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Abstract

In this thesis, we surveyed the most important methods fiofezation of polynomials over a global
field, focusing on their strengths and showing their moskiag disadvantages. The algorithms we
have selected are all modular algorithms. They rely on thesElefactorization technigue, which can
be applied to all global fields giving an output in a local fithét can be computed to a large enough
precision. The crucial phase of the reconstruction of treglircible global factors from the local ones,
determines the difference between these algorithms. Feretit fields and cases, different techniques

have been used such as residue class computations, idadusalattice techniques.

The tendency to combine ideas from different methods has bemterest as it improves the running
time. This appears for instance in the latest method duertdéeeij, concerning the factorization over a
number field. The ideas here can be used over a global furfatioinin the form given by Belabas et al.

using the logarithmic derivative instead of Newton sums.

Complexity analysis was not our objective, neverthelesgit important to mention certain results as

part of the properties of these algorithms.
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Opsomming

In hierdie proefskrif het ons die belangrikste metodes ier fdktorisering van polinome oor globale
liggame bespreek en het op die vernaamste voordele en rddelegelé. Hierdie algoritmes is almal
modulér van aard en maak staat op die faktoriseringstegriekiensel, wat van toepassing is op enige
globale liggaam wat oor 'n geskikte lokale liggaam tot diedaegde akkuraatheid uitgevoer kan word.
Die kritieke punt by die herkonstruering van die onherletbglobale faktore vanuit die lokale faktore is

die vernaamste verskil in die algoritmes.

Vir verskillende liggame en gevalle word verskillende tegge aangewend, soos byvoorbeeld residuk-
lasberekeninge, ideal calculus en tralie tegnieke. Didgrs om idees van verskillende metodes saam
te vat is van belang omdat die looptyd van die algoritmesdeiar verbeter word. 'n Voorbeeld hiervan
word gegee in die nuutste metode van van Hoeij, met betrgkkinfaktorisering oor 'n getalleliggaam.
Hierdie idees kan oor 'n globale liggaam toegepas word solzsgs deur Belabas et al, waar die logar-

itmiese afgeleide in plaas van Newton somme gebruik word.

Die kompliksiteit van die metodes het nie deel van hierdidepaoek uitgemaak nie, maar nogtans was

dit belangrik om sekere resultate te noem toe die eienskegphierdie algoritmes bespreek word.
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| oo

rings of natural numbers and rational integers
fields of rational, real, complex numbers
Finite Field ofg elements

the algebraic closure of these fields

a global field and its ring of integers

the minimal polynomial of an algebraic element
the valuation ring with maximal ideal

a local field and its ring of integers

a ring ofg* element (ring of Witt vectors)
degree of the polynomigt

leading coefficient of the polynomig
discriminant of the polynomiaf

discriminant of the field

Chinese Remainder Theorem

Chinese Remainder Algorithm

Uniqgue Factorization Domain

Principal Ideal Domain

Greatest Common Divisor

standing for A.K. Lenstra, H. W. Lenstra Jr, and L. Lovasz
The content of a polynomigt

The primitive part of the polynomigf

the determinant of a latticé

the fundamental domain of a lattice

the orthogonality defect of a lattice basisRft
the absolute value i@

the ordinary norm Sup iR"™

the Euclidean norm oR™, also generalised to polynomial rings

ILHEM BENZAQUI

Univ. of Stellenbosch



CONTENTS

2] := |2 + 3]

Tmazx

the operator rounding to the nearest integer

The radius of the largest ball inscribed in the fundamentahain of a latticeA

the orthogonal complement of a vector spéiceCc R"

the Gram-Schmidt orthogonal basis obtained from a liasis - , b, of

a lattice or a vector space.

the transpose of the vectbr

The height of a polynomiaf

The Mahler measure of

The length off

the defect of the integral basis a, - - - , ™!

the distinct embeddings & in an algebraic closur& of K

the (absolute) norm of an element in an algebraic extendidti o
the resultant of the two polynomialsandv

binomial coefficient

real and imaginary parts, and the conjugate of the complexoenz
theTs-norm

the ™" Newton sunof 4

the ideal genarated hy

field of Puiseux series at the place at infinity

ILHEM BENZAQUI

Univ. of Stellenbosch



Introduction

In this thesis, we intend to study polynomial factorizatioBur work is motivated by the very recent

publications due to Pohst and Omafa (in [Om-P] and [POH 2jd ta Belabas, van Hoeij, Kliiners, and
Steel (in [B-H-K-S]). Their results, together with Lens$raTrager's and Weinberger & Rothschild’s,

will form the core of this thesis, which will be mainly a suyvef the most important results up-to-date.
A deeper theoretical investigation including implemeintag and trial of some variants for the algorithms
given here, might be the subject of later research sincd@ysnd the scope of this thesis. An important
goal here, from a number theoretical point of view, consista better understanding of the algebraic
structure of global fields and their rings of integers, iniddd to an entrance into, and an appreciation

of, the area of Algorithmic Algebraic Number Theory.

The importance of the problem of factorization of univagiatultivariate polynomials over finite/infinite
local/global fields, made it a favorite topic for PhD thesésnany mathematicians since early in the
70’s. Those we are aware of are the PhD’s of: D.R. Musser @¥§isia, 1971), E. Kaltofen (New York,
1982), A.K. Lenstra (Amsterdam, 1984), P. Guan (Ohio, 1983. Abbott (Bath, 1988), M.J. Encar-
nacion (Linz, 1995), L. Zhi (Beijing, 1996), X-F Roblot (Bdgaux, 1997), J-F Ragot (Limoges, 1997),
F. Abu-Salem (Oxford, 2004). And surprisingly, B.M. Tragetose thesis was on the integration of
algebraic funtions (MIT, 1985) and M.H.F. van Hoeij, wholsedis was on the factorization of linear dif-
ferential operators (Nijmegen, 1996), added such an impbrdontribution to the theory of polynomial
factorization that their names have became as well-knowthfe theory as Berlekamp’s, Zassenhaus’,

and Lenstra’s.

The factorization of polynomials, in general, is an impottaperation needed in many problems of
computational algebra, some of them coming from: symbaliogutation, cryptography, coding theory,
number theory.... For example, itis a crucial step in commgueain explicit basis of Newforms for a space

of Modular forms.

This wide need for factorization of polynomials makes it aaportant subject of investigation for math-
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ematicians and computer scientists, and already in 178@¢ Idewton, in his "Arithmetica Universalis”,
gave a method for finding linear and quadratic factors of pafgials with integer coefficients. This
method was extended by Nicolas Bernoulli in 1708, and in lffi@3astronomer Friedrich von Schu-
bert extended this method more explicitely and gave a fsie-algorithm for computing all factors of

degreed of a univariate polynomial with integer coefficients.

About 90 years later, Leopold Kronecker rediscovered Settisbmethod and also gave algorithms for
factoring univariate and multivariate polynomials withdger coefficients. The key idea in these algo-
rithms is that a polynomial of degreeis completely determined by its values(at+ 1) different points,

by means of the Lagrange interpolation method for instaHesce one can reduce the factorization of a
polynomial to the factorization of its values at these défe points, and then collect information about

the polynomial factors sought.

Kronecker is then considered as the first inventor of a géaégarithm for factorization of polynomials
with integer coefficients, which can be applied also to thedi@zation of polynomials over algebraic
extension fields. The idea was to reduce this factorizat@me over the ground field, which can be either
the field of the rational numbers, in the case of an algebraicher field, or the field of rational functions,
in the case of an algebraic function field. This was one of tisé dittempts to study simultaneously: the
theory of algebraic numbers and the one of algebraic funstio one variable, which we will investigate

simultaneously in this thesis.

Dedekind and Weber have observed that many of the resulkinebtby Dedekind while studying and
generalising the properties of the rings of integers in nenfields, also apply to the rings of integers
in funtion fields. This invites one to unify the study of cémtaroblems in number and function fields.

However, such a general theory had to wait until more altst@wcepts in algebra have been set up.

For our work, we not only need deep results and concepts figebea, but also some tools from the
geometry of numbers for both number and function fields. €Hos the latter fields became available

only quite recently with the work by M. Schornig in his PhD giee(Berlin, 1996).

We recall that global fieldK is either amalgebraic number fielcthat is, a finite extension of the rational
number fieldQ, or else aralgebraic function fieldthat is, a finite extension of a field, () of rational

functions in an indeterminateover a finite fieldF,,.

The arithmetic in a global field relies on the properties sfiitg of integers For a rational global field

(Q or Fy(t)), the ring of integers iZ or IF,[t], respectively, and it is well knwon that these two rings
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have many properties in common. Both rings Brelidean domainsand hence PIDs (Principal Ideal
Domains) and UFDs (Unique Factorization Domains); bothehthe property that theesidue class ring
of any non-zero ideal iinite, both rings have infinitely margrime elementsand both rings have finitely

manyunits (cf [ROS] for a proof of these statements).

Consequently, we also find common or similar propertiesHerrings of integers of a general number
field and a general function field. These rings areititegral closureof Z (respectivelyF,[t]) in the
extension field. One of the main properties they share isatithat they are botbedekind Domains
(cf [Fr-T] and [ART]). This will play an important role in owvork because Dedekind Domains retain
desirable properties df, in particular, the possibility and unicity of decompasiti of ideals into a

product of prime ideals (cf [EIC]).

We will be considering polynomial rings over such Dedekiraimains and over their quotient fields,
exploring different results related to the factorizatidnpdmitive univariate polynomials in the above
polynomial rings. Most of our discussions will be around soaigorithm that, in a specific context,
gives the complete factorization of our polynomial. A factation is said to b&ompletewhen all the

irreducible factors are produced.

We recall that in our context, rings will always mean comrtiugarings with unit, even if it is not
specified, and we use gothic letters to denote ideals, foilpwdilbert who introduced this notation in

his Zahlbericht (1897).

We have divided our thesis into four chapters preceded hyitiioduction which gives a survey and

brief introduction to the subject. The four chapters arenized as follows.

In the first chapter, we give some important tools that wilised throughout all the thesis, starting by
introducing the principle fomodular algorithmsthen giving some important theorems needed, mainly
the Chinese Remainder Theorem and Hensel's and Gauss’ kmmée will also introduce the quite
recent notion of lattice-basis reduction, and for the cdsermmber field, we give the LLL algorithm for
basis reduction and all the properties of an LLL reducedsha8e end the chapter by some assumptions
to be made throughout the thesis, namely we have chosen sideora monic squarefree polynomial
with integral coefficients.

For the case of a number field, we have also chosen to studgsixtly the problem of factorization
of polynomials over an extension field ( Wit : Q] > 2), the factorization of polynomials over the
rationals being considered known. We have recalled the itapbresults concerning the factorization

of polynomials over the rationals in the first chapter as we @ show how they extend to a general
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number field. And for lack of space, we will assume the fagtiiion techniques over finite fields known

refering to the bibliography.

Trager's method of factorization over algebraic extendields will be the subject of the second chap-
ter. It has the advantage of being applicable simultangdasiumber and function fields, relying on the
algebraic properties of the extention fields and using theras a tool. The norm map, which is a homo-
morphism that sends elements of an extension field to elemettie ground field, will enable reducing
the problem of factoring a polynomial with coefficients i tkxtention field, to the problem of factoring
another polynomial over the ground field, assuming we haeeign tools to solve the latter problem.
Usually, the ground field is the rational number field for whawhole bunch of efficient factorization
algorithms are known, but Trager's method can also be apphi¢owers of algebraic extention fields as

well. Encarnacién’s quite recent improvement of this mdthll also be given.

Other techniques, which we will callirect factorization methodby contrast to Trager’s indirect one,
will be presented in the latter chapters.

We dedicated the third chapter to the direct factorizati@ihods over a general number field, and the
fourth chapter to the direct factorization methods overrfion field. This is done separately as not all
the algorithms presented work equally for number and fondiields.

Weinberger and Rothschild’s algorithm, the LLL factorieatalgorithm, and van Hoeij's algorithm, are
applicable only to number fields. They will be described amalysed in the third chapter.

We dedicated the last chapter to Pohst and Omafa’s resuttsefease of a global function field.
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CHAPTER ONE

PREREQUISITES

1.1 Homomorphism methods and modular algorithms

An important class of problems in number theory including theory of function fields, can be dealt
with using homomorphisms, transporting the problem to gpmdomain where one can see how to
solve it more easily. The original problem will then be sal\ey means of some tools that allow one to
return to the original domain.

The first well known tool, which we are interested in, is @leinese Remainder Theord@RT).

Theorem 1.1
Let R be an integral domain, and €, - - - ,at} be a set of relatively prime |deals of
(i.ea;+a; = Rfori # j). Thenthe mapi — H R/a; , is surjective. It's kernel |5H a; = ﬂﬁjl a;.

=1 =1
And hence, there is a ring isomorphism:

t
R/ay -+ a; HR/C%‘
i=1

This theorem gave rise to the so calleddular algorithmsawvhere instead of solving an algebraic com-
putational problem over an integral domdidirectly, one solves it modulo one or several ideals of this
domain and uses these modular solutions together to fincbtatios in R.

An important gain in efficiency can be realized when the ca@mn in R/a is easy. This is the case
whena is a maximal ideal oR andR/a is finite (e.gR = Z, a = pZ), thus, the residue class ririgy a

is actually a finite field.

Again, if we assume? = D a Dedekind domain, then every non-zero prime ideakRds maximal.
And since every ideal oR? is uniquely expressible as a product of nonzero prime ideflR, up to
order of factors, we can always solve any algebraic comipuit problem overR using the follow-
ing general scheme, where we note that the dotted arrows graedures while the plain ones show

homomorphisms,
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. reduce
Rfpy" ———— > R/p

edu®

direct r?esolution modiular resolution modular r{asolution
. itV
| @/91 < R/m |
i g\ﬁ\} 2 |
N2 i
Y - |
% i
R <-------~- R/a 1
Y

"econsty,, ot~

=< g,

and where we assume the idealf R to be expressible as:

o) €1 et
a=py-op

with theyp; distinct prime ideals of? and thee; positive integers.

The Chinese Remainder Theorem will be then used for the Biginstruction stage, but some more
work is needed for the second stage, which we will clarifeddor our context.

The passage fron®/p; to R/p;’ is ensured by the Hensel lifting which will be discussed ia text
section and which will turn out to be more useful in practites it deals with only one prime ideal.

For a general ideal, we may be faced with the serious drawback of the generahselaove, namely
the possibility that a huge number of the image problems tebd solved. It turns out that this number
grows exponentially with the size of the solution, whicheifiéres with the efficiency of our method.
This should then be taken into consideration while choogtiegmoduli.

In addition, our choice of the moduli should enable us to vecthe solution in the original domaiR

which requires finding a bound on the solutionArat first.
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1.2 Hensel lifting

Early in the 1900’s, K. Hensel gave a new theorem which wasabrieés motivations for introducing
p-adic numbers. He published it in 1918 under the title "A nbeorem of algebraic numbers”. This
theorem is well known since then Bensel's lemma

There are many different formulations of this lemma, allke#rh give equivalent conditions for a valued
field to be Henselian.

Without entering into details, and without giving the exdefinition of a Henselian field, we just mention
briefly the important result that a complete field for a rankalliation is Henselian (cf [Pr-D]). This result
applies to the fields we are interested in. In addition, werref A. M. Robert for some applications of
the Hensel's lemma in contexts other than ours.

Here, we will give two forms of Hensel's lemma that we think anost relevant to our work.

Theorem 1.2 Hensel's Lemma

Let R be a local ring with maximal idea®t and residue fieldk = R/91.
Assume thaR is 92t-adically complete.
For any polynomialf (X) € R[X], let f(X) € k[X] denote its residueod Dt.

Let f(X) € R[X] be monic and such that there is a factorization:
FX) = u(X)o(X) in k[X]

whereu(X) andv(X) are monic and relatively prime.

Then there exists a factorization:

with h(X), k(X) monic, such that:

For practical applications we actually prefer a constugcform of Hensel's lemma that yields an algo-

rithm for lifting factorizations.

We give here the one given by Pohst and Zassenhaus in [P-Z].

I"A course inp-adic analysis", Springer-Verlag 2000
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Theorem 1.3 Hensel's Lemma: Constructive form
Let R be a commutative ringy an ideal of R and f, f,,, f,, € R[X] be monic non-constant

polynomials such that there is a factorization:

[ = frofon modblX]
with f, o, f,, relatively prime mod b[X], that is:
a0 fio+ yofso =1+ao0 (forsomes,, € R[X], 0 <i<2a,, € b[X])

Then for everk € N there holds a congruence factorization

I = Frfo mod b [
with f,  f, . € R[X] monic non-constant polynomials, satisfying the coherencelition
fix = [.o modb[X] (i=1,2)
and an equation

a’l,kfl,k 5 a2,kf2,k =1+ Qo

<a’i,k € R[X]’deg(a’i,k) < deg(f3—i,k) 0<:i< 2’0’0,1( € bzk [X]>
The key idea in the proof of this theorem was the construaticansolution of a congruence equation:
a1(X) f1(X) + a2(X) f2(X) = b(X) mod b[X] (1.1)

given that f; and f, are relatively prime modulo that ideal or a power of it, anthgshe fact that

it is possible to satisfy the degree condition by reducingdatm suitable polynomials. This follows
since both remainderandquotientobtained by a long division of any element of an idegl], by any
polynomial inR[X], actually belong td[X], (the idealb of R being stable for the operations involved by
the long division algorithm).

The above congruence equation (1.1) is not obvious, anddine the casdt = Z, b = pZ, p prime,

we know that the factor ring./p*Z[X] need not be a UFD, nor need there always be a GCD for two
given elements. In [ZAS 2], Zassenhaus gave the conditionthé existence of GCD’s in such factor
rings, and explains, in greater detail, the algorithm hegeated earlier in his seminal paper [ZAS 1].
His second paper came in response to a remark of D. Yun whiedtedtensively the Hensel lemma in

his MIT PhD thesis entitled The Hensel Lemma in Algebraic Manipulatitri$974).

The method given in the theorem above is called a quadratitséldifting. The original Hensel con-

struction, which is linear, lifts a factorization fromod b¥[X] to mod b¥*1[X] at thek'" step, while the
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quadratic one lifts a factorization fromod b2*[X] to mod b2 [X].
Lots of work has been done to implement and compare varietid®e two approaches (see e.g [ABB]
or [G-G]), the quadratic lift seems to converge faster. Minedess, the linear one requiring less compu-

tation at each step, may be the best choice in different ristances.

Here, following Pohst and Zassenhaus, we choose the gitaHiensel Construction, giving the algo-

rithm below which provides a subroutine that can be iteragetb the accuracy needed.
Algorithm 1.4 "Hensel Lifting" (cf [Om-P])

Input. An integral domaink with a proper idealb and monic non-constant polynomials
fX), h(X), k(X) € R[X] such that:
fX) = hXEk(EX) modb[X]
u(X)h(X) +v(X)k(X) = 1 mod b[X]
for suitableu(X), v(X) € R[X]

Output. Monic polynomialsh(X), k(X) € R[X] satisfying:

f(X) = hX)EEX)  modb3[X]

hX) = h(X) mod b[X]

kX)) = k(X) mod b[X]

W(X)h(X) + 0(X)k(X) = 1 mod b?[X]

with @(X) , 5(X) € R[X] anddeg (@) < deg(k) , deg(v) < deg(h)
Step 1. Seta(X) := f(X) — h(X)k(X), and b(X) := u(X)h(X) + v(X)k(X) — 1
Step 2. Set

¢(X) := Rem (v(X)a(X), h(X)), h(X):=h
d(X) :== Rem (u(X)a(X), k(X)), k(X):=k

Step 3. Sete(X) := b(X) + u(X)c(X) + v(X)d(X), and
a(X) == Rem( (X)(1 — e(X)), k(x)), (X) := Rem (U(x)u ~ e(x),ﬁ(x))

WhereRem/(«, ) denotes the remainder of the divisioncobver (.

The following example will illustrate this algorithm.
Example: Let R = Z, b= 3Z andf(X) = X* — 394X3 — 4193X? + 126X + 596 € Z[X]. Then

fxX) = x—x34+%x2-1 mod3

X2+ X+ D)X +X—1) mod3
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Let h(X) =xX*>+X+landk(X) =X2+X—1
So f(X) = h(X)k(X) mod 3, with h(X) andk(X) relatively prime since they don’'t have common roots.

Let's applyAlgorithm 1.4 to lift this factorization to onenod 32.

Step 0. By means of the Extended Euclidean Algorithm, we can alwaysputeu(X), v(X) € Z[X] such
thatu(X)h(X) + v(X)k(X) =1 mod3 with deg(v) < deg(h) = 2 anddeg(u) < deg(k) = 2, but
we notice here that it suffices to takéX) = —1 anduv(X) = +1.

Step 1. a(X) = f(X) — h(X)k(X) = —396X3 — 4194X? + 126X + 597
b(X) = u(X)h(X) + v(X)k(X) — 1 = -3
Note thata(X) € 3Z[X], idem forb(X).

Step 2. Let ¢*(X) = v(X)a(X)
d*(X) = u(X)a(X)

By two long divisions we get:

*(X) = (—396X — 3798)h(X) + (4320X + 4395)

d*(X) = (396X + 3798)k(X) + (—3528X + 3201)

Hence:c*(X) = Rem(c*, h) = 4320X + 4395 andd* (X) = Rem(d*, k) = —3528X + 3201
Define  A(X) = h(X)+c(X)
= X2+ 4321X + 4396
= X2+ (9% 480+ 1)X+ (9 x 488 + 4)
k(X) = Kk(X)+d(X)
Hence: h(X)k(X) X%+ 253 + X2 + 2 mod 9
f(X) mod 9

Step 3. e(X) := b(X) + uc+ vd = —(9 x 872X + 9 x 133)
Sincedeg(u) = deg(v) = 0, we don't need to reduce(X)(1 — e(X)) andv(X)(1 — e(X)).
We take:
a(X) = u(X)(1 —e(X)) = —((9 x 872)X 4+ (9 x 133 4+ 1))
5(X) = v(X)(1 — e(X)) = (9 x 872)X + (9 x 133+ 1)
which satisfyiih + ok = 1 mod9.

We refer to Geddes et al. in [G-C-L] for many more examplessiliating the linear Hensel Lifting and

other forms of it.

2For this example of illustration, we do not care whetlfiéx) preserves squarefreeneasd 3, for it is not a requirement
for Hensel's Lemma.
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1.3 Gauss lemma

1.3.1 Algebraic properties of univariate polynomial rings

Let R be aring.

The following theorem summarises most of the algebraic gnags of the ringR[X].

Theorem 1.5

1. If Ris an integral domain, so i&[X]. The units ofR[X] being exactly those @?, i.e (R[X])* = R*.

2. If Ris a UFD, so isR[X]. Its primes are either the primes &f or the polynomials of?[X], that

cannot be factored, apart from units and associates.
3. If Ris a Euclidean domain, theR[X] is a UFD.
4. Ris afield, thenR[X] is a Euclidean domain with valuation(f (X)) = deg (f(X)).

5. If R is a Dedekind domain that is not a UFD, with quotient fiéld then at least propertyl()
applies toR[X] and @.) applies toK [X].

We recall that in a UFD:
e GCD’s exist and are unique up to units.
e Primes and irreducibles coincide.
e The factorization of elements into primes is unique.
Property (2.) is actually an important theorem due to Gahssproof of which relies on another impor-

tant result known as Gauss’ Lemma, which we will introduderasome necessary definitions.

1.3.2 Content and primitive part of a polynomial

Let R be a UFD with quotient field<, and consider a nonzero polynomjak R[X]. A first step in the
factorization off (X) is to extract the units and the constants.
Example R =7

f(X) = —4x3 —8x%2 46X —18

= (—1)(2)(2%® + 4x* — 3X +9)

This is always possible over a UFD, it suffices to consideiG®D of the coefficients of (X).
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Definition 1.6
The contentof a nonzero polynomiaf (X) € R[X], whereR is a UFD, denotedtont(f(X)), is the
GCD of its coefficients, up to associates. The polynotfi{@) /cont(f (X)) will then have content 1. It

is called theprimitive partof f(X), and denotegp( f(X))

Remark:
The definition of content and primitive parts can be extendegblynomialsf (X) € K[X], whereK is
the quotient field of the UFIR, as follows:
Write: f(X) = Y. b;X" /d, whereb; € Randd € R\ {0} is a common denominator of the coefficients
of f. Then:

cont(f(X)) = écont (Z bixi> and pp(f(X)) = f(X)/cont(f(X)) as usual

This yields a unique representation &) in the form:

f(X) = cont(f(X)) - pp(f(X))
By convention, we definezont(0) = 0, pp(0) = 1.

Definition 1.7
A non zero polynomiaf (X) € R[X|, whereR is a UFD, is said to bgrimitive if it has content 1, i.e

it is a normalised polynomial with relatively prime coefiats.

In particular, a non zero monomial is primitive if it is monic
Example:
R=7, f(X) = 3x2-2X+25
2
R=Q, fX) = X2+§X—9
Note that, over a field, primitive polynomials are the momes.

Remark:

If f(X) is a polynomial over a UFIR, then the coefficients of its primitive part lie .

Lemma 1.8

Let f(X) € R[X], whereR is a UFD with quotient field<. Then for every: € K, ¢ # 0
cont (c- f(X)) = ¢~ cont(f(X)) and pp(c- f(X)) = pp (f(X))
Note that our definition of the content and primitive part gfaynomial yields:
cont(c) =c, pp(c) =1
Hence the above equalities can be written:

cont (c- f(X)) = cont(c) - cont(f(X)) and pp(c- f(X)) = pp(c) pp(f(X))
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1.3.3 Gauss lemma over UFD’s and Dedekind domains

Theorem 1.9 Gauss Lemma

Let R be a UFD. Then, the product of two primitive polynomialdifX] is primitive.

Proof:

Let f(X), g(X) € R[X] be two primitive polynomials, and letc R be a prime.

The ringD = R/(p) is an integral domain, and heng¥X] is also an integral domain.

Sincef(X) andg(X) have content 1 by assumptiofimod p andg mod p are both nonzero i®[X], and
hence their product i®[X], fg mod p is nonzero as well.

i.ep 1 cont(fg). And this is true for any prime.

Hencecont(fg) = 1 and fg is primitive.

O

Corollary 1.10

Let R be a UFD andf (X), ¢(X) € R[X]. Then
cont(fg) = cont(f)-cont(g) and pp(fg) =pp(f) - pp(g)
Proof:
fg = (econt(f)pp(f)) - (cont(g)pp(g))
= (cont(f)cont(g)) - pp(f)pp(9)
c h

wherec € R\ {0} andh is primitive by Gauss Lemma above.

Hence:cont(fg) = ¢ - cont(h) = ¢ = cont(f)cont(g),

and thusypp(fg) = fg/cont(f)cont(g) = pp(f) - pp(g)-
O

To generalise Gauss lemma for polynomials over Dedekindaiftsnwe need to extend first the notions

of content, primitive part, and/or primitive polynomialsthis context.

Definition 1.11 (cf [Fr-T])
Let R = D be a Dedekind domain with quotient fiehd, and considerf (X) € K[X].
We definghe contenbf f, denotedCy, to be the fractionalD-ideal generated by the coefficients fof
Thenf is said to beprimitive if
Cr=D.
Here D, the Dedekind domain itself, is no more than the identityhef abelian group of fractional

D-ideals inK.

ILHEM BENZAOUI Univ. of Stellenbosch



Prerequisites 16

A primitive polynomial can also be characterised byvaiationof it's content as follows.

For every prime idegh of D, we denote by

Vp(f) = Vp(ef)

wherev, is thep-adic valuation defined on the group of fractiofizideals of K.

Then f is primitive if and only if
For each prime ideal of D, v,(f) = 0.
The map thus defined for a prime idgeabf D
KX] — Z
fo— ()
retains a nice property of theadic valuation which yields the following form of Gauss lea:

Theorem 1.12

For any nonzero polynomialg, ¢ € K[X], and for each prime ideg of D

vp(fg) = vu(f) + v4(9)
Proof. See [Fr-T].

Theorem 1.13
LetD be Dedekind domain. Then the product of two primitive patyiats in D[X] is primitive.

Proof;

Let f, g € D[X]. Assume that for alp prime inD, v,(f) = vp(g) = 0. Then

Vp(fg) = ’/p(f) + Vp(g) =0

As a consequence, we have the following important theorem.

Theorem 1.14
Let D be a Dedekind domain with quotient figkd
If f(X), g(X), h(X) are monic polynomials id[X] such that:

and f(X) € D[X], then
9(X), h(X) € DIX]

i.e The monic factors of a monic polynomial®fx], lie in D[X].
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Proof;

Note that an ideat of D is characterised by:

vp(p) = 0.

Now, sincef (X) has coefficients ifD[X], C is an ideal ofD.
The monicity of f implies thenv,(p) = 0 for all prime idealsp of D.

On the other hand, singgX) andh(X) are both monic polynomials if [X], for all prime idealg of D,
vp(9) <0 and vu(h) <0.

By Gauss lemma (1.12)
0=1vp(f) = vp(g) + vp(h)

Hence: v,(g) = vp(h) = 0for all p.
Thus, €4, C, C D.
And so,¢(X), h(X) € D[X].

1.4 Squarefreeness

Definition 1.15
Let f(X) € R[X], whereR is a UFD (Unique Factorization Domain).

f(X) is said to besquarefredf it has no repeated factors, that is, if there is no polynaliX) such that:

deg(g(X)) > 1and g(X)?|f(X)

Theorem 1.16

In characteristic zero, we have:
f(X) is square-free<= GCD(f, ') =1

Indeed, if there exits a non-constant polynomiét) such thaty(X)? | f(X). Theng(X) | f/(X) and is a
common factor tof and f’.
If f/(X) # 0, the Euclidean algorithm yields non trivial factors, thet,&C D(f, f')andf/GCD(f, f'),
whenceGCD(f, f') # 1.
Now, if GCD(f, f’) = 1, by the Extended Euclidean Algorithm, there exist polyraimi
U(X),V(X) € R[X] such that:

UX)f(X)+VX)f'(X) =1 (1.2)

ILHEM BENZAOUI Univ. of Stellenbosch



Prerequisites 18

It suffices to observe thatis squarefree if and only if, the roots ¢fin an algebraic closure of the field
of fractions of R, are all simple, that isf is separable.
By (1.2), one concludes thgt and f’ have no common roots, hengehas only simple roots and is
squarefree.

O
In the casef’(X) = 0, with the existence of a non-constant common factoy tnd f’, the field of
fractions of R is necessarily of finite characteristic, which is then a grimmber.
Let p be this prime number. Then every powerXoin f, that corresponds to a non-zero coefficient, is
necessarily a-th power, whence so i§(X), i.e f(X) = h(X)?, for some polynomiah(X).
This is due to the fact that

T

h(XP") = h(X)P" , Vh(X) € F,r[X].

Hence, over any UFD, @C D between a polynomigf and its derivative extracts all the repeated factors
of f. This observation allows us to compute the squarefree pafit® R[X], which is f/GCD(f, f'),
and in which each irreducible factor ¢fappears exactly once. The remaining part, th&dsD( f, f'),
forms the non-squarefree part pfand will not play a role in the factorization process, whidmsists in
finding all irreducible factors. Their multiplicity will tbn be found by direct division.

Remark:

Applying the reduction map of section (1.1), we notice that:

Squarefreeness is preserved by all but a finite number ofggrimamely those primes that ramify!

1.5 Lattices and reduction

1.5.1 Basic facts on lattices

Let A C R™ be alattice of dimensionk, that is, a freeZ-module of finite ranks := dim(R @z A). then

A containsk R-linearly independent vectots, - - - , b, such that:

k
A= ZZbi
=1

We denote byi(A), the determinant of the latticg, that is, the number:

1/2
d(A) = |det(by,--- ,by)| = ((bgrbj)lgi’jgk‘
whereb!" denotes the transpose of the vedtgrandb, - - - , b, is anybasisfor A.
We recall that/(A) is an invariant of the lattice that does not depend on thecetmfithe basis. Moreover:

d(A) > 0 (since they; areR-linearly independent).
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Note that the determinant of a lattideis also the volume of its fundamental domain:

k
H(A)::{xeR”]x:inbi,ngi<1,1§i§k}
i=1

The fundamental domain of a lattice has the property that every point of the Euclidean sfiiteis
congruent, modula\, to at most onénterior point of II(A), points congruent to a boundary point may
be repeated. And we have

II(A) 2 R"/A

Lemma 1.17 (cf[BEL 1] or [LEN 2])
Let ez = Sup{r € R*| B(0,r) C II(A)} be the radius of the largest ball inscribed in the
fundamental domaibl(A), whereB(0, ) is the open ball oR", centered ab, and having radius:.

For z € R™, there exists at most onee R™ such that
x =y (mod A) and |ly|| < rmax

where|| || denotes the Euclidean norm &¥.
If it exists,y is the unique element ®f(A) congruent taz moduloA.

Let M be the matrix giving the basis vectdrs theny is given by
y=zmodM :=x — M| M 1z]
where|z]| := [z + %J is the operator rounding to the nearest integer and is to baied coordinatewise.

We will give later a formula for computing,,... explicitely for any lattice, but a best way to maximize

itis to use a LLL-reduced basis. Before that we need to defiaedncept obasis reduction

An important question in the Geometry of Numbers is Ehéstence and Constructioof lattice basis
vectors with special properties; and that’s the genergsabreductionas we define it here. The aim is

to exhibit lattice vectors that are of computational ingéreuch as the shortest vectors in a lattice.

1.5.2 The LLL lattice-basis reduction for number fields

An interesting definition of "reduced basis" was given byttirvee mathematicians A.K. Lenstra, H. W.
Lenstra Jr, and L. Lovasz in 1982, who gave a very efficiengqnhial time algorithm for finding such
a basis. These bases are then easy to compute, and in addéjohave so many properties that make

them very important for computational purposes.
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Definition 1.18
A basisby, - - - , by, of a lattice A is said to be LLL-reducedlif by, - - - , by and the vectorss, - - - , by

of the corresponding orthogonal basis together with theiresponding constants (see below), satisfy:

@) il < 3 (1<j<i<k)
() 16 4 pii1b; I = 2167, |12 (1<i<k)
The second condition is due to Laszlo Lovasz and known asdzogdndition .
The constang is arbitrarily chosen, and may be replaced by any fixed re@b@rc, such that}; <a<
1. In such a case, the powerséppearing in the inequalities of lemma (1.20) below shoelddplaced
by the same powers of the numb@j‘j1 called the LLL-constant.
The numbew, called the LLL-parameter, is used to check the Lovasz ¢mmdand determine the fre-

quency of swaps in the LLL algoritm.
Examples:

For k = 2, the basigby, by) is LLL-reduced if:

(@) [p21] < 3. thus||pzab7[| < 5ba]

(This happens when the angle between

the vectorsh; andby, 8 = (by, by), b;
is relatively large { is at leasts).) |
) 2,101 1= b}
) [|b2]> = ||b3 + po2,1b%]|* > 2||b1||*> (This means that
||b2|| is not too small compared i, ||.)
In the above definition, we use the orthogonal basis correipg tob,, - - - , b, which is obtained by
applying the Gram-Schmidt orthogonalization process baWs:
by = by
* i—1 * bg'f' bj]k . .
bi =b; — 2]’:1 ,uijbj where Wij = W, (1 <gjg<1< k‘)
J J

This can be represented in matrix form as follows.

SLLL standing for A.K. Lenstra, H. W. Lenstra Jr, and L. Lovasz
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Let M = (by,--- ,bx) be the matrix whose columns are the
andM* = (b7, - -, b;) be the matrix whose columns are tjg Then:
1 po1 p31 -0 HE1

0 1 psp - pge

M = M*G, whereG =

o 0 - 1 gk
0 O 0 1
Hence:
L —poy —p3n -0 —pk

0 1  —pz2 -+ —pr2
( >(1(7 7b2) - (617"' 7bk)G_1 = (blv"' 7bk)

0 0 I —pek—1
0 0 0 1

Recall that, the Gram-Schmidt orthogonalization procgsspolynomial time algorithm and needs only
O(n?) arithmetic operations.
Note that, theb} ¢ A in general, and consequently we only get a vector space! ddsisertheless, the

Gram-Schmidt orthogonal basis has the following nice prtigs

e b}, -, bj are pairwise orthogonal akt-linearly independent.
o Wii=Y1;;Rb; =3, Rb; foralli, 1 <i<k

e 1! is the projection ob; onto W;* the orthogonal complement &F;_1,

and hence in particuldb; || < ||b;|.
o det(by,--- ,by) = det(by,--- ,b})
As a consequence, we obtain the following famous inequality

Theorem 1.19 "Hadamard'’s Inequality"

K
Let (by, - ,by) be a basis of a latticé.. Then:d(A) < [ 4]
=1
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k
. oy ]

f hich I hat=i=L 1b: >1

rom which, we conlude t an) =

This quantity is actually a measure of orthogonality forlasis(b,, - - - , bx), and is called the "Orthog-

onality Defect". By Hadamard’s Inequality one can see twaita basis, to be "reduced" means also that

it "is not too far" from being orthogonal.

Properties of a LLL-reduced basis

Lemma 1.20
Let (by,--- ,bx) be a LLL-reduced basis of a lattick C R™ with the corresponding orthogonal
basis(b7, - - - , b}). Then the following estimates hold:

Ll <2fe;* (1<i<k

N

g2 <2t (G <ji<i<h)

k(k—1)
4

3. d(A) <TTE, o]l < (A)

4. ||by|| < 2" 7 d(A)e

5. ||by])? < 2F Y|z forallz € A, x #0

6. 1617 < 25 tmaz{[|lz, |7l PR A <5 <)
for any linearly independent vectoss, - - - , z, of A.

For a proof of this lemma, we refer to [L-L-L].
We also cite the following results from [BEL 1] concerning ttundamental domain of a lattice.
Lemma 1.21

The radius of the largest ball inscribed in the fundamentahdin of a lattice\ of basis(by, - - - , by)

is given by

l\D\»—l

o1
Pmas = WD oy suchthat T;:= Zt ]/Hb*H

¢ %

where thet; ; are the coefficients of the inverse of the Gram matfix (b}).

Lemma 1.22

If the lattice A is given by a LLL-reduced basfs, - - - , bx) then

1 Eonl)
Tmazx > §H12111Hb1|| X (%)
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Combining these two results with the properties of a LLLueed basis we get

Lemma 1.23 (cf [BEL 1])
If the basis of the latticdh C R" is LLL-reduced then

b1
2 (3v2/2)" "

>

Tmaa: -

Algorithm for LLL-basis reduction

Algorithm 1.24 "LLL-reduction" (cf [P-Z])

Input. Basis vector$, - - - , b, of a latticeA C R".
Output. A basisby, - - , by of A thatis LLL-reduced.

Step 1. [initialize] Fori =1,2,--- .k
b;“‘bj
B;j
i—1
b —bi = b}, Bi— b"b;
T

Setuij —

Then setn «—— 2

Step 2. [Set! ]

Set [«—m -1

Step 3. [Reduce,,; in case|u,| > 4 ]
If |fmi| > 3 S€tr «— [y ] and
by «— by, — 1Y

Pmj <— Hmj —rp; (L<j<1-1),

Hml < Hml — T
Forl =m — 1 goto [Step 4.] else to [Step 5.]
Step 4. [Inequality (2) violated on leveln ?]
For By, < (3 — pi2,,n_1)Bm-1 90 to [Step 6.]
Step 5. [Decreasd |

Set [ —— [ —1.Forl > 0goto[Step 3]

Form = k terminate; else setn «—— m + 1 and go to [Step 2.]
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Step 6. [Interchangé,,,_1, b,,]
Set p «— Hm,m—1, B «—— By, + ,U/2Bmfl’ Hmm—1 < HBmfl/Bv

B, — Bm—le/Bs By, 1+ B,

thensetfol <j<m-—-2andm+1<i<k
bm—1 b Hm—1,5 Homj
— ) — )
b bin—1 Hmj Hm—1,5
Mim—1 1 pmm—1 0 1 Mim—1
— .
Him 0 1 1 —K Him

Form > 2 decreasen by 1. Then go to [Step 2.]

This is adeterministicandpolynomialtime algorithm, which is very efficient not only for the apgaltion
that Lenstra et al. gave in their landmark paper [L-L-L], khigo for so many problems that deal with

lattices.

In [L-L-L], Lenstra et al. proved the following propositicend gave a detailed complexity analysis for

the LLL lattice-basis reduction algorithm when appliedrtegral lattices.

Proposition 1.25
If the real numbeB > 2 is such that|b;||2 < B, for eachi, then the number of arithmetic operations
needed for the LLL algorithm i©(n*logB) and the integers on which these operations are performed

each have length(nlogB).

Remark:

For the sake of simplicity, we have chosen to present the leduction as was given in the original paper
[L-L-L] knowing that Zassenhaus, using his theory of idertgmbs, has shown that the LLL algorithm is
applicable to the quadratic fori} for number fields using floating points instead of integegpaomming
(see [ZAS 2]). And in fact, we can define an LLL-reduced basik any norm corresponding to a chosen

positive definite quadratic form (see [COH] or [BEL 1]).

1.6 Factorization over the rationals

Let f(X) € Q[X] be a polynomial of degregeg(f) > 2.
Without loss of generality, we assunfesquarefree, monic, and having coefficient<Zir{see section

(1.7) below), and hence our task is reduced to a factorizati. [X].
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Now, in order to factorizef (X) in Z[X], Zassenhaus, in [ZAS 1], proposed a procedure that is ininse s
then. This procedure, based on the Hensel lemma, is a spasialof the general Henselian technique

which consists of the following:

Algorithm 1.26 "Henselian factorization technique" (cf [W-R])

Input. f(X) € R[X], a squarefree polynomial, whefis an integral domain.
Output. The complete factorization of(X) in R[X].

Step H1. EmbedR in aring R’ so that Hensel's lemma holds Rf[X],
usually by takingR’ to be the ring of integers of a local field corresponding toitable modulus;

e.g forR = Z, choosep a suitable prime, and take’ = Z,,.

Step H2. Find a suitable approximation gf(X) in R'[X]. (For the above case, a polynomial

¢5(X) € Zp[X] with (¢ mod p) = (f mod p) in F,[X], would be the right candidate).

Step H3. Factorf(X) in R'[X] using the constructive procedure from the proof of Hendelisma,
i.e starting with a modular factorization that should beetif up to a sufficiently good accuracy
determined by a bound, that needs to be calculated, on tlice@s of the factors of in R[X]

allowing the reconstruction of these factors from thos&/x].

Step H4. Recover the factors of in R[X] by combining those obtained iR'[X]. Each combination is
tested by trial-division, and whenever a facfoe R[X] is found, replacef by f/g and start again
at (Step H3.) using what is left from the modular factoriaatof the oldf after deleting those

factors corresponding tg.

For our casef (X) in Z[X], the first step consists in choosing a primeot dividing the resultant of and
f’, which is, up to sign, equal to the product of the leading ficieht of f and its discriminant. This
choice ofp allows (f mod p) to have the same degree Asnd to preserve the squarefreeness. Having

chosen earlief to be monic, it would be the same to work with the discriminainf or its resultant.

The polynomial¢s(X) € Z,[X| satisfying (¢ mod p) = (fmod p) in F,[X], provides the required
approximation off (X) in Q,[X], we then can proceed to Step H3, i.e the factorizatiofi(@f in Q,[X],
seeking thep-adic monic irreducible factors of. For that, we start by factoringf mod p), which
is a factorization in a finite field, thus can be achieved usegekamp Algorithm, (cf [BER]). If(f
mod p) is irreducible, thery is also irreducible. Otherwise, we continue by computingarial B on the

coefficients of any non-trivial factor gf(X), for instance Mignotte’s bound (cf [MIG] & page 63 below).
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Then, applying Hensel's lemma will enable us to lift the faiation found modulg to one modulg*®
for somee satisfyingp® > 2B, so that the coefficients of any factor 6fX) in Z[X] are actually in the

e

interval | — %, p—; |, and hence these factors are already reduced mgdulm this case, the modular
factors (i.e factors modulp®) represent accurate approximates ofgkedic factors.

Now, every monic factoy € Z[X] of f(X) is actually a product of some of theadic factors, and con-
versely, every combination of some of thadic factors off may correspond to a rational true factor of
f. Therefore, we can recover all rational factorsfdfom the factors modulp® by forming all possible
products of them, each taken at most once, then reducing#udting polynomials modulp® and test-

ing them by trial division.

The method just sketched for factorization o@rknown as the Berlekamp-Zassenhaus algorithm, re-
covers the rational factors gf by essentially trying all combinations of theadic factors Z° combi-
nations, where is the number op-adic factors). Hence, this algorithm has an exponentiabivase
complexity.

However, in practice, this algorithm seems to work well,dhese the complexity is not exponential in
the degree of . It is only exponential in the number pfadic factors, which is precisely the number of
modular factors, and which issuallymuch smaller thadeg(f). The worst case may occur if all factors
of f have very low degrees. An example is given by the Swinneltper polynomials that are known
to cause the standard Berlekamp-Zassenhaus algorithrke@iaexponential running time. They have
been generalised by Kaltofen et al. (cf [K-M-S]) who gavergéa class of polynomials having the same
feature.

Ther-th Swinnerton-Dyer polynomial is defined as:

F(X) :zH(Xiﬁiﬁi---i@)

wherep, is ther-th prime and where the product is taken over2alpossible choices of + or - signs.
This polynomial lies inZ[X], has degreex = 2", and is irreducible oveZ, being in fact the minimal
polynomial overQ of the primitive elementy = v/2 + v/3 + - - + ,/p, of the extension of) by the
square roots of the firstprimes,K = Q(v2,v/3, -, /br).

Knowing that for any primep, F,,. contains all the square roots ®fmod p,3 mod p,--- , p, mod p,
because for any primg+# p, the polynomialk? — p € F,[X] is irreducible and defines the unique Galois
Field Fp2, thus we conclude thayf mod p) factorizes into linear factors OVETr.>. Hence, the irreducible
factors of( f mod p) over[F, are eithedinear or quadratic which yieldsn/2 < s < n, and may lead to

a combinatoric explosion.
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In order to reduce somehow the effect of the long combinateearch, it is worthwhile trying the fol-

lowing tricks.

1. D. R Musser* suggested that several modular factorization s should tegrdimed and different
primes should be used to minimise the number of modular factod to restrict their possible
degrees. Comparing the different patterns of factorinatiso obtained enables the elimination
of some of them. Incompatibility of these patterns mearedircibility of the polynomial to be
factored. For example, if is the product of a linear and a cubic irreducible polynomiabdulo
one prime, and the product of two quadratic irreducibledexcmodulo another prime, thehis

itself irreducible.

Musser showed that the mean number of primes needed toisisttid irreducibility of a random
polynomial grows very slowly with the degree. For polynolsiaf degree less than or equal 200,

five modular factorizations are enough.

2. The trial divisions needed to verify whether a productahe modular factors is a true rational
factor of f or not, will not all be successful. The exponential behavicorresponds exactly to
the case where all the trial divisions must fail. So it is impot to develop strategies to detect
unsuccessful trial divisions as quickly as possible.

Trying the constant coefficient of the polynomial first caimithate some of the cases. And an
early abort trial divisionstrategy pointed out by Abbott (cf [ABB]) can eliminate atlmases. It
consists in checking the size of the coefficients during thisidn declaring the latter unsuccessful

as soon as any coefficient becomes too big (exceeding thallanaove), (cf also [COH]).

Another way of overcoming the combinatoric long search aeddyscovering true factors of, was
given by Lenstra et al. in [L-L-L]. Their idea was to built t@in lattices inR™*! by means of which the
rational factors off will be determined. They use their LLL lattice-basis redoretalgorithm to find the
shortest vectors in these lattices as it turns out that tbkeskirreducible factors of do correspond to
these shortest vectors.

An advantage of this method is that with one modular factof ,ofre definitelydiscover an irreducible
rational factor off, while the combinatoric search doesn't ensure a right éhofcombinations for the
first few trials. In addition, the eventual irreducibility ¢, becomes easy to decide since in this case, the
first irreducible factor discovered will bgitself.

But the more important feature of this method is its polyrartime complexity! The factorization of

polynomials over the rationals entered then a new era: Thislgm is no longer difficult since we know

4in his paper:On the efficiency of a polynomial irreducibility test, JoatCM 25 pp 271-282, April 1978.
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agoodalgorithm that solves it. An algorithm beiggpodwhen its running time is polynomial in the size
of the input data.

Surprisingly, in practice the LLL factorization algoritheeems to be slower than the Berlekamp Zassen-
haus algorithm, and could not replace it as a standard faatmm method. The lattice-basis reduction
part of the former algorithm, consumes a lot of time becatisbeolarge dimension of the lattice so ob-
tained and the large size of the coefficients of the vectorsvaived. This leads to a poor performance

and motivates more research again.

A nice algorithm was suggested quite recently by van Hoe®pE] which efficiently solves the com-
binatoric problem by reducing it to a type of a Knapsack peoblthat can be solved using the LLL
lattice-basis reduction algorithm. Although the Knapspakblem is an NP-hard problem, the use of the
LLL lattice-basis reduction algorithm should give this nalgorithm a polynomial-time complexity.

Van Hoeij's new algorithm is much more efficient in practiban the original LLL factorization algo-
rithm proposed by Lenstra et al. because the lattice castetiun van Hoeij’s algorithm has dimension
equal to the number of modular factors, which is usually marolaller than the degree ¢f in addition

the vectors of the lattice have much smaller entries.

1.7 Some assumptions

In this work, we study the problem of factoring a univariatdypomial f (X) whose coefficients are in a
global fieldK of the ring of integer®x.

SinceK is a field, we are certain of the existence and unicity, up itspof the solution for our prob-
lem. So our task would be to identify the most efficient adddamethods that explicitly determines the
irreducible factors off (X).

Writing f(X) = cont(f)-pp(f), when possible, we notice that to completely fagt@t) means to factor
its content as well, which is an integer factorization peobland involves other approaches, that will
not be subject of our study. In addition, factoring larged@m integers is much harder than factoring
integral polynomials. So, we will only be concerned withtéaog primitive polynomials.

Besides this remark, we know that GCD’s existiiX], so we can comput&CD(f, f') and deter-
mine the squarefree part ¢gfX) as in section (1.4). Therefore, from now on, we make the \iolig

assumption:

The polynomial to be factored sxjuarefree. (Sqf)

If not, a reduction to a squarefree polynomial will be peried as first step of our factorization algo-

rithm.
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In addition, sinceK is a field, we can assume without loss of generality ) is monic. For, if it is
not the cas%f(x) is a monic polynomial irk [X].
But since it would be very handy to perform computation®iX] instead, we will then need to assume
not onlymonicityof f, but alsointegrality of its coefficients; in such a case, Gauss lemma simplifies our
task.
We recall that the long division with remainder in a polynahring R[X] is not always possible wheR
is not a field. Nevertheless, long division by a monic polyraralways works.
So it would be advantageous to ensure both conditions, wid@iolbe achieved by a change of variables
as follows. If f(X) = f(X)/d, whered € Ok, d # 0 andf(X) = iaixi € Ox[X], a, # 0.

i=0

Set: X; = a,X, then,

. X \" X\t X
Fx) = an (—1> + ap_1 (—1> +ota (—1> + ag
an an an

1

n—1 n—2 -2 —1
= —I [X? +an1X{ HananoX{ "+ -+ 4ay "Xy +a;, “ao
n

Hence:da" ! f(X) is @ monic polynomial with integral coefficients in the inelehinateX ;.

Therefore, we can assume from now onwards that, unlessnofieestated:

The polynomial to be factored imonicand hasntegral coefficients (Mon)

By Gauss lemma, we know that the factorizatioiKijx] and the factorization i@k [X] coincidefor monic
polynomials. While it doesn’t always have a meaning to td&w unique factorization i@k [X] since

the latter need not be a UFD. Sin®g is a Dedekind domain, by Gauss lemma, the monic irreducible
factors of f we are seeking ifK[X], do belong toOk [X], which enables us to save a lot of energy by

working directly with algebraic integers.
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CHAPTER TwoO

TRAGER'S METHOD FOR
FACTORIZATION OVER AN ALGEBRAIC

EXTENSION FIELD

2.1 Introduction and fundamental results

A field extensionK /K is said to beseparablef the separable degréef K over K is maximum, that is,
is equal to the degree of the extensjéh: K]. If K = K(«), for some element that is algebraic over
K, thenK is separable oveK if and only if the minimal polynomial ofy is separable, that is, has no
repeated roots. By the Primitive Element Theorem, for efierie separable field extensid/ K, there

exists an element € K such thatk = K'(«).

LetK be a finite separable extension of degreef the field K (= Q or F,(t)) ? and assum& = K («),

where the algebraic elememthas the minimal polynomiah,(Y) € R[Y], whereR = Z or Ft].

Let f(X) € K[X] be a polynomial that we assume squarefree, monic, and hawgffcients inZ|«], for
the number field case, or Ify, [t] o], for the function field case. And consider the problem of fiigdtihe

complete factorization of (X) overK[X] using Trager’s method.

Trager’s method for factorization over an algebraic extanfield has its origin in Kronecker’s work. It

has been improved quite recently by Encar6a¢dENC].

Assuming that efficient factorization algorithms for padynials over the rational number and function
fields are known, the main idea of Trager’s factorization hrodtis to reduce the problem of factoring
f(X) in K[X], to a factorization of an other polynomial & [X], (i = Q or F,(t)).

This can be done via the norm map that sends elements of ams@xidield back to the ground field.

cf [LAN] page 177
2Note that fork = Q the separability condition is superfluous, sifigés a perfect field.
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Denote byoy, - - - , o, the distinct embeddings @ in an algebraic closur& of K. There are exactly
m of them, since we assumed the extension separable.

For an element € K, the norm is the element df defined as:

Applying the norm coefficient-wise to a polynomigX) € K[X|, we can extend the definition of the

norm to elements dK[X]. In particular, we have:
N (9(x)) = [[oi (9(x))
i=1

where the isomorphisms; are applied tg(X) coefficient-wise.

From Galois theory, we know tha¥(a) € K because it is fixed by all elements of the Galois group
Gal(K|K), and henceV (¢(X)) € K[X].

In addition, since the; are field homomorphisms, the norm is a multiplicative mapnfii§[X] to K[X]

aswell. i.e

N (91(X)g2(X)) = N (91(X)) N (g2(X)) ~ for all g1(X), g2(X) € K[X]

There are several formulae for the norm. For an element K, the norm can be calculated as the
constant term, up to sign, of its minimal polynomial. Thistiecan be formulated as a determinant, and
it turns out that it is directly related to the notion of theukant.

The resultant is a computationally efficient tool for conipgtthe norm, and one can show that the

resultant is multiplicative and satisfies:

Resy(u(Y),v(Y)) = lc(u)deg(v) H v(p;)

Pj
where thep;’s run through all roots of the polynomial(Y), andlc(«) denotes the leading coefficient of
the polynomiak..
Hence for a polynomigj(X) € K[X], asitis defined oveK = Q(«), it can be considered as a polynomial

in two variables defined ové, that isg(X) = g(X, Y)y—.- SO, we get:
Resy (ma(Y),g(X,Y)) = ﬁg(X, oi(a)) (2.1)
=1
_ f[loxg(x)) - N(g(0)
The norm can then be given by the formula:

N(g(X)) = Resy (ma(Y),g(X,Y))
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Note that from (2.1) we deduce that:

deg (N(g(X))) = mdeg (9(X)) = deg (m.) deg (9) (2.2

And we have the following results about this map.

Lemma 2.1

If g(X) € K[X] is irreducible, thenV (¢(X)) is the power of an irreducible polynomial &f[X].

Proof:

Let N (9(X)) = [I; N;j (X) be a factorization ofV (¢(X)) into irreducible factors inK'[X]. By
considerings = id, we know thayy(X) | N (¢(X)) in K[X].
Sinceg(X) is irreducible inK[X], g(X) divides N;(X) in K[X] for somey.
Henceo;(g(X)) | N;(X) in o;(K[X]) for all i and soN (g(X)) | NJ*(X) in K[X]. But N;(X) € K[X],
thereforeN (¢(X)) | Nj*(X) in K[X] and hence
N (g(X)) = N™(X), for somem’ < m, wherem = [K : K.

Lemma 2.2
Suppose that both(X) € K[X] and N (¢(X)) € K[X] are squarefree.
Let N (¢9(X)) = H§'=1 N;(X) be a factorization ofV (¢(X)) into distinct irreducible factors ini[X].

t
ThenH GCD (g(X), N;(X)) is a factorization ofy(X) into irreducible factors inK[X].
j=1

Proof:
Letgi(X),- -, g-(X) be the irreducible factors af(X) in K[X].

On the one hand, since the norm map is multiplicative, we:have
N(g(x) = [TV (gi(x))

On the other hand (¢(X)) = []; V;(X) with the N; all distinct, sincelV (¢(X)) is supposed squarefree.
As N; is irreducible, we gelV; | N (g;(X)) for somei = i(j).
But g;(X) is irreducible, hence, by the preceding lemmva(g; (X)) is a power of its irreducible factor in

KI[X], N;. This power would then divide the squarefree polynom¥alg(X)). Whence
N (g:(X)) = N (2.3)
Reordering the factors df (¢(X)), if necessary, we obtain: = t and
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Hencey; is a common divisor foN; and the polynomiad(X) which is squarefree, and §&6C' D (g(X), N; (X))
is a factor ofg(X) which appears exactly once since in addit@®a'D(g;(X), N (g;(X))) = 1 for i # j.
|

Lemma 2.3

Letg(X) € K[X] be a squarefree polynomial of degreewhereK = K («) is a separable extension,
with [K : K] = m.
Then there exists only finitely maiysuch thatV (¢(X — A«a)) is not squarefree.

Proof:
Let {3 ; }1<i<n be the roots ob;(g(X)) in an algebraic closure d.
Then the zeros oV (g(X — \«)) are the{s; ; + Ao;(a)} and hence]N (g(X — A\«)) has repeated roots
if and only if
Bij + Aoj(a) = Bri + Aoi(a)
for somei # k, j # 1.
Bij — B,

oi(@) —oj(a)’
the division being possible since the extension is separfab(«) # o;(«)).

This would imply that: A =

Obviously, there are only finitely many possibilities fosuch thatV (g(X — A«)) is not squarefree.

Observe that there are at megt. — 1)m(m — 1)/2 of them.

2.2 Trager’s algorithm

Algorithm 2.4 "Trager's Algorithm"(cf [ENC])

Input. A monic squarefree polynomigl(X) € K[X] whereK = K(«a) with a a root of its minimal
polynomialm,(Y) € K[Y]. Assume thaf has coefficients ifZ[«], for the number field case, or

in I, [t][a], for the function field case.
Output. Complete factorization of overK[X].
Step 1. Compute) such that the norm
NA(f(X = AY)) = resy (ma(Y), f(X — AY))

is squarefree.
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Step 2. Completely factor the nornV (f(X — \Y)) into irreducible factors
Ny, --- N overK.

Step 3. Compute the&ZC'D's G;(X) = GCD (N;(X), f(X — Aa)) overK.

t
Step 4. ReturnH G;(X + Aa) the complete factorization df.
i=1

In practice, a few trials suffice to obtain the squarefreemof step 1.

In [LAD], Landau showed that, for number fields, Trager'salthm runs in polynomial time, provided

we use a polynomial time algorithm to factor the norm.

2.3 Some improvements on Trager’s algorithm

More recently, for the cas® = Q, Encarnacin in [ENC] presented a device for reducing the number
of combinations of modular factors of the norm, in case a doatbrial search is performed to recover
true factors of the norm from the lifted ones modulo a highexer of a suitably chosen prime that has
been used for the factorization modulstep.

Theorem 2 in [ENC], characterises the modular factors tfia combinationby some easy-to-check
conditions. Any combination that does not satisfy thesalitmms, is then known to bextraneousand
will be ignored during the trial division phase, which wiklp speeding up this phase of the algorithm.

We will give a general version of this theorem that applie&®Function Field case as well.

Theorem 2.5
Let f(X) = f(X, ) € Z[a][X] (or F,[t, o][X] depending on whethéf is a number field or a function
field).
Assumef (X) is a squarefree polynomial whose norm is also squarefree.
Let's denote by a rational primé that does not divide the leading coefficieht&n,,) andic(N(f(X)))
nor the discriminantsliscr(m,,) anddiscr(N (f(X))).
Letm, = m,1mq2- - My, (mod p) be a complete factorization ef, mod p.
Let N; = Resy (m,;(Y), f(X,Y)), the resultant being computed modulo
If

Ty
N =[] Mij
j=1

®p € Z orp € IF,[t] depending on the case.
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is a complete factorization a¥;, fori = 1,--- | s, then a complete factorization &f(f) modulop is

given by

N() (ﬁ Nm’) ( mod p)

i=1 \j=1

Furthermore,deg(m.;) dividesdeg(N; ), anddeg(N;) = deg (ma,;) deg (f)

Proof:
Since the resultant is multiplicative, we have
N = Resy (my(Y), f(X,Y)) (mod p)
= Resy <H mw(Y),f(X,Y)) (mod p)
=1

= ][I Resv (mai(Y), f(X,Y))  (mod p)
i=1

= HNZ' (mod p)
=1

Hence the factorization a¥; into irreducible factors, yields a complete factorizat@nV (mod p), all
computations being done modyto

Moreover, the definition of thév; and (2.2) above, yield

deg(N;) = deg (M ;) deg (f)

To show thaideg (m, ;) divides also the degrees of the irreducible factdrs, we will first show that
in fact V; ; is a norm of some polynomial over a finite field obtained by miljg a root ofm, ;. And
hence, by rewriting this norm as a resultant involving, ; we deduce the divisibility property of the
degrees again from (2.2) above.

For that, note thadv; is the norm of the ponnomieyf(X,Y)\Y:ap whereqy, is a root ofm,; and

f(X,Y) = f(X,Y) ( mod p).

SinceN is squarefree, andwas chosen to preserve the squarefreeness mpdnipis squarefree for all
7. But V; is the norm of the squarefree polynomfe(lx, a;). So we can use the result (2.3) in the proof
of Lemma (2.2 ) and deduce that ; is the norm of an irreducible factor (ﬁ(x,ap), and therefore,
deg(N; ;) is a multiple ofdeg(m.,;).

O
For an example of the implementation of this result, we ref¢ENC]. We just briefly mention here how

can this theorem be applied, as proposed by Encainaci
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Instead of factoring the normv modulo p, we first factor theminimal polynomiakn, modulop into

irreducibles factorsn, i, - ,mqs, thenfori =1,--- | s we compute the resultants
Ni — RSSY (ma,i(Y)a f(xa Y))

modulop, and factor eactV; into irreducible factorsV; 1, --- , N;»,. Then we lift the factorization

N:HﬂNi,j ( mod p)

i=1j=1
which is a complete factorization of the norlvi modulop, to a sufficiently high power agb. Let's for

simplicity, denote the lifted factors also by; ;.

Let C; denote the set of all the’; ;, (1 < j < r;), occuring in a chosen combination of the lifted factors.

ThenifC = C; U --- U is the corresponding combination, by Theorem (3.10), wenkitnat
C; # 0, 1=1,---,s

So any combination that leaves one of ieempty, will be discarded because it can not correspond to a
true factor.
In addition, we can check the following condition that stibbk satisfied by the degree of any potential
factorg of f,

deg(g) = m NMZECi deg(Nj ;) i=1,---.s
This condition actually implies the first one, i.e the coiwfiton theC;, but Encarnadin suggests to

retain both of them for clarity.
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CHAPTER THREE

DIRECT FACTORIZATION METHODS

OVER A GENERAL NUMBER FIELD

In this chapter, we will present various algorithms for éaiation of polynomials having coefficients
in a number field. These algorithms differ from Trager’s aigpon, which avoids computations in the
number field by sending the polynomial down to the ground f@@]dvith the cost of a higher degree
polynomial that needs to be factored o@rWe will call themdirect factorization algorithmsbecause

they are applied to the polynomial as it is over the numbed fiel

The first one did appear almost in the same time as Tragesiddmn and is a natural generalisation of
the Berlekamp-Zassenhaus factorization algorithm overdtionals; while the last one is built on the

most recent Knapsack factorization method.

Recall that in the whole chaptdf will denote a number field given by specifying a primitive rakent
a whose minimal polynomiain,(Y) € Z[Y] is monic and has degree, which may be assumed to be

greater thar.

3.1 Weinberger and Rothschild approach

The two powerful advantages that enable Weinberger andsilattl in [W-R] to succeed in the gener-

alisation of the usual Henselian technique for factorinlypamials inZ[X], are:

1. A perfect choice of the representation of numbers in thabuer fieldK, allowing a denominator

that can be taken the same throughout all the steps of thatalgo
2. An ability to handle finite fields and modular computatiexaclty as needed for this purpose.

We start by explaining these points before giving the atbariitself.
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3.1.1 Representation of elements i

Since the primitive element defines &)-basis fork, elements oK can be represented as polynomials
in « of degree less tham with coefficients inQ, that may be chosen iéZ with d any denominator
common to the former coefficients. Thus, given a polynomial) in K[X], one can easily exhibit a
denominatord, so that the coefficients gf(X) can be represented as polynomials:iof degree< m
with coefficients in%Z and sog(X) itself is in %Z[a] [X].

On the other hand, elements ®f can also be viewed as elements of a cer%ﬁ{a], take for instance

L 1
d to be the discriminant oK (cf e.g [NAR]). So{d > O‘ Ok C EZ[a]} # () and the well order of
N provides a smaller element for it. Actually, a more genetalesnent is also true and we have the

following.

Definition 3.1
We define theefecof anintegral basis {w;, - - - ,w,, } to be the integer:

1
min{d>0‘ Ok C EZ[wh“' ,wm]}

For the special case wherte; = o'~!, we denote the defect lay fect(a). This is actually the largest
denominator appearing in the reduced representation ofeleenents oy , i.e representations of the

P(a)

form 7 with P(Y) € Z[Y], deg(P) < m whered is coprime withcont(P).
This number may not be easy to determine and one would bertomiid the following.

Lemma 3.2
Let D, be the largest positive integer whose square divides theidighant of m,,(Y).

1
Thende fect(a)|D, sothat Ox C D—Z[a].
0

Proof: see [NAR].

Factoring polynomials ifkK[X] introduces the problem of choosing an appropriate dendoiriar the

polynomials involved. Weinberger and Rothschild pointetitbhat when factoring a polynomial

fX) € éZ[a] [X], new denominators can occur, and the irreducible factorg ofer K may have a
denominator other thas. For example, oveK = Q(«), wherea = i+/3, the polynomialX? + X + 1,

which is in éZ[a][X] with d = 1, factorises as> + X +1 = (X+ 1(1+a)) (X+ 3(1 — @)), with

factors having coefficients iéZ[a] [X].

This is however controllable by the following lemma that geadises the Gauss lemma.

*An integral basis oK is a systen{ws, - - - ,wm } of integers ofK which is linearly independant

overQ and generate8x asZ-module.
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Lemma 3.3 (Weinberger & Rothschild)
Letf(X) € éOK[X] be a monic polynomial and suppog&) = g(X)h(X) € K[X], whereg(X) , h(X)

are monic. Theg(X), h(X) € éOK[X]-

Proof: see [W-R].

Hence if the monic polynomiaf (X) € éZ[O‘] [X], certainly f(X) € éOK[X] since« is an algebraic

integer, and thus by lemma (3.3) above, any monic fagt®y of f(X) satisfies:

9(x) € ZO0x[X] C = - —7[a][X

whereD, is the denominator of lemma (3.2) or even the absolute veldeésor (m,(Y)).
Hence we can choose an integer= d - D, such that:

f and all its monic factors oveé[X] lie in 5Z[a][X].

3.1.2 Structure of the finite fields and rings involved

In order to generalise the factorization methodZ{x] described in section (1.6), one needs to understand
what happens when reducing modulo a prime or a power of a prime

By describingK andZ[«] as:

ajaj ‘ aj € Q}

—_

m

ZM/W%W»{ %MW%eZ}
=0

J

N
2
IR

we can see that the behaviourl§fand Ox under the aforementioned reduction will be dominated and

determined by the behaviour ot (Y) under this reduction.

If m,, remains irreducible, the reductiomod p affects only the coefficients of the polynomialsdn
elements ofZ[a] or Q[a]. ThusZ]a] maps ontdZ/pZ) [«] which is a field ofp™ elements, and
so do the elements @|«] with denomintors not divisible by.

In this case, the factorization algorithm of Weinberger &udhschild will be very similar to the

Berlekamp-Zassenhaus algorithm.

If on the contrary,m,, mod p is no longer irreducible, thef[«a]/(p) splits into different factors and
Weinberger and Rothschild propose to use the Chinese Rdardiiheorem (CRT) to combine the

resulting algebraic numbers.
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Assumingp 1 discr(m,,), S0 thatm, mod p remains squarefree, let
mg mod b= moc,l ma,2 T ma,s

be a complete factorization @f, mod p, where thén,, ; are monic irreducible polynomials {Z/pZ) [Y],
and we assume knowing monic polynomials, ; in Z[Y] which reduces t@n, ; , i.e such that

m,; mod p = m,; . In addition, the degreegeg(m, ;) = m;, satisfy) "> , m; = m and we may
assume the coefficients ot,, ; to be reduced modulp.

Then to each factam,, ; of m, mod p corresponds a finite field af = p"** elements
Fy; = Fpmi = (Z/pZ) [Y]/ (Ma,i(Y))

and we have the isomorphism:

Z[O{]/<p> = ]Fpml X e X Fpms

Similarly, to each lifting of then, ;, mkaz € Zl[Y], corresponds a ring, denotél, (F,, ), defined as:
Wi(Fy,) = ZIY)/ (0, mENY)) 2= (Z/p*Z) [¥)/(m5)(Y))

This ring consisting of* elements, can be written as:

Wi (Fy,) = mizl ajaik‘ a; € Z/p*Z
j=0

whereq; x is a root ofmg‘j. It can be mapped ont®,, by reducing the coefficients of the polynomials
in a; x modulop. This ring will play the role ofZ /p*Z for the Berlekamp-Zassenhaus algorithm, during
the necessary lifting process. The complete field playiegdte ofQ,, is hereK @ Q,.
The arithmetic in these residue class rings and fields is dwodulo the residue classe$his is called
modular arithmetic
A way to approach modular computations, as given by Weirdrexgd Rothschild, is to considemiod "
as abinary operation which then will have the lowest precedence of all other tyirmperations defined

overK or K[X], and is allowed to have as its right operand, a list of opesatedininga mod (b, ¢) as:
a mod (b, ¢) := (@ mod b) mod (¢ mod b)

Example

In Q[X] takea(X) = 4X5 — 3x° + X* + X3+ 7Xx2 + 1,b = 3, andc(X) = X> — X + 4.

a(X) mod 3,¢) = X64+x*+x3+%x2+1 mod (X2 —X+1)

= 1-X—1+X=0 mod (X* —X+1)
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Recall that the modular inversion of non-zero elementsnyfussible, is done by means of the Extended

Euclidean Algorithm.

In order to apply the CRT in this case, we need to build a ringydmmorphism betweefi[«] and the
above ringsiWy(F,,). This is done by means of a reductiomod (pk, mg‘z) which works by first

reducing the coefficients of the polynomialsdnmodulop¥, then taking the remainder of the division
(k)

by m,, ; of the polynomial so obtained and replacingy c; .
This map can be extended Zda/|[X] coefficient-wise, in addition, iD is such that:f and all its monic
factors ovetK[X] lie in 5Z[a][X], then we can extend the above map}if|«][X] providedp { D so that

(D~'mod p*) exists. This results in the following maps:

1
SR — Wi(F,) ]

g(X) = %thxt — Z (((D*1 mod p*)b;) mod (p*, mgkz)) X!

Note that the reductions @f(X) in the ringsWy(F,,)[X] all have the same degree, because a coefficient
of g(X) reduces to zero in one of tH&(IF,,) only when it is divisible byp. Hence we can apply the
CRT only tos-tuples of equal-degree polynomials frdii (F,, )[X] x --- x W (F,,)[X], in such a case
the CRT, applied coefficient-wise, guaranties the exigterig(X) € +Z[a][X] which reduces exactly to

the chosen polynomials in tHé&' (IF,, ).

3.1.3 The algorithm of Weinberger and Rothschild

We will give the algorithm of Weinberger and Rothschild blig modified by applying it to a monic
polynomial f(X) € Ok[X], henced = 1, and by not being explicit on the intermediate steps of theddk
lifting.

Their algorithm completely factors a monic polynomial kjX], and is also applicable to honmonic

polynomials after some simple transformations of the pofgial and a good choice of the denominator.

Algorithm 3.4 "Weinberger & Rothschild " (cf [W-R])

Input. A monic squarefree polynomiglX) € Ok |[X].
Output. Complete factorization of (X) in K[X].

Step 1. DetermineD such that:

f and all its monic factors oveK[X] lie in 5Z[a][X].

Step 2. Choose a prime not dividing D, and if one taked = defect(«) then make sure

thatp { discr(m,,) so thatm,, remains squarefreenod p.
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Step 3. Factor m,,(Y)mod p obtaining:
My =My 1 Mg 2 M s (mod p) withdeg(mgy ;) =m; and > 7 m; = m.

May try different primeg in order to minimise the number of factosr®of m,, mod p.

Step 4. Compute several factorizations #fX) mod p, one for each factofn, ; of m, mod p

thus obtaining:

(D_1 mod p) Hfl i mod (p,mg;), 1<i<s

where f; ;(X) € F,[X]. If for somei, f(X) mod (p, m.;) is not squarefree, choose a new prime

p starting again at (Step 2).

Step 5. Compute a bound on the absolute values of the coefficients of any factgi(bf in K[X]

(cf [W-R]), and determiné such thap* > 2B.

Step 6. Lift the factorization of m, mod p up to accuracy® using the quadratic Hensel's algorithm
(1.4) obtaining a factorization :
mqy(Y) = Hm&kz(Y) mod p*

i=1
()_

where m, ; = m,; mod p
Step 7. Lift the factorization off(X) mod (p,m, ;) up to accuracyp® obtaining s factorizations in

Wi (Fy,), for1 <i <s:

(D™ mod p¥) H mod (p m(k)) (3.1)

such thatflyi (X) = f1,i(X) mod p

Step 8. Combine the combinatoric search with the Chinese Remaifldrithm (CRA) applied to each
possibles-tuple of equal-degree factors modL(p m )) to find factors off in —Z[ 1[X].
If s =1 no CRT is needed.

The time complexity of this algorithm is clearly much likeetikomplexity of Berlekamp-Zassenhaus
algorithm, although all constants are larger. The reastimaiseven though the CRA is polynomial time,
lots of time is consumed by the combinatoric search as in tiginal algorithm for a factorization over
the rationals. The number of trial divisions can become egptal inn x s, which makes this algorithm
not practically applicable if the numbaerof factors ofm, mod p is not reasonably small, or if the

degree of the polynomial to be factored is very high.
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Another disadvantage of this algorithm occurs if there akeral factors of the same degree in each of
the modular factorizations gf. This increases the number of possiblauple of equal-degree factors
on which the CRA is applied, and the only way to find the possibples that lead to true factors, is to
try them all. We cite the following example from [ABB] that®@his two exponential large searches, one
on top of the other, due to the fact that bgtlandm,, are actually Swinnerton-Dyer polynomials using
different primes.
Let f(X) =x* — 10X + 1 =[[(X £ v2+V3) (2" Swinnerton-Dyer polynomial),

m, =Y —24Y2 + 4 =T[(X+ V5 +£+/7) (ageneralised Swinnerton-Dyer polynomial).

With p = 1201, m4(Y) = (Y + 51)(Y + 259)(Y + 942)(Y + 1150) mod p.
The factors ofmn, mod p being all linear, the four field8,, coincide with[F,,. This means that the four
modular factorization of will also be equal. But applying the algorithm, we need tosider them all.

And it turns out thatf (X) mod p has also only linear factors:
f(X) = (X+202)(X + 327)(X + 874)(X +999) mod p

which, after lifting, will produce a factorization with onlinear factors.

Hence to test whethef has a linear factor ove, we must apply the CRAto all x 4 x 4 x 4 = 256
possible ways of picking a factor gfin every one of the four fieldg,,. Since there is no linear factor,
we check the quadratic one. For that we need to trg all6 x 6 x 6 = 1296 possible ways of picking
pairs of factors off from the four modular factorizations - . But the degree-4 polynomigl has no

quadratic factors, and hence is irreducible.

3.2 The LLL factorization method

3.2.1 First use of lattices for factorization of polynomias over algebraic number fields

In this section we present a direct generalisation of the Ibhéthod for factoring polynomials with
rational coefficients sketched earlier (cf section(1.8)3using here on the factorization of polynomials
with coefficients in a number field. This generalisation wiaeig by A. Lenstra in [LEN 3].

By doing so, we start from Weinberger and Rothschild’s wa,it is itself a generalisation of the
Henselian technique on which the LLL factorization aldunitis also based. We will then use the same

notations unless otherwise stated.

The important novelty that the LLL factorization algorithimngs is the use of lattices to overcome the
combinatoric search, which evolves in a polynomial-timgoathm, but there are other advantages as

well, not of less importance.
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From Weinberger and Rothschild’s work, we know that by réidanc mod p, the minimal polynomial
of & may split. Its complete factorization determines a numlbé&nde fields over whichf is factorised.
Each of the modular factorizations ¢f thus produced, is then lifted and a number of combinatoric

searches followed by an application of the CRT, enable tbenstruction of the factorization seeked.

Besides the exponential-time combinatoric search, diffesimay arise attep 4 of Weinberger and

Rothschild’s algorithm:

If for somes, f(X) mod (p, mq;) is not squarefree,

choose a new primg and start again at (Step 2).

The LLL factorization algorithm is a remedy to this, becaitseeeds only onefinite field over which
f is factorised, and it uses ongne suitablemodular factor off to obtain a true irreducible factor gf
overK. This makes the Hensel lifting less cumbersome, having &b aldy with two polynomials at a

time.

The fact that one modular factor gfenables us to reach a true irreducible factof @verK is due to

the following two ingenious facts observed and exploited_bgstra et al. first in [L-L-L],

(1) Due to the squarefreeness pfover the finite field, each modular factor corresponds tmigue
true irreducible factor which may eventually beitself, but there is also a certaiivisibility
propertythat can be preserved during the Hensel lifting which is afy importance as well (see

Proposition (3.5) below).

(2) A geometric view of the arithmetic problem allowing the u$dadticesfor which a polynomial-time
algorithm is known to reduce their bases to ones with shovisstors. But the more important
fact is that a certain lattice can be built in such a way thagndver one of its vectors is short
enough, it corresponds to a polynomial that has a non tregadlivisor with f (see Proposition
(3.6) below). In addition, among the shortest vectors of thitice, a vector corresponding to an

irreducible factor off can be found.

Let f, m,, m,,; andn, m, m; be as in the last section.
Recall that even iff has coefficients irZ[«] itself, not just integers as we assumed in (1.7), a new
denominator may arise and need to be considered. So we choasén (3.1.3), i.e such that:

f and all its monic factors ovei ] lie in 5 Z[c/][X].

Choose a prime such thatp 1 D - discr(m,,) - discr(f).
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ThenD is invertible modula, (m, mod p) remains squarefree, and we get an isomorphism:

(See subsection (3.1.2)).
On the other hand, sine&scr(f) € 5Z[a] andp { discr(f), the image ofliscr(f) in Fg, %+ x Ty,

is not the zero vector and hence:
Jip | diser(f) mod (p,ma,) # 0

SetH =mg,.

Hence, (cf page 40)/(Y) is a monic polynomial inZ[Y] of degreem’ := deg(H) = m;,,,

such thatf mod p = m, ;,- SuchH determines the finite field on which a factorizationfa$ required,
that is,IF, whereq = ¢o = p". ( Note that during the lifting process, the polynomiél(Y) € Z[Y]

such thatd = Hy mod p¥, is not necessarily equal mfjf)io )

Assume we are given a polynomiale Z[«][X] satisfying the following conditions:
(C.1) A monic,

(C.2) (h mod (p*, Hy) ) divides(f mod (p*, Hy) ) in Wi(F,) [X],

(C.3) (h mod (p, Hy) ) isirreducible in Fy [X],

(C.4) (h mod (p, Hy))* does not dividg f mod (p, H,)) in T, [X].

wherek is a positive integer.

Note that, sincé is monic, it has the same degree(asmod (p, H) ) and (k. mod (p*, Hy) ). Hence
by (C.2) deg(h) < n,and by C.3) deg(h) > 0.
Let! = deg(h(X)). Henced <l <n

Proposition 3.5
The polynomialf has a monic irreducible factoh, € %Z[a][x] of degree:! < deg(ho) < n,
uniquely determined up to sign, such tiiat mod (p, H;) ) divides(hg mod (p, H1) ) in Fy [X].

Further, if g(X) is a monic divisor off (X) in %Z[a] [X], then the following assertions are equivalent:
(i) (h mod (p, Hy) ) divides(g mod (p, Hy) ) in F,[X],
(i) (h mod (p*, Hy) ) divides(g mod (p*, Hx) ) in Wi(F,) [X],

(i) ho(x) dividesg(X) in %Z[a][x].
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In particular (k. mod (p*, Hy) ) divides(ho mod (p*, Hy) ) in - Wi(F) [X].
Proof: See? [LEN 3] and section (4.7) below.

Now let’s fix an integer, [ < r < n, and consider the set of polynomialsgﬂ[a] [X] of degree< r,

that when reducedmod p*, are divisible by(h mod (p*, H) ).

By Proposition (3.5) abovéy, belongs to this set providetkg(hy) < r.
Sincehg is monic, we can as well, restrict ourselves to the subsstsuch polynomials that, in addition,
when they have the highest degreehave their leading coefficient iA. So let's consider the latter set

instead.

The aim now is to find simple conditions that ensure thateffectively belongs tal, and enable to

determinehy in this case.

r—1m—1
By identifying an elemeny = > ~ ) " a;; o/ X' + a,, X" of L with the vectolg = (aqy, @y, -+ »ar,)"
i=0 j=0

rm+41
€ (EZ> c R™*+1 the setL can be viewed as a lattice R *! having an upper triangular

basis given by:
1 kK _j vyt . / .
Epoﬂx { 0<j<m,0<i<ly U

m'§j<m,0§i<l} U

1 ., A
{Eaj_m H(a)X'

1 .
{Ba]hxll ‘ O§j<m,l§i<r} U {hXTﬁl}

For the rational case the two sets introduced above coircideorrespond to a lattice with a basis given

by:
{PFXjo<i<i}u{pxX’|0<i<r-1}

This lattice has determinaritL) = p and in generadl(L) = p*’

We can measure the size of a polynomijat L by:

The norm ofg: ||g]| = |lgl|  wherellg|| = (D _ |a;|*)"/? is the ordinary Euclidean norm ™1,
Z'7j
The height ofg: H(g) = |gloo  Where|g|o, = max{|a;;|} is the ordinary norm Sup iR"™+1.
[2¥}

2The proof of this proposition is very similar to the one foe trational case, we defer it to the next Chapter, section,(4.7

where we will give proofs of this proposition, and the nexépim a more general context.
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Proposition 3.6

Let a non-zero polynomiadl of L satisfy:

rm nm

P> (DI + Dm0+ 3C(ma))™H)Y2) ™ (DHE)((r + Dm(1 -+ 3(my))™)H?)

(3.2)
Thenb is divisible byh in K[X], and in particularGC D( f,b) # 1.

Proof:

Letg = GCD(f,b).

By Proposition (3.5), it suffices to show th@t mod (p, H) ) divides(g mod (p, H) ) in F, [X].
Assuming this is not true, we show that amongst the multipfesg built out of f andb, i.e elements
of the form Af + ub with A\, u € %Z[a] [X], those that have a degree deg(g) + deg(h) will all
reduce to zero modulomod (p¥, Hy), causing a certain latticé, that we will precise later, to have
a determinant bigger thaﬁ‘l’”'/D(””)m, while by Inequality (3.2) this determinant should be slyic
smaller tharp*™' / D("+7)m which will give a contradiction that confirms that actually mod (p, H) )
divides(g mod (p, H)) in I, [X].

The details of the proof will be given in section (4.7) (cf@[&EN 3]). Here we will just definel, and
show how can the terms in Inequality (3.2) be derived.

For that, as we did earlier, we identify the polynomials
{anif ‘ 0<j<m, 0§i<deg(b)—deg(g)}U{anib ‘ 0<j<m, 0§i<n—deg(g)}

with them(n + deg(b) — 2deg(g))-dimensional vectors of their coefficients.

Let L be the lattice generated by the projections of the vectarseabn

L xdeats) o Lo ydea(o) L m—1gn+deg(b)~deg(g)-1
DZX + DZaX + + DZa X
By Hadamard’s inequality, we have:
d(L) < T Ie? X fI T e’ x| 3.3)
2 .3

So, to get the right contradiction, it suffices to bound thisdpict from above strictly by*!™ /Dtr)m

which is possible by Inequality (3.2) as we can show that lidrja

lod X'Fl < (A + Dm(1 + H(ma)"H2)

and o/ X'b| < (FHB)((r + Dm(1 + I(ma))")?)
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. . e 1
Indeed, by an induction on the positive integgwe can prove that for all € 5Z[a] [X], and for allt, w,

H(a' X"g) = H(a' §) < H(G)(1 + H(ma))'

and
ot X3l = [lo* gl < H(7) (m(deg(d) + 1)"? (1 + H(ma))".
deg(g) m—1 o
For that writeg = Z Z ai; ? X and mo(Y) = Y™ 4 by Y™ 4 s 40y Y 4+ by,
i=0 ;=0

so thata™ = —(by,_10™ 1 + -+ + bia+ b,).

Note that, by definition of the norm and height of polynomials
H(a' X"5) = H(a'g) , Vu

idem for the norm, the coefficients being globally not aféecby the multiplication by powers a&f

The case = 0 is trivial.

Lett = 1. Then:
de (~) m—1
=0 j=0
deg(g) m—1
= ~@im-10, + Z(ai,jfl — @im—1b;)a’ | X'
i=0 ),
d€9(§) m—1
= (@i j—1 — @im-1bj) &X'
=0 j=0

wherea; 1 = 0, Vi.

Since, for alli, 7,

IN

i j—1 — @i, m—1bj] |aij—1] + @i, m—1|bj]

A

< H(g) + H(g)H(ma)
< H(@G) (1 + H(ma))
we deduce the following:

H(ag) = max |@ij—1 — @i, m—1bj] < FH(G)(1 + H(ma))

and
deg(g) m—1
lagl? = Z |aij—1 — i, m—1b;]
=0 5=0
deg(g) m—1
< DY@+ H(ma))
=0 7=0
< [H(G)(A + H(ma))]” [m(deg(g) + 1)]
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and so, our assertions are true foe 1.

Now assuming the results true forwe get:
H(a™g) =H(a-a'g) < H(a'g)(1+H(ma))
< HG)A + FH(ma)) (1 + H(ma)) = H(G)(1+ H(ma)) ™
Then, using this result we obtain:
la" X" gl = fla - a'gl? < [H(ag)(L +H(ma))]* [m(deg(a’g) + 1)]

< [(H@)A +H(ma))) (1 + H(ma))]® [m(deg(g) + 1))
H(§)2(1 + H(ma )2V [m(deg(g) + 1)]

This finishes our induction.

Whence:
d(L) < H\Iaj X £ H o X°b)|

< H:H (14 H(ma)Y ™+ [m(deg(f WHJ{ ma)) ! [m(deg(b) +1)]'/?

m(deg(b)—deg(g

(deg(b)—deg(g))
< (3 min +1)2) )

(Ti—[ 1+ H(m,,)
x (:H(b)(m(deg(b) 1/2) (Wll_[ (1 + H(my) )

And from [Tt (1+3(ma))T = (14 H(me)) =50 7 = (1+3(mqa))™m=D/2, with H(m,) € N*
anddeg(b) — deg(g) < deg(b) < r we deduce the inequalities:

AL) < (3 + Dm(1+3ma)™ ) (HE)(r + Dm(1 + Ima))m )

kim/
p
< Dm(r+n)
by (3.2).
(]
For the rational case, inequality (3.3) reads:
d(L) < T I Tl < 11 o)™ < 10" (1ol
So it suffices to havep* > || f||" ||b]|™ or equivalently:
1/n
ol < (P/1.£17) (3.4)
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It becomes clear, then, that Proposition (3.6) above gimagoger bound for the norm of polynomials in

L sharing a non-trivial divisor wittf.

Theorem 3.7
Lethy, -, b.ne1 be aLLL reduced basis for the lattidedefined in page 46.
Suppose that:

2r

pEmm s (TW”Wn+U“%wHW(T

> m4n+r(m _ 1)n(m—1)

1/2

(1+%(ma))(””)(m_”Idiscr(ma)l_”) (DH(H))™ [ma > (3.5)

Then:deg(hg) < r (i.e hy € L), if and only ifb; satisfies inequality (3.2).

Proof:

If b, satisfies inequality (3.2), then by Proposition (3/) dividesb; in K[X].

Hencedeg(hg) < deg(by). Butdeg(by) < r sinceb; isin L. Thus:deg(hg) < 7.

Now assumeleg(hy) < r. Then by combining the results of Mignotte and Weinbergel Rothschild,
we get an upper bound for the norm of any monic factof of degree< r, (cf [LEN 3]).

Applied tohg, this bound gives:
1/2
Iroll < 56(7) (200 + Doran =122 ) o 2 seroma)|

On the other hand, the bagis - - - , b,,,11 iS LLL reduced, and thus by Property 5 in Lemma (1.20),
by satisfies:

[b1]|? < 2%mE) =L z)? forallz € A, z #0.
In particular this is true fohg sincehg € L. So: ||by|| < 272 ho].

Therefore,

H(b)" < [buf* < 272 o

rmn

n/2
< 2By <2<n+1>m3<m—1>m—1(27">) 100 27 discr ()| 2
'S

Hence:

n/2
fH(bl)” < 2n(rm+1)/2(n + 1)n/2 (2:> m3n/2(m o 1)n(m—1)/2

[ diser(ma)| 7 2H(f)" |20

Multiplying both sides of this inequality by

n/2

(D" (mlr + 1)(1 + 9C(ma))™ )" % DII(F)" (i + 1)1+ F(ma))™ )]
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and grouping the terms together we obtain:

n/2 r/2

D"H(by)" (m(r+1)(1 + %(ma))m_l) X D"H(f)" (m(n+1)(1 + J{(ma))m_l)

n/2
< gn(rm+1)/2 (n + 1)(n+r)/2(r + 1)n/2 (2:> m(4n+7')/2(m _ 1)n(m—1)/2

(1+ j—((ma))(mfl)(nJrr)/Q|discr(ma)|fn/2 (Dj{(f))nJrr HmaHQn(m,l)

klm' /m

<p

by inequality (3.5), so we get the desired inequality.
[l

Theorem (3.7) provides a simple way to check whethgbelongs tal or not. Having this tool in hand,

we will show that we actually can achietg = +b.

Indeed, assuméeg(hg) < r and consider the process of reducing the basis. of

Assume that by applying Algorithm (1.24), at a certain st@p,obtain the first vectors of the LLL
reduced basis of, by,--- , b, with 1 < ¢ < rm + 1. Then, we know that these vectors already satisfy
properties (1) and (2) of Definition (1.18).

Thus, they actually form a reduced basis for the lattice okraspanned by the firgt vectors of the
initially given basis ofL.

If deg(ho) < t, it will be possible to findhg in the latter lattice.

Therefore, we fix at oncke such that inequality (3.5) is satisfied for the value ef n— 1, which implies
that inequality (3.5) also holds for any smaller value-odnd so Theorem (3.7) can be used for any such

r. This choice ofk will also determiney, and Wy (FF,).

Then, we consider the sequence of lattidgsdefined as in page (46), for the valuesrof= [, [ +
1, ---, n — 1in succession, reducing their bases, then applying The@8er and checking whether
ho € L, or not, but we stop as soon as we figdbelonging to one of these lattices.

At this moment, since we are considering the valuesefl, [ + 1, --- , n — 1 in succession, we know
thathg ¢ L,_1. Thus,r — 1 < deg(ho) < r, and sadeg(hg) = r.

But, by Proposition (3.6)h¢ divides the first vectob; of the LLL reduced basid.,., asb; satisfies
inequality (3.2).

Hence,r = deg(hy) < deg(b1) < r. So the monic polynomiat, dividesb; in K[X] and have same
degree a$;. Therefore,hy = ¢ - by with ¢ € K. Butb; € L, and have degree, solc(b;) € Z, and
hencec € Z. This implies the equality - lc(b;) = le(hg) = 1in Z, hencec = +1, andhg = +b;.

ILHEM BENZAOUI Univ. of Stellenbosch



Direct factorization methods over a general number field 52

Now we are ready to give the LLL factorization algorithm.

Algorithm 3.8 "LLL factorization algorithm for Number Fiel ds-1" (cf [LEN 3])
Input. A monic squarefree polynomiglX) € Ox[X].
Output. Complete factorization of (X) in K[X].

Step 1. DetermineD such that:

f and all its monic factors oveK|[X] lie in +Z[][X].
Step 2. Choose a prime such that:p t D - discr(my,) - discr(f).

Step 3. Factor m,,(Y)mod p obtaining:

My = Mo, 1 Ma 2 Mg s (mod p) with deg(my ;) =m; and Y7 m; = m.

SetH = m,;, Whereig is such thatliscr(f) mod (p, mq.i,) # 0.

Step 4. Factor f(X) mod (p, H), thus obtaining:
(D™ mod p)- Df(X) = Hfj(X) mod (p, H)
J

If f(X) mod (p, H) is irreducible, thenf (X) is irreducible. Set, = f(X) and stop.

Step 5. Pick an irreducible factor off mod (p, H), and choosé: € Z[a][X] so thath mod (p, H) is

the irreducible factor just chosen. We may assume the deetficofh reduced mod p.

Step 6. Determine the least positive intedgesatisfying (3.5) with- replaced byn — 1, i.e such that:
pklm//m > <2n((n—1)m+1)(n + 1)2n—1(n)n (2(:‘__11)) m5n—1(m o 1)n(m—1)

1/2
(1 +j‘f(ma))@"*l)(m*l)|discr(ma)|*n) / (D%(f))2n71||ma”2n(m—1)

Step 7. Using the quadratic Hensel’s algorithm (1.4), lift the fadzationm, = H x H My, modp
1#10
up to accuracyp® for the value of k just calculated, thus obtaining a polynomisl (Y) € Z[Y]

such thatd = Hy mod p*

Step 8. Modify h without changing(h mod (p, H)), by lifting the factorization of f mod (p, H)) up
to accuracyp® for the value of k calculated in (Step 6).

We may assume the coefficientd eéduced mod p* so that||h|| < (1+1p?*), wherel = deg(h).

Step 9. Setr — 1.
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Step 10. Find a LLL reduced basis;, - - - , b1 for the lattice L defined in (3.2.1).
If b, does not satisfy inequality (3.2), théag(hy) > r, go to (Step 11), otherwise go to (Step 12).

Step 11. Whiler < n — 2, setr — r 4 1 and go back to (Step 10), otherwigdeg(hy) > n — 1, so
ho = f and f is irreducible. Stop.

Step 12. Sethy = +b;. Replacef by f/hy and from the list of irreducible factors gf(X) mod (p, H)
of (Step 4), delete those that divile mod (p, H). If it remains only one factor stop. Otherwise
go back to Step 5.

Remarks:

- By this algorithm, irreducibility becomes easy to deciddtz firsthy produced isf itself.

- Since(h mod (p, H)) is monic irreducible, the polynomialg mod (p¥, Hy)) will all be monic irre-
ducible and so, up to a very high accuragywe actually construct a good approximation of the minimal

polynomial of ap-adic root off.

A complexity analysis of the above algorithm was given by Anktra (cf Proposition (4.3) and Theorem

(4.5) of [LEN 3]). It shows the polynomial-time charactertbis algorithm.

Theorem 3.9

The algorithm sketched above, computes the irreducibkeriaation of any monic squarefree poly-
nomial f (X) € 5Z[a][X] of degreen > 0. The number of arithmetic operations needed by the algorith
is O (n®m® 4+ n®mSlog(m|/m.|) + n®mPlog(DH(f))), the integers on which these operations are

performed each have binary length(n*m?® + n?m3log(m||m.|) + n*m2log(DH([))).
Proof: See [LEN 3].

Although the above algorithm is polynomial-time, it seelris still slow, and for practical reasons,

A. Lenstra recommend his second algorithm (3.10) beloveatst

3.2.2 A2™ LLL factorization algorithm for polynomials over algebrai ¢ number fields

We present now another factorization algorithm for polyredsover algebraic number fields suggested
also by A. Lenstra who actually recommend it as a more practigorithm than the previous one even
though its complexity may not be polynomial. This seconaatgm, published in [LEN 2], relies also
on Weinberger and Rothschild’s work, so we will continue $e the same notations as in the last section

and subsection unless otherwise needed.
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Most of the necessary material for this new algorithm hasaaly been introduced, so we will only recall

the results and refer to where they appeared.

The first observation we need to make, concerns the appilicafi Proposition (3.6) to an irreducible
polynomial F' with coefficients ovefZ (using then the rational version of Proposition (3.6)).

Defining a latticeL as in page 46 withr < n, (on which we will be more explicit later on), we see that
Inequality (3.4) should not hold, as the only irreducibletéet possible ig itself and anyb divisible by

F can not be inL as its degree exceeds

This means that for all non-zero polynomials L:

foll = (p/117) "

TakeF'(Y) = m,(Y) andr = deg(m,) — 1 = m — 1, and define_ to be the set of polynomials A[Y]
of degree< m — 1, that when reduced modu}é, are divisible by the irreducible fact@#f, mod p*)
of (m, modp¥) . Thatis,L is the lattice obtained as in page 46 and given by the follgvbiasis:

{(PYN0<i<I}U{HY'|0<i<m-—1} (3.6)

We recall that the monic polynomidly, € Z[Y] is the one defined in page 45, ahid herel = deg(Hy).

Thus, for all non-zero polynomialse L:

o\ 1/m
1512 (#/llmal™ ")

This means that the non-zero polynomiald.diave norms bounded from below by a monotone increas-
ing function ofxk.

Whenk is fixed sufficiently high to allow computations with accdg&aaccuracy, the inequality above
always gives a lower bound for the norm of any non-zero elérokn. In particular, this lower bound

applies also to the elements of a LLL-reduced basik,&ayb, by, - - - , by, (dim(L) = m), S0 we have:
. — 1/m
min [l = (p/lIma ™)

On the other hand, from lemma (1.22) (cf page 22), we knowttieatadius of the largest ball inscribed

in the fundamental domaidl(A), of a latticeA given by a LLL-reduced basis, b, - - - , by, satisfies:
1 1
Tmaz = §miin I1b;]| O_d

whereQOy4 = H%(lj\lgbi” is the orthogonality defect of the basig bs, - - - , byy,.

In particular, for the latticd. defined above, assuming it given by a LLL-reduced basis,, - - - , by,
we get

e
maxr — 2 . Od (6%
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So

1 ki m—1 1/m
Tmaz > ﬁ X <p /HmaH > for anyc > Od-

As a consequence, any closed ball centered at the originanagradius < 5% (pkl/llma\lm_l)l/m,

would be entirely contained iH(L).

In addition, by definition of the fundamental domain of ait#tA, every element oR” has modula\
a representative ifi(A). And an element that is not congruent to a boundary poinies tongruent to
auniqueinterior point of the fundamental domaif(A).

Moreover, by Lemma (1.17) (cf page 19), for any veaiore R™, there is at most on& € II(A) such

that: w = w mod (A), and this element, when it exits is obtained by:
w=w— M| M tw] (3.7)

whereM is the matrix of the LLL-reduced basis af
For A = L, we would like to be able to reaah in the closed balB (0, r] whenw is there. This enables
the reconstruction of the algebraic numbers dealt with énelgorithm of Weinberger and Rothschild,

avoiding then the CRT.

Indeed, by choosing = B, a bound on the absolute values of the coefficients of any enfaaitor
of f overK, we are ensured that the fundamental domain of a lafticentains all these coefficients,
multiplied by D. A care need to be given to the denominatdas the latticel is integral so it enables

the representation of any elementAjty] but not the elements %Z[a] as they are.

As elements of[«], the coefficients of the monic factors ¢f multiplied by D, will be identified with
them—dimensional vectors of their coefficients (as polynomidls)p For simplicity, we will not make
any distinction between the polynomial representatiorhefdlements of.[«]| and their corresponding

vectors.

The lattice L just constructed, is defined in such a way that these coefficief monic factors off
overK, are congruent to the coefficients of the factorsfahod (p*, Hy), or equivalently factors of
overWy(F,), which are easily found by lifting the factorization ffmod (p, H), and then forming the
putative divisors off by multiplying the irreducible factors of mod (p*, Hy), as for Weinberger and

Rothschild’s algorithm.

The coefficients of the factors gf over K, are the vectors of shortest norm in their residue classes

mod L if k is chosen such that these coefficients are bounded by thesradi B chosen as above.
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Therefore, they can be uniquely determined from their tessdmod (p*, Hy) by means of Equation
(3.7).

The same matriX/ is valid for all the coefficients, so we only have to compifeand its inverse once.

Algorithm 3.10 "LLL factorization algorithm for Number Fie Ids-2" (cf [LEN 2])
Input. A monic squarefree polynomiglX) € Ox[X].
Output. Complete factorization of (X) in K[X].

Step 1. DetermineD such that:

f and all its monic factors oveK[X] lie in 5Z[][X].
Step 2. Choose a prime such that:p t D - discr(my,) - discr(f).

Step 3. Factor m,(Y)mod p obtaining:

My = Mg 1 M2 Mq s (mod p) With deg(m, ;) =m; and >°7_; m; = m.

SetH = m, ;, Wherei is such thatliscr(f) mod (p,mq,,) # 0, and set = deg(H).

Step 4. Factor f(X) mod (p, H), thus obtaining:
(D7 mod p)-Df(X) = Hf](X) mod (p, H)
J

If f(X) mod (p, H) is irreducible, thenf (X) is irreducible. Stop.

Step 5. Compute a bound /D on the absolute values of the coefficients of any monic fadtf(X) in

K[X] (cf [W-R]).
Step 6. Determine the least positive integesatisfying:
P> (2:CB)" e
whereC is any bound on the orthogonal defect of a reduced basis dattiee . defined by (3.6).

Step 7. Determine the polynomially (Y) € Z[Y] of degreel such thatH = Hy mod p*, for the value

of k just calculated.

Step 8. Lift the factorization off (X) mod (p, m,,;) Up to accuracy* thus obtaining:

(D! mod p¥)- Df(X) =[] £F(X) mod (p*, Hy)

J

Step 9. Compute the matrid/ of the LLL-reduced basis of the lattidedefined by (3.6).
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Step 10. Proceed to a combinatorial search by computing all possilmmbinations:
deg(h)
h=D- Hfj(f) mod (p*, Hy) = Z w; X' with deg(h) < |n/2]
and checking, by trial division, whether the polynomial

deg(h) ‘ 1
> (wi— MM 'wi] )X | € S Zlo]X
=0

1

is a factor of f overK.

As one can see, this algorithm uses the lattice techniquedamgpletely different way than the previous
LLL-factorization algorithm.

The combinatoric search prevent it from being polynoniiaket but implementations, by A. Lenstra
himself, show that show that it is much faster than Weinbeage Rothschild’s algorithm. Actually, this
should not be surprising as Lenstra’s algorithm-2 uses onbring W (IF,) to reconstruct the factors
of f overK, while Weinberger and Rothschild’s algorithm needs all ings W (FF,,) which makes
the combinatoric search even longer, besides the CRA apgieach coefficient, which consumes time
even though a polynomial-time, whereas, in the same timett#a algorithm-2 uses the same matrix

M for all the coefficients, and that's what makes it very picaiti

3.3 Modular factorization : ideal approach

3.3.1 A generic algorithm

So far we have applied the Henselian technique for factiboizaf polynomials using a prime number
p € Z, and residue class computations modulo this prime and sanverpof it. This was motivated
by the successful efforts to generalise the Berlekampéetdmsis algorithm to the case of number fields.
Nevertheless, with more powerful computer algebra systeimand, it becomes easy to apply Algorithm
(1.26) with ideal calculus instead of rational integer oals.

This ideal approach was already used by Zassenhaus himseéf papet "On Hensel factorization 1",
which shows that, from a theoretical point of view, the methoven in his earlier paper ([ZAS 1]), was
already generalized at that time to polynomials over Daatkiomains using prime ideals rather than
prime numbers. However, from an algorithmic point of vielistideal approach had to wait until the
mid 90’s when it appeared independently in the work by RoROB 1] and [ROB 2]) for number
fields, and by Pohst (POH 2]) for a general global field.

3Symposia mathematica, Vol XV, (1973), pp 499-513
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In this section, we want to consider several algorithms ihlgton this ideal approach, and to start with,
we will give an algorithm that we call generic algorithmborrowing this expression from Pohst as it

suits very well our context.

We first recall thatlk, Ok, «, m,, f, m, n are as defined earlier in this Chapter. We recall also that
Ok being a Dedekind domain, its prime ideals define discretgatimins orik, and these are exactly all
the non-archimedean valuationsI&fup to isomorphism. Therefore, for any choice of a prime igeal
of Ok, itis possible to embel{ in a non-archimedean complete field, that is, its compledign This
field and its ring of integer@Kp , provide us with the possibility to apply Algorithm (1.2@kingp as a

modulus.

So let’s fix henceforthp a prime ideal ofk.

As for our choice of a prime number, some conditions oip, imposed by our context, need to be
satisfied. We choose the prime idgasuch that f mod p) remains squarefree, soshould not divide
discr(f), thatisdiscr(f) ¢ p. Similarly p should not divideliscr(m,,) so that thep—adic completion

K, of K is unramified. And without loss of generality, we can ass@ngep. We will not care about a
denominator here, since we will be working@x as it is. Nevertheless, we still need to impose another
condition onp, that is, we choosp of lowest residual degree and if possible of degree one,dh awase
N(p) would be some prime numbgr otherwise it is a small power @f This restriction on the degree of

p helps improving the factorization modupoand the Hensel lifting, while a larger residual degree weld
a larger ringOx /p* and so easier reconstruction of algebraic numbers frferadic approximations of

the coefficients of the factors.

Since it might be faster to work over a small finite field andnthi& to obtain a higher accuracy, Pohst
in [POH 2] insists on taking of degree 1. In practice, it seems easy to find such a primehéré is no
certainty that its nornp is small. Assuming GRH, the first prime numbefor which there ig above it
of degree 1, is of orded(Log?|discr(K)|). If K/Q is a Galois extension, it is not difficult to find even
totally split primes, by the Chebotarev density theorereytappear with probability /m, while for a
general number field, this probability is only known to begkarthanl /m!. In all cases, we know it is

positive .
After choosingp, the factorization off follows the usual scheme, which yields the following algam.

Algorithm 3.11 "Generic factorization algorithm " (cf [POH 2])

Input. A monic squarefree polynomiglX) € Ok [X].
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Output. Complete factorization of (X) in K[X].

Step G1. Choose an unramified prime idgabf lowest possible degree, not dividiggiscr(f)discr(my,).

Compute a bound on the coefficients of the factorg iof Ok [X] with respect to a suitable norm,

and determine a sufficiently large exponerfor the Hensel lifting.

Step G2. Factor (f mod p) in the finite fieldOk /p [X].
May try several prime idealp to get(f mod p) with fewer factors idx /p [X].
If (f mod p) is irreducible, thenf is irreducible inK[X]. Otherwise go to (Step G3)

Step G3. Lift the factorization of f mod p) to a factorization in9k /p* [X] for the value ok calculated
in (Step G1).

Step G4. Recover a factorization of in K[X].

All the algorithms we want to present in this section, willldav the four steps G1,-- , G4, however
they will differ in their ways of recovering the true factask f. This, as well, imposes specific choices

of the bound and the exponent of Step G2.

Besides being based on the above generic algorithm, an famdeature shared by the following algo-
rithms is their use of a LLL-basis reduction at some stag@efrécovering process. They are all, as to

say,lattice-basedechniques.

Remark:

Comparing the above generic algorithm with the algorithmesented earlier in this chapter, we notice
that the modular factorization oh,, is missing. Actually, from Dedekind’s and Kummer’s resudts
the decomposition of ideals in a number field, we know that pmye idealp of Ok lies above the
rational prime ideal generated by the prime number dividi(@), and if p doesn't divide the index
[Ok : Zla] ], which is the case whep t discr(m,,), and if the generating polynomiah,, factorizes
modulop asH my; (mod p), then:pOk = Hp?’ where thep, are exactly those prime ideals lying

% %
abovep. Furthermore the; have a two-elements representation:
p; = pOk +ma,i(a)Ok

and their residual degregssatisfy: f; := [Ox /p; : Z/pZ | = deg(m, ;).
This means that, by choosing we implicitely have chosen an indéxand takerp = pOx + H(a)Ox,
whereH = m ;.

The lattice generated hyand H we used earlier, is then a sub-group of the ideal
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3.3.2 Bounds on the coefficients of the factors

As for any modular algorithm, the concept®dundsis crucial. In our case of polynomial factorization,
the necessary bounds are those that enable us to determitnedtiactors of, that is the factors ifK[X].

A factor is known when its coefficients are known. So we atyusded bounds on the ceofficients of any
true factor off. These coefficients, forming a finite set, are definitely lmeh However, for efficiency

of computations, we need an a-priori bound to be available.

This brings to mind the idea dfeight of a polynomialthe height of a polynomial oveK being the
maximum of the absolute values of its coefficients consilasecomplex numbers. So we need an upper
bound for the height of any factor gf. The height is then measuring how big is this factor. It is a

measure of the size of a polynomial dividirfg

For the sake of completeness, we introduce different fanstknown to measure the size of a polynomial

in C[X]. From their properties, we will derive some bounds that aeful for our purpose.
Size of a polynomial inC[X]
Let h(X Z a;X € C[X] be a polynomial of degreé

Definition 3.12
We define

* theheightof the polynomiah(X) by: H(h) := max |a;],

0<i<d

* thelengthof the polynomiah(X) by: L(h Z |ag),

d 1/2
H _ 2
* thenormof the polynomiah(X) by: ||h| := <Z|ai| > .
=0

d
* Andifh(X) = aq H(x—pj), where thep; are the complex roots @f, counted with their multiplicities,
j=1
then we define thielahler measuref the polynomiah(X) by:

!ad!HmaX{l pj1} = ladl H |41 (3.8)

7j=1
lpjl>1

Note that we have already used the notions of height and nopade (46) where the polynomigwas

actually considered as a bivariate polynomiahiandX.
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We will give a series of inequalities that help estimating sizes of our polynomials.

Proposition 3.13
Leth(X) € C[X] be a polynomial of degreé Then:

H(h) < [[hl] < £(h) < Vd+1|[h]| < (d+1)3H(h)
Proof: See [M-S].

Proposition 3.14
If the polynomiali(X) € C[X] is not a monomial, therM(h) < || ||

Proof: See [MIG] or [M-S].

Proposition 3.15
d

If h(X) = _a;X" is a non constant polynomial oveZ; then:

=0
ad < ()i
and hence H(h) < (|45, )M(h) <2¢7'M(h) and L(h) < 2/M(h).

Proof;
d

Write h(X) = aq H(x — p;), where thep; are the complex roots df.
j=1
Using the elementary functions of the roots, the coeffisi@fit. can be obtained as follows:

ag-i = (=D)"aq Y pjy s,
J1<<Ji

Therefore, for any, 0 < i < d, we have

lag—il < laal Y lpj-pil=laal Y lppl---lpsl
J1<<Ji J1<-<Ji
i d
< laal Y [Imaz{1, lppl} <laal D [[max{l, o}
J1<<gi k=1 J1<<gi j=1
d d d
< (lad [Tmacti o | 30 1=cmx (§) =nem =, )
J=1 J1<<Js
d d -1
Therefore, H(h) = max; |a;| < M(h) x max; [ . | = M(h) x /2] < 297 M(h),
1
(the last statement can be proven by inductionin
d
| iti h = | < =24 . O
n addition we havef.(h) ZZ: la;] < M(h) ZZ: (Z> M(h)
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Proposition 3.16
For any non constant polynomialx) € C[X], we haveM(h) < (vd + 1)H(h).

Proof: See [PRA].

This means that with the Mahler measure we can estimateeafittier size functions, and in particular
since the Mahler measure is clearly a multiplicative fumctithat isM(hg) = M(h)M(g) which can be
easily shown using Definition (3.12), we can use this prgperestimate the size of a factor in terms of
the size of the polynomial to be factored.

Bounds on the roots of a polynomial

We shall give different bounds on the roots of a given monigmpamial overC.

Theorem 3.17
Leth(X) = x4 + ad,lxd*1 + -+ a1 X+ ag with a; € C.

Then inside the disk| < 1 + max |a;|, there are exactly! roots ofh, counting multiplicities.
(2
Proof: The proof relies on Rouché Theorem, see [PRA].

Theorem 3.18 (Cauchy)
Leth(X) = X% — bg_1 X1 — ... — X — by, Wwhere theb; are nonnegative and at least one of them
is nonzero, so that is not reduced to a monomial. Then, the polynomidlas a unique positive rogt,

and the absolute value of the other roots do not exgeed
Proof: See [PRA].

Theorem 3.19 (Cauchy)
Leth(X) = X + ag_1 X'+ -+ + a1X +ag € C[X].

Then, all the roots of, are inside the diskz| < p wherep is the unique positive root of the polynomial:
Xd - |ad_1|Xd_1 — = |CL1|X - |CLO|.

Proof: See [M-S].

Other bounds on the roots of a polynomial can be found in Sd@ulirsch®, Theorem 5.5.8.

“Introduction to Numerical Analysis,"? ed. Springer (1993).
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Bounds on the factors and their coefficients

The following is a generalisation of Proposition 2.1.13Mt§] for monic polynomials ove®x, the ring

of algebraic integers of our number figkd

Proposition 3.20

Let f(X) € Ok[X] be a monic polynomial. Then, for any monic facigx) of f(X), we have:
(i) M(g) <M(f),
(i) L(g) < 299M(f) < 2999 f]],

(i) F(g) < 29ea@)=1v(f) < 2dea(0)=1|| F]].

Proof:
Since all the roots of are roots off, we obviously havéVi(g) < M(f). We get the other inequalities
by applying Proposition (3.15). a

Note that any bound on the heightg@bounds all its coefficients.

Proposition 3.21
Let g(X) € Ok[X] be a monic divisor of degreé¢ of the polynomialf (X) € Ok[X], and letB be a

bound on the roots of (X). Then, the coefficients of X7 in g(X) satisfies:
d :
bl < (. )BYY
e <J>

Immediate by expressing the coefficienfsin terms of the roots of(X) which are all bounded by

Proof:

since they are also roots ¢f O

Theorem 3.22 (Mignotte)
d

Let f(X) € Ok[X] be a non constant monic polynomial, and ¢éXx) = Z b;X/ be a monic divisor

=0
d
bj] < <j>\|f\|

We first prove thatb;| < (?)M(g) by applying Proposition (3.15). The remaining is due to tt that
M(g) < M(f) < [[f]], sincele(f) = le(g) = 1. O

of f(X). Then,

Proof:
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Theorem 3.23 (Mignotte)
d

Let f(X) € Ok[X] be a non constant monic polynomial, and ¢éx) = Z b;X/ be a monic divisor
=0
d—1 d—1
bi| <
i< (7 s+ (92))

The proof of the first bound of Mignotte as given here mightkl@asy, but in fact it relies on deep

of f(X). Then,
Proof: See [PRA] and [COH].

transcendental results such as Jensen’s and Parsevatslée;, which were dissimulated in the non
given proofs of earlier propositions.

We did refer to Mignotte’s bounds many times in this thesiseyrare well known and sharp enough to
be widely used. For different situations, such as in LefsstraRoblot’s cases, Mignotte’s bounds were
applied to get a refined bound that suits the need. WeinbamgiRothschild, in their original paper,
used the bound in Proposition (3.21) to derive a bound ondtienal integers that are coefficients fof
considered as a bivariate polynomialdrandX. They might not have been aware of the sharper bound
by Mignotte. Recently, other bounds are known such as Beayigdound (1992), but they don’t seem

to give an important improvement on the running time of thedezation algorithm.

3.3.3 Roblot’'s method of factorization over a number field

In Chapter (2), we have used the embeddings - - , o,,, of K in an algebraic closur® of Q to define
the norm of an algebraic number &f, a definition that can be extended to the polynomial fi{g].
Here we will use these: distinct embeddings to define another norm, a norm in theldgpzal sense

now, choosingC as the algebraic closuf@.

Let (r1, r2) be thesignatureof K, that is, we assum& havingr;-real embeddings angi-;-non real
complex embeddings, so that = r; + 2r5. Following the usual convention, we also assume that:
o1,--- ,0p, are the real embeddings Kfin C ando,, 11, - - , 0., are the complex embeddings satisfy-
INQ: Gy 4 = Ori4ro+; fOrall j such thatl < j <.

m—1
The conjugates by the; of an element. = ) " ;o' € K, can then be obtained as:
1=0

m—1
oi(a) = Z a;oi(a)! where the conjugates; (o) of « are all the distinct complex roots @k, and can

1=0
be calculated, if necessary, to any desired accuracy.
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The fieldK can then be embeddedRi" using the map> defined as follows:

a— (0,(a),-+ 0, (a),Re(o,, ,, (@)) + Sm(o, ,, (a), Re(o,, (@) = Sm(o, , (a)),---)"
This map induces o6k a map similar to the Minkowski map. The image@f is then a lattice ilR™.
This is also true for any fractional ideal &.

ConsideringK as aQ-vector space, we can define a scalar product by:
<,>: KxK —R
— i oi(a)oi(b
i=1

We can then measure the size of an algebraic numlkeK in terms of the so calle@»-norm
defined by:

T, : K —RT"

a r— Tola) =< a,a >= Zm = b(a)]?

m
When the elements & are represented using a basis- - - , w,, then, fora = Z awy,
=1

Ty(a) =a"Aa

wherea = (a1, ,a,,)" andA = (< w;, w; >)1<ij<m is the Gram matrix of the positive definite
quadratic formils. In particular whenwy, - - - ,w,, IS an integral basis (cf page 38},becomes the Gram
matrix of the basis of the lattic®k. Note that, endowed with the quadratic fofif, the latticeOx has

determinant equal thliscr(K)|'/2.

Weinberger and Rothschild, Abbott, and Lenstra, all usedntbrm |a|o, := maxi<j<m, |oi(a)|. This
norm was enough for their needs but it won't be enough from naowards because it doesn’t come
from a quadratic form, and so can not be used for the LLL-besisiction algorithm on which the

algorithms presented here are based.

Let's give now a generalisation of Mignotte’s bound of Tharar(3.23).

Theorem 3.24

Let f(X Z a;X/ € Ox[X] be a non constant monic polynomial, and 4éx) = > " b;x’ be a

monic divisor off( ). DefineTs(f) := 377 To(a;). Then,

Ty(b)) < (d; 1>T2(f) [(d; 1) +2<?:1>] +m(jj>2
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Proof:
As field homomorphisms, the embeddingwf K in C, applied coefficient-wise to the elementsi],
preserve divisibility, in a sense that whewlivides f, o;(g) divideso;(f), for all 7.

Now applying Mignotte’s bound of Theorem (3.23) to the caidintso;(b;) of 0;(g), we obtain:

el < (7 e+ (52))

where|lo;(f)|> = |oi(ax)[*. Hence,
k=0

it < ()t (71) +2(* ) (4 Dt

Sincef is monic,||o; (f)|| > 1, and thus|o; (f)|| < [|e:(f)||>. Hence,

d—1\? d—1\ (d—1 d—1\2
Gl < [( i) e )(j—1>] I+ (57 )
Summing up, we obtain:

Toih;) < [(d;1)2+2<d;1> <§l:i>] izm;nai(f)num(f:i)z

On the other hand,

S a2 =3 loi(a)? =
=1

i=1 k=0 k=01

n

NE

loi(ar)* = Tolax) = To(f)
k=0

1

which finally gives,

o= () [(15) ()] o en ()

For the purpose of applying the generic algorithm, pdie a prime ideal oK, and consider the lattice

g

L = p¥. We will show that there is a lower bound for tiig-norm of any nonzero element &f This
will then be used to reconstruct the algebraic numbers deétitin the factorization algorithm, and so

recover the true factors ¢f, in the same way as for Lenstra’s algorithm-2.

Proposition 3.25

Let~ be a nonzero element pf, wherek > 1. Then, Th(vy) > mN(p)2/™,

Proof:

The inequality between the arithmetic and geometric meaesyg

m m 1/m
= loity)l? = (H\a@-mﬁ)
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1/m
But <1_[\aZ ) = ]Ha (7)[*™ = |N(v)|*™, whereN(v) = N () is the norm defined
in Chapter (2). This norm |s dIVISIb|e by the norm of the idpélsincey # 0, because it is equal to the
norm of the principal ideak ~ >, which is contained ip*. So|N ()| > N(p*) = N(p)*, and hence,

1
—Ty(y) > IN (7)™ > N(p)2e/m

g

The existence of this lower bound will imply that the minimafrthe 75-norm of the elements of a basis
of p*, will be larger than this lower bounghN(p)?</™. In paticular, if the basis is LLL-reduced for the

T»-norm, the radius of the largest ball inscribed in the fundatal domain of the latticg®, will satisfy:
Tmaz > L x mN(p)Zx/™
maxr — 2 . C

whereC > Oy, and the orthogonality defe€, is calculated for th@5-norm, (see page 55).
As a consequence, choosikguch that

£ L 2k/m
T—B<2‘CX mN(p) ) (3.9)

allows the reconstruction of the coefficients of the factdrg overK from their approximations modulo
p¥, as they correspond to the elements of shoffestorm in their residue classes modylb, since they
belong to the fundamental domain.Afis any real number exceeding the bound given by Theorem)(3.24
and satisfy Inequality (3.9), we are done. Indeed, Robig®rithm for factorization of polynomials
over an algebraic number field, is then an application of #reegc algorithm, wherg is chosen such

that:
m Log(2C - B/m)

S S T Log(N(p))

andB is as just mentioned.

The recovery process follows in exactly the same way as foistca’s algorithm-2 by applying the
formula (3.7) in page 55.

Comparing the timing, Roblot in [ROB 2], shows that his altfon implemented in PARI is faster
than Pohst’s algorithm implemented in KANT. There seemsea@bemarkable difference in the time
consumed by each, but we are not sure whether Pohst’s &lgonit [POH 2] is an improved version
of that used for this comparison. We have chosen to presdéyntRublot’s algorithm as they are very

similar. Pohst’s approach will be presented for functiotdfie
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3.3.4 Van Hoeij's factorization method of polynomials overa number field

Van Hoeij's algorithm for factorization of polynomials avthe rationals and its generalization by Be-
labas to polynomials over a number field, are based on theedhaas-Hensel factorization algorithm,
but proceed differently for the recombination phase to nitakere efficient and hopefully in a polynomial-

time. This new method due to van Hoeij, relies on two mainsdea
1. The possibility to linearise the combinatoric problem.

2. The use of lattice techniques to determine the irredediéttors, as it turns out that they also

correspond to particularly small vectors in some naturddifined lattice.

Comparing with Lenstra’s et al. algorithms, van Hoeij'saithm has the following advantages that

make it superior.
e It gives all the irreducible factors at once.
e It uses lattices with smaller dimensions.

e It uses vectors that are already small since they belof@,tb}¢. This makes the computations

faster and enables finding smallest vectors for a lower vafike

In this subsection, we will present van Hoeij's method foruaniver fieldk £ Q. This will include all
the major ideas for the rational case. We will focus on theadledall-tracesversion of this algorithm,

one of the series of variants that were given in the origiagep [HOE 2], as well as in [BEL 1].

We will apply the generic algorithm following Roblot, so wesame all the previous notations and

results. Whatever other necessary changes that are nedtled specified.

By Hensel's lemma (Theorem 1.2), considerifigs element 00y, [X], we can lift the factorization of

f mod p to a factorization irOx, [X], that is,
=11 f; € Ok, [x] irreducible,
j=1

such that

f mod p=[](f; modp) inOk,/pOx, [X] ~ Ox/p[X]

j=1
The polynomialsf;, calledlocal factorsof f, havingp-adic coefficients, can not be determined with
infinite accuracy, but for any given accuragytheir reductionsmod p* can be calculated and correspond

to the factors off mod p* obtained by Hensel lifting those factors pfmod p.
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Let's denote by, - - - , g5 the irreducible factors of overK.
From the Zassenhaus-Hensel factorization technique, we kihat: 0 < s < r < n, and, theg;'s are
combinations of thef;’'s, moreover since is squarefree, we can characterise the monic factoysasf

those polynomialg € Ok [X] of the form:

T
g=1]1" wherev; € {0,1} (3.10)
j=1
This defines a correspondence between veatets(vy, - - - ,v,.)"" € {0,1}" and monic factors of .

The combinatoric search of the Berlekamp-Zassenhausithiligochecks all such combinations by trial
divisions without knowing -before hand- whether they haviegral coefficients or not. Van Hoeij's
algorithm proceeds differently: it checks the necessanditimn of having integral coefficients instead,

by looking for the set of vectors for which the polynomialy has integral coefficients.

The Knapsack problem

In order to linearise the combinatoric problem, van HoegditheNewton suméor trace9 defined by:

Definition 3.26
Leth € K[X], then thei™ Newton sum(or trace $;(h) is the sum of the'" powers of the roots of

counted with their respective multiplicities.
It follows from the definition that:

8i(gh) = 8i(g) + 8i(h) Vg, h € K[X]

In particular, whery is in the form (3.10),8;(g) = Zvjsi(fj).
j=1
This formula will still hold for powersy; € Z if we extend the definition of traces as follows:

Si(g9/h) = Si(g) — 8i(h)

d d
Furthermore, by writing a polynomidl € K[x] as h(X) = > biX’ = le(h) [J(X — pi) so that
i=0 1=1

d

Si(h) = Z pi , we see tha8;(h) € K as it is a symmetric function of the roots. Moreover, in case
1=1

monic with integral coefficients, the$y(h) € Ok, and we have

ISZ(h’)’ < dBroot(hf)i Vi = 17 ce 7d

whereB, .. (h) is any bound on the roots of the polynomia(cf page 62).
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Theh tracess;(h) for 1 < ¢ < d, can be calculated from the elementary symmetric functadrtbe
roots using the Newton identities (cf [HOE 2] or [COH]).
In particular, the Newton sums are integral combinationthefcoefficients of. since these coefficients

are themselves, up to sign, equal to the elementary synufietritions of the roots and we have:
i—1
81(h) = —bg—1, 8i(h) = —ibg_; — Z Si—1(h)ba—
I=1

LetG = (fi1,-- -, fr) be the multiplicative subgroup @ (X)* generated by the local factors 6fand
let Gk = (g1, - , gs) be the subgroup aff generated by the irreducible true factorsfof

Proposition 3.27
Assume that 0 is not a rooof f.

LetVj = (81(f;), -~ , 8n(fj))" € K}. Then, the vectorg;’s are K, —linearly independent. Moreover,
T

for anyg € G, the vector” = > " v,V satisfies
j=1

geKX)=VeK'= Ve

Proof

Denote by8;..., the operator defined B8..., (k) = (81(h), - -+ , 8,(h))".

Letpq,-- -, p, be the roots off in an algebraic closure &f,,.

The vectors%Sl...n(X —p) = %(pl,p?, -, pMt, 1 < 1 < n form a Vandermonde matrix, and
thus they are linearly independent. This means that there8t...,(X — p;) themeselves are linearly
independent. Since the local factgfss are disjoint products of the polynomiald — p;), the vectors
Vj’s are sums of the corresponding vect8ys.,(X — p;). Therefore, they are linearly independent over
Ky. Hence they span a lattié&; + - - - + ZV,. in Ky of rankr.

The map

Stm: G — VI +---+ 7LV,
=115 — V=Y uY
j=1 j=1

is then one-to-one and we have;
S1(g)

V = Sln(g) =
Sn(9)
Soifg € K(X), then§;(g) € K, for all i, and hencd” € K".
But sincef is monic with coefficients i)k, its rootsp; are algebraic integers.

S081..n(X — py) € O for all i. And so isVj for all 5. O

®Otherwise one of th&;’s would be 0.
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Corollary 3.28

If g is a monic factor off overKy, then we have the equivalence:
g€ OgX]|eVeK'<s Ve

Indeed, it remains to prove théit € K" — g € Ok [X]

From Newton identities, we deduce that K[X] wheneverl” € K".

Now by applying Gauss lemma, we get Ox[X]. O
This means that to check whethgis a factor off overk, it suffices to check thdt € 0%,

i.e we check that for all,

8i(g) = Z'Ujsi(fj) € Ok
=1

Observe thaff; is only known up to a certain large enough precision

This will also be the case for anyc G.

But we are looking for irreducible factors gfoverK, i.e g € Og[X] monic irreducible dividingf.

The coefficients of such a polynomighave a finitep-adic expansichsince they are algebraic integers.
Hence, wherk — oo , the expansions of these coefficients remain inchangedrandiach smaller than
the p-adic precisionp*.

Since the Newton sums$;(g) are integral linear combinations of the coefficientsgpthey should be
much smaller than a multiple @F, or at most close to a multiple pf. Compared with Newton sums of
other factors off overK,, the§;(g) are smaller.

Therefore, findingy means finding 40, 1}-vectorv such that

T

> uSilfi) + M+ =0 (3.11)
j=1

This equation is a kind of a Knaspack problem, since solvinggans minimising simultaneously the
T

linear forms " v;8;(f;) overZ.
j=1

Solving the Knapsack problem

In order to solve this Knapsack problem we introduce thécktt

W={vezlg=]]f’ cK®)}
j=1

oo
®Note that since is unramified, it is a prime ifK,. Hence the elements &f, can be written as Laurent seri% Aip’,

i=ng

where the); belong to a set of representatives of the residue field.
"Observe that, in contrast to the LLL factorization algarith the rank of the latticé} in this case, doesn’t depend on the

degree of the extensidR/Q. It is equal to the number of modular factors whether we anking overQ or overK/Q.

ILHEM BENZAOUI Univ. of Stellenbosch



Direct factorization methods over a general number field 72

ThenW is in a one-to-one correspondence with. The irreducible factors of over K provide a
basis tolV that, up to a permutation of the vectors, isranwv-reduced-echelon forniThis is due to the
squarefreeness gfand the irreducibility of they;. Since well known algorithms that reduce a basis of

W to one in row-reduced-echelon form, are available, knowimgbasis oi1” would solve the problem.

Furthermore, as the elements of the basis - - , g, of Gk should satisfy Equation (3.11) and are
irreducible, their Newton sums are not only small compacelNéwton sums of any other non-integral
combination of thef;’s, but they are the smallest even amongest Newton sumsrogals ofG.

This brings us to the idea of reducing the basidiofvia the LLL algorithm which will reveal these

polynomials as those corresponding to the smallest elenietite latticelV .

As for the LLL factorization algorithms, an iterative presedefining lattices approximating the lattice

W would help determining this lattice. This relies on theduling result due to van Hoeij.

Theorem 3.29
Let L be a lattice such that? ¢ L c Z". Let R be the row-reduced-echelon form of the matrix of

a basis ofL.. Then = W if and only if the following two conditions hold.
(A) Each column of? contains precisely one 1, all other entries are O.
(B) If (v1,--- ,v,) is arow of R, theng = [Tj_, f;” € Ox[x].

Proof:. See [HOE 2].

The iterative process is initialised by takilg = Z", and constructing a decreasing sequence of lattices
W c --- Ly C Ly C Z" where at each step, the conditions (A) and (B) are checléds found when
both these two conditions hold. At this very moment, a comeplactorization off is obtained since the

irreducible factors are the columns Bf the basis ofV in row-reduced-echelon form.

It remains to show that effectively it is possible to constitinis decreasing sequence of lattices.
More precisely, given the latticé as in Theorem (3.29), we need to construct a latficenopefully of
smaller rank, such that

WclL cL

For that recall that, in Step 2 of the generic algorithm, weetaready chosen the precisiamecessary
for the Hensel lifting and which enables the reconstructibthe algebraic numbers from thgiradic
approximations.

The algebraic numbers can be written in terms of the intdgasiswy, - - - , wyn.

A basis of the ideap* is then obtained byfw; )M, whereM is anm x m integral matrix.
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Recall also that for = Z z;w; € Ok, the element: mod p* is obtained by the formula

i
in Lemma (1.17) when the badis;) is LLL reduced for thels-norm.

We can now define the so-call&hapsack lattice\ given by

cr, 0
M =
(8 Q)

whereC' > 1 is a suitably chosen integer constant to be made prekise the identity matrix of order

r, Q is anm x nm block diagonal matrix, with diagonal blocks equalif, and

Siy(f1) o Sy (fr)
s=|

8i, (1) - Si(fr)

This means that the lattick is the image of the multiplication by the matrix above.
The quadratic form defined ok has Gram matri¥\/* " M*.

Observe that\ ¢ Z"™*" and the latticel. can be obtained from by projeting some how of".
In order to bound the Newton sums, we need the following twuntata.

Lemma 3.30 (cf [BEL 1])
d

Letg = Z b;x! be a monic factor of. Then for all;,
1=0

T>(8i(g)) < n” Z Broot(o(f))*
whereB,..:(c(f)) is any bound on the roots of the polynomidlf) (cf page 62).

In his generalisation of van Hoeij's method, Belabas hasehdo work with the norm|’ := () ~ 27)/2.

This norm is related to the natural norm o¥€ris, by

Lemma 3.31 (cf [BEL 1])
Let T be the transition matrix from the basfs, «a, --- ,a™ 1} to the basisvy, - - - ,w;,, and letV’

be the Vandermonde matrix associated with the complex gatga ofo. Then

|z|"? < Cp,To() whereCr, = [T~V 712

1/2
and where the norrfi(a;;)|| := <Z |al-j|2>

7
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Proof: See [BEL 1].

The problem now is to find a vect¢?) , wherev € {0,1}" ande € Z"™, whose image

Cv

Sv + Qe
In such a case, we have;:

in A has bounded norm.||.

Cv
[ 1> = C?|[v[I” + [|8v + Qe[ < C?r + [[Sv + Qe
Sv + Qe

We can bound the Newton sums using the two lemmas abovenoigai

HS’U + Q€H2 < CT2n2 Z Z Broot(o'i(f))zl = Btzrace

=1 =1
(cf [BEL 1]).
The constan€ is then chosen so that neither of the two numigéts and B? ... is much larger
than the other, that is so that

2.~ P2
Cr ~ Btrace

We now have sufficient tools to define the lattice
We LLL reduce the basis oA, and using Property 6 of Lemma (1.20), we discard those Lasid
vectors that exceed a bound given by

(C?r + Birace)'/.

This defines a latticd’ C A as the span of the firgtvectors non satisfying the bound.

Then setl.’ C L to be the projection O%A on the firstt coordinates oZ"»™*",
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CHAPTER FOUR

DIRECT FACTORIZATION METHODS IN

FUNCTION FIELDS

4.1 Introduction

In Chapter 2, we have seen how to reduce the problem of fagt@ripolynomial having coefficients in
an extension of the rational function fiel}(¢), to a factorization over the ground fielg(¢), assuming

that we have some simple techniquesEg(¢)[X], which enable us to complete the factorization .

In that chapter we only considered our function field as aelatgic extension field. This approach
was used by Abbott (in [ABB]) and enables him to write intéireggs programs in BANP (Bath Algebraic
Numbers Package) for factorization of univariate and maitate polynomials over function fields based

on Trager's method.

The drawback of this method however being the complicatiocomputations due to the much higher

degree of the new polynomial to be factored.

We turn now to the direct methods of factorization over fiorctfields and try to apply our generic
algorithm (3.11) of Chapter 3. And to do so, we will need tokooore deeply to the algebraic structure

of our function field and exploit its properties.

Many of the results we will introduce in this chapter are dise for a function field over a field of
characteristic zero, but since we only deal with functiotdfehat argglobal fields we will stick to the
definition of function field we gave in the Introduction, arehlse consider only the positive characteristic

case with finite constant field.

Let K be a finite separable extension of degre®f the rational function fieldX = F,(¢), wheret is

transcendental over the finite fiel}. We writeK = K («), wherea is a root of its minimal polynomial
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m(Y), and denote byr the ringF,[t] and byOx its integral closure irfK.

4.2 Places in a function field

Definition 4.1

A valuation ringof the function fiel&K is a ring O C K such that
O¢Kand VacK,acOQora'cO

Proposition 4.2

Let O be a valuation ring of the function field. Then

(@) Oisalocal ring with maximal ideap = O \ 0%,

whereO* is the group of units of.

(b) pis a principal ideal, and hencé is a PID.

Observe that the finite fiell, is contained irO.

In the following, we will assume that,, is the full constant field.

Definition 4.3
A placep of a function fieldK is the maximal ideal of some valuation riigof K. Any element € p

such thatp = 70 is calleda primeof p (or of K).

Remark:
O is uniquely determined by. Indeed, it suffices to také := {a € K|a~! ¢ p}. Hence we can write

O = O, for the valuation ring corresponding to the place

Examples:

Assumem = 1, i.eK = K =T,(t).

1. Consider a monic irreducible polynomjalt) € FF,[t].

Set: p=(p(t))

Op = {% € F,(t)| p(t) does not divide‘b(t)}

Thenp is a place off,(¢) andO, is its valuation ring.
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2. SetO := {% € Fy(t)| deg(a(t)) < deg(b(t))}

Then O is a valuation ring off',(¢), whose corresponding place is called thénite placeand

denoted by ..

In the following, we will call arational placeany place of the rational function fielfl,(¢). A place

P # poo Will be called afinite place

These are all the places of the rational function field.

Remark:

The infinite place is the only rational place that does notestnaight from a prime(t) in F[t]. Itis
actually obtained from the prime = ¢! of the ringF,[t~!] C F,(¢), in the same way as in example

(1) above.

The notion of places in a function field is also closely radaie the notion ofdiscrete valuation®f the
function field.

Indeed, lep be a place of the function field, and letr € p be a prime op.

Since, is local with maximal ideap = 70, any nonzero element(t) € K is uniquely represented
in the form:

a(t) =7"-u(t) where r € Z, andu(t) € O, is a unit.

Setting:

we getamap, : K — Z U {oo} that satisfies the following properties.
Theorem 4.4
(i) For any placep of the function fieldK, the functiony, is a discrete valuation dK. Moreover

0p = {a(t) € K| v, (a(t)) > 0}
0; = {a(t) € K| v, (a(t)) = 0}

p = {a(t) € K|y, (a(t)) > 0}

An element < K is a prime element af if and only ifv, (z) = 1.
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(i) Conversely, suppose thats a discrete valuation dk. Then the set
p = {a(t) e K| v(a(t)) > 0} is a place ofK, and

O = {a(t) € K| v(a(t)) > 0} is the corresponding valuation ring.
For the sake of completeness, we recall the following prtogeeof a discrete valuation, of K.
1y, (a)=c0&a=0
2. v, (ab) = v, (a) + v, (b), Va,beK

3. v,(a+0b) > min(y,(a),v, (b)), Va,b €K

TP

with equality whenever, (a) # v, (b)
4. 3a € K withv,(a) =1

5 y,(a) =0, Va €T,

4.3 Extension of the rational places

AssumeK : K] =m > 1
Let p be a place of<, and’3 be a place oK, and consider the corresponding valuation ridgsCc K

andOg C K respectively.

Definition 4.5
We say tha®y; lies aboveO,, or that‘p lies abovep or that ‘B dividesp, and we write|p , if:

Op=0pNK and p=PNK

In this case, the extensigry is a non-zero ideal oy contained i3, ThuspOy = P for some
integere = e(Plp) > 1 called the ramification indexof P over p. And one can easily see that

Va € K, vy(a) =ev,(a).

On the other hand, wheR|p, there is a canonical embedding of the residue classdiglg into Og /B,
and thusd /B can be considered as a field extensioDgfp.

The index[Og/P : O,/p] is called theresidue class degreef P overp and denoted by = f(B|p).

The ramification index is a positive integer. Moreover, we have the following resul
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Proposition 4.6
Let3 be a place oK lying above the rational placg, we denote by,, , f,, = theramification index
of 8 overp and its residue class degree respectively.

Define the local degree @ overyp to be

”smp = S‘B\p 'f‘mp’

Thenn, <m=[K:K]

[p

If we assumeK /K separable, then we can construct all f8is lying above a rational place by de-
composing the idegh in the integral closure of), in K, which is a Dedekind domain singg, is a

PID.

This shows that above any plagef K, there is at least one (the maximal ideal containing thensioe
of p in the integral closure ad,, in K), but at most finitely many places &t.

In particular we will be interested in the places abpye

Note that, the definition above implies also that for any @hoof K, there is a unique place &f lying

below it, namelyp = PN K.

Proposition 4.7
AssumeK /K separable, and consider the placgs, --- , 3, of K lying above a rational place
with their respective ramification indexes - - - , e,,, and their respective residue class degréges - - , f;.

Then we have the so callédndamental equality

ieifi =m = [KK]
i=1

4.4 Norms and absolute values

By N(13), we denote th@ormof the placep of K, that is the cardinality of the residue class fieldfhf

which we know is finite as in the number field case, i.e

N(B) = #0g/PB

whereOy; is thevaluation ringof 3.

In particular for a finite rational plage = (p(t)), N(p) = #0,/p = ¢?9"), and we can easily show

that N(ps) = ¢.
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Let P be a place above a rational plagghenN(PB) = #0gp/P = ¢lO%/F: Fal,

But [Op/P : Fo] = [Ogp/P : Op/pl[0p/p : Fyl = £y, - deg(p(t)).
Hence
N("B) — qu‘pdeg(p(t)) — N(p)f;mp .

Thep-adic absolute value df,(¢) is defined by the real-valued functions:

laly := N(p)~ @ for all non-zeroa € F,(t).

|a]p,, = g9 =degv) if ¢ = % e F,(t)\ {0} and deg(u) < deg(v)

In both cases, the absolute value of zero being zero by definit

For every placél|p, we define a normalizeg§-adic absolute value corresponding to the valuatiprby
setting:
Jaly, = N(B) e

fora € K, a # 0, and|0[, := 0.

This definition is motivated by the following observation.
For0 # a € K, |al, := N(p) ™% (@.
1
S
ButN(p) = N(P) *" andy,, (a) = e, 7, (a).
Thus:

lal, = N(m)(_yp(”)/f%\v>:N(m)(_”m(“)/emppr>

_ ) @
The normalization defined above has the effect thatis a prolongation of |, .

This absolute value has a unique prolongation to the coropl&ty which we will also denote by |, .

Moreover, with this definition, the product formula holds.

Theorem 4.8 Product Formula

For each nonzero elemeatof the function field,

H |a|q3 =1,
B

where3 runs through all places dK.
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Note that Artin and Whaples (in Bull. Amer. Math. Soc. 51 (&8R4op 469-492) have proved that all

global fields satisfy the Product Formula.

Definition 4.9

For an element; € K, we define the maximum norm by:

a = Imax (a
Jafl = max|al,

Then the maximum norm has the following properties of a nmhienedean norm:

Foralla,b € Kand\ € Fy(t),
lalloc =0 a =0
[Aalloo = Alpocalloo

la =+ blloo < maz{|alloo, [|b]lo }

with equality whenevefia||s # ||b]/co

This maximum norm will be a kind of substitute for thg-norm of the number fields, and will be used

to obtain suitable bounds for the coefficients of a poterfdiedor of the polynomial to be factored.

45 Bounds on the coefficients of a factor

For the following results, we refer to Pohst and Omafa in [FXDand [Om-P].

Lemma 4.10
Let f(X) = Y, a;X" € Ok [X] be a monic polynomial of degree> 1.

For any place} of K lying abovep., , we define aneasuref the polynomialf (X) by

My (f) = max{y/|an—ily ; 1 <i<n}

Then any monic polynomial(x) = >°7_, b;X* € K[X] dividing f(X) is in Ok [X], and its coefficients;
satisfy
[br—ily < My (f) (1<i<r)

Proof:
SinceOy is a Dedekind domain with quotient fiel§, by Gauss’ lemma, any monic factor of the monic

polynomial f € Ok [X], has coefficients iDk.

To obtain the estimate for the coefficiéntof ¢(X), we express them as elementary symmetric functions

of the zeros of(X).
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Let L be the splitting field off (X) overK.
Let&y, -, &, be the zeros of (X) in LL.
Set My := max {|&|yp; 1 <i<n}and s:= #{i Iilp = Mg}

The coefficients ofj(X) satisfy

|b1"*i|qs = | Z Eiv e & |<;3 < Z H |£jk|q3

1<j1 < <ji<r 1<j1 < <ji<r k=1
i
< max <H]§jk1m> (ultra-metric property)
k=1
< M 4.1)

On the other hand, let's consider the absolute value of te#ficenta,,_, of f(X):

|an—s|p = | Z Eiv &G Ip

1<ji<<js<n
The maximum of theg; |y is reached exactly times.

Taking combinations of roots&; will definitely yield a biggest elemery;, - -- £;, where all theg;,

have the maximum absolute valdéy.
This makes the absolute value of the sum of these combirsatioequal their maximum.

Whence, assuming = n, we get

S
|an sl = [ ] My = M

k=1
Thus My € {/lan—ily 1 1 <i<n}.
ThereforeMy < My(f) and thusib, |, < Mi(f). -

Corollary 4.11
Let f(X) andg(X) be as in Lemma (4.10 ). Then the coefficidntef g(X) satisfy

1bjlo0 < max{Mg(f) [1<i <7, Blpso} = M(f)

Indeed

For all B|po,
[05ll00 < M;;;j(f) < max{MfB(f) 1<i<r}

b; = max|b;
lbslloe = max iyl

< max {My(f);1<i<r, Plpoo}
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Remark 1:

The results in Lemma (4.10) and its Corolloray (4.11) areahalogous of the bound in Proposition
(3.21) and Mignotte’s bound in Theorem (3.22) for the fumetfield case. The binomial ten(ﬁlegj(g))
was eliminated by the ultra-metric property.

Remark 2:

The product formula yield87(f) > 1.

Indeed,

AssumeM (f) < 1, and let's consider a coefficienf of a factorg of f, for some;.

By Lemma (4.10)|b;|ys < M, (f)49(9) =7 for all P|poo.

But M, (f)?99 7 < max{ME(f) [1 <k <r} < M(f) <1.

Hence, |bj|q < 1 for all P|poo, and thus, [T [b;lp < 1.

Plpoo
On the other hand, sindg € Ox = ﬂ Og, b; € Og for all finite places3. Hence vg(b;) > 0
B finite
for all % finite. So
lbjlg < 1 for all finite placesp (4.2)
Thus H ‘bj’gp <1, and so:l = ( H bjgp) ( H ’bj‘q:; < 1) <1 Absurd. O
B finite PBlpoo B finite

4.6 Application of the generic algorithm

Since the ring of integer8x of the global function field is a Dedekind domain, the Henselian factor-
ization technique can also be applied to polynomials hagogfficients inOk, (see subsection (3.3.1)).
For that, given a monic squarefree polynomjiék) € Ox[X|, we need to choose a suitable prime ideal of

Ok , that is, a finite plac& of K, since Og = ﬂ Og, and then factoy over theB-adic completion

B finite
Kqs of K, following the steps in Algorithm (1.4) and so recovering factors off in K[X].

This amounts to applying the generic algorithm (3.11).

We choose a finite placd3 of degree 1 that doesn't contai discr(f) - discr(m,), So thatKg is
unramified andf remains squarefree modu3. Avoiding 2 € ‘3 is not restrictive.

The number of places of degree 1 plays a crucial role in theryhef function fields. The Hasse-Well
theorem gives an estimate for this number, and in some chisethéorem yields even the value of the

number of places of degree 1.

After choosing]3, the factorization off mod *J8 and the Hensel lifting will be straightforward provided
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a suitable integek is also determined to limit the lifting process.

In the following, we will show how to choose and the bound3 on the coefficients of the factors ¢f
overK, in order to enable the reconstruction of these factors tiaeir J3-adic approximations.
We give an analogue of Proposition (3.25 ) for this case pigtihe existence of a lower bound for the

maximum norm of the nonzero elements af'é power ofS3.

Proposition 4.12
Leta be a nonzero element §8%, wherek > 1. Then, for any finite plac& in K lying above a
rational placeq,

—ngiq/m
lallse > falg ™"

Hence in particular,
lalle > N(P)/™.

Proof:
We first prove for any: € Ok that||a||cc > \a!:)nmq/m.

FOr Plpo, |aly < max{|algy | P'|pec} = [lalleo. Hence, ya\gﬁ‘”w < |la||5FP>, and thus:

TP p oo > NP poo
[T = < lalE "> = flal: @3
Plpoo

by Proposition (4.7).
On the other hand, by the assertion (4.2) in Remark 2, sine®x, |a|q < 1 for all finite placesy’.

Moreover we should have] [ |aly"> > |a|;;‘p"'“’ for all ¢’ finite.

Plpoo
Indeed, if this is not the case for some firfigép’, then:

ez ) s ™
H |a|€p§3\v <|a|€p‘1,3 [p ) <1
PBlpoo

which contradicts the product formula, since all the renmgjriactors are smaller than 1.

In particular for the finite placg|q,

NP p oo —-n
lalZ > ] lalg™™ > lalg™" (4.4)
PBlpoo

Now whena € Q¥, v, (a) >k, hence

’a‘:]ng\q — N(Q)+”D (a) > N(Q)k
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This, together with (4.3) and (4.4) yield f&d = J3:

-n /m m
lallee > lalg ™™ > N(FB)*™.

Remark:

fnmq/m

Since for any finite plac&|q, |a|g <1, and thus|a|q > 1,

we conclude thatflal|s > 1, Va € Ok.

For the number field case, we were able, given such a lowerdhaariind numbers in the fundamental
domain that are congruent to the coefficients of the lifteridies of f. These numbers, when they are
integers, do correspond to the actual coefficients of thefactors off. Similarly, we did exhibit a lower
bound in the case of a function field, however we can not usedhee argument, nor the same formula
(3.7) to determine the coefficients éfin their corresponding residue classes. In that case, amsxe
use of the LLL-basis reduction algorithm helps achieve ta.gThe latter algorithm being based on the
existence of a scalar product ovi§r can not be generalised to the function field case since these
have only non-archimedean norms. Nevertheless, it ispstilbible to determine the coefficients of true
factors, when they exist, as the elements of smallest marimmarm in their residue classes mod€g¥,

for a sufficiently largex.

Proposition 4.13
LetQ be a prime ideal o0k lying above a rational primeg, let B > 1.
For k > mLog(B)/Log(N(Q)), each residue class dfx/Q* contains at most one elememtwith

llalls < B.

Proof:
Assume there exist two distinct element$ € Ok that are in the same residue class modifoand
both satisfy the bound condition. Assume|.. < ||b||-.., then we have:
a — b € 9F and thus, by Proposition (4.12)|a — bjes > N(Q) .
In addition, ||a — b||c < max{||a|lso, ||blloc} = ||b]|cc < B-
Hence,B > N(Q)= and stk < mLog(B)/Log(N()). Contradiction.

O
Combining the results in Corollary (4.11) and in the Proposiabove, we see that, B is chosen such
that B > M (f), and ifk > mLog(B)/Log(N(Q)), then the coefficients of any factor gfin K[X] is

the unique element, of its residue class of maximum norm tedy 5.
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4.7 Existence of polynomial-time factorization algorithns

In this section, we will be concerned with lattice-basedhggues for factorization over function fields in
order to show that the results of Lenstra et al. concerniedabtorization of polynomials over number
fields do actually hold for function fields as well. This wiltqve the existence of polynomial-time
algorithms for factorization of polynomials over functifields provided an algorithm for lattice bases
reduction similar to the LLL algorithm can be found which fagolynomial running time.

The two following propositions are the generalisations migesitions (3.5) and (3.6), for which the

proofs apply as well. We will then considi&rany global field.

Assume we are given a polynomifle Ok [X] of degreen > 0, a nonzero prime ide& of Ok, and a

polynomialh € Ok [x] satisfying the following conditions:
(C.1) i monic,

(C.2) (h modP¥) divides (f mod P¥) in Ok /B [x],
(C.3) (h mod ) is irreducible inOx /% [X],

(C.4) (h modP)? does not dividg f mod P) in O /P [X].

Let! = deg(h(X)). Hence0 < < n.

We can then prove the following.

Proposition 4.14
The polynomialf has a monic irreducible factoky € Ox[X] of degreer > 0,1 < r < n, uniquely
determined up to sign, such th@t mod B) divides (hy mod P*) in Ok /P [X].

Further, if g(X) is a monic divisor off (X) in O [X], then the following assertions are equivalent:
(i) (h modP) divides (g modP) in Ox/PX],

(i) (h modP¥) divides (g mod P¥) in O /P* [X],

(i) ho(X) divides g(X) in Ox|[X],

In particular (h modp¥) divides (ho mod ) in Ok /P* [X]

Proof:
The existence of follows from (C2 ) and C3) since irreducibility is preserved during the Hensel

lifting by the coprimality and coherence conditions (cfté@t (1.2)). The uniqueness éf, up to sign,

ILHEM BENZAOUI Univ. of Stellenbosch



Direct factorization methods in function fields 87

comes from C4 ). The implications (ii=(i) and (iii)=-(i) are obvious by reduction. Assuming (i) now,
i.e (h mod*P) divides (g mod ) in Ok /P [X], let's prove (ii) and then (iii).

The squarefree polynomidlis divisible byg in Ox[X], so f/g € Ok[X] and is relatively prime withy.
By (C3), (i) and (C4), we know(h mod ) and(f/g mod ‘B) are coprime. So there exist polynomials
A(X), u(X) € Og[X] andn(X) € PB[X] so that:

AX) h(X) + pu(X) f/9(X) = 1 —=n(X)

Multiplying both sides by the polynomiai(1 +n + 7% + - -- + 7*1) yields

A(X) h(X) + A(X) f(X) = g — gn*(X)

Now reducing moduldg® gives clearly (i) ag/ mod B¥) divides the right hand side of this equality.
For (iii), let's note that the irreducible polynomial, divides f in Ox[X], so if it doesn’t dividey, it

should dividef /g. By reducing moduldj3, we get a contradiction withG4 ), which proves (iii). O

Following Lenstra et al. (cf subsection (3.2.1)), we giv@asiructive method based on lattice techniques
which determinesy. If & divides f in Ok[X], thenhy = h. Otherwise, we will search fak, as an

element of a certainldttice" to be defined.

So far we have used the definition of page (18) for latticeschvbanables us to work with lattices in an
Euclidean spac&¢, and also lattices in a polynomial ring by identifying patynials with the vectors
of their coefficients, assuming a certain ordering on thesdficients. However, the concept lattice
bears intrinsic properties that enable defining latticea inore general context, &ge-R-modules of
some rankx, lying inside some finite dimensional vector spacé wherek is either the quotient field

of the ring 2 or any extention of it

In analogy to Lenstra et al. (cf [L-L-L] and page (46)), we dée consider the set of polynomials in
Ok [X] of degree less than some fixedthat when reducedmod 3%, are divisible by(h mod ¥ ) We
will chooser so thathy € L. Observe thal, # {0} sinceh € L.

Recall that, sinc& here is any global fieldi will denote eitherQ or F,(t). So letR denote eithef or
[F,[t], and consider an integral basisi®f wy, --- ,wy,, i.e a system of-linearly independant integers

which spandk as anR-module. Using such a basis enables us not to worry atewminatorsit also
m

enables us to identify an element=") " a;w; of Ok with the vectora = (a1, -+ , ap)" of R™.
j=1
d ‘ d m ‘
A polynomialg = > " g:X" = > () a;;w;)X’ € Ok[X] with degreed < r, will then be identified
i=0 i=0 j=1
with the vector

g = (g, s Qyyy oy aem)T € ROTU™ wherea;; = 0if i > d.
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To measure the size of an integee Ok or a polynomialy € Ox[X] we define the following norms:

lall = (327, a3)'/? ifR=7
Fora € Ok, |a|' = degi(a) = max deg(aj) ifa#0
tsgsm if R =T,[{]
0 otherwise
gl (cf page 46) ifR = Z
And fOI’g € OK[X], Hg”’ —
maxo<i<d |gi| if R=T,[t]

On the other hand, sind is a PID, there exists a prime< R so thatd N R = 7 R. Hence, examining

the elements of., we see thalL is spanned oveR by the K -linearly independent elements 6 [X]:

{rorx

1<j<m, 0<i<ifulwhx | 1<j<m, 1<i<r}

And thusL can be viewed as aR-lattice, by identifying it with the correspondihdattice in & "+,
Clearly, this lattice has determinaitL) = %™, (Recall that = deg(h).)

Remark:

By representing the elements ®f and O with respect to the integral basisy, --- ,w,,, addition
and substraction of those elements are easily done coaffigise, which is not the case for the other
arithmetical operations. For instance, to calculate ayrtdn already computadultiplication tableis

needed. This is a table € R™*™*™ which represents the productsv; with respect to the basis itself,

that is:
m
wiwj = Zr(z’,j, k)wp, wherel'(i, j, k) € R
k=1
The entries off' can be obtained using the transition matrix from the bésisx, --- ,a™ '} to the
basiswy, -+, wm,
(wla te awm)T - (15 [O7AR aamil)
m d . d m A
Thus, ifa = Zajwj € Ok, andg = Zgixl = Z(Z Qij wj)XZ S OK[X]
j=1 i=0 i=0 j=1
m m m m m m
awy, = Zajwkwj = Za]‘ <Z F(j, k, l)wl> = Zajf(j, k, l) wp = Z bw;, b €R.
J=1 7j=1 =1 =1 J=1 =1
and
d A d m m .
goe =Y _(giwr)X =D > D ai,T(, k1) | wX’
i=0 i=0 1=1 \j=1

!By this identification, we will callR-lattice any subset of the polynomial ritfiy; [X] whose image is aR-lattice in some
K*.
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Whence, ifR = Z,

2 2
lgwell? =D [ D aiTGED] <D0 laglTG, k1)
i, j=1 i,l \j=1
2
}: maxﬂ’%k:ZIE:]@ﬂ
il J=1
S(?@dfmkl QEZE:MU fénﬁgFU%l 2}: }:mul mwdﬂmkwb%mmﬁ

il j=1
In this case, set’ := max; ;; ['(j, k,1)|)v/m so that:||gw || < C||g]|".
Now whenR = F,[t],

lawy,| = mlaxdeg Zajf(j, k)| < max <1I<nja<>§ndegt(ajf(j, k:,l))>
j=1 ==

< max max (deg,(a;) + degy(I'(j, k. 1))
J

< max degy(a;) + maxdeg,(I'(j k,1) = |a| + maxdeg,(I'(j, k, 1)
J J,R

SetC := max; ; deg,(T'(j, k,1)) andC := C + 1.
If a =0, then0 = |a|' = |awi|" < Claf’ .

Now, if @ # 0, then|a|’ > 1, thus C|a| > C, and so
lawe|' < |al' + Cla|’ < Cla|f

This implies:

d
lgwrll’ = 1> giwnX*||" = [max, Igzu%l < foax, Clg|' = C max Igzl = Clgl’
=0

Hence there is a constaitsuch that||gw ||’ < Cllg||’.

Proposition 4.15

Let a non-zero polynomial of L satisfy:
d(L) =™ > O™ |1b]|™|| £1|” (4.5)

where(C is the constant defined above.

Thenb is divisible byh in K[X], and in particularGC D(f,b) # 1
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Proof:
To prove thath, dividesbd in K[X], we will actually prove that dividesg := GCD(f,b) in K[X], and
for that it suffices, by Proposition (4.14), to show thatmod ) divides (g mod ) in Ok /P [X].?
Assume this is not the case. So I8/8), there exist polynomiala, (X), 1, (X) € Ok [X] andn, (X) € PBI[X]
satisfying:

Ao (R) h(X) + 11,(X) g(X) = 1 — 1, (X) (4.6)

SetM :={\f+ pube Og[X]| deg(\) < deg(b) — deg(g) & deg(p) < n — deg(g)}.

The nonzero elements @8f are multiples ofy and have degrees:

deg(g) < deg(Af + pb) < max{deg(A) + n, deg(n) + deg(b)} < n + deg(b) — deg(g)
Note that: deg(g) < deg(b) < randthus 0 < deg(b) — deg(g) < r —deg(g) <.
In addition, M is generated oveR by the polynomials:

{WXf] 1<j<m, 0<i<deg(b) —deg(g)} U{w X'b| 1<j<m, 0<i<n—deg(g)}
4.7)

which we identify with them(n + deg(b) — 2deg(g))-dimensional vectors of their coefficients.
So their projections on@idwjxi R, where 1 < j <m and deg(g) <i<n+deg(b) — deg(g),
form a basis of ark-lattice M of rankm(n + deg(b) — 2deg(g)).
Indeed, it suffices to show that they dkelinearly independent.
Suppose arR-linear combination of the polynomials in (4.7), i.e an e\ f + b of M, projects
to zero inM. Sodeg(\f + ub) < deg(g) which implies that\f + ub = 0 because it is a multiple
of g. Hence,\ f/g = —ub/g, whereGCD(f/g, b/g) = 1. This implies thatf /g divides . But
deg(p) < n —deg(g) = deg(f/g), and thusy, = 0. ThereforeA = p = 0. And so, the projections of
the polynomials in (4.7) effectively form a basis of theitzgt)/ .

By Hadamard inequality we get,
d(M) = d(M) < [T lle? X FII TTw X0l < Crreo® || g des®) o)™ < O™ || £ [lpl|™ < 7™
2 2

from our hypothesis.

On the other hand, we can prove that the subgét: = {y € M | deg(v) < deg(g) + deg(h)}3

2Note that Proposition (4.14) can not be applied tiecausé is not necessarily a factor gt
®Note that sincéh mod B) divides(f mod ) and not(g mod B) it then divides(f/¢g mod ), so we get

deg(g) + deg(h) < deg(b) + deg(f/g) = n + deg(b) — deg(g).
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of M is contained if3* [X]. Indeed, lety € M, theng|y and from Equation (4.6) we deduce that:

Ao h+ wyg)v/g=(1—mn5)v/g

(AV/9)h + gy = (1 = ny)7/g

Multiplying both sides by the polynomigll +n, + - - - + 7¥~!) we get:
Mh+ fiv="/9—n5/9

Then, sincé € L, (h mod B¥) divides (b mod LB¥) in Ok /PB¥ [X], and so it also divide§g mod L¥).
This implies thath mod B*) divides (v mod B*) sinceg|y. Whence(h mod B¥) divides
(v/g mod B¥). But then,

deg(h) < deg(v/g) = deg(7y) — deg(g) < deg(h)

by definition of M’. Contradiction.
Thereforey/g belongs tdl3* [X] and so doey itself.

Knowing thatM’ c 3% [x], we will derive a contradiction which concludes the prooPobposition(4.15).

Let by, ---, b; be a basis of\/’ is Hermite Normal Form, given in terms of the ba@iﬁ(i of Ok[X].
Hence, the matrix of the;’s is triangular and sd(M”) equals the product of the norms of the diagonal
elements of this matrix, i.e, the product of the norms of thading coefficients of thé;’'s. Since

bj € PE[X], lc(bj) € P*N R = 7*R and sod(M") is a power ofr*.

Moreover we know sincé; € M’ thatdeg(b;) <1+ deg(g) < n + deg(b) — deg(g) < n +r.
Considering among thig those withdeg(b;) < I (there aren x [ of them) yields:d(M') > mFm,
Thus7*™ < d(M') < d(M) < 7*™, Contradiction. O

This, unfortunately remains a theoretical result, but isdyas it shows that the problem studied is no
longer difficult. However the large dimensions of the la$idnvolved in this case make this approach

impractical.
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