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ABSTRACT

Breast cancer is a very prevalent cancer amongst women. The stages of breast cancer are

influenced by characteristics such as age, hormone receptor statuses, HER2 status and staging

information (TNM staging). This study aims to model the progression of breast cancer using a

multi-state model which evaluates three pre-defined stages of the disease. A secondary aim is

to determine an appropriate technique to impute missing data in the covariates.

The disease progression can be modelled by using multi-state models and it is of interest to

analyse the effect of different risk factors on the transitions between the states. The variable of

interest can be seen as the state of the individual at that time point. The transition intensities of

the multi-state model provides the hazards of moving from one state to another and can be used

to calculate the mean sojourn time in any given state.

A combination of claims data and authorisation treatment request data were obtained from Isimo

Health for 393 breast cancer patients. Based on this, a dataset was simulated using the TPmsm

package in R statistical programming. The simulated data were used to test two imputation

techniques, one based on chained equations and one based on random forests, for the

missing data present in the covariates. The latter technique performed the best based on several

performance measures, and was used to impute the dataset from Isimo Health. Thereafter, a

multi-state Markov model was fitted to the imputed data with three pre-defined states including

curative (receive treatment with the intent to cure), non-curative (receive treatment with the

intent to provide improved survival or symptom control) and death. It was observed that the

Markov assumption does not hold and, therefore a semi-Markov model was fitted to the data.

The findings showed that only one of the covariates, namely staging, had a significant effect

on the transition probabilities. This is only the case for the transition between the non-curative

and death state. Covariates as a whole, did have a significant effect on the transitions from

curative to non-curative and non-curative to death. However, there was no significant effect on
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the transition from curative to death.

It can be concluded, based on statistical measures, that the missForest package efficiently

imputes missing covariates before modelling disease progression with multi-state models using

the p3state.msm package.
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OPSOMMING

Borskanker is ’n hoogs prevalente kanker onder vrouens. Die graad van borskanker word

beïnvloed deur eienskappe soos hormoon reseptor statusse, HER2 status en die graad van die

kanker (TNM gradering). Die studie beoog om die progressie van borskanker te modelleer deur

gebruik te maak van ’n multi-staat model met drie voorafgedefinieerde state. Dit word ook

verlang om ’n geskikte tegniek te verkry om ontbrekende data van die kovariate te verkry.

Multi-staat modelle word gebruik om die progressie van die borskanker te modelleer en dit is

wenslik om die effek van verskillende risiko faktore op die oorgangsintensiteite tussen state

te analiseer. Die veranderlike van belang kan gesien word as die staat waarin die individu

op daardie oomblik bevind is. Die oorgangsintensiteite van multi-staat modelle verskaf die

gevaarkoers om van een staat na die volgende te beweeg. Die oorgangsintensiteite kan ook

gebruik word om die gemiddelde verblyftyd in enige gegewe staat te bereken.

’n Kombinasie van eise-data en magtigingsbehandeling versoek-data was verkry vanaf Isimo

Health vir 393 borskanker pasiënte. Die TPmsm pakket in R was gebruik om ’n datastel te

simuleer gebasseer op die Isimo Health data. Die gesimuleerde data was gebruik om

verskillende imputeringstegnieke te toets om die ontbreekte data in die kovariate in te vul. Die

imputeringstegniek gebaseer op Random Forests het die beste gevaar en was dus gebruik om die

Isimo Health datastel te imputeer. Die missForest pakket in R was gebruik om die imputering

te doen. Na die imputering, is ’n multi-staat Markov model gepas met drie voorafgedefinieerde

state naamlik genesend (ontvang behandeling met die doel om te genees), nie-genesend

(ontvang behandeling met die doel om oorlewing te verbeter of simptoombeheer) en afsterwing.

Die Markov aanname geld nie en dus word ’n semi-Markov model aan die data gepas.

Die bevindings wys dat die graad van die kanker die enigste kovariaat is wat ’n statisties

betekenisvolle effek op die oorgangswaarskynlikhede het. Dit is slegs die geval vir die

oorgang tussen die nie-genesende en afsterwing staat. Die kovariate in geheel het ’n statisties
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betekenisvolle effek op die oorgangswaarskynlikhede van genesend na nie-genesend en

nie-genesend na afsterwing. Dit het nie ’n statisties betekenisvolle effek op die oorgang van

genesend na afsterwing nie.

Die missForest pakket is die mees geskikte pakket om kovariate met ontbrekende waardes te

imputeer. Hierdie gevolgtrekking is gebaseer op verskillende statistiese maatstawwe. Daarna

kan die p3state.msm pakket gebruik word om die progressie van borskanker te modelleer.
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NOTATION

The various notations and symbols used throughout the thesis document are shown and defined

below.

X(t) State occupied by stochastic process at time t ≥ 0
pij Transition probability for transition from state i to j
D(x, i, t) Number of persons aged x with breast cancer i at time t
N(x, t) Total projected population aged x at time t
P (x, i, t) Breast cancer prevalence rate of level i, aged x and projected at time t
qij Transition intensity of moving from state i to state j
Q Transition intensity matrix
P Transition probability matrix
Xt Observation history of the process up to time t
z(t) Time-varying explanatory variables
Xobs Observed data
Xmis Missing data
p(Y |θ) Density function of complete dataset
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ACRONYMS

The acronyms used throughout the thesis document are shown below.

AI Aromatase inhibitors
DCIS Dual carcinoma in situ
EM Expectation-Maximisation
ER Estrogen receptor
FIML Full information maximum likelihood
HER2 Human epidermal growth factor receptor 2
KNN K-nearest neighbor
MAR Missing at random
MCAR Missing completely at random
MCMC Monte Carlo Markov Chain
MI Multiple imputation
MNAR Missing not at random
MSM Multi-state model
NI Non-ignorable
NRMSE Normalised root mean squared error
PFC Proportion of falsely classified
PR Progesterone receptor
RF Random Forest
SIR Sampling importance resampling
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Breast cancer is the second most common form of cancer in the United States (Grayson, 2012).

The Oxford English Dictionary (2017) defines breast cancer as a cancer arising in the mammary

gland. Usually it occurs in the mammary gland in females, but occasionally can occur in the

rudimentary tissue of the male (The Oxford English Dictionary, 2017). The incidence of breast

cancer based on the Isimo Health data was 704 and 685 per 100 000 people for 2016 and 2017,

respectively. The prevalence was 1 173 and 1 194 per 100 000 people for 2016 and 2017,

respectively.

Although breast cancer is often seen as one disease, there are many different types of breast

cancers. The commonality between these cancers is that they typically start in the breast. Breast

tumours can be invasive or non-invasive and the prognosis is often affected by characteristics

such as the hormone receptor and human epidermal growth factor receptor 2 (HER2) status.

According to Grayson (2012), women with different types of breast cancer react differently to

treatment. The worst breast cancer prognosis is when the cancer has already metastasised1 at

the time of diagnosis (Grayson, 2012).

According to Komen (2017), dual carcinoma in situ (DCIS) is a non-invasive breast cancer.

This is the case when the milk ducts have not spread to nearby breast tissue. This non-invasive

breast cancer can develop into invasive breast cancer over time if it is not treated. Invasive breast

cancer is cancer that has spread from the original location into another part of the breast tissue

1 The definition of metastasise per the Cambridge English Dictionary (2017): If cancer cells metastasise, they spread to other parts of the
body and cause tumours to grow there.

1
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1 INTRODUCTION

as well as to the lymph nodes (National Cancer Institute, 2018). Consequently, invasive breast

cancer has a poorer prognosis than DCIS.

Hormone receptors are breast cancer cells that have special proteins inside which needs

estrogen and/or progesterone to grow (Komen, 2017). When breast cancers have many hormone

receptors, the cancers are called hormone receptor positive cancers. Hormone receptor positive

can mean either estrogen receptor (ER) positive or progesterone receptor (PR) positive. These

statuses strongly influence the course of treatment and therefore the cost of treatment.

Almost 70 percent of breast cancers are hormone receptor positive. Breast cancers can be

treated with hormone therapies if they are hormone receptor positive. Hormone therapies

include tamoxifen and the aromatase inhibitors (AI), namely anastrozole (Arimidex), letrozole

(Femara) and exemestane (Aromasin) (Komen, 2017). Most breast cancers that are ER positive

also tend to be PR positive. In addition, breast cancers that are ER negative tend to be PR

negative. A breast cancer that is ER positive can be PR negative, although this is uncommon

(Komen, 2017).

Hormone therapies slow the growth of hormone receptor positive tumours by preventing the

cancer cells from getting the hormones they need to grow. Tamoxifen and some other hormone

therapies attach to the receptor in the cancer cell and block the estrogen from attaching to the

receptor. Other hormone therapies such as AI, lower the level of estrogen in the body so that

the cancer cells cannot get the estrogen they need to grow (Komen, 2017).

According to Komen (2017), the hormone receptor status is related to the chance of breast

cancer recurrence. Hormone receptor positive tumours have a lower chance of breast cancer

recurrence than hormone receptor negative tumours in the first five years after diagnosis.

HER2 is a protein that appears on the surface of some breast cancer cells. HER2/neu and

ErbB2 are alternative names for HER2. When a breast cancer is HER2 positive the cancer

has numerous HER2 protein. In this case it is referred to HER1 over expression, while HER2

negative has little or no HER2 protein (Komen, 2017). Almost 15 percent of newly diagnosed

breast cancers are HER2 positive. The status of HER2 also effects the appropriate course of

treatment.

2
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1 INTRODUCTION

The aim of the study is to model the progression of breast cancer by using multi-state models

and to determine an appropriate technique to impute missing data present in the covariates.

Missing data is frequently present in the covariates when analysing clinical datasets. The

disease progression can be modelled using multi-state models and it is of interest to determine

the effect of different covariates on the transition intensities. A dataset obtained from Isimo

Health, containing 393 breast cancer patients, was used to simulate a dataset to test imputation

techniques on the covariates. Thereafter, the best performing imputation techniques were used

to impute the Isimo Health dataset. The imputed dataset was used to fit a multi-state Markov

model for the progression of breast cancer.

1.2 Problem Statement

Multi-state models can be used when confronted with panel data. Panel data are also referred

to as longitudinal or cross-sectional time-series data. Multi-state models are used

in medical studies where the disease status of patients is documented over time. All the

information included in the dataset is anonymous. The data are a combination of authorisation

data from eAuth and claims data, from cancer patients treated by providers belonging to the

Independent Clinical Oncology Network (ICON). eAuth is an authorisation system developed

by ICON.

Panel data are simulated based on the data obtained from Isimo Health. The

simulated data are used to investigate missingness and to choose an appropriate

imputation technique. Different imputation techniques will be considered and two imputation

techniques will be tested. The imputation technique performing the best will then be chosen to

impute the Isimo Health dataset.

The imputed Isimo Health data will then be used to fit a multi-state Markov model for disease

progression of breast cancer over time. The researcher will be looking at three pre-defined

disease states namely curative, non-curative and death. The curative state is defined to be when

the patient is treated with the intent to cure the cancer. The non-curative state is defined as being

the state when the patient is treated without the intent to cure, but rather for improved survival

or symptom control. The death state is entered when the patient is deceased.

3
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1 INTRODUCTION

1.3 Importance of the Study

This study will be beneficial to both funders and clinicians. For funders it will be useful to

predict how patients progress from diagnosis to death. For clinicians it will be beneficial since

the clinicians will be able to see how patients progress from certain states and in which way

clinical factors such as HER2 status, hormone receptor status, age and other demographics

influence the disease progression. Ultimately, the importance of this study is to build a platform

to be able to do further research to enable building a forecasting tool to predict the total cost of

cancer.

1.4 Research Design and Methodology

1.4.1 Sampling and data collection

A dataset is collected from ICON through Isimo Health. The dataset is a combination of

authorisation data from eAuth and claims data provided by medical schemes belonging to the

ICON network. Only patients who matched between the two data sources were included, since

the model requires both accurate cost data and more granular clinical data.

1.4.2 Data analysis

Structured Query Language (SQL) was used to extract data from the data sources, while R

programming was used to perform statistical analysis on the extracted data. The R packages

TPmsm, Metrics, mice, missForest, msm and p3state.msm were used in the statistical analysis

in R.

The disease progression is modelled by using multi-state models. It is often of interest to

analyse the effect of different risk factors on the transition rates. A dataset was simulated using

the TPmsm package. The mice and missForest packages were used to test the two different

imputation techniques. Lastly, the p3state.msm package were used to fit a multi-state model to

the data acquired from Isimo Health.

4
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1 INTRODUCTION

1.5 Chapter Outline

Chapter Two provides a literature review of the literature that is available on multi-state Markov

models and imputation techniques. Chapter Three gives a thorough description of the data

received from Isimo Health as well as the process of transforming and cleaning the dataset.

Chapter Four describes the simulation approach used to simulate the data with the R package

TPmsm.

In Chapter Five, the R packages available for imputation techniques are described. Thereafter

two of the techniques are applied to impute the simulated dataset and the imputation technique

with the best performance is selected to be used in Chapter Six on the real-world dataset from

Isimo Health.

The chosen imputation technique from Chapter Five is used to impute the dataset from Isimo

Health and the multi-state Markov model is fitted to the imputed dataset in Chapter Six.

Chapter Six also gives a summary of the findings. Chapter Seven provides a conclusion, the

limitations and the future opportunities for research to build on this thesis.

5
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CHAPTER 2

LITERATURE REVIEW ON MULTI-

STATE MODELS AND IMPUTATION

2.1 Introduction

The concept of a multi-state model as well as multi-state Markov models is discussed in detail

in this chapter. Thereafter, the idea of missing data, the different types of missing data and ways

of handling missing data are discussed.

In order to estimate the total cost of care required by breast cancer patients, it is necessary

to project the cancer patient population to the year for which the forecast is needed. Several

methods exist, amongst them a most frequently used method, namely the projection of the

prevalence rates (Siegel, 2002). The projected prevalence rates are applied to the total projected

population in this method. Prevalence rates indicate the proportion of persons who have breast

cancer at a given time with respect to the total population. In this thesis it will be with respect

to the total insured population. The number of persons aged x, with breast cancer i at time t is

given as

D(x, i, t) = N(x, t)× P (x, i, t), (2.1)

where N(x, t) is the total projected population aged x at time t and P (x, i, t) is the breast cancer

prevalence rate of level i (the specific type of breast cancer including the severity), aged x and

projected at time t. The projected prevalence rates can be either static or dynamic (varying)

prevalence rates.

This method has been widely used but is not necessarily suitable to model the disease

progression since a more flexible model taking into account different states of health and the

6

Stellenbosch University  https://scholar.sun.ac.za



2 LITERATURE REVIEW ON MULTI-STATE MODELS AND IMPUTATION

dependency with other factors would be more appropriate. Multi-state models are alternative

but more comprehensive model types to consider. Multi-state models are the most common

choice of model to analyse longitudinal survival data (Amorim et al., 2011). This technique is

widely used in various fields such as medicine, physics, biology, economics and others.

A multi-state model is a stochastic process which occupies one of a set of discrete states, at

any time point (Hougaard, 1999). Different health states can be defined in its simplest form

as healthy, sick or diseased. The states may represent different health situations of the subject

(Amorim et al., 2011). A transition or event refers to a change of state which corresponds for

example to an outbreak of disease or even death. The state structure and the form of the hazard

function for each possible transition is specified in the full statistical model (Hougaard, 1999).

The possibility of projecting the number of persons who will be in a certain state of cancer,

based on transition probabilities or intensity rates between states, is the greatest utility of these

models when dealing with cancer.

There are a few requirements when building a projection model:

◮ Baseline estimates of the level of cancer of the current population will need to be estimated.

◮ Transition rates between states need to be determined.

◮ Assumptions need to be formulated regarding transition rates.

◮ Projecting the number of persons with cancer with the need of treatment under different

scenarios.

Let X(t) denote the state occupied by the stochastic process at a specific time, t ≥ 0.

According to Amorim et al. (2011), the transition probability for the two states i and j where

s < t, is represented by

pij(s, t) = P (X(t) = j|X(s) = i).

The estimation of the transition probability pij(s, t) attracted much interest since it allows for

the long-term prediction of the process (Amorim et al., 2011). A non-parametric estimator

of pij(s, t) for Markov models was introduced by Aalen and Johansen (1978). The Markov

assumption requires that the future evolution of the process is independent of the state

previously visited as well as independent of the times of the transition amongst the states

7
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2 LITERATURE REVIEW ON MULTI-STATE MODELS AND IMPUTATION

given the present state of the process (Amorim et al., 2011).

Ideally, the transition probabilities should be obtained directly from the data. An alternative

way of calculation the transition probabilities is by using the Markov model approach proposed

by Sullivan (1971). The structure of the multi-state Markov model is given in Figure 2.1. The

multi-state Markov model will thoroughly be discussed in subsequent sections.

Figure 2.1 Transitions in the three-state Markov model

2.2 Multi-state Models

According to Mafu (2014), a multi-state model (MSM) is modelling time for event data where

all the individuals start in one or more states, and eventually may end up in one or several

absorbing state(s). It has also been defined as a process in which an individual move through a

series of states in continuous time. A longitudinal dataset or panel dataset can be observed and

investigated with a MSM. A panel dataset is defined when a sample of n subjects are followed

over time and multiple observations on each subject is made (Mafu, 2014). Some of the

individuals may also be censored before they reach an absorbing state. Censored observations

cause some model difficulties and therefore need to be accounted for.

Mafu (2014) states that when considering MSMs, it is desired to investigate the effect of

different risk factors. Therefore, in a MSM, the relationship between different predictors and

the outcome or variable of interest is studied. The variable of interest can be seen as the state that

each individual occupies at each point in time. The transition intensities, in MSMs, provide the

hazards of moving from one state to another (Mafu, 2014). The transition intensities can also be

used to calculate the mean sojourn time in any given state. In this section, the Markov process,

the transition probability matrix, the transition intensity matrix, sojourn time and Markov chain
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properties are thoroughly discussed.

2.2.1 Markov process

The Markov process, X(t), has by definition no after-effect properties. Zhang and Zhang (2009)

explains that the after-effect properties imply that the state of the subject at time t > tm is only

dependent on the state at time tm in some process given that the state is known at time tm, but is

independent of the state before time tm. Therefore, a Markov process is a stochastic process in

which the future knowledge of the process is only provided by the current state of the process

(Mafu, 2014).

Andrey Markov (1906) first introduced the Markov chain model. This type of model has been

applied in various fields including physics, economics, finance and social sciences (Cong, 2010).

According to Cong (2010), this model provides an efficient way of describing a process in which

an individual move through a series of states in continuous time. Consequently, it has also been

used extensively in the field of healthcare, where the progression of disease is of importance to

both patients and clinicians (Cong, 2010).

Cong (2010) explains that the Markov chain model describes a finite or infinite random process

X = {Xt}t≥1 = {X1, X2, ...}.

The Markov model considers the dependencies between the X ′
is. This is the greatest difference

between the independent and identically distributed (i.i.d.) model, which assumes the

independency of the sequence of events X ′
is, and the Markov model (Cong, 2010).

Let X = {X1, X2, ..., XN} be a random process of random variables taking on values in a

discrete state space E = {1, 2, ..., e} and Xt be the state of the process of an individual at time

t. Now, let the realisation of the entire history of the process up to and including time t be

{Xt = xt, Xt−1 = xt−1, ..., X1 = x1},

where xt, xt−1, ..., x1 is a sequence of states at different time points. A random process is

9
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classified as a Markov Chain if it satisfies the following condition:

P (Xt+1 = xt+1|Xt = xt, Xt−1 = xt−1, ...,X1 = x1) = P (Xt+1 = xt+1|Xt = xt), (2.2)

for every sequence x1, ..., xt, xt+1 of the elements in E and every time point t ≥ 1 (Cong, 2010).

In the stochastic process, the system will enter a state, spend time in the state (referred to as the

sojourn time) and then move to another state where it will spend another sojourn time in that

state (Mafu, 2014).

2.2.2 Transition probability matrix

Let pij be the transition probability of the system moving from state i to state j. The transition

probability of moving from state i to state j at time t is defined as

pij(t) = p(Xt+1 = j|Xt = i). (2.3)

In the case where the transition probabilities are independent of time, pij(t) can be written as

pij and then the Markov chain is referred to as time-homogeneous (Cong, 2010).

The transition probability matrix of a multi-state process at time t, is an e × e matrix and can

be expressed as

P = P (t) =






p11(t) p12(t) ... p1e(t)
p21(t) p22(t) ... p2e(t)
... ... ... ...

pe1(t) pe2(t) ... pee(t)




 , (2.4)

where E is the discrete state space E = {1, 2, ..., e}.

The transition probability matrix (2.4), is classified as a stochastic matrix since for any row i,
�

j

pij = 1 is true (Mafu, 2014). Therefore, the probabilities in each of the rows of the transition

probability matrix add up to one (Cong, 2010). The entries of the probability transition matrix

have been defined in (2.3) and these entries define the transition or movement probabilities of

individuals through states (Mafu, 2014). The matrix defined in (2.4), is the transition probability

matrix with its elements providing the probability of being in state j at time t + 1, conditional

on being in state i at time t. The transition probability matrix is time dependent and is

therefore denoted as P (t) instead of P (Mafu, 2014). In time homogeneous Markov models,

the dependency of t is omitted.

10
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All the probabilities in the transition probability matrix must be greater than or equal to zero,

that is pij ≥ 0, ∀j, iǫ{1, ..., E}, and each row must sum to one
e�

j

pij = 1,∀i, j ǫ{1, ..., e}
(Mafu, 2014).

For illustration purposes, consider a 3-state model with transition probability matrix

P (t) =




p11(t) p12(t) p13(t)
p21(t) p22(t) p23(t)
p31(t) p32(t) p33(t)



 .

Since each row must sum to one, i.e. p11(t) + p12(t) + p13(t)) = 1 and each probability must

be greater than or equal to zero, e.g. p12(t) ≥ 0.

For an n-step state transition probability matrix, let pij(n) be the conditional probability that

the process will be in state j after precisely n transitions, given that it is in state i at present

(Ibe, 2009). Therefore,
pij(n) = P [Xm+n = j|Xm = i]

pij(0) =

�
1, i = j
0, i �= j

pij(1) = pij

.

For illustration purposes, consider a two-step transition probability pij(2), which is defined as

pij(2) = P [Xm+2 = j|Xm = i].

If m = 0, pij(2) =
�

k

pkjpik =
�

k

pikpkj, where the summation is taken over all possible

intermediate states k. Therefore, the probability of starting in state i and being in state j after the

second transition is the probability that the individual first goes from state i to an intermediate

state k and then to state j. The probability pij(n) is the ijth entry in the probability matrix Pn.

This probability matrix is given as

Pn =






p11(n) p12(n) ... p1N(n)
p21(n) p22(n) ... p2N(n)
... ... ... ...

pN1(n) pN2(n) ... pNN(n)




 ,

with N representing the number of states. If n = 1, this matrix is referred to as the one-

step probability matrix. The n-step probability matrix is obtained by multiplying the transition

probability matrix by itself n times (Mafu, 2014). As n −→∞, the transition probability matrix
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pij(n) does not depend on i anymore (Mafu, 2014) and consequently, P (X(n) = j) approaches

a constant. In the Markov chain, if the limit exists, the limiting-state probabilities is defined as

lim
n−→∞

P (X(n) = j) = πj , j = 1, 2, ..., N. (2.5)

If the limiting-state probabilities exist but are independent of the initial state, (2.5) simplifies to

lim
n−→∞

pij(n) = πj = lim
n−→∞

	

k

pik(n− 1)pkj =
	

k

πkpkj.

According to Mafu (2014), the limiting-state probability vector π= (π1, π2, ..., πN ) will result

in πj =
�

πkpkj where j = 1, ..., N , π= πP and
N�

j=1

πj = 1.

The transition probability matrix must follow the same operation rules as the conventional

matrix and will therefore satisfy the property P k = P (k−1) ∗P = P k (Zhang and Zhang, 2009).

The average transition process of the Markov chain is only dependent on the system’s initial

state and the transition matrix. The initial state of the process can be represented by

X(0) = [X
(0)
ij ]1×n.

Let the process in a state k be X(k) after the kth transition. According to the Chapman-

Kolmogorov equation (Zhang and Zhang, 2009), X(k+1) = X(k) ∗ P . The following recursive

formula can then be obtained:

X(1) = X(0) ∗ P,
X(2) = X(1) ∗ P = X(0) ∗ P 2,

...,
X(k) = X(k−1) ∗ P = ... = X(0) ∗ P k

Therefore,

X(k+1) = X(0) ∗ P k+1.

2.2.3 Transition intensity matrix

The intensity between two states i and j, can be defined as the rate of change of the probability

pij in a small time interval∆t (Mafu, 2014). The transition intensity is defined as

qij(t) = lim
∆t−→0

P (X(t+∆t) = j|X(t) = i)

∆t
.

12
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All possible intensities between possible states are collected in the transition intensity matrix

denoted by Q (Mafu, 2014) and given by

Q =






q11 q12 ... q1e
q21 q22 ... q2e
... ... ... ...
qe1 qe2 ... qee




 .

The transition intensity matrix is used to define the multi-state model and used to calculate

the transition probability matrix in (2.4). The elements in each of the rows of the transition

intensity matrix must also sum to zero,
e�

j

qij = 0, and the off-diagonal elements of Q must

be non-negative qij ≥ 0, i �= j. The diagonal elements must be negative for all values where

i is not equal to j, qii = −�
i�=j

qij for i = 1, ..., e (Mafu, 2014). Therefore, the rates on the

diagonal represent states that subjects remain stationary and the off-diagonal values contain

rates in which the subject moves to other states (Mafu, 2014).

As an example, for e = 3, the transition intensity matrix for a 3-state model is given by

Q(q) =




−(q12 + q13) q12 q13

q21 −(q21 + q23) q23
q31 q32 −(q31 + q32)



 .

The off-diagonals in this matrix are rates at which the subjects move into other states and the

diagonal elements are rates at which the subjects remain in their states (Mafu, 2014).

The transition probability matrix can be obtained by taking the matrix exponential of the scaled

transition intensity matrix P (t) = exp(tQ). The exponential of a matrix C can be defined as

exp(C) = 1 + C2

2!
+ C3

3!
+ ... using Taylor’s Theorem.

The transition intensity matrix Q and transition probability matrix P can be obtained by

maximising the likelihood, L(Q). For an individual, let a series of times be (t1, t2, ..., tn) with

corresponding states (x1, x2, ..., xn). A pair of successive states are observed to be i and j at

time ti and tj . Three scenarios should be considered:

i. The information of the individual is obtained at arbitrary observation times and therefore

the exact time of the transition of stages is unknown. Then, the contribution to the

likelihood from this pair of states is calculated as Lij = pij(tj − ti).
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ii. The exact times of the transitions between states are recorded and there are no transitions

between the observed times. Then, the contribution to the likelihood from this pair of

states is Lij = pij(tj − ti)qij .

iii. The time of death (j) is known but the state on the previous instant (k) just before

death is unknown. The contribution to the likelihood from this pair of states is

Lij =
�

k �=j

pik(tj − ti)qkj .

After the construction of L(Q), the estimated intensity and transition probabilities will

maximise L(Q)(Cong, 2010).

2.2.4 Sojourn time

Rubino and Sericola (1988) explains that the sojourn time of a process X in a subset of states,

is an integer valued random variable. It is the length of time that the process X remains in the

state being occupied at time t.

The sojourn time of a continuous Markov process that is in state i is an independent

and exponentially distributed random variable with mean − 1
qii

(Cinlar, 1975). The remaining

elements in the ith row of the transition intensity matrix is proportional to the probabilities that

govern the next state after state i to which the individual makes a transition. The probability

that the next transition is from state i to state j is − qij
qii

(Mafu, 2014). The new state and the

sojourn time are only dependent on state i and not on the history of the process prior to

time t. Therefore, the sojourn time and the new state are independent of each other, given that

the current state is state i. The mean sojourn time describes the average time period in a single

stay in a state (Mafu, 2014).

2.2.5 Markov chain properties

2.2.5.1 No after effect property

It is seen from the above that the state of random variables with the Markov properties is only

dependent on the state of the random variable and not on the previous states of the random
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variable (Zhang and Zhang, 2009).

2.2.5.2 Stationary distribution

According to Zhang and Zhang (2009), the state probability distribution {π(i), iǫE} with the

Markov chain must satisfy π(i) =
�

jǫI

π(j)Pij with Pij the state transition matrix of the random

process and E the set of states.

2.2.5.3 Ergodic property

The probability of state j must stabilise in π(j), j = 0, 1, ..., S after a sufficiently long

time, independent of the state the process originates, hence, lim
n−→∞

Pij = π(j). Consequently,

irrespective in which state the process originates, if the transition step number is sufficiently

large, the probability of transitioning to state j approach a constant equal to π(j). This

property states that the transition probability π(j) is an unique solution when the equations

satisfy π(j) > 0,
s�

j=0

η(j) = 1 (Zhang and Zhang, 2009).

2.2.5.4 Interlinked property of state

A stochastic process with the Markov property will reach a state k through a limited transition

step regardless of the initial state being either i or j after certain transition steps (Zhang

and Zhang, 2009).

2.3 Multi-state Markov Model

2.3.1 Introduction

A multi-state Markov model describes the process in which a patient moves through a series of

states (Jackson, 2011). Fortunately, the msm package in R is one of the simpler packages that

can be used to fit a multi-state model to a longitudinal dataset (Jackson, 2011). A longitudinal

dataset consists of repeated measurements of the process at arbitrary times. The exact times

of the state changes are unobserved and therefore unknown. For example, the state of a breast

cancer patient may only be known when the patient consults with the oncologist.

15

Stellenbosch University  https://scholar.sun.ac.za



2 LITERATURE REVIEW ON MULTI-STATE MODELS AND IMPUTATION

The features of the msm package includes the ability to model transition rates and to include

covariates in the models. It can also model data with censored states. Figure 2.2 gives an

illustration of a general multi-state model.

Figure 2.2 General multi-state model (Source: Jackson, 2016: 3)

Figure 2.2 illustrates a multi-state model in continuous time. Its four states are labelled 1, 2, 3

and 4. At a time t, the individual is in state X(t). The arrows show which transitions are

possible between states. The next state to which the individual moves, and the time of the

change, are governed by a set of transition intensities qij(t, z(t)) for each pair of states i and

j. The intensities may also depend on the time of the process t, or more generally a set

of individual-specific or time-varying explanatory variables z(t). The intensity represents the

instantaneous risk of moving from state i to state j and is given by

qij(t, z(t)) =
lim

∆t −→ 0
P (X(t+∆t) = j|X(t) = i)

∆t
. (2.6)

The intensities (2.6) form a matrix Q in which the rows sum to zero, such that the diagonal

entries are defined by

qii = −
	

i�=j

qij .

To fit a multi-state model to data, the transition intensity matrix must be estimated. This thesis

concentrates on Markov models, which was explained in section 2.2.1, whereby the Markov

assumption requires the future evolution only to be dependend on the current state. That is,
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qij(t, z(t), Ft) is independent of Ft, the observation history of the process up to the time

preceding t.

Cox and Miller (1965) gives a thorough introduction into the theory of continuous-time Markov

chains. A single period of occupancy in state i has an exponential distribution with rate −qii
(or mean−1/qii) in a time-homogeneous continuous-time Markov model (Jackson, 2011). The

elements that remain in the ith row of Q is proportional to the probabilities that govern the

next state after i to which the individual transitions. The probability given by −qij/qii, is the

probability of the individual’s next move being from state i to state j (Jackson, 2011).

Figure 2.3 General model for disease progression (Source: Jackson, 2016: 3)

2.3.2 Disease progression models

The msm package was motivated by the broad applications to modelling of diseases (Jackson,

2011). As previously mentioned, multi-state Markov models in continuous time are often used

in the progression of diseases. Figure 2.3 contains a model that is very commonly used. It

represents a series of successively but more severe disease stages and then eventual death, which

is regarded as an absorbing state (Jackson, 2011). From the illustration it is seen that a patient

may move from one state to another and back again or die at any stage. Observations of the

state Xi(t) are made on several individuals i at different time points t. These time points may

vary between individuals.

A homogeneous continuous-time Markov process can be used to model the stages of the disease
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with a transition matrix Q, as given in Figure 2.3. The illness-death model is commonly used

with only three states representing health, illness and death. This model is illustrated in Figure

2.4. In this model, transitions are allowed from health to illness, illness to death and health to

death. Sometimes recovery from illness to health may be considered.

Multi-state modelling has been used in a wide range of cancer applications, for example, Kay

(1986) used it in hepatic cancer, Duffy and Chen (1995) and Chen et al. (1996) used it in breast

cancer screening and Kirby and Spiegelhalter (1994) used it in cervical cancer screening.

Figure 2.4 Illness-death model (Source: Jackson, 2016: 5)

2.3.3 Arbitrary observation times

Panel data are data with multiple dimensions that involve measurements over time. The panel

data from monitoring the disease progression are often incomplete. Patients are usually seen

at intermittent follow-up times at which information is collected, but the information from the

periods between the visits are unavailable (Jackson, 2011). The exact time of the start of the

disease is often unknown. Therefore, the state changes in a multi-state model and usually occur

at unknown times whereby death times are mostly recorded within a day. Figure 2.5 illustrates a

typical sampling situation and this specific individual is observed at four times over ten months.

The final time is the death date which is recorded within a day. The only other information

that is available is the occupancy of states 2, 2 and 1 and times 1.5, 3.5 and 5. It is unknown

when the movement between states took place. For example, although the patient was in state

3 between times 7 and 9 months, it was not observed.

18

Stellenbosch University  https://scholar.sun.ac.za



2 LITERATURE REVIEW ON MULTI-STATE MODELS AND IMPUTATION

Figure 2.5 The evolution of a multi-state model (Source: Jackson, 2016: 5)

The reasons for observations made at given times must be considered when fitting a model to

longitudinal data with arbitrary sampling times (Jackson, 2011). As in the case with missing

data, a particular observation that is missing may implicitly give information about the value of

that observation (Jackson, 2011). There are four different observation schemes listed below.

i. Fixed - patients observed at fixed intervals specified in advance.

ii. Random - the sampling time vary at random and independent of the current state of the

disease.

iii. Doctor’s care - the more ill a patient, the more closely the patient is observed and therefore,

the next sampling time is chosen based on the current state of the disease.

iv. Patient self-selection - the patient decides on which occasions to visit the doctor e.g. when

in poor condition.

Conditions under which sampling times are informative was discussed by Grüger et al. (1991).

The inference made may be biased if a multi-state model is fitted while ignoring the

information available in the sampling times (Grüger et al., 1991). The sampling times should be

modelled along with the observation process X(t), since the sampling times are often random

themselves. The ideal situation, however, is when the joint likelihood for the times and

the process is proportional to the likelihood obtained when the sampling times are fixed in

advance (Jackson, 2011). If this is the case, parameters of the process can be estimated

independently of the parameters of the sampling scheme. Grüger et al. (1991) showed

that patient self-selection is informative whereas fixed, random and doctor’s care observation

policies are not informative.
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2.3.4 Likelihood for the multi-state model

A general method for evaluating the likelihood for a general multi-state model in continuous

time was described by Kalbfleisch and Lawless (1985) and at a later stage by Kay (1986). This

method is applicable to all forms of the transition matrix. Here, the sampling times are assumed

to be non-informative and the only available information is the observed state at a set of times.

This can be seen in Figure 2.5.

According to Jackson (2011) and as mentioned in the transition probability matrix section, the

transition probability matrix P (t) is used to calculate the likelihood. The (i, j) entry of P (t),

pij(t) is the probability of being in state i at time t + u, given the state is j at time u (for a

time-homogeneous process). This does not give any information about the time of transition

from state i to j. The process may have also entered other states between times u and t + u.

The matrix exponential of the scaled transition intensity matrix can be taken to calculate P (t).

Therefore, P (t) = exp(tQ). This can be quite a difficult task and it is acceptable for simpler

models to calculate an analytic expression for each element of P (t) in terms of Q. This is

generally a faster process and avoids the potential of having numerical instability of calculating

the matrix exponential.

The three-state illness-death model, as described in section 2.3.2, where state one is disease

free, state two is disease and state 3 is death, with no recovery, has a transition intensity matrix

of the form

Q =




−(q12 + q13) q12 q13

0 −q23 q23
0 0 0



 .
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The transition probabilities at time t that correspond to the transition intensity matrix Q are

p11(t) = e−(q12+q13)t

p12(t) =

� q12
q12+q13−q23

(e−q23t − e−(q12+q13)t) (q12 + q13 �= q23)

q
12
te−(q12+q13)t (q12 + q13 = q23)

p13(t) =

�
1− e−(q12+q13)t − q12

q12+q13−q23
(e−q23t − e−(q12+q13)t) (q12 + q13 �= q23)

(−1 + e(q12+q13)t − q
12
t)e−(q12+q13)t (q12 + q13 = q23)

p21(t) = 0
p22(t) = e−q23t

p23(t) = 1− e−q23t

p31(t) = 0
p32(t) = 0
p33(t) = 1

.

According to Jackson (2011), the msm package calculates the transition probability matrix P (t)

analytically for selected models with two, three, four and five states. The framework of the

model of special interest in this thesis can be found in Figure 2.1.

2.3.4.1 The likelihood for intermittently-observed processes

Suppose that the data for an individual n consist of a series of times (tn1, tn2, ...tnin) and

corresponding observed disease states (X(tn1), ...,X(tnin)). A general multi-state model is

considered, with a pair of successive observed disease states X(tj), X(tj+1) at times tj , tj+1.

The contribution to the likelihood of this pair of states can be expressed as

Li,j = pX(tj),X(tj+1)(tj+1 − tj). (2.7)

This expression is also the entry of the transition matrix P (t) at the X th
(tj)

row and Xth
(tj+1)

column

evaluated at time t = tj+1− tj . The product of all such terms Ln,j over all the individuals n and

all the transitions, is then equal to the full likelihood L(Q). The likelihood therefore depends

on the unknown transition matrix Q, which was used to determine P (t) (Jackson, 2011).

2.3.4.2 Exactly observed death times

It is commonly found, in observational studies of chronic diseases, that the time of death is

known but the state is unknown the instant prior to death. If X(tj+1) = D is such a death state,

the contribution to the likelihood is summed over the unknown state m on the instant just before
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death. Then the expression for the likelihood is given by

Li,j =
	

m �=D

pX(tj),m(tj+1 − tj)qm,D.

All the possible states m which can be visited between X(tj) and D are summed over (Jackson,

2011).

2.3.4.3 Exactly observed transition times

According to Jackson (2011), when the times (ti1, ti2, ...tini) are the exact transition times

between states, with no transitions between the observation times, the contributions can be

expressed as

Li,j = exp(qX(tj),X(tj)(tj+1 − tj))qX(tj),X(tj+1),

since the state is assumed to be X(tj) throughout the interval between time tj and time tj+1,

with a known transition to state X(tj+1) at time tj+1.

2.3.4.4 Censored states

A quantity with the exact value unknown, but known to be in a certain interval, is referred to as a

censored quantity (Jackson, 2011). For intermittently-observed processes in multi-state models,

the times of changes of states are usually interval censored, because it is known to be within

bounded intervals,with the likelihood in (2.7). There are certain circumstances in which states

or event times may be censored, for example at the end of a chronic disease, study patients are

known to be alive but in an unknown state. For a censored observation X(tj+1) that is known

only to be in a state in the set E, have contribution to the likelihood expressed as

Li,j =
	

m∈E

pX(tj),m(tj+1 − tj).

This likelihood is not necessary if the state is known at the end of the study, for such a case (2.7)

applies.

The msm package allows multi-state models to be fitted to data from processes with arbitrary

observation times, exactly observed transition times, exact death times and censored, or a

mixture of the above-mentioned schemes (Jackson, 2011).
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2.3.5 Covariates

It is often of interest, the relationship of fixed or time-varying characteristics of individuals to

their transition rates (Jackson, 2011). The explanatory variables for a particular transition

intensity can be investigated by modelling the intensity as a function of the variables. A

variation of the proportional hazards model was described by Marshall and Jones (1995), where

the transition intensity matrix elements qij which are of interest can be replaced by

qij(z(t)) = q
(0)
ij exp(β

T
ijz(t)).

The new transition intensity matrix Q can then be used to determine the likelihood. The

contributions to the likelihood of the form pij(t− u) can be replaced by pij(t− u, z(u)), if the

covariates z(t) are time dependent. This expression requires that the value of the covariate is

known at every observation time u. The covariates are sometimes observed at different times to

the main responses. It could then sometimes be assumed that the covariate is a step function,

which remains constant between observation times (Marshall and Jones, 1995).

The msm package accounts for individual-specific or time-dependent covariates.

Time-dependent covariates are assumed to be piecewise-constant in order to calculate the

transition probabilities P (t) on which the likelihood depends. Time-homogeneous models

refer to models whose intensities change with time. Marshall and Jones (1995) also described

the likelihood ratio and Wald tests for selection of covariates and testing hypotheses.

2.3.6 Semi-Markov process

The Markov assumption imply that the future movement of the process only depend on the

current state and not on the past states (Mafu, 2014). The Markov assumption however imposes

restrictions on the distribution of the sojourn time in a state. The sojourn time in a state should

be exponentially distributed in continuous Markov processes and geometrically distributed in

discrete Markov processes. The Markov assumption can be relaxed to overcome this problem,

to allow arbitrarily distributed sojourn times in any state that still have the Markov assumption

without being so restrictive (Mafu, 2014). Such a process is referred to as a semi-Markov

process and is concerned with the random variables describing the state of the process. It is
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a generalisation of the Markov process, which makes transitions from state to state, such as

a Markov process, but the amount of time spent in each state before the next transition is an

arbitrary random variable that is dependent on the next state of the process (Ibe, 2009).

2.4 Missing Data

2.4.1 Introduction

The dataset supplied by Isimo Health contains missing data within the covariates. In order to

handle missing data, the choice is either to delete incomplete observations or impute the missing

values. To simply discard observations with missing data is not a reasonable solution, since

valuable information is lost and the inferential power is compromised when doing the analysis

after deleting incomplete data (Tang and Ishwaran, 2017). Therefore, it is better practice to

rather impute the missing data. The dataset simulated in Chapter Four, is used in Chapter Five

to test different imputation techniques to complete the missing data.

The three major problems with missing data, or otherwise known as incomplete data, are

described by Barnard and Meng (1999) as:

i. The loss of information and the loss of efficiency or power due to the loss of data.

ii. The complication of handling the data as well as complications in the computation and

analysis due to the irregularities in the patterns of the data.

iii. The potential bias due to the systematic differences between the observed data and the

unobserved data.

According to Little and Rubin (1987), some of the techniques to handle missing data include

deleting an entire case that have one or more missing values or replacing the missing values

with a mean value of the missing data. Deleting cases with missing data can produce biased

parameter estimates whereas using the mean values decrease the variability of the parameter

estimates (Little and Rubin, 1987).

Imputation is an alternative approach to handling missing data. Imputation is defined as the

process, where missing values are estimated from all the data available (Little and Rubin, 1987).
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Andridge and Little (2010) also described missing value imputation as the replacement of

missing data with acceptable values, by using the data in the recorded covariates, to unveil the

information in the incomplete cases and also make inferences on the population parameters.

The advantage of using imputation techniques is that once the missing data have been imputed,

standard complete-data methods can be used to produce statistical results (Barnard and Meng,

1999). Much interest has been shown in using machine learning techniques to impute missing

data. One of the approaches, based on Random Forests (RF), developed by Breiman (2001),

will also be tested in Chapter Five together with another imputation technique.

2.4.2 Types of missing data

According to Rubin (1976), ignorability is an important concept in the literature of imputation

techniques. Ignorability is the extent to which researchers have theoretical knowledge of the

causes of data being missing.

In deciding how to handle missing data, it is helpful to know the reasons for the data being

missing (Gelman and Hill, 2006). Missing data are categorised into four general missingness

mechanisms. The matrix representation of the dataset which include the observed and missing

values is denoted by X = (Xobs,Xmis), with Xobs the data that is observed and Xmis the data

that is missing. This notation was introduced by Vargas-Chanes (2000).

2.4.2.1 Missingness at random

In the case where the probability of recording a value X depend on the observed variable Z

and the probability do not depend on the missing values, the data can be regarded as missing at

random (MAR). Therefore, for MAR, the probability that an observation is missing depends on

what is actually observed. In principle, one can use the data to predict the missing values

(Rubin, 1976). MAR assumes that the probability of an observation being missing depends

only on the information that is available. The MAR assumption is often referred to as

the ignorability assumption (Gelman and Hill, 2006). Gelman and Hill (2006) mentions that

missingness at random is relatively easy to handle since all variables that affect the probability

of missingness can be included as regression inputs. In summary, MAR is when the observation
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probability is independent of Xmis given the covariates Z and the observed responses Xobs

(Spagnoli et al., 2011).

2.4.2.2 Missingness completely at random

Missing completely at random (MCAR) is a less restrictive condition and occurs when there

is no particular reason for a value being missing. Such missing data happened by chance and

therefore the mechanism of missing data is ignorable. Basically, the missing data are

independent of the data values. In the MCAR case, the use of only the complete

data (observations without any missing values) and therefore deleting cases, will give an

unbiased result (Gelman and Hill, 2006). This is however only the case where the proportion

of observations with missing values are rather small. A variable is considered MCAR when the

probability of data being missing is the same for all of the units (Gelman and Hill, 2006).

According to Spagnoli et al. (2001), MCAR can be summarised as, conditional on the covariates

Z, the probability of the observation is independent of X = (Xobs, Xmis).

2.4.2.3 Missingness not at random or Non-ignorable missing data

As soon as the missing information depends on the information that has not been recorded

(unobserved variables), missingness is no longer at random and therefore referred to as missing

not at random (MNAR). Such missing cases must be explicitly modelled or it must be

accepted that some bias will be included in the inferences made from the data (Gelman and Hill,

2006). This phenomenon occurs when the missing data depend on the unobserved variables.

It is referred to as non-ignorable (NI) since the mechanism explaining the missing data is not

observed or not accessible. Schafer (1997) addressed the point of transforming NI missing data

to MAR. This will happen when missing data are not ignorable and the MAR conditions are not

met.

2.4.2.4 Missingness dependent on the missing values

When the probability of the missingness depends on the variable itself, it is referred to as

missingness dependent on the missing values (Gelman and Hill, 2006).
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2.4.3 Notation of imputation techniques

The density function of the complete dataset can be expressed as

p(X|θ) =
n


i=1

p(Xi|θ), (2.8)

where θ denotes the parameter governing the underlying distribution of X.

Suppose R is an indicator matrix with 1 if observed and 0 if the data is missing. Assuming R

has the same dimensions as X , the joint conditional probability is expressed as

p(X,R|θ, φ) = p(X|θ)p(R|X,φ), (2.9)

with φ denoting the conditional distribution of R given the complete dataset X . The complete

dataset in (2.9) can be replaced by the observed data, which implies that the missing portion is

integrated over, delivering the expression

p(Xobs, R|θ, φ) =
�

p(Xobs,Xmis|θ)p(R|Xobs, Xmis, φ)dXmis. (2.10)

The distribution of the indicator matrix R is independent of the observed and the missing data

if the missing data mechanism is missing completely at random. Rubin (1976) consequently

defines MCAR as

p(R|Xobs, Xmis, φ) = p(R|φ). (2.11)

This means that the distribution of the indicators in R of the observed and missing variables are

independent on what is observed or missed. If the distribution of the missing data mechanism

is independent of the missing values, but dependent on what is observed, i.e. the data is MAR,

the density function can be expressed as

p(R|Xobs, Xmis, φ) = p(R|Xobs, φ). (2.12)

Therefore, the missing mechanism is found in the data itself. In the case of the distribution of

the observed values being unaffected by what is missing and taking only what is observed as

being relevant, the substitution of (2.12) into (2.10) will lead to

p(Xobs, R|θ, φ) = p(R|Xobs, φ)
�

p(Xobs, Xmis|θ, φ)dXmis = p(R|Xobs, φ)p(Xobs|θ). (2.13)
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Consequently, the joint distribution of the parameter space (θ, φ) can be divided into the product

of the parameter space θ and φ, since the missing mechanism φ is independent of the observed

data θ . This is valid under the MAR conditions.

David et al. (1986) stated that it is acceptable to impute by using the MAR assumption whenever

the missing mechanism is NI, with the condition that there are covariates available for analysis.

2.4.4 Missing data techniques discarding data

According to Gelman and Hill (2006), many of the approaches to handle missing data simply

ignores some of the data. Gelman and Hill (2006) discussed these approaches and showed that

many of them lead to biased estimates. Therefore, larger standard deviations may be obtained

due to sample sizes being reduced. The approaches discussed by Gelman and Hill (2006)

include complete-case analysis (excluding all units with the outcome or any inputs missing),

available-case analysis and non-response weighting.

2.4.5 Missing data techniques retaining all data - imputation techniques

Instead of discarding data with missing values, the missing values can be filled-in or imputed

(Gelman and Hill, 2006). Imputation methods keep the full sample size. Additional to the

simple missing data imputation techniques, three imputation methods will be discussed that

includes the Expectation-Maximisation (EM) algorithm, multiple imputation (MI) and Full

Information Maximum Likelihood (FIML) methods. The first two methods produce complete

datasets with imputed values with the advantage being that the datasets generated can be used

for analyses per usual, including structural equation models. The FIML method is a maximum

likelihood approach for handling missing data, specifically in the context of structural equations.

Thereafter, the use of Random Forests to impute missing data will also be discussed.

2.4.5.1 Simple missing data imputation techniques

Mean imputation is one of the easiest ways to impute missing data. It replaces each of the

missing values with the mean of the observed values for that variable. According to Gelman

28

Stellenbosch University  https://scholar.sun.ac.za



2 LITERATURE REVIEW ON MULTI-STATE MODELS AND IMPUTATION

and Hill (2006), this method can lead to underestimates of the standard deviation and it distorts

the relationship between variables by basically pulling the estimates of the correlation towards

zero (Gelman and Hill, 2006). Other methods include last value carried forward, using the

information from related observations, indicator variables for missingness of categorical

predictors, indicator variables for missingness of continuous predictors and imputation based

on logical rules (Gelman and Hill, 2006).

2.4.5.2 Expectation Maximisation

Dempster et al. (1977) proposed the first idea for data imputation methods. The EM method

provided a new perspective to maximum likelihood methods, when dealing with missing data

(Dempster et al., 1977). Dempster et al. (1977) showed that filling in missing values should

receive special attention and that deleting the data with missing values is an insufficient way of

handling incomplete data.

Susianto et al. (2017) explains that the EM algorithm is a parametric method that imputes

missing values based on the maximum likelihood estimation. The EM algorithm uses an

iterative procedure to find the maximum likelihood estimators of a parameter vector through a

two step algorithm (Susianto et al., 2017). The EM algorithm consists of two steps being the

Expectation step (E-step) and the Maximisation step (M-step) (Dempster et al., 1977).

The conditional expected value of the full data of the log likelihood function l(θ|X) given the

observed data is determined in the E-step (Susianto et al., 2017). Therefore, the expected values

of the incomplete observations are computed in the E-step, given the observed data and current

parameter estimates. In other words, in this step the missing data is replaced by estimated

values and the model parameters are estimated. Suppose, that for any incomplete dataset, the

distribution of the complete dataset X can be expressed as

f(X|θ) = f(Xmis, Xobs|θ) (2.14)

= f(Xobs|θ)f(Xmis|Xobs, θ),

where f(Xobs|θ) is the distribution of the observed data Xobs and f(Xmis|Xobs, θ) is the

distribution of the missing dataset given the observed data. From (2.14), the log likelihood
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function can be obtained and expressed as

l(θ|X) = l(θ|Xobs) + log f(Xmis|Xobs, θ) (2.15)

where l(θ|X) is the log likelihood function of the complete dataset, l(θ|Xobs) is the log

likelihood function of the observed dataset and f(Xmis|Xobs, θ) is the predictive distribution

of the missing data given θ. By maximising the log likelihood function (2.15), θ is estimated.

The right side of (2.15) can not be calculated since Xmis is unknown. The value of

l(θ|X) is calculated based on the average value log f(Xmis|Xobs, θ). This is calculated using

the predictive distribution f(Xmis|Xobs, θ(t)) where θ(t) is the temporary estimation of unknown

parameters. The complete case analysis can be used to calculate an initial esimation θ(0).

Using this approach, the mean value of (2.15) can be expressed as

Q(θ|θ(t)) = l(θ|Xobs) +
�
log f(Xmis|Xobs, θ)f(Xmis|Xobs, θ(t))∂Xmis (2.16)

=

�
[l(θ|Xobs) +

�
log f(Xmis|Xobs, θ)]f(Xmis|Xobs, θ(t))∂Xmis

=

�
l(θ|Xobs)f(Xmis|Xobs, θ(t))∂Xmis.

The expression given in (2.16) gives a conditional expected value of the log likelihood

function for the complete dataset l(θ|X), given the observed dataset and the inital estimate of

the unknown parameter. (Susianto et al., 2017).

In the M-step, the missing data is replaced by the expected conditional value and the parameter

estimates are computed by making use of the maximum likelihood method (Susianto et al., 2017).

The M-step is done by iteratively estimating θ(t+1) which maximises Q(θ|θ(t)) as

Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t)).

The E-step and M-step are iterated until a pre-specified convergence criterion is met (Dempster

et al., 1977).

The missing values provide the information required to generate parameter estimates.

Reciprocally the estimates are generated and used to fill in the missing values (Schafer, 1997).

This algorithm substitutes missing values using an initial value based on θ. It then uses the

initial parameter to re-estimate the value of θ using the observed data and repeat the process

30

Stellenbosch University  https://scholar.sun.ac.za



2 LITERATURE REVIEW ON MULTI-STATE MODELS AND IMPUTATION

until a specified criterion for convergence is met. Dempster et al. (1977) originally described

the EM algorithm for non-ignorable models. Further details are also provided by Tanner (1993)

and Schafer (1997).

2.4.5.3 Multiple Imputations - The MCMC Method

The EM method was extended by Rubin (1987). Rubin (1987) proposed a stochastic approach

referred to as Multiple Imputations (MI), which include Monte Carlo Markov Chain (MCMC)

techniques to improve the estimators’ efficiency. According to Rubin (1987), Schafer (1997)

and Tanner (1993), simulation techniques such as Gibbs sampling, the Metropolis algorithm,

data augmentation and sampling importance resampling (SIR) are only some of the simulation

techniques included in the MCMC methods.

According to Susianto et al. (2017), the MCMC method generates pseudo random variables

from probability distributions via Markov chains (Markov processes was discussed in section

2.2.1). MCMC is a MI method that is used to imputate missing values of a continuous dataset.

The MCMC algorithm assume that the data have a multivariate normal distribution, that the

data are MCAR or MAR, and that the pattern of the missing data are monotone or

arbitrary (Susianto et al., 2017). If the number of missing values are not too large, the inference

of MCMC will be robust according to Susianto et al. (2017).

The Gibbs Sampling and Metropolis-Hastings algorithms are the two most popular MCMC

methods. One draws from the conditional distribution of each component of

a multivariate random variable given the other components in Gibbs sampling, whereas

in Metropolis-Hastings, one draws from a probability distribution that approximate the

distribution of interest and then accept or reject the drawn value with a specified probability

(Susianto et al., 2017).

The EM algorithm discussed in section 2.4.5.2 provides a single dataset with data imputed by

estimating the observations that are missing, whereas MI augments the data by simulating a

possible set of values which delivers several sets of data with complete information. This is the

most distinct difference between the EM method and the MI method.
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MI essentially simulates data when missing data are present and therefore generates complete

datasets by imputing the missing data which is a similar procedure to the EM algorithm (Rubin,

1987). From a Bayesian perspective, the information about the known parameters is expressed

via a posterior probability distribution. Alternatively to maximum likelihood, a prior

distribution is added for the parameters and the posterior distribution of the parameters of

interest, is computed (Susianto et al., 2017). Again, Xmis and Xobs represent the missing values

and the observed values, respectively. The observed data posterior can then be expressed as

p(θ|Xobs) ∝ p(θ)p(Xobs|θ) (2.17)

where p(θ) is the prior distribution and p(Xobs|θ) the observed likelihood function. Since the

data are incomplete, the observed data posterior p(Xobs|θ) cannot be easily simulated. There-

fore, Xobs is augmented by an assumed value of Xmis which makes the resulting complete-data

posterior p(θ|Xobs, Xmis) much easier to handle. If the missing data Xmis has been observed

the observed data posterior is related to the complete-data posterior distribution that would have

been obtained, namely

p(θ|Xobs, Xmis) ∝ p(θ)p(Xobs,Xmis|θ). (2.18)

From (2.17) and (2.18), the observed data posterior can be obtained as

p(θ|Xobs) =

�
p(θ,Xmis|Xobs)dXmis (2.19)

=

�
p(θ|Xobs,Xmis)p(Xmis|Xobs)dXmis.

The posterior predictive distribution p(Xmis|Xobs) cannot be simulated directly in (2.19). It is

however possible to create random draws of Xmis from p(Xmis|Xobs) using techniques of

MCMC. The Gibbs sampling algorithm (as an example) can be used to draw the missing

values Xmis from p(Xmis|Xobs). Assuming the data have a multivariate normal distribution

allows data augmentation to be applied to Bayesian inference with missing data by repeating

two steps. (Susianto et al., 2017).

The data augmentation algorithm, using MCMC, has two steps referred to as the I-step and the

P-step. Initial estimates of the missing values are generated in the I-step. These are estimated

given the conditional distribution of the observed values and initial parameter estimates of the

distribution. In notation, given a current guess θ(t) of the parameter, random draws of missing
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values Xmis is made from the posterior predictive distribution p(Xmis|Xobs) delivering

X
(t+1)
i(mis)˜p(Xi(mis)|Xobs, θ

(t)).

Thereafter, the P-step generates the parameters’ starting values. These are estimated given the

joint distribution of the observed and the initial imputation in the I-step. A new value of θ is

therefore drawn from the complete data posterior conditional to X
(t+1)
i(mis) delivering

θ(t+1)˜p(θ|Xobs,X(t+1)
i(mis))

(Susianto et al., 2017).

Starting from the intitial values θ(0) and X
(0)
mis, these two steps define a Gibbs sampler. A

stochastic Markov chain is generated in the two steps that converges in distribution to a certain

value and produces various imputations. The stochastic sequences are {θ(t)} and {X(t)
mis}

with stationary distributions p(θ|Xobs) and p(Xmis|Xobs), respectively (Susianto et al., 2017).

Therefore, the MI algorithm generates several complete datasets. These datasets are sufficient

to capture the variability averaged over the simulated parameter estimates to obtain a single

estimate to represent the model (Rubin, 1987).

According to Rubin (1987), the motivation behind the MI method is the fact that one imputed

dataset might not represent the original variation, but multiple observations based on simulated

data could represent the outcome more efficiently.

2.4.5.4 Full Information Maximum Likelihood

Another approach to data imputation was proposed by Muthén et al. (1987). It

was proposed to use a regression model to predict the missing data from the information

available. Another method was proposed in the structural equation’s context known

as the Full Information Maximum Likelihood (FIML) method (Arbuckle, 1996; Little and

Rubin, 1987). FIML model parameters and standard errors are estimated directy from the

data available (Li, 2010). Therefore, no data preparation is required for FIML and no missing

values are imputed. A log likelihood function is calculated and maximised for each individual

when assuming a multivariate normal distribution and a MAR missingness mechanism. The

log likelihood function measures the discrepancy between the observed data and the
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current parameter estimates by using all the data available from the variables that are modeled.

Therefore, the log likelihood function being maximised for a subject i is given as

logLi = Ki −
1

2
log |

	

i

| − 1
2
(xi − µ

i
)′(
	

i

)−1(xi − µ
i
),

where xi is the raw data vector for a subject i, and µi and
	

i
are the parameter mean vector

and covariance matrix. The subscript i indicates that the sizes of the vectors and matrices differ

because the number of complete observations for a given subject may differ. The N

subject-wise discrepancy functions are then summed for the entire sample as

logL(µ,
	
) =

N	

i=1

logLi.

The FIML estimates are obtained by means of an iteration approach (Li, 2010).

In other words, this approach first uses maximum likelihood estimates for subsets of data

consisting of complete data and thereafter generates several covariance matrices with their

respective likelihood functions. Therefore, a combined likelihood function which incorporates

all possible subsets of likelihood functions, that is based on the subsets of complete data, is

generated. Unlike the other two approaches, no actual data imputation is used in the FIML

method. The available data is used to estimate the parameters using a maximum likelihood

function. This method can however only be used for structural equations.

Many covariance matrices are computed by the FIML algorithm. The number of covariance

matrices depend on the number of complete patterns in the dataset. A pattern is seen as complete

if it has a subset of variables from the original data without any missing values. Finally, a

maximum likelihood estimation procedure is performed over all possible covariance matrices

and this generates a unique set of parameter estimates for the model (Muthén et al., 1987).

2.4.5.5 Random Forests

Random Forest (RF) was first introduced by Breiman (2001). In RF, the base learner is a binary

recursive tree that is grown using random input selection (Tang, 2017). Its random feature is

formed by selecting a small group of input variables at random to split on at each node, and

bootstrapping of the original dataset. The bootstrapped sample of each tree is referred to as
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in-bag data whereas the data not sampled are called out of bag (OOB) data. The OOB data are

used to assess the predicting accuracy of the random forest.

Random forest (RF) missing data algorithms have become more attractive as an approach of

handling missing data (Tang and Ishwaran, 2017). The RF techniques can handle mixed types

of missing data, can adapt to interactions and nonlinearity and can potentially scale to big

data settings. Tang and Ishwaran (2017) showed that the RF techniques perform good under

moderate to high missingness and can even deal with data that is MNAR. It was also shown that

the RF technique, missForest, outperform the K-nearest neighbour (KNN) method as well as an

alternative method proposed by Davila and Rosado (2017).

This imputation method, for each variable in turn, will predict the missing values by using a

random forest using the other variables as the targets. This process will be iterated until there

is no further change. The imputed data will thereafter be used to construct a predictor. The

trees cope with missing values since when the splits are considered, only the splits of the form

X < c is considered where c is one of the non-missing values of X. The splitting criterion is

evaluated with the missing values ignored and for each split, the algorithm identifies splits using

different variables that result in similar partitions of the feature space. These splits are used if a

case has a missing value in the primary split. The missing values in the target are ignored when

calculating the value of a tree in a region. In the same way trees handle missing values, so does

random forests.

According to Tang (2017), the RF approach works as follows. The data are roughly imputed by

replacing the missing values for continuous variables, with the median of the non-missing

values. And replacing the missing values for categorical variables with the most frequent

occuring non-missing value. Thereafter, a RF is fitted to the roughly imputed data and a

proximity matrix is calculated from the fitted RF. The proximity matrix is a symmetric n × n

matrix with entries (i, j) recording the frequency that subject i and j occur within the same

terminal node. The proximity matrix is used to impute the data. The proximity weighted average

of the non-missing data is used to imputed continuous variables. For integer variables, the

integer value having the largest average proximity over non-missing data is used to impute the

missing values. Thereafter, the updated data are used as an input in the RF and the procedure is
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iterated until a stable solution is reached. (Tang, 2017).

According to Tang (2017), RF algorithm groups variables and runs a multivariate forest using

each group in turn as a set of dependant variables which replaces p regressions where p is the

number of variables. The missing data problem is recasted as a prediction problem. The missing

data is imputed by regressing each variable in turn against all other variables and then predicting

missing data for the dependent variable using the fitted forest. Therefore, p forests are fitted at

each iteration since there are p variables. Let X be the n× p matrix with missing values Xmis,

and the stopping criteria ς and grouping factor α, 0 < α ≤ 1. Firstly, it is recorded which

variables and which positions have missing values in X denoting p0 the number of variables

that have missing values and Ximp the quick and rough imputation. Set diff = ∞, and while

diff ≥ ς let Xold.imp ← Ximp. Thereafter, randomly separate the p0 variables into K = K(α)

groups of approximately the same size. Then, for i = 1, ...,K , let Xi be the columns of

X corresponding to group i and X(−i) the columns of X excluding group i. Thereafter, for

i = 1, ..., K, set the values in Xi which were missing back to NA. For i = 1, ..., K, fit a

multivariate random forest using the variables in groups i as response variables and the rest

of the variables as predicting variables and calculate Ximp as the final summary inputed value

using the terminal average for continuous variables and using the maximal terminal node class

rule for categorical variables. Now, set diff = ξ(Xold.imp, Ximp) and return to the imputed

matrix Ximp (Tang, 2017).

2.5 Summary

Multi-state Markov models was thoroughly discussed in this chapter. The concept of missing

data, types of missing data as well as different imputation techniques were also discussed in

detail. These techniques will be applied in subsequent chapters. The imputation techniques will

be compared and used to impute the dataset whereafter the multi-state model will be fitted to

the complete dataset.

36

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3

DESCRIPTION OF CLAIMS AND

AUTHORISATION DATASET FOR

BREAST CANCER

3.1 Introduction

The data obtained from Isimo Health will be discussed in this chapter. The process of retrieving,

extracting transforming and cleaning the data is included in this discussion.

3.2 Data Source

As mentioned before, the dataset was collected from ICON. The data consisted of a combination

of claims data from medical schemes and authorisation data from ICON’s authorisation system

eAuth.

The claims data from medical schemes provided funding information. All claims for the

three-year period 2014-01-01 to 2016-12-31 were extracted. The claims data also contained

provider information and a diagnosis date as per medical scheme records. The claims data were

linked to a practice through a practice number and therefore having a practice location. More

detail about the item in the claim was also available. The claims were grouped into claims

regarding chemotherapy (actually medical therapy, which includes chemotherapy and hormone

therapy), radiotherapy, hospitalisation, radiology, pathology and any other types of claims.

A patient details file that is collected by ICON together with the claims data from medical
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schemes contained information such as the date of birth, the date of death, the cancer registry

registration date. Other information such as whether the patient was on a program for Best

Supportive Care (BSC) and the date that the cancer was diagnosed as being metastatic was also

included in the patient details file. Patients who becomes metastatic, resulted in the treatment

intent that changed to being non-curative.

The authorisation data from eAuth contained the clinical information. This information is

entered into the system when providers obtain authorisation for a course of treatment. The

TNM staging factors being tumour size, node size and metastasis size, are included in the

authorisation data. A derived cancer staging, called r_stage, is also available from the eAuth

data.

The last source of information was a source that contained all the risk clinical attributes that

were mainly collected from the eAuth system. A list of the 22 different clinical attributes

relevant to breast cancer is given below.
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Table 3.1 Risk clinical attribute names with descriptions

Risk clinical attribute Description
BMI Body Mass Index is a value derived from the mass (weight)

and height of an individual in kg/m2(real number 0 <
BMI < 100).

BSA Body Surface Area is the surface area of a human body (real
number 0 < BSA ≤ 3).

CA-15-3 Monitor response to breast cancer treatment and disease re-
currence. Increase could indicate treatment failure, but levels
can rise during initial 4-6 weeks of therapy. (Any real num-
ber).

CA125 Protein found on surface of many ovarian cancer cells; if
levels go down the treatment is working. (Any real number).

comorbidity asthma Indicator indicating whether patient has asthma.
comorbidity diabetes Indicator indicating whether patient has diabetes.
comorbidity HIV Indicator indicating whether patient has HIV.
comorbidity hypertension Indicator indicating whether patient has hypertension.
ECOG Performance status; 0 is fully active, 5 is dead, 4 completely

disabled (values 0 to 4).
estrogen receptor Has receptors for estrogen; if positive hormone therapy will

most likely work (indicator indicating whether ER positive).
height Patient height in cm.
HER2 FISH Her2 is a gene that can play a role in the development of

breast cancer; her2 positive cancer cells divide and multiply
quickly leading to aggressive tumor growth.

HER2 ICH The three different tests are done in sequence. With the
ICON Head of Clinical Services an indicator was created to
identify patients that are HER2 positive.

HER2 ISH Indicator whether positive (0=negative).
KI 67
KI 67 (tissue) Percentage protein in cell increases as prepare to divide into

new cells. <10% low 10-20% borderline and >20% high.
metastasis size Metastatic indicator in TNM staging.
node size Node size 0 to 3 in TNM staging.
progesterone receptors Indicator whether PR positive.
r_stage level Derived cancer staging 0-4.
tumor size tumour size 0-4 in TNM staging
weight patient weight in kilogram

3.3 Data Extraction and Transformation

The eAuth data are valuable because of the demographical and clinical detail it contains. It gives

an indication of the planned course of treatment. The claims data were then used to confirm
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whether the planned treatment took place. Both these sets of data had to match with their

respective ID numbers, making this process difficult. Put simply, an internal number for each

patient with a claim was identified and matched to an ID number. Then, for each authorisation

request from eAuth, the patient key was also matched to an ID number. Thereafter, the ID

numbers between the two sources needed to be matched.

For this thesis, only data that had been matched were used. A total of 393 distinct patients

could be matched in the claims and authorisation data. That included 142 733 claim lines, 5

500 authorisation requests and 4 370 lines of clinical attributes data. All patients that were

deceased before 2014 were omitted from the analysis.

After the matching process, all the data were de-identified for confidentiality purposes. The

matched data extracted were in the form of a longitudinal dataset or otherwise known as panel

data. A panel dataset consists of repeated measurements of a state of a patient at different time

points over several years. The matching and extraction of the data was done in SQL. Excel was

then used to do some data clean-up. Thereafter, R statistical programming was used to perform

the statistical analysis.

The concept of a treatment episode was to be clearly understood in order to extract the data

correctly. An episode of care is defined as all services provided to a patient with a medical

problem within a specific period of time across a continuum of care in an integrated system

(Farlex Partner Medical Dictionary, 2012). A longitudinal record of all treatment episodes for

all breast cancer patients over a period of three years was compiled. The treatment episode (per

data line) indicated what type of treatment was received grouped in chemotherapy (medical

therapy including chemotherapy and hormone therapy), radiotherapy or combination therapy (a

combination of chemotherapy and radiotherapy). Thereafter, all the different clinical attributes,

described above in the table in the data source section, were added to the dataset.

The dataset containing the treatment episodes eventually had 37 columns of information. The

descriptions for each of the columns are given below. Not included in this list (but forming part

of the 37 columns) is the 22 clinical attributes described above. The status of each of the clinical

attributes is taken at the start of each treatment episode.
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Table 3.2 Column names and descriptions of treatment episode dataset

Column name Description
patient key Unique key to identify a patient
is_chemo A variable indicating whether the patient received

chemotherapy (1) or not (0).
is_radiotherapy A variable indicating whether the patient received radiother-

apy (1) or not (0).
benefit_paid The total cost of the treatment episode.
episode_start_dt The start date of the treatment episode.
episode_end_dt The end date of the treatment episode.
episode_duration_in_days The difference in days between the start and end date of the

treatment episode.
number_of_episodes The total number of treatment episodes for the patient.
state The state of a patient in the episode of care. (1,2 or 3)
birth_dt The date of birth of the patient.
cancer_registry_dt The first date of registration on the cancer registry.
diagnosis_dt The diagnosis date of the breast cancer.
gender The gender of the patient. 0=female, 1=male
age_at_diagnosis The patient age at the time of diagnosis.

After creating a longitudinal record of all the treatment episodes (with the variables described

above) it was seen that it was unnecessary to have all the treatment episodes separately, since

the main interest was to investigate how the patient progresses from being treated curatively

to non-curatively, and eventually being deceased. Therefore, all the treatment episodes for

an individual, with all covariates equal, were combined into a single data line. An indicator

showing whether the patient had hospital claims, radiology claims and/or pathology claims was

also added to the dataset. Other demographical detail, such as the death date, registration on a

Best Supportive Care (BSC) programme and the location of the practice that the patients was

treated at, was also added. Due to the very high percentage of missing data in the last two of

the three demographical details just mentioned, these were eventually ignored. Oncologists at

Isimo Health were consulted to fill in some of the gaps in the data. The comorbidity indicators

such as asthma and HIV were eliminated from the dataset since these indicators are not reliably

captured in the authorisation system.

The next stage of data cleaning was to get a single record per patient. At this stage, each state

was represented in a separate line. The dataset then contained the columns provided in Table

3.3.
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Table 3.3 Column names and description of dataset containing one record per patient

Column name Description
patient_key Unique key to identify a patient
gender The gender of the patient. 0=female, 1=male
weight_at_diagnosis The weight of the patient at the time of diagnosis.
height_at_diagnosis The height of the patient at the time of diagnosis.
age The patient age at the time of diagnosis.
start(t) The starting time of the time period t. 0 is defined as the diagnosis

date.
end(t) The end time of the time period t.
s(t) The state during the time period t. (1=curative; 2=non-curative;

3=death)
cost(t) The cost of the time period t.
HER2(t) The HER2 status during time period t.
ER(t) The ER status during time period t.
PR(t) The PR status during time period t.
eps_count The total number of treatment episodes for the patient during time

period t.
node_size The node size of the TNM staging during time period t.
treatment(t) The treatment used during time period t. (1=Chemotherapy; 2=Ra-

diotherapy; 3=Combination therapy)
r_stage Cancer staging 0,1,2,3,4.

The last ten variables were done for time periods t = 1, 2, 3. It was done for all three time

periods since the time periods represent the time periods in the three respective states.

The final stage of the data transformation and clean-up was to get the data into a format that is

accepted by the TPmsm package. The final dataset contained 13 variables as described in Table

3.4.
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Table 3.4 Column names and descriptions of the final dataset

Column name Description
time1 The total time spent in state 1
event1 An indicator variable indicating whether the patient left state 1.
Stime The total survival time. Therefore, the total time spent in state 1 and 2.
event An indicator variable indicating whether the patient moved into state 3.
gender The gender of the patient. (0=female; 1=male)
weight The weight of the patient. (kg)
height The height of the patient. (cm)
r_stage Cancer staging (0,1,2,3,4).
age The age of the patient at diagnosis.
HER2 The HER2 status of the patient. (1=positive, 0=negative)
ER The ER status of the patient. (1=positive, 0=negative)
PR The PR status of the patient. (1=positive, 0=negative)
node The node size of the patient’s cancer. (0-3)

3.4 Conclusion

The process of extracting the data from the data sources and transforming the data into a useful

form was a tedeous and yet exciting process. It took many computer hours to transform data

into different forms that were not used in the end. This process gave the researcher a much

deeper understanding of the information contained in the Isimo Health dataset. This dataset

will be used in Chapter Four to simulate a new dataset, to test the imputation techniques on

which will be used at a later stage to impute this dataset.
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CHAPTER 4

SIMULATION STUDY

4.1 Introduction

The R package, TPmsm, was used to simulate the data for the rest of

the thesis. The package was formulated by authors Artur Araújo, Luís Meira-Machado and

Javier Roca-Pardiñas (2014). According to Araújo et al. (2014), the TPmsm package provide

seven different approaches to model three-state illness-death models. Three covariates were

simulated from different distributions, including the normal distribution, Bernoulli distribution

and multinomial distribution. The aim of the data simulation was to test different imputation

techniques.

4.2 Introduction to the TPmsm Package

Referring back to previous explanations, a stochastic process (X(t), tǫT ) with a finite state

space. X(t) represents the state that is occupied by the process at time t ≥ 0. The future state

transitions of MSMs may be dependent on past events.

A non-parametric estimator for quantities in the non-homogeneous Markov model was first

introduced by Aalen and Johansen (1978). Aalen and Johansen (1978) extended the

Kaplan-Meier estimator to Markov chains. The standard error of the Aalen-Johansen estimator

is possibly large when a lot of censoring is present, especially in the case of a small sample

size. A possible solution to this problem was introduced by Meira-Machado et al. (2006) by

introducing a substitute for the Aalen-Johansen estimator in the case of a non-Markov

illness-death model. The estimator introduced by Meira-Machado et al. (2006) performs

better when the Markov assumption does not hold. The Kaplan-Meier weights relating to the
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distribution of the total survival time of the process is used to weight the data.

According to Araújo et al. (2014), the TPmsm package aims to implement non-parametric

and semi-parametric estimators for the transition probabilities in three state models. Right

censoring is dealt with by using inverse censoring probability reweighting. Such approaches

lead to consistent estimators when dependent censoring is present.

4.3 Methodology Behind TPmsm

Araújo et al. (2014) considers the progressive illness-death model when describing the

methodology behind the TPmsm package. The progressive illness-model can be seen in Figure

4.1.

Figure 4.1 Illness-death model (Source: Araújo et al.,2014:4)

In this model, all subjects are assumed to be in state 1 at time t = 0. Please note, that this is not

the case for the simulated data. The subjects may visit state 2 at some time point or go directly

into the absorbent state, state 3, or remain in the first state. A random vector (T12, T13, T23)

can be used to describe the stochastic behaviour of the process in Figure 3.1 where Tij is the

potential transition from state i to state j with 1 ≤ i < j ≤ 3. T23 represents the sojourn

time spent in state 2. This model contains two competing transitions 1 −→ 2 and 1 −→ 3. The

sojourn time in state 1 can be denoted by Z = min(T12, T13) and the survival time of the subject

is given by

T = I(T12 ≤ T13)(T12 + T23) + I(T12 > T13)T13.

Due to censoring, (Z̃, T̃ ,∆1,∆) is observed where

Z̃ = min(Z,C), T̃ = min(T,C),

∆1 = I(Z ≤ C)
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and

∆ = I(T ≤ C).

The potential censoring, time assumed to be independent of the process, is denoted by C.

Therefore, C and (Z, T ) are assumed to be independent.

Araújo et al. (2014) defines the transition probabilities between two time points s < t as

pij(s, t) = P (X(t) = j|X(s) = i).

It can be seen from Figure 3.1, that five different transition probabilities need to be estimated.

The five transition probabilities include p11(s, t), p12(s, t), p13(s, t), p22(s, t) and p23(s, t). Since

three of the transition probabilities can be obtained from the relationships

p11(s, t) + p12(s, t) + p13(s, t) = 1

and

p22(s, t) + p23(s, t) = 1,

only two of the transition probabilities need to be estimated.

According to Cox and Miller (1965), the Markov model transition probabilities can be

calculated from the transition intensities. If one assumes that the transition intensities exist, the

transition probabilities can be expressed as

qij(t) = lim
∆t→0

pij(t, t+∆t)

∆t

by solving the forward Kolmogorov differential equation. The illness-death model has explicit

expressions for the transition probabilities,

p11(s, t) = exp(−Q12(s, t)−Q13(s, t)),

p22(s, t) = exp(−Q23(s, t))

and

p12(s, t) =

t�

s

p11(s, u)q12(u)p22(u, t)du,

where

Qij(s, t) =

t�

s

qij(u)du
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is the cumulative or integrated intensity between s and t.

The expressions for the transition probabilities in time-homogeneous Markov models is given

by

p11(s, t) = exp(−q12(s, t)− q13(s, t)),

p22(s, t) = exp(−q23(s, t))

and

p12(s, t) =
q12

q12 + q13 − q23
[exp(−q23(t− s))− exp(−(q12 + q13)(t− s))].

These transition probabilities can also be estimated non-parametrically or semi-parametrically

and the expressions are then given by

p11(s, t) =
P (Z>t)
P (Z>s)

,

p12(s, t) =
P (s<Z≤t,T>t)
P (Z>s)

,

p13(s, t) =
P (Z>s,T≤t)
P (Z>s)

,

p22(s, t) =
P (Z≤s,T>t)
P (Z≤s,T>s)

and

p23(s, t) =
P (Z ≤ s, s < T ≤ t)

P (Z ≤ s, T > s)
.

Araújo et al. (2014) explains that the transition probabilities mentioned above may be estimated

non-parametrically using the Aalen-Johansen estimator. The Kaplan-Meier estimator is used as

the Aalen-Johansen estimate of the transition probability p11(s, t) and is given by

p̂AJ11 (s, t) =



s<Z̃i≤t

[1− ∆1i

nM̃0n(Z̃i)
],

where

M̃0n(y) =
1

n

n	
I(

j=1

Z̃j ≥ y).

The Kaplan-Meier estimator for the transition probability p22(s, t) is given similarly as

p̂AJ22 (s, t) =



s<T̃i≤t,Z̃i<T̃i

[1− ∆i

nM̃1n(T̃i)
],

where

M̃1n(y) =
1

n

n	
I(

j=1

Z̃j < y ≤ T̃j).
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Similarly, the estimate for p12(s, t) is given as

p̂AJ12 (s, t) =
1

n

n	

i=1

p̂AJ11 (s, Z̃
−
i )p̂

AJ
22 (Z̃i, t)I(s < Z̃i ≤ t, Z̃i < T̃ i)

nM̃0n(Z̃i)
, (4.1)

where

p̂AJ11 (s, t
−) =

lim
u ↑ t p̂AJ11 (s, u).

Different estimation methods will be thoroughly discussed in this chapter and can all

be implemented using the TPmsm software package. The arguments required by the TPmsm

package include the observed time in state 1 (time1), the corresponding censoring indicator

(event1), the total survival time (Stime) and the final status of the subject (event). The event

argument assumes the value 1, if the final event of interest (death) is observed.

4.3.1 Pre-smoothed Aalen-Johansen estimator

Araújo et al. (2014) further explains that the Aalen-Johansen estimator may have a larger

standard error, in the presence of heavy censoring. This is especially evident when the sample

size is small. Pre-smoothing may reduce the variance of the Aalen-Johansen estimator.

According to Moreira et al. (2013), this process referred to as pre-smoothing involves replacing

the censoring indicators within the transition probabilities by a smooth fit using some sort of

regression. The corresponding pre-smoothed Aalen-Johansen estimator of p11(s, t) is given by

p̂PAJ11 (s, t) =



s<Z̃i≤t

[1− m0n(Z̃i)

nM̃0n(Z̃i)
], (4.2)

where m0n(Z̃i) is the estimator of the conditional probability of the event∆1 = 1 given Z̃ . The

quantity m0n(Z̃i) can be estimated using logistic regression.

The pre-smoothed version of the Aalen-Johansen estimator of p22(s, t) is given by

p̂PAJ22 (s, t) =



s<T̃i≤t,Z̃i<T̃i

[1− m1n(Z̃i, T̃i)

nM̃1n(T̃i)
], (4.3)

where m1n(Z̃, T̃ ) is an estimator of the conditional probability for the event∆ = 1 given (Z̃, T̃ )

and provided that the transition from state 1 to state 2 was observed. The transition probability

p12(s, t) can be obtained by substituting (4.2) and (4.3) into (4.1).
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4.3.2 Kaplan-Meier weighted estimator

It was verified by Meira-Mochado et al. (2006) that the use of Aalen-Johansen estimators

to empirically estimate the transition probabilities may not be appropriate in the non-Markov

scenario. Meira-Mochado et al. (2006) proposes a Markov-free alternative to estimate the

transition probabilities, which does not rely on the Markov assumption.

The Kaplan-Meier estimator, relating to the distribution of the total time to weight

the bivariate data, should be used to estimate the transition probabilities. The Kaplan-Meier

weighted estimators are therefore given by

p̂KMW11 (s, t) =

n	

i=1

W1iI(Z̃i > t)

n	

i=1

W1iI(Z̃i > s)

,

p̂KMW12 (s, t) =

n	

i=1

WiI(s < Z̃i ≤ t, T̃i > t)

n	

i=1

W1iI(Z̃i > s)

and

p̂KMW22 (s, t) =

n	

i=1

WiI(Z̃i ≤ s, T̃i > t)

n	

i=1

WiI(Z̃i ≤ s, T̃i > t)

,

where Wi and W1i are the Kaplan-Meier weights attached to T̃i and Z̃i when estimating the

marginal distribution of T and Z from (T̃i,∆i) and (Z̃i,∆1i). The Kaplan-Meier weights are

given by the expression

Wi =
∆i

n− i+ 1

i−1


j=1

[1− ∆j
n− j + 1

].

4.3.3 Kaplan-Meier pre-smoothed weighted estimator

A modification of the Kaplan-Meier weighted estimator was proposed by Amorim et al.

(2011). This modification is based on pre-smoothing and allows for variance reduction when

censoring is present. The censoring indicator variables are replaced by Kaplan-Meier weights
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by a smooth fit of a binary regression. The pre-smoothed Kaplan-Meier weights are given by

W ∗
i =

m(T1i, T̃i)

n−Ri + 1

i−1


j=1

[1− m(T̃1j, T̃j)

n−Rj + 1
].

In this expression,

m(x, y) = P (∆2 = 1|T̃1 = x, T̃ = y,∆1 = 1)

and m(T̃1, T̃ ) belongs to a parametric family of binary regression curves such as the logistic

regression curve.

It can be assumed in practice that

m(x, y) = m(x, y; β),

where β is a vector of parameters computed by maximising the conditional likelihood of the

∆′2s given the (T̃1, T̃ ) for those with ∆1 = 1. Where no pre-smoothing is present, the

Kaplan-Meier pre-smoothed weighted estimator reduces to the Kaplan-Meier weighted

estimator. It was shown by Amorim et al. (2011) that the pre-smoothed estimator gains

efficiency.

4.3.4 Accounting for covariates

Estimation methods for the transition probabilities conditional on current or past measures are

introduced by Meira-Machado et al. (2012) to account for the influence of covariates. Meira-

Machado et al. (2012) provide two non-parametric regression estimators for the conditional

transition probabilities phj(s, t|X), where X represent the current or past measure referred to

above. Both these estimators are valid when the system is either Markovian or non-Markovian.

Inverse censoring probability reweighting are used in both these estimators to deal with right

censoring. Local smoothing is done by introducing regression weights based on local constant

such as the Nadaraya-Watson or on local linear regression.

Meira-Machado et al. (2012) uses the following notation. The conditional distribution function

of C given X = Xi is denoted by GXi and ĜXi is its estimator. An estimator was introduced
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by Beran (1981) and is given by

Ĝx(t) =



Ti≤t,∆i=0

[1− NW0i(x, an)	n

j=1
I(Tj ≥ Ti)NW0j(x, an)

],

with

W0i(x, an) =
K0((x−Xi)/an	n

j=1
K0((x−Xi)/an

,

where NW0i(x, an) is the Nadaraya-Watson weights, K0 is a known probability density

function and an is a sequence of bandwidths. When all the weights are equal, this estimator

reduces to the Kaplan-Meier estimator (Kaplan and Meier, 1958). Consequently, the inverse

probability censoring weighted estimators are given by

p̂IPCW11 (s, t|X = x) =

	n

i=1
NW1i(x, bn)

I(Z̃i>t)∆i
1−ĜXi (T

−

i )	n

i=1
NW1i(x, bn)

I(Z̃i>s)∆i
1−ĜXi (T

−

i )

,

p̂IPCW12 (s, t|X = x) =

	n

i=1
NW1i(x, bn)

I(s<Z̃i≤t,T̃i>t)∆i
1−ĜXi(T

−

i )	n

i=1
NW1i(x, bn)

I(Z̃i>s)∆i
1−ĜXi(T

−

i )

and

p̂IPCW22 (s, t|X = x) =

	n

i=1
NW1i(x, bn)

I(Z̃i≤s,T̃i>t)∆i
1−ĜXi (T

−

i )	n

i=1
NW1i(x, bn)

I(Z̃i≤s,T̃i>s)∆i
1−ĜXi (T

−

i )

,

where NW1i(x, bn) is the Nadaraya-Watson weight and ĜXi(T
−
i ) = Ĝx=Xi(T

−
i ).

Lin et al. (1999) introduced an approach for the bivariate distribution function which also

accounts for the influence of covariates. A different set of estimators is obtained and given by

p̂LIN11 (s, t|X = x) =

	n

i=1
NW1i(x, bn)

I(Z̃i>t)

1−ĤXi (t
−)

	n

i=1
NW1i(x, bn)

I(Z̃i>s)

1−ĤXi(s
−)

,

p̂LIN12 (s, t|X = x) =

	n

i=1
NW1i(x, bn)

I(s<Z̃i≤t,T̃i>t)

1−ĜXi (t
−)

	n

i=1
NW1i(x, bn)

I(Z̃i>s)

1−ĜXi(s
−)

and

p̂LIN22 (s, t|X = x) =

	n

i=1
NW1i(x, bn)

I(Z̃i≤s,T̃i>t)

1−ĜXi(t
−)

	n

i=1
NW1i(x, bn)

I(Z̃i≤s,T̃i>t)

1−ĜXi (s
−)

,

where ĤX is the Kaplan-Meier estimator of the conditional distribution of C given X based

on the (Z̃i, 1 − ∆i1)′s, which is defined similarly to Ĝx. C is assumed to be independent
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of (z, T )|X with the assumption not excluding the possibility of dependent censoring. The

approach by Lin et al. (1999) has the disadvantage of occasionally providing non-monotone

curves for the transition probabilities which makes the first approach more recommendable

according to Araújo et al. (2014).

4.3.5 Location-scale estimator

Keilegom et al. (2011) proposed another estimator of the transition probabilities. This

estimator assumes that the vector of gap times (Z, Y = T − Z) satisfies the non-parametric

location-scale regression model which allows for the transfer of tail information from lightly

censored areas to heavily censored areas.

Meira-Machade et al. (2013) introduces an automatic bandwidth procedure. The non-parametric

location-scale regression model

Y = m(Z) + σ(Z)ε

is considered where the functions m and σ are smooth functions and ε is independent of Z.

A non-parametric estimator of the distribution of the error variable Fε is proposed by

Meira-Machade et al. (2013). A Kaplan-Meier estimator of Fε is based on the (Êi,∆i)′s where

Êi =
Ŷi − m̂(Z̃i)

σ̂(Z̃i)
,

which is used to construct the estimator for the conditional distribution of the second gap time

F̂ (y|x) = F̂ε(
y − m̂(x)

σ̂(x)
).

An extension of the estimator given by Beran (1981) is used to estimate the location and scale

functionals. This estimator functions well with censoring in the first gap time. The estimators

for the transition probabilities is given by the expressions

p̂LS11 (s, t) =
1− F̂1(t)

1− F̂1(s)
,

p̂LS12 (s, t) =
1

1− F̂1(s)

t�

s

[1− F̂ (t− u|u)]F̂1(du)
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and

p̂LS22 (s, t) =

s�

0

[1− F̂ (t− u|u)]F̂1(du)

s�

0

[1− F̂ (s− u|u)]F̂1(du)
,

where F1(.) represent the marginal distribution of the first gap time, which is estimated by the

Kaplan-Meier estimator based on the (Z̃i,∆1i)′s. This transfer of tail information improves the

estimate of the transition probabilities specifically in points where the uncensored information

is scarce (Meira-Machado et al., 2013). This location-scale method was shown to outperform

the Kaplan-Meier weighted estimator. This was shown by Meira-Machado et al. (2006). The

Kaplan-Meier weighted estimator however becomes better when the model deviates a lot from

a location-scale model. A disadvantage of the location-scale method is the fact that it can only

be used for modelling of the progressive three state model.

4.3.6 State occupation probabilities

The estimation of the state occupation probabilities is another important capability of multi-state

modelling. Three state occupation probabilities must be estimated for the illness-death model.

These three state occupation probabilities include p11(0, t), p12(0, t) and p13(0, t). It was shown

by Datta and Satten (2001) that these probabilities can be estimated by the Aalen-Johansen

estimates without the process being Markovian. Araújo et al. (2014) recommends the two

Markovian approaches discussed, namely the Aalen-Johansen estimator and the Pre-smoothed

Aalen-Johansen estimator.

4.4 Data Simulation Using the TPmsm Package

The function dgpTP can be used to generate data from the illness-death model. For this model,

all individuals are assumed to be in state 1 at time t = 0. The subject’s history can be divided

into two groups according to whether state 2 was entered (1 −→ 2 −→ 3) or (1 −→ 3).

For the (1 −→ 2 −→ 3) subgroup of subjects, the successive gap times (Z, T − Z) can be

simulated from two of the well-known copula functions including Farlie-Gumbel-Morgenstern

copula with exponential marginals or the bivariate Weibull distribution. The dgpTP function
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simulated data from the illness-death model using Gumbel’s bivariate exponential distribution

F12(x, y) = F1(x)F2(y)[1 + θ{1− F1(x)}{1− F2(y)}]

with unit exponential margins. The amount of dependency between the gap times (Z, T − Z)

is controlled by the parameter θ. The corrTP function can be used to obtain the theoretical

correlation between the gap times.

For the (1 −→ 3) subgroup of subjects, the survival time is simulated according to an

exponential distribution with rate parameter 1.

4.5 Implementation of Data Simulation

The data simulation was divided into two parts. The subjects that entered at state 1 (referred

to as part 1) was simulated separately from those subjects that entered at state 2 (referred to

as part 2). Based on the Isimo Health dataset, 80% of subjects start in the curative state (state

1) and the remaining 20% start in non-curative state (state 2). The desired sample size of the

simulation is 10 000.

In part 1 of the simulation, the dgpTP function was used to generate a sample of size 8

000, contributing 80% of the 10 000, assuming no correlation in Gumbel’s bivariate expo-

nential distribution, using an independent uniform censoring time, according to model U(0, 3).

Markov data were simulated by using corr=0 since a correlation of zero in Gumbel’s bivariate

exponential distribution leads to independent gap times. Based on the Isimo Health dataset, the

proportion of transitions into state 2 (from state 1) is 75%. A value of one would have led to

the progressive three state model where all subjects pass through state 2. This is not the desired

outcome of this simulation. The first 10 observations of the simulated data are given in Table

4.1.
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Table 4.1 First ten observations of the first part of the simulated data

time1 event1 Stime event
1 1.0816105152 0 1.0816105152 0
2 2.0822430096 1 2.0822430096 1
3 1.2925065755 1 1.8331302023 1
4 1.6612869111 0 1.6612869111 0
5 1.4274986331 1 1.6332586317 1
6 1.4527274890 1 1.8421824081 1
7 0.7698157828 1 1.9346533519 0
8 0.3889267237 1 2.7234675501 0
9 0.4012843777 0 0.4012843777 0
10 0.8713118535 0 0.8713118535 0

The transAJ command gives the Aalen-Johansen estimate of the transition probabilities. This

command provides a 95% pointwise confidence interval using 10 000 bootstrap replicates. The

pointwise confidence interval is constructed by random sampling the items from the simulated

(original) dataset with replacement. The starting time is specified as zero and the ending time

three representing three years. The Aalen-Johansen transition probabilities are given as

P =




0.4757012 0.2627678 0.2615309

0 0.4785433 0.5214567
0 0 1



 ,

with confidence bands 


0.4518965 0.2383743 0.2397261

0 0.4322844 0.4774942
0 0 1





and 


0.4982338 0.2874388 0.2853586

0 0.5225058 0.5677156
0 0 1



 .

Similarly, the transPAJ command gives the pre-smoothed Aalen-Johansen estimate of the

transition probabilities and provides a 95% pointwise confidence interval using 10 000 bootstrap

replicates. The pre-smoothed Aalen-Johansen transition probabilities are given as

P =




0.2470805 0.1711035 0.5818160

0 0.3046237 0.6953763
0 0 1



 ,

with confidence bands 


0.2212681 0.1439576 0.5496157

0 0.2577273 0.6488574
0 0 1




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and




0.2745121 0.1975188 0.6143271

0 0.3511426 0.7422727
0 0 1



 .

Part 2 of the simulation involved the subjects that enter at state 2 and either stay in state 2 or

move to the absorbing state 3. The dgpTP function was used once again to generate a sample of

size 30 000 using the same model parameters as the previous simulation. The sample size was

required to be large in order to compensate for removing observations with event1=0 (subjects

left state 1). The second filter would be applicable to subjects that had time1 unequal to Stime.

If time1=Stime, it would mean that the subject moved from state 1 to state 3 (instead of moving

to state 2). After both the filters were applied, the first 2 000 subjects were extracted and the

variable time1 was given the value 0 to imply that subjects spent 0 time in state 1 and the

variable event1 was given the value 1 to state that the subject left state 1 and therefore entered

at state 2. The Stime variable was formed by taking the Stime value minus the time1 value to

extract the time that the subject spent in state 2. This dataset then formed the second part of the

simulation. The first 10 observations of the simulated data are given in Table 4.2.

Table 4.2 First ten observations of the second part of the simulated data

time1 event1 Stime event
1 0 1 1.51079296 0
2 0 1 0.05436288 1
3 0 1 1.41029859 0
4 0 1 1.76382468 0
5 0 1 0.69662589 1
6 0 1 2.12838743 0
7 0 1 0.95875733 0
8 0 1 1.14429681 0
9 0 1 0.08896630 0
10 0 1 2.50868498 0

The two datasets were then combined to form the total simulated dataset consisting of 10 000

subjects.
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Thereafter, the researcher distinguished between six different possible scenarios. Scenario A

being that the subject enters at state 1 and remains in state 1 for the entire duration. Scenario B

is when the subject enters at state 1 and moves to state 2. Scenario C is when a subject enters

at state 2 and remains in state 2. Scenario D is when a subject enters at state 1, moves to state

2 and ends in the absorbing state 3. Scenario E is when the subject enters at state 1 and moves

to state 3 directly. The last scenario, scenario F, is when a subject enters at state 2 and moves to

state 3. These scenarios are ordered from best to worst case scenario in terms of prognosis of

the disease. These six scenarios were used to simulate the covariates.

Three covariates were simulated representing different types of real-world data. The

underlying distributions from which these covariates were simulated are given below.

Three different covariates were desired and three different distributions was chosen to

represent different types of variables. Thereafter, it was decided on which variables from the

Isimo dataset, these variables should be simulated from.

Covariate1 was simulated from a normal distribution. The probability density function for a

normal distribution is given by the expression

f(x) =
1

σ
√
2π

e−(x−µ)
2/2σ2 ,

where µ is the population mean and σ2 the variance . X ∼ N(µ, σ2) represents a random

variable X that follows the normal distribution with mean µ and standard deviation σ. The

rnorm function in the stats package in R was used to simulate the data from a normal

distribution.

The age variable from the dataset obtained from Isimo Health was used to determine the mean

and standard deviation for the normal distribution within each of these six scenarios defined

above. The respective means and standard deviations used for the normal distributions are

given in Table 4.3 below.

57

Stellenbosch University  https://scholar.sun.ac.za



4 SIMULATION STUDY

Table 4.3 Mean and standard deviations used to simulate Covariate1

Scenario mean (µ) standard deviation (σ)
A 55.85906 14.32430
B 50.14286 15.43651
C 54.88636 15.08613
D 56.01613 15.60842
E 56.30894 14.54591
F 57.72917 15.39514

The second covariate, Covariate2, was generated from a Bernoulli distribution. The Bernoulli

distribution is a discrete distribution with two possible outcomes being either that a success

occurs with probability p or a failure occurs with probability q = 1 − p. The probability mass

function for the Bernoulli distribution is given by the expression

P (n) = pn(1− p)1−n.

The binomial distribution gives the probability of obtaining n successes out of N Bernoulli

trials. Therefore, the binomial distribution can be used to simulate the Bernoulli distribution

with only N = 1 trial. The rbinom function in the stats package in R can be used to simulate

the data from a binomial distribution.

The probability parameter is based on the probability of being HER2 positive in the Isimo

Health dataset within each of the six scenarios. The respective probabilities are given in Table

4.4.

Table 4.4 Probability of success used to simulate Covariate2

Scenario Probability of Success
A 0.200935
B 0.250000
C 0.193548
D 0.333333
E 0.216000
F 0.370370

The third and last covariate, Covariate3, is generated from a multinomial distribution. The

multinomial distribution is another generalisation of the binomial distribution. The multinomial

distribution models the outcome of n experiments where each of the n trials has an outcome
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with a categorical distribution. The probability mass function for the multinomial distribution

is given by the expression

f(x1, x2, ..., xk, p1, p2, ..., pk) = P (X1 = x1, ..., Xk = xk)

=






n!
x1!x2!...xk!

px11 ...pxkk k	

i=1

xi=n

0 otherwise

,

for non-negative integers x1, x2, ..., xk.

The node size from the Isimo Health dataset was used to get to the probabilities. The

probabilities of belonging to the groups 0, 1, 2 or 3 are given in Table 4.5 below.

Table 4.5 Probabilities used to simulate Covariate3

Scenario Group=0 Group=1 Group=2 Group=3
A 0.486692 0.311787 0.144487 0.057034
B 0.400000 0.200000 0.300000 0.100000
C 0.322581 0.258065 0.354839 0.064516
D 0.282609 0.347826 0.239130 0.130435
E 0.451104 0.315457 0.160883 0.072555
F 0.250000 0.388889 0.222222 0.138889

The six datasets from the six different scenarios were combined to form a complete simulated

dataset with 10 000 rows (subjects) and 7 columns. A preview of the data is given in Table 4.6.

Table 4.6 First ten observations of the complete dataset

time1 event1 Stime event Covariate1 Covariate2 Covariate3
1 1.0816105 0 1.0816105 0 46.88555 0 0
2 1.6612869 0 1.6612869 0 58.48962 0 1
3 0.4012844 0 0.4012844 0 43.88927 1 0
4 0.8713119 0 0.8713119 0 78.71034 0 1
5 0.1311183 0 0.1311183 0 60.57903 0 1
6 0.8373290 0 0.8373290 0 44.10642 0 0
7 0.7654208 0 0.7654208 0 62.84114 0 1
8 0.7800595 0 0.7800595 0 66.43504 1 0
9 0.2040727 0 0.2040727 0 64.10672 0 1
10 1.5666755 0 1.5666755 0 51.48459 0 0

The last step was to change the variable type of Covariate2 and Covariate3 to a factor variable

since this will have an impact when applying the imputation techniques.
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4.6 Conclusion

A dataset representing the Isimo Health dataset was successfully simulated in this chapter. The

simulated dataset will be used in Chapter Five to test two different imputation techniques to

impute missing values obtained in covariates. Thereafter, the imputation technique performing

the best, based on statistical measures, will be used to impute the Isimo Health dataset.
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CHAPTER 5

IMPUTATION OF MISSING DATA

5.1 Chapter Overview

Two of the imputation techniques discussed in the Literature Review chapter (Chapter Two)

were applied to the data simulated in Chapter Four. Based on the literature review,

two imputation techniques, one based on chained equations and the other based on random

forests, were chosen for comparison to identify the best performing imputation technique. The

R packages chosen to perform these imputation techniques were mice and missForest.

According to Davila and Rosado (2017), the performance of an imputation technique is

dependent on the percentage of missing data in the dataset. The dataset of Chapter Four was

modified to reflect different ratios of missing values. R was used to eliminate data at random

from the dataset simulated in Chapter Four of this thesis. Three sets of data containing missing

data were created. The datasets contained 5% (missing.05), 10% (missing.10) and 15%

(missing.15) of missing data in each covariate, respectively. The missing data created can be

seen as completely at random, since the process of deleting the entries was not influenced by the

data or the data generating process. This also means that there should be an evenly distributed

amount of missing values over the variables in the dataset.

5.2 Patterns of Missing Data

The pattern of missing data can be determined visually by making a bar chart of the missing

value proportions or through the so called md.pattern function, which provides a summary of

the missing values. This study makes use of both techniques. The patterns of the missing data

in the missing.05 dataset, using the md.pattern function in R, can be seen in Table 5.1.
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Table 5.1 Missing data pattern for missing.05 dataset

time1 event1 Stime event Covariate1 Covariate2 Covariate3 Number
of missing
variables

8576 1 1 1 1 1 1 1 0
465 1 1 1 1 1 1 0 1
451 1 1 1 1 1 0 1 1
26 1 1 1 1 1 0 0 2
432 1 1 1 1 0 1 1 1
29 1 1 1 1 0 1 0 2
21 1 1 1 1 0 0 1 2

0 0 0 0 482 498 520 1500

In Table 5.1, the column to the left gives the number of observations containing the missing data

pattern, indicated to the right of this column, where the zero indicates missing values within a

variable. The column to the right gives the number of variables containing missing values within

that combination. To clarify, in the top row, there are 8576 observations that contain no missing

values. As another example, in the second row, there are 465 observations with missing values

only in Covariate3. The last row gives the total number of observations missing within each

covariate. Table 5.2 and Table 5.3 gives the missing data pattern for the 10% and 15% missing

datasets, respectively.

Table 5.2 Missing data pattern for missing.10 dataset

time1 event1 Stime event Covariate1 Covariate2 Covariate3 Number
of missing
variables

7293 1 1 1 1 1 1 1 0
859 1 1 1 1 1 1 0 1
796 1 1 1 1 1 0 1 1
91 1 1 1 1 1 0 0 2
769 1 1 1 1 0 1 1 1
97 1 1 1 1 0 1 0 2
85 1 1 1 1 0 0 1 2
10 1 1 1 1 0 0 0 3

0 0 0 0 961 982 1057 3000
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Table 5.3 Missing data pattern for missing.15 dataset

time1 event1 Stime event Covariate1 Covariate2 Covariate3 Number
of missing
variables

6179 1 1 1 1 1 1 1 0
1098 1 1 1 1 1 1 0 1
1071 1 1 1 1 1 0 1 1
202 1 1 1 1 1 0 0 2
1006 1 1 1 1 0 1 1 1
199 1 1 1 1 0 1 0 2
212 1 1 1 1 0 0 1 2
33 1 1 1 1 0 0 0 3

0 0 0 0 1450 1518 1532 4500

Figure 5.1 contains a visual representation of the missing data pattern of the dataset with 5% of

missing values, another output provided by the md.pattern function. Figure 5.1 therefore gives

the results in Table 5.1 visually.

Figure 5.1 Missing data pattern of missing.05 dataset display

Figures 5.2 and 5.3 gives the graphical representation of the missing data patterns for the

missing.10 and missing.15 datasets.
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Figure 5.2 Missing data pattern of missing.10 dataset display

Figure 5.3 Missing data pattern of missing.15 dataset display

The bar chart of the proportion of missing values are given in Figure 5.4. Once again, this bar

chart gives the same results as in Table 5.1 and Figure 5.1.
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Figure 5.4 Proportion of missing data in the covariates of missing.05 dataset

Figures 5.5 and 5.6 gives the bar charts of the proportion of missing values in the missing.10

and missing.15 datasets.

Figure 5.5 Proportion of missing data in the covariates of missing.10 dataset
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Figure 5.6 Proportion of missing data in the covariates of missing.15 dataset

5.3 R Packages for Imputation

R has several robust packages for imputing missing values. The mice package creates multiple

imputations instead of a single imputation. The missForest package treats the missing data

problem as a prediction problem. The data is imputed by regressing each of the variables against

all of the other variables and then predicting the missing data for the dependent variable by

using the fitted forest. The missForest approach was chosen since it was shown by Waljee et al.

(2013), that it outperforms other well-known methods such as the k-nearest neighbours (KNN).

5.3.1 The mice package

The Multivariate Imputation using Chained Equations (mice) package is one of the packages

most frequently used in R for imputation (Van Buuren and Groothuis-Oudshoorn, 2011). This

package creates multiple imputations instead of a single imputation, such as taking the average.

This accounts for the uncertainty in missing values. The mice package assumes that the missing

data are MAR, which implies that the probability of a value being missing is only dependent on

the observed value and can therefore be predicted by using those values. This package specifies

an imputation model per variable and therefore imputes data on a variable by variable basis.

Let the variables of a dataset be X1,X2,...,Xk. If the variable X1 contains missing values, it will
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be regressed on the other variables X2,...,Xk. The predicted values that are obtained will replace

the missing values in variable X1. Linear regression is the default method to predict continuous

missing values and for categorical missing values, logistic regression is used. Once the

imputation process is complete, multiple datasets are generated only differing by the imputed

missing values.

The imputation methods used by this package are summarised in Table 5.4.

Table 5.4 Imputation methods used by the mice package

Method Application
Predictive Mean Matching (PMM) Numeric variables.
Logistic Regression (logreg) Binary variables with 2 levels.
Bayesian Polytomous Regression (polyreg) Factor variables with ≥ 2 levels.
Proportional Odds Model Ordered variables with ≥ 2 levels.

The missing values were imputed for each of the three covariates separately. The mice function

contains several parameters of which an explanation of the most important ones is given. The

argument m refers to the number of imputed datasets. Each of the three missing datasets (5%,

10% and 10%) was imputed 1 000 (m=1 000) times in order to ensure accuracy of the measures.

The argument maxit refers to the number of iterations taken to impute the missing values. In this

imputation, the number of iterations was taken as 5 since it is just too computer intensive to take

any more than that. Finally, method refers to the method used in imputation. In this imputation,

predictive mean matching was used for Covariate1, Logistic Regression for Covariate2 and the

Proportional Odds Model for Covariate3.

5.3.2 R package missForest

5.3.2.1 Background on missForest package

The selection of arguments with respect to feasibility and accuracy issues are discussed

in the user guide by Stekhoven (2011). The missForest package provides a non-parametric

imputation method that can be used for a wide range of different datasets (Stekhoven, 2011).

A non-parametric method does not make explicit assumptions about the functional form

of an arbitrary function f . It rather attempts to estimate f in such a manner that it can be
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close to the data points without seeming impractical. The only requirement for this algorithm to

work is that the observations must be mutually independent. Stekhoven (2011) states that the

missForest algorithm is based on the random forest algorithm, developed by Breiman (2001),

and is therefore dependent on the R implementation of Random Forest by Liaw and Matthew

(2002).

Basically, the missForest algorithm fits a random forest on the observed part and then predict

the missing information. According to Stekhoven (2011), these two steps are repeated

until a stopping criterion is met or the specified number of maximum iterations

is reached, whichever comes first. During the iterative process, the imputed matrix is

updated continuously, variable by variable. The performance is assessed between iterations.

The assessment of the performance between iterations is done by considering the

difference in results between the previous imputation result and the new imputation result. The

algorithm stops as soon as the difference increases, meaning there is no more improvement.

This algorithm yields an out of bag (OOB) imputation error estimate and provides a high level

of control over the imputation process (Stekhoven, 2011). This algorithm can also account

for categorical variables and therefore, the missForest package can be used for datasets with

different types of variables.

5.3.2.2 Function arguments

The maxiter argument controls the number of iterations that are allowed. It might be required by

the data that more than the usual five (default) iterations are required until the stopping criteria

kicks in. It is the ultimate goal for the algorithm to stop due to the stopping criterion and not

due to the maximum number of iterations being reached. The difference in improvement might

in some cases be so marginal that is reasonable to limit the number of iterations. The number of

iterations will also influence the run time of the algorithm and therefore it is necessary to have

a maximum number of iterations. (Stekhoven, 2011).

There is a speed versus accuracy trade-off to be made by manipulating the arguments ntree and

mtry. The missForest package grows, in each of the iterations for each of the variables, a random
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forest to impute the missing values within that variable. A large number of variables can lead

to an undesired long computational time. The computational time of the imputation process

can be lowered by either reducing the number of trees that is grown in each forest (ntree) or by

reducing the number of variables that are randomly sampled at each split (mtry). The reduction

of either of these arguments will however have a reduction effect on the accuracy of the process

as well. (Stekhoven, 2011).

According to Stekhoven (2011), ntree have a linear effect on the computation time. Therefore,

when halving the ntree argument, the computation time will also be halved. The default value

of ntree is 100. This is quite a large number of trees and it can be shown that a smaller ntree

value can also produce appropriate results.

The change in the mtry argument have a larger effect in high dimensional cases. The default for

the missForest is the square-root of the number of dimensions. This delivers a good trade-off

between imputation error and computation time.

5.3.2.3 Function output

The imputed data matrix is given as output with the name ximp. The estimated OOB

imputation error is given by OOBerror. The Normalised Root Mean Squared Error (NRMSE)

is returned for continuous variables and the proportion of falsely classified (PFC) entries is

returned for categorical variables (Stekhoven, 2013).

The NRMSE is defined as
�

mean((Xtrue −Ximp)2)

var(Xtrue)
,

where Xtrue is the complete dataset, Ximp is the imputed dataset and the mean/var are used

as a short notation for the empirical mean and variance computed over the continuous missing

values (Stekhoven, 2013). Values closer to zero are preferred for the NRMSE measurement

(Dávila and Rosado, 2017).

According to Stekhoven (2013), since the simulated dataset contains a mixed type of variables,

the mixError function in the missForest package can be used to compute the imputation error
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for mixed-type data.

5.4 Measurement of Imputation Technique Performance

Seven measures of performance were chosen to adequately choose the best imputation

technique. The Metrics (Hamner and Frasco, 2018) package in R was used to calculate these

seven measures of performance. The seven measures are listed and described below. The

mathematical formulas for each of the measures are also given with Xi being the actual value of

observation i, X̂i the imputed value of observation i and X̄ the mean value of the actual values.

5.4.1 Mean Squared Error

The Mean Squared Error (MSE) is the average squared difference between the actual

and imputed values. It is an overall measure of the size of the imputation error (Rice, 2007,

p.136). The function in the Metrics package for the MSE is called with mse(). The MSE can be

calculated by using

MSE =
1

n

n	

i=1

(Xi − X̂i)
2.

5.4.2 Accuracy

The accuracy measure is the measurement of the proportion of elements in the actual data

that are equal to the corresponding element in the imputed data. This is the only performance

measure that a higher value is desired, where all the other measures mentioned requires small

values. The accuracy is calculated in R through the Metrics package by calling the function

accuracy().

5.4.3 Mean Absolute Error

The Mean Absolute Error (MAE) is the average absolute difference between the actual and

imputed values. The function in the Metrics package for the MAE is called with mae(). Similar

to the MSE, a lower value of the MAE is better. The MAE can be calculated by using

MAE =
1

n

n	

i=1

|Xi − X̂i|.
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5.4.4 Relative Absolute Error

The Relative Absolute Error (RAE) is the relative absolute error between the actual and imputed

values. The function in the Metrics package for the RAE is called with rae(). Similar to the

MSE and MAE a lower value of the RAE is better. The REA can be calculated by using the

formula

RAE =

n�

i=1

|Xi − X̂i|
n�

i=1

|Xi − X̄|
.

5.4.5 Root Mean Square Error

The Root Mean Square Error (RMSE) is the root mean squared difference between the actual

and imputed values. It measures the difference between the actual values and the imputed values

(Schmitt et al., 2015). According to Schmitt et al. (2015), this measure basically represents the

sample standard deviation of the difference. The function to calculate the RMSE is called rmse()

in the Metrics package. A lower value of the RMSE is better. The RMSE can be calculated by

using

RMSE =

����1

n

n	

i=1

(Xi − X̂i)2.

5.4.6 Sum of Squared Errors

The Sum of Squared Errors (SSE) is the sum of the squared differences between the actual and

imputed values. The function in the Metrics package for the SSE is called with sse(). Similar

to all the other measures, except for accuracy, a lower value of the SSE is better. The SSE can

be calculated by using

SSE =
n	

i=1

(Xi − X̂i)
2.

5.4.7 Bias

Bias is the average amount by which the actual is greater than the predicted. The bias() function
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in R is used to calculate the bias. The bias is calculated as

bias =
1

n

n	

i=1

(Xi − X̂i)

and a lower value of bias is desired.

In the MAE and RMSE, the average difference between the actual and imputed values are

compared. It is therefore related to the scale of the observations. In RAE, the differences of the

actual and imputed values are divided by the variation of the actual values. Therefore, the RAE

values now have a scale from zero to one. The denominator,
n�

i=1

|Xi− X̄|, gives an indication of

how much the actual values differ from the mean value.

5.5 Imputation Results

The results for the two imputation techniques are given in the tables below. Separate tables are

given for each covariate as well as for each of the three different percentages of missing data.

Table 5.5 Imputation of Covariate1 - missing.05

mice missForest
MSE 22.458 10.974
Accuracy - -
MAE 0.859 0.606
RAE 0.072 0.051
RMSE 4.737 3.313
SSE 224581.782 109374.290
Bias -0.033 -0.030

Table 5.6 Imputation of Covariate1 - missing.10

mice missForest
MSE 43.320 12.032
Accuracy - -
MAE 1.654 0.661
RAE 0.139 0.056
RMSE 6.580 3.446
SSE 433195.530 120317.549
Bias 0.066 -0.018
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Table 5.7 Imputation of Covariate1 - missing.15

mice missForest
MSE 66.596 13.205
Accuracy - -
MAE 2.538 0.724
RAE 0.214 0.061
RMSE 8.160 3.558
SSE 665962.67 132048.926
Bias 0.073 -0.021

Table 5.8 Imputation of Covariate2 - missing.05

mice missForest
MSE 0.017 0.014
Accuracy 0.983 0.986
MAE 0.017 0.014
RAE 0.051 0.042
RMSE 0.132 0.120
SSE 172 144
Bias -0.001 0.001

Table 5.9 Imputation of Covariate2 - missing.10

mice missForest
MSE 0.034 0.016
Accuracy 0.966 0.984
MAE 0.034 0.016
RAE 0.098 0.047
RMSE 0.184 0.126
SSE 339 164
Bias 0.000 0.001

Table 5.10 Imputation of Covariate2 - missing.15

mice missForest
MSE 0.050 0.018
Accuracy 0.950 0.982
MAE 0.050 0.018
RAE 0.145 0.052
RMSE 0.224 0.131
SSE 501 181
Bias -0.002 0.000
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Table 5.11 Imputation of Covariate3 - missing.05

mice missForest
MSE 0.087 0.098
Accuracy 0.968 0.970
MAE 0.049 0.050
RAE 0.062 0.064
RMSE 0.295 0.313
SSE 869 977
Bias 0.000 -0.002

Table 5.12 Imputation of Covariate3 - missing.10

mice missForest
MSE 0.187 0.107
Accuracy 0.929 0.966
MAE 0.105 0.055
RAE 0.134 0.071
RMSE 0.433 0.325
SSE 1872 1073
Bias -0.002 -0.004

Table 5.13 Imputation of Covariate3 - missing.15

mice missForest
MSE 0.268 0.117
Accuracy 0.897 0.963
MAE 0.153 0.061
RAE 0.195 0.077
RMSE 0.517 0.335
SSE 2678 1170
Bias -0.001 -0.005

In order to determine the best performing technique, various statistical measures were evaluated.

It can be seen from the tables above, that the MSE, MAE, RAE, RMSE and SSE are lower

for the missForest imputation for all three sets of data for Covariate1 and Covariate2. For

Covariate3 however, the mice imputation technique is more favourable in the missing.05 dataset

although the missForest imputation remains in the lead for the other two datasets. The bolded

values in the tables indicate the values where the performance of the mice package is better than

the performance of missForest. The bias is relatively similar in all cases with the bias being

slightly lower for mice in Covariate1 dataset missing.05, as well as Covariate2 for all three
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datasets. The accuracy measure is better for the missForest technique in both covariates 1 and

2, and for all three datasets. The various statistical measures demonstrated that the missForest

package had better performance in the imputation process.

5.6 Conclusion

Based on the evidence of the statistical measures, the missForest package performs better in

imputation of the covariates in the Isimo Health data. Therefore, in Chapter Six, the missForest

package will be used to impute the Isimo Health dataset and thereafter the multi-state Markov

model will be fitted to the data.
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CHAPTER 6

DATA ANALYSIS ON ISIMO HEALTH

DATASET

6.1 Introduction

In this chapter the Isimo Health dataset is analysed using the results from Chapter Five. The

pattern of the missing data in the covariates of the Isimo Health dataset is investigated. It was

shown in Chapter Five that the missForest imputation technique performs better for imputation

of missing values in the covariates. Therefore, the missForest technique is applied to the Isimo

Health dataset. Thereafter, a multi-state Markov model is fitted to the imputed dataset. It is

seen that the Markov assumption does not hold and therefore a semi-Markov model is fitted to

the data. The p3state.msm package is used to fit the Markov and the semi-Markov multi-state

models.

6.2 Missing Data

6.2.1 Missing data patterns

The md.pattern() function in the mice package is used to obtain a summary of the missing data

and a graphical representation of the missing data that is present in the Isimo Health dataset.
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Table 6.1 Isimo Health dataset missing data pattern

time1 event1 Stime event gender age r_stageER PR node HER2 height weight
87 1 1 1 1 1 1 1 1 1 1 1 1 1 0
105 1 1 1 1 1 1 1 1 1 1 1 0 0 2
15 1 1 1 1 1 1 1 1 1 1 0 1 1 1
16 1 1 1 1 1 1 1 1 1 1 0 0 0 3
9 1 1 1 1 1 1 1 1 1 0 1 1 1 1
6 1 1 1 1 1 1 1 1 1 0 1 0 0 3
3 1 1 1 1 1 1 1 1 1 0 0 1 1 2
2 1 1 1 1 1 1 1 1 1 0 0 0 0 4
2 1 1 1 1 1 1 1 1 0 1 0 0 0 4
1 1 1 1 1 1 1 1 0 0 1 1 0 0 4
3 1 1 1 1 1 1 1 0 0 1 0 1 1 3
5 1 1 1 1 1 1 1 0 0 1 0 0 0 5
1 1 1 1 1 1 1 1 0 0 0 0 1 1 4
2 1 1 1 1 1 1 1 0 0 0 0 0 0 6
1 1 1 1 1 1 1 0 1 1 0 1 1 1 2

0 0 0 0 0 0 1 12 14 24 49 139 139 378

This table summarises that there are 87 observations that contain no missing values. There are

105 observations with missing values in both weight and height. There are 15 observations

with HER2 missing values. There are 16 observations with missing values in height, weight

and HER2. There are nine observations that have missing values for node. There are six

observations with missing values in height, weight and node. There are three observations with

missing values in node and HER2. There are two observations with missing values in node,

HER2, height and weight and another two with missing values in PR, HER2, height and weight.

There is only one observation with missing values for ER, PR, height and weight. There are

three observations with missing values HER2, PR and ER. Five observations however contain

missing values in ER, PR, HER2, height and weight, and only one observation has missing

values in HER2, ER, PR and node. There are two observations that have a missing value for

ER, PR, node, HER2, height and weight. And finally, there is one observation with missing

values for r_stage and node. The pattern of the missing data can be seen visually in Figure 6.1.
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Figure 6.1 Missing data in the Isimo dataset

The proportion of missing data within each of the variables containing missing data can be seen

in Figure 6.2.

Figure 6.2 The proportion of missing values contained in the variables of the Isimo dataset

It can be seen from Figure 6.2, that the two variables height and weight have an extraordinary
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proportion of missing data. The author therefore decided to take out these two variables and

rather work with the other variables that have less than 20% of missing data and can be

successfully imputed.

It should be noted that the variables node and r_stage are ordinal factor variables, the variables

HER2, ER and PR are binary variables and the two variables weight and height is numerical

variables.

6.2.2 Missing data imputation

The missForest package in R is used to impute the missing data in the dataset. The dataset was

imputed in only four iterations. From the output provided by the missForest function it is seen

that the NRMSE = 0.02094632 and the PFC = 0.18319743. Therefore, the normalised root

mean squared error is 2.09% and the proportion of falsely classified entries is 18.32%.

The final imputed dataset consists of 11 variables. Each of the 258 lines represent an individual

with breast cancer. The variable time1 denotes the sojourn time spent in State 1 (curative)

whereas the variable Stime is the total survival time of the individual. It should be noted that

time1 < Stime means that a transition occurred from State 1 (curative) to State 2

(non-curative).

6.3 Multi-state Markov Model Fitted to the Data

The multi-state Markov model will be fitted to the imputed Isimo Health dataset in this section.

The three states of the multi-state Markov model include curative, non-curative and death. The

death state is an absorbing state. The three-state Markov model can be seen in Figure 6.3.
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Figure 6.3 Three-state breast cancer Markov multi-state model

The p3state.msm package will be used to fit the multi-state model to the Isimo Health dataset.

6.3.1 The p3state.msm Package methodology

As mentioned in Chapter Two, the multi-state process is characterised through transition

probabilities between two states i and j which can be expressed as

pij(s, t) = p(X(t) = j|X(s) = i, Xs), s ≤ t,

where the history of the process is denoted by Xs (Meira-Machado and Roca-Pardiñas, 2011).

The history, Xs, is generated and consists of the observation of the process over the interval

[0, s). According to Meira-Machado and Roca-Pardiñas (2011), it can also be generated through

the transition intensities expressed as

qij(t) = lim
∆t→0

pij(t, t+∆t)

∆t
,

which represents the instantaneous hazard of progressing to state j conditional on occupying

state i.

Let {X(t), t ≥ 0} denote the stochastic process where X(t) denotes the state being occupied

at time t for which all individuals are either in state 1 or 2 at time zero. A random vector

(T12, T13, T23) represent the stochastic behaviour of the process, where Tij is the potential

transition from state i to state j, 1 ≤ i < j ≤ 3 in which T23 is the sojourn time spent in state 2.

The expression

T = I(T12 ≤ T13)(T12 + T23) + I(T12 > T13)T13,
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gives the survival time of the stochastic process.

The random vector expressed above may be subject to a random right-censoring variable

denoted by C which is assumed to be independent of (T12, T13, T23). Due to censoring, only the

following are observed:

◮ sojourn time spent in state 1, U = min(T12.T13, C)

◮ sojourn time spent in state 2, V = min(T23, C − T12)

◮ observed total time is expressed by T̃ = U+δV = min(T,C)(δ = I(T12 ≤ min(T13, C)))
◮ indicator statuses ∆1 = I(min(T12, T13) ≤ C) and ∆ = I(T ≤ C).

The transition probabilities are estimated by the joint distribution of (T12, T13, T23). The

estimation of p11(s, t) specifically require knowledge of the distribution of F of min(T12, T13).

The estimators of the transition probabilities can be expressed as

p̂11(s, t) =
1− X̂(t)

1− X̂(s)
,

p̂12(s, t) =

n�

i=1

Wiφs,t(U[i], T̃(i))

1− X̂(s)

and

p̂22(s, t) =

n�

i=1

Wiφ̃s,t(U[i], T̃(i))

n�

i=1

Wiφ̃s,s(U[i], T̃(i))
,

where Wi are the Kaplan-Meier weights attached to T̃(i), the Kaplan-Meier estimator based on

the pairs (Ui,∆1i) is X̂ and

φs,t(u, v) = I(s < u ≤ t, v > t)

and

φ̃s,t(u, v) = I(u ≤ s, v > t).

In these expressions, the ordered sample of T̃i′s is denoted by T̃(1) ≤ ... ≤ T̃(n) and U[i] denotes

the pairs attached to the Y(i) values.

The transition probabilities that need to be estimated reduce to p11(s, t), p12(s, t) and p22(s, t)
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since p13(s, t) and p23(s, t) can be estimated from the others by

p13(s, t) = 1− p11(s, t)− p11(s, t)

and

p23(s, t) = 1− p22(s, t),

in the illness-death model.

In multi-state models, it is important to study the relationships between the different predictors

and the outcome. According to Meira-Machado and Roca-Pardiñas (2011), several models

have been used in literature, to relate the individual characteristics to the intensity rates. The

transition intensities for the illness-death models, qij(z(t)), 1 ≤ i < j ≤ 3, may be modelled

by using a model of the form similar to Cox regression:

qij(z(t)) = q
(0)
ij (t) exp(β

T
ijz(t)).

This model however assume that the process is Markovian and is known as Cox Markov models

(CMM). As previously defined, the Markov assumption states that the future state depends only

on the individual’s current state. Several limitations are brought in when ignoring the disease

history, therefore an alternative approach is to use Cox semi-Markov models (CSMM) in which

the future of the process depends on the duration in the current state rather than the current time.

Such models are also referred to as "clock reset" models since each time the individual enter a

new state, the time is reset to zero. The only difference in estimating the transition intensities

of the CMM and CSMM models, is that the q23 in CSMM is given by

q23(z(t− T12)) = q(0)23 (t− T12) exp(β
T
23z(t)),

where the entry time into state 2 is denoted by T12 (Meira-Machado and Roca-Pardiñas, 2011).

6.3.2 Description of the p3state.msm package

The p3state.msm package compose of six functions that enables the user of the package to fit

the proposed models and methods. The functions are summarised in Table 6.2.
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Table 6.2 Summary of the functions in the p3state.msm package

Function Description
p3state The main function for fitting regression models and obtain-

ing multi-state estimates including transition probabilities
and bivariate distribution functions.

plot This function provides the plots for transition probabilities.
summary Summarise the objects of class p3state.
data.creation.reg Provides the correct dataset for implementing regression

models (TDCM, CMM and CSMM).
pLIDA Provides estimates for the transition probabilities using

methods in the paper by Meira-Machado, de Uña-Álvarez
and Cadarso-Suárez (2006).

Biv Provides estimates for the bivariate distribution function, us-
ing the paper by Uña-Álvarez and Meira-Machado (2008).
This function is only available for progressive three-state
models.

Source: Meira-Machado and Roca-Pardiñas (2011).

The data that are used for the functions in this package should contain variables times1, delta,

times2, time, status, covariate 1, covariate 2,... with one line per individual. The times1

variable represents the observed time in state 1, delta is an indicator variable indicating a

transition to state 2, times2 represent the observed time in state 2, time is the total observed time

(times1+times2) and status is the final status of the individual with 1 indicating movement into

state 3 and 0 otherwise (Meira-Machado and Roca-Pardiñas, 2011). The remaining variables

are the covariates considered in the regression model.

6.3.3 Application to the Isimo Health dataset

The TPmsm function in the TPmsm package was used to convert the dataset into the

format required for the p3state.msm package. Since there is not enough males (gender=1)

that have breast cancer in the Isimo Health dataset, this covariate has been taken out.

The multi-state Cox-like models (CMM and CSMM) is obtained by changing the model

argument. The summary output for the CMM model is given below in Figures 6.4, 6.5, 6.6, 6.7

and 6.8.
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Figure 6.4 CMM Output with transition probabilities

Figure 6.5 CMM Output of Cox Markov Model from state 1 to state 3
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Figure 6.6 CMM Output of Cox Markov Model from state 1 to state 2

Figure 6.7 CMM Output of Cox Markov Model from state 2 to state 3

Figure 6.8 CMM Output checking the Markov assumption

It can be seen from the last CMM output in Figure 6.8, that the Markov assumption is not valid.
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This makes sense since the time spent in the curative (1) state does influence the transition from

state 2 (non-curative) to state 3 (death).

The summary output for the Cox Semi-Markov regression is given below in Figures 6.9, 6.10,

6.11, 6.12 and 6.13.

Figure 6.9 CSMM Output of transition probabilities

The output provided in Figure 6.9 gives the transition probability matrix as

P =




0.7615 0.1608 0.0777
0 0.2407 0.7593
0 0 1



 .

This means that a patient that is in the curative state has a 76.15% probability of

remaining in the curative state, a 16.08% probability of moving into the non-curative state

(the cancer metastasising) and a 7.77% probability of dying. A patient that is currently in

the non-curative state has a 24.07% chance of remaining in the non-curative state and a 75.93%

chance of dying. The intensity matrix can also be calculated from this with q23 = 0.0013337519,

q12 = 0.000333958 and q13 = −0.000078082.

Therefore, the intensity matrix is

Q =




−0.000255877 0.000333958 −0.000078082

0 −0.001337159 0.001337159
0 0 0



 .

From the intensity matrix, the sojourn time spent in each state can be calculated. The sojourn

time the individual spends in the curative state before moving to the non-curative state or death

state is

− 1

q11
= − 1

−0.000255877 = 3908days = 10.70years.
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The sojourn time spent by an individual in the non-curative state before moving to the death

state is

− 1

q22
= − 1

−0.001337159 = 748days = 2.05years.

Figure 6.10 CSMM Output of Cox Semi-Markov Model from state 1 to state 3

In Figures 6.10, 6.11 and 6.12, the column marked "z" gives the Wald statistic value. This

value corresponds to the ratio of each regression coefficient to its standard error. Therefore,

z = coef
se(coef)

. This statistic evaluates whether the coefficient (β) of a given variable is statistically

significantly different from zero. It can be seen from Figure 6.10 that for state 1 to state 3, none

of the variables are statistically significant.

The sign of the regression coefficients is also of importance. A positive sign implies that the

hazard (risk of event) is higher and therefore the prognosis is worse, for individuals with higher

variables for that specific variable. The hazard ratio (HR) in R is given as the second group

relative to the first group therefore, for age, younger versus older. The beta coefficient for

age βage = −0.0098 (Figure 6.10) indicates that the younger individuals have higher risk of

dying (state 3) while in the curative state (state 1), than the individuals that are older. The beta

coefficient for node is βnode = −0.5881 which indicates that the individuals with a lower node

status (more to zero) have a higher risk of dying while in the curative state than individuals
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that have a higher node status (more towards 3). βHER2 = 0.9830 is the beta coefficient for

HER2. This indicates that the individuals that have a HER2 status = 1 and therefore being HER2

receptor positive have a higher risk of dying while in the curative state than individuals that have

HER2 status = 0 which is negative. The beta coefficient for ER however is βER = −1.2270,
which indicates that the individuals that are ER positive (ER status =1) have a lower risk of

dying than those that are ER negative. The opposite is true for PR status. With a beta coefficient

of βPR = 0.0289, the risk of dying for an individual that is PR negative is lower than for an

individual that is PR positive. The beta coefficient for r staging is βr_stage = 0.6074 which

means that individuals with larger staging have an increased risk of dying when in the curative

state.

The hazard ratio (HR) is the exponential of the coefficients. These coefficients provide the

effect size of the covariates. Therefore, being one year older, reduces the hazard by a factor

of 0.99 with 95%CI = (0.94; 1.05), or 1%. Having a node size of 1 reduces the hazard by

0.56 (44%) with 95%CI = (0.14; 2.19). Therefore, having a higher node size is a good

prognostic factor when in the curative state at risk of dying. Being HER2 positive increases

the hazard by 2.67 with 95%CI = (0.45; 15.92), being ER positive reduces the

hazard by 0.29 with 95%CI = (0.04; 2.02), being PR positive increase the hazard by 1.03

with 95%CI = (0.15; 7.15) and each r staging higher than 0 increase the hazard by 1.84 with

95%CI = (0.56; 5.97).

Lastly, the Likelihood ratio test = 4.9988781 (Figure 6.10) with 6 degrees of freedom gives a

p-value of 0.55 > 0.05 and is therefore not significant. Therefore, the covariates does not have

a statistically significant effect on the transition from the curative state to the death state.
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Figure 6.11 CSMM Output of Cox Semi-Markov Model from state 1 to state 2

Now, for Figure 6.11, it can be seen that for state 1 to state 2, none of the variables are

statistically significant.

As for the beta coefficients for state 1 to state 2, the beta coefficient for age βage = 0.0007

indicates that the younger individuals have lower risk of moving to the non-curative state (state

2) while in the curative state (state 1), than the individuals that are older. The beta coefficient

for node is βnode = 0.2152 which indicates that the individuals with a lower node status (more

to zero) have a lower risk of moving from the curative state to the non-curative state

than individuals that have a higher node status (more towards 3). βHER2 = −0.1318 is the

beta coefficent for HER2. This indicates that the individuals that have a HER2 status = 1 and

therefore being HER2 receptor positive have a lower risk of moving into the non-curative

state while in the curative state than individuals that have HER2 status = 0 which is negative.

The beta coefficient for ER is βER = 0.3718, which indicates that the individuals that are ER

positive (ER status =1) have a higher risk of becoming non-curative (state 2) than those that are

ER negative. The same is true for PR status. With a beta coefficient of βPR = 0.1126, the risk

of progressing to state 2 for an individual that is PR negative is lower than for an individual

that is PR positive. The beta coefficient for r staging is βr_stage = 0.5529 which means that

individuals with higher staging have an increased risk of moving to the non-curative state when

in the curative state.

89

Stellenbosch University  https://scholar.sun.ac.za



6 DATA ANALYSIS ON ISIMO HEALTH DATASET

The HR of age is 1.00, therefore, being one year older, increases the hazard by a factor of

1.00 with 95%CI = (0.98; 1.03). Having a node size of 1 increases the hazard by 1.24 with

95%CI = (0.79; 1.94). Therefore, having a higher node size is a bad prognostic factor when

in the curative state to potentially move to the non-curative state. Being HER2 positive

reduces the hazard by 0.88 with 95%CI = (0.26; 2.97), being ER positive increases the

hazard by 1.45 with 95%CI = (0.36; 5.89), being PR positive increase the hazard by 1.12

with 95%CI = (0.42; 3.01) and each r staging higher than 0 increase the hazard by 1.74 with

95%CI = (0.99; 3.05).

Lastly, the Likelihood ratio test = 13.41266 (Figure 6.11) with 6 degrees of freedom gives

a p-value of 0.04 < 0.05 and is therefore it is statistically significant. This means that the

covariates have a significant impact on the transition for the curative state to the non-curative

state.

Figure 6.12 CSMM Output of Cox Semi-Markov Model from state 2 to state 3

It should be noted in the results given in Figure 6.12, that the only difference between the

CMM and the CSMM model since this is the only probability that is influence by the Markov

assumption.

In Figure 6.12, it can be seen that for transitions between the non-curative state (state 2) and

death (state 3), the variable r_stage is statistically significant.
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6 DATA ANALYSIS ON ISIMO HEALTH DATASET

As for the beta coefficients for state 2 to state 3, the beta coefficient for age βage = 0.0121

indicates that the younger individuals have lower risk of dying (state 3) while in the

non-curative state (state 2), than the individuals that are older. The beta coefficient for

node is βnode = −0.6181 which indicates that the individuals with a lower node status (more

to zero) have a higher risk of dying while in the non-curative state than individuals that have a

higher node status (more towards 3). βHER2 = −20.3889 is the beta coefficient for HER2. This

indicates that the individuals that have a HER2 status = 1 and therefore being HER2 receptor

positive have a lower risk of dying while in the non-curative state than individuals that have

HER2 status = 0 which is negative. The beta coefficient for ER however is βER = −1.3582
which indicates that the individuals that are ER positive (ER status =1) have a lower risk of

dying than those that are ER negative. The opposite is true for PR status. With a beta coefficient

of βPR = 0.5380, the risk of dying for an individual that is PR negative is lower than for an

individual that is PR positive. The beta coefficient for r staging is βr_stage = 1.2678 which

means that individuals with higher staging have an increased risk of dying when in the

non-curative state.

Adding one year of age, increase the hazard by a factor of 0.01 with 95%CI = (0.98; 1.05).

Having a node size of 1 reduces the hazard by 0.54 (46%) with 95%CI = (0.23; 1.26).

Therefore, having a higher node size is a good prognostic factor when in the non-curative state at

risk of dying. Being HER2 positive reduces the hazard by 0.00 with 95%CI = (0.00;∞), being

ER positive reduces the hazard by 0.26 with 95%CI = (0.05; 1.35), being PR positive increase

the hazard by 1.71 with 95%CI = (0.41; 7.13) and each r staging higher than 0 increase the

hazard by 3.55 with 95%CI = (1.66; 7.60).

Lastly, the Likelihood ratio test = 24.64603 (Figure 6.12) with 6 degrees of freedom gives

a p-value of 0.0004 < 0.05 and is therefore statistically significant. This implies that the

covariates do have a significant effect on the transition between the non-curative state and the

death state.
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6 DATA ANALYSIS ON ISIMO HEALTH DATASET

Figure 6.13 CSMM Output of the testing of the Markov assumption

It can once again be seen from Figure 6.13 that the Markov assumption is violated, but this is

not a problem since it is not a requirement for the Semi-Markov Cox regression.

6.4 Conclusion

In conclusion, the only covariate that has a significant effect on the transition probabilities is

r_stage and it is only significant in the transition from the non-curative state to the death state.

The mean sojourn time spent in the curative (non-metastatic) state is 10.70 years. It was also

seen that the covariates only have a significant effect on the transitions from curative to non-

curative and non-curative to death. The covariates do however not have a statistically significant

effect on the transition from curative to death. The mean sojourn time spent in the non-curative

(metastatic) state is 2.05 years.
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CHAPTER 7

CONCLUSION

The aim of the study was to model the progression of breast cancer by using multi-state Markov

models after determining an appropriate technique to impute missing data present in the

covariates. A Literature Review was done on multi-state Markov models, the Markov process,

the definition of missing data as well as the different types of missing data and the imputation

techniques used. A thorough description of the claims and authorisation dataset for breast

cancer obtained from Isimo Health followed as well as the process undertook in transforming

and cleaning the dataset. The simulation approach used to simulate the data with the R package

TPmsm was described and the available R packages for imputation techniques were described

in detail whereafter two of the techniques were applied to impute the simulated dataset. The

best performing imputation technique was thereafter used on the real-world dataset from Isimo

Health. After imputation, a multi-state Markov model was fitted to the imputed data.

The Isimo Health dataset contained missing information within the covariates, which required

imputation in order to fit the multi-state Markov model. Discarding observations with missing

values would normally lead to valuable information being lost. After imputing missing data,

standard complete-data methods could be used to produce statistical results.

Some of the imputation methods discussed in the thesis, include the Expectation-Maximisation

(EM) algorithm, multiple imputation (MI) and Full Information Maximum Likelihood (FIML)

methods. Complete datasets with imputed values are produced by the EM and MI methods with

the advantage being that the generated datasets could be used for usual statistical analysis. The

FIML method is a maximum likelihood approach for handling missing data. The use of Random

Forests to impute missing data was also discussed.
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7 CONCLUSION

Simulated datasets were used to test the different imputation techniques. The gdpTP function

was used to simulate data from the Illness-death model. The simulation process were divided

into two parts. The first part of the simulation were based on patients not entering state 2

whereafter the second part were simulated for patients entering state 2. Three covariates were

simulated using distributions that resembles typical covariates. Six different possible scenarios

were studied where different movement paths were permuted within the Illness-death model.

These scenarios were ordered from best to worst case scenario in terms of prognosis of the

disease. These six scenarios were then used to simulate the covariates.

The simulated dataset was modified to reflect different ratios of missingness and used to test two

imputation techniques, one based on chained equations and the other based on Random Forests.

The R packages chosen to perform these imputation techniques were mice and missForest.

The mice package creates multiple imputations instead of a single imputation, whereas the

missForest package treats the missing data problem as a prediction problem. In the missForest

package, the data are imputed by regressing each of the variables against all of the

other variables and then predicting the missing data for the dependent variable by using the

fitted forest. A variety of performance measures were used in the assessment of the imputation

technique. Based on these measures, the missForest imputation technique out performed the

other imputation technique.

The missForest package was used as a result to impute the Isimo Health dataset, whereafter

a multi-state Markov model was fit to the data.

As a consequence, the ultimate goal of this research is to build a forecasting tool predicting

the progression of a breast cancer patient and to predict the costs associated with each of the

states of the disease. The researcher would eventually be in a position predict the total cost of

cancer for a medical scheme, using occupancy of the state space within a given model and the

associated risk factors for each patient.

From the fitted multi-state Markov models, it was found that certain covariates had a significant

effect on the transition probabilities and was only significant in the transition between certain

states. Some of the covariates did however not have a statistically significant effect on certain

transitions.
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7 CONCLUSION

In conclusion, imputation using Random Forests was succesfully used in the presence of

missing covariates before fitting a multi-state Markov model to the data.

Future study would include exploring Bayesian techniques for modelling the health states as

well as exploring alternative ways of handling censoring in healthcare data. Lastly, it will be

useful to model the costs within each of the healthcare states to result in the model predicting

the total cost of cancer.
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APPENDIX A  

R code: Data Simulation 

library(TPmsm) #Load required package 

setThreadsTP(1) 

seed=c(2718,3141,5436,6282,8154,9423) 

setPackageSeedTP(seed) 

temp=dgpTP(n=8000,corr=0,dist="exponential",dist.par=c(4,4),model.ce

ns="uniform", cens.par=3,state2.prob=0.75) 

temp2=dgpTP(n=30000,corr=0,dist="exponential",dist.par=c(4,4),model.

cens="uniform", cens.par=3,state2.prob=0.75) 

temp3=filter(temp2[[1]],event1==1) #state 2 to 3 data only 

temp4=filter(temp3,time1!=Stime) 

col1=rep(0,2000) 

col2=rep(1,2000) 

col3=temp4[1:2000,3]-temp4[1:2000,1] 

col4=temp4[1:2000,4] 

temp5=cbind(col1,col2,col3,col4) 

colnames(temp5)=colnames(temp[[1]]) 

dataset=rbind(temp[[1]],temp5) 

write.table(dataset, "location", sep="\t") 

A=filter(dataset,event1==0 & event==0 & time1==Stime) 

E=filter(dataset,event1==1 & event==1 & time1==Stime) 

D=filter(dataset,event1==1 & event==1 & time1!=Stime & time1!=0) 

F=filter(dataset,event1==1 & event==1 & time1!=Stime & time1==0) 

B=filter(dataset,event1==1 & event==0 & time1!=Stime & time1!=0) 

C=filter(dataset,event1==1 & event==0 & time1!=Stime & time1==0) 

#Sample sizes 

nA=nrow(A) 

nB=nrow(B) 

nC=nrow(C) 

nD=nrow(D) 

nE=nrow(E) 

nF=nrow(F) 

#Generate covariate1 from normal distribution 
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Covariate1A=rnorm(nA,mean=55.85906,sd=14.3243) 

Covariate1B=rnorm(nB,mean=50.14286,sd=15.43651) 

Covariate1C=rnorm(nC,mean=54.88636,sd=15.08613) 

Covariate1D=rnorm(nD,mean=56.01613,sd=15.60842) 

Covariate1E=rnorm(nE,mean=56.30894,sd=14.54591) 

Covariate1F=rnorm(nF,mean=57.72917,sd=15.39514) 

#Generate covariate2 from bernoulli distribution 

       Covariate2A=rbinom(nA,1,prob=0.200935) 

        Covariate2B=rbinom(nB,1,prob=0.25) 

        Covariate2C=rbinom(nC,1,prob=0.193548) 

        Covariate2D=rbinom(nD,1,prob=0.333333) 

        Covariate2E=rbinom(nE,1,prob=0.216) 

        Covariate2F=rbinom(nF,1,prob=0.37037) 

#Generate covariate3 from multinomial distribution 

     func<-function(x) which(x==1) 

Covariate3A.1=apply(rmultinom(nA,1,c(0.486692,0.311787,0.144487,0.05

7034)),2,func) 

Covariate3A=Covariate3A.1-1 

Covariate3B.1=apply(rmultinom(nB,1,c(0.4,0.2,0.3,0.1)),2,func) 

Covariate3B=Covariate3B.1-1 

Covariate3C.1=apply(rmultinom(nC,1,c(0.322581,0.258065,0.354839,0.06

4516)),2,func) 

Covariate3C=Covariate3C.1-1 

Covariate3D.1=apply(rmultinom(nD,1,c(0.282609,0.347826,0.239130,0.13

0435)),2,func) 

Covariate3D=Covariate3D.1-1 

Covariate3E.1=apply(rmultinom(nE,1,c(0.451104,0.315457,0.160883,0.07

2555)),2,func) 

Covariate3E=Covariate3E.1-1 

Covariate3F.1=apply(rmultinom(nF,1,c(0.250000,0.388889,0.222222,0.13

8889)),2,func) 

Covariate3F=Covariate3F.1-1 

     newA=cbind(A,Covariate1A,Covariate2A,Covariate3A) 

colnames(newA)=c("time1","event1","Stime","event","Covariate1","Cova

riate2", "Covariate3") 

     newB=cbind(B,Covariate1B,Covariate2B,Covariate3B) 
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colnames(newB)=c("time1","event1","Stime","event","Covariate1","Cova

riate2", "Covariate3") 

     newC=cbind(C,Covariate1C,Covariate2C,Covariate3C) 

colnames(newC)=c("time1","event1","Stime","event","Covariate1","Cova

riate2", "Covariate3") 

     newD=cbind(D,Covariate1D,Covariate2D,Covariate3D) 

colnames(newD)=c("time1","event1","Stime","event","Covariate1","Cova

riate2", "Covariate3") 

     newE=cbind(E,Covariate1E,Covariate2E,Covariate3E) 

colnames(newE)=c("time1","event1","Stime","event","Covariate1","Cova

riate2", "Covariate3") 

     newF=cbind(F,Covariate1F,Covariate2F,Covariate3F) 

colnames(newF)=c("time1","event1","Stime","event","Covariate1","Cova

riate2", "Covariate3") 

final=rbind(newA,newB,newC,newD,newE,newF) 

final$Covariate2 = as.factor(final$Covariate2) 

final$Covariate3 = as.factor(final$Covariate3) 

 

APPENDIX B 

R code: Creating Missingness in Simulated Dataset 
#5% missingness: 

    p=0.05 

    missing.05=final 

    nr=nrow(missing.05) 

    nc=ncol(missing.05) 

    ina=is.na(unlist(missing.05[,5:7])) #no NA's yet 

    n2=floor(p*nr*3)-sum(ina) 

    ina[sample(which(!is.na(ina)),n2)]=TRUE #replace some values 

    

cbind.matrix=cbind(matrix(rep(FALSE,4*nr),nrow=nr),matrix(ina,nr=nr,

nc=3)) 

    missing.05[matrix(cbind.matrix,nr=nr,nc=nc)]=NA 

#10% missingness: 

    p=0.1 

    missing.1=final 
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    nr=nrow(missing.1) #5 

    nc=ncol(missing.1) #7 

    ina=is.na(unlist(missing.1[,5:7])) #no NA's yet 

    n2=floor(p*nr*3)-sum(ina) #3 

    ina[sample(which(!is.na(ina)),n2)]=TRUE #replace some values 

    

cbind.matrix=cbind(matrix(rep(FALSE,4*nr),nrow=nr),matrix(ina,nr=nr,

nc=3)) 

    missing.1[matrix(cbind.matrix,nr=nr,nc=nc)]=NA 

#15% missingness: 

    p=0.15 

    missing.15=final 

    nr=nrow(missing.15) #5 

    nc=ncol(missing.15) #7 

    ina=is.na(unlist(missing.15[,5:7])) #no NA's yet 

    n2=floor(p*nr*3)-sum(ina) #3 

    ina[sample(which(!is.na(ina)),n2)]=TRUE #replace some values 

    

cbind.matrix=cbind(matrix(rep(FALSE,4*nr),nrow=nr),matrix(ina,nr=nr,

nc=3)) 

    missing.15[matrix(cbind.matrix,nr=nr,nc=nc)]=NA 

 

APPENDIX C 

R code: MICE Imputation 

#missing.05 

#MICE: 

    install.packages("mice") 

    library(mice) 

    install.packages("VIM") 

    library(VIM) 

imputed_Data_mice = mice(missing.05[,5:7], m=1000, maxit = 5, method 

= c('pmm','logreg','polr'), seed = 500) 

    #Results tables: 

impute.results.05.Covariate1=matrix(NA,nrow=7,ncol=2) 

       colnames(impute.results.05.Covariate1)=c("MICE","missForest") 
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rownames(impute.results.05.Covariate1)=c("MSE","Accuracy","MAE","RAE

", "RMSE","SSE","Bias") 

impute.results.05.Covariate2=matrix(NA,nrow=7,ncol=2) 

       colnames(impute.results.05.Covariate2)=c("MICE","missForest") 

       

rownames(impute.results.05.Covariate2)=c("MSE","Accuracy","MAE","RAE

", "RMSE","SSE","Bias") 

    impute.results.05.Covariate3=matrix(NA,nrow=7,ncol=2) 

       colnames(impute.results.05.Covariate3)=c("MICE","missForest") 

       

rownames(impute.results.05.Covariate3)=c("MSE","Accuracy","MAE","RAE

", "RMSE","SSE","Bias") 

    #MSE: 

    MSE.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 

       MSE.mice[i,1]=mse(final$Covariate1,cbind(missing.05[,1:4], 

          complete(imputed_Data_mice,i))$Covariate1) 

       MSE.mice[i,2]=mse(as.numeric(final$Covariate2),as.numeric( 

          complete(imputed_Data_mice,i)$Covariate2)) 

       MSE.mice[i,3]=mse(as.numeric(final$Covariate3),as.numeric( 

          complete(imputed_Data_mice,i)$Covariate3)) 

       } 

    

MSE.mice.avg=c(mean(MSE.mice[,1]),mean(MSE.mice[,2]),mean(MSE.mice[,

3])) 

    impute.results.05.Covariate1[1,1]=mean(MSE.mice[,1]) 

    impute.results.05.Covariate2[1,1]=mean(MSE.mice[,2]) 

    impute.results.05.Covariate3[1,1]=mean(MSE.mice[,3]) 

    #Accuracy: 

    accuracy.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 

       

accuracy.mice[i,1]=accuracy(final$Covariate1,cbind(missing.05[,1:4],

complete(imputed_Data_mice,i))$Covariate1) 

       

accuracy.mice[i,2]=accuracy(as.numeric(final$Covariate2),as.numeric(

complete(imputed_Data_mice,i)$Covariate2)) 
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accuracy.mice[i,3]=accuracy(as.numeric(final$Covariate3),as.numeric(

complete(imputed_Data_mice,i)$Covariate3)) 

       } 

    

accuracy.mice.avg=c(mean(accuracy.mice[,1]),mean(accuracy.mice[,2]),

mean(accuracy.mice[,3])) 

    impute.results.05.Covariate1[2,1]=mean(accuracy.mice[,1]) 

    impute.results.05.Covariate2[2,1]=mean(accuracy.mice[,2]) 

    impute.results.05.Covariate3[2,1]=mean(accuracy.mice[,3]) 

    #Mean Absolute Error: 

    MAE.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 

       

MAE.mice[i,1]=mae(final$Covariate1,cbind(missing.05[,1:4],complete(i

mputed_Data_mice,i))$Covariate1) 

MAE.mice[i,2]=mae(as.numeric(final$Covariate2),as.numeric(complete(i

mputed_Data_mice,i)$Covariate2)) 

MAE.mice[i,3]=mae(as.numeric(final$Covariate3),as.numeric(complete(i

mputed_Data_mice,i)$Covariate3)) 

       } 

    

MAE.mice.avg=c(mean(MAE.mice[,1]),mean(MAE.mice[,2]),mean(MAE.mice[,

3])) 

    impute.results.05.Covariate1[3,1]=mean(MAE.mice[,1]) 

    impute.results.05.Covariate2[3,1]=mean(MAE.mice[,2]) 

    impute.results.05.Covariate3[3,1]=mean(MAE.mice[,3]) 

    #Relative Absolute Error: 

    RAE.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 

       

RAE.mice[i,1]=rae(final$Covariate1,cbind(missing.05[,1:4],complete(i

mputed_Data_mice,i))$Covariate1) 

RAE.mice[i,2]=rae(as.numeric(final$Covariate2),as.numeric(complete(i

mputed_Data_mice,i)$Covariate2)) 

RAE.mice[i,3]=rae(as.numeric(final$Covariate3),as.numeric(complete(i

mputed_Data_mice,i)$Covariate3)) 

       } 

    

RAE.mice.avg=c(mean(RAE.mice[,1]),mean(RAE.mice[,2]),mean(RAE.mice[,

3])) 
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    impute.results.05.Covariate1[4,1]=mean(RAE.mice[,1]) 

    impute.results.05.Covariate2[4,1]=mean(RAE.mice[,2]) 

    impute.results.05.Covariate3[4,1]=mean(RAE.mice[,3]) 

    #RMSE: 

    RMSE.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 

       

RMSE.mice[i,1]=rmse(final$Covariate1,cbind(missing.05[,1:4],complete

(imputed_Data_mice,i))$Covariate1) 

RMSE.mice[i,2]=rmse(as.numeric(final$Covariate2),as.numeric(complete

(imputed_Data_mice,i)$Covariate2)) 

RMSE.mice[i,3]=rmse(as.numeric(final$Covariate3),as.numeric(complete

(imputed_Data_mice,i)$Covariate3)) 

       } 

    

RMSE.mice.avg=c(mean(RMSE.mice[,1]),mean(RMSE.mice[,2]),mean(RMSE.mi

ce[,3])) 

    impute.results.05.Covariate1[5,1]=mean(RMSE.mice[,1]) 

    impute.results.05.Covariate2[5,1]=mean(RMSE.mice[,2]) 

    impute.results.05.Covariate3[5,1]=mean(RMSE.mice[,3]) 

    #SSE: 

    SSE.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 

       

SSE.mice[i,1]=sse(final$Covariate1,cbind(missing.05[,1:4],complete(i

mputed_Data_mice,i))$Covariate1) 

SSE.mice[i,2]=sse(as.numeric(final$Covariate2),as.numeric(complete(i

mputed_Data_mice,i)$Covariate2)) 

SSE.mice[i,3]=sse(as.numeric(final$Covariate3),as.numeric(complete(i

mputed_Data_mice,i)$Covariate3)) 

       } 

    

SSE.mice.avg=c(mean(SSE.mice[,1]),mean(SSE.mice[,2]),mean(SSE.mice[,

3])) 

    impute.results.05.Covariate1[6,1]=mean(SSE.mice[,1]) 

    impute.results.05.Covariate2[6,1]=mean(SSE.mice[,2]) 

    impute.results.05.Covariate3[6,1]=mean(SSE.mice[,3]) 

    #Bias 

    Bias.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 
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       { 

       

Bias.mice[i,1]=bias(final$Covariate1,cbind(missing.05[,1:4],complete

(imputed_Data_mice,i))$Covariate1) 

Bias.mice[i,2]=bias(as.numeric(final$Covariate2),as.numeric(complete

(imputed_Data_mice,i)$Covariate2)) 

Bias.mice[i,3]=bias(as.numeric(final$Covariate3),as.numeric(complete

(imputed_Data_mice,i)$Covariate3)) 

       } 

    

Bias.mice.avg=c(mean(Bias.mice[,1]),mean(Bias.mice[,2]),mean(Bias.mi

ce[,3])) 

    impute.results.05.Covariate1[7,1]=mean(Bias.mice[,1]) 

    impute.results.05.Covariate2[7,1]=mean(Bias.mice[,2]) 

    impute.results.05.Covariate3[7,1]=mean(Bias.mice[,3]) 

#missing.10 

imputed_Data_mice = mice(missing.1[,5:7], m=1000, maxit = 5,method = 

c('pmm','logreg','polr'), seed = 500) 

#Results tables: 

impute.results.1.Covariate1=matrix(NA,nrow=7,ncol=2) 

       colnames(impute.results.1.Covariate1)=c("MICE","missForest") 

       

rownames(impute.results.1.Covariate1)=c("MSE","Accuracy","MAE","RAE"

,"RMSE","SSE","Bias") 

impute.results.1.Covariate2=matrix(NA,nrow=7,ncol=2) 

       colnames(impute.results.1.Covariate2)=c("MICE","missForest") 

       

rownames(impute.results.1.Covariate2)=c("MSE","Accuracy","MAE","RAE"

,"RMSE","SSE","Bias") 

impute.results.1.Covariate3=matrix(NA,nrow=7,ncol=2) 

       colnames(impute.results.1.Covariate3)=c("MICE","missForest") 

       

rownames(impute.results.1.Covariate3)=c("MSE","Accuracy","MAE","RAE"

,"RMSE","SSE","Bias") 

    #MSE: 

    MSE.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 

       

MSE.mice[i,1]=mse(final$Covariate1,cbind(missing.1[,1:4],complete(im

puted_Data_mice,i))$Covariate1) 

MSE.mice[i,2]=mse(as.numeric(final$Covariate2),as.numeric(complete(i

mputed_Data_mice,i)$Covariate2)) 
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MSE.mice[i,3]=mse(as.numeric(final$Covariate3),as.numeric(complete(i

mputed_Data_mice,i)$Covariate3)) 

       } 

    

MSE.mice.avg=c(mean(MSE.mice[,1]),mean(MSE.mice[,2]),mean(MSE.mice[,

3])) 

    impute.results.1.Covariate1[1,1]=mean(MSE.mice[,1]) 

    impute.results.1.Covariate2[1,1]=mean(MSE.mice[,2]) 

    impute.results.1.Covariate3[1,1]=mean(MSE.mice[,3]) 

    #Accuracy: 

    accuracy.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 

       

accuracy.mice[i,1]=accuracy(final$Covariate1,cbind(missing.1[,1:4],c

omplete(imputed_Data_mice,i))$Covariate1) 

accuracy.mice[i,2]=accuracy(as.numeric(final$Covariate2),as.numeric(

complete(imputed_Data_mice,i)$Covariate2)) 

accuracy.mice[i,3]=accuracy(as.numeric(final$Covariate3),as.numeric(

complete(imputed_Data_mice,i)$Covariate3)) 

       } 

    

accuracy.mice.avg=c(mean(accuracy.mice[,1]),mean(accuracy.mice[,2]),

mean(accuracy.mice[,3])) 

    impute.results.1.Covariate1[2,1]=mean(accuracy.mice[,1]) 

    impute.results.1.Covariate2[2,1]=mean(accuracy.mice[,2]) 

    impute.results.1.Covariate3[2,1]=mean(accuracy.mice[,3]) 

    #Mean Absolute Error: 

    MAE.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 

       

MAE.mice[i,1]=mae(final$Covariate1,cbind(missing.1[,1:4],complete(im

puted_Data_mice,i))$Covariate1) 

MAE.mice[i,2]=mae(as.numeric(final$Covariate2),as.numeric(complete(i

mputed_Data_mice,i)$Covariate2)) 

MAE.mice[i,3]=mae(as.numeric(final$Covariate3),as.numeric(complete(i

mputed_Data_mice,i)$Covariate3)) 

       } 

    

MAE.mice.avg=c(mean(MAE.mice[,1]),mean(MAE.mice[,2]),mean(MAE.mice[,

3])) 

    impute.results.1.Covariate1[3,1]=mean(MAE.mice[,1]) 
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    impute.results.1.Covariate2[3,1]=mean(MAE.mice[,2]) 

    impute.results.1.Covariate3[3,1]=mean(MAE.mice[,3]) 

    #Relative Absolute Error: 

    RAE.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 

       

RAE.mice[i,1]=rae(final$Covariate1,cbind(missing.1[,1:4],complete(im

puted_Data_mice,i))$Covariate1) 

RAE.mice[i,2]=rae(as.numeric(final$Covariate2),as.numeric(complete(i

mputed_Data_mice,i)$Covariate2)) 

RAE.mice[i,3]=rae(as.numeric(final$Covariate3),as.numeric(complete(i

mputed_Data_mice,i)$Covariate3)) 

       } 

    

RAE.mice.avg=c(mean(RAE.mice[,1]),mean(RAE.mice[,2]),mean(RAE.mice[,

3])) 

    impute.results.1.Covariate1[4,1]=mean(RAE.mice[,1]) 

    impute.results.1.Covariate2[4,1]=mean(RAE.mice[,2]) 

    impute.results.1.Covariate3[4,1]=mean(RAE.mice[,3]) 

    #RMSE: 

    RMSE.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 

       

RMSE.mice[i,1]=rmse(final$Covariate1,cbind(missing.1[,1:4],complete(

imputed_Data_mice,i))$Covariate1) 

RMSE.mice[i,2]=rmse(as.numeric(final$Covariate2),as.numeric(complete

(imputed_Data_mice,i)$Covariate2)) 

RMSE.mice[i,3]=rmse(as.numeric(final$Covariate3),as.numeric(complete

(imputed_Data_mice,i)$Covariate3)) 

       } 

    

RMSE.mice.avg=c(mean(RMSE.mice[,1]),mean(RMSE.mice[,2]),mean(RMSE.mi

ce[,3])) 

    impute.results.1.Covariate1[5,1]=mean(RMSE.mice[,1]) 

    impute.results.1.Covariate2[5,1]=mean(RMSE.mice[,2]) 

    impute.results.1.Covariate3[5,1]=mean(RMSE.mice[,3]) 

    #SSE: 

    SSE.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 
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SSE.mice[i,1]=sse(final$Covariate1,cbind(missing.1[,1:4],complete(im

puted_Data_mice,i))$Covariate1) 

SSE.mice[i,2]=sse(as.numeric(final$Covariate2),as.numeric(complete(i

mputed_Data_mice,i)$Covariate2)) 

SSE.mice[i,3]=sse(as.numeric(final$Covariate3),as.numeric(complete(i

mputed_Data_mice,i)$Covariate3)) 

       } 

    

SSE.mice.avg=c(mean(SSE.mice[,1]),mean(SSE.mice[,2]),mean(SSE.mice[,

3])) 

    impute.results.1.Covariate1[6,1]=mean(SSE.mice[,1]) 

    impute.results.1.Covariate2[6,1]=mean(SSE.mice[,2]) 

    impute.results.1.Covariate3[6,1]=mean(SSE.mice[,3]) 

    #Bias 

    Bias.mice=matrix(0,ncol=3,nrow=1000) 

    for (i in 1:1000) 

       { 

       

Bias.mice[i,1]=bias(final$Covariate1,cbind(missing.1[,1:4],complete(

imputed_Data_mice,i))$Covariate1) 

Bias.mice[i,2]=bias(as.numeric(final$Covariate2),as.numeric(complete

(imputed_Data_mice,i)$Covariate2)) 

Bias.mice[i,3]=bias(as.numeric(final$Covariate3),as.numeric(complete

(imputed_Data_mice,i)$Covariate3)) 

       } 

    

Bias.mice.avg=c(mean(Bias.mice[,1]),mean(Bias.mice[,2]),mean(Bias.mi

ce[,3])) 

    impute.results.1.Covariate1[7,1]=mean(Bias.mice[,1]) 

    impute.results.1.Covariate2[7,1]=mean(Bias.mice[,2]) 

    impute.results.1.Covariate3[7,1]=mean(Bias.mice[,3]) 

    #missing.15 

imputed_Data_mice = mice(missing.15[,5:7], m=1000, maxit = 5, method 

=c('pmm','logreg','polr'), seed = 500) 

    #Results tables: 

impute.results.15.Covariate1=matrix(NA,nrow=7,ncol=2) 

       colnames(impute.results.15.Covariate1)=c("MICE","missForest") 

       

rownames(impute.results.15.Covariate1)=c("MSE","Accuracy","MAE","RAE

", "RMSE","SSE","Bias") 

impute.results.15.Covariate2=matrix(NA,nrow=7,ncol=2) 

       colnames(impute.results.15.Covariate2)=c("MICE","missForest") 
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rownames(impute.results.15.Covariate2)=c("MSE","Accuracy","MAE","RAE

", "RMSE","SSE","Bias") 

    impute.results.15.Covariate3=matrix(NA,nrow=7,ncol=2) 

       colnames(impute.results.15.Covariate3)=c("MICE","missForest") 

       

rownames(impute.results.15.Covariate3)=c("MSE","Accuracy","MAE","RAE

", "RMSE","SSE","Bias") 

    #MSE: 

    MSE.mice=matrix(0,ncol=3,nrow=1000) 

       for (i in 1:1000) 

       { 

        

MSE.mice[i,1]=mse(final$Covariate1,cbind(missing.15[,1:4],complete(i

mputed_Data_mice,i))$Covariate1) 

MSE.mice[i,2]=mse(as.numeric(final$Covariate2),as.numeric(complete(i

mputed_Data_mice,i)$Covariate2)) 

MSE.mice[i,3]=mse(as.numeric(final$Covariate3),as.numeric(complete(i

mputed_Data_mice,i)$Covariate3)) 

       } 

    

MSE.mice.avg=c(mean(MSE.mice[,1]),mean(MSE.mice[,2]),mean(MSE.mice[,

3])) 

    impute.results.15.Covariate1[1,1]=mean(MSE.mice[,1]) 

    impute.results.15.Covariate2[1,1]=mean(MSE.mice[,2]) 

    impute.results.15.Covariate3[1,1]=mean(MSE.mice[,3]) 

    #Accuracy: 

    accuracy.mice=matrix(0,ncol=3,nrow=1000) 

       for (i in 1:1000) 

       { 

       

accuracy.mice[i,1]=accuracy(final$Covariate1,cbind(missing.15[,1:4],

complete(imputed_Data_mice,i))$Covariate1) 

accuracy.mice[i,2]=accuracy(as.numeric(final$Covariate2),as.numeric(

complete(imputed_Data_mice,i)$Covariate2)) 

accuracy.mice[i,3]=accuracy(as.numeric(final$Covariate3),as.numeric( 

complete(imputed_Data_mice,i)$Covariate3)) 

       } 

    

accuracy.mice.avg=c(mean(accuracy.mice[,1]),mean(accuracy.mice[,2]), 

mean(accuracy.mice[,3])) 

    impute.results.15.Covariate1[2,1]=mean(accuracy.mice[,1]) 

    impute.results.15.Covariate2[2,1]=mean(accuracy.mice[,2]) 
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    impute.results.15.Covariate3[2,1]=mean(accuracy.mice[,3]) 

    #Mean Absolute Error: 

    MAE.mice=matrix(0,ncol=3,nrow=1000) 

       for (i in 1:1000) 

       { 

        

MAE.mice[i,1]=mae(final$Covariate1,cbind(missing.15[,1:4],complete(i

mputed_Data_mice,i))$Covariate1) 

MAE.mice[i,2]=mae(as.numeric(final$Covariate2),as.numeric(complete(i

mputed_Data_mice,i)$Covariate2)) 

MAE.mice[i,3]=mae(as.numeric(final$Covariate3),as.numeric(complete(i

mputed_Data_mice,i)$Covariate3)) 

       } 

    

MAE.mice.avg=c(mean(MAE.mice[,1]),mean(MAE.mice[,2]),mean(MAE.mice[,

3])) 

    impute.results.15.Covariate1[3,1]=mean(MAE.mice[,1]) 

    impute.results.15.Covariate2[3,1]=mean(MAE.mice[,2]) 

    impute.results.15.Covariate3[3,1]=mean(MAE.mice[,3]) 

    #Relative Absolute Error: 

    RAE.mice=matrix(0,ncol=3,nrow=1000) 

       for (i in 1:1000) 

       { 

       

RAE.mice[i,1]=rae(final$Covariate1,cbind(missing.15[,1:4],complete(i

mputed_Data_mice,i))$Covariate1) 

RAE.mice[i,2]=rae(as.numeric(final$Covariate2),as.numeric(complete(i

mputed_Data_mice,i)$Covariate2)) 

RAE.mice[i,3]=rae(as.numeric(final$Covariate3),as.numeric(complete(i

mputed_Data_mice,i)$Covariate3)) 

       } 

    

RAE.mice.avg=c(mean(RAE.mice[,1]),mean(RAE.mice[,2]),mean(RAE.mice[,

3])) 

    impute.results.15.Covariate1[4,1]=mean(RAE.mice[,1]) 

    impute.results.15.Covariate2[4,1]=mean(RAE.mice[,2]) 

    impute.results.15.Covariate3[4,1]=mean(RAE.mice[,3]) 

    #RMSE: 

    RMSE.mice=matrix(0,ncol=3,nrow=1000) 

       for (i in 1:1000) 

       { 
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RMSE.mice[i,1]=rmse(final$Covariate1,cbind(missing.15[,1:4],complete

(imputed_Data_mice,i))$Covariate1) 

RMSE.mice[i,2]=rmse(as.numeric(final$Covariate2),as.numeric(complete

(imputed_Data_mice,i)$Covariate2)) 

RMSE.mice[i,3]=rmse(as.numeric(final$Covariate3),as.numeric(complete

(imputed_Data_mice,i)$Covariate3)) 

       } 

    

RMSE.mice.avg=c(mean(RMSE.mice[,1]),mean(RMSE.mice[,2]),mean(RMSE.mi

ce[,3])) 

    impute.results.15.Covariate1[5,1]=mean(RMSE.mice[,1]) 

    impute.results.15.Covariate2[5,1]=mean(RMSE.mice[,2]) 

    impute.results.15.Covariate3[5,1]=mean(RMSE.mice[,3]) 

    #SSE: 

    SSE.mice=matrix(0,ncol=3,nrow=1000) 

       for (i in 1:1000) 

       { 

        

SSE.mice[i,1]=sse(final$Covariate1,cbind(missing.15[,1:4],complete(i

mputed_Data_mice,i))$Covariate1) 

SSE.mice[i,2]=sse(as.numeric(final$Covariate2),as.numeric(complete(i

mputed_Data_mice,i)$Covariate2)) 

SSE.mice[i,3]=sse(as.numeric(final$Covariate3),as.numeric(complete(i

mputed_Data_mice,i)$Covariate3)) 

       } 

    

SSE.mice.avg=c(mean(SSE.mice[,1]),mean(SSE.mice[,2]),mean(SSE.mice[,

3])) 

    impute.results.15.Covariate1[6,1]=mean(SSE.mice[,1]) 

    impute.results.15.Covariate2[6,1]=mean(SSE.mice[,2]) 

    impute.results.15.Covariate3[6,1]=mean(SSE.mice[,3]) 

    #Bias 

    Bias.mice=matrix(0,ncol=3,nrow=1000) 

       for (i in 1:1000) 

       { 

       

Bias.mice[i,1]=bias(final$Covariate1,cbind(missing.15[,1:4],complete

(imputed_Data_mice,i))$Covariate1) 

Bias.mice[i,2]=bias(as.numeric(final$Covariate2),as.numeric(complete

(imputed_Data_mice,i)$Covariate2)) 

Bias.mice[i,3]=bias(as.numeric(final$Covariate3),as.numeric(complete

(imputed_Data_mice,i)$Covariate3)) 
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       } 

    

Bias.mice.avg=c(mean(Bias.mice[,1]),mean(Bias.mice[,2]),mean(Bias.mi

ce[,3])) 

    impute.results.15.Covariate1[7,1]=mean(Bias.mice[,1]) 

    impute.results.15.Covariate2[7,1]=mean(Bias.mice[,2]) 

    impute.results.15.Covariate3[7,1]=mean(Bias.mice[,3]) 

     

APPENDIX D 

R code: missForest Package 

#missForest 

    installed.packages("missForest") 

    library(missForest) 

    MSE.missForest1=c(0,1000) 

       MSE.missForest2=c(0,1000) 

       MSE.missForest3=c(0,1000) 

    Accuracy.missForest1=c(0,1000) 

       Accuracy.missForest2=c(0,1000) 

       Accuracy.missForest3=c(0,1000) 

    MAE.missForest1=c(0,1000) 

       MAE.missForest2=c(0,1000) 

       MAE.missForest3=c(0,1000) 

    RAE.missForest1=c(0,1000) 

       RAE.missForest2=c(0,1000) 

       RAE.missForest3=c(0,1000) 

    RMSE.missForest1=c(0,1000) 

       RMSE.missForest2=c(0,1000) 

       RMSE.missForest3=c(0,1000) 

    SSE.missForest1=c(0,1000) 

       SSE.missForest2=c(0,1000) 

       SSE.missForest3=c(0,1000) 

    Bias.missForest1=c(0,1000) 

       Bias.missForest2=c(0,1000) 

       Bias.missForest3=c(0,1000) 

#missing.05 

for (i in 1:1000)    

{ 

Stellenbosch University  https://scholar.sun.ac.za



imputed_Data_missForest = missForest(missing.05) 

#MSE: 

MSE.missForest1[i]=mse(final$Covariate1,imputed_Data_missForest$ximp

$Covariate1) 

MSE.missForest2[i]=mse(as.numeric(final$Covariate2),as.numeric(imput

ed_Data_missForest$ximp$Covariate2)) 

MSE.missForest3[i]=mse(as.numeric(final$Covariate3),as.numeric(imput

ed_Data_missForest$ximp$Covariate3)) 

#Accuracy: 

Accuracy.missForest1[i]=accuracy(final$Covariate1,imputed_Data_missF

orest$ximp$Covariate1) 

Accuracy.missForest2[i]=accuracy(as.numeric(final$Covariate2),as.num

eric(imputed_Data_missForest$ximp$Covariate2)) 

Accuracy.missForest3[i]=accuracy(as.numeric(final$Covariate3),as.num

eric(imputed_Data_missForest$ximp$Covariate3)) 

#Mean Absolute Error: 

MAE.missForest1[i]=mae(final$Covariate1,cbind(missing.05[,1:4],  

imputed_Data_missForest$ximp)$Covariate1) 

MAE.missForest2[i]=mae(as.numeric(final$Covariate2),as.numeric(imput

ed_Data_missForest$ximp$Covariate2)) 

MAE.missForest3[i]=mae(as.numeric(final$Covariate3),as.numeric(imput

ed_Data_missForest$ximp$Covariate3)) 

#Relative Absolute Error: 

RAE.missForest1[i]=rae(final$Covariate1,cbind(missing.05[,1:4], 

imputed_Data_missForest$ximp)$Covariate1) 

RAE.missForest2[i]=rae(as.numeric(final$Covariate2),as.numeric(imput

ed_Data_missForest$ximp$Covariate2)) 

RAE.missForest3[i]=rae(as.numeric(final$Covariate3),as.numeric(imput

ed_Data_missForest$ximp$Covariate3)) 

#RMSE: 

          

RMSE.missForest1[i]=rmse(final$Covariate1,cbind(missing.05[,1:4], 

imputed_Data_missForest$ximp)$Covariate1) 

RMSE.missForest2[i]=rmse(as.numeric(final$Covariate2),as.numeric(imp

uted_Data_missForest$ximp$Covariate2)) 

RMSE.missForest3[i]=rmse(as.numeric(final$Covariate3),as.numeric(imp

uted_Data_missForest$ximp$Covariate3)) 

#SSE:      

SSE.missForest1[i]=sse(final$Covariate1,cbind(missing.05[,1:4],  

imputed_Data_missForest$ximp)$Covariate1) 

SSE.missForest2[i]=sse(as.numeric(final$Covariate2),as.numeric(imput

ed_Data_missForest$ximp$Covariate2)) 

SSE.missForest3[i]=sse(as.numeric(final$Covariate3),as.numeric(imput

ed_Data_missForest$ximp$Covariate3)) 
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#Bias 

Bias.missForest1[i]=bias(final$Covariate1,cbind(missing.05[,1:4],  

imputed_Data_missForest$ximp)$Covariate1) 

Bias.missForest2[i]=bias(as.numeric(final$Covariate2),as.numeric(imp

uted_Data_missForest$ximp$Covariate2)) 

Bias.missForest3[i]=bias(as.numeric(final$Covariate3),as.numeric(imp

uted_Data_missForest$ximp$Covariate3)) 

} 

impute.results.05.Covariate1[1,2]=mean(MSE.missForest1) 

impute.results.05.Covariate2[1,2]=mean(MSE.missForest2) 

impute.results.05.Covariate3[1,2]=mean(MSE.missForest3) 

impute.results.05.Covariate1[2,2]=mean(Accuracy.missForest1) 

impute.results.05.Covariate2[2,2]=mean(Accuracy.missForest2) 

impute.results.05.Covariate3[2,2]=mean(Accuracy.missForest3) 

impute.results.05.Covariate1[3,2]=mean(MAE.missForest1) 

impute.results.05.Covariate2[3,2]=mean(MAE.missForest2) 

impute.results.05.Covariate3[3,2]=mean(MAE.missForest3) 

impute.results.05.Covariate1[4,2]=mean(RAE.missForest1) 

impute.results.05.Covariate2[4,2]=mean(RAE.missForest2) 

impute.results.05.Covariate3[4,2]=mean(RAE.missForest3) 

impute.results.05.Covariate1[5,2]=mean(RMSE.missForest1) 

impute.results.05.Covariate2[5,2]=mean(RMSE.missForest2) 

impute.results.05.Covariate3[5,2]=mean(RMSE.missForest3) 

impute.results.05.Covariate1[6,2]=mean(SSE.missForest1) 

impute.results.05.Covariate2[6,2]=mean(SSE.missForest2) 

impute.results.05.Covariate3[6,2]=mean(SSE.missForest3) 

impute.results.05.Covariate1[7,2]=mean(Bias.missForest1) 

impute.results.05.Covariate2[7,2]=mean(Bias.missForest2) 

impute.results.05.Covariate3[7,2]=mean(Bias.missForest3) 

#missing.1: 

    for (i in 1:1000) 

    { 

       imputed_Data_missForest = missForest(missing.1) 

       #MSE: 

          

MSE.missForest1[i]=mse(final$Covariate1,imputed_Data_missForest$ximp

$Covariate1) 

MSE.missForest2[i]=mse(as.numeric(final$Covariate2),as.numeric(imput

ed_Data_missForest$ximp$Covariate2)) 
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MSE.missForest3[i]=mse(as.numeric(final$Covariate3),as.numeric(imput

ed_Data_missForest$ximp$Covariate3)) 

       #Accuracy: 

Accuracy.missForest1[i]=accuracy(final$Covariate1,imputed_Data_missF

orest$ximp$Covariate1) 

Accuracy.missForest2[i]=accuracy(as.numeric(final$Covariate2),as.num

eric(imputed_Data_missForest$ximp$Covariate2)) 

Accuracy.missForest3[i]=accuracy(as.numeric(final$Covariate3),as.num

eric(imputed_Data_missForest$ximp$Covariate3)) 

       #Mean Absolute Error: 

MAE.missForest1[i]=mae(final$Covariate1,cbind(missing.05[,1:4],imput

ed_Data_missForest$ximp)$Covariate1) 

MAE.missForest2[i]=mae(as.numeric(final$Covariate2),as.numeric(imput

ed_Data_missForest$ximp$Covariate2)) 

MAE.missForest3[i]=mae(as.numeric(final$Covariate3,as.numeric(impute

d_Data_missForest$ximp$Covariate3)) 

       #Relative Absolute Error: 

RAE.missForest1[i]=rae(final$Covariate1,cbind(missing.05[,1:4],imput

ed_Data_missForest$ximp)$Covariate1) 

RAE.missForest2[i]=rae(as.numeric(final$Covariate2),as.numeric(imput

ed_Data_missForest$ximp$Covariate2)) 

RAE.missForest3[i]=rae(as.numeric(final$Covariate3),as.numeric(imput

ed_Data_missForest$ximp$Covariate3)) 

       #RMSE: 

RMSE.missForest1[i]=rmse(final$Covariate1,cbind(missing.05[,1:4],imp

uted_Data_missForest$ximp)$Covariate1) 

RMSE.missForest2[i]=rmse(as.numeric(final$Covariate2),as.numeric(imp

uted_Data_missForest$ximp$Covariate2)) 

RMSE.missForest3[i]=rmse(as.numeric(final$Covariate3),as.numeric(imp

uted_Data_missForest$ximp$Covariate3)) 

       #SSE: 

SSE.missForest1[i]=sse(final$Covariate1,cbind(missing.05[,1:4],imput

ed_Data_missForest$ximp)$Covariate1) 

SSE.missForest2[i]=sse(as.numeric(final$Covariate2),as.numeric(imput

ed_Data_missForest$ximp$Covariate2)) 

SSE.missForest3[i]=sse(as.numeric(final$Covariate3),as.numeric(imput

ed_Data_missForest$ximp$Covariate3)) 

       #Bias 

Bias.missForest1[i]=bias(final$Covariate1,cbind(missing.05[,1:4],imp

uted_Data_missForest$ximp)$Covariate1) 

Bias.missForest2[i]=bias(as.numeric(final$Covariate2),as.numeric(imp

uted_Data_missForest$ximp$Covariate2)) 

Bias.missForest3[i]=bias(as.numeric(final$Covariate3),as.numeric(imp

uted_Data_missForest$ximp$Covariate3)) 
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    } 

    impute.results.1.Covariate1[1,2]=mean(MSE.missForest1) 

       impute.results.1.Covariate2[1,2]=mean(MSE.missForest2) 

       impute.results.1.Covariate3[1,2]=mean(MSE.missForest3) 

    impute.results.1.Covariate1[2,2]=mean(Accuracy.missForest1) 

       impute.results.1.Covariate2[2,2]=mean(Accuracy.missForest2) 

       impute.results.1.Covariate3[2,2]=mean(Accuracy.missForest3) 

    impute.results.1.Covariate1[3,2]=mean(MAE.missForest1) 

       impute.results.1.Covariate2[3,2]=mean(MAE.missForest2) 

       impute.results.1.Covariate3[3,2]=mean(MAE.missForest3) 

    impute.results.1.Covariate1[4,2]=mean(RAE.missForest1) 

       impute.results.1.Covariate2[4,2]=mean(RAE.missForest2) 

       impute.results.1.Covariate3[4,2]=mean(RAE.missForest3) 

    impute.results.1.Covariate1[5,2]=mean(RMSE.missForest1) 

       impute.results.1.Covariate2[5,2]=mean(RMSE.missForest2) 

       impute.results.1.Covariate3[5,2]=mean(RMSE.missForest3) 

    impute.results.1.Covariate1[6,2]=mean(SSE.missForest1) 

       impute.results.1.Covariate2[6,2]=mean(SSE.missForest2) 

       impute.results.1.Covariate3[6,2]=mean(SSE.missForest3) 

    impute.results.1.Covariate1[7,2]=mean(Bias.missForest1) 

       impute.results.1.Covariate2[7,2]=mean(Bias.missForest2) 

       impute.results.1.Covariate3[7,2]=mean(Bias.missForest3) 

    #missing.15: 

    for (i in 1:1000) 

    { 

          imputed_Data_missForest = missForest(missing.15) 

       #MSE: 

MSE.missForest1[i]=mse(final$Covariate1,imputed_Data_missForest$ximp

$Covariate1) 

MSE.missForest2[i]=mse(as.numeric(final$Covariate2),as.numeric(imput

ed_Data_missForest$ximp$Covariate2)) 

MSE.missForest3[i]=mse(as.numeric(final$Covariate3),as.numeric(imput

ed_Data_missForest$ximp$Covariate3)) 

       #Accuracy: 

Accuracy.missForest1[i]=accuracy(final$Covariate1,imputed_Data_missF

orest$ximp$Covariate1) 

Accuracy.missForest2[i]=accuracy(as.numeric(final$Covariate2),as.num

eric(imputed_Data_missForest$ximp$Covariate2)) 

Accuracy.missForest3[i]=accuracy(as.numeric(final$Covariate3),as.num

eric(imputed_Data_missForest$ximp$Covariate3)) 
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       #Mean Absolute Error: 

MAE.missForest1[i]=mae(final$Covariate1,cbind(missing.05[,1:4],imput

ed_Data_missForest$ximp)$Covariate1) 

MAE.missForest2[i]=mae(as.numeric(final$Covariate2),as.numeric(imput

ed_Data_missForest$ximp$Covariate2)) 

MAE.missForest3[i]=mae(as.numeric(final$Covariate3),as.numeric(imput

ed_Data_missForest$ximp$Covariate3)) 

       #Relative Absolute Error: 

RAE.missForest1[i]=rae(final$Covariate1,cbind(missing.05[,1:4],imput

ed_Data_missForest$ximp)$Covariate1) 

RAE.missForest2[i]=rae(as.numeric(final$Covariate2),as.numeric(imput

ed_Data_missForest$ximp$Covariate2)) 

RAE.missForest3[i]=rae(as.numeric(final$Covariate3),as.numeric(imput

ed_Data_missForest$ximp$Covariate3)) 

       #RMSE: 

RMSE.missForest1[i]=rmse(final$Covariate1,cbind(missing.05[,1:4], 

imputed_Data_missForest$ximp)$Covariate1) 

RMSE.missForest2[i]=rmse(as.numeric(final$Covariate2),as.numeric(imp

uted_Data_missForest$ximp$Covariate2)) 

RMSE.missForest3[i]=rmse(as.numeric(final$Covariate3),as.numeric(imp

uted_Data_missForest$ximp$Covariate3)) 

       #SSE:        

SSE.missForest1[i]=sse(final$Covariate1,cbind(missing.05[,1:4],imput

ed_Data_missForest$ximp)$Covariate1) 

SSE.missForest2[i]=sse(as.numeric(final$Covariate2),as.numeric(imput

ed_Data_missForest$ximp$Covariate2)) 

SSE.missForest3[i]=sse(as.numeric(final$Covariate3),as.numeric 

(imputed_Data_missForest$ximp$Covariate3)) 

       #Bias 

Bias.missForest1[i]=bias(final$Covariate1,cbind(missing.05[,1:4],imp

uted_Data_missForest$ximp)$Covariate1) 

Bias.missForest2[i]=bias(as.numeric(final$Covariate2),as.numeric(imp

uted_Data_missForest$ximp$Covariate2) 

Bias.missForest3[i]=bias(as.numeric(final$Covariate3),as.numeric(imp

uted_Data_missForest$ximp$Covariate3)) 

    } 

    impute.results.15.Covariate1[1,2]=mean(MSE.missForest1) 

       impute.results.15.Covariate2[1,2]=mean(MSE.missForest2) 

       impute.results.15.Covariate3[1,2]=mean(MSE.missForest3) 

    impute.results.15.Covariate1[2,2]=mean(Accuracy.missForest1) 

       impute.results.15.Covariate2[2,2]=mean(Accuracy.missForest2) 

       impute.results.15.Covariate3[2,2]=mean(Accuracy.missForest3) 

    impute.results.15.Covariate1[3,2]=mean(MAE.missForest1) 

Stellenbosch University  https://scholar.sun.ac.za



       impute.results.15.Covariate2[3,2]=mean(MAE.missForest2) 

       impute.results.15.Covariate3[3,2]=mean(MAE.missForest3) 

    impute.results.15.Covariate1[4,2]=mean(RAE.missForest1) 

       impute.results.15.Covariate2[4,2]=mean(RAE.missForest2) 

       impute.results.15.Covariate3[4,2]=mean(RAE.missForest3) 

    impute.results.15.Covariate1[5,2]=mean(RMSE.missForest1) 

       impute.results.15.Covariate2[5,2]=mean(RMSE.missForest2) 

       impute.results.15.Covariate3[5,2]=mean(RMSE.missForest3) 

    impute.results.15.Covariate1[6,2]=mean(SSE.missForest1) 

       impute.results.15.Covariate2[6,2]=mean(SSE.missForest2) 

       impute.results.15.Covariate3[6,2]=mean(SSE.missForest3) 

    impute.results.15.Covariate1[7,2]=mean(Bias.missForest1) 

       impute.results.15.Covariate2[7,2]=mean(Bias.missForest2) 

       impute.results.15.Covariate3[7,2]=mean(Bias.missForest3) 

     

APPENDIX E                                       

R code: multi-state model 

#Load data into R: 

RData=read.table(file="location",header=TRUE) 

#RData=read.table(file="clipboard",header=TRUE) 

       RData2=RData 

       RData2$gender = as.factor(RData2$gender) 

       RData2$r_stage = as.factor(RData2$r_stage) 

       RData2$HER2 = as.factor(RData2$HER2) 

       RData2$ER = as.factor(RData2$ER) 

       RData2$PR = as.factor(RData2$PR) 

       RData2$node = as.factor(RData2$node) 

md.pattern(RData2) 

dev.new() 

k = dim(RData[,7:13])[2] 

freq = numeric(k) 

for(i in 1:k) freq = apply(RData[,7:13], 2, 

function(x)mean(is.na(x))) 

barplot(freq, col="black") 

#imputation with missForest: 

library(missForest) 

imputed_Data2 = missForest(RData2[,-c(11,12)]) 

Stellenbosch University  https://scholar.sun.ac.za



RData2.imputed=imputed_Data2$ximp 

#Create a survTP object to use in TPmsm: 

Rdata2.imputed.numeric=cbind(RData2.imputed[,1:4],as.numeric(RData2.

imputed$gender),RData2.imputed$age,as.numeric(RData2.imputed$node),a

s.numeric      (RData2.imputed$HER2),as.numeric(RData2.imputed$ER), 

as.numeric(RData2.imputed$PR),as.numeric(RData2.imputed$r_stage)) 

colnames(Rdata2.imputed.numeric)=colnames(RData2.imputed) 

library(TPmsm) 

    

breast_obj=with(Rdata2.imputed.numeric,survTP(time1,event1,Stime,eve

nt,gender,age,node,HER2,ER,PR,r_stage)) 

AJmodel=transAJ(breast_obj, s=0, t=1065, state.names=c("curative", 

"non-curative","death"), conf=TRUE,n.boot=1000, conf.level=0.95, 

method.boot="percentile") 

PAJmodel=transPAJ(breast_obj, s=0, t=31065,state.names=c("curative", 

"non-curative","death"), conf=TRUE, n.boot=1000,conf.level=0.95, 

method.boot="percentile") 

#change format of data to p3state.msm 

library(p3state.msm) 

breast_p3state=TPmsmOut(breast_TPmsm,package 

="p3state.msm",names=c("time1","event1","Stime","event")) 

       

colnames(breast_p3state)=c(colnames(breast_p3state)[1:5],"gender","a

ge","node","HER2","ER","PR","r_stage") 

       

obj1.p3state=p3state(breast_p3state,formula=~age+node+HER2+ER+PR+r_s

tage) 

summary(obj1.p3state,model="CMM") 

summary(obj1.p3state,model="CSMM") 
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