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SUMMARY
--------- --- --- --- - - - ---- -

In all cellular systems the ability to alter eellular programs in response to

extracellular cues is essential for survival. This involves the integration of

signals triggered by membrane bound receptors in order to adjust the

expression of target genes and enzyme activities and consequently

phenotypic outcome. The yeast Saccharomyces cerevisiae has evolved

several adaptations, such as, sporulation and pseudohyphal differentiation, in

order to survive changes in the surrounding environment. Pseudohyphal

differentiation and the related phenotype, invasive growth, are proposed to be

adaptations that enable the yeast to forage for scarce nutrients or escape

from a detrimental environment. This dimorphic transition is associated with a

change from the normal "yeast" form to a pseudohyphal form, which involves

changes in budding pattern, cell-cycle progression, cellular elongation, and

cell-eell and cell-substrate adherence. The outcome of these changes is

elongated eells, which bud in a unipolar fashion and do not separate after

budding to form chains of cells referred to as pseudohyphae. These

pseudohyphae are able to penetrate the surface of agar containing growth

medium, a process referred to as invasive growth.

Nutrient-induced adaptations, such as pseudohyphal growth, have been

extensively studied in S. cere visiae , and several factors have been implicated

in the regulation thereof, many of which are part of specific signalling

pathways. The most clearly defined are the filamentous growth specific MAP

kinase cascade and the Gpa2p-cAMP-PKA pathway. MUC1/FL011,

encoding a member of a family of cell wall associated proteins involved in cell-

cell/cell-substrate adhesion, is regulated by these pathways and considered to

be critical in the establishment of pseudohyphal differentiation and invasive

growth. The promoter region of MUC1/FL011 represents one of the largest

yeast promoters identified to date, with cis-acting elements present up to 2.4

kb upstream from the first coding triplet. The upstream regulatory region of

MUC1/FL011 is almost identical to that of the STA2 gene, which encodes an

extracellular glucoamylase required for the utilisation of extracellular starch.
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As suggested by the extent of homology between these two promoters,

MUC1/FL011 and STA2 are co-regulated to a large degree and both require

the same transcription factors.

Mss11p plays a central role in the regulation of MUC1/FL011 and STA2 and

consequently starch metabolism and pseudohyphaI differentiation. The

regulation conferred by MSS11 on the transcriptional levels of MUC1/FL011

and STA2 also appears to be dependent on signals generated specifically in

the presence of low nitrogen and glucose. Mss11p does not have significant

homology to any other yeast protein, with the exception of limited homology to

the transcriptional activator F108p. However, several distinctive domains have

been identified in the MSS11 gene product. Firstly, Mss11p contains poly-

glutamine and poly-asparagine domains. It also contains a putative ATP- or

GTP-binding domain (P-Ioop), commonly found in proteins such as kinases,

ATPases or GTPases. Two short stretches close to the N-terminal, labelled

H1 and H2, share significant homology to the transcriptional activator, F108p.

Both the H2 domain and the extreme C-terminal of Mss11p are able to

stimulate RNA polymerase II dependent transcription. Furthermore, the H1

domain together with the P-Ioop negatively regulates the activation potential

of the H2 domain.

This study presents further insight into the functioning of Mss11p and the

involvement of the separate activation and regulatory domains in mediating

transcriptional activation and pseudohyphal differentiation in response to

nutrient limitation. Genetic interactions between Mss11p and other factors

involved in the regulation of pseudohyphal growth and starch degradation

were revealed, and specific regions of Mss11p were shown to be required by

these factors in order to achieve their required function. In addition, results

obtained in this study implicates Mss11p in the regulation of Ca2+-dependent

flocculation and suggest that the FL01 gene is also regulated by Mss11p in

this capacity.
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OPSOMMING
- -- --- -_ --- -- --- ---

Die vermoë om sellulêre programme in reaksie op ekstrasellulêre seine te

verander, is 'n essensiële vereiste vir alle sellulêre sisteme. Dit behels die

integrasie van seine gegenereer deur membraan-gebonde reseptore om

ekspressie van teikengene en ensiemaktiwiteite sodanig aan te pas dat

gewenste fenotipise uitkomste bewerkstellig kan word. Die gis

Saccharomyces cerevisiae het verskeie aanpassingsmeganismes ontwikkel,

soos byvoorbeeld sporulasie en pseudohifeforming, om veranderinge in die

omgewing te kan oorleef. Pseudohifevorming en die verwante fenotipe,

penetrasiegroei, word beskou as aanpassings te wees wat die gis in staat stel

om van 'n skadelike omgewing weg te kom, of dit in staat te stelom by skaars

voedingstowwe uit te kom. Hierdie dimorfiese transisie word geassosieer met

'n verandering van die normale "gisvorm" tot pseudohifevorming wat

veranderinge in die botpatroon, selsiklusprogressie, selverlenging, sel-sel en

sel-substraat aanhegting behels. Die uitkoms van hierdie verandering is

verlengde selle, wat unipolêr bot en nie van mekaar skei nie om sodoende

kettings van selle te vorm en waarna verwys word as pseudohifes. Hierdie

pseudohifes is ook in staat om die oppervlak van 'n agar bevattende

groeimedium te penetreer, 'n proses waarna verwys word as penetrasiegroei.

Aanpassings soos pseudohitevorminq is die afgelope dekade intensief

nagevors, en verskeie faktore en seintransduksienetwerke is in die regulering

daarvan geïmpliseer. Onder hierdie seintransduksienetwerke is die bes

gedefiniëerde paaie die filamentasie-spesifieke MAP-kinasekaskade en die

Gpa2p-cAMP-PKA pad. MUC1/FL011 kodeer vir 'n lid van 'n geenfamilie wat

met sel-sel/sel-substraat aanhegting geasosieer word en dit word deur hierdie

seintransduksie netwerke gereguleer. MUC1/FL011 word as essensieel vir

pseudohife vorming beskou. MUC1/FL011 word gereguleer deur die grootste

gispromoter wat tot op hede geïdentifiseer is, met cis-werkende elemente so

ver as 2.4 kb stroom-op van ATG. Die MUC1/FL011 promoter is feitlik

identies tot die van die STA2-geen, wat kodeer vir 'n ekstrasellulêre

glukoamilase wat die gis in staat stelom ekstrasellulêre stysel te benut.
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Weens die homologie tussen die twee promoters, word MUC1/FL011 en

STA2 tot In groot mate ge-koreguleer en beide benodig dieselfde

transkripsiefaktore.

Mss11p speel In sentrale rol in die regulering van MUC1/FL011 en STA2 en

dus ook in die regulering van pseudohifevorming en styselmetabolisme. Die

regulering wat deur Mss11p of MUC1/FL011 en STA2 uitgeofen word, blyk

verder onderhewig te wees aan seine wat gegenereer word spesifiek in die

teenwoordigheid van lae konsentrasies glukose en stikstof. Mss11p het nie

betekenisvolle homologie met enige ander gisproteïen nie, behalwe vir

beperkte homologie met die tranksripsionele aktiveerder F108p. Verskeie

onderskeidbare domeine is egter in die MSS11 geenproduk teenwoordig.

Eerstens, Mss11p bevat kenmerkende poliglutamien en poli-asparagien

domeine. Verder bevat Mss11p ook In voorspelde ATP- of GTP-bindings

domein (P-Ius), wat algemeen in proteïene soos kinases, ATPasaes en

GTPases voorkom. Twee kort areas naby die N-terminaal, aangedui as H1

en H2, het betekenisvolle homologie met die transkripsiefaktor F108p. Beide

die H2 domein en die ektreme C-terminaal van Mss11p is in staat om RNA

polimerase " afhanklike transkripsie te stimuleer. Verder het die H1-domein

in samewerking met die P-Ius In negatiewe uitwerking op die

aktiveringspotensiaal van die H2-domein.

Hierdie studie bied verdere insig tot die werking van Mss11p en die

betrokkenheid van die verskeie aktiverings- en reguleringsdomeine by die

oemiddetlinq van transkripsionele aktivering en pseudohifevorming in reaksie

op beperking van voedingstowwe. Genetiese interaksies tussen Mss11p en

ander faktore betrokke met die regulering van pseudohifevorming en

styselafbraak is in hierdie studie aangetoon. Voorts is daar ook gewys dat

spesifieke areas van Mss11p benodig word deur hierdie faktore om hulle

biologiese funksie uit te oefen. Daar is ook In rol vir Mss11p in die regulering

van Ca2+-afhanklike flokkulasie aangetoon en daar is bewys dat die FL01

geen deur Mss11p benodig word om hierdie effek uit te oefen.
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PREFACE
--- --- -~~ -- - - - - - ---- - -

This thesis is presented as a compilation of five chapters. Each chapter is introduced
separately and is written according to the style of the journal Molecular Microbiology.
Supplemental information is provided in an appendix.

General Introduction and Project Aims

illlllll.liliillli' LITERATURE REVIEW
Chromatin and transcriptional regulation in Saccharomyces cerevisiae.

.. _ ..............•. _ .•...,., ...,....•.•
!!llllllllli!I!I'!! Research results

The effect of nucleosomal positioning on the transcriptional regulation of
MUCl/FLOll and STA2.

~ili;II'lllilllllil~ Research Results
Mssllp mediated regulation of transcription, pseudohyphal differentiation and
flocculation in Saccharomyces cerevisiae.

1!\I.ll.~lllllll!l General Discussion and Conclusions

Mssllp is a transcription factor regulating pseudohyphal differentiation,
invasive growth and starch metabolism in Saccharomyces cerevisiae in
response to nutrient availability. [Molecular Microbiology (2003) 47: 119-134]
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CHAPTER 1
- - -~---~ - - - - ------ --~-

INTRODUCTION AND
PROJECT AIMS
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1.1 INTRODUCTION

A characteristic common to all organisms is the ability to constantly coordinate

metabolic activities with environmental changes. Communication with the

environment is achieved through a number of pathways that receive and

process signals from the external environment. Signals transmitted via

individual pathways are integrated to adjust the expression of target genes

and consequently discrete cellular functions. Many of the modules involved in

the recognition and interpretation of signaling events are conserved from

yeast to higher eukaryotes. Our understanding of the diversity of biochemical

and functional interactions required to sustain eukaryotic life has been greatly

enhanced by a variety of model organisms. One of the most important of

these organisms has been the yeast Saccharomyces cerevisiae. The wide

variety of molecular tools available for this organism, and the relative ease of

manipulation, has made S. cerevisiae possibly the best understood of all

cellular systems.

Several cellular responses have evolved in S. cerevisiae to adjust to changes

in the surrounding environment. Among these is the ability of yeast to

undergo pseudohyphal differentiation in conditions of carbon or nitrogen

limitation. Pseudohyphal differentiation is described as a conversion from

ovoid, "yeast" shaped cells, which bud in an axial (haploid) or bipolar (diploid)

fashion, to elongated cells budding in a unipolar fashion. Daughter cells

remain attached to the mother cells, resulting in the formation of chains of

cells referred to as pseudohyphae. These pseudohyphae are able to grow

away from the colony and also penetrate the surface of agar containing

medium, which is referred to as invasive growth (for review see Kron, 1997;

Madhani and Fink, 1998; Borges-Walmsley and Walmsley, 2000; Pan et al.,

2000; Bauer and Pretorius, 2001; Gancedo, 2001; Gagiano et al., 2002). This

adaptation is thought to provide a selective advantage, as it could facilitate

foraging for scarce nutrients or allow escape from a limiting environment. The
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3

transition from normal to pseudohyphal growth involves changes in budding

pattern, cell-cycle progression, cellular elongation, and cell-cell and cell-

substrate adherence. A variety of genes involved in the regulation of these

cellular processes have been identified, most of which are part of signaling

pathways. The most clearly defined pathways are the filamentous-growth-

specific MAP kinase cascade, which acts upstream of the transcription factors

Ste12p and Tec1p (Gimeno et aI., 1992; Liu et al., 1993; Mósch et aI., 1996;

Cook et al., 1996, 1997; Madhani and Fink., 1997, 1998; Madhani et al., 1997;

Rupp et al., 1999), and the Gpa2p-cAMP-PKA pathway, regulating the

transcription factors Fl08p and Sfl1p (Ward et aI., 1995; Lorenz and Heitman.,

1998; Roberts et al., 1997; Roberstson and Fink, 1998; Mósch et a/1996; Pan

and Heitman, 1999; Rupp et aI., 1999; Lorenz et al., 2000; Tamaki et al.,

2000). Numerous other factors have been identified for their involvement in

the regulation of pseudohyphal differentiation and invasive growth and remain

to be placed into the context of known or alternate pathways. Among these

are Phd1p (Gimeno and Fink, 1994; Lorenz and Heitman, 1998), Sok2p

(Ward et aI., 1995; Pan and Heitman, 1999), Elm1p (Blacketer et aI., 1993;

Garret et al., 1997; Koehler and Meyers, 1997), Rme1p (van Dyk et al., 2003),

Msn1p and Mss11p (Gagiano etal., 1999a, b).

Pathways that are involved in the regulation of pseudohyphal differentiation

and invasive growth regulate the expression of MUC1/FL011 (Rupp et aI.,

1999), encoding a member of a family of cell wall associated proteins involved

in cell-celi/cell-substrate adhesion (Guo et aI., 2000). Other members of this

family of glycosyl-phosphatidylinositol (GPI)-linked cell surface glycoproteins

include Fig2p and Aga1p, required for mating, and also Fl01p, F105p,Fl09p

and F1010p, which are involved in flocculation (Guo et aI., 2000).

MUC1/FL011 was shown to be essential in the establishment of

pseudohyphal differentiation and invasive growth. Deletion of the gene leads

to a loss of the filamentous phenotype, whereas overexpression of

MUC1/FL011 results in flocculation in liquid media and pseudohyphal

differentiation and invasive growth on solid media (Lambrechts et aI., 1996; Lo

and Dranginis., 1996, 1998; Guo et al., 2000).
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The promotor region of MUC1/FL011 is one of the largest yeast promoters

identified to date, with cis-acting elements present up to 2.4 kb upstream of

the first coding triplet (Gagiano et a/., 1999a; Rupp et al., 1999). The

upstream regulatory region of MUC1/FL011 is almost identical to that of the

STA2 gene, which encodes an extracellular glucoamylase required for the

utilization of extracellular starch (Pretorius et a/., 1991; Vivier et a/., 1997;

Gagiano et a/., 1999b). The homology extends over a sequence ofmore than

3.5 kb, with the only significant difference being the presence of two inserts of

20 and 64 bp in the MUC1/FL011 promoter. The high homology suggests that

the promoters of the two genes are co-regulated. Expression analysis

confirmed that they are co-regulated to a large degree and that both require

the same activators (Gagiano et a/., 1999a). However, differences were

observed when basal expression levels of these genes were compared

(Gagiano et al., 1999a, b).

Mss11p appears to playa central role in the regulation of starch metabolism

and pseudohyphal differentiation. The presence of multiple copies of MSS11

in the cell results in elevated transcriptional levels of both MUC1/FL011 and

STA2 and consequently an increase in flocculation, pseudohyphal

differentiation, invasive growth and the cell's ability to utilize starch (Gagiano

et a/., 1999a, b). Deletion of MSS11 leads to complete loss of these

phenotypes, which cannot be reversed by overexpression of any of the other

related factors identified to date (Gagiano et al, 1999a, b). The regulation

conferred by MSS11 on the transcriptional levels of MUC1/FL011 and STA2

also appears to be dependent on signals generated specifically in the

presence of low nitrogen and low glucose (Gagiano et a/., 2003).

Mss11p does not have significant homology to any other yeast protein, with

the exception of limited homology to the transcriptional activator Fl08p

(Gagiano et a/., 1999a). Several distinctive domains are found in the MSS11

gene product. Firstly Mss11p contains exceptionally long poly-glutamine and

poly-asparagine domains. It also contains a putative ATP- or GTP-binding

domain (or p-Ioop), commonly found in proteins such as kinases, ATPases or

GTPases (Saraste et a/., 1990). Two short stretches close to the N-terminal,
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denoted H1 and H2, share significant homology to another transcriptional

activator, Flo8p (Gagiano et al., 2003).

With the use of a comprehensive set of systematic deletions from both the N-

and C-termini, we have identified two separate activation domains capable of

stimulating RNA polymerase II dependent transcription as well as areas that

appear to be involved in regulation of Mss11p's activation capability (Gagiano

et a/., 2003; this paper is included as an appendix in this thesis since it formed

the background for work presented in Chapter 4). Firstly, both the H2 domain

and the extreme C-terminus are able to activate a reporter gene when fused

to the DNA-binding domain of Gal4p. Interestingly an area of 92 amino acids

that immediately precedes the H2 domain, containing the H1 domain and the

putative P-Ioop, appears to negatively regulate the activity of the H2 domain.

In all cases, deletion of the H1-P-loop results in increased levels of

transcription compared to constructs where this area is present. The effect of

an H1-P-loop deletion is especially clear when combined with deletion of the

C-terminal domain, suggesting that the apparent regulatory influence of the

H1-P-loop is directed specifically towards the H2 domain.

Work performed during the course of this study intended to address two

separate areas of interest. Firstly we were prompted to investigate the

possibility of chromatin playing a dynamic role in the regulation of

MUG/FL011 and STA2 transcription and the possible role of Mss11p in the

mediation thereof. Several lines of evidence suggest that these two

promoters could be governed by the stringent control offered by regulated

nucleosomal positioning and modification. At the outset the complexity and

size of the MUG1/FL011 and STA2 promoters and the amount of factors and

pathways involved in their regulation may suggest the presence of such a

form of regulatory mechanism. Also of notice is that despite the considerable

degree of homology between the two promoter regions, basal levels of STA2

transcription are consistently higher than that of MUC1/FL011 (Gagiano et al.,

1999b). Genetic screens have also revealed that STA2 requires the presence

of SNF2, the ATPase subunit of the SWIISNF ATP-dependent chromatin-

remodeling complex (Yoshimoto and Yamashita, 1991; Yoshimoto et al.,
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1991, 1992; Yamashita, 1993 Kuchin et aI., 1993). In addition, a role for the

ISWI chromatin-remodeling complex in the regulation of invasive growth has

recently also been revealed (Kent et aI., 2001). Furthermore, cAMP

mediated repression of MUG1/FL011 requires the general repressor Tup1-

Ssn6 (Conlan and Tzamarias, 2001). Finally, regulation of FL01, also a FLO

family member, takes place in an extensive chromatin domain regulated by

the activities of the SWI/SNF co-activator and the Tup1-Ssn6 co-repressor,

raising the possibility that similar mechanisms could be in effect in the

regulation of MUG/FL011 (Fleming and Pennings, 2001). On account of the

importance of this section, the topic of the literature study section was chosen

to be the involvement of chromatin in transcriptional regulation in

Saccharomyces cerevisiae.

However, consistent data could not be generated with regards to the

nucleosome positioning on the MUC1/FL011 promoter. For this reason, we

shifted the focus of this study by investigating the cellular and molecular

functioning of MSS11. A selected subset of Mss11p truncations was used

that would highlight the activity of the two activation domains (H2 and the C-

terminal) as well as the apparent regulatory influence of the H1-P-loop. The

Mss11p derivatives was also exploited to reveal any genetic interaction

between Mss11p and other factors (FLaB, STE12, TEG1, MESN1, PHD1 and

RME1), considered as being important in the regulation of MUG1/FL011 and

the establishment of pseudohyphal differentiation and invasive growth. In this

manner we have established that Mss11p is responsive to carbon and

nitrogen signaling and that regulation exerted by Mss11p in these conditions

is dependent on the H2 domain, which is negatively regulated by the H1-P-

loop. We also show that the C-terminal is essential in the regulation of

pseudohyphal differentiation, invasive growth, starch degradation and

flocculation by Mss11p. This could implicate the C-terminal in an

indispensable function such as DNA binding, nuclear import, binding to other

DNA associated proteins,. or mediating the activities of other proteins or

complexes that are required for transcriptional activation. It was also found

that Mss11p requires the presence of FL01 to induce Ca2+-dependent

flocculation.
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1.2 PROJECT AIMS

The following aims were set out in this project:

1. (i) to establish if chromatin is involved in the transcriptional regulation of

MUG1/FL011 and STA2;

(ii) to determine the influence of various growth conditions on nucleosomal

positioning in the promoters of MUG1/FL011 and STA2;

(iii) to establish a link between the factors involved in the regulation of these

genes, and the state of chromatin in the regulatory regions;

2. (i) to further investigate the nutrient responsiveness of Mss11 p;

(ii) to analyse the roles played by the various domains of Mss11 p in the

regulation of transcription and pseudohyphal development;

(iii) to determine possible interactions between MSS11 and other factors

involved in the regulation of MUG/FLO 11;

(iv) to study the regulation of Ca2+ -dependent flocculation by MSS11:
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2.1 INTRODUCTION

The basic repeating structure of chromatin, the nucleosome, provides the

framework for compaction of the genome and also plays a highly dynamic role

in the regulation of transcription (for review see Horn and Peterson, 2002).

The nucleosome consists of two copies of histones H2A, H2B, H3 and H4,

around which - 147 bp of DNA are tightly wound. Chromatin not only

functions by compacting the entire eukaryotic genome into the volume of a

nucleus, but also plays a highly dynamic role in the regulation of transcription.

In Saccharomyces cerevisiae nucleosome loss in vivo by depletion of histone

H4 results in a significant increase or decrease in 15% or 10% of genes,

respectively (Wyrick et a/., 1999), illustrating the requirement for the correct

nucleosomal architecture in both gene activation and repression. In principle,

regulating chromatin structure and accessibility could control all nuclear

processes that need to gain access to the genome. By controlling access of

DNA to regulatory factors, the transcriptional machinery and co-factors, the

state of activation or repression of a gene can be tightly governed by the state

of the encompassing chromatin. Two distinct classes of chromatin modifying

activities regulate the accessibility of the DNA template to binding factors.

ATP-dependent complexes move nucleosomes, thereby exposing or

occluding DNA sequences, and can also create conformations where DNA is

more accessible on the surface of the nucleosome (for a recent review see

Peterson, 2002). The other class of complexes can covalently modify the N-

terminal "tails" of core histones in a reversible fashion. Such modifications

include acetylation, methylation, phosphorylation and ubiquitination (reviewed

by Izuka and Smith, 2003). These modifications determine interactions of

histones with DNA and other proteins, which in turn may regulate chromatin

structure (Strahl and Allis, 2000).

Our understanding of the delicate interplay between chromatin structure and

transcriptional regulation has been aided by the use of the powerful

techniques available in yeast genetics (reviewed by Gregory, 2001). Many of
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the characteristics of chromatin in higher eukaryotes are observed in S.

cerevisiae. One of the main advantages of studying chromatin in yeast, apart

from the ease of genetic manipulation, is the presence of only two copies of

each of the genes encoding the core histones per haploid genome (compared

to the estimated 110 copies of each of the histone genes in Drosophila

melanogaster).

This chapter is a summary of our current knowledge concerning the

involvement of chromatin in transcriptional regulation in the yeast S.

cerevisiae. First of all, the structural components of chromatin and their

involvement in transcriptional regulation will be discussed. In the second

section, the components and functioning of multi-protein complexes that

mediate changes in chromatin structure and accessibility, will be reviewed.

Finally, the specific regulation established by coordination between these

complexes and the transcriptional machinerywill be considered.

2.2 CHROMATIN STRUCTURE

2.2.1 THE NUCLEOSOME

Chromatin is organised into a hierarchy of structures ranging from the basic

repeating structure, the nucleosome core particle (NCP), to the condensed

state observed in metaphase chromosomes (Figure 2.1). The nucleosome is

composed of two copies of each of the four histone proteins H2A, H2B, H3

and H4 (Luger et ai., 97; White et a/., 2001). Around this protein centre two

tight superhelical turns of - 147 bp of DNA are wrapped. Histones H2A1H2B

and H3/H4 dimerize through non-covalent interaction between the C-terminal

histone fold domain (Arents and Moundrianakis, 1995; Luger et a/., 1997).

The integrity of the nucleosome is further maintained by polar and

hydrophobic interactions between H2B and H4 and between two molecules of

H3 within the NCP. The repeating nucleosome cores, connected by a

variable length of linker DNA, are further compacted into higher order

assemblies of unknown architecture. In higher eukaryotes, addition of linker

histone H1 further contributes to the stabilisation of the 30 nm chromatin fibre.
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Figure 2.1 Multiple levels of chromatin folding. DNA compaction occurs through a

hierarchy of histone-dependent interactions and can be subdivided into primary,

secondary and tertiary levels of structure. Strings of nucleosomes comprise the

primary structural subunit. Formation of a 30-nm fibre through histone tail-mediated

nucleosome-nucleosome interactions provides a secondary level of compaction,

whereas tail-mediated interaction of individual fibres produces tertiary structures

(such as condensed chromosomes). Tertiary structures observed in yeast, however,

do not fold into the same level of compaction as in higher eukaryotes. Adapted from

Alberts et al. (1998).

Our understanding of nucleosome and chromatin structure has been furthered

by the determination of a variety of three dimensional nucleosome structures,

including the yeast Nep (Figure 2.2; Luger et al., 1997; Richmond et ai.,
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1988; White et aI., 2001; for review see Luger, 2003). Despite the distinct

sequence divergence between histone proteins of S. cerevisiae and

metazoans (Thatcher and Gorovsky, 1994; White et al., 2001; Sullivan et al.,

2002; http://genome.nhgri.nih.gov/histones), the overall architecture of the

histone octamer, as well as all of the residues that are involved in direct

protein-DNA interactions, are unchanged between S. cerevisiae and X. laevis

(White et al., 2001), indicating that the general mechanism by which the

histone octamer interacts with and distorts linear DNA into a tight superhelix is

maintained between yeast and higher eukaryotes. Interestingly, changes

were observed with regards to protein-protein interaction within the yeast

nucleosome core particle. The most significant changes are located in the

H2A L1 loops, involved in the interaction between H2A-H2B dimers. As this

region is seemingly involved in holding the two gyres of the superhelix, even a

subtle destabilization could have marked effects on overall nucleosome

stability during transcription. This finding correlates with experimental

evidence indicating significant destabilisation of yeast nucleosome core

particles in mononucleosomes and in nucleosomal arrays, suggesting a less

constrained structure compared to that of higher eukaryotes (Lee et aI., 1982;

Morseetal., 1987; Pinieroetal., 1991).

structure of the nucleosome core particle (Nep). (A) Front view

of the Nep, viewed down the superhelical axis (Luger et a/., 1997). (B)

Diagrammatic representation of the Nep, with histone tails extending from the

structure

15
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2.2.2 THE CORE HISTONES

Because of the central functional role played by the nucleosome, the core

histones are among the slowest evolving, highest conserved proteins in

eukaryotes. Characteristic of all eukaryotic core histones are the C-terminal

core domain (referred to as the histone fold), and the amino terminal tail

domain, which reaches outside the nucleosome and the wrapped DNA. The

histone fold is involved in the formation of specific histone heterodimers and

also determines the path of the DNA within the nucleosome. The unique DNA

binding abilities of the histone fold motif has assured that it has remained

conserved in a range of evolutionary diverse organisms such as archeal

bacteria, fungi, insects, birds, amphibians and vertebrates (Luger, 2003;

Sullivan et al., 2002).

Figure 2.3 The histone tails. The N-terminal histone tails are indicated as straight

lines with lysine (K) and serine (S) residues indicated. Possible histone modifications

are indicated: acetylation (Ac), methylation (Me), phosphorylation (P) and

ubiquitination (Ub). Adapted from Pérez-Martin (1999).

The histone amino terminal represents a distinct functional domain referred to

as the histone tail. The tail domain is highly basic and binds DNA in vitro and

in native chromatin (Luger and Richmond, 1998). These domains are not

required for assembling or maintaining the structure of the nucleosome core
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and removal thereof results only in slight differences in hydrodynamic shape

and stability of the nucleosome (Ausio et al., 1989; Hayes et al., 1991; Polach

et a/., 2000; Schwarz et ai., 1996; Zheng and Hayes, 2003). However, the tail

domains are essential for the folding of oligonucleosomal arrays into 30 nm

chromatin fibres and are probably required for efficient assembly of fibres into

higher order structures (Allan et al., 1982; Garcia-Ramirez et al., 1992).

Histone tails undergo numerous post-translational modifications, which either

directly or indirectly alter chromatin structure to facilitate transcriptional

activation or repression (Figure 2.3; Hong et a/., 1993; Strahl and Allis, 2000;

Jenuwein and Allis, 2001; Wu and Grunstein, 2000). Thus, modifications of

these domains are an endpoint to many signaltransduction pathways directed

to the nucleus (Cheung et a/., 2000).

Two types of genetic manipulations have been favoured to study the role

played by histones in transcription: alterations of histone expression and

mutations in the genes coding for the core histones. One of the earliest

screens that linked chromatin to transcription in yeast was the study of

mutations able to overcome the effect of Ty insertions in the promoter region

of LYS2 and HIS4 (Simchem et al., 1984;Winston et al., 1984). SPT mutants

(SuQPressor of Jy) mutants included a group of genes involved in both

chromatin structure and transcriptional regulation. Among them the HTA1-

HTB1 locus, which encodes for histones H2A and H2B, was identified

(Winston et a/., 1984). By variation of either H2A-H2B or H3-H4 gene dosage

in vivo it was found that the observed suppression of transcriptional defects

was due to an imbalance in the syntheses of H2A-H2B relative to H3-H4

(Clark-Adams et ai., 1988; Norris et ai., 1988). In a more directed study,

histone H4 depletion was investigated by placing the histone H4 gene under

the control of the GAL 1 promoter in a strain not containing the native H4

genes (Kim et a/., 1988). When grown in the presence of glucose H4 was

depleted. The induced nucleosome loss led to the activation of repressed

genes like PH05, CYC1 and GAL1. The effect of nucleosomal loss on

genome-wide transcription gives insightful perspectives on the role of the

nucleosome in transcriptional regulation (Wyrick et a/., 1999). Expression is

increased in only 15% and repressed in 10% of genes by more than three
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fold, while 75% remain unaffected. This highlights the requirement of correct

nucleosomal architecture in both gene activation and repression.

A second set of genes (the SWI/SNF genes) were obtained from genetic

screens directed towards the analysis of the transcriptional regulation of the

HO gene, encoding an endonuclease (required for mating type switching),

and the SUC2 gene, encoding an invertase (required for growth on sucrose

and raffinose) (Stern et aI., 1984; Neigeborn et aI., 1984). Several genes

were identified as activators of HO (referred to as SWI genes, for switching),

and SUC2 (referred to as SNF genes, for §.ucrose !lon-fermenting). A

subsequent study of suppressors of defects in the SWI/SNF genes further

strengthened a link to chromatin. A specific SIN mutation (for SWI/SNF-

independent) was found to lie in the coding region of the histone H3 gene

(Kruger et aI., 1995). Other histone SIN mutants have recently been identified

(Fleming and Pennings, 2001). Histone SIN mutations are situated at the

protein DNA binding interface of histones H3 and H4. These mutations could

facilitate access of transcription factors to chromatin by destabilising

interactions between the histone H3-H4 tetramer and the H2A-H28 dimer, by

disrupting histone DNA interactions or by preventing higher order folding of

chromatin. How the state of the nucleosome itself can be fine-tuned to

achieve tightly regulated transcription at specific loci will be discussed in

following sections.

2.2.3. THE LINKER HISTONE

Histone H1, encoded by the HH01 gene, associates with the DNA linking the

core histone octamers and is therefore referred to as the linker histone. In

higher eukaryotes the linker histone plays a vital role in stabilising and

maintaining higher order chromatin structures and also participates in

transcriptional repression (Layborn and Kadonaga, 1991). S. cerevisiae

Hh01p has sequence homology to other known linker histones and was

shown to interact with nucleosomes in vitro (patterton et al., 1998; 8axevanis

and Landsman, 1998). However, unlike the core histones, deletion of the

HH01 gene does not result in any clear phenotypic effects. There is an
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approximate stoichiometry of 1 molecule of Hh01p to 37 nucleosomes

(compared to a 1:1 ratio observed in higher eukaryotes) (Freidkin and Katcoff,

2001), which is not surprising since there is also no observed difference

between nucleosome spacing in hnot á cells compared to wild type. This

could also explain why yeast chromatin does not fold into more dense and

highly compacted chromatin such as found in higher eukaryotes (Figure 2.1).

Recently a possible role for HH01 has been indicated in DNA repair through

homologous recombination (Downs et al., 2003).

2.2.4. HISTONE VARIANTS

Most histone modifications take place on their amino- and carboxy-terminal

tails, presumably because these are on the chromatin surface and therefore

accessible to enzymatic modification. Regions buried within the nucleosome

may not be accessible to enzymatic activities; however, sequence variations

have evolved in these regions, and histones differing in these regions are

referred to as histone variants. Histone variants within any species are highly

conserved, specialized histones that co-exist with the major histone types in

the nucleus and have the potential to locally alter chromatin structure. In

S. cerevisiae the histone H2A variants, H2A.X and H2A.Z, and also the

centromere specific H3 variant, CenpA (endcoded by CSE4), are present.

H2A.X is associated with sites of DNA double strand breakage, where it is

considered to mark such sites by securely anchoring into the surrounding

chromatin (for review see Redon et al., 2002). H2A.Z displays 60% homology

to H2A and 90% between species. Mutagenic analysis has demonstrated that

H2A.Z is essential for development in yeast (Jackson and Gorovsky, 2000).

H2A.Z has been localised to yeast promoters and displays a redundant role

with ATP-dependent chromatin remodeling complexes and interacts directly

with the transcriptional machinery during gene expression (Santisteban et ai.,

2000; Adam et al., 2001). However, the functional dynamics of H2A.Z

enrichment in active chromatin remains enigmatic as other studies describe

H2A.Z deposition to have a repressive effect on gene expression (Dhillon and

Kamakaka, 2000). More recently H2A.Z was shown to antagonize the Sir3p

dependent propagation of repressive heterochromatin stretches from HMR, a
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silent mating type locus in S. cerevisiae (Meneghini et a/., 2003). H2A.Z was

also shown to be involved in derepression of telomer proximal genes

(Meneghini et al., 2003)

2.2.5 NON-HISTONE CHROMATIN ASSOCIATED PROTEINS

Selective association of non-histone proteins with the complex of DNA and

histone can modify chromatin structure. Primary among these are the high

mobility group (HMG) proteins. Based on amino acid sequence motifs, DNA

binding characteristics and molecular mass, three types of HMG's can be

distinguished: HMGB; HMGN, and HMGA (Bustin, 2001). Only members of

the HMGB superfamily have been found in yeast, which is characterised by

the presence of one or more copies of an 80 amino acid domain (the HMG

box) responsible for DNA binding (Landsman and Bustin; 1993; Bustin, 2001).

The HMGB superfamily is composed of two subfamilies specified by their

abundance, function and DNA specificity. The HMG domain transcription

factors, typified by the testis-determining factor SRY, are of low abundance,

usually containing a single HMG box and bind site specifically to promoter

regions of regulated genes. In contrast, the ubiquitous non-histone

chromosomal proteins of HMGB, typified by HMG-1/2, are characterised by

their moderate DNA binding affinity with minimal sequence specificity and

recognition of pre-bent and modified DNA (for review see Bustin, 1999).

In yeast, SIN1/SPT2 was initially identified in two different screens and

characterised as a transcriptional repressor with properties related to HMG

proteins (Roeder et a/., 1985; Kruger and Herskowitz, 1991). Further detailed

analysis indicated that under certain conditions SIN1 could act as a

transcriptional activator, but more importantly a functional interaction between

SIN1 and the C-terminal domain of RNA polymerase" was shown (Peterson

et a/., 1991). Genetic and biochemical evidence points to interaction between

Sin1p and the SWIISNF chromatin-remodeling complex (Pérez-Martin and

Johnson, 1998). This could implicate a role for Sin1p as a regulatable bridge

between the SWIISNF complex and chromatin.
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The NHP6A and NHP6B genes encode two highly identical, functionally

redundant proteins which contain a single HMG box (Kolodrubetz and

Burgum, 1990; Lu et aI., 1996). The Nhp6 proteins are highly abundant, with

about 50 000 copies of Nhp6a and Nhp6b combined found per haploid

nucleus (Paull et al., 1996). Deletion of both genes leads to significant

phenotypes including aberrant transcription, slow growth and temperature

sensitivity (Sidorova and Breden, 1999;Yu et aI., 2003; Costigan et aI., 1994).

Purified NHP6 was shown to bind nucleosomes in vitro and subsequently

recruits Spt16-Pob3 to form the SPN (fu>t16-Pob3-Nhp6) complex that leads

to increased nuclease sensitivity of the nucleosomes (Formosa et aI., 2001).

Nhp6 also associates with the yeast CP complex, a 1:1 complex of Cdc68 and

Pob3p (a structural homologue of the vertebrate FACT complex) and

mediates CP-related phenotypes in vivo (Brewster et aI., 2001). Both the

FACT and CP complexes are implicated in interaction with the transcription

machinery and in the process of transcriptional elongation (Orphanides et aI.,

1998). In the regulation of HO gene expression, Nhp6p functions in parallel

with Gcn5p (the histone acetyl transferase of the SAGA complex) by

promoting TBP (TATA-binding protein) binding, and hence stimulating

transcription (Yu et aI., 2003).

2.3 NON-STRUCTURAL PROTEINS ASSOCIATED WITH CHROMATIN

Apart from the structural components of chromatin, several other proteins

have been implicated in chromatin-mediated regulation of transcription. The

following sections will discuss in more detail the complexes required for

stringent regulation of transcription through the remodeling and modification of

chromatin, as well as interactions between these complexes.

2.4 ATP-DEPENDENT CHROMATIN REMODELING

Although initial studies focused on nucleosomes, subsequent studies

identified multi-protein complexes that controlled transcription by manipulating

nucleosome structure andlor interactions. One class of chromatin remodeling

factors is represented by of a family of ATP-dependent complexes that utilise

ATP hydrolysis to enhance or suppress the accessibility of nucleosomal DNA
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This family is further subdivided into three subgroups based on their

biochemical properties and the overall sequence similarities of their ATPase

subunits: (i) the SWI/SNF group; (ii) the ISWI group and (iii) the Mi-2/CHD

group (Boyer et aI., 2000). Each of the separate ATPase subunits associates

and forms complexes with different additional proteins of which the exact role

remains unclear (Figure 2.4). The function of these complexes is conserved

in eukaryotes. In S. cerevisiae four ATPases have been purified as members

of distinct complexes: SWIISNF; RSC (remodels the .§.tructureof £hromatin),

and ISW1 and ISW2 (imitation .§.witch).Most studies on chromatin remodeling

complexes have focused on their roles in transcriptional regulation; there is

however strong evidence suggesting roles in replication, DNA repair and

recombination (for review see Kadam and Emerson, 2002). This section will

only be concerned with the effect that these activities have on transcriptional

regulation.

Figure 2.4 Yeast ATP-dependent remodeling complexes.

2.4.1. SWI/SNF AND ASSOCIATED COMPLEXES

2.4.1.1 SWIISNF

SWIISNF is a 2 MDa multisubunit complex that was first discovered in S.

cerevisiae in two separate screens for altered gene expression (for review see

Martens and Winston, 2003). SWIISNF is highly conserved in eukaryotes

with homologous complexes identified in Drosophila and humans. The SNF
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(§.ucrose non-fermenting) genes were identified by mutations that caused

aberrant expression of the SUC2 gene, which is required for growth on

sucrose and raffinose as carbon sources (Neigeborn and Carlson, 1984).

Similarly the SWI (switching) genes were isolated as mutations that led to

defective expression of the HO gene, which is required for mating type

switching (Stern et al., 1984).

SWI/SNF plays a well characterised role in transcriptional activation, with

various well-documented examples of interactions on several promoters of

genes such as HO, SUC2, PHOS, PHOB and FL01 (Fleming and Pennings,

2001; for review see Martens and Winston, 2003). Substantial evidence has

also shown that SWI/SNF can repress transcription and recent studies have

demonstrated that SWI/SNF directly contributes to SER3 repression by

altering chromatin structure (Martens and Winston, 2002). Therefore,

differential use of the same complex may occur at promoters that are

activated or repressed by SWI/SNF. Mutations in both SWI and SNF genes

cause pleiotropic phenotypes, suggesting a global role for SWI/SNF in the

regulation of gene expression. Genome wide expression studies however

indicate that less than 5% of yeast genes require a functional SW/SNF

complex (Sudarsanam et aI., 2000). Furthermore SWI/SNF is estimated to be

a relatively rare complex in yeast, with only 100-500 copies present per cell

(Coté et aI., 1994; Peterson and Workman., 2000). These observations

support a gene specific targeting of SWI/SNF to achieve regulated activation

or suppression. Purified SWI/SNF was shown to interact with a variety of

transcriptional activators such as Gcn4p, Swi5p, Ga14-VP16and GaI4-AH

(Natarajan et al., 1999; Neely et al., 1999; Neely et al., 2002). These

interactions are mediated by the acidic activation domain and are sensitive to

mutations that compromise activation function. Three subunits of yeast

SWI/SNF were recently shown to interact with a specific set of activators in

vitro (Neely et a/., 2002). Interactions between specific SWI/SNF components

and DNA-bound proteins may provide selectivity among SWI/SNF function.

Similar to what is observed in gene activation, SWI/SNF mediated repression
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seems to require its targeted recruitment by gene-specific repressors (Dimova

et el., 1999).

SWI/SNF complexes are comprised out of at least nine or more proteins

including both conserved (core) and non-conserved components. The

ATPase activity of Swi2p/Snf2p, the ATPase subunit of the yeast SWI/SNF

complex, is stimulated equally well by free DNA or nucleosomal DNA and

possesses remodeling activity. Genetic analysis indicates that most of the

SWI/SNF subunits are required for function in vivo. Still, the exact biological

roles of the other subunits remain to be clarified (Tsukiyama, 2002;

Hirschhorn et a/., 1992; Martens and Winston, 2002). The Snf5p subunit

seems to be required for remodeling in vivo since an I1.snf5mutant is unable

to remodel chromatin on the SUC2 promoter, yet was proficient for SWI/SNF

assembly and recruitment to the SUC2 promoter (Geng et et., 2001). As

stated above, a subset of SWI/SNF subunits associates with DNA bound

regulatory proteins, and three distinct subunits, Swi2p, Snf5p and Swi1p, have

been shown to interactwith a set of activators in vitro (Neely et el., 2002).

All Swi2p/Snf2p ATPases contain a motif found in several transcription

factors, referred to as the bromodomain, which can bind acetylated lysine

residues in histone N-terminal tails (Jacobson et el., 2000; 1999; Hassan et

el., 2002). Stable promoter occupancy by SWI/SNF requires either activator

binding or acetylated histones. The bromodomain of Swi2p/Snf2p is required

to maintain promoter occupancy in vivo and in vitro (Hassan et et., 2001b;

Hassan et al., 2002). It was shown that the bromodomain of Swi2p/Snf2p is

required for binding to the SWI/SNF dependent promoter of SUC2 (Hassan et

et., 2002). Two other motifs also play important roles in the functioning of

SWI/SNF remodeling complexes. Firstly, the DNA binding properties of

SWI/SNF are very similarto proteins containing an HMG-box (Quinn et el.,

1996). Studies in Drosophila and human have demonstrated that mutants of

the SWI/SNF-like complexes BAF and BRM, with lacking HMG domains, are

defective in normal regulation (Chi et a/., 2002; Papouias et et., 2001).

Whether this holds true for the yeast SWIISNF complex remains to be
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investigated. Secondly, the SANT domain was recently described as a motif

present in several eukaryotic transcriptional regulators. The SANT motif is

essential for the in vivo functions of three yeast proteins, Swi3p (SWIISNF

subunit), Ada2p (SAGA subunit) and Rsc8p (RSC subunit). Deletion of these

motifs resulted in mutant phenotypes similar to defective SWI/SNF, SAGA

and RSC complexes (Boyer ef al., 2002). These observations are consistent

with a general role for the SANT domains in functional interactions with

histone N-terminal tails; a possible role in recruitment or catalytic activity can,

however, not be excluded.

2.4.1.2 THE SWI2/SNF2-LlKE ATPASE CONTAINING COMPLEX, RSC

In addition to SWI/SNF, the prototypical ATP-dependent chromatin-

remodeling complex, the SWI/SNF subfamily also includes the yeast RSC

complex. RSC (remodels the §.tructure of £hromatin) is an abundant, 15

subunit chromatin remodeling complex of S. cerevisiae (Cairns ef aI., 1996).

Unlike SWI/SNF, RSC is essential for viability, making genetic analysis more

difficult than for SWI/SNF.

Whole genome analysis of two components of RSC, Rsc3p and Rsc30p,

which appear to play a role in the targeting or regulation of the complex,

reveals different effects on the regulation of ribosomal protein genes, cell wall

integrity and the nitrogen discrimination pathway (Angus-Hill ef al., 2001).

Like SWI/SNF, RSC appears to be involved in activation and repression. This

is further confirmed by two genome-wide localization studies, where RSC

localized to both repressed and activated promoters (Ng ef al., 2002b;

Damelin ef al., 2002). There are, however, differences between results

obtained by the two studies, making it difficult to predict a specific cellular

pathway(s) to which the complex seems responsive. Interestingly, the RSC

complex is generally recruited to RNA Pol III promoters and specifically

recruited to RNA Pol II promoters by transcription activators or repressors (Ng

ef al., 2002b).
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2.4.2ISWI ATPASE CONTAINING COMPLEXES

The second group of ATP-dependent chromatin remodeling complexes

contain the ISWI (imitation .§.witch)protein as the ATPase subunit. Isw1pand

Isw2p, two ISWI-related proteins, were identified in yeast based on their

sequence homology to the ATPase domain of Drosophila ISWI (Tsukiyama et

a/., 1999). The ISWI-containing complexes are smaller and contain fewer

subunits than their SWI/SNF counterparts and unlike SWI/SNF the ISWI

complexes are generally associated with maintaining transcriptional

repression. Isw2p associates with Itc1p to form a heterodimer (Gelbart et a/.,

2001). Isw1p co-purifies with three other proteins referred to as loc2p, loc3p

and 10c4p, and coexists as two separable complexes in yeast: Isw1a

(comprising of Isw1p and 10c3p)and Isw1b (comprising of Isw1p, loc2p and

10c4p)(Vary et aI., 20<;)3).

Of the two complexes, ISW2 has received most research attention. Deletion

of ISW2 leads to the derepression of several meiosis specific genes under

normal growth conditions (Goldmark et a/., 2000). It was found that

repression of the meiotic REC104 promoter involves the targeting of the ISW2

complex to the promoter through direct interaction with the sequence-specific

Ume6p repressor. Ume6p requires the ISW2 complex to establish a

repressive chromatin structure, which is further stabilised through

deacetylation by the SIN3-RPD3 histone deacetylase complex. Additional

data suggests that S:IN3,.RPD3and ISW2 complexes pool resources to

repress the transcription of Ume6p-dependent and some Ume6-independent

genes and that the ISW2 complex functions by creating DNasel-inaccessible

chromatin structures at the promoters of many of these genes (Fazzio et aI.,

2001). Both subunits Ofthe ISW2 complex (lsw2p and Itc1p) are required for

interaction with nucleosomal arrays, as well as for stimulation of ATPase and

remodeling activities in vitro. In addition, isw2 and itc1 deletion mutants have

virtually identical phenotypes (Gelbart et aI., 2001).

Until recently, Isw1p was considered to be the ATPase subunit of a single

four-protein complex. Howeve, two complexes, ISW1a and ISW1b, have
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overlapping functions in the transcriptional regulation of some genes, yet

distinct functions at others (Vary et ai., 2003). The effects of deletion of either

ISW1 or genes encoding associated subunits were, however, subtle, with not

more than a two fold variation in transcription. Possible explanations for the

small effect could be that, like the ISW2 complex, ISW1 also functions in

parallel with factor(s) such as SIN3-RPD3, which could soften effects

observed when deleting only ISW1. Another explanation could be that the

ISW1 complexes regulate nuclear processes other than transcription, since it

has been shown that ISW1 does affect chromatin at several genes in vivo

without altering transcription levels (Kent et a/., 2001)

2.4.3 MECHANISM OF ATP-DEPENDENT REMODELING

Understanding the mechanism of ATP-dependent remodeling has been a

major area of investigation. Biochemical analysis has demonstrated several

different outcomes of ATP-dependent remodeling in vitro, however little is

known about the outcomes of remodeling in vivo. Outcomes observed

through biochemical assays include nucleosome sliding, octamer transfer to

another DNA molecule, dinucleosome formation and alteration of nucleosome

structure.

The most tangible mechanism for catalysing DNA exposure on a chromatin

template entails "sliding" of DNA with respect to the histone octamer

(Meerseman et al., 1992). Sliding involves identical amounts of movement of

the entry and exit points of the DNA in the same direction, resulting in an

octamer that is repositioned. This would end up leaving DNA originally

associated with the histone octamer to be non-nucleosomal. Analysis of

starting and ending positions of nucleosomes on defined fragments of DNA

indieetes that SWI/SNF shifts nucleosomes to new positions in cis (on the

same strand of DNA) (Whitehouse et a/., 1999). SWIISNF action on

nucleosomal arrays blocked certain restriction enzyme sites in linker regions,

suggesting the SWIISNF repositioned nucleomes over these previously

accessible sites (Jaskeliof et ai., 2000). Visualisation of nucleosomal arrays

by atomic force microscopy before and after remodeling by human SWIISNF
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association at a different site on the nucleosome will result in a bulge or loop

which could be transmitted around the octamer. SWI/SNF, as well as other

remodeling enzymes, are capable of generating superhelical torsion (Havas et

aI., 2000). The possibility that SWI/SNF remodeling creates a bulge or loop

that is propagated around the nucleosome is strongly supported by in-depth

biochemical studies of the remodelled state (Narlikar et aI., 2001). Such

findings are consistent with the idea of a wave of accessible DNA caused by

translocation induced topological stress.

Twisting of DNA could however be a natural consequence of DNA

translocation and therefore not be the sole mechanism of SWI/SNF

remodeling (Aoyagi e( aI., 2002). In a recent paper, RSC, the Swi2p/Snf2p

homologue, was tested for ATP-dependent DNA translocation activity.

Mechanical disruption of nucleosome-DNA interaction was found to be the

more likely mechanism for displacement rather than the propagation of a

conformational change such as twisting (Saha et aI., 2002). Two

investigations by Lorch and colleagues suggest that RSC binds at the

entry/exit site on a nucleosome (Lorch et al., 1998; Lorch et a/ 2001). These

results would be fitting a model where RSC assumes a fixed position at the

DNA entry/exit site on the nucleosome, and its translocation activity causes a

break in DNA histone contacts, generating a wave of DNA that propagates

around the nucleosome (Saha et aI., 2002). Similarly, Aoyagi and colleagues

(2002), predict a "loop-recapture" model for human SWI/SNF remodeling, in

which a DNA bulge is transmitted around the nucleosome in a wave like

manner. These models are consistent with previous findings that indicated

that SWI/SNF remodeling requires changes in DNA topology (Gavin et aI.,

2001; Guyon et al., 2001). Also the introduction of DNA nicks, a modification

that will block transmission of twist in DNA, does not inhibit the remodeling

capacity of human SWI/SNF or RSC (Saha et al., 2002; Aoyagi et al., 2002).

In contrast to the SWI/SNF family, all of the data available for the ISWI-based

complexes are consistent with sliding of the DNA being the main mechanism

(Hamiche et aI., 199~; Aalfs et al., 2001; Langst and Becker, 2001). It is

therefore possible that SWI/SNF and ISWI-based complexes expose
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also showed clear changes in nucleosomal distribution (Schnitzler et al.,

2001).

Sliding does, however, not explain how substantial tracts of DNA can be

made accessible in regions of tightly spaced nucleosomes. Mechanisms that

could expose DNA sequences within the boundaries of the histone octamer

would provide a means by which DNA could be exposed in regions of tightly

packed nucleosomes without a requirement for repositioning. This hypothesis

is supported by several observations. Firstly SWI/SNF increases the

sensitivity of DNase and restriction enzyme of DNA sites within a

mononucleosome (Kingston and Narlikar, 1999). A sliding model cannot

explain this observation since mononucleosomes do not have flanking regions

to facilitate a sliding action. Secondly, another form of remodelled chromatin

has been characterised as having many of the properties expected for a

dinucleosome. (Lorch et al., 1998; Schintzler et al., 2001). Such species

could be generated as the result of the association of nucleosomes that have

been moved to the end of DNA fragments leaving DNA binding sites on the

octamer surface exposed. Similar structures might also be generated during

the transfer of a histone octamer from one chromatin fibre to another (Lorch et

al., 1999; Phelan et al., 1999).

The high-resolution structure of the nucleosome core particle provides insight

into how DNA might be moved over the surface of nucleosomes (Luger et aI.,

1997). Unequal lengths of DNA are wrapped on either side of the

nucleosome, resulting in the underwinding of DNA over a 10bp region on the

shorter DNA half. Application of torsion to DNA, by remodeling activity that is

also tethered to a histone component, could result in the alteration of DNA

twist on the surface of a nucleosome. In a topologically closed system this

twist can be partitioned between twist and wrythe, which will change the

trajectory of the helical axis of the DNA duplex, causing the lifting of a DNA off

the octamer surface. The propagation of this wrythe over the surface of a

nucleosome would result in the movement of DNA over the surface of a

nucleosome by diffusion. This could have the effect of pushing the DNA off

the nucleosome. Once histone DNA interaction has been disrupted, re-
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nucleosomal DNA by different mechanisms. The biological relevance of this

divergence is not presently clear.

2.5 CHEMICAL MODIFICATION OF CHROMATIN

The N-terminal ends of the core histones are the predominant targets for an

assortment of covalent modifications such as acetylation, phosphorylation and

methylation. These modifications are thought to affect chromatin through two

distinct mechanisms (Berger, 2002; Wu and Grunstein, 2000). Firstly, nearly

all modifications alter the electrostatic charge of the histone and this, in

principle, could change the structural properties of the histone DNA binding

capacity. Secondly, modifications could create binding surfaces for protein

recognition modules and thus recruit specific functional complexes to their

required sites of action. Examples of such modules have been identified,

such as the bromodomain (recognising acetylated Iysines) and the

chromodomain (recognising methylated Iysines). The potential specificity of

these signal/recognition interactions provoked Strahl and Allis (Strahl and

Allis, 2000) to propose the "histone code" hypothesis by which specific

combinatorial sets of histone modification signals can dictate the recruitment

of particular trans-acting factors to accomplish specific functions (Strahl and

Allis, 2000; Turner, 2000). The many possible combinations of different

histone modifications are staggering and the challenge for the future is to

systematically dissect the functional relationship between these modifications.

2.5.1 HISTONE ACETYLATION

Histone acetylation and deacetylation of conserved lysine residues in histone

tails have long been linked to transcriptional activity (Allfrey et al., 1964). In

general, hyperacetylated histones are associated with transcriptionally active

chromatin and hypoacetylated histones with transcriptionally inactive

chromatin (Ebenharter and Becker, 2002; Grunstein, 1997). Acetylation of

histones H3 and H4 counteracts the tendency of nucleosomal fibres to fold

into highly compact structures in vitro. Acetylated nucleosomes are also more

accessible to interacting proteins in vivo as is illustrated by increased

accessibility of DNA to DNasei, restriction enzymes and transcription factors
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(Lee et al., 1993; Anderson et al., 2001; Sewack et al., 2001). This might be

caused in part by the lowered positive charge of acetylated N-termini and a

consequent lowered stability of interaction with DNA. Histone acetylation can

also decrease compaction of nucleosomal arrays by disrupting

internucleosomal interactions established through the histone tails (Tse et aI.,

1998). An alternative option is that acetylated residues in different

combinations can be involved in the recruitment of additional transcription

factors such as proposed by the histone code hypothesis. In yeast the ground

state of chromatin is characterised by a mixture of untargeted histone

acetyltransferase (HAT) and histone deacetylase (HDAC) activities

(Vogelauer et al., 2000). Targeted modification occurs against this

background, which allows a rapid return to the initial state of acetylation when

targeting is removed.

2.5.1.1 HISTONE ACETYL TRANSFERASES

Histone acetyltransferases (HATs) are separated into two groups, type A

nuclear HATs and type B, cytoplasmic HATs (Roth et aI., 2001). The nuclear

regulatory complexes, which mainly contain type A HATs, will be of

significance to this discussion. Three families of type A HATs have been

identified, all of which share a highly conserved Acetyl-CoA binding site. Only

two of these families are represented in yeast. Several of these HATs have

been shown to have activities directed to histones in vitro, but seem to always

act as part of multi-subunit complexes in vivo (Table 2.1). The different

complexes have different subunit compositions and different histone

specificities, and appear to be involved in distinct biological functions (Roth et

al., 2001).

The first family of HATs is the GNAT superfamily (Gcn5-related N-

acetyltransferases), which includes proteins involved with, or linked to,

transcriptional initiation (Gcn5p), elongation (Elp3p), histone deposition and

telomeric silencing (Hat1p). GeNS was initially identified in a genetic screen

designed to isolate mutants unable to grow under conditions of amino acid

limitation (Georgakopoulos and Thireos, 1992; Penn et aI., 1983). A second
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screen for mutants reversing toxicity caused by overproduction of Ga14-VP16

also delivered GeNS along with two other genes, ADA2 and ADA3 (Berger et

aI., 1992; Pina et aI., 1993). Further genetic and biochemical analysis

revealed that Gcn5p, Ada2p and Ad3ap are the constituting elements of the

ADA Cê,lteration/geficiencyin §.ctivation)complex (Marcus et al., 1994; Candau

et al., 1996). A biochemical search for native complexes able to acetylate

nucleosomes in vitro led to the isolation of two high molecular mass

complexes of 0.8 and 1.8MDa, respectively, both complexes contain Gcn5p,

Ada2p and Ada3p (Grant et aI., 1997). The larger of the two complexes

turned out to contain Spt proteins (Spt20p, Spt3p, Spt8p and Spt7p) and is

referred to as SAGA (SpUAda/Gcn5 §.cetyltransferase). Both complexes

contain Gcn5p as the catalytic acetyltransferase subunit. The relationship

between these two complexes is not clear. It is possible that the smaller

complex is simply a subcomplex of the larger SAGA complex. Alternatively

each complex could represent distinct HAT complexes with unique cellular

functions. Gcn5p, like several transcription associated factors, also contains

a bromodomain that allows for the preferential recognition of histone tails

acetylated at specific residues (Owen et al., 2000; Dhalluin et ai., 1999).

Gcn5p is able to stabilise SWIISNF promoter binding, an interaction that

seems to be mediated by the bromodomain (Syntichaki et ai., 2000; Hassan

et al 2001). Like SWIISNF, SAGA has also been shown to interact directly

with a variety of transcriptional activators, including Gcn4p, Swi5p, Ga14-VP16

and GaI4-AH (Krebs et al., 1998; Neely et al., 1999; Natarajan et al., 1999;

Yudkovsky et al., 1999).

The MYST family of histone acetyltransferases is named after the founding

members MOZ (a human oncogene), Ybf2plSas3p, Sas2p and Tip60p. The

yeast homologue of MOZ is Sas3p, the catalytic subunit of the histone H3-

specific HAT complex, NuA3 (nucleosomal §.cetyltransferaseof histone H~)

(John et aI., 2000). This complex is predicted to function in transcriptional

elongation and replication and in transcriptional repression of the yeast silent

mating type loci (Reifsnyder et al., 1996; John et ai., 2000). Esa1p, an

essential protein in yeast, is also a MYST family member that predominantly

modifies histones H4 and H2B. Esa1p represents the acetyltransferase
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activity of the NuA4 (nucleosomal §cetyltransferase of histone H1) HAT

complex (Allard et al., 1999). Esa1p acetylates histones H2A and H4 and can

be recruited by activation domains in vitro to stimulate transcription from

chromatin templates in an acetyl co-enzymeA dependent manner (Vignalli et

al., 2000; Ikeda et al., 1999). The in vivo targets of Esa1p and thus NuA4

have been identified as ribosomal protein promoters, to which these

complexes are specifically recruited, possibly through the general DNA

binding factors Rap1p and Abf1p (Reid et aI., 2000).

The different functions of HAT complexes are likely caused by differences in

the amino acid residues in different histones that are acetylated, and

differences in targeting to specific regions in the genome. Each complex

contains a specific set of non-HAT subunits, which might interact with different

sequence specific activators that target the complexes to distinct areas of

regulation. The subunits may also differentially modulate HAT activity, since it

has been shown that Gcn5p-containing complexes have different substrate

specificities than isolated Gcn5p (Brownell et aI., 1996; Grant et aI., 1999)

Table 2.1 Constituents of yeast type A histone acetyltransfer complexes. Adapted
from Roth ef al., 2001).

Gcn5p
Ada1p
Ada2p
Ada3p
Ada5p/Spt20p
Spt3p
Spt7p
Spt8p
Tra1p
TAFII90
TAF1I61/68
TAFII60
TAF1I23/25
TAF1I17/20
Sin4p

Ada2p
Ada3p

Ahc1p

Spt16p

Tra1p
TAFII30

Act3p/ARP
Act1p
Epl1p
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Johnson, 2000). It was demonstrated that TUP1 represses gene activity in

vivo in part through its utilisation of HDA1 to deacetylate histones H3 and

H2B. This deacetylation occurs at a localised region containing the TATA

element adjacent to the Tup1p recruitment site at the ENA 1 and STE6 loci

(Wu et al., 2001a).

Two complexes containing a member of class IIIHDACs, Sir2p, have been

identified and are known to be involved in heterochromatin silencing at silent

mating type loci, telomeres and ribosomal DNA (Moazed et aI., 2001).

Specialised regions of heterochromatin such as these are transcriptionally

inactive, hypo-acetylated regions (Ekwall et aI., 1997). Sir2p has been shown

to have NAD-dependent HDAC activity (Imai et aI., 2000; Landry et aI., 2000;

Smith et al., 2000).

2.5.2 HISTONE METHYLATION

Although at present, less is known about histone methylation compared to

acetylation, it is a very active research area. Methylation of histones is

divided into two categories, targeting either arginine or lysine residues (see

Kouzarides., 2002 for review). In S. cere visiae , methylation of arginines in

histones has not been described, but the N-terminal tail of histone H3 is

methylated at Iysines 4, 36 and 79. The SET domain-containing enzymes

mediate histone lysine methylation. The SET domain is an evolutionary

conserved domain of 130 amino acids named for its presence in Su(var) 3-9

(suppressor of position effect variegation), E(z) (enhancer of zest) and Irx
(trithorax) (Stassen et al., 1995; Jenuwein et al., 1998). In S. cerevisiae there

are only 7 SET domain gene sequences, compared to more than 70 that are

present in mammals (Jenuwein., 2001)

Set1p is responsible for the methylation of lysine 4 of histone H3 in vitro and

disruption of the SET1 gene leads to absence of lysine 4 methylation of

histone H3 in vivo (Briggs et al., 2001; Krogan et al., 2003b; Nagy et al., 2002;

Boa et aI., 2003). Set1p methylation was initially considered to be of

importance in rONA silencing and normal cell growth (Briggs et aI., 2001;Bryk
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2.5.1.2 HISTONE DEACETYLASE COMPLEXES

The background of histone acetylation established by the activities of the HAT

complexes is balanced out by the activities of histone deacetylase complexes

(HDACs), which are involved in the creation of localised regions of repressed

chromatin. HDACs identified to date are ordered into three main classes

based on sequence similarity (Khochbin et a/2001; Khochbin and Kao, 2001).

Class I deacetylases are similar to yeast Rpd3p and include yeast Hos1 pand

Hos2p and the mammalian HDAC1-3 (Knupfler and Eisenman, 1999; Rundlett

et a/., 1996). Rpd3p forms a complex with Sin3p and Sap3p (referred to as

the Rpd3-Sin3 HDAC complex) that is recruited to DNA by the Ume6p

transcriptional repressor (Kadosh and Struhl, 1998; Zhang et a/., 1998; Fazzio

et a/., 2001). Genomic profiles of genes upregulated by RPD3 deletion

correspond to genes that fluctuate with cell-cycle periodicity (Bernstein et a/.,

2000). Although Rpd3p regulates meiosis genes via Ume6p, its influence on

cell-cycle dependent genes appears to be distinct. The Rpd3p-Sin3p complex

has recently been linked to repression of ribosomal gene expression in

response to nutrient limitation (Rohde and Cardenas, 2003). In this case a

dynamic interplay between Rpd3-Sin3 and the Esa1 HAT complex regulates

the expression status in response the nutritional environment.

Class II histone deacetylases share similarity to the yeast Hda1 p, a putative

catalytic subunit, and include the mammalian HDAC4, HDAC5 and HDAC6.

However little is known about the complexes that include these deacetylases

(Grozinger et a/., 1996). Yeast Hda1 p was first identified as a component of a

complex containing four subunits: Hda1 p, Hda3p and two peptides that are

thought to be posttranslationally modified variants of Hda2p (Carmen et a/.,

1996). Subsequent analysis revealed that the HDA 1 complex is composed of

a Hda1 p homodimer and an Hda2p-Hda3p heterodimer, and that interaction

between the two dimers is essential for the activity of the HDA 1 complex (Wu

et a/., 2001 b). A role was reported for HDA1 in TUP1 mediated repression

(Wu et a/., 2001 a). TUP1 is a general yeast repressor that affects pathways

involved in mating, DNA repair and oxygen and glucose utilisation

(Edmondson et al., 1996; Huang et al., 1998; Wahi et a/., 1998; Smith and
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telomeres, mating type loci and rONA, implying a direct role for 00t1p in

telomeric silencing. Furthermore binding of Sir2p and Sir3p at silent loci is

decreased in a dof1 mutant (Ng ef al., 2002a).

2.5.3 OTHER MODIFICATIONS

A potentially vast number of histone modifications within the unstructured tails

and the structured C-termini of histones may prove to be involved in several

nuclear processes. These include phosphorylation, ubiquitination and AOP-

ribosylation events.

Phosphorylation of histones H1 and H3, for example, is known to play

important roles in transcriptional regulation and mitosis (Cheung ef ai., 2000).

In S. cerevisiae the Snf1p kinase has been identified as a transcriptionally

linked histone kinase (Lo ef a/., 2001), and Snf1p was shown to coregulate

transcription of the IN01 gene. It is a probable that, similar to HATs and the

SWI/SNF complexes, histone kinases may be recruited to specific promoters

as coactivators.

Also, the C-terminus of histone H2B is ubiquitinated in a Rad6p-dependent

manner, and loss of this ubiquitination leads to defects in mitosis and meiosis

(Robzyk ef ai., 2001). Two different groups reported that ubiquitination of

histone H2B is required for Sef1p-dependent methylation of H3 K4 (Sun ef

ai., 2002; Dover ef a/., 2002). These data support the emerging paradigm

(such as the histone code model) that complex interactions between different

modification activities are required in the regulation of various processes.

2.6 REGULATION 0'= GENE EXPRESSION THROUGH CHROMATIN

In order to understand how a eukaryotic cell selects between gene expression

or repression, it is essential to understand how the chromatin-modifying

complexes, described above, interact with other components of the

transcription machinery in a coordinated manner. The transitions between

highly condensed chromatin structures and decondensed chromatin are not
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et al., 2002). In contrast to these observations, global analysis of modification

status revealed that lysine 4 methylation frequently occurs in coding regions

to facilitate transcription (Bernstein et al.,. 2002 ), and is required for effective

transcription of 80% of yeast genes (Boa et aI., 2003). Also lysine 4

methylation has been linked to transcriptional elongation (Krogan et aI., 2003).

In mammalian systems the activity of the K4 histone 3 methylatransferase

SET9/SET7 is also associated with positive regulation (Lachner and

Jenuwein., 2002). How methylation can be associated with both activation

and repression became clear only recently. A study using antibodies

discriminating between di- and tri-methylated H3 lysine 4 revealed that tri-

methylation is specific for the active state of transcription, whereas di-

methylated lysine 4 is present in both active and repressed genes (Santos-

Rosa et aI., 2003). Thus the number of methyl groups on a modified lysine

residue, in addition to the particular residue modified, appears to play an

important role in the functional consequences of histone methylation.

Lysine 36 methylation of H3 is mediated by Set2p. Although Set2-LexA could

repress transcription of the lacZ reporter when merged to a heterologous

promoter, and SET2 is necessary for repression of basal levels of GAL4

transcription, the in vivo role of Set2p remains a puzzle (Strahl et al., 2002;

Landry et al., 2003). In particular, two independent studies suggest that

Set2p, through association with the elongating form of RNA polymerase II,

plays an important role in transcription elongation (Li et al., 2002; Schaft et al.,

2002).

One of the key discoveries in histone methylation during the past year is

00t1p (gisruptor Qf !elomeric silencing-1), a novel histone methyl transferase

(HMT) that is involved in silencing at telomeres, mating type loci and rONA

(Van Leeuwen et al., 2002; Ng et al., 2002a; Lacoste et al., 2002; Krogan et

a/.,2003a). HMTs have until recently been characterised by the SET domain,

which is lacking in 00t1p. Furthermore, unlike other HMTs, 00t1p does not

target lysine residues in the histone tail, but methylates histone H3 on

lysine79, which resides within the core domain (Lacoste et aI., 2002; Van

Leeuwen et al., 2002). Mutation of lysine 79 displays a defect in silencing at
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well understood; therefore this discussion will focus on the regulation of target

genes once they are in a decondensed state.

While the functional interactions between the various complexes that regulate

transcription require further intense study, the emerging picture is that they

are able to act in many different orders and can assist in each other's

function. There is no specific indication that ATP-remodeling, covalent

modification of histones, binding by regulatory factors or the transcription

machinery takes place in any particular order. The only requirement appears

to be that at an appropriate stage a properly structured template be attained.

2.6.1 TARGETING OF ACTIVITIES

Genome-wide expression studies have revealed that SWI/SNF, and Gcn5p

containing HAT complexes are involved in the expression of 6% and 5%,

respectively, of all yeast genes (Holstege et al., 1998; Sudarsanam et al.,

2000). Accumulating evidence suggests that this specificity may be explained

by targeting of these activities to specific areas by sequence specific

activators/repressor that directly bind to ATP-dependent complexes and

chemical modifiers. This could have three functional consequences with

regard to the modification of the rate of remodeling. Firstly, contacts between

the activator/repressor could increase the affinity of a specific complex for a

particular region of DNA. This, in turn, would increase overall activity by

increasing the local concentration of the complex. Secondly, targeting by

sequence specific factors could also increase the rate at which a complex

binds to the chromatin template, if the binding event is rate limiting. Finally

interactions with specific DNA binding factors could directly regulate the

activity of the complex.

SWI/SNF has been shown to interact with several promoter binding

transcription factors (Natarajan et a/., 1999; Neely et al., 1999; Yudkovsky et

a/., 1999; Hassan et aI., 2001a). Although the molecular details of association

between SWI/SNF and transcription activators remain largely unclear, specific

features of activation domains seem to be of importance. A study of the
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chimeric Ga14-VP16acidic transcription activator has indicated that targeting

is reduced or eliminated by mutations that disrupt its acidic residues (Hassan

et al., 2001a; Peterson and Workman, 2000). Nuclear HAT complexes and

co-activators with intrinsic HAT activity have also been found to interact with

transcriptional activators (Roth et aI., 2001). As described for SWI/SNF, it has

been demonstrated that transcription activators containing acidic domains can

directly interact with SAGA and NuA4 and target these complexes to specific

promoters (Hassan et al., 2001a; Peterson and Workman, 2000). The

interaction between these complexes and acidic activators was shown to be

mediated by Tra1p, a common subunit of SAGA and NuA4 (Brown et aI.,

2000).

In contrast, Isw2p is targeted to promoters of early mitotic genes by the

transcriptional repressor Ume6p (Goldmark et aI., 2000). The recruitment of

Isw2p leads to the formation of an inaccessible chromatin structure proximal

to the Ume6p binding site, and consequently represses gene expression.

Sin3-Rpd3 is one of the most extensively studied histone deacetylase

complexes to date. This complex has also been shown to be targeted to

specific promoters by the same transcriptional repressor, Ume6p, resulting in

local histone deacetylation and transcriptional repression (Fazzio et aI., 2001).

Furthermore, the transcriptional corepressors Hir1pand Hir2p can recruit

SWIISNF to a responsive promoter (Dimova et aI., 1999).

These targeting mechanisms likely serve to initiate a cascade of events at a

given promoter that results in local alteration of chromatin structure to

facilitate formation of an active or a repressed state. The requirement for

specific remodeling/modification activities may vary for each particular gene.

The precise order in which complexes function at specific genes depends on

the nature of the promotor, the complement of transcription factors present

and the chromatin structure at the promoter. On the HO promoter, the

recruitment of ATP-dependent chromatin remodeiers precedes that of HAT

complexes (Cosma et aI., 1999; Krebs et aI, 1999). On the other hand,

activation of the inducible GAL 1 promoter during interphase requires Gcn5p,

but not SWI/SNF. Induction of this gene in late mitosis, however, requires
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both SWI/SNF and Gcn5p, indicating that ATP-dependent remodeling

complexes are required to assist HAT-dependent gene expression when

chromatin is highly condensed (Krebs et ai., 2000).

2.6.2 COLLABORATION BETWEEN COMPLEXES

There is strong evidence to support the idea that ATP-dependent remodeiers

and covalent modifiers work together to facilitate gene expression. A

functional link between ATP-dependent remodeling and HAT complexes was

first suggested by genetic studies in yeast (Pollard and Peterson, 1997

Roberts and Winston, 1997). Mutations in subunits of the SAGA complex

(excluding Gcn5p) were lethal in combination with mutations in the SWI/SNF

complex, though none of the single mutants showed any severe growth

defects, indicating a synergistic interaction between these two complexes.

Genetic studies and genome-wide analysis suggest that Isw2p and Sin3p-

Rpd3p, despite having unique biochemical activities, function synergistically to

regulate gene expression (Goldmark et al., 2000; Fazzio et ai., 2001).

Two studies raise the possibility that acetyltransferase complexes might

stabilise the interaction of SWI/SNF with the chromatin template. Work

performed using an altered PH05 promotor suggested that the Gcn5p-

containing SAGA complex might serve dual functions (Syntichaki et al., 2000).

The catalytic Gcn5p subunit firstly acetylates a promoter region, and

subsequently the bromodomain of Gcn5p is proposed to stabilise the binding

of SWIISNF to the acetylated nucleosomes. Biochemical analysis provides a

slightly different picture in support of the basic notion that acetyltransferases

can stabilise the binding of SWIISNF. In an in vitro system it was shown that

SWI/SNF preferentially binds to acetylated nucleosomes, suggesting that

acetylation stabilizes SWI/SNF association (Hassan et aI., 2001b).

Similar to the effects of sequence specific activators, two types of complexes

could assist each other in various ways. Direct interaction between ATP-

dependent remodeiers and chromatin modifiers could increase their affinity for

the chromatin template. Such interaction could also affect the activities of the
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separate complexes. Finally, alteration of the chromatin template by one

complex could render a more suitable substrate for another complex. For

example, remodeling of nucleosomes by ATP-dependent activities could

increase the accessibility of the N-terminal tails to chemical modification.

Alternatively, ATP-dependent remodeiers might bind more efficiently, or

dissociate more slowly, from nucleosornes modified at specific positions.

2.6.3 SYNCHRONISING WITH THE TRANSCRIPTIONAL MACHINERY

Some transcription factors and regulatory complexes can bind to chromatin

prior to recruitment of chromatin-modifying complexes and are capable of

altering chromatin structure. Biochemical studies have shown that binding of

activators such as Gal4p can displace nucleosomes in cis and in trans to

create nucleosome-free areas (Workman and Kingston., 1992). Elongation by

RNA polymerase can also cause changes in chromatin structure and

nucleosomal positioning (Lee and Garrard., 1991). ATP-dependent

remodeling complexes can increase binding by gene specific activators and

components of the preinitiation complex, such as TBP (Burns and Peterson.

1997; Coté et aI., 1994; Imbalanzo et aI., 1994). Acetylation of chromatin can

also increase binding of transcription factors (Sewack et al., 2001). Both HAT

complexes and ATP~dependent remodeling complexes can significantly

increase the rate of overall transcription from nucleosomal templates in

defined in vitro transcription systems (Ikeda et aI., 1999; Neely et aI., 1999).

Thus components of the general transcription machinery can assist in

remodeling and chromatin-remodeling complexes can increase function of the

transcription machinery. Thus, the idea that there is no compulsory order of

action for ATP-dependent remodeling and chemical modification can be

extended to state that there is no compulsory order of action for chromatin

modifying complexes and complexes in the general transcription machinery.

It appears that these very specific requirements for a specific complex on a

given promoter reflect the particular pathway that has evolved to function on

that specific promoter, not a requirement that is general for the
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activator/repressor that is involved, or for other promoters. The only

requirement is that the structure of the template and association of

appropriate components of the general transcription machinery be reached in

a timely fashion. As a consequence, participants can assist each other in

order to locate the most practical solution to achieve tightly regulated control

of transcription.

2.7 CONCLUSION

The regulation of gene expression and consequently cellular programmes and

phenotypic outcome requires the implementation of strikingly delicate

processes involving collaboration between various complexes and factors.

The past decade has seen a dramatic expansion in our perception of

mechanisms involved in the coordination of transcriptional regulation. The

use of the well-defined genetic system available through yeast genetics,

complimented with an expanding range of biochemical implementations,

allowed the unravelling of not only the structural and functional properties of

the complexes involved, but also the assessment of the effect of these

separate complexes and factors on genome-wide regulation of transcription.

The mechanisms by which this regulation is achieved are the keys that control

regulatory networks in eukaryotes. Emerging hypotheses such as the histone

code model provide an exciting range of future studies aiming to generate a

comprehensive picture of events leading to transcription repression or

induction. Future research to dissect the convergence of the variety of

modification and remodeling activities available to the eukaryotic cell should

lead to a dramatic new view of chromatin function.
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3.1 INTRODUCTION

Regulation of gene expression/repression is governed by various extra- and intra-

cellular cues that need to be perceived and appropriately integrated in order to adjust

cellular responses. The interface between chromatin and regulatory factors presents

an extremely efficient checkpoint where transcriptional regulation can be adjusted

with remarkable precision. The involvement of chromatin structure and nucleosomal

positioning in transcriptional regulation has been extensively characterised during the

past decade (for review see Chapter 2).

We were urged to investigate the possibility of chromatin playing a dynamic role in

the regulation of MUG/FL011 and STA2 transcription and the possible involvement of

Mss11p in the mediation thereof. Several lines of evidence suggest that these two

promoters could be controlled in part through nucleosomal positioning and

modification. Firstly, both the complexity and untypically large size of the

MUG1/FL011 and STA2 promoters suggested chromatin as a potential regulatory

mechanism. Secondly, despite the considerable degree of homology between the

two promoter sequences basal levels of STA2 transcription are constantly higher

than that of MUG1/FL011 (Gagiano et a!., 1999). Genetic screens have revealed

that STA2 expression requires the presence of SNF2, the ATPase subunit of the

SW2/SNF2 ATP-dependent chromatin remodelling complex (Yoshimoto and

Yamashita, 1991; Yoshimoto eta!., 1991, 1992; Yamashita., 1993; Kuchin eta!.,

1993). A role for the ISW2 chromatin-remodelling complex in the regulation of

invasive growth has recently also been revealed (Kent et a!., 2001). Furthermore,

cAMP mediated repression of MUG1/FL011 requires the general repressor TUP1-

SSN6 (Conlan and Tzamarias, 2001). Finally, regulation of FL01, also a FLO family

member, takes place in an extensive chromatin domain regulated by the activities of

the SWI/SNF co-activator and the TUP1-SSN6 co-repressor, raising the possibility

that similar mechanisms could be in effect in the regulation of MUG/FL011 (Fleming

and Pennings, 2001).

3.2 MATERIALS AND METHODS

All methodologies involving manipulation of DNA, yeast strains and culture conditions

were executed as described in Chapter 4. Yeast strains and their relevant genotypes
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are listed in Table 3.1. Plasmids used in this study are listed in Table 3.2. The

components of the yeast media used in this section are specified in Table 3.3.

Table 3.1 The yeast strains used in this study

ISP20~mss11

Table 3.2 List of constructs used in this study

YEpLac195-PST A2 2~ URA3 PSTA2 This Laboratory

3.2.1 NUCLEOSOMAL MAPPING

The assay performed to assess nucleosome positioning on the MUC1/FL011 and

STA2 promoters are similar to the methodology described by Ryan et al. (1999). The

yeast strains ISP20 was used for the determination of the nucleosomal positioning on

both the MUC1/FL011 and STA2 promoter regions since it is well characterised for

its ability to form pseudo hyphae and metabolise extracellular starch (Gagiano et a/.,

1999b). Plasmids bearing a 3541 bp region upstream of the MUC1/FL011 ATG and

3457bp upstream of STA2 ATG were transformed by the lithium acetate method.

Transformants were streaked out on selective SCO medium and incubated at 30°C.

A single colony was inoculated into 5 ml of selective medium and grown overnight,

100111of this culture was transferred to 100 ml of either SCO or SCGE medium

containing the required amino acids and grown to and 00600 of 1.0.

The culture was pelletted by 5 min centrifugation at 2500 rpm and resuspended in 20

ml of 1 M sorbitol. Following a washing step the culture was again suspended in 1 M

sorbitol along with 500 III of Zymolyase 1DOT(10 mg/ml) (ICN) and incubated at 30°C

to allow spheroplast formation. Spheroplast formation was monitored by a decrease

in 00600 when comparing a sample of cells not treated with Zymolyase to the sample

undergoing treatment that has been resuspended in water. Cells were considered to

be well spheroplasted when absorbance reached approximately 20% of the

untreated sample, which in general was after 30 min of treatment.
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Speroplasts were harvested by 5 min centrifugation at 3000 rpm, washed once in 1M

sorbitol and resuspended in 800).l1of freshly made buffer A (1 M sorbitol,S mM CaCI,

10 mM Tris.CI (pH7.4), 5 mM MgCh, 1 mM csci, 1 mM J3-mercaptoethanol,0.5 mM

spermidine). Aliquots of 100 ul was dispensed into four separate microcentrifuge

tubes kept on ice and gently mixed with 100 ul of freshly prepared buffer B (same as

buffer A with the addition of NP40 to a final concentration of 0.1%). The remaining

400 ).lIwas placed in a microcentrifuge tube and gently mixed with 400 ul of buffer B

to be used as free-DNA samples (DNA unbound by histones and other proteins).

To the four prepared samples, micrococcal nuclease (ICN) was added to final

concentrations of 100, 50, 25 and 12.5 U/ml and incubated for exactly 5 minutes at

37°C. The reaction was quenched by adding 20 ul of 250 mM EDTA and 5% SDS.

All four samples and the free-DNA sample were treated with proteinase-K to a final

concentration of 0.56 mg/ml for one hour at 37°C. After a phenol: chloroform:

isoamylalcohol (25:24:1) (PCI) extraction, 20 ul of RNase A (10 mg/ml) was added,

and the samples were incubated at 37°C for one hour. After two PCI extractions,

DNA was precipitated by adding 25 ).lI of 7.5M NH4CH3COO and 500 ul of 98%

ethanol and incubation for 15 min at -BO°C. The precipitated DNA was collected by

centrifugation for 10 min at 12 000 rpm, washed once with 70%, dried and dissolved

in 200 ul of water (treated samples) or 400 ul for the free-DNA sample. Aliquots of

100 ).lIwere taken from the free-DNA sample, placed in four separate microcentifuge

tubes and mixed with 100 ul of buffer B. Micrococcal nuclease was added to the final

concentrations of 10, 5, 2.5 and 1.25 U/ml and incubated at 37°C for five minutes.

The reactions were quenched by addition of 20 ul of 250 mM EDTA and 5% SDS.

DNA extraction was repeated as described above, and the free-DNA samples were

dissolved in 100 ).lIof water each.

A 20 ul aliquot from each sample was run on a 1% agarase gel, and appropriately

digested samples identified and digested with HindII, cutting 23 bp downstream of

both the MUC1/FL011 and STA2 translation start codons. Following incubation at

37°C for 12 h, the entire sample was precipitated, dissolved in 20 ul of TE buffer (pH

7.5) and run on a 1.5% agarase gel (20 x 25 cm) in TAE for 16 hours at 40 V, with

buffer re-circulation. Southern blot analysis was performed as described by

Sambraak et al. (1989). A probe homologous to an area stretching 23 bp
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downstream to 123 bp upstream of MUC1/FL011 and STA2 was used for mapping

the chromatin structure of the two respective promoter regions by indirect end

labelling.

Table 3.3 The components of the different yeast media used in this work.

SCGE
1.7% yeast nitrogen base,

1.7% yeast nitrogen base, 40 mM (NH4hS04 2% glycerol, 3% ethanol

3.3 RESULTS AND DISCUSSION

3.3.1 NUCLEOSOME POSITIONING IN THE REGULATORY REGIONS OF

MUC1/FL011 AND STA2

Figure 3.1 Nucleosome mapping of the MUC1 promoter by micrococcal nuclease digestion,

followed by indirect-end labelling. The standard (S) indicates positions upstream of the

MUC1 ATG. No apparent difference is observed between the treated samples (M) and the

free-DNA control (F).

Preliminary results seerned to indicate that there is no structured array of

nucleosomes present on the MUC1 promoter under repressed conditions (SeD). We

were, however, unable to confirm this result due to various technical difficulties. A
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different picture might be available when different conditions are taken into account.

Unfortunately, attempts to assay nucleosomal positioning in derepressed conditions

(SCGE) were flawed by an inability to generate suitable spheroplasts from cells

grown in glycerol/ethanol containing media. This is likely due to the severely reduced

growth rate in SCGE compared to cultures grown in SCD, which could result in the

slower forming cell wall to be more resistant to Zymolyase treatment. In a separate

approach, assays were performed in an nmsst t strain, since transcription levels are

similar to levels observed in repressed conditions. Unfortunately, due to time

constraints and various technical difficulties, we were unable to generate answers in

relation to the involvement of chromatin in the regulation of the genes concerned and

also in the identifying factors involved in the possible regulation thereof. Future

efforts will be focussed on the successful standardisation of techniques necessary for

the investigation of chromatin structure on the regulatory regions of MUC1/FL011

and STA2. Also mutants such as nmsst t, Af/DBand Afee1, where basal transcription

of both genes are reduced, will be included in future studies.
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4.1 SUMMARY

Pseudohyphal differentiation refers to the morphogenic shift that is triggered by the

limited availability of nutrients, most notably by carbon and nitrogen limitation. In

response to these signals, a multitude of regulators control the expression of the cell

surface flocculin, Muc1p/Fl011 p, which was shown to be critical for both

pseudohyphal differentiation and invasive growth. These factors include Ste12p,

Tec1p (functioning downstream of the filamentous growth MAPK cascade), Fl08p

(downstream of the cAMP-PKA pathway) and numerous other proteins that have not

been placed in the context of known signalling pathways, for instance Mss11p,

Msn1p, Phd1pand Rme1p. Epistasis analysis suggests that Mss11p plays a

decisive role in the regulation of pseudohyphal differentiation and invasive growth.

MSS11, when overexpressed, was shown to activate MUC1/FL011 and the co-

regulated STA2 gene, which encodes an extracellular glucoamylase. A detailed

molecular analysis led to the identification of specific domains of Mss11p required to

confer transcriptional activation as well as regions involved in the regulation of the

activation potential of these domains. To gain further insight into the cellular function

of Mss11p, we investigated the effect of carbon and nitrogen induced signalling

events on the functioning of these separate domains. In addition the requirement of

specific fragments of Mss11p in the regulation of filamentous growth, starch

degradation and flocculation was explored. We also present evidence of genetic

interaction between Mss11p and other factors involved in the regulation of

MUC1/FL011 expression.

4.2 INTRODUCTION

Cells respond to changes in the physical and chemical properties of the environment.

The decision by cells to execute an appropriate response to a specific stimulus is

critical for viability. In response to limited availability of nutrients, cells of the yeast

Saccharomyces cerevisiae undergo a transition from normal single budding ovoid

cells to a filamentous form, characterised by elongated cells budding in a unipolar

fashion, with daughter cells remaining attached to the mother cells producing chains

of cells referred to as pseudohyphae. These filaments are able to penetrate the agar
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beneath the colony, a process referred to as invasive growth. This cellular

adaptation could provide a selective advantage, as it may facilitate foraging for

scarce or limited nutrients (for review see Kron., 1997; Madhani and Fink., 1998;

Borges-Walmsley and Walmsley., 2000; Pan et al., 2000; Bauer and Pretorius.,

2001; Gancedo., 2001; Gagiano et aI., 2002). The wide range of tools available in

yeast genetics has allowed the identification of a large number of genes involved in

the switch from unicellular to pseudohyphal growth. Many of these genes form part

of distinct signalling cascades, of which the Gpa2p-cAMP-PKA pathway, regulating

the transcription factors Fl08p and Sfl1p (Ward et al., 1995; Lorenz and Heitman,

1998; Roberts et aI., 1997; Roberstson and Fink, 1998; Masch et a/1996; Pan and

Heitman, 1999; Rupp et al., 1999; Lorenz et al., 2000; Tamaki et al., 2000), and the

filamentation specific MAP kinase cascade, functioning upstream of the transcription

factors Ste12p and Tec1p, are most comprehensively defined (Gimeno et aI., 1992;

Liu et a/., 1993; Masch et al., 1996; Cook et al., 1996, 1997; Madhani and Fink,

1997, 1998; Madhani et al., 1997; Rupp et al., 1999). Numerous other factors have

been identified for their involvement in the regulation of pseudohyphal differentiation

and invasive growth and remain to be placed into the context of known or alternate

pathways. Among these are Phd1p (Gimeno and Fink, 1994; Lorenz and Heitman,

1998), Sok2 (Ward et aI., 1995; Pan and Heitman, 1999), Elm1p (Blacketer et aI.,

1993; Garret et aI., 1997; Koehler and Meyers., 1997), Rme1p (van Dyk et aI., 2003),

Msn1p and Mss11p (Gagiano et aI., 1999a, b).

Pathways involved in the regulation of pseudohyphal differentiation and invasive

growth regulate the expression of MUC1/FL011 (Rupp et aI., 1999), a member of a

family of cell wall associated proteins involved in cell-cell and cell-substrate adhesion

(Guo et aI., 2000). Other members of this family of glycosyl-phosphatidylinositol

(GPI)-linked cell surface glycoproteins include Fig2p and Aga1p, which are involved

in mating, and also Fl01p, F105p,Fl09p and Fl010p which are involved in flocculation

(Guo et a/., 2000). MUC1/FL011 was shown to be critically involved in the

establishment of pseudohyphal differentiation and invasive growth, with deletion of

the gene leading to a loss of filamentous phenotype and overexpression resulting in

flocculation in liquid media and pseudohyphal differentiation and invasive growth on

solid media (Lambrechts et a/., 1996a; Lo and Dranginis., 1996, 1998; Guo et al.,

2000).
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The promoter region of MUC1/FL011 represents the largest yeast promoter

identified to date, with cis-acting elements present up to 2.4 kb upstream from the

first coding triplet (Gagiano et al., 1999a; Rupp et al., 1999). The upstream

regulatory region of MUC1/FL011 is almost identical to that of the STA2 gene, which

encodes for an extracellular glucoamylase that is required for the utilisation of extra-

cellular starch (Pretorius et al., 1991; Vivier et al., 1997; Gagiano et al., 1999b). The

homology extends over more than 3.5 kb with the only significant difference being

the presence of two inserts of 20 and 64 bp in the MUC1/FL011 promoter. The great

extent of homology suggests that the promoters of the two genes are co-regulated.

Expression analysis confirmed that they both require the same transcription factors.

Discrepancies are however observed when basal expression levels of these genes

are compared (Gagiano etal., 1999a, b).

Mss11 p appears to playa central role in the regulation of starch metabolism and

pseudohyphal differentiation. The presence of multiple copies of MSS11 in the cell

results in elevated transcriptional levels of both MUC1/FL011 and STA2. The

increased levels lead to various phenotypes, including an increase in flocculation,

pseudohyphal differentiation, invasive growth and the cells ability to utilise starch

(Gagiano et al., 1999a, b). Deletion of MSS11 leads to complete loss of these

phenotypes, which cannot be reversed by overexpression of any of the other related

factors identified to date (Gagiano et aI, 1999a, b). The regulation conferred by

MSS11 on the transcriptional levels of MUC1/FL011 and STA2 also appears to be

regulated by signals generated specifically in the presence of low nitrogen and

glucose (Gagiano et al., 2003).

Mss11 p does not show significant homology to any other yeast protein, with the

exception of limited homology to the transcriptional activator Fl08p (Gagiano et al.,

1999a). Several distinctive domains are, however, represented in the MSS11 gene

product. Firstly, Mss11 p contains relatively large poly-glutamine and poly-

asparagine domains. It also contains a putative ATP- or GTP-binding domain,

commonly found in proteins such as kinases, ATPases or GTPases (Saraste et aI.,

1990). Two short stretches close to the N-terminal, labelled H1 and H2, share

significant homology to Fl08p (Figure 4.1 ).
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Figure 4.1 A diagramatic representation of Mss11p, illustrating the position and length of the

various domains. H1 and H2 indicate the two domains that share homology with the S.

cerevisiae transcription factor, F108p. P represents the putative ATP- or GTP- binding

domain (P-Ioop). Poly-Q and Poly-N indicates the poly glutamine and poly asparagine

domains respectively. The large domain between Poly-Q and Poly-N has no known or

predicted structural features or homology to any protein identified to date. For the purpose

of functional analysis this area was subdivided into three domains (referred to as

interdomain regions) indicated by 101, 102and 103

With the use of a comprehensive set of systematic deletions from both the N- and C-

termini, two separate activation domains capable of stimulating RNA polymerase II

dependent transcription as well as areas that appear to be involved in regulation of

Mss11p's activation capability have been identified (Gagiano et a/., 2003). Firstly,

both the H2 domain and the extreme C-terminus are able to activate a reporter gene

when fused to the DNA-binding domain of Gal4p. Interestingly, an area of 92 amino

acids that immediately precedes the H2 domain, containing the H1 domain and the

putative P-Ioop, seems to negatively regulate the activity of the H2 domain. In all

cases deletion of the H1-P-loop results in increased levels of transcription compared

to constructs where this area is present. The effect of an H1-P-loop deletion is

especially clear when combined with deletion of the C-terminal domain, suggesting

that the regulatory influence of the H1-P-loop is directed specifically towards the H2

domain (Gagiano et al., 2003).

This study was concemed with further investigating the cellular and molecular

functioning of MSS11. For this purpose, we selected a subset of Mss11p truncations

(Table 4.1) that would highlight the activity of the two activation domains (H2 and the

C-terminal) and also the apparent regulatory influence of the H1-P-loop. The

Mss11p derivatives would also be exploited to reveal any genetic interaction

between Mss11p and other factors (F108p, Ste12p, Tec1p, Msn1p, Phd1pand

Rme1p) regulating MUC1/FL011. In this manner we have established that Mss11p
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(S288C), standard laboratory strains that are unable to flocculate because of a

naturally occurring mutation in FLaB (Liu et aI., 1996), were used for the

determination of flocculation. Strain PJ69-4A is commonly used in the analysis of

two-hybrid interactions and was generously provided by P. James (James et aI.,

1996)

The carbon and nitrogen sources used in the preparation of the different yeast media

are listed in Table 4.3. The yeast nitrogen base that was used did not contain any

amino acids or nitrogen source (Becton Dickinson). All synthetic media were

supplemented with the specific amino acids required to fulfil the auxotrophic

demands of each specific strain or transformant. Amino acids were obtained from

Sigma-Aldrich and added according to recommended concentrations (Sherman et

al., 1991; Ausubel et al., 1994). Solid media contained 2% agar (Becton Dickinson).

Table 4.3 The components of the different yeast media used in this work.

SCLD

SLAD

yeast nitrogen base, 40 mM (NH4hS04

1.7% yeast nitrogen base, 40 mM (NH4hS04

1.7% yeast nitrogen base, 20 J.lM(NH4hS04 2% glucose

4.3.2 YEAST STRAIN CONSTRUCTION

Yeast strains of the ISP15 background bearing double gene disruptions of MSS11 in

combination with FLaB, STE12, TEC1, and MSN1, were generously provided by

Dewald van Dyk (this laboratory) along with the disruption cassettes Mec1::LEU2,

.t1.phd1::LEU2, .t1.f1oB::LEU2and .t1.rme1::URA3 .t1.mss11::URA3. These cassettes

along with the existing disruption cassette .t1.ste12::URA3 (Gagiano et ai., 1999a),

were used to disrupt the open reading frames of FLaB, STE12, TEC1, MSN1, PHD1

and RME1 in the two-hybrid strain PJ69-4A by means of homologous recombination

and integration (Ausubel et aI., 1994). The open reading of frame (ORF) of RME1

was also disrupted in ISP15.t1.mss11 as well as the ORF of MSS11 in ISP15.t1.phd1.

Disruptions were confirmed by the polymerase chain reaction using the primers listed

in Table 4.4.
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is responsive to carbon and nitrogen signalling and that regulation exerted by

Mss11 p under these conditions is dependent on the H2 domain, which is negatively

regulated by the H1-P-loop. We also show that the C-terminal is essential for the

regulation of pseudohyphal differentiation, invasive growth and flocculation by

Mss11 p. This could implicate the C-terminal in various indispensable functions such

as DNA binding, nuclear import, binding to other DNA associated proteins or

mediating the activities of other proteins or complexes that are required for

transcriptional activation. We also show that Mss11 p requires the presence of Fl01p

to induce Ca2+ -dependent flocculation.

Table 4.1 Description of the selected truncations used in this study

4.3 MATERIALS AND METtiODS

4.3.1 YEAST STRAINS, GENETIC METHODS AND MEDIA

Standard molecular, genetic and yeast techniques were used throughout this study

(Sherman et al., 1991; Ausubel et al., 1994). Yeast transformations were performed

using the lithium acetate method (Ausubel et al., 1994). The yeast strains used in

this study, along with the relevant genotypes, are listed in Table 4.2. The strains

ISP15, ISP20 and ~1278b have been used extensively for the characterisation of

invasive growth and pseudohyphal development (Gimeno et al., 1992; Lambrechts et

al., 1996a, b; Webber et al., 1997; Gagiano et al., 1999a, b). FY23 and BY4742
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Standard procedures for isolation and manipulation of DNA were used throughout

this study (Ausubel et al., 1994). Restriction enzymes, T4 DNA-ligase and Expand

Hi-Fidelity polymerase used in enzymatic manipulation of DNA were obtained from

Roche Diagnostics (Randburg, South Africa) and used according to instructions

provided by the supplier. Escherichia coli DH5a (Gibco BRLlLife Technologies) was

used for the propagation of all plasm ids and was grown in Luria-Bertani (LB) broth at

37°C. All E. coli transformations and the isolation of DNA were done according to

Ausubel et al. (1994). All constructs used in this study (Table 4.5) were verified by

restriction enzyme analysis.

Table 4.2 The yeast strains used in this study

BY47428mss11 MATa his3/eu2/ys2 ura3 mss11::KanMX4

BY4742~muc1 MATa. his3/eu2/ys2 ura3 muc1::KanMX4

BY4742Mlo1 MATa. his3/eu2/ys2 ura3 flo1::KanMX4

BY47428f1010 MATa. his3/eu2/ys2 ura3 flo10::KanMX4

ISP15 MATa STA2 his3 /eu2 frp1 fhr1 ura3

ISP158mss11 MATa STA2 his3/eu2 frp1 fhr1 ura3 mss11::LEU2

ISP158mss118f108 MATa STA2 his3/eu2 frp1 fhr1 ura3 mss11::LEU2

flo8::URA3

ISP15~mss118sfe12 MATa STA2 his3/eu2 frp1 fhr1 ura3 mss11::LEU2

sfe12::URA3

ISP15~mss11Mec1 MATa STA2 his3/eu2 frp1 thrt ura3 mss11::LEU2

fec1::URA3

ISP158mss118msn1 MATa STA2 his3/eu2 frp1 fhr1 ura3 mss11::LEU2

msn1::URA3

ISP15~mss118phd1 MATa STA2 his3/eu2 frp1 fhr1 ura3 mss11::URA3

phd1::LEU2

ISP15~mss11Nme1 MATa STA2 his3/eu2 frp1 fhr1 ura3 mss11::LEU2

rme1::URA3

library

Euroscarf deletion

library

Euroscarf deletion

library

Euroscarf deletion

library

Euroscarf deletion

library

Lambrechts ef a/., 1996

Webber ef a/., 1997

This laboratory

This laboratory

This laboratory

Webber ef a/., 1997

This study

This study
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Table 4.2 The yeast strains used in this study (continued)

L:1287b MATa. ura3-52 trp::hisG /eu2::hisG his3::hisG H.U. Mosch

L:1278Mmss11 MATa. ura3-52 trp::hisG /eu2::hisG his3::hisG Gagiano eta/., 2003

mss11::LEU2

L:1278Mmss11 ~muc1 MA Ta.ura3-52 trp: :hisG /eu2: :hisG his3: :hisG Gagiano et a/., 2003

::LacZ mss11::LEU2 muc1::LacZ-H/S3

PJ69-4A MA Ta his3 trp1 /eu2 ura3 ga/4 ga/BOLYS2:: GAL 1-H/S3 James et al., 1996

GAL2-ADE2 met2::GAL7-/acZ

PJ69-4AMloB MATa his3 trp1/eu2 ura3 ga/4 ga/BOLYS2::GAL 1-H/S3 This study

GAL2-ADE2 met2::GAL7-/acZ floB::LEU2

PJ69-4A~ste12 MATa his3 trp1/eu2 ura3 ga/4 ga/BO LYS2::GAL 1-H/S3 This study

GAL2-ADE2 met2: :GAL 7-/acZ ste12:: URA3

PJ69-4AMec1 MATa his3 trp1/eu2 ura3 ga/4 ga/BOLYS2::GAL 1-H/S3 This study

GAL2-ADE2 met2::GAL7-/acZ tec1::LEU2

MA Ta his3 trp1 /eu2 ura3 ga/4 ga/BO LYS2:: GAL 1-H/S3 This study

GAL2-ADE2 met2::GAL7-/acZ msn1::URA3

MATa his3 trp1/eu2 ura3 ga/4 ga/BO LYS2::GAL 1-H/S3 This study

GAL2-ADE2 met2::GAL7-/acZ phd1::LEU2

MATa his3 trp1/eu2 ura3 ga/4 ga/BO LYS2::GAL 1-H/S3 This study

GAL2-ADE2 met2: :GAL 7-/acZ rme1:: URA3

PJ69-4A~msn1

PJ69-4Mphd1

PJ69-4A~e1

MATa /eu2 trp1 ura3 mss11::LEU2 Gagiano et a/., 1999aFY23~mss11

Primers MSS11-PF and MSS11-PR were used to amplify the promoter region of

MSS11, with YEpLac112-MSS11 (Gagiano et al., 1999a) as template. The reverse

primer was designed with an EeoRI site after the start codon. This fragment was

digested with EeoRI and Seal and inserted into YCpLac22 (Gietz and Sugino, 1988)

digested at unique sites with Nar1, followed by blunt-end generation by Klenow

enzyme, and EeoRI. The MSS11 terminator region was amplified with the primers

MSS11-TF and MSS11-TR (Table 4.4) also using YEpLac112-MSS11 as template.

The forward primer was designed to contain a Sail restriction site directly 5' to the

stop codon, and the reverse primer was designed to contain a HindIII site for cloning

of the fragment into unique Sail and HindIII sites of plasmid YcpLac22. The resulting

plasmid, YCpLac22-MSS11exp, therefore contained the full-length MSS11 promoter,

start codon, stop codon and terminator region, as well as unique EcoRI and Sail

sites for the insertion of the various MSS11 fragments. These fragments were
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subcloned from the existing YEpLac112 constructs used in Gagiano et al. (2003). All

constructs were verified by restriction enzyme analysis and sequenced to assure that

no mutations were introduced through PCR.

4.3.4 INVASIVE GROWTH PLATE ASSAYS

For the monitoring of invasive growth and pseudohyphal development strains of the

ISP15 and L1278b genetic backgrounds were transformed with Yeplac112 bearing

the truncated versions of MSS11 and with the unmodified vector, Yeplac112, as

negative control. Five days after transformation three independent colonies were

inoculated into 5 ml of SCO medium containing only the amino acids required to

sustain growth. At an optical density (00600) of 1.0, 15 JlI was spotted onto solid

SCO, SCLO and SLAO agar plates (see Table 4.2 for media components). After 4

and 8 days cells were washed of the surface of the plates with a gloved finger under

running water. Only cells that have grown invasively into the surface of the plate

remain attached to the plate.

Table 4.4 List of primers used in this study

FL08-R

STE12-F

STE12-R

TEC1-F

TEC1-R

MSN1-F

MSN1-R

PHD1-F

PHD1-R

RME1-F

RME1-R

MSS11-F

MSS11-R

MSS11-TF

MSS11-TR

5'-CCGGAACAAACCTTTAGCAATTGCG-3'

5'-CACAGCA TTTCTTTTCGGAG-3'

5'-AA TCTCGCTTTTTCTGGTGG-3'

5'-CCGGAA TTCAAACAAGCTCAGGAGCTGGACTCC-3'

5'-CCGGAA TTCGCATGGCGCTAGAGAACTTTC-3'

5-CACCTACAAAGCGTTGATGG-3'

5'-GTTGTTGGCTGACTTCTGAG-3'

5'-GGCCT ATCCACGCCAA TTTA-3'

5-TCGAGCTTTGAGCGCAGAGT-3'

5'-GTTTGGACAGGGAT AGTGGGT A-3'

5'-CGTGGTGCCATA TTCACG-3'

5'-A TCTGTCGACCTT AAAACCT ATTAAACAACAAAAAGTGTTTC-3'

5'-GATCCAGCTTTGGCCAGAT AGCTTGCTT AC-3'

5'-ATCTGTCGACCTT AAAACCT ATTAAACAACAAAAAGTGTTTC-3'

5'-GATCAAGCTTTGGCCAGATAGCTTGCTT AC-3'
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The extent of Ca2+-dependent flocculation was determined by the addition of EOTA

(pH8.0) to a 5 ml culture to a final concentration of 30 mM (Stratford, 1992). After

cells were dispersed by vigorous agitation (10 sec vortex at maximum speed), 100 ul

was immediately removed and added to 900 ul of a 20 mM EOTA (pH 8.0) solution.

The optical density (00600) of this mixture was taken and used as measurement A.

To induce Ca2+-dependent flocculation 1 ml of the initial culture was harvested by

quick centrifugation (5 sec 12000 rpm) and resuspended in 1 ml of 5 mM CaCI. The

cells were resuspended (10 sec vortex at maximum setting) and left undisturbed for

60 seconds. A second spectrophotometric measurement (measurement B) was

performed as described above on a 100 !-lI sample carefully taken from just below

the meniscus. The percentage of Ca2+-induced flocculation was calculated using the

following formula (standard deviation ranged between 10% and 20%).

( A - 8 J%Flocculation = A X100

Table 4.5 List of constructs and vectors used in this study

YEpLac112-MSS11-0F-OR 2f.l TRP1 MSS111_758 This laboratory

YEpLac112-MSS11-0F-ID2R 2f.l TRP1 MSS111_551 This laboratory

YEpLac112-MSS11-H2F-OR 2f.l TRP1 MSS11146-758 This laboratory

YEpLac112-MSS11-H2F-ID2R 2f.l TRP1 MSS11146-551 This laboratory

YEpLac112-MSS11-H2FOR 2f.l TRP1 MSS11146-272 This laboratory

YEpLac112-MSS11-PH2F-OR 2f.l TRP1 MSS11169_758 This laboratory

YEpLac112-MSS11-ID3F-OR 2f.l TRP1 MSS11504-758 This laboratory

pGBD-C2 2f.l TRP1 GAL41-147 James et aI., 1996

pGBD-C2-MSS11-0F-OR 2f.l TRP1 GAL41-147MSS111_758 Gagiano et aI., 2003

pGBD-C2-MSS11-0F-ID2R 2f.l TRP1 GAL41-147MSS111-551 Gagiano et aI., 2003

pGBD"G2-MSS11-H2F-OR 2f.l TRP1 GAL41-147MSS11146-758 Gagiano et al., 2003

pGBD-C2-MSS11-H2F-ID2R 2f.l TRP1 GAL41-147MSS11146-551 Gagiano et al., 2003

pGBD-C2-MSS11-H2FOR 2f.l TRP1 GAL41-147MSS11146-272 Gagiano et al., 2003

pGBD-C2-MSS 11-PH2F-OR 2f.l TRP1 GAL41-147MSS11169-758 Gagiano et aI., 2003
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Table 4.5 List of constructs and vectors used in this study (continued)

BD-C2-MSS1

YCpLac22 CEN4 TRP1 Gietz and Sugino, 1988

YCpLac22-MSS11-0F-OR CEN4 TRP1 MSS1h758 This study

YCpLac22-MSS11-0F-ID2R CEN4 TRP1 MSS1h551 This study

YCpLac22-MSS11-H2F-OR CEN4 TRP1 MSS11146-758 This study

YCpLac22-MSS11-H2F-ID2R CEN4 TRP1 MSS11146-551 This study

YCpLac22-MSS11-H2FQR CEN4 TRP1 MSS11146-272 This study

YCpLac22-MSS 11-PH2F-OR CEN4 TRP1 MSS11169-758 This study

YCpLac22-MSS11-ID3F-OR CEN4 TRP1 MSS11504-758 This study

YEpLac195 2Jl URA3 Gietz and Sugino, 1988

YEpLac195-MSS11 2Jl URA3 MSS11 This laboratory

YEpLac195-FLOB 2Jl URA3 FLOB This laboratory

YEpLac195-STE12 2Jl URA3 STE12 This laboratory

YEpLac195- TEC1 2Jl URA3 TEC1 This laboratory

YEpLac195-MSN1 2Jl URA3 MSN1 This laboratory

YEpLac195-PHD1 2Jl URA3 PHD1 This laboratory

YEpLac195-RME1 2Jl URA3 RME1 This laboratory

PMSS11-11 llmss11::LEU2 Webber et al., 1997

pilt/oB llt/oB::LEU2 This laboratory

pllste12 Ilste12::URA3 Gagiano et al., 1999a

pMec1 Mec1::LEU2 This laboratory

osmsnt llmsn1::URA3 Webber et al., 1997

pllphd1 llphd1::LEU2 This laboratory

pMme1 Mme1::URA3 This laboratory

4.3.6 p-GALACTOSIDASE LIQUID AND PLATE ASSAYS

Strains containing the lacZ reporter gene (under control of either the GAL7 or MUC1

promoters) were transformed, and three independent colonies from each

transformation were grown in 5 ml of selective seo medium to an 00600 of 1.0. A

5ml culture of selective medium (SeO, SeLO or SLAO) was inoculated from each of

these pre-cultures to an 00600 of 0.05. These cultures were incubated at 300e with

agitation and grown to an 00600 of 1.0. p-Galactosidase assays were performed as

described by Ausubel et al. (1994). Assays were performed on all three

transformants (n=3) and the mean activity was calculated. At least two independent
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sets of transformation were assayed. The standard deviation did not exceed 15%

and was usually less than 8%. Differences between assay values were calculated at

ap < 0.005 level using the student paired t-test.

For the plate assays, yeast strains and mutants were transformed with the required

constructs. Three colonies from each transformation were inoculated into 5ml of

selective SGD medium and grown to an OD600of 1.0. From each of these starter

cultures, 15 III was spotted on solid SGD, SGlD and SlAD agar plates. These

plates contained X-gal (40 mg/l), added according to Ausubel et al (1994), which

allowed for a rough assessment of the level of expression of the lacZ reporter gene

(either MUC1-lacZ or GAL7-lacZ) in the strains containing the different sets of

constructs and mutants.

4.4 RESULTS

4.4.1 MSS11IS RESPONSIVE TO NUTRIENT SIGNALLING

In order to characterise the ability of Mss11p to activate transcription, a subset of

truncation constructs that had previously been described as resulting in clearly

distinct activation patterns, was selected (Gagiano et aI., 2003; Table 4.1). These

particular truncations were expressed under control of the constitutively active ADH 1

promoter and fused to the Gal4p DNA-binding domain. To assess the response to

carbon and nitrogen limitation, the MSS11-GAL4 DNA-binding domain fusion

truncations were transformed into the two-hybrid strain PJ69-4A, which contains an

integrated reporter gene, lacZ, under control of the GAL7 promoter. These

transformants were subjected to f3-Galactosidaseliquid assays.

The effect of the various truncations fused to the GAL4 DNA-binding domain on the

expression of the reporter gene (GAL7-lacZ) is presented in Figure 4.2. In SGD,

containing sufficient carbon and nitrogen, MSS11-GAL4 overexpression leads to an

almost 40-fold induction when compared to the negative control, where only the

Gal4p DNA-binding domain is expressed. In conditions of glucose and nitrogen

limitation (SGlD; SLAD), a further increase is observed in the ability of Mss11p to

stimulate transcription. There is however a slight, but significant increase in basal
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levels of GAL7 transcription when comparing expression in SeD to SeLD (GAL7

expression in SeD vs SeLD p = 0.02). This could result in a spill over of activity

when comparing the effect of the truncations in different growth conditions. In low

nitrogen, however, the Mss11p fusion constructs result in a significant increase

(vector vs constructs in SLAD, in all cases p <0.05) in reporter gene activity, without

any induction being observed in the control strains (vector in SeD vs SLAD, p = 0.3).

Removal of the H1-P-loop results in a surge in activation, which is especially striking

in the presence of limited glucose. This surge in activity is lost upon the removal of

the H2 domain (construct PH2F-OR). From these observations it appears that both

carbon and nitrogen signalling affect Mss11p. This is especially clear when the H1-

P-Ioop is removed, suggesting that the H1-P-loop negatively regulates the H2

domain specifically with regards to limited glucose availability. Since these Mss11p

derivatives are expressed from the ADH 1 constitutive promoter, which is unaffected

by nutrient availability, the variations observed in transcriptional activation could be

the result of signalling events affecting the activation potential of MSS11. It should,

however, be taken into account that the varying lengths of the truncations could

affect the efficiency of transcription or translation, and could thereby alter the ability

of a specific fragment to activate transcription when compared to a shorter or longer

fragment.

Figure 4.2 Levels of reporter gene (GAL7-lacZ) activity in the presence of different MSS11

fusion proteins in liquid media (SCD, SCLD and SLAD), as measured by ~-Galactosidase

activity. Standard deviation is indicated with error bars.
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Figure 4.3 Effect of the various fragments of MSS11 on muc1::/acZ reporter gene activity in

various liquid media (SCD, SCLD and SLAD), as measured by j3-Galactosidase activity.

Reporter activity in the plate assays corresponds to the intensity of colony colouration in the

photographs. Standard deviation is indicated with error bars.

4.4.2 REGULATION OF MUC1/FL011 EXPRESSION AND OF PSEUDOHYPHAL

GROWTH BY MSS11

To gain further insight into the cellular functioning of MSS11 with regards to the

regulation of filamentous growth, the MSS11 derivatives (Table 4.1) based on 2f..l

plasm ids under the control of the native MSS11 promoter and terminator were

transformed into the yeast strains :E1278bdmss11 and :E1278bdmss11dmuc1::/acZ.

These truncations were not fused to a DNA-binding domain, and could therefore

provide clues to areas of Mss11 p that would be able to function in a similar capacity.

The open reading frame of MSS11 was deleted in these strains to remove any effect

that its presence might have on our interpretation (Gagiano et a/., 2003). In strain

:E1278bdmss11dmuc1::/acZ the ORF of MUC1/FL011 was replaced by the /acZ

reporter gene (Gagiano et al., 2003). This strain was used for quantification of
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MUC1/FL011 expression and also serves as tsmuct mutant. The transformed

strains were spotted on SeD, seLD, and SLAD plates (with and without X-gal) and

strain I.1278b!1mss11!1muc1::/acZwasalso used in liquid p-Galactosidaseassays.

Before After

seo sein SlADseo sein SLAD

Vector Vector

OF-OR OF-OR

OF-ID2R OF-ID2R

H2F-OR H2F-OR

PH2F-ORPH2F-OR

Figure 4.4 Ability of MSS11 fragments to induce invasive growth in a L1278b~mss11
genetic background. No difference in growth was observed between colonies before the
plates were washed. All of the selected truncations were assayed for invasive growth; only
the fragments able to induce invasive growth are shown.

Liquid assays show that carbon limitation results in a significant increase in activation

of MUC1/FL011 transcription by MSS11 (Figure 4.3; Negative control vs OF-OR, p =
0.01). Deletion of the H1-P-loop (construct H2F-OR) results in a decrease of

MUe1/FL011 activity conferred by MSS11. Deletion of the H2 domain results in a

further decrease, indicating that these domains are required for the mediation of

carbon signalling on the MUC1/FL011 promoter by MSS11. Limited availability of

nitrogen, however, results in a lowered basal level of MUC1/FL011 transcription

(MUC1 expression in SeD vs SLAD, p = 0.02; Figure 4.3). This reduction remains

apparent in the presence of multiple copies of full-length MSS11 and also in the case

of constructs H2F-OR and PH2F-OR. Yet, on SLAD plates containing X-gal, multiple

copies of MSS11 result in an increase in MUC1/FL011 transcription, indicated by

blue colouration, that is absent in nitrogen rich SeD (Figure 4.3). This is most

prominent at the centre of the spotted colony, where nutrients are expected to be

more exhausted than at the periphery. This would expose cells to different

conditions than those encountered in liquid media (where cells are dispersed and
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cells are dispersed and exposed to similar concentrations of nutrients). These

results do not provide an absolute reflection of Mss11 p's responsiveness to nutrient

signalling, since it should also be taken into account that MUC1/FL011 transcription

is regulated by various signalling events generated in response to nutrient

availability.

Assays to quantify lacZ expression from the MUC1/FL011 promoter reveal

interesting differences when compared to induction of GAL7-lacZ by the selected

truncations fused to the Gal4p DNA-binding domain (Figures 4.2 and 4.3). Of

special interest is the ability of the truncated Mss11 p versions that are unfused to a

DNA-binding domain to regulate MUC1/FL011 expression. In all cases were the C-

terminal has been removed there is a reduced ability to activate. This is especially

clear when comparing the effect of construct H2F-ID2R, where the fusion construct

results in elevated levels of GAL7-lacZ expression but the unfused version is unable

to stimulate transcription from the MUC1/FL011 promoter. These results suggest an

important role for the C-terminal in delivering Mss11 p to where its function is

required. Also, construct PH2F-OR, where the H1-P-loop and the H2 domains are

removed, is able to induce MUC1/FL011 transcription. This confirms that the C-

terminal contains sequences that can facilitate transcription at the MUC1/FL011

promoter.

E1278b E1278b
~mss11 ~mss11L]muc1

Vector

OF-OR

OF-ID2R

H2F-OR

PH2F-OR

x100 x100

Figure 4.5 Comparison between constructs able to induce invasive growth in

r1278b~mss11 and r1278b~mss11i!muc1 on SCLD plates. Cell morphologyphotoswere
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taken at 100x magnification on the plates after the cells were washed of, with the use of
bright field microscopy.

As suggested by the MUC1/FL011 expression values, only constructs containing the

C-terminal domain are able to induce invasive growth and starch degradation. The

only exception is construct OF-ID2R, lacking only the C-terminal, which is able to

generate slight invasion on media with limited glucose (Figure 4.4). When

comparing the cell-morphology of the different transformants it is evident that

invasion is accompanied by cell-elongation except in the case of OF-ID2R, where

cells are invading as clumps of round cells (Figure 4.5). The ability of OF-ID2R to

induce invasive growth is lost in a I1muc1/f/011 strain, unlike the other constructs that

still allows for invasive growth and cellular elongation in the absence of

MUC1/FL011 (Figure 4.5). Thus, OF-ID2R seems to be only affecting

MUC1/FL011, and not the other target(s) of MSS11, as MUC1/FL011 is not

involved in cell-elongation but only in cell-substrate adherence (Palecek ef al., 2000).

4.4.3 GENETIC INTERACTIONS BETWEEN FACTORS REGULATING
PSEUDOHYPHAL DIFFERENTIATIONAND MSS11.

Two separate approaches were implemented to identify possible interactions

between MSS11 and factors involved in the regulation of pseudohyphal

differentiation and invasive growth (FLOB, STE12, TEC1, MSN1, PHD1 and RME1).

To probe if any of these factors are required by MSS11 or the truncated derivatives

of MSS11 in the regulation of invasive growth, multi-copy plasmids bearing MSS11

and the selected truncations under the regulation of the native MSS11 promoter and

terminator were transformed into ISP1511mss11.These constructs were also

transformed into the same strain with deletions of the genes encoding the various

factors, I1sfe12; siect; l1f1oB;smsnt; I1phd1 and srme respectively. MSS11 was

deleted in these strains to remove its effect on the appearance of invasive

phenotype. These transformants were spotted onto SCD, SCLD and SLAD plates to

assay for invasive growth. No difference was observed when comparing the

transformants with the strains containing additional deletions of FLOB, STE12,

TEC1, MSN1, PHD1, and RME1 (results not shown). Therefore, none of these

factors had an effect on Mss11p's involvement in the regulation of invasive growth.
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To investigate possible interaction with regards to transcriptional activation, MSS11

and the truncated ORFs fused to the Gal4p DNA-binding domain under control of the

constitutive ADH1 promoter was transformed into the two-hybrid strain PJ69-4A and

also into the same strain bearing deletions of the FL08, STE12, TEC1, MSN1, PHD1

and RME1 genes respectively. Transformants were spotted onto SCD, SCLD and

SLAD plates containing X-gal in order to monitor changes activation from the GAL7-

lacZ reporter. Again, no difference was detectable when comparing the PJ69-4A

transformants to the strains bearing deletions of the mentioned factors (results not

shown). Therefore, Mss11p does not require the presence of any of the factors in

order to stimulate transcription.

MUC1 expression affected by multiple copies of MSN1
co-transformed with MSS11 derivatives

wt llmss11 llmss11 eEN- OF- H2F- H2F- H2F- PH2F- ID3F-
+MSN MSS11 ID2R OR ID2R QR OR OR

Figure 4_6 Quantitative values of MUC1-/acZ reporter gene activity as affected by multiple

copies of MSN1 combined with the various fragments of MSS11 expressed from centromeric

plasmids. Standard deviation is indicated with error bars.

An alternative approach was taken in order to determine if FL08, TEC1, MSN1

PHD1 and RME1 require specific fragments of Mss11p in order to activate

MUC1/FL011 transcription. The factors were expressed from multi-copy plasmids

using their own promoters and terminators and were co-transformed with MSS11

and the various truncations on centromeric plasmids, expressed from the native

MSS11 promoter and terminator into L1278b~mss11~muc1::/acZ. Transformants

were spotted onto SCLD plates containing X-gal and also used in liquid ~-

Galactosidase assays (in SCLD) to monitor reporter gene activity. The reasoning

behind this strategy is that deletion of MSS11 results in a reduction of MUC1/FL011
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expression (wt vs LJmss11, p = 0.04; Figure 4.6) that cannot effectively be reinstated

by multiple copies of any of the mentioned factors, except for MSN1 that is able to

activate MUC1/FL011 in the absence of MSS11, but at a significantly reduced level

(LJmss11 vs LJmss11 + MSN1, p = 0.05; Figure 4.6; Gagiano et al., 1999b).

Expressing MSS11 from a centromeric plasmid does however compensate for the

loss of the deleted genomic copy, when co-expressed with the mentioned factors on

multi-copy plasmids (Figure 4.7). Therefore, co-expressing the various Mss11 p

truncations together with the selected factors could reveal possible interactions

between these proteins. STE12 was not included in this study, since overexpression

thereof does not have any significant effect on MUC1/FL011 expression. This is

most likely due to a block of Ste12p activity by the negative regulators, Dig1 pand

Dig2p, which needs to be relieved by activation of the MAP kinase cascade (Cook et

al., 1996; Bardwell et al., 1998)

vector NoSHt FLOB RMEt PHDt TEet

vector

OF-OR

OF-ID2R

H2F-OR

H2F-ID2R

H2F-QR

PH2F-OR

ID3F-OR

Figure 4.7 The effect of multiple copies of FLOB, TEC1, MSN1, PHD1 and RME1 in

combination with the various fragments of MSS11 expressed from centromeric plasmids in

"L.1278bi1mss11L1muc1::/acZ. MUC1-/acZ activity is represented by the intensity of colony

colouration.

The presence of MSS11 and the different MSS11 fragments on centromeric

plasm ids alone is not sufficient to stimulate MUC1/FL011 transcription (Figure 4.7).

Induction is only observed in combination with multiple copies of the separate

factors. In the case of MSN1 overexpression, activity was noticeable after three

days and saturated after four days. For all the other factors (FLOB, TEC1, PHD1
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and RMEn activation was apparent only after 12 days. Also no activity was

observed in liquid assays performed in SCLD, except for MSN1, suggesting that the

observed activation by FLaB, TEC1, PHD1 and RME1 is not due to a low glucose

signal but a more severe state of cellular stress.

As with all the factors, MSN1 activates most significantly in combination with the full-

lenght version of MSS11 (construct OF-OR) (Figure 4.7). Deletion of any fraction of

MSS11 leads to reduced levels of activation in the presence of MSN1. Of specific

interest is construct H2F-ID2R, where the C-terminal and the H1-P-loop is removed,

which appears to interfere with the functioning of MSN1. Intriguingly PHD1 and

TEC1 behave similarly in response to truncations of Mss11p. In both cases the H2

domain and the C-terminal is required by PHD1 and TEC1 in order to induce

MUC1/FL011 transcription, deletion of either results in loss of activation.

Furthermore, FLaB shares the same requirement of MSS11 in order to activate

MUC1/FL011, where deletion of the MSS11 C-terminal results in a loss of activation

by FLaB. Of specific interest is the ability of FLaB in combination with construct

PH2F-OR to activate MUC1/FL011. Since none of the other factors are able to

enhance MUC1/FL011 transcription in the presence of this fragment, a specific

requirement for MSS11 by FLaB seems evident.

Figure 4.8 Ability of truncated versions of MSS11 to induce Ca2+-dependent flocculation in

FY23f1mss11. Ca2+ induced flocculation calculated as a percentage of induced versus

uninduced values. The presence of the Mss11pC-terminal is essential in the establishment

of MSS11 mediated flocculation via activation sequences mainly concentrated in the H2

domain. Standard deviation is indicated with error bars.
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4.4.4 MSS11 REGULATES CA2+-DEPENDENT FLOCCULATION

In order to investigate the ability of MSS11 to act as a regulator of flocculation,

strains of the S288C genetic background (FY23 and BY4742), were transformed with

multi-copy plasmids bearing the various MSS11 truncations under control of the

native MSS11 promoter and terminator. To establish possible targets of MSS11 in

the regulation of flocculation, YepLac195-MSS11 was transformed into strains with

single deletions of FL01, FL010 and MUC1/FL011 respectively. S288C was

chosen for its known inability to flocculate due to a nonsense mutation in the FLaB

gene (Liu et aI., 1996), Ca2+ -dependent flocculation was calculated using an assay

in which the controlled addition of Ca2+ after binding of all bivalent ions in the growth

medium was bound by EDTA. Percentage of flocculation was calculated as

described in section 4.3.5.

Mss11 p induced flocculation is blocked by
deletion of FL01
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Figure 4.9 The effect of multiple copies of MSS11 on the induction of Ca "-dependent

flocculation in strains bearing single deletions of central flocculation genes reveals that a

functional copy of FL01 is required by MSS11. Standard deviation is indicated with error

bars.

Despite the absence of FLaB in the FY23 genetic background MSS11 is able to

induce flocculation (Figure 4.8). This is especially clear when the regulatory H1-P-

loop is removed. Of interest is the resemblance between the induction of

MUC1/FL011 transcription by the truncated versions of Mss11p (Figure 4.3), and the

ability of these truncations to stimulate Ca2+ -dependent flocculation (Figure 4.8).
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Similar to the regulation of MUC1/FL011 transcription, removal of the C-terminal

leads to a reduction in Mss11 p's ability to induce flocculation, strengthening the

essential role played by the C-terminal in Mss11 p's cellular function.

The level of flocculation attained by the presence of multiple copies of MSS11 does

not correlate with that reported for overexpression of MUC1/FL011 (Guo et aI.,

2000). Furthermore, MSS11 is able to effectively induce flocculation in a Amuct
strain (Figure 4.9), suggesting that another member of the FLO family might be

targeted by MSS11. A possible target seemed to be FL010, as overexpression

thereof was shown to induce invasive growth in the absence of MUC1/FL011 (Guo

et aI., 2000). However, MSS11 is still able to establish flocculation in a 11f1010strain

(Figure 4.9) and preliminary results indicate that MSS11 also induces invasive

growth in a 11f101011f1011double mutant (results not shown). On the other hand, the

presence of FL01 is required for MSS11 to enhance flocculation and deletion thereof

abolishes the ability of MSS11 to do so (Figure 4.9). Of future interest will be to

investigate the effect Mss11 p on FL01 transcription levels, and also to establish if

Mss11p is able to induce invasive growth through FL01.

4.5 DISCUSSION

In this study we present an analysis of Mss11 p and identify specific interactions

between Mss11p and other factors required for the activation of MUC1/FL011. In

order to study the activation potential of the separate domains of Mss11 p, a

heterologous system was used in which fragments of Mss11 p were fused to the

Gal4p DNA-binding domain, and transcriptional activation measured from an

integrated GAL7-lacZ reporter gene. In response to both glucose and nitrogen

limitation a clear surge in activation is noted, which is enhanced by the removal of

the H1 domain and the putative P-Ioop. Removal of the C-terminus in combination

with the H1-P-loop leads to a further increase in transcriptional activation, suggesting

that the regulatory effect enforced by the H1-P-loop is directed specifically towards

the H2 domain. Signalling associated with carbon limitation appears to have a

dominant effect with regards to the activation function of the H2 domain, this could,

however, also be effected by bias generated within the heterologous system in

different media conditions. Since these fusion proteins are expressed from the
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constitutive ADH1 promoter, which is unaffected by nutrient signalling, the activation

function of Mss11 p is likely to be regulated by signalling events in response to

nutrient limitation. This could either be by directly affecting Mss11 p or an interacting

factor(s). It is, however, also possible that the efficiency of either transcription or

translation could be affected by the varying lengths of the MSS11 truncation

constructs, and this would therefore alter the ability of a specific truncation to induce

transcription when compared to a longer or shorter version.

To date Mss11 p has only been shown to be involved in regulating MUC1/FL011 and

STA2 expression and the associated phenotypes of filamentous growth and starch

degradation. Other targets for Mss11 p do however exist, since over-expression of

MSS11 allows weak invasion in a muct/ttot t strain. In addition, MSS11 also

induces cellular elongation, which is not effected by MUC1/FL011. We provide

evidence that MSS11 harboured on a multi-copy plasmid strongly induces Ca2+-

dependent flocculation. Furthermore we show that this achieved in the absence of

FLOB, FL010 and MUC1/FL011, but does require the presence of FL01.

Expressing MSS11 without the C-terminal domain results in an inability to induce

MUC1/FL011 transcription, invasion and flocculation. Removal of the C-terminal

does, however, not affect the ability of the H2 domain to activate transcription when

fused to the Gal4p DNA-binding domain, which implicates a critical role for the C-

terminal in delivering MSS11 to where its function is required. Possible options

include involvement of the C-terminal in nuclear import, DNA-binding or binding to

DNA-associated factors.

The regulation of MUC1/FL011 transcription, transcription in general, invasive

growth and starch degradation via MSS11, or any fragment of MSS11, does not

require any of the factors involved in the activation of MUC1/FL011 (FLOB, STE12,

TEC1, MSN1, PHD1 and RME1). Co-expression of FLOB, TEC1, MSN1, PHD1 and

RME1 in combination with selected fragments of MSS11 reveals that these factors

do however show specific dependencies towards particular regions of MSS11.

Deletion of MSS11 causes a loss of MUC1/FL011 transcriptional activity that cannot

be re-established by multiple copies of any of the factors central to MUC1/FL011

activation, except for MSN1, which induces MUC1/FL011 at a significantly reduced

level in the absence of MSS11. For all the factors optimal activation of MUC1/FL011
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requires the presence of full-length MSS11. Deletion of any region of MSS11 results

in a decrease in activation by MSN1. Interestingly, expressing MSN1 together with

an MSS11 derivative of which the C-terminal and the H1-P-loop has been removed

interferes with the capacity of MSN1 to induce MUC1/FL011 transcription. This

suggests a direct interaction with either MSN1 or elements required for its functioning

at the MUC1/FL011 promoter. Further biochemical studies are required to clarify at

which exact point this interference occurs. FLaB displays a unique dependence on

MSS11, and is only able to activate MUC1/FL011 in combination with fragments of

MSS11 that are able to stimulate activation when present on multi-copy plasmids.

FLaB, unlike other factors, is able to induce MUC1/FL011 transcription when the

H1-P-loop as well as the H2 domain are removed, indicating a genetic link between

the functioning of MSS11 and FLaB. PHD1 and TEC1 require the presence of both

the C-terminal and the H2 domain; if either domain is absent, both factors are unable

to activate MUC1/FL011 transcription. Although these results provides interesting

insight into possible interactions between MSS11 and FLaB, TEC1, MSN1, RME1

and PHD1 more substantial data is required to clarify the capacity in which MSS11

functions inside the cell.

Future efforts will focus on identification of proteins interacting with Mss11 p and also

identification of other target genes affected by Mss11 p.
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5.1 CONCLUDING REMARKS

The regulation of pseudohyphal differentiation and invasive growth has been

comprehensively researched over the past decade. Various signalling pathways and

downstream transcription factors have been implicated in the regulation of these

phenotypes. The activity of these signalling cascades converge to regulate the

expression of the MUC1/FL011 gene, encoding a member of a family of cell wall

associated proteins connected with cell-cell/cell-substrate adhesion (Rupp et a/.,

1999; Guo et a/., 2000). MUC1/FL011 expression is to a large extent co-regulated

with that of the STA2 gene, encoding an extra-cellular glucoamylase (Gagiano et al.,

1999b). Both genes are regulated by extremely large promoter regions, with

regulatory elements present up to 2.4 kb upstream from the first coding triplet. The

regulation of MUC1/FL011 and STA2 presents us with an excellent model system in

which to unravel the complex mechanisms involved in the regulation of eukaryotic

transcription.

The transcriptional activator Mss11p plays a central role in the regulation of

MUC1/FL011 and STA2, and consequently pseudohyphal growth and starch

metabolism in response to carbon and nitrogen limitation (Gagiano et a/., 1999a, b;

Gagiano et a/., 2003). All other factors considered to be critically involved in the

activation of MUC1/FL011 and STA2 are dependent on MSS11 in order to achieve

their required function. Mss11p does not have significant homology to any yeast

protein, with the exception of limited homology to the transcriptional activator Fl08p

(Gagiano et al., 1999a). Several distinct domains are, however, present in the

MSS11 gene product. Firstly Mss11p contains distinguishing poly-glutamine and

poly-asparagine domains. It also contains a putative ATP- or GTP-binding domain,

commonly found in proteins such as kinases, ATPases or GTPases (Saraste et al.,

1990). Two short stretches close to the N-terminal, labelled H1 and H2, share

significant homology to F108p.

Molecular analysis of Mss11p identified two separate domains that are able to

stimulate RNA polymerase II dependent transcription. Firstly, both the H2 domain

and the extreme C-terminus are able to activate a reporter gene when fused to the

DNA-binding domain of Gal4p. Interestingly an area of 92 amino acids that

immediately precedes the H2 domain, containing the H1 domain and the putative P-

loop, seems to negatively regulate the activity of the H2 domain. In all cases deletion
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of the H1-P-loop results in increased levels of transcription compared to constructs

where this area is present. The effect of an H1-P-loop deletion is especially clear

when combined with deletion of the C-terminal domain, suggesting that the apparent

regulatory influence of the H1-P-loop is directed specifically towards the H2 domain.

This study also presents further insight into the functioning of Mss11p and the

involvement of the separate activation and regulatory domains in mediating

transcriptional activation. Mss11p is responsive to carbon and nitrogen limitation,

and the limited availability of glucose does appear to have an overriding effect on

Mss11p function. Transcriptional activation by Mss11p in response to glucose

limitation is achieved through the activity of the H2 domain, which is negatively

regulated by the H1-P-loop. Furthermore, the C-terminal is crucially required for the

activation of MUC1/FL011 by Mss11p; deletion thereof completely abolishes the

ability of Mss11p to stimulate transcription. However when the C-terminal deleted

version of Mss11p is fused to the Gal4p DNA-binding domain, this fragment is able to

activate transcription of a PGAL7-lacZ reporter gene. This could implicate a role for

the C-terminal in delivering Mss11p to where its function is required. Deletion of the

C-terminal domain could therefore affect processes such as nuclear import, DNA

binding, binding to DNA associated factors or interaction with a factor(s) or a complex

required for transcriptional activation of the genes in question.

Additionally, we propose a role for Mss11p in the regulation of Ca2+-dependent

flocculation. Similar to the induction of MUC1/FL011 and invasive growth, the C-

terminal is required for the induction of flocculation. We also present evidence that

Mss11p requires the presence of FL01 in order to stimulate flocculation. Future

efforts will include assessment of Mss11p's effect on the transcriptional regulation of

FL01.

Deletion of MSS11 causes a decrease in MUC1/FL011 transcriptional activity that

cannot be re-established by multiple copies of any of the factors central to

MUC1/FL011 activation (FLOB, STE12, TEC1, MSN1, PHD1 and RME1). We

specifically indicate that PHD1 and TEC1 require both the C-terminal and the H2

domain in order to activate MUC1/FL011. FLOB is only able to activate

MUC1/FL011 in the presence of Mss11p derivatives that are able to activate

MUC1/FL011 when they are present in multiple copies. Also, unlike the other
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factors, Fl08p is able to induce MUC1/FL011 transcription when the H1-P-loop and

the H2 domains are removed, indicating a genetic link between the functioning of

MSS11 and FLOB. Interestingly, expressing MSN1 together with an MSS11

derivative of which the C-terminal and the H1-P-loop has been removed inhibits the

capacity of MSN1 to induce MUC1/FL011 transcription. This fragment is able to

induce transcription when fused to the Gal4p DNA-binding domain and also induces

MUC1/FL011 expression when only the H1-P-loop is removed and not the C-

terminal. The interference of this fragment could be due to interaction with a factor or

complex involved in MUC1/FL011 stimulation/potentiation that is required by MSN1

(and possibly other factors), but in the absence of the C-terminus this activity is not

correctly targeted. Although these results provides interesting insight into possible

interactions between MSS11 and FLOB, TEC1, MSN1, RME1 and PHD1,

respectively, more data is required to clarify the capacity in which MSS11 functions in

the regulation of pseudohyphal differentiation, invasive growth and regulation of

MUC1/FL011.

The dependence of many different factors on Mss11 p could involve Mss11 p as part

of a complex that assists transcription factors in activating genes in response to

specific nutritional signals. Considering the amount of genetic evidence that points to

MUC1/FL011 and STA2 transcription being repressed by the state of chromatin over

their promoters (Yoshimoto and Yamashita., 1991; Yoshimoto et a/., 1991, 1992;

Yamashita., 1993 Kuchin et a/., 1993; Kent et a/., 2001; Conlan and Tzamarias.,

2001), a role for Mss11 p in a capacity that would reduce the repressive effect of

chromatin, seems possible. We set out to describe the chromatin structure on the

promoter of MUC1/FL011 and STA2 under repressed and induced conditions in

addition to mutants of chromatin complexes and MSS11. We could however not

achieve this goal within the time constraints of this study.

Future work will focus on the effect of MSS11 overproduction and deletion on

genome-wide transcription, in order to allocate other targets of Mss11 p. Also of

interest will be to establish possible biochemical interactions with other proteins

and/or DNA.
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Summary

In Saccharomyces cerevlslae, the cell surface protein,
Muc1 p, was shown to be critical for invasive growth
and pseudo hypha I differentiation. The transcription
of MUC1 and of the co-regulated STA2 glucoamylase
gene Is controlled by the interplay of a multitude of
regulators, including Ste12p, Tec1p, F108p,Msn1 pand
Mss11 p. Genetic analysis suggests that Mss11 p plays
an essential role In this regulatory process and that
It functions at the convergence of at least two signal-
ling cascades, the filamentous growth MAPK cascade
and the cAMP-PKA pathway. Despite this central
role in the control of filamentous growth and starch
metabolism, the exact molecular function of Mss11 p
is unknown. We subjected Mss11 p to a detailed
molecular analysis and report here on its role in tran-
scriptional regulation, as well as on the identification
of specific domains required to confer transcriptional
activation in response to nutritional signals. We show
that Mss11 p contains two Independent transactiva-
tlon domains, one of which Is a highly conserved
sequence that is found in several proteins with uni-
dentified function in mammalian and invertebrate
organisms. We also identify conserved amino acids
that are required for the activation function.

Introduction

Upon nutrient limitation, cells of the yeast Saccharomyces
cerevisiae undergo a transition from ovoid cells, which bud
in an axial (haploid) or bipolar (diploid) fashion, to elon-
gated cells that bud in a unipolar fashion. The daughter

Accepted 6 September, 2002. 'For correspondence. E·mail isp@
sun.ac.za; Tel. (+27) 21 808 4730; Fax (+27) 21 808 3771.

© 2003 Blackwell Publishing Ltd

cells remain attached to the mother cells, which results in
chains of cells referred to as pseudohyphae. These fila·
ments can grow invasively into the agar and away from
the colony and are hypothesized to be an adaptation
of yeast cells to search for nutrient-rich substrates
(reviewed by Kron, 1997; Madhani and Fink, 1998;
Borges-Walmsley and Walmsley, 2000; Pan et a/., 2000;

Bauer and Pretorius, 2001; Gancedo, 2001). A large num-
ber of genes that playa role in this adaptation to changing
environmental conditions have been isolated, and most
were shown to participate in distinct signalling cascades
that regulate the dimorphic switch from yeast to hyphal
form. The best characterized of these signalling pathways
are the invasive growth MAP kinase cascade (Liu
et a/., 1993; Cook et al., 1996; 1997; Masch et a/., 1996;
Madhani et a/., 1997) and the Gpa2p-cAMP-PKA pathway
(Ward et a/., 1995; Roberts et al., 1997; Robertson and
Fink, 1998; Pan and Heitman, 1999; Rupp et a/., 1999;
Lorenz et al., 2000; Tamaki et a/., 2000; Gagiano et a/.,
2002). In addition to the components of these established
regulatory cascades, several other factors have also been
identified for their roles in regulating pseudohyphal and
invasive growth. These include Phd1p (Gimeno and Fink,
1994; Lorenz and Heitman, 1998), Sok2p (Ward et a/.,

1995; Pan and Heitman, 1999), Elm1 p (Blacketer et el.,
1993; Garret, 1997; Koehler and Myers, 1997), Msn1p
and Mss11 p (Gagiano et a/., 1999a,b), but these factors
have not been placed in the context of known signal trans-
duction pathways, have not been characterized suffi-
ciently or seem to function through alternative pathways.

MUC1 (also known as FL011) is a member of the
adhesin- or flocculin-encoding genes and is regulated by
the signalling pathways that determine filamentous growth
(Guo et a/., 2000). It encodes a large, cell wall-associated,
glycosylphosphatidylinositol (GPI)-anchored threonine/
serine-rich protein with structural resemblance to mam-
malian mucins and yeast flocculins (Lambrechts et a/.,

1996a; La and Dranginis, 1996). Deletion analyses dem-
onstrated that MUC1 is critical for pseudohyphal differen-
tiation and invasive growth and that overexpression of
this gene results in flocculating yeast strains in liquid
media and pseudohyphaVinvasive growth on solid media
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(Lambrechts et el., 1996a; Lo and Dranginis, 1996; 1998;
Guo et af., 2000).
The upstream regulatory region of MUG1 is one of the

largest yeast promoters identified to date, and areas as
far as 2.4 kb upstream of the transcription start site have
been shown to be required for the regulation of MUG1
expression (Gagiano et af., 1999a; Rupp et af., 1999). The
data suggest that most, if not all, the previously mentioned
signalling pathways and regulatory proteins converge on
this promoter to regulate invasive growth and pseudohy-
phal differentiation, making this gene the most relevant
target of this complex regulatory network. The entire
MUG1 upstream region is almost identical to that of the
STA2 gene (Gagiano et af., 1999b), which is present only
in some S. cerevisiae strains and codes for an extracellu-
lar glucoamylase that enables the yeast cell to use starch
as a carbon source (reviewed by Pretorius et af., 1991;
Vivier et af., 1997; Gagiano et af., 2002).
Ot the regulatory proteins mentioned above, Mss11 p

appears to play one of the most central roles in regulating
filamentous growth and starch metabolism. When the
MSS11 gene is present on a multiple copy plasmid, strong
invasive and pseudohyphal growth is observed in all the
strains tested, including those with single or multiple dele-
tions of genes encoding other factors that activate MUG 1
and STA2 transcription (Gagiano et af., 1999a,b). On the

other hand, the deletion of the MSS 1110cus results in the
complete absence of these phenotypes, which cannot be
suppressed efficiently by overexpressing any of the fac-
tors identified to date, including Ste 12p, FI08p and Msn1p
(Gagiano et af., 1999a,b).

Despite a clear role in regulating filamentous growth
and starch metabolism, the exact molecular function of
Mss 11P is unknown. Although it was shown to regulate
the expression of MUG 1 and STA2 at a transcriptional
level (Webber et af., 1997; Gagiano et af., 1999a,b), and
that this activation occurs via specific areas within the
MUG1 and STA2 promoters (Gagiano et af., 1999a), it is
unclear whether it confers this activation directly, i.e. by
acting as a transcription activator, or indirectly, i.e. by
interacting with or favouring the recruitment of other tran-
scription factors for example. Mss11 p has no significant
sequence homology to any yeast protein, with the excep-
tion of some limited homology to the Fl08p transcription
activator (Gagiano et af., 1999a). Mss11p, however, con-
tains several distinctive domains (Fig. 1), including (i) a
poly glutamine and (ii) a poly asparagine domain, which
are similar to, but significantly larger than, similar domains
observed in the repressor Ssn6p. It also contains (iii) a
putative ATP- or GTP-binding domain, commonly found
in ATP- or GTP-binding proteins such as the kinases,
ATPases or GTPases (Saraste et af., 1990); and (iv) two

,:8; .:.$ .AP'~lll$
:Jl; ",l.lAlilÏ'1.t ...

Fig. 1. A diagrammatic representation of Mssll p that illustrates the position and length af the different domains. Domains Hl and H2 represent
the domains with homology to S. cerevisiae FI08p.The alignment of the second homology domain, H2, with Flo8p and proteins of unknown
function from other organisms is shown. The first homology domain, Hl, has no significant homology to any protein besides FI08p.The putative
ATP/GTP-binding domain (P-loop) is represented by a P. The poly glutamine and poly asparagine domains are indicated by poly Q and poly N
respectively. The large domain between the poly glutamine and poly asparagine domains has no known or predicted structural features or
homology to any protein identified to date. It was subdivided into three smaller domains for the functional analysis. These smaller domains were
named interdomain regions 1, 2 and 3 and are indicated by lOl, 102 and 103 on the diagram.
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short stretches (labelled H1 and H2) of amino acids with
significant homology to F108p. The functional relevance
and significance of all these domains has not yet been
investigated. Furthermore, Mss11 p has only been impli-
cated in the regulation of MUG1 and STA2 transcription
and, therefore, it is unknown whether any other target
genes exist or whether Mss11 p also plays a role in cellular
processes other than filamentous growth or starch
metabolism.

In this paper, we show that Mss11p can activate tran-
scription directly. The data suggest that Mss 11p is regu-
lated on a post-translational level in response to specific
nutritional signals and that the N-terminal domain is
responsible, at least in part, for this regulation. Further-
more, we delineate activation domains in Mss11 p by
means of domain mapping and show that these domains
are sufficient for the activation of a reporter gene, as well
as of the MUG 1and STA2 genes. We also identify specific
amino acids that are involved in transcriptional activation
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and define a domain that is highly conserved in several
mammalian and invertebrate proteins of unknown
function.

Results

MsS11p regulates MUC1 and STA2 mRNA levels

To determine the transcription levels of MUG1 and STA2
under different nutritional conditions and to determine the
effect of multiple copies of MSS 11 or the deletion of
MSS11, we isolated RNA from cells grown in synthetic
media containing high (2%) or low (0.1%) concentrations
of glucose as carbon source and (NH4)2S04 as nitrogen
source. The wild-type strain, ISP15, was transformed with
the 21l plasmid bearing MSS11, YEplac112-MSS11 or the
unmodified vector, YEplac112, as negative control. The
effect of a deletion of MSS 11 was assessed using strain
ISP 15Llmss 11 transformed with the unmodified vector,
YEplac112. The results are presented in Fig. 2.

ACTt

STAl

MUCt

SLAD

ACTt

STAl

MUC1

SLALD
Fig. 2. Northern blot analysis on the effect of single and multiple copies of MSS 11. as well as the deletion thereof. on the transcript levels of
STA2 and MUC 1under different nutritional conditions. The concentrations and components of the different media are described in detail in Table 2.
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No mRNA from either STA20r MUG1 could be detected
in the Ll.mss 11 strain, confirming the essential role played
by Mss11p in the transcription of these genes. In the wild-
type strain, MUG1 transcription levels were also undetect-
able in all media tested, including under nitrogen and
carbon limitation. However, the transcription levels of
STA2 in the wild-type background were clearly detectable
in all media except the synthetic medium containing 2%
glucose (SCD). This discrepancy in the transcription levels
of the two genes with almost identical regulatory regions
has been described before and can be attributed, at least
in part, to the presence of two inserts in the promoter
region of MUG1 that are absent from that of STA2
(Gagiano et aI., 1999a).
The data clearly show that both nitrogen and carbon

limitations result in increased transcription of STA2.
Although no STA2 transcript was detectable in a medium
with high glucose and ammonium concentration (SCD),
the STA2 mRNA signal intensity reached 17%, 100% and
100% of that of the actin signal when the cells were grown
in SLAD (nitrogen limited), SCLD (glucose limited) and
SLALD (glucose and ammonium limited) respectively. The
presence of multiple copies of MSS 11 increased the tran-
scription levels of STA2 significantly in SCD, SLAD and
SCLD, reaching 50% (up from non-detectable in the wild
type), 66% (up from 17%) and 149% (up from 100%) of
the actin signal intensity respectively. However, the pres-
ence of the multiple copy vector alone did not result in a
further increase in the STA2transcription levels in SLALD
medium.

Although the absolute transcription levels varied in the
different media, the presence of MSS 11 in multiple copies
increased the transcription of MUG1 significantly under all
conditions. The signal intensity of MUG 1 reached 55%,
32%, 36% and 18% of that of the actin signal in SCD,
SLAD, SCLD and SLALD respectively. Contrary to what
was observed for STA2, multiple copies of MSS11 there-
fore resulted in a significant increase in MUG 1 mRNA
levels in SLALD. However, the nutritional conditions con-
tinued to exert control over the relative expression levels
of MUG1 and STA2 in the presence of multiple copies of
MSS11. In particular, and contrary to what was observed
for STA2, the expression of MUG1 was high in media
containing elevated (2%) glucose concentrations (SCD,
SLAD). This observation can be explained by findings
from other groups, which identified MUG 1as being down-
stream of the Gpr1 p-Gpa2p glucose receptor that senses
high glucose concentrations and transmits the signal to
MUG1 via changes in intracellular cAMP levels (Lorenz
et aI., 2000). This pathway was shown to require glucose
as well as complex media for sustained activation
(Colombo et aI., 1998), and a key component of the path-
way, the Sch9p protein kinase, was shown to regulate

MUG1 transcription in response to cAMP levels (Lorenz
et aI., 2000).

Mss 11P is a transcription activator that regulates
MUC1 and STA2 differentially in response to
nutritional conditions

The Northern blot analysis clearly demonstrates that
Mss 11p mediates the expression levels of MUG 1 and
STA2. However, it does not allow assessment of whether
(i) Mss 11p plays a direct role as a transcription activator
or acts at a different level; and (ii) whether Mss11 p is
required for transmitting the nutritional information.

In order to clarify the first question, we exploited the
modular characteristic of transcription factors (reviewed
by Triezenberg, 1995) to identify the domain(s) in Mss11 p
that would be required for the transcriptional activation
of the target genes. A series of fusions were created
between the open reading frames (ORFs) of MSS11 and
the GAL4 transcription factor, of which the activation
domain was deleted. The constructs included the full-
length MSS 11 ORF, as well as sequential deletions
thereof, which were transformed into a strain containing
an integrated reporter gene, lacZ, under the control of
the GAL7 promoter. This promoter contains binding sites
for the Gal4p transcription activator and, if Mss 11p con-
tained transcription activation domains, the fusion pro-
tein would mediate the transcriptional activation of the
reporter gene (James et aI., 1996). Bath liquid and plate
~-galactosidase assays were used to identify such activa-
tion domains. The results of these assays are presented
in Figs 3 and 4.

Figure 3 indicates that, relative to the vector containing
only the Gal4p DNA-binding domain as a negative control,
the fusion protein with full-length Mss11 p results in an '"
40-fold increase in reporter gene activity in liquid SCD
medium. This result clearly suggests that Mss11p can
either activate transcription directly or recruit other factors
required for activation.
The fusions of the MSS11-GAL4 DNA-binding domain

gene are under the control of the constitutively active
ADH1 promoter, resulting in high levels of transcription
under all nutritional conditions. If transcriptional activation
by Mss 11P is constitutive, the fusion protein can be
expected to result in high levels of ~-galactosidase on all
media. The differences in I!-galactosidase levels observed
on the different media (Fig.4) would therefore suggest
that the ability of Mss11 p to activate transcription is reg-
ulated at a post-transcriptional level in response to spe-
cific nutritional conditions. Indeed, I!-galactosidase activity
is weakest on SCD medium, in which carbon and nitrogen
are in sufficient supply, while being induced significantly
on the three nutrient-limited media, SLAD, SCLD and

© 2003 Blackwell Publishing Ltd, Molecular Microbiology, 47, 119-134
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Fig. 3. Identification of Mss 11 p as a transcriptional activator and the
identification of specific activation domains. The different Mss11 p
fragments fused to Gal4p are represented diagrammatically, and the
levels of reporter gene activity conferred in liquid SCLD media by
each, as measured by fl-galactosidase activity, are indicated next to
the relevant construct.

SLALD. This would suggest that Mss11 p-dependent acti-
vation occurs directly as a response to nutrient limitation.
Interestingly, the variation in expression levels conferred
by the Mss11 p-Gal4p fusion protein on the reporter gene
(Fig.4) correlates well with the observed differences in
STA2 mRNA levels in the presence of multiple copies of
MSS11 (Fig. 2). However, the same does not hold true for
the MUC1 mRNA levels detected in the Northern blots.
The data therefore again suggest that other factors make

© 2003 Blackwell Publishing Ltd, Molecular Microbiology, 47, 119-134

Molecular analysis of Mss 11p 123

a contribution to the regulation of this gene in the pres-
ence of high levels of glucose.

The conserved H2 domain and the C-terminus are
required for the transcriptional activation function
of Mss11p

The systematic deletions from both the N- and C-termini
to identify the domains specifically required for the activa-
tion function are presented in Fig. 3.

The data suggest that there are two areas in Mss 11p
that are required for transcriptional activation. All
constructs in which the extreme C-terminal end of the
protein (amino acids 640-720) is deleted show signifi-
cantly reduced transcriptional activation of the reporter
gene, independent of corresponding sequential deletions
from the N-terminal side of the protein. Furthermore, the
C-terminal domain on its own (construct NF-OR) confers
significant activation to the reporter gene, suggesting that
it is able to interact with the transcription machinery and
to promote transcription.

However, the constructs in which the C-terminal sec-
tions of the protein are deleted continue to generate
significant, although reduced, levels of l3-galactosidase
activity, and activation only ceases once the 272 N-
terminal amino acids are deleted concomitantly with the
C-terminal section (construct QxF-NxR). The data clearly
show that a second activation domain is located in a
region bordered by amino acids 126 and 272 (construct
H2F-QR), which confers levels of l3-galactosidase activity
similar to those observed with full-length Mss11p. Within
this section of the protein, the 26 amino acids that consti-
tute the H2 domain (construct H2F-H2R), which corre-
sponds to one of the two short stretches of Mss11 p with
homology to Fl08p, confer strong transcriptional activa-
tion, corresponding to 50% of the values obtained for full-
length Mss11p, whereas the domain composed of amino
acids 152-272 is unable to activate the reporter gene.
This suggests that the 26-amino-acid H2 domain acts as
a transcription activation domain. This is further supported
by the fact that the deletion of this domain leads. in all
cases to a significant drop in transcription activation by
the remaining sections of the protein.

It is interesting to note that activation by Mss11 p
appears to be negatively regulated by the domain com-
posed of amino acids 34-126, which immediately pre-
cedes the H2 domain and contains the second short
stretch of amino acids with significant homology to Fl08p,
H1, as well as a putative P-Ioop. All constructs containing
the H1-P-loop domain show significantly lower activa-
tion levels than corresponding constructs in which the
sequence has been deleted (see for example H1F-ID2R
compared with H2F-ID2R), whereas the truncated ver-
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Negative control

Mss11p 1 34 90 126 329 760272

QxF-QxR

NxF-NxR

Ag. 4. Effect of variable nutrient availability on the ability of the Mss11p-Gal4p fusion protein to activate transcription and relevance of the Mss11p
poly glutamine (poly Q) and poly asparagine (poly Nl domains. The ability of the different Mss11p fragments, fused to the Gal4p DNA-binding
domain. to activate the PGAL7-lacZ reporter system was assessed in strain pJ69-4A. The Mss11p domains fused to Gal4p are represented
diagrammatically, and the levels of reporter gene activity conferred by each are represented by the intensity of the colonies in the photographs.
The constituents of the media used are listed in Table 2.

sions of Mss11 p with deletions of these amino acids result
in the highest levels of activation observed. These levels
are significantly higher than those achieved with the con-
struct containing full-length Mss11 p. This negative effect
of the domain appears particularly clearly when the C-
terminal activation domain has been deleted (see for
example H1F-OR compared with H2F-OR), suggesting
that the H1-P-loop sequence may particularly influence
activation by the H2-associated domain.

Analysis of the poly glutamine and poly asparagine
domains of Mss 11p

Glutamine-rich domains have been identified as the acti-
vation domains of transcription factors in a number of
organisms, ranging in complexity from yeast (e.g. Mcm1p)
to humans (e.g. Oct1 and Oct2) (Johnson et et., 1993).
The difference between these prototypical glutamine-
rich activation domains and the poly glutamine domain
of Mss11 p, however, is the dispersion of hydrophobic
amino acids, such as leucine, valine and phenylalanine,
between the glutamine residues (Johnson et af., 1993;
Triezenberg, 1995), which were shown to be critical for the
activation function of the transcription factors (Gill et af.,
1994). A poly glutamine domain significantly shorter than
that of Mss11p (12 glutamine residues) was also identified
in the yeast protein, Pgd1, a component of the mediator
complex between transcriptional activators and the RNA
polymerase II complex, but its exact role has yet to be

investigated (Brohl et et, 1994; Gustafsson et a/., 1998;
Myers et af., 1998).
The function of the poly asparagine domains in pro-

teins is unknown at this stage. Asparagine-rich domains
have been described for only two other S. cerevisiae
proteins. S. cerevisiae Azf1 pand Swh 1p include short,
asparagine-rich domains (Schmalix and Bandlow, 1994;
Stein et et., 1998), but the relationship between the func-
tion and the presence of these domains has not been
investigated.
The data presented in Fig. 3 clearly demonstrate that

both the poly glutamine. and the poly asparagine domains
(constructs OxF-OxR and NxF-NxR respectively) are
unable to activate transcription when fused to the Gal4p
DNA-binding domain (Fig. 3), whereas their deletion
appears not significantly to affect transcriptional activation
by the remains of the truncated proteins (Fig. 4).

As repetitive coding sequences, commonly referred to
as trinucleotide repeats, are known to vary in size in
mammalian genomes, and recombination between these
sequences may cause neurodegenerative diseases such
as Huntington's disease and Friedrich's ataxia in humans .
(reviewed by Jakupciak and Wells, 2000; Shimohata et a/.,
2001), we investigated the size of the Mss11 p poly
glutamine and poly asparagine domains in different
strains. The corresponding MSS11-encoding sequences
were polymerase chain reaction (PCR) amplified from
strains ISP15, ISP52, FY23 (S288C) and W303, and the
resulting fragments were sequenced. There was no differ-
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ence in either the size or the specific sequences between
the different fragments obtained from these strains from
different genetic backgrounds (results not shown).

Specific amino acids in the conserved H2 domain are
critical for the Mss11p transcriptional activation function

As the H2 domain was shown to be required for the
activation function of Mss11 p and also to be able to
stimulate transcription of the PGAL7-lacZ reporter gene
when fused to the Gal4p DNA-binding domain, we inves-
tigated whether the conserved amino acids identified in
H2 (Fig. 1) are required for the activation function. We
specifically targeted the conserved amino acid pairs
Phe-133-Leu-134, Trp-137-Trp-138, lIe-14O-Phe-141
and Leu-144-Phe-145 (Fig.1). All these amino acids
were mutated to glycine and alanine respectively (Table 4,
Fig.5). The effects of the mutations on the ability of
Mss 11P to stimulate transcription of the reporter genes
were assessed through J3-galactosidase liquid assays in
strain :E1278bMnss11tJ.muc1::lacZ (Fig.5A), whereas
invasive growth was assessed in strain :E1278btJ.mss11
(Fig. 58).

From the results, it is clear that all the conserved pairs
of amino acids are required for full activation, as all the
mutations significantly reduced the ability of Mss 11P to
activate the lacZ reporter gene. For cells grown in SCD
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medium, J3-galactosidase values were reduced by '" 50%
in all the mutants in comparison with those obtained for
the wild-type protein. This reduction is similar to what is
observed when the entire N-terminal domain of Mss11 p,
including H2, is deleted (Fig.3), suggesting that the
remaining activation may result from transcriptional acti-
vation by the C-terminal domain and further strengthening
the hypothesis that Mss 11p indeed contains two indepen-
dent activation domains. Furthermore, although the
expression of wild-type Mss11p results in increased tran-
scriptional activation on SCGE medium compared with
SCD medium, the mutated Mss11 p proteins result in sim-
ilar activation on both media. This suggests that activation
by the H2 domain is responsible, at least in part, for the
glucose-dependent regulation of gene expression by
Mss11p.
The reduced ability of the mutated forms of Mss 11P to

activate the reporter gene correlates well with their ability
to induce invasive growth (Fig. 58). On both SCD and
SCGE media, the smsst t strains transformed by vectors
encoding the H2-mutated versions of Mss11 p all display
phenotypes that are intermediate between the strong
invasiveness of the strain transformed with wild-type
MSS11 and the absence of invasion of the strain trans-
formed with the vector alone. These data clearly demon-
strate a direct correlation between the ability of Mss11 p
to activate transcription and the regulation of invasive
growth.

B InyasionGrowth

Fig. 5. Identification of critical amino acids in the H2 activation domain of Mss11p. Fl (phe-leu). IF (Ile-Phe), IF (leu-Phe) and WW (Trp- Trp)
indicate the pairs of amino acids within the H2 domain that were mutated in the corresponding version of Mss11p. All pairs were changed to GA
(Gly-Ala).
A. Impact of the mutations in the H2 domain on the ability of Mss11p to activate the chromosomal copy of MUG1 in the l:1278bMnss111lmuc1::/acZ
strain (IacZ integrated in chromosomal copy of MUG1) in media containing fermentable and non-fennentable carbon sources.
B. Ability of multiple copy plasmids encoding either the wild-type (wt) or H2 point mutation fonns of Mss11P to induce invasive growth in a
l1278bl1mss11 strain. The invasiveness of each strain correlates perfectly with the level of transcriptional activation.

© 2003 Blackwell Publishing Ltd, Molecular Microbiology, 47, 119-134
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The length and composition in amino acids of the
Mss 11p poly glutamine domain are reminiscent of the poly
glutamine stretches found in mammalian proteins, such
as Huntington and frataxin. The poly glutamine domains
of these two (and several other) mammalian proteins are
notorious, as recombination events in the repetitive coding
sequences, commonly referred to as trinucleotide repeats,
cause neurodegenerative diseases such as Huntington's
disease and Friedrich's ataxia (reviewed by Jakupciak and
Wells, 2000; Shimohata et a/., 2001).
We could not detect any variation in the size of these

sequences in four S. cerevisiae strains of different genetic
background. This does not preclude the possibility that
such variation may exist, and feral strains of S. cerevisiae
in particular should be investigated.
The genetic evidence presented to date suggests that

Mss 11p, like Pgd 1p, could also have a role as a transe rip-
tiona I mediator. The results of the epistasis analyses
involving MSS 11demonstrated that all the other transcrip-
tion factors required for the transcriptional activation of
MUG1 and STA2, i.e. Ste12p, Mss10p and F108p, also
require Mss11p for their activation function (Gagiano
et a/., 1999a,b). These results could also be interpreted
as evidence that Mss11 p is the most downstream compo-
nent of each of the different signal transduction cascades
represented by these transcription factors. However, the
fact that FI08p, Ste12p and Msn1p were all identified as
DNA-binding transcription factors (Estruch and Carlson,
1990; Madhani and Fink, 1997; Kobayashi etai., 1999)
makes this explanation highly unlikely and points strongly
towards Mss11 p facilitating the transcriptional activation
function of these transcription factors at the MUG 1 and
STA2 promoters.
The strong activation in response to specific nutritional

signals suggests a direct role for Mss11p as a transcrip-
tional activator, but the dependency of three structurally
dissimilar and unrelated transcription factors, F108p,
Msn 1p and Ste 12p, on Mss 11p is difficult to reconcile with
such a role. It is therefore possible that Mss11 p is part of
a complex that assists transcription factors in activating
genes in response to specific signals. Considering the
amount of genetic evidence that points towards MUG1
and STA2transcription being repressed by the state of the
chromatin over their promoters (Inui et a/., 1989; Okimoto
et a/., 1989; Yoshimoto and Yamashita, 1991; Yoshimoto
etai., 1991; 1992; Kuchin etai., 1993; Yamashita, 1993;
Park et ai., 1999), a role for Mss 11p in a complex that
reduces this repressive effect, such as a histone acetyl-
transferase complex (reviewed by Sterner and Berger,
2000), seems possible. Removing or releasing the chro-
matin barrier over the STA2 and MUG 1 promoters in
response to specific nutritional signals could therefore
result in the observed activation, as it would make the
promoter accessible to FI08p, Msn1p and Ste12p, as well
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as to other transcription factors. It was demonstrated
recently that the transcription of the PGL 1 gene is regu-
lated by the same signalling elements that regulate the
transcription of MUG1 in conditions conducive for filamen-
tous growth (Madhani et ai., 1999; Gognies et ai., 2001).
The PGL 1 gene encodes an endopolygalacturonase that
enables the yeast cell to hydrolyse pectin. These obser-
vations would suggest that the co-regulation of filamen-
tous growth and starch metabolism should be extended
to include polysaccharide degradation in general.

It does not appear that Mss 11p plays a role in regulating
the transcription of other members of the adhesin and
flocculin gene family. A microarray analysis to identify
target genes of Mss11p, other than MUG1 and STA2,
revealed that Mss11p is very specific in regulating the
transcription of MUG 1 and STA2 and failed to identify
other genes with significantly increased transcription in
the presence of multiple copies of MSS11 (results not
shown).

Future efforts will focus on the identification of proteins
that interact with Mss11p to identify a more precise role
for Mss11 p in regulating MUG1 and STA2 transcription.

Experimental procedures

Yeast strains, genetic methods and media

The yeast strains used in this study, along with the relevant
genotypes, are listed in Table 1. Strain ISP15 has the ability
to degrade starch and to grow invasively. The strains ISP15
and L1278b have been used extensively for the characteriza-
tion of invasive growth and pseudohyphal differentiation
(Gimeno et ai., 1992; Lambrechts et ai., 1996a,b; Webber
et al., 1997; Gagiano et a/., 1999a,b). Strain pJ69-4A is com-
monly used in the analysis of two-hybrid interactions and was
generously provided by P. James (James et ai., 1996). In
strains ISP15.1muc1::/acZ and L1278b.1mss11.1muc1::/acZ,
the ORF of MUC1 has been replaced by the ORF of the
reporter gene lacZ fused to the S. cerevisiae HIS3 gene,
which is used as a selection marker.
The carbon and nitrogen sources used in the preparation

of the different yeast media are listed in Table 2. The yeast
nitrogen base that was used did not contain any amino acids
or nitrogen source (Becton Dickinson). All synthetic media
were supplemented with the specific amino acids required to
fulfil the auxotrophic demands of each strain. Amino acids
were obtained from Sigma-Aldrich and were added according
to the recommended concentrations (Sherman et ai., 1991;
Ausubel et al., 1994). The solid media contained 2% agar
(Becton Dickinson).
Standard molecular genetic and yeast techniques were

used throughout this work (Sherman et ai., 1991; Ausubel
et ai., 1994). Yeast transformations were performed using the
lithium acetate method (Ausubel et ai., 1994).

Plasmid construction

Standard procedures for the isolation and manipulation of
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The putative ATP- and/or GTP-binding domain of Mss 11p
appears not to affect transcriptional activation

The analysis of transcriptional activation by truncated
forms of Mss11 p suggested a possible regulatory function
for the domain containing the H1 domain together with the
putative P-Ioop (Gly-88-Ser-89-Ala-9G-Ser-91-Gly92-
Gly-93-Lys-94- Thr-95-Ser-96), an ATP- and/or GTP-
binding sequence. To test whether the P-Ioop regulated
the activation function of Mss11 p, we mutated two of
the critical amino acids, Gly-93 and Lys-94, to Ala-93
and Arg-94 respectively. We tested the ability of the P-
loop-mutated allele of MSS11 to confer transcriptional
activation in strains ISP15.Mnuc1::/acZ and L1278b, in
either a wild-type or a I1mss11 genetic background. We
also fused the MSS11 ORF, carrying the P-Ioop muta-
tions, to the GAL4 fragment encoding the DNA-binding
domain to assess whether the encoded protein would be
able to activate the PGAL7-lacZ reporter gene in strain
pJ69-4A on different media.

In no case could we observe significant differences
between the ability of the wild type and the mutated ver-
sions of Mss11 p to activate transcription (data not shown).
The data suggest that the putative P-Ioop is either non-
functional or that it regulates other aspects of Mss 11p
function.

Discussion

In this paper, we present a molecular analysis of Mss11 p,
a transcriptional regulator of the MUG1 and STA2 genes
of S. cerevisiae. As a regulator of these two genes, it is
also a major regulator of the ability of S. cerevisiae to form
pseudohyphae, grow invasively and metabolize starch
(Webber et aI., 1997; Lorenz and Heitman, 1~98; Gagiano
et aI., 1999a,b). The correlation between Mss11p levels,
MUG 1 and STA2 transcription and these phenotypes
is well established (Webber et aI., 1997; Lorenz and
Heitman, 1998; Gagiano et aI., 1999a,b). However, the
impact of specific nutritional signals on this relationship
has never been assessed properly. Here, we show,
through Northern analyses and reporter gene expression
analysis in different media, that Mss11 p relates the effect
of nutritional signals, specifically the glucose and nitro-
gen limitation signals, to the transcription of MUG 1 and
STA2. These observations reaffirm previous observations
on the co-regulation of MUG1 and STA2 and, conse-
quently, on the co-regulation of the filamentous growth
and starch metabolism phenotypes. The results also sug-
gest that the effects of the different nutritional conditions
on MUG1 and STA2 transcription are transmitted via
Mss11p.
The molecular analysis of Mss11p presents conclu-

sive evidence that Mss11 p acts as a transcriptional acti-

vator. This activation function is regulated on a post-
transcriptional level, as the activation efficiency is clearly
dependent on the amount of nutrients present in the
media, even if Mss11p is fused to the Gal4p DNA-binding
domain and expressed from a heterologous promoter that
is not regulated by nutrient availability. Furthermore, the
regulation of the transcriptional activation is not depen-
dent on the binding of Mss11 p to its target, either DNA or
other proteins, as the Mss11 p fusions to the Gal4p-
binding domain result in a similar pattern of transcriptional
regulation to that exerted by the native protein on MUG1
and STA2. The molecular dissection of Mss11 p identified
two activation domains, one of which, named H2, appears
to be highly conserved among several proteins of
unknown function. Changes in individual amino acids
within this domain significantly reduce the ability of
Mss11 p to activate transcription. This reduction is accom-
panied by a correspondingly reduced ability to induce
invasive growth, confirming that the ability of Mss11 p to
activate transcription is directly correlated with the effects
of Mss11p overexpression and deletion on invasive
and pseudohyphal differentiation. Interestingly, the data
strongly suggest that the H2 domain could be responsible
for transmitting a carbon source-dependent signal, as the
mutant versions no longer lead to higher MUG 1transcrip-
tion in media containing non-fermentable carbon sources.
The domain therefore plays a central role in the control
of Mss 11p-dependent activation. The identification of this
conserved domain may provide useful insights into the
role of the proteins of unknown function listed in Fig. 1.
The data presented here also suggest that the N-

terminal domain of Mss11p is involved in the regulation of
the activation function. Mutations resulting in the dele-
tion of the H1- and P-Ioop-containing domain result in
increased transcription. This suggests that ATP or GTP
binding may be involved in the regulation of Mss11 p activ-
ity. It is possible that the observed regulation results from
an autoregulatory function, similar to what is observed in
the Snf1 p protein kinase, for example, where a regulatory
domain inhibits the function of the catalytic domain in
repressive conditions (Carlson, 1998; 1999).

Furthermore, we show that the unique poly glutamine
and poly asparagine domains are not required for the
activation function of Mss11 p. The role of these domains
therefore remains to be identified. Although significantly
smaller, a poly glutamine domain has been identified in
only one other S. cerevisiae protein, namely Pgd1 p (Brohl
et aI., 1994). Pgd1 P was shown to be a component of the
mediator complex between transcriptional activators and
the RNA polymerase II complex (Gustafsson et aI., 1998;
Myers et aI., 1998). Considering that Pgd1 p functions in
a multicomponent protein complex, it is possible that the
poly glutamine domain has a structural role or that it is
required for protein-protein interactions.
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Table 3. A list of primers used to generate the different truncations and deletions of Mss11 p for expression under its own promoter and for fusion
to the Gal4p DNA-binding domain (also included are the primers used to mutate the putative ATPfGTP-binding domain and the putative activation
domain, H2).

Primer name Position relative to ORF Sequence

MSS11-P-F
MSS11-P-R
MSS11-T-F
MSS11-T-R
MSS11-0F
MSS11-0R
MSS11-H1F
MSS11-H1R
MSS11-H2F
MSS11-H2R
MSS11-PH2F
MSS11-QF
MSS11-QR
MSSll-QxF
MSSll-QxR
MSS11-1D1R
MSSll-ID2F
MSS11-ID2R
MSS11-1D3F
MSS11-NF
MSS11-NR
MSSll-NxF
MSSll-NxR
MSSll-QReco
MSS11-NReco
MSS 11-PloopF
MSS11-WW-F
MSSll-WW-R
MSS11-IF-F
MSS11-IF-R
MSS11-FL-F
MSS11-FL-R
MSS11-LF-F
MSS11-LF-R

-581 to -600
+3 to -21
+2275 to +2304
+2717 to +2736
+4 to +30
+2250 to +2274
+103 to +126
+254 to +276
+376 to +396
+421 to +444
+442 to 465
+988 to +1011
+794 to +816
+817 to +837
+961 to +984
+1240 to +1260
+1240 to +1260
+1510 to +1530
+1510 to +1530
+1921 to +1944
+1789 to +1812
+1810 to +1839
+1897 to +1926
+796 to +816
+1789 to +1811
+247 to +288
+409 to +432
+391 to +414
+418 to +441
+400 to 423
+403 to +417
+379 to +402
+436 to +453
+412 to +435

5' -ACAGGGCGCAATCAGCTACC-'3
5' -cgtgaattcCATATCTTTATCATGCACCTTTTT-3'
5'-atctgtcgacCTTAAAACCTATTAAACAACAAAAAGTGTTTC-3'
5' -gatcaagcttTGGCCAGATAGCTTGCTTAC-3'
5' -atcgaattcGATAACACGACCAATATTAATACAAAT-3'
5' -gcag~aGCTATCCATTAGATCAGGAGAAAAG-3'
5'-gatcoaattcTTTGATGCGGATTCTCGAGTTTTC-3'
5'-tcag~aACCCGAAGCAGATCCGTTTATTC-3'
5' -gatcgaattcCTGATGGACGCTAATGACACG-3'
5'-tcag~aGTCTCCATTGAACAATGATTGAAA-3'
5' -atggaattcGACCTAGAATCTGGGTACCAACAG-3'
5' -atgcgaattcaCACCGTATCCTATTGTCAACCCA-3'
5'-cag~aTGCTGGTGATTGCAAATCATTGA-3'
5' -atggaattcCAGCCCCAGCAATCATCTCAA-3'
5'-gca~aTTGCTGCTGTTGATGTTGTTGCTG-3'
5' -gat~aTTGCTGTAGTGCTTGCTGCTG-3'
5' -gatgaattcCAGCAGCAAGCACTACAGCAA-3'
5' -gatgtcgacaTAATTGCTGGTTAGCCGCCAT-3'
5' -gatgaattcATGGCGGCTAACCAGCAATTA-3'
5' -atggaattcACACCCACAGTATCACAACCATCA-3'
5' -cag~aAGGCAAAGGAAAGACGGAGGTAGA-3'
5' -atg~attcCCTAACAATAACAATAACAATAACAACAAC-3'
5' -gcaggtcgacaGGGTGTATTATTACTATTATTATTATTATT-3'
5' -atcoaattcTGCTGGTGATTGCAAATCATT-3'
5' -atcgaattcaGGCAAAGGAAAGACGGAGGTAGA-3'
5'-TTATCTAGAATAAACGGATCTGCTTCGGGTGCGAGAACTAGC-3'
5' -gaaGCCGGCGAAATTTTTCAATCATTG-3'
5' -ttcGCCGGCTTCCAGTAAAAACGTGTC-3'
5'-gaaGCCGGCCAATCATTGTTCAATGGA-3'
5' -ttgGCCGGCTTCCCACCATTCCAGTAA-3'
5'-acgGCCGGCCTGGAATGGTGGGAAATT-3'
5' -cagGCCGGCCGTGTCATTAGCGTCCAT-3'
5' -tcaGCCGGCAATGGAGACCTAGAATCT-3'
5' -attGCCGGCTGATTGAAAAATTTCCCA-3'

The different restriction sites generated and used for cloning purposes are indicated in underlined text An additional nucleotide (a), indicated in
italics, was inserted into the reverse primers to maintain the reading frame when ligating fragments into plasmids pGBD-G2 and YEplacl12-
MSS 11expo Specific nucleotide changes to introduce mutations in MSS 11 are indicated in bold text. MSS 11 sequences are given in capital letters.
The positions relative to the ORF are given, considering the ATG as position +1 to +3 and the last nucleotide of the non-coding upstream region
as position -1.

cloned as EeoAI-Sall fragments into the unique EeoAI and
San sites of plasmid pGBD-C2 (James et a/., 1996). The
resulting plasmids are listed in Table 5.

Site-directed mutagenesis

ATP- and GTP-binding proteins from a number of different
organisms have been shown to carry a glycine-rich motif
known as the P-loop, which is required for the binding of ATP
and/or GTP and generally critical for the function of the
protein (reviewed by Saraste et a/., 1990). The consensus
sequence of this domain was determined as Gly-1-X-2-X-
3-X-4-X-5-Gly-6-Lys-7-SerfThr-B by mutation analysis of
a common sequence found in myosin and many other
nucleotide-binding enzymes (Saraste et a/., 1990). Mutation
analyses of a very large number of ATP- and GTP-binding
proteins suggested that the critical amino acids are indeed
Gly-1, Gly-6 and Lys-7 (invariant), as well as Ser-B, which
can be replaced only with a functionally equivalent Thr
(Saraste et a/., 1990). The putative P-loop (Gagiano et et.,

© 2003 Blackwell Publishing Ltd, Molecular Microbiology, 47, 119-134

1999a; Fig. 1) of Mss11p was eliminated by mutating amino
acids that were shown to be critical for its function (Saraste
et a/., 1990), namely a glycine at position 93 and a lysine at
position 94 to alanine and arginine respectively. This was
achieved by designing a forward primer that contained the
desired nucleotide changes. The primer was extended to
span a native Xbal site in the MSS11 OAF that would aid in
the cloning of the fragment. This primer, MSS11-PloopF, was
used together with the reverse primer, MSS11-0A, to gener-
ate a fragment that contained the desired sequence alter-
ations. The fragment was digested with Xbal and Sail before
ligation into plasmid MSS11-0F-OA, in which the corre-
sponding fragment had been removed. The construct was
sequenced to verify that the correct alterations were made
and that no additional mutations were introduced through
PCA.
A small stretch of amino acids in Mss11p was shown to

have some homology to a similar sized domain in FloBp
(Gagiano et ai., 1999a). This domain, dubbed H2, was sub-
sequently found to be conserved between a number of
eukaryotic proteins of unknown function. An alignment of the
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Table 1. The yeast strains used in this study.

Strain Genotype Source or reference

ISP15
ISP1St.mss11
ISP15/',muc1::/acZ
l1278b
l1278Mmss 11
l1278b/',mss t tsmuct: lacZ
PJ69-4A

MATa STA2 his3 thr1 trp1 leu2 ura3
MATa STA2 his3 thr1 trp1 leu2 ura3/',mss11::LEU2
MAT a STA2 his3 thr1 trp1 leu2 ura3 /',muc1::/acZ-HIS3
MATa ura3-52 trp1::hisG leu2::hisG his3::hisG
MATa ura3-52 trp1::hisG leu2::hisG his3::hisG mss11::LEU2
MATa ura3-52 trp1::hisG leu2::hisG his3::hisG mss11::LEU2 muc1::lacZ-HIS3
MAT a his3 trp1leu2 ura3 gal4 galBO LYS2::GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ

Gagiano et al. (1999a)
Gagiano et al. (1999a)
This study
H. U. Mesch
This study
This study
James et al. (1996)

DNA were used throughout this study (Ausubel et ai., 1994).
All restriction enzymes, T4 DNA ligase and Expand Hi-
Fidelity polymerase used in the enzymatic manipulation of
DNA were obtained from Roche Diagnostics and were used
according to the specifications of the supplier. Most peR
fragments generated by the peR technique for this work were
first cloned into the plasmid pGEM-T of the pGEM-T peR
cloning kit, supplied by Promega. Escherichia coli DH5a
(Gibco BRULife Technologies) was used for the propagation
of all plasmids and was grown in Luria-Bertani (LB) broth at
37°e. All E. coli transformations and the isolation of DNA
were done according to Ausubel etal. (1994).
The potential functional domains in Mss 11p have been

described previously (Gagiano et ai., 1999a). The relative
sizes and positions of these domains are illustrated in Fig. 1.
To identify the functional relevance of these domains, a series
of plasmids was constructed that encode versions of Mss11p
that are either systematically shortened from the e- or N-
terminal ends or without specific, internal domains. The 2 Il
plasmid, YEplac112 (Gietz and Sugino, 1986), was used to
construct a base plasmid containing the promoter, start
codon, stop codon and terminator region of MSS11. The
resulting plasmid, YEplac112-MSS11exp, was used for all
expression purposes.
The promoter region of MSS11 was peR amplified using

primers MSS11-PF and MSS11-PR, together with plasmid
YEplac112-MSS11 (Gagiano et ai., 1999a) as template. The
reverse primer, MSS11-PR, was designed to contain an
EcoRl site after the MSS11 start codon. This fragment was
digested with EcoRl and Scal and inserted into the unique
EcoRl and Hindll sites of plasmid YEplac112. The terminator
region was peR amplified using primers MSS11-TF and
MSS11-TR, together with YEplac112-MSS11 as template.
The forward primer, MSS11-TF, was designed to contain a
Sa~ restriction site immediately 5' to the stop codon, and the
reverse primer was designed to contain a HindiII restriction
site for cloning the fragment into the unique San and Hind III
sites of plasmid YEplac112. The resulting plasmid,

Table 2. The components of the different yeast media used in this work.

YEplac112-MSS11 exp, therefore contained the full-length
MSS11 promoter, start codon, stop codon and terminator
region, as well as unique EcoRI and San sites for the inser-
tion of the different MSS11 ORF fragments.

Different combinations of the primers listed in Table 3 were
used to generate the truncated ORF fragments by means of
peR. Plasmid YEplac112-MSS11 was used as a template in
all peRs. All forward primers were designed to contain an
EcoRl restriction site, and all reverse primers were designed
to contain a Sa~ restriction site for cloning the different frag-
ments in frame into plasmid YEplac112-MSS11exp, which is
described above.The resulting plasmids are listed in Table 4.
All plasmids were sequenced to verify that the expected
deletions were correct and that no mutations were introduced
through peR.
The poly glutamine and poly asparagine domains were

deleted by replacement with an EcoRl restriction site. Primer
MSS11-0F was used in a peR, together with primer MSS11-
OReco, which is designed to contain an in frame EcoRI site.
Plasmid YEplac112-MSS11 was used as template to gener-
ate a fragment stretching from the ATG initiation codon of
MSS11 to before the poly glutamine domain, ending in an
EcoRl site. This fragment was digested with EcoRl, ligated
into plasmid YEplac112-MSS11-0F-OR and then opened
with EcoRl to generate an MSS11 ORF, in which an EcoRI
site replaced the area encoding the poly glutamine domain.
The correct orientation was selected through restriction anal-
ysis, and the construct was sequenced for confirmation.
The poly asparagine domain was deleted through a similar
strategy, using YEplac112-MSS 11 as template and primers
MSS11-NReco and MSS11-0F in a peR. This fragment was
digested with EcoRl and ligated into plasmid YEplac112-
MSS11-NF-OR, then opened with EcoRl to generate an
MSS11 ORF in which an EcoRl site replaced the area encod-
ing the poly asparagine domain.
To fuse Mss11p, as well as the different truncated and

mutated derivatives, to the Gal4p DNA-binding domain, the
fragments were excised from YEplac112-MSS11 exp and

Media Nitrogen source Carbon source (giucose)

YPD
YPLDseD
SCLD
SLAD
SLALD

1% yeast extract, 2% peptone
1% yeast extract, 2% peptone
1.7% yeast nitrogen base, 40 mM (NH4l2S04
1.7% yeast nitrogen base, 40 mM (NH4l2S04
1.7% yeast nitrogen base, 20 mM (NH4)2S04
1.7% yeast nitrogen base, 20 mM (NH4l2S04

2%
0.1%
2%
0.1%
2%
0.1%

© 2003 Blackwell Publishing Ltd, Molecular Microbiology, 47, 119-134
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Table 4. The list of plasmids used in this work.

Plasmid Relevant genotype Source/reference

PPMUC1-lacZ
PPSTA2-lacZ
YEplacl12
YEplacl12-MSSll
YEplacl12-MSSllexp
YEplacl12-MSSll-OF-OR
YEplacl12-MSSll-Pmut
YEplacl12-MSS11-. ..a
YEplacl12-MSSll-L1N
YEplacl12-MSSll-FL
YEplacl12-MSSll-WW
YEplacl12-MSSll-IF
YEplacl12-MSSll-LF

CEN4 URA3 PMUC1-lacZ
CEN4 URA3 PSTA2-lacZ
21l TRPI
2 Il TRPI MSSll
21l TRPI PMSSll TMSSll
21l TRPI MSSI11_758
2 Il TRPI MSSI1_758; G9:HA; K94....R
21l TRPI MSSI11_758'l>272-32ll

2 Il TRPI MSSI11_758; A605-640

2 Il TRPI MSSI11_758 Fl33 a· L134->A
21l TRPI MSSI11_758 W137 ~; Wl38 ....A

2 Il TRPI MSSI11-758 1140 o. F141_
21l TRPI MSSllH58 L144 ~; F145-->A

Gagiano et al. (1999a)
Gagiano et al. (1999a)
Gietz and Sugino (1988)
Gagiano et al. (1999a)
This work
This work
This work
This work
This work
This work
This work
This work
This work

For the plasmids carrying MSSll fragments. the encoded area is indicated in subscript. giving the first and last amino acids of the Mssllp
derivative encoded by the respective insert.

relevant protein sequences, with the conserved amino acids
highlighted, is shown in Fig. 1. To establish whether these
amino acids contribute to the functioning of Mssl1 p, the
amino acids pairs, i.e. the isoleucine and phenylalanine, the
phenylalanine and leucine, the leucine and phenylalanine, as
well as the two tryptophans, were all mutated to glycine and
alanine respectively. This was achieved through a PCR-
based mutagenesis strategy. Forward and reverse primers
containing the desired nucleotide changes were designed
and, by changing the nucleotides to code for glycine and
alanine, a unique Cfr101 restriction site was introduced. Using
YEplacl12-MSSll as template, the different forward primers
were used together with primer MSSll-0R, whereas the
reverse primers were used together with primer MSS11-0F
to generate fragments that contain the desired mutations.
The smaller fragments, generated using primer MSS11-0F
with the reverse primers, were digested with EcaRl and
Cfrl Ol. The larger fragments, which were generated using
the forward primers together with primer MSSll-0R, were
digested with Cfr101 and San. The fragments were ligated in
the necessary combinations, together with YEplacl12-
MSS11exp that had been digested with EcaRl and San, to
form full-length MSS11 fragments containing the desired
mutations.

RNA isolation and Northern analysis

Colonies were inoculated from the selective media into 5 ml
of liquid SCD medium and grown to an optical density, mea-
sured at 600 nm (00600), of =1 to serve as starter cultures.
These starter cultures were used to inoculate fiO ml flasks of
media containing varying concentrations and types of nitro-
gen and carbon sources (Table 2). All media were inoculated
to an initial 00600 of 0.05 and incubated on a rotary shaker
to reach a final 00600 of 1.0.Total RNA from each strain was
isolated and separated on a 1.2% formaldehyde agarose gel,
using the Bi0101 FastRNA RedKit according to the specifi-
cations of the supplier.
The RNA was transferred and fixed onto Hybond-N nylon

membranes (Amersham Pharmacia Biotech), according to
the specifications of the manufacturer. ACT1, MUC1 and
STA2 transcripts were detected using gene-specific probes

prepared with the DIG PCR labelling kit (Roche Diagnostics)
according to the specifications of the manufacturer. Hybrid-
izations were done at 42°C for 16 h in standard formaldehyde
buffer containing 50% formamide.

Densitometric analysis of the results was carried out using
ALPHAIMAGER software version 5.5 (Alpha Innotec).

f3-Galactosidase liquid and plate assays

Strains containing the lacZ reporter gene were transformed,
and three independent colonies from each transformation
were grown in 5 ml of selective SCD medium to an 00600 of
1.0. From each of these starter cultures, a 5 ml culture of
SCD was inoculated to an 00600 of 0.05 and incubated to
grow at 30°C to an 00600 of 1.0. fj-Galactosidase assays
were performed as described by Ausubel et al. (1994).
Assays were performed on all three transformants and, in
each case, the mean value is presented. The standard devi-
ation did not exceed 15% and was usually <8%.

For the plate assays, the strains were transformed with
the different deletion and mutation constructs and with the
unmodified vector, YEplacl12, as negative control. Three
colonies from each transformation were grown in 5 ml of
selective SCD medium to an 00600 of 1.0. From each of these
starter cultures, 15 JlI was dropped onto solid YPD, YPLD,
SCD, SCLD, SLAD and SLALD agar plates (see Table 2 for
media components). These plates also contained Xgal,
added according to Ausubel et al. (1994), for the optical
assessment of the activity conferred by the different
Mssll p derivatives on the transcription levels of the reporter
genes.

Computer-aided analyses and homology searches

Homology searches with Mssl1p were done using the
WWW-based BLASTP function (Altschul et ai., 1997). Opti-
mized sequence alignments between the Mssl1 p domains
and the domains of the proteins identified through BLASTP

(Fig. 1) were done using the BESTAT and PILEUP functions of
the GCG Wisconsin package. Access to the software was
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Table 5. The list of plasmids used to identify the activation domains of Mss11p.

Plasmid Relevant genotype Source/reference

pGBD-C2
pGBD-C2-MSS11-QF-QR
pGBD-C2-MSS11-0F-NxR
pGBD-C2-MSS11-0F-NR
pGBD-C2-MSS11-0F-ID2R
pGBD-C2-MSS11-QF-ID1 R
pGBD-C2-MSS11-QF-QR
pGBD-C2-MSS11-QF-H2R
pGBD-C2-MSS11-QF-H 1R
pGBD-C2-MSS11-H1 F-QR
pGBD-C2-MSS11-H1 F-NR
pGBD-C2-MSS11-H1 F-ID2R
pGBD-C2-MSS11-H1 F-ID1R
pGBD-C2-MSS 11-H1F-QR
pGBD-G2-MSS11-H1 F-H2R
pGBD-C2-MSS11-H1 F-H1R
pGBD-C2-MSS11-H2F-QR
pGBD-C2-MSS11-H2F-NR
pGBD-C2-MSS11-H2F-ID2R
pGBD-C2-MSS11-H2F-ID1 R
pGBD-C2-MSS11-H2F-QR
pGBD-C2-MSS11-H2F-H2R
pGBD-C2-MSS11-PH2F-QR
pGBD-C2-MSS11-PH2F-NR
pGBD-C2-MSS11-PH2F-ID2R
pGBD-C2-MSS11-PH2F-QR
pGBD-C2-MSS11-QxF-QR
pGBD-C2-MSS 11-QxF-NxR
pGBD-C2-MSS 11-QxF-NR
pGBD-C2-MSS11-QxF-ID2R
pGBD-C2-MSS11-QxF-ID1 R
pGBD-C2-MSS11-QxF-QxR
pGBD-C2-MSS11-QF-OR
pGBD-C2-MSS11-QF-ID2R
pGBD-C2-MSS11-QF-ID1 R
pGBD-C2-MSS11-ID2F-QR
pGBD-C2-MSS11-ID2F-NR
pGBD-C2-MSS11-ID2F-ID2R
pGBD-G2-MSS11-ID3F-QR
pGBD-C2-MSS11-ID3F-NR
pGBD-C2-MSS11-NxF-QR
pGBD-C2-MSS11-NxF-NxR
pGBD-C2-MSS11-NF-OR
pGBD-C2-MSS11-6P
pGBD-G2-MSS11-8Q
pGBD-C2-MSS 11-8N
pGBD-C2-MSS11-FL
pGBD-C2-MSS11-WW
pGBD-C2-MSS11-IF
pGBD-C2-MSS11-LF

2 IL TRP1 GAL41_147
21L TRP1 GAL41_147 MSS111_758
21L TRP1 GAL41_147 MSS111-640
21L TRP1 GAL41_147 MSS111-604
21L TRP1 GAL41_147 MSS111-511
21L TRP1 GAL41_147 MSS111-42O
21L TRP1 GAL41_147 MSSI11_272
21L TRP1 GAL41_147 MSSI11_168
21L TRPI GAL4,_147 MSS111-112
21L TRPI GAL41_147 MSS113!>-758
21L TRP1 GAL41_147 MSSI13!>-604
21L TRP1 GAL41_147 MSS1135-511
21L TRP1 GAL4,-147 MSS113!>-42O
21L TRP1 GAL41_147 MSSI135-272
21L TRP1 GAL41_147 MSS113!>-168
21L TRPI GAL4,_147 MSS1135-112
2 IL TRPI GAL41_147 MSS1114&-758
21L TRP1 GAL41_147 MSS1114&-604
21L TRP1 GAL41_147 MSS11146-511
2 IL TRPI GAL41_147 MSS 11146-420
2 IL TRPI GAL41_147 MSS 1114&-272
21L TRP1 GAL41_147 MSS1114&-168
21L TRPI GAL41_147 MSSll1_758
21L TRP1 GAL4,_147 MSSll1_
21L TRP1 GAL4,-147 MSS1116&-511
21L TRP1 GAL41_147 MSS11169-272
21L TRP1 GAL41_147 MSS11274-758
21L TRP1 GAL41_147 MSS11274-640
21L TRP1 GAL41_147 MSS11274-604
21L TRPI GAL41_147 MSS11274-511
21L TRPI GAL41_147 MSS11274-42O
21L TRPI GAL41_147 MSSI1274-329
21L TRP1 GAL41_147 MSS113ro-758
21L TRPI GAL41_147 MSS113r0-511
21L TRP1 GAL41_147 MSS11330-42O
21L TRP1 GAL41_147 MSS11414_758
21L TRP1 GAL41_147 MSS11414-604
21L TRP1 GAL41_147 MSS11414-511
21L TRPI GAL4,_147 MSS11504-758
21L TRPI GAL41_147 MSS11504-6Q4
21L TRPI GAL41_147 MSS116C6-758
21L TRP1 GAL41_147 MSSI16C6-640
21L TRPI GAL41_147 MSSI1641_758
2 IL TRP1 GAL41_147 MSS 111_758, G93-.A' K94..,R

21L TRPI GAL41_147 MSSI11_758: D272~

2 IL TRP 1 GAL41-147 MSS 111-758;'D6C6-640
2 m TRPI GAL4,_147 MSSI11_758 F133_: L134..,A

21L TRPI GAL41_147 MSSI11_758 W137_: W13fHA

2 IL TRPI GAL41_147 MSS111_758 1140_' F141..,A

21L TRPI GAL4,_147 MSS111-758 L144~: F145..,A

James et al. (1996)
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work
This work

For the plasmids carrying MSSll fragments, the encoded area is indicated in subscript, giving the first and last amino acids of the Mss11p
derivative encoded by the respective insert. The amino acids comprising the Gal4p DNA-binding domain are indicated in the same manner.
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