
Determining a Least-cost

Routing and MAC Strategy

for a Rural Communications Ad hoc

Network

Stephan van Ellewee

Thesis presented in partial fulfilment of the requirements for the degree

Master of Science in Electronic Engineering
at the University of Stellenbosch

Supervisor: Dr. R. Wolhuter

December 2006

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is
my own original work and that I have not previously in its entirety or in

part submitted it at any university for a degree.

Signature Date

Abstract

Outside the confines of cities and metropolitan areas, telecommunications may still be re-

quired. Farmers may, for example, want to communicate with each other or with local munic-

ipality or law enforcement. Various factors may make the application of fixed infrastructure

telecommunications networks to rural situations like these unfeasible. Fixed infrastructure

may prove to be ineffective due to geographic, social or monetary reasons.

Ad hoc networking seems like an intriguing solution to these elements of the rural telecommu-

nications problem. Instead of using the client-server architecture approach, ad hoc networks

use a peer-to-peer network architecture that allows the network to change in a more dynamic

fashion. Hosts of such a network can join or leave the network dynamically and will share in

the forwarding responsibility. Routing is done dynamically.

Transceiver range is still an issue. To counteract this problem satellites can be used to extend

the communications range of a network. Communication with a satellite can be added by

using gateway hosts that are equipped to establish satellite up- or downlinks. Even if one

such gateway host is deactivated, ad hoc network hosts should be able to find alternative

gateways (if such alternative gateways exist).

For this thesis, various MAC and Network protocols will be evaluated. One protocol set

will be selected and adapted to a low-bandwidth situation. Cross layer design will be used in

an attempt to decrease overhead of this strategy. A simulation model was devised to predict

system performance. These simulations was followed by interpretation of results which ren-

dered a theoretical basis with which network behaviour can be explained and even predicted.

A tool-like framework has, in effect, been developed for the simulation and development of

ad hoc network protocols. Novel approaches to protocol behaviour analysis have also been

devised.

i

Opsomming

Telekommunikasie word ook benodig in landelike gebiede. Boere mag, byvoorbeeld, in verbind-

ing wil tree met mekaar of met die plaaslike munisipaliteit of wetstoepassing. Huidige vaste

infrastruktuur telekommunikasie-netwerke mag egter nie altyd geskik wees vir sulke landelike

situasies nie. Faktore sluit in geografiese, sosiale of geldelike redes wat daartoe kan lei dat

vaste infrastruktuur nie effektief toegepas kan word nie.

Om hierdie redes wil dit voorkom asof ad hoc netwerke ’n goeie alternatief bied vir die

landelike telekommunikasie-probleem. In plaas van die standaard kliënt-bediener benadering

word ’n eweknienetwerk-argitektuur gebruik, wat toelaat dat die netwerk in ’n meer di-

namiese wyse kan verander. Nodusse van so ’n netwerk kan dinamies bykom of weggaan van

die netwerk en alle nodusse neem deel aan die aanstuur (Engels:“forwarding”) van pakkies.

Paaie word dinamies gevind.

Kommunikasieafstand bly steeds ’n probleem. Om die effekte van hierdie probleem teen

te werk, kan van satelliete gebruik gemaak word om dus kommunikasie oor lang afstande

moontlik te maak. Verbindings met die satelliete kan bewerkstellig word met spesiale toe-

gangsnodusse (Engels:“gateway hosts”) wat ook toegerus word met satellietkommunikasie-

toerusting. Selfs as een so ’n toegangsnodus gedeaktiveer word, kan die ander nodusse van die

ad hoc netwerk paaie na alternatiewe toegangsnodusse vind, indien sulke toegangsnodusse

bestaan.

Vir hierdie tesis, word verskeie Medium Toegangs Beheer- (Engels:“Medium Access Con-

trol (MAC)”) en Netwerkprotokolle ondersoek. Een paar van hierdie protokolle word dan

verwerk vir ’n lae bandwydte toepassing. Sogenaamde “Cross Layer” ontwerp word toegepas

in ’n poging om ’n verlaging in die oorhoofse bandwydteverbruik te verminder. ’n Simu-

lasiemodel word ontwikkel en gebruik in verskeie toetsgevalle. Hierdie simulasies was gevolg

deur ’n ontleding van die resultate wat op hulle beurt ’n teoretiese basis tot gevolg gehad het

waarmee die netwerk se werking verduidelik en selfs voorspel kan word. In effek was ’n stelsel

ook ontwikkel wat die ontwerp van ad hoc netwerke sal moontlik maak. Nuwe metodes om

protokolwerking te beskryf was ontwikkel.

ii

Acknowledgements

I would like to thank:

• My study leader, Dr. Riaan Wolhuter, for his diligent mentorship, in spite of a hefty

workload.

• My Parents, for their love, understanding and unfaltering support.

• To my friends, whom I treasure and miss.

iii

Contents

Nomenclature x

1 Introduction 1

1.1 Rural Telecommunications . 1

1.2 Ad hoc Networks . 1

1.3 Application of Ad hoc Networks in Satellite Enabled Rural Communications 2

1.4 Ad hoc Protocol Description . 3

1.4.1 The Protocol’s Position in the Protocol Stack 3

1.4.2 Design Constraints . 4

1.5 Protocol Design Process And Techniques Used 6

1.6 Contributions . 6

1.6.1 General Contributions . 6

1.6.2 Implementation Specific Contributions 7

1.7 Work Completed for this Thesis . 7

1.8 Thesis Description . 8

2 The Medium Access Layer: Background 9

2.1 Wireless Link Layer Problems . 9

2.1.1 The Hidden Terminal Problem . 9

2.1.2 The Exposed Terminal Problem . 10

2.2 Protocols Investigated . 10

2.2.1 CSMA . 10

2.2.2 CSMA/CA . 11

2.2.3 MACA . 11

2.2.4 MACA-BI . 11

2.2.5 Polling Medium Access Techniques 12

2.3 Summary . 12

3 The Medium Access Layer: Protocol Description 13

3.1 Introduction . 13

3.2 IEEE 802.11b DCF . 14

3.3 Modifications of IEEE 802.11b DCF . 17

3.3.1 Choosing a Slottime Value . 17

iv

CONTENTS v

3.3.2 Choosing a SIFS time value . 19

3.4 Summary . 21

4 The Network Layer: Background 22

4.1 Design Methodology For The Network Protocol 22

4.2 Network Protocol Classifications . 22

4.2.1 LORA versus ORA . 22

4.2.2 Reactive versus Proactive . 22

4.3 A Short Description of Existing Routing Protocols 23

4.3.1 Link State Routing (LSR) . 23

4.3.2 Ad hoc On-demand Distance Vector Routing (AODV) 23

4.3.3 Dynamic Source Routing (DSR) . 26

4.4 Summary . 27

5 The Network Layer: Protocol Description 28

5.1 Introduction . 28

5.1.1 Lottery Route Selection . 29

5.1.2 Implicit Route Error Recovery . 30

5.2 Modified DSR Network Protocol Behaviour 30

5.2.1 Initialization of a host . 30

5.2.2 Handling Behaviour for Application Layer Packets 31

5.2.3 Handling Behaviour for Routing Layer Packets 31

5.2.4 Forwarding Behaviour . 33

5.3 Summary . 34

6 Simulation And Results 35

6.1 Simulation Software . 36

6.2 Simulation Strategy . 37

6.2.1 Background on OMNeT++ Simulation Modelling 37

6.2.2 Discrete Event Simulation . 38

6.2.3 The cMessage Class . 39

6.2.4 DSR Route Discovery Modelling by means of the FES and cMessage

class . 41

6.2.5 Simulation Structure . 43

6.2.6 Representation of Statistics . 46

6.3 Host Introduction to the Network . 49

6.4 Broken Host Route Recovery . 52

6.4.1 Test Case 1: Host[4] dies at 50000s 52

6.4.2 Test Case 2: Host[4] dies at 150000s 53

6.5 Network Simulation Evaluation via Queueing theory 54

6.5.1 Scenario Description . 54

CONTENTS vi

6.5.2 Theoretical Background . 55

6.5.3 Modelling Service Rate . 56

6.5.4 Modelling Arrival Rate . 57

6.5.5 Verifying Arrival Rates through Simulation 58

6.5.6 Determining Average Queue length from Simulation 59

6.5.7 Determining Service rates out of Simulation 61

6.6 Variation of Packet Size and Bitrate . 70

6.6.1 Simulation Cases . 71

6.6.2 Route Preference Graphs . 73

6.6.3 Varied Packet Size . 77

6.6.4 Varied Bitrate . 86

6.6.5 Simulation of a Cluster Topology Network Situation 94

6.7 Summary . 96

7 Discussions And Comments 98

7.1 Project Summary . 98

7.2 Summary Of Results . 99

7.2.1 Network Simulation Evaluation via Queueing theory 99

7.2.2 Variation of Packet Size and Bitrate 100

7.3 Summary of Contributions . 103

7.4 Possible Areas for Improvement . 103

7.4.1 The Network Layer . 103

7.4.2 The MAC Layer . 104

7.4.3 Analysis of Network Performance when taking various Subnetworks

into Consideration . 104

7.4.4 “Long-range” Communication in the context of Rural ad hoc networks 105

Bibliography 106

A Assorted Scripts 108

B Initialization Script Example 117

List of Figures

1.1 Satellite Enabled/Assisted Ad hoc Rural Communication 2

1.2 Figure based upon the Open Systems Interconnection (OSI) Reference Model 3

2.1 Hidden Terminals: TX1 and TX2 are hidden from each other 9

2.2 Exposed Terminal: TX1 is blocked by the a transmission from TX2 10

3.1 State diagram of the model used for 802.11b DCF simulation 14

3.2 Normal IEEE 802.11(DCF) operation . 16

3.3 Modified IEEE 802.11(DCF) operation for long range 17

4.1 Representation of an ad hoc radio network 24

4.2 Representation of Route Discovery . 24

4.3 Reply to source host . 25

4.4 Data uses discovered route . 25

4.5 Representation of route maintenance . 26

5.1 Lottery selection example (Taken from reference [1]) 29

5.2 Application Packet handler Flowchart . 31

5.3 RREQ-packet handler Flowchart . 32

5.4 RREP-packet handler Flowchart . 33

6.1 OMNeT++ Graphical Window . 37

6.2 Mapping between the FES, Simulated and Real time 39

6.3 RREQ-packets point to timers at source . 41

6.4 RREP-packets point back to timers at source 42

6.5 Screenshot of host[5] . 43

6.6 Simple Test Network . 46

6.7 Route arrivals over time as seen from host[5] 47

6.8 Graph highlighting traffic from host[4] as seen from host[5] 48

6.9 Simple Route Preference Graph (traffic from host[3]) as seen from host[5] . . 48

6.10 Test Network . 49

6.11 Host[5] packet routes highlighted . 50

6.12 Host[7] joins the network (packet routes highlighted) 51

6.13 Data Packet arrival rates using different routes (death of host[4] at 50000s) . 52

vii

LIST OF FIGURES viii

6.14 Data Packet arrival rates using different routes (death of host[4] at 150000s) 53

6.15 A network with host[0] as source and host[3] as destination 54

6.16 A Basic Queue-Server representation . 55

6.17 Block diagram of host[0] and one successor host 56

6.18 Queues for host[0] and the 3 successor hosts 57

6.19 Arrival times versus Perceived Arrival times 58

6.20 Semilog graph of Queue length with One Theoretical Determined Queue

Length (×-marks) . 59

6.21 Semilog graph of Queue length at closer inspection 60

6.22 Perceived Service rate versus interval . 61

6.23 Application of the BEB-Algorithm in the MAC Layer model 63

6.24 Backoff Delay versus interval (multiples of Slottime indicated) 64

6.25 Semilog graph of Queue length (Simulated and Improved Theoretical Results

(×-marks)) . 67

6.26 Latency versus Arrival Interval . 69

6.27 Simple seven node path network . 71

6.28 Extended 14 node network . 72

6.29 Route Preferences for packets of 7 node path case (TTL = 6) 73

6.30 Route Preferences for packets of 7 node path case (TTL = 7) 74

6.31 Route Preferences for packets of 14 node path case 75

6.32 Route Preferences for packets the three prong network 76

6.33 Average Efficiency versus Data Packet Size 77

6.34 Average Latency versus Data Packet Size . 78

6.35 Average Latency versus Data Packet Size . 80

6.36 Average Throughput versus Data Packet Size 82

6.37 Average Throughput versus Data Packet Size (with theoretical curve) 84

6.38 Average Latency versus Bitrate of the Three Network Cases (ST = 23ms;

SIFS = 6ms) . 87

6.39 Average Latency versus Bitrate of the Three Network Cases (Theoretical

Value and limits indicated) . 89

6.40 Average Latency versus Bitrate of the Three Network Cases (ST = 47.3333ms;

SIFS = 10µs) . 90

6.41 Average Throughput versus Bitrate of the Three Network Cases (ST = 23ms;

SIFS = 6ms) . 91

6.42 Average Throughput versus Bitrate of the Three Network Cases (Theoretical

and Limit values indicated) . 92

6.43 Average Throughput versus Bitrate of the Three Network Cases (ST = 47.3333ms;

SIFS = 10µs) . 93

6.44 20 Node Cluster . 94

6.45 Cluster Average Characteristics . 95

List of Tables

3.1 Default 802.11b Parameters . 18

3.2 Chosen MAC Layer Parameters . 20

6.1 Route lengths with appropriate route probabilities (Theoretical and Simulated) 58

6.2 Theoretical Values determined with Equations 6.21-6.23 69

6.3 Three Prong Network Values . 81

6.4 7 Node Network Values . 81

6.5 14 Node Network Values . 81

6.6 Simulated and Theoretical Latency Gradients 82

6.7 Throughput Limits for Varying Packet sizes 85

6.8 Approximate latency Curve limits for varying bitrate 89

6.9 Throughput Limits for Varying Bitrates . 92

ix

Nomenclature

Acronyms

TCP Transmission Control Protocol

DSR Dynamic Source Routing

AODV Ad hoc On-demand Distance Vector Routing

ORA Optimum Routing Algorithms

LORA Least-Overhead Routing Algorithms

MAC Medium Access Control

CSMA Carrier Sense Multiple Access

CSMA/CD Carrier Sense Multiple Access with Collision Detection

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

MACA Multiple Access with Collision Avoidance

MACA-BI Multiple Access with Collision Avoidance By Invitation

DCF Distributed Coordination Function

CCA Clear Channel Assessment

PLCP Physical Layer Convergence Protocol (Sublayer)

NAV Network Allocation Vector

SIFS Short Interframe Space

DIFS DCF Interframe Space

BEB Binary Exponential Backoff

FES Future Event Set

x

Chapter 1

Introduction

1.1 Rural Telecommunications

Rural telecommunications is an emerging field that poses many challenges for researchers.

Various factors may make established telecommunications infrastructure unfeasible to im-

plement. Critical infrastructure such as cellphone towers would have to exist in areas that

are not able to provide the power or maintenance requirements necessary to allow the proper

functioning of the communications network as a whole. For this reason ad hoc networking is

worth investigating as a possible effective approach to the rural communications problem.

1.2 Ad hoc Networks

The term ad hoc is a Latin phrase meaning “for this”. In this context, ad hoc refers to the

spontaneous connection of hosts to form a communications network. By using a modified

(and more generalized) version of the definition that is given in [2] an ad hoc network can be

defined as a self-configuring network of routers (and associated hosts) connected by wireless

links – the union of which form an arbitrary topology. The network’s wireless topology may

change rapidly and unpredictably. Ad hoc networks usually refers to wireless networks in

which the forwarding of packets are done by the hosts that the network consists of. This

makes up for the limited range of the physical radio infrastructure. In a true ad hoc network,

no “client-server” relationship exists. All hosts are similar to each other and act as clients,

servers and routers. The benefit of such a network is that when one host is disabled other

hosts can take over the forwarding responsibilities of this host. For this reason ad hoc

networks can also be referred to as self-healing networks.

1

1.3 — Application of Ad hoc Networks in Satellite Enabled Rural Communications2

1.3 Application of Ad hoc Networks in Satellite En-

abled Rural Communications

A rural communications infrastructure can benefit from ad hoc networks due to the properties

previously stated. Forwarding responsibility is shared by the network’s various hosts and this

allows power consumption of a single host to be kept to a minimum. Defective hosts do not

cause a critical failure of the network, which implies that host maintenance is not as essential

as in fixed infrastructure networks. Further extension of the network can be established by

the use of hosts with satellite up- and downlink capabilities. When a packet is unable to

reach a certain network address, it simply needs to be forwarded to a host with a satellite

up/downlink. The message can then be forwarded via the satellite to the network that

contains the host with the appropriate network address.

Figure 1.1: Satellite Enabled/Assisted Ad hoc Rural Communication

In Figure 1.1, the blocks represent stationary terrestrial hosts which can be deactivated

or disabled for any reason. The dashed lines between them indicates a possible radio com-

munication proximity. The satellite acts as a forwarding node, that extends the range that a

message can travel. The hosts that are being temporarily connected by the satellite will be

known as satellite up/downlink hosts for the rest of this thesis. These hosts are also equipped

with satellite communications functionality and will function as a gateway to another subnet-

work for any packets that may require routing to a remote subnetwork destination (remote

subnetwork host). Later, it will be seen that a host will seek hosts with satellite up/downlink

capabilities at network initialization.

1.4 — Ad hoc Protocol Description 3

1.4 Ad hoc Protocol Description

1.4.1 The Protocol’s Position in the Protocol Stack

This thesis describes a protocol that will allow ad hoc rural communications. The following

is a short description of the protocol’s place in the OSI 7 Layer model:

Figure 1.2: Figure based upon the Open Systems Interconnection (OSI) Reference Model

1.4 — Ad hoc Protocol Description 4

7. Application Layer: This layer acts as an interface for the user to the network. Exam-

ples of these are web-browsers and mail clients.

6. Presentation Layer: This layer converts lower layer data into a format that the

Application Layer can interpret.

5. Session Layer: This layer creates, manages and terminates communication between

hosts.

4. Transportation Layer: This layer allows the upper layers to be oblivious to the

functioning of the network and provides an interface to the lower protocol stack layers. The

most famous example of a layer 4 protocol is TCP.

3. Network Layer: The main task of this layer is to determine routes from a source host

to a destination host.

2. Medium Access Layer: This layer must establish connections between neighbouring

hosts and in doing so allow efficient use of the medium. The medium can be anything from co-

axial cable to an assigned radio frequency. One implementation of a medium access protocol

is Ethernet.

1. Physical Layer: This layer is responsible for transmitting bits over the physical

medium. It includes all electrical specifications for the network hardware.

The strategy that has been proposed will specify the second and third layers of the pro-

tocol stack, namely Medium Access and Network (Routing) Layers.

1.4.2 Design Constraints

In order to design any Network and MAC Layer protocol, the physical layer must be con-

sidered. The following constraints were given for the system, due to the design parameters

of the satellite deployment:

• Half-duplex radios (Bitrate of 9600 bits/second)

• Low Latency

• Maximum Efficiency

• Long range communication (host separation distance in the km-range)

1.4 — Ad hoc Protocol Description 5

The network would consist of a collection of hosts that would be separated at a distance

of a few kilometers. For simulation purposes a maximum distance of 8 km was chosen. It

could be varied but will not be able to exceed the maximum UHF communications point to

point available distance. The network would have to be robust by finding alternate routes

for packets after a route breaks. This would occur due to a host failure or deactivation.

The rural nature of the network would increase network maintenance requirements and this

implies that a self-healing approach would have to be applied in which the network adapts

to changes (and failures) in its topology. For this network the following parameters must be

considered:

Latency refers to the difference between the time the packet is queued at the source and

the time it is serviced at its destination. The user perceives latency as the delay needed for

a message to arrive.

Throughput is given by the quotient of the packet size and the latency.

Efficiency is given by the following relationship:

Efficiency =
A

B + A
(1.1)

with A : Data Packet Length (bits)

B : Overhead Amount (bits)

From this relationship the obvious conclusion is that a higher overhead will result in a

lower efficiency. Overhead can be caused by the protocols used due to MAC (Layer 2) layer

handshaking, Routing (Layer 3) techniques and protocol header sizes. The aim of the protocol

must therefore be to keep these factors to a minimum.

“Least-cost” Routing and MAC Strategy

When this thesis refers to a least-cost Routing and MAC Strategy it refers to a strategy

that will incur minimal overhead. Due to the low bandwidth that is available overhead will

increase latency and decrease overall network throughput. It is, therefore, critical that the

strategy developed constantly guards against an unrestricted increase in message overhead.

1.5 — Protocol Design Process And Techniques Used 6

1.5 Protocol Design Process And Techniques Used

The Network and MAC Layer interaction must endeavour to improve network performance.

In order to do this latency must be decreased. Latency is increased by delays caused by

protocol overhead (MAC and Network Layer) and interframe spacing. This implies that

latency can be improved if these factors are minimized. MAC Layer timing adaptations will

be attempted in Chapter 3. Network and MAC Layer adaptations will include the following

methods:

• Promiscuous Listening – This concept refers to modified MAC Layer behaviour but

is essential to this Network Layer’s function. This technique allows the MAC Layer

Data packets to be sent up to the Network Layer, regardless of the intended MAC

Packet’s destination address. Overheard packets like these can be used to gain routing

information, thereby avoiding unnecessary route requests.

• Multipath Routing – In an ad hoc wireless network situation various routes may exist to

a single destination. This means that various routes can share packet routing loads. A

method for distributing packet loads over various routes will be described in Subsection

1.6.2.

1.6 Contributions

1.6.1 General Contributions

General contributions submitted for this thesis can be summarised as follows:

• A Rural Ad hoc Networking model have been proposed. This model addresses problems

such as Maintenance and Range in rural communications.

- Maintenance: Ad hoc networks are more robust than their fixed infrastructure

contemporaries. This implies that a deactivated host or broken link can be resolved

by the network itself. No outside maintenance should be necessary to re-establish

connectivity after host failure/deactivation.

- Range: When a host from a small rural network needs to communicate with

hosts in distant rural networks, it can simply forward its message to a satellite

up/downlink host. From the satellite up/downlink host, the message can be trans-

mitted via the satellite to the distant network. This would effect the range to be

increased in which a network can allow rural communication. Latency would, off

course, be experienced, depending on the duration of the satellite orbit.

• Ad hoc Network Development Framework – Simulation models were designed and a

theoretical basis was created in order to closely interpret and predict the performance

1.7 — Work Completed for this Thesis 7

of a topology. A method for illustrating packet route bias and preference have also been

proposed. This method will be used in Chapter 6. Various scripts were also devised (in

Bash and Python) in order to gain and interpret results, generate graphs, automate

simulation execution and make up for shortcomings of the simulation environment.

1.6.2 Implementation Specific Contributions

The points of Section 1.5 are based on existing techniques. In order to improve network

performance for this current application, the following adaptations have been contributed:

• Implicit Route Error Recovery – When a Network Layer packet is transferred between

two hosts, and the MAC Layer of the transmitter does not receive an acknowledgement

from the receiver, the MAC Layer will resubmit the packet to the Network Layer for a

rerouting operation. This avoids the overhead of sending route error messages through

the network. This works in conjunction with the next aspect in order to make the

protocol useful. An improvement is suggested in Chapter 7.

• Lottery Route Selection – This method has been proposed in Chapter 5 to govern the

packet loads received by different routes. This is a way of biasing multipath routing

in order to distribute different loads over routes with different capabilities. With this

method, a route metric is chosen to assign a certain amount of “lottery tickets” to

a route. The more lottery tickets a route has, the higher its chances of “winning” a

packet. In this thesis the metric chosen will be inverse route length.

1.7 Work Completed for this Thesis

In the process of working on this thesis the following was accomplished:

• Various Network and MAC layer approaches where evaluated.

• A MAC layer model based on 802.11, but for relatively low speed half-duplex radios

was devised.

• A Network Layer model was devised based on Dynamic Source Routing, adapted for

compliance with the system constraints already mentioned.

• Simulation software was evaluated and a simulation model was constructed based on

this software.

• Jackson queueing network theory was used to determine steady state operating char-

acteristics.

• Using knowledge of system characteristics, simulated situations was described.

1.8 — Thesis Description 8

1.8 Thesis Description

The rest of this thesis will deal with the process employed in the design of the MAC and

Network/routing layers. It can be subdivided into the following subsections:

• Chapter 2 will deal with previous work regarding to MAC Layer implementations.

• Chapter 3 will give some insight into the modified MAC Layer that will make up first

part of the designed work.

• Chapter 4 deals with previous Network Layer protocols.

• Chapter 5 gives a description of how the newly devised Network Layer works (the

second part of the design).

• Chapter 6 will present simulations that will deal with Latency, Efficiency and Through-

put.

• Chapter 7 will discuss how the protocols of this thesis can be expanded, applied and

improved.

Chapter 2

The Medium Access Layer:

Background

2.1 Wireless Link Layer Problems

In wired networks, protocols like Ethernet (CSMA/CD) are generally sufficient to ensure

that collisions of data packets are minimized. This is due to the fact that all hosts work

on a medium that is common to all parties involved. In a wireless situation, it is however

possible for transmissions of some hosts to leave other hosts unaffected due to limited host

transmission range. Two main problems that arise due to this occurrence are the hidden and

exposed terminal problems.

2.1.1 The Hidden Terminal Problem

Figure 2.1: Hidden Terminals: TX1 and TX2 are hidden from each other

As can be seen from Figure 2.1 TX1 and TX2 are oblivious to each others existence.

Normal CSMA will not allow TX1 to detect when TX2 is transmitting or vice versa. This

9

2.2 — Protocols Investigated 10

means that TX1 and TX2 are hidden terminals to each other.

2.1.2 The Exposed Terminal Problem

Figure 2.2: Exposed Terminal: TX1 is blocked by the a transmission from TX2

Here it is evident that if TX2 is engaged in a transmission to RX2 then TX1 will determine

that the channel is busy (by means of Physical Carrier Sense) and will thus not be able to

send a message to RX1. This problem is called the Exposed Terminal Problem due to the

fact that TX1 is exposed to TX2’s transmission.

These problems could result in a great loss of the throughput of the network, so a number

of protocols have been proposed to deal with these issues.

2.2 Protocols Investigated

The following is a short description of the MAC Layer strategies that have been investigated

as well as the reasons why they have been deemed inappropriate for the current application.

2.2.1 CSMA

Carrier Sense Multiple Access is a method (first modelled by Kleinrock & Tobagi in [3]) in

order to improve the throughput of a channel. CSMA uses physical carrier sense to sense

channel activity. This behaviour causes a host that requires to send a message, to sense

the medium for channel activity first. If the channel is currently available then the host

may choose to transmit. This decision is based on the variation of CSMA that is in use.

If the channel is busy, a timer is set to wait for a retransmission. The CSMA protocol has

1-persistent and p-persistent variations. The value in front (such as 1 or p) denotes the

probability of a transmission taking place after the channel was sensed to be free.

2.2 — Protocols Investigated 11

2.2.2 CSMA/CA

This protocol is an adaptation on the basic CSMA technique for wireless networks. Where

basic CSMA only uses physical carrier sense to detect a busy medium, CSMA/CA extends

CSMA by also making use of virtual carrier sense. This method makes use of a RTS (Ready-

to-send) packet transmission to notify all neighbours that this host intends to transmit. If

this notification packet does not collide with the packets of any other host and the packet

arrives without errors at the destination host, then the receiving host responds with a CTS

(Clear-to-send) signal. Both RTS and CTS messages contain information like message source,

message destination and message duration. All hosts that overhear RTS/CTS messages de-

fers from using the channel a period that will be sufficient for this handshaking process

to complete. A well-known extension of this protocol, namely IEEE 802.11 DCF (or Dis-

tributed Coordination Function), has been used as the basis for the MAC protocol that this

work will be based upon. In this thesis, the concepts of DCF and CSMA/CA will be used

interchangeably, as is done in the IEEE 802.11 specification [4].

2.2.3 MACA

MACA (Multiple Access Collision Avoidance) has been proposed by [5] as an alternative

to CSMA/CA. MACA only uses virtual carrier sense to determine medium access. The

way MACA accomplishes this is by adding the data transmission time in its RTS header.

This receiver will respond with the same information by including this same time in its

CTS header. This will lead to all nodes overhearing these RTS and CTS messages to know

how long to back off from the medium. This protocol could also be enhanced by adding a

automatic power control feature. This causes the host to only use the minimum amount of

transmission power for each exchange, thereby limiting the interference that it may cause

other hosts that are positioned further away. This protocol was not chosen, due to the lack

of a proper protocol specification.

2.2.4 MACA-BI

MACA-BI (Medium Access with Collision Avoidance - By Invitation) as explained in [6] is

referred to as a receiver-initiated medium access protocol, due to the fact that the receiver

“invites” the sender to transmit. The receiver host would have to predict when to send out

RTR (Ready-to-Receive) messages and to which hosts. The polled hosts do not, however,

have to send packets to the polling host. The receiver host would have to know how many

packets are waiting in each neighbours’ packet buffer in order to allow fair sharing of the

medium. This protocol was also a very interesting candidate due to the fact that it boasted

a low overhead while allowing for a higher possible throughput. This would however require

a complex initialization step in order to allow proper flow between the hosts. Another issue

is that if traffic is bursty, the performance of MACA-BI degrades to normal MACA.

2.3 — Summary 12

2.2.5 Polling Medium Access Techniques

Techniques such as Round Robin Scheduling was determined to be unfeasible due to the

client-server relationship that is implied in the architecture. All hosts would have to agree

to make one host a polling host, while the others agree to await a signal to be polled. This

system can not be feasibly applied to ad hoc networks due to their peer-to-peer architechture.

2.3 Summary

In this chapter, some difficulties faced by a wireless MAC Layer was explained. Previous

MAC Layer designs were also evaluated and considered. CSMA/CA was chosen as the basis

for the MAC Layer of this thesis. In the next chapter, the new MAC Layer will be designed

by modifying a popular implementation of this protocol (WiFi or IEEE 802.11). Seperation

distance between hosts and modem speed are factors that will be kept in consideration when

developing the newly modified MAC protocol.

Chapter 3

The Medium Access Layer: Protocol

Description

The following chapter will deal with the adaptation of WiFi or IEEE 802.11 DCF in order

to be used for a long-range network that make use of a low bitrate physical layer. Firstly,

the basic function of the network will be described. This will be followed by descriptions of

the modifications done.

3.1 Introduction

As explained in the Chapter 1, the Network Layer will require some extra functionality from

the MAC Layer. This refers to the following:

• Promiscuous Listening

• Implicit Route Error Recovery/Maintenance – This refers to the behaviour of the MAC

Layer that causes the resubmision of unsuccessful Network Layer Packets to the Net-

work Layer. Packets that do not receive an ACK-packet from the destination are con-

sidered unsuccessful.

These elements will be incorporated into the MAC Layer, but it will not be essential to the

functioning of the basic MAC Layer state machine. These factors will have a larger effect to

the function of the new Network Layer and will therefore be dealt with in Chapter 5. Other

adaptations to the MAC Layer are as follows:

• Revised Timing Values – Due to the low bitrate modems (9600 bits/second) that will

be used, longer delays will be required from the MAC Layer. A scaling operation will

be done in order to compensate for the low bitrate.

• Distance Effect Compensation – The effect of distance to the hosts will be investigated.

It will, however, be determined that the effect of distance on the MAC Layer’s timing

is negligible due to the long delays imposed by the previous point. This would not have

been the case in a faster bitrate situation.

13

3.2 — IEEE 802.11b DCF 14

3.2 IEEE 802.11b DCF

As previously stated, the MAC protocol proposed by this thesis is based on CSMA/CA or

more specifically a modified version of the IEEE 802.11b DCF protocol. Figure 3.1 is a state

graph based on simulation code provided in [7]. Reasons detailing the transitions from one

state to another is indicated at the beginning of each edge. Please note that the dashed edge

in the graph indicates a modification. It was determined that the model failed to function if

arrival rates became too high. This modification resolved this problem.

Figure 3.1: State diagram of the model used for 802.11b DCF simulation

3.2 — IEEE 802.11b DCF 15

Transmission Side Function

In order to describe the IEEE 802.11b DCF protocol, the following description will be given,

paraphrasing the simulation model source code provided by [7]. The transmission side of

IEEE 802.11b DCF is as follows:

1. When the host requires the medium for transmission, it enters a CONTEND-state. During

this state, a timer is set for one DCF Interframe Space (DIFS) period. This period

allows half-duplex radios to sense the channel in order to determine channel availability.

2. A determination that the medium is not in use will then result in the transmission of

a RTS-packet and start a time-out timer. This will be referred to as the Wait For Clear

To Send State (WFCTS-state).

3. Upon receiving a CTS-packet one of two occurrences could take place:

• If the CTS-packet is meant for this host, then the host waits for one Short Inter-

frame Space (SIFS) period before sending the DATA-packet. If activity is sensed

during the SIFS period, then all timers are reset, and the exchange is then consid-

ered to be a failure. The host then returns to a CONTEND-state and retries with a

time equivalent to one DIFS-period plus a certain backoff time. This time is gov-

erned by using the Truncated Binary Exponential Backoff Algorithm (TBEB). If

successful, a DATA-packet is transmitted. A time-out timer is also set to expire

if an acknowledgement message, or ACK-packet, is not received. This state’s des-

ignation for the rest of the thesis will be the Wait For Acknowledgement State

(WFACK-state).

• If the CTS-packet is not meant for this host, it defers for a NAV(CTS)1-period

while going into a QUIET-state. Figure 3.2 demonstrates this behaviour.

4. On the receipt of an ACK-packet, the host resets all timers and restarts in a CONTEND-

state, thereby restarting the whole cycle from the first step.

The Binary Exponential Backoff Algorithm

The Binary Exponential Backoff Algorithm refers to the behaviour of a host after a packet

collision has occurred. This behaviour causes a host to wait for a uniformly random number

of slottimes between zero and 2i − 1 before reattempting a retransmission. The i -variable

refers to the number of retry attempts. The Truncated Binary Exponential Backoff Algorithms

acts similarly but the maximum amount of possible slottimes have an upper bound that can

be reached.

1Network Allocation Vector for a Clear-To-Send message

3.2 — IEEE 802.11b DCF 16

Receiving Side Function

The receiving side functions as follows:

1. After receiving a RTS-packet the host cancels all timers.

• If the packet is not meant for this host, it defers for a time equal to NAV(RTS)2

while staying in a QUIET-state. This can be seen on Figure 3.2. This allows ex-

changes between neighbour hosts to continue uninterrupted.

• If the packet is meant for this host, then the host waits one SIFS period before

transmitting a CTS-packet.

2. After sending the CTS-packet, the host will wait for data to be received. In this thesis

this state will be denoted as the WFDATA-state.

3. After the DATA-packet arrives at the receiver host, it then proceeds to wait for one

SIFS period before transmitting an ACK-packet. This ends the exchange and allows a

new contention cycle to begin.

Figure 3.2: Normal IEEE 802.11(DCF) operation

As can be deduced from the diagram, NAV(RTS) and NAV(CTS) can be calculated as

follows:

NAV(RTS) = 3SIFS + durationCTS + durationACK + durationDATA

NAV(CTS) = 2SIFS + durationACK + durationDATA

After the source (transmitting) host receives a CTS from the destination host, it sends

the data packet to the destination. If successful reception of the data was achieved, the

receiver host waits another SIFS period before transmitting an acknowledgement packet.

2Network Allocation Vector for a Ready-To-Send message

3.3 — Modifications of IEEE 802.11b DCF 17

3.3 Modifications of IEEE 802.11b DCF

This modification of IEEE 802.11b DCF must take into consideration the distances at which

transmission takes place, as well as the hardware layer’s bitrate. For IEEE 802.11b distances

of a few hundred meters does not make a real difference to propagation delay Tp. Longer

distances do affect the route propagation delay and this may lead to timing conflicts in

normal IEEE 802.11b DCF operation.

Figure 3.3: Modified IEEE 802.11(DCF) operation for long range

The bitrate will require the slottime and SIFS values to be changed. The definition of

a slottime varies between various explanations and implementations, but for this thesis a

slottime will be seen as the time it takes for the host to determine if the channel is clear and

for a signal to reach the host. A description of the modifications that need to be done to

the slottime and SIFS time follows.

3.3.1 Choosing a Slottime Value

The basic backoff time unit for a CSMA-type protocol is a slottime. From this time various

other delays are calculated, such as DIFS and EIFS times.

Original IEEE 802.11b DCF Slottime

The definition of slottime follows from [4] as:

aSlottime = aCCATime + aRxTxTurnaroundTime + aAirPropagationTime

+aMACProcessingDelay (3.1)

3.3 — Modifications of IEEE 802.11b DCF 18

According to [8] the aMACProcessingDelay represents the MAC Layer processing delay

and aRxTxTurnaroundTime represents the switching time for a radio to change from receive

to transmit operation mode. The default values for the MAC protocol was chosen to be the

following for the IEEE 802.11 DSSS Physical layer:

Parameter Name Value

SIFS 10µs

aCCATime 15µs

aRxTxTurnaroundTime 5µs

aMACProcessingDelay 0s

aAirPropagationTime 1µs

Slottime 20µs

DIFS 2× Slottime + SIFS = 50µs

Physical layer bitrate 11 Mbits/second

Table 3.1: Default 802.11b Parameters

Adaptation of 802.11b DCF Slottime values

In order to determine a sufficient slottime for the 9600 bits/second application aCCATime

and aRxTxTurnaroundTime must be modified. It is logical to assume that if Table 3.1 was

meant for a 11 Mbits/second hardware layer bitrate, a 9600 bits/second bitrate will require

delays that are more than 1000 times longer. To summarise the values:

aCCATimeold = 15µs → bitrateold = 11× 106 bits/second

aCCATimenew → bitratenew = 9600 bits/second

where aCCATimenew is the new unknown delay that will be determined for an applica-

tion using the new bitrate (9600 bits/second). This results in a simple scaling operation to

determine this value:

aCCATimenew =

(
1

aCCATimeold

× bitratenew

bitrateold

)−1

=

(
1

15× 10−6
× 9600

11, 000, 000

)−1

= 0.017187500000000001s

or 17.18750ms

A similar scaling can be done for aRxTxTurnaroundTime:

aRxTxTurnaroundTimeold = 5µs → 11× 106 bits/second = bitrateold

aRxTxTurnaroundTimenew → 9600 bits/second = bitratenew

3.3 — Modifications of IEEE 802.11b DCF 19

From this follows:

aRxTxTurnaroundTimenew =

(
1

aRxTxTurnaroundTimeold

× bitratenew

bitrateold

)−1

=

(
1

5× 10−6
× 9600

11, 000, 000

)−1

= 0.0057291666666666671s

or 5.72916667ms

When determining aAirPropagationTime a maximum distance of 8000 m will be used.

aAirPropagationTime can then be determined as follows:

aAirPropagationTime =
distance

c
= 8000/(3× 108)

= 26.6667µs

with c being the speed of light.

This shows that the aAirPropagationTime value is very small(26.6667µs) in comparison

to the other values that make up the MAC Layer slottime (aCCATime = 17.18750ms and

aRxTxTurnaroundTime = 5.721916667ms). This propagation delay would have had a larger

effect on the Slottime and SIFS-time in a system with a higher bitrate. This means that the

host slottime can be determined by substitution of the values of Equation 3.1:

aSlottime = 17.18750× 10−3 + 5.7219166× 10−3 + 26.6667× 10−6 + 0

= 0.022943333333333336

≈ 23ms

3.3.2 Choosing a SIFS time value

Original 802.11b DCF SIFS time

In 802.11b DCF specification, the SIFS period is defined as follows:

aSIFSTime = aRxRFDelay + aRxPLCPDelay +

aMACProcessingDelay + aRxTxTurnaroundTime (3.2)

In Table 3.1 aSIFSTime has been specified to have a default value for IEEE 802.11 DSSS-PHY

layers ([4]) of 10µs. The new values have the following meanings:

• aRxRFDelay – represents the delay caused by the radio receiver(according to [8]),

3.3 — Modifications of IEEE 802.11b DCF 20

• aRxPLCPDelay – represents the nominal time that the Physical Layer Convergence

Protocol uses to deliver a bit from the medium to the MAC Layer.

The PLCP Sublayer translates/encapsulates MAC sublayer protocol data units (or MPDUs)

into PLCP protocol data units (PPDUs). These PPDUs are then sent to the Physical medium

dependant sublayer. This sublayer is specific to the actual medium in use. These two sublayers

make up the Physical Layer. In normal IEEE 802.11 DCF the three available physical layers

include:

• Frequency Hopping Spread Spectrum (FHSS) for the ISM band

• Direct Sequence Spread Spectrum (DSSS) for the ISM band

• Infrared Physical layer

Further descriptions of these layers are outside the scope of this thesis.

Adaptation 802.11b DCF SIFS time

In choosing a SIFS time the following must remain true (according to the IEEE 802.11b

specification [4]):

SIFS < ST < DIFS

The previously determined aRxTxTurnaroundTime will be substituted in Equation 3.2.

The MAC Layer processing delay will be neglected. The aRxPLCPDelay will be assigned a

value equal to the time it would take the physical medium to transfer 1 bit to the MAC

Layer. This would be 1/bitrate = 1/9600 = 0.0001041667s or 104.1667µs. aRxRFDelay

should also be in this range. This implies that the brunt of the SIFS delay will be attributed

to aRxTxTurnaroundTime which is a millisecond value (5.7291666ms). This number will

therefore simply be rounded up and used as the new aSIFSTime. The new values will therefore

be given be the following table:

Parameter Name Value

SIFS 6ms

aCCATime 17.18750ms

aRxTxTurnaroundTime 5.7291666ms

Slottime 23ms

DIFS 2× Slottime + SIFS = 52ms

Physical layer bitrate 9600 bits/second

Table 3.2: Chosen MAC Layer Parameters

3.4 — Summary 21

3.4 Summary

In this section the basic simulation model for the IEEE 802.11b DCF protocol was described.

A state machine description was determined of simulation code from [7]. The timing was

then adapted to make up for the low bitrate and possible propagation delay (Tp) effects that

may have occurred due to the fact that the distances in question between hosts of a rural

communication situation is in the km-range. This was, however, found to be negligible in

comparison to the other delays in question, such as the Clear Channel Assessment.

The next chapter will deal with previous work regarding the Network Layer and will give

an explanation as to the why the Network Layer (that has been developed in this thesis)

was based on a certain protocol.

Chapter 4

The Network Layer: Background

4.1 Design Methodology For The Network Protocol

It was decided to base the network protocol on an existing ad hoc routing protocol. Various

network/routing layer strategies were investigated, but it was found that most of these

are variations on Distance Vector and Link State routing. The most notable of these have

been summarised in Sections 4.3.1, 4.3.2 and 4.3.3. The advantages and disadvantages must

be considered while keeping the design constraints of Section 1.4.2 in mind, such as the

requirement for a low-cost routing strategy, is taken into account. The routing layer must,

for example, not cause unnecessary flooding or route discovery, due to the fact that it would

violate previously mentioned constraints.

4.2 Network Protocol Classifications

4.2.1 LORA versus ORA

These two acronyms refers to different network protocol design paradigms. ORA (Optimum

Routing Algorithms) ensures that nodes use the most optimal routes between a source and

destination. A characteristic side-effect is the large amount of overhead that is generated

due to the protocol’s route request and discovery phases. LORA (Least-Overhead Routing

Algorithms) differs from ORA due to the fact that these protocols do not necessarily use

the most optimum routes between source and destination, but follows an approach that will

ensure that overhead is kept to a minimum. This is done by ignoring link-failures of a path

if another path is still available towards a destination.

4.2.2 Reactive versus Proactive

A network protocol is referred to as reactive when it reacts to changes in the network topology

instead of actively seeking changes. The class of network protocols that does actively seek

changes in the network is referred to as a proactive protocol.

22

4.3 — A Short Description of Existing Routing Protocols 23

4.3 A Short Description of Existing Routing Protocols

4.3.1 Link State Routing (LSR)

Hosts using link state routing exchanges link state information with each other in order

to attain a mapping of the entire network. Firstly, the network hosts determine who their

neighbours are via a reachability protocol. This information is then used to construct a link-

state advertisement message that is periodically flooded throughout the network. In this way,

all the hosts in the network will, in theory, be aware of each other. The main problem that is

apparent with such a strategy is that whenever any change takes place in the network, the

updated link-state information would have to be flooded through the entire network again.

This approach and the ad hoc versions of this protocol was originally devised for current

Internet and wired network applications. In these situations bandwidth and transmission

speed is not as scarce as in situations specified by the design constraints of Section 1.4.2.

This can be seen as a proactive protocol.

4.3.2 Ad hoc On-demand Distance Vector Routing (AODV)

Distance vector routing is a protocol that distributes the topology information across the

network. No singular host has a complete picture of the entire network. The network main-

tains information about its neighbours by means of periodic HELLO-packet. Routing is then

done as follows: the only information that the host has about a destination is the next hop

(the successor) and the “distance” to the destination. This implies that a host is only aware

of one route to the destination host. Ad hoc on-demand distance vector routing (AODV)

[9] extends this method by adding a destination sequence number for each routing table

entry. When faced with more than one route to a destination, the route table entry with the

largest sequence number will be added to the host table. This modification also ensures that

the routing table may not be updated by obsolete routing information and also prevents

the occurrence of routing loops. The following figure will give a graphical representation of

the route discovery and maintenance processes. Network discovery and maintenance for the

AODV-protocol (and the DSR-protocol) will now be described. Changes of the network are

registered reactively.

4.3 — A Short Description of Existing Routing Protocols 24

Basic Route Discovery

Figure 4.1: Representation of an ad hoc radio network

Figure 4.1 is a simple representation of a wireless ad hoc network. This model will be used

to give a basic description of a network of nodes.

Figure 4.2: Representation of Route Discovery

In Figure 4.2 route discovery is done. This occurs when a host needs to determine a route

to a new unknown location. It is possible, however, for a host to respond if it is not the

destination host, but has information on how to reach the destination. The route discovery

process is a flooding operation.

4.3 — A Short Description of Existing Routing Protocols 25

Figure 4.3: Reply to source host

Next the responding host unicasts a route reply back to the source host. This informs all

hosts along the way how to reach the destination host. In AODV this is stored in a table

that stores for each destination the “next hop” and “distance” information. The distance

refers to the amount of hops required to reach the destination. This is shown in Figure 4.3.

Data packets can then move between message Source and Destination hosts. (Figure 4.4)

Figure 4.4: Data uses discovered route

4.3 — A Short Description of Existing Routing Protocols 26

Route Maintenance

In case a host is not capable of sending a packet to a destination (due to a broken link), it

responds by reverse unicasting a route error (RERR) packet to inform the route’s preceding

hosts of the failure. In AODV every host that receives a RERR-packet removes the entry out

of its distance vector table.

Figure 4.5: Representation of route maintenance

AODV and DSR both share similar aspects that make them “On-demand” routing pro-

tocols. Next Dynamic Source Routing (DSR) will be described in relation to AODV.

4.3.3 Dynamic Source Routing (DSR)

This protocol was described in [10]. Source routing can be seen as a subset of link state

routing. The main difference is the way in which link-state information is determined and

distributed to other hosts. Firstly the Route Discovery phase takes place to determine a route

to a required host. This involves the flooding of a RREQ-packet throughout the network. The

RREQ-packet stores the address of each node visited in a route record inside the RREQ-packet

header. Hosts that overhear these RREQ-packets may be able to include route information

from these packets into their own route cache. When the target host receives a RREQ-packet,

it also adds the accumulated route to its route cache, but continues by unicasting a RREP-

packet back to the source of the RREQ transmission along the path that the RREQ traveled.

When the source host receives a RREP-packet, it then responds by extracting the source route

from its header and creating a data packet that has been equipped with this newly acquired

source route information. When a link fails, a RERR-packet will propagate (reverse unicasted)

through the network in order to inform the source host of the error. The source host will

then respond by removing this link from its route cache. The main difference between this

and the previous protocol is that multiple routes to the host may still exist, making new

route discoveries unnecessary.

4.4 — Summary 27

4.4 Summary

DSR was chosen as the Network Layer protocol on which this work would be based due to

the following reasons:

• Multiple RREQ-packets that are received by a target (destination) host from a specific

source can be responded to various times. Through employing this method, many

routes can be determined by the source. AODV would, for example, only respond to

the first RREQ-packet and ignore all other RREQ-packets coming from a source. In DSR

this feature can also be amplified by adding promiscuous listening. This concept refers

to the overhearing of packets by hosts for whom the packet was not intended. It could

use this feature in order to extract route information and possibly avoid sending a route

request itself. Therefore, this method reuses otherwise wasted packet transmissions.

• According to Perkins [11], DSR outperforms AODV in cases where network size, traffic

load and/or mobility of the hosts are low. The reason DSR struggles in more stringent

network conditions is due to the protocol’s use of route caching and the fact that there

is no route “aging” system in DSR as there is in AODV. Due to the characteristics of

this rural ad hoc network application such as low number of nodes and the stationary

nature of the nodes, DSR seems like the best choice to base the Network Protocol of

this thesis on.

• DSR has been proven to generate less routing overhead. Various routes are maintained

in a DSR route cache. This means that if one route expires, other routes will allow

packets to still be forwarded without the need for yet another route discovery.

• DSR does not require any periodic messaging, such as AODV’s HELLO-packets. Any

periodic transmission between hosts will result in a waste of bandwidth, which is very

limited in this application.

DSR can be classified as a reactive protocol that follows the LORA-approach to route

maintenance and usage. When many various routes exist to a destination, the protocol does

not need to know which of these offers the most optimum path. This means that when the

network changes, DSR only reacts when the packet can no longer find an alternate path to

reach a destination. The next chapter will deal with the modified version of DSR designed

for use in a rural ad hoc network context. Modifications will include:

• an application of lottery scheduling as a route selection method in order to prevent

route congestion

• an implicit route error recovery method that will avoid superfluous route error messages

that may consume precious bandwidth

• a protocol that applies the concepts of a DSR-like network protocol in order to deter-

mine which hosts are satellite up/downlink hosts, as well as how they can be reached.

Chapter 5

The Network Layer: Protocol

Description

5.1 Introduction

To make the Network Layer Protocol viable to deal with the various constraints given in

Chapter 1, modifications needed to be made to the standard DSR framework. In Chapter

3 MAC Layer modifications such as promiscuous listening and implicit route error recovery

was referred to but not explained in context of the MAC Layer. This was done due to the

fact that these modifications are more important to Network Layer functionality even though

these are MAC Layer modifications. The following chapter will explain how these factors are

used in order to decrease routing overhead. Some other modifications will be explained:

• Subsection 5.1.1: Lottery Route Selection – where a chosen metric for a route decides

what the chances are of it being selected for packet forwarding.

• Subsection 5.1.2: Implicit Route Error Recovery – no explicit route error message will

be broadcast. After link failures, Network Layer packets are readmitted to the Network

Layer and retransmitted using different routes.

Here follows a description of the Network Layer’s initialization and packet handling functions

using the rural ad hoc network context as an example. Initialization of a host will always

involve the search for a satellite up/downlink host. Even if this step is unsuccessful, any

Network Layer packets that passes a host will allow that host to know what other hosts

exist.

28

5.1 — Introduction 29

5.1.1 Lottery Route Selection

Data packets will be sent using various routes (not just the shortest). Using only the shortest

routes will cause routes to become unnecessarily congested. To aid in the spreading of packets

over various routes, a route selection algorithm should be used. Assuming route discovery

has been done in the past and various routes to the destination have been established, this

protocol will select routes via an algorithm based upon Lottery Scheduling [1]. Originally

this was used to schedule processes in operating systems. This variation of the algorithm

basically assigns each route an inverse lottery ticket value based upon the route length. The

larger the value becomes, the smaller the chance of the route being selected for forwarding

a data packet. This implementation of the selection algorithm uses the route length (or hop

metric) as the basis upon which route selection probabilities are assigned. This does not

imply that another metric could not be used, such as link quality. The latter, however, is

more difficult to determine and is bound to be dynamic.

Lottery Scheduling Algorithm

Original purpose: Lottery Scheduling [1] is a randomized resource allocation method

used by some operating systems to schedule processes. Rights to a resource is represented as

an amount of “lottery tickets”. Every process that is competing for a system resource is then

assigned a certain number of lottery tickets. This number is decided through the process

priority or the popularity of the resource.

Description of the algorithm: Figure 5.1 shows an example of one lottery scheduling

situation. A total of 30 lottery tickets are assigned to 4 processes. A random number is

selected through a random number generator, that has an uniform distribution over the

range [0..30). In this, the draw resulted in the number 25. The algorithm then iterates

through processes, cumulatively summing the lottery ticket values. This iteration terminates

when the summation reaches a value that is larger than the random number. The process at

which this summation stops will then be assigned the resource.

Figure 5.1: Lottery selection example (Taken from reference [1])

How the algorithm is applied to the Network Layer: The protocol uses the Lottery

Selection Algorithm at the arrival of a DATA-packet. Firstly, the protocol determines how

5.2 — Modified DSR Network Protocol Behaviour 30

many paths can be taken to the DATA-packet’s required destination. The total probability

for route selection is spread out amongst the routes. This means that some routes receives

different probabilities (represented by “lottery ticket quantities”) in the route selection pro-

cess. The quantity of “tickets” that a route will receive in order to “win” a DATA-packet is

inversely proportional to the amount of nodes in a route (the route length). The weight can

also be squared or cubed in order for the route selection process to be more exaggerated.

This means that short routes will have an even higher chance of being selected by a packet

and long routes have an even smaller chance of being selected. This implementation uses the

inverse route length as the metric for which route bias probability is determined.

5.1.2 Implicit Route Error Recovery

Due to the low speed radios used for the Physical Layer, it was decided that route errors

should not be dealt with explicitly. This would cause the network overhead to become

too high. The approach this protocol will take will be to evaluate the success of a route

for each hop. If a data packet is transmitted and no acknowledgement was received, then

the data packet is readmitted to the Network Layer. This will allow the Network Layer to

select another route in the route cache using the Lottery Route Selection method described

in Section 5.1.1. This implies that a packet does not have to follow the route that was

embedded into it. This also allows a path of a packet to be changed dynamically.

5.2 Modified DSR Network Protocol Behaviour

In this section the basic behaviour of the network/routing protocol will be described. This

section will also show how this protocol differs from normal DSR-routing. Even though the

protocol is based on the concept of DSR, it has been designed in order to determine satellite

up/downlink hosts at start-up. The use of promiscuous listening allows hosts to use any

routing information that may come into wireless contact with them. This implies that a

host’s MAC Layer should send packets up to the Network Layer, regardless if the packet was

meant for that host’s MAC address or not.

5.2.1 Initialization of a host

At start-up a node firstly acquires any information on satellite up/downlink hosts. This

can be seen as proactive behaviour. This is accomplished by sending a RREQ-packet with no

specific address to discover any possible satellite up/downlink hosts. Hosts that receive these

requests will first extract route information and then check whether or not they are equipped

with satellite up/downlink hardware. That, in combination with promiscuous listening, can

allow a large amount of the network hosts to be informed of their neighbours in the network.

Hosts that do have satellite up/downlink capability will respond with a regular RREP-packet

response.

5.2 — Modified DSR Network Protocol Behaviour 31

5.2.2 Handling Behaviour for Application Layer Packets

Packets arriving at the Network Layer from the Application Layer is dealt with using the

algorithm of Figure 5.2

Figure 5.2: Application Packet handler Flowchart

When the packet arrives from the Application Layer for transmission, it causes the Net-

work Layer to check its route cache for a route to the required destination address. Routes

are chosen from the route caches by means of the lottery route selection method described

previously in Section 5.1.1. If a route does not exist Route Discovery is done. If this spe-

cific route discovery is unsuccessful, then a timeout will occur, causing the Network Layer

to retry the route discovery process. If a route is determined then the Network Layer will

receive a RREP-packet with a corresponding destination host. A transmission can then occur

of a packet that consists of the newly acquired route and the Application Layer packets’

contents. Route discovery retries are limited to a certain amount.

5.2.3 Handling Behaviour for Routing Layer Packets

Packets arriving at the Network Layer from the MAC Layer are categorised as one of the

following packet classes:

• RREQ-packets

• RREP-packets

• DATA-packets

• Packets that cannot be forwarded due to non-responsive hosts

The RREQ-packet case: When the Network Layer receives and identifies that a packet

is a RREQ-packet, the handler firstly extracts the current route from the packet header and

5.2 — Modified DSR Network Protocol Behaviour 32

Figure 5.3: RREQ-packet handler Flowchart

stores this information in its route cache. This is done with all packets and allows a host to

learn of routes from overheard packets, due to promiscuous listening.

The host then decides whether or not the RREQ-packet is meant for it. If it is, then a

RREP-packet is sent (with the newly determined route) in order to notify the source of the

route discovery of what route was taken to reach it. If the RREQ-packet was not meant for

this host, then it must be determined if the that host possesses a route to the destination. In

the case that it does have a route in its route cache that would be a path to the destination,

the response would be a RREP-packet. The route that is stored in the new RREP-packet’s

header is the catenated result of the route cache and the RREQ-packet that is currently under

scrutiny.

5.2 — Modified DSR Network Protocol Behaviour 33

The RREP-packet case: The Network Layer would handle a RREP-packet using the al-

gorithm represented by the flowchart of Figure 5.4. As in the RREQ-packet case, the Network

Layer extracts route information from the RREP-packet’s header before doing any other op-

eration on the packet. This route information is stored in the route cache for later usage.

The host then decides whether or not the packet is destined for it or for another host. In

case the host is not the destination of the route reply, then the host will assume the packet

was overheard and discard it.

Figure 5.4: RREP-packet handler Flowchart

The DATA-packet case: Packets identified as DATA-packets are handled similarly to

RREP-packets. A host also extracts routing information for its own route cache before deciding

how to deal with the packet first. This is then also followed by comparing the packet’s

destination with the host’s own network address. If the packet is meant for this host then it

will be sent up to the Application Layer. Packets that are not meant for this host should be

deleted by honest nodes. This does, however, raises a question regarding security, but this

is not within the scope of this thesis and was therefore not considered to be an important

design consideration.

5.2.4 Forwarding Behaviour

Hosts forwarding or sending DATA-packets uses as many different routes to a destination

as available. This approach allows multipath routing to take place. Later, simulation will

confirm this behaviour.

5.3 — Summary 34

5.3 Summary

This chapter has described a Network Layer that has been based on the Dynamic Source

Routing (DSR) Protocol. It discovers routes at initialization to a satellite up/downlink host.

This proactive initial route discovery phase has a dual purpose.

• Through the use of promiscuous listening other hosts will be informed of each other.

• A route to a satellite up/downlink host will, hopefully, be discovered.

In the event that a satellite up/downlink host does not exist, then the RREQ-packet’s

time-to-live counter will let it expire. The Network Layer will reschedule satellite gateway

discovery for a later stage or wait until it overhears a route to a satellite up/downlink host.

This protocol attempts to decrease overhead incurred, by using these techniques. Reuse of

packets allows proactive routing in normal (non-initial) network behaviour to be avoided.

The protocol can thus be described by the following characteristics:

• Reactive – The Network Layer only does route discovery if it does not have a route to

the destination. The only proactive action that the Network Layer takes is at initial-

ization in order to find the satellite up/downlink host(s).

• Multipath Routing – Messages can be split up into packets and sent via various paths

to the same destination. The way in which these packets are distributed are determined

using the Lottery Route Selection Algorithm.

• Least Overhead Routing Algorithm (LORA) – If a route fails to a destination but one

or more other routes to that destination exists, no special action will be taken, due to

the fact that overhead would be decreased if route discoveries are avoided.

Chapter 6

Simulation And Results

The following chapter will deal with the actual test simulations of the protocol using various

test scenarios. The parameters that are evaluated will be throughput, latency and efficiency.

Each section will explain how the values were calculated and results will be displayed and

interpreted. In this chapter the following will be covered:

• The process of elimination of simulation software that was followed.

• The background of simulation using OMNeT++ will be explained.

• A method for modelling route discovery by embedding timing events to the RREQ- and

RREP-packets.

• Simulation of various test scenarios will be shown, as well as interpretation of the

results.

• As a result of the previous point a theoretical basis have been established for ad

hoc network design. This, in conjunction with the simulation models and scripts, can

collectively be seen as a tool for modelling ad hoc networks.

35

6.1 — Simulation Software 36

6.1 Simulation Software

Various simulation software packages were considered, such as Network Simulator [12],

JiST/SWANS [13] as well as a few other closed source alternatives. The following will shortly

summarize all the simulation packages considered as well as reasons for the final choice.

• Network Simulator [12] (otherwise known as NS) has been developed by various con-

tributors (see [14]). It boasts with a wide community of support and developers, as well

as, a large amount of simulation models written for, or ported to it. The software is

based on C++ with OTcl as a scripting and simulation setup language. This simulator

was not chosen due to the high grade of difficulty it poses to users that are new to any

form of simulation software.

• SimPy [15] is a Python-based simulation framework that allows fast development of

small simulation systems. It is very simple to learn due to its use of Python as its

base language. This simulation framework was, however, meant for a wide variety of

simulation situations. This lack of specialization causes the development of network-

specific simulations to be slow. The medium, the nodes and the protocols would have

to be implemented from scratch.

• JiST/SWANS [13] or Java in Simulation Time/Scalable Wireless Ad hoc Network

Simulator, was developed by Rimon Barr at Cornell University. This simulation soft-

ware uses various interesting concepts in order to accomplish simulation. The most

interesting characteristic of this simulator is that it is Java-based. Normal Java-based

simulations would be too slow and resource inefficient. This simulation framework re-

compiles the simulation model’s byte-code and modifies it to interact more efficiently

with the hardware platform. It also boasts various ad hoc networking models. The

simulator was eventually not chosen due to a lack of support.

• OMNeT++/OMNEST [16] is a simulator initially developed by Andras Varga. This

simulation package is based on C++. It does not have as many ad hoc network specific

models written for it, but it is a fast and simple simulator that has various basic radio

models and libraries to its disposal. It also allows one the option between visualizing

the network with graphics for single simulation runs or outputting results for various

simulation runs while in a console based environment. It only requires simple scripting

in order to allow various simulation runs to be accomplished in the console based

environment. For these reasons, it was decided to choose OMNeT++ for the ad hoc

network simulation for this thesis.

6.2 — Simulation Strategy 37

6.2 Simulation Strategy

6.2.1 Background on OMNeT++ Simulation Modelling

OMNeT++ [16] is an open-source object-oriented discrete event simulator software pack-

age. It is written in C++ and implements a custom high-level network modelling language

that allows users to reuse models previously implemented in C++. The following section will

describe the basic structure of the event-queue as well as how it was used and exploited to

implement a DSR-like routing protocol model.

Figure 6.1: OMNeT++ Graphical Window

6.2 — Simulation Strategy 38

6.2.2 Discrete Event Simulation

The basic algorithm that discrete event simulators follow to execute events are as follows

(taken from [16]):

initialize: construct model & insert initial events to FES

while (FES not empty and simulation not yet complete)

{

retrieve first event from FES

t:= timestamp of this event

process event

(processing may insert new events in FES or delete existing ones)

}

finish simulation (write statistical results, etc.)

Initialization The initialization phase calls all initial object constructors. This implies

that objects modelling protocols and hardware, as well as objects that represent initial

messages, events and packets are created. In this phase initial network connections are also

constructed. Construction of network connections are governed by Formula 6.3 (discussed

later).

The Event loop This program construct moves through the FES (Future Event Set) or

event queue and executes each message in the sequence that they were scheduled. The FES

is similar to a priority queue, due to the fact that a cMessage-event with an earlier scheduled

simulation time is acted on before an event with a later simulation time. During this process

information about the simulation should be logged and recorded to determine results from

the simulation.

Finishing the simulation If the simulation’s event queue (or FES) is empty, the simula-

tion exits the event loop. In this section object destructors must be called and the necessary

object clean-up operations done.

6.2 — Simulation Strategy 39

6.2.3 The cMessage Class

This class (and subclasses thereof) is used in OMNeT++ to represent events, packets and

timers. These applications are implemented as follows:

• Event or Timer – When an event needs to occur at a specific time, a cMessage-object

is placed in the FES with a specific arrival time. When the event loop iterates through

the FES and reaches this event, it is removed and an user-defined event-handler takes

over in order to interpret the message.

Figure 6.2: Mapping between the FES, Simulated and Real time

In Figure 6.2 simulation time and the FES are represented. cMessage(A) and cMessage(B)

are marked. Note that even though the events these cMessages represent occurs af-

ter each other, there is no need for the events to be scheduled in the same sequence.

This means that cMessage(A) could have been scheduled after cMessage(B). In Fig-

ure 6.2, only cMessage(B)’s movements are completely shown. Note also that when a

cMessage is inserted into the FES, it models an event that is being scheduled. When

such a cMessage leaves the FES, it represents that the simulation time has reached the

timestamp of the cMessage and the scheduled event has occurred. In this case, the

cMessage instance is then handled by an event handler. If such a cMessage instance

is removed before its simulation time was reached then the event was cancelled.

• Packet – A packet class is usually subclassed from a cMessage-class to include extra

information, such as source and destination addresses, time-to-live and packet size.

Meta-data, such as overhead incurred or the current age of a packet can also be added.

This can be done without changing the simulated size of the packet, due to the fact

6.2 — Simulation Strategy 40

that the size value is independent of actual packet-object contents. Packets are usually

moved between protocol layers and encapsulated or decapsulated with layer-specific

headers. Packets can also move between hosts and node objects by means of channel

objects.

The context pointer: The cMessage-class is also equipped with a general purpose pointer

that allows timers and events to be bound to other messages or packet-objects. One usage

of such a pointer is to bind a timer-message to the exploits of a certain packet. This usage

will be explained further in Section 6.2.4.

Other cMessage attributes:

There are a few other class attributes that are worth mentioning:

• creationTime – Attribute that contains the time at which the object was constructed

• sendingTime – Attribute that contains at what time the object was entered into the

Future Event Set.

• arrivalTime – Attribute that contains at what time the timer object will leave the

Future Event Set.

These attributes are useful for determining how long the timer was active, in case it was

canceled before it could expire. Other attributes include a general-purpose kind-attribute

that allows user-defined message types. When such a timer “arrives” (from the FES) at

the host that set it, the host can simply differentiate between messages by only using the

kind-field.

6.2 — Simulation Strategy 41

6.2.4 DSR Route Discovery Modelling by means of the FES and

cMessage class

When the Application Layer sends a packet to the Network Layer, it is determined whether

or not the Network Layer has a route to the destination in question. A Dynamic Source

Routing (DSR) type protocol would require to start route discovery. If the route discovery

is unsuccessful, the simulation model timer must expire. This implies that a timer must be

kept for each route discovery that a host is waiting for. In order to implement various timers

for various route discoveries, the context pointer of the new RREQ-packet is set to a new timer

object (cMessage-object). The RREQ-packet’s context pointer is thus taking “ownership” of

a timer. This timer will therefore only refer to one route discovery.

Figure 6.3: RREQ-packets point to timers at source

In Figure 6.3 the route discovery timer objects (Timer T0 and Timer T1) were created

in order for the Network Layer to remember which route discovery attempt has expired and

which was still active. Timer T0 is set to be active from T0(set) and T0(expire). After

T0(expire), the Network Layer considers the route discovery to be a failure and a new

attempt (with a new timer) is issued. The same holds true for Timer T1. Note that Timer

T0 and Timer T1 are completely independent of each other.

6.2 — Simulation Strategy 42

Figure 6.4: RREP-packets point back to timers at source

In Figure 6.4 the RREQ-packets have reached the Network Layer of the destination host.

The context pointers contain memory addresses of that specific route discovery timer object

(cMessage). The address contained by the context pointer is transferred from these RREQ-

packets to the newly created RREP-packets. This means that the context pointers are still

referring to the timers at the source. These RREP-packets will then be unicasted back to the

source host. The source host must then know which route discovery timer to cancel. Timer

identification can then be done by comparing all its own active timers in the FES with the

timer that is referred to by the RREP-packet’s context pointer.

This method allows multiple timers to be implemented by using only the Future Event Set

and cMessage-objects. No extra data structures will then be required to maintain the mapping

between timers and route discoveries.

6.2 — Simulation Strategy 43

6.2.5 Simulation Structure

Hosts were designed to have the following basic structure:

• ApplLayer – Models the Application Layer (a short mail message client)

• NetwLayer – Models the network and routing layer as described in Chapter 5

• MacLayer – Models the medium access layer as described in Chapter 3

• Physical Layer – Models the radio and the dynamic connections between hosts

Figure 6.5: Screenshot of host[5]

The main implemented simulation models will be described.

ApplLayer model

The Application Layer Model was designed to give a host an identity as a peer host or a

host with satellite up/downlink capability (or a gateway host). To specify host behaviour,

the following parameters must be specified:

• activationAt – time at which the host starts its function

• dieAtTime – a parameter that can enable random failure or failure at a specified time.

• isSatHost – a parameter that sets the host’s satellite gateway host status.

• isSource – this parameter allows a host to get periodic mail receptions from its Ap-

plication Layer.

6.2 — Simulation Strategy 44

• mailArrivalInterval – this parameter is used to specify the mean arrival rate of

every mail message.

• constMailSize – a parameter that specifies the constant amount of packets that a

message can consist of.

Hosts can be set to behave as satellite gateway hosts or normal peer hosts. Both classes

can also be set to an active or inactive state, as well as, source hosts or non-source hosts.

This allows simulation hosts to either act as active packet generators, packet sinks or simply

forwarding hosts.

NetwLayer Model

The parameters used for the Network Layer is stated below:

• defaultTtl – default time-to-live (ttl) used for this module.

• resendRREQtime – time it takes before the Network Layer sends another route request.

• addressLength – used to accurately simulate packets with attached route records.

• numberReTX – the number of times the Network Layer will resend a packet before

discarding it. Every time a network packet is retransmitted a route is selected for it by

using the Lottery Route Selection Algorithm.

• weightPower – used in Lottery Route Selection. A larger weight implies that popular

routes will become more popular and less popular routes are used less.

• rreqAttempts – specifies how many times a route discovery must take place before

the host gives up.

6.2 — Simulation Strategy 45

MacLayer Model

The Medium Access Layer Model was based on the 802.11 simulation model that was dis-

tributed with the Mobility Framework add-on for OMNeT++. It was changed to take a

maximum wait distance as a parameter in order to wait a reasonable amount of time for

transmissions to propagate between hosts. This parameter (named maxNodeSeperationDis-

tance) as well as the others will now be described:

• maxQueueSize – this specifies a FIFO buffer size for waiting packets.

• broadcastBackoff – this parameter determines the duration of the backoff window

when a message is broadcast.

• maxNodeSeperationDistance – the distance (in meters) of how far nodes will be (max-

imally) from each other.

Physical Layer Model

The physical layer determines which hosts are connected to each other. This layer model

also allows for packets to collide when simultaneous transmission occurs. Packets involved in

this event will then be marked by this layer model as collided or corrupted packets. The link

quality for all the radio links are determined by calculating the interference distance given

by the Equation 6.3 found in [7]:

λ =
c

fcarrier

(6.1)

PRXpower = 10.0SAT/10.0 (6.2)

InterferenceDistance =

(
λ× Pmax

16.0× π2 × PRXpower

)1/α

(6.3)

with c = speed of light = 3× 108m/s

SAT = Signal Attenuation Threshold (in dBm)

α = path loss coefficient

λ = wave length

Pmax = Maximum transmission power

This value is then compared with the actual physical distance between all host pairs.

If the distance between a node pair is less than the value determined by Equation 6.3, a

connection is modelled. Otherwise, no connection is made in the simulation model. This

code was reused later in order to create a Python script that would represent the network

topology.

6.2 — Simulation Strategy 46

6.2.6 Representation of Statistics

Network Representation

Network topologies are represented as a graph of vertices and edges, where the dots represent

the network hosts and the edges represent the radio link in between radio networks.

Figure 6.6 is an example network topology

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
x1e4

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

x1e4

0

1

2

3

4

5

Figure 6.6: Simple Test Network

OMNeT++ has a network visualization system that, for short ranges, shows the entire

network in a highly user-friendly manner. It was however decided not to be used due to the

lack of scaling functionality in cases where the distance between simulated networks nodes

became too big. Figure 6.6 was represented by means of a custom made Python-based script

using the Matplotlib library. Connectivity of nodes were determined using Formula 6.3.

6.2 — Simulation Strategy 47

Route Preference Graph

Packet arrivals can be represented as marks on the time-line as is the case of Figure 6.7 but

this does not give a good impression of the routes that are used by arriving packets over a

certain interval of time at the destination node.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
time (s) x1e5

ro
u
te

s

(host[4])(host[2])(host[1])(host[5])

(host[4])(host[0])(host[5])

(host[3])(host[4])(host[0])(host[5])

(host[3])(host[2])(host[1])(host[5])

Figure 6.7: Route arrivals over time as seen from host[5]

In an attempt to create a more readable representation of packet route “preferences” the

graph of Figure 6.8 was rendered. Figure 6.7’s data is used and a small interval is taken over

which a certain amount of data will be considered. The percentage of packets that used a

certain route is registered on the graph in Figure 6.8.

6.2 — Simulation Strategy 48

Please note: that more popular routes inhabit larger areas on the graph than less

popular routes. As previously stated, for this implementation (of the Lottery Route Selection

Algorithm) route popularity is inverse proportional to the route hop metric.

0.0 0.5 1.0 1.5 2.0
time (s) x1e5

100.0%

(host[4])(host[2])(host[1])(host[5])

(host[4])(host[0])(host[5])

Figure 6.8: Graph highlighting traffic from host[4] as seen from host[5]

In Figure 6.8 the routes used by host[4]’s traffic are highlighted. From the figure it can

easily be seen that host[4] is always active. Before 50000s packets originating from host[4]

makes up for 100 percent of the packets arrivals at host[5].

0.0 0.5 1.0 1.5 2.0
time (s) x1e5

100.0%

(host[3])(host[4])(host[0])(host[5])

(host[3])(host[2])(host[1])(host[5])

Figure 6.9: Simple Route Preference Graph (traffic from host[3]) as seen from host[5]

In Figure 6.9 the routes used by host[3]’s traffic are highlighted. It can be seen from the

graph that host[3] activates at 50000s. A smaller percentage of packets arriving at host[5]

now originates from host[4], while the rest of the arrivals originates from host[3].

6.3 — Host Introduction to the Network 49

6.3 Host Introduction to the Network

For this simulation the network of Figure 6.10 was used. All hosts are active in the beginning

of the simulation, except for host[7] which only activates at 50000s. Host[5] was designated

as the source host and host[8] was designated as the destination.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
x1e4

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

x1e4

0 1

2

3

45

6

7

8

Figure 6.10: Test Network

6.3 — Host Introduction to the Network 50

Figures 6.11 and 6.12 gives a graph of what routes were taken to reach the destina-

tion host. Figure 6.11 highlights the routes used by packets to move between host[5] and

host[8].

0.0 0.5 1.0 1.5 2.0
time (s) x1e5

100.0%

(host[5])(host[6])(host[4])(host[3])(host[8])(host[5])(host[1])(host[4])(host[2])(host[8])(host[5])(host[4])(host[3])(host[2])(host[8])
(host[5])(host[1])(host[3])(host[8])

(host[5])(host[0])(host[4])(host[3])(host[8])
(host[5])(host[4])(host[6])(host[2])(host[8])

(host[5])(host[6])(host[2])(host[3])(host[8])

(host[5])(host[4])(host[2])(host[3])(host[8])
(host[5])(host[1])(host[3])(host[2])(host[8])
(host[5])(host[6])(host[4])(host[2])(host[8])
(host[5])(host[0])(host[1])(host[3])(host[8])
(host[5])(host[6])(host[2])(host[8])

(host[5])(host[4])(host[3])(host[8])
(host[5])(host[1])(host[4])(host[3])(host[8])

(host[5])(host[4])(host[2])(host[8])

(host[5])(host[0])(host[4])(host[2])(host[8])

Figure 6.11: Host[5] packet routes highlighted

It can be seen on Figures 6.11 and 6.12 that the route change does not appear to take

place immediately at 50000s. This can be explained, due to the fact that the graph is

generated by checking a subsection (or window) of time and determining what percentage of

the packets follow what routes. This process is repeated while moving the window over the

total simulation time. The size of the window was modified to make the results more visible,

but this causes accuracy to be decreased. Smaller windows would allow for more accurate

representations, but the graph would not be as smooth or readable. The larger the window,

the more smoothing is done but this decreases accuracy.

6.3 — Host Introduction to the Network 51

It is evident, according to the graph of Figures 6.11 and 6.12, that host[7] activates at

50000s. The result is that a smaller portion of the arrivals at host[8] can be attributed to

host[5].

0.0 0.5 1.0 1.5 2.0
time (s) x1e5

100.0%

(host[7])(host[5])(host[1])(host[3])(host[8])

(host[7])(host[6])(host[4])(host[2])(host[8])

(host[7])(host[5])(host[4])(host[3])(host[8])

(host[7])(host[6])(host[2])(host[3])(host[8])

(host[7])(host[6])(host[2])(host[8])

(host[7])(host[6])(host[4])(host[3])(host[8])

(host[7])(host[5])(host[4])(host[2])(host[8])

Figure 6.12: Host[7] joins the network (packet routes highlighted)

Also note that the surface occupied of each flow represents the popularity of a route.

This implies that route 7-6-2-8 is the most popular due to the fact that it is occupies a

bigger area on the graph than any other route. This is due to the shortness of the route. This

representation of diverging traffic flows are, in fact, caused by the Lottery Route Selection

Algorithm described previously in Chapter 5.

6.4 — Broken Host Route Recovery 52

6.4 Broken Host Route Recovery

The following section will prove that the routing protocol can recover from network errors.

This will be done by using the test network of Figure 6.10. Host[5] and host[8] have been

designated as source and destination nodes respectively. Host[4] have been set to die at

certain times. Simulation runs will be used to demonstrate each case.

6.4.1 Test Case 1: Host[4] dies at 50000s

In Figure 6.13 the highlighted packet route preferences are that of routes that included

host[4]. Host[4] was scheduled to fail at time instant 50000 seconds.

0 1 2 3 4 5
time (s) x1e5

100.0%

(host[5])(host[6])(host[4])(host[2])(host[8])(host[5])(host[0])(host[4])(host[2])(host[8])(host[5])(host[0])(host[4])(host[3])(host[8])

(host[5])(host[6])(host[4])(host[3])(host[8])(host[5])(host[4])(host[2])(host[3])(host[8])

(host[5])(host[4])(host[2])(host[8])(host[5])(host[4])(host[3])(host[8])

(host[5])(host[1])(host[4])(host[2])(host[8])
(host[5])(host[4])(host[3])(host[2])(host[8])
(host[5])(host[1])(host[4])(host[3])(host[8])(host[5])(host[4])(host[6])(host[2])(host[8])

Figure 6.13: Data Packet arrival rates using different routes (death of host[4] at 50000s)

The figure clearly shows that route preferences for routes with host[4] becomes zero after

50000s in simulation time. The graph does however not stop after this time, but continues

until the termination time of the simulation. Due to the Least Overhead Routing Approach

(LORA), route discovery is not necessary because useful routes still exist.

6.4 — Broken Host Route Recovery 53

6.4.2 Test Case 2: Host[4] dies at 150000s

When the simulation is run again with host[4]’s time of death set to 150000s the route

preferences will be given by Figure 6.14.

0 1 2 3 4 5
time (s) x1e5

100.0%

(host[5])(host[6])(host[4])(host[2])(host[8])(host[5])(host[0])(host[4])(host[2])(host[8])(host[5])(host[0])(host[4])(host[3])(host[8])

(host[5])(host[6])(host[4])(host[3])(host[8])(host[5])(host[4])(host[1])(host[3])(host[8])(host[5])(host[4])(host[2])(host[3])(host[8])

(host[5])(host[4])(host[2])(host[8])(host[5])(host[4])(host[3])(host[8])

(host[5])(host[1])(host[4])(host[2])(host[8])(host[5])(host[4])(host[3])(host[2])(host[8])

(host[5])(host[1])(host[4])(host[3])(host[8])(host[5])(host[4])(host[6])(host[2])(host[8])

Figure 6.14: Data Packet arrival rates using different routes (death of host[4] at 150000s)

Once again, packets from host[5] find their way to host[8]. These simulations indicate

that the routing protocol is, in fact, capable of finding alternate destination routes. A reason

for this, is that packets follow alternate paths to the destination and a route failure would

only decrease the amount of probable paths that the packets may follow. As described in

Chapter 5, forwarding to non-responsive hosts are dealt with by replacing the route header

information of the packet and re-attempting the transmission.

6.5 — Network Simulation Evaluation via Queueing theory 54

6.5 Network Simulation Evaluation via Queueing the-

ory

6.5.1 Scenario Description

The topology of Figure 6.15 was devised to show how the protocol functions after route

discovery has been done and routes have been established. Host[0] is configured to act as

the traffic source host and host[3] has been activated as a satellite gateway host. Host[0]

generates traffic that have exponentially distributed arrival intervals at a rate of λ. The

hosts then deal with these packets at a service rate of µ. In this case, a host has completed

servicing a packet, after the packet has been transferred to the next host.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1e4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1e4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 6.15: A network with host[0] as source and host[3] as destination

6.5 — Network Simulation Evaluation via Queueing theory 55

6.5.2 Theoretical Background

In order to evaluate some of the work of this section, queueing theory needs to be investigated.

Figure 6.16 is a simplified representation of a queue-server system. Items (such as clients or

packets) reaches the host at a rate λ. The server host services such items at a service rate

of µ. Note that the service rate does not change the rate at which the items leave the host.

Figure 6.16: A Basic Queue-Server representation

In order to determine the average host queue length, Equation 6.4 can be used given a

service rate (µ) and mean arrival rate (λ) as parameters. Equation 6.5 states ρ, the traffic

intensity value, as the ratio of arrival to service rates. Note that a ρ-value of one results in

a queue that grows boundlessly [17].

N =
ρ

1− ρ
(6.4)

with ρ = λ/µ (6.5)

Equation 6.4 can also be used to determine the sum of the waiting and service times of

packets in the hosts using Equation 6.6 in a substitution for N.

N = λT (6.6)

This leads to:

T =
1

(µ− λ)
(6.7)

Equation 6.7 is known as Little’s result.

6.5 — Network Simulation Evaluation via Queueing theory 56

6.5.3 Modelling Service Rate

Figure 6.17 is a block-diagram representation of the traffic generator (host[0]) with one

of the successor hosts. It can be seen on Figure 6.15 that the successor hosts (1 hop away)

are hosts 1, 4 and 10. The application and physical layers are not explicitly depicted. To

determine the theoretical service rate, one must first consider where processing delays may

occur.

Figure 6.17: Block diagram of host[0] and one successor host

Between points A and B: In this section there may be some processing delay caused

due to route discovery. However, due to the fact that it is assumed that route discovery has

already been done, it can be assumed that the delay will be negligible.

Between points B and C: Section B-C was initially (and incorrectly) considered to be a

source of negligible delay. It will later be determined that delays such as DIFS and Truncated

Binary Exponential Backoff times are the main sources for delay in this section. This will be

investigated in Subsection 6.5.7.

Between points C and D: This section was initially considered to be the main influ-

ence of the host’s service rate (µ). Initially, determination of the service rate was done by

determining the MAC Layer transmission delay.

TMAC =
(bitsRTS + bitsCTS + bitsDATA + 3bitsheader)

bitrate
+ 2SIFS + 3Tp (6.8)

= 0.311246666667 seconds/packet

6.5 — Network Simulation Evaluation via Queueing theory 57

Initial service rate calculation can then be determined by using the inverse of this value.

µ = 1/TMAC = 3.21288581404 packets/second (6.9)

This value of µ will later be shown to be incomplete when one inspects the difference between

simulated and theoretical results.

Between points D and E: For Section D-E it was decided that processing delay from

the MAC Layer to the Network Layer should be modelled as negligible. This is only possible

if route discovery has already been done for all possible locations.

6.5.4 Modelling Arrival Rate

In order to understand what the different arrival rates of hosts in the paths of Figure 6.15

will be, the hosts will be represented as M/M/1 queues. Figure 6.18 is a representation of

the source host (host[0]) with successors hosts (hosts 1, 4 and 10) that exists one hop away.

Figure 6.18: Queues for host[0] and the 3 successor hosts

According to Jackson [18] the incoming stream at the source of Figure 6.18 diverges

into 3 differing streams with arrival rates indicated on the figure. The routing probabilities

(q0, q1, q2) are determined by the Lottery Route Selection Algorithm. Table 6.1 shows the

calculated routing probabilities for each case. It is evident, from the table, that longer routes

have a lower chance of being selected than shorter routes. Please note the correlation between

the calculated (theoretical) values and the simulated values. The next section will deal with

the simulation proof of these results.

6.5 — Network Simulation Evaluation via Queueing theory 58

6.5.5 Verifying Arrival Rates through Simulation

The simulation was rerun for various inter-arrival times. To verify that theoretical and sim-

ulated arrival rates are the same, the following results were depicted in Figure 6.19.

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018
Source Arrival rates (1/s)

0.000

0.005

0.010

0.015

0.020

S
im

u
la

te
d
 A

rr
iv

a
l
ra

te
s

(1
/s

)

 host[0]
 gradient
 =1.009507

 host[1]
 gradient
 =0.476378

 host[4]
 gradient
 =0.222543

 host[10]
 gradient
 =0.311774

Figure 6.19: Arrival times versus Perceived Arrival times

It can be seen from Figure 6.19 that the source host’s gradient is approximately equal to

unity. The gradients of the other lines are equal to the routing probabilities given by Table

6.1 (column three) and determined by the Lottery Route Selection Algorithm. The longer

routes experience lower packet arrival rates than the shorter routes. This verifies that the

Lottery Route Selection Algorithm is functioning in the way it was intended.

Route Lengths Calculated Route Probabilities Simulated Route Probabilities

4 hosts q0 = 0.4615 q0 = 0.47637

6 hosts q1 = 0.3076 q1 = 0.31177

8 hosts q2 = 0.2307 q2 = 0.22254

Table 6.1: Route lengths with appropriate route probabilities (Theoretical and Simulated)

6.5 — Network Simulation Evaluation via Queueing theory 59

6.5.6 Determining Average Queue length from Simulation

To ascertain the average queue length at a specific host, every change in a host’s MAC

Layer queue length has been recorded during the simulation as well as the corresponding

timestamp of each change. The queue length time-average of one host was then determined

using Formula 6.10:

Average Nhost x = Nto

t0∑
ti

+ Nt1

t1∑
ti

+ Nt2

t2∑
ti

+ · · · (6.10)

where i = 0. . . Number of Samples

Figure 6.20 was plotted using this information. The expected buffer occupancy that is

(incorrectly) calculated using the µ = 1/TMAC from Equations 6.8 and 6.4 is shown with

×-marks. The corresponding theoretical average queue length plots for the other hosts were

not added for the sake of clarity. The only conclusion that could be made from these graphs

is that the theoretical values did not correspond to the simulated values. An improved

calculation will be determined later and shown in Figure 6.25.

50 100 150 200 250 300 350
Arrival interval (s)

3�

01

2�

01

A
v
e
ra

g
e
 Q

u
e
u
e
 l
e
n
g
th

route
of host[2]

route
of host[9]

route
of host[13]

Figure 6.20: Semilog graph of Queue length with One Theoretical Determined Queue Length

(×-marks)

6.5 — Network Simulation Evaluation via Queueing theory 60

Figure 6.21 is a closer inspection of Figure 6.20 over a certain interval. It can be seen

that hosts of certain routes have similar queue lengths. The top queue length plot in Figures

6.20 and 6.21 belongs to the source host. The next bundle of plots (not marked) belongs

to the center route (hosts 1,2). The following bundle of plots belongs to the hosts of route

10-11-12-13. The last bundle of lines depicts the queue length of the hosts of the route

4-5-6-7-8-9. The calculated graph with constant µ (of Equation 6.9) was also superimposed

onto the figure. This implies however that the actual µ-value varies for different hosts. The

next section will investigate and explain the reason for the discrepancy.

160 180 200 220 240
Arrival interval (s)

3�

01

A
v
e
ra

g
e
 Q

u
e
u
e
 l
e
n
g
th

Figure 6.21: Semilog graph of Queue length at closer inspection

The following subsections will deal with an improved theoretical understanding of ser-

vice rate, followed by another attempt to determine the average Queue Length of a host.

This will then be followed by a comparison of theoretical and simulated average latency

quantities.

6.5 — Network Simulation Evaluation via Queueing theory 61

6.5.7 Determining Service rates out of Simulation

The following section will help explain service rate quantities and allow a better theoretical

model for service rate to be determined. For increasing inter-arrival times the service rates

were determined and Figure 6.22 was rendered.

50 100 150 200 250 300 350
Arrival interval (s)

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

S
e
rv

ic
e
 r

a
te

 (
1

/s
)

Figure 6.22: Perceived Service rate versus interval

In the figure, the y-axis represents the average service rates of all the hosts for various

simulation runs. Each run contributes a data point to the figure. Each simulation run uses a

different average packet arrival interval and this is represented by the x-axis. The inverse of

this interval can be seen as the source host’s average packet arrival rate. A shorter arrival rate

would imply a larger arrival interval. On the figure it is shown that the source host (host[0])

achieves “steady state” after the 100 second mark. This means that the simulations using

an average arrival interval of 100 seconds or longer, exhibited similar service rates.

Reasons for Service rate Inequality

It was initially determined that the service rate of all the hosts would be the constant

amount given by the value µ = 1/TMAC = 3.21288581404 packets/second. According to

simulation however, this is not the same value for all hosts as can be seen in the Figure

6.22. This inconsistency can be attributed to the fact that the processing delay of the host

while inside the buffer was not kept into consideration. This delay occurs in section B-C in

6.5 — Network Simulation Evaluation via Queueing theory 62

Figure 6.17. The main reason for the large differences in service rates can be attributed to

the backoff behaviour of the host. Hosts that transmit and receive (such as forwarding hosts)

are more likely to contend for the medium. These hosts would then use the truncated binary

exponential backoff (BEB) algorithm in order to resolve medium access conflicts.

The Truncated Binary Exponential Backoff algorithm model

The Truncated Binary Exponential Backoff Algorithm was modelled in [7]. The backoff cal-

culation functions can be described as follows:

Global Variables: retryCounter = 1

Global Constants: ST, CWmin = 7, CMmax= 255

Calculation Functions: CW(), backoff()

CW()

{

window = CWmin * 2^(retryCounter-1)-1

if window >= CWmax then return CWmax

else return window

}

backoff()

{

// returns a value that is chosen

// from a uniform distribution

// and multiplies with ST

return uniform(CW())*ST

}

The CW()-function calculates the current contention window value. This method also

implements the truncation function for the algorithm by checking that the newly determined

window is no bigger than the maximum value (CWmax = 255). The retryCounter-value is a

global value that is incremented every time the MAC Layer sends a ready-to-send message.

Every RTS message implies a new retry attempt. Figure 6.23 shows a flowchart representation

of a section of the IEEE 802.11 DCF state machine in order to explain how the backoff section

fits into the MAC Layer system as a whole.

6.5 — Network Simulation Evaluation via Queueing theory 63

Figure 6.23: Application of the BEB-Algorithm in the MAC Layer model

The model uses a Boolean variable called tryWithoutBackoff that acts as a switch in

the algorithm. The ‘--’-line block indicates the modification that was made to the model

in order to compensate for the high arrival rate problem previously mentioned in Section

3.2. It can be seen from Figure 6.23 that the tryWithoutBackoff switch is set to true in

during the MAC Layer IDLE-state. This switch then changes if the radio hardware layer is

in an IDLE-state (not receiving or transmitting). This acts as a latch that enables the MAC

Layer to use backoff behaviour for future attempts to transmit the packet.

6.5 — Network Simulation Evaluation via Queueing theory 64

If a packet is not transmitting, then it must be waiting while the MAC Layer is in a

CONTEND-state. This implies that in order to determine what causes the delay in section B-C

of Figure 6.17, the timing activity of the CONTEND-state timer must be logged. The average

B-C delay (CONTEND-state delay) for each simulation run is shown in Figure 6.24. The x-axis

is the average arrival interval (1/λ) used for each specific simulation run.

50 100 150 200 250 300 350
Arrival interval (s)

0.00

0.05

0.10

0.15

0.20

0.25

S
im

u
la

te
d
 s

e
rv

ic
e
 d

e
la

y
s

(s
)

Figure 6.24: Backoff Delay versus interval (multiples of Slottime indicated)

Please note the average source (host[0]) section B-C delay is given by the bottom line,

that reaches a “steady state” value of DIFS (= 2×ST +SIFS) after the 100 second interval

mark. The other hosts have average delays over B-C of approximately equal to 1 DIFS period

plus 4 slottimes. It can be proven that this is the source of the delay that is causing the

difference in the simulated service rate, by increasing both graphs with an offset equal to the

transmission time (TMAC = 1/µ = 0.311246666667). The inverse graph of this summation is

then equivalent to Figure 6.22.

• The reason for this delay difference is that host[0] is the only source host. This fact

suggests that its chances to be able to transmit is much greater than that of any other

host. This, in turn, implies that host[0] does not need to employ a backoff as much as

the other hosts. Its average CONTEND-state period is therefore equal to 1 DIFS period.

• Other hosts only act as forwarders for packets. Once they have forwarded packets to

the previous host they are inactive until they receive another packet to forward. These

6.5 — Network Simulation Evaluation via Queueing theory 65

hosts are, however, in a situation where their successors and predecessors are both

contending for transmission, due to the continuous stream of packets that are being

sent through each route. These contention situations makes links on both sides of a

host unavailable for the host causing the host to start a truncated binary exponential

backoff.

• The truncated binary exponential backoff algorithm uses a uniform distribution of

which the upper limit varies with every retransmission attempt. (For example: “0 . . . 7

for attempt 1, 0 . . . 14 for attempt 2 and eventually 0 . . . 255 for the last attempts.)

• It has been determined that the MAC Layer backs of mostly once. This means that

the uniform distribution will lie over 0 . . . 7. This distribution has an average value of

3.5.

• This implies that a non-source host will then have an average backoff at least once and

the average of all these backoff times is 3.5 × ST . This would make the total average

backoff time for a node DIFS + 3.5× ST . Which is approximately the average delay

value (DIFS + 4× ST) of the cluster of graphs that are visible on Figure 6.24.

The average service rate can be computed by taking the previously mentioned points into

consideration and applying them as follows:

1. Firstly the average service delay must be determined. For the forwarding hosts this

average service delay is given by:

TFW (service delay) = DIFS + 3.5× ST + TMAC + SIFS (6.11)

= 52.0× 10−3 + 3.5(23× 10−3) + 0.311246666667 + 6× 10−3

TFW (service delay) = 0.449746s seconds

The source hosts can be determined in a similar fashion:

TSRC(service delay) = DIFS + TMAC + SIFS (6.12)

= 52.0× 10−3 + 0.311246666667 + 6× 10−3

TSRC(service delay) = 0.369246s seconds

2. This then leads to forwarding average service rate of :

µFW (service rate) = 1/TFW (service delay) = 2.2234739 packets/second (6.13)

The average source service rate is given by:

µSRC(service rate) = 1/TSRC(service delay) = 2.708216 packets/second (6.14)

6.5 — Network Simulation Evaluation via Queueing theory 66

Improved Theoretical and Simulated Average Queue Length Comparison

1. The arrival rate of a host can be determined from the product of the route probability

and the source arrival rate. The chosen average arrival interval is 200 seconds. Average

arrival rate is therefore 1/200 packets/second.

λFW = qx × λSRC (6.15)

The route selection probability of route 0-10-11-12-13-3 is equal to 0.3076 according

to Table 6.1. In this route all nodes in the route section 10-11-12-13 (forwarding hosts)

use a common average arrival rate (λ-value) given by Equation 6.15. For example, at

host[13] the average arrival rate would be given by:

λFW (host[13]) = q1 × λSRC

= 0.3076× 1/200

λFW (host[13]) = 0.0015379 seconds

All nodes in the route section 4-5-6-7-8-9 of route 0-4-5-6-7-8-9-3 also use a com-

mon average arrival rate (λ-value). Equation 6.15 can also be applied in this situation.

For example, host[7]’s average arrival rate can be given by:

λFW (host[7]) = q2 × λSRC

= 0.2307× 1/200

Average arrival of hosts in route section 1-2 of route 0-1-2-3 can also be determined.

This means that, for example, host[2]’s average arrival rate is computed as follows:

λFW (host[2]) = q0 × λSRC

= 0.4615× 1/200

2. The average latency incurred over a host (T) can be determined using Little’s result

(Equation 6.7). For the source host the latency is given by:

TSRC =
1

µSRC(service rate) - λSRC

(6.16)

By incorporating this with Equation 6.6 the average queue length (N) of a source host

is given by:

NSRC =
λSRC(host)

µSRC(service rate) - λSRC

(6.17)

6.5 — Network Simulation Evaluation via Queueing theory 67

3. The latency and queue length of a forwarding host can similarly be computed by:

TFW =
1

µFW (service rate) - λFW (host)

(6.18)

NFW =
λFW (host)

µFW (service rate) - λFW (host)

(6.19)

By substitution of the values determined by Equations 6.14 and 6.13 into Equations 6.17

and 6.19, the average queue lengths determined by simulation in Subsection 6.5.6 can be

determined. This set of improved theoretical calculations has been indicated by the ×-

marks on the Figure 6.25.

50 100 150 200 250 300 350
Arrival interval (s)

3�

01

2�

01

A
v
e
ra

g
e
 Q

u
e
u
e
 l
e
n
g
th

Figure 6.25: Semilog graph of Queue length (Simulated and Improved Theoretical Results

(×-marks))

As can be seen from the figure, the average queue lengths for each route are closely

approximated by the improved theoretical values. The following section will now deal with

the theoretical and simulated analysis of average route latency.

6.5 — Network Simulation Evaluation via Queueing theory 68

Theoretical and Simulated Average Latency Comparison

The delay over the route (the latency) can be seen as the superposition of delays incurred

over the source and forwarding hosts. By using the Equations 6.16 and 6.18 this value can

be determined. The average latency over all three routes will now be determined. The last

host (host[3]) will be left out of the calculation.

Please note: In this section, N represents route length in hosts.

• Latency to host[13] of route 0-10-11-12-13-3 can be determined as follows. The

source (host[0]) and four other hosts latencies/delays must be summed. Latency

(Tlatency) over a route will be given by:

Tlatency = (N − 1)TFW + TSRC (6.20)

where N is the number of hosts from the source

to the last host before the destination

Take the number of hosts to host[13] (including source host) as N = 5.

Tlatency =
N-1

(µFW (service rate) - λFW (host))
+

1

(µSRC(service rate) - λSRC)
(6.21)

= 4/(2.2234739− 0.0015379) + 1/(2.708216− 0.005)

= 2.1701615s seconds

The other route latencies can be computed similarly.

• For the route ending with host[2] the following average route latency calculation can

be done (N = 3):

Tlatency =
N-1

(µFW (service rate) - λFW (host))
+

1

(µSRC(service rate) - λSRC)
(6.22)

= 2/(2.2234739− 0.4615 ∗ 0.005) + 1/(2.708216− 0.005)

= 1.2703574s seconds

• Similarly the average route latency ending with host[9]. N is given by 7:

Tlatency =
N-1

(µFW (service rate) - λFW (host))
+

1

(µSRC(service rate) - λSRC)
(6.23)

= 6/(2.2234739− 0.2307 ∗ 0.005) + 1/(2.708216− 0.005)

= 3.0698102s seconds

The next paragraph will deal with latency simulation. Figure 6.26 indicates the calculated

results given in Equations 6.21 to 6.23 as a ‘--’-line. The simulated values are represented

by the solid line.

6.5 — Network Simulation Evaluation via Queueing theory 69

Simulated Latency Determination

The latency of a packet is, in this case, defined to be the time it takes a packet to reach the

destination host after begin created at the source host’s Application Layer. It was therefore

decided to set a timestamp on the application packet at the time of creation. The latency

would then be determined at the destination by checking the difference between the times-

tamp and the current simulation time. By using Equations 6.21 to 6.23 the theoretical latency

values can be determined for all routes.

Route of host.. Theoretical latency values

host[9] 3.069810s

host[13] 2.170161s

host[2] 1.270357s

Table 6.2: Theoretical Values determined with Equations 6.21-6.23

50 100 150 200 250 300 350
Arrival interval (s)

1.5

2.0

2.5

3.0

M
e
a
n
 M

e
a
su

re
d
 l
a
te

n
cy

 (
s)

host[9] latency from simulated mu- and lambda-values

host[2] latency from simulated mu- and lambda-values

host[13] latency from simulated mu- and lambda-values

Figure 6.26: Latency versus Arrival Interval

In Figure 6.26, the simulated latencies are plotted as simple lines while the theoretical

values are marked by dashed lines. In the beginning the values deviate, due to varying

perceived (simulated) arrival rates.

6.6 — Variation of Packet Size and Bitrate 70

6.6 Variation of Packet Size and Bitrate

The experiments of this section will vary data packet size and bitrate. In this section various

networks will be simulated and metrics such as latency, efficiency and throughput will be

determined. The values to be determined through simulation will be defined as follows:

• Latency – In the context of this simulation latency will be defined as the time it takes

for a packet to progress from the source host to the destination.

• Efficiency – Efficiency is the ratio of data bits to total bits sent. This can be seen in

Equation 1.1 in Chapter 1. Any retransmissions and headers are counted as overhead.

• Throughput – This quantity is determined as the quotient of the total amount of data

bits and the latency of a data packet.

There are three cases that will be considered in the next simulation. They will be referred to

as the linear 7 node, linear 14 node and three prong cases. A description of each will follow.

Please note:

• Varied Packet Size Simulation – Efficiency values will increase, but these simulations

do not take in account the bit error rate that changes with packet size.

• Varied Bitrate Simulation – Even though the Slottime and SIFS parameters of the

MAC Layer were scaled for a bitrate of 9600 bits/second, faster bitrates will still be

compatible with these timing values. Optimal throughput and latency for the high

bitrate cases will not be achieved. Lower bitrates would, however, experience timing

conflicts and errors.

6.6 — Variation of Packet Size and Bitrate 71

6.6.1 Simulation Cases

Linear 7 Node Path Network

The linear 7 node case is depicted in Figure 6.27. This network configuration consists of 7

hosts linked together in the following fashion:

0.5 1.0 1.5 2.0 2.5 3.0
x1e4

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

x1e4

0

1

2

3

4

5

6

Figure 6.27: Simple seven node path network

In all these cases host[0] will be set as a source node with an exponential arrival rate

of which the average arrival interval is 200 seconds which implies an arrival rate of 1/200

packets/second. The destination host is host[6].

6.6 — Variation of Packet Size and Bitrate 72

Linear 14 Node Path Network

This network is two 7 node path networks placed in series to each other. Host[13] is set to

be the destination host.

0 1 2 3 4 5 6
x1e4

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

x1e4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 6.28: Extended 14 node network

The third test network (the three prong case) will be reused from Figure 6.15.

6.6 — Variation of Packet Size and Bitrate 73

6.6.2 Route Preference Graphs

Linear 7 Node Path Route Preference

Figures 6.29 to 6.32 shows the route preference graphs for the three test cases. For Figure

6.27 the link between hosts 4 and 5 can be ignored. This is evident when inspecting the route

preference graph.

0 1 2 3 4 5
time (s) x1e5

100.0%

0,1,2,3,5,6

0,1,2,3,4,6

Figure 6.29: Route Preferences for packets of 7 node path case (TTL = 6)

From the figure the route popularity for each route is very close to each other. This means

that the route usage is divided equally amongst the two routes. The routes weight power

for this experiment is 3. It can be seen that the routes do not use link 4-5. This is due to

the fact that the RREQ time-to-live is set to 6. When this value is increased to 7 the route

preference graph can be seen by Figure 6.30.

6.6 — Variation of Packet Size and Bitrate 74

0 1 2 3 4 5
time (s) x1e5

100.0%

0,1,2,3,5,6

0,1,2,3,5,4,6

0,1,2,3,4,5,6

0,1,2,3,4,6

Figure 6.30: Route Preferences for packets of 7 node path case (TTL = 7)

It can be seen that the route popularity is much greater for the shorter routes (route

0-1-2-3-4-6 or route 0-1-2-3-5-6) than for the long routes (route 0-1-2-3-4-5-6 or

route 0-1-2-3-5-4-6). For the rest of the experiment the time-to-live will be kept at 6 for

the 7 node case.

6.6 — Variation of Packet Size and Bitrate 75

Linear 14 node Path Route Preference

0 1 2 3 4 5 6

time (s) x1e4

100.0%

0,1,2,3,4,6,7,8,9,10,12,11,13

0,1,2,3,4,6,7,8,9,10,11,12,13

0,1,2,3,5,6,7,8,9,10,11,13

0,1,2,3,5,6,7,8,9,10,12,11,13

0,1,2,3,5,6,7,8,9,10,12,13

0,1,2,3,4,6,7,8,9,10,12,13

0,1,2,3,5,4,6,7,8,9,10,11,13

0,1,2,3,4,6,7,8,9,10,11,13

0,1,2,3,5,4,6,7,8,9,10,12,13

0,1,2,3,5,6,7,8,9,10,11,12,13

Figure 6.31: Route Preferences for packets of 14 node path case

The route weight power used for this experiment is 3. Note that routes using links 4-5

or 11-12 or both do not take up as much space on Figure 6.31 than the other routes. This

implies that these routes are less popular than the other routes. The time-to-live for this

network was set to 13. This means that there is a higher chance of link 4-5 begin used in

this network than in the 7 node case.

6.6 — Variation of Packet Size and Bitrate 76

Three Prong Network Route Preference

0 1 2 3 4 5 6
time (s) x1e4

100.0%

0,1,2,3

0,4,5,6,7,8,9,3

0,10,11,12,13,3

Figure 6.32: Route Preferences for packets the three prong network

The route weight power used for this experiment is 1. Once again, shorter routes get

preference in this situation over larger routes.

6.6 — Variation of Packet Size and Bitrate 77

6.6.3 Varied Packet Size

Figure 6.33 displays the efficiency of the three test network cases.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
packet size (bits) x1e4

0.00

0.05

0.10

0.15

0.20

%
/1

0
0

14 node case

3 prong case

7 node case

Figure 6.33: Average Efficiency versus Data Packet Size

According to the graph the efficiency values for each graph tends toward a certain con-

stant value after approximately 1 × 104 bit-packets. The maximum reached values can be

summarised in the following table.

Test Name Max Efficiency Value

Linear 14 node network 0.0657207054534

Linear 7 node network 0.159447499296

Three Prong network 0.187945974805

It can be seen that the Three Prong network has the highest achieved efficiency in the

simulation even with the same amount of nodes as the 14 node network. This can be at-

tributed to the Network Layer. The longer the route that a packet needs to take the larger the

header information will be, due to source routing. This increases the overhead and therefore

decreases efficiency. In the three prong network, the lottery selection favoured the shorter

routes. This caused average routing overhead to be minimal, due to the fact that a shorter

route needs to be added to the packet header.

6.6 — Variation of Packet Size and Bitrate 78

Latency Versus Packet size

The latency of the three cases are shown in Figure 6.34. Latency predictably increases with

packet length. This gradient of the Three Prong network case is lower than the two other

network cases.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
packet size (bits) x1e4

0

10

20

30

40

50

La
te

n
cy

 (
se

co
n
d
s)

14 node case

3 prong case

7 node case

Figure 6.34: Average Latency versus Data Packet Size

To explain the characteristics of the network latency graphs such as Figure 6.34, the

following should be considered:

• The latency of the entire network can be determined by:

ylatency(TOTAL) =

of routes∑
i

Pi × ylatency(ROUTE) (6.24)

The P-values refers to the route probability. An example of this was given by Table 6.1

(second column).

• The latency of one route is given by:

ylatency(ROUTE) = (Ni − 2)× ylatency(FW) + ylatency(SRC) (6.25)

where Ni is the total nodes in the routei

(including source and destination nodes)

6.6 — Variation of Packet Size and Bitrate 79

The N-value must be subtracted by 2 in order to exclude the source and destination

nodes. The source node’s effect is considered in the second term of the formula. The

destination node is not an active traffic generator and will therefore not cause delays

in this sense.

• The following can be used in order to describe the latency of a forwarding host :

ylatency(FW) =

(
Boverhead + x

bitrate
+ 2SIFS + DIFS + 3.5ST

)
(6.26)

The parameters defined are as follows:

Boverhead = BRTS + BCTS + Bheaders + Broute

Broute = the amount of bits the source route includes

Bheaders = the total bits for all the packet headers (RTS, CTS, Data)

bitrate = 9600 bits/second

x = the current packet size

ylatency(FW) can also be seen as the time a packet would have to wait to move from

one node to another. The ACK-packet delay and its corresponding SIFS delay was left

out, due to the fact that the acknowledgment is exchanged after the data packet is

transmitted.

• Similarly the following can be used in order to describe the latency of the source host :

ylatency(SRC) =

(
Boverhead + x

bitrate
+ 2SIFS + DIFS

)
(6.27)

• By substitution of Equations 6.26 and 6.27 into Equation 6.25:

ylatency(ROUTE) = (Ni − 2)×
(

Boverhead + x

bitrate
+ 2SIFS + DIFS + 3.5ST

)
+(

Boverhead + x

bitrate
+ 2SIFS + DIFS

)
• Applying this result to Equation 6.24 will lead to:

ylatency(TOTAL) =

of routes∑
i

Pi ×
{

(Ni − 2)×
(

Boverhead + x

bitrate
+ 2SIFS + DIFS + 3.5ST

)
+(

Boverhead + x

bitrate
+ 2SIFS + DIFS

)}
ylatency(TOTAL) is a weighted average, with the weights being Pi or the route probabili-

ties. This implies that ylatency(TOTAL) can actually be seen as the expected value of the

network latency. When compared to the simulated values, it can be seen in Figure 6.35

that the theoretical values follow the simulated values very closely.

6.6 — Variation of Packet Size and Bitrate 80

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
packet size (bits) x1e4

0

10

20

30

40

50

La
te

n
cy

 (
se

co
n
d
s)

14 node case

3 prong case

7 node case

Figure 6.35: Average Latency versus Data Packet Size

• Differentiation of the previous formula will have the following result:

dylatency(TOTAL)

dx
=

of routes∑
i

Pi ×
{

((Ni − 2) + 1)×
(

1

bitrate

)}

=

of routes∑
i

Pi ×
{

Ni − 1

bitrate

}

=
1

bitrate

of routes∑
i

Pi × (Ni − 1) (6.28)

6.6 — Variation of Packet Size and Bitrate 81

By using Formula 6.28 the theoretical gradient values can be determined. Determination

of this gradient will now be demonstrated for each network case.

• For the Three Prong Network the values from Table 6.1 were used. These values have

been reproduced in Table 6.3 in context. Using these values in Equation 6.28 leads to

Route Name Route Length (N-Value) Route probability (P-Value)

0-1-2-3 N0 = 4 P0 = 0.4615

0-10-11-12-13-3 N1 = 6 P1 = 0.3076

0-4-5-6-7-8-9-3 N2 = 8 P2 = 0.2307

Table 6.3: Three Prong Network Values

a gradient result of 0.000472645833333 second/bit.

• For the Seven Node Network, the values from Table 6.4. These values lead to a gradient

Route Name Route Length (N-Value) Route probability (P-Value)

0-1-2-3-4-6 N0 = 6 P0 = 0.5

0-1-2-3-5-6 N1 = 6 P0 = 0.5

Table 6.4: 7 Node Network Values

of 0.000520833333333 second/bit.

• For the 14 Node Network case, the routes shown in Figure 6.31 were enumerated from

the bottom upwards. The values are summarised in Table 6.5. The last theoretical

Route Length Numbers N-Value Route probability

N0, N1, N3, N6, N7, N9, N10, N11 13 0.0764196

N2, N4, N5, N8 12 0.0971608

Table 6.5: 14 Node Network Values

gradient result is 0.00120951633351 second/bit.

6.6 — Variation of Packet Size and Bitrate 82

Table 6.6 summarises the simulated and theoretical latency gradient results.

Test Name Simulated Gradient Theoretical Gradient

Linear 14 node network 0.00121138787163 0.00120951633351

Linear 7 node network 0.00054632145697 0.000520833333333

Three Prong network 0.0004865025557 0.000472645833333

Table 6.6: Simulated and Theoretical Latency Gradients

It was shown that the latency of a packet can be described in terms of the route prob-

ability (determined by the Network Layer during route discovery), the number of nodes in

a route as well as the chosen timing values. Equations 6.24 and 6.25 will later be reused for

determination of latency in simulations with varying transfer rates.

Throughput Versus Packet size

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
packet size (bits) x1e4

0

500

1000

1500

2000

2500

T
h
ro

u
g
h
p
u
t

(b
it

s/
se

co
n
d
)

14 node case

3 prong case

7 node case

Figure 6.36: Average Throughput versus Data Packet Size

The formula for determining throughput of the network is similar to Equation 6.24:

ytput(TOTAL) =

of routes∑
i

Pi × ytput(ROUTE) (6.29)

6.6 — Variation of Packet Size and Bitrate 83

The equation for determining a route’s throughput can be given by:

ytput(ROUTE) =
x

ylatency(ROUTE)

(6.30)

=
x

(Ni − 2)× ylatency(FW) + ylatency(SRC)

where Ni is the total nodes in the routei

(including source and destination nodes)

x is the packet size

This implies that if one incorporates Equations 6.26 and 6.27 into Equation 6.30, the result

can be written as follows:

ytput(ROUTE) = x×
{

(Ni − 2)×
(

Boverhead + x

bitrate
+ 2SIFS + DIFS + 3.5ST

)
+(

Boverhead + x

bitrate
+ 2SIFS + DIFS

)}−1

This equation, in turn, causes the total network throughput to be written as follows:

ytput(TOTAL) =

of routes∑
i

Pi × x×
{

(Ni − 2)×
(

Boverhead + x

bitrate
+ 2SIFS + DIFS + 3.5ST

)
+(

Boverhead + x

bitrate
+ 2SIFS + DIFS

)}−1

(6.31)

6.6 — Variation of Packet Size and Bitrate 84

The theoretical curves given by Equation 6.31 are plotted on Figure 6.37 and indicated

by the dashed (‘--’) lines.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
packet size (bits) x1e4

0

500

1000

1500

2000

2500

T
h
ro

u
g
h
p
u
t

(b
it

s/
se

co
n
d
)

14 node case

3 prong case

7 node case

Figure 6.37: Average Throughput versus Data Packet Size (with theoretical curve)

When packetsize (x) tends toward infinity, throughput (ytput(TOTAL)) strives towards a

limit. This limit can be determined by recognising that Equation 6.31 follows the following

form :

y =
x

mx + c

=
1

m + c/x

This leads to the following implication:

x → ∞ =⇒ y → 1/m

6.6 — Variation of Packet Size and Bitrate 85

Similarly Equation 6.31 will tend towards:

ytput(TOTAL) →
of routes∑

i

Pi ×
{

(Ni − 2)× 1

bitrate
+

1

bitrate

}−1

→
of routes∑

i

Pi ×
{

Ni − 1

bitrate

}−1

→ bitrate×
of routes∑

i

Pi

Ni − 1
(6.32)

Using values specified in Tables 6.3, 6.4 and 6.5 in Equation 6.32 the throughput limits

can be determined. The throughput limits for all the network cases are summarised by Table

6.7:

Test Name Theoretical Throughput Limit

Linear 14 node network 828.264959876

Linear 7 node network 1920.0

Three Prong network 2383.78057143

Table 6.7: Throughput Limits for Varying Packet sizes

6.6 — Variation of Packet Size and Bitrate 86

6.6.4 Varied Bitrate

In this section the bitrate was varied in order to determine how this would effect latency

and throughput. Efficiency was determined to be constant values. The is due to the fact that

ratio of data packet size to overhead does not change as bitrate changes. This means that the

perceived(simulated) values do not have a great variance and can therefore be summarized

by mean values:

Test Name Mean Efficiency Value

Linear 14 node network 0.0504612963933

Linear 7 node network 0.128034148002

Three Prong network 0.150715578719

Now follows the average latency and throughput graphs for the various simulations using

2 sets of the Slottime (ST) and SIFS values. The first graphs were determined using the

values chosen in Chapter 3. The other graphs used values that were randomly chosen and

modified through experimentation. The reason these were also included was due to the fact

these values were chosen for simulation first. The results gained might add some insight into

the system when compared to the Chapter 3 MAC Layer values.

The Chapter 3 values are:

ST = 23ms and SIFS = 6ms (6.33)

The “tweaked” values are:

ST = 47.3333ms and SIFS = 10µs (6.34)

Average latency will first be determined for the three network cases using the Value set

(6.33). This will be followed by the same simulations using Value set (6.34).

6.6 — Variation of Packet Size and Bitrate 87

Latency Versus Bitrate

For the Values set (6.33) the latency will be as depicted in Figure 6.38. In order to determine

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
bitrate (bits/second) x1e5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

La
te

n
cy

 (
se

co
n
d
s)

14 node case

3 prong case7 node case

Figure 6.38: Average Latency versus Bitrate of the Three Network Cases (ST = 23ms;

SIFS = 6ms)

an explanation for the latencies over the nodes, please keep the following in mind: The

formula for latency over one forwarding node on Figure 6.38 is:

ylatency(FW) =

(
Btotal

x
+ 2SIFS + DIFS + 3.5ST

)
(6.35)

where Btotal = BRTS + BCTS + Bdata + Bheaders + Broute

The formula for latency over the source node would be:

ylatency(SRC) =

(
Btotal

x
+ 2SIFS + DIFS

)
(6.36)

where Btotal = BRTS + BCTS + BACK + Bdata + Bheaders + Broute

x the bitrate of the receiver/transmitter

Btotal the amount of transmitted bits between transmitter and receiver

(without ACKs)

6.6 — Variation of Packet Size and Bitrate 88

The other B-values are indications of the various packet lengths, such as Ready To Send

(RTS) and Clear To Send (CTS) packets (excluding packet headers). Equations 6.24 and

6.25 can be reused. After substitution of Equations 6.35 to 6.36 into Equation 6.24 latency

can be described as follows:

ylatency(TOTAL) =

of routes∑
i

Pi ×
{

(Ni − 2)× ylatency(FW) + ylatency(SRC)

}

=

of routes∑
i

Pi ×
{

(Ni − 2)×
(

Btotal

x
+ 2SIFS + DIFS + 3.5ST

)
+(

Btotal

x
+ 2SIFS + DIFS

)}

where Pi the calculated route probability of route i given

in Table 6.1 column 2

Ni the length (in number of hosts) of route including

source and destination

This latency equation’s limit was then determined as bitrate (x) strives to infinity. The

result is as follows:

ylatency(TOTAL) →
of routes∑

i

Pi ×
{

(Ni − 2)×
(

2SIFS + DIFS + 3.5ST

)
+(

2SIFS + DIFS

)}
(6.37)

Firstly, the Three Prong Network’s latency limit will be determined, followed by the

latency explanation for the other networks.

Three Prong Network case By substituting the values of Table 6.3 into Equation 6.37

the it can be determined that the fitted curve tends toward a latency of 0.5751704s.

The 7 Node Network can be determined in the same way using Equation 6.37. As can

be seen in the route preference graph of Figure 6.29 that the packet traffic is split in half

between the two routes. This is also consistent with the route preference algorithm. The

substitution of the values of Table 6.4 into Equation 6.37 will produce a value of 0.642s.

The 14 Node Network The substitution of the values found in Table 6.5 in Equation

6.37 will produce a value of 1.59734105785s.

6.6 — Variation of Packet Size and Bitrate 89

Figure 6.39 shows the Equation 6.37 as a dashed (‘--’) line. The dotted lines indicate

the limits.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
bitrate (bits/second) x1e5

1

2

3

4

5

La
te

n
cy

 (
se

co
n
d
s)

14 node case

3 prong case7 node case

Figure 6.39: Average Latency versus Bitrate of the Three Network Cases (Theoretical Value

and limits indicated)

To summarise the fitted latency curves tend toward the following values:

Test Name Latency curve tends towards

Three Prong network 0.5751704s

Linear 7 node network 0.642s

Linear 14 node network 1.59734105785s

Table 6.8: Approximate latency Curve limits for varying bitrate

Please note that the values of Table 6.8 are not accurate, due to the nature of the data

that it is trying to match. These values are merely indications to give an idea of how the 3

network cases compare with each other. The lowest latency limit according to Figure 6.38

and Table 6.8 will always be the Three Prong network due to the fact that it is always

smaller than the 7 node network average latency. Latency will be low in a network that has

multiple paths to its disposal.

6.6 — Variation of Packet Size and Bitrate 90

Resimulation of system with different SIFS and Slottimes

The network simulations were rerun for Value Set (6.34). The values are increased for all

cases. It is clearly a side-effect of the slottime (ST) value that is approximately double the

previous simulation situation. Care should therefore be taken in MAC Layer design not to

make delays too long.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
bitrate (bits/second) x1e5

1

2

3

4

5

6

7

La
te

n
cy

 (
se

co
n
d
s)

14 node case

3 prong case
7 node case

Figure 6.40: Average Latency versus Bitrate of the Three Network Cases (ST = 47.3333ms;

SIFS = 10µs)

Incorrect timing values may slow the network unnecessarily. These simulations try to be

as generic as possible for various makes of hardware layers. ST and SIFS parameter values

should be refined by keeping into consideration the actual hardware used. An example of

this can be found in the [4]. Values such as aRxTxTurnaroundTime and aRxRFDelay are very

hardware specific and does affect the interaction between the PHY layer (hardware layer)

and MAC Layer.

6.6 — Variation of Packet Size and Bitrate 91

Throughput Versus Bitrate

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
bitrate (bits/second) x1e5

0

500

1000

1500

2000

2500

3000

3500

4000
T
h
ro

u
g
h
p
u
t

(b
it

s/
se

co
n
d
)

14 node case

3 prong case

7 node case

Figure 6.41: Average Throughput versus Bitrate of the Three Network Cases (ST = 23ms;

SIFS = 6ms)

The throughput value, as previously stated is the quotient of the packet size over the

latency. For throughput calculation, Equations 6.30 and 6.29 can be reused. The latency

calculations for the latency is given by substituting Equation 6.26 and 6.27 into Equation

6.29. This leads to a throughput formula that is given by:

ytput(TOTAL)

=
∑# of routes

i Pi × packetsize{
(Ni−2)×ylatency(FW)+ylatency(SRC)

}
=

∑# of routes
i Pi × packetsize{

(Ni−2)×

(
Btotal

x
+2SIFS+DIFS+3.5ST

)
+

(
Btotal

x
+2SIFS+DIFS

)}
Where packetsize is constant (2024 bits).

6.6 — Variation of Packet Size and Bitrate 92

The latency limit as bitrate approaches infinity (x →∞), is then given by:

ytput(TOTAL)

→
∑# of routes

i Pi × packetsize{
(Ni−2)×

(
2SIFS+DIFS+3.5ST

)
+

(
2SIFS+DIFS

)}
(6.38)

The theoretical curves with the limit values have been indicated on Figure 6.42. The

limit values are also given in Table 6.9.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
bitrate (bits/second) x1e5

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
h
ro

u
g
h
p
u
t

(b
it

s/
se

co
n
d
)

14 node case

3 prong case

7 node case

Figure 6.42: Average Throughput versus Bitrate of the Three Network Cases (Theoretical

and Limit values indicated)

Test Name Throughput Value as bitrate →∞
Three Prong network 4117.40545265 bits/second

Linear 7 node network 3152.64797508 bits/second

Linear 14 node network 1269.62514758 bits/second

Table 6.9: Throughput Limits for Varying Bitrates

6.6 — Variation of Packet Size and Bitrate 93

Resimulation of system with different SIFS and Slottimes continued...

In Figure 6.43, the SIFS and Slottimes of Value Set 6.34 was used in order to redetermine

the average throughput with varying bitrate. It can be seen that throughput in this case is

not as high the throughput achieved in Figure 6.41.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
bitrate (bits/second) x1e5

0

500

1000

1500

2000

2500

T
h
ro

u
g
h
p
u
t

(b
it

s/
se

co
n
d
)

14 node case

3 prong case

7 node case

Figure 6.43: Average Throughput versus Bitrate of the Three Network Cases (ST =

47.3333ms; SIFS = 10µs)

Test Name Maximum Throughput Value

Linear 14 node network 719.678450251

Linear 7 node network 1790.02909193

Three Prong network 2478.16581376

6.6 — Variation of Packet Size and Bitrate 94

6.6.5 Simulation of a Cluster Topology Network Situation

The topology of Figure 6.44 was set up in order to test the average performance of the

network with a more cluster-like topology. For ad hoc networks, topologies can vary from

clusters to paths to combinations of the two. The network does not even have to be fully

connected. These factors imply that there is no one network that can represent all network

subclasses. Even if such a method of abstraction did exist, it is beyond the scope of this work.

For the following network, the average of success rate, throughput, latency and efficiency

was monitored.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x1e4

1.0

1.5

2.0

2.5

3.0

3.5

x1e4

0

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

Figure 6.44: 20 Node Cluster

Host[18] was chosen as the satellite up/downlink host. The other nodes were all set

up to be source hosts. Simulations were rerun for various average arrival intervals, starting

at 10s and ending in 200s. The other hosts were instructed to transmit to all their neigh-

bours. Packets were logged at the source and arrivals were logged at the destination. Every

exchange’s success rate is then determined and the average of all the exchanges are then

determined to get a data point at a specific arrival interval. The results have been plotted

in Figure 6.45.

6.6 — Variation of Packet Size and Bitrate 95

Note that the efficiency has also been indicated on the first subplot as a dashed line

and (as expected) remains fairly constant. The average throughput does have an inverse

relationship to the average latency. Success rate is close to 100% after an average arrival

interval of 60s.

20 40 60 80 100 120 140 160 180 200
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

S
u
cc

e
ss

 R
a
te

 (
%

/1
0

0
)

20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

T
h
ro

u
g

h
p

u
t

(b
it

s/
se

co
n
d

)

20 40 60 80 100 120 140 160 180 200

Arrival Interval (seconds)

0
50

100
150
200
250
300
350
400

La
te

n
cy

 (
se

co
n
d

s)

Figure 6.45: Cluster Average Characteristics

Average latency is very high at low average arrival interval, but drops dramatically as

the arrival interval decreases.

6.7 — Summary 96

6.7 Summary

In this chapter, various factors of protocol simulation was covered. The following was done

in order to accomplish this:

• Various simulation platforms were found and evaluated for their relative “ease-of-use”

without losing the level of sophistication required in simulation software. Determining

which simulation framework to use is a non-trivial and time-consuming undertaking.

• A background in discrete event simulation was given in terms of two main simulation

objects-classes namely:

1. the cMessage-class and

2. the Future Event Set (FES).

Modelling of timers and events was also covered in this section.

• A more protocol specific simulation model description was given. Binding timers in the

event queue (or FES) was a technique to allow an indefinite amount of route requests to

be timed independently. This method also decreases data structure usage by avoiding

explicit timer-RREQ mapping.

• In order to avoid simply outputting raw packets arrival events (with their corresponding

routes) a new graphing method was developed. These Route Preference graphs indicate

the bias that some hosts may have for certain routes. This can be seen by the area

the graph occupies on the figure. A larger area for a route implies that the route is

more popular. This means that the Network Layer uses this path more in order to

forward packets. Smaller areas on graphs indicate less popular routes. Route failures

and activations are easily discernible through this method.

• A simulated situation was developed and explained using queueing theory and Jackson

queueing networks. It was shown that the Lottery Route Selection system has the de-

sired result as was seen in the gradients of Figure 6.19. A initial service rate value was

determined and refined based on simulation and further insights gained. Better theo-

retical models were then determined. The Binary Exponential Backoff was determined

to be an important factor in the service rate determination.

• Latency over a route was also determined using previously determined theoretical

knowledge and compared to simulated results.

• Three network topologies was used in order to show how variable packet size and

bitrate would allow different average values for Latency, Throughput and in some cases

Efficiency. Using theoretical understanding of the networks, the behaviour could be

explained and values matched with a low amount of error.

6.7 — Summary 97

• An “incorrectly” chosen set of simulation values was also included to show, by contrast,

what difference the MAC Layer parameters would make to system performance.

• Finally, a more realistic network topology was created and simulated with varying

(increasing) arrival intervals (which implies decreasing arrival rates). Success rate was

shown to be low until about average arrival intervals of 60s.

The following chapter will give a thesis summary and will then deal with possible usages

and applications.

Chapter 7

Discussions And Comments

7.1 Project Summary

The goal of this thesis was to determine a least cost routing and MAC strategy for a satellite

assisted rural ad hoc network. This “strategy” can be divided into two parts:

• A Routing (or Network) Layer – Based on the Dynamic Source Routing Protocol.

• A Medium Access Control (MAC) Layer – Based on the IEEE 802.11 Distributed

Coordination Function (CSMA/CA).

This strategy was developed by means of cross layer design. Designs of this nature allows

some tasks/responsibilities that are traditionally done by one layer be passed to another.

For example, a technique used, namely Promiscuous Listening, causes the MAC Layer not

to discriminate which packets are meant for it and which packets are not. (This causes

the Network Layer to overhear packets meant for other hosts.) The responsibility for this

distinction then rests with the Network Layer. This, however, allows the Network Layer to

gain important routing information by simply overhearing packets.

Additional Developement and Investigation:

• Simulation Modelling – A Network and MAC Layer model was devised that will allow

multiple network topologies to be created. Some previous attempts to devise a MACA

MAC Layer protocol was also attempted, but was not used in the final simulation

model. Eventually DSR and IEEE 802.11 DCF (CSMA/CA) was chosen and modelled.

• Theoretical Analysis – In order to interpret the behaviour of simulations, a theoretical

framework was devised. By using this framework various model parameters can be

predicted.

• A Tool for Rural Ad hoc Network Development – A collection of programs and scripts

have been devised that implement methods for determining and visualising various

performance parameters. By using OMNeT’s initialization script various simulation

98

7.2 — Summary Of Results 99

situations can be created. Any performance parameters (results) that were generated

by the simulation model can then interpreted (by various scripts in Python and Bash)

and processed for inspection by the user.

7.2 Summary Of Results

7.2.1 Network Simulation Evaluation via Queueing theory

Section 6.5 described a method to explain the protocol behaviour in terms of Queueing

theory and Jackson Queuing networks. A host was modelled as a server and queue. The

server has an average service rate, µ, and packets arrive at the queue with an exponential

arrival interval. This implies that the packets arrivals can be characterized by a Poisson

process (according to [19]).

• The Lottery Route Selection Algorithm’s function was verified, by determining the

arrival rate for packets of a route in a three route network. The arrival rate of a route

was shown to coincide with the formula:

λroutex = λsource × qroutex

λsource refers to the source host arrival rate the rate at which packets are ready to

be sent to the rest of network. Table 6.1 shows a summary of the theoretical route

probability values as well as the simulation determined route probability values. The

small difference between these two columns proves that the Lottery Route Selection

Algorithm functions as expected.

• A theoretical approach to calculating service rate was determined iteratively. It was

finally determined that the Binary Exponential Backoff (BEB) strategy, caused an

average backoff delay for a forwarding host that can then be determined by:

Tavrg.backoff = DIFS + 3.5× ST

with DIFS refers to DCF Interframe Space

ST refers for Slottime

This equation assisted in the deduction of Equations 6.11 and 6.12. This enabled calcu-

lation of the final service rate values. The average source host service rate, µSRC(service rate),

was determined to be given by Equation 6.14. Similarly the average forwarding host

service rate, µFW (service rate), was given by Equation 6.13 for the source host.

• By applying these λ- and µ-values to Little’s Law, the packet’s delay over the host can

7.2 — Summary Of Results 100

be determined (Equations 6.16 and 6.18):

TFW =
1

µFW (service rate) - λFW (host)

TSRC =
1

µSRC(service rate) - λSRC

The average queue length experienced by a host can also be determined by multiplying

TFW (for a forwarding host) or TSRC (for the source host) to the arrival rate values

λFW (host) and λSRC respectively.

• The Route Latency can be determined by applying Equations 6.16 and 6.18 of a route

to Equation 6.20. For N hosts the latency of a route is given by:

Tlatency = (N − 1)TFW + TSRC

This equation was applied for all three routes in the topology and according to Fig-

ure 6.26 resulting average latency determined was a very close approximation to the

simulated average latency.

7.2.2 Variation of Packet Size and Bitrate

Three network topologies were used to test the effects of various Packet Size and Bitrate

values. The parameters tested were Average Latency, Average Throughput and Average Ef-

ficiency. These simulated results were then interpreted and explained in terms of:

• the Timing Values specified previously in the MAC Layer specification (Chapter 3).

• the Lottery Route Selection Algorithm and the effect of route probabilities.

This theoretical description was also compared with the simulated values in order to verify

accuracy. Theoretical values matched simulated values very closely and with a very small

error.

Simulations that Varied Packet Size

• Average Efficiency – Average efficiency follows the following relationship (according to

Equation 1.1):

Efficiency =
A

B + A
where A refers to the packet length

B refers to the total overhead in an exchange

From this equation it can be seen that as the packet size increases efficiency increases

as well. Please note that bit error rate would also change if packet size increases. During

7.2 — Summary Of Results 101

simulation a summation of all overhead was registered for each of the Network Layer

packets exchanged. It can be seen that networks with multiple routes are much more

efficient than networks that have a more linear topology. This is partly due to the

routing overhead that source routing incurs. Other overhead is caused due to MAC

Layer control packets (RTS, CTS and ACK) and header bits. Retransmissions can also be

seen as overhead.

• Average Latency – As packet size increases, average latency increases linearly. The

gradient is given by Equation 6.28:

dylatency

dx
=

1

bitrate

of routes∑
i

Pi × (Ni − 1)

where Pi refers to the routei’s probability to be chosen (or packet route bias)

Ni refers to the total hosts in routei including source and destination

Bitrate is constant. It can be seen that the gradient with which the route latency

increases is directly proportional to the route length Ni. In Figure 6.35 the theoretical

gradient determined by Equation 6.28 matches the gradient from simulation results

very closely.

• Average Throughput – The simulated average throughput was analysed and a theoret-

ical analysis was subsequently also done. Equation 6.31 was the result of the analysis.

It was also shown that the throughput tends toward Equation 6.32:

ytput → bitrate×
of routes∑

i

Pi

Ni − 1

where Pi refers to the routei’s probability to be chosen (or packet route bias)

Ni refers to the total hosts in routei including source and destination

Bitrate is constant. In this case it has been shown that the upper bound of the average

throughput of a route is inversely proportional to the number of hosts in the route

(Ni). Once again, simulated and theoretical values were shown to match each other

very closely, as can be seen in Figure 6.37.

Simulations that Varied Bitrate

In this class of simulations, the three network topologies was once again simulated multi-

ple times. In this case the effect of various bitrates for the physical layer was determined.

The effect on Average Latency, Average Throughput and Average Efficiency was once again

determined.

• Average Efficiency – As expected, average efficiency will not be influenced by the

bitrate of the system. Average efficiency will remain constant as long as the exchanges

does not cause too many collisions and retransmissions.

7.2 — Summary Of Results 102

• Average Latency – Average latency does decrease with an increase in bitrate. This can

be seen by Figure 6.39. It is apparent however, that average latency does tend towards

a certain value as bitrate increased. This was determined and specified in Equation

6.37:

ylatency →
of routes∑

i

Pi ×
{

(Ni − 2)×
(

2SIFS + DIFS + 3.5ST

)
+(

2SIFS + DIFS

)}

• Average Throughput – An increase in bitrate causes an increase in the average through-

put of the system. This can be seen in Figure 6.42. The average throughput also tends

towards a value given by Equation 6.38:

ytput →
of routes∑

i

Pi ×
packetsize{

(Ni − 2)×
(

2SIFS + DIFS + 3.5ST

)
+

(
2SIFS + DIFS

)}

It has been determined that changing the bitrate will change the latency and throughput in

a predictable fashion. This was shown and proven through theoretical analysis of simulation

results. It must be made clear, that even though the Slottime and SIFS time was not designed

for higher speeds than 9600 bits/second that they will still be compatible with these values.

Higher bitrates would simply not be treated as optimally as possible. Lower bitrates would,

however, experience timing conflicts and errors.

In this set of simulations the effects of increasing bitrate and packet size was determined.

These values have then been interpreted which, in turn, resulted in a theoretical framework

that allows interpretation (and prediction) of results.

Simulation of a Cluster Topology Network Situation

In this simulation the averages of success rate, throughput and latency for a cluster of nodes

was determined for an increasing average arrival interval. With 19 out of 20 source hosts

it was shown that the success rate is approximately 100% for an average arrival interval of

60 seconds and higher. Throughput and latency experienced an inverse relationship. This

implies that, throughput increased while latency decreased for an increasing arrival interval.

7.3 — Summary of Contributions 103

7.3 Summary of Contributions

• The Routing (or Network) Layer – This layer has been based on the Dynamic Source

Routing Protocol. Modifications that were devised and described in Chapter 5 are as

follows:

- Lottery Route Selection Algorithm – In which the Lottery Process Scheduling

Algorithm was adapted to cause packets to be more biased towards certain routes

based on a chosen metric. In this implementation inverse route length was the

metric of choice. Packets tended to be more biased towards routes with shorter

route lengths.

- Implicit Route Maintenance – Instead of dealing with route failures in an explicit

fashion (such as RERR-packets) it was decided to resubmit the DATA-packet to

the Network Layer after an unsuccessful exchange. Unsuccessful exchanges include

cases were destination hosts fails to respond with the customary acknowledgement

(ACK) packet. After resubmission to the Network Layer, another route will be

chosen and embedded into the header of the DATA-packet. Retransmission will

then be attempted.

• The Medium Access Control (MAC) Layer – For this layer the main contribution is

the adaptation of timing values such as Slottime and SIFS-time to be compatible with

the 9600 bits/second bitrate specified in the design constraints of Chapter 1. It was

also interfaced with the Network Layer by techniques such as promiscuous listening.

• A Theoretical Model – That can be verified by simulation resulted in a tool that may

be used for a future deterministic approach to predict the performance of networks of

this type, that typically contain satellite based gateway nodes.

7.4 Possible Areas for Improvement

7.4.1 The Network Layer

Route Bias Adaptation: The route bias (preference) value of the route is currently

determined before every data packet transmission. Optimization can be done by modifying

this behaviour as follows:

• Currently, all routes that have been determined for one destination are taken into

account when determining route preference values. This is done before a data packet

transmission. This could be optimised by changing the behaviour to precalculating the

route preference value of the route after every route reply from the destination and

storing it explicitly.

7.4 — Possible Areas for Improvement 104

• This stored value can then be increased by a certain value whenever a successful

routing operation has taken place. A decrease could also be applied to this value for

any failures of a route during packet delivery. Implementing such a system might

however be difficult, due to the lack of any acknowledgement system on the Network

Layer. A cross layer approach that piggybacks the success information over the MAC

Layer’s ACK-packets may be a solution.

Caching: This technique allows a network to cut down on request overhead by storing

frequently requested information close to requesting hosts. This approach may even improve

the perceived latency of the network from the user’s perspective. It may also decrease band-

width usage of the network in its entirety.

7.4.2 The MAC Layer

In order to improve performance on the MAC Layer level a few possible optimizations could

be suggested:

• Determination of Optimal Timing Values. – Timing values (such as SIFS, DIFS or

Slottime) must not be too short or too long due to the fact that both occurrences will

lead to an inefficient wastage of bandwidth. Parameter Optimization may prove useful

in determining an effective set of delay values. A parameter such as latency can be

optimized for. The set of values that gives a lowest latency solution can be seen as the

optimal solution.

• A solution is required for the Exposed Terminal Problem. – The MAC Layer protocol of

this thesis does not deal with this problem. Inefficiency is the result of the unnecessary

delays caused by exposed and hidden terminal problems. This is mainly due to the

fact that the MAC Layer protocol of this thesis was based on the CSMA/CA medium

access method as described in specification [4]. Protocols such as MACA and MACAW

does deal with CSMA/CA’s exposed terminal problem but causes, in turn, different

kinds of hidden/exposed terminal problems [20].

7.4.3 Analysis of Network Performance when taking various Sub-

networks into Consideration

This thesis only dealt with the network system on a subnetwork level. Simulation of various

hosts from a subnetwork communicating via a satellite to hosts in another subnetwork could

be done. For the case of the supernetwork (combination of these smaller networks) variables

such as latency and throughput should be determined. Some of the traffic generated could

be forwarded to satellite up/downlink hosts in order for the satellite to transfer packets from

the current subnetwork (subnetwork of the source host) to the subnetwork of the destination

host. The delay incurred by waiting for the satellite to arrive and may even cause some

7.4 — Possible Areas for Improvement 105

packets to be lost (due to packet-aging). Flow control must therefore take into consideration

how often the satellite would cross a certain point on the surface (when assuming a low earth

orbit). Satellites in geostationary orbit can simply be seen as another stationary host (from

a Network Layer point of view).

7.4.4 “Long-range” Communication in the context of Rural ad

hoc networks

Low Cost Rural Networks

Rural communications can benefit from 802.11(WiFi)-like communications infrastructure.

Hardware is relatively inexpensive and highly adaptable due to open-source software drivers

(such as MadWifi [21]) that allows users to set various parameters of the MAC protocol. In

regards to hardware, some inexpensive alternatives have been suggested to WiFi-Antennas

using tin-cans in [22]. In a rural situation, cheap alternative solutions of this nature may

prove invaluable.

Private Neighbourhood networks

Ad hoc networks (sometimes inaccurately known as mesh networks) can also be used in

order to allow relatively low-cost communication in a neighbourhood. Users may install ad

hoc hardware into residences, thereby allowing applications such as Voice-over-IP (or VoIP),

file-sharing and allow users to communicate with each other on a much lower cost than

current available infrastructure will allow. Due to the low maintenance that such a network

requires, as well as the ease at which a host becomes part of a network, the network can grow

simply by users adding hosts to the network. One drawback of such a VoIP communication

network is that it will make per-call billing for a company close to impossible. WiFi based

networks incorporating VoIP exists already as can be seen in [23]. Other services may be

billed in a “per-transaction” basis. If one host has access to a resource any request can be

billed to that source of specific packets.

Example: An user of an ad hoc network may have need of a service such as Internet

access. Another host may be owned by an Internet Service Provider. The only way the two

parties are connected would be via the ad hoc mesh network. Transmitting the packets to

and from the ISP would cost the user nothing1. Due to the fact that the packets are marked

by the user (the source address) the billing info can be stored at the ISP-host.

1Actually, node power usage would be shared by all the users over the network.

Bibliography

[1] Carl A. Waldspurger and William E. Weihl, “Lottery Scheduling: Flexible

Proportional-Share Resource Management,” Proceedings of the 1st USENIX

Symposium on Operating Systems Design and Implementation (OSDI), pp. 1–11, Nov.

1994.

[2] Webster’s Online Dictionary. (2006, Aug.) Webster’s online dictionary. [Online].

Available: http://www.websters-online-dictionary.org/definition/AD+HOC+NETWORK

[3] L. Kleinrock and F. Tobagi, “Random Accesss Techniques For Data Transmission Over

Packet-switched Radio Channels,” Proceedings National Computer Conference, 1975.

[4] “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications,” IEEE std 802.11-1999, 1999.

[5] P. Karn. (2006, Aug.) MACA - A New Channel Access Method for Packet Radio.

[Online]. Available: http://www.ka9q.net/papers/maca.html

[6] F. Talucci and M. Gerla, “MACA-BI (MACA By Invitation): A wireless MAC

protocol for high speed ad hoc networking.” Proceedings of IEEE ICUPC 1997, vol. 2,

no. 6, pp. 913–917, Oct. 1997.

[7] M. Löbbers and D. Willkomm. (2006, Aug.) A mobility framework for OMNeT++

version 1.0a6. [Online]. Available: http://www.omnetpp.org/

[8] Michael Ignatius Brownfield, “Energy-efficient wireless sensor network mac protocol,”

Master’s thesis, Virginia Polytechnic Institute and State University, Mar. 2006.

[9] C. Perkins and E. Royer, “Ad hoc on-demand distance vector routing,” Proceedings of

the 2nd IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–100,

Feb. 1999.

[10] D. Johnson, D. Maltz and Y. Hu. (2004, July) The dynamic source routing protocol

for mobile ad hoc networks. [Online]. Available:

http://www.ietf.org/internet-drafts/dratf-ietf-manet-dsr-10.txt

[11] Samir Ranjan Das and Charles E. Perkins and Elizabeth E. Royer, “Performance

comparison of two on-demand routing protocols for ad hoc networks,” INFOCOM, pp.

3–12, 2000.

106

BIBLIOGRAPHY 107

[12] (2006, Aug.) The network simulator (ns-2). [Online]. Available:

http://nsnam.isi.edu/nsnam/index.php/User Information

[13] R. Barr. (2005, Apr.) JiST/SWANS java in simulation time / scalable wireless ad hoc

network simulator. [Online]. Available: http://jist.ece.cornell.edu/

[14] Wikipedia. (2006, Aug.) The Network Simulator (ns-2). [Online]. Available:

http://en.wikipedia.org/wiki/Ns2

[15] K. Müller, S.D.W. Frost and T. Vignaux. (2006, Oct.) SimPy simulation in python.

[Online]. Available: http://simpy.sourceforge.net/

[16] A. Varga. (2006, Aug.) OMNeT++: Discrete event simulation system. [Online].

Available: http://www.omnetpp.org/

[17] W. Giffin, Queueing, Basic theory and applications. Grid, Ohio.

[18] E. Gelenbe and G. Pajolle, Introduction to Queueing Networks. Wiley, 1987.

[19] Wikipedia. (2006) Exponential Distribution. [Online]. Available:

http://en.wikipedia.org/wiki/Exponential distribution#Occurrence and applications

[20] M. Wu. (2006, Nov.) A Survey of MAC Protocols in Ad Hoc Networks. [Online].

Available: http://www.utdallas.edu/

[21] MadWifi: Long distance links with madwifi. [Online]. Available:

http://madwifi.org/wiki/UserDocs/LongDistance

[22] How To Build A Tin Can Waveguide WiFi Antenna for 802.11(b or g) Wireless

Networks or other 2.4GHz Applications. [Online]. Available:

http://www.turnpoint.net/wireless/cantennahowto.html

[23] Fon Community Website. [Online]. Available: http://en.fon.com/

Appendix A

Assorted Scripts

Route Preference Graphing Script

This script uses the simulation scalar filename and the host number to be highlighted as

parameters. Matplotlib must be installed.

Written by Stephan van Ellewee

#!/usr/bin/python

from pylab import ∗;
from math import ∗;
import sys

import re;

#Regular expression to parse the output.sca file from OMNeT++

r re = re.compile(’scalar([\ \t]∗)"sim.host\[([0 9]∗)\].net"([\ \t]∗)"ACCUM...⇒
...ROUTE:INIT:host\[([0 9]∗)\] ([host0 9\[\]\(\)]∗)"([\ \t]∗)([0 9e\ \+\.]∗)’)...⇒
...;

read in all lines of a file....

filename = sys.argv[1]

print "looking for",filename

l = ’’

l = "".join(file(filename).read())

routeT ={}
for i in l.split("\n"):

if (len(i)>0) and (i[0] == "#"): # ignore comments

pass

else:

... and parse

pp = r re.findall(i)

if len(pp) > 0:

108

APPENDIX A. ASSORTED SCRIPTS 109

#print i,pp

if routeT.has key(pp[0][4]):

routeT[pp[0][4]].append(float(pp[0][1]))

else:

routeT[pp[0][4]] = [float(pp[0][1])]

find the maximum value

maxVal = 0

for i in routeT:

if maxVal < max(routeT[i]):

maxVal = max(routeT[i])

print i, maxVal

#determine the window size

percentage = 0.05

samplingPeriod = round(percentage∗maxVal)

print samplingPeriod

xaxis = list(arange(0,maxVal,samplingPeriod))

process arrivals...

R = {}
T = []

for w in range(0,len(xaxis) 1):

S = 0

for i in routeT:

l = len(find([q > xaxis[w] and q < xaxis[w+1] for q in routeT[i]]))

if R.has key(i) == False:

R[i] = [l]

else:

R[i].append(l)

N = {}
fig i = 0;

figure(fig i);fig i += 1;grid(True);

xlabel("time (s)",fontsize = 25);

for w in range(0,len(xaxis) 1):

S = 0

for i in R:

APPENDIX A. ASSORTED SCRIPTS 110

S += R[i][w]

if S > 0:

for i in R:

if N.has key(i):

N[i].append((xaxis[w] ,R[i][w]/(1.0∗S)))

else:

N[i] = [(xaxis[w],R[i][w]/(1.0∗S))]

Y =[0 for z in range(0,len(N.values()[0]))]

layerY = [0 for z in range(0,len(N.values()[0]))]

colors = [’r’,’b’,’g’,’m’,’c’]

c i =0;

for i in N:

regular expression searches host under scrutiny

re subcheck = re.compile(’(host\[([0 9]∗)\]∗)’);
findings = re subcheck.findall(i);

coords = []

for looping through colors

col = colors[c i]; c i += 1; c i = c i % len(colors)

if len(findings) > 0:

if host was found...

if len(list(find([ww[1]== sys.argv[2] for ww in findings]))) > 0:

plot the polygons...

layerY=[ii for ii in Y]

Y1 = layerY[1];

reverse X = [z[0] for z in N[i]]

X1 = reverse X[1]

reverse X.extend(reversed([z[0] for z in N[i]]))

Q= add(layerY,[z[1] for z in N[i]])

layerY.extend(reversed(Q))

Y2 = Q[1]

fill(reverse X,layerY,col)

draw the route names..

middel = (X1,mean([Y1,Y2]))

t = text(middel[0],middel[1],i);t.set fontsize(18);

draw the outlines of the routes preferences in blue

Y = add(Y,[z[1] for z in N[i]])

X= [z[0] for z in N[i]]

plot(X,Y,’b’);

APPENDIX A. ASSORTED SCRIPTS 111

plot(X,Y,’bx’)

ax = axes(); setp(ax.get xticklabels(), fontsize=25);

AXIS = axis()

AXIS[1] = AXIS[1]∗1.5

axis(AXIS)

show();

Lottery Scheduling Algorithm demonstration

This script is a demonstration of lottery scheduling.

Written by Stephan van Ellewee

#!/usr/bin/python

from random import ∗
from pylab import ∗

#test case....

P = [1, 2, 3 ,10]

the actual lottery scheduling function...

def lottoSch(p):

total = sum(p)

#print total

sigma = 0;

rndnumber = uniform(0,total);

#print rndnumber

for i in range(0,len(p)):

sigma += p[i]

if (sigma > rndnumber):

return i

get the inverse weight.. for application in Lottery Route Selection...

Pinverse= []

for i in P:

if i <=0 :

Pinverse.append(0)

else:

Pinverse.append((1.0/i)∗∗2)

APPENDIX A. ASSORTED SCRIPTS 112

generate a few random variables

values = []

ivalues= []

for i in range(0,1000):

values.append(lottoSch(P))

ivalues.append(lottoSch(Pinverse))

check the values by means of a histogram

close("all")

figure(0)

hist(values)

check the inverse values by means of a histogram

figure(1)

hist(ivalues)

show()

Topology Rendering Script

This script uses initialization file to render a network.

Written by Stephan van Ellewee

#!/usr/bin/python

This Script reads in initialization files and renderes the network connec... ⇒
...tions

based on the network radio proximity

requires matplotlib !!!

from math import ∗;
import sys

import re;

from pylab import ∗

set up regular expressions...

hostcheck = re.compile(’sim.numHosts([\ \t]∗)=([\ \t]∗)([0 9]∗)’);
fX = re.compile(’sim.host\[([0 9]∗)\].mobility.x([\ \t]∗)=([\ \t]∗)([0 9\ \...⇒
...+\.]∗)’)
fY = re.compile(’sim.host\[([0 9]∗)\].mobility.y([\ \t]∗)=([\ \t]∗)([0 9\ \...⇒
...+\.]∗)’)
s = re.compile(’channelcontrol.([a zA Z]∗)([\ \t]∗)=([\ \t]∗)([a zA Z0 9\ \...⇒

APPENDIX A. ASSORTED SCRIPTS 113

...+\.]∗)’)

check input parameterlength...

if len(sys.argv) <= 1:

sys.exit()

#check for input filename

print "looking for",sys.argv[1]

l = ’’

l = "".join(file(sys.argv[1]).read())

X = dict([])

Y = dict([])

Parse parameters from input ini

numHosts = 1;

carrierFrequency = 0.0

pMax = 0.0

sat = 0.0

alpha =0.0

names ={}
for i in l.split("\n"):

if (len(i)>0) and (i[0] == "#"):

pass

else:

xx = fX.findall(i)

yy = fY.findall(i)

ss = s.findall(i)

h = hostcheck.findall(i);

if len(h) >0:

if numHosts == 1:

numHosts = int(h[0][1])

if len(X) != numHosts:

if len(xx) > 0:

print i,xx,int(xx[0][0]), float(xx[0][1])

if X.has key(int(xx[0][0])) == False:

X[int(xx[0][0])] = float(xx[0][1])

#if len(Y) != numHosts:

APPENDIX A. ASSORTED SCRIPTS 114

if len(yy) > 0:

print i,yy,int(yy[0][0]), float(yy[0][1])

if Y.has key(int(yy[0][0])) == False:

Y[int(yy[0][0])] = float(yy[0][1])

names[int(yy[0][0])] = yy[0][0];

Determine Parameters for network connection setup

if len(ss) != 0:

print i,ss

if ss[0][0] == "sat":

sat = float(ss[0][1])

print sat

if ss[0][0] == "pMax":

pMax = float(ss[0][1])

print pMax

if ss[0][0] == "alpha":

alpha = float(ss[0][1])

print alpha

if ss[0][0] == "carrierFrequency":

carrierFrequency = float(ss[0][1])

print carrierFrequency

print i,X,Y,’ ’,len(X),len(Y) #,int(xy[0][0]), float(xy[0][1])

print X.values()

coords = zip(X.values(), Y.values())

close("all");

for all coordinates determined

n = 0;

for pos in coords:

#print pos

if names.has key(n):

print a node

plot([pos[0]],[pos[1]],’ro’)

print a node label

APPENDIX A. ASSORTED SCRIPTS 115

tt = text(pos[0],

pos[1],

names[n])

tt.set fontsize(20)

n+=1;

def distance(x,y,x2,y2):

return ((x2 x)∗∗2 + (y2 y)∗∗2)∗∗0.5

#

print "carrierFrequency ",carrierFrequency

print "pMax ",pMax

print "sat ",sat

print "alpha ",alpha

SPEED OF LIGHT = 3e8

waveLength = SPEED OF LIGHT/carrierFrequency;

minReceivePower = 10.0∗∗(sat/10.0)

interfDistance = (((waveLength∗∗2) ∗pMax)/(16.0∗pi∗pi∗minReceivePower))∗∗... ⇒
...(1.0/alpha);

TAKEN FROM THE C++ CODE....

double speedOfLight = 300000000.0;

double waveLength = speedOfLight/carrierFrequency;

return (pSend∗waveLength∗waveLength / (16∗M PI∗M PI∗pow(distance,pathLos... ⇒
...sAlpha)));

#rxedPower = (transmitterPower∗(waveLength∗∗2))/(16∗pi∗pi∗distance∗∗pathLos... ⇒
...sAlpha);

print 20∗" ","\n ",interfDistance,"m\n",20∗" ","\n",interfDistance/1000,"k... ⇒
...m \n"

#

distanceV = []

for i in range(0,len(coords)):

for ii in range(0,len(coords)):

dist = distance(coords[i][0],coords[i][1],coords[ii][0],coords[ii][... ⇒
...1]);

APPENDIX A. ASSORTED SCRIPTS 116

print coords[i], coords[ii],dist

if dist <= interfDistance:

print " CONNECT !", dist

distanceV.append(dist)

plot([coords[i][0],coords[ii][0]],[coords[i][1],coords[ii][1]],... ⇒
...’b’)

if len(distanceV) > 0:

print "min distance = ",min(distanceV), "max distance = ",max(distanceV... ⇒
...)

print "MAX X = ",max(X.values()),"MAX Y =", max(Y.values())

print axis([axis()[0],axis()[1]∗1.05,axis()[2],axis()[3]∗1.05])

show()

Appendix B

Initialization Script Example

The Three Prong Network Case is shown by Figure 6.15. The initialization file for this test

situation is given here:

omnetpp.analy.846.ini:

Written by Stephan van Ellewee

[General]

;ini-warnings = true

network = sim

sim-time-limit = 43200 # 10800 #3600 #86400#21600#10800 #7200 #21600# 6 hours #86400s ; 24 hours X 60 mins X 60 secs

[Tkenv]

bitmap-path="../bitmaps"

default-run=1

use-mainwindow = yes

print-banners = yes

slowexec-delay = 300ms

update-freq-fast = 10

update-freq-express = 100

breakpoints-enabled = yes

[Cmdenv]

runs-to-execute = 1

#verbose-simulation = yes

#event-banners = yes

#module-messages = yes

verbose-simulation = no

event-banners = no

117

APPENDIX B. INITIALIZATION SCRIPT EXAMPLE 118

module-messages = no

[DisplayStrings]

##

Parameters for the entire simulation

##

[Parameters]

uncomment to enable debug messages for all modules

**.debug = true

**.coreDebug = 0

#sim.host[*].applLayer="TargetApplLayer"

#sim.host[*].applLayer="BurstApplLayer"

sim.host[*].applLayer="DirectedApplLayer"

##

Parameters for the ChannelControl

##

carrier frequency in hertz

sim.channelcontrol.carrierFrequency = 868e+6

signal attenuation threshold [dBm]

sim.channelcontrol.sat = -110

path loss coefficient alpha

sim.channelcontrol.alpha = 2.6

sim.host[*].nic.snrEval.pathLossAlpha=2.6

max transmission power [mW]

sim.channelcontrol.pMax = 200.0

sim.host[*].nic.snrEval.transmitterPower=200.0

sim.host[*].nic.snrEval.carrierFrequency=868E+6

sim.host[*].nic.snrEval.thermalNoise=-120

sim.host[*].nic.snrEval.sensitivity=-110

##

Parameters for the Mobility Module

APPENDIX B. INITIALIZATION SCRIPT EXAMPLE 119

##

MF debug switch for mobility

sim.host[*].mobility.debug = true

##

Parameters for the Application Layer

##

debug switch

sim.host[*].appl.debug = true

application message header length

sim.host[*].appl.headerLength=2024

sim.host[0].appl.isSource = true;

sim.host[0].appl.onlyToSat = true;

sim.host[3].appl.isSatNode = true;

sim.host[*].appl.dieAtTime=-1

sim.host[*].appl.activationAt = 0;

sim.host[*].appl.isSatNode = false;

sim.host[*].appl.isSource = false;

sim.host[*].appl.onlyToSat = false;

sim.host[*].appl.mailArrivalInterval = 250.177777778 #900 # 30mins#3600; # 1 hour

sim.host[*].appl.constMailSize = 1

sim.host[*].appl.avrgMailSize = 16

##

Parameters for the Network Layer

##

debug switch

sim.host[*].net.debug = true

application message header length

sim.host[*].net.headerLength=300

sim.host[*].net.defaultTtl=9 # 10

APPENDIX B. INITIALIZATION SCRIPT EXAMPLE 120

##############################

sim.host[*].net.expandingRing = false; true

sim.host[*].net.addRoutesToData = true ;false

sim.host[*].net.rreqLength=150

sim.host[*].net.rrepLength=150

sim.host[*].net.rerrLength=150

sim.host[*].net.resendRREQtime=10 ;

sim.host[*].net.rreqAttempts = 10

sim.host[*].net.addressLength=8;

sim.host[*].net.useCheapestRoutesMethod = false;

sim.host[*].net.numberReTX = 0 #20 ; # 10

sim.host[*].net.weightPower = 1; # how sensitive is the algorithm to different route lengths

##############################

sim.host[*].net.addressLength=8;

sim.host[*].net.useCheapestRoutesMethod = false;

#sim.host[*].nic.mac.deltaSampleTime = 1000

##

Parameters for the MAC Layer

##

debug switch for the MAC layer

sim.host[*].nic.mac.debug = true

MAC message header length

sim.host[*].nic.mac.headerLength=24

debug switch

sim.host[*].nic.mac.debug = true

##

Parameters for the SnrEval

##

debug switch for the snrEval

sim.host[*].nic.phy.coreDebug = true

APPENDIX B. INITIALIZATION SCRIPT EXAMPLE 121

sim.host[*].nic.phy.debug = true

AirFrame header length

sim.host[*].nic.phy.headerLength=16

debug switch

sim.host[*].nic.mac.debug = true

sim.host[*].nic.snrEval.debug = false

sim.host[*].nic.snrEval.headerLength=0

sim.host[*].nic.mac.maxQueueSize=10000

transmission power [mW]

#sim.host[*].nic.mac.maxQueueSize=1000

sim.host[*].nic.mac.bitrate=9600 # in bits/second

sim.host[*].nic.mac.rtsCts=true

sim.host[*].nic.mac.broadcastBackoff=31

sim.host[*].nic.decider.debug = true

sim.host[*].nic.decider.snirThreshold=4; in dB

sim.host[*].nic.snrEval.headerLength=192

sim.host[*].nic.snrEval.bitrate=9600 # in bits/second

sim.host[*].nic.decider.bitrate=9600 # in bits/second

sim.numHosts = 14

sim.host[*].nic.mac.maxNodeSeperationDistance = 8000

sim.playgroundSizeX = 26000.0

sim.playgroundSizeY = 28000.0

###############################

sim.host[0].mobility.x = 14007

sim.host[0].mobility.y = 6765

sim.host[1].mobility.x = 15007

sim.host[1].mobility.y = 10765

sim.host[2].mobility.x = 13807

sim.host[2].mobility.y = 16765

##############################

APPENDIX B. INITIALIZATION SCRIPT EXAMPLE 122

LOOP 1

#############################

sim.host[5].mobility.x = 2807

sim.host[5].mobility.y = 8755

sim.host[9].mobility.x = 12507

sim.host[9].mobility.y = 27765

sim.host[8].mobility.x = 7507

sim.host[8].mobility.y = 22765

sim.host[7].mobility.x = 2000

sim.host[7].mobility.y = 19000

sim.host[6].mobility.x = 2000

sim.host[6].mobility.y = 14624

sim.host[4].mobility.x = 7807

sim.host[4].mobility.y = 4760

##################################

LOOP 2

#############################

sim.host[13].mobility.x = 22107

sim.host[13].mobility.y = 19765

sim.host[12].mobility.x = 25507

sim.host[12].mobility.y = 13765

sim.host[3].mobility.x = 16507

sim.host[3].mobility.y = 22765

sim.host[10].mobility.x =20807

sim.host[10].mobility.y = 4765

sim.host[11].mobility.x = 25807

sim.host[11].mobility.y = 8700

######################################

	Declaration
	Abstract
	Opsomming
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1 Introduction
	Chapter 2 The Medium Access Layer:Background
	Chapter 3 The Medium Access Layer: ProtocolDescription
	Chapter 4 The Network Layer: Background
	Chapter 5 The Network Layer: ProtocolDescription
	Chapter 6 Simulation And Results
	Chapter 7 Discussions And Comments
	Bibliography
	Appendix A
	Appendix B

