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Summary

Functional brain imaging using single photon emission computed tomography 

(SPECT) has widespread applications in the case of Alzheimers disease, acute stroke, 

transient ischaemic attacks, epilepsy, recurrent primary tumours and head trauma. 

Routine clinical SPECT imaging utilises uniform attenuation correction, assuming 

that the head has homogeneous attenuation properties and elliptical cross-sections. 

This method may be improved upon by using an attenuation map which more 

accurately represents the spatial distribution of linear attenuation coefficients in the 

brain.

Reconstruction of the acquired projection data is generally performed using filtered 

backprojection (FBP). This is known to produce unwanted streak artifacts. Iterative 

techniques such as maximum likelihood (ML) methods have also been proposed to 

improve the reconstruction of tomographic data. However, long computation times 

have limited its use.

In this investigation, the objective was to determine the influence of different 

attenuation correction and reconstruction techniques on the detection of hypo- 

perfused lesions in brain SPECT images.

The study was performed as two simulation experiments, formulated to decouple the 

effects of attenuation and reconstruction. In the first experiment, a high resolution 

SPECT phantom was constructed from four high resolution MRI scans by segmenting 

the MRI data into white matter, grey matter and cerebrospinal fluid (CSF). 

Appropriate intensity values were then assigned to each tissue type. A true
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attenuation map was generated by transposing the 511 keV photons of a PET 

transmission scan to 140 keV photons of SPECT. This method was selected because 

transmission scanning represents the gold standard for determining attenuation 

coefficients.

The second experiment utilised an available digital phantom with the tissue classes 

already segmented. The primary difference between the two experiments was that in 

Experiment II, the attenuation map used for the creation of the phantom was clinically 

more realistic by using MRI data that were segmented into nine tissue classes. In this 

case, attenuation coefficients were assigned to each tissue class to create a non- 

uniform attenuation map. A uniform attenuation map was generated on the basis of 

emission projections for both experiments.

Hypo-perfused lesions of varying intensities and sizes were added to the phantom. 

The phantom was then projected as typical SPECT projection data, taking into 

account attenuation and collimator blurring with the addition of Poisson noise.

Each experiment employed four methods of reconstruction: (1) FBP with the uniform 

attenuation map; (2) FBP using the true attenuation map; (3) ML method with a 

uniform attenuation map; and (4) ML method with a true attenuation map. In the case 

o f FBP methods, Chang’s first order attenuation correction was used.

The analysis of the reconstructed data was performed using figures of merit such as 

signal to noise ratio (SNR), bias and variance. The results illustrated that uniform 

attenuation correction offered slight deterioration (less than 2 %) with regard to
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detection of lesions when compared to the ideal attenuation map, which in reality is 

not known.

The reconstructions demonstrated that FBP methods underestimated the activity by 

more than 30% when compared to the true image. The iterative techniques produced 

superior signal to noise ratios in comparison to the FBP methods, provided that 

postsmoothing was applied to the data. The results also showed that the iterative 

methods produced lower bias at the same variance.

This leads to the conclusion, that in the case of brain SPECT imaging, uniform 

attenuation correction is adequate for lesion detection. In addition, iterative 

reconstruction techniques provide enhanced lesion detection when compared to 

filtered backprojection methods.
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Opsomming

Funksionele breinbeelding deur middel van Enkel Foton Emissie Rekenaartomografie 

(SPECT -  Single Photon Emission Computed Tomography) het veelvuldige 

toepassings in die geval van Alzheimer se siekte, akute beroerte, kortstondige 

isgemiese aanvalle, epilepsie, hervatting van primere tumore en hoofbeserings. 

Roetine kliniese SPECT-beelding gebruik uniforme attenuasie korreksies met die 

aanname dat die kop homogene attenuasie eienskappe en elliptiese dwarssnitte het. 

Hierdie metode kan verbeter word deur die gebruik van ‘n attenuasiekaart wat ‘n 

akkurater weergawe van die ruimtelike verspreiding van lineere attenuasie 

koeffisiente in die brein verteenwoordig.

Rekonstruksie van die ingesamelde projeksiedata word gewoonlik uitgevoer deur 

gebruik te maak van Gefiltreerde Terugprojeksie (FBP -  Filtered Backprojection). 

Dit is bekend dat hierdie tegniek ongewenste streep artefakte veroorsaak. Iteratiewe 

tegnieke soos maksimum waarskynlikheid (ML -  Maximum Likelihood) metodes is 

ook voorgestel om die rekonstruksie van tomografiese data te verbeter. Lang 

berekeningstye het tot dusver die gebruik van hierdie tegnieke beperk.

Die doelstelling van hierdie ondersoek was om die invloed van verskillende attenuasie 

korreksie en rekonstruksie tegnieke op letsels met hipo-perfusie in brein SPECT 

beelde te bepaal.

Die ondersoek is uitgevoer in die vorm van twee simulasie eksperimente, en is 

geformuleer om die effekte van attenuasie en rekonstruksie te ontkoppel. In die eerste 

eksperiment is ‘n hoe resolusie SPECT fantoom uit vier hoe resolusie MRI (Magnetic
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Resonance Imaging) beelde gekonstrueer deur die MRI data in wit stof, grys stof en 

CSF (Cerebrospinal Fluid) te segmenteer. Geskikte intensiteitswaardes is aan elke 

weefseltipe toegeken. ‘n Ware attenuasiekaart is geskep deur die 511 keV fotone van 

‘n PET (Positron Emission Tomography) transmissie opname na 140 keV fotone van 

SPECT te transponeer. Hierdie metode is gekies aangesien transmissie skandering die 

goue standaard vir die bepaling van attenuasie koeffisiente verteenwoordig.

Die tweede eksperiment het ‘n beskikbare digitale fantoom gebruik met die weefsel 

soorte reeds gesegmenteer. Die primere verskil tussen die twee eksperimente was dat 

die attenuasiekaart gebruik in eksperiment II klinies meer realisties was, aangesien 

MRI data gebruik is wat reeds in nege weefselsoorte gesegmenteer is. Attenuasie 

koeffisiente is aan elke weefselsoort toegeken om ‘n nie-uniforme attenuasiekaart 

saam te stel. ‘n Uniforme attenuasiekaart gebaseer op die emissie projeksies vir beide 

eksperimente is saamgestel.

Hipo-perfusie letsels met verskillende intensiteite en groottes is by die fantoom 

gevoeg. Die fantoom is daama geprojekteer as tipiese SPECT projeksiedata met 

inagneming van attenuasie en kollimator versluiering met die toevoeging van Poisson 

geraas.

Elke eksperiment het vier metodes van rekonstruksie gebruik: (1) FBP met die 

uniforme attenuasiekaart; (2) FBP met gebruik van die ware attenuasiekaart; (3) die 

ML-metode met ‘n uniforme attenuasiekaart; en (4) die ML-metode met ‘n ware 

attenuasiekaart. Chang se eerste orde attenuasie korreksie is in die geval van die 

FBP-metodes gebruik.

v
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Die ontleding van die gerekonstrueerde data is gedoen deur verdienstesyfers soos 

sein-tot-geraas verhouding (SNR), sydigheid en variansie te gebruik. Die resultate 

toon dat die uniforme attenuasiekorreksie ‘n geringe verswakking (minder as 2 %) gee 

met betrekking tot die opsporing van letsels wanneer ‘n vergelyking met die ideale 

attenuasiekaart, wat nie bekend is nie, getref word. Die rekonstruksies demonstreer 

dat die FBP metodes die aktiwiteit met meer as 30% onderskat in vergelyking met die 

ware beeld. Die iteratiewe tegnieke het uitstekende sein-tot-geraas verhoudings 

gelewer in vergelyking met die FBP-metodes op voorwaarde dat na-vergladding op 

die data toegepas is. Die resultate het ook getoon dat die iteratiewe metodes laer 

sydigheid by dieselfde variansie lewer.

Die slotsom is dat, in die geval van brein SPECT beelding, uniforme 

attenuasiekorreksie voldoende is vir letselopsporing. Die iteratiewe rekonstruksie 

tegnieke bied verder verbeterde letselopsporing in vergelyking met gefiltreerde 

terugprojeksie metodes.

vi
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Chapter 1 

Introduction

Functional brain imaging is a technique used to derive images reflecting biochemical 

or physiologic properties of the Central Nervous System. The developed techniques 

in this field are single photon emission computed tomography (SPECT), positron 

emission tomography (PET) and functional magnetic resonance imaging (MRI). 

Tomography permits visualisation of the three dimensional tracer distribution of an 

object as a series of thin section images and this can provide several clinical 

advantages in the case of functional imaging.

1.1 Functional Brain Imaging

The applications of functional imaging of the brain were clearly outlined by Holman 

et al [1] in his paper entitled “Functional Brain SPECT: The Emergence of a Powerful 

Clinical Method”. The relevance of regional cerebral blood flow (rCBF) SPECT 

imaging in stroke, transient ischaemic attacks and other problems with cerebral 

haemodynamics were described. In addition, the role of SPECT in localising epileptic 

focus is a well established technique. The paper by Holman [1] lists the widely 

accepted uses of Brain SPECT. These include Alzheimers disease, acute stroke, 

transient ischaemic attacks, epilepsy, recurrent primary tumours and head trauma.

The clinical value of brain perfusion SPECT is discussed by Catafu et al [2]. SPECT 

is described as being “sensitive in detecting impairment of regional cerebral function 

when CT or MRI shows only non-specific findings such as cerebral atrophy”.

1
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While functional brain imaging has significant clinical applications, quantification 

poses certain difficulties due to reconstruction and attenuation correction issues. The 

method of filtered backprojection (FBP) has been widely used in SPECT 

reconstruction, often in combination with attenuation correction techniques. The 

primary reason for this is the short computation times and ease of implementation. 

However, this method produces unwanted streak artifacts and the final image is an 

approximation and therefore not very accurate.

Different reconstruction algorithms need to be explored, especially in the case of 

brain imaging where quantification is necessary. It has been suggested that 

reconstruction can be improved using iterative techniques since noise, attenuation and 

scatter effects can be included in such reconstruction algorithms.

Attenuation correction routinely used for brain SPECT imaging assumes that the brain 

is homogeneous, therefore a uniform value for the attenuation coefficient is used. 

Uniform attenuation coefficients make no compensation for attenuation due to the 

surrounding skull.

1.2 Literature Review 

Attenuation Correction

Reconstruction of tomographic images without attenuation correction or with 

incorrect attenuation correction can cause artificially high or low count densities and 

inaccurate contrast. In the uncorrected image, the reconstructed activity at the centre 

of the brain tends to be decreased. These artifacts can complicate visual interpretation

2
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and cause profound accuracy errors which can become especially detrimental when 

radionuclide images are evaluated quantitatively.

Reliable attenuation correction methods for emission tomography require accurate 

determination of an attenuation map. This map represents the spatial distribution of 

linear attenuation coefficients for different regions of the patient’s anatomy. Broadly, 

there are two classes of methods for generating the attenuation map. The first class is 

based on calculated methods, where the boundaries and distributions are estimated 

from the emission data. The second class is based on an additional measurement. 

These include transmission scanning using an external radionuclide source, Computed 

Tomography (CT) or segmented MRI images.

The calculated methods assume a known body contour with a uniform distribution of 

attenuation coefficients. Licho et al [3] investigated the use of different attenuation 

maps for " mTc brain SPECT imaging. In this study, four methods were compared, 

namely: (a) attenuation map obtained from transmission scanning; (b) attenuation map 

derived from a lower energy Compton scatter window; (c) slice independent, uniform 

elliptical attenuation map; and (d) no attenuation correction. Count profiles showed 

significant differences in regional count estimates amongst the different methods. 

This study suggested that clinical " mTc brain perfusion SPECT benefits from 

transmission-based attenuation correction. This study also reported that uniform 

attenuation corrected studies provided unreliable regional estimates of tracer activity.

Larsson et al [4] presented a method for the conversion of Hounsfield numbers to 

attenuation coefficients for 140 keV photons from " mTc. The accuracy of the

3
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quantitative results was highly dependent on how closely the CT image volume could 

be fitted to the SPECT image volume. However, comparing this to a method where 

an image volume was corrected with a homogeneous attenuation map showed small 

differences for rCBF measurements. The non-uniform attenuation map was obtained 

by matching CT images to SPECT or through a transmission scan performed with a 

gamma camera. This study demonstrated that the use of a homogeneous attenuation 

map only caused little loss in accuracy.

The paper by Bailey [5] stated that the most accurate attenuation correction methods 

are based on measured transmission scans acquired before, during, or after the 

emission scan. He observed that transmission scanning often lead to high noise in the 

attenuation correction data which was transferred to the final reconstructed emission 

images. It is recommended that the transmission data require some processing to 

suppress the noise.

A comparison of non-uniform versus uniform attenuation correction in brain 

perfusion SPECT was performed by Van Laere et al [6]. This study compared the use 

o f transmission based methods to Sorenson’s method [7] and non-uniform Chang 

attenuation correction algorithm [8]. This study demonstrated that differences 

between non-uniform and uniform attenuation are small. In the infra-tentorial region, 

where marked inhomogeneous attenuation is present, small but significant changes 

were found.

Another approach to constructing a reliable attenuation map is to use MRI data. This 

method is described by Rowell et al [9] where attenuation corrections were obtained

4
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by considering paths representing photon emissions from a central position in the 

region o f interest. By measuring the distance travelled through each type of 

attenuating medium, an effective attenuation coefficient was calculated for each 

photon path. This study established that the attenuation coefficients obtained from 

CT and MRI images were not significantly different from that obtained using a 57Co 

flood source. The study concluded that information derived from CT or MRI 

provided a suitable alternative to transmission scanning for determining the 

attenuation map.

Zaidi et al [10] aligned the MR images to PET reconstructed data and segmented the 

MR image to identify tissues of significantly different density and composition. The 

voxels belonging to different regions were classified into air, skull, brain tissue and 

nasal sinuses. These voxels were assigned theoretical tissue dependent attenuation 

coefficients. The results were validated on 10 patients with transmission and MRI 

images. The use of the segmented MRI image demonstrated a clear improvement in 

image quality due to the reduction of the noise propagation from the transmission into 

the emission data.

From the preceding overview, some findings demonstrate that only small 

improvements can be achieved with the use of a non-uniform attenuation map, while 

others strongly advocate its use to avoid unreliable regional estimates of tracer 

activity.

5
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Image Reconstruction

Since the late 1970’s, the advantages of iterative reconstruction methods have been 

discussed in the literature. The application of maximum likelihood (ML) 

reconstruction in the medical field was developed by Shepp and Vardi [11] and by 

Lange and Carson [12] independently. Both papers utilised the expectation 

maximization (EM) approach described by Dempster [13].

ML and FBP methods were compared in a study by Chomoboy et al [14]. The 

experiment was performed as three simulation studies. In addition, experimental 

images of acrylic phantoms were acquired to compare the simulation results to the 

images obtained from a commercially available system. The first experiment 

involved reconstruction of a bar phantom consisting of four groups of bars of widths

2, 4, 6 and 8 pixels (one pixel = 2.67 mm). Qualitatively, both reconstructions 

appeared to resolve the three largest sets of bars.

Signal to noise ratios were 3.178 and 3.416 for the FBP and ML methods 

respectively. The full width at half maximum (FWHM) was 6.26 for the FBP method 

and 3.12 for the ML method. The large discrepancy in the resolution could be 

partially attributed to the fact that the ML method deconvolved the point spread 

response function in the reconstruction, whereas there was no compensation for this in 

the FBP method.

The second experiment used a solid acrylic rod as well as an air-filled rod. FBP 

images demonstrated higher noise content than the corresponding ML images. Signal 

to noise ratios were found to be far superior with the ML methods. In the third

6
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experiment a chest phantom used acrylic, barium and air to simulate soft tissue, bone 

and lungs respectively. In this experiment, the signal to noise ratios using the ML 

methods were superior to the FBP methods by a factor of three. The results of these 

three experiments supported the conclusion that ML methods proved beneficial for 

SPECT reconstruction in terms of lesion detection, image resolution and 

quantification.

Kauppinen et al [15] evaluated the quantitative accuracy of iterative reconstruction in 

SPECT brain perfusion imaging. Comparison between organ-like phantom 

measurements with actual activity values was performed. The results were further 

validated by analysing patient perfusion studies. This study demonstrated that 

iterative reconstruction increased the contrast of the image and improved separation 

between the different regions. The differences from the true image (in the case of the 

phantom study) were largest with the FBP method. However, this difference was 

probably exaggerated because the iterative technique used non-uniform attenuation 

correction derived from a transmission scan, whereas the FBP method used Chang’s 

first order approximation [8] to calculate the attenuation.

Gutman et al [16] compared ordered subset expectation maximisation (OSEM) and 

FBP for image reconstruction on a fluorine-18 fluorodeoxyglucose (18F-FDG) dual 

head camera. This was performed on phantom as well as patient acquisitions. 

Contrast recovery coefficients and noise characteristics were assessed. The clinical 

study showed that OSEM yielded images of better visual quality but no improvement 

in terms of detection of lung cancer was observed.

7
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FBP and OSEM reconstruction techniques were compared in bone SPECT by 

Blocklet et al [17.]. The quality of the pictures proved to be superior with OSEM in 

98 % of the cases and it was recommended that OSEM should replace FBP in clinical 

practice.

1.3 Objective of the Study

At Tygerberg Hospital, the method of filtered backprojection is the most extensively 

used reconstruction technique for Brain SPECT studies. In addition, attenuation 

correction is performed using conventional SPECT processing software where 

manually drawn contours, or ellipses generated from edge-detection methods, 

determine the attenuation map. The method assumes that the brain is homogeneous 

and a fixed attenuation coefficient of 0.11 cm"1 is used. This factor compensates for 

scatter included in the projections, but does not consider the inhomogeneities in the 

brain structure.

In view of the improvements advocated with iterative techniques and the 

discrepancies in the literature relating to attenuation correction, further evaluation of 

the clinical impact of attenuation correction and reconstruction methods is warranted. 

The aim of this study was to investigate the influence of reconstruction and 

attenuation correction on the detection of regions of hypo-perfusion in Brain SPECT 

studies.

Primarily, the focus of this study involved the detection of hypo-perfused lesions in 

the brain. The study was formulated such that reconstruction and attenuation effects 

could be evaluated independently to explore two research questions: (1) does iterative

8
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reconstruction improve lesion detection; and (2) does the use of uniform attenuation 

correction influence the detection of hypo-perfused lesions in brain SPECT studies.

It was hypothesised that the maximum likelihood method of reconstruction would 

produce superior images. Moreover, uniform attenuation correction would produce 

decreased lesion detection. The decrease may be more observable in anterior 

temporal regions and in the cerebellum since the non-uniformity of the attenuation is 

largest around these regions.

The investigation was performed as two simulation experiments. The basic steps are 

outlined below:

1. Development of a 3-D software phantom containing hypo-perfused lesions. 

The software phantom represented a realistic human brain.

2. The phantom was manipulated such that reasonable activity values were 

assigned to represent lesions of different sizes and signal contrasts.

3. The phantom was projected as SPECT data taking into account attenuation 

and collimator blurring, with the addition of Poisson noise.

4. The set of projections were reconstructed using different reconstruction and 

attenuation correction techniques.

5. The generated reconstructed images were compared to the reference image 

and to each other by computing signal to noise ratios, bias and variance 

values.

9
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1.4 Chapter Outline

The principles of operation of a SPECT gamma camera are described in Chapter 

Two. The basic electronics of the detector and the factors that degrade the image are 

explained. Chapter Three provides an intuitive as well as rigorous explanation of 

image reconstruction. Continuous and discrete cases are described.

The materials and methods employed in this investigation are detailed in Chapter 

Four. The construction of the software phantom and the attenuation maps, together 

with the generation of the projection data and the reconstruction using the different 

methods are outlined.

Chapter Five presents the results of the two simulation experiments. The phantoms, 

attenuation maps and reconstructed images are displayed. Curves showing 

comparative signal to noise ratios and bias and variance relationships are presented.

An in-depth discussion of the results is presented in Chapter Six. This is followed by 

Chapter Seven where conclusions are drawn and suggestions for future related 

research are proposed.
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Chapter 2

Single Photon Emission Computed Tomography

2.1 Introduction

Conceptually similar to CT, SPECT is a scanning technique whereby gamma camera 

images or projections are acquired over a range of angles around a patient. These 

projections allow the reconstruction of cross sectional (tomographic) images of the 

organ of interest. Briefly, the procedure of SPECT involves the injection of a gamma- 

emitting radiopharmaceutical into the patient. The radiopharmaceutical is specific for 

some physiological function and it accumulates within the organ of interest. The 

gamma ray photons emitted by the radiopharmaceutical are detected by the 

scintillation camera, which rotates around the patient. The acquisitions are performed 

over a number of angles varying from 60 to 120 views, depending on the application. 

Using the information of the projections, the aim is to compute the three dimensional 

(3-D) distribution of the radiopharmaceutical.

2.2 The Gamma Camera

2.2.1 Principles of Operation

The fundamental principles of operation of the gamma camera are summarised below 

[18]:

• The radionuclide distribution, represented by gamma ray photons, is projected 

onto the thallium-activated sodium iodide (Nal(Tl)) crystal by the collimator.

• The photons interact with the crystal to produce flashes of light or a pattern of 

scintillations.
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• These scintillations are individually converted to current pulses by the array of 

photomultiplier tubes.

• The electric signals from each photomultiplier tube are processed by the 

position and energy circuitry to generate the X and Y position signals and the 

Z-energy signal.

• This energy signal is analysed by the pulse height analyser (PHA). An output 

signal is only produced if the gamma ray energy falls within a specific range.

• The X and Y position signal increments the digital pixel value in the image 

corresponding to the location of the scintillation event on the crystal.

2.2.2 The Components

The detector and the processing electronics comprise the main functional unit of the 

gamma camera. The basic detector consists of a collimator, a thin, large Nal(Tl) 

crystal, a transparent optical light pipe, an array of photomultiplier tubes, associated 

preamplifiers and positioning circuitry [19]. The basic components of a gamma 

camera are displayed in Figure 2.1.

Figure 2.1 Basic components o f  the gamma camera (Picture courtesy o f  
Professor Johan Nuyts)
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The Collimator

To obtain an image with a gamma camera, it is necessary to project the gamma rays 

from the source distribution onto the camera detector. The principle of focusing with 

a lens as in photography cannot be applied in this case since gamma ray photons 

interact differently from optical photons due to their higher photon energies [20]. The 

method of absorptive collimation is employed in the case of image formation. The 

purpose of the collimator is to restrict the gamma rays which reach the crystal to those 

that are travelling parallel to the lead walls (known as septa) of the collimator. They 

are designed to absorb gamma rays outside of the narrow solid angle of acceptance. 

This is an inherently inefficient technique because most of the potentially useful 

radiation travelling towards the detector is stopped by the collimator.

The design parameters of a collimator are a compromise between resolution and 

sensitivity. Parallel hole collimators are the most widely used in imaging. The ratio 

o f the intersepta distance and the septa length determines the acceptance angle of the 

collimator. Septal thickness is chosen to prevent gamma rays from crossing from one 

hole to the next. The total performance of a collimator depends on the size of the 

collimator holes, the thickness and the length of the septa, and the source distance.

Fanbeam collimators were designed to be used for brain SPECT studies. It yields 

better performance in terms of sensitivity and resolution in comparison with parallel 

hole collimators. The holes of the fanbeam collimators are orientated to converge 

along the x-axis at a focal line. The holes in the y-direction remain parallel. Due to 

this focal geometry, the image projection on the crystal is magnified along the x-axis.
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The Crystal

The purpose of the crystal is to convert the incoming gamma rays into flashes of 

visible light. The problem of detecting the photon is now transformed into detecting 

the flash of light. The most commonly used scintillation crystals in gamma cameras 

are Nal(Tl). Technical reasons for the usefulness of Nal(Tl) include the following:

Nal(Tl) is a relatively efficient scintillator producing larger impulses with 

smaller statistical fluctuations that leads to improved energy and spatial 

resolution

The material is transparent to its own scintillation emissions. If it is not 

transparent, the flash of light cannot be detected

Nal(Tl) is relatively dense and contains an element of relatively high atomic 

number, therefore it is a good absorber and efficient detector of penetrating 

radiations such as x and gamma rays

The output signal provided is proportional in amplitude to the amount of 

radiation energy absorbed in the crystal.

However, there are also disadvantages:

The Nal(Tl) crystal is quite fragile and easily damaged by mechanical or 

thermal stresses

Sodium iodide is hygroscopic and therefore encapsulated in a drybox. 

Exposure to moisture or humidity causes a yellowish discolouration that 

impairs light transmission

Nal(Tl) crystals of large size are difficult to grow and expensive.
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Photomultiplier Tube Array

These are electronic tubes that produce a pulse of electrical current when stimulated 

by very weak light signals, e.g. the scintillations produced by a gamma ray in a 

scintillation detector [21].

The inside front surface of the glass entrance window of the PM tube is coated with a 

photoemissive substance. It ejects electrons when struck by photons of visible light. 

The photoemissive surface is called the photocathode, and electrons ejected from it 

are referred to as photoelectrons.

A short distance from the photocathode is a metal plate called the dynode. The 

dynode is maintained at a positive voltage relative to the photocathode and attracts the 

photoelectrons ejected from it. A focusing grid directs the photoelectrons toward the 

dynode. A high speed photoelectron striking the dynode surface ejects several 

secondary electrons from it. The electron multiplication factor depends on the energy 

of the photoelectron, which in turn is determined by the voltage difference between 

the dynode and the photocathode.

Secondary electrons ejected from the first dynode are attracted and accelerated to a 

second dynode which is maintained at a higher potential than the first dynode. The 

sequence of acceleration and multiplication is repeated through 1 0 - 1 2  additional 

dynode stages until finally a shower of electrons is collected at the anode. Some 

manufacturers use Lucite light pipes between the detector and the PM tubes whereas 

others couple directly to the crystal using optical grease.
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Processing Electronics

The processing electronics measures the output signals of the PM tubes. The X and Y 

signal, generated by the positioning circuitry [7], determines the position of the 

output. The Z-energy signal is inspected by the pulse height analyser. An output 

signal is only produced if the gamma ray energy falls within a specified range. The 

output is transferred as acquisition data used for reconstruction.

2.3 Image Degrading Factors

Image degrading factors of SPECT are responsible for the low image spatial 

resolution. These factors are

• Collimator blurring

• Attenuation

• Scattering of photons

• Noise in the measured data

2.3.1 Collimator Blurring

The purpose of the collimator is to allow photons from only a limited range of 

directions to reach the detector. The collimator’s spatial resolution is improved by 

reducing the range of directions of accepted photons. This can be achieved by 

reducing the collimator-hole diameter or increasing the collimator thickness. 

However, this strongly reduces the number of photons being detected, resulting in 

increased noise. To achieve a useful sensitivity, the angular range of photons 

accepted by each collimator hole cannot be reduced to a single line of integration. 

This range of directions results in distance-dependent spatial blurring in the acquired 

projection data which is transposed to the reconstructed images [22],
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In other words, collimator blurring is caused by photons not traveling exactly parallel 

to the collimator hole [23] but still within the solid angle of acceptance of the 

collimator.

2.3.2 Attenuation

Photons emitted by the radiopharmaceutical will interact with tissue and other 

materials as they pass through the body by means of Compton scattering and 

photoelectric interaction [24], Compton scattering is a photon-electron interaction 

whereby a photon collides with a free or loosely bound electron, loses part of its 

energy to the electron and then scatters in a new direction. In the photoelectric effect, 

a photon is absorbed by an atom and an electron, called a photoelectron, is emitted 

from an inner orbit of the atom.

Because of these interactions, the number of photons detected differs from the number 

that would have been detected in a non-absorbing medium. The degree of attenuation 

is a function of the type of tissue traversed. The attenuation coefficients of a material 

are a measure of the number of photons removed from the beam, either through 

photoelectric absorption or through Compton scattering, when traversing the material.

In SPECT, the total linear attenuation coefficient can be written as: 

Equation Chapter (Next) Section 2

^  ^photoelectric ^  Compton (^* 0

where p. is the linear attenuation coefficient, which represents the probability that the 

photon will undergo an interaction while passing through a unit thickness of tissue.
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Stating this simply, ji is a measure of the fraction of primary photons that interact 

while traversing an absorber and is expressed in units of cm '1.

Let N(a) represent the original number of photons and N(s) represent the number of 

photons that travel a distance s in a medium. The fraction of photons eliminated over 

a distance ds is n(s)N(s). Since the number of photons is decreasing, this can be 

written as:

- d N  = fi(s)N (s) (2.2)

If initially N(a) photons are emitted in point s = a along the s-axis, the number of 

photons N(d) expected to arrive in the detector at position s = d is obtained by 

integrating (2.2) to produce:

N (d) = N ( a ) e ^ f,Wd3 (2.3)

In water, the attenuation coefficient of a 140 keV photon is 0.15 cm"1 [25]. In a brain 

with a radius 10 cm, approximately 20 % of the 140 keV photons will be lost due to 

attenuation.

2.3.3 Scatter Correction

When photons interact with matter they will not only lose energy due to Compton 

scatter, but will also deflect from their initial pathway. Some of the scattered photons 

will have a new direction parallel to the hole of the collimator. Although photons lose 

energy, their energy may still be within the accepted energy range of the detection 

system. There is no way to distinguish these photons from the primary photons 

within the energy window.
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2.3.4 Poisson Noise

Radioactive decay is a statistical process. The total number of gamma rays emitted 

per unit time from a radioactive source follows a Poisson distribution. The limited 

number of detected photons results in a substantial amount of Poisson noise in the 

projection data.

If the mean number of incident photons per unit area of the detector is denoted by r, 

then the probability p(n) that there are n incident photons per unit area is given by the 

general form of the Poisson distribution [26]:

P M ) =
e rrn

n! (2.4)
_r r r r r

12 3 n

where ! is the factorial operator.

Individual measurements in a detector system are independent of all others, since each 

photon results in an independent atomic decay and is detected in only one detector

Due to the statistical nature of photon detection, Poisson noise is one of the factors 

degrading scintigraphic images, especially at low count levels. Noise reduction is 

usually achieved by smoothing the projection or reconstructed image using low pass 

filters. However, this causes additional reduction of the spatial image resolution.
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Chapter 3 

Image Reconstruction

3.1 Introduction

The basic problem of emission tomography is to reconstruct the three-dimensional 

distribution of the radioactivity within the patient, given a number of lateral views. 

This chapter explains how the problem can be overcome and covers the following 

topics:

3.2 Presentation of the Reconstruction Problem

3.3 The Projection Operator

3.4 The Central Slice Theorem

3.5 Filtered Backprojection

3.6 Iterative Reconstruction

3.7 Ordered Subset Expectation Maximisation (OSEM)

3.2 Presentation of the Problem

The acquisition of data from a gamma camera is represented in Figure 3.1. [27]

q(r,0)
PM tubes
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The detector rotates around the patient. It is assumed that the patient lies along the z- 

axis. Data is collected at distinct angular positions along projection lines. A 

projection line is completely specified by its angle and its distance to the centre of the 

field of view. Reconstruction of this collected data into transverse slices allows one 

to observe the pattern of emission of the gamma ray photon. From Figure 3.1:

q(r,0) can be defined as the number of scintillations detected at any 

location r along the detector when the head is at angular position 0.

A.(x,y) is defined as the estimated number of photons emitted at any point 

(x,y) in the field of view.

The function q represents the projection of X onto the crystal. q(r,0) is thus the sum of 

the counts recorded in any time interval at a point r when the detector is at angle 0.

At the end of the acquisition process, each position of the detector contains the 

number of counts relating to each angular position. Stacking all these projections for 

varying angles 0 results in a two-dimensional (2-D) dataset called a sinogram. A 

sinogram is a 2-D image that uses r as the column co-ordinate and 0 as the row co­

ordinate.

In simple terms, the reconstruction problem can be stated as such, “Given the 

sinogram, q, what is the distribution of radioactivity X in the slice of interest?”
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3.3 The Projection Operator

The collimator defines the geometry of the projection and determines the direction of 

the incident photon for any scintillation in the crystal. Ideally, the parallel hole 

collimator allows only photons that are parallel to the axis of its holes to be detected.

D'

Fig 3.2. Geometry ofprojection o f data onto detector D. Line D ’ is the set oj 
points M  in the field  o f view that projects perpendicularly on D in P.

Here, the projection is mathematically outlined. To do this, a new co-ordinate system

(r, u) is defined by rotating (x,y) over angle 0.

From Figure 3.2 the following is obtained:

* ,= rc o s# , /-sin#

-  x = w sin 0, y x- y  = uco&9

Eliminating xi and yi Equation Section 3

x = rco sd -u s in O  (3.1)

y  — r sin 0 + u cos 0 (3.2)
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Rewriting (3.1) and (3.2):
r = x cos 0 + y sin # (3.3)

u — —x sin d + y  cos Q (3.4)

For each detector angle 0, and for each location r on the detector, the direction of 

photons is defined by a projection line D ', whose equation is given by (3.3) and (3.4). 

D ' perpendicularly projects on D at P.

The projection operation gives the number of counts detected at any point on the 

detector line as a function of A.(x,y), emitted in any point in the field of view. The 

ideal case is considered where the projections are continuous, i.e. the projection value 

is known for every angle and for every distance from the origin. It is further assumed 

that the projections are unweighted line integrals implying that attenuation, scatter, 

noise and collimator blurring are excluded.

Mathematically, the transformation of any function A.(x,y) into its parallel beam 

projections is called the Radon transform and defines the projection operator. The 

Radon transform q(r, 0) of a function A.(x,y) is the line integral of the values of A.(x,y) 

along the line inclined at an angle 0 from the x-axis at a distance r from the origin.

q(r,0)=  J A(x,y)dxdy (3.5)
x,ye projection line

where the projection line is defined by r and 0.

Substituting equations (3.1) and (3.2) in (3.5):

q(r,0)=  | X (rc o sB -u sm d ,rsm B + ucosd)du  (3.6)
ao
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This implies that the value q(r, 9) is the sum of values >-(x,y) along D ' where D ' is 

the line of projection. For this reason, q(r, 0) is called the ray-sum. The variable r is 

the position on the detector, and u defines a location on the line D '

3.4 The Central Slice Theorem

The Central Slice Theorem relates the one-dimensional (1-D) Fourier Transform of 

the projection q(r, 0) and the 2-D Fourier Transform of the distribution A.(x,y). The 

theorem is proven for the projection along the y-axis (where 0 = 0). The y-axis may 

be chosen arbitrarily, therefore the theorem holds for any projection angle.

Let Q(vx0) be the 1-D Fourier Transform of q(r,0).

Since 0 = 0, q(r, 0) = q(r,0) = q(x):

Q{vx) = ^ q { x ) e n*v‘*dx (3.7)

w h e r e  / =  V - 1

Let A(vx,vy) be the 2-D Fourier Transform of A,(x,y). Then

Mv„vy) = £  ^X(x,y)eiÛ y)dxdy (3.8)

-foo

Rewriting (3.5): q(x) = J A(x,y)dy  (3.9)
—00

Substituting (3.9) in (3.7):

Qiyx) -  £  £ X(x,y)e~'2’"'xXdxdy (3.10)

Comparing (3.10) and (3.8), it immediately follows that A(vt ,0) = Q (vJ  along the y- 
axis.

This can be formulated for any angle 0 thus:

A (v cos6, v sin6) -  Q (v,9) (3.11)
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This can be restated as: the 1-D Fourier Transform of the projections acquired for an 

angle 0 is identical to a central profile along the same angle through the 2-D Fourier 

Transform of the original distribution.

This means that from the projections over 180° (or 360°) orbit, it is possible to 

construct the Fourier Transform of the distribution, and the inverse Fourier Transform 

of the data will give the original distribution.

3.5 Filtered Backprojection

The reconstruction problem can be restated as follows: “Given the sinogram q(r,0), 

what is the original function X,(x,y)?”. The Fourier-based technique can be used to 

obtain the distribution but in the discrete case it is less popular because it requires an 

interpolation step. An alternative procedure can be performed intuitively as follows: 

For a particular line (r, 0), assign the value q(r, 0) to all points (x,y) along that line. 

This can be repeated for 0 varying from 0 to n The procedure is called 

“backprojection” and is defined below:

K x ,y )=  £ q{r,9)dd

b(x,y) = ^ q (x c o s d  + ys\nQ ,6)d6  from eq (3.3) (3.12)

= backproj {q(r,6)}

Backprojection represents the accumulation of the ray-sums of all rays that pass 

through any point (x,y).

Filtered backprojection follows directly from the Fourier Theorem. The inverse 

Fourier Transform of (3.8) produces:

M *,y) = £  ^ ( v x,vy)ei2*(v‘x+v’y)dvxdvy (3.13)
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Transforming from rectangular co-ordinates (x,y) to polar co-ordinates (r,0) results in

x = r cos 0 and y = r sin 0.

Using polar transformation [28] dvxdvy = \v \ dvdO , where |v| is the absolute value 

of the Jacobian of the polar transformation and substituting in (3.13):

X { x ,y )= ^ d v [ \v \d 9 K { v c o s 9 ,v s m 9 )e '2*v(xQOie+yM) (3.14)

Applying the Central Slice Theorem (3.11) and switching the integrals:

JL(x,y) = £  d $ j jv \d v Q ( y ,0 ) e f2,n,(xm0*y“ 9) (3.15)

The definition of backprojection can be applied to (3.15) to yield:

X{x,y) = Backproj( j j  v \ Q(v,9)eamrdv^ (3.16)

where r = x cos 0 + y sin 0 from equation (3.3).

This shows that the function X(x,y) can be reconstructed by multiplying Q (v,9) by the 

ramp filter |v| and then backprojecting the inverse of the 1-D Fourier Transform with 

respect to v. For FBP to be implemented on real data, (3.16) is discretised and 1-D 

Fourier Transform is replaced by 1-D fast Fourier Transform.

Filtered backprojection is fast and easy to implement but the major limitations are 

firstly, that the noise distribution is ignored and secondly, that it is difficult to include 

sophisticated projection models, like attenuation, scatter and collimator blurring.

The method of filtered backprojection suffers the following drawbacks:

• Reconstruction artefacts result from the fact that the actual acquisition differs 

considerably from the ideal projection model.
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• The point spread function is not a Dirac impulse

• The measured projections contain a significant amount of noise.

• Compton scatter contributes significantly to the measurement.

Iterative reconstruction techniques allow some of these effects to be modelled into the 

algorithm. This is one of the major advantages of iterative methods.

3.6 Iterative Reconstruction

Iterative reconstruction is becoming popular because the algorithm allows easy 

modelling of the imaging physics such as geometry, attenuation, scatter and noise.

In the discrete case, the elements of the slice are the pixels and each point of 

measurement on the detector, for each projection angle, is called a bin. The location 

o f a bin is known by its index i and the location of a pixel by its index j. The vector q 

is the matrix product of matrix C and vector X. The value X-, is a weighted sum of the 

m pixel values in the image therefore:

This is the discrete form of the projection operation, where C is the projection 

operator. The projection operator allows one to find the sinogram given the slice. 

Any element of the matrix C, eg Cjj can be seen as a weighting factor representing the 

contribution of pixel j to the number of counts detected in bin i, or the probability that 

a photon emitted from pixel j is detected in bin i.

m

(3.17)

In matrix notation, (3.17) can be written as:

q = CX (3.18)
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The basic idea of iterative reconstruction is to find a solution of vector A. in the 

equation q = CA. The principle is to find the solution by means of successive 

estimates and not by means of mathematical inversion. The basic sequence of SPECT 

reconstruction using iterative techniques is as follows:

The algorithm starts with a simple guess as to the nature of the distribution. Next, the 

projection operator is used to synthesize the projections of the guess through the same 

number of projections and angles as the acquired data. If the initial guess was correct, 

then the generated projections would be identical to the measured projections and the 

algorithm would stop. In general, this is not the case. The difference between the 

measured and generated projections represents an error. The error is used to generate 

a correction, which is applied to the guess and completes one iteration of the 

algorithm. Further iterations of the algorithm generate a new projection and a new 

correction. When the error between the calculated and measured projections is 

sufficiently small, the algorithm is said to have converged.

3.6.1 Maximum Likelihood Expectation Maximisation (MLEM)

The most frequently used iterative algorithm in nuclear medicine applications is the 

MLEM algorithm [26], It solves a set of linear equations, assuming Poisson noise is 

present in the projection data. The goal of MLEM is to find a general solution that 

provides the best estimate of A in equation (3.18).
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3.6.2 Bayes’ Theorem

A Bayesian approach to the problem provides an understanding of MLEM. The aim 

is to seek the most probable solution of the reconstruction A given the measured 

projections, Q. This can be written as p(A|Q). Bayes’ theorem [29] states that:

/> ( A |0 / * 0  = /> (0 |A )p (A) (3.19)

Rewriting (3.19)
(A | g ) = P (G lA )p(A ) (32Q)

P(Q)

This is Bayes’ rule.

• The function p(A) is the a priori probability. This can encompass prior knowledge 

about the expected reconstruction. It is the likelihood of the image without taking 

into account the data. For example, if prior information about the anatomy is 

available from CT or MRI, it can be incorporated into the data [30].

•  The function p(Q|A) is called the likelihood. It gives the probability of obtaining 

measurement Q, assuming that the true distribution is A.

• The function p(A|Q) is called the posterior. It is the probability of obtaining the 

reconstruction, or the activity distribution, given the projection data and the prior 

knowledge.

• The function p(Q) is a constant value since the projection data Q have been 

measured and are fixed during the reconstructions.

Maximising the posterior p(A|Q) is called the maximum-a-posteriori (MAP) 

approach. The prior probability is often assumed to be constant, i.e. it is assumed a 

priori that all possible solutions have the same probability of being correct. This
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implies that maximising the posterior p(A|Q) reduces to maximising the likelihood 

p(Q|A). This is called the maximum likelihood (ML) approach.

It is necessary to compute the likelihood p(Q|A) given that the activity or the 

reconstruction image is available and represents the true distribution. This can be 

stated differently as: “How likely is it to measure the projection data Q with a SPECT 

camera, when the true tracer distribution is the reconstructed image A?”.

3.6.3 The Likelihood Function for Emission Tomography

First consider what one would expect to measure. This can be written in digital form 

as follows:

r, = Z  i = 1,1 (3.21)
i= \,j

Aj g A is the regional activity present in the volume represented by pixel j .

rj is the number of photons measured in detector position i.

Cjj is a weighting factor and represents the contribution of pixel j to the number 

of counts detected in bin i, or as the probability that a photon emitted from pixel 

j is detected in bin i. If the collimation is good, cy is zero everywhere except for 

the j that is intersected by the projection line i.

Two values exist for each detector, the expected value rj and the measured value qj. 

The number o f photons emitted from m pixels and detected in bin i is a Poisson 

variable. The likelihood of measuring qs photons if rj photons were expected can 

therefore be determined by equation (2.4).
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The history of one photon emission is independent of the other photons. Thus the 

overall probability is the product of each of the individual ones:

p(Q\h) = p(qi | rx).p(q2 \ r2)...p(qn \ rn)

(322)
i

Substituting (3.22) in equation (2.4) yields:

/ > ( 0 | A ) = n ^ r -  (3-23) / q,\

Maximising (3.23) is equivalent to maximising the logarithm, since the logarithm is 

monotonically increasing. When maximising the log-likelihood, factors not 

depending on Xj can be ignored, thus qj! can be dropped from the equation. The 

resulting log-likelihood function, written as L(Q|A), can be determined.

Thus:

lnP(0|A ) = ln Y \ e' r‘r?
V i (3.24)

Substituting (3.21) in (3.24):

L(Q |A) = X ? ,ln - X V 1, (3-25)
1 \  j J J

Equation (3.25) is called the log-likelihood function. It is of fundamental importance 

in the MLEM algorithm, because it allows one to take into account the noise 

characteristics of the dataset.

Maximum Likelihood Expectation Maximisation (MLEM)

To maximise L, it is necessary to compute the first derivative of (3.25), set it to zero 

and solve for X as follows:
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—  = Y g,— \n Y c . i .  (c(X )  ■̂3 Z-i y y dXdX dX
/

= Z c(/ a------1
2M

V j  /

= 0, V. = 1, J

(3.26)

A simple algorithm which guarantees convergence is the expectation maximisation 

(EM) algorithm.

3.6.4 The Complete Variables

The iterative algorithm described below makes use of the expected value of a Poisson 

variable that contributes to the measurement. To explain how that value is computed, 

consider an experiment where two vials containing a known amount of radioactivity 

are placed in front of a detector. Assume that the efficiency and sensitivity of the 

detector are known. It is possible to calculate the expected amount of photons that 

each vial will contribute during a measurement. The expected count is a for vial 1

and b for vial 2. In an experiment where the two vials are counted simultaneously, 

and N counts are measured by the detector, the question that arises is “How many 

photons a and b were emitted by each of the vials?”

A priori, a photons from vial 1 and b photons from vial 2 would be expected. The

detector should then have measured a + b photons. In general N ^  a + b because of 

Poisson noise. The expected value of a, given N is:

E{a \a + b = N) = a -  
a + b

and similarly for b.
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If more counts were measured than the expected a + b , the expected value is 

corrected by the same factor. Extension to multiple sources is described below.

The set of “complete” variables are X = {xij}, where Xjj is the number of photons that 

have been emitted in pixel j and detected in bin i. The X jj’ s are not observable, but if 

they were known, the observed variables, yi could be computed.

The expected value of Xjj given A is:

E(xij\A) = cijAJ (3.27)

From (3.27) the log-likelihood function for the complete variables X can be computed 

in exactly the same way as it was determined for L.

This results in:

Lx(X ,A )  = X Z h 1 nM , ) - V l y]  (3.28)
i j

The expectation maximization (EM) algorithm is a two step procedure.

1. Compute the expected value of the function. This can be written as 

E(Lx(X,A)|Q,Aold). It is not possible to compute Lx(X,A) since we do not know 

the values of Xy. However we can calculate its expected value, using the current 

estimate Aold. This is called the expectation, or E- step.

2. Calculate a new estimate of A that maximises the function derived in the first step. 

This is the maximisation, or M- step.
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The E Step

The E step yields the following expression:

where

where ntj (3.30)

(Equation 3.29) is identical to equation (3.28), except that Xjj have been replaced by 

their expected values njj.

The M  Step

In the M-step, we maximise this expression with respect to Xj, by setting the partial 

derivative to zero.

obtained by FBP. The negative values must be set to zero or to small positive 

values. Since the first image is positive, and because each new value is found by

- ^ - E ( L , ( X ,A )|& A °") = £  " f
j  i v */ y

(3.31)

From (3.31):

(3.32)

Substitute (3.30) in (3.32) produces the MLEM algorithm:

(3.33)

Intuitively, (3.33) can be explained as follows:

• The first image .̂(0) can be a uniform disk enclosed in a field of view, or an image
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multiplying the current value by a positive factor, any Xnew cannot have negative 

values and any values set initially to zero will remain zero.

• The EM algorithm can be seen as a set of successive projections/backprojections.

The factor — — is the ratio of the measured counts to the current estimate of

J

the mean counts in bin i. ^ c iy__^  M is the backprojection of this ratio for
' 2 j CV*J 

J

pixel j.

• Equation (3.33), which is to be applied pixel by pixel, can be extended to the 

whole image and interpreted as:

T new T oid , ■ ■ o Measured projections 'Image = Image X Normalised backprojection of -------------- 1------------- n-
 ̂Projections of image0

If the measured and computed sinograms are identical, the entire operation has no 

effect. If the measured projection values are higher than the computed ones, the 

reconstruction values tend to increase.

Comparing (3.33) with (3.26) shows that the ML algorithm can be rewritten as:

' ir = V - r i - | r  (3.34) 
L , c.j dX,

This shows that the gradient is weighted by the current reconstruction value, which is 

guaranteed to be positive. This is the iterative scheme of the MLEM algorithm as 

described by Shepp and Vardi [11] and independently by Lange and Carson [12],
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3.7 Ordered Subsets Expectation Maximisation (OSEM)

This technique was proposed by Hudson and Larkin [31] to accelerate the 

reconstruction process using the MLEM algorithm. With the ordered subset (OS) 

method, the set of projections is divided into subsets (or blocks). For example, 64 

projections divided into 16 subsets will contain 4 images each. An iteration of 

ordered subsets is defined as a single pass through all the subsets. The subsets are 

ordered so as to be maximally separated, progressively working through the 

projections and maintaining maximum distance between the projections in each 

subset. An important parameter in OS is the choice of subsets. Hudson and Larkin 

[31 ] distinguish between:

• Non-overlapping subsets: all subsets are mutually exclusive and their union 

equals the complete set of projection data

• Cumulative subsets: every subset is contained within the following subset.

• Standard: there is only one subset containing all the projection data; this is 

equivalent to not using OSEM.

In this study, the following guidelines are used for defining subsets:

• The subsets are non-overlapping

• The number of subsets are decreased as iteration number increases; this helps 

to promote convergence
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Chapter 4 

Materials and Methods

4.1 Introduction

Two simulation experiments were formulated to explore the influence of 

reconstruction and attenuation correction techniques on brain SPECT images. In each 

experiment a 3-D brain SPECT phantom was created and hypo-perfused lesions with 

varying contrasts and sizes were added to the digital phantom. Projection data were 

generated by modelling the effects of Poisson noise, collimator blurring, and 

attenuation. The projections were reconstructed using filtered backprojection and 

iterative techniques. Uniform and true attenuation maps were included in the 

reconstruction algorithm for each technique.

The primary difference between the two experiments related to the construction of the 

attenuation map. Experiment I utilised an attenuation map generated from a PET 

transmission scan where the attenuation coefficients were downscaled from 511 keV 

photons to 140 keV photons for typical SPECT radionuclides. This represented the 

“true” SPECT attenuation map. However, noise from the PET transmission scan was 

transposed to the SPECT transmission scan. Experiment II was designed to produce 

a more accurate attenuation map and a “true” attenuation map was generated from 

segmented MRI data. Typical linear attenuation coefficients were assigned to grey 

matter, white matter, bone, air and fat.
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All experiments and analysis were performed using the software package IDL 5.2 

(Research Systems, Inc) running on a Pentium III 800MHz system with Redhat Linux

6.2 and also a Sun 450 Model 4300 Workstation.

Both experiments involved the following steps:

4.2 Construction of a brain SPECT software phantom

4.3 Generation of projection data

4.4 Generation of reconstructed data

4.5 Analysis of data

4.2 Construction of a Brain SPECT Software Phantom

The goal was to create a digital representation of the human brain suitable for 

tomographic image simulation. The steps outlining the construction of the phantom 

are listed below:

• Acquisition of MRI volume data

• Segmentation of the volume data

• Creation of the activity map

• Creation of the attenuation map

• Manipulation of the phantom

4.2.1 Acquisition of MRI Volume Data 

Experiment I

The SPECT software phantom was constructed from segmented MRI data. For 

this purpose, four high resolution MRI scans were performed on a normal 

volunteer at the Catholic University of Leuven, Belgium. The scans were
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acquired with a Siemens Vision 1.5 Tesla scanner (Erlangen, Germany) using a 

magnetisation prepared rapid gradient echo sequence (repetition time = 9.7 ms, 

echo time = 4 ms, inversion = 300 ms, number of excitations = 1, flip angle = 12 

degrees, matrix size = 256 X 256, field of view = 256 mm). The volume 

contained 160 slices; each slice was 256 X 256 with an in-plane pixel size of 

1mm x 1mm and a slice thickness of 1mm. The four MRI scans were co­

registered to each other using the technique of mutual information [32] and the 

mean MRI scan was determined. Figure 4.1 shows the lower, central and upper 

transverse slices of the mean MRI volume.

(a) (b) (c)

Fig 4.1 Three transaxial slices o f the mean MRI image from which the SPECT 
phantom was created, (a) lower slice, (b) central slice, (c) upper slice

Experiment II

The second brain phantom was generated from the 3-D digital phantom 

provided by the BrainWeb database [33]. Construction of the BrainWeb 

phantom was based on a high resolution (1 mm isotropic voxels), low-noise 

dataset. The dataset was created by registering 27 scans (T1 weighted gradient
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echo acquisitions) of the same individual [34], The volume contained 181 X 

217 X 181 voxels and covered the brain completely, extending from the top of 

the scalp to the base of the foramen magnum.

4.2.2 Segmentation of the Volume Data

The aim of the segmentation process was to partition the digital image into a set of 

non-overlapping regions to identify different tissue types or anatomical structures.

Experiment I

Segmentation classified the brain into grey matter, white matter and CSF using 

Statistical Parametric Mapping version 99 (SPM99) [35], This classification 

allowed intensity values to be assigned to each tissue class to obtain a realistic 

SPECT phantom.

Experiment II

The segmentation of the brain into ten different tissue types was available on the 

BrainWeb site [33], The segmentation was performed using first a tissue 

classifier and then a manual method. Each voxel was assigned a tissue class 

depending on its tissue type. The tissue types of interest were the grey matter, 

white matter and CSF (for the activity map) and additionally the fatty tissue, skull 

and air (for the attenuation map).

4.2.3 Creation of the Activity Map

The segmented MRI volumes for both experiments were assigned relative activity 

levels. The perfusion ratio of grey matter to white matter was taken as 4:1 [36], 

Cerebrospinal fluid (CSF) does not accumulate the radioactive isotope, and therefore
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these voxels were assigned a tracer uptake value of zero. A scaling factor was needed 

to produce realistic values to count levels in the projections. This factor was 

determined by reviewing the mean values of the projection data of 18 normal 

HMPAO brain SPECT scans performed at Tygerberg Hospital. The activity map was 

assigned a scaling factor to produce a similar mean count density of 16 counts per 

projection pixel in the data of the normal patients.

The generated activity map was reduced to a matrix size of 84 X 84 by eliminating 

certain sagittal and coronal slices and the number of planes was reduced to 30 for 

Experiment I. The activity map of Experiment II used a matrix size of 83 X 83 

with 60 planes. This process saved on computational time but maintained the voxel 

size.

4.2.4 Creation of the Attenuation Map 

Experiment I

A PET transmission scan was performed on the same normal volunteer at the 

Catholic University of Leuven, Belgium. This was acquired on a Siemens-CTI 

ECAT EXACT HR+ PET scanner using a 68Ge/Ga transmission source. The 

transmission scan was first co-registered to the mean MRI scan using the 

method of mutual information [32]. The creation of a true attenuation map 

required the rescaling of the attenuation coefficients of 511 keV photons of the 

PET transmission scan to 140 keV, in keeping with " mTc-labelled brain 

compounds. A plot of the linear attenuation coefficients [37] [38] for the 

different tissue types is displayed in Figure 4.2. A scaling factor of 0.6304 

transformed the transmission scan to a realistic attenuation map for a " mTc
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SPECT scan. This scaling factor verified the results of Zimmerman [39], where 

a value of 0.6133 was determined as the scaling factor for water.
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Type of Tissue

Density

(g/cm 3)

M/p(cm2/g)

(150kev)

M/p (cm2/g) 

(500keV)

M (cm'1) 

(150 keV)

M (cm'1) 

(500keV)

A-150 Tissue eq plastic 1.1270000 0.1485 0.09579 0.1673595 0.10795533

Adipose Tissue 0.9500000 0.1500 0.09696 0.14250000 0.092112

Air, dry 0.0012050 0.1356 0.0871 0.000163398 0.00010498

b-100 bone eq plastic 1.4500000 0.1482 0.0923 0.21489 0.1337915

brain, grey/white matter 1.0400000 0.1498 0.0964 0.155792 0.100256

Breast Tissue 1.0200000 0.1493 0.0963 0.152286 0.098226

Lung Tissue 1.0500000 0.149 0.0961 0.156765 0.1008735

Tissue, Soft 1.0600000 0.149 0.0960 0.158152 0.1017388

Bone, Cortical 1.9200000 0.148 0.0902 0.28416 0.1732224

Table 1: Density (p) and Linear Attenuation Coefficients (fj) fo r  the different Tissue 
Types

Attenuation coefficients of 500 keV vs 150 keV

11 (150 keV)

Fig 4.2 Relationship between the linear attenuation coefficients oj 
500 keV photons versus 150 keV photons.
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Experiment II

Appropriate linear attenuation coefficients, obtained from Table 1, were assigned to 

each voxel of the brain depending on their tissue classifications. Figure 4.3 shows 

three slices of the image where each grey level corresponds to a particular tissue type. 

The tissue types of interest utilised in generating the non-uniform attenuation image 

were the grey matter, white matter, skull, fatty tissue and air. All other voxels in the 

brain were assigned a linear attenuation coefficient value equivalent to soft tissue. 

This image was used as the true attenuation map in Experiment II.

(al Qri fĉ

Fig 4.3. Image from the BrainWeb database from which the attenuation map was 
derived. Each tissue class is represented by a particular intensity value, (a) lower 
slice, (b) central slice, (c) upper slice

4.2.5 Manipulation of the Phantom

Seven spherical cold lesions of different contrasts and radii were introduced into the 

3-D activity map to represent areas of decreased perfusion. The lesions were 

positioned at the locations shown in Figure 4.4 for Experiment I and Figure 4.5 for 

Experiment II. The number of planes containing the lesions was determined by the 

pixel size of the lesions.
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Figure 4.4. Three transaxial slices o f the hypo-perfused phantom used in Experiment 
I. The positions o f the seven lesions are indicated.

The lesions were selected to have radii of 5.2 mm and 10.4 mm each, with 50 % and 

100 % reduction in intensity. There was no discrimination between white matter and 

grey matter in the positioning of the cold lesions since certain pathologies can cause 

reduction in perfusion in both these areas. The phantom with lesions was referred to 

as the hypo-perfused phantom.

Fig 4.5 Hypo-perfused phantom showing the positions o f  the 7 lesions. This phantom 
was used in Experiment II.

4.3 Generation of Projection Data

The SPECT acquisition process was simulated by projecting the baseline and hypo- 

perfused phantom for 120 angles over 360 degrees with a pixel size of 2.6 mm and 

detector distance of 12 cm. In this case, the detector distance was the distance from 

the collimator to the centre of rotation. To ensure that the data were clinically 

realistic, pseudo-random Poisson noise was added to the data using the pseudo­

random generator of IDL 5.2. Each noisy projection data represented a noise
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realisation. In both experiments, 100 noise realisations were generated. Detector 

blurring was also included by means of Gaussian diffusion [22] and attenuation was 

taken into account.

In the case of the ML methods, the attenuation coefficients were incorporated into the 

projection and backprojection operations for each iteration. It was programmed by 

scanning the projection lines in reverse order from the detector towards the patient. 

While scanning, the attenuation was accumulated by adding the attenuation 

coefficients of the scanned pixels. The activity could therefore be directly multiplied 

by the position dependent attenuation. In the case of FBP using Chang’s first order 

attenuation correction, the average attenuation coefficient was computed for each 

pixel. Thereafter each pixel value of the regular (non-corrected) FBP image was 

divided by the average attenuation coefficient.

The effects of scatter were excluded in this investigation. The sinogram was 

smoothed along the detector grid using a 2-D Gaussian kernel with the FWHM equal 

to 2.6 mm. This was to convolve the ideal projections to compensate for the intrinsic 

resolution. In order to model the resolution of the system, detector blurring was 

modelled in the projection using Gaussian diffusion in which the FWHM at a distance 

d was estimated as:

F W H M 2 = FWHM fa2 + (d  X slope)2 

where F W H M j nt represents the intrinsic resolution
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4.4 Generation of the Reconstructed Data

Each noisy sinogram was reconstructed using 4 different techniques.

• Filtered backprojection with a calculated uniform attenuation map: FBP-unif

• Filtered backprojection with the true attenuation map: FBP-true

• Maximum likelihood method with a uniform attenuation map: ML-unif

• Maximum likelihood method with the true attenuation map: ML-true

Filtered backprojection was performed using a ramp filter and Chang’s first order 

attenuation correction before any postsmoothing was applied.

The calculated attenuation map was determined as follows: A median filter with a 

width of 7.8 mm was applied to the sinogram. The zero values were set to 1 and all 

other values were set to zero. Backprojection and normalisation produced the fraction 

of projection lines that contained a zero for each of the pixels. Thresholding yielded 

the object.

An iterative scheme using a decreasing number of subsets was used. For Experiment 

I, the iterative scheme consisted of (iterations X subsets) = (1 X 30, 2 X 24, 3 X 20, 4 

X 15, 4 X 12, 4 X 10, 4 X 8, 5 X 6, 5 X 5, 5 X 4, 5 X 3, 5 X 2, 5 X 1). This was 

approximately equivalent to 423 iterations. The large number of iterations was 

selected to ensure that the reconstruction approached convergence. In Experiment II 

the number of iterations was reduced to simulate the clinical setting and also shorten 

the computational time. The (iterations X subsets) were (1 X 30, 1 X 15, 1 X 8, 1 X

4, 1 X 2, 1 X 1). This was equivalent to 60 iterations.
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The iterations were carried out on different computers using different operating 

systems. Experiment I was performed on Pentium III 800MHz system with Redhat 

Linux 6.2 as the operating system. Each simulation utilised 52 minutes of computer 

time to perform 423 iterations. Experiment II was run on a Sun 450 Model 4300 

Workstation with Solaris 8 as the operating system. The processing time for each 

simulation required 18 minutes of computer time to perform 60 iterations.

4.5 Analysis of Data

The phantom with lesions allowed an investigation of the performance of the different 

reconstruction algorithms for the detection of hypo-perfused lesions. Each 

reconstructed image was postsmoothed, using a 3-D Gaussian blurring kernel. The 

FWHM of the kernel was varied between zero and 26 mm. Regions of interest, 

corresponding to twice the lesion size, were positioned over the lesions. It was 

ensured that the regions did not overlap.

Analysis of the data was performed by comparing the signal to noise ratio (SNR), the 

root mean squared (rms) bias and rms variance. These figures of merit are discussed 

below.

4.5.1 Signal to Noise Ratio (SNR)

An important criterion for comparing the performance of a technique is the quality of 

the images produced. SNR provides an objective measure for evaluating image 

quality [40]

For notational convenience, the following symbols were used:
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Bnl represents the reconstructed images of the noiseless SPECT emission data of 

the baseline phantom, ie the phantom without lesions.

Hnl represents reconstructed images of the noiseless hypo-perfused phantom, i.e. 

the phantom with lesions.

(Bj(r)) and (Hj(r)) represent the values in voxel j of the reconstructed images of 

noise realisation r of the SPECT emission data of the baseline (B) and hypo- 

perfused (H) phantoms respectively.

B,rue and H,rue denote the “true” baseline and hypo-perfused phantom images 

respectively.

The response function for each reconstruction technique and for each noise realisation 

was measured as follows:Equation Section 4

S„ ( 5 ('U )  = X ( 2 ? ; ' (4.1)
jeR

for the baseline phantom and

snl(H ^ ,R )  = 2 > ; '  - H j ) . ( H j (r)) (4.2)
j e R

for the hypo-perfused phantom, with R representing a region of interest.

SNR for R was computed using:

SNR(R) = (4.3)
°s (B) + cr, (H )

where s (B) ands (H) represents the mean of the baseline and hypo-perfused phantom 

respectively, and cr] (B) and o )  (H) are the variances of s„i(B(r),R) and s„i(H(r),R) 

respectively over all noise realisations.
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4.5.2 Bias and Variance Calculations

The bias and variance measurements were also determined. The bias image was 

calculated using [41]

b(I) = ( I ) - r ne (4.4)

where (/)  is the mean of (I(r)) over all noise realisations and I represents B or H. Itrue 

represents the “ground truth” image where the “ground truth” image is the SPECT 

activity map. The root mean squared bias b (I ,R )  in region R was computed using

b(I,R ) = (4.5)
V n» j **

with nR the number of voxels in R. The variance image ct2(I) was calculated using:

1
cr2(/)  = —— X [ ( /<r>) - ( 7)] (4 ‘6)

•  1 r*  IP - I t

with P equal to the number of noise realisations. The root mean squared standard 

deviation was computed using:

<?’ ( / ,* )  = I—  5 > J ( / )  (4.7)

4.5.3 Difference between mean image and “ground tru th ” image

The mean image over all noise realisations using the dataset without lesions was 

compared to the “ground truth” image. The purpose was to quantify the percentage 

deviation of the reconstructed image from the “ground truth” image. Two­

dimensional regions of interest were drawn at different locations of the brain and the 

mean difference, which represented the bias, was computed as:

% diff = X 100% (4.8)
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Two-dimensional regions were selected to represent the scenario of a normal clinical 

setting where, typically, regions over a particular area are drawn and the counts 

obtained. This method provided a simple measure of the bias contained in these 

counts.
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Chapter 5 

Results

5.1 Introduction

The results of the two experiments are presented independently in the following 

sequence:

• Phantoms

• Reconstructions

• Signal to Noise Ratio

• Bias and Variance

5.2 Experiment I

In Experiment I, only 30 planes of the 3-D volume data were utilised. This was to 

reduce the computation time for the reconstructions. The sagittal view displayed in 

Fig 5.1 shows the three slices of all images presented for Experiment I. A lower, 

central and upper portion of the brain is depicted.

Fig 5.1. A sagittal slice indicating 
the three planes o f the images that 
are displayed.

5.2.1 Phantoms

5.2.1.1 Activity Map

Three transaxial views of the activity are presented in Figure 5.2. The phantom was 

constructed from a high resolution MRI image. The intensity of grey matter to white 

matter was assigned in the ratio of 4:1 with cerebrospinal fluid set to a value of zero.
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For visualisation purposes, the images have been postsmoothed with a 3-D Gaussian 

kernel of 2.6 mm. This represented the “ground truth” image. All projections 

pertaining to Experiment I were generated from this activity map.

Fig 5.2. Three slices o f the SPECT activity map representing the “ground truth ” image

5.2.1.2 Attenuation Maps

Three transaxial slices of the “true” attenuation map used in Experiment I are shown 

in Figure 5.3. The attenuation map was derived from a PET transmission scan 

performed on the same patient. The original PET transmission scan contained noise 

and this was transformed as non-uniformities in the attenuation coefficients. This can 

be observed from the profile drawn through the central slice of the attenuation map 

and presented in Figure 5.4. No smoothing was performed on the attenuation maps. 

The “true” attenuation map was used to generate the projection data.
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Fig 5.3. Three transaxial slices o f  the attenuation map transformed from the PET 
transmission scan. This is used as the “true ” attenuation map in Experiment I

tra n sa x ia l

Fig 5.4. Profile through the “true” 
attenuation map shown. The y-axis 
shows the value o f  the attenuation 
coefficients as pixel'1 where 1 pixel 
= 2.6 mm. The x-axis is along the 
profile line.

5.2.3 Reconstructions

Three transaxial slices of a single dataset were reconstructed with the four different 

reconstruction algorithms and presented in Figure 5.5 (a) -  (d). Gaussian smoothing 

o f 2.6 mm was applied to the images. The displayed images show lesion sizes with a 

radius o f 10.4 mm and 100 % reduction in intensity. It can be observed that the 

reconstructions performed with the iterative technique are still rather noisy when 

compared to the filtered backprojection method.
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Fig 5.5 (a) -  (d). Four sets o f noisy reconstructions using the different reconstruction 
methods, (a) FBP-unif (b) FBP-true, (c) ML-unif (d) ML-true. Gaussian smoothing 
with kernel o f  1 pixel was performed.
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(C)

Fig 5.6 Noisy ML-true reconstructions with different Gaussian smoothing kernels 
(a) no smoothing, (b) smoothing o f 5.2 mm (c) smoothing o f 10.4 mm
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The influence of postsmoothing on the images is shown in Figure 5.6. 

Reconstructions using the ML-true method are displayed with varying postsmooth 

values of 0, 5.2 mm and 10.4 mm corresponding to Gaussian kernels of 0, 2 and 4 

pixels retrospectively. The noise in the images is worse in the absence of smoothing. 

However, smoothing reduces the noise, but the resolution deteriorates.

5.2.4 Signal to Noise Ratio (SNR)

Signal to noise ratios were computed from equation 4.3 for the different 

reconstruction algorithms. These values are plotted as a function of smoothing with a 

3-D Gaussian kernel and displayed in Figures 5.7 and 5.8. Figure 5.7 shows the 

curves for 100 % reduction in intensity and lesion size equal to 5.2 mm. The lesion 

size in Figure 5.8 is equal to 10.4 mm with 100 % reduction in intensity. The 

postsmoothing in the curve is expressed as pixels where 1 pixel = 2.6 mm. Figure 5.7 

illustrates that postsmoothing of between 2 and 4 pixels produce the best SNR in most 

regions of the brain. The ML reconstruction method with the true attenuation map 

performs best. The other reconstruction methods demonstrate very little difference in 

performance. The curves of SNR versus postsmooth for the other datasets 

demonstrated a similar pattern and are not shown here.

5.2.5 Bias and Variance

Figure 5.9 shows the rms standard deviation as a function of the rms bias in the 

image. It is observed that the standard deviation decreases with postsmoothing at the 

expense of increased bias. It is also clear from the bias - standard deviation curves 

that the ML methods perform best when some postsmooth is applied (between 2 and 4 

pixels corresponding to 5.2 and 10.4 mm).
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SNR vs Postsmooth (whole brain)
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Fig 5.7 (a) -  (d) Plots o f  SNR vs postsmooth fo r  the different regions o f  the brain fo r  the
dataset corresponding to 100%  reduction in intensity and lesion size = 5.2 mm in radius.
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SNR vs Postsmooth (Region 4)
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Fig 5-7 (e)  ~ 01) Plots o f  SNR vs postsmooth fo r  the different regions o f  the brain fo r  the
data set corresponding to 100%  reduction in intensity and lesion radius = 5 2  mm.
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SNR vs Postsmooth (whole brain)

(a)

(c)

Postsmooth (pixeks)

SNR vs Postsmooth (Region 2)

Postsmooth (puels)

SNR vs Postsmooth (Region 1)

fh)

(d)

0  2 4 6 8 10 12

Postsmooth (pixels)

SNR vs Postsmooth (Region 3)

FBP-unif•
....O ...... FBP-true

T " ML-unif

- - Y - - ML-true

Fig 5.8 (a) -  (d) Plot o f  SNR as a function ofpostsmooth fo r  the dataset
corresponding to 100%  reduction in intensity and lesion radius = 10.4 mm.
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SNR vs Postsmooth (Region 4)
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Fig 5.8 (e) -  (h) Plot o f  SNR as a function o f  postsmooth fo r  dataset 
corresponding to 100%  reduction in intensity and lesion radius = 10.4 mm.
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rms standard deviation vs rms bias

rms bias
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Fig 5.9 Plot o f  rms standard deviation versus rms 
bias o f  the whole brain. The points on the curve 
indicate a postsmooth o f  0, 2, 4, 6, 8 and 10 pixels.
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5.3 Experiment II

5.3.1 The Baseline and Hypo-Perfused Phantoms

The entire 3-D volume data, consisting of 60 planes, was used in Experiment II. The 

sagittal slice, displayed in Figure 5.10, shows the three slices of the brain that are

Fig 5.10 Sagittal slice 
indicating the three planes o f  
the images that are displayed

presented for Experiment II.

The SPECT activity map is shown in the Figure 5.11. The phantom displays a high 

resolution SPECT brain where sufficient detail of the internal structures are observed. 

For Experiment II, this represented the “ground truth” image.

Figure 5.11 The SPECT activity map used as the “ground truth ” image in Experiment II
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5.3.2 Attenuation Maps

Three slices o f the “true” attenuation map are displayed in Figure 5.12. This 

attenuation image was determined from the segmented MRI images. The linear 

attenuation coefficients for the different tissues were assigned as per Table 4.1. It is 

observed that bony structures have higher attenuation coefficients (represented by 

white areas) when compared to grey and white matter regions o f the brain.

An example o f a uniform attenuation map is shown in Figure 5.13. An attenuation 

coefficient o f 0.15 cm '1 was used.

Fig 5.12 True attenuation map determ ined from  the segm ented M RI image

Fig 5.13 Uniform attenuation map determ ined from  the projection data with linear 
attenuation coefficient o f  0.15 c m 1
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5.3.3 Reconstructions

Images reconstructed with the four different algorithms are presented in Figure 5.14 

(a) -  (d). The FBP images were postsmoothed with a 3-D Gaussian kernel of 2.6 mm, 

equivalent to 1 pixel. A smoothing kernel of 5.2 mm, equivalent to 2 pixels, was used 

for the ML images. These smoothing parameters were selected purely for display 

purposes.

Relative to Experiment I, the amount of Poisson noise was increased in Experiment II 

to simulate realistic patient acquisition data. This required additional smoothing. The 

displayed images were created from the dataset with 100 %  reduction in intensity and 

lesion radius of 10.4 mm.

The effect of smoothing on the images is shown in Figure 5.15. The displayed images 

were postsmoothed with a kernel size of 0, 5.2 mm and 10.4 mm respectively, 

corresponding to 0, 2 and 4 pixels. Figure 5.15 demonstrates that smoothing reduces 

the noise in the image, but the resolution is worsened. This is validated by the fact 

that certain structures of the brain, for example the caudate nucleus (indicated by the 

arrows), is clearly seen with a smoothing of 5.2 mm but cannot be distinguished when 

the smoothing is increased to 10.4 mm.

5.3.4 Signal to Noise Ratio

Signal to noise ratios were determined for the different reconstruction algorithms. 

These values are plotted in Figures 5.16 (for a lesion size of radius 5.2 mm) and 

Figure 5.17 (lesion radius = 10.4 mm). The x-axis of the curve represents the 

postsmoothing expressed in pixels where 1 pixel = 2.6 mm.
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Figure 5.16 demonstrates that the performance of the ML reconstruction methods is 

superior to the FBP methods. Another observation is that SNR peaks at a smoothing 

of 4 pixels (10.4 mm) and then decreases.

The curves for lesion size of 4 pixels (10.4 mm) are presented in Figure 5.17. 

Regions 2, 4 and 7 exhibit a pattern where the SNR increases until a smoothing of 4 

pixels (10.4 mm), and then decreases. The other regions demonstrate a local peak at a 

smoothing of 4 pixels (10.4 mm), a slight decrease, and then a progressive increase in 

SNR. The curves for regions 1, 3, 5 and 6 of Figure 5.17 display this pattern 

explicitly.

In both datasets, the ML methods of reconstruction demonstrate higher SNR values 

when compared to the FBP methods. However, very little differences in SNR can be 

observed between the true and the uniform attenuation maps. An attempt was made 

to quantify these differences using equation (5.1) for each region and for each 

postsmooth. Equation Section 5

N  - N
%A = —^ ----- SL x  100% (5.1)

Krue

where N refers to either FBP or ML method of reconstruction.

The maximum difference between FBP-unif and FBP-true was 2.3% and between 

ML-unif and ML-true was 4.9%. These values were observed for a postsmooth of 10 

pixels (26 mm). In the range of smoothing of 2 and 4 pixels (5.2 mm and 10.4 mm), 

the maximum difference was computed to be 1.5 % for FBP and 1.7 % for ML.
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Figure 5.14 Images reconstructed from a noisy sinogram with the four different 
reconstruction algorithms, (a) FBP-unif (b) FBP -true (c) ML-unif (d) ML-true
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Fig 5.15 The effects o f postsmoothing on ML-true reconstructions are displayed, 
(a) postsmooth = 0 (b) postsmooth -5 .2  mm (c) postsmooth = 10.4 mm
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Fig 5.16 (a) -  (d) Plot o f  SNR versus postsmooth fo r  different regions in the brain fo r
dataset corresponding to 100 % reduction in intensity and lesion radius = 5.2 mm.
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SNR vs Postsmooth(Region 4)
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Postsmooth (pixels)
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Fig 5.16 (e) -  (h) Plot o f  SNR versus postsmooth fo r  different regions in the brain fo r
dataset corresponding to 100 % reduction in intensity and lesion radius = 5.2 mm.
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SNR vs Postsmooth (Whole brain)
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Fig 5.17 (a) -  (d) Plot o f  SNR versus postsmooth fo r  different regions in the brain fo r
dataset corresponding to 100% reduction in intensity and lesion radius = 10.4 mm.
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Fig 5.17 (e) -  (h) Plot o f  SNR versus postsmooth fo r  different regions in the brain 
corresponding to dataset with 100% reduction in intensity and lesion radius = 10.4 mm.
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5.3.5 rms Standard Deviation versus rms Bias

Figure 5.18 shows a plot of the rms standard deviation against the rms bias (as 

determined from equations (4.7) and (4.5) respectively). The curves represent the 

region encompassing the entire brain and pertain to the baseline images, i.e. the noisy 

reconstructions without lesions. The curves illustrate that the rms standard deviation 

decreases with postsmooth at the expense of increased bias. However lower bias and 

standard deviation values are shown for the ML methods.

rms std dev vs rms bias

rms bias

FBP-unif•
...O ...... FBP-true

— ■T  "■ ML-unif
ML-true

Fig 5.18 Plot o f  rms standard deviation versus rms bias o f  the whole brain. 
The points o f  the curve indicate a postsmooth o f  0, 2, 4 , 6 , 8  and 10 pixels
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5.3.6 Mean Differences between baseline and “ground truth” image

The mean differences were calculated from equation (4.8) and presented in Table 5.1. 

This simulates a normal clinical setting where 2-D regions are drawn over a particular 

area of interest. The table shows that the difference is smallest with the ML-true 

method. The difference from the true image is greatest with the FBP methods.

Region
FBP-unif

(%)
FBP-true

(%)
ML-unif

(%)
ML-true

(%)
1 -19.97 -17.65 -6.63 -4.24
2 -33.08 -30.90 6.69 8.66
3 -33.53 -31.60 -10.04 -8.68
4 -30.33 -28.95 -5.61 -3.96
5 -32.71 -30.74 -11.71 -9.80
6 -31.82 -30.44 -11.04 -9.72

Table 5.1 The mean difference between baseline and "ground 
truth ” image

The next chapter presents an in-depth discussion of the results obtained in both 

experiments.
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Chapter 6

Discussion

6.1 Introduction

This chapter provides a critical analysis of the results presented in Chapter 5. The 

discussion follows the sequence listed below.

6.2 Phantoms and attenuation maps

6.3 Influence of attenuation correction techniques on brain SPECT studies

6.4 Influence of reconstruction techniques on brain SPECT studies

For the purpose of this discussion, the set of images and curves specifying the case of 

100 % reduction with lesion radius of 5.2 mm is referred to as dataset I. Dataset II 

corresponds to 100 % reduction in intensity with lesion radius of 10.4 mm.

6.2 Phantoms and Attenuation Maps

The activity maps are displayed in Figure 5.2 and Figure 5.11 for Experiments I and II 

respectively. These represented the “ground truth” images. The digital phantoms 

could be easily adapted to model pathology or variations in normal anatomy, allowing 

control over factors such as Poisson noise, intensity values and lesion sizes. The 

SPECT activity maps in both experiments were constructed from MRI data. The high 

resolution nature of the phantom permitted careful analysis of different reconstruction 

methods for lesion detection.

Figure 5.3 represents the attenuation map derived from the PET transmission scan and 

used in Experiment I. A profile of this attenuation map is shown in Figure 5.4. 

Transmission scanning is considered the gold standard [5], [6], [42] for the
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determination of attenuation coefficients. Ideally, a SPECT transmission scan would 

have been preferable, although it also contains noise, but was unavailable at the time 

of the experiment. The advantage of using the PET scan is that it was based on a real 

measurement of attenuation in the brain. However, as previously stated, the original 

PET transmission scan contained noise which was transposed to the SPECT 

attenuation image used in the creation of the phantom data.

The attenuation map created from the segmented MRI data was used in Experiment II 

and displayed in Figure 5.12. This attenuation map reflects a more clinical, realistic 

situation. Attenuation coefficients vary in the region of the skull and bone as depicted 

by the white areas in the Figure 5.12. The central portions appear more uniform and 

resemble, more closely, the characteristics of true brain attenuating properties as 

measured with CT.

The uniform attenuation map was constructed in exactly the same way for both 

experiments and three slices are presented in Figure 5.13. Since attenuation in soft 

tissue is similar to attenuation in water, the value of 0.15 cm'1 [43] was chosen as the 

attenuation coefficient. This represents the narrow beam attenuation coefficient for 

140 keV photons. At some institutions, a linear attenuation coefficient of 0.11 cm '1 or

0.12 cm '1 is used. This compensates for the detection of scattered photons within the 

total absorption peak by mathematically under-correcting for attenuation. In these 

experiments, the effect of scatter was excluded.
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6.3 Influence of Attenuation Correction on Brain SPECT images

It is accepted that transmission-based non-uniform attenuation correction can supply 

more accurate absolute quantification [6], [44], It is, however, unclear whether the 

approximation by a uniform attenuation map provides specific disadvantages in the 

routine clinical practice of lesion detection of functional brain SPECT imaging. The 

discussion that follows aims to fulfil the objective of determining the effect of 

uniform attenuation correction. The comparison in this section is between FPB-unif 

versus FBP-true, and ML-unif versus ML-true.

6.3.1 The Reconstructed Data

One set of noisy reconstructions for each of the two experiments is displayed in 

Figure 5.5 (Experiment I) and Figure 5.14 (Experiment II). Overall comparison of 

images reconstructed with FBP-unif and FBP-true shows no appreciable differences. 

In addition, no visual differences were observed in areas whose attenuation properties 

differed from soft tissue. This can be seen in the region of the cerebellum and 

temporal poles. The same applies when images reconstructed using ML-true and ML- 

unif are compared. This suggests that the use of a uniform attenuation map provides 

no qualitative changes to the reconstructed data.

6.3.2 Signal to Noise Ratio (SNR)

The variation of SNR as a function of postsmooth is shown in Figures 5.7 and 5.8 for 

Experiment I and Figures 5.16 and 5.17 for Experiment II. From Figures 5.16 and 

5.17, the overall impression is that there is very little separation of the curves 

comparing FBP-unif to FBP-true.
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Region 5 for both experiments display no noticeable difference in SNR curves when 

comparing FBP-unif with FBP-true and ML-unif with ML-true. This is mostly a 

homogeneous white matter region and therefore a non-uniform attenuation map will 

offer minimal advantages in this area.

Certain regions (regions 1, 6, 7) pertaining to Experiment I, dataset I, show 

improvement in SNR with FBP-true. Dataset II of Experiment I (Figure 5.8) 

demonstrate a larger difference when comparing FBP-true with FBP-unif. This could 

possibly be due to the larger lesion size extending to mixed areas of the brain, 

sometimes including skull and bony regions, and not being confined to a particular 

area of homogeneity.

The regions (e.g. Experiment I, region 7) that showed appreciable differences when 

comparing FBP-unif with FBP-true and ML-unif to ML-true were located close to 

bony structures. One explanation is that, in these regions, the uniform attenuation 

map and the true non-uniform attenuation map have the largest difference. Another 

explanation is that these regions are shallow. The bone (whose higher attenuation 

coefficient is ignored) is relatively a larger contributor to attenuation than in the case 

of deeper regions, where other tissues also contribute largely to attenuation.

Interestingly, certain regions pertaining to Experiment I (dataset I, region 1 and 6 and 

dataset II, region 1, 2 and 7) show that the FBP-true is better than ML-unif. This 

suggests that the attenuation properties of the brain contribute greatly to the 

reconstructed image. This will imply that to improve the reconstructed data, a 

significant step would be to improve the attenuation map and not necessarily the
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reconstruction technique. The data was inspected by running 20 simulations using a 

smoothed transmission scan. This revealed that the noise in the PET transmission 

scan had a greater impact on the reconstructed data than expected. These findings 

were also observed by Kemp et al [45] and Kritzman et al [46], The study by Kemp 

attempted to rectify this by segmenting the PET transmission scan.

The problem in Experiment I is that the calculated attenuation map assumes uniform 

attenuation, which may be a reasonable assumption in reality. However, this was not 

the case of Experiment I. The sinograms were produced with the true attenuation map 

which, due to noise in the transmission scan, represented non-uniformities in the 

brain. The effect of this was particularly harmful when the uniform attenuation map 

was utilised in the reconstruction. This explains the substantial difference in SNR 

between ML-true and ML-unif. Based on this simulation study, there was no 

conclusive evidence regarding the influence of the attenuation correction technique on 

the detection of lesions.

Experiment II was formulated to produce a more accurate and realistic attenuation 

map. The results of Experiment II, dataset I show very little separation of the curves 

when comparing FBP-true with FBP-unif and ML-true with ML-unif. Greater 

separation of the curves were observed in Experiment II, dataset II (lesion radius =

10.4 mm) with the true methods always performing better than the uniform methods. 

This can be validated by regions 1, 3, 4, 6 and 7. The difference appeared more 

pronounced in dataset II since the lesion size was bigger which, in some instances, 

incorporated other non-homogeneous areas of the brain. Region 7 is a cranial lesion 

with more bony structures. As expected, the use of the true attenuation map improved
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the performance of the algorithm. Region 1 is located in the temporal pole of the 

brain. Regions 1 and 7 are shallow, thus the reconstructed data will suffer the effects 

of the use of a uniform attenuation map and produce inferior reconstructed data. This 

area is of particular interest since epilepsy is most likely to affect the region of the 

temporal pole.

6.3.3 Bias and Variance Measurements

Using these two parameters, the different algorithms were compared by varying the 

smoothing parameter for each method. The general trend for rms bias and rms 

standard deviation measurements are displayed in Figure 6.1.

Fig 6.1 Schematic representation o f  general bias-standard deviation

While bias characterises the systematic deviation of the reconstruction from the true 

image, the standard deviation characterises the random variation of the reconstruction 

around its average. Generally, smoothing decreases the rms standard deviation at the 

expense of increased bias as illustrated in Figure 6.1

The curves displayed in Figure 5.9 and Figure 5.18 represent the rms bias and rms 

standard deviation curves for Experiment I and Experiment II respectively. These
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curves conform to the general trend of bias - standard deviation measurements where 

smoothing decreases the standard deviation but causes an increase in the bias. When 

comparing the different algorithms, it is observed that at the same standard deviation, 

the bias is lower when the true attenuation maps are used. This indicates that the true 

methods perform superiorly when compared to the uniform methods of 

reconstruction.

6.3.4 Maximum Difference in SNR

SNR and bias versus standard deviation curves demonstrated that in some regions of 

the brain, the use of the true attenuation map improved the detection of lesions. 

However, it was uncertain if this difference was significant. The percentage 

difference was quantified using equation (5.1). The maximum difference of 2.3 % 

was computed when FBP-unif was compared to FBP-true and 4.9 % was obtained in 

the case of the ML methods. These maximum difference values were observed at a 

postsmooth of 10 pixels (26 mm). Due to the extreme loss of resolution, the use of a 

smoothing kernel with a FWHM of 10 pixels may be too strong for most clinical 

applications. Between 2 and 4 pixels (5.2 mm and 10.4 mm) the maximum difference 

in SNR was calculated to be 1.5 % (FBP) and 1.7 % (ML). With regard to SPECT 

imaging, a difference of less than 2 % will contribute very little to lesion detection. 

This difference may be significant if absolute quantification is performed, however, 

the focus of this study was on lesion detection.
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6.4 Influence of Reconstruction Methods of Brain SPECT images

The second research question regarding the impact of the reconstruction technique on 

lesion detection is investigated. The discussion that follows compares the ML 

methods with the FBP methods.

6.4.1 The Reconstructed Data

One set of noisy reconstructions for each of the two experiments are displayed in 

Figures 5.5 (Experiment I) and Figure 5.14 (Experiment II). An observation is that 

the ML methods produce images that exhibit more noise than the FBP methods 

despite the fact that the images have been postsmoothed with the same smoothing 

kernel. This is more evident in Figure 5.5. A possible explanation is that the 

backprojector in FBP inherently performs blurring due to its interpolation resulting in 

a slightly smoother image in comparison to the ML methods.

6.4.2 Signal to Noise Ratio (SNR)

From Figure 5.7 (Experiment I) the first observation is that, in the absence of 

smoothing, FBP outperforms the ML method. It is well known that the ML image is 

subjectively a very poor one [47]. This is because the ML algorithm strictly enforces 

agreement with the projection data, and noisy data produces noisy ML images. The 

application of Gaussian smoothing improves SNR and the ML methods perform 

better than the FBP methods. Several methods have been suggested to deal with noise 

in the reconstructed data. One approach is to apply stopping rules, as proposed by 

Llacer and Veklerov [48] where the iterative method is halted before the image 

deteriorates. Another approach is to perform regularisation using an additional 

function besides the likelihood, forcing the final reconstruction to be a compromise
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between strict agreement with the data and agreement with a priori knowledge of the 

image. Nuyts and Fessler [49] compared the noise properties using a penalized 

likelihood method as opposed to postsmoothing the ML reconstruction. This study 

found that the two regularization methods performed similarly for applications where 

a shift-invariant spatial resolution was imposed.

The second observation is that SNR peaks between 2 and 4 pixels (5.2 and 10.4 mm) 

and then decreases as postsmoothing increases. The application of some Gaussian 

smoothing reduces the noise in the data.

From the SNR curves of Experiment II (Figure 5.17 and 5.18) a significant difference 

is noted between the ML and FBP methods with the ML methods always 

outperforming the FBP methods. The reason for this is that FBP is an approximation, 

whereas the iterative algorithm monotonically approaches the estimates of the 

unknown parameters by maximising the probability of the data given the parameters.

6.4.3 Bias and Variance

The curves of Experiment I (Figure 5.9) illustrate that, in the absence of smoothing, 

FBP methods demonstrate a much lower variance when compared to the ML 

methods. This is due to the noise in the image when reconstructed with ML methods. 

However, postsmoothing causes a rapid decrease on the rms standard deviation. 

These findings were also observed by Nuyts [50] The curves show that ML methods 

produce the lowest bias at the same rms standard deviation.
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These observations lead to the conclusion that iterative methods improve lesion 

detection when compared to FBP methods of reconstruction.

6.5 Other observations 

SNR and postsmoothing

SNR peaks at a postsmooth of between 2 to 4 pixels. The effect of smoothing on the 

MLEM reconstruction method is shown in Figures 5.6 and 5.15 for Experiments I and

II respectively. Without smoothing, the image is very noisy with minimal definition 

of structures. Figure 5.15 demonstrates this more explicitly. A smoothing kernel of 2 

pixels (5.2 mm) reduces the noise and produces an image where the structures in the 

brain can be identified. Although SNR is best at a smoothing of 4 pixels (10.4 mm), 

visually this smoothing produces an image that lacks detail for clinical purposes. The 

reason for this discrepancy is that, in these experiments, computer observers are used 

rather than human observers. Computer observers are known to perform differently 

from human observers [51]. It would have been impractical for the large number of 

images to be inspected by humans.

Figure 5.17 displays the curves for Experiment II dataset II. Regions, 1, 3, 5 and 6, 

demonstrate an increase in SNR up to a postsmooth of 4 pixels, followed by a slight 

decrease and finally a progressive increase in SNR with postsmoothing. Inspection of 

the hypo-perfused phantom demonstrated that as postsmoothing increases, the 

adjacent lesions smooth into each other, causing a summation effect. The lesion of 

concern is thus perceived as a single large lesion rather than two independent smaller 

lesions. This is due to the close proximity of the lesions to each other causing it to be 

influenced by neighbouring lesions. The second increase in SNR was therefore an
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artefact of the simulation and not a feature of Gaussian smoothing. If the lesions were 

placed further from each other, the same effect would have been observed but only at 

larger smoothing kernels. One solution would be to simulate each lesion individually, 

but this would increase the computation time by a factor of 8, which was unfeasible 

for this experiment.

SNR as a function o f % reduction in intensity

SNR for 50 % and 100 % reduction in intensity was compared. The curves for the 

50% reduction in intensity performed similarly to the 100 % reduction and are thus 

not displayed. However, it was observed that SNR increases when there is a greater 

degree of hypo-perfusion. This is to be expected, since the signal relative to the 

background is higher with a greater reduction in intensity.

SNR as a function o f lesion size

Figures 5.16 and 5.17 compares the ML-true methods with a lesion size of 5.2 mm 

and 10.4 mm respectively. Higher SNR is observed when the lesion size is increased. 

The numerical observer (and possibly also human observers) detects that which is 

proportional to the entire signal. This is the integral of the difference between an 

image with and without lesions. The integral is increased if the lesion size is larger. 

In this case, the size of the signal is increased, therefore the probability of finding the 

lesion is greater. This would also apply if  the lesion is more intense. The same 

explanation applies when comparing SNR in Figures 5.7 and 5.8.
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Difference between mean image and ‘ground truth” image

The mean image over all noise realisations using the data set without lesions was 

compared to the “ground truth” image. Six two-dimensional regions of interest were 

drawn at different locations. This was performed to simulate a standard clinical 

setting. The difference in the means was calculated and shown in Table 5.1. These 

values provide an indication of the degree of the bias in the mean of a region. The 

maximum difference is 9.8 % with the ML-true method and 11.71 % with the ML- 

unif method. The FBP methods show a maximum difference of 31.60 % (FBP-true) 

and 33.53 % (FBP-unif). This large difference with the FBP methods further 

illustrates that the ML algorithms perform superiorly and the use of the true 

attenuation map only adds a slight improvement to the quality of the image.

Another observation from Table 5.1 is that the bias is negative with FBP using 

Chang’s attenuation correction method. The reason for this is that Chang’s method is 

only an approximation. In his original paper, Chang proposed that the process should 

be iterative [8], A simulation was run to check if the bias remained negative if the 

Chang method was used iteratively. The simulation showed that with one iteration, 

Chang method underestimated the activity resulting in a negative bias. This negative 

bias approached zero in subsequent iterations which indicated that FBP using Chang’s 

method systematically underestimated the activity. Nevertheless, the reconstructions 

performed are of interest, since non-iterative FBP is used at most institutions 

including Tygerberg Hospital.
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Chapter 7 

Conclusions

7.1 General Conclusions

In the case of brain SPECT imaging, the use of uniform attenuation correction shows 

slight deterioration (less than 2%) in the reconstructed data. This difference was only 

visualised in the regions within the vicinity of bony structures. The investment in a 

transmission source to improve attenuation correction in brain SPECT imaging would 

offer very little benefit to the detection of lesions and does not warrant 

implementation at Tygerberg Hospital at this stage.

Marked improvement in lesion detection was observed when iterative reconstruction 

algorithms were used. The implementation of iterative techniques together with 

appropriate smoothing can improve the quality of reconstructed brain SPECT images.

In view of these findings, it is strongly recommended that iterative reconstruction 

techniques should be implemented at Tygerberg Hospital to improve the detection of 

lesions for brain SPECT studies.

7.2 Suggestions for future work

1. This investigation was performed on simulated datasets. Before 

implementation, the investigation should be evaluated on a well-defined 

patient population.
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2. The effects of scatter were excluded in the simulated data. It would be 

interesting to see if correction for scatter improved SNR in the case of brain 

SPECT imaging.

3. The projection data was determined by simulating collimator blurring by 

means of Gaussian diffusion. However, no correction for collimator blurring 

was incorporated in the reconstruction algorithms. These and other issues are 

being examined in the current research efforts at Tygerberg Hospital.

4. The methods of iterative reconstruction demonstrated excessive noise in the 

absence of smoothing. Several approaches to reduce the noise using penalised 

likelihood ML, postsmoothing ML or applying inter-iteration filtering have 

been suggested, but more work in the area is clearly needed.

5. Recommendations have been made to improve the reconstructed data by using 

a priori information. One approach would be to use anatomical information 

derived from CT or MRI images. Some work in this field has already been 

completed for PET images. Extending the study to determine the influence of 

a priori information in the case of SPECT studies would provide interesting as 

well as useful research.
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Appendix

Gaussian Smoothing

The Gaussian smoothing operator is a 2-D convolution operator that is used to blur 

images and reduce noise. It is similar to the mean filter, but it uses a different kernel 

that represents the shape of a bell. The degree of smoothing is determined by the 

standard deviation of the Gaussian.

The Gaussian distribution in 1-D has the form Equation Section 1

1 — -
G(x) = ^ = - e 2*- (1.1)

•jlno

where a  is the standard deviation of the distribution with mean 0.

In 2-D, an isotropic Gaussian has the form:
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