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Abstract

In this thesis, we surveyed the most important methods for factorization of polynomials over a global

field, focusing on their strengths and showing their most striking disadvantages. The algorithms we

have selected are all modular algorithms. They rely on the Hensel factorization technique, which can

be applied to all global fields giving an output in a local fieldthat can be computed to a large enough

precision. The crucial phase of the reconstruction of the irreducible global factors from the local ones,

determines the difference between these algorithms. For different fields and cases, different techniques

have been used such as residue class computations, ideal calculus, lattice techniques.

The tendency to combine ideas from different methods has been of interest as it improves the running

time. This appears for instance in the latest method due to van Hoeij, concerning the factorization over a

number field. The ideas here can be used over a global functionfield in the form given by Belabas et al.

using the logarithmic derivative instead of Newton sums.

Complexity analysis was not our objective, nevertheless itwas important to mention certain results as

part of the properties of these algorithms.
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Opsomming

In hierdie proefskrif het ons die belangrikste metodes vir die faktorisering van polinome oor globale

liggame bespreek en het op die vernaamste voordele en nadeleklem gelê. Hierdie algoritmes is almal

modulêr van aard en maak staat op die faktoriseringstegniekvan Hensel, wat van toepassing is op enige

globale liggaam wat oor ’n geskikte lokale liggaam tot die verlangde akkuraatheid uitgevoer kan word.

Die kritieke punt by die herkonstruering van die onherleibare globale faktore vanuit die lokale faktore is

die vernaamste verskil in die algoritmes.

Vir verskillende liggame en gevalle word verskillende tegnieke aangewend, soos byvoorbeeld residuk-

lasberekeninge, ideal calculus en tralie tegnieke. Die tendens om idees van verskillende metodes saam

te vat is van belang omdat die looptyd van die algoritmes hierdeur verbeter word. ’n Voorbeeld hiervan

word gegee in die nuutste metode van van Hoeij, met betrekking tot faktorisering oor ’n getalleliggaam.

Hierdie idees kan oor ’n globale liggaam toegepas word soos onlangs deur Belabas et al, waar die logar-

itmiese afgeleide in plaas van Newton somme gebruik word.

Die kompliksiteit van die metodes het nie deel van hierdie ondersoek uitgemaak nie, maar nogtans was

dit belangrik om sekere resultate te noem toe die eienskappevan hierdie algoritmes bespreek word.
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Notations and Abbreviations

N , Z rings of natural numbers and rational integers

Q, R, C fields of rational, real, complex numbers

Fq Finite Field ofq elements

Q , K̄ , F̄q the algebraic closure of these fields

K, OK a global field and its ring of integers

mα(Y) the minimal polynomial of an algebraic elementα

Op the valuation ring with maximal idealp

Kp OKp a local field and its ring of integers

Wk(Fq) a ring ofqk element (ring of Witt vectors)

deg(f) degree of the polynomialf

lc(f) leading coefficient of the polynomialf

discr(f) discriminant of the polynomialf

discr(K) discriminant of the fieldK

CRT Chinese Remainder Theorem

CRA Chinese Remainder Algorithm

UFD Unique Factorization Domain

PID Principal Ideal Domain

GCD Greatest Common Divisor

LLL standing for A.K. Lenstra, H. W. Lenstra Jr, and L. Lovász

cont(f) The content of a polynomialf

pp(f) The primitive part of the polynomialf

d(Λ) the determinant of a latticeΛ

Π(Λ) the fundamental domain of a latticeΛ

Od the orthogonality defect of a lattice basis inRn

| | the absolute value inC

| |∞ the ordinary norm Sup inRn

‖ ‖ the Euclidean norm onRn, also generalised to polynomial rings
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⌊z⌉ := ⌊z + 1
2⌋ the operator rounding to the nearest integer

rmax The radius of the largest ball inscribed in the fundamental domain of a latticeΛ

W⊥ the orthogonal complement of a vector spaceW ⊂ Rn

b∗1, · · · , b∗k the Gram-Schmidt orthogonal basis obtained from a basisb1, · · · , bk of

a lattice or a vector space.

btr the transpose of the vectorb

H(f) The height of a polynomialf

M(f) The Mahler measure off

L(f) The length off

defect(α) the defect of the integral basis1, α, · · · , αm−1

σi the distinct embeddings ofK in an algebraic closurēK of K

N(a) the (absolute) norm of an element in an algebraic extension of K

ResY(u(Y), v(Y)) the resultant of the two polynomialsu andv
(d
j

)
binomial coefficient

ℜe(z), ℑm(z), z̄ real and imaginary parts, and the conjugate of the complex numberz

T2 theT2-norm

Si(h) theith Newton sumof h

〈a〉 the ideal genarated bya

L∞ field of Puiseux series at the place at infinity
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Introduction

In this thesis, we intend to study polynomial factorization. Our work is motivated by the very recent

publications due to Pohst and Omaña (in [Om-P] and [POH 2] ), and to Belabas, van Hoeij, Klüners, and

Steel (in [B-H-K-S]). Their results, together with Lenstra’s, Trager’s and Weinberger & Rothschild’s,

will form the core of this thesis, which will be mainly a survey of the most important results up-to-date.

A deeper theoretical investigation including implementations and trial of some variants for the algorithms

given here, might be the subject of later research since it isbeyond the scope of this thesis. An important

goal here, from a number theoretical point of view, consistsin a better understanding of the algebraic

structure of global fields and their rings of integers, in addition to an entrance into, and an appreciation

of, the area of Algorithmic Algebraic Number Theory.

The importance of the problem of factorization of univariate/multivariate polynomials over finite/infinite

local/global fields, made it a favorite topic for PhD theses of many mathematicians since early in the

70’s. Those we are aware of are the PhD’s of: D.R. Musser (Wisconsin, 1971), E. Kaltofen (New York,

1982), A.K. Lenstra (Amsterdam, 1984), P. Guan (Ohio, 1985), J.A. Abbott (Bath, 1988), M.J. Encar-

nación (Linz, 1995), L. Zhi (Beijing, 1996), X-F Roblot (Bordeaux, 1997), J-F Ragot (Limoges, 1997),

F. Abu-Salem (Oxford, 2004). And surprisingly, B.M. Trager, whose thesis was on the integration of

algebraic funtions (MIT, 1985) and M.H.F. van Hoeij, whose thesis was on the factorization of linear dif-

ferential operators (Nijmegen, 1996), added such an important contribution to the theory of polynomial

factorization that their names have became as well-known for this theory as Berlekamp’s, Zassenhaus’,

and Lenstra’s.

The factorization of polynomials, in general, is an important operation needed in many problems of

computational algebra, some of them coming from: symbolic computation, cryptography, coding theory,

number theory.... For example, it is a crucial step in computing an explicit basis of Newforms for a space

of Modular forms.

This wide need for factorization of polynomials makes it an important subject of investigation for math-
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ematicians and computer scientists, and already in 1707, Isaac Newton, in his "Arithmetica Universalis",

gave a method for finding linear and quadratic factors of polynomials with integer coefficients. This

method was extended by Nicolas Bernoulli in 1708, and in 1793the astronomer Friedrich von Schu-

bert extended this method more explicitely and gave a finite-step algorithm for computing all factors of

degreed of a univariate polynomial with integer coefficients.

About 90 years later, Leopold Kronecker rediscovered Schubert’s method and also gave algorithms for

factoring univariate and multivariate polynomials with integer coefficients. The key idea in these algo-

rithms is that a polynomial of degreen is completely determined by its values at(n+1) different points,

by means of the Lagrange interpolation method for instance.Hence one can reduce the factorization of a

polynomial to the factorization of its values at these different points, and then collect information about

the polynomial factors sought.

Kronecker is then considered as the first inventor of a general algorithm for factorization of polynomials

with integer coefficients, which can be applied also to the factorization of polynomials over algebraic

extension fields. The idea was to reduce this factorization to one over the ground field, which can be either

the field of the rational numbers, in the case of an algebraic number field, or the field of rational functions,

in the case of an algebraic function field. This was one of the first attempts to study simultaneously: the

theory of algebraic numbers and the one of algebraic functions in one variable, which we will investigate

simultaneously in this thesis.

Dedekind and Weber have observed that many of the results obtained by Dedekind while studying and

generalising the properties of the rings of integers in number fields, also apply to the rings of integers

in funtion fields. This invites one to unify the study of certain problems in number and function fields.

However, such a general theory had to wait until more abstract concepts in algebra have been set up.

For our work, we not only need deep results and concepts from algebra, but also some tools from the

geometry of numbers for both number and function fields. Those for the latter fields became available

only quite recently with the work by M. Schörnig in his PhD thesis (Berlin, 1996).

We recall that aglobal fieldK is either analgebraic number field, that is, a finite extension of the rational

number fieldQ, or else analgebraic function field, that is, a finite extension of a fieldFq(t) of rational

functions in an indeterminatet over a finite fieldFq.

The arithmetic in a global field relies on the properties of its ring of integers. For a rational global field

(Q or Fq(t)), the ring of integers isZ or Fq[t], respectively, and it is well knwon that these two rings
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have many properties in common. Both rings areEuclidean domains, and hence PIDs (Principal Ideal

Domains) and UFDs (Unique Factorization Domains); both have the property that theresidue class ring

of any non-zero ideal isfinite, both rings have infinitely manyprime elements, and both rings have finitely

manyunits. (cf [ROS] for a proof of these statements).

Consequently, we also find common or similar properties for the rings of integers of a general number

field and a general function field. These rings are theintegral closureof Z (respectivelyFq[t]) in the

extension field. One of the main properties they share is the fact that they are bothDedekind Domains

(cf [Fr-T] and [ART]). This will play an important role in ourwork because Dedekind Domains retain

desirable properties ofZ, in particular, the possibility and unicity of decomposition of ideals into a

product of prime ideals (cf [EIC]).

We will be considering polynomial rings over such Dedekind domains and over their quotient fields,

exploring different results related to the factorization of primitive univariate polynomials in the above

polynomial rings. Most of our discussions will be around some algorithm that, in a specific context,

gives the complete factorization of our polynomial. A factorization is said to becompletewhen all the

irreducible factors are produced.

We recall that in our context, rings will always mean commutative rings with unit, even if it is not

specified, and we use gothic letters to denote ideals, following Hilbert who introduced this notation in

his Zahlbericht (1897).

We have divided our thesis into four chapters preceded by this introduction which gives a survey and

brief introduction to the subject. The four chapters are organized as follows.

In the first chapter, we give some important tools that will beused throughout all the thesis, starting by

introducing the principle formodular algorithms, then giving some important theorems needed, mainly

the Chinese Remainder Theorem and Hensel’s and Gauss’ lemmata. We will also introduce the quite

recent notion of lattice-basis reduction, and for the case of a number field, we give the LLL algorithm for

basis reduction and all the properties of an LLL reduced basis. We end the chapter by some assumptions

to be made throughout the thesis, namely we have chosen to consider a monic squarefree polynomial

with integral coefficients.

For the case of a number field, we have also chosen to study extensively the problem of factorization

of polynomials over an extension field ( with[K : Q] ≥ 2), the factorization of polynomials over the

rationals being considered known. We have recalled the important results concerning the factorization

of polynomials over the rationals in the first chapter as we aim to show how they extend to a general
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number field. And for lack of space, we will assume the factorization techniques over finite fields known

refering to the bibliography.

Trager’s method of factorization over algebraic extensionfields will be the subject of the second chap-

ter. It has the advantage of being applicable simultaneously to number and function fields, relying on the

algebraic properties of the extention fields and using the norm as a tool. The norm map, which is a homo-

morphism that sends elements of an extension field to elements in the ground field, will enable reducing

the problem of factoring a polynomial with coefficients in the extention field, to the problem of factoring

another polynomial over the ground field, assuming we have enough tools to solve the latter problem.

Usually, the ground field is the rational number field for which a whole bunch of efficient factorization

algorithms are known, but Trager’s method can also be applied to towers of algebraic extention fields as

well. Encarnación’s quite recent improvement of this method will also be given.

Other techniques, which we will calldirect factorization methodsby contrast to Trager’s indirect one,

will be presented in the latter chapters.

We dedicated the third chapter to the direct factorization methods over a general number field, and the

fourth chapter to the direct factorization methods over a function field. This is done separately as not all

the algorithms presented work equally for number and function fields.

Weinberger and Rothschild’s algorithm, the LLL factorization algorithm, and van Hoeij’s algorithm, are

applicable only to number fields. They will be described and analysed in the third chapter.

We dedicated the last chapter to Pohst and Omaña’s results for the case of a global function field.
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CHAPTER ONE

PREREQUISITES

1.1 Homomorphism methods and modular algorithms

An important class of problems in number theory including the theory of function fields, can be dealt

with using homomorphisms, transporting the problem to a simpler domain where one can see how to

solve it more easily. The original problem will then be solved by means of some tools that allow one to

return to the original domain.

The first well known tool, which we are interested in, is theChinese Remainder Theorem(CRT).

Theorem 1.1

LetR be an integral domain, and let{a1, · · · , at} be a set of relatively prime ideals ofR

(i.e ai +aj = R for i 6= j). Then the map:R −→
t∏

i=1
R/ai , is surjective. It’s kernel is

t∏

i=1
ai =

⋂t
i=1 ai.

And hence, there is a ring isomorphism:

R/a1 · · · at
∼=

t∏

i=1

R/ai

This theorem gave rise to the so calledmodular algorithmswhere instead of solving an algebraic com-

putational problem over an integral domainR directly, one solves it modulo one or several ideals of this

domain and uses these modular solutions together to find the solution inR.

An important gain in efficiency can be realized when the computation inR/a is easy. This is the case

whena is a maximal ideal ofR andR/a is finite (e.gR = Z , a = pZ), thus, the residue class ringR/a

is actually a finite field.

Again, if we assumeR = D a Dedekind domain, then every non-zero prime ideal ofR is maximal.

And since every ideal ofR is uniquely expressible as a product of nonzero prime idealsof R, up to

order of factors, we can always solve any algebraic computational problem overR using the follow-

ing general scheme, where we note that the dotted arrows showprocedures while the plain ones show

homomorphisms,
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R

R

R/a

R/a

R/p1

R/p1

R/pe1
1

R/pe1
1

R/pt

R/pt

R/pet
t

R/pet
t

reconstruct

reconstruct

reco
nstr

uct

direct resolution

reduce

reduce

reduce

reduce

modular resolution modular resolution

lift

lift

...

...

and where we assume the ideala of R to be expressible as:

a = pe1
1 · · · pet

t

with thepi distinct prime ideals ofR and theei positive integers.

The Chinese Remainder Theorem will be then used for the first reconstruction stage, but some more

work is needed for the second stage, which we will clarify later for our context.

The passage fromR/pi to R/pei
i is ensured by the Hensel lifting which will be discussed in the next

section and which will turn out to be more useful in practice since it deals with only one prime ideal.

For a general ideala, we may be faced with the serious drawback of the general scheme above, namely

the possibility that a huge number of the image problems needto be solved. It turns out that this number

grows exponentially with the size of the solution, which interferes with the efficiency of our method.

This should then be taken into consideration while choosingthe moduli.

In addition, our choice of the moduli should enable us to recover the solution in the original domainR

which requires finding a bound on the solution inR at first.
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1.2 Hensel lifting

Early in the 1900’s, K. Hensel gave a new theorem which was oneof his motivations for introducing

p-adic numbers. He published it in 1918 under the title "A new theorem of algebraic numbers". This

theorem is well known since then asHensel’s lemma.

There are many different formulations of this lemma, all of them give equivalent conditions for a valued

field to be Henselian.

Without entering into details, and without giving the exactdefinition of a Henselian field, we just mention

briefly the important result that a complete field for a rank-1valuation is Henselian (cf [Pr-D]). This result

applies to the fields we are interested in. In addition, we refer to A. M. Robert1 for some applications of

the Hensel’s lemma in contexts other than ours.

Here, we will give two forms of Hensel’s lemma that we think are most relevant to our work.

Theorem 1.2 Hensel’s Lemma

LetR be a local ring with maximal idealM and residue fieldk = R/M.

Assume thatR is M-adically complete.

For any polynomialf(X) ∈ R[X] , let f̄(X) ∈ k[X] denote its residuemodM.

Letf(X) ∈ R[X] be monic and such that there is a factorization:

f̄(X) = u(X)v(X) in k[X]

whereu(X) andv(X) are monic and relatively prime.

Then there exists a factorization:

f(X) = h(X)k(X) in R[X]

with h(X) , k(X) monic, such that:

h̄(X) = u(X) , k̄(X) = v(X)

For practical applications we actually prefer a constructive form of Hensel’s lemma that yields an algo-

rithm for lifting factorizations.

We give here the one given by Pohst and Zassenhaus in [P-Z].

1"A course inp-adic analysis", Springer-Verlag 2000
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Theorem 1.3 Hensel’s Lemma: Constructive form

Let R be a commutative ring,b an ideal ofR and f , f1,0 , f2,0 ∈ R[X] be monic non-constant

polynomials such that there is a factorization:

f ≡ f1,0f2,0 mod b[X]

with f1,0 , f2,0 relatively primemod b[X], that is:

a1,0f1,0 + a2,0f2,0 = 1 + a0,0

(
for someai,0 ∈ R[X], 0 ≤ i ≤ 2, a0,0 ∈ b[X]

)

Then for everyk ∈ N there holds a congruence factorization

f ≡ f1,kf2,k mod b2k [X]

with f1,kf2,k ∈ R[X] monic non-constant polynomials, satisfying the coherencecondition

fi,k ≡ fi,0 mod b[X] (i = 1, 2)

and an equation

a1,kf1,k + a2,kf2,k = 1 + a0,k

(

ai,k ∈ R[X], deg(ai,k) < deg(f3−i,k) 0 ≤ i ≤ 2, a0,k ∈ b2k [X]
)

The key idea in the proof of this theorem was the constructionof a solution of a congruence equation:

a1(X)f1(X) + a2(X)f2(X) ≡ b(X) mod b[X] (1.1)

given thatf1 and f2 are relatively prime modulo that ideal or a power of it, and using the fact that

it is possible to satisfy the degree condition by reducing modulo suitable polynomials. This follows

since both remainderandquotientobtained by a long division of any element of an idealb[X], by any

polynomial inR[X], actually belong tob[X], (the idealb of R being stable for the operations involved by

the long division algorithm).

The above congruence equation (1.1) is not obvious, and already in the caseR = Z , b = pZ, p prime,

we know that the factor ringZ/pkZ[X] need not be a UFD, nor need there always be a GCD for two

given elements. In [ZAS 2], Zassenhaus gave the conditions for the existence of GCD’s in such factor

rings, and explains, in greater detail, the algorithm he suggested earlier in his seminal paper [ZAS 1].

His second paper came in response to a remark of D. Yun who studied extensively the Hensel lemma in

his MIT PhD thesis entitled "The Hensel Lemma in Algebraic Manipulations" (1974).

The method given in the theorem above is called a quadratic Hensel lifting. The original Hensel con-

struction, which is linear, lifts a factorization frommod bk[X] to mod bk+1[X] at thekth step, while the
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quadratic one lifts a factorization frommod b2k [X] tomod b2k+1
[X].

Lots of work has been done to implement and compare varietiesof the two approaches (see e.g [ABB]

or [G-G]), the quadratic lift seems to converge faster. Nevertheless, the linear one requiring less compu-

tation at each step, may be the best choice in different circumstances.

Here, following Pohst and Zassenhaus, we choose the quadratic Hensel Construction, giving the algo-

rithm below which provides a subroutine that can be iteratedup to the accuracy needed.

Algorithm 1.4 "Hensel Lifting" (cf [Om-P])

Input. An integral domainR with a proper idealb and monic non-constant polynomials

f(X) , h(X) , k(X) ∈ R[X] such that:

f(X) ≡ h(X)k(X) mod b[X]

u(X)h(X) + v(X)k(X) ≡ 1 mod b[X]

for suitableu(X) , v(X) ∈ R[X]

Output. Monic polynomials̃h(X) , k̃(X) ∈ R[X] satisfying:

f(X) ≡ h̃(X)k̃(X) mod b2[X]

h(X) ≡ h̃(X) mod b[X]

k(X) ≡ k̃(X) mod b[X]

ũ(X)h̃(X) + ṽ(X)k̃(X) ≡ 1 mod b2[X]

with ũ(X) , ṽ(X) ∈ R[X] anddeg(ũ) < deg(k̃) , deg(ṽ) < deg(h̃)

Step 1. Seta(X) := f(X)− h(X)k(X), and b(X) := u(X)h(X) + v(X)k(X) − 1

Step 2. Set

c(X) := Rem (v(X)a(X), h(X)), h̃(X) := h(X) + c(X),

d(X) := Rem (u(X)a(X), k(X)), k̃(X) := k(X) + d(X),

Step 3. Sete(X) := b(X) + u(X)c(X) + v(X)d(X), and

ũ(X) := Rem
(

u(X)(1− e(X)), k̃(X)
)

, ṽ(X) := Rem
(

v(X)(1 − e(X), h̃(X)
)

WhereRem(α, β) denotes the remainder of the division ofα overβ.

The following example will illustrate this algorithm.

Example: LetR = Z, b = 3Z andf(X) = X
4 − 394X3 − 4193X2 + 126X + 596 ∈ Z[X]. Then

f(X) ≡ X
4 − X

3 + X
2 − 1 mod 3

≡ (X2 + X + 1)(X2 + X− 1) mod 3
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Let 2: h(X) = X
2 + X + 1 andk(X) = X

2 + X− 1

Sof(X) ≡ h(X)k(X) mod 3, with h(X) andk(X) relatively prime since they don’t have common roots.

Let’s applyAlgorithm 1.4 to lift this factorization to onemod 32.

Step 0. By means of the Extended Euclidean Algorithm, we can always computeu(X), v(X) ∈ Z[X] such

thatu(X)h(X) + v(X)k(X) ≡ 1 mod 3 with deg(v) < deg(h) = 2 anddeg(u) < deg(k) = 2, but

we notice here that it suffices to takeu(X) = −1 andv(X) = +1.

Step 1. a(X) = f(X)− h(X)k(X) = −396X3 − 4194X2 + 126X + 597

b(X) = u(X)h(X) + v(X)k(X) − 1 = −3

Note thata(X) ∈ 3Z[X], idem forb(X).

Step 2. Let c∗(X) = v(X)a(X)

d∗(X) = u(X)a(X)

By two long divisions we get:

c∗(X) = (−396X − 3798)h(X) + (4320X + 4395)

d∗(X) = (396X + 3798)k(X) + (−3528X + 3201)

Hence:c∗(X) = Rem(c∗, h) = 4320X + 4395 andd∗(X) = Rem(d∗, k) = −3528X + 3201

Define h̃(X) = h(X) + c(X)

= X
2 + 4321X + 4396

= X
2 + (9× 480 + 1)X + (9× 488 + 4)

k̃(X) = k(X) + d(X)

Hence: h̃(X)k̃(X) ≡ X
4 + 2X3 + X

2 + 2 mod 9

≡ f(X) mod 9

Step 3. e(X) := b(X) + uc+ vd = −(9× 872X + 9× 133)

Sincedeg(u) = deg(v) = 0, we don’t need to reduceu(X)(1 − e(X)) andv(X)(1− e(X)).
We take:

ũ(X) = u(X)(1 − e(X)) = − ((9× 872)X + (9× 133 + 1))

ṽ(X) = v(X)(1 − e(X)) = (9× 872)X + (9× 133 + 1)

which satisfyũh̃+ ṽk̃ ≡ 1 mod 9.

We refer to Geddes et al. in [G-C-L] for many more examples illustrating the linear Hensel Lifting and

other forms of it.
2For this example of illustration, we do not care whetherf(X) preserves squarefreenessmod 3, for it is not a requirement

for Hensel’s Lemma.
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1.3 Gauss lemma

1.3.1 Algebraic properties of univariate polynomial rings

LetR be a ring.

The following theorem summarises most of the algebraic properties of the ringR[X].

Theorem 1.5

1. IfR is an integral domain, so isR[X]. The units ofR[X] being exactly those ofR, i.e(R[X])∗ = R∗.

2. If R is a UFD, so isR[X]. Its primes are either the primes ofR or the polynomials ofR[X], that

cannot be factored, apart from units and associates.

3. If R is a Euclidean domain, thenR[X] is a UFD.

4. R is a field, thenR[X] is a Euclidean domain with valuationv (f(X)) = deg (f(X)).

5. If R is a Dedekind domain that is not a UFD, with quotient fieldK, then at least property (1.)

applies toR[X] and (4.) applies toK[X].

We recall that in a UFD:

• GCD’s exist and are unique up to units.

• Primes and irreducibles coincide.

• The factorization of elements into primes is unique.

Property (2.) is actually an important theorem due to Gauss,the proof of which relies on another impor-

tant result known as Gauss’ Lemma, which we will introduce after some necessary definitions.

1.3.2 Content and primitive part of a polynomial

LetR be a UFD with quotient fieldK, and consider a nonzero polynomialf ∈ R[X]. A first step in the

factorization off(X) is to extract the units and the constants.

Example: R = Z

f(X) = −4X3 − 8X2 + 6X − 18

= (−1)(2)(2X3 + 4X2 − 3X + 9)

This is always possible over a UFD, it suffices to consider theGCD of the coefficients off(X).
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Definition 1.6

Thecontentof a nonzero polynomialf(X) ∈ R[X], whereR is a UFD, denotedcont(f(X)), is the

GCD of its coefficients, up to associates. The polynomialf(X)/cont(f(X)) will then have content 1. It

is called theprimitive partof f(X), and denotedpp(f(X))

Remark:

The definition of content and primitive parts can be extendedto polynomialsf(X) ∈ K[X], whereK is

the quotient field of the UFDR, as follows:

Write: f(X) =
∑
biX

i /d, wherebi ∈ R andd ∈ R \ {0} is a common denominator of the coefficients

of f . Then:

cont(f(X)) :=
1

d
cont

(∑

biX
i
)

and pp(f(X)) = f(X)/cont(f(X)) as usual.

This yields a unique representation off(X) in the form:

f(X) = cont(f(X)) · pp(f(X))

By convention, we define:cont(0) = 0 , pp(0) = 1.

Definition 1.7

A non zero polynomialf(X) ∈ R[X], whereR is a UFD, is said to beprimitive if it has content 1, i.e

it is a normalised polynomial with relatively prime coefficients.

In particular, a non zero monomial is primitive if it is monic.

Example:

R = Z, f(X) = 3X2 − 2X + 25

R = Q, f(X) = X
2 +

2

3
X− 9

Note that, over a field, primitive polynomials are the monic ones.

Remark:

If f(X) is a polynomial over a UFDR, then the coefficients of its primitive part lie inR.

Lemma 1.8

Letf(X) ∈ R[X], whereR is a UFD with quotient fieldK. Then for everyc ∈ K, c 6= 0

cont (c · f(X)) = c · cont(f(X)) and pp (c · f(X)) = pp (f(X))

Note that our definition of the content and primitive part of apolynomial yields:

cont(c) = c , pp(c) = 1

Hence the above equalities can be written:

cont (c · f(X)) = cont(c) · cont(f(X)) and pp (c · f(X)) = pp(c) · pp (f(X))
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1.3.3 Gauss lemma over UFD’s and Dedekind domains

Theorem 1.9 Gauss Lemma

LetR be a UFD. Then, the product of two primitive polynomials inR[X] is primitive.

Proof:

Let f(X) , g(X) ∈ R[X] be two primitive polynomials, and letp ∈ R be a prime.

The ringD = R/〈p〉 is an integral domain, and henceD[X] is also an integral domain.

Sincef(X) andg(X) have content 1 by assumption,f mod p andgmod p are both nonzero inD[X], and

hence their product inD[X], fgmod p is nonzero as well.

i.e p ∤ cont(fg). And this is true for anyp prime.

Hencecont(fg) = 1 andfg is primitive.

�

Corollary 1.10

LetR be a UFD andf(X) , g(X) ∈ R[X]. Then

cont(fg) = cont(f) · cont(g) and pp(fg) = pp(f) · pp(g)

Proof:

fg = (cont(f)pp(f)) · (cont(g)pp(g))

= (cont(f)cont(g)
︸ ︷︷ ︸

c

) · pp(f)pp(g)
︸ ︷︷ ︸

h

wherec ∈ R \ {0} andh is primitive by Gauss Lemma above.

Hence:cont(fg) = c · cont(h) = c = cont(f)cont(g),

and thus:pp(fg) = fg/cont(f)cont(g) = pp(f) · pp(g).
�

To generalise Gauss lemma for polynomials over Dedekind domains, we need to extend first the notions

of content, primitive part, and/or primitive polynomials in this context.

Definition 1.11 (cf [Fr-T])

LetR = D be a Dedekind domain with quotient fieldK, and considerf(X) ∈ K[X].

We definethe contentof f , denotedCf , to be the fractionalD-ideal generated by the coefficients off .

Thenf is said to beprimitive if

Cf = D.

Here D, the Dedekind domain itself, is no more than the identity of the abelian group of fractional

D-ideals inK.
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A primitive polynomial can also be characterised by thevaluationof it’s content as follows.

For every prime idealp of D, we denote by

νp(f) := νp(Cf )

whereνp is thep-adic valuation defined on the group of fractionalD-ideals ofK.

Thenf is primitive if and only if

For each prime idealp of D, νp(f) = 0.

The map thus defined for a prime idealp of D

K[X] −→ Z

f 7−→ νp(f)

retains a nice property of thep-adic valuation which yields the following form of Gauss lemma:

Theorem 1.12

For any nonzero polynomialsf , g ∈ K[X], and for each prime idealp of D

νp(fg) = νp(f) + νp(g)

Proof: See [Fr-T].

Theorem 1.13

LetD be Dedekind domain. Then the product of two primitive polynomials inD[X] is primitive.

Proof:

Let f , g ∈ D[X]. Assume that for allp prime inD, νp(f) = νp(g) = 0. Then

νp(fg) = νp(f) + νp(g) = 0

�

As a consequence, we have the following important theorem.

Theorem 1.14

LetD be a Dedekind domain with quotient fieldK.

If f(X) , g(X) , h(X) are monic polynomials inK[X] such that:

f(X) = g(X)h(X)

andf(X) ∈ D[X], then

g(X), h(X) ∈ D[X]

i.e The monic factors of a monic polynomial ofD[X], lie in D[X].
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Proof:

Note that an ideala of D is characterised by:

νp(p) ≥ 0.

Now, sincef(X) has coefficients inD[X], Cf is an ideal ofD.

The monicity off implies thenνp(p) = 0 for all prime idealsp of D.

On the other hand, sinceg(X) andh(X) are both monic polynomials inK[X], for all prime idealsp of D,

νp(g) ≤ 0 and νp(h) ≤ 0.

By Gauss lemma (1.12)

0 = νp(f) = νp(g) + νp(h)

Hence: νp(g) = νp(h) = 0 for all p.

Thus, Cg , Ch ⊂ D.

And so,g(X) , h(X) ∈ D[X].

�

1.4 Squarefreeness

Definition 1.15

Letf(X) ∈ R[X], whereR is a UFD (Unique Factorization Domain).

f(X) is said to besquarefreeif it has no repeated factors, that is, if there is no polynomial g(X) such that:

deg(g(X)) ≥ 1 and g(X)2|f(X)

Theorem 1.16

In characteristic zero, we have:

f(X) is square-free⇐⇒ GCD(f, f ′) = 1

Indeed, if there exits a non-constant polynomialg(X) such thatg(X)2 | f(X). Theng(X) | f ′(X) and is a

common factor tof andf ′.

If f ′(X) 6= 0, the Euclidean algorithm yields non trivial factors, that are,GCD(f, f ′) andf/GCD(f, f ′),

whenceGCD(f, f ′) 6= 1.

Now, if GCD(f, f ′) = 1, by the Extended Euclidean Algorithm, there exist polynomials

U(X), V (X) ∈ R[X] such that:

U(X)f(X) + V (X)f ′(X) = 1 (1.2)
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It suffices to observe thatf is squarefree if and only if, the roots off in an algebraic closure of the field

of fractions ofR, are all simple, that is,f is separable.

By (1.2), one concludes thatf andf ′ have no common roots, hencef has only simple roots and is

squarefree.

�

In the casef ′(X) = 0, with the existence of a non-constant common factor tof andf ′, the field of

fractions ofR is necessarily of finite characteristic, which is then a prime number.

Let p be this prime number. Then every power ofX in f , that corresponds to a non-zero coefficient, is

necessarily ap-th power, whence so isf(X), i.ef(X) = h(X)p, for some polynomialh(X).

This is due to the fact that

h(Xpr
) = h(X)p

r
, ∀h(X) ∈ Fpr [X].

Hence, over any UFD, aGCD between a polynomialf and its derivative extracts all the repeated factors

of f . This observation allows us to compute the squarefree part of f ∈ R[X], which isf/GCD(f, f ′),

and in which each irreducible factor off appears exactly once. The remaining part, that isGCD(f, f ′),

forms the non-squarefree part off and will not play a role in the factorization process, which consists in

finding all irreducible factors. Their multiplicity will then be found by direct division.

Remark:

Applying the reduction map of section (1.1), we notice that:

Squarefreeness is preserved by all but a finite number of primes, namely those primes that ramify!

1.5 Lattices and reduction

1.5.1 Basic facts on lattices

Let Λ ⊂ Rn be alattice of dimensionk, that is, a free-Z-module of finite rankk := dim(R ⊗Z Λ). then

Λ containsk R-linearly independent vectorsb1, · · · , bk such that:

Λ =

k∑

i=1

Zbi

We denote byd(Λ), the determinant of the latticeΛ, that is, the number:

d(Λ) := |det(b1, · · · , bk)| =
∣
∣
∣

(
btri bj

)

1≤i,j≤k

∣
∣
∣

1/2

wherebtri denotes the transpose of the vectorbi, andb1, · · · , bk is anybasisfor Λ.

We recall thatd(Λ) is an invariant of the lattice that does not depend on the choice of the basis. Moreover:

d(Λ) > 0 (since thebi areR-linearly independent).
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Note that the determinant of a latticeΛ is also the volume of its fundamental domain:

Π(Λ) := {x ∈ Rn| x =

k∑

i=1

xibi , 0 ≤ xi < 1 , 1 ≤ i ≤ k}

The fundamental domain of a latticeΛ has the property that every point of the Euclidean spaceRn, is

congruent, moduloΛ, to at most oneinterior point of Π(Λ), points congruent to a boundary point may

be repeated. And we have

Π(Λ) ∼= Rn/Λ

Lemma 1.17 (cf [BEL 1 ] or [LEN 2])

Let rmax := Sup{r ∈ R+| B(0, r) ⊂ Π(Λ)} be the radius of the largest ball inscribed in the

fundamental domainΠ(Λ), whereB(0, r) is the open ball ofRn, centered at0, and having radiusr.

For x ∈ Rn, there exists at most oney ∈ Rn such that

x ≡ y (mod Λ) and ‖y‖ < rmax

where‖ ‖ denotes the Euclidean norm onRn.

If it exists,y is the unique element ofΠ(Λ) congruent tox moduloΛ.

LetM be the matrix giving the basis vectorsbi, theny is given by

y ≡ xmodM := x−M⌊M−1x⌉

where⌊z⌉ := ⌊z+ 1
2⌋ is the operator rounding to the nearest integer and is to be applied coordinatewise.

We will give later a formula for computingrmax explicitely for any lattice, but a best way to maximize

it is to use a LLL-reduced basis. Before that we need to define the concept ofbasis reduction.

An important question in the Geometry of Numbers is theExistence and Constructionof lattice basis

vectors with special properties; and that’s the general scope ofreductionas we define it here. The aim is

to exhibit lattice vectors that are of computational interest, such as the shortest vectors in a lattice.

1.5.2 The LLL lattice-basis reduction for number fields

An interesting definition of "reduced basis" was given by thethree mathematicians A.K. Lenstra, H. W.

Lenstra Jr, and L. Lovász in 1982, who gave a very efficient polynomial time algorithm for finding such

a basis. These bases are then easy to compute, and in additionthey have so many properties that make

them very important for computational purposes.
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Definition 1.18

A basisb1, · · · , bk of a latticeΛ is said to be LLL-reduced3 if b1, · · · , bk and the vectorsb∗1, · · · , b∗k
of the corresponding orthogonal basis together with their corresponding constants (see below), satisfy:

(1) |µij| ≤ 1
2 (1 ≤ j < i ≤ k)

(2) ‖b∗i + µi,i−1b
∗
i−1‖2 ≥ 3

4‖b∗i−1‖2 (1 < i ≤ k)

The second condition is due to Laszlo Lovász and known as Lovász condition .

The constant34 is arbitrarily chosen, and may be replaced by any fixed real numberα, such that14 < α <

1. In such a case, the powers of2 appearing in the inequalities of lemma (1.20) below should be replaced

by the same powers of the number44α−1 called the LLL-constant.

The numberα, called the LLL-parameter, is used to check the Lovász condition and determine the fre-

quency of swaps in the LLL algoritm.

Examples:

θ

b∗2b 2

µ2,1b
∗
1

b1 = b∗1

Fork = 2, the basis(b1, b2) is LLL-reduced if:
(1) |µ2,1| ≤ 1

2 , thus‖µ2,1b
∗
1‖ ≤ 1

2‖b1‖
(This happens when the angle between

the vectorsb1 andb2, θ = (b1, b2),

is relatively large (θ is at leastπ3 ).)

(2) ‖b2‖2 = ‖b∗2 + µ2,1b
∗
1‖2 ≥ 3

4‖b1‖2 (This means that

‖b2‖ is not too small compared to‖b1‖.)

In the above definition, we use the orthogonal basis corresponding tob1, · · · , bk, which is obtained by

applying the Gram-Schmidt orthogonalization process as follows:

b∗1 = b1
...

b∗i = bi −
∑i−1

j=1 µijb
∗
j where µij =

btri b
∗
j

b∗ tr
j b∗j

, (1 ≤ j < i ≤ k)

This can be represented in matrix form as follows.

3LLL standing for A.K. Lenstra, H. W. Lenstra Jr, and L. Lovász

ILHEM BENZAOUI Univ. of Stellenbosch



Prerequisites 21

Let M = (b1, · · · , bk) be the matrix whose columns are thebi,

andM∗ = (b∗1, · · · , b∗k) be the matrix whose columns are theb∗i , Then:

M = M∗G, whereG =


















1 µ2,1 µ3,1 · · · µk,1

0 1 µ3,2 · · · µk,2

...
...

...
...

...
...

...
...

...
...

0 0 · · · 1 µk,k−1

0 0 · · · 0 1


















Hence:

(b∗1, · · · , b∗k) = (b1, · · · , bk)G−1 = (b1, · · · , bk)


















1 −µ2,1 −µ3,1 · · · −µk,1

0 1 −µ3,2 · · · −µk,2

...
...

...
...

...
...

...
...

...
...

0 0 · · · 1 −µk,k−1

0 0 · · · 0 1


















Recall that, the Gram-Schmidt orthogonalization process is a polynomial time algorithm and needs only

O(n3) arithmetic operations.

Note that, theb∗i /∈ Λ in general, and consequently we only get a vector space basis! Nevertheless, the

Gram-Schmidt orthogonal basis has the following nice properties:

• b∗1, · · · , b∗k are pairwise orthogonal andR-linearly independent.

• Wi :=
∑

1≤j≤iRb
∗
j =

∑

1≤j≤iRbj for all i, 1 ≤ i ≤ k

• b∗i is the projection ofbi ontoW⊥
i the orthogonal complement ofWi−1,

and hence in particular‖b∗i ‖ ≤ ‖bi‖.

• det(b1, · · · , bk) = det(b∗1, · · · , b∗k)

As a consequence, we obtain the following famous inequality:

Theorem 1.19 "Hadamard’s Inequality"

Let (b1, · · · , bk) be a basis of a latticeΛ. Then:d(Λ) ≤
k∏

i=1

‖bi‖
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from which, we conlude that

∏k
i=1 ‖bi‖
d(Λ)

≥ 1

This quantity is actually a measure of orthogonality for thebasis(b1, · · · , bk), and is called the "Orthog-

onality Defect". By Hadamard’s Inequality one can see that,for a basis, to be "reduced" means also that

it "is not too far" from being orthogonal.

Properties of a LLL-reduced basis

Lemma 1.20

Let (b1, · · · , bk) be a LLL-reduced basis of a latticeΛ ⊂ Rn with the corresponding orthogonal

basis(b∗1, · · · , b∗k). Then the following estimates hold:

1. ‖b∗i−1‖2 ≤ 2‖b∗i ‖2 (1 ≤ i ≤ k)

2. ‖bj‖2 ≤ 2i−1‖b∗i ‖2 (1 ≤ j ≤ i ≤ k)

3. d(Λ) ≤∏k
i=1 ‖bi‖ ≤ 2

k(k−1)
4 d(Λ)

4. ‖b1‖ ≤ 2
k−1
4 d(Λ)1/k

5. ‖b1‖2 ≤ 2k−1‖x‖2 for all x ∈ Λ, x 6= 0

6. ‖bj‖2 ≤ 2k−1max{‖x1‖2, · · · , ‖xt‖2}, (1 ≤ j ≤ t)
for any linearly independent vectorsx1 , · · · , xt of Λ.

For a proof of this lemma, we refer to [L-L-L].

We also cite the following results from [BEL 1] concerning the fundamental domain of a lattice.

Lemma 1.21

The radius of the largest ball inscribed in the fundamental domain of a latticeΛ of basis(b1, · · · , bk)
is given by

rmax = min
i

1

2Ti
, such that Ti := (

∑

j

t2i,j/‖b∗j‖2)
1
2

where theti,j are the coefficients of the inverse of the Gram matrixG = (b∗i ).

Lemma 1.22

If the latticeΛ is given by a LLL-reduced basis(b1, · · · , bk) then

rmax ≥
1

2
min

i
‖bi‖ ×

(∏k
i=1 ‖bi‖
d(Λ)

)−1
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Combining these two results with the properties of a LLL-reduced basis we get

Lemma 1.23 (cf [BEL 1])

If the basis of the latticeΛ ⊂ Rn is LLL-reduced then

rmax ≥
‖b1‖

2
(
3
√

2/2
)n−1

Algorithm for LLL-basis reduction

Algorithm 1.24 "LLL-reduction" (cf [P-Z])

Input. Basis vectorsb1, · · · , bk of a latticeΛ ⊂ Rn.

Output. A basisb1, · · · , bk of Λ that is LLL-reduced.

Step 1. [initialize] For i = 1, 2, · · · , k

Setµij ←−
btri b

∗
j

Bj

b∗i ←− bi −
i−1∑

j=1

µijb
∗
j , Bi ←− b∗ tr

i b∗i

Then setm←− 2

Step 2. [Setl ]

Set l←− m− 1

Step 3. [Reduceµml in case|µml| > 1
2 ]

If |µml| > 1
2 setr ←− ⌊µml⌉ and

bm ←− bm − rbl
µmj ←− µmj − rµlj (1 ≤ j ≤ l − 1),

µml ←− µml − r

For l = m− 1 go to [Step 4.] else to [Step 5.]

Step 4. [Inequality (2) violated on levelm ?]

ForBm < (3
4 − µ2

m,m−1)Bm−1 go to [Step 6.]

Step 5. [Decreasel ]

Set l←− l − 1. For l > 0 go to [Step 3.]

Form = k terminate; else setm←− m+ 1 and go to [Step 2.]
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Step 6. [Interchangebm−1, bm]

Set µ←− µm,m−1, B ←− Bm + µ2Bm−1, µm,m−1 ←− µBm−1/B,

Bm ←− Bm−1Bm/B, Bm−1 ←− B;

then set for1 ≤ j ≤ m− 2 andm+ 1 ≤ i ≤ k



bm−1

bm



←−




bm

bm−1



 ,




µm−1,j

µmj



←−




µmj

µm−1,j



 ,




µi,m−1

µi,m



←−




1 µm,m−1

0 1








0 1

1 −µ








µi,m−1

µim



 .

Form > 2 decreasem by 1. Then go to [Step 2.]

This is adeterministicandpolynomialtime algorithm, which is very efficient not only for the application

that Lenstra et al. gave in their landmark paper [L-L-L], butalso for so many problems that deal with

lattices.

In [L-L-L], Lenstra et al. proved the following propositionand gave a detailed complexity analysis for

the LLL lattice-basis reduction algorithm when applied to integral lattices.

Proposition 1.25

If the real numberB ≥ 2 is such that‖bi‖2 ≤ B, for eachi, then the number of arithmetic operations

needed for the LLL algorithm isO(n4logB) and the integers on which these operations are performed

each have lengthO(nlogB).

Remark:

For the sake of simplicity, we have chosen to present the LLL reduction as was given in the original paper

[L-L-L] knowing that Zassenhaus, using his theory of idempotents, has shown that the LLL algorithm is

applicable to the quadratic formT2 for number fields using floating points instead of integer programming

(see [ZAS 2]). And in fact, we can define an LLL-reduced basis with any norm corresponding to a chosen

positive definite quadratic form (see [COH] or [BEL 1]).

1.6 Factorization over the rationals

Let f(X) ∈ Q[X] be a polynomial of degreedeg(f) ≥ 2.

Without loss of generality, we assumef squarefree, monic, and having coefficients inZ (see section

(1.7) below), and hence our task is reduced to a factorization in Z[X].
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Now, in order to factorizef(X) in Z[X], Zassenhaus, in [ZAS 1], proposed a procedure that is in use since

then. This procedure, based on the Hensel lemma, is a specialcase of the general Henselian technique

which consists of the following:

Algorithm 1.26 "Henselian factorization technique" (cf [W-R])

Input. f(X) ∈ R[X], a squarefree polynomial, whereR is an integral domain.

Output. The complete factorization off(X) in R[X].

Step H1. EmbedR in a ringR′ so that Hensel’s lemma holds inR′[X],

usually by takingR′ to be the ring of integers of a local field corresponding to a suitable modulus;

e.g forR = Z, choosep a suitable prime, and takeR′ = Zp.

Step H2. Find a suitable approximation off(X) in R′[X]. (For the above case, a polynomial

φf (X) ∈ Zp[X] with (φf mod p) = (f mod p) in Fp[X], would be the right candidate).

Step H3. Factorf(X) in R′[X] using the constructive procedure from the proof of Hensel’slemma,

i.e starting with a modular factorization that should be lifted up to a sufficiently good accuracy

determined by a bound, that needs to be calculated, on the coefficients of the factors off in R[X]

allowing the reconstruction of these factors from those inR′[X].

Step H4. Recover the factors off in R[X] by combining those obtained inR′[X]. Each combination is

tested by trial-division, and whenever a factorg ∈ R[X] is found, replacef by f/g and start again

at (Step H3.) using what is left from the modular factorization of the oldf after deleting those

factors corresponding tog.

For our case,f(X) in Z[X], the first step consists in choosing a primep not dividing the resultant off and

f ′, which is, up to sign, equal to the product of the leading coefficient of f and its discriminant. This

choice ofp allows (f mod p) to have the same degree asf and to preserve the squarefreeness. Having

chosen earlierf to be monic, it would be the same to work with the discriminantof f or its resultant.

The polynomialφf (X) ∈ Zp[X] satisfying(φf mod p) = (f mod p) in Fp[X], provides the required

approximation off(X) in Qp[X], we then can proceed to Step H3, i.e the factorization off(X) in Qp[X],

seeking thep-adic monic irreducible factors off . For that, we start by factoring(f mod p), which

is a factorization in a finite field, thus can be achieved usingBerlekamp Algorithm, (cf [BER]). If(f

mod p) is irreducible, thenf is also irreducible. Otherwise, we continue by computing a boundB on the

coefficients of any non-trivial factor off(X), for instance Mignotte’s bound (cf [MIG] & page 63 below).
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Then, applying Hensel’s lemma will enable us to lift the factorization found modulop to one modulope

for somee satisfyingpe > 2B, so that the coefficients of any factor off(X) in Z[X] are actually in the

interval ] − pe

2 ,
pe

2 ], and hence these factors are already reduced modulope. In this case, the modular

factors (i.e factors modulope) represent accurate approximates of thep-adic factors.

Now, every monic factorg ∈ Z[X] of f(X) is actually a product of some of thep-adic factors, and con-

versely, every combination of some of thep-adic factors off may correspond to a rational true factor of

f . Therefore, we can recover all rational factors off from the factors modulope by forming all possible

products of them, each taken at most once, then reducing the resulting polynomials modulope and test-

ing them by trial division.

The method just sketched for factorization overQ, known as the Berlekamp-Zassenhaus algorithm, re-

covers the rational factors off by essentially trying all combinations of thep-adic factors (2s combi-

nations, wheres is the number ofp-adic factors). Hence, this algorithm has an exponential worst case

complexity.

However, in practice, this algorithm seems to work well, because the complexity is not exponential in

the degree off . It is only exponential in the number ofp-adic factors, which is precisely the number of

modular factors, and which isusuallymuch smaller thandeg(f). The worst case may occur if all factors

of f have very low degrees. An example is given by the Swinnerton-Dyer polynomials that are known

to cause the standard Berlekamp-Zassenhaus algorithm to take an exponential running time. They have

been generalised by Kaltofen et al. (cf [K-M-S]) who gave a larger class of polynomials having the same

feature.

Ther-th Swinnerton-Dyer polynomial is defined as:

f(X) :=
∏(

X±
√

2±
√

3± · · · ± √pr

)

wherepr is ther-th prime and where the product is taken over all2r possible choices of + or - signs.

This polynomial lies inZ[X], has degreen = 2r, and is irreducible overZ, being in fact the minimal

polynomial overQ of the primitive elementα =
√

2 +
√

3 + · · · + √pr of the extension ofQ by the

square roots of the firstr primes,K = Q(
√

2,
√

3, · · · ,√pr).

Knowing that for any primep, Fp2 contains all the square roots of2 mod p, 3 mod p, · · · , pr mod p,

because for any primêp 6= p, the polynomialX2− p̂ ∈ Fp[X] is irreducible and defines the unique Galois

FieldFp2, thus we conclude that(f mod p) factorizes into linear factors overFp2. Hence, the irreducible

factors of(f mod p) overFp are eitherlinear or quadratic, which yieldsn/2 ≤ s ≤ n, and may lead to

a combinatoric explosion.
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In order to reduce somehow the effect of the long combinatoric search, it is worthwhile trying the fol-

lowing tricks.

1. D. R Musser4 suggested that several modular factorization s should be determined and different

primes should be used to minimise the number of modular factors and to restrict their possible

degrees. Comparing the different patterns of factorizations so obtained enables the elimination

of some of them. Incompatibility of these patterns means irreducibility of the polynomial to be

factored. For example, iff is the product of a linear and a cubic irreducible polynomials modulo

one prime, and the product of two quadratic irreducible factors modulo another prime, thenf is

itself irreducible.

Musser showed that the mean number of primes needed to establish the irreducibility of a random

polynomial grows very slowly with the degree. For polynomials of degree less than or equal 200,

five modular factorizations are enough.

2. The trial divisions needed to verify whether a product of some modular factors is a true rational

factor of f or not, will not all be successful. The exponential behaviour corresponds exactly to

the case where all the trial divisions must fail. So it is important to develop strategies to detect

unsuccessful trial divisions as quickly as possible.

Trying the constant coefficient of the polynomial first can eliminate some of the cases. And an

early abort trial divisionstrategy pointed out by Abbott (cf [ABB]) can eliminate other cases. It

consists in checking the size of the coefficients during the division declaring the latter unsuccessful

as soon as any coefficient becomes too big (exceeding the bound above), (cf also [COH]).

Another way of overcoming the combinatoric long search and yet discovering true factors off , was

given by Lenstra et al. in [L-L-L]. Their idea was to built certain lattices inRn+1 by means of which the

rational factors off will be determined. They use their LLL lattice-basis reduction algorithm to find the

shortest vectors in these lattices as it turns out that the seeked irreducible factors off do correspond to

these shortest vectors.

An advantage of this method is that with one modular factor off , we definitelydiscover an irreducible

rational factor off , while the combinatoric search doesn’t ensure a right choice of combinations for the

first few trials. In addition, the eventual irreducibility of f , becomes easy to decide since in this case, the

first irreducible factor discovered will bef itself.

But the more important feature of this method is its polynomial-time complexity! The factorization of

polynomials over the rationals entered then a new era: This problem is no longer difficult since we know

4in his paper:On the efficiency of a polynomial irreducibility test, Journal ACM 25 pp 271-282, April 1978.
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agoodalgorithm that solves it. An algorithm beinggoodwhen its running time is polynomial in the size

of the input data.

Surprisingly, in practice the LLL factorization algorithmseems to be slower than the Berlekamp Zassen-

haus algorithm, and could not replace it as a standard factorization method. The lattice-basis reduction

part of the former algorithm, consumes a lot of time because of the large dimension of the lattice so ob-

tained and the large size of the coefficients of the vectors soinvolved. This leads to a poor performance

and motivates more research again.

A nice algorithm was suggested quite recently by van Hoeij [HOE 2] which efficiently solves the com-

binatoric problem by reducing it to a type of a Knapsack problem that can be solved using the LLL

lattice-basis reduction algorithm. Although the Knapsackproblem is an NP-hard problem, the use of the

LLL lattice-basis reduction algorithm should give this newalgorithm a polynomial-time complexity.

Van Hoeij’s new algorithm is much more efficient in practice than the original LLL factorization algo-

rithm proposed by Lenstra et al. because the lattice constructed in van Hoeij’s algorithm has dimension

equal to the number of modular factors, which is usually muchsmaller than the degree off ; in addition

the vectors of the lattice have much smaller entries.

1.7 Some assumptions

In this work, we study the problem of factoring a univariate polynomialf(X) whose coefficients are in a

global fieldK of the ring of integersOK.

SinceK is a field, we are certain of the existence and unicity, up to units, of the solution for our prob-

lem. So our task would be to identify the most efficient available methods that explicitly determines the

irreducible factors off(X).

Writing f(X) = cont(f) ·pp(f), when possible, we notice that to completely factorf(X) means to factor

its content as well, which is an integer factorization problem and involves other approaches, that will

not be subject of our study. In addition, factoring large random integers is much harder than factoring

integral polynomials. So, we will only be concerned with factoring primitive polynomials.

Besides this remark, we know that GCD’s exist inK[X], so we can computeGCD(f, f ′) and deter-

mine the squarefree part off(X) as in section (1.4). Therefore, from now on, we make the following

assumption:

The polynomial to be factored issquarefree. (Sqf)

If not, a reduction to a squarefree polynomial will be performed as first step of our factorization algo-

rithm.
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In addition, sinceK is a field, we can assume without loss of generality thatf(X) is monic. For, if it is

not the case, 1
lc(f)f(X) is a monic polynomial inK[X].

But since it would be very handy to perform computations inOK[X] instead, we will then need to assume

not onlymonicityof f , but also integrality of its coefficients; in such a case, Gauss lemma simplifies our

task.

We recall that the long division with remainder in a polynomial ringR[X] is not always possible whenR

is not a field. Nevertheless, long division by a monic polynomial always works.

So it would be advantageous to ensure both conditions, whichcan be achieved by a change of variables

as follows. If f(X) = f̃(X)/d, whered ∈ OK, d 6= 0 andf̃(X) =
n∑

i=0

aiXi ∈ OK[X], an 6= 0.

Set: X1 = anX, then,

f̃(X) = an

(
X1

an

)n

+ an−1

(
X1

an

)n−1

+ · · ·+ a1

(
X1

an

)

+ a0

=
1

an−1
n

[

X
n
1 + an−1X

n−1
1 + anan−2X

n−2
1 + · · · + an−2

n a1X1 + an−1
n a0

]

Hence:dan−1
n f(X) is a monic polynomial with integral coefficients in the indeterminateX1.

Therefore, we can assume from now onwards that, unless otherwise stated:

The polynomial to be factored ismonicand hasintegral coefficients. (Mon)

By Gauss lemma, we know that the factorization inK[X] and the factorization inOK[X] coincidefor monic

polynomials. While it doesn’t always have a meaning to talk about unique factorization inOK[X] since

the latter need not be a UFD. SinceOK is a Dedekind domain, by Gauss lemma, the monic irreducible

factors off we are seeking inK[X], do belong toOK[X], which enables us to save a lot of energy by

working directly with algebraic integers.
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CHAPTER TWO

TRAGER ’ S METHOD FOR

FACTORIZATION OVER AN ALGEBRAIC

EXTENSION FIELD

2.1 Introduction and fundamental results

A field extensionK/K is said to beseparableif the separable degree1 of K overK is maximum, that is,

is equal to the degree of the extension[K : K]. If K = K(α), for some elementα that is algebraic over

K, thenK is separable overK if and only if the minimal polynomial ofα is separable, that is, has no

repeated roots. By the Primitive Element Theorem, for everyfinite separable field extensionK/K, there

exists an elementα ∈ K such thatK = K(α).

LetK be a finite separable extension of degreem of the fieldK (= Q orFq(t)) 2 and assumeK = K(α),

where the algebraic elementα has the minimal polynomialmα(Y) ∈ R[Y], whereR = Z or Fq[t].

Let f(X) ∈ K[X] be a polynomial that we assume squarefree, monic, and havingcoefficients inZ[α], for

the number field case, or inFq[t][α], for the function field case. And consider the problem of finding the

complete factorization off(X) overK[X] using Trager’s method.

Trager’s method for factorization over an algebraic extension field has its origin in Kronecker’s work. It

has been improved quite recently by Encarnación [ENC].

Assuming that efficient factorization algorithms for polynomials over the rational number and function

fields are known, the main idea of Trager’s factorization method is to reduce the problem of factoring

f(X) in K[X], to a factorization of an other polynomial inK[X], (K = Q or Fq(t)).

This can be done via the norm map that sends elements of an extension field back to the ground field.

1cf [LAN] page 177
2Note that forK = Q the separability condition is superfluous, sinceQ is a perfect field.
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Denote byσ1, · · · , σm the distinct embeddings ofK in an algebraic closurēK of K. There are exactly

m of them, since we assumed the extension separable.

For an elementa ∈ K, the norm is the element ofK defined as:

N(a) :=

m∏

i=1

σi(a)

Applying the norm coefficient-wise to a polynomialg(X) ∈ K[X], we can extend the definition of the

norm to elements ofK[X]. In particular, we have:

N (g(X)) =

m∏

i=1

σi (g(X))

where the isomorphismsσi are applied tog(X) coefficient-wise.

From Galois theory, we know thatN(a) ∈ K because it is fixed by all elements of the Galois group

Gal(K|K), and henceN (g(X)) ∈ K[X].

In addition, since theσi are field homomorphisms, the norm is a multiplicative map from K[X] to K[X]

as well. i.e

N (g1(X)g2(X)) = N (g1(X))N (g2(X)) for all g1(X), g2(X) ∈ K[X]

There are several formulae for the norm. For an elementa ∈ K, the norm can be calculated as the

constant term, up to sign, of its minimal polynomial. This term can be formulated as a determinant, and

it turns out that it is directly related to the notion of the resultant.

The resultant is a computationally efficient tool for computing the norm, and one can show that the

resultant is multiplicative and satisfies:

ResY(u(Y), v(Y)) = lc(u)deg(v)
∏

ρj

v(ρj)

where theρj ’s run through all roots of the polynomialu(Y), andlc(u) denotes the leading coefficient of

the polynomialu.

Hence for a polynomialg(X) ∈ K[X], as it is defined overK = Q(α), it can be considered as a polynomial

in two variables defined overQ, that isg(X) = g(X, Y)|Y=α. So, we get:

ResY (mα(Y), g(X, Y)) =

m∏

i=1

g(X, σi(α)) (2.1)

=
m∏

i=1

σi(g(X)) = N(g(X))

The norm can then be given by the formula:

N(g(X)) = ResY (mα(Y), g(X, Y))
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Note that from (2.1) we deduce that:

deg (N(g(X))) = mdeg (g(X)) = deg (mα) deg (g) (2.2)

And we have the following results about this map.

Lemma 2.1

If g(X) ∈ K[X] is irreducible, thenN (g(X)) is the power of an irreducible polynomial ofK[X].

Proof:

Let N (g(X)) =
∏

j N
ej

j (X) be a factorization ofN (g(X)) into irreducible factors inK[X]. By

consideringσ = id, we know thatg(X) |N (g(X)) in K[X].

Sinceg(X) is irreducible inK[X], g(X) dividesNj(X) in K[X] for somej.

Henceσi(g(X)) |Nj(X) in σi(K[X]) for all i and soN (g(X)) |Nm
j (X) in K[X]. But Nj(X) ∈ K[X],

thereforeN (g(X)) |Nm
j (X) in K[X] and hence

N (g(X)) = Nm′

j (X), for somem′ ≤ m, wherem = [K : K].

�

Lemma 2.2

Suppose that bothg(X) ∈ K[X] andN (g(X)) ∈ K[X] are squarefree.

Let N (g(X)) =
∏t

j=1Nj(X) be a factorization ofN (g(X)) into distinct irreducible factors inK[X].

Then
t∏

j=1

GCD (g(X),Nj(X)) is a factorization ofg(X) into irreducible factors inK[X].

Proof:

Let g1(X), · · · , gr(X) be the irreducible factors ofg(X) in K[X].

On the one hand, since the norm map is multiplicative, we have:

N (g(X)) =
∏

i

N (gi(X))

On the other handN (g(X)) =
∏

j Nj(X) with theNj all distinct, sinceN (g(X)) is supposed squarefree.

AsNj is irreducible, we getNj |N (gi(X)) for somei = i(j).

But gi(X) is irreducible, hence, by the preceding lemma,N (gi(X)) is a power of its irreducible factor in

K[X],Nj. This power would then divide the squarefree polynomialN (g(X)). Whence

N (gi(X)) = Nj (2.3)

Reordering the factors ofN (g(X)), if necessary, we obtain:r = t and

N (gi(X)) = Ni , ∀i = 1, · · · , r
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Hencegi is a common divisor forNi and the polynomialg(X) which is squarefree, and soGCD(g(X),Ni(X))

is a factor ofg(X) which appears exactly once since in additionGCD(gj(X),N(gi(X))) = 1 for i 6= j.

�

Lemma 2.3

Letg(X) ∈ K[X] be a squarefree polynomial of degreen, whereK = K(α) is a separable extension,

with [K : K] = m.

Then there exists only finitely manyλ such thatN (g(X − λα)) is not squarefree.

Proof:

Let {βi,j}1≤i≤n be the roots ofσj(g(X)) in an algebraic closure ofK.

Then the zeros ofN (g(X − λα)) are the{βi,j + λσj(α)} and hence,N (g(X − λα)) has repeated roots

if and only if

βi,j + λσj(α) = βk,l + λσl(α)

for somei 6= k , j 6= l.

This would imply that: λ =
βi,j − βk,l

σl(α)− σj(α)
,

the division being possible since the extension is separable (σj(α) 6= σl(α)).

Obviously, there are only finitely many possibilities forλ such thatN (g(X − λα)) is not squarefree.

Observe that there are at mostn(n− 1)m(m− 1)/2 of them.

�

2.2 Trager’s algorithm

Algorithm 2.4 "Trager’s Algorithm"(cf [ENC])

Input. A monic squarefree polynomialf(X) ∈ K[X] whereK = K(α) with α a root of its minimal

polynomialmα(Y) ∈ K[Y]. Assume thatf has coefficients inZ[α], for the number field case, or

in Fq[t][α], for the function field case.

Output. Complete factorization off overK[X].

Step 1. Computeλ such that the norm

Nλ(f(X− λY)) := resY (mα(Y), f(X − λY))

is squarefree.
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Step 2. Completely factor the normNλ(f(X− λY)) into irreducible factors

N1, · · · ,Nt overK.

Step 3. Compute theGCD′s Gi(X) = GCD (Ni(X), f(X − λα)) overK.

Step 4. Return
t∏

i=1

Gi(X + λα) the complete factorization off .

In practice, a few trials suffice to obtain the squarefree norm of step 1.

In [LAD], Landau showed that, for number fields, Trager’s algorithm runs in polynomial time, provided

we use a polynomial time algorithm to factor the norm.

2.3 Some improvements on Trager’s algorithm

More recently, for the caseK = Q, Encarnacíon in [ENC] presented a device for reducing the number

of combinations of modular factors of the norm, in case a combinatorial search is performed to recover

true factors of the norm from the lifted ones modulo a higher power of a suitably chosen prime that has

been used for the factorization modulop step.

Theorem 2 in [ENC], characterises the modular factors of atrue combinationby some easy-to-check

conditions. Any combination that does not satisfy these conditions, is then known to beextraneousand

will be ignored during the trial division phase, which will help speeding up this phase of the algorithm.

We will give a general version of this theorem that applies tothe Function Field case as well.

Theorem 2.5

Letf(X) = f(X, α) ∈ Z[α][X] (or Fq[t, α][X] depending on whetherK is a number field or a function

field).

Assumef(X) is a squarefree polynomial whose norm is also squarefree.

Let’s denote byp a rational prime3 that does not divide the leading coefficientslc(mα) andlc(N(f(X)))

nor the discriminantsdiscr(mα) anddiscr(N(f(X))).

Letmα ≡mα,1 mα,2 · · · mα,s (mod p) be a complete factorization ofmα modp.

LetNi = ResY (mα,i(Y), f(X, Y)), the resultant being computed modulop.

If

Ni =

ri∏

j=1

Ni,j

3p ∈ Z or p ∈ Fq[t] depending on the case.
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is a complete factorization ofNi, for i = 1, · · · , s, then a complete factorization ofN(f) modulop is

given by

N(f) ≡
s∏

i=1





ri∏

j=1

Ni,j



 ( mod p)

Furthermore,deg(mα,i) dividesdeg(Ni,j), anddeg(Ni) = deg (mα,i) deg (f)

Proof:

Since the resultant is multiplicative, we have

N = ResY (mα(Y), f(X, Y)) ( mod p)

= ResY

(
s∏

i=1

mα,i(Y), f(X, Y)

)

( mod p)

=
s∏

i=1

ResY (mα,i(Y), f(X, Y)) ( mod p)

=
s∏

i=1

Ni ( mod p)

Hence the factorization ofNi into irreducible factors, yields a complete factorizationof N (mod p), all

computations being done modulop.

Moreover, the definition of theNi and (2.2) above, yield

deg(Ni) = deg (mα,i) deg (f)

To show thatdeg (mα,i) divides also the degrees of the irreducible factorsNi,j , we will first show that

in factNi,j is a norm of some polynomial over a finite field obtained by adjoining a root ofmα,i. And

hence, by rewriting this norm as a resultant involvingmα,i we deduce the divisibility property of the

degrees again from (2.2) above.

For that, note thatNi is the norm of the polynomial̃f(X, Y)|Y=αp whereαp is a root ofmα,i and

f(X, Y) ≡ f̃(X, Y) ( mod p).

SinceN is squarefree, andp was chosen to preserve the squarefreeness modulop,Ni is squarefree for all

i. ButNi is the norm of the squarefree polynomialf̃(X, αp). So we can use the result (2.3) in the proof

of Lemma (2.2 ) and deduce thatNi,j is the norm of an irreducible factor of̃f(X, αp), and therefore,

deg(Ni,j) is a multiple ofdeg(mα,i).

�

For an example of the implementation of this result, we referto [ENC]. We just briefly mention here how

can this theorem be applied, as proposed by Encarnación.
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Instead of factoring the normN modulop, we first factor theminimal polynomialmα modulop into

irreducibles factorsmα,1, · · · ,mα,s, then fori = 1, · · · , s we compute the resultants

Ni = ResY (mα,i(Y), f(X, Y))

modulop, and factor eachNi into irreducible factorsNi,1, · · · ,Ni,ri . Then we lift the factorization

N =

s∏

i=1

ri∏

j=1

Ni,j ( mod p)

which is a complete factorization of the normN modulop, to a sufficiently high power ofp. Let’s for

simplicity, denote the lifted factors also byNi,j.

LetCi denote the set of all theNi,j, (1 ≤ j ≤ ri), occuring in a chosen combination of the lifted factors.

Then ifC = C1 ∪ · · · ∪ Cs is the corresponding combination, by Theorem (3.10), we know that

Ci 6= ∅, i = 1, · · · , s

So any combination that leaves one of theCi empty, will be discarded because it can not correspond to a

true factor.

In addition, we can check the following condition that should be satisfied by the degree of any potential

factorg of f ,

deg(g) =
1

deg (mα,i)

∑

Ni,j∈Ci

deg(Ni,j) i = 1, · · · , s

This condition actually implies the first one, i.e the condition on theCi, but Encarnacíon suggests to

retain both of them for clarity.
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CHAPTER THREE

DIRECT FACTORIZATION METHODS

OVER A GENERAL NUMBER FIELD

In this chapter, we will present various algorithms for factorization of polynomials having coefficients

in a number field. These algorithms differ from Trager’s algorithm, which avoids computations in the

number field by sending the polynomial down to the ground fieldQ, with the cost of a higher degree

polynomial that needs to be factored overQ. We will call themdirect factorization algorithms, because

they are applied to the polynomial as it is over the number field.

The first one did appear almost in the same time as Trager’s algorithm and is a natural generalisation of

the Berlekamp-Zassenhaus factorization algorithm over the rationals; while the last one is built on the

most recent Knapsack factorization method.

Recall that in the whole chapter,K will denote a number field given by specifying a primitive element

α whose minimal polynomialmα(Y) ∈ Z[Y] is monic and has degreem, which may be assumed to be

greater than2.

3.1 Weinberger and Rothschild approach

The two powerful advantages that enable Weinberger and Rothschild in [W-R] to succeed in the gener-

alisation of the usual Henselian technique for factoring polynomials inZ[X], are:

1. A perfect choice of the representation of numbers in the number fieldK, allowing a denominator

that can be taken the same throughout all the steps of the algorithm.

2. An ability to handle finite fields and modular computationsexaclty as needed for this purpose.

We start by explaining these points before giving the algorithm itself.
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3.1.1 Representation of elements inK

Since the primitive elementα defines aQ-basis forK, elements ofK can be represented as polynomials

in α of degree less thanm with coefficients inQ, that may be chosen in
1

d
Z with d any denominator

common to the former coefficients. Thus, given a polynomialg(X) in K[X], one can easily exhibit a

denominatord, so that the coefficients ofg(X) can be represented as polynomials inα of degree< m

with coefficients in
1

d
Z and sog(X) itself is in

1

d
Z[α][X].

On the other hand, elements ofOK can also be viewed as elements of a certain
1

d
Z[α], take for instance

d to be the discriminant ofK (cf e.g [NAR]). So

{

d > 0
∣
∣
∣ OK ⊂

1

d
Z[α]

}

6= ∅ and the well order of

N provides a smaller element for it. Actually, a more general statement is also true and we have the

following.

Definition 3.1

We define thedefectof an integral basis1 {ω1, · · · , ωm} to be the integer:

min

{

d > 0
∣
∣
∣ OK ⊂

1

d
Z[ω1, · · · , ωm]

}

For the special case whereωi = αi−1, we denote the defect bydefect(α). This is actually the largest

denominator appearing in the reduced representation of theelements ofOK , i.e representations of the

form
P (α)

d
with P (Y) ∈ Z[Y], deg(P ) < m whered is coprime withcont(P ).

This number may not be easy to determine and one would be content with the following.

Lemma 3.2

LetD0 be the largest positive integer whose square divides the discriminant of mα(Y).

Thendefect(α)|D0 so that OK ⊂
1

D0

Z[α].

Proof: see [NAR].

Factoring polynomials inK[X] introduces the problem of choosing an appropriate denominator for the

polynomials involved. Weinberger and Rothschild pointed out that when factoring a polynomial

f(X) ∈ 1

d
Z[α][X], new denominators can occur, and the irreducible factors off overK may have a

denominator other thand. For example, overK = Q(α), whereα = i
√

3, the polynomialX2 + X + 1,

which is in
1

d
Z[α][X] with d = 1, factorises asX2 + X + 1 =

(
X + 1

2(1 + α)
) (

X + 1
2(1− α)

)
, with

factors having coefficients in
1

2
Z[α][X].

This is however controllable by the following lemma that generalises the Gauss lemma.

1An integral basis ofK is a system{ω1, · · · , ωm} of integers ofK which is linearly independant

overQ and generatesOK asZ-module.
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Lemma 3.3 (Weinberger & Rothschild)

Letf(X) ∈ 1

d
OK[X] be a monic polynomial and supposef(X) = g(X)h(X) ∈ K[X], whereg(X) , h(X)

are monic. Theng(X) , h(X) ∈ 1

d
OK[X].

Proof: see [W-R].

Hence if the monic polynomialf(X) ∈ 1

d
Z[α][X], certainly f(X) ∈ 1

d
OK[X] sinceα is an algebraic

integer, and thus by lemma (3.3) above, any monic factorg(X) of f(X) satisfies:

g(X) ∈ 1

d
OK[X] ⊂ 1

d
· 1

D0

Z[α][X]

whereD0 is the denominator of lemma (3.2) or even the absolute value of discr (mα(Y)).

Hence we can choose an integerD = d ·D0 such that:

f and all its monic factors overK[X] lie in 1
DZ[α][X].

3.1.2 Structure of the finite fields and rings involved

In order to generalise the factorization method forZ[X] described in section (1.6), one needs to understand

what happens when reducing modulo a prime or a power of a prime.

By describingK andZ[α] as:

Q(α) ∼= Q[Y]/ 〈mα(Y)〉 =







m−1∑

j=0

ajα
j
∣
∣
∣ aj ∈ Q







Z[α] ∼= Z[Y]/ 〈mα(Y)〉 =







m−1∑

j=0

ajα
j
∣
∣
∣ aj ∈ Z







we can see that the behaviour ofK andOK under the aforementioned reduction will be dominated and

determined by the behaviour ofmα(Y) under this reduction.

If mα remains irreducible, the reductionmod p affects only the coefficients of the polynomials inα,

elements ofZ[α] orQ[α]. ThusZ[α] maps onto(Z/pZ) [α] which is a field ofpm elements, and

so do the elements ofQ[α] with denomintors not divisible byp.

In this case, the factorization algorithm of Weinberger andRothschild will be very similar to the

Berlekamp-Zassenhaus algorithm.

If on the contrary,mα mod p is no longer irreducible, thenZ[α]/〈p〉 splits into different factors and

Weinberger and Rothschild propose to use the Chinese Remainder Theorem (CRT) to combine the

resulting algebraic numbers.
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Assumingp ∤ discr(mα), so thatmα mod p remains squarefree, let

mα mod p = mα,1 mα,2 · · · mα,s

be a complete factorization ofmα mod p, where themα,i are monic irreducible polynomials in(Z/pZ) [Y],

and we assume knowing monic polynomialsmα,i in Z[Y] which reduces tomα,i , i.e such that

mα,i mod p = mα,i . In addition, the degreesdeg(mα,i) = mi, satisfy
∑s

i=1mi = m and we may

assume the coefficients ofmα,i to be reduced modulop.

Then to each factormα,i of mα mod p corresponds a finite field ofqi = pmi elements

Fqi = Fpmi
∼= (Z/pZ) [Y]/ 〈mα,i(Y)〉

and we have the isomorphism:

Z[α]/〈p〉 ∼= Fpm1 × · · · × Fpms

Similarly, to each lifting of themα,i, m
(k)
α,i ∈ Z[Y], corresponds a ring, denotedWk(Fqi), defined as:

Wk(Fqi) := Z[Y]/〈pk , m
(k)
α,i(Y)〉 ∼=

(
Z/pkZ

)
[Y]/〈m(k)

α,i(Y)〉

This ring consisting ofqki elements, can be written as:

Wk(Fqi) =







mi−1∑

j=0

ajα
j
i,k

∣
∣
∣ aj ∈ Z/pkZ







whereαi,k is a root ofm(k)
α,i. It can be mapped ontoFqi by reducing the coefficients of the polynomials

in αi,k modulop. This ring will play the role ofZ/pkZ for the Berlekamp-Zassenhaus algorithm, during

the necessary lifting process. The complete field playing the role ofQp, is hereK⊗Qp.

The arithmetic in these residue class rings and fields is donemodulo the residue classes. This is called

modular arithmetic.

A way to approach modular computations, as given by Weinberger and Rothschild, is to consider "mod "

as abinary operation, which then will have the lowest precedence of all other binary operations defined

overK orK[X], and is allowed to have as its right operand, a list of operands defininga mod (b, c) as:

a mod (b, c) := (a mod b) mod (c mod b)

Example

In Q[X] takea(X) = 4X6 − 3X5 + X
4 + X

3 + 7X2 + 1, b = 3, andc(X) = X
2 − X + 4.

a(X) mod (3, c) = X
6 + X

4 + X
3 + X

2 + 1 mod (X2 − X + 1)

= 1− X− 1 + X = 0 mod (X2 − X + 1)
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Recall that the modular inversion of non-zero elements, when possible, is done by means of the Extended

Euclidean Algorithm.

In order to apply the CRT in this case, we need to build a ring homomorphism betweenZ[α] and the

above ringsWk(Fqi). This is done by means of a reductionmod
(

pk, m
(k)
α,i

)

which works by first

reducing the coefficients of the polynomials inα modulopk, then taking the remainder of the division

by m
(k)
α,i of the polynomial so obtained and replacingα by αi,k.

This map can be extended toZ[α][X] coefficient-wise, in addition, ifD is such that:f and all its monic

factors overK[X] lie in 1
DZ[α][X], then we can extend the above map to1

DZ[α][X] providedp ∤ D so that
(
D−1 mod pk

)
exists. This results in the following maps:

1

D
Z[α][X] −→ Wk(Fqi)[X]

g(X) =
1

D

∑

t

btX
t 7−→

∑

t

((
(D−1 mod pk)bt

)
mod (pk, m

(k)
α,i)
)

X
t

Note that the reductions ofg(X) in the ringsWk(Fqi)[X] all have the same degree, because a coefficient

of g(X) reduces to zero in one of theWk(Fqi) only when it is divisible byp. Hence we can apply the

CRT only tos-tuples of equal-degree polynomials fromWk(Fq1)[X] × · · · ×Wk(Fqs)[X], in such a case

the CRT, applied coefficient-wise, guaranties the existence ofg(X) ∈ 1
DZ[α][X] which reduces exactly to

the chosen polynomials in theWk(Fqi).

3.1.3 The algorithm of Weinberger and Rothschild

We will give the algorithm of Weinberger and Rothschild slightly modified by applying it to a monic

polynomialf(X) ∈ OK[X], henced = 1, and by not being explicit on the intermediate steps of the Hensel

lifting.

Their algorithm completely factors a monic polynomial inK[X], and is also applicable to nonmonic

polynomials after some simple transformations of the polynomial and a good choice of the denominator.

Algorithm 3.4 "Weinberger & Rothschild " (cf [W-R])

Input. A monic squarefree polynomialf(X) ∈ OK[X].

Output. Complete factorization off(X) in K[X].

Step 1. DetermineD such that:

f and all its monic factors overK[X] lie in 1
DZ[α][X].

Step 2. Choose a primep not dividingD, and if one takesD = defect(α) then make sure

that p ∤ discr(mα) so thatmα remains squarefreemod p.

ILHEM BENZAOUI Univ. of Stellenbosch



Direct factorization methods over a general number field 42

Step 3. Factor mα(Y)mod p obtaining:

mα ≡mα,1 mα,2 · · · mα,s (mod p) with deg(mα,i) = mi and
∑s

i=1mi = m.

May try different primesp in order to minimise the number of factorss of mα mod p.

Step 4. Compute several factorizations off(X) mod p, one for each factormα,i of mα mod p

thus obtaining:

(D−1 mod p) ·Df(X) ≡
∏

l

fl,i(X) mod (p,mα,i) , 1 ≤ i ≤ s

wherefl,i(X) ∈ Fqi [X]. If for somei, f(X) mod (p,mα,i) is not squarefree, choose a new prime

p starting again at (Step 2).

Step 5. Compute a boundB on the absolute values of the coefficients of any factor off(X) in K[X]

(cf [W-R]), and determinek such thatpk > 2B.

Step 6. Lift the factorization of mα mod p up to accuracypk using the quadratic Hensel’s algorithm

(1.4) obtaining a factorization :

mα(Y) ≡
s∏

i=1

m
(k)
α,i(Y) mod pk

where m
(k)
α,i ≡mα,i mod p

Step 7. Lift the factorization off(X) mod (p,mα,i) up to accuracypk obtaining s factorizations in

Wk(Fqi), for 1 ≤ i ≤ s:

(D−1 mod pk) ·Df(X) ≡
∏

l

f
(k)
l,i (X) mod

(

pk,m
(k)
α,i

)

(3.1)

such thatf (k)
l,i (X) ≡ fl,i(X) mod p

Step 8. Combine the combinatoric search with the Chinese RemainderAlgorithm (CRA) applied to each

possibles-tuple of equal-degree factors modulo
(

pk,m
(k)
α,i

)

to find factors off in 1
DZ[α][X].

If s = 1 no CRT is needed.

The time complexity of this algorithm is clearly much like the complexity of Berlekamp-Zassenhaus

algorithm, although all constants are larger. The reason isthat even though the CRA is polynomial time,

lots of time is consumed by the combinatoric search as in the original algorithm for a factorization over

the rationals. The number of trial divisions can become exponential inn×s, which makes this algorithm

not practically applicable if the numbers of factors ofmα mod p is not reasonably small, or if the

degree of the polynomial to be factored is very high.
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Another disadvantage of this algorithm occurs if there are several factors of the same degree in each of

the modular factorizations off . This increases the number of possibles-tuple of equal-degree factors

on which the CRA is applied, and the only way to find the possible tuples that lead to true factors, is to

try them all. We cite the following example from [ABB] that shows two exponential large searches, one

on top of the other, due to the fact that bothf andmα are actually Swinnerton-Dyer polynomials using

different primes.

Let f(X) = X
4 − 10X2 + 1 =

∏
(X±

√
2±
√

3) (2nd Swinnerton-Dyer polynomial),

mα = Y
4 − 24Y2 + 4 =

∏
(X±

√
5±
√

7) (a generalised Swinnerton-Dyer polynomial).

With p = 1201, mα(Y) ≡ (Y + 51)(Y + 259)(Y + 942)(Y + 1150) mod p.

The factors ofmα mod p being all linear, the four fieldsFqi coincide withFp. This means that the four

modular factorization off will also be equal. But applying the algorithm, we need to consider them all.

And it turns out thatf(X) mod p has also only linear factors:

f(X) ≡ (X + 202)(X + 327)(X + 874)(X + 999) mod p

which, after lifting, will produce a factorization with only linear factors.

Hence to test whetherf has a linear factor overK, we must apply the CRA to all4 × 4 × 4 × 4 = 256

possible ways of picking a factor off in every one of the four fieldsFqi . Since there is no linear factor,

we check the quadratic one. For that we need to try all6 × 6× 6 × 6 = 1296 possible ways of picking

pairs of factors off from the four modular factorizations· · · . But the degree-4 polynomialf has no

quadratic factors, and hence is irreducible.

3.2 The LLL factorization method

3.2.1 First use of lattices for factorization of polynomials over algebraic number fields

In this section we present a direct generalisation of the LLLmethod for factoring polynomials with

rational coefficients sketched earlier (cf section(1.6)),focusing here on the factorization of polynomials

with coefficients in a number field. This generalisation was given by A. Lenstra in [LEN 3].

By doing so, we start from Weinberger and Rothschild’s work,as it is itself a generalisation of the

Henselian technique on which the LLL factorization algorithm is also based. We will then use the same

notations unless otherwise stated.

The important novelty that the LLL factorization algorithmbrings is the use of lattices to overcome the

combinatoric search, which evolves in a polynomial-time algorithm, but there are other advantages as

well, not of less importance.
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From Weinberger and Rothschild’s work, we know that by reduction mod p, the minimal polynomial

of α may split. Its complete factorization determines a number of finite fields over whichf is factorised.

Each of the modular factorizations off , thus produced, is then lifted and a number of combinatoric

searches followed by an application of the CRT, enable the reconstruction of the factorization seeked.

Besides the exponential-time combinatoric search, difficulties may arise at (Step 4) of Weinberger and

Rothschild’s algorithm:

If for somei, f(X) mod (p,mα,i) is not squarefree,

choose a new primep and start again at (Step 2).

The LLL factorization algorithm is a remedy to this, becauseit needs onlyonefinite field over which

f is factorised, and it uses onlyone suitablemodular factor off to obtain a true irreducible factor off

overK. This makes the Hensel lifting less cumbersome, having to deal only with two polynomials at a

time.

The fact that one modular factor off enables us to reach a true irreducible factor off overK is due to

the following two ingenious facts observed and exploited byLenstra et al. first in [L-L-L],

(1) Due to the squarefreeness off over the finite field, each modular factor corresponds to aunique

true irreducible factor which may eventually bef itself, but there is also a certaindivisibility

propertythat can be preserved during the Hensel lifting which is of a high importance as well (see

Proposition (3.5) below).

(2) A geometric view of the arithmetic problem allowing the use of latticesfor which a polynomial-time

algorithm is known to reduce their bases to ones with shortest vectors. But the more important

fact is that a certain lattice can be built in such a way that whenever one of its vectors is short

enough, it corresponds to a polynomial that has a non trivialco-divisor withf (see Proposition

(3.6) below). In addition, among the shortest vectors of this lattice, a vector corresponding to an

irreducible factor off can be found.

Let f,mα,mα,i andn,m,mi be as in the last section.

Recall that even iff has coefficients inZ[α] itself, not just integers as we assumed in (1.7), a new

denominator may arise and need to be considered. So we chooseD as in (3.1.3), i.e such that:

f and all its monic factors overK[X] lie in 1
DZ[α][X].

Choose a primep such that:p ∤ D · discr(mα) · discr(f).
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ThenD is invertible modulop, (mα mod p) remains squarefree, and we get an isomorphism:

1

D
Z[α]/〈p〉 ∼= Fq1

× · · · × Fqs

(See subsection (3.1.2)).

On the other hand, sincediscr(f) ∈ 1
DZ[α] andp ∤ discr(f), the image ofdiscr(f) in Fq1

× · · · × Fqs

is not the zero vector and hence:

∃i0 | discr(f) mod (p,mα,i0) 6= 0

SetH = mα,i0 .

Hence, (cf page 40),H(Y) is a monic polynomial inZ[Y] of degreem′ := deg(H) = mi0,

such thatH mod p = mα,i0. SuchH determines the finite field on which a factorization off is required,

that is,Fq whereq = q0 = pmi0 . ( Note that during the lifting process, the polynomialHk(Y) ∈ Z[Y]

such thatH ≡ Hk mod pk, is not necessarily equal tom(k)
α,i0

.)

Assume we are given a polynomialh ∈ Z[α][X] satisfying the following conditions:

(C.1) h monic,

(C.2)
(
h mod (pk,Hk)

)
divides

(
f mod (pk,Hk)

)
in Wk(Fq) [X],

(C.3) (h mod (p,H1) ) is irreducible in Fq [X],

(C.4) (h mod (p,H1) )2 does not divide(f mod (p,H1) ) in Fq [X].

wherek is a positive integer.

Note that, sinceh is monic, it has the same degree as(h mod (p,H1) ) and
(
h mod (pk,Hk)

)
. Hence

by (C.2) deg(h) ≤ n, and by (C.3) deg(h) > 0.

Let l = deg(h(X)). Hence0 < l ≤ n

Proposition 3.5

The polynomialf has a monic irreducible factorh0 ∈
1

D
Z[α][X] of degree: l ≤ deg(h0) ≤ n,

uniquely determined up to sign, such that(h mod (p,H1) ) divides(h0 mod (p,H1) ) in Fq [X].

Further, if g(X) is a monic divisor off(X) in
1

D
Z[α][X], then the following assertions are equivalent:

(i) (h mod (p,H1) ) divides(g mod (p,H1) ) in Fq [X],

(ii)
(
h mod (pk,Hk)

)
divides

(
g mod (pk,Hk)

)
in Wk(Fq) [X],

(iii) h0(X) dividesg(X) in
1

D
Z[α][X].
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In particular
(
h mod (pk,Hk)

)
divides

(
h0 mod (pk,Hk)

)
in Wk(Fq) [X].

Proof: See2 [LEN 3] and section (4.7) below.

Now let’s fix an integerr, l ≤ r < n, and consider the set of polynomials in1DZ[α][X] of degree≤ r,

that when reducedmod pk, are divisible by
(
h mod (pk,Hk)

)
.

By Proposition (3.5) above,h0 belongs to this set provideddeg(h0) ≤ r.
Sinceh0 is monic, we can as well, restrict ourselves to the subsetL of such polynomials that, in addition,

when they have the highest degreer, have their leading coefficient inZ. So let’s consider the latter set

instead.

The aim now is to find simple conditions that ensure thath0 effectively belongs toL, and enable to

determineh0 in this case.

By identifying an elementg =
r−1∑

i=0

m−1∑

j=0

aij α
j
X

i + ar0X
r of Lwith the vectorg = (a00 , a01 , · · · , ar0)

tr

∈
(

1

D
Z

)rm+1

⊂ Rrm+1, the setL can be viewed as a lattice inRrm+1 having an upper triangular

basis given by:

{
1

D
pk αj

X
i

∣
∣
∣ 0 ≤ j < m′ , 0 ≤ i < l

}

∪
{

1

D
αj−m′

H(α)Xi
∣
∣
∣ m′ ≤ j < m , 0 ≤ i < l

}

∪
{

1

D
αj hXi−l

∣
∣
∣ 0 ≤ j < m , l ≤ i < r

}

∪
{

hXr−l
}

For the rational case the two sets introduced above coincideand correspond to a lattice with a basis given

by:
{
pkXi | 0 ≤ i < l

}
∪
{
hXi | 0 ≤ i ≤ r − l

}

This lattice has determinantd(L) = pkl and in generald(L) = pklm
′

We can measure the size of a polynomialg ∈ L by:

The norm ofg: ‖g‖ = ‖g‖ where‖g‖ = (
∑

i,j

|aij |2)1/2 is the ordinary Euclidean norm inRrm+1.

The height ofg: H(g) = |g|∞ where|g|∞ = max
i,j
{|aij |} is the ordinary norm Sup inRrm+1.

2The proof of this proposition is very similar to the one for the rational case, we defer it to the next Chapter, section (4.7),

where we will give proofs of this proposition, and the next one, in a more general context.
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Proposition 3.6

Let a non-zero polynomialb ofL satisfy:

pklm
′
>
(

DH(f)((n + 1)m(1 + H(mα))m−1)1/2
)rm (

DH(b)((r + 1)m(1 + H(mα))m−1)1/2
)nm

(3.2)

Thenb is divisible byh0 in K[X], and in particularGCD(f, b) 6= 1.

Proof:

Let g = GCD(f, b).

By Proposition (3.5), it suffices to show that(h mod (p,H) ) divides(g mod (p,H) ) in Fq [X].

Assuming this is not true, we show that amongst the multiplesof g built out of f andb, i.e elements

of the formλf + µb with λ, µ ∈ 1

D
Z[α][X], those that have a degree< deg(g) + deg(h) will all

reduce to zero modulomod (pk,Hk), causing a certain latticẽL, that we will precise later, to have

a determinant bigger thanpklm
′
/D(n+r)m, while by Inequality (3.2) this determinant should be strictly

smaller thanpklm
′
/D(n+r)m, which will give a contradiction that confirms that actually(h mod (p,H) )

divides(g mod (p,H) ) in Fq [X].

The details of the proof will be given in section (4.7) (cf also [LEN 3]). Here we will just definẽL and

show how can the terms in Inequality (3.2) be derived.

For that, as we did earlier, we identify the polynomials

{

αj
X

if
∣
∣
∣ 0 ≤ j < m , 0 ≤ i < deg(b) − deg(g)

}

∪
{

αj
X

ib
∣
∣
∣ 0 ≤ j < m , 0 ≤ i < n− deg(g)

}

with them(n+ deg(b) − 2deg(g))-dimensional vectors of their coefficients.

Let L̃ be the lattice generated by the projections of the vectors above on

1

D
ZXdeg(g) +

1

D
ZαXdeg(g) + · · · +

1

D
Zαm−1

X
n+deg(b)−deg(g)−1

By Hadamard’s inequality, we have:

d(L̃) ≤
∏

i,j

‖αj
X

if‖
∏

i,j

‖αj
X

ib‖ (3.3)

So, to get the right contradiction, it suffices to bound this product from above strictly bypklm
′
/D(n+r)m

which is possible by Inequality (3.2) as we can show that for all i,j

‖αj
X

if‖ ≤
(

H(f)((n + 1)m(1 + H(mα))m−1)1/2
)rm

and ‖αj
X

ib‖ ≤
(

H(b)((r + 1)m(1 + H(mα))m−1)1/2
)nm
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Indeed, by an induction on the positive integert, we can prove that for all̃g ∈ 1

D
Z[α][X], and for allt, u,

H(αt
X

ug̃) = H(αt g̃) ≤ H(g̃)(1 + H(mα))t

and

‖αt
X

ug̃‖ = ‖αt g̃‖ ≤ H(g̃) (m(deg(g̃) + 1))1/2 (1 + H(mα))t.

For that writeg̃ =

deg(g̃)
∑

i=0

m−1∑

j=0

aij α
j
X

i and mα(Y) = Y
m + bm−1Y

m−1 + · · · + b1Y + b0 ,

so thatαm = −(bm−1α
m−1 + · · · + b1α+ b0).

Note that, by definition of the norm and height of polynomials:

H(αt
X

ug̃) = H(αt g̃) , ∀u

idem for the norm, the coefficients being globally not affected by the multiplication by powers ofX.

The caset = 0 is trivial.

Let t = 1. Then:

α g̃ =

deg(g̃)
∑

i=0

m−1∑

j=0

aij α
j+1

X
i

=

deg(g̃)
∑

i=0



−ai,m−1b0 +

m−1∑

j=1

(ai,j−1 − ai m−1bj)α
j



 X
i

=

deg(g̃)
∑

i=0

m−1∑

j=0

(ai,j−1 − ai m−1bj)α
j
X

i

whereai,−1 = 0,∀i.

Since, for alli, j,

|ai,j−1 − ai, m−1bj | ≤ |ai,j−1|+ |ai, m−1||bj |

≤ H(g̃) + H(g̃)H(mα)

≤ H(g̃)(1 + H(mα))

we deduce the following:

H(α g̃) = max
i,j
|ai,j−1 − ai, m−1bj| ≤ H(g̃)(1 + H(mα))

and

‖α g̃‖2 =

deg(g̃)
∑

i=0

m−1∑

j=0

|ai,j−1 − ai, m−1bj |2

≤
deg(g̃)
∑

i=0

m−1∑

j=0

[H(g̃)(1 + H(mα)]2

≤ [H(g̃)(1 + H(mα))]2 [m(deg(g̃) + 1)]
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and so, our assertions are true fort = 1.

Now assuming the results true fort, we get:

H(αt+1 g̃) = H(α · αt g̃) ≤ H(αt g̃)(1 + H(mα))

≤ H(g̃)(1 + H(mα))t(1 + H(mα)) = H(g̃)(1 + H(mα))t+1

Then, using this result we obtain:

‖αt+1
X

u g̃‖2 = ‖α · αtg̃‖2 ≤
[
H(αtg̃)(1 + H(mα))

]2 [
m(deg(αtg̃) + 1)

]

≤
[(

H(g̃)(1 + H(mα))t
)
(1 + H(mα))

]2
[m(deg(g̃) + 1)]

= H(g̃)2(1 + H(mα))2(t+1) [m(deg(g̃) + 1)]

This finishes our induction.

Whence:

d(L̃) ≤
∏

i,j

‖αj
X

if‖
∏

i,j

‖αj
X

ib‖

≤
∏

i,j

H(f)(1 + H(mα))j+1 [m(deg(f) + 1)]1/2
∏

i,j

H(b)(1 + H(mα))j+1 [m(deg(b) + 1)]1/2

≤
(

H(f)(m(n + 1))1/2
)m(deg(b)−deg(g))





m−1∏

j=0

(1 + H(mα))j





(deg(b)−deg(g))

×
(

H(b)(m(deg(b) + 1))1/2
)mn





m−1∏

j=0

(1 + H(mα))j





n

And from
∏m−1

j=0 (1+H(mα))j = (1 + H(mα))
∑m−1

j=0 j = (1+H(mα))m(m−1)/2, with H(mα) ∈ N∗

anddeg(b) − deg(g) ≤ deg(b) ≤ r we deduce the inequalities:

d(L̃) ≤
(

H(f)((n + 1)m(1 + H(mα))m−1)1/2
)rm (

H(b)((r + 1)m(1 + H(mα))m−1)1/2
)nm

<
pklm

′

Dm(r+n)

by (3.2).

�

For the rational case, inequality (3.3) reads:

d(L̃) ≤
∏

i

‖Xif‖
∏

i

‖Xib‖ ≤ ‖f‖deg(b) ‖b‖n ≤ ‖f‖r ‖b‖n

So it suffices to havepkl > ‖f‖r ‖b‖n or equivalently:

‖b‖ <
(

pkl/‖f‖r
)1/n

(3.4)
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It becomes clear, then, that Proposition (3.6) above gives an upper bound for the norm of polynomials in

L sharing a non-trivial divisor withf .

Theorem 3.7

Let b1, · · · , brm+1 be a LLL reduced basis for the latticeL defined in page 46.

Suppose that:

pklm
′/m >

(

2n(rm+1)(n+ 1)n+r(r + 1)n
(

2r

r

)n

m4n+r(m− 1)n(m−1)

(1 + H(mα))(n+r)(m−1)|discr(mα)|−n
)1/2

(DH(f))n+r‖mα‖2n(m−1) (3.5)

Then:deg(h0) ≤ r (i.eh0 ∈ L), if and only ifb1 satisfies inequality (3.2).

Proof:

If b1 satisfies inequality (3.2), then by Proposition (3.6),h0 dividesb1 in K[X].

Hence,deg(h0) ≤ deg(b1). But deg(b1) ≤ r sinceb1 is inL. Thus:deg(h0) ≤ r.
Now assumedeg(h0) ≤ r. Then by combining the results of Mignotte and Weinberger and Rothschild,

we get an upper bound for the norm of any monic factor off of degree≤ r, (cf [LEN 3]).

Applied toh0, this bound gives:

‖h0‖ ≤ H(f)

(

2(n+ 1)m3(m− 1)m−1

(
2r

r

))1/2

‖mα‖2(m−1) |discr(mα)|−1/2

On the other hand, the basisb1, · · · , brm+1 is LLL reduced, and thus by Property 5 in Lemma (1.20),

b1 satisfies:

‖b1‖2 ≤ 2dim(L)−1‖x‖2 for all x ∈ Λ, x 6= 0.

In particular this is true forh0 sinceh0 ∈ L. So: ‖b1‖ ≤ 2rm/2‖h0‖.
Therefore,

H(b1)
n ≤ ‖b1‖n ≤ 2rmn/2‖h0‖n

≤ 2
rmn

2 H(f)n
(

2(n+ 1)m3(m− 1)m−1

(
2r

r

))n/2

‖mα‖2n(m−1)|discr(mα)|−n/2

Hence:

H(b1)
n ≤ 2n(rm+1)/2(n+ 1)n/2

(
2r

r

)n/2

m3n/2(m− 1)n(m−1)/2

|discr(mα)|−n/2
H(f)n‖mα‖2n(m−1)

Multiplying both sides of this inequality by

[

Dn
(
m(r + 1)(1 + H(mα))m−1

)n/2 ×Dr
H(f)r

(
m(n+ 1)(1 + H(mα))m−1

)r/2
]

,
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and grouping the terms together we obtain:

Dn
H(b1)

n
(
m(r + 1)(1 + H(mα))m−1

)n/2 ×Dr
H(f)r

(
m(n+ 1)(1 + H(mα))m−1

)r/2

≤ 2n(rm+1)/2(n+ 1)(n+r)/2(r + 1)n/2

(
2r

r

)n/2

m(4n+r)/2(m− 1)n(m−1)/2

(1 + H(mα))(m−1)(n+r)/2 |discr(mα)|−n/2 (DH(f))n+r ‖mα‖2n(m−1)

< pklm
′/m

by inequality (3.5), so we get the desired inequality.

�

Theorem (3.7) provides a simple way to check whetherh0 belongs toL or not. Having this tool in hand,

we will show that we actually can achieveh0 = ±b1.

Indeed, assumedeg(h0) ≤ r and consider the process of reducing the basis ofL.

Assume that by applying Algorithm (1.24), at a certain step,we obtain the firstt vectors of the LLL

reduced basis ofL, b1, · · · , bt, with 1 ≤ t ≤ rm+ 1. Then, we know that these vectors already satisfy

properties (1) and (2) of Definition (1.18).

Thus, they actually form a reduced basis for the lattice of rank t spanned by the firstt vectors of the

initially given basis ofL.

If deg(h0) ≤ t, it will be possible to findh0 in the latter lattice.

Therefore, we fix at oncek such that inequality (3.5) is satisfied for the value ofr = n−1, which implies

that inequality (3.5) also holds for any smaller value ofr, and so Theorem (3.7) can be used for any such

r. This choice ofk will also determineHk andWk(Fq).

Then, we consider the sequence of latticesLr defined as in page (46), for the values ofr = l, l +

1, · · · , n − 1 in succession, reducing their bases, then applying Theorem(3.7) and checking whether

h0 ∈ Lr or not, but we stop as soon as we findh0 belonging to one of these lattices.

At this moment, since we are considering the values ofr = l, l+ 1, · · · , n− 1 in succession, we know

thath0 /∈ Lr−1. Thus,r − 1 < deg(h0) ≤ r, and sodeg(h0) = r.

But, by Proposition (3.6),h0 divides the first vectorb1 of the LLL reduced basisLr, as b1 satisfies

inequality (3.2).

Hence,r = deg(h0) ≤ deg(b1) ≤ r. So the monic polynomialh0 dividesb1 in K[X] and have same

degree asb1. Therefore,h0 = c · b1 with c ∈ K. But b1 ∈ Lr and have degreer, so lc(b1) ∈ Z, and

hencec ∈ Z. This implies the equalityc · lc(b1) = lc(h0) = 1 in Z, hencec = ±1, andh0 = ±b1.
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Now we are ready to give the LLL factorization algorithm.

Algorithm 3.8 "LLL factorization algorithm for Number Fiel ds-1" (cf [LEN 3])

Input. A monic squarefree polynomialf(X) ∈ OK[X].

Output. Complete factorization off(X) in K[X].

Step 1. DetermineD such that:

f and all its monic factors overK[X] lie in 1
DZ[α][X].

Step 2. Choose a primep such that:p ∤ D · discr(mα) · discr(f).

Step 3. Factor mα(Y)mod p obtaining:

mα ≡mα,1 mα,2 · · · mα,s (mod p) with deg(mα,i) = mi and
∑s

i=1mi = m.

SetH = mα,i0 wherei0 is such thatdiscr(f) mod (p,mα,i0) 6= 0.

Step 4. Factor f(X) mod (p,H), thus obtaining:

(D−1 mod p) ·Df(X) ≡
∏

j

fj(X) mod (p,H)

If f(X) mod (p,H) is irreducible, thenf(X) is irreducible. Seth0 = f(X) and stop.

Step 5. Pick an irreducible factor off mod (p,H), and chooseh ∈ Z[α][X] so thath mod (p,H) is

the irreducible factor just chosen. We may assume the coefficients ofh reduced mod p.

Step 6. Determine the least positive integerk satisfying (3.5) withr replaced byn− 1, i.e such that:

pklm
′/m >

(

2n((n−1)m+1)(n+ 1)2n−1(n)n
(

2(n − 1)

n− 1

)n

m5n−1(m− 1)n(m−1)

(1 + H(mα))(2n−1)(m−1)|discr(mα)|−n
)1/2

(DH(f))2n−1‖mα‖2n(m−1)

Step 7. Using the quadratic Hensel’s algorithm (1.4), lift the factorizationmα ≡ H×
∏

i6=i0

mα,i mod p

up to accuracypk for the value of k just calculated, thus obtaining a polynomialHk(Y) ∈ Z[Y]

such thatH ≡ Hk mod pk

Step 8. Modify h without changing(h mod (p,H)), by lifting the factorization of(f mod (p,H)) up

to accuracypk for the value of k calculated in (Step 6).

We may assume the coefficients ofh reduced mod pk so that‖h‖ ≤ (1+ lp2k), wherel = deg(h).

Step 9. Setr ←− l.
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Step 10. Find a LLL reduced basisb1, · · · , brm+1 for the latticeL defined in (3.2.1).

If b1 does not satisfy inequality (3.2), thendeg(h0) > r, go to (Step 11), otherwise go to (Step 12).

Step 11. While r < n − 2, setr ←− r + 1 and go back to (Step 10), otherwisedeg(h0) > n − 1, so

h0 = f andf is irreducible. Stop.

Step 12. Seth0 = ±b1. Replacef by f/h0 and from the list of irreducible factors off(X) mod (p,H)

of (Step 4), delete those that divideh0 mod (p,H). If it remains only one factor stop. Otherwise

go back to Step 5.

Remarks:

- By this algorithm, irreducibility becomes easy to decide as the firsth0 produced isf itself.

- Since(h mod (p,H)) is monic irreducible, the polynomials(h mod (pk,Hk)) will all be monic irre-

ducible and so, up to a very high accuracypk, we actually construct a good approximation of the minimal

polynomial of ap-adic root off .

A complexity analysis of the above algorithm was given by A. Lenstra (cf Proposition (4.3) and Theorem

(4.5) of [LEN 3]). It shows the polynomial-time character ofthis algorithm.

Theorem 3.9

The algorithm sketched above, computes the irreducible factorization of any monic squarefree poly-

nomialf(X) ∈ 1
DZ[α][X] of degreen > 0. The number of arithmetic operations needed by the algorithm

is O
(
n6m6 + n5m6log(m‖mα‖) + n5m5log(DH(f))

)
, the integers on which these operations are

performed each have binary lengthO
(
n3m3 + n2m3log(m‖mα‖) + n2m2log(DH(f))

)
.

Proof: See [LEN 3].

Although the above algorithm is polynomial-time, it seems it is still slow, and for practical reasons,

A. Lenstra recommend his second algorithm (3.10) below instead.

3.2.2 A2nd LLL factorization algorithm for polynomials over algebrai c number fields

We present now another factorization algorithm for polynomials over algebraic number fields suggested

also by A. Lenstra who actually recommend it as a more practical algorithm than the previous one even

though its complexity may not be polynomial. This second algorithm, published in [LEN 2], relies also

on Weinberger and Rothschild’s work, so we will continue to use the same notations as in the last section

and subsection unless otherwise needed.
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Most of the necessary material for this new algorithm has already been introduced, so we will only recall

the results and refer to where they appeared.

The first observation we need to make, concerns the application of Proposition (3.6) to an irreducible

polynomialF with coefficients overZ (using then the rational version of Proposition (3.6)).

Defining a latticeL as in page 46 withr < n, (on which we will be more explicit later on), we see that

Inequality (3.4) should not hold, as the only irreducible factor possible isF itself and anyb divisible by

F can not be inL as its degree exceedsr.

This means that for all non-zero polynomialsb ∈ L:

‖b‖ ≥
(

pkl/‖F‖r
)1/n

TakeF (Y) = mα(Y) andr = deg(mα)− 1 = m− 1 , and defineL to be the set of polynomials inZ[Y]

of degree≤ m − 1, that when reduced modulopk, are divisible by the irreducible factor(Hk mod pk)

of (mα mod pk) . That is,L is the lattice obtained as in page 46 and given by the following basis:

{
pkYi | 0 ≤ i < l

}
∪
{
HkY

i | 0 ≤ i < m− l
}

(3.6)

We recall that the monic polynomialHk ∈ Z[Y] is the one defined in page 45, andl is herel = deg(Hk).

Thus, for all non-zero polynomialsb ∈ L:

‖b‖ ≥
(

pkl/‖mα‖m−1
)1/m

This means that the non-zero polynomials ofL have norms bounded from below by a monotone increas-

ing function ofk.

Whenk is fixed sufficiently high to allow computations with acceptable accuracy, the inequality above

always gives a lower bound for the norm of any non-zero element of L. In particular, this lower bound

applies also to the elements of a LLL-reduced basis ofL, sayb1, b2, · · · , bm (dim(L) = m), so we have:

min
i
‖bi‖ ≥

(

pkl/‖mα‖m−1
)1/m

On the other hand, from lemma (1.22) (cf page 22), we know thatthe radius of the largest ball inscribed

in the fundamental domain,Π(Λ), of a latticeΛ given by a LLL-reduced basisb1, b2, · · · , bm, satisfies:

rmax ≥
1

2
min

i
‖bi‖ ×

1

Od

whereOd =
∏k

i=1 ‖bi‖
d(Λ) is the orthogonality defect of the basisb1, b2, · · · , bm.

In particular, for the latticeL defined above, assuming it given by a LLL-reduced basisb1, b2, · · · , bm,

we get

rmax ≥
1

2 ·Od
×
(

pkl/‖mα‖m−1
)1/m
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So

rmax ≥
1

2 · C ×
(

pkl/‖mα‖m−1
)1/m

for anyC ≥ Od.

As a consequence, any closed ball centered at the origin and having radiusr < 1
2·C

(
pkl/‖mα‖m−1

)1/m
,

would be entirely contained inΠ(L).

In addition, by definition of the fundamental domain of a lattice Λ, every element ofRm has moduloΛ

a representative inΠ(Λ). And an element that is not congruent to a boundary point, is then congruent to

auniqueinterior point of the fundamental domainΠ(Λ).

Moreover, by Lemma (1.17) (cf page 19), for any vectorw ∈ Rm, there is at most onẽw ∈ Π(Λ) such

that: w ≡ w̃ mod (Λ), and this element, when it exits is obtained by:

w̃ = w −M⌊M−1
w⌉ (3.7)

whereM is the matrix of the LLL-reduced basis ofΛ.

ForΛ = L, we would like to be able to reach̃w in the closed ballB(0, r] whenw̃ is there. This enables

the reconstruction of the algebraic numbers dealt with in the algorithm of Weinberger and Rothschild,

avoiding then the CRT.

Indeed, by choosingr = B, a bound on the absolute values of the coefficients of any monic factor

of f overK, we are ensured that the fundamental domain of a latticeL contains all these coefficients,

multiplied byD. A care need to be given to the denominatorD as the latticeL is integral so it enables

the representation of any element ofZ[α] but not the elements of
1

D
Z[α] as they are.

As elements ofZ[α], the coefficients of the monic factors off , multiplied byD, will be identified with

them−dimensional vectors of their coefficients (as polynomials of α). For simplicity, we will not make

any distinction between the polynomial representation of the elements ofZ[α] and their corresponding

vectors.

The latticeL just constructed, is defined in such a way that these coefficients of monic factors off

overK, are congruent to the coefficients of the factors off mod (pk,Hk), or equivalently factors off

overWk(Fq), which are easily found by lifting the factorization off mod (p, H), and then forming the

putative divisors off by multiplying the irreducible factors off mod (pk,Hk), as for Weinberger and

Rothschild’s algorithm.

The coefficients of the factors off overK, are the vectors of shortest norm in their residue classes

modL if k is chosen such that these coefficients are bounded by the radius r = B chosen as above.
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Therefore, they can be uniquely determined from their residues mod (pk,Hk) by means of Equation

(3.7).

The same matrixM is valid for all the coefficients, so we only have to computeM and its inverse once.

Algorithm 3.10 "LLL factorization algorithm for Number Fie lds-2" (cf [LEN 2])

Input. A monic squarefree polynomialf(X) ∈ OK[X].

Output. Complete factorization off(X) in K[X].

Step 1. DetermineD such that:

f and all its monic factors overK[X] lie in 1
DZ[α][X].

Step 2. Choose a primep such that:p ∤ D · discr(mα) · discr(f).

Step 3. Factor mα(Y)mod p obtaining:

mα ≡mα,1 mα,2 · · · mα,s (mod p) with deg(mα,i) = mi and
∑s

i=1mi = m.

SetH = mα,i0 wherei0 is such thatdiscr(f) mod (p,mα,i0) 6= 0, and setl = deg(H).

Step 4. Factor f(X) mod (p,H), thus obtaining:

(D−1 mod p) ·Df(X) ≡
∏

j

fj(X) mod (p,H)

If f(X) mod (p,H) is irreducible, thenf(X) is irreducible. Stop.

Step 5. Compute a boundB/D on the absolute values of the coefficients of any monic factorof f(X) in

K[X] (cf [W-R]).

Step 6. Determine the least positive integerk satisfying:

pkl > (2 · C · B)m · ‖mα‖m−1

whereC is any bound on the orthogonal defect of a reduced basis of thelatticeL defined by (3.6).

Step 7. Determine the polynomialHk(Y) ∈ Z[Y] of degreel such thatH ≡ Hk mod pk, for the value

of k just calculated.

Step 8. Lift the factorization off(X) mod (p,mα,i) up to accuracypk thus obtaining:

(D−1 mod pk) ·Df(X) ≡
∏

j

f
(k)
j (X) mod (pk,Hk)

Step 9. Compute the matrixM of the LLL-reduced basis of the latticeL defined by (3.6).
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Step 10. Proceed to a combinatorial search by computing all possiblecombinations:

h̃ = D ·
∏

js

f
(k)
js

mod (pk,Hk) =

deg(h̃)
∑

i=0

wi X
i , with deg(h̃) ≤ ⌊n/2⌋

and checking, by trial division, whether the polynomial

h :=
1

D
·





deg(h̃)
∑

i=0

(wi −M⌊M−1
wi⌉ ) Xi



 ∈ 1

D
Z[α][X]

is a factor off overK.

As one can see, this algorithm uses the lattice technique in acompletely different way than the previous

LLL-factorization algorithm.

The combinatoric search prevent it from being polynomial-time, but implementations, by A. Lenstra

himself, show that show that it is much faster than Weinberger and Rothschild’s algorithm. Actually, this

should not be surprising as Lenstra’s algorithm-2 uses onlyonering Wk(Fq) to reconstruct the factors

of f overK, while Weinberger and Rothschild’s algorithm needs all theringsWk(Fqi) which makes

the combinatoric search even longer, besides the CRA applied to each coefficient, which consumes time

even though a polynomial-time, whereas, in the same time Lenstra’s algorithm-2 uses the same matrix

M for all the coefficients, and that’s what makes it very practical.

3.3 Modular factorization : ideal approach

3.3.1 A generic algorithm

So far we have applied the Henselian technique for factorization of polynomials using a prime number

p ∈ Z, and residue class computations modulo this prime and some power of it. This was motivated

by the successful efforts to generalise the Berlekamp-Zassenhaus algorithm to the case of number fields.

Nevertheless, with more powerful computer algebra systemsin hand, it becomes easy to apply Algorithm

(1.26) with ideal calculus instead of rational integer calculus.

This ideal approach was already used by Zassenhaus himself in his paper3 "On Hensel factorization II",

which shows that, from a theoretical point of view, the method given in his earlier paper ([ZAS 1]), was

already generalized at that time to polynomials over Dedekind domains using prime ideals rather than

prime numbers. However, from an algorithmic point of view, this ideal approach had to wait until the

mid 90’s when it appeared independently in the work by Roblot([ROB 1] and [ROB 2]) for number

fields, and by Pohst (POH 2]) for a general global field.

3Symposia mathematica, Vol XV, (1973), pp 499-513
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In this section, we want to consider several algorithms thatrely on this ideal approach, and to start with,

we will give an algorithm that we call ageneric algorithmborrowing this expression from Pohst as it

suits very well our context.

We first recall thatK, OK, α, mα, f, m, n are as defined earlier in this Chapter. We recall also that

OK being a Dedekind domain, its prime ideals define discrete valuations onK, and these are exactly all

the non-archimedean valuations ofK up to isomorphism. Therefore, for any choice of a prime idealp

of OK, it is possible to embedK in a non-archimedean complete field, that is, its completionat p. This

field and its ring of integersO
Kp

, provide us with the possibility to apply Algorithm (1.26) takingp as a

modulus.

So let’s fix henceforth,p a prime ideal ofOK.

As for our choice of a prime numberp, some conditions onp, imposed by our context, need to be

satisfied. We choose the prime idealp such that(f mod p) remains squarefree, sop should not divide

discr(f), that isdiscr(f) /∈ p. Similarly p should not dividediscr(mα) so that thep−adic completion

Kp of K is unramified. And without loss of generality, we can assume2 /∈ p. We will not care about a

denominator here, since we will be working inOK as it is. Nevertheless, we still need to impose another

condition onp, that is, we choosep of lowest residual degree and if possible of degree one, in such a case

N(p) would be some prime numberp, otherwise it is a small power ofp. This restriction on the degree of

p helps improving the factorization modulop and the Hensel lifting, while a larger residual degree yields

a larger ringOK/p
k and so easier reconstruction of algebraic numbers fromp−adic approximations of

the coefficients of the factors.

Since it might be faster to work over a small finite field and then lift to obtain a higher accuracy, Pohst

in [POH 2] insists on takingp of degree 1. In practice, it seems easy to find such a prime, butthere is no

certainty that its normp is small. Assuming GRH, the first prime numberp for which there isp above it

of degree 1, is of orderO(Log2|discr(K)|). If K/Q is a Galois extension, it is not difficult to find even

totally split primes, by the Chebotarev density theorem, they appear with probability1/m, while for a

general number field, this probability is only known to be larger than1/m!. In all cases, we know it is

positive .

After choosingp, the factorization off follows the usual scheme, which yields the following algorithm.

Algorithm 3.11 "Generic factorization algorithm " (cf [POH 2])

Input. A monic squarefree polynomialf(X) ∈ OK[X].
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Output. Complete factorization off(X) in K[X].

Step G1. Choose an unramified prime idealp of lowest possible degree, not dividing2discr(f)discr(mα).

Compute a bound on the coefficients of the factors off in OK[X] with respect to a suitable norm,

and determine a sufficiently large exponentk for the Hensel lifting.

Step G2. Factor (f mod p) in the finite fieldOK/p [X].

May try several prime idealsp to get(f mod p) with fewer factors inOK/p [X].

If (f mod p) is irreducible, thenf is irreducible inK[X]. Otherwise go to (Step G3)

Step G3. Lift the factorization of(f mod p) to a factorization inOK/p
k [X] for the value ofk calculated

in (Step G1).

Step G4. Recover a factorization off in K[X].

All the algorithms we want to present in this section, will follow the four steps G1,· · · , G4, however

they will differ in their ways of recovering the true factorsof f . This, as well, imposes specific choices

of the bound and the exponent of Step G2.

Besides being based on the above generic algorithm, an important feature shared by the following algo-

rithms is their use of a LLL-basis reduction at some stage of the recovering process. They are all, as to

say,lattice-basedtechniques.

Remark:

Comparing the above generic algorithm with the algorithms presented earlier in this chapter, we notice

that the modular factorization ofmα is missing. Actually, from Dedekind’s and Kummer’s resultson

the decomposition of ideals in a number field, we know that anyprime idealp of OK lies above the

rational prime ideal generated by the prime number dividingN(p), and if p doesn’t divide the index

[OK : Z[α] ], which is the case whenp ∤ discr(mα), and if the generating polynomialmα factorizes

modulop as
∏

i

m
ei
α,i (mod p), then:pOK =

∏

i

p
ei
i where thepi are exactly those prime ideals lying

abovep. Furthermore thepi have a two-elements representation:

pi = pOK + mα,i(α)OK

and their residual degreesfi satisfy:fi := [OK/pi : Z/pZ ] = deg(mα,i).

This means that, by choosingp, we implicitely have chosen an indexi0 and takenp = pOK +H(α)OK,

whereH = mα,i0 .

The lattice generated byp andH we used earlier, is then a sub-group of the idealp.
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3.3.2 Bounds on the coefficients of the factors

As for any modular algorithm, the concept ofBoundsis crucial. In our case of polynomial factorization,

the necessary bounds are those that enable us to determine the true factors off , that is the factors inK[X].

A factor is known when its coefficients are known. So we actually need bounds on the ceofficients of any

true factor off . These coefficients, forming a finite set, are definitely bounded. However, for efficiency

of computations, we need an a-priori bound to be available.

This brings to mind the idea ofheight of a polynomial, the height of a polynomial overK being the

maximum of the absolute values of its coefficients considered as complex numbers. So we need an upper

bound for the height of any factor off . The height is then measuring how big is this factor. It is a

measure of the size of a polynomial dividingf .

For the sake of completeness, we introduce different functions known to measure the size of a polynomial

in C[X]. From their properties, we will derive some bounds that are useful for our purpose.

Size of a polynomial inC[X]

Let h(X) =

d∑

i=0

aiX
i ∈ C[X] be a polynomial of degreed.

Definition 3.12

We define

⋆ theheightof the polynomialh(X) by: H(h) := max
0≤i≤d

|ai|,

⋆ the lengthof the polynomialh(X) by: L(h) :=
d∑

i=0

|ai|,

⋆ thenormof the polynomialh(X) by: ‖h‖ :=

(
d∑

i=0

|ai|2
)1/2

.

⋆ And ifh(X) = ad

d∏

j=1

(X−ρj), where theρj are the complex roots ofh, counted with their multiplicities,

then we define theMahler measureof the polynomialh(X) by:

M(h) := |ad|
d∏

j=1

max{1, |ρj |} = |ad|
d∏

j=1
|ρj |≥1

|ρj| (3.8)

Note that we have already used the notions of height and norm in page (46) where the polynomialg was

actually considered as a bivariate polynomial inα andX.
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We will give a series of inequalities that help estimating the sizes of our polynomials.

Proposition 3.13

Leth(X) ∈ C[X] be a polynomial of degreed. Then:

H(h) ≤ ‖h‖ ≤ L(h) ≤
√
d+ 1 ‖h‖ ≤ (d+ 1)H(h)

Proof: See [M-S].

Proposition 3.14

If the polynomialh(X) ∈ C[X] is not a monomial, then:M(h) < ‖h‖.

Proof: See [MIG] or [M-S].

Proposition 3.15

If h(X) =

d∑

i=0

aiX
i is a non constant polynomial ovecC, then:

|ai| ≤
(
d

i

)

M(h)

and hence H(h) ≤
(

d
⌊d/2⌋

)
M(h) ≤ 2d−1M(h) and L(h) ≤ 2dM(h).

Proof:

Write h(X) = ad

d∏

j=1

(X− ρj), where theρj are the complex roots ofh.

Using the elementary functions of the roots, the coefficients ofh can be obtained as follows:

ad−i = (−1)d−iad

∑

j1<···<ji

ρj1 · · · ρji

Therefore, for anyi, 0 ≤ i ≤ d, we have

|ad−i| ≤ |ad|
∑

j1<···<ji

|ρj1 · · · ρji | = |ad|
∑

j1<···<ji

|ρj1| · · · |ρji |

≤ |ad|
∑

j1<···<ji

i∏

k=1

max{1, |ρjk |} ≤ |ad|
∑

j1<···<ji

d∏

j=1

max{1, |ρj |}

≤



|ad|
d∏

j=1

max{1, |ρj |}




∑

j1<···<ji

1 = M(h) ×
(
d

i

)

= M(h)×
(

d

d− i

)

Therefore, H(h) = maxi |ai| ≤M(h) ×maxi

(
d

i

)

= M(h)×
(

d

⌊d/2⌋

)

≤ 2d−1
M(h),

(the last statement can be proven by induction ond).

In addition we have,L(h) =
∑

i

|ai| ≤M(h)
∑

i

(
d

i

)

= 2d
M(h). �
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Proposition 3.16

For any non constant polynomialh(X) ∈ C[X], we have:M(h) ≤ (
√
d+ 1)H(h).

Proof: See [PRA].

This means that with the Mahler measure we can estimate all the other size functions, and in particular

since the Mahler measure is clearly a multiplicative function, that isM(hg) = M(h)M(g) which can be

easily shown using Definition (3.12), we can use this property to estimate the size of a factor in terms of

the size of the polynomial to be factored.

Bounds on the roots of a polynomial

We shall give different bounds on the roots of a given monic polynomial overC.

Theorem 3.17

Leth(X) = X
d + ad−1X

d−1 + · · · + a1X + a0 with ai ∈ C.

Then inside the disk|z| ≤ 1 + max
i
|ai|, there are exactlyd roots ofh, counting multiplicities.

Proof: The proof relies on Rouché Theorem, see [PRA].

Theorem 3.18 (Cauchy)

Leth(X) = X
d − bd−1X

d−1 − · · · − b1X− b0, where thebi are nonnegative and at least one of them

is nonzero, so thath is not reduced to a monomial. Then, the polynomialh has a unique positive rootρ,

and the absolute value of the other roots do not exceedρ.

Proof: See [PRA].

Theorem 3.19 (Cauchy)

Leth(X) = X
d + ad−1X

d−1 + · · · + a1X + a0 ∈ C[X].

Then, all the roots ofh are inside the disk|z| ≤ ρ whereρ is the unique positive root of the polynomial:

X
d − |ad−1|Xd−1 − · · · − |a1|X − |a0|.

Proof: See [M-S].

Other bounds on the roots of a polynomial can be found in Stoer& Bulirsch4, Theorem 5.5.8.

4Introduction to Numerical Analysis, 2nd ed. Springer (1993).
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Bounds on the factors and their coefficients

The following is a generalisation of Proposition 2.1.13 of [M-S] for monic polynomials overOK, the ring

of algebraic integers of our number fieldK.

Proposition 3.20

Letf(X) ∈ OK[X] be a monic polynomial. Then, for any monic factorg(X) of f(X), we have:

(i) M(g) ≤M(f),

(ii) L(g) ≤ 2deg(g)M(f) ≤ 2deg(g)‖f‖,

(iii) H(g) ≤ 2deg(g)−1M(f) ≤ 2deg(g)−1‖f‖.

Proof:

Since all the roots ofg are roots off , we obviously haveM(g) ≤ M(f). We get the other inequalities

by applying Proposition (3.15). �

Note that any bound on the height ofg bounds all its coefficients.

Proposition 3.21

Let g(X) ∈ OK[X] be a monic divisor of degreed of the polynomialf(X) ∈ OK[X], and letB be a

bound on the roots off(X). Then, the coefficientsbj of Xj in g(X) satisfies:

|bj | ≤
(
d

j

)

Bd−j

Proof:

Immediate by expressing the coefficientsbj in terms of the roots ofg(X) which are all bounded byB

since they are also roots off . �

Theorem 3.22 (Mignotte)

Let f(X) ∈ OK[X] be a non constant monic polynomial, and letg(X) =
d∑

j=0

bjX
j be a monic divisor

of f(X). Then,

|bj | ≤
(
d

j

)

‖f‖

Proof:

We first prove that|bj | ≤
(d
j

)
M(g) by applying Proposition (3.15). The remaining is due to the fact that

M(g) ≤M(f) ≤ ‖f‖, sincelc(f) = lc(g) = 1. �
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Theorem 3.23 (Mignotte)

Let f(X) ∈ OK[X] be a non constant monic polynomial, and letg(X) =
d∑

j=0

bjX
j be a monic divisor

of f(X). Then,

|bj | ≤
(
d− 1

j

)

‖f‖+

(
d− 1

j − 1

)

Proof: See [PRA] and [COH].

The proof of the first bound of Mignotte as given here might look easy, but in fact it relies on deep

transcendental results such as Jensen’s and Parseval’s formulae, which were dissimulated in the non

given proofs of earlier propositions.

We did refer to Mignotte’s bounds many times in this thesis. They are well known and sharp enough to

be widely used. For different situations, such as in Lenstra’s or Roblot’s cases, Mignotte’s bounds were

applied to get a refined bound that suits the need. Weinbergerand Rothschild, in their original paper,

used the bound in Proposition (3.21) to derive a bound on the rational integers that are coefficients off

considered as a bivariate polynomial inα andX. They might not have been aware of the sharper bound

by Mignotte. Recently, other bounds are known such as Beauzamy’s bound (1992), but they don’t seem

to give an important improvement on the running time of the factorization algorithm.

3.3.3 Roblot’s method of factorization over a number field

In Chapter (2), we have used the embeddingsσ1, · · · , σm of K in an algebraic closurēQ of Q to define

the norm of an algebraic number ofK, a definition that can be extended to the polynomial ringK[X].

Here we will use thesem distinct embeddings to define another norm, a norm in the topological sense

now, choosingC as the algebraic closurēQ.

Let (r1, r2) be thesignatureof K, that is, we assumeK havingr1-real embeddings and2r2-non real

complex embeddings, so thatm = r1 + 2r2. Following the usual convention, we also assume that:

σ1, · · · , σr1 are the real embeddings ofK in C andσr1+1, · · · , σm are the complex embeddings satisfy-

ing: σ̄r1+j = σr1+r2+j for all j such that1 ≤ j ≤ r2.

The conjugates by theσi of an elementa =

m−1∑

l=0

alα
l ∈ K, can then be obtained as:

σi(a) =
m−1∑

l=0

alσi(α)l where the conjugatesσi(α) of α are all the distinct complex roots ofmα and can

be calculated, if necessary, to any desired accuracy.
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The fieldK can then be embedded inRm using the mapψ defined as follows:

a 7−→
(
σ1(a), · · · , σr1

(a),ℜe(σr1+1(a)) + ℑm(σr1+1(a)),ℜe(σr1+1(a))−ℑm(σr1+1(a)), · · ·
)tr

This map induces onOK a map similar to the Minkowski map. The image ofOK is then a lattice inRm.

This is also true for any fractional ideal ofK.

ConsideringK as aQ-vector space, we can define a scalar product by:

< , > : K×K −→ R

(a, b) 7−→
m∑

i=1

σi(a)σi(b)

We can then measure the size of an algebraic numbera ∈ K in terms of the so calledT2-norm

defined by:

T2 : K −→ R+

a 7−→ T2(a) :=< a, a >=
m∑

i=1

|σi(a)|2 = ‖ψ(a)‖2

When the elements ofK are represented using a basisω1, · · · , ωm then, fora =

m∑

l=1

alωl,

T2(a) = a
trAa

wherea = (a1, · · · , am)tr andA = (< ωi, ωj >)1≤i,j≤m is the Gram matrix of the positive definite

quadratic formT2. In particular whenω1, · · · , ωm is an integral basis (cf page 38),A becomes the Gram

matrix of the basis of the latticeOK. Note that, endowed with the quadratic formT2, the latticeOK has

determinant equal to|discr(K)|1/2.

Weinberger and Rothschild, Abbott, and Lenstra, all used the norm|a|∞ := max1≤i≤m |σi(a)|. This

norm was enough for their needs but it won’t be enough from nowonwards because it doesn’t come

from a quadratic form, and so can not be used for the LLL-basisreduction algorithm on which the

algorithms presented here are based.

Let’s give now a generalisation of Mignotte’s bound of Theorem (3.23).

Theorem 3.24

Let f(X) =

n∑

j=0

ajX
j ∈ OK[X] be a non constant monic polynomial, and letg(X) =

d∑

j=0

bjX
j be a

monic divisor off(X). DefineT2(f) :=
∑n

j=0 T2(aj). Then,

T2(bj) ≤
(
d− 1

j

)

T2(f)

[(
d− 1

j

)

+ 2

(
d− 1

j − 1

)]

+m

(
d− 1

j − 1

)2
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Proof:

As field homomorphisms, the embeddingsσi ofK in C, applied coefficient-wise to the elements ofK[X],

preserve divisibility, in a sense that wheng dividesf , σi(g) dividesσi(f), for all i.

Now applying Mignotte’s bound of Theorem (3.23) to the coefficientsσi(bj) of σi(g), we obtain:

|σi(bj)| ≤
(
d− 1

j

)

‖σi(f)‖+

(
d− 1

j − 1

)

where‖σi(f)‖2 =
n∑

k=0

|σi(ak)|2. Hence,

|σi(bj)|2 ≤
(
d− 1

j

)2

‖σi(f)‖2 +

(
d− 1

j − 1

)2

+ 2

(
d− 1

j

)(
d− 1

j − 1

)

‖σi(f)‖

Sincef is monic,‖σi(f)‖ ≥ 1, and thus‖σi(f)‖ ≤ ‖σi(f)‖2. Hence,

|σi(bj)|2 ≤
[(

d− 1

j

)2

+ 2

(
d− 1

j

)(
d− 1

j − 1

)]

‖σi(f)‖2 +

(
d− 1

j − 1

)2

Summing up, we obtain:

T2(bj) ≤
[(

d− 1

j

)2

+ 2

(
d− 1

j

)(
d− 1

j − 1

)] m∑

i=1

‖σi(f)‖2 +m

(
d− 1

j − 1

)2

On the other hand,
m∑

i=1

‖σi(f)‖2 =

m∑

i=1

n∑

k=0

|σi(ak)|2 =

n∑

k=0

m∑

i=1

|σi(ak)|2 =

n∑

k=0

T2(ak) = T2(f)

which finally gives,

T2(bj) ≤
(
d− 1

j

)[(
d− 1

j

)

+ 2

(
d− 1

j − 1

)]

T2(f) +m

(
d− 1

j − 1

)2

.

�

For the purpose of applying the generic algorithm, letp be a prime ideal ofK, and consider the lattice

L = pk. We will show that there is a lower bound for theT2-norm of any nonzero element ofL. This

will then be used to reconstruct the algebraic numbers dealtwith in the factorization algorithm, and so

recover the true factors off , in the same way as for Lenstra’s algorithm-2.

Proposition 3.25

Letγ be a nonzero element ofpk, wherek ≥ 1. Then, T2(γ) ≥ mN(p)2k/m.

Proof:

The inequality between the arithmetic and geometric means gives:

1

m

m∑

i=1

|σi(γ)|2 ≥
(

m∏

i=1

|σi(γ)|2
)1/m
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But

(
m∏

i=1

|σi(γ)|2
)1/m

= |
m∏

i=1

σi(γ)|2/m = |N(γ)|2/m, whereN(γ) = NK/Q(γ) is the norm defined

in Chapter (2). This norm is divisible by the norm of the idealpk sinceγ 6= 0, because it is equal to the

norm of the principal ideal< γ >, which is contained inpk. So|N(γ)| ≥ N(pk) = N(p)k, and hence,

1

m
T2(γ) ≥ |N(γ)|2/m ≥ N(p)2k/m

�

The existence of this lower bound will imply that the minimumof theT2-norm of the elements of a basis

of pk, will be larger than this lower boundmN(p)2k/m. In paticular, if the basis is LLL-reduced for the

T2-norm, the radius of the largest ball inscribed in the fundamental domain of the latticepk, will satisfy:

rmax ≥
1

2 · C × mN(p)2k/m

whereC ≥ Od, and the orthogonality defectOd is calculated for theT2-norm, (see page 55).

As a consequence, choosingk such that

r = B <
1

2 · C × mN(p)2k/m , (3.9)

allows the reconstruction of the coefficients of the factorsof f overK from their approximations modulo

pk, as they correspond to the elements of shortestT2-norm in their residue classes modulopk, since they

belong to the fundamental domain. IfB is any real number exceeding the bound given by Theorem (3.24)

and satisfy Inequality (3.9), we are done. Indeed, Roblot’salgorithm for factorization of polynomials

over an algebraic number field, is then an application of the generic algorithm, wherek is chosen such

that:

k >
m

2

Log(2C · B/m)

Log(N(p))

andB is as just mentioned.

The recovery process follows in exactly the same way as for Lenstra’s algorithm-2 by applying the

formula (3.7) in page 55.

Comparing the timing, Roblot in [ROB 2], shows that his algorithm implemented in PARI is faster

than Pohst’s algorithm implemented in KANT. There seems to be a remarkable difference in the time

consumed by each, but we are not sure whether Pohst’s algorithm in [POH 2] is an improved version

of that used for this comparison. We have chosen to present only Roblot’s algorithm as they are very

similar. Pohst’s approach will be presented for function fields.
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3.3.4 Van Hoeij’s factorization method of polynomials overa number field

Van Hoeij’s algorithm for factorization of polynomials over the rationals and its generalization by Be-

labas to polynomials over a number field, are based on the Zassenhaus-Hensel factorization algorithm,

but proceed differently for the recombination phase to makeit more efficient and hopefully in a polynomial-

time. This new method due to van Hoeij, relies on two main ideas:

1. The possibility to linearise the combinatoric problem.

2. The use of lattice techniques to determine the irreducible factors, as it turns out that they also

correspond to particularly small vectors in some naturallydefined lattice.

Comparing with Lenstra’s et al. algorithms, van Hoeij’s algorithm has the following advantages that

make it superior.

• It gives all the irreducible factors at once.

• It uses lattices with smaller dimensions.

• It uses vectors that are already small since they belong to{0, 1}d. This makes the computations

faster and enables finding smallest vectors for a lower valueof k.

In this subsection, we will present van Hoeij’s method for a number fieldK 6= Q. This will include all

the major ideas for the rational case. We will focus on the so calledall-tracesversion of this algorithm,

one of the series of variants that were given in the original paper [HOE 2], as well as in [BEL 1].

We will apply the generic algorithm following Roblot, so we assume all the previous notations and

results. Whatever other necessary changes that are needed will be specified.

By Hensel’s lemma (Theorem 1.2), consideringf as element ofOKp [X], we can lift the factorization of

f mod p to a factorization inOKp [X], that is,

f =

r∏

j=1

fj fj ∈ OKp [X] irreducible,

such that

f mod p =
r∏

j=1

(fj mod p) in OKp/pOKp [X] ≃ OK/p [X]

The polynomialsfj, called local factorsof f , havingp-adic coefficients, can not be determined with

infinite accuracy, but for any given accuracyk, their reductionsmod pk can be calculated and correspond

to the factors off mod pk obtained by Hensel lifting those factors off mod p.
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Let’s denote byg1, · · · , gs the irreducible factors off overK.

From the Zassenhaus-Hensel factorization technique, we know that: 0 < s ≤ r ≤ n, and, thegi’s are

combinations of thefj ’s, moreover sincef is squarefree, we can characterise the monic factors off as

those polynomialsg ∈ OK[X] of the form:

g =
r∏

j=1

f
vj

j wherevj ∈ {0, 1} (3.10)

This defines a correspondence between vectorsv = (v1, · · · , vr)
tr ∈ {0, 1}r and monic factors off .

The combinatoric search of the Berlekamp-Zassenhaus algorithm checks all such combinations by trial

divisions without knowing -before hand- whether they have integral coefficients or not. Van Hoeij’s

algorithm proceeds differently: it checks the necessary condition of having integral coefficients instead,

by looking for the set of vectorsv for which the polynomialg has integral coefficients.

The Knapsack problem

In order to linearise the combinatoric problem, van Hoeij used theNewton sums(or traces) defined by:

Definition 3.26

Leth ∈ K[X], then theith Newton sum(or trace) Si(h) is the sum of theith powers of the roots ofh

counted with their respective multiplicities.

It follows from the definition that:

Si(gh) = Si(g) + Si(h) ∀g, h ∈ K[X]

In particular, wheng is in the form (3.10),Si(g) =
r∑

j=1

vjSi(fj).

This formula will still hold for powersvj ∈ Z if we extend the definition of traces as follows:

Si(g/h) = Si(g) − Si(h)

Furthermore, by writing a polynomialh ∈ K[X] as h(X) =

d∑

i=0

biX
i = lc(h)

d∏

l=1

(X − ρl) so that

Si(h) =

d∑

l=1

ρi
l , we see thatSi(h) ∈ K as it is a symmetric function of the roots. Moreover, in caseh is

monic with integral coefficients, thenSi(h) ∈ OK, and we have

|Si(h)| ≤ dBroot(h)
i ∀i = 1, · · · , d

whereBroot(h) is any bound on the roots of the polynomialh (cf page 62).
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The ith tracesSi(h) for 1 ≤ i ≤ d, can be calculated from the elementary symmetric functionsof the

roots using the Newton identities (cf [HOE 2] or [COH]).

In particular, the Newton sums are integral combinations ofthe coefficients ofh since these coefficients

are themselves, up to sign, equal to the elementary symmetric functions of the roots and we have:

S1(h) = −bd−1 , Si(h) = −ibd−i −
i−1∑

l=1

Si−l(h)bd−l

LetG = 〈f1, · · · , fr〉 be the multiplicative subgroup ofKp(X)∗ generated by the local factors off , and

letGK = 〈g1, · · · , gs〉 be the subgroup ofG generated by the irreducible true factors off .

Proposition 3.27

Assume that 0 is not a root5 of f .

LetVj = (S1(fj), · · · , Sn(fj))
tr ∈ Kn

p. Then, the vectorsVj ’s areKp−linearly independent. Moreover,

for anyg ∈ G, the vectorV =
r∑

j=1

vjVj satisfies

g ∈ K(X) =⇒ V ∈ Kn =⇒ V ∈ O
n
K

Proof

Denote byS1···n the operator defined byS1···n(h) = (S1(h), · · · , Sn(h))tr .

Let ρ1, · · · , ρn be the roots off in an algebraic closure ofKp.

The vectors 1
ρl

S1···n(X − ρl) = 1
ρl

(ρl, ρ
2
l , · · · , ρn

l )tr, 1 ≤ l ≤ n form a Vandermonde matrix, and

thus they are linearly independent. This means that the vectors S1···n(X − ρl) themeselves are linearly

independent. Since the local factorsfj ’s are disjoint products of the polynomials(X − ρl), the vectors

Vj ’s are sums of the corresponding vectorsS1···n(X − ρl). Therefore, they are linearly independent over

Kp. Hence they span a latticeZV1 + · · ·+ ZVr in Kn
p of rankr.

The map

S1···n : G −→ ZV1 + · · ·+ ZVr

g =

r∏

j=1

f
vj

j 7−→ V =

r∑

j=1

vjVj

is then one-to-one and we have:

V = S1···n(g) =








S1(g)

. . .

Sn(g)








So if g ∈ K(X), thenSi(g) ∈ K, for all i, and henceV ∈ Kn.

But sincef is monic with coefficients inOK, its rootsρl are algebraic integers.

SoS1···n(X − ρl) ∈ On
K for all l. And so isVj for all j. �

5Otherwise one of theVj ’s would be 0.
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Corollary 3.28

If g is a monic factor off overKp, then we have the equivalence:

g ∈ OK[X]⇔ V ∈ Kn ⇔ V ∈ O
n
K

Indeed, it remains to prove thatV ∈ Kn =⇒ g ∈ OK[X]

From Newton identities, we deduce thatg ∈ K[X] wheneverV ∈ Kn.

Now by applying Gauss lemma, we getg ∈ OK[X]. �

This means that to check whetherg is a factor off overK, it suffices to check thatV ∈ On
K,

i.e we check that for alli,

Si(g) =

r∑

j=1

vjSi(fj) ∈ OK

Observe thatfj is only known up to a certain large enough precisionk.

This will also be the case for anyg ∈ G.

But we are looking for irreducible factors off overK, i.eg ∈ OK[X] monic irreducible dividingf .

The coefficients of such a polynomialg have a finitep-adic expansion6 since they are algebraic integers.

Hence, whenk→∞ , the expansions of these coefficients remain inchanged and are much smaller than

thep-adic precisionpk.

Since the Newton sumsSi(g) are integral linear combinations of the coefficients ofg, they should be

much smaller than a multiple ofpk, or at most close to a multiple ofpk. Compared with Newton sums of

other factors off overKp, theSi(g) are smaller.

Therefore, findingg means finding a{0, 1}-vectorv such that

r∑

j=1

vjSi(fj) + λpk + µ = 0 (3.11)

This equation is a kind of a Knaspack problem, since solving it means minimising simultaneously the

linear forms
r∑

j=1

vjSi(fj) overZ.

Solving the Knapsack problem

In order to solve this Knapsack problem we introduce the lattice7:

W = {v ∈ Zr|g =

r∏

j=1

f
vj

j ∈ K(X)}

6Note that sincep is unramified, it is a prime inKp . Hence the elements ofKp can be written as Laurent series
∞∑

i=n0

λip
i,

where theλi belong to a set of representatives of the residue field.
7Observe that, in contrast to the LLL factorization algorithms, the rank of the lattice,W in this case, doesn’t depend on the

degree of the extensionK/Q. It is equal to the number of modular factors whether we are working overQ or overK/Q.
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ThenW is in a one-to-one correspondence withGK. The irreducible factors off overK provide a

basis toW that, up to a permutation of the vectors, is inrow-reduced-echelon form. This is due to the

squarefreeness off and the irreducibility of thegi. Since well known algorithms that reduce a basis of

W to one in row-reduced-echelon form, are available, knowingany basis ofW would solve the problem.

Furthermore, as the elements of the basisg1, · · · , gs of GK should satisfy Equation (3.11) and are

irreducible, their Newton sums are not only small compared to Newton sums of any other non-integral

combination of thefj ’s, but they are the smallest even amongest Newton sums of elements ofGK.

This brings us to the idea of reducing the basis ofW via the LLL algorithm which will reveal these

polynomials as those corresponding to the smallest elements in the latticeW .

As for the LLL factorization algorithms, an iterative process defining lattices approximating the lattice

W would help determining this lattice. This relies on the following result due to van Hoeij.

Theorem 3.29

LetL be a lattice such thatW ⊂ L ⊂ Zr. LetR be the row-reduced-echelon form of the matrix of

a basis ofL. ThenL = W if and only if the following two conditions hold.

(A) Each column ofR contains precisely one 1, all other entries are 0.

(B) If (v1, · · · , vr) is a row ofR, theng =
∏r

j=1 f
vj

j ∈ OK[X].

Proof: See [HOE 2].

The iterative process is initialised by takingL0 = Zr, and constructing a decreasing sequence of lattices

W ⊂ · · ·L2 ⊂ L1 ⊂ Zr where at each step, the conditions (A) and (B) are checked.W is found when

both these two conditions hold. At this very moment, a complete factorization off is obtained since the

irreducible factors are the columns ofR, the basis ofW in row-reduced-echelon form.

It remains to show that effectively it is possible to construct this decreasing sequence of lattices.

More precisely, given the latticeL as in Theorem (3.29), we need to construct a latticeL′, hopefully of

smaller rank, such that

W ⊂ L′ ⊂ L

For that recall that, in Step 2 of the generic algorithm, we have already chosen the precisionk necessary

for the Hensel lifting and which enables the reconstructionof the algebraic numbers from theirp-adic

approximations.

The algebraic numbers can be written in terms of the integralbasisω1, · · · , ωm.

A basis of the idealpk is then obtained by:(ωi)M , whereM is anm×m integral matrix.
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Recall also that forx =
∑

i

xiωi ∈ OK, the elementx mod pk is obtained by the formula

in Lemma (1.17) when the basis(ωi) is LLL reduced for theT2-norm.

We can now define the so-calledKnapsack latticeΛ given by

M∗ =




CIr 0

S Q





whereC ≥ 1 is a suitably chosen integer constant to be made precise,Ir is the identity matrix of order

r, Q is anm× nm block diagonal matrix, with diagonal blocks equal toM , and

S =








Si1(f1) . . . Si1(fr)
...

...
...

Sin(f1) . . . Sin(fr)








This means that the latticeΛ is the image of the multiplication by the matrix above.

The quadratic form defined onΛ has Gram matrixM∗ trM∗.

Observe thatΛ ⊂ Znm+r and the latticeL can be obtained fromΛ by projeting some how onZr.

In order to bound the Newton sums, we need the following two lemmata.

Lemma 3.30 (cf [BEL 1])

Letg =

d∑

l=0

blX
l be a monic factor off . Then for alli,

T2(Si(g)) ≤ n2
∑

σ

Broot(σ(f))2i

whereBroot(σ(f)) is any bound on the roots of the polynomialσ(f) (cf page 62).

In his generalisation of van Hoeij’s method, Belabas has chosen to work with the norm|x|′ := (
∑

i

x2
i )

1/2.

This norm is related to the natural norm overK, T2, by

Lemma 3.31 (cf [BEL 1])

LetT be the transition matrix from the basis{1, α, · · · , αm−1} to the basisω1, · · · , ωm, and letV

be the Vandermonde matrix associated with the complex conjugates ofα. Then

|x|′2 ≤ CT2T2(x) whereCT2 = ‖T−1V −1‖2

and where the norm‖(aij)‖ :=

(
∑

i

|aij |2
)1/2
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Proof: See [BEL 1].

The problem now is to find a vector
(
v

ǫ

)
, wherev ∈ {0, 1}r andǫ ∈ Znm, whose image




Cv

Sv +Qǫ



 in Λ has bounded norm‖.‖.

In such a case, we have:

‖




Cv

Sv +Qǫ



 ‖2 = C2‖v‖2 + ‖Sv +Qǫ‖2 ≤ C2r + ‖Sv +Qǫ‖2

We can bound the Newton sums using the two lemmas above, obtaining

‖Sv +Qǫ‖2 ≤ CT2n
2

n∑

l=1

m∑

i=1

Broot(σi(f))2l =: B2
trace

(cf [BEL 1]).

The constantC is then chosen so that neither of the two numbersC2r andB2
trace is much larger

than the other, that is so that

C2r ≈ B2
trace

We now have sufficient tools to define the latticeL′.

We LLL reduce the basis ofΛ, and using Property 6 of Lemma (1.20), we discard those LLL-basis

vectors that exceed a bound given by

(C2r +B2
trace)

1/2.

This defines a latticeΛ′ ⊂ Λ as the span of the firstt vectors non satisfying the bound.

Then setL′ ⊂ L to be the projection of1C Λ on the firstt coordinates ofZnm+r.
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CHAPTER FOUR

DIRECT FACTORIZATION METHODS IN

FUNCTION FIELDS

4.1 Introduction

In Chapter 2, we have seen how to reduce the problem of factoring a polynomial having coefficients in

an extension of the rational function fieldFq(t), to a factorization over the ground fieldFq(t), assuming

that we have some simple techniques forFq(t)[X], which enable us to complete the factorization .

In that chapter we only considered our function field as an algebraic extension field. This approach

was used by Abbott (in [ABB]) and enables him to write interesting programs in BANP (Bath Algebraic

Numbers Package) for factorization of univariate and multivariate polynomials over function fields based

on Trager’s method.

The drawback of this method however being the complication of computations due to the much higher

degree of the new polynomial to be factored.

We turn now to the direct methods of factorization over function fields and try to apply our generic

algorithm (3.11) of Chapter 3. And to do so, we will need to look more deeply to the algebraic structure

of our function field and exploit its properties.

Many of the results we will introduce in this chapter are alsotrue for a function field over a field of

characteristic zero, but since we only deal with function fields that areglobal fields, we will stick to the

definition of function field we gave in the Introduction, and hence consider only the positive characteristic

case with finite constant field.

Let K be a finite separable extension of degreem of the rational function fieldK = Fq(t), wheret is

transcendental over the finite fieldFq. We writeK = K(α), whereα is a root of its minimal polynomial
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mα(Y), and denote byR the ringFq[t] and byOK its integral closure inK.

4.2 Places in a function field

Definition 4.1

A valuation ringof the function fieldK is a ringO ⊂ K such that

O  K and ∀a ∈ K, a ∈ O or a−1 ∈ O

Proposition 4.2

LetO be a valuation ring of the function fieldK. Then

(a) O is a local ring with maximal idealp = O \ O∗,

whereO∗ is the group of units ofO.

(b) p is a principal ideal, and henceO is a PID.

Observe that the finite fieldFq is contained inO.

In the following, we will assume thatFq is the full constant field.

Definition 4.3

A placep of a function fieldK is the maximal ideal of some valuation ringO ofK. Any elementπ ∈ p

such thatp = πO is calleda primeof p (or of K).

Remark:

O is uniquely determined byp. Indeed, it suffices to takeO := {a ∈ K| a−1 /∈ p}. Hence we can write

O = Op for the valuation ring corresponding to the placep.

Examples:

Assumem = 1, i.eK = K = Fq(t).

1. Consider a monic irreducible polynomialp(t) ∈ Fq[t].

Set: p = 〈p(t)〉

Op :=

{
a(t)

b(t)
∈ Fq(t)| p(t) does not divideb(t)

}

Thenp is a place ofFq(t) andOp is its valuation ring.
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2. SetO :=

{
a(t)

b(t)
∈ Fq(t)| deg(a(t)) ≤ deg(b(t))

}

ThenO is a valuation ring ofFq(t), whose corresponding place is called theinfinite placeand

denoted byp∞.

In the following, we will call arational placeany place of the rational function fieldFq(t). A place

p 6= p∞ will be called afinite place.

These are all the places of the rational function field.

Remark:

The infinite place is the only rational place that does not come straight from a primep(t) in Fq[t]. It is

actually obtained from the primeπ′ = t−1 of the ringFq[t
−1] ⊂ Fq(t), in the same way as in example

(1) above.

The notion of places in a function field is also closely related to the notion ofdiscrete valuationsof the

function field.

Indeed, letp be a place of the function fieldK, and letπ ∈ p be a prime ofp.

SinceOp is local with maximal idealp = πOp, any nonzero elementa(t) ∈ K is uniquely represented

in the form:

a(t) = πr · u(t) where r ∈ Z, andu(t) ∈ O
∗
p is a unit.

Setting:







νp (a(t)) := r for a(t) 6= 0

νp (0) :=∞

we get a mapνp : K −→ Z ∪ {∞} that satisfies the following properties.

Theorem 4.4

(i) For any placep of the function fieldK, the functionνp is a discrete valuation ofK. Moreover

Op = {a(t) ∈ K | νp (a(t)) ≥ 0}

O
∗
p = {a(t) ∈ K | νp (a(t)) = 0}

p = {a(t) ∈ K | νp (a(t)) > 0}

An elementz ∈ K is a prime element ofp if and only ifνp (z) = 1.
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(ii) Conversely, suppose thatν is a discrete valuation ofK. Then the set

p = {a(t) ∈ K | ν(a(t)) > 0} is a place ofK, and

O = {a(t) ∈ K | ν(a(t)) ≥ 0} is the corresponding valuation ring.

For the sake of completeness, we recall the following properties of a discrete valuationνp of K.

1. νp (a) =∞⇔ a = 0

2. νp (ab) = νp (a) + νp (b), ∀a, b ∈ K

3. νp (a+ b) ≥ min(νp (a), νp (b)), ∀a, b ∈ K
with equality wheneverνp (a) 6= νp (b)

4. ∃a ∈ K with νp (a) = 1

5. νp (a) = 0, ∀a ∈ F∗q

4.3 Extension of the rational places

Assume[K : K] = m > 1

Let p be a place ofK, andP be a place ofK, and consider the corresponding valuation ringsOp ⊂ K

andOP ⊂ K respectively.

Definition 4.5

We say thatOP lies aboveOp or thatP lies abovep or thatP dividesp, and we writeP|p , if:

Op = OP∩K and p = P ∩K

In this case, the extensionpOP is a non-zero ideal ofOP contained inP. ThuspOP = Pe for some

integer e = e(P|p) ≥ 1 called the ramification indexof P over p. And one can easily see that

∀a ∈ K, ν
P
(a) = eνp (a).

On the other hand, whenP|p, there is a canonical embedding of the residue class fieldOp/p into OP/P,

and thusOP/P can be considered as a field extension ofOp/p.

The index[OP/P : Op/p] is called theresidue class degreeof P overp and denoted byf = f(P|p).

The ramification indexe is a positive integer. Moreover, we have the following result.
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Proposition 4.6

LetP be a place ofK lying above the rational placep, we denote bye
P|p

, f
P|p

theramification index

of P overp and its residue class degree respectively.

Define the local degree ofP overp to be

n
P|p

= e
P|p
· f

P|p
.

Then n
P|p
≤ m = [K : K]

If we assumeK/K separable, then we can construct all theP’s lying above a rational placep by de-

composing the idealp in the integral closure ofOp in K, which is a Dedekind domain sinceOp is a

PID.

This shows that above any placep of K, there is at least one (the maximal ideal containing the extension

of p in the integral closure ofOp in K), but at most finitely many places ofK.

In particular we will be interested in the places abovep∞.

Note that, the definition above implies also that for any place P of K, there is a unique place ofK lying

below it, namelyp = P ∩K.

Proposition 4.7

AssumeK/K separable, and consider the placesP1, · · · ,Pr of K lying above a rational placep

with their respective ramification indexese1, · · · , er, and their respective residue class degreesf1, · · · , fr.

Then we have the so calledfundamental equality:

r∑

i=1

eifi = m = [K : K]

4.4 Norms and absolute values

By N(P), we denote thenormof the placeP of K, that is the cardinality of the residue class field ofP,

which we know is finite as in the number field case, i.e

N(P) = #OP/P

whereOP is thevaluation ringof P.

In particular for a finite rational placep = 〈p(t)〉, N(p) = #Op/p = qdeg(p(t)), and we can easily show

that N(p∞) = q.
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Let P be a place above a rational placep, thenN(P) = #OP/P = q[OP/P: Fq].

But [OP/P : Fq] = [OP/P : Op/p][Op/p : Fq] = f
P|p
· deg(p(t)).

Hence

N(P) = q
f

P|p
deg(p(t))

= N(p)
f

P|p .

Thep-adic absolute value onFq(t) is defined by the real-valued functions:

|a|p := N(p)−νp (a) for all non-zeroa ∈ Fq(t).

|a|p∞ := qdeg(u)−deg(v) if a =
u

v
∈ Fq(t) \ {0} and deg(u) < deg(v)

In both cases, the absolute value of zero being zero by definition.

For every placeP|p, we define a normalizedP-adic absolute value corresponding to the valuationν
P

by

setting:

|a|
P

:= N(P)
−ν

P
(a)/n

P|p

for a ∈ K, a 6= 0, and|0|
P

:= 0.

This definition is motivated by the following observation.

For0 6= a ∈ K, |a|p := N(p)−νp (a).

But N(p) = N(P)

1
f
P|p

andν
P
(a) = e

P|p
νp (a).

Thus:

|a|p := N(P)

(

−νp (a)/f
P|p

)

= N(P)

(

−ν
P

(a)/e
P|p

f
P|p

)

= N(P)
−ν

P
(a)/n

P|p

The normalization defined above has the effect that| |
P

is a prolongation of| |p .

This absolute value has a unique prolongation to the completionKP which we will also denote by| |
P

.

Moreover, with this definition, the product formula holds.

Theorem 4.8 Product Formula

For each nonzero elementa of the function fieldK,

∏

P

|a|
P

= 1,

whereP runs through all places ofK.
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Note that Artin and Whaples (in Bull. Amer. Math. Soc. 51 (1946), pp 469-492) have proved that all

global fields satisfy the Product Formula.

Definition 4.9

For an elementa ∈ K, we define the maximum norm by:

‖a‖∞ := max
P|p∞

|a|
P

Then the maximum norm has the following properties of a non-archimedean norm:

For alla, b ∈ K andλ ∈ Fq(t),

‖a‖∞ = 0⇔ a = 0

‖λa‖∞ = |λ|p∞‖a‖∞

‖a+ b‖∞ ≤ max{‖a‖∞, ‖b‖∞}
with equality whenever‖a‖∞ 6= ‖b‖∞

This maximum norm will be a kind of substitute for theT2-norm of the number fields, and will be used

to obtain suitable bounds for the coefficients of a potentialfactor of the polynomial to be factored.

4.5 Bounds on the coefficients of a factor

For the following results, we refer to Pohst and Omaña in [POH2] and [Om-P].

Lemma 4.10

Letf(X) =
∑n

i=0 aiX
i ∈ OK[X] be a monic polynomial of degreen > 1.

For any placeP ofK lying abovep∞ , we define ameasureof the polynomialf(X) by

M
P
(f) := max{ i

√

|an−i|P ; 1 ≤ i ≤ n}

Then any monic polynomialg(X) =
∑r

i=0 biX
i ∈ K[X] dividing f(X) is in OK[X], and its coefficientsbi

satisfy

|br−i|P ≤M i
P
(f) (1 ≤ i ≤ r)

Proof:

SinceOK is a Dedekind domain with quotient fieldK, by Gauss’ lemma, any monic factor of the monic

polynomialf ∈ OK[X], has coefficients inOK.

To obtain the estimate for the coefficientbi of g(X), we express them as elementary symmetric functions

of the zeros ofg(X).
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LetL be the splitting field off(X) overK.

Let ξ1, · · · , ξn be the zeros off(X) in L.

Set M̃P := max {|ξi|P ; 1 ≤ i ≤ n} and s := #{i | |ξi|P = M̃P}

The coefficients ofg(X) satisfy

|br−i|P = |
∑

1≤j1<···<ji≤r

ξj1 · · · ξji |P ≤
∑

1≤j1<···<ji≤r

i∏

k=1

|ξjk
|
P

≤ max

(
i∏

k=1

|ξjk
|
P

)

(ultra-metric property)

≤ M̃ i
P (4.1)

On the other hand, let’s consider the absolute value of the coefficientan−s of f(X):

|an−s|P = |
∑

1≤j1<···<js≤n

ξj1 · · · ξjs |P

The maximum of the|ξj |P is reached exactlys times.

Taking combinations ofs rootsξj will definitely yield a biggest elementξj1 · · · ξjs where all theξjk

have the maximum absolute valuẽMP.

This makes the absolute value of the sum of these combinations to equal their maximum.

Whence, assumings 6= n, we get

|an−s|P =
s∏

k=1

M̃P = M̃ s
P

ThusM̃P ∈ { i

√

|an−i|P ; 1 ≤ i ≤ n}.
ThereforeM̃P ≤MP(f) and thus|br−i|P ≤M i

P(f). �

Corollary 4.11

Letf(X) andg(X) be as in Lemma (4.10 ). Then the coefficientsbj of g(X) satisfy

‖bj‖∞ ≤ max{M i
P(f) | 1 ≤ i ≤ r, P|p∞} := M(f)

(1 ≤ j ≤ r).

Indeed

For allP|p∞,

‖bj‖∞ ≤M r−j
P (f) ≤ max{M i

P(f) ; 1 ≤ i ≤ r }

‖bj‖∞ = max
P|p∞

|bj |P

≤ max
{
M i

P(f) ; 1 ≤ i ≤ r , P|p∞
}
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Remark 1:

The results in Lemma (4.10) and its Corolloray (4.11) are theanalogous of the bound in Proposition

(3.21) and Mignotte’s bound in Theorem (3.22) for the function field case. The binomial term
(deg(g)

j

)

was eliminated by the ultra-metric property.

Remark 2:

The product formula yieldsM(f) ≥ 1.

Indeed,

AssumeM(f) < 1, and let’s consider a coefficientbj of a factorg of f , for somej.

By Lemma (4.10),|bj|P ≤MP
(f)deg(g)−j for all P|p∞.

ButM
P
(f)deg(g)−j ≤ max{Mk

P(f) | 1 ≤ k ≤ r} ≤M(f) < 1.

Hence, |bj|P < 1 for all P|p∞, and thus,
∏

P|p∞

|bj |P < 1.

On the other hand, sincebj ∈ OK =
⋂

Pfinite

OP, bj ∈ OP for all finite placesP. Hence νP(bj) ≥ 0

for all P finite. So

|bj|P ≤ 1 for all finite placesP (4.2)

Thus
∏

Pfinite

|bj |P ≤ 1, and so:1 =




∏

P|p∞

|bj |P








∏

Pfinite

|bj |P ≤ 1



 < 1 Absurd. �

4.6 Application of the generic algorithm

Since the ring of integersOK of the global function fieldK is a Dedekind domain, the Henselian factor-

ization technique can also be applied to polynomials havingcoefficients inOK, (see subsection (3.3.1)).

For that, given a monic squarefree polynomialf(X) ∈ OK[X], we need to choose a suitable prime ideal of

OK , that is, a finite placeP ofK, since OK =
⋂

Pfinite

OP, and then factorf over theP-adic completion

KP of K, following the steps in Algorithm (1.4) and so recovering the factors off in K[X].

This amounts to applying the generic algorithm (3.11).

We choose a finite placeP of degree 1 that doesn’t contain2 · discr(f) · discr(mα), so thatKP is

unramified andf remains squarefree moduloP. Avoiding 2 ∈P is not restrictive.

The number of places of degree 1 plays a crucial role in the theory of function fields. The Hasse-Weil

theorem gives an estimate for this number, and in some cases this theorem yields even the value of the

number of places of degree 1.

After choosingP, the factorization off modP and the Hensel lifting will be straightforward provided
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a suitable integerk is also determined to limit the lifting process.

In the following, we will show how to choosek and the boundB on the coefficients of the factors off

overK, in order to enable the reconstruction of these factors fromtheirP-adic approximations.

We give an analogue of Proposition (3.25 ) for this case proving the existence of a lower bound for the

maximum norm of the nonzero elements of ak
th power ofP.

Proposition 4.12

Let a be a nonzero element ofPk, wherek ≥ 1. Then, for any finite placeQ in K lying above a

rational placeq,

‖a‖∞ ≥ |a|
−nQ|q/m

Q .

Hence in particular,

‖a‖∞ ≥ N(P)k/m.

Proof:

We first prove for anya ∈ OK that‖a‖∞ ≥ |a|
−nQ|q/m

Q .

ForP|p∞, |a|P ≤ max{|a|P′ | P′|p∞} = ‖a‖∞. Hence, |a|nP|p∞

P ≤ ‖a‖nP|p∞
∞ , and thus:

∏

P|p∞

|a|nP|p∞

P ≤ ‖a‖
∑

nP|p∞
∞ = ‖a‖m∞ (4.3)

by Proposition (4.7).

On the other hand, by the assertion (4.2) in Remark 2, sincea ∈ OK, |a|P′ ≤ 1 for all finite placesP′.

Moreover we should have:
∏

P|p∞

|a|nP|p∞

P ≥ |a|−nP′|p′

P′ for all P′ finite.

Indeed, if this is not the case for some finiteP′|p′, then:



∏

P|p∞

|a|nP|p∞

P





(

|a|nP′|p′

P′

)

< 1

which contradicts the product formula, since all the remaining factors are smaller than 1.

In particular for the finite placeQ|q,

‖a‖m∞ ≥
∏

P|p∞

|a|nP|p∞

P ≥ |a|−nQ|q

Q (4.4)

Now whena ∈ Qk, ν
Q
(a) ≥ k, hence

|a|−nQ|q

Q = N(Q)+ν
Q

(a) ≥ N(Q)k
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This, together with (4.3) and (4.4) yield forQ = P:

‖a‖∞ ≥ |a|−nP|p/m

P ≥ N(P)k/m.

�

Remark:

Since for any finite placeQ|q, |a|Q ≤ 1, and thus,|a|−nQ|q/m

Q ≥ 1,

we conclude that:‖a‖∞ ≥ 1 , ∀a ∈ OK.

For the number field case, we were able, given such a lower bound, to find numbers in the fundamental

domain that are congruent to the coefficients of the lifted factors off . These numbers, when they are

integers, do correspond to the actual coefficients of the true factors off . Similarly, we did exhibit a lower

bound in the case of a function field, however we can not use thesame argument, nor the same formula

(3.7) to determine the coefficients off in their corresponding residue classes. In that case, an extensive

use of the LLL-basis reduction algorithm helps achieve the goal. The latter algorithm being based on the

existence of a scalar product overK, can not be generalised to the function field case since theseones

have only non-archimedean norms. Nevertheless, it is stillpossible to determine the coefficients of true

factors, when they exist, as the elements of smallest maximum norm in their residue classes moduloPk,

for a sufficiently largek.

Proposition 4.13

LetQ be a prime ideal ofOK lying above a rational primeq, letB > 1.

For k ≥ mLog(B)/Log(N(Q)), each residue class ofOK/Q
k contains at most one elementa with

‖a‖∞ < B.

Proof:

Assume there exist two distinct elementsa, b ∈ OK that are in the same residue class moduloQk and

both satisfy the bound condition. Assume‖a‖∞ ≤ ‖b‖∞, then we have:

a− b ∈ Qk and thus, by Proposition (4.12),‖a− b‖∞ ≥ N(Q)
k

m .

In addition,‖a− b‖∞ ≤ max{‖a‖∞, ‖b‖∞} = ‖b‖∞ < B.

Hence,B > N(Q)
k

m and sok < mLog(B)/Log(N(Q)). Contradiction.

�

Combining the results in Corollary (4.11) and in the Proposition above, we see that, ifB is chosen such

thatB ≥ M(f), and ifk ≥ mLog(B)/Log(N(Q)), then the coefficients of any factor off in K[X] is

the unique element, of its residue class of maximum norm bounded byB.
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4.7 Existence of polynomial-time factorization algorithms

In this section, we will be concerned with lattice-based techniques for factorization over function fields in

order to show that the results of Lenstra et al. concerning the factorization of polynomials over number

fields do actually hold for function fields as well. This will prove the existence of polynomial-time

algorithms for factorization of polynomials over functionfields provided an algorithm for lattice bases

reduction similar to the LLL algorithm can be found which hasa polynomial running time.

The two following propositions are the generalisations of Propositions (3.5) and (3.6), for which the

proofs apply as well. We will then considerK any global field.

Assume we are given a polynomialf ∈ OK[X] of degreen > 0, a nonzero prime idealP of OK, and a

polynomialh ∈ OK[X] satisfying the following conditions:

(C.1) h monic,

(C.2) (h modPk) divides (f modPk) in OK/P
k [X],

(C.3) (h modP) is irreducible inOK/P [X],

(C.4) (h modP)2 does not divide(f modP) in OK/P [X].

Let l = deg(h(X)). Hence0 < l ≤ n.

We can then prove the following.

Proposition 4.14

The polynomialf has a monic irreducible factorh0 ∈ OK[X] of degreer > 0, l ≤ r ≤ n, uniquely

determined up to sign, such that(h mod P) divides (h0 modPk) in OK/P [X].

Further, if g(X) is a monic divisor off(X) in OK[X], then the following assertions are equivalent:

(i) (h mod P) divides (g modP) in OK/P [X],

(ii) (h modPk) divides (g modPk) in OK/P
k [X],

(iii) h0(X) divides g(X) in OK[X],

In particular (h modPk) divides (h0 modPk) in OK/P
k [X]

Proof:

The existence ofh0 follows from (C2 ) and (C3 ) since irreducibility is preserved during the Hensel

lifting by the coprimality and coherence conditions (cf section (1.2)). The uniqueness ofh0, up to sign,
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comes from (C4 ). The implications (ii)⇒(i) and (iii)⇒(i) are obvious by reduction. Assuming (i) now,

i.e (h mod P) divides (g mod P) in OK/P [X], let’s prove (ii) and then (iii).

The squarefree polynomialf is divisible byg in OK[X], sof/g ∈ OK[X] and is relatively prime withg.

By (C3 ), (i) and (C4 ), we know(h mod P) and(f/g mod P) are coprime. So there exist polynomials

λ(X), µ(X) ∈ OK[X] andη(X) ∈ P[X] so that:

λ(X)h(X) + µ(X) f/g(X) = 1− η(X)

Multiplying both sides by the polynomialg(1 + η + η2 + · · ·+ ηk−1) yields

λ̃(X)h(X) + µ̃(X) f(X) = g − gηk(X)

Now reducing moduloPk gives clearly (ii) as(h mod Pk) divides the right hand side of this equality.

For (iii), let’s note that the irreducible polynomialh0 divides f in OK[X], so if it doesn’t divideg, it

should dividef/g. By reducing moduloP, we get a contradiction with (C4 ), which proves (iii). �

Following Lenstra et al. (cf subsection (3.2.1)), we give a constructive method based on lattice techniques

which determinesh0. If h dividesf in OK[X], thenh0 = h. Otherwise, we will search forh0 as an

element of a certain "lattice" to be defined.

So far we have used the definition of page (18) for lattices, which enables us to work with lattices in an

Euclidean spaceRd, and also lattices in a polynomial ring by identifying polynomials with the vectors

of their coefficients, assuming a certain ordering on these coefficients. However, the concept oflattice

bears intrinsic properties that enable defining lattices ina more general context, asfree-R̃-modules of

some rankk, lying inside some finite dimensional vector spaceK̃d, whereK̃ is either the quotient field

of the ringR̃ or any extention of it.

In analogy to Lenstra et al. (cf [L-L-L] and page (46)), we need to consider the setL of polynomials in

OK[X] of degree less than some fixedr, that when reducedmod Pk, are divisible by
(
h modPk

)
. We

will chooser so thath0 ∈ L. Observe thatL 6= {0} sinceh ∈ L.

Recall that, sinceK here is any global field,K will denote eitherQ or Fq(t). So letR denote eitherZ or

Fq[t], and consider an integral basis ofK, ω1, · · · , ωm, i.e a system ofK-linearly independant integers

which spanOK as anR-module. Using such a basis enables us not to worry aboutdenominators. It also

enables us to identify an elementa =

m∑

j=1

ajωj of OK with the vectora = (a1, · · · , am)tr of Rm.

A polynomial g =
d∑

i=0

giX
i =

d∑

i=0

(
m∑

j=1

aij ωj)X
i ∈ OK[X] with degreed ≤ r, will then be identified

with the vector

g = (a01 , · · · , a0m , a11 , · · · , arm)tr ∈ R(r+1)m, whereaij = 0 if i > d.
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To measure the size of an integera ∈ OK or a polynomialg ∈ OK[X] we define the following norms:

Fora ∈ OK, |a|′ =







‖a‖ = (
∑m

j=1 a
2
j)

1/2 if R = Z






degt(a) = max
1≤j≤m

deg(aj) if a 6= 0

0 otherwise

if R = Fq[t]

And for g ∈ OK[X], ‖g‖′ =







‖g‖ (cf page 46) ifR = Z

max0≤i≤d |gi|′ if R = Fq[t]

On the other hand, sinceR is a PID, there exists a primeπ ∈ R so thatP∩R = πR. Hence, examining

the elements ofL, we see thatL is spanned overR by theK-linearly independent elements ofOK[X]:

{

πk ωj
X

i
∣
∣
∣ 1 ≤ j ≤ m, 0 ≤ i < l

}

∪
{

ωj h(X) Xi−l
∣
∣
∣ 1 ≤ j ≤ m, l ≤ i ≤ r

}

And thusL can be viewed as anR-lattice, by identifying it with the corresponding1 lattice inK(r+1)m.

Clearly, this lattice has determinantd(L) = πklm. (Recall thatl = deg(h).)

Remark:

By representing the elements ofK and OK with respect to the integral basisω1, · · · , ωm, addition

and substraction of those elements are easily done coefficient-wise, which is not the case for the other

arithmetical operations. For instance, to calculate a product, an already computedmultiplication tableis

needed. This is a tableΓ ∈ Rm×m×m which represents the productsωiωj with respect to the basis itself,

that is:

ωiωj =

m∑

k=1

Γ(i, j, k)ωk whereΓ(i, j, k) ∈ R

The entries ofΓ can be obtained using the transition matrix from the basis{1, α, · · · , αm−1} to the

basisω1, · · · , ωm,

(ω1, · · · , ωm)T = (1, α, · · · , αm−1)

Thus, ifa =

m∑

j=1

ajωj ∈ OK, andg =

d∑

i=0

giX
i =

d∑

i=0

(

m∑

j=1

aij ωj)X
i ∈ OK[X]

aωk =
m∑

j=1

ajωkωj =
m∑

j=1

aj

(
m∑

l=1

Γ(j, k, l)ωl

)

=
m∑

l=1





m∑

j=1

ajΓ(j, k, l)



 ωl =
m∑

l=1

blωl , bl ∈ R.

and

gωk =

d∑

i=0

(giωk)X
i =

d∑

i=0

m∑

l=1





m∑

j=1

aijΓ(j, k, l)



ωlX
i

1By this identification, we will callR-lattice any subset of the polynomial ringOK[X] whose image is anR-lattice in some

Kd.
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Whence, ifR = Z,

‖gωk‖′2 =
∑

i,l



|
m∑

j=1

aijΓ(j, k, l)|





2

≤
∑

i,l





m∑

j=1

|aij ||Γ(j, k, l)|





2

≤
∑

i,l



max
j,k,l
|Γ(j, k, l)|

m∑

j=1

|aij|





2

≤ (max
j,k,l
|Γ(j, k, l)|)2

∑

i,l

(
m∑

j=1

|aij |)2 ≤ (max
j,k,l
|Γ(j, k, l)|)2

m∑

l=1




∑

i,j

|aij |2


 = (max
j,k,l
|Γ(j, k, l)|)2m‖g‖′2

In this case, setC := maxj,k,l |Γ(j, k, l)|)√m so that:‖gωk‖′ ≤ C‖g‖′.
Now whenR = Fq[t],

|aωk|′ = max
l

deg





m∑

j=1

ajΓ(j, k, l)



 ≤ max
l

(

max
1≤j≤m

degt(ajΓ(j, k, l))

)

≤ max
l

max
j

(degt(aj) + degt(Γ(j, k, l)))

≤ max
j

degt(aj) + max
j,k,l

degt(Γ(j, k, l) = |a|′ + max
j,k,l

degt(Γ(j, k, l)

SetC̃ := maxj,k,l degt(Γ(j, k, l)) andC := C̃ + 1.

If a = 0, then0 = |a|′ = |aωk|′ ≤ C|a|′ .

Now, if a 6= 0, then|a|′ ≥ 1, thus C̃|a|′ ≥ C̃, and so

|aωk|′ ≤ |a|′ + C̃|a|′ ≤ C|a|′

This implies:

‖gωk‖′ = ‖
d∑

i=0

giωkX
i‖′ = max

0≤i≤d
|giωk|′ ≤ max

0≤i≤d
C|gi|′ = C max

0≤i≤d
|gi|′ = C‖g‖′

Hence there is a constantC such that:‖gωk‖′ ≤ C‖g‖′.

Proposition 4.15

Let a non-zero polynomialb ofL satisfy:

d(L) = πklm > Cn+r ‖b‖′n‖f‖′r (4.5)

whereC is the constant defined above.

Thenb is divisible byh0 in K[X], and in particularGCD(f, b) 6= 1.
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Proof:

To prove thath0 dividesb in K[X], we will actually prove thath0 dividesg := GCD(f, b) in K[X], and

for that it suffices, by Proposition (4.14), to show that(h modP) divides (g mod P) in OK/P [X].2

Assume this is not the case. So by (C.3), there exist polynomialsλ0(X), µ0(X) ∈ OK[X] andη0(X) ∈ P[X]

satisfying:

λ0(X)h(X) + µ0(X) g(X) = 1− η0(X) (4.6)

SetM := {λ f + µ b ∈ OK[X] | deg(λ) < deg(b) − deg(g)& deg(µ) < n− deg(g)}.
The nonzero elements ofM are multiples ofg and have degrees:

deg(g) ≤ deg(λf + µb) ≤ max{deg(λ) + n, deg(µ) + deg(b)} < n+ deg(b) − deg(g)

Note that: deg(g) ≤ deg(b) ≤ r and thus 0 ≤ deg(b) − deg(g) ≤ r − deg(g) ≤ r.

In addition,M is generated overR by the polynomials:

{
ωj

X
if | 1 ≤ j ≤ m, 0 ≤ i < deg(b) − deg(g)

}
∪
{
ωj

X
ib | 1 ≤ j ≤ m, 0 ≤ i < n− deg(g)

}

(4.7)

which we identify with them(n+ deg(b) − 2deg(g))-dimensional vectors of their coefficients.

So their projections on⊕i,jωjX
iR , where 1 ≤ j ≤ m and deg(g) ≤ i ≤ n+ deg(b) − deg(g),

form a basis of anR-latticeM̃ of rankm(n+ deg(b) − 2deg(g)).

Indeed, it suffices to show that they areK-linearly independent.

Suppose anR-linear combination of the polynomials in (4.7), i.e an elementλ f + µ b of M , projects

to zero inM̃ . Sodeg(λf + µb) < deg(g) which implies thatλf + µb = 0 because it is a multiple

of g. Hence,λ f/g = −µ b/g , whereGCD(f/g, b/g) = 1. This implies thatf/g dividesµ. But

deg(µ) < n − deg(g) = deg(f/g), and thusµ = 0. Thereforeλ = µ = 0. And so, the projections of

the polynomials in (4.7) effectively form a basis of the lattice M̃ .

By Hadamard inequality we get,

d(M) = d(M̃) ≤
∏

i,j

‖ωj
X

if‖′
∏

i,j

ωj
X

ib‖′ ≤ Cn+deg(b) ‖f‖′deg(b) ‖b‖′n ≤ Cn+r ‖f‖′r ‖b‖′n < πklm

from our hypothesis.

On the other hand, we can prove that the subset:M ′ = {γ ∈M | deg(γ) < deg(g) + deg(h)}3

2Note that Proposition (4.14) can not be applied tob becauseb is not necessarily a factor off .
3Note that since(h mod P) divides(f mod P) and not(g mod P) it then divides(f/g mod P), so we get

deg(g) + deg(h) ≤ deg(b) + deg(f/g) = n + deg(b)− deg(g).
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of M is contained inPk [X]. Indeed, letγ ∈M , theng|γ and from Equation (4.6) we deduce that:

(λ0 h+ µ0 g)γ/g = (1− η0)γ/g

(λ0γ/g)h + µ0γ = (1− η0)γ/g

Multiplying both sides by the polynomial(1 + η0 + · · ·+ ηk−1
0

) we get:

λ̃ h+ µ̃ γ = γ/g − ηk
0
γ/g

Then, sinceb ∈ L, (h modPk) divides (b modPk) in OK/P
k [X], and so it also divides(g modPk).

This implies that(h modPk) divides (γ mod Pk) sinceg|γ. Whence,(h mod Pk) divides

(γ/g modPk). But then,

deg(h) ≤ deg(γ/g) = deg(γ) − deg(g) < deg(h)

by definition ofM ′. Contradiction.

Thereforeγ/g belongs toPk [X] and so doesγ itself.

Knowing thatM ′ ⊂ Pk[X], we will derive a contradiction which concludes the proof ofProposition(4.15).

Let b1, · · · , bt be a basis ofM ′ is Hermite Normal Form, given in terms of the basisωjX
i of OK[X].

Hence, the matrix of thebj ’s is triangular and sod(M ′) equals the product of the norms of the diagonal

elements of this matrix, i.e, the product of the norms of the leading coefficients of thebj ’s. Since

bj ∈ Pk [X], lc(bj) ∈ Pk ∩R = πkR and sod(M ′) is a power ofπk.

Moreover we know sincebj ∈M ′ thatdeg(bj) ≤ l + deg(g) ≤ n+ deg(b) − deg(g) ≤ n+ r.

Considering among thebj those withdeg(bj) ≤ l (there arem× l of them) yields:d(M ′) ≥ πkml.

Thusπkml ≤ d(M ′) ≤ d(M) < πkml. Contradiction. �

This, unfortunately remains a theoretical result, but is good as it shows that the problem studied is no

longer difficult. However the large dimensions of the lattices involved in this case make this approach

impractical.
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