
Analysing Retinal Fundus Images with Deep

Learning Models

by

Samuel Ofosu Mensah

Dissertation presented for the degree of Doctor of Philosophy in 

Applied Mathematics in the Faculty of Science at 

Stellenbosch University

Supervisor: Dr. Bubacarr Bah

Co-supervisor: Prof. Willie Brink

December 2023



Declaration

By submitting this dissertation electronically, I declare that the entirety of the work

contained therein is my own, original work, that I am the sole author thereof (save

to the extent explicitly otherwise stated), that reproduction and publication thereof by

Stellenbosch University will not infringe any third party rights and that I have not

previously in its entirety or in part submitted it for obtaining any qualification.

December 2023

Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Copyright © 2023 Stellenbosch University

All rights reserved.

i

Stellenbosch University https://scholar.sun.ac.za



Abstract

Convolutional neural networks (CNNs) have successfully been used to classify diabetic

retinopathy but they do not provide immediate explanations for their decisions. Ex-

plainability is relevant, especially for clinicians. To make results explainable, we use

a post-attention technique called gradient-weighted class activation mapping (Grad-

CAM) on the penultimate layer of deep learning models to produce localisation maps

on retinal fundus images after using them to classify diabetic retinopathy. Moreover,

the models were initialised using pre-trained weights obtained from training models

on the ImageNet dataset. The results of this are fewer training epochs and improved

performance. Next, we predict cardiovascular risk factors (CVFs) using retinal fundus

images. In detail, we use a multi-task learning (MTL) model since there are several

CVFs. The impact of using an MTL model is the advantage of simultaneously training

for and predicting several CVFs rather than doing so individually. Also, we investigate

the performance of the fundus cameras used to capture the retinal fundus images. We

notice a superior performance of the desktop fundus cameras to the handheld fundus

camera. Finally, we propose a hybrid model that fuses convolutions and Transformer

encoders. This is done to harness the benefits of convolutions and Transformer en-

coders. We compare the performance of the proposed model with other attention-based

models and observe on-par performance.

Keywords: Diabetic retinopathy · CNN · Grad-CAM · Multi-task learning · Attention ·

Transformers
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Chapter 1

Introduction

This dissertation employs deep learning models to predict diabetic retinopathy (DR)

and cardiovascular risk factors (CVFs). The occurrence of DR is significantly higher

in individuals with diabetes, and is characterised by the development of lesions on the

retina. This condition may result in vision loss and blindness as lesions can be formed

on the macula region of the retina. Also, CVFs serve as biomarkers for cardiovascular

diseases (CVD), which can potentially damage the blood supply of the retina and give

rise to complications such as blood clot formation in the macula region of the retina.

Timely diagnosis and intervention of these diseases can play a crucial role to slow their

progression. In this context, we leverage the advantages of deep learning to predict and

localise retinal lesions, with a focus on salient regions of interest found by attention

mechanisms.

1.1 Background

The retina is an important part of the eye. It consists of photo-sensitive tissues and

sends electric or neural signals obtained by converting photon energy from light to the

brain, for interpretation through the optic disc [Abràmoff et al., 2010; Gahir and Shah,

2020; Gramatikov, 2014; Rodriguez et al., 2022]. For this reason, there is a continual need

1

Stellenbosch University https://scholar.sun.ac.za



Chapter 1. Introduction 2

to better understand the retina. This has become possible by observing and capturing

images of the retina in a non-invasive manner. A retinal fundus camera can capture the

blood vessels, the optic disc, the macula region and the fovea (Figure 1.1).

Figure 1.1: An example of a retinal fundus image showing the blood vessels, the optic disc, the

macula region and the fovea.

The blood vessels (the veins and arteries) extend outward from the optic disc and they

are responsible for the oxygenation and metabolism of the retina [Gramatikov, 2014;

Kowluru and Chan, 2008; Purves et al., 2001]. Due to different levels of oxygen in the

blood vessels, the veins show a deeper red than the arteries [Gahir and Shah, 2020].

The optic disc is approximately 1.5 mm in diameter, and connects the eye to the brain’s

visual processing centre through the optic nerves. All blood vessels leave and enter the

retina through the optic disc [Zhu et al., 2012]. While seen as a bright spot on the retina,

the optic disc creates a blind spot as it contains no photoreceptors [Zhu et al., 2012].

Covering about 3 mm [Khan et al., 2021], the macula region can be found near the

centre of the retina. In the middle of the macula is the fovea, and it is the primary target

as light enters the eye. The fovea is responsible for producing sharp, clear and detailed

visuals, making it the most sensitive part of the retina [Zhu et al., 2012]. To optimally

produce high-quality images, the fovea contains a high concentration of tightly packed
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visual cells [Gahir and Shah, 2020; Mookiah et al., 2013] in a tiny spot, with a mean

visual cells per area of 161900/mm2
[Kolb, 2011].

In order to prevent interruptions of light from entering the fovea, the macula region

does not have any blood vessels [Mookiah et al., 2013]. This is possible because a restric-

tive barrier, called the blood-retina barrier, isolates the macula region and fovea from

circulation and regulates their flow of nutrients [Bhagat et al., 2009]. Unfortunately, the

accumulation of sugar in the blood could lead to the breaking of the tiny blood vessels

on the retina [Mittal and Rajam, 2020]. This may result in vascular leakage where fluids

such as blood, protein and lipids leak into the fovea and macula region, leading to loss

of central and possibly peripheral vision [Nayak et al., 2013]. This incidence is common

in individuals with diabetes (Figure 1.2).

Figure 1.2: A retina with leaked blood on the fovea and macula region. This image is a random

example selected from the data used for the study.

The World Health Organisation [WHO, 2022] defines diabetes as a chronic disease that

occurs either when the pancreas does not produce enough insulin or when the body

cannot effectively use the insulin it produces. Insulin is a hormone that regulates blood

sugar levels [Ormazabal et al., 2018]. Hyperglycemia is a term used to describe raised

blood sugar in the body, which is common in diabetic patients. It is known to cause

significant damage to blood vessels in many parts of the body, including the retina. This

Stellenbosch University https://scholar.sun.ac.za



Chapter 1. Introduction 4

usually results in restricted blood flow, a condition called ischemia. The term given to

diabetic complications on the retina is diabetic retinopathy (DR) [Abràmoff et al., 2010].

DR is one of the leading causes of preventable blindness among the working adult

population [Teo et al., 2021], that is between the ages of 20 and 74 years [Lee et al., 2015].

DR is progressive [Nayak et al., 2013] and can be categorised according to its level of

severity [Antonetti et al., 2021]. There are two main categories: non-proliferative DR

(NPDR) and proliferative DR (PDR) [Antonetti et al., 2021; Jadhav and Patil, 2015; Mittal

and Rajam, 2020]. NPDR can be subdivided into three stages in order of severity, namely

mild, moderate and severe. Usually, there is only one micro-aneurysm at the end of the

blood vessels in a mild DR. The burst of the micro-aneurysm (known as haemorrhage)

on the retina results in a moderate DR. In severe DR, there are several haemorrhages on

the retina. PDR results in neovascularisation which is defined as the natural formation

of new blood vessels. Neovascularisation mostly occurs under the surface of the retina,

resulting in tractional retinal detachment [Antonetti et al., 2021; Qummar et al., 2019]

(Figure 1.3).

(a) Mild (b) Moderate (c) Severe (d) PDR

Figure 1.3: Examples of diabetic retinopathy in different levels of severity. These images are

random examples selected from the data used for the study.

Another common disorder that affects retinal vasculature is cardiovascular disease (CVD).

It is the leading cause of death globally, and killed approximately 17.9 million people

in 2019 [WHO, 2021]. CVD is defined as a group of disorders involving the heart and

blood circulation system such as hypertension, stroke, coronary heart disease and pe-
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ripheral vascular disease [Salkind, 2005]. Early signs of CVD can be observed on the

retina [Nguyen and Wong, 2009]. Furthermore, factors including age, sex, blood pres-

sure, smoking status, diabetes and hypertension are significant contributors to CVD.

These factors are known as cardiovascular risk factors (CVFs) [Poplin et al., 2018].

These kinds of observations are possible because the retina can be observed in a

non-invasive manner through the pupil using a retinal fundus camera. A retinal fun-

dus camera is a special camera that is used to capture high-resolution images of the

retina. It is set up with a low-power microscope to produce a 2D and a 2.5 magnified

view of the retina [Dodo, 2020; Mookiah et al., 2013]. The average field of view of a

retinal fundus camera is only from 30◦ to 50◦ due to the size of the pupil [Panwar et al.,

2016]. For this reason, a retinal fundus camera is unable to capture a full view of a

retina. To address this, ophthalmologists mainly capture the central and peripherals

of the retina [Al-Bander, 2018]. Top manufacturers of retinal fundus cameras include

Canon, Centrevue, Crystalvue, Optovue, Topcon and Zeiss [Al-Bander, 2018; Dodo,

2020]. The use of retina images is relevant because they provide ophthalmologists with

a precise in-vivo observation of the retina, enabling them to adequately monitor and

document diseases that affect the retina and also help prevent blindness through early

detection [Gulshan et al., 2016; Nguyen and Wong, 2009].

1.2 Problem Statement

A retinal fundus image can provide helpful information to ophthalmologists [Rim et al.,

2020] such as the level of severity of diabetic retinopathy and biomarkers of hyperten-

sion, assisting them to precisely characterise changes on the retina [Zhang et al., 2020].

However, there is a dearth of ophthalmologists for the increased demand and number

of retinal fundus images created [Raman et al., 2019; Rogers et al., 2021]. In addition,

there remains the issue of subjective diagnosis by trained specialists [Gargeya and Leng,

2017]. Hence, there is a need to develop solutions to help resolve the unmatched propor-
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tion between ophthalmologists and patients [Raman et al., 2019], and to help alleviate

workload [Gargeya and Leng, 2017].

In this study, we consider the problem of classifying DR and CVD using deep learn-

ing on retinal fundus images. Deep learning is a sub-domain of machine learning ap-

proaches characterised by multiple neural network layers for the finding of predictive

patterns based on examples [Marcus, 2018; Poplin et al., 2018]. Specifically, we look at

convolutional neural networks (CNNs). Over the years, CNNs have been studied exten-

sively [Gu et al., 2018], have demonstrated good performance and have dominated the

domain of computer vision [He et al., 2016; Simonyan and Zisserman, 2015; Szegedy

et al., 2015]. CNNs are known for their shift-invariance and local connectivity proper-

ties [Chu et al., 2021]. Despite their success, they lack the ability to learn long-range

dependencies due to poor scaling properties with respect to large receptive fields [Ra-

machandran et al., 2019].

As other domains have adapted CNNs, recent studies in computer vision have also

adapted models from different domains. Such an example is the introduction of the vi-

sion Transformer (ViT) model, which has achieved impressive results on various com-

puter vision tasks [Dosovitskiy et al., 2021]. ViT models address the scalability [Doso-

vitskiy et al., 2021] and long-range dependency [Touvron et al., 2022] issues faced by

CNNs. They have dynamic attention properties [Wu et al., 2021], which may be neces-

sary for attending to lesions in DR fundus images. Also, they generalise better [Touvron

et al., 2022], which is important when working with real-world data. Unfortunately, the

number of operations in the ViT grows quadratically with the number of pixels of an

input image making it computationally expensive [Chu et al., 2021].

The core component of a CNN is convolutional layers (Convs) and that of a ViT is

multi-head self-attention (MSA). Park and Kim [2022] observed that Convs and MSA

complement each other. In detail, they reported that (1) Convs diversify feature maps,

but MSAs aggregate them, and (2) Convs are high-pass filters and MSAs are low-pass

filters. In the end, Park and Kim [2022] noted that harmonising Convs with MSA yields
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better results with improved robustness, compared to training a model with either

Convs or MSA independently. Hence, leveraging the advantages of the two models

can be beneficial.

1.3 Aims and Objectives

The aims of the study are to build and evaluate deep learning models on retinal fundus

images for predicting diabetic retinopathy and cardiovascular diseases. Wewill develop

and evaluate the performance of state-of-the-art deep learning models trained on retina

images. To that end, we focus on the following objectives:

1. To obtain optimal pre-processing of retinal fundus images for subsequent tasks

such as classification. In particular, we will estimate optimal hyperparameters for

contrast limited adaptive histogram equalisation (CLAHE) on each image.

2. To demonstrate the impact of using transfer learning instead of randomly ini-

tialising the model weights, for classifying the severity of diabetic retinopathy in

retinal images.

3. To generate localisation maps for discriminative regions on a retinal fundus im-

age for the task of classifying diabetic retinopathy. These localisation maps can

be generated to aid in providing explanations to clinicians for a model’s discrim-

inative process.

4. To demonstrate the advantages of using multi-task learning over a single-task

learning model in predicting cardiovascular risk factors from retinal fundus im-

ages.

5. To present the current advantages of using a desktop fundus camera and possible

future benefits of using a handheld fundus camera.
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6. To propose and demonstrate the benefits of using hybrid models that combine

convolutional layers and multi-head self-attention.

1.4 Contribution

Our contributions focus on building and evaluating deep learning models on retinal

fundus images. Thus, the dissertation makes the following contributions.

Chapter 2. To start with, we use contrast limited adaptive histogram equalisation

(CLAHE) to resolve the enhancement issues with retinal fundus images. In particular,

we estimate the hyperparameters for CLAHE individually for each retinal fundus image.

Next, we employ transfer learning for classification purposes and show its benefits.

Finally, we use gradient-weighted class activation mapping (Grad-CAM) to generate

discriminative regions on the retinal fundus images. The results were published in the

following paper:

Paper: Mensah, S. O., Bah, B., & Brink, W. (2021). Towards the Localisation of Le-

sions in Diabetic Retinopathy. In Intelligent Computing (pp. 100-107). Springer,

Cham.

Chapter 3. We build a multi-task learning (MTL) model to predict cardiovascular risk

factors (CVFs) from the retina images. The CVFs considered in the study are age, sex,

and hypertension. In addition, we assess the performance of theMTLmodel on patients’

ethnicity, investigate the contribution that the optic disc and the macula region have

on the prediction of sex, investigate the influence that the quality of a retinal fundus

have on the performance, and evaluate camera performance for the study. These results

were in the following pre-print:
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Due for journal submission: Mensah, S. O., Koch, L., Lies, P., Wallraven, C.,

Bah, B., Browatzki, B., & Berens, P. (2023). Evaluation of Multi-Task Learning for

Predicting Cardiovascular Risk Factors from Retinal Fundus Images.

Chapter 4. We propose a hybrid model that fuses convolutions and Transformers,

consequently benefiting from their advantages and eliminating undesirable proper-

ties from the two paradigms. In particular, we feed intermediate feature maps from

a ResNet-50 model to a fully convolutional Transformer to predict diabetic retinopathy.

We evaluate the proposed model using images of the Canadian Institute for Advanced

Research image dataset with ten classes (CIFAR-10). We then also evaluate the perfor-

mance of the proposed model along with convolution-based attention models, variants

of vision Transformer models, and other hybrid models on the task of classifying sever-

ity of diabetic retinopathy. These results were published in the following paper:

Paper: Mensah, S. O., Bah, B., & Brink, W. (2022). Learning to Pay Multiple

Attention with Fully Convolutional Transformers. Southern African Conference

for Artificial Intelligence Research (SACAIR, 2022), pp. 67 – 77.

1.5 Dissertation Overview

In this section, we provide an overview of the dissertation and briefly describe the con-

tent of each chapter.

Chapter 2 - Diabetic Retinopathy Classification and Lesion

Localisation with CNNs

CNNs have demonstrated good performance on medical images, including retinal fun-

dus images. However, they fail to provide explanations for their discriminating pro-
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cesses, making the results potentially usable for ophthalmologists but without an un-

derstanding of the decisionsmade by themodel. Thus, this chapter focuses on providing

the steps involved in generating localised maps for classifying diabetic retinopathy.

Chapter 3 - Prediction of Cardiovascular Risk Factors

It is possible to predict cardiovascular risk factors (CVFs) from retinal fundus images.

However, predicting each CVF with a separate model can be time-consuming. This

chapter focuses on building a multi-task learning model to simultaneously predict sev-

eral CVFs, consequently saving time and reducing the number of parameters to learn.

Chapter 4 - Combining CNNs and Vision Transformers

The introduction of Transformers in the computer vision domain has resulted in im-

proved results, compared to CNNs. One of the main components of the Transformer

model is attention. CNNs and Transformers have desired underlying properties for a

computer vision task. In this chapter, we propose a hybrid model that fuses convolu-

tions and Transformers, for the task of predicting the severity of diabetic retinopathy.

Chapter 5 - Conclusion

In this chapter, we summarise the findings that were observed during the experiments

conducted throughout previous chapters. We provide remarks on how the aims and

objectives presented in the dissertation were met, and end with suggestions for future

work.

1.6 Ethical Statement

An institutional Review Board approval was not required for the dissertation, because

we utilised a database of retinal fundus images collected by APTOS and EyePACSwhich
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are publicly available datasets containing no patient-identifiable information. Our re-

search focuses on generating valuable insights while ensuring that the utilisation of the

datasets contributes significantly to the broader scientific community.
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Chapter 2

Diabetic Retinopathy Classification

and Lesion Localisation with CNNs

2.1 Overview

The aim in this chapter is to localise lesions on the retina using a post-attention tech-

nique called gradient-weighted class activation mapping (Grad-CAM) [Selvaraju et al.,

2017]. First, we present an enhancing technique to resolve potential contrast issues

in retinal fundus images. Next, we use state-of-the-art convolutional neural networks

(CNNs) to extract feature maps from the data. We feed the extracted feature maps to

Grad-CAM and generate coarse localisation maps to help identify discriminative re-

gions on the retinal fundus images. In the following sections, we first present back-

ground in Section 2.2, then discuss previous related work in Section 2.3, describe the

methods used in this chapter in Section 2.4, describe the experiments in Section 2.5,

discuss the results in Section 2.6, and finally conclude in Section 2.7.

12
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13 2.2. Background

2.2 Background

There has been tremendous success in the field of deep learning, especially in the do-

main of computer vision [Simonyan and Zisserman, 2015]. Convolution neural net-

works (CNNs) have played a critical role in this success [LeCun et al., 1998]. Krizhevsky

et al. [2012] built one of the first deep CNNs using the ImageNet dataset and attained

state-of-the-art performance on a large-scale image classification benchmark. Since

then, several deep CNN models have been introduced.

The use of CNNmodels has nowbeen extended to specialised fields such asmedicine

[Raghu et al., 2019]. General use cases of CNNs in the medical domain include classifi-

cation, image segmentation, localisation, detection, and image generation [Çallı et al.,

2021]. This has opened a wide avenue of research for scientists. In addition, the use

of transfer learning has further propelled the success of CNNs in the medical domain

[De Fauw et al., 2018; Gondal et al., 2017; Gulshan et al., 2016; Raghu et al., 2019]. It

is therefore important that we find among the numerous deep CNN models available

which one performs best for our task of classifying the severity of diabetic retinopathy

in retinal fundus images.

Even though these models are able to attain good performance onmedical images, it

can be challenging to comprehend the reasoning behind their decisions. Clinicians need

more evidence from these models to increase trust and comprehension of the results

produced [Gondal et al., 2017]. To resolve this, we consider the use of a post-attention

technique called gradient-weighted class activation mapping (Grad-CAM) [Selvaraju

et al., 2017] to generate coarse localisation maps on the lesions in retinal fundus images.

Unlike other approaches, Grad-CAM is capable of generating class-specific localisation

maps on any CNN-based architecture without restructuring the model and requires no

additional operations, thus making it efficient [Bazzani et al., 2016; Oquab et al., 2014;

Simonyan et al., 2014; Springenberg et al., 2015; Zeiler and Fergus, 2014; Zhou et al.,

2016]. The aim of generating the localisation maps is to provide visual explanations
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for the decisions made by the model. In addition, generating coarse localisation maps

on retinal fundus images (or on medical images, in general) can be categorised as a

computer-aided diagnosis tool that can speed up diagnosis. Beede et al. [2020] showed

that integrating deep learning algorithms in clinician workflow significantly reduces

diagnosis time (see Figure 2.1).

Figure 2.1: A comparison of the diagnostic time before and after using deep learning [Beede

et al., 2020].

Before implementing deep learning models, we pre-process images using contrast lim-

ited adaptive histogram equalisation (CLAHE). CLAHE is a crucial step because it helps

resolve the low-contrast issues, uneven illumination and poor-quality images associ-

ated with retinal fundus images Zhou et al. [2017]. CLAHE has two hyperparameters,

namely the clip limit and the grid size. Most studies select unique values of hyper-

parameters for all the images. However, the optimal set of hyperparameters varies

from image to image [Kuran and Kuran, 2021]. Hence, it is recommended that each

image has its own set of hyperparameters. Moreover, the selection process of these hy-

perparameters is hardly discussed in studies that employ CLAHE as a pre-processing

technique [Campos et al., 2019].

In this chapter, we estimate optimal hyperparameters for CLAHE in each image

during the pre-processing. We then use pre-trained weights from deep learning mod-

els to classify the severity of diabetic retinopathy in retinal fundus images. The deep

learning models we consider are ResNet-50 [He et al., 2016], VGG-16 [Simonyan and

Zisserman, 2015], Inception-V3 [Szegedy et al., 2015] and InceptionResNet-V2 [Szegedy

et al., 2017]. Next, we find the best-performing CNN model for the classification task.
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Finally, we generate coarse localisation maps on the retinal fundus images using the

best-performing model.

2.3 Related Work

In this section, we present related works on the techniques used in this chapter. They

include contrast-enhancing techniques for diabetic retinopathy, transfer learning and

localising regions of interest in images.

2.3.1 Contrast Enhancing Techniques for Retinal Fundus

Images

Medical images, including retinal fundus images, suffer from low contrast problems [Cao

and Li, 2020; Gupta and Tiwari, 2019]. These contrast issues are usually resolved by us-

ing histogram equalisation (HE). Salem et al. [2019] experimented with four variants

of HE methods on five medical images. Their goal was to determine which variant

of HE works best with medical image datasets. In the end, they noted contrast lim-

ited adaptive histogram equalisation (CLAHE) as the best enhancement technique for

retina images, while quadrant dynamic histogram equalisation (QDHE) worked best

with brain, endometrium, breast, and knee images.

Other studies have employed CLAHE in different colour spaces [Setiawan et al.,

2013; Zhou et al., 2017]. Zhou et al. [2017] resolved the retina image enhancement

issue by enhancing the luminosity channel in the LAB colour space using CLAHE. They

evaluated their technique on poor-quality retina images on a quality scale from 0 to 1.

They observed improved colour quality averages from 0.0404 to 0.4565. Setiawan et al.

[2013] noted that applying CLAHE on the individual channels of an RGB retinal fundus

image reveals different attributes of an image. Particularly, they observed that applying

CLAHE only to the red channel diminished the intensities of the blood vessels while
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increasing the background structure of the retina. When CLAHE was applied only

to the green channel, there was a significant improvement in the visibility of blood

vessels on the retinal fundus images. The blue channel, on the other hand, produced

hazy outputs.

Mohan and Mahesh [2013] used particle swarm optimisation (PSO) for tuning the

hyperparameters for CLAHE. Notably, PSO is susceptible to premature convergence,

displays partial optimism capabilities, suffers computational overhead and high tuning

complexity that emanate from its hyperparameters including the number of particles,

acceleration coefficients and termination conditions [Juneja and Nagar, 2016; Li et al.,

2014; Rahman et al., 2016]. More et al. [2015] and Kuran and Kuran [2021] both utilised

a meta-heuristic to tune the parameters of CLAHE, which is typically parameter sen-

sitive [Huang et al., 2019]. Campos et al. [2019] also presented a machine learning

approach to select the best hyperparameters for CLAHE. However, this approach re-

quires additional data labelling of well-contrasted instances of the dataset and training

a model to select hyperparameters for CLAHE.

In this study, we use CLAHE for pre-processing because it works well with retinal

fundus images. We estimate the hyperparameters for CLAHE by finding the maximum

curvature in each entropy function curve. We use this approach because it is easy to

implement and provides a quick evaluation of the hyperparameters [Min et al., 2013].

2.3.2 Traditional Machine Learning

Traditional machine learning models such as random forests, support vector machines

(SVMs) and k-nearest neighbours (k-NN) are simple and their results are easy to com-

prehend [James et al., 2013]. In the past, these traditional machine learning models

were used to classify diabetic retinopathy. To start, Dara and Tumma [2018] defined

feature extraction as the process of converting data into a set of features. It simplifies

data by removing redundant variables and keeping the informative ones. Examples of

feature extraction include principal component analysis (PCA), histogram of oriented
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gradients (HOG), local binary patterns (LBP), speeded-up robust features (SURF) and

many others.

Alzami et al. [2019] predicted the severity of DR using a random forest but not with-

out extensive manual feature extraction. They created a pipeline that included seven

feature extraction techniques plus a fractal dimension technique (another feature ex-

traction method) as their main contribution. To classify the severity of DR using an

SVM, Carrera et al. [2017] first isolated blood vessels, microaneurysms and hard exu-

dates in order to extract features. Together with the manual feature extraction tech-

niques, Gandhi and Dhanasekaran [2013] used an SVM to first classify normal and dis-

eased retinal fundus images before classifying the diseased images into the sub-classes.

Labhade et al. [2016] compared the performance of several traditional machine learn-

ing models in classifying DR. They obtained a maximum area under the ROC curve

(AUC) score of 93% and the best-performing model was a random forest. Reddy et al.

[2020] created an ensemble model consisting of five traditional machine learning mod-

els to classify DR. Additionally, there are several works similar to the ones described

above [Roychowdhury and Banerjee, 2018; Tjandrasa et al., 2013; Verma et al., 2011;

Zhang and Chutatape, 2005]. In short, traditional machine learning needs manual fea-

ture extraction for good results. These manual feature extractions should often be done

by domain experts.

2.3.3 Deep Learning

Deep learning models take in the data without manual feature extractions. The base

of deep learning is neural networks, which are mathematical models inspired by how

the brain functions. They are made up of layers which contain several nodes connected

together from layer to layer. The nodes are known as the neurons or units of a layer. A

neural network with several stacked layers creates a deep model. In detail, the layers

are mathematical operations. A neural network can consist of three parts, namely the

input layer, one or more hidden layer and the output layer.
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To emphasise, deep learningmodels perform feature extractions automatically. They

are simple in the sense that they do not require manual feature extraction on the in-

put data. They can easily be scaled to large datasets and their learned features can be

transferred from one domain to another. Large datasets are crucial for deep learning

models because they offer a high-quality data representation that leads to high model

performance. This is mainly due to the wide range of examples provided in a large

dataset, which helps deep learning models generalise better on unseen data and learn

meaningful feature representation [Najafabadi et al., 2015]. Deep learning is possible

mainly due to increased computing power and increased memory [Khan et al., 2018].

In deep learning for computer vision, the most used mathematical operation is the con-

volutional operation.

Given a 2-D image I of size h×w and a 2-D kernel K of size p× q, the convolutional

operation is defined as

O(r,c) = (I ⊙ K)(r,c) =
p−1

∑
a=0

q−1

∑
b=0

K(a,b) I(r−a,c−b), (2.3.1)

where⊙ represents the convolutional operation andO denotes the output. r ∈ Z+|1 ≤

r ≤ (h− p) and c ∈ Z+|1 ≤ c ≤ (w− q) are the row and column indices respectively

of the image and output. A neural network with a convolutional operation is called a

convolution neural network (CNN), and requires fewer parameters for training. One of

the earliest deep CNNmodels was introduced by Krizhevsky et al. [2012]. They stacked

five convolutional layers and three fully connected layers, andwon the ImageNet Large-

Scale Visual Recognition Challenge in 2012. Since then, CNN models have become

deeper and several studies have invented unique architectures. We briefly describe the

models used in our study below.

VGG-16. VGG-16 is a model introduced by Simonyan and Zisserman [2015]. Its main

characteristics are the high depth of convolutional layers and small kernel size. In Fig-

ure 2.2, we see that several convolutional layers, each with a 3 × 3 kernel size, are

stacked together. Also, the feature maps decrease in size while the channel size grows
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as the network goes deeper. This is because a pooling layer of size 2 is used to sum-

marise the feature maps. VGG stands for Visual Geometry Group and the 16 represents

the number of layers in the model.

Figure 2.2: The VGG-16 architecture. The numbers inside a layer represents the number of

channels. In this model, the feature map size decreases as the depth of the model increases.

Inception-V3. Szegedy et al. [2015] introduced a deep CNN model with a unique

module called inception. A module in the context of deep learning is composed of

known mathematical structures that perform specific computations and is designed to

be modular and reusable [Abadi et al., 2015; Paszke et al., 2019]. The inception mod-

ule branches its input into three convolutional operations with different kernel sizes

and a max pooling of size 3. It then concatenates the outputs of these operations for

subsequent layers. We illustrate the inception module in Figure 2.3. Inception-V3 con-

sists of several inception modules stacked on top of each other. In total it has 42 layers

including 11 blocks of the inception module.

Figure 2.3: Illustrating the inception module. The module concatenates outputs from three

convolutional operations with different kernel sizes and a max pooling operation with a 3× 3
kernel size.
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ResNet-50. An even deeper model is the ResNet-50 model introduced by He et al.

[2016]. Inspired by the significance of the depth of a model, they explicitly formulated

their layers as learning residual functions making reference to the layer inputs. This

approach of referring to layer inputs is termed skip connections. Figure 2.4 shows the

layout of a residual module. Similar to the inception model, ResNet stacks several resid-

ual modules together. The number at the end of the name denotes the number of layers

in the model. For example, ResNet-152 means there are 152 layers in the model.

Figure 2.4: Showing the layout of the residual module. The unique feature of the residual

module is the skip connection.

InceptionResNet-V2. Szegedy et al. [2017] creativelymixed the inception and ResNet

modules to create the InceptionResNet module. The module works like an inception

module while making reference to the layer input. We show the layout in Figure 2.5.

Several InceptionResNet modules can be stacked together to create a model.

Figure 2.5: The InceptionResNet module mixes the inception module with the residual module.
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These CNN models have revolutionised the field of computer vision [O’Mahony et al.,

2019; Raghu et al., 2019]. The success has been extended to the medical field [Cai

et al., 2020; Raghu et al., 2019; Sarvamangala and Kulkarni, 2022; Yadav and Jadhav,

2019]. The models described above have been used on various medical datasets in-

cluding computed tomography (CT) [Liu et al., 2017; Marcos et al., 2022; Power et al.,

2016], radiography (X-ray) [Chouhan et al., 2020; Jain et al., 2020], magnetic resonance

imaging (MRI) [Khan et al., 2020; Lu et al., 2020; Majib et al., 2021], histopathological

images [Alom et al., 2019; Jiang et al., 2019; Toğaçar et al., 2020], and retinal fundus

images [Gulshan et al., 2016; Raghu et al., 2019].

Focusing on retinal fundus images, Gulshan et al. [2016] conducted one of the earli-

est studies on classifying DR with CNNs. In detail, they used an Inception-V3 model to

classify a retinal fundus image as either non-proliferative diabetic retinopathy or pro-

liferative diabetic retinopathy. Mateen et al. [2018] incorporated singular value decom-

position (SVD) and principal component analysis (PCA) to the final layers of VGG-16

to predict the severity of DR. In our study, we compared the performance of the models

described above in predicting the severity of DR [Mensah et al., 2021].

2.3.4 Localising Regions of Interest

It is possible to extract discriminative regions of an image with a trained model [Zhu

et al., 2019] and particularly with a CNN [Angeletti et al., 2018]. Discriminative regions

are usually objects of interest in an image. The process of identifying the location of

objects of interest in an image is called localisation. While segmentation outputs a

pixel-wise mask of each object in the image, it does not give information about the

location of the objects of interest [Zhu et al., 2019]. Localisation can be seen as an-

other form of classification, but classification does not produce information about the

location of objects of interest. However, localisation maps can be generated from clas-

sification models [Hui et al., 2022]. Objects of interest are relevant to increase the trust

and comprehension of a model.
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Several studies have been conducted on the topic of localisation [Gan et al., 2015;

Simonyan et al., 2014; Springenberg et al., 2015; Zeiler and Fergus, 2014]. A popular

example for CNNs is class activation mapping (CAM) [Zhou et al., 2016]. CAM is used

to generate maps which indicate discriminative regions of an image. However, CAM

can only utilise the penultimate layer of a CNN model to generate localisation maps.

Selvaraju et al. [2017] introduced gradient-weighted class activation mapping (Grad-

CAM) which is capable of generating localisation maps from all the layers in a model.

Hence, Grad-CAM is a more general version of CAM [Selvaraju et al., 2017].

Explaining the decisions deep learning models make on medical images has im-

proved [Singh et al., 2020]. Grad-CAM has been used to locate brain tumour in MRI

images [Pereira et al., 2018]. Bhusal et al. [2022] used Grad-CAM to detect pathology in

chest X-ray dataset. Barnett et al. [2021] applied Grad-CAM to mammograms to calcu-

late activation precision, which is their measure of interpretability. To shed more light

on CNNs, Young et al. [2019] generated localisation maps on skin images for the task

of melanoma detection. In our study, we use Grad-CAM to localise lesions in retinal

fundus images.

2.4 Methodology

In this section, we present the methods used in the chapter. We expand on contrast

limited adaptive histogram equalisation (CLAHE) and how we choose its hyperparam-

eters in Section 2.4.1. Next, we present transfer learning and gradient-weighted class

activation mapping (Grad-CAM) in Sections 2.4.2 and 2.4.3 respectively.

2.4.1 Contrast Limited Adaptive Histogram Equalisation

Retinal fundus images commonly suffer from uneven illumination and low contrast, re-

sulting in unsatisfactory and poor-quality images [Cao and Li, 2020; Gupta and Tiwari,

2019]. Poor-quality retinal fundus images may lead to difficulty in interpreting signifi-
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cant features and structures in the retina [Cao and Li, 2020; Zhou et al., 2017]. Usually,

poor-quality retinal fundus images result from the acquisition process which generally

involves the type of camera used, the skill of the photographer (or ophthalmologist),

the room lighting and the general environment [Cao and Li, 2020]. High-quality retinal

fundus images are relevant for clinical purposes and suitable for subsequent accurate

computer-aided diagnosis [Gupta and Tiwari, 2019; Zhou et al., 2017], while poor retinal

fundus images can affect the sensitivity and specificity of a model [Sahu et al., 2019].

Thus, it is necessary to resolve the challenges related to poor-quality retinal fundus

images [Zhou et al., 2017].

In this study, we use contrast enhancement techniques to overcome the challenges

related to poor-quality retinal fundus images. Specifically, we use contrast limited adap-

tive histogram equalisation (CLAHE) to resolve these challenges. The base of CLAHE

is histogram equalisation (HE). HE is a nonlinear function [Zuiderveld, 1994] which

uses a global approach to adjust image intensities for contrast enhancement. It uses the

cumulative distribution function to transform the intensity levels of an image.

For an image f of size M × N, with histogram of intensities denoted as H f , the

normalised image histogram is given by

p f (n) =
H f (n)
MN

, n = 0, 1, . . . , L− 1, (2.4.1)

where n represents intensity. L is themaximum intensity level of the image, for example

256 for an 8-bit image. HE of an image is defined by

g(n) =

⌊
(L− 1)

n

∑
j=0

p f (j)

⌋
, (2.4.2)

where g(n) is the transformed intensity of the output image corresponding to input

intensity n.

Unfortunately, HE can lead to the amplification of noise in images [Zuiderveld,

1994], especially in homogeneous regions [Ma et al., 2018]. The intuition behind this
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is that HE attempts to make the intensity range of an image evenly distributed, con-

sequently highlighting subtle differences in homogeneous regions as noise. The local

variant of HE is called adaptive histogram equalisation (AHE). First, AHE splits an im-

age into patches of specific dimensions. These patches and their dimensions are known

as tiles and grid size respectively. After applying HE on the individual tiles, they are

stitched together using bilinear interpolation. In doing so, AHE adjusts image inten-

sities locally and reduces image noise. Even though AHE improves the contrast of an

image, it may still have a tendency of noise amplification in relatively homogeneous re-

gions [Ma et al., 2018]. CLAHE is a variant of AHE that resolves the noise amplification

problem in contrast enhancement techniques (see Figure 2.6).

(a) (b) (c) (d)

Figure 2.6: Comparing the output of different contrast enhancement techniques applied to the

retinal fundus image in Figure 2.6a. In this example, we used the same hyperparameters for all

the techniques, namely a grid size of 18× 18 and a clip limit of 4. Figure 2.6b shows the impact

of applying HE, where the blood vessels are more visible now. The blood vessels and fine details

are even more conspicuous in Figure 2.6c, where we applied AHE. Unfortunately, noise is also

amplified. This is resolved in Figure 2.6d after applying CLAHE. The blood vessels alongside

the optic disk and the macula region are now noticeable.

CLAHE imposes a threshold on the histogram for each local region [Pisano et al.,

1998]. This threshold is called a clip limit, and clipped pixels are redistributed equally

over the whole histogram. Its purpose is to prevent the local intensity values of a his-

togram from exceeding the clip limit [Kuran and Kuran, 2021], consequently resolv-

ing the problem of noise amplification [Pisano et al., 1998]. One advantage of using

CLAHE is that it produces images with high entropy [Kuran and Kuran, 2021]. An im-
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age with high entropy is necessary because it can affect the performance of subsequent

tasks [Campos et al., 2019]. The process involved in CLAHE is summarised below.

i. Split an image into non-overlapping tiles.

ii. Apply a clip limit on the individual tiles and redistribute clipped pixels to the whole

histogram.

iii. Apply HE on each tile.

iv. Merge transformed tiles using bilinear interpolation.

The clip limits and grid size in CLAHE are considered hyperparameters, and the ef-

ficiency of CLAHE depends on them. An improper choice of these hyperparameters can

produce poor-quality images, but a manual selection of ideal hyperparameters over a

wide range of possibilities can be tedious [Campos et al., 2019; Kuran and Kuran, 2021].

The choice of the hyperparameters of CLAHE affects the contrast of the image. The re-

sulting contrast-enhanced image is characterised by visible features and patterns, which

are instrumental for CNNs for accurate predictions [?]steffens2019contrast). Moreover,

it would be beneficial to have different hyperparameters for different images since each

image is captured under different conditions.

In this study, we use image entropy to determine proper hyperparameters for each

image. Entropy is defined as the measure of the average information content of an

outcome [MacKay, 2003]. In the context of an image, entropy is defined as a measure of

uncertainty or randomness in the pixel intensities (also known as a distribution) of an

image [Dey, 2018]. We employ entropy as ametric to evaluate the performance or assess

the quality of CLAHE [Aurangzeb et al., 2021]. Maximum entropy is desired in this

context because it suggests information-richness and diversity in the pixel values [Min

et al., 2013]. We compute entropy using the following expression:

H = −
255

∑
i=0

pi log2(pi), (2.4.3)
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where H is the entropy and pi represents the probability of occurrence of an intensity

i in an image (equivalent to the normalised histogram mentioned before). We obtain

hyperparameters by finding the maximum curvature on entropy curves. In our case,

the entropy curves consist of a plot of the clip limits versus image entropies obtained

from changing the hyperparameters. We fit a nonlinear function to find the maximum

curvature on the entropy curves. First, we select the grid size with the highest entropies

and use its corresponding entropies togetherwith the clip limits as data to fit a nonlinear

function of the form

f (x) = ae−bx + c, (2.4.4)

where x represents clip limits, f (x) the entropy and a, b, and c fitted coefficients.

2.4.2 Transfer Learning

Generally, CNNs require a large amount of data to construct useful latent represen-

tations [Tan et al., 2018; Tripuraneni et al., 2020; Zhao, 2017]. In the medical field,

especially in medical imaging, large datasets are less readily available [Raghu et al.,

2019]. This is due to the high cost of data acquisition and annotation, resulting in in-

sufficient data for deep learning-related tasks [Tan et al., 2018; Zhuang et al., 2020]. We

can use transfer learning to resolve the issue of insufficient data because it relaxes the

hypothesis that training and test datasets are required to be independent and identi-

cally distributed (i.i.d.) [Tan et al., 2018]. Hence, a model (source model) can be trained

on data (source data), and we can leverage the weights (knowledge) of that model to

the new model (target model) and fine-tune on new data (target data). Figure 2.7 il-

lustrates. For example, the knowledge obtained from training on natural images can

be transferred to perform classification tasks in the medical field [Gulshan et al., 2016;

Raghu et al., 2019]. The effects of transfer learning are often improved performance,

lower training data requirements, and reduced training time [Tan et al., 2018; Zhuang

et al., 2020].
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Figure 2.7: Showing the setup for transfer learning. A learning task generates knowledge

from source data and transfers the knowledge to another learning task. The new learning task

together with the knowledge obtained is used for subsequent tasks such as classification.

In this study, we show the effect of transfer learning by using pre-trained weights from

open-sourced state-of-the-art deep learning models. The models considered for the

study include ResNet-50 [He et al., 2016], VGG-16 [Simonyan and Zisserman, 2015],

Inception-V3 [Szegedy et al., 2015] and InceptionResNet-V2 [Szegedy et al., 2017]. These

models are pre-trained on the ImageNet dataset which consists of 1.2 million labelled

natural images belonging to 1,000 classes [Deng et al., 2009].

To express transfer learning mathematically, let us consider a domain D that con-

sists of a feature space X and a marginal probability distribution P(X) over the feature

space, where X = {x1, . . . , xn} ∈ X . Thus D = {X , P(X)}. Then for a domain

D, we consider a task T that consists of a labelled space Y and a conditional proba-

bility distribution P(Y|X) learned from the training data consisting of pairs xi ∈ X

and yi ∈ Y. P(Y|X) is the same as the target prediction function f (x). The transfer

learning is defined below.

Definition 2.4.1 ([Ruder, 2017b]). Given a source domain DS, a corresponding source

task TS, as well as a target domain DT and a target task TT , the objective of transfer

learning is to learn the target conditional probability distribution P(YT|XT) in DT with

the information gained from DS, where DS ̸= DT or TS ̸= TT . In most cases, the data

size of DS is much larger than the data size of DT .
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As both the domain D and the task T are defined as tuples, the inequalities in Defini-

tion 2.4.1 give rise to four transfer learning scenarios.

• XS ̸= XT: This suggests that the feature spaces of the source and target domain

are different. For example, the source domain may be natural images while the

target domain is medical images.

• P(XS) ̸= P(XT): The marginal probability distributions of the source and target

domain are different. For example, the objects of interest for natural images are

different from that of medical images.

• YS ̸= YT: The label spaces between the source and the target are different. For

example, the natural images in ImageNet are grouped into 1,000 classes, while

the severity of diabetic retinopathy may correspond to five classes.

• P(YS|XS) ̸= P(YT|XT): The conditional probability distributions of the source

and target tasks are different. For example, the source and target data are unbal-

anced with respect to their classes.

2.4.3 Gradient-weighted Class Activation Mapping (Grad-CAM)

CNNs demonstrate good performance in computer vision tasks but they are unable to

provide intuitive components, making it difficult to explain and interpret their deci-

sions [Selvaraju et al., 2017]. Explainability and interpretability are necessary to in-

crease trust in models. We address explainability and interpretability by generating a

coarse localisation map to highlight discriminative regions of an image. We generate

the localisation map by using a post-attention technique called gradient-weighted class

activation mapping (Grad-CAM) [Selvaraju et al., 2017].

In detail, Grad-CAM generates localisation maps by passing a linear combination of

neuron importance weights and feature map activations through a rectified linear unit
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(ReLU) [Nair and Hinton, 2010] function. ReLU is used in this case to discard any nega-

tive influence on the class of interest. The significance of the neuron importance weight

is to assign importance values to the neurons in the layer of interest. It is computed by

spatially global average pooling gradients of the activations in the layer of interest with

respect to the output score of a class. For a class c, we denote the score of the class as

yc
. Also, for a feature map k, we denote feature map activations as Ak ∈ Ru×v

where

u is the width and v is the height of the layer of interest. Ak
is indexed by i, j, hence

Ak
ij represents the location of activations at (i, j). We express the neuron importance

weight αc
k as

αc
k =

global average pooling︷ ︸︸ ︷
1
Z ∑

i
∑

j

∂yc

∂Ak
ij︸︷︷︸

gradients via backprop

, (2.4.5)

where Z represents the number of pixels of the feature map activations. Next, we com-

pute the Grad-CAM, Lc
Grad-CAM

∈ Ru×v
, as

Lc
Grad-CAM

= ReLU

(
∑
k

αc
k Ak

)
︸ ︷︷ ︸
linear combination

. (2.4.6)

2.4.4 Components of the Models

A deep learning model has several components that work together to achieve desirable

results. They range from the activation function, the kind of weight initialisation used,

the type of optimisation algorithm for learning, the objective function, the set of hy-

perparameters and the evaluation metric used to assess the performance of the model.

The choice of these components affects the performance of a model. In this section, we

introduce the various components of deep learning models used in our experiments.

Data splitting. Data splitting is the process of partitioning available data into train-

ing, validation and testing sets. These are subsets of the full data created for developing

a model, fine-tuning hyperparameters of the model and evaluating the performance of
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a trained model. The training set is used to train the model and it usually contains most

of the data. The validation set is used to validate and fine-tune hyperparameters for

the model to obtain better results. The testing set is only used to test a trained and

validated model. These subsets contain unique data points and they do not overlap. A

typical split of the available data might be 70% for training, 15% for validation, and

15% for testing.

Batch size and epochs. The batch size is the number of instances that are fed to the

model at one time before updating a model’s parameters. Ideally, a model should be

able to train on all the data at once. However, this can be impossible due to insufficient

processing memory. Rather, batches of the dataset are created and fed to the model one

at a time. For example, one can create 100 batches (each having a batch size of 50) from

a dataset consisting of 5,000 examples. An epoch is when all 100 batches have passed

through the model for training.

Dropout. As the name suggests, dropout randomly drops a set of units in a layer with

a given probability (see Figure 2.8). The dropped set of units is set to zero, consequently

nullifying their contribution to the next layer. For example, in a given layer with 40

units, if the dropout probability is set to 0.5, then 20 randomly chosen units in the

layer will be set to zero and the remaining 20 units will proceed to the subsequent

layer. By applying dropout to a layer, the units of the layer are forced to avoid sensitive

co-dependencies on each other. Hence, dropout can help to reduce overfitting problems

in deep learning [Srivastava et al., 2014].

ReLU. In deep learning, activation functions are relevant to introduce nonlinearity

to the model. In this study, we use the rectified linear unit (ReLU) as the activation

function [Nair and Hinton, 2010]. There are no saturation which could lead to van-

ishing gradients (a situation where the gradients of a deep learning model approach

values close to zero, making parameter updates insignificant) in ReLU except if its in-
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(a) (b)

Figure 2.8: Showing an example of a neural network without dropout in Figure 2.8a and a

neural network with dropout in the hidden layer in Figure 2.8b. Some neurons (those with

crosses) in Figure 2.8b do not have connections to other neurons, indicating that they have

been dropped in the current training epoch.

put is negative. It is mostly used because it preserves many properties of a model and

generalises well [Goodfellow et al., 2016]. ReLU is defined as

f (x) = max(0, x). (2.4.7)

Learning rate. The learning rate is used to regulate the speed at which an optimiser

updates the weights of a model. An ideal learning rate should be reasonably low for the

model to converge but must be high enough to reduce training time. The choice of the

learning rate is important because it can hamper the output of a model. A very small

learning rate means the weights are updated by very small amounts, leading to longer

training times. On the other hand, a larger learning rate makes a model train faster but

could lead to divergence in the weight updates.

Weight initialisation. In deep learning, weights are initialised at the beginning of

training and are updated during the training process. Hence, an improper weight ini-

tialisation can affect the performance of a model. Training may struggle to converge

due to poorweight initialisation [He et al., 2015]. This is because the variance of weights

and gradients may explode (tend to infinity) or vanish (become very small) [Glorot and

Stellenbosch University https://scholar.sun.ac.za



Chapter 2. DR Classification and Lesion Localisation with CNNs 32

Bengio, 2010]. To resolve this problem, different distributions have been used to ini-

tialise weights, including the truncated normal distribution, Xavier normal distribution

and the Kaiming He normal distribution. The truncated normal distribution and the

Kaiming He normal distribution are presented below.

The truncated normal distribution is simply a normal distribution with mean µ and

variance σ2
but with a truncated range (a, b). The range used for the experiments in

this work is a = −2 and b = 2.

The Kaiming He normal distribution is a normal distribution with mean 0 and vari-

ance
2
nl , where nl

is the number of neurons in layer l.

Cross-entropy loss function. In this study, we use the cross-entropy loss function

to measure the deviation of the model’s prediction from the true values. For k classes

in a dataset, the cross-entropy loss function for a single example is defined as

L = −
k

∑
i=1

yi log(ŷi), (2.4.8)

where yi represents the true probability of class i and ŷi represents the predicted value.

Adam optimiser. Adam is short for adaptive moments. Its main feature is the learn-

ing rate adaptation throughout training. Adam incorporates momentum (a technique

designed to speed up learning) as an estimate of the first-order moment of the gradi-

ents g. Next, it introduces bias corrections to both the first- and second-order moments.

Finally, it updates the parameters by using the scaled gradients from the moment es-

timates [Goodfellow et al., 2016]. Adam is efficient and robust, and works well for

tasks with large datasets and many parameters [Kingma and Ba, 2014]. The algorithm

requires a learning rate denoted by δ, two exponential decay rates for the moment esti-

mates denoted by β1, β2 ∈ [0, 1) (suggested default: 0.9 and 0.999 respectively), initial

parameters denoted by θ and a small constant denoted by ϵ for numerical stabilisa-

tion (suggested default: 10−8
). The Adam algorithm is summarised as pseudocode in

Algorithm 1.

Stellenbosch University https://scholar.sun.ac.za



33 2.4. Methodology

Algorithm 1: The Adam optimiser [Kingma and Ba, 2014].

Require: Learning rate δ
Require: Exponential decay rates for moment estimates, β1 and β2 in [0, 1)
Require: Small constant ϵ used for numerical stabilisation

Require: Initial parameter θ
Initialise 1st and 2nd moment variables s = 0, r = 0
Initialise time step t = 0
while stopping criterion not met do
Sample a mini-batch of m examples from the training set {x(1), . . . , x(m)} with
corresponding targets y(i)

.

Compute first-order moment of the gradient: g ← 1
m∇θ ∑i L( f (x(i); θ), y(i)).

t← t + 1.
Update biased first moment estimate: s← β1s + (1− β1)g.
Update biased second moment estimate: r ← β2r + (1− β2)g ⊙ g .

Correct bias in first moment: ŝ← s
1−βt

1
.

Correct bias in second moment: r̂ ← r
1−βt

2
.

Compute update: ∆θ = −δ ŝ√
r̂+ϵ

. {operations applied element-wise}

Apply update: θ← θ+ ∆θ.
end while
return θ

Evaluation metric. The receiver operating characteristic (ROC) curve has become

a de facto technique for evaluating the performance of medical models [Hajian-Tilaki,

2013]. It was originally designed to study and analyse the characteristics of radar sig-

nals. Since then, ROChas become a relevant tool to evaluate the performance ofmedical

diagnostic models, and has been used extensively in epidemiological studies [Calì and

Longobardi, 2015; Hajian-Tilaki, 2013].

A ROC is capable of measuring the degree to which a model separates two classes.

It is presented as a plot of the true positive rate (TPR) versus the false positive rate

(FPR) at different decision thresholds. TPR is defined as the probability that a positive

example is correctly classified as positive, for example, the percentage of DR retinal

fundus images correctly classified as diseased images. It is mathematically expressed

as

TPR = Sensitivity =
TP

TP+ FN

, (2.4.9)
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where TP and FN are the numbers of true positives and false negatives respectively. FPR

is defined as the probability that a negative example is incorrectly classified as positive,

for example, the percentage of healthy retinal fundus images that are incorrectly clas-

sified as diseased images. It is mathematically expressed as

FPR = 1− Specificity =
FP

FP+ TN

, (2.4.10)

where FP and TN are the numbers of false positives and true negatives respectively. The

decision threshold helps map the probability of outputs to a label, and a goal of using

the ROC curve is to find the optimal decision threshold that increases the true positives

while reducing the false positives [Zou et al., 2007]. A model produces varied outputs

with different decision thresholds [Hajian-Tilaki, 2013]. For instance, a small decision

threshold classifies most examples as positive, hence, increasing TPR and FPR. Thus,

TPR and FPR are both inversely proportional to the decision threshold (see Figure 2.9).

The ROC curve provides a visual overview of the performance of the model at dif-

ferent decision thresholds [Calì and Longobardi, 2015]. It is defined as

ROC(·) = {(FPR(c),TPR(c)), for c ∈ R}, (2.4.11)

where c is the decision threshold. Since FPR(c) and TPR(c) range between 0 and 1, we

can rewrite Equation 2.4.11 as

ROC(·) = {(t,ROC(t)), for t ∈ (0, 1)}. (2.4.12)

The area under the ROC curve (AUC) is a numerical index used to summarise the be-

haviour of the ROC curve [Calì and Longobardi, 2015]. It is the area underneath the

entire ROC curve and it ranges between 0 and 1. Thus, AUC is defined as

AUC =
∫ 1

0
ROC(t) dt. (2.4.13)

The higher an AUC score, the better the model is at predicting positive classes. An

AUC score of 1 indicates a perfect classifier while an AUC score of 0.5 means the model
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makes random guesses. Also, an AUC score of 0 means the classifier always predicts a

negative example as positive. In Figure 2.9, we see an example of a model obtaining an

AUC score of 92%.

(a) (b)

Figure 2.9: In this example, we used a logistic regression model to find the optimal decision

threshold between a positive (orange) and negative (blue) data distribution. The vertical lines

in Figure 2.9a are different decision thresholds. The colours of these vertical lines match the

corresponding points on the ROC curve in Figure 2.9b. We see that as the decision threshold

increases, the TPR and the FPR decrease.

2.5 Experiments

In this section, we present details of the experiments carried out. First, we give de-

tails of the dataset used for the experiments, and the pre-processing and augmentation

techniques employed, in Sections 2.5.1 and 2.5.2 respectively. Then, we present the

workflow of the experiments for classification and localisation under the model and im-

plementation section (Section 2.5.3), where we also present details of the pre-training

and random initialisation techniques used.
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2.5.1 Data

We use a publicly available dataset from the Asian Pacific Tele-Ophthalmology Society

(APTOS)
1
to classify the severity of diabetic retinopathy (DR). In total, there are 3,662

retinal fundus images in the dataset. The distribution of different levels of severity is

highly imbalanced (see Figure 2.10). The dominating class, which is the normal class

(that is, retinal fundus images with no DR), represents almost half the dataset (49.29%).

The imbalance problem exists also among the remaining classes. The class with the

smallest number of images is the severe class (5.27%). We resolve the class imbalance

problem by generating weights for the classes and incorporate these weights into the

loss function. We describe this solution in more detail in later sections.

Figure 2.10: Showing the distribution of the various classes in the APTOS dataset.

2.5.2 Pre-processing and Augmentation

During pre-processing, we perform a circle crop and remove black borders in retinal

fundus images. Next, we resize all images to 224× 224, except when they are used

with Inception-V3 which requires an input size of 299× 299. Next, we apply CLAHE

to all the images. For CLAHE, we estimate optimal hyperparameters for each image.

1
www.asiateleophth.org
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As discussed previously, we desire a combination of hyperparameters with the highest

entropy of an image. The clip limit we consider for the study ranges from 2 to 8, and

the grid sizes from 2× 2 to 32× 32.

We show an example and illustrate the impact of CLAHE in Figure 2.11. In this

example, we randomly select a retinal fundus image (see Figure 2.11a), which has an

entropy of 6.21 and show its corresponding histogram in Figure 2.11b. The histogram

peaks at certain colour intensities with a steep slope. This suggests that the image

has contrast issues. Next, we compute the entropies for the various hyperparameters

and plot the obtained entropies against the clip limit in Figure 2.11c. We observe in this

example that a grid size of 2× 2 has the highest entropy. Finally, we fit a nonlinear func-

tion to find the maximum curvature on the highest entropy curve (see Equation 2.4.4).

In this example, a grid size of 2× 2 and a clip limit of 3.1 produce the highest entropy

of 6.78 (Figure 2.11e). We notice that there are fewer significant peaks in the colour

intensity histogram after applying CLAHE, and it is now more uniform (Figure 2.11f).

Moreover, we see that the image quality in Figure 2.11e has significantly improved. In

addition, the optic disk, the macula region and the blood vessels are more visible than

in the original image.

For augmentation, we randomly flip the images horizontally and vertically. Also, we

randomly rotate the images by 30◦, and randomly jitter the brightness, hue, saturation

and contrast. These augmentation techniques are applied only to the training dataset.

Lastly, we normalise the pixel values of images in the training, validation and testing

sets to be between −1 and 1.

2.5.3 Models and Implementation

In this section, we compare the performance of four state-of-the-art CNN models in

predicting the severity of diabetic retinopathy. The models include ResNet-50, VGG-16,

Inception-V3, and InceptionResNet-V2. We compare the performance of these models

when trained from a random initialisation of weights (see Section 2.5.3.2 for details)
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: The impact of CLAHE on an example of a retinal fundus image (Figure 2.11a) with

contrast issues (Figure 2.11b). In this example, we compute entropies for various hyperparam-

eters (Figure 2.11c) and find that 2× 2 grid size and a clip limit of 3.1 results in the highest

entropy (6.78) (Figure 2.11d), which significantly improves image quality (Figure 2.11e) and

enhances uniform distribution in the histogram (Figure 2.11f). The reader is referred to the text

in Section 2.5.2 for details.
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and when transfer learning is applied (see Section 2.5.3.1 for details). For each model,

we replace the final layer with a global average pooling layer, a dropout layer with 50%

dropout probability and a linear layer with five units (each representing a class in the

dataset) for classification. Finally, we also apply Grad-CAM to the extracted feature

maps (see Figure 2.12).

Figure 2.12: The general layout of our model for DR classification and lesion localisation. First,

retinal fundus images are fed to pre-processing and augmentation techniques. Next, the images

are fed to a CNN backbone for feature extraction. The CNN backbones considered in this study

include ResNet-50, Inception-V3, VGG-16, and InceptionResNet-V2. Next, we classify the sever-

ity of DR using the extracted features. The output layer in this diagram has five units because

there are five classes in the dataset. Finally, we use the extracted features also to generate coarse

localisation maps by Grad-CAM.

Regarding implementation, we feed CNN models with pre-processed and augmented

retinal fundus images to obtain feature maps. We then feed the feature maps to subse-

quent layers for classification. During the localisation process, we use the feature maps

to generate neuron importance weights, multiply them with the feature maps and pass

the results through a ReLU function to obtain localised outputs. Finally, we overlay

the output of the Grad-CAM on the retinal fundus image to visualise discriminative

regions.
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2.5.3.1 Pre-training and Fine-tuning

We split the dataset into training, validation and testing sets. Specifically, we use 70%

of the dataset to train the model, and 15% for validation. After training, we test the

model using the remaining 15% of the data. We train each model with a batch size of

32 images. We use the Adam optimiser [Kingma and Ba, 2014] to optimise each model

with a learning rate of 10−4
and categorical cross-entropy as the loss function. We

initialise the models with their corresponding pre-trained weights from the ImageNet

dataset. Finally, we fine-tune each model on the APTOS dataset for 50 epochs. We save

the model with the best validation AUC (refer to Section 2.4.4).

2.5.3.2 Random Initialisation

For random initialisation, we maintain the same split partition of the data, batch size,

learning rate, optimiser and the loss function as above. We initialise ResNet-50 and

VGG-16 with Kaiming He normal initialisation [He et al., 2015] and truncated normal

initialisation [Burkardt, 2014] for Inception-V3 and InceptionRes- Net-V2. Even though

we initially maintain the learning rate, we halve it after training the model for 2,000

iterations (24 epochs). In total, we train each model for 100 epochs. Similar to the

above, we save the model with the best validation AUC metric.

2.6 Results

In this section, we present the results obtained before and after applying transfer learn-

ing to four different models trained on the APTOS dataset (Section 2.6.1). We aim to

identify which model best predicts DR severity from retinal fundus images. We also

report on the impact of CLAHE and show some results of Grad-CAM (Sections 2.6.2

and 2.6.3). We evaluate the models using the testing dataset and employ AUC as a

performance metric.

Stellenbosch University https://scholar.sun.ac.za



41 2.6. Results

2.6.1 Impact of Transfer Learning

We observe in Table 2.1 that the four models all perform similarly. For all the models,

we note that models initialised with pre-trained weights outperform their randomly

initialised counterparts. Interestingly, we performed only 50 epochs on the pre-trained

models, which is half the number of epochs (100) used when training models initialised

with random weights. This suggests that transfer learning requires less time to attain

better results.

Table 2.1: Evaluating the performance of the models using AUC.

Model

Training Validation Testing

Random

Init.

Pre-

trained

Random

Init.

Pre-

trained

Random

Init.

Pre-

trained

ResNet-50 95.09 97.48 94.40 96.87 94.96 96.84
Inception-V3 92.92 98.10 93.32 96.91 93.89 96.19
VGG-16 96.99 97.65 94.50 96.99 95.70 96.40
InceptionResNet-V2 98.22 98.27 95.46 96.71 95.54 96.20

Bold digits in each partition highlight the best performing technique.

2.6.2 Impact of CLAHE

The dataset used in Section 2.6.1 was only resized and augmented. In this section,

we additionally pre-process the images with CLAHE, before training or fine-tuning

the models. We observe in Table 2.2 that there is further improved performance after

applying CLAHE. We see that all the models achieve an increase in their AUC scores,

except for the validation AUC in the InceptionResNet-V2 model. Moreover, we observe

that the ResNet-50 model outperforms the rest of the models by attaining the best AUC

scores in both the validation and testing sets.

It is important to note that in this experiment we fine-tune the models for only 20

epochs, which is fewer than half the number of epochs in the previous experiments

when we did not apply CLAHE. This reveals that applying CLAHE further reduces the
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time necessary to train a model, and improves performance. This may be explained

by the fact that the application of CLAHE results in high entropy values, consequently

reducing the effort required to find important areas of an image.

Table 2.2: Evaluating performance of the models after applying CLAHE.

Model Training Validation Testing

ResNet-50 98.44 97.15 97.40
Inception-V3 98.27 97.01 96.84
VGG-16 97.50 96.91 96.76
InceptionResNet-V2 98.89 96.54 96.80

Highlighted row represents the best performing model.

2.6.3 Visualising Localisation Maps

In this section, we visualise coarse localisation maps generated by Grad-CAM for the

various classes. After training, we use the feature maps from the trained model to

localise discriminative regions in the images. Specifically, we use feature maps from

ResNet-50 fine-tuned on the APTOS dataset, since it performs best among all models

evaluated (see Table 2.2). Figure 2.13 shows Grad-CAM applied on randomly sampled

retinal fundus images. In these examples, we observe that Grad-CAM is able to identify

important regions in the images. For the diseased classes, we observe that the model

highlights the lesions in the retina images. Since a normal class (non-diseased class)

has no lesions, the model tends to highlight regions such as the optic disc and the blood

vessels.

2.7 Conclusion

In summary, we presented a process to classify the DR severity of, and localise lesions

in retinal fundus images. First, we evaluated the performance of different models in pre-

dicting DR severity. We noted similar results between the models trained from scratch,
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Figure 2.13: Showing the results of localisation maps generated by Grad-CAM on randomly

selected retinal fundus images using Grad-CAM. Each column represents a class in the data:

normal, mild, moderate, severe and proliferative diabetic retinopathy.

and the pre-trained models. However, the results revealed remarkable performance for

models initialised with pre-trained weights. Besides, we trained the models for only 50

epochs when we applied transfer learning, which is half the number of epochs when

we trained from scratch. Initially, we used only the augmented datasets for the experi-
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ments.

Next, we employed CLAHE as a pre-processing technique to resolve contrast is-

sues in retinal fundus images, and later augmented them for training. After applying

CLAHE, we observed improved performance in the models. The number of epochs fur-

ther reduced to 20, showing the benefits of CLAHE for this task. We noted this as a

positive direction towards developing a fast and robust computer aided diagnostic tool.

Furthermore, the ResNet-50 model attained the best performance among themodels

tested, with an AUC score of 97.15% and 97.40% on the validation and testing sets

respectively. We argue that ResNet-50 outperforms the other models because of its

skip connection feature which increases the convergence speed and better learns lower

semantic information [Bello et al., 2021]. Hence, we used feature maps from the ResNet-

50 model to generate coarse localisation maps, in order to visually explain the decisions

made by the model. We noticed that the localisation maps generated were mainly over

lesions present in the retinal fundus images.
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Chapter 3

Prediction of Cardiovascular Risk

Factors

3.1 Overview

This chapter aims to create a multi-task learning model to predict risk factors for car-

diovascular disease using retinal fundus images. Using the ResNet-50 model as a back-

bone, we compare the performance of two kinds of multi-task learning (MTL) models.

The dataset we use in this chapter contains several attributes, such as the view of the

retina, the patient’s ethnicity, the camera used to capture the retina, and many oth-

ers. As we observe towards the end of the chapter, the models perform better when

we use retinal fundus images that contain both the optic disc and the macula region.

Also, we find significant evidence of discriminating regions in the retina that separate

males and females. In the rest of this chapter, we first present background for the study

in Section 3.2. Next, we present related work and our methodology in Section 3.3 and

Section 3.4, respectively. This is followed by Section 3.5, which details the experiments

carried out. We present the results obtained in Section 3.6 and conclude in Section 3.7.

45
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3.2 Background

Cardiovascular diseases (CVD) are a group of disorders involving the heart and blood

circulation system, such as hypertension, stroke, coronary heart disease, and peripheral

vascular disease [Salkind, 2005]. According to the World Health Organisation, they are

the leading causes of death globally and have contributed to an estimated 17.9 million

deaths in 2019 [WHO, 2021]. CVD continues to be on the rise worldwide, especially in

low-income countries. Thus, they are considered a global burden of disease [Roth et al.,

2020].

There are factors including age, sex, blood pressure, smoking status, and diabetes

that significantly contribute to the development of CVD [Poplin et al., 2018]. These

factors are known as cardiovascular risk factors (CVFs). There are several algorithms

available to assess the risk of a CVD event occurring in an individual [D’Agostino Sr

et al., 2008]. An example is the well-known Framingham risk score, which incorporates

several CVFs into a Cox proportional hazard regression model to estimate the 10-year

cardiovascular risk of an individual [D’Agostino Sr et al., 2008; Jahangiry et al., 2017].

StudyingCVFs improves our understanding of the early development of CVD.More-

over, different diseases can be observed on the retina as they follow a unique pathophys-

iological process. By monitoring and observing the retina, scientists are able to identify

early signs of different diseases, including CVD [Nguyen and Wong, 2009]. This has

consequently created new avenues to explore and understand the pathophysiology of

CVD [MacGillivray et al., 2014].

Major advancements in retinal imaging technology have made it possible for scien-

tists tomonitor and observe the retina. Retinal imaging technology uses special cameras

or sensors to capture the retina in a multi-spectral approach or at a high spatial reso-

lution. For example, the cameras used for this study capture the retinal fundus images

in a 2D high spatial resolution. They include Canon, Centrevue, Crystalvue, Optovue,

Topcon, and Zeiss Visucam fundus cameras. These advancements have resulted in pre-
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cise in vivo observation of the retina and have made it possible to predict CVFs using

retinal images [Nguyen and Wong, 2009].

Even though imaging technologies have advanced, retinal fundus image analysis

require specialists [Date et al., 2019]. Prediction of risk factors such as age and sex may

not be clinically relevant but may provide new retinal insights that are not apparent to

specialists [Korot et al., 2021]. In recent times, several techniques have been introduced

to automatically analyse retinal fundus images. Among them are deep learning models,

which aremainly applied to tasks such as classification [Mensah et al., 2021; Poplin et al.,

2018], vascular segmentation [Jin et al., 2019; Oliveira et al., 2018; Zhang et al., 2019],

recognition [Li et al., 2019; Mo et al., 2018], and so on.

In this study, we predict CVFs from retinal fundus images using a multi-task deep

learning model. Specifically, we use only age, sex, and hypertension as CVFs for the

study because of limited information available in the data for the other factors. In detail,

we use retinal fundus images for the study because the retina is a unique part of the

body that allows for non-invasive observation of the retinal vasculature relating to the

development of CVD [Liew and Wang, 2011; MacGillivray et al., 2014; Nguyen and

Wong, 2009; Zhang et al., 2020]. In summary, we build a multi-task deep learning model

to predict CVFs, and we perform an in-depth analysis of attributes in the data.

3.3 Related Work

In this section, we present related work on risk factor classification and multi-task

learning models employed for medical tasks.

3.3.1 Risk Classification

Several risk factor predictionmodels, such as the Framingham risk score [D’Agostino Sr

et al., 2008], the Reynolds risk score [Ridker et al., 2007, 2008], and the SCORE (system-

atic coronary risk evaluation) [Mach et al., 2019], were used to calculate the risk of CVD
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occurring. These models mostly use regression models and several CVFs as variables

to compute the risks [Goldstein et al., 2017]. Even though these models have become

standard for predicting cardiovascular risks, the advent of machine learning has opened

new avenues of research. For example, Kakadiaris et al. [2018] developed a risk factor

calculator based on support vector machines and 13-year follow-up data. Goldstein

et al. [2017] used different classification tree algorithms, nearest neighbour algorithms,

and neural networks to calculate the cardiovascular risk of an individual. Weng et al.

[2017] compared the performance of cardiovascular risk prediction using four machine

learning algorithms with an established algorithm, and observed better results.

Inspired by the results obtained from machine learning, several studies have de-

veloped deep learning models to predict CVFs. The most notable study done on pre-

dicting CVFs is by Poplin et al. [2018], who based their model on the Inception-V3 to

predict CVFs from retinal fundus images. However, it is not mentioned whether each

CVF was independently predicted or whether they were simultaneously predicted. Al-

though several studies have predicted single CVFs, none provide a multi-task learning

approach [Betzler et al., 2021; Dieck et al., 2020; Korot et al., 2021; Nusinovici et al.,

2022; Yamashita et al., 2020; Zhang et al., 2020]. In our study, we develop a multi-task

learning model based on ResNet-50 to predict various CVFs simultaneously.

3.3.2 Multi-Task Learning

Crawshaw [2020] compared multi-task learning (MTL) to the way humans learn and

perform multiple tasks. MTL has been applied to computer vision [Thung and Wee,

2018; Vu et al., 2019], natural language processing [Chen et al., 2021; Collobert and

Weston, 2008], and speech recognition [Krishna et al., 2018; Pironkov et al., 2016; Shi-

nohara, 2016]. For example, Vu et al. [2019] used MTL to predict age and gender using

a dataset that contained human faces. Lee and Liu [2021] developed an MTL model to

improve path prediction in autonomous driving.

In the medical domain, MTL has been employed on medical images [Zhao et al.,
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2022]. Moeskops et al. [2016] employed MTL to segment three datasets, namely brain

magnetic resonance imaging (MRI), breast MRI, and cardiac computed tomography an-

giography. Xie et al. [2022] studied weakly supervised medical image segmentation

based on MTL. Zhou et al. [2021] used MTL to segment and classify tumours for 3D au-

tomated breast ultrasound images. Regarding retinal fundus images, Pascal et al. [2022]

used MTL for glaucoma detection, while Ayhan et al. [2023] developed an MTL model

for activity detection in neovascular age-related macular degeneration. Again, in our

study, we employ MTL based on ResNet-50 to predict CVFs.

3.4 Methodology

In this section, we present details of our multi-task learning model and the two ap-

proaches it uses to share representations (Section 3.4.1). We then present the evaluation

methods used for this study (Section 3.4.2).

3.4.1 Multi-Task Learning Models

Multi-task learning (MTL) is a techniquewhere several tasks are simultaneously learned

using a shared model [Crawshaw, 2020]. The aim of an MTL model is to encourage

domain-specific representations between related tasks, thereby enforcing generalisa-

tion, reducing the risk of overfitting, and improving performance [Crawshaw, 2020;

Dobrescu et al., 2020; Ruder, 2017a; Zhang and Yang, 2018] (see Figure 3.1). MTL is

considered a special case of transfer learning because there is no distinction between

tasks [Dobrescu et al., 2020].

An MTL model learns shared, common space parameters or representations of re-

lated tasks by using a hard or soft approach. The most used and well-known among the

two is hard-parameter sharing (HPS) [Ruder, 2017a]. HPS shares parameters between

all tasks such that each parameter is trained to jointly minimise multiple loss func-

tions for the corresponding tasks [Crawshaw, 2020; Ruder, 2017a] (see Figure 3.2a).
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Figure 3.1: The pipeline of the proposed MTL model. Our model takes pre-processed retinal

fundus images as input and returns predictions of a patient’s age, classification of a patient’s

sex and their hypertension status.

Soft-parameter sharing (SPS) on the other hand has a separate model, with separate pa-

rameters, for each task [Crawshaw, 2020; Ruder, 2017a]. Thus, SPS successfully learns

representations by introducing a constraint that penalises the distance between the in-

dividual models [Ruder, 2017a] (see Figure 3.2b).

(a) (b) (c)

Figure 3.2: Depicting the various multi-task learning techniques considered in this study. A

hard-parameter sharing technique uses a single feature extractor for predictions (Figure 3.2a)

while a soft-parameter sharing technique uses independent feature extractors (Figure 3.2b). Fig-

ure 3.2c shows the custom block used in the models.

Consider a dataset with N retinal fundus images, and each with T risk factors (tasks).

Let us denote the dataset as D = {X ,Y}, where X = {Xi}N
i=1 with Xi ∈ Rd

, and
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Y =
{
{yj

i}
T
j=1

}N

i=1
such that yj

i ∈ R if task j is a regression task and yj
i ∈ {0, 1} if

task j is a binary classification task. In MTL, we seek to minimise the error function

argmin
{W j}T

j=1

T

∑
j=1

N

∑
i=1
Lj(y

j
i ,F (Xi, W j)), (3.4.1)

where F (·, ·) is the model with input Xi and weight matrix W j
, Lj(·, ·) is the loss

function for task j which we configure as the mean squared error (MSE) for regres-

sion tasks (age) and cross entropy (see Equation 2.4.8) for classification tasks (sex and

hypertension). The MSE is defined as

LMSE =
1
N

N

∑
i=1

(yi − ŷi)
2, (3.4.2)

where N represents the total number of instances, yi denotes the ground truth val-

ues, and ŷi the predicted values. For T = 1, MTL is reduced to single task learning.

Regarding SPS in a two-task setting with task A and B, we seek to minimise the loss

L
total

= Lmain + λ ∑
L

∥∥W(A) −W(B)∥∥2
F, (3.4.3)

whereL
total

andLmain are the overall loss and the sum of losses for all the tasks, respec-

tively. The second term in Equation 3.4.3 represents the constraint used to penalise the

distance between the parameters of the individual models. The factor λ > 0 in the sec-

ond term is a hyperparameter controlling the relative importance of the second term,

and L represents the corresponding layers for the individual models. W(A)
and W(B)

represent the individual parameters for the corresponding tasks, and ∥·∥2
F represents

the squared Frobenius norm [Duong et al., 2015].

3.4.2 Evaluation Metrics

The metric used to measure the performance of our models is the accuracy evaluation

metric. In particular, this metric is used to evaluate the classification components (that
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is, sex and hypertension) of the MTL models. Later, we use precision, recall and the F1-

score to evaluate the performance of other attributes of the data on sex classification.

We present the definitions for the various evaluation metrics below.

Accuracy. Accuracy measures the percentage of the number of correct predictions.

It is defined as

Accuracy =
correct classifications

all classifications

=
TP+ TN

TP+ TN+ FP+ FN

. (3.4.4)

Precision. Precision measures the proportion of positive classifications that are ac-

tually positives. It is defined as

Precision =
TP

TP+ FP

. (3.4.5)

Recall. Recall measures the proportion of actual positives that were correctly classi-

fied:

Recall =
TP

TP+ FN

. (3.4.6)

F1-Score. The F1-score computes an evaluation score from the harmonic mean of

precision and recall metrics:

F1-Score = 2 · precision · recall
precision+ recall

. (3.4.7)

3.5 Experiments

In this section, we present details of the dataset used for the study in Section 3.5.1. Next,

we present the pre-processing and augmentation techniques used in Section 3.5.2. Fi-

nally, we present the details of the multi-task learning models and how they are imple-

mented in Section 3.5.3.
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3.5.1 Data

In this study, we use the Eye PictureArchive Communication System (EyePACS)
2
dataset

which contains eye-related patient metadata and retinal fundus images. The metadata

includes patients’ hypertension status, their ethnicity, and the kind of camera used to

capture the retinal fundus image. In total, the EyePACS dataset contains 476,545 im-

ages obtained from 42,296 patients. Some information on the age, sex and hypertension

status of patients is missing. In detail, there are 1,591 missing entries for patients’ sex,

54 for their age and 18,379 for their hypertension status. 41.63% of the 40,705 patients

are males and 58.37% are females. The average age is 57.51 years with a standard devi-

ation of 11.35. Patients are labelled either as having controlled hypertension or as having

no hypertension. The controlled hypertension group dominates the hypertension status

of patients with a percentage of 62.40% compared to 37.60% for the no hypertension

class. Regarding ethnicity, a little over half the number of patients are Latin American.

The remaining ethnic groups (Asians, Caucasians, Indian subcontinent, Multi-racial

and Native Americans) make up just under half the number of patients (see Table 3.1).

There are at least six retinal fundus images for each patient, captured between the

years 2013 and 2021. Three images are captured for the left eye, and three for the right,

and each is taken from a particular field of view of the retina. The first field of view,

named Field 1, shows both the optic disc and macula region at the centre of a retinal

fundus image (Figure 3.3a). The second, named Field 2, shows only the optic disc at the

centre of a retinal fundus image (Figure 3.3b). The third field of view, named Field 3,

shows only the macula region at the centre of a retinal fundus image (Figure 3.3c). The

data is made up of 142,856 Field 1, 145,470 Field 2 and 188,219 Field 3 images. These

sum up to 476,545 retinal fundus images in total (as indicated in Table 3.1).

There are two types of fundus cameras used to capture the images in the EyePACS

dataset, namely desktop fundus cameras and handheld fundus cameras. Desktop fun-

dus cameras are traditional desktop-mounted retinal fundus cameras. They produce

2
www.eyepacs.com
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Table 3.1: Descriptive statistics for the data used in the study.

Description Value

Number of patients 42,296
Number of images 476,545
Age in years: mean (SD) 57.51 (11.35)
Sex

Male 16,945
Female 23,760

Hypertension

yes 12,097
no 6,840

Ethnicity

African Descent 2,439
Asian 1,754
Caucasian 3,524
Indian subcontinent 1,518
Latin American 21,529
Multi-racial 266
Native American 274

The number of patients in the individual tasks (risk factors)

do not add up to the total number of patients due to missing

information.

(a) (b) (c)

Figure 3.3: Showing examples of the three fields of view from one side of the eye of the same

patient. Field 1 (Figure 3.3a) shows both the optic disc and macula region, Field 2 (Figure 3.3b)

shows only the optic disc, and Field 3 (Figure 3.3c) shows only the macula region.

high-quality images but are expensive, bulky and require a specialist to operate [Cha-

lam et al., 2022; Panwar et al., 2016; Rajalakshmi et al., 2021]. Handheld fundus cameras,
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as the name suggests, are handheld, portable, lightweight, inexpensive and require min-

imal training to operate [Panwar et al., 2016]. More recently, handheld fundus cameras

have improved in their image quality [Chalam et al., 2022]. All the fundus cameras

reported in this study are non-mydriatic and have a 45◦ field of view, except for Volk

Pictor Plus which has a 40◦ field of view. Due to differences in operating fundus cam-

eras, the camera information is categorised into several quality levels. The quality levels

of the retinal fundus images used for the study include Adequate, Good, and Excellent.

We show the distribution for the camera quality levels in Table 3.2.

Table 3.2: Presenting image quality from the various cameras used in EyePACS.

Camera Type Adeqate Good Excellent Total (%)

Canon CR1 D 14,244 14,946 10,738 39,928 (8.63%)
Canon CR2 D 23,834 25,800 15,102 64,736 (13.99%)
Canon DGi D 15,853 17,612 7,638 41,103 (8.88%)
Centrevue DRS D 8,652 4,463 1,090 14,205 (3.07%)
Crystalvue NFC 700 D 3,859 2,574 684 7,117 (1.54%)
Optovue Vivicon D 379 827 655 1,861 (0.40%)
Optovue iCam D 65,412 67,974 21,465 154,851 (33.47%)
Topcon NW 200 D 1,999 2,184 1,630 5,813 (1.26%)
Topcon NW 400 D 54,687 38,769 18,428 111,884 (24.18%)
Topcon NW 700 D 4,098 3,147 384 7,629 (1.65%)
Volk Pictor Plus H 9,832 80 0 9,912 (2.14%)
Zeiss Visucam D 2,987 666 16 3,669 (0.79%)

For the camera type, D represents Desktop and H represents Handheld.

3.5.2 Pre-processing and Augmentation

Again, we employ similar pre-processing and augmentation techniques as in the previ-

ous chapter (see Section 2.5.2). Themain difference here is the image size. The EyePACS

retinal fundus images are roughly 3000× 3000 pixels [MacGillivray et al., 2014]. In our

experiments, we resize the images to 512× 512.
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3.5.3 Model and Implementation

Besides experimenting on the multi-task learning models, we also create single-task

learning models for individual tasks. This is done in order to compare the performance

of the single-task and multi-task learning models. We modify the ResNet-50 model by

replacing its final layer and the penultimate layer with a custom block of layers. In

detail, the custom block consists of an adaptive pooling layer and a linear layer with

512 units. We feed the output of the custom block to the task-specific output layers for

the various cardiovascular risk factors considered in this study.

We train the models using the Adam optimiser with a batch size of 32. We set the

learning rate to 10−4
and train each model for 50 epochs. We save the best models

depending on whether there is an improvement in either validation loss or validation

accuracy. That is, if the new validation accuracy of an epoch is the same as the best

validation accuracy, we save the one with the lowest validation loss.

3.6 Results

We simultaneously predict cardiovascular risk factors (CVFs) using a multi-task learn-

ing (MTL) model. In detail, we use ResNet-50 as a backbone to generate shared repre-

sentations for the prediction of the CVFs [Ayhan et al., 2023]. First, we explore single-

task models trained to predict CVFs independently. We start with Field 1 retinal fundus

images as they contain both the optic disc and the macula region, which are the most

central parts of the retina [Kolb, 2011], in Section 3.6.1. Later, we explore the perfor-

mance of the MTL model on Field 2 and Field 3 images in Section 3.6.2. Finally, we

present the performance of some attributes in the data in Section 3.6.3.

Stellenbosch University https://scholar.sun.ac.za



57 3.6. Results

3.6.1 Results for Field 1

In a supervised learning setting, amulti-task learningmodel requires the data to possess

information on all the various tasks involved. For example, if an instance has informa-

tion about sex and hypertension status but has missing information about age, then

the model will be unable to verify its prediction on age for that instance. Due to the

missing information mentioned in Section 3.5.1, we can only use 65,877 Field 1 retinal

fundus images for the multi-task learning experiments. For the single-task model, there

are 76,887 additional records for the age data, 72,023 for the sex data and 1,463 for the

hypertension data.

Table 3.3: Performance of single-task learning and multi-task learning for Field 1 images.

Model

Training Validation Testing

Age

(MSE)

Sex

(Acc. %)

Hyp.

(Acc. %)

Age

(MSE)

Sex

(Acc. %)

Hyp.

(Acc. %)

Age

(MSE)

Sex

(Acc. %)

Hyp.

(Acc. %)

STL 0.0016 89.38 77.22 0.0021 87.61 70.24 0.0022 87.30 68.73

MTL - HPS 0.0041 91.95 80.57 0.0054 87.35 70.39 0.0039 85.55 68.15

MTL - SPS 0.0029 91.52 73.50 0.0274 86.59 69.81 0.0286 85.37 68.21

We observe on-par performance between the models even though more retinal fundus

images are used to train the single-task models (Table 3.3). The multi-task learning

models require less data to achieve on-par results, thus confirming the benefits of using

a multi-task model [Zhang et al., 2020]. It is important to note that we scaled the age

target values by dividing them by 100, which resulted in small MSE values. We observe

that the hard-parameter sharing (HPS) model performs better than the soft-parameter

sharing (SPS) model. A possible explanation for this is that the number of parameters in

the SPS model exceeds that of the HPS by a factor of about 3, consequently reducing the

possibility of overfitting in the HPS model[Rosenfeld and Tsotsos, 2019; Zhang et al.,

2020]. Generally, the models achieve promising results for the age and sex tasks, with

a slight drop in performance for the hypertension task.

Stellenbosch University https://scholar.sun.ac.za



Chapter 3. Prediction of Cardiovascular Risk Factors 58

We visualise randomly selected retinal fundus images and their predicted CVFs (Fig-

ure 3.4). In these examples, we observe that the SPS model struggles to predict a pa-

tient’s age. This corresponds to the results obtained in Table 3.3; the SPS model gives a

significantly larger loss value compared to the other models.

Figure 3.4: Showing predictions of the MTL models for hard- and soft-parameter sharing on

randomly selected retinal fundus images. Hyp in the figure represents hypertension.

Next, we consider the gradient-weighted class activation map (Grad-CAM) to localise

regions of retinal fundus images, in order to provide a visual explanation for decisions

made by the best-performing multi-task model regarding sex. We observe that for male

predictions, the model localises the optic disc (see Figure 3.5a), while it localises ei-

ther the macula region (see Figure 3.5b) or both the optic disc and macula region (see

Figure 3.5c) for female predictions [Betzler et al., 2021; Dieck et al., 2020; Poplin et al.,

2018]. Also, we visualise the localisation of some incorrectly classified examples. The

image in Figure 3.5d is labelled as female but the model predicts it as male. We notice

that the model even localises the optic disc as done in Figure 3.5a. Similarly, the image

in Figure 3.5e is labelled as male but the model predicts female. Again, we notice that

the model localises the macula region, suggesting that the model classified the image

wrongfully. Finally, the image in Figure 3.5f is falsely classified as male and we observe

that the model localises both the optic disc and the macula region.
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(a) (b) (c)

(d) (e) (f)

Figure 3.5: Showing localised regions from Grad-CAM on sampled retinal fundus images, for

the task of sex prediction. The MTL model localises the optic disc for male predictions (Fig-

ure 3.5a) and localises either the macula region only or both the optic disc and the macula region

in the same image (Figures 3.5b and 3.5c). For incorrectly predicted retinal fundus images, the

model consistently localises the optic disc of an image originally labelled as female (Figure 3.5d).

Figures 3.5e and 3.5f are originally labelled as male but the model predicts them as female and

localises the macula region for the former, and both the optic disc and macula region for the

latter.

3.6.2 Results for Fields 2 and 3

We also investigate how the other fields of view, that is Field 2 and Field 3, perform for

the MTL-HPS model. We notice in Table 3.4 that the performances on these fields are

not on-par with the Field 1 results. However, the validation results for the age prediction

task and the testing results for the hypertension prediction task obtained for Field 2 are

better than those obtained for Field 1. Furthermore, the validation result obtained for

the age prediction task for Field 3 was superior to that obtained for Field 1.

We attribute the poor performance to the fact that Field 2 and Field 3 images contain
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Table 3.4: Performance of the MTL-HPS model for the Field 2 and Field 3 views.

View

Training Validation Testing

Age

(MSE)

Sex

(Acc. %)

Hyp.

(Acc. %)

Age

(MSE)

Sex

(Acc. %)

Hyp.

(Acc. %)

Age

(MSE)

Sex

(Acc. %)

Hyp.

(Acc. %)

Field 2 0.0045 89.76 74.20 0.0041 86.20 69.88 0.0042 81.75 68.41

Field 3 0.0046 84.25 75.17 0.0040 80.03 69.27 0.0056 73.95 59.64

at most one of the critical features needed for the correct prediction of CVFs, which are

the optic disc and macula region. For example, we see in Figure 3.5 that the model

focuses on either the optic disc or macula region, or both.

3.6.3 Results for Other Attributes

Image quality. We assess the performance of the image quality on the sex predic-

tion task. We do this assessment to check if the quality of the image influences the

performance of the model. We use the sex prediction task since it produced better per-

formance in the previous experiments. Although the retinal fundus images categorised

as excellent lead to the best accuracy, the differences between the performances were

small. This suggests that the quality of the images does not influence the performance

of the model (see Table 3.5).

Table 3.5: Test performance of the MTL-HPS model on sex classification, by image quality.

Quality Images Accuracy Precision Recall F1-score

Adequate 14,500 85.90 82.11 84.84 83.45
Good 13,078 88.61 85.93 86.61 86.27
Excellent 6,897 89.29 86.04 85.68 85.86

Ethnicity. We assess the performance of the MTL-HPS model in predicting CVFs for

the various ethnic groups. We notice that for the age prediction task, Asian, Indian sub-

continent and Latin American groups give better results than the remaining groups. We

observe a similar pattern for the sex prediction task, except that the African Descent
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group gives better results. Regarding the hypertension task, we notice decreased per-

formance in the Multi-racial and Native American groups. This can be due to the small

number of training samples for the two groups. Overall, we observe that the results

from the Caucasian, Multi-racial and Native American groups are not on-par with the

remaining ethnic groups (see Table 3.6).

Table 3.6: Performance of the MTL-HPS model, split according to ethnicity.

Ethnicity Age (MSE) Sex (Acc. %) Hyp (Acc. %)

African Descent 0.0044 85.77 73.36

Asian 0.0032 89.02 69.51

Caucasian 0.0057 79.40 63.52

Indian subcontinent 0.0030 84.18 69.49

Latin American 0.0039 87.36 68.58

Multi-racial 0.0032 78.05 58.54

Native American 0.0053 76.32 47.35

Camera. It is known that different fundus cameras operate under different settings

and environments, resulting in different distributions of the fundus images and model

performance. Therefore, we assess the performances of the various fundus camera used

to capture the retinal fundus images in the EyePACS dataset. We observe that the per-

formances for all the fundus cameras are similar except for the Volk Pictor Plus which

gives slightly lower performance metrics. Note that the Volk Pictor Plus is the only

handheld fundus camera considered in the study and, as indicated in Table 3.2, con-

tains only images of adequate quality. Using accuracy, we notice that the Topcon fun-

dus camera outperforms all the other fundus cameras. This is followed by the Zeiss

Visucam, the Canon cameras, Crystalvue, Centrevue and finally the Optovue cameras

(see Table 3.7).
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Table 3.7: Test performance of the MTL-HPS model on sex classification, by the camera used.

Camera Type Images Accuracy Precision Recall F1-score

Canon CR1 D 2,778 88.05 82.20 89.08 85.50
Canon CR2 D 4,602 86.85 82.55 82.79 82.67
Canon DGi D 2,795 88.37 85.32 86.44 85.88
Centervue DRS D 974 86.86 85.42 82.00 83.67
Crystalvue NFC 700 D 689 87.37 85.36 83.86 84.60
Optovue Vivicon D 124 84.68 89.16 88.10 88.62
Optovue iCam D 11,429 85.90 83.17 85.95 84.53
Topcon NW 200 D 432 95.14 93.41 94.97 94.18
Topcon NW 400 D 9,588 89.97 86.94 85.20 86.06
Topcon NW 700 D 429 91.14 93.75 85.94 89.67
Volk Pictor Plus H 316 76.27 73.33 89.02 80.42
Zeiss Visucam D 10 90.00 100.00 85.71 92.31
For the camera type, D represents Desktop and H represents Handheld.

3.7 Conclusion

In summary, we created a multi-task learning (MTL) model to predict cardiovascu-

lar risk factors (CVFs), including patients’ age, sex, and hypertension status. We ob-

served comparable performance between the MTL and single-task learning (STL) mod-

els, even though more images were available for the latter. Within the MTL model,

hard-parameter sharing (HPS) is preferred over soft-parameter sharing (SPS) as it ob-

tained superior results. Further analysis revealed discriminating areas of the retina,

including the optic disc and the macula region. We observed that the model focuses on

the optic disc alone when predicting males, and either the macula region alone or both

the optic disc and macula region when predicting females.

The results obtained from experimenting with Field 2 and Field 3 images stress the

importance of the optic disc and the macula region in predicting sex. We also noticed

that the quality of an image does not seem to influence the performance of the model.

Finally, we investigated the performance of the various fundus cameras on sex pre-

diction. We observed acceptable results for the handheld fundus camera and better

performance for the desktop fundus cameras.
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A limitation of our MTL model is that there are missing data, especially in case

of hypertension. Hence, a reduced number of instances were used to train the MTL

models, making it challenging to fairly compare the results with the STL model. More-

over, other risk factors such as smoking status and haemoglobin level are missing from

many of the dataset instances, making them unusable. Another limitation of the study

regarding camera performance is that the data contain significantly more images from

desktop fundus cameras than from handheld fundus cameras. Also, 99% of the hand-

held fundus images belong to the “adequate” image quality group, and none labelled

as “excellent”. Hence, we are not able to attribute poor image quality to all handheld

fundus cameras, as the only one of its kind in the data is the Volk Pictor Plus. However,

other studies report having better retinal fundus image results from desktop fundus

cameras than handheld fundus cameras [Rajalakshmi et al., 2021].

While a desktop fundus camera may have many advantages, they are expensive,

bulky, require a specialist to operate, and should be in the right environment to pro-

duce quality images. Despite their performance, handheld cameras have numerous ad-

vantages that make them desirable in the field of retinal imaging technology. For this

reason, there has been numerous research conducted on the adaptation of handheld

fundus cameras in the space of retinal imaging technology [Palermo et al., 2022]. To

this end, we suggest the ideal handheld fundus camera should (1) be comfortable for

use (for both patients and operators), (2) have a shorter examination period to prevent

patients’ adaptation to darkness, (3) have quick adjustment settings, (4) be operable in

different environments, (5) have awide angle-of-view, and (6) produce a high-resolution

image.
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Chapter 4

Combining CNNs and Vision

Transformers

4.1 Overview

The aim of this chapter is to design a model that combines desirable underlying proper-

ties from a convolutional operation and a Transformer encoder. First, we present some

background on attention and the underlying benefits of Transformers in Section 4.2.

Next, we discuss different attention-based models to provide insights into their work-

ings in Section 4.3. We present preliminary work and details for the proposed model

in Section 4.4. Finally, we give details of the experiments carried out in Section 4.5, the

results obtained in Section 4.6, and conclusion in Section 4.7.

4.2 Background

For over a decade, convolutional neural networks (CNNs) have been the standard deep

learning model for computer vision-related tasks [Bello et al., 2019; Krizhevsky et al.,

2012]. Following their performance in computer vision, other domains including natu-

ral language processing (NLP) [Li andMao, 2019; Wang and Gang, 2018; Yin et al., 2017]

64
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and speech recognition [Han et al., 2020; Kubanek et al., 2019; Passricha and Aggarwal,

2018] have either adapted CNNs to create hybrid models or built novel models made up

of convolutional operators. Yet, convolutions are unable to capture long-range depen-

dencies due to their poor scaling properties with respect to large receptive fields [Ra-

machandran et al., 2019]. CNNs are mainly characterised by local connectivity and may

not capture global information which is necessary for better recognition [Bello et al.,

2019].

These issues of CNNswere studied by [Baker et al., 2020]. In their work, they probed

several networks to classify shapes with conflicting local and global contour informa-

tion. For example, they created squares with curved elements and circles with corner

features. They observed that the models made predictions based on local contour fea-

tures instead of the global shape. As expected, when the shapes were augmented to di-

minish information on local contour features, performance increased. They concluded

that there is a converse relationship between human perception and CNNs regarding

local and global shape classification. In the end, CNNs fail to spatially combine local

features into a global understanding.

Work is being done to alleviate the dependencies on convolution in computer vi-

sion tasks and general deep learning. For example, Ramachandran et al. [2019] replaced

all convolutions in the ResNet model with a module called stand-alone self-attention

(SASA). They observed that self-attention is most effective in higher layers. Also, Tol-

stikhin et al. [2021] introduced an all-multi-layer perceptron architecture for computer

vision. They acknowledged that while convolutions have attained better results over

the years, it is necessary to stir further research. Motivated by human perception, Mnih

et al. [2014] introduced a recurrent attention model to adaptively select a sequence of

regions in the visual space at high resolution by setting the centre of fixation on the ob-

ject of interest and ignoring irrelevant features. Their technique is non-differentiable

and uses reinforcement learning approaches during training.

The concept of “attention” in machine learning is analogous to human perception.
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Human perception does not process a whole scene at once, because the brain cannot

fully process the information received by the optic nerve, which is in the order of 108

bits per second. Rather, human perception efficiently allocates resources to a fraction of

information by selectively focusing on parts of the visual space to understand scenes.

It combines several fixations on objects of interest to build up a representation of a

scene [Mnih et al., 2014; Zhang et al., 2021].

Lindsay [2020] defined attention as an ability to flexibly control limited computa-

tional resources. In deep learning, attention is the process of focusing on interesting

regions of data. It was first introduced by Bahdanau et al. [2014] to inject alignment (at-

tention) between the input and output in a sequence-to-sequencemodel. The alignment

is a score that is used to measure how well the input and the output match. Among a

few variants of alignment are content-base [Graves et al., 2014], location-base [Luong

et al., 2015], dot-product [Luong et al., 2015] and scaled dot-product [Vaswani et al.,

2017]. The alignment score is used to estimate attention.

Current types of attention include hard attention [Xu et al., 2015], soft attention [Xu

et al., 2015], global attention [Luong et al., 2015], local attention [Luong et al., 2015]

and self-attention [Cheng et al., 2016]. Recently, attention has played a critical role in

the development of Transformer models. In particular, self-attention is used in Trans-

former models due to their robustness and inherent benefits of generalisation [Zhao

et al., 2020]. First introduced in the NLP domain by Vaswani et al. [2017], Transformers

have become the de facto algorithm for NLP-related tasks and generally for sequen-

tial datasets [Dosovitskiy et al., 2021], and are gaining popularity [Touvron et al., 2022].

Transformers have been adapted in the computer vision field due to their large dynamic

attention properties [Wu et al., 2021], scalability [Dosovitskiy et al., 2021], improved

generalisation and long-range capacities [Touvron et al., 2022]. For example, Doso-

vitskiy et al. [2021] developed a model called the vision Transformer (ViT) which has

attained impressive results for computer vision tasks. Inspired by their success, other

studies have created variants of ViT [Heo et al., 2021; Liu et al., 2021].
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Even though ViTs have recently attained success, they lack the locality inherent

to CNNs [Huang et al., 2021]. Moreover, ViT models often require large-scale train-

ing [Dosovitskiy et al., 2021]. In addition, the number of operations in ViT increases

quadratically with the number of pixels in an input image [Chu et al., 2021].

Local interaction and global understanding are imperative for medical image pro-

cessing tasks, and to attain semantic information from the images [Lin et al., 2022].

CNNs possess local attributes while ViTs have global properties. Some other distinc-

tions noted by Park and Kim [2022] are (1) CNNs are high-pass filters (meaning CNNs

emphasise on high-frequency component of an image such as edges) and ViTs are low-

pass filters (meaning ViTs emphasise on low-frequency component of an image such as

blur effects); and (2) the key components of CNNs (convolutional operators) diversify

feature maps while those of ViT (self-attentions) aggregate them.

Lin et al. [2022] argued that there are underlying relationships between convolu-

tions and self-attention. To inherit the best of both worlds, we introduce a hybrid model

which combines convolutions and self-attention modules. Our model feeds a fully con-

volutional Transformermodule (FCT) (see Section 4.4.3) with intermediate layers from a

ResNet CNNmodel. We train the model in an end-to-end (without pre-trained weights)

fashion and attain promising performance. We demonstrate a new perspective for fu-

ture designs of hybridmodels containing convolutions and self-attentionmoduleswhile

using fewer parameters.

4.3 Related Work

Rao et al. [2021] defined attention as the ability by which the human brain processes

visual information while also evaluating the relevance of input features. Replicating it

computationally, attention has become an integral part of deep learning [Bello et al.,

2019]. Hu et al. [2018] described attention as a technique of biassing the allocation

of available computational resources to the most informative components of a signal.
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Attention allows a model to dynamically attend to the most relevant regions of an in-

put [Ba et al., 2014], instead of summarising an entire input to a static representation [Xu

et al., 2015]. Hence, attention improves representations and suppresses irrelevant parts

of an input [Wang et al., 2017; Woo et al., 2018]. It was first introduced in NLP-related

tasks but has been adapted to computer vision. Specifically, attention has been adopted

in computer vision to address some of the drawbacks of CNNs in vision-related tasks

including the inability to capture long-range dependencies [Woo et al., 2018].

In medical images, Sinha and Dolz [2020] used self-attention to capture rich contex-

tual dependencies from abdominal organs, brain tumours and cardiovascular structures

to produce precise segmentation. Nie et al. [2018] also proposed attention-based deep

networks to obtain improved segmentation performance. Hu et al. [2021] proposed

scale-attention deep networks to generate semantic segmentation of retinal images.

Rao et al. [2021] studied the effects of self-attention on medical images. In detail, they

empirically compared different self-attentionmodels across variousmedical images and

observed improved AUC-ROC scores.

In this section, we present and investigate some of the works that attention is being

used for. We first present how attention is used in convolution-based and Transformer

models. Finally, we showhow studies have combinedCNNs and Transformers to inherit

the best of the two paradigms.

4.3.1 Convolution-based Attention Models

In the early days, some studies incorporated attention into computer vision tasks by

augmenting already existing models. The primary operator used was the convolution

operator and the focus was on either the channel or spatial properties of a layer. In this

study, we call these setups convolution-based attention. We explore two convolution-

based attention models, namely the squeeze-and-excitation network (SENet) [Hu et al.,

2018] and the convolution block attention module (CBAM) [Woo et al., 2018]. We high-

light SENet due to its novel approach to addressing attention, and CBAM because it
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builds upon SENet by exploring spatial attention in addition to channel attention [Rao

et al., 2021].

Squeeze-and-Excitation Networks. Hu et al. [2018] argued that prior research has

given much importance to the spatial component of a CNNmodel. For this reason, they

proposed a model that focuses on the channel component of the model. There are three

main steps involved in their model, namely (in order) squeezing, excitation and scaling.

The squeezing step summarises a global spatial featuremap into a channel descriptor by

using a global average pooling. This is followed by the excitation step which employs

a gating mechanism to recalibrate the squeezed output. The final output of the module

is then obtained by scaling the excitation output with the global spatial feature map to

produce a recalibrated channel (see Figure 4.1). SENet is usually created with residual

models as the backbone, hence, it is occasionally referred to as SEResNet.

Figure 4.1: Illustrating the workflow of the squeeze-and-excitation network (SENet). The goal

is to recalibrate the channels of a global spatial feature map by performing a series of steps:

squeezing (sq), excitation (ex), and scaling (sc). U ∈ RH×W×C
is a feature map used to compute

Û ∈ RH×W×C
. Fsq, Fex, and Fsc represent the squeezing function, the excitation function, and

the scaling function respectively. W denotes the weights of the layer.

Convolutional Block Attention Module. Convolutional block attention module

(CBAM) [Woo et al., 2018] builds upon SENet by including a spatial attention compo-

nent. The channel attention is also approached differently. In detail, the channel atten-

tion follows a sequential order of max pooling and average pooling in parallel, followed
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by a multi-layer perceptron (MLP) and another max pooling and average pooling. The

output of the channel attention is fed to the spatial attention module which uses con-

volution to generate a feature map with only one channel. As an ablation, the authors

changed the order of the channel and spatial attention. They observed better perfor-

mance with channel-first attention (see Figure 4.2).

Figure 4.2: The main contribution of the convolutional block attention module (CBAM) is the

introduction of the channel and spatial attention module. In sequential order, it first applies

channel attention to the global spatial feature map and then spatial attention to the result. ⊗ in

the diagram represents element-wise multiplication.

4.3.2 Transformer Models

The main components of a Transformer encoder are multi-head self-attention (MHSA)

andMLP. Each self-attention is called a head. MHSA ismade up of several self-attentions

stacked in parallel to generate one output (see Figure 4.7a). MHSA takes in normalised

input and feeds the normalised output to an MLP. The Transformer model then stacks

several encoders to extract useful features for its task. The vision Transformer (ViT) is

the first computer vision-adapted Transformer [Dosovitskiy et al., 2021]. In this section,

we explore the ViT model and two of its variants.

Vision Transformer. The ViT model [Dosovitskiy et al., 2021] takes in split images

called patches and feeds them to several stacked Transformer encoders for classifica-

tion. While the structure of the ViT is similar to the original Transformer, the latter has
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a decoder component, and the position of the normalisation operation in ViT is also dif-

ferent. ViT applies normalisation before MHSA andMLP, while the Transformer model

applies normalisation after MHSA and MLP (see Figure 4.3).

Figure 4.3: Overview of the ViT encoder module. Q, K, and V in the diagram denote repre-

sentations called the query, key and value (see Section 4.4.1 for details). Norm is a normalising

layer in the architecture.

Pooling-basedVisionTransformer. Heo et al. [2021] created a variant of ViT called

the pooling-based vision Transformer (PiT). Inspired by the dimension reduction prin-

ciple of CNNs, they empirically showed that reducing the spatial dimension of a ViT

model improves performance. As the model gets deeper, they applied spatial pooling

to reduce the spatial dimension of feature maps of a ViT model.

ShiftedWindowsVisionTransformer. Liu et al. [2021] introduced the shiftedwin-

dow vision Transformer model (Swin). It is at the time of writing the best-performing

variant of the ViT model. Swin employs a hierarchical design and a shifted window

technique to induce inductive bias and provide efficient computation of the Transformer

encoders. Inductive bias refers to the set of assumptions about the underlying distri-

bution of the data that represent the inherent preferences encoded in a learning algo-

rithm to generalise from a finite set of observations to unseen data [Hüllermeier et al.,

2013]. The hierarchical design merges 2 × 2 neighbouring patches in deeper layers.

This merging is repeated four times.
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The Swin model has two consecutive Transformer encoders. The first has a win-

dowed multi-head self-attention (W-MSA) and the second a shifted windowmulti-head

self-attention (SW-MSA). The computation of the standard Transformer has quadratic

complexity since every patch attends to all the other patches. To resolve this, the au-

thors introduced window-based attention such that each window has a fixed number of

patches. MSA is only applied among the patches within a window, making the encoder

scalable and efficient.

However, W-MSA lacks connections across other windows, which can be impera-

tive for a computer vision task. To add connections across other windows, the authors

proposed the SW-MSA, which uses a cyclic approach to permute patches in a window

across other windows. In detail, all windows are shifted by half their width and height.

At the end of the computations, the windows are reverse-shifted to their original po-

sitions. In summary, the Swin model uses a hierarchical design along with a shifted

window scheme on a non-overlapping local window to efficiently apply self-attention.

The full model has several Swin encoders stacked on top of each other for a correspond-

ing task (see Figure 4.4).

Figure 4.4: An overview of the Swin encoder which consecutively stacks two Transformer en-

coders with a windowmulti-head self-attention and a shifted windowmulti-head self-attention.

LN in this diagram means layer normalisation.

4.3.3 Hybrid Models

Asmentioned earlier, both convolutions and the self-attentionmodules in Transformers

have desirable properties for computer vision-related tasks [Lin et al., 2022; Wu et al.,
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2021]. New studies have combined convolutions and Transformer modules into a uni-

fied framework [Andreoli, 2019; Cordonnier et al., 2020] to obtain the best of these two

paradigms [d’Ascoli et al., 2021; Lin et al., 2022; Wu et al., 2021]. In this study, we refer

to these kinds of setups as hybrid models. We present two hybrid models: CVT [Wu

et al., 2021] and ConViT [d’Ascoli et al., 2021].

CVT. Wu et al. [2021] leveraged convolution to create a convolutional Transformer

block. They replaced the linear projection component of a Transformer encoder with

convolutional operations. They hypothesised that introducing convolutions in the Trans-

former encoder progressively improves representation richness. While doing so, the

encoder reduces the resolutions of the feature maps and simultaneously increases the

width of the feature maps. TheMLP component of the Transformer remains in the CVT

model (see Figure 4.5).

Figure 4.5: Showing the overall CVT encoder which replaces the linear projection component

of a Transformer encoder with a convolutional operator. Q, K, and V represent the query, key

and value representations for the module (see Section 4.4.1 for details).

ConViT. Self-attention is position agnostic [d’Ascoli et al., 2021]. d’Ascoli et al. [2021]

proposed gated positional self-attention (GPSA)which introduces soft convolutional in-

ductive bias in Transformer encoders. In addition to the content awareness of a Trans-

former encoder, the main contribution of their study was the introduction of position

awareness, termed as position self-attention (PSA). They observed that initialising PSA
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using a convolutional scheme resulted in better performance in early epochs of training.

Again, they observed in the later epochs that the attention mechanisms ignore content

representations. They resolved this by using a gating scheme with a learning param-

eter λ which provides relative importance to the content and position component of

the module accordingly (see Figure 4.6). Using the theorem below by Cordonnier et al.

[2020], d’Ascoli et al. [2021] concluded that their module behaves as a convolutional

layer.

Theorem4.3.1. Amulti-head self-attention layer with Nh heads of dimension Dh, output

dimension Dout and a relative positional encoding of dimension Dp ≥ 3 can express any

convolutional layer of kernel size
√

Nh ×
√

Nh and min(Dh, Dout) output channels.

In other words, an MSA layer can effectively approximate the behaviour of a con-

volutional layer with specified dimensions.

Figure 4.6: The main contribution of a ConViT encoder is the addition of position information

to a Transformer encoder.

4.3.4 Summary

In summary, we see a pattern in the design of the various models discussed above,

especially for Transformer-related models. The encoders or modules usually perform

self-attention which is followed by MLP computations. In our study, we use the same

design but with convolutional projections instead of linear projections.
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4.4 Methodology

In this section, we propose a model which feeds intermediate layers from a ResNet to

a fully convolutional Transformer (FCT) module. The aim is to build a hybrid model

that is able to learn long-range dependencies and capture global features of an image.

We present some preliminaries in Section 4.4.1, the overall workflow of the proposed

model in Section 4.4.2, and the details of the FCT module in Section 4.4.3.

4.4.1 Preliminaries

We consider a dataset D = {X ,Y}, where X represents the input images and Y rep-

resents the target values. For each image x ∈ X ⊂ RH×W×C
, H and W are the height

and width of the image, and C represents the number of channels of the image. We

seek to learn a model that best approximates the true target values. In this study, we

modify a ResNet-50 model (see Section 2.3.2) to have auxiliary layers at certain parts of

the network. Specifically, the auxiliary layers are fully convolutional Transformer (FCT)

modules (explained in Section 4.4.3), which take in input feature maps from certain lay-

ers of the network. By doing so, we expect the model to focus on discriminating regions

of the input while paying less attention to regions of less importance. First, we present

background on the various components used in the model. These include multi-head

self-attention (MHSA), focus layer (FL), batch normalisation (BN), layer normalisation

(LN), and Gaussian error linear units.

Multi-Head Self-Attention. We linearly transform an input x ∈ RH×W×C
to three

representations, namely a query (Q), key (K) and value (V). First, x is represented

as a sequence [x1, x2, . . . , xn], where each xi ∈ Rd
model is a vector that represents the

embedding of the i-th feature. d
model

denotes the embedding dimension. The trainable

matrices WQi , WKi and WVi are used to compute the Q, K and V.The representations

are computed as
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Qi = xWQi Ki = xWKi , Vi = xWVi . (4.4.1)

Next, we define self-attention as

Attention(Qi, Ki, Vi) = softmax

(
QiK⊤i√

d

)
Vi, (4.4.2)

where d is a scaling factor equal to the dimension size of Q or K. The softmax function

maps a vector a = (a1, . . . , aN) ∈ RN
to another vector a′ ∈ RN

such that the

elements of a′ are positive and sum to 1. The outputs of the softmax function are

interpreted as probabilities (pi), and defined as

softmax(a)i = pi =
exp ai

∑N
j=1 exp aj

, i ∈ 1, . . . , N. (4.4.3)

The scaling factor d in Equation 4.4.2 is necessary to avoid the possibility of generating

very small gradients from the softmax function due to the large magnitude output from

the dot product between Q and K. MHSA employs the softmax function to map real

values (which can contain negatives) to values between 0 and 1. A single self-attention

is known as a head. That is,

headi = Attention(Qi, Ki, Vi), i = 1, . . . , h. (4.4.4)

Multi-head self-attention (MHSA) computes several heads in parallel and concatenates

the outputs. Hence, MHSA is given as

MHSA(x) = Concat(head1, head2, . . . , headh)WO, (4.4.5)

where Concat(·) is a concatenating function and WO is a trainable weight matrix.

MHSA is necessary for the model to jointly attend to different informative regions of an

input [Vaswani et al., 2017]. In summary, MHSA generates several scaled dot-product

attention heads from three linearly transformed representations and concatenates the

outputs (see Figure 4.7).
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(a) (b)

Figure 4.7: Figure 4.7a shows the overall layout of an MHSA (see Equation 4.4.5). Figure 4.7b

illustrates the details of a scaled dot-product attention (see Equation 4.4.2).

Focus Layer. The focus layer (FL) is a feature aggregation layer which applies convo-

lutions to extract fine-grained information from the MHSA output. We use convolution

operations in the focus layer because they generally have fewer parameters and thus

lead to better parameter efficiency [O’Shea and Nash, 2015; Pang et al., 2017; Wu, 2017].

For input x ∈ RH×W×C
, the focus layer is defined as

FL(x) = σ(Conv(x)), (4.4.6)

where Conv(·) is a convolutional operator and σ(·) is an activation function.

Batch and Layer Normalisation. Normalisation, as the name suggests, is a tech-

nique used to normalise the mini-batch or layers of a model to zero mean and unit

variance. It is called batch normalisation (BN) [Ioffe and Szegedy, 2015] if applied on

a mini-batch, and layer normalisation (LN) [Ba et al., 2016] otherwise. For a sample

x ∈ Rd
, normalisation is defined as

N(x) =
[
(x− µ)× Σ−1

]
⊗ γ + β, (4.4.7)
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where µ ∈ Rd
is the mean and Σ ∈ Rd×d

is the standard deviation of the feature maps,

⊗ is element-wise multiplication, and γ ∈ Rd
, β ∈ Rd

are learnable parameters.

GaussianError LinearUnit. The activation functionwe use for the FCT is theGaus-

sian error linear unit (GELU). It was introduced by Hendrycks and Gimpel [2016], and

is defined as

GELU(x) = xΦ(x)

=
x
2
·
[

1 + erf

(
x√
2

)]

≈ x
2
·
[

1 + tanh
(√

2
π
·
(

x + 0.044715x3
))]

, (4.4.8)

where Φ(x) is the cumulative distribution function of the standard normal distribu-

tion. The authors used the standard normal distribution because of the normalisation

components in the FCT module.

4.4.2 Paying Multiple Attention

Our proposed model is illustrated in Figure 4.8. In detail, we extract feature maps de-

noted by ẑl , where l ∈ {1, . . . , ℓ} represents a convolutional layer. Assuming equal

dimensions, we add ẑl to a global image descriptor g and pass the output to an FCT for

attention. A global image descriptor in this case is the output of the penultimate layer

of a ResNet-50 model. Finally, the feature maps from the FCTmodules are concatenated

into a single vector for classification purposes. We use this approach of learning to force

earlier layers in the model to learn similar mappings of the global image descriptor of

the vanilla model (without attention). We achieve this by using ẑl to contribute directly

to the classification step [Jetley et al., 2018].
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Figure 4.8: Illustrating the architecture of our proposed model. Instead of feeding linear classi-

fication layers with feature maps of the final block of a backbone model, we first feed interme-

diate feature maps to FCT modules to capture long-range dependencies, then concatenate the

output for later classification.

4.4.3 Fully Convolutional Transformer

The fully convolutional Transformer (FCT) module is a special case of the Transformer

module (Figure 4.9). In FCT, transformations are done using convolutional functions in-

stead of position-wise linear projections for the attention operation inherent in Trans-

former [Wu et al., 2021]. The motivation behind using convolutions is to keep local

relations between pixels or features while simultaneously maintaining the Transformer

structure.

In our model, the input to the FCT module is a feature map extracted from intermedi-

ate layers of the ResNet-50 model. First, we convert the feature maps into overlapping

patches using convolution. The generated patches are analogous to tokens in NLP [Wu

et al., 2021]. Next, we feed the generated patches to a depth-wise convolution to gen-

erate Q, K, and V. We normalise the outputs and apply MHSA to generate attention.

Finally, we fuse the outputs with the patches and feed a normalised resultant to the

focus layer which aggregates features using convolution. We summarise FCT mathe-

matically as follows:
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Figure 4.9: Details of the fully convolutional Transformer (FCT) module. It takes in feature

maps from intermediate layers of the backbone network, creates patch embeddings, projects to

Q, K, and V for the MHSAmechanism, and feeds to another convolution layer for classification.

zl−1 = PatchEmbed(ẑl−1 + g), (4.4.9)

zl = MHSA(ConvProj(zl−1)) + zl−1, (4.4.10)

zl+1 = FL(N(zl)) + zl, (4.4.11)

where ẑl−1 ∈ Rh×w×c
is a feature map from an intermediate representation of the

network and g ∈ Rh×w×c
is a global image descriptor. PatchEmbed(·) is a convolu-

tional operator used to create patch embeddings, which involves extracting informative

features from sub-regions of an image and representing them as feature vectors in a

lower-dimensional space. The patch embeddings are used to generate Q, K, and V for

MHSA (see Equation 4.4.5) using ConvProj which is a depth-wise convolution. Before

that, Q, K, and V are normalised using either batch normalisation or layer normalisa-

tion (see Equation 4.4.7) resulting in zl+1 ∈ Rh×w×c
.

4.5 Experiments

Details of the dataset used for our experiments are given in Section 4.5.1. We present the

pre-processing and augmentation techniques employed on the dataset in Section 4.5.2.

Finally, we provide model implementation details and how the weights of the models

are initialised in Sections 4.5.3 and 4.5.4, respectively.
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4.5.1 Data

In this study, we use data from the Canadian Institute for Advanced Research with ten

classes (CIFAR-10). There are 60,000 natural coloured images in the CIFAR-10 dataset,

with 6,000 images per class, and an image size of 32× 32× 3. CIFAR-10 has a training

set and a testing set containing 50,000 and 10,000 images, respectively. The ten classes

are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck (Figure 4.10).

We use CIFAR-10 to measure the performance of the proposed model on natural im-

ages [Krizhevsky et al., 2009]. Later, we use the proposed model to classify the classes

in the APTOS dataset, and compare the results to those obtained in Chapter 2.

Figure 4.10: Showing randomly selected examples of the CIFAR-10 dataset.

4.5.2 Pre-processing and Augmentation

We do not apply any pre-processing techniques to the CIFAR-10 dataset. Instead, we

augment the CIFAR-10 training dataset by random cropping and then padding the

cropped regions, and random flipping vertically and horizontally. Moreover, we nor-
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malise all the images to have pixel values between−1 and 1. We used the same settings

in Section 2.5.2 to pre-process and augment the APTOS dataset.

4.5.3 Models and Implementation

In the next section, we compare the performance of different attention-based models in

predicting the classes of CIFAR-10 and also the severity of diabetic retinopathy in the

APTOS dataset. The models we use are in three major categories, namely convolution-

based attention, vision Transformer, and hybrid models. Again, we compare the per-

formance of the models when initialised with random weights and when initialised

with pre-trained weights from ImageNet. In addition, we replace the final layers with a

global average pooling layer, a dropout layer with 50% dropout rate and a linear layer

with the number of units equal to the number of classes in the dataset used for the

experiment.

4.5.4 Pre-training and Random Initialisation

We use similar settings from Sections 2.5.3.1 and 2.5.3.2 for both pre-training and ran-

dom initialisation. That is, we use the data splitting settings and optimise the models

with the Adam optimiser. For pre-trained initialisation, we initialise the weights of the

model with pre-trained weights from the corresponding models. For random initiali-

sation, we initialise the model weights with Kaiming He normal initialisation since the

global extractor used for the study is a ResNet-50 model. For CIFAR-10 we use a batch

size of 128 and a learning rate of 0.01, a weight decay of 10−4
and cyclical learning

rates [Smith and Topin, 2018]. We also clip all gradients at global norm 1 [Dosovitskiy

et al., 2021]. When we train the models from scratch on CIFAR-10, we train for 200

epochs. For the APTOS dataset, we train for 100 epochs when training from scratch,

and 20 epochs when we use pre-trained weights to initialise the model.
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4.6 Results

In this section, we show the results obtained from the proposed model. First, we ex-

periment with the CIFAR-10 dataset and then also the APTOS dataset. Also, we predict

the classes of the APTOS dataset using the different attention-based models presented

in Section 4.3.

4.6.1 Performance on CIFAR-10

Wepredict the classes of the CIFAR-10 image dataset using amodified ResNet-50model.

Specifically, we feed intermediate layers at different positions of the ResNet-50 model

to the FCT module. We first train a vanilla ResNet-50 model and achieve 92.87% top-

1 validation accuracy (see Table 4.1). Next, we experiment with two normalisation

techniques in our proposed FCT model, namely batch normalisation (BN) and layer

normalisation (LN). We observe a superior performance of BN over the LN version.

Additionally, we initialise our model with pre-trained weights and observe a further

increase in performance.

Table 4.1: Top-1 validation classification accuracy on the CIFAR-10 dataset.

Model Top-1 Acc. (%)

vanilla (ResNet-50) 92.87

ours (with LN) 93.04

ours (with BN) 93.35

ours (pre-trained) 95.72

We visualise the attention maps of the various auxiliary layers used in our model. Since

we add a global image descriptor to intermediate feature maps, we expect certain re-

gions of the output to have high values if they contain similar parts of dominating

regions of the global image descriptor. We observe that the earliest layer (that is the

first FCT) produces localisations exclusive to the objects of interest. In particular, we
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can observe some distinction between the localisation map generated and the back-

ground. We also observe that the localisation maps concentrate on specific regions in

the images as the model gets deeper (see Figure 4.11).

Input Image FCT 1 FCT 2 FCT 3 Overall

Figure 4.11: Discriminating regions of randomly selected images using Grad-CAM. The FCT
1− 3 columns in the figure represent the three FCT modules introduced at the intermediate

layers of the ResNet-50 model. The Overall column represents the concatenated layer for clas-

sification.

4.6.2 Performance on APTOS

Next, we explore the performance of the various models discussed in Section 4.3 on

the APTOS database along with our proposed approach. Again, we evaluate the per-
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formance of the models with the AUC score. The models are grouped into three types,

namely convolution-based attention, Transformers and hybrid. We note that the convolution-

based attentionmodel in general has fewer parameters compared to the other two types,

while the Transformer models have more parameters (see Table 4.2).

Table 4.2: Performance of the convolution-based attention models, the Transformer models,

and the hybrid models (including our proposed model) on the APTOS dataset.

Model Type Parameters

Training Validation Testing

Random

Init.

Pre-

trained

Random

Init.

Pre-

trained

Random

Init.

Pre-

trained

CBAM

Conv-based

26,034,789 96.81 98.25 94.82 97.00 95.52 97.45
SEResNet 26,049,269 97.25 97.83 94.90 97.10 95.72 96.53

ViT

Transformer

85,802,501 93.92 98.33 93.28 96.46 93.90 96.75
PiT 72,744,965 95.81 98.25 93.68 97.19 94.00 97.06
Swin 86,748,349 81.88 99.15 83.40 97.29 82.77 97.53

CVT

Hybrid

19,614,405 95.11 98.78 93.63 97.17 94.51 97.12
ConViT 85,774,885 92.20 96.70 91.83 96.68 92.86 96.29
FCT (ours) 24,101,509 95.17 97.58 95.50 97.04 95.66 97.46

Again, we observe a significant performance difference between randomly initialising

the weights and using pre-trained weights. This difference is apparent in the Swin

model which outperforms all the other models. The Swin model also produces accept-

able results when randomly initialised. Generally, we observe that the convolution-

based attention models perform better in the random initialisation experiments for the

various sets of data. However, for the pre-trained experiments, the Transformer models

outperform the other two types for all the sets of data.

Two of the hybrid models, namely the CVT model and our proposed model, explic-

itly introduce convolutions to the Transformer encoder, whereas the ConViT model

does not. We observe that CVT and our proposed model outperform ConViT for all the

sets of data. The ConViT model is a vision Transformer but with the addition of a posi-

tion component, and we observe similar performance between the ViT and the ConViT

models. They also have a similar number of parameters (approximately 85 million).
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Overall, the testing set results are close to (and in some cases better than) that of

the validation set, signalling that there is no real issue with overfitting.

With the second fewest number of parameters among the models, our proposed

model outperforms most of the other models. It also performs better than the vanilla

ResNet-50 model (see Table 2.1). In short, the proposed model outperforms many of

the other models, uses fewer parameters, and provides new perspectives on designing

a deep learning model. We also show plots of localised regions on randomly selected

fundus images from each class generated by the different models used in this study (Fig-

ure 4.12).

4.7 Conclusion

In this chapter, we explored different attention-based models. The models were cat-

egorised into three groups, namely convolution-based attention models, Transformer

models and hybrid models. Even though these models are different, they are similar in

design and exhibit similar characteristics. In addition, we proposed a model that feeds

intermediate feature maps of a ResNet-50 model to a fully convolutional Transformer

(FCT) module.

We experimented with the proposed model on the CIFAR-10 dataset and observed

improved performance over the baseline vanilla model (that is, the original ResNet-50

model). In addition, we found that batch normalisation slightly outperformed layer

normalisation, and observed better results when we initialised the model with pre-

trained weights. Furthermore, we visualised the attention maps of the various layers

of the FCT module and noticed that in the earlier layers, there exists a clear distinction

between the generated localisation maps and the background. Also, we noticed that as

the model gets deeper, the attention maps focus on specific regions in the images.

Finally, we conducted experiments with the attention-based models using the AP-

TOS dataset of retinal fundus images, to classify the severity of diabetic retinopathy. We
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Image

CBAM

SEResNet

ViT

PiT

Swin

CVT

ConviT

FCT (ours)

Healthy Mild Moderate Severe PDR

Figure 4.12: Showing localised regions from different models on randomly selected retinal

fundus images from each class of diabetic retinopathy.
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observed on-par performance between the models for all the sets of data. However, the

convolution-based attention model obtained better results when weights are randomly

initialised. Also, we observed that hybrid models with explicit convolutional opera-

tions, including CVT and the proposed model, outperform the hybrid model without

explicit convolutions – that is the ConViT model.

In summary, the proposed model does not outperform all the other models but per-

forms competitively while using fewer parameters. These results are promising and

encourage a new perspective for future designs.
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Summary

This dissertation focused on building deep learning models to classify the severity of

diabetic retinopathy, extract regions of interest, and predict cardiovascular risk factors

from retinal fundus images. In detail, we built deep learning models first for single task

problems and extended it to multi-task problems. We also improved performance by

exploring hybrid models which combine convolutions and Transformer encoders. We

did this in support of better diagnostic pipelines for retinopathy practitioners.

First, we addressed the low-quality issues associated with retinal fundus images

with the help of contrast-limited adaptive histogram equalisation (CLAHE). We esti-

mated the hyperparameters used for CLAHE for each retinal fundus image individu-

ally. The impact of using CLAHE was apparent. We observed improved results for the

classification models after applying CLAHE. Moreover, we could train the models for

fewer epochs (30 epochs fewer) than before CLAHE was applied.

In addition, we studied the use of transfer learning. We evaluated the performances

ofmodels initialisedwith randomweights andmodels initialisedwith pre-trainedweights

from ImageNet. For all the experiments conducted, we observed that the models ini-

tialised with pre-trained weights outperformed their counterparts initialised with ran-

dom weights. These are interesting results, as ImageNet only contains natural images

and does not have any medical images. Thus, transfer learning can be imperative in

89
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deep learning, especially in the medical imaging domain, as there is not a large amount

of labelled data from which to train models from scratch.

Although the results obtained are impressive, they may not be useful for clinicians

in determining which features to pay attention to. For this reason, we used gradient-

weight class activationmapping (Grad-CAM) to generate localisationmaps and identify

discriminative regions on retinal fundus images, in the context of diabetic retinopathy

classification. After generating the localisation maps, we observed that the model fo-

cuses attention mainly to the lesions on the retinal fundus images. The overall layout

was to first pre-process the retinal fundus images, feed the output to a convolutional

neural network (CNN) for classification purposes, and localise discriminative regions

on the retinal fundus images (see Figure 2.12). We evaluated four state-of-the-art mod-

els for this task. In the end, ResNet-50 outperformed the other models by achieving an

AUC score of 97.40% (see Table 2.2).

Furthermore, the dissertation focused on predicting cardiovascular risk factors (CVFs)

using a multi-task learning (MTL) model. Particularly, we evaluated the performance

of two approaches to creating MTL models. These were hard-parameter sharing (HPS)

and soft-parameter sharing (SPS). We observed superior performance from the HPS ap-

proach. Moreover, we demonstrated the advantages of using multi-task learning over

a single-task learning model, in that the MTL provides a unique approach to simulta-

neously predict several tasks (in this case, the CVFs). This approach saved time during

training and attained on-par performance while training on fewer dataset instances

than the single-task model (see Table 3.3).

Later, the dissertation focused on harnessing the advantages of convolutions and

Transformer encoders. Thus, we created a hybrid model that fuses convolutions and

Transformer encoders. Particularly, we fed intermediate feature maps from a ResNet-50

model to a fully convolutional Transformer (FCT) module. The FCT module replaces

the linear operations of a Transformer encoder with convolutional operations. This was

done to achieve locality even at earlier layers of the ResNet-50 model. First, we evalu-
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ated the proposed model on the CIFAR-10 dataset and observed improved performance

over the vanilla ResNet-50 model (see Table 4.1).

Finally, we compared the proposed hybrid model to other attention-based models.

Specifically, we grouped the models into three groups, namely convolution-based at-

tention models, Transformer models, and hybrid models. Generally, we observed that

the convolution-based attention models obtained better results when initialised with

random weights. Although the proposed model did not outperform all the other mod-

els, it attained impressive results. The hybrid model paradigm thus provides novel ideas

for the future design of a deep learning model (see Table 4.2).

Most of the work in this dissertation focused on localisation maps generated by the

trained models. Therefore, a future extension could be to perform a deeper analysis

of the generated localisation maps, which could possibly lead to a better understand-

ing of the underlying causes and effects of diabetic retinopathy. For example, how can

one evaluate localisation maps quantitatively? Or how can we eliminate subjectivity in

the topic of localisation maps in images (in our case retinal fundus images)? Localisa-

tion maps are generally evaluated by observation. Quantitative analyses of localisation

maps can go a long way to gaining the trust of clinicians and assisting them to make

better judgments. Quantifying the various localisation maps can also be a way to assess

how trustworthy and interpretable the different models are [Teng et al., 2022].

Another interesting line of future work can involve integrating multiple modalities,

including optical coherence tomography (OCT) scans, retinal fundus images, and other

patient records, to enhance the prediction of cardiovascular risk factors. This direction

of work could be beneficial for improving the model’s performance, provide an oppor-

tunity to estimate the risk of cardiovascular diseases (CVDs), and potentially mimic the

diagnostic procedure performed by clinicians [Midena et al., 2020; Munk et al., 2021].

In addition, a compelling avenue for future work may emerge by exploring effective

techniques of incorporating incomplete data records into the MTL model’s training in

the context of CVF predictions.
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While our experiments with the proposed hybrid FCT model produced promising

findings on CIFAR10 and retinal fundus images, it may be intriguing extending our in-

vestigations to include a wide range of benchmark datasets. For instance, since APTOS

is considered as a fine-grained dataset [Dippel et al., 2021], we could explore our hybrid

model’s performance on other fine-grained datasets such as CUB-200 [Wah et al., 2011],

Stanford Dogs [Khosla et al., 2011], and many others.

We hope that the research presented in this dissertation provides a solid foundation

for further advancement in deep learning applied to retinal fundus images and medical

image analysis as a whole.
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