricultural systems, with crop and plant residue removal and

intensive soil tillage, hardly ever reach this state. As a result of environmental concern over

the use of synthetic fertilizers (e.g. nitrate leaching) and the rediscovery that, "there is but

one manure which permanently keeps up the fertility of land, and that is farmyard manure"

(141\ application ofbio-treated sludge has been re-awakened.

In principle, sludge is a valuable product that should be reused if possible. Sludge may be

applied to agricultural lands for further sludge treatment and improvement of the

characteristics of the land. Sludge acts as a soil conditioner to facilitate nutrient transfer,

increase water retention and improve soil properties. It can also serve as a partial substitute

for chemical fertilizers (42).

As one of the important products from the solid anaerobic digestion process, the anaerobic

digestion sludge can be considered as a relative bio-stable soil humus - an amphoteric

heteropolycondensate of carbon, nitrogen, sulphur and phosphorus compounds (193). It shelters

and nourishes soil organisms while it buffers and moderates physical, chemical and biological

processes and attributes of soil.

The characteristics of sludge that affect its stability for land application include moisture

content, pathogenic bacterial content, nutrients and metals. In this chapter, the hygienic

effects of the anaerobic digestion process and the applicability of this anaerobic digestion

sludge as a soil conditioner were investigated and evaluated.

12.1 The nutrient characteristics of anaerobic digestion sludge

As already mentioned, the digestion sludge can be used as a valuable soil conditioner and soil

fertilizer for many crops because it may contain considerable amounts of nitrogen (N),

phosphorus (P) and trace elements. To evaluate the nutrient value of the sludge, the nitrogen
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(N), phosphorus (P), Potassium (K) and some trace element contents of dried anaerobic

digestion sludge were examined. The results are presented in table 12.1. The major nutrient

value comparison of this anaerobic sludge with the stabilized activated sludge and fertilizer is

presented in table 12.2.

Table 12.1

Nutrient composition of dried anaerobic sludge

Parameter Amount (g/kg)
Ash 476.9

Volatile Solid 523.1
Total Nitrogen (N-Tot.) 27.2

Water-Soluble Nitrogen (N-Sol.) 0.7
Total Phosphorus (P-Tot.) 4.3

Water-Soluble Phosphorus (P- Sol.) 0.00143
Total Potassium (K-Tot.) 14.6

Water-Soluble Potassium ( K- Sol) 0.001
Ca 37.3
Mg 4.1
Na 9.831
Mn 0.312
Fe 5.757
Cu 0.342
Zn 0.261
B 0.03

As can be seen from table 12.1, the anaerobic digestion sludge contained considerable macro-

nutrients (N, P, K) and a series of micro-nutrients (Ca, Mg, Mn, Na, Fe, Cu, Zn, B). The

water-soluble fractions of macro-nutrients in the sludge were found to be substantially low.

This implies that the release of these macro-nutrients from the anaerobic sludge into the soil

will be slow. The quick loss of the nutrients because of leaching can be prevented if the

sludge is applied to agricultural land.
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Comparisons of nutrient contents of anaerobic digestion sludge with other dried sludge

Nitrogen (N.%) Phosphorus (P.%) Potassium (K.%)

Anaerobic sludge 2.72 0.43 1.02

UASB sludge # 0.9 2.1 0.4

Activated sludge * 3.22 2.3 0.3

Fertilizer* 5 10 10

# Mehmet Ali Y. kselen (175\ 1998.

* Tchobanoglous (242),1991.

From table 12.2, it can be seen that the nitrogen content and potassium content of anaerobic

sludge are comparable with or higher than activated sludge and UASB sludge. However, it is

not recommended that commercial fertilizer be completely substituted with anaerobic sludge

owing to its relatively lower macro-nutrient content. Therefore, it can be suggested that the

anaerobic sludge be applied together with commercial fertilizer to agriculture land.

12.2 The hygienic characteristics of anaerobic digestion sludge

In our investigation, the anaerobic digestion of lignocellouse residues was carried out under

thermophilic conditions followed by mesophilic conditions with an alkaline solution as the

initial feeding medium. The hygienic status of anaerobic digestion sludge was evaluated by

counting the pathogenic bacteria in the sludge. For the purpose of comparison, the pathogenic

bacteria counting was simultaneously carried out on the acidified landfill sludge (room

temperature). The bacteria counted included total coliforms ( Macconkey agar, Biolab.), fecal

coliforms groups ( M-FC agar, Biolab.), fecal streptococci groups ( Streptococcus selective

agar, Biolab) and Sa/omonella sp. groups ( Brilliant Green Agar, Biolab). The results are

shown in table 12.3.

From the results in table 12.3, it can be seen that the disinfecting effects of anaerobic

digestion under given experimental circumstances were generally good when compared with

acidified landfill sludge. The total number of coliforms in the anaerobic digestion sludge was

in the range of 102 cfulg, while in acidified landfill sludge it was in the range of 106 - 107
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cfu/g. No fecal coliforms were detected in anaerobic digestion sludge, while they were found

in the range of 106 cfu/g in acidified landfill sludge. Fecal streptococci were not found in

anaerobic digestion sludge, but about 103 cfu/g were discovered in acidified landfill sludge at

an early stage (20 weeks). SalomonelIa sp. was in the range of io' cfu/g for anaerobic

digested sludge, whereas about 105 - 106 cfu/g was detected in acidified landfill sludge. These

results confirm that the anaerobic digestion process under thermophilic conditions has

promising disinfecting effects in contrast with a normal acidified landfill process. From a

hygienic point of view, the anaerobic digestion of sludge is suitable for agricultural lands

without extra disinfecting treatment, while further disinfecting treatment, such as composting,

is definitely required for acidified landfill sludge before it can be applied to agricultural lands.

Table 12.3 Pathogenic bacterial count of anaerobic sludge and acidified landfill sludge

(cfulg digested sludge)

Pathogenic Anaerobic digestion sludge Acid landfill slud] e
bacteria 4 weeks 6 weeks 20 weeks 44 weeks
Total coliforms 1.6xl02 1.2 x102 7.46 xl O" 8.63 xl07

Fecal coliforms nd nd 1.0 x 106 31 xl06

Fecal streptococci nd nd 7.0 x 103 nd
SalomonelIa sp. 0.11x 102 0.32 x102 4.88 x 105 35.2 xl O"
cfu: Colony forming units

12.3The water-content or water-holding characteristics of solid anaerobic digestion

sludge

As water use restrictions become tighter and more of a superintendent's operating budget is

used for water, water content and water-holding capacity of the sludge becomes increasingly

important in its application to agricultural land. The water contained in the sludge can be

classified as free water, immobilized water and bound water. Therefore, in order to evaluate

the free andlor immobilized and bound water content of the anaerobic digestion sludge under

our experimental conditions, four portions (20 g - 25 g) of 2 week - thermophilic - 4 week -

mesophilic anaerobic digestion sludge were consistently dried in an oven at 103-105 °c for 68

hours. The cumulative water loss and evaporation rate were monitored during the drying

period and the results are presented in Fig.12.l.and Fig.12.2. The relationship between

evaporation rate and moisture content is presented in Fig.12.3.
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From the results in Fig.12.1, it can be seen that the water loss through evaporation was less

than 10% after one hour of drying. This indicated that the largest fraction of the water in the

anaerobic digestion sludge is strongly held in the structure of the sludge, and it does not

dewater easily. Little water was evaporated after 24 hours of drying at a temperature of 103-

105 oe, more than 65% of the water can be evaporated during the first 20 hours of drying.

This suggested that a large part of the water in the sludge could be utilized by plants if it is

applied to the soil in the arid area.

The results in Fig.12.2 show that the water evaporation rate of the sludge increased greatly

during the first 4-hour drying process; it then decreased rapidly and appeared stable with the

drying process longer than 42 hours. The critical conversion point on the curve suggests that

most of the free and immobilized water evaporated during the first 4 hours of drying at a

temperature of 103-105 oe.

Furthermore, the types of water in the anaerobic digestion sludge can be determined from the

evaporation rate versus moisture content curve in Fig.12.3. It can be seen that the critical

moisture value is around 0.320 gig sludge. The difference between the x-coordinate at the

point of 0.683g1g sludge, which is the moisture content of the sludge at the start of the drying

test, and the x-coordinate at the critical moisture point ofO.363 gig sludge, can be considered

as the free and immobilized water content of the sludge, which is about 0.304 gig of sludge.

The bounded water content is between x-coordinate point, at which the water evaporation rate

is close to 0.0 g/h, and the x-coordinate at the critical moisture point of 0.320 gig sludge,

where the water evaporation rate reaches the maximum. Therefore, it can be calculated that

the anaerobic digestion sludge has about 44.5% free water plus immobilized water and 46.9%

bound water that is difficult to drain out of the sludge structure. Thus, the water-holding

capacity of this sludge is relatively high and will be beneficial to agricultural application in

dry-climate areas.

12.4 The metal desorption and absorption characteristics of anaerobic digestion sludge

The anaerobically digested lignocellulose sludge is essentially composed of humus and

microbial debris. Thus, similar to soil humic substances, it has considerable potential to
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accumulate and transport heavy metals in soil and aquatic environment through physical

absorption and/or chemical chelating. In the meantime, the metals retained in the sludge could

pose a potential risk to plants, animals and humans. It is important to have knowledge of the

metal absorption/desorption properties of anaerobic digestion sludge for agriculture land use

or soil conditioning.

The sample used was wet sludge with a moisture content of about 68%. Metal desorption

experiments were performed in the pH range of 1-7 using HCI for pH adjustment. The wet

sludge sample with a moisture content of about 68% was used. Under each given pH, 50 g of

wet sludge was supplied with 100 ml distilled water. The mixture was kept in suspension for

12 hours. The suspensions were then filtrated (Schleicher & Schuell) and the metal contents

of the filtrate were analyzed by inductively coupled plasma (ICP) spectrometry (Varian

Liberty Series II Sequencial ICP AES). The results are illustrated in Fig.12.4.

The results in Fig.12.4 indicate that desorption of metals such as Fe, AI, Cu, Pb, Si and Mn

did not occur under normal environmental conditions (pH 6-7). Desorption of these metals

only occurred at pH 1.0 or less, although a considerable desorption of Ca can take place at pH

5. The concentration of K and Na in the suspension remained relatively stable throughout the

pH range from 1.0 to 8.0; there is no significant desorption ofthese metals under conditions

with pH at 1.0 or lower than 1.0. This suggested, on the one hand, that desorption / absorption

of K and Na from the sludge is pH independent, and on the other hand, it pointed out that the

bindings of heavy meals on the anaerobic sludge are normally stronger than the binding of

non-heavy metals such as Ca, Mg, K and Na. The interactions between these non-heavy

metals and the anaerobic sludge are likely through ion-exchanging without the involvement of

WorOa.

Heavy metal incorporation properties of anaerobic sludge were investigated by measuring

absorption properties ofPb, Zn, Cu and Fe on the sludge. The experiments were carried out in

600 ml beakers with 20 g wet anaerobic sludge added to a series of 100 ml stock metal

solutions having concentrations of 0-300 mg/I. The mixed solutions were kept in suspension

by magnetic stirring for 2.5 hours. The pH of the solutions was initiallyadjusted to around 7.0

by 1 M NaOH. During the absorption process, each 15 ml sub-suspension solution was taken

during the absorption process for metal analysis at 0.5 hour intervals. The residual metal
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content in the suspension under different metal concentrations and absorption times was

analyzed by ICP spectrometry. The amount of each metal to be absorbed by the anaerobic

sludge was determined. The changes in absorption amount and equilibrium concentrations of

heavy metals during the time course were monitored and the results are presented in Fig.12.5

- Fig.I2.8. The absorption curves under different heavy metal concentrations are given in

Fig.I2.9 - Fig.I2.I2.

As can be seen in Fig.I2.5-12.8, the absorption of Pb, Zn, Cu, Fe by the anaerobic sludge rose

steadily in time course and tended to stabilize after 120 minutes. This suggests that the

absorption of heavy metals such as Pb, Zn, Cu, Fe is not a slow process as the absorption

equilibrium can easily be reached in 2 hours. The absorption process was found to be faster

and more effective under higher concentrations of heavy metals. For example, the absorption

of Pb, Zn and Cu immediately (about 0.5 hour) reached equilibrium when their concentrations

were as high as 300 mg/1.

The effects of heavy metal concentrations on the absorption processes can be deduced from

Fig.12.9-l2.l2. The results indicated that the absorption of heavy metals on the anaerobic

sludge increased exceptionally with the increases in the addition of heavy metals. In

particular, a positive linear relationship was found between the absorption of Fe on the

anaerobic sludge and the rise in the concentration of additional Fe. Compared to the increases

in the amount of absorbed heavy metals on the anaerobic sludge, the residual (equilibrium)

concentrations of these heavy metals in the suspensions increased less or tended to stabilize

with the increasing addition of each heavy metal. This suggested that the absorption of heavy

metals on the anaerobic sludge was strongly dependent on the available concentrations of the

heavy metals. In another words, it can be assumed that the anaerobic sludge suspension had a

high heavy metal-ions buffering capacity. Therefore, the residual concentrations of these

heavy metal ions remained stable in spite of the remarkable external contributions of the

heavy metal ions to the suspension system.

As was discovered, the heavy metal desorption capacity of anaerobic sludge under the

environmental conditions where the pH is higher than 1.0 was extremely weak. The anaerobic

sludge can therefore be considered to be an effective heavy metal absorbent rather than a

heavy metal spreader in the environment. The heavy metal absorptive property of the
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anaerobic sludge should not be a big obstacle for its application on agriculture land because

its weak and slow heavy-metal-releasing characteristics can prevent, to some extent, the risk

of intake of heavy metals by plants.

In order to investigate the effects of the additional heavy metals on the absorption/desorption

properties of the originally-contaminated metals such as K, Ca, Mg, Si, Fe in the anaerobic

digestion, the residual concentrations of K, Ca, Mg, Si, Fe in the suspensions under different

concentrations of additional heavy metals were measured by ICP. The absorption/desorption

time was 120 min. The pH of the suspensions was maintained in the range 7.0-7.6. The results

were presented in Fig.l2.13- Fig.12.17.

The results in Fig.12.13-Fig.12.l7 indicate that the additional heavy metals such as Pb, Zo,

Cu and Fe enhanced the desorption of Ca, Mg, K and Si from the anaerobic sludge. The

residual concentrations of Ca, Mg, K and Si in the anaerobic sludge solutions generally

showed augmentation with the increases of heavy metal addition. This suggests that the heavy

metals (Pb, Zn, Cu, Fe) added into the suspensions were exchanged for some of the Ca, Mg,

K and Si from the surface structures of the anaerobic sludge. Interestingly, the addition ofPb,

Zn, Cu and Fe did not incur any desorption of Fe from the anaerobic sludge. Vice versa, the

absorption of Fe on the anaerobic sludge was strengthened by the addition of these heavy

metals. These fmdings further pointed towards the fact that the anaerobic sludge has a

stronger affinity for heavy metals than for non-heavy metals. The absorption of these heavy

metals on the anaerobic sludge in some ways resulted from the desorption of non-heavy

metals such as Ca, Mg, K and Si from the anaerobic sludge. This indicated that anaerobic

sludge has a selective absorption affmity for heavy metals. Since the metal toxicity to the

environment comes mainly from the mobile heavy metals, if properly designed, the selective

heavy metal absorption and fixation properties of anaerobic sludge can be exploited to reduce

the availability of heavy metals to plants and humans in an aquatic environment. A point

worth mentioning is that the heavy metal absorption characteristics of anaerobic digested

sludge should not be a big obstacle to its agricultural land application, owning to its slow

heavy-metal releasing property and a promising ion- exchange capacity between non-heavy

metals and heavy metals.
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12.5 The micro-structure of the anaerobic digestion sludge and the structure alterations

by microscopical observations

To gather information regarding the micro-structural characteristics of solid anaerobic

digestion sludge and the structural alterations of the lignocellulose sample during digestion,

the microscopical observations were made with a scanning electron microscope (SEM). The

anaerobic sludge was free-dried during the first week and at the end of the digestion process

(2 week-thermophilic-4 week-mesophilic) and the fresh lignocellulose sample (tobacco dust)

was vacuum-dried at room temperature. The micro-structure observations were made using a

Topcon ABT-60 scanning electron microscope. The SEM photos are shown in Fig.12.18.

The micro-structure of lignocellulose (tobacco dust) is presented in Fig.12.18 (AI) and

Fig.12.18 (A2). The micro-organism in the early anaerobic digestion process are presented in

Fig.12.18 (B1) and Fig.12.18 (B2). The microstructure of the anaerobic digestion sludge is

presented in Fig.12.l8 (Cl) and Fig.12.18 (C2).

As can be seen, the microstructure of the lignocellulose (tobacco dust) has evidently been

altered by anaerobic digestion. The arrangement of stem-like structures in tobacco dust not

treated by anaerobic digestion was not found in the anaerobic digestion sludge. The anaerobic

digestion sludge appeared to be much more porous and seemed to have more open structures

than the fresh lignocellulose sample, which was not treated with anaerobic digestion. The

anaerobic sludge appeared highly ruftled on the surface, with multi-orientation and

dimensions of protrusions extending from the plane of the sheet (flake)-like structure. This

highly porous and greatly corrugated surface structure of anaerobic sludge assists in

understanding its high water-holding capacity, strong affinity for heavy metals, large heavy

metal absorption capacity and slow metal releasing property. This special micro-physical

structure of lignocellulose anaerobic digestion sludge is also helpful in understanding the

benefits that the anaerobic sludge could bring about to agriculture land by exerting a number

of functions that are typical and specific to humified soil organic matter. They include the

slow release of nutrients such as N, P, and S, high CEC (cation exchange capacity), pH buffer

capacity, specific physiological effects on plant growth, and an extended capacity of

interactions with micro-nutritive and/or micro-toxic metal ions and xenobiotic organic

molecules such as pesticides (54).
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At the early stage of the anaerobic digestion, the microbial community consisted of well-

separated rod-shaped cells of variable length and small rods and cocci with smooth surfaces.

However, the cells of these microorganisms could hardly be observed in the end digested

sludge (Fig.12.18 (Cl,C2». The survival capacity of pathogens is limited by a thermophilic

anaerobic digestion due to the narrow requirements of these organisms for specific substrates

and temperatures for optimal activity. Therefore, most of the indicator micro-organisms (total

coliform, fecal coliform and fecal streptococci) and viruses can be destroyed after a

continuous thermophilic-methophilic anaerobic digestion. The micro-organisms present at the

early stage of digestion most likely consisted of lignocellulose hydrolysis/degradation fungi

and/or acidic fermentation bacteria. It can therefore be postulated that the fmal digested

sludge is free of most fungi and lor acidic fermentation bacteria and pathogens.

12.6 Discussion and Summary

Like humic substances, the anaerobic sludge consists of a chemically heterogeneous mixture

of structure-undefined large molecular humic polymers and a large amount of micro-

organisms. It is virtually impossible to describe exclusively chemical structure of the

anaerobic sludge. However, it is possible to depict the general structure of the "typical"

chemical functions of the anaerobic sludge on the basis of available functional compositions

of humic substances. Accordingly (236,148), the macro-molecular structure of humic polymers

consists of aromatic, phenolic, quinonic, and heterocyclic "building blocks" that are randomly

condensed or linked by aliphatic, oxygen, nitrogen, and sulpur bridges. The macromolecule of

HS bears aliphatic, glucidic, amino acidic, and lipidic surface chains as well as chemically

active functional groups of various natures (mainly carboxylic, but also phenolic and

alcoholic hydroxyls, carbonyls etc.), which render the humic polymer acidic.

The extracellular polymer of the micro-organism (ECP) is another important polymer in the

anaerobic sludge. Bacterial ECP is defined as polysaccharide-containing structures of

bacterial origin lying outside the integral elements of the outer membrane of Gram-positive

cells and the peptidoglycan of Gram-positive cells (49, 50). ECP is made up of organic debits,

phages, lysed cells and other organic material excreted by the microbial cells. It contains

polymers of saccharides, proteins, lipids, phenols and nucleic acids. Because of its porosity
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and the multi-functional groups in its physical and chemical structure, ECP can trap soluble

nutrients which include trace metals in the environment (235).

The absorption of dissolved metals by the anaerobic sludge was likely to be based upon

several possible mechanisms, such as weak physical sorption, ion exchange or surface

complexation. As can be seen, the humic polymers and the ECP of the micro-organisms in the

anaerobic sludge are highly poly-electrolic, with several sites and functional groups

potentially able to bind with metal ions, mineral surfaces and other organic compounds. As

far as the results obtained in this study are concerned, it can be postulated that the selective

absorption of heavy metals on the anaerobic sludge was likely through forming multi-dental

chelate complexes with the humic polymers and the ECP of the micro-organisms in the

anaerobic sludge. However, the absorption of non-heavy metals, such as Ca, Mg, K, Si, on the

anaerobic sludge was possible by weak physical sorption or ion exchange.

According to the results obtained in this study, the following conclusions can be made:

1) The anaerobic digestion sludge has about 44.5% free water plus immobilized water and

46.9% bound water that is difficult to drain off. The water-holding capacity of this sludge

is relatively high and is beneficial for agricultural application in dry-climate areas.

2) The anaerobic digestion process under thermophilic conditions has promising disinfecting

effects in contrast to normal acidified landfill processes. From a hygienic point of view,

the anaerobic digestion sludge is suitable for agricultural lands without extra disinfecting

treatment, while further disinfecting treatment, such as composting, for acidified landfill

sludge is definitely required before it can be applied to agricultural lands.

3) The nitrogen and potassium content of anaerobic sludge are comparable or higher than

that of activated sludge and UASB sludge. The anaerobic sludge is suitable to be applied

with commercial fertilizer in agriculture land application.

4) The anaerobic sludge has a strong selective absorption affinity for heavy metals. The

absorption of heavy metals partially resulted from the desorption of non-heavy metals

such as Ca, Mg, K and Si from the anaerobic sludge.
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5) The heavy metal desorption capacity of anaerobic sludge under normal environmental

conditions (pH higher than 1.0) was impressively weak. The anaerobic sludge can be

considered to be an effective heavy metal fixer rather than a heavy metal spreader. The

heavy metal absorption property of the anaerobic sludge should not be seen as an obstacle

for its application to agriculture land when its weak and slow heavy-metal-releasing

characteristics are considered.

6) The highly ruffled surface, with multi-orientation and dimensions of protrusions

extending from the plane of the sheet (flakej-like structure of the anaerobic sludge

confirmed the high water-holding capacity, strong affmity for heavy metals, large heavy

metal absorption capacity and slow metal releasing properties of anaerobic sludge.

7) The micro-organisms at the early stage ofthe anaerobic digestion were composed of well-

separated rod-shaped cells of variable lengths and small rods and cocci with smooth

surfaces. The fmal anaerobic digestion sludge appeared to "be sterilized ".

8) To conclude, solid thermophilic-mesophilic lignocellulose anaerobic digestion sludge can

be viewed as a humus-rich hygienic product that improves soil fertility and water-holding

capacity, nourishes plants and immobilizes heavy metals in the environment.
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Fig.12.18 (AI) SEM photos of the fresh lignocellulose substances

before digestion ( 150x)

Fig.12.18 (A2) SEM photos of the fresh lignocellulose substances
before digestion (lOOOx)
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Fig.12.18 (Bl) SEM photos of the lignocellulose degrading microorganisms at the early stage of
the anaerobic digestion process ( lOOOx)

Fig.12.18 (B2) SEM photos of the lignocellulose degrading micro-organisms at the early stage of
the anaerobic digestion process ( 5000x )
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Fig.12.18 (Cl) SEM photos of the anaerobic digestion sludge of the lignocellulose
substances (lOOOx)

Fig.12.18 (C2) SEM photos of the anaerobic digestion sludge of the lignocellulose
substances (5000x)
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Conclusions

With respect to the chemical and structural complexity of lignocellulose substrate, the

accomplishment of the bio-degradation of lignocellulose residues is composed of a series of

slow microbiological degradation and chemical alteration processes. From the results in this

dissertation, it can be concluded that the re-utilization of lignocellulose wastes for energy

recovery and agricultural land application by solid anaerobic digestion is plausible. An

efficient, environmentally friendly and value-added method of disposal of lignocellulose

residues is presented and the following conclusions can be drawn:

• The biodegradation of lignocellulose substrate can occur in extremely sulphate acidic

simulated landfill environments. This process is, however, noticeably slow and

unhygienic. As a result of the metabolic activities of the micro-organisms, the initially

sulphate acidified habitats were quickly self-neutralized. Although the involvement of

individual heterotrophic, prokaryotic acidophiles was not eliminated, the

biodegradation of lignocellulose substrate in this special environment probably

requires micro-eukaryotic organisms, such as filamentous fungi and yeast and soil

actinomycetes. The acidophilic bacteria, filamentous fungi and soil actinomycetes

were found to be dominant in the degradation process. The evidence of whether the

yeast is detected or not could be the signal which indicates whether sugar was formed

from the ligno-polymers or degraded into volatile fatty acid during the lignocellulose

decomposition. With the production of soluble organic acids and the consumption of

oxygen and other potential oxides, the landfill habitats were acclimatized to the

development of anaerobic bacteria (such as sulphate-reducing bacteria). A number of

pathogenic bacteria (coliforms and sa/omonella sp.) were consistently detected during

the degradation process. It is comprative to enhance the processing efficiency and

hygienic effects of the degradation of lignocellulose substance in both

environmentally and economically beneficial ways.

• Regarding the composition and chemical structural complexity of lignocellulose,

initial hydrolysis of lignocellulose substrate into soluble forms is critical for a

successful anaerobic digestion of lignocellulose substrate.
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• The influence of digestion time on the destruction of lignocellulose to volatile fatty

acid was evident. At least 2-3 weeks of digestion time was required with a batch

reactor or a semi-continuous system reactor. The leachate circulation was necessary

when the short retention time was used. The highly negative oxidation reduction

potential status of the initial feeding medium (such as NaOH solution or catholic

radical waters) improved the acetic acid and the total volatile fatty acid production

during the fermentation process. From the point of volatile fatty acid production and

destruction of volatile solids, the acidification process of lignocellulose substrate was

successfully promoted by a combined pre-treatment method, which involved the

mechanical (roll-milling), physical (freezing/thawing) and chemical (alkali wetting

agent) pre-treatment and the thermophilic co-digestion with activated sludge.

• The thermophilic high-rate digestion may accelerate the hydrolysis and acidification

digestion process. However, partially because of the high concentration of volatile

fatty acid produced in this acidification fermentation process, the methanogens, which

was the most sensitive to the accumulation of acidification products and other

toxicants, was easily inhibited at this high-rate digestion stage.

• It was found that diluting the high-rate acidification sludge system, adjusting the pH of

the recycled leachate and using a two-phase digestion procedure could recover the

methanogenic phase from the high-rate acidogenic phase. Dilution could alleviate the

inhibition from the accumulated intermediate acid products and reduce the

concentrations of the toxic compounds (such as lignin-related phenolic and HAs)

formed in the process of digestion. The integrated digestion configuration composed

of a high-rate thermophilic acidogenic stage followed by a pH and dilution controlled-

mesophilic stage was desirable to lead the biotransformation of the lignocellulose

substrate all the way to the end-product of methane and ultimately stabilize the

digestion system.

• Denitrification during the anaerobic digestion of nitrate-containing lignocellulose

residues was unavoidable. There was competition between denitrifiers and
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• Denitrification during the anaerobic digestion of nitrate-containing lignocellulose

residues was unavoidable. There was competition between denitrifiers and

methanogens for carbon sources. Increasing the eIN ratio of the substrate in the head

loading substrate could assist the accomplishment of the denitrification process and

accelerate the methanogenic developing course.

• Microbial flora respond to their abiotic environment and, as a result, select a

favourable community structure. Owing to the complexities of the lignocellulose

substrate fed to the digester, a complex diversity of micro-organism species is

necessary to facilitate a complete methane fermentation process. The first group of the

young microbial community in the decomposition process of lignocellulose substrate

might be the indigenous consortia, such as filamentous fungi and soil actinomycetes,

from the lignocellulose sample and activated sludge. They previously attacked these

complex polymers and secreted extracellular hydrolytic enzymes into the digestion

systems. Most of them were aerobic genera, which rapidly exhausted the trace oxygen

left in the digester system and generated a proper anoxic haven for the development of

anaerobic acidogenic genera. The acidogenic bacteria can be reckoned as the second

group of the digestive microbial community that provides the methanogens (the third

candidate in the community) with a suitable carbon source (volatile fatty acid, C~)

and reductants (H2). The more diverse community endorsed its wider functioning

range of degradation and higher adaptability to the fluctuations of the associated

environmental factors and the substrate to be digested. Like a diversity of micro-

consortia in the vast majority of environments coexisting as communities to degrade

the complex substrate by acting in concert, these three functional groups of micro-

organisms coexist in the young microbial community of the digestion system to

perform the complete degradation and stabilization of lignocellulose substrate. As the

anoxic digestion proceeded, the community showed a higher selectivity for the

anaerobic bacteria genera.

• Not all the acidogens produce methane. A densely acidogen-populated community did

not always lead to a higher methanogen population, therefore microbiologically

adjusting the acidogenic fermentation pathway to methanogenic fermentation was

- 236-

Stellenbosch University http://scholar.sun.ac.za



Conclusions

compulsory. From this point onwards, the two-phase digestion system is

microbiologically more favourable than the single-phase digestion system.

• The influence of alkaline pre-treatment on the microbial population communities was

not as evident as expected. The alkaline pre-treatment effects on the acidification

process of lignocellulose can therefore be seen as abiotical rather than as biological.

• The inhibiting effect of the soluble concentrated organic compounds formed as the

sub-products during the high-rate acidification process could be solved to some extent

by a dilution process. However, the complete degradation and special treatment of

these complicated organic sub-products (especially HAs, the major inhibitory sub-

products of lignocellulose digestion and heavy metal spreader) need further

investigation to obtain a complete solution to the inhibitory and potential pollution

problems. The application of ultrasonic irradiation and flocculation with aluminium

salts to the further treatment of HA solutions was investigated. Simultaneously, the

degradation of HA by lignocellose-degradation micro-organisms and the microbial

consortia of UASB granules and their toxicity to the anaerobic microbial consortia

were evaluated.

• Both the chemical and physical characteristics of HAs were altered by ultrasonic

irradiation, depending on the irradiation time. Ultrasonic irradiation first acted on

the lower-molecular-weighted fraction (dominant fraction) of HA. Around 50% of

this fraction decomposed into volatile forms and vanished from the system. The

higher molecular-weighted fraction (minor fraction) tended to aggregate into a

colloidal form and remained in the system. The chemical modifications induced by

ultrasonic irradiation happened mainly in the carboxylic acid groups, the methylene

groups a to aromatic rings, a variety of aliphatic carbons (mainly polymethylene)

and aliphatic carbons f3 to aromatic rings and carbons a to oxygen. The SEM

micrographs showed that the fibre structures of HA macromolecules quickly

deteriorated and the aggregation of a closely-woven flake network structure

resembling sponge and a thickened sheet structure with finger-like protrusions were

frequently observed after ultrasonification.
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• The introduction of the ultrasonic irradiation into the process of flocculation and/or

coagulation of HA by preformed aluminium hydroxide visibly improved the

efficiency of HA removal. The effect was more evident when ultrasonic irradiation

performed on the HA and preformed aluminium hydroxide floes simultaneously.

Aggregation or condensation of the flocculation system was one of the reasons why

ultrasonic irradiation enhanced the HA removal efficiency via preformed aluminium

hydroxide floes. The ultrasonic irradiation could not only provide more complex

sites for the neutralization of the positive charges of the floes but also increased the

interaction activities between exchangeable species of the floes and the anionic

functional groups of the HAs during the ion-exchanging process.

• The fungal and bacterial isolates, except the yeast, from the lignocellulose degradation

system were able to partially degrade the HAs. The biological decomposition of HA

was found to be enhanced by ultrasonic irradiation. This effect could be attributed to:

1) the chemical oxidation effects of ultrasonic irradiation on the HAs, thus making HA

more accessible to the bacterial or fungal exoenzymatical hydrolyzing; 2) the colloidal

effects of ultrasound on the polydispersed HA, which could enhance the aggregation

ofHA in the mycelial net structure of the filamentous fungi.

• Among the three functional groups of anaerobic bacteria consortia, methanogens are

the most sensitive to the toxicity of HA. However, the fermentative consortiums can

survive and grow properly on the easily digestible carbon source (such as glucose) in

HA solutions where the HA concentration was as high as 0.1 gil.

• HAs can be partially hydrolyzed and decomposed by the acid fermentative consortia

in the UASB granules. Instead of inhibiting the activities of fermentative consortia of

the UASB granule, HA probably played a mediator role in the electron and substrate

interspecies transfer among a variety of juxtaposed microniches located along the

structure of the UASB granule. Owning to the granules' layered microstructure, the

most toxicity-sensitive methanogens populating in the interior of the granule can be

shielded from being completely exposed to the HAs by the hydrolytic and acidogenic

fermentative bacteria in the outer layer. The methanogenic activity inhibited by the
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HAs can be easily alleviated by feeding with proper substrate (such as glucose, acetate

and H2/C02).

• The inhibitory effects of HAs on the methanogenic activity of the granule probably

resulted from the accumulation of fermentative products (such as acetate) at the inter-

faces between the fermentative acidogenic consortia and the methanogenic consortia

due to the high absorbing capacity of HAs at these interfaces or on the surface of the

ECP constitutes of the granules.

• The treatment of HA bearing waste water is possible from this primary study.

However, the influence of HAs on the granulation process, the granule microstructure

and the interspecies transferral which are closely associated with the core

methanogenic process in the UASB granule needs to be investigated extensively

before a robust UASB granule, which can handle the HAs containing waste water

efficiently, can be developed.

• The water-holding capacity of the solid anaerobic digestion sludge is relatively high

and is beneficial to agricultural application in dry-climate areas. From a hygienic point

of view, the anaerobic digestion sludge is suitable for agricultural lands without extra

disinfecting treatment, while further disinfecting treatment, such as compo sting, for

acidified landfill sludge is definitely required for the application of the sludge to

agricultural lands. Concerning nitrogen, potassium and other trace nutrient contents, it

is recommended that the anaerobic sludge be applied together with commercial

fertilizer in agriculture land application. In addition, the anaerobic sludge has a strong

selective absorption affinity for heavy metals. The absorption of heavy metals partially

resulted from desorption of none-heavy metals such as Ca, Mg, K and Si from the

anaerobic sludge structure. The heavy metal desorption capacity of anaerobic sludge

under normal environmental conditions (pH higher than 1.0) was impressively weak.

The sludge can be considered to be an effective heavy metal fixer rather than a

spreader. The heavymetal absorption property of the anaerobic sludge should not be a

striking obstacle to its application to agriculture land when its weak and slow heavy-
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metal-releasing characteristics are considered. To conclude, solid thermophilic-

mesophilic lignocellulose anaerobic digestion sludge can be viewed as a humus-rich

hygienic product that improves the fertility and water holding capacity of the soil,

nourishes plants and immobilizes heavymetals in the environment.

The complexity of lignocellulose make it difficult to lead the degradation process all the way

to methane. The degree of solubilization, the modification and the conversion of the different

components are not very clear, also the overall anaerobic degradation of lignocellulose is not

yet understood at chemical and micro-organism species level. For example, it is known that

various micro-organisms are involved in the degradation process and a diversity of chemically

complicated intermediate products are formed during the digestion process. However, the

details of the micro-organisms at species level, further degradation or bio-conversion of the

complex intermediate products and the extent of between particular fungi and/or bacteria

involved in the degradation of lignocellulose (including intermediate products) are not clear.

Therefore, further extensive investigations at microbiological, genetical and chemical levels

are required to elucidate the mechanisms behind the solid anaerobic digestion of

lignocellulose substrate and to promote an advanced technology for the utilization of

lignocellulose wastes in accordance with the sustainable development ethos.

In addition to the theoretical achievements, an environmentally and economically beneficial

technology to utilize lignocellulose wastes and activated sludge can be established as is

proposed in the following flow-sheet (Fig.13.t).
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I Lignocellulose Substrate

Mechanical-Physical-Chemical Combined Pre-treatment
(reducing size and crystallinity, increasing surface area and pore

size of lignocellulose substrate to improve its solubility)

rt Activated Sludge I
Thermophilic Anaerobic Acidogen Fermentation

( hydrolysis/solubilization, acids formation and killing
pathogenic micro-organism)

~
Methophilic Anaerobic Methanogen Fermentation

(Converting YFA, ethanol, methanol etc. into methane)

HEnergy Recovery J lIP'
lIP'

l Bio-gas (C02, C~) J
Humus, soluble biological
refractory intermediate organic

~ products (e.g. humic acids)

,............... _ .......................... ....... _ .................... ...................................................... _ ......................... ....... _.- .................................................

, H Energy Recovery I Humic Acids Extraction

,
......................... ...... _ ................................................................. _ ...-.- ..._._ ... H Nutrients Recovery J

+ .. 1 1F
Humic acids-bearing - Humic Acids Humus
Biological refractory (soil conditioner/ fertilizer,
leachate mixture bio-absorbenn

~ u uIUASB Reactor
Ultrasonic Irradiation

~
Chemical Purification and J• Modification,
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Chemicals

Absorption with Preformed Biological Degradation with 1FAluminium Salts Special Fungi and/or Bacteria

lP' Humic Acids

+ 1 Chemicals (dispersant) )
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(soil conditioner/ Humic Acids Reduced Effluent Jfertilizer. bio-absorbent )

Fig.13.t The utilization of lignocellulose wastes in the sustainable development ethos
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