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Abstract

Traffic congestion is a growing burden on society. Due to the complexity of modelling trans-
portation, many approaches do not scale efficiently. Assumptions are made to estimate the
locality and quantity of traffic that passes through, leaves or enters a study area. Infrastructure
investment based on inaccurate transportation modelling could potentially increase congestion.
Furthermore, the effects of changes in infrastructure outside a study area are also unknown. It
is therefore necessary to model transportation networks at a larger scale than required before.

This thesis presents a large scale traffic modelling framework, potentially capable of modelling
the impact of public transport and infrastructure investment for the South African context. The
framework builds on the basic procedure of the Four-Step Modelling methodology.

To address the shortcomings of static trip distribution models, a proposed, temporally adjusted,
doubly constrained gravity model is formulated. Kernel density functions are fitted from survey
data to define unique impedance of travel functions for each travel analysis zone. Route selection
is determined by a heuristic approach to dynamic traffic assignment which is implemented in a
mesoscopic traffic simulator.

The proposed gravity model is iteratively calibrated using the output of the traffic simulator in a
positive feedback loop to produce a trip distribution that approaches an equilibrium assignment.
The gravity model calibration and validation shows that the proposed gravity model is more
accurate than the single impedance of travel gravity model. The framework produces OD trip
matrices, inter- and intra-zonal routes, quarter-hourly traffic flows and a measure of congestion,
all which can be visualised in a GIS environment.
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Opsomming

Verkeersopeenhopings is ’n immertoenemende probleem in Suid-Afrika. Verskeie bestaande teg-
nieke wat gebruik word om verkeer te modelleer, is ondoeltreffend wanneer dit op ’n groot skaal
gëımplementeer word. Aannames word gemaak oor die kwantiteit en lokaliteit van verkeer wat
vanuit, na en deur die studie-area vloei. Infrastruktuurontwikkeling gebaseer op onakkurate
verkeersmodellering kan die intensiteit van verkeersopeenhopings vererger.

Die impak wat so ’n verandering van infrastruktuur sal hê buite die studie-area kan ook nie
geëvalueer word nie. Dit is daarom nodig om vervoerinfrastruktuur op ’n groter skaal as van-
tevore te modelleer.

Hierdie tesis bied ’n grootskaalse verkeersmodelleringsraamwerk aan wat potensieel die impak
van publieke vervoer en infrastruktuurontwikkelings kan modelleer vir die Suid-Afrikaanse kon-
teks. Die raamwerk bou voort op die beginsels van die Vier-Stap Modelleringsmetodologie.

’n Dubbele beperkte gravitasie model wat aangepas is, word voorgestel en geformuleer om die
tekortkominge van statiese ritverspreiding modelle aan te spreek.

Kerndigtheidsfunksies word gepas aan opname-data om unieke reisimpedansiefunksies te definieer
vir elke verkeersanalisesone. Ritroetes word bepaal deur middel van dinamiese verkeerstoedel-
ing wat gëımplementeer is deur ’n mesoskopiese verkeerssimulasie. Die gravitasiemodel word
iteratiewelik gekalibreer deur die uitvoer van die verkeersimulasie te gebruik in ’n positiewe
terugvoer lus om konvergerende ritverdelings te produseer.

Die kalibrering en validering van die voorgestelde gravitasiemodel toon aan dat dit meer akkuraat
is as die enkele ritimpedansie gravitasiemodel. Die raamwerk produseer oorsprong-bestemming
matrikse, inter- en intrasone roetes, kwartuurlikse verkeersvloeie en ’n maatstaf van verkeers-
opeenhopings wat in ’n GIS omgewing visualiseer kan word.
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This chapter serves as an introduction and a guide to the layout of the remainder of the thesis.
The next section introduces the concepts of congestion and traffic modelling.

Since 1960, the percentage of people living in urban areas have increased from 34% to 54%. Since
agricultural activities require far less labour for the same yield due to technological advancement,
ex-farm workers look to urban areas for work. The United Nations estimates that cities will
absorb most of the population growth between 2016 and 2030 [49]. As the number of people
living and working in urban areas increase, so to does the need for transportation. At some
point, more vehicles on the road lead to longer commuting times.

1.1 Traffic congestion

The Centre for Economics and Business Research estimated that the cost of congestion in France,
Germany, the UK and the US totalled $200 billion USD in 2013. It found that the average driver
in a metropolitan area spent 36 additional hours stuck in gridlock traffic per year, a figure which
is forecast to increase to 42.8 hours by 2030 [10].

The 2015 TomTom traffic index identified Cape Town as the most congested city in South Africa.
Their data shows that morning and evening commuters experience on average a 72% and 58%
respective increase in travel time [48].

It has been shown that increasing road capacity does not necessarily reduce congestion levels [15].
Most commuters choose their mode of transportation and route by considering their opportunity
cost, meaning, they evaluate and compare each alternative. Choosing one alternative means
losing out on all of the other choices. When a specific route is congested, the time cost associated
with using such a route is too high for some individuals and they choose an alternative route –
a long cut [10]. This route might have a longer distance, but the travel time might be shorter
or the absence of congestion might make the route more attractive.

1

Stellenbosch University  https://scholar.sun.ac.za



2 Chapter 1. Introduction

Theoretically, if traffic was a closed system with a constant demand, increasing the network
capacity (supply) to meet this demand would be an effective solution. However, a road network
does not fulfil either of these requirements. If the capacity on the previously congested route
where to increase, it attracts more traffic to itself away from other congested routes. Individuals
can also change their mode of transportation. Someone who is carpooling to reduce their travel
costs could now begin driving himself because s/he values his time more than the increase of the
cost of fuel of driving to work on his own. This can cause routes where additional capacity has
already been added, to once more become congested. It is assumed that all individuals travel
on the route that has the lowest cost according to their own criteria. Traffic has been observed
to rebalance itself until there is no cheaper alternative route for any individual. John Glen
Wardrop formulated two principles for traffic equilibrium which state that: Firstly, the journey
times in all routes actually used are equal and less than those which would be experienced by a
single vehicle on any unused route and secondly, that at equilibrium the average journey time is
minimum [54].

One method for reducing congestion is to increase the price of travelling on a specific road
through toll fares. The demand for the route is then controlled by the cost of the fare. Conces-
sionaires can determine a price structure by requesting stakeholders to participate in a survey.
This does not decrease the demand for the total network. The congestion could once again
spread to other parts of the network as individuals seek to minimize their travel costs [15].

Congestion can therefore be seen as a function of total demand and supply over all routes with
a similar destination or origin. Adding additional capacity to only a portion of the network will
more often than not, be insignificant relative to the total demand. Furthermore if only a portion
of a route’s capacity is upgraded it will temporarily alleviate short term congestion, but only
for the part of the route where capacity was added.

Another strategy to reduce congestion is the use of higher density transportation modes, which
mostly consist of public transportation. Buses and mini-bus taxis are able to transport more
people relative to the space on the road that they use. Buses equate to roughly three passenger
car equivalents with regards to congestion and can transport upward of 25 individuals while
mini-bus taxis are equivalent to 1.5 passenger cars and can transport up to 16 people.

1.2 Traffic flows in networks

Traffic is comprised of many vehicles that travel through a road network. Each vehicle travels
at different and constantly varying speeds. The flow of traffic is determined by the individual
behaviour of each vehicle which, is in turn, influenced by the physical characteristics of the
network and the level of traffic itself. Each additional entry to a network segment marginally
reduces the range of available individual behaviour. When a portion of the network becomes
saturated, vehicles travel at speeds much lower than they would in the absence of any congestion.

A network typically consists of a combination of interrupted and uninterrupted facilities. The
former refers to segments that contain stop streets, roundabouts, traffic circles and signalised
intersections. The latter are road segments that do not contain any of the aforementioned
elements and consist of mainly highways or freeways. A network facility can only serve a finite
number vehicles within a specific time period. This limit depends on the specification of the
facility and is referred to as its capacity, which is defined in terms of a volume per time period.

The flow of traffic traversing a network can be classified into three conditions, namely, free
flow, congested flow or a jammed stop-start condition which occurs when traffic flow nears the
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capacity of a facility. Once the flow of traffic reaches a congested stage it creates a roll-on effect
that affects the conditions in the preceding or upstream facilities [50].

Each vehicle is driven by a unique individual and can be seen as an origin, destination and
departure time pairing which is referred to as a trip. Given that there is more than one possible
option, the individual is free to decide which route he will take through the network, based upon
personal preference. The reasoning behind selecting a specific route will vary from one individual
to another. Selection of a route may also depend on the travel time, distance, monetary costs,
opportunity cost or other subjective criteria. Individuals might, for example, choose a route
simply because they like driving it.

Modelling traffic becomes more arduous as the number of vehicles and the network size increases.
As the total number of traversing individuals increases, so too does the complexity of their
interaction with the network. The size of the network influences the number of potential different
routes an individual could travel on. Larger networks provide individuals with more alternatives
that satisfy similar criteria.

Depending on the area being studied, traffic will likely not be confined to originate and reach
its destination within the bounds of the network. Traffic traversing the network can originate,
or be destined to a place in, or outside the network. The different combinations of origin and
destination pairing depending on whether the trips originate, or are destined in, or outside the
network, can be classified into three types that: Firstly, intra-regional trips start and end within
the network. Secondly, inter-regional trips that are destined for a different area than which it
originated in. Lastly, through trips that start and end outside the study area, but pass through
it. Therefore modelling traffic within a network requires accounting for all the types of trips in
order to accurately determine the traffic levels.

1.3 Problem description & statement

Congestion places a burden on society which could have been avoided with sufficient planning.
The most commonly used transportation modelling techniques were shaped by the needs of a
post second world war economic expansion in the United States. The answers provided by the
current status quo of transportation modelling become more misaligned as the world is becoming
more urbanised.

South Africa is a developing economy with an established and growing congestion problem.
Ill-informed infrastructure investment could potentially increase congestion in the long run by
inducing extra demand due to Braess’ paradox [7]. Congestion causes increased mechanical
wear on vehicles, more emissions, higher opportunity cost associated with travel as well as
psychological impacts such as road rage. It is therefore important to determine the short and
long term effects of any potential infrastructure development or changes to policy.

Transportation modelling has traditionally been done on a small scale. Studies are performed
analysing congested highway segments or a regional district. As urban areas expand so too
does the diversity of behaviour within them as well as the distance over which they attract
traffic. It is therefore currently necessary to conduct many studies with different sets of data to
inform proposed infrastructure investment that do not fall within the same small area. If these
studies are completed they would not be able to incorporate the effect of a different infrastructure
development falling outside the study area. In the past this approach to transportation modelling
was sufficient. As the traffic density inside sprawling urban areas increase, plugging a proverbial
leak might cause another leak somewhere else.
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Due to the limited study area, inter-regional traffic entering a TAZ and through traffic is derived
mostly as origin and destination blind from traffic counts. It is not important for these studies
to know where the trips come from or where they are destined for, but only where they enter
and leave the study area and what routes they take. This limits the possibility of forecasting
the impacts of infrastructure investment. Thus, in this thesis the problem of simultaneously
modelling traffic on a large scale within multiple traffic analysis zones is addressed.

1.4 Thesis objectives

Based on the problem description, it is the aim of this thesis to develop, adapt or use an
applicable framework using available traffic data to model morning peak hour commuter traffic
at a provincial level in South Africa. In order to reach this goal, the following list of objectives
is defined:

• Conduct a literature review on existing transportation modelling methodologies.
• Evaluate available data sources.
• Select and implement a traffic modelling framework.
• Validation of the framework.
• Sensitivity analysis of the framework.
• Conclusions and recommendations.

The framework should take into account the different types of modes used by commuters and
should be capable of modelling a shift from private to public transportation.

1.5 Thesis layout

This chapter served as an introduction to the concepts of congestion and traffic modelling. It
describes the problem of expanding the scale of traffic modelling to larger areas and objectives
set out to solve this problem. Chapter 2 reviews possible methods to accomplish the goals set out
in this chapter. The data discussed in Chapter 3 is used to construct the framework described
in Chapter 4. The models defined in Chapter 4 are calibrated and validated in Chapter 5.
Chapter 6 consists of a sensitivity analysis on the simulation parameters used in the framework.
The framework outputs in Chapter 7, which presents outputs from the framework. The thesis
concludes with a discussion of the key findings and recommendations in Chapter 8.
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Chapter 1 introduced the problem description and sets out the goals that this thesis aims to
achieve. This chapter contains a review of the methods with which traffic can be modelled.

Transport modelling with the focus on urban and highway development dates back to the early
1950s. Post-World War II America experienced a surge in vehicle and home ownership. A com-
bination of rapid urban expansion and deteriorating road conditions, led to wide scale congestion
on the USA’s highways. At the time only crude linear forecasting of traffic counts and very basic
applications of gravity models existed [56]. The first comprehensive studies to link land use and
travel were the Detroit Metropolitan Area Traffic Study, conducted from 1953 to 1955, and the
Chicago Area Transportation Study (CATS) [41].

Currently, the two main methods for modelling transport are the Four-Stage Modelling (FSM)
and Activity-Based Approaches (ABA) [40]. FSMs are of a aggregate nature and consist of four
stages namely, trip generation, trip distribution, modal choice and route assignment. ABAs
simulate all transport activity for individuals from a synthesised population. A literature review
on the different steps of FSMs is presented in Section 2.1 and an overview of ABAs is given in
Section 2.2.

5
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2.1 Four-stage modelling

Despite strong criticism [14, 8], institutional inertia has caused the field of transportation mod-
elling to be dominated by the FSM approach [40]. Trip generation is the first step of the FSM
and it is used to forecast trips based on future land use. FSMs divide the area being modelled
into smaller areas referred to as Travel Analysis Zones (TAZ).

2.1.1 Trip generation

Trip generation is a practise of estimating how many trips will travel to and from an area of
specific land use zone. Trip generation rates are estimated through finding relationships between
the characteristics of and the number of trips observed coming to or leaving from the area. It is
assumed that, during the morning peak hours, trips start at residential areas and are typically
destined for non residential areas. Therefore residential characteristics of a zone are evaluated
when modelling trips leaving an area and non-residential attributes are used when modelling
trips entering an area [12].

The results of surveys are used to estimate a relationship between a unit of measure, such as
number of employees or gross leasable area, and the number of trips generated from the land use.
The relationships are traditionally linear or logarithmic and estimated through regression [34,
32]. Artificial Neural Networks [20] have been used to fit more accurate relationships between
land use and trip generation and logistic regression models [33] have proven to improve the
temporal stability of trip generation rates.

After trips have been generated, they need to be distributed between the different zones.

2.1.2 Trip distribution

Early research on trip distribution models [17, 37] and their calibration techniques [18, 57] still
form the basis for more recent research [9], [1]. The most predominant model for trip distribution
is the doubly constrained gravity model [40] which is usually solved through an iterative process
[19].

The doubly constrained gravity model can be defined as follows. Given that Oi is the total
number of trips originating at TAZ i, Di is the total number of jobs in TAZ j, and Cij is the
cost of travelling from TAZ i to TAZ j, the number of trips originating from i, destined for j,
Tij can be expressed as

Tij = KiKjOiDjf(Cij), (2.1)

with

Ki =
1∑

jKjDjf(Cij)
, (2.2)

Kj =
1∑

iKiOif(Cij)
(2.3)

and f an impedance of travel function of cost Cij . The column and row totals are preserved
through iteratively calculating Ki and Kj until the number for trips from all the origins sum up
to the number of jobs at the destinations.
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The impedance of travel functions that are predominantly used are the power function C−ηij , an

exponential function e−ζCij or a Tanner function, which is the product of the aforementioned
power and exponential function C−ηij e

−ζCij . Parameters η and ζ are calibrated so that the
differences between the observed trip length distribution (OTLD) and the modelled trip length
distribution (TLD) is minimized. This distribution produces trip tables which are used as the
basis for the modal choice and route assignments. These will be discussed seperately below.

2.1.3 Modal choice

Trip tables for each of the distinct modes of transportation are created by assigning portions
of the initial trip table for each mode. The CATS study had a modal split between public
transportation and private auto mobile use [41]. After the modal split has been decided, the
trips need to be assigned to the transportation network under evaluation.

2.1.4 Route assignment

Route assignment is the last step of the traditional FSM. There are several different methods
available in literature. Early techniques, such as all or nothing assignment, assign all trips for a
unique TAZ pairing via the shortest route. Stochastic assignment assigns different portions of
origin-destination flows to different routes depending on a predetermined vector of probabilities.
Equilibrium assignment is based on the idea that travellers will choose a route which minimizes
the cost of their travel, whatever it may be. If a traveller chose a specific route, it would mean
that the cost of that route is less than or equal to all the other options s/he could choose from.
This is referred to as Wardrop’s equilibrium [54].

The equilibrium assignment problem can be solved with the following nonlinear programming
problem. Given the set of all links, A, routes, R, TAZ origins, O, TAZ destinations D, Sa is a
function of the volume of traffic va for a link a which determines the average travel time for a
vehicle on a,

minimise
∑
a∈A

∫ va

0
Sa(x)dx (2.4)

subject to

va =
∑
i∈O

∑
j∈D

∑
r∈R

%arij x
r
ij a ∈ A (2.5)

∑
r∈R

xrij = Tij i ∈ O, j ∈ D (2.6)

va ≥ 0 a ∈ A (2.7)

xrij ≥ 0 r ∈ R, i ∈ O, j ∈ D (2.8)

%arij is an activation variable which is 1 if link a is on the route r from origin i to destination j or
zero otherwise. xrij represents the number of vehicles on route r between origin i and destination
j. By minimising the sum of the average travel times for all the links in a network, Wardrop’s
equilibrium is achieved.

A critique to the equilibrium assignment model is that it is insufficient from a infrastructure
planning perspective due to possible variation in future traffic demand or supply. Stochastic
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User Equilibrium (SUE) assignment seeks evaluate how robust a solution is in response to such
variation. Different distributions and methods have been used to model stochastic demand [55,
46, 60], supply [36] and a combination of both [61].

The SUE is, in general, computationally expensive to solve for very large networks using conven-
tional solution algorithms [58]. Some approximations to the SUE, like the incremental stochastic
model [3], require the existence of a unique solution. Even though there are improvements to
SUE assignments with regard to computation time [59] and uniqueness [28], they still only
provide a static solution to an otherwise dynamic problem.

EVA models, whose name is derived from the German terms Erzeugung, Verteilung and Auteilung
(production, distribution and mode choice) seek to incorporate trip distribution, modal choice
and route assignment into one solution. EVA models are usually based on but not limited to
stated preference of travel mode surveys which are modelled with a logit structure. Vrtic et al.
[53] states that the EVA approach is flexible enough to accommodate any problem, which can be
formulated in its terms. Large problems can thus be solved relatively quickly when formulated
within the EVA framework, due to the proven convergence of the algorithm that it is based
upon.

Dynamic Traffic Assignment (DTA) improves on the static models through the use of time-
varying networks. However, this complicates finding a solution because the network is affected
by the traffic. Each entry to the network increases congestion which in turn affects the most cost
effective path of the next entry. Thus the traffic affects the network and the network affects the
traffic. The implication is that the length of an individual trip can only be determined after its
completion. For this reason iterative methods need to be used when finding a solution. Chiu et
al. [11] notes that in most DTA cases true equilibrium is not found, but rather, approximations
which are sufficiently close enough to the true equilibrium are found fall within reasonable time
constraints. DTA has been modelled with mathematical programmes [5], optimal control theory
[24] and variational inequality [23] formulations.

2.2 Activity-based approaches

The FSM approach to modelling transport was conceived during a post-war period, and is
defined by fast economic and urban expansion. The framework was initially developed to decide
how large sums of capital, earmarked for building highways, should be spent. Because of the
aggregate nature of the FSM approach, it is oblivious to the underlying individual behaviour.
Equilibrium-derived travel modelling is ignorant to the complexities of decision making related to
participation in activities, household dynamics and habitual driving behaviour [47]. Therefore,
an understanding of activity-based behaviour will give insight into travel behaviour [38].

2.2.1 Simulation-based applications

Simulation-based ABA is an operational application to the field of time geography, where indi-
viduals are tracked through time and space [38]. The range of possible travel is constructed as
a prism in three-dimensional space where the third dimension is time [31]. An individual can
only visit points within the prism, but is not able to visit all of them.

Simulation-based ABA models generally function according to three steps. They create individ-
ual activity programs (constructing a prism of possible movement) from which activity patterns
are developed (enumerating possible routes through the prism). The patterns are then selected
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through a pattern choice model, modelling individual travel behaviour. McNally et al. comment
on the significance of simulation based ABA models like STARCHILD [42] which construct
travel patterns tailored to individuals rather than assigning a pattern to an individual based on
an observed aggregate behaviour [38].

TRANSIMS [51] is a comprehensive ABA traffic demand model consisting of a population syn-
thesizer, activity generator, route planner and a traffic microsimulation that produces visual
output as well as emissions estimates. It is currently maintained through an open source plat-
form [25]. As powerful as it is, it has extensive data requirements for the area under study and
as such has seen very limited application.

2.2.2 Computational process models

Computational Process Models (CPM) are modelled on the basis of a reductionist view. It states
that the complexity of travel behaviour can be de constructed as a combination of interdependent
individual decisions [27]. CPMs are designed to model travel behaviour through deconstructing
the choices individuals make when they tend to their daily activities.

Garling et al. [26] published a paper on SCHEDULER, a CPM that produced short term activity
chains from long term activity schedules based on the spatial and temporal activity preferences
and constraints, of individuals.

SMASH improved on the framework of SCHEDULER by replacing the scheduler with utility
based choices of activities which can be be swapped out, inserted or deleted anywhere on the
activity schedule. SMASH is conceptually different to STARCHILD. STARCHILD enables in-
dividuals to optimize their travel behaviour through allowing a wide range of alternative routes
to select from whereas SMASH has a heuristic approach [16].

ALBATROSS [4] is considered to be the current state-of-the-art model for CPM [38]. ALBA-
TROSS takes household dynamics and socio-demographic variables into account when generating
an activity program. Scheduling of the activity program is conducted through a set of decisions
related through possible locations where activities can be conducted, their proximity to other
individuals, modes of travel available and accounting for spatio-temporal travel linkages.

2.2.3 Econometric-based applications

Econometric-based ABA models are theoretically grounded in methodologies that are tradi-
tionally used in trip based modelling [38]. Golob et al. [30] modelled activity participation by
relating household characteristics to survey data on how household heads participated in three
groups, namely work, maintenance and discretionary activities.

2.2.4 Mathematical programming approaches

The household activity pattern (HAPP) is a variation of the pick up and delivery problem
with time windows. Activities are modelled as items that need to be picked up in a Mixed
Integer Linear Program (MILP) with household utility as the objective function. Recker [43]
implemented a genetic algorithm solution approach. Due to HAPP’s MILP formulation it can
be solved through a wide variety of generic solvers.
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2.3 Chapter conclusion

Transportation modelling originated with the FSM approach. Criticism of the approach has
shaped its continual development, due to not only institutional inertia, but also the relative
ease with which it can be implemented. Exact solutions for most of the equilibrium assignment
based trip routing either require the existence of a unique solution or are computationally too
complex for large networks. DTA address the critique that the solutions produced by FSMs are
too static in nature through using time-varying networks.

Overall, all the methods have specific data requirements. ABA models are capable of more
realistic transportation modelling in principle due to their bottom up nature. However, the
limited implementation of ABA approaches highlight that up until now, the cost of obtaining
the input data have not justified the additional confidence it potentially provides. Due to
institutional inertia, most transportation surveys conducted by traffic departments are FSM-
centric and do not fulfil the data requirements of the ABAs.

The pitfalls of both approaches are that they do not scale very well considering their shortcom-
ings. Finding a routing equilibrium in FSMs becomes increasingly difficult because the number
of possible routes increase with larger or more complex networks. Expanding the study range
increases the amount of data required for ABA, which are already practically too expensive to
obtain. As such, both approaches have been limited to relatively small study areas as assump-
tions are made based on the through- and inter-TAZ traffic intensity. It would be necessary to
extend the methods currently available in literature in order to model much larger networks or
areas.

This chapter gave a brief overview and discussion of the different methods for modelling traffic
and transportation. The next chapter discusses what data sources are prepared and used.
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The previous chapter gave an overview on different techniques that have been developed to
model traffic. This chapter discusses data that are available within the South African context
to determine the methods that will be used in achieving the objectives set out in Section 1.3.

3.1 CSIR Geo-spatial analysis platform

The Geo-spatial Analysis Platform (GAP) is a common, mesoscale geo-spatial platform for the
assembly, analysis and sharing of economic, development and demand information [39]. It di-
vides the country into twenty-five thousand distinct zones of approximately 50 square kilometres
each. The GAP zones for the Western Cape can be seen in Figure 3.1.

The employment dataset of the GAP is based on where economic activity takes place and not
the place of residence of the employed. For use in this study the GAP employment data for base
year 2009 is adjusted on the assumption that the locality of employment did not shift over the
course of two years to match the 2011 census data. The data are uniformly adjusted to fit the
census employment statistics.

3.2 2011 National census

The 2011 National census conducted by Statistics South Africa is available at a census ward
level of detail. Household vehicle ownership and employment statistics per ward is used. The

11
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Figure 3.1: A map of the GAP zones for the Western Cape in the CSIR GAP.

wards, as shown in Figure 3.2, are further divided into enumeration areas as in Table A.2, and
classified by geography type (gtype) as in Table A.3. (Appendix A).

3.3 2013 National household travel survey

The 2013 National household Travel Survey (NHTS) [45] is based on a random stratified sampling
of South Africa’s households and is stated to be sufficient for analysis at a provincial and TAZ
(Travel Analysis Zone) level (Figure 3.3). The household dataset is accompanied by person
data per household. The survey questionnaire is constructed to give insight into travel patterns
within the country. The section that is used for this study is Section 4: Work related travel
patterns. In particular questions 4.9, 4.10, 4.13, 4.14 and 4.21 are used which gave information
on when people left for work, when they arrived at their place of work and which mode of travel
they used in doing so.

From all respondents who indicated that they drove to work on their own, 9145 gave their
arrival and departure times. Similar responses for those who indicated they used buses and
taxis (options 3 and 5 for question 4.21) were 2503 and 8243 respectively.

Only data points of those who indicated that their journey to work started between 05:00
(denoted further in the format 300, relating to minutes after 00:00) and 09:00 (540) and had a
travel time of less than 150 minutes are used. Of these, 1393, 252 and 611 usable data points
are available for the Western Cape.
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Figure 3.2: A map of the census wards for the Western Cape in the 2011 census.

The OTLD for each mode is constructed by binning the survey travel times into 5 minute
intervals [0, 5), [5, 10), . . . , [145, 150]. The OTLD for the modes drive, bus and taxi, Figures 3.4,
3.5 and 3.6, respectively, illustrate that people tend to approximate their travel and departure
times to the nearest multiple of fifteen minutes.

A smoothed OTLD is obtained by averaging the period before and after a bin. Given that the
count in bin i, ci, the count csi in the smoothed distribution for bin i is

csi =



ci−1 + ci + ci+1

3
for 1 < i < 30 (3.1)

ci + ci+1

2
for i = 0 (3.2)

ci−1 + ci
2

for i = 30. (3.3)

The smoothed and original distributions of the binned data used to calibrate the gravity model,
can be seen in Figures 3.4, 3.5 and 3.6. Of the 1393, 252 and 611 data points that are usable
to construct trip length distributions, only 960, 175 and 397 data points indicated in what TAZ
the place of employment is. This smaller, but complete subset is used to calculate the root mean
square error (RMSE) of each zones’ trip distribution.

Stellenbosch University  https://scholar.sun.ac.za



14 Chapter 3. Data

Figure 3.3: The Travel Analysis Zones for the Western Cape
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Figure 3.4: Binned and smoothed OTLD for the Western Cape for mode drive

3.4 Road network

The network through which the trips of the framework has to be flown is developed from an
Open Street Map extract from the website www.Geofabrik.de [29]. Intersecting segments are
cut at their intersection if they are not bridges or on- or off-ramps. Each edge in the network
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Figure 3.5: Binned and smoothed OTLD for the Western Cape for mode bus
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Figure 3.6: Binned and smoothed OTLD for the Western Cape for mode taxi

is assigned a unique start vertex, end vertex, and geometry ID. The length of each edge is
calculated and stored in kilometres.

Segments without a speed limit entry are assigned speed limits through a process of classifying
and matching them with segments that do have a speed limit entry. Every segment is classified
according to what type of census enumeration area it intersected the most with. Segments
without speed limits are then matched to the closest similar segment that had a speed limit
based on the enumeration area type, length of the segment and the type of road.

None of the segments had any information regarding the number of lanes. The assumptions
that are made for the number of lanes per segment can be seen in Table A.4 (Appendix A). The
number of lanes on the national roads and the motorways in the Western Cape are manually up-
dated from satellite imagery available from Google Maps. The fully saturated physical capacity
of a segment of road is calculated at 15 m per passenger car equivalent per lane. The network
shape file, Figure 3.7 for the Western Cape consists of 174 371 edges and 129 241 vertices. The
directed graph of the shape file, in which an additional edge is added for every two way street
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Figure 3.7: The road network for the Western Cape

had 328 628 edges.

The theoretical capacity for each segment, in Table A.5, is estimated based on the parametrisa-
tion in Akcelik [2] and adjusted based on observed maximum flow rates from the 2011 SANRAL
yearbook [6]. The adjustment factors in Table A.6 are derived as the ratio between observed
maximum flow rate per lane for each speed limit and the theoretical capacities. The network
edges are stored in a database with the following headings:

• GID,
• start id,
• end id,
• lanes,
• speed limit,
• length,
• one-way and
• lanes.

For each census ward, every vertex within its boundaries is assigned a proportion of house-
holds who own vehicles. The network vertices are used as TAZ connectors. Origin TAZ
connectors are those vertices in the network that fall within the boundaries of a residential
area within a TAZ. Destination TAZ connectors are vertices within a farmland, commercial
or industrial area. The vertices of the network are stored in a database with the headings
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3.5. Vehicle counts 17

• taz id,
• point id,
• cratio,
• uratio,
• eratio.

Given the set of wards Wt in TAZ t, the entry in the ratio columns are

cratio =
pvtw∑

j∈Wt
pvtj

, (3.4)

uratio =
putw∑

j∈Wt
putj

, (3.5)

eratio =
petw∑

j∈Wt
petj
, (3.6)

with petw the proportion employment in ward w, pvtw the proportion vehicle ownership in ward
w and putw , the proportion of population living in an urban area in ward w, within TAZ t.
The columns cratio, uratio and eratio represents the proportion vehicle ownership, urbanised
population and employment respectively of a ward w relative to the other wards within each
TAZ.

3.5 Vehicle counts

Figure 3.8: Vehicle counting station locations in and around the Cape peninsula

The 2011 SANRAL vehicle counts are used to evaluate modelled outputs. The counts from
stations that had more than 80% uptime during 2011 is captured from the SANRAL 2011
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yearbook and processed with image recognition software, Im2Graph [52]. The locations of the
counting stations in and around the Cape peninsula can be seen in Figure 3.8.

Figure 3.9 shows the capture taken from the yearbook for vehicle counting station 5027. Each
block represents 24 hours. The days are from left to right, Monday to Sunday. The blue and
green graphs are the recorded volumes in terms of vehicles per hour for each direction, with the
red being the sum of the blue and green lines [6]. The image is then processed with the image
recognition software to capture each line and the data is saved in a comma separated value text
file with the x values and y values.

Figure 3.9: The image captured from the SANRAL Yearbook that shows the vehicle counts for counting
station 5027.

To determine the total number of vehicles for any given time period, a Python script takes a
Riemann sum over the range required from the data points to approximate the area under the
curve.

3.6 Trip generation

The 2011 Census spatial geography and 2011 National Census [44] are used in combination
with the GAP to approximate where workers lived and where they worked. Both data sources
are aggregated to TAZ (Travel Analysis Zone) level through assigning a ward or GAP zone to
the TAZ, based on the largest intersection with a TAZ. The TAZ worker and job data for the
Western Cape can be seen in Table Appendix A, A.7. This data is used as the input data for
the gravity model that is discussed in the next chapter.
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3.7 Kernel density functions

Kernel density functions are fitted to the NHTS TLD and departure data using the gaussian kde
function from the Python package scipy.stats. Both sets of functions use the default bandwidth
factor, scott. For the TLD and departure data only a vector of travel times and departure times
are passed to the function, respectively, for every TAZ and mode. Figures A.7, A.8 and A.9, in
Appendix A, show the fitted kernel density functions for TAZ zone 9020 (Northern Corridor)
for the modes, drive, bus and taxi respectively. The density functions for the departure times,
Figures A.1, A.2 and A.3 show the binned departure times for the modes drive, bus and taxi.

These density functions fitted to the TLD data are used as the travel of impedance function in
the proposed gravity model discussed in Chapter 4. The functions fitted from the departure data
are used to disaggregate the number of workers departing from a TAZ into 15 minute intervals.

3.8 Simulation

In the simulation, fleets of vehicles are represented by a list of variables. This list contains
information of the

• assigned route b,
• current position on the route at vertex number k,
• fleet size,
• origin TAZ,
• destination TAZ,
• current simulation time interval,
• time left on road,
• estimated time to complete current segment,
• departure time and
• mode.

The assigned route b is a list of network vertex Ids The variable k is the index of b and stores
the vertex which was most recently passed by the fleet.

The traffic simulator produces a trace of each fleet on route assignment that contains the

• origin TAZ,
• destination TAZ,
• fleet size,
• mode and
• list of traversed vertices.

Once a fleet has completed its trip the following entries are saved:

• Origin TAZ,
• destination TAZ,
• trip time,
• fleet size,
• departure time and
• mode.

The former trace is used to evaluate if the routes are converging. The end trace is used to create
distance tables for the next iteration of the gravity model. A table is constructed for each mode
based on the recorded travel times from the completed trips’ entries. The table contains
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• origin TAZ,
• destination TAZ and
• average travel time,

where the travel time is the weighted average travel time between the origin and destination
TAZs.

3.9 Chapter conclusion

The CSIR’s GAP can be used to estimate Di, the number of trips demanded at or destined
for TAZ i by aggregating the GAP zones to a TAZ level. The 2011 Census data can be used
to calculate Oi, the number of trips supplied by or trips originating from TAZ i by adding the
active working population from the wards contained within the TAZ.

The NHTS data discussed in this chapter is deemed to be usable at a TAZ level. It can be used
to generate departure and as a measure to compare the trip distributions and modelled TLDs.
It should be noted that the survey has previously under estimated the number of intra-zonal
trips. However, the density of the data points are not sufficient to be used to derive TLDs for
periods shorter than a day.

Both the GAP and NHTS does not fulfil the data requirements to construct an ABA modelling
framework. Although the GAP does identify where exactly people work, it does not give any
information of where they come from or when they arrive at work. The NHTS data is compiled
from surveying a stratified sampling of the population – its findings are therefore aggregate
in nature. The data discussed in this chapter is used as input and the basis from which the
framework described in the next chapter is designed. The traffic modelling framework will
therefore be limited to a disaggregated top-down approach (a FSM).

It should be noted that the assumptions pertaining to the number of lanes, directional split of
intersections and speed limits of the road network obtained from Open Street map, could skew
model outputs due to the nature of transportation modelling.
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The previous chapter was a summary of all data which is used as input for the framework
described in this chapter. The models and techniques that are discussed in Chapter 2 share a
common limitation assumption. They are predominantly used to model the traffic within an
area which is small relative to the area that is encompassed by the study. This is achieved
by estimating the inter-zonal trips. Assumptions for where these trips enter and leave the
smaller area can be made based on vehicle counts. The drawback of using traffic counts to
estimate these trips is that they are origin and destination blind. Vehicles are only observed
when passing a vehicle counting station. Even with a high density of inductor loops to count
the number of vehicles within the study area, their origins and destinations remain unknown.
Without information on where inter-zonal trips are coming from or going to, forecasting traffic
demand for an area might lead to building inaccurate future scenarios.

A gravity model can be used to estimate the composition of inter-zonal trips from the larger
aggregated zones falling outside the area of interest. The shortcoming of this method is that
the behaviour of travel for a large area is estimated through a single cost function f(Cij) in
equation (2.1.2). This means that every area in the study region follows the same distribution
of trips which is consistently used through the study period. This could lead to building incorrect
scenarios. The travel behaviour of people living within a central business district differs from
those who live far outside it. The 2013 NHTS shows that even at a provincial aggregate there are
differences in the behaviour of different modes of transport. The kernel density functions fitted
from the 2013 NHTS illustrate how different TAZs have different travel time length distributions.

Alternatively, impedance of travel functions can be calibrated for each TAZ. This would however
require the simultaneous calibration of all the impedance of travel functions, which will result in

21
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an exponentially growing parameter space. The model proposed in this chapter seeks to address
the aforementioned potential temporal stability and trip distribution concerns and is specifically
designed to improve its scalability.

4.1 Trip distribution

The proposed gravity model makes use of traffic analysis zones, census and survey data to model
the origins and destinations of commuter traffic on a macroscopic level. Interactions between
TAZs are influenced by the number of employed residents, the number of people who work
within the boundaries of a TAZ (henceforth referred to as jobs) and the cost associated with
travel between zones. The calibration of the commuter demand model is achieved by comparing
its output to survey data.

The survey data was used to estimate the number of workers who drove all the way to work or
used a bus or a taxi for each TAZ. The travel fractions for transport mode m and TAZ i, pmi,
was calculated as a percentage of the total number of respondents who indicated their mode of
travel. The number of workers per mode was calculated by multiplying the travel factors with
the employed population within a TAZ. Departure times, Figures A.1, A.2 and A.3 were fitted
through Gaussian kernel densities to determine the expected number of workers who will leave
for work within a specific time window.

A travel impedance function for every TAZ for every time period was derived through fitting
Gaussian kernel densities to the travel times, the difference between the departure and arrival
times. By using the fitted TLD for each TAZ as the impedance of travel function, for inter-
and intra-TAZ travel, estimates individual TAZ behaviour, rather than finding a single function
that, when distributed with a gravity model, fits the aggregated travel behaviour over all TAZs.
A potential pitfall of using individual TLDs is that the iterative process may not find a stable
or equilibrium distribution.

4.1.1 Gravity model

A gravity model that calibrates a single travel impedance function to distribute trips between
multiple zones may, in principal, not produce accurate results, given that the travel impedance
function could have a significant influence in the distribution. A gravity model with a single
travel impedance function, calibrated over the aggregated time length distribution, is equivalent
to assuming that the travel patterns of individuals in each zone are similar. The calibration of
a single impedance function to model the behaviour of a large area is biased towards zones with
more trips. If there are a higher relative number of trips originating from a zone it skews the
aggregate trip length distribution towards such a zone. The same skewing effect happens when
such a model is calibrated on the RMSE of trip distributions. A larger zone will have a more
significant contribution to the RMSE.

Figure 4.1 shows the differences in travel patterns for the mode drive between TAZs 9023 and
9012, a single travel impedance function calibrated on the average time length distribution and
RMSE would be more skewed in favour of zone 9023. The proposed gravity model is introduced
to address this shortcoming of the traditionally used gravity model to compensate for modelling
a larger area spanning multiple TAZs.

A negative correlation was found between departure times and trip lengths across all modes
(driving, bus and taxi), each with a respective R-squared value of 0.86, 0.88 and 0.79. To model
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Figure 4.1: Fitted kernel density functions with binned data histograms for mode drive.

the behaviour, that commuters who leave for work earlier have on average longer trips, the kernel
density function values where further adjusted. Krygsman et al. [35] found that the 2003 NHTS
severely underestimated the number of intra-zonal trips. Intra-zonal trips start and end in the
same TAZ. This shortcoming is addressed by adding the intra-zonal and temporal calibration
parameters αm and τm.

The temporal parameter τm adds additional relative weight depending on when the trip started.
If the estimated trip length falls within one standard deviation of the average trip length for
the period that is currently being evaluated by the kernel density function, the function value
f(Cij) is adjusted to a higher value. Trips with estimated trip lengths falling outside this band’s
function value, returns a lower value. Given that Oi is the total number of trips originating at
TAZ i, Dj is the total number of jobs in TAZ j, Cijtm is the cost of travelling from TAZ i to j
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during the time t for mode m. The number of trips Tijtm can be expressed as

Tijtm = KitmKjtmOitmDjtmGijtm, (4.1)

(4.2)

with

Kitm =
1∑

jKjtmDjtmGijtm
, (4.3)

Kjtm =
1∑

iKitmOitmGijtm
, (4.4)

Oitm = pimOi

∫ t+1

t
Sm(x)dx, (4.5)

Djtm = pimDj

∑
iOitm∑
j Dj

and (4.6)

Gijtm = fim(Cijtm)αmτm, (4.7)

where

αm =

{
αm for i = j

α−1m for i 6= j
, (4.8)

τm =

{
τm for Cijtm ∈ [µtm − σtm, µtm + σtm]

τ−1m for Cijtm /∈ [µtm − σtm, µtm + σtm]
(4.9)

and fim is a time length distribution function of zone i for mode m with Cijtm the cost of
travelling from zone i to j for period t using mode m. Sm is the distribution fitted from the
departure times in Figures A.1, A.2 and A.3 and pim is the proportion of workers from TAZ i
who indicated they used mode m to travel to work. Btm is a band of one standard deviation
σtm around the average travel time µtm for period t, illustrated in Figures 4.2, 4.3 and 4.4.

4.1.2 Gravity model parameter calibration

The gravity model parameters are calibrated through a line search method similar to Celik’s [9]
implementation. A gravity model is iteratively solved for each combination of the calibration
parameters during the line search procedure which enumerates the parameter space. The final
parameters αm and τm are selected by: Firstly, selecting the parameters that produced the
lowest average difference between the OTLD and modelled TLD for each mode m. Secondly, by
selecting the parameters that produced the lowest RMSE between the observed and modelled
trip distributions for each mode m from the first selection. The RMSE used for calibrating the
gravity model parameters is defined as,

RMSEm =

√
1

|T ||O||D|
∑
t∈T

∑
i∈O

∑
j∈D

(oijtm − Tijtm)2 (4.10)

where oijtm being the number of observed workers and Tijtm the modelled number of workers
travelling from TAZ i to TAZ j during time period t for mode m.

A traditional gravity model,
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Figure 4.2: The standard deviation band around the mean travel time for workers who drove all the
way to work, combined with a scatter plot of the underlying travel times plotted against departure times.
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Figure 4.3: The standard deviation band around the mean travel time for workers who took a bus to
work, combined with a scatter plot of the underlying travel times plotted against departure times

Tijm = KimKjmOimDjmfm(Cijm), (4.11)
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Figure 4.4: The standard deviation band around the mean travel time for workers who took a taxi to
work, combined with a scatter plot of the underlying travel times plotted against departure times

with

Kim =
1∑

jKjmDjmfm(Cijm)
and (4.12)

Kjm =
1∑

iKimOimfm(Cijm)
, (4.13)

with a tanner function (fm = C−ηmijm e−ζmCijm) is used for comparison.

The tanner function parameters are calibrated on the intervals 0 ≤ a ≤ 1 and 0 ≤ b ≤ 4 with
a step-size of 0.01. The proposed model was calibrated on the intervals 0.25 ≤ τm, αm ≤ 10
for all m with a step-size of 0.25. The parameters with the lowest RMSE were selected from
the top five percent of parameter combinations which had the lowest differences between the
observed and modelled average trip lengths. This selection protocol favours parameterisations
that produce trip length distributions that match observed trip distributions.

4.2 Dynamic traffic assignment

Gravity models require a measure of impedance between TAZs to produce a trip distribution.
In the proposed gravity model, average travel times between TAZs are used to measure this
impedance. The travel times are in reality dependent on the transportation network and the
interaction of all the individuals (traffic) using the network. DTA provides a solution to obtaining
average travel times through modelling time-varying networks.

The travel times of individuals in a DTA model can only be determined after arriving at their
destination. It is therefore necessary to iteratively load the transportation network. The gravity
model is therefore given free flow travel times as an initial input in order to produce the first
trip distribution. This distribution of trips is then simulated and produces new average travel
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times between TAZs. These travel times are then used as input for the second iteration of trip
distribution.

The initial distribution will route all the trips as if there were no congestion present and in doing
so, create artificially high congestion in some parts of the network. The next iteration of trips
distribution, produced by the gravity model using the first iterations simulation output will then
be different than the preceding one due to the high congestion on some roads which affected
the travel time between certain TAZs. This process is repeated until the changes between trip
distributions become stable. When such a state is achieved, the gravity model parameters are
recalibrated and the process is repeated using the most recent travel times produced by the last
traffic simulation, before parameter recalibration.

The iterative process can be terminated when subsequent trip tables are sufficiently similar. It
is then assumed that the final trip distribution has reached a state that is close enough to that of
Wardrop’s equilibrium. This is a DTA approach wherein each individual effectively has perfect
information on the network he is entering and chooses the path with the lowest time through the
network. For this thesis a predefined number of iterations are executed in order to evaluate the
effectiveness of the proposed gravity model compared to that of the traditional gravity model.

4.2.1 Assumptions

The DTA framework, implemented in this thesis, is built on the assumption that all individuals
who drive to work drive alone. Buses and taxis are always full, given that there are enough
individual trips to fill them.

All network facilities are considered uninterrupted traffic facilities. Due to a lack of road network
data, capacity splits at signalised intersections and stop streets could not be calculated. The
physical constraints of all intersections were therefore relaxed to allow crossing roads to operate
at their respective, maximum theoretical capacities.

Consider two one-way roads, both with a theoretical capacity of 1600 vehicles per hour (veh/h).
If these two roads were to intersect, and vehicles could pass through other vehicles without
colliding. Figure 4.5(a) shows the maximum combined theoretical capacity of the intersection
would be 3200 veh/h. Vehicles are required to yield or stop at an intersection to prevent colli-
sions, therefore the maximum theoretical capacity of an intersection is the maximum capacity
of both roads and will happen when no traffic is present on the road with capacity.

The capacities of roads that intersect are proportional to the time vehicles are allowed to flow
through them, over the intersection. Figure 4.5(b) is a simplified example of the capacity
assuming a green light uptime of 75% for one direction. Due to the lack of data for the location
and directional uptime of signalised intersections, stop streets and yields it is assumed that all
network facilities supply the maximum theoretical capacity in terms of veh/h at all times.

This assumption minimizes the maximum error of the maximum flow through an intersection.
If for example the real directional uptime was 10/90, and the assumption was made that all
intersections have a 50/50 directional uptime, the road that had 90% uptime would appear
more congested than it should. As a consequence routes can be chosen through a path that now
has 40% more directional uptime than it should have. This is predominantly a cause for concern
in urban residential areas and on- and off-ramps to and from large roads.

It is further assumed that

• each vehicle for mode drive takes up 1 passenger car equivalent (PCE)
• each vehicle for mode bus takes up 3 PCE
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Figure 4.5: Schematic representation of the effect of signalised intersections on road facilities.

• each vehicle for mode taxi takes up 1.5 PCE

The framework consists of two phases. The first phase (trip distribution) is a gravity model that
creates a trip matrix which serves as input for the second phase, route selection (DTA). Modal
split is incorporated through using a gravity model for each of the modes.

4.2.2 Traffic simulator

A traffic simulation was coded in Python [21] to model the effect of congestion on the road
network and to serve as a method for root selection. Each fleet is flowed through the network
at discrete time intervals, updating the data fields for the road segments as they utilise them.
The interval, represented by Tf , used was 15 minutes, the same time frame that is used by the
Highway capacity manual to calculate level of service on road network facilities. If the flow limit
(veh/h) is reached on a road segment within a time period, all vehicles arriving at the segment
will be placed into a vertical queue. This process is repeated until all the trips are flown. Figures
4.6 and 4.7 contain flow diagrams of the simulation logic.

The modelled trips are then assigned to routes on a road network. The total trips from TAZ i
to TAZ j are gradually depleted through assigning small fleets to random combinations of origin
TAZ connectors and destination TAZ connectors. The network capacity is updated to reflect
the marginal contribution of the assigned fleets.

4.2.3 TAZ connector selection

A pair of origin and destination TAZ connectors are selected randomly with replacement from
a pool of origin and destination nodes. The nodes are grouped together per census ward within
a TAZ. The probability of selecting a specific ward from a TAZ is based on the mode currently
being flowed, the vehicle ownership percentage of the underlying ward and the proportion of
urban residents and jobs. The likelihood that a specific ward is selected for a mode is proportional
to the percentage vehicle ownership and the number of workers in the ward.

Given that pviw is the percentage of vehicle ownership and peiw is the proportion of workers in
ward w, both within TAZ i, the probability that ward w will be selected to choose an origin
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Figure 4.6: A flowchart representing the discrete temporal progression of the mesoscopic simulator.

TAZ connector is

pOw = peiw
pviw∑
k∈W pvik

(4.14)

for the mode drive and 1 − pOw for taxi and bus. Wards for destination connectors are selected
based on the percentage of jobs, present in the ward relative to the number of jobs present in
the TAZ. Given jw is the number of jobs located in ward w, within TAZ i, the probability that
ward w will be selected to choose a destination TAZ connector is,

pDw =
jw∑
k∈W jk

. (4.15)

Once a ward is selected the probability to choose a vertex from the pool of urban vertices as
the TAZ connector is the percentage of workers living (origin) and working (destination) in an
urban enumeration area within the ward.

4.2.4 Route selection

A set number of trips for each mode m is subtracted from the total number of trips from TAZ i to
j and assigned to the random origin-destination pairing. This is repeated until all the trips from
every TAZ i to j for the time period has been assigned. At every assignment a random departure
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Figure 4.7: A flowchart representing the logic for the mesoscopic traffic simulator.

time is generated based on the kernel density of the departure times. Every assignment is added
to a list of trips. Algorithm 4.1 contains the pseudo-code for this process.

Trips can now be processed into a fleet size that has to travel between two vertices on the
network. Trips are selected in chronological departure order from the list, and assigned to a
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Algorithm 4.1: Trip list generation at the start of each time interval
Input : OD Matrix T for time t with trips from every TAZ i to every TAZ j
Output: List of fleets that are to be flown from TAZ i to TAZ j with the accompanying TAZ connectors

Initialize empty list of trips List;1

foreach i in list of TAZs do2

foreach j in list of TAZs do3

foreach m in list of modes do4

Fleet ← Select Fleet Size(m,T(i,j ));5

Start Time ← Generate Start Time(m);6

Start ← Select Origin TAZ connecter(i);7

End ← Select Destination TAZ connecter(j);8

Add To List Of Trips(Fleet,Start Time,Start,End,Mode);9

end10

end11

end12

Sort List Of Trips(List);13

route.

Route selection criteria is randomly selected to choose either the shortest path in terms of
travel time or distance travelled with the probability c and 1− c, respectively. After the travel
criteria is selected the shortest path through the network is determined with a bi-directional
implementation of Dijkstra’s shortest path algorithm [13].

The average flow speed on each segment is determined with equation (A.1) discussed in Akcelik’s
paper [2]. The average flow speed for a time period is a function of the hourly passenger car
equivalent flow rate through a segment and the queued demand at the start of each time period.

The distance matrix containing the cost from TAZ i to TAZ j that departed in time period t is
updated with the average travel times produced by the commuter flow model. This initializes
the gravity model with the updated distance matrices and begins the iterative process with the
output feeding back into the gravity model.

The calibrated gravity model trip distribution is then used for three more iterations before the
gravity model parameters are recalibrated. This process is illustrated in Figure 4.8.

4.3 Chapter conclusion

The framework discussed in this chapter is shaped by the available data for the South Africa
context. Due to the disaggregate nature of the available data, a FSM-like framework is con-
ceptualised. Trip distribution is performed through the implementation of a traditional and
proposed doubly constrained gravity model. The proposed gravity model is an extension on the
traditional model and uses the data from the NHTS to temporally adjust the trip distributions.
Because of a lack of data to derive accurate capacity for the road network, each road segment is
assumed to have unconstrained capacity based on an estimated number of lanes and its speed
limit in an effort to minimize the maximum error.

The gravity model parameters are calibrated based on a the RMSE and TLD selection criteria.
These gravity models are then used for four iterative simulation runs before the parameters are
recalibrated. The Modelling framework combines the trip distribution, modal choice and route
assignment into an iterative process to find a trip distribution that is nearing equilibrium.

Route assignment is performed through a DTA approach, which is implemented with a traffic
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Figure 4.8: Flowchart of the iterative gravity model calibration.

simulator, coded with Python. The traffic simulation is used through iterative interaction with
the gravity model. The output of the gravity model is used as the input for the simulation.
Once all trips have been reached their destination and the simulation has terminated, its output
is parsed into trip length tables. These trip length tables are then used in turn as the input
for the gravity model within the iterative framework. The framework is an iterative feedback
loop which combines the trip distribution, modal split and route assignment through the use of
a dynamic time varying network.

This chapter discussed the models and techniques used in constructing the traffic modelling
framework, which is shaped by the data discussed in Chapter 3. The next chapter compares the
proposed and traditional gravity models’ effectiveness within the framework.
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The previous chapter described a proposed gravity model and the accompanying mesoscopic
traffic simulator. This chapter compares the outputs produced by the proposed model and the
traditional gravity model, as described in Chapter 4 which is calibrated for each mode. The
models are compared through:

• their respective calibration criteria during each parameter recalibration and the final grav-
ity model iteration,
• trip length distribution (TLD) convergence,
• inter-iteration differences between trip distributions and distance matrices,
• differences in the routes, trips used between iterations,
• differences between the observed and simulated departure and arrival times and
• vehicle counts.

An integral part of the gravity modelling is the parameter calibration. After each iteration the
trip distribution will change given that equilibrium has not been reached yet. If the gravity
model is not recalibrated to the latest average trip length table, the gravity model would be
distributing the trips according to a network under free flow conditions.

5.1 Parameter calibration

The calibration procedure, as described in Chapter 4.1.2, is used to determine the gravity
model parameters. The first gravity model parameter calibration is performed with the shortest
distance under free flow conditions in the network. The first set of iterations, before the second
parameter calibration, is essentially an attempt to distribute trips between TAZs, testing that a

33
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Figure 5.1: Recalibration of gravity model parameters for mode drive.

trip distribution that avoids congestion could exist. Subsequent calibrations are performed after
a predetermined number of iterations, using the distance table from the preceding iteration.

The calibration selects the parameters based on the modelled time length distribution and the
RMSE of the trip distribution assignments. Figures 5.1(a) and 5.1(b) show an improvement in
the difference between average trip lengths and an increase in the RMSE for mode drive from
the first to second parameter calibration. This is consistent with expectations. The distance
table that is used for the first parameter calibration was determined under free flow conditions.
The first gravity model parameters therefore distributed the trips with a gravity model that
is calibrated for a network under free flow conditions. More vehicles are therefore assigned to
places that are usually further away in terms of travel time, given sufficient levels of congestion
on the road.

In each following iteration the distance table produced from parsing the arrivals of the previous
iteration is used to perform the trip distribution for the current iteration. With each iteration
the gravity model distribution changes as the distances between trips vary. After the second
parameter calibration the difference between average trip travel time for the proposed model
is reduced to 8 seconds, yet the RMSE increased to 918. This occurs because now the gravity
model could find parameters that produces a similar average trip length in the network with the
distance table obtained from a congested network. This came at the price of an increase in the
RMSE which means that although the trip lengths are now on average following a similar TLD,
they are distributed to places different from what is observed in the NHTS.

The drop in RMSE from 918 to 814 between the second and to third parameter calibration
is offset by an increase of 0.119 minutes or 7.15 seconds. The trip distribution and distance
tables are fairly consistent with distributing trips in regard to average trip length. It is assumed
that congestion has stabilised at this stage and trip distribution is approaching equilibrium at a
slower rate of change. The gravity model parameter calibration selected parameter values that
had the smallest RMSE from the 10% of parameters that had the lowest difference in average
times. A parametrisation with a lower RMSE can therefore be selected during calibration, due
to the rate of change in the distance table, which decreased.

The first parameter calibration for the traditional gravity model has a lower difference in average
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travel time, 2 minutes 17 seconds, than for the proposed gravity model 8 minutes 59 seconds, for
the mode drive. This is because the impedance of travel function that was produced by the line
search procedure was calibrated to estimate the aggregate travel distribution of all the TAZs. At
the second and third parameter calibration the difference in average trip length decreased with
54 and 71 seconds, respectively. Both models found parameters that were within 15 seconds of
the average trip length of the observed data by the third iteration. All the trips are distributed
with the same impedance of travel function with the traditional gravity model. This produces
trip distributions that are on average similar to the observed average trip length. As the trip
distribution stabilizes during each iteration the modelled TLD approaches the observed TLD
resulting in a smaller difference between the average trip lengths. The RMSE of the traditional
gravity model increased from 809 to 866 from the second to third parameter calibration. This
is explained by the deviations of the observed TAZ TLD from the aggregated TLD. The trips
originating from a TAZ with a significantly different TLD will be distributed to TAZs different
to that of the observed data because its trips are distributed partially according to the aggregate
TLD.
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Figure 5.2: Recalibration of gravity model parameters for mode bus.

Figure 5.2 shows that the trip distribution for the proposed gravity model has a smaller difference
in average trip lengths than the traditional gravity model for the mode bus for each parameter
calibration. The parameter calibration procedure could not find a traditional gravity model trip
distribution such that difference in average trip length is smaller than 3 minutes. The proposed
model has a higher RMSE, but lower difference in average trip length than the traditional model
for the first and second parameter calibrations. After the third parameter calibration difference
in average trip length between the OTLD and the proposed model’s TLD is 26 seconds. This is
3 minutes and 2 seconds less than the difference between the average trip length of the OTLD
and the TLD of the traditional gravity model. The proposed model’s RMSE after the third
parameter calibration of 704 is lower than the 712 of the traditional model. This illustrates the
capability of the proposed model to produce more accurate trip distributions during parameter
calibration than the traditional model for the mode bus. Commuters travelling with a bus to
their place of work have on average less freedom to travel and are less than the total number of
commuters driving to work. This illustrates a shortcoming of the one size fits all approach to
distributing trips on a large scale in the traditional model: When travel patterns differ between
TAZs a trade off has to be made between RMSE and difference between average trip length.
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Figure 5.3: Recalibration of gravity model parameters for mode taxi.

Mode Traditional Proposed

drive 11 (0.5%) 16 (0.7%)
bus 204 (5.8%) 27 (0.8%)
taxi 128 (4.2%) 77 (2.6%)

Table 5.1: Deviation of gravity model distribution from observed travel times (seconds).

The proposed gravity model trip distribution for mode taxi, in Figure 5.3, has an average
trip length that is 14 minutes 50 seconds longer than the OTLD after the first parameter
calibration. The difference in average trip length decreases to 75 and 48 seconds, respectively
during parameter calibrations two and three. Compared to the 7 minutes 50 seconds, 2 minutes
6 seconds and 2 minutes 8 seconds of the traditional gravity model.

A trade off between difference in average trip length and RMSE is evident in the traditional and
proposed gravity model for the mode taxi. The RMSE for the three parameter calibrations are
160, 245, 258 and 108, 164, 163, respectively. This trade off is smaller for the proposed model.

Table 5.1 shows how the traditional and proposed gravity models performed when their respec-
tive output is compared to the observed NHTS data, after the second parameter calibration.
The proposed model is on an average 5 seconds less accurate than the traditional gravity model
for the mode drive. This means that the proposed model is on par with the traditional gravity
model which is specifically designed to match the aggregate observed TLD through the cali-
bration of the impedance of travel function. This proves the viability of fixing a unique TLD
for each TAZ from survey data. This is a powerful result and starts to address the critique
that disaggregate methodologies does not represent true underlying behaviour. This result is
confirmed by the smaller deviations in the proposed model for the modes bus and taxi.

The gravity models could find a trip distribution such that the average trip lengths or aggregate
TLD match, but still not distribute these trips to the correct places. RMSE analysis, Table 5.2
of both gravity model trip distributions show that the proposed gravity model has an improved
accuracy over that of the traditional model, especially for the mode taxi.

Figures 5.4 plots the calibration space for the gravity model parameters for the proposed and
traditional models for the mode drive. The parameter space changes significantly between the
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Mode Traditional Proposed Improvement

drive 866 815 6%
bus 712 705 1%
taxi 258 164 36%

Table 5.2: RMSE comparison between gravity models.
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Figure 5.4: Calibration criteria values for the solution space of calibration parameters for the proposed
gravity model for mode drive.

first and second calibration iterations when evaluated in terms of the average trip length distance
and RMSE. The changes are more subtle between iterations two and three. Figure 5.4(c) shows
how calibration of the proposed gravity model can produce an aggregate trip length distribution
that has the same average trip length than the observed data. This can be achieved with a set
of parameters that are close to the line

τ =
10.338

α1.208
(5.1)

which illustrates a trade-off between the intra-attraction parameter τ and the temporal adjust-
ment parameter α. The interaction of these two parameters on the average trip length appears
to be consistent. Trips can be distributed with a similar average trip length by assigning more
vehicles to the TAZ which in general reduces the trip lengths as more trips are limited to a
TAZ. The temporal adjustment parameter progressively reduces the gravity of TAZs that are
falling outside of one standard deviation of the average trip lengths for the specified time period.
Therefore an increase in the intra-attraction parameter can be offset by decreasing the temporal
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Figure 5.5: Calibration criteria values for the solution space of calibration parameters for the proposed
gravity model for mode bus.

adjustment parameter so that trips that are distributed can continually be attracted distant
TAZs. Data suggests that people leaving for work later in the morning tend to not travel as far
as those leaving earlier.

Figures 5.5 and 5.6 show the parameter space for the modes bus and taxi. The first calibration
iteration for both modes show that the temporal adjustment parameter has a more significant
effect on the difference of average trip length than the intra-attraction parameter. The top
parameter space from which the parameters with the lowest RMSE are selected can be ap-
proximated by triangles, each with a slope of τb = 11

4 αb and τt = 5
3αt. The second and third

recalibration of the parameters show that both modes are significantly more sensitive to changes
in the intra adjustment parameter rather than temporal adjustment parameter.

The RMSE parameter space, is confined to a width of 2.5 and 1.25 for the modes bus and
taxi respectively. Therefore the underlying trip length distributions per TAZ for these modes
effectively force the intra adjustment parameter calibration to fall within a small bound. This
implies that people who drive can in general travel more freely, the movements of cummuters
who take the bus are much more constrained with people using taxis, having the most constraints
on where and especially when they are able to travel. Table 5.3 contains the selected parameter
values from each calibration iteration.

The NHTS indicates that 49.2%, 34.3% and 55.7% of people who drive, take a bus, or a taxi
to work, work in the same TAZ in which they live. These percentages are based on the smaller
subset, as discussed in Section 3.3. The upper bound and lower bounds of these percentages,
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Figure 5.6: Calibration criteria values for the solution space of calibration parameters for the proposed
gravity model for mode taxi.
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Figure 5.7: The percentange of workers living in the same TAZ in which they work per mode.

Figure 5.7, are obtained if all the data points that did not indicate the destination TAZ are
either within the TAZ or outside it.

Figures 5.5 and 5.6 show that the NHTS dataset that is used to determine the RMSE underes-
timates and slightly overestimates the number of people who live and work in the same TAZ for
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Model Parameter Mode Calibration iteration
First Second Third

Proposed αd drive 1.5 4 3
Proposed αb bus 0.25 1 1.75
Proposed αt taxi 0.25 0.25 0.25
Proposed τd drive 0.25 3.75 2
Proposed τb bus 3.75 1.75 1.75
Proposed τt taxi 5 1 1

Traditional ηd drive 1 0.25 0
Traditional ηb bus 0.65 0 0.05
Traditional ηt taxi 0 0 0
Traditional ζd drive 0.6 3.95 4
Traditional ζb bus 0.2 1.3 1.2
Traditional ζt taxi 0.5 1.75 1.55

Table 5.3: The calibrated parameters for the traditional and proposed gravity model.

modes bus and taxi, respectively, given the observed trip length distributions. Figure 5.4 shows
that the subset of data used to determine the NHTS underestimates the number of intra-TAZ
trips. However the error might be overstated with this set of data because the model only takes
commuter traffic into account. Adding trips with an academic destination, such as a school or
university, will increase residential congestion, effectively reducing such an over-estimation.

5.2 Aggregate TLD convergence

Trip length distribution is an effective measure of how well the gravity model distributes trips
compared to the observed data. The modelled TLD should converge to the observed TLD. The
theoretical TLD is compared to the observed TLD for all iterations.

TLD comparison

Figure 5.8 shows the TLD and cumulative TLD from the traditional gravity model for parameter
calibration iterations 1, 2 and 3. During the first iteration the gravity model overestimates the
number of trips that are between 10 and 30 minutes in length and underestimates the number
trips of 30 to 60 minutes. This is due to the free flow distance table that is used for the first
parameter calibration. At iterations 2 and 3 the models are unable to find distributions for
the gravity model that have a high frequency of 5 to 10 minute trips. This causes an slight
overestimation of the remainder of the trips, when compared to the observed TLD for mode
drive.

The same behaviour is observed from the proposed gravity model during the parameter cali-
bration iterations. The proposed model overestimates the number of trips between 15 and 55
minutes. This is a result of using the average trip length as calibration criteria. The calibration
algorithm selects those parameters that produce on average a similar trip distribution which
in this instance resulted in an underestimation of trips that range between 5 and 15 minutes.
Another reason for this underestimation is that the distance table only gives a point estimate
of the intra-TAZ trip lengths for a TAZ. The trips might be recorded in the arrival data but are
then skewed towards the longer 15–35 minute trips that are very common in congested networks
within a TAZ.

The traditional gravity model, Figure 5.10, overestimates the number of trips that are less
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(b) Cumulative TLD for the traditional model after parameter calibration iterations 1, 2 and 3

Figure 5.8: Smoothed TLD compared to the traditional gravity model TLD for mode drive.

than twenty minutes and underestimates the trips that are 40 to 95 minutes for the mode bus.
The overestimation is compounded during the first calibration iteration that uses the free flow
distances between TAZs. This large deviation is reduced with subsequent parameter calibration
iterations two and three.

The proposed gravity model overestimates the number of trips that are 70 to 80 minutes for
the mode bus at the first calibration iteration. The number of trips that fall between 80 to 100
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(a) TLD for the proposed gravity model after parameter calibration iterations 1, 2 and 3
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(b) Cumulative TLD for the proposed gravity model after parameter calibration iterations 1, 2 and 3

Figure 5.9: Smoothed TLD compared to the proposed gravity model TLD for mode drive.

minutes are underestimated. This deviation is noticeably smaller at second and third parameter
calibration iterations. The more stable modelled trip length distribution coincides with the
overlap in the parameter space, in Figure 5.5, for the second and third calibrations for low
relative RMSE values.

Figures 5.12 and 5.13 show that both the traditional and proposed gravity models overestimated
the number of shorter trips and underestimates the amount of longer trips during the first
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(a) TLD for the traditional model after parameter calibration iterations 1, 2 and 3
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(b) Cumulative TLD for the traditional model after parameter calibration iterations 1, 2 and 3

Figure 5.10: Smoothed TLD compared to the traditional gravity model TLD for mode bus.

parameter calibration iteration for mode taxi. The traditional model underestimates the number
of trips that travel less than 70 minutes both in the second and third parameter calibration
iterations. The proposed model’s modelled trip length distribution underestimates the number
of trips that are shorter than 30 minutes and overestimates the trips that are 30 to 55 minutes.
Slight deviations are noticeable for trips between 60 and 70 minutes long. The remainder of
the proposed model’s trip length distribution fits the observed data better than the traditional
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(a) TLD for the proposed gravity model after parameter calibration iterations 1, 2 and 3
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(b) Cumulative TLD for the proposed gravity model after parameter calibration iterations 1, 2 and 3

Figure 5.11: Smoothed TLD compared to the proposed gravity model TLD for mode bus.

model.

RMSE analysis

The parameter calibration iterations that have been evaluated up until this stage produce esti-
mated distributions based on point estimates of the average travel distance between difference
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(a) TLD for the traditional model after parameter calibration iterations 1, 2 and 3
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(b) Cumulative TLD for the traditional model after parameter calibration iterations 1, 2 and 3

Figure 5.12: Smoothed TLD compared to the traditional gravity model TLD for mode taxi.

TAZs from the previous iteration. In order to establish whether the travel time distributions are
converging to a stable solution the arrival data from the traffic simulator need to be analysed.
For each iteration the RMSE between the OTLD and trip length distribution, obtained from
parsing the arrival data, is calculated.

The travel times parsed from the traffic simulator arrival output, in Figure 5.14, show that
for the first four iterations, the RMSE of the trip length distribution of the simulated traffic
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(a) TLD for the proposed gravity model after parameter calibration iterations 1, 2 and 3
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Figure 5.13: Smoothed TLD compared to the proposed gravity model TLD for mode taxi.

increased from 0.0139 to 0.0188 when the proposed gravity model is used for mode drive. The
gravity parameters were calibrated based on the free flow distance matrix during this period.
This explains the increase in the RMSE in the second iteration. The first trip distribution
caused an over assignment of trips to TAZs that fit the aggregate travel distribution of the
parameters, under free flow conditions. Figure 5.4 shows that the parameter space from the
first calibration is confined to αd ≤ 1.5. This means that the model distributed few intra-TAZ
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Figure 5.14: Graph of the RMSE of the travel time distribution compared to the arrival data parsed
from the traffic simulation data output.

trips and more inter-TAZ trips. This assignment of trips produced new distance matrices, in
which the congestion en route to these TAZs is overestimated due to the higher number of trips
distributed to them, as a result of using the free flow trip matrix from the previous iteration.

In iteration three the RMSE decreases from 0.0188 to 0.0182 - The opposite of what happened
between iterations one and two. The over-congested TAZs have ’less gravity’ to attract trips from
other TAZs. This effect persists between iteration three and four with the RMSE increasing
from 0.0182 to 0.0186. The average RMSE for the iteration intervals (1–4, 5–8 and 9–12) is
0.0174, 0.0117 and 0.0116 respectively.

The same see-saw pattern is present in the arrival data from the traffic simulator that used the
traditional gravity model. The variation between iterations is on average smaller, 0.00038, for the
first four iterations than the second and third intervals which are 0.0011 and 0.012 respectively.
The average RMSE for the three intervals for the traditional gravity model is 0.0136, 0.012 and
0.0119 which is slightly, but not significantly, higher than the proposed model.
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The RMSE values for mode bus at the first iteration were 0.0266 for the proposed and 0.0269
for the traditional model. The RMSE of the proposed model decreased to 0.016 after the second
iteration while the RMSE of the traditional model stayed above that of the first iteration 0.0293.
On average the RMSE for the three iteration intervals were 0.0206, 0.0195, 0.0202 and 0.0287,
0.0279 and 0.0291 respectively for the proposed and traditional models.

The output produced from the traffic simulation for the mode taxi shows a decrease in the
RMSE from 0.0229 to 0.0130 for the proposed model between iterations one and two. This is
consistent with the parameter calibration analysis in Section 5.1 and is due to the initial free
flow distance matrix input. The proposed model had on average an RMSE of 0.0163, 0.0130,
0.0121, which is lower in the second and third iteration intervals than the 0.0142, 0.0136 and
0.0128 of the traditional model.

Analysis of the arrival data shows how the inputs produced by both gravity models lead to
similar outcomes when the trip distributions are simulated. A large change in the RMSE value
is observed between the first and second iterations, relative to the average change across all
iterations within the aforementioned intervals. The first to second iteration changes were 5.44,
2.94 and 4.57 times larger than the average absolute change in RMSE for the modes drive, bus
and taxi. In contrast, the largest differences between iterations for the traditional model were
between iterations 7 and 8 for mode drive, 9 and 10 for bus and 7 and 8 for taxi which were
1.95, 1.834 and 2.742 times larger, respectively. The traditional model inherently calibrates a
single Tanner function that, in combination with the trip matrix, produces an aggregate trip
distribution that is similar to the observed aggregate distribution. This explains the limited
response to recalibration of its parameters and the iterations that follow thereafter, as seen in
Figure 5.14.

The RMSE of the output produced by the traffic simulator using the trip distribution performed
by the traditional gravity model steadily decreases (drive and taxi) or increases (bus). The
standard deviation of the average iteration-on-iteration change in RMSE of the proposed model
is 2.44, 2.42 and 2.54 times more for the modes drive, bus, taxi respectively than that of the
traditional model. Despite this increased variability, the RMSE after the final iteration is lower
for all modes when using the proposed model. This can be attributed to the use of each individual
TAZ’s observed trip length distribution, as well as adjusting how the time of day influences the
average trip lengths of commuters. By introducing a temporal shift and an intra-TAZ trip
adjustment parameter, the proposed gravity model can calibrate to a set of parameters that
produces a distribution that, when it is simulated, results in an aggregate trip length distribution
that matches the observed trip length distribution better than the traditional model.

A well-modelled aggregate trip length distribution is in itself not a sufficient condition for reach-
ing a traffic equilibrium. The approach used in this thesis attempts to find trip distributions
which match the observed TLD at an aggregate level. Finding such a distribution could mean
that the underlying trip distributions from and to each TAZ could be significantly different from
one iteration to the next.

5.3 Trip table stability

The trip distribution for either gravity model is a function of the travel costs Cij . The RMSE
between iterations in Figure 5.15 is therefore a response to the variation observed in Figure 5.16.
This relationship indicates how sensitive a gravity model is to a change in Cij .

The tables containing all the trips T tijh and costs Ctijh from each TAZ i to TAZ j during iteration
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h for time interval t, were compared based on the RMSE between iterations h and h − 1. The
RMSE for the trip table, RMSExh, and cost matrix, RMSEch, is calculated as

RMSExh =

√√√√ 1

mn

n∑
i=1

m∑
j=1

16∑
t=1

(T hijt − T
h−1
ijt )2 and (5.2)

RMSEch =

√√√√ 1

mn

n∑
i=1

m∑
j=1

16∑
t=1

(Chijt − C
h−1
ijt )2. (5.3)
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Figure 5.15: Graphs that illustrate the average trip length stability for each mode.

If there are no trips assigned to a TAZ, the free flow speed is used for the next iteration. This
can be amended by assigning at least one trip from every TAZ to every other TAZ. Figure 5.17
shows the number of TAZs that were assigned to trips in iteration h+ 1 to which no trips were
assigned in iteration h. The variation in the trip lengths decreases as the number of TAZs that
trips are assigned to becomes more consistent.

The gravity models converge on the aggregate trip length distribution for each mode and the
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Figure 5.16: Graphs that illustrate the trip table stability for each mode.

changes in the trip tables are explained by the changes in the cost matrices. Variations in cost
matrices could be due to the traffic simulator. Trip distributions might be consistent for each
iteration, but trip distances can vary due to how traffic is routed through the network, which is
influenced by congestion. It is therefore important to evaluate if the routes taken between any
TAZ i to TAZ j converges to a stable collection.

The travel cost matrix, produced by the simulation of the trip distribution from the first iteration,
is used to generate the trip distribution for the second iteration. Therefore a relationship should
exist between the difference in travel costs of iterations 1 and 2, and the differences between
the trip distribution in iterations 2 and 3. More formally, there should exist some relationship
between RMSEct and RMSExt+1.

Table 5.4 contains the correlation coefficients for both the traditional and proposed gravity
models for each mode. When interpreted in isolation these correlation coefficients can not be
considered significant. However, the differences are dependent on the cost matrix as well as
the number of workers and jobs originating from, and destined to, each TAZ. If the R-squared
statistics are interpreted within this context, 39%, 32% and 6% of the inter iteration variance
of the trip distribution of the proposed model is explained by the changes in the cost matrix
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Figure 5.17: The number of TAZs to which trips are assigned, which did not have trips assigned to the
previous iteration and vice versa.

Mode drive bus taxi
Gravity Model proposed traditional proposed traditional proposed traditional

Correlation Coefficient 0.62 -0.51 0.56 -0.3 -0.25 -0.14
R-squared 0.39 0.26 0.32 0.09 0.06 0.02

Table 5.4: Correlation coefficients for the trip table and distance table for all modes.

for the modes drive, bus and taxi, respectively. This is consistent with expectations. The travel
patterns of workers who drive to work are less constrained than those travelling by bus, which
is in turn less constrained than those workers travelling to work by taxi. This relationship holds
for both the traditional and proposed gravity models.
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5.4 Route convergence

The route convergence analysis is an integral step in verifying the framework as a sufficient
method for modelling traffic. If routes do not converge to a large extent, any calibration that
is performed in terms of TLD convergence is meaningless, seeing as it would mean that the
underlying traffic behaviour is nonsensical.

To test the stability of the collection of routes, the total number of routes from and to every
TAZ is evaluated within each mode during every iteration. The number of routes from TAZ i
to TAZ j is determined by merging paths between the two TAZs according to the number of
edges (road segments) they share. First, the paths are sorted in a descending order according
to the number of edges it is comprised of. The longest path is chosen as the first route. The
second-longest path is compared with the first route, and if the proportion of its edges that are
also in the first route is greater than the specified overlap criteria, that path is assigned to the
first route. If the proportion of edge overlap is smaller than the overlap criteria for all the routes
established up until the evaluation of that path, that path becomes a new route. This process
is followed until all paths are clustered into routes.

Route overlap for mode drive
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Figure 5.18: Total number of intra- and inter-TAZ routes, given a 50% overlap for mode drive.

The total number of intra- and inter-TAZ routes at every iteration, for mode drive, is shown in
Figure 5.18. Similar patterns are observed for both the proposed and traditional gravity model
based simulations. The number of routes decrease between the first and the second iterations
for the proposed model. In contrast, the decrease in the number of routes in the traditional
model from iteration 1 to iteration 2 is offset by an increase in the inter-TAZ routes for the
same iteration. The trip distribution for the first iteration is based on the free flow distance
between TAZs. When this distribution is simulated each fleet tries to find the shortest way
through the network. As the network becomes overly congested due to the assignment under
free flow conditions these fleets find alternative shortest routes through the network, different to
the routes of fleets originating from and destined to the same TAZs. For the first four iterations
the number of intra- and inter-TAZ routes are strongly negatively correlated with a (R-squared
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of 0.98). The proposed model reacts differently during the first four iterations. Both the number
of intra- and inter-TAZ routes decrease between iterations 1 and 2. Every TAZ has a unique
distribution according to which the trips, per mode, are distributed from. The proposed model
could therefore produce a trip distribution based on the first iteration that reduced both the
number of intra- and inter-TAZ during the traffic simulation of second iteration. There was no
significant correlation (R-squared of 0.094) between the changes in intra- and inter-TAZ trips
for the routes produced by the simulations of the proposed gravity model during iterations one
to four for the mode drive.

The number of routes increased from 895 to 1414 between iterations 4 and 5, showing the effect
of the intra-TAZ trip adjustment parameter αd. The parameter value was adjusted from 1.5 to
4 after the second parameter calibration, thereby increasing the effective gravitational pull of
a TAZ on the trips originating from it while at the same time reducing the pull from all other
TAZs. The number of intra-TAZ routes decreased from 1401 to 1320 between iterations eight
and nine, after the third parameter calibration selected αd = 3. The average number of routes
during each of the four-iteration periods were 927, 1406 and 1336 for the proposed model and
831, 949 and 909 for the traditional gravity model.
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Figure 5.19: Impedance of travel functions for the traditional gravity model for mode drive.

There is a negative correlation between the number of inter- and intra-TAZ routes for each
period between parameter calibrations for the traditional mode, R-square values of 0.98, 0.831
and 0.85. No such correlation seems to exist when evaluating these periods for the proposed
model, depictied by R-square values 0.094, 0.54 and 0.021. When the twelve iterations are
considered as a whole, the number of inter-TAZ trips are more negatively correlated (R-squared
of 0.92 with the number of intra-TAZ trips for the proposed model) than for the traditional model
(R-squared of 0.68). After the parameter recalibration, a single impedance of travel function is
selected to represent the behaviour of each mode for all the TAZs within the study area with
the traditional gravity model. Therefore the fluctuations in the number of inter and intra-TAZ
routes is explained by the differences between the impedance of travel functions. Figure 5.19
shows the impedance of travel functions the parameter calibrations selected. As these functions
differ from one period to the next, so do the relationships between the intra- and inter-TAZ
trips. The impedance of travel functions for each TAZ for the proposed model stays fixed to
the function fitted from observed data. The calibration parameter alpha just scales the gravity
of all TAZs on the trips originating from it, thereby creating a more consistent model than the
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traditional gravity model, as illustrated by the correlation between the intra- and inter-TAZ
trips for all the iterations combined.

Route overlap for mode bus
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Figure 5.20: Total number of intra- and inter-TAZ routes, given a 50% overlap.

The increase in intra-TAZ routes for the mode bus (in Figure 5.20) are on average 23, 50 and
84 which corresponds to increases in the αb parameter from 0.25 to 1 and 1.75 after the second
and third parameter calibrations for the proposed gravity model. The number of intra-TAZ
routes for the traditional model remained fairly the same during each of the periods; 108, 107,
108. With each four-iteration period the variance between successive iterations decreased for the
number of inter-TAZ trips for the proposed model. The standard deviations for each of the three
aforementioned periods are 21.08, 10.06 and 8.015. The average number of inter-TAZ routes,
788, 739 and 748 correspond to the impedance of travel functions produced by the parameter
calibrations for the traditional gravity model, (see Figure 5.21).

There is little to no significant correlation between the intra- and inter-TAZ trips for the mode
bus for either the traditional or the proposed gravity model, with the exception of the second
iteration period (from iterations five to eight) which had a strong negative correlation with an
R-squared of 0.96. This can be attributed to the relatively low number of trips that travel by bus
as well the small increments in the intra-TAZ adjustment parameter. The temporal adjustment
parameter τb is 3.75, 1.75 and 1.75.

Route overlap for mode taxi

The number of intra- and inter-TAZ routes for the mode taxi, shown in Figure 5.22, are negatively
correlated for the traditional model when evaluated over the whole twelve iteration period with a
R-squared of 0.97. The average number of routes during each of the three iteration periods were
222, 273 and 269 for the traditional gravity model. Figure 5.23 shows the impedance of travel
functions that were the result of the parameter calibrations. The change between iterations 1
and 2 for the proposed model is explained by the free flow trip distance table that is used for
the first iteration. Thereafter the standard deviation of the number of intra-TAZ routes for
iterations two to twelve is 7.3. The calibration parameter αt is 0.25 for each of the parameter
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Figure 5.21: Impedance of travel functions for the traditional gravity model for mode bus.
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Figure 5.22: Total number of Intra- and inter-TAZ routes, given a 50% overlap for mode taxi.

calibrations. The number of inter-TAZ routes for the proposed model was on average 2211, 2387
and 2405. This is explained by the parameter τt, which is 5 after the first parameter calibration
and 1 for the second and third calibrations. The number of routes based on a 10% and 90%
overlap can be seen in Figures A.10 to A.15.

Route stability

The number of routes is a proxy for route stability for inter- and intra-TAZ trips. As the iterative
process continues, the variance between the number of routes in successive iterations decreases
on average across all modes for both models. If the number of routes were to stay the same,
it would not necessarily mean that the same routes are used during each iteration. To test for
route stability additional information is necessary. It is assumed that if the same routes are
being used consistently throughout the iterative process, then the edges through which the most
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Figure 5.23: Impedance of travel functions for the traditional gravity model for mode taxi.

traffic flows on all routes and the volume of traffic through said edges during each iteration,
should stay the same. For each iteration the top 20% of edges, At20, from all routes through
which traffic is flowed between each TAZ i and TAZ j and the volume of trips is recorded and
compared to the next iteration’s top 20%. Given the volume of trips, vtaij , that have traversed

edge a during iteration t, RMSEtv20 travelling from TAZ i to TAZ j can be expressed as

RMSEtv20 =

√∑
i∈O

∑
j∈D

∑
a∈At20

(vtaij − v
t−1
aij )2

|O||I||A|
(5.4)

with

vtaij =

{
vtaij for vtaij ∈ A

t−1
20

0 for vtaij /∈ A
t−1
20 .

(5.5)

Figure 5.24 shows the RMSEtv20 values for both the traditional and proposed models. The largest
changes are observed during the first 4 comparisons for each mode. Other than iterations six
and seven for the traditional model mode drive, proposed model mode bus between iteration
ten and eleven and mode taxi between iterations eight and nine, every succeeding iteration had
more throughput in common with the same edges than its preceding iteration. This result shows
that when simulated, the routing of the trip distributions from either gravity model will produce
routes that are more like the routes from the iteration that preceded it.

A framework that converges to an observed aggregate trip length distribution based on a stable
trip distribution might still not be an accurate reflection of the actual traffic within the study
area. Trips could be distributed consistently, but to the wrong places. If the framework is a
sufficiently accurate enough representation of the traffic within the study area it should produce
a similar departure and arrival time distribution as the observed data.
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Figure 5.24: Iteration-on-iteration change in traffic volumes to the most-used edges in the network

5.5 Departures and arrivals

Figure 5.25 compares the modelled and observed binned proportions of trip departure and arrival
times for all modes, combined for the last iteration. Given the observed proportion for bin β,
Uβ, and the modelled proportion, Mβ, the deviation, σδ, σρ of the simulated departure and
arrival times is calculated by

σρ =
∑
β

(Uρβ −M
ρ
β )2

Uρβ
and (5.6)

σδ =
∑
β

(Udβ −M δ
β)2

U δβ
. (5.7)

The departures for all trips, irrespective of mode had a deviation value of 0.072 and 0.078 for
the traditional and proposed models, respectively. There is no significant observable difference
between the departure times produced by the proposed or traditional gravity model.
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Figure 5.25: Proportion of arrivals and departures per time interval for all modes combined.

The departure times of the simulated trips for both the traditional and proposed model is
generated through the same process and is expected to be the same. The deviations in the
arrival distribution highlights a caveat of disaggregating trip distribution data. The parameters
calibrated in such a fashion that the modelled aggregate trip length distribution closely matches
the observed aggregate trip length distribution. The traditional model uses the same trip length
distribution consequently, irrespective of the time of departure. Therefore every time interval
of the trip distribution will have the same distribution of trips. This should underestimate the
arrivals that are close to the median, and overestimate the tails of the arrival distribution. The
proposed model seeks to rectify this incorrect temporal distribution of trips with the addition
of the temporal calibration parameter τ . The arrivals had a deviation value of 0.24 for the
traditional model and 0.15 for the proposed model. The proposed gravity model produced a trip
distribution in its final iteration such that the deviation from the observed arrival distribution
was smaller than that of the traditional model. The increased accuracy of the proposed model
is due to less overestimation of the right tail [it is trips that arrive after 08:00 (480+)] and less
underestimation of the arrivals around the median [it is trips that arrive between 07:00 and
08:00].

Figures 5.26, 5.27 and 5.28 show the arrival and departure time distribution for the proposed and
traditional models compared to the observed data for the modes drive, bus and taxi respectively.

The arrival deviation values for the mode drive are 0.16 for the proposed and 1.07 for the
traditional gravity model. The largest deviation from the arrivals observed proportions for both
models are seen during the period between 07:00 and 08:00. The proposed model estimates
the number of trips arriving after 08:00 with greater accuracy than the traditional model. The
proposed model’s overestimation of the number of trips arriving on before 06:30 is marginally,
but not significantly less, than the traditional model. This is because the bands in Figure 4.2
do not constrain trips shorter than 15 minutes during this period. Both models overestimate
the departure of trips during 05:00–06:00 and underestimates them during 07:00–07:30.

The departure deviation values for the mode bus are 0.83 for the proposed and 1.49 for the
traditional gravity model. Similar to the findings for the mode drive, the departure of trips
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Figure 5.26: Proportion of arrivals and departures per time interval for mode drive.
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Figure 5.27: Proportion of arrivals and departures per time interval for mode bus.

during 05:00–06:00 are overestimated and trips departing during 07:00–07:30 are underestimated.
The relative size of the under and overestimations are less for the mode bus than for drive for
the departures before 06:00. The arrival distribution shows a clear overestimation of the trips
arriving before 06:30 and after 08:00 and an underestimation of the trips arriving between 07:00
and 08:00. Although the bands in Figure 4.3 constrain trips shorter than 45 minutes before
05:45, τb is 1.75, limiting the effect of the temporal constraints.

The arrival deviation values for the mode taxi are 0.25 for the proposed and 0.29 for the tradi-
tional gravity model. The number of departures for 05:00–06:00 and 06:00–07:00 and overesti-
mates the proportion of departures in 07:00–07:30. This causes the arrivals around the median
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Figure 5.28: Proportion of arrivals and departures per time interval for mode taxi.

to be underestimated and the arrivals on the tails to be overestimated. The arrival distributions
of the proposed and traditional model are not significantly different, which is attributed to the
parameter value of 1 for τtaxi , which means that it has no effect on the trip distribution.

The departure and arrival analysis indicates that the proposed model produces trip distributions
that are temporally more aligned to the observed data than the traditional gravity model. The
proposed and traditional models have been compared based on aggregate TLD convergence,
trip table stability, route convergence, and departure and arrival analysis. The final step is to
compare flow volumes to available vehicle counts.

5.6 Flow analysis

The flow analysis is used to validate the traffic simulator. The framework established within
this thesis only distributes morning peak hour commuter traffic through the road network. It is
therefore not expected to be an accurate reflection of traffic for the whole period as it excludes
travel based on other purposes such as attending academic institutions or recreational activities.
Figure 5.29 shows the comparison of the simulated traffic of the proposed and traditional models
compared to the observed vehicle counts.

The simulated flows are compared to the average annual daily traffic vehicle count data. The
difference between simulated and observed data is determined by using a normalised root mean
square error. The NRMSE is calculated by comparing the hourly number of observed vehicles
for the same road segments. Given the simulated traffic through edge a, for hour η, asη and the
observed traffic flow aoη the NRMSE is expressed as

NRMSEflowa =

√∑4
η=1

(asη−aoη)
2

4

max(aoη)−min(aoη)
. (5.8)
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Figure 5.29: Modelled vehicle counts compared to observed vehicle counts for stations 5008 and 5027.
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Figure 5.30: The sum of the NRMSE all the vehicle counting stations when compared to the simulated
flows.

An average NRMSE is calculated over all the vehicle counting stations that had more than 80%
up time for 2011. The average total NRMSE for the proposed gravity model is 72.1, with a sum
over all iterations of 865.3. The traditional gravity model had an average NRMSE of 102.3 with
a total sum over all iterations of 1227.9. Figure 5.30 shows the sum of the NRMSE over all the
counting stations for each iteration.

5.7 Chapter conclusion

This chapter compared the effectiveness of the traditional gravity model and proposed gravity
model through assessing their verification and validation outputs. It is expected that the output
produced by these two models should be different and that the differences can be explained.

A comparison of the average trip length derived from the TLD of both gravity models, after each
parameter calibration iteration, to the OTLD showed that the proposed gravity model could
find better trip distributions than that of the traditional model for the modes bus and taxi. The
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average trip length for the mode drive is 15 seconds longer than for the proposed model than
the traditional model. The proposed model consistently produced trip distributions with lower
RMSE values, especially for the mode taxi.

An analysis of the TLD convergence (to the OTLD) gave visual confirmation of the improvement
of the trip distributions produced by the proposed model for the mode bus and taxi over that
of the traditional model. These theoretical TLDs are based on the point estimates of average
travel time between TAZs, which is aggregated from the simulation output. The TLDs produced
from the output of the traffic simulation trip arrival data gave quantitative confirmation that
the trip distributions produced by the proposed gravity model fits the OTLD better than the
output produced from simulating the traditional gravity model.

The trip table stability comparison shows that the output produced by the traffic simulator has
a larger effect on the trip distributions produced by the proposed gravity model. This highlights
that the proposed model is more sensitive to variations in the trip length tables. This means
that the proposed model would be more effective at evaluating any proposed infrastructure
developments that would affect the road network.

The trip distributions of both the traditional and proposed models produce converging, stable
sets of routes when simulated. However, the number of inter-TAZ routes produced by the
traditional model are consistently more than that of the proposed model. This illustrates the
shortcoming in using a single impedance of travel function to distribute the trips of each zone
when the underlying behaviour is different than that of the aggregated behaviour.

The arrival analysis shows that the proposed model produces more accurate trip distributions
when simulated within the mesoscopic traffic simulation. This is corroborated with the results
of flow analysis which shows that the traffic flows of the traffic simulator is closer to the observed
traffic counts when using the proposed gravity model.

The proposed gravity model generates trip distributions which scored better on the metrics
discussed in this chapter. This shows the advantage of using the TLD for each TAZ rather than
calibrating a single function to estimate the underlying behaviour of all the TAZs. The next
chapter contains sensitivity analysis of the traffic simulator parameters and the effect that it has
on the calibration of the proposed gravity model.
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Sensitivity analysis on simulation parameters
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The previous chapter compared the outputs produced by the proposed and traditional gravity
models. This chapter tests the sensitivity of the simulation output for different fleet sizes and
route selection criteria based on a trip distribution generated by the proposed gravity model.

The trip distributions for the traditional and proposed gravity models were simulated using a
mesoscopic traffic simulator. Trips for mode drive are grouped into fleets of 50 vehicles, 10
for mode bus and 15 for mode taxi, finding the shortest travel time through the network. The
choice of fleet size and route decision criteria, given a certain trip distribution, might influence
the framework’s ability to converge toward a stable solution.

Six simulations are compared to see how a change in the fleet size and route decision criteria
parameters affect the simulation output when using the proposed gravity model. Table 6.1
contains the parameter settings used in the sensitivity analysis.

Simulation Group size (mode) Route decision
name drive bus taxi criteria

FAST 100 20 30 1
FAST75 100 20 30 0.75
MED 50 10 15 1
MED75 50 10 15 0.75
SMALL 10 2 3 1
SMALL75 10 2 3 0.75

Table 6.1: The parameter settings for the group sizes used in the the different simulations.

The average trip distance from TAZ i to TAZ j is likely to be more representative of how long
it takes to travel between the TAZs when more fleets are simulated. The average cost Cij in

63
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the distance matrix is the average travel time between TAZ i and j the fleet size and weighted
by the fleet size. If, for example there are 50 trips between TAZ i and TAZ j during time
interval t and the fleet size is 50, Cij will be determined by a single route between TAZ i and
TAZ j. The fleet might be fragmented into smaller parts during the simulation it arrives at a
fully saturated network segment a. Only a portion of the fleet could be able to travel to the
next segment during time period t, while the remainder is put in the vertical queue at a. These
smaller fleets will have different trip times, but will still be between the same TAZ connectors.
These TAZ connectors might be near a shared border between adjacent TAZs, giving a skewed
average, which is not representative of the average weighted time of all trips departing during
interval t to travel from TAZ i to j.

Increasing the number of fleets are likely to produce a representative and stable weighted average
travel time. To test this expectation and the effect of different fleet sizes the trip length stability
is compared for the different parameter settings.

6.1 Average trip length stability

Figure 6.1 shows the normalised RMSE of the change in trip lengths, Tij , between iterations.
The trip length tables are more stable after the second parameter calibration iteration, that is
after iteration 6. A change in the route selection criteria, c, from 1 to 0.75, results in a lower
NRMSE, as expected. When trips between TAZs choose the shortest path in terms of travel
distance and not travel time, the choice of route is not affected by congestion. Assigning more
trips to the shortest path in terms of travel distance could therefore lead to a more consistent
trip lengths. The trip length stability for the mode drive reacts as expected. More, smaller fleets
translates to improved trip length stability. On average, reducing the route selection criteria
parameter, c, from 1 to 0.75 reduces the RMSE, given the same fleet size. The simulations FAST
and FAST75 have an average NMRSE of 4.53 and 4.36. The reduction in c is not as effective
as reducing the fleet size from 100 to 50. The average NRMSE for MED and MED75 is 4.3
and 4.22. Reducing the fleet size from 50 to 10 reduces the average NRMSE to 4.17 and 3.9 for
SMALL and SMALL75, respectively.

The trip length table stability for the mode bus, Figure 6.2, is not as susceptible to a change
in c as for the mode drive across all fleet sizes. The average NRMSE for the mode bus is 1.62
and 1.48 for simulations FAST and FAST75, a difference of 0.14, compared to the 0.03 for the
simulations MED, MED75, SMALL and SMALL75, which have NRMSE of 1.51, 1.54, 1.47 and
1.44, respectively. This could be caused by the large fleet size. The largest number of trips,
for example, departing between 06:00 and 06:15 from a single TAZ is 2761, from TAZ 9027 to
9020. Given that 33 trips are clustered into a single bus and that buses are clustered into fleets
of 20 for the FAST and FAST75 iterations, only 5 fleets of buses would be simulated from TAZ
9027 to 9020 during 06:00 to 06:15. The next largest number of trips is 1338 from TAZ 9028
to 9020, which would only generate three fleets. Less fleets means fewer TAZ connectors are
used which leads to a skewed average trip length between TAZs, which leads to more variation
between iterations.

The same behaviour of the NRMSE is observed in Figure 6.3 for the mode taxi than for the mode
bus, but just to a lesser extent. On average the NRMSE for FAST, FAST75, MED, MED75,
SMALL and SMALL75 are 2.69, 2.48, 2.59, 2.50, 2.54 and 2.26.

This increased stability is more than likely skewed towards the shortest path between TAZs.
With a c of 1, the fleets choose the shortest travel time during the simulation. If c was set to 0,
all the trips would choose the shortest path in terms of travel distance, ignoring congestion. The
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Figure 6.1: NRMSE of the iteration-on-iteration change in trip distance tables for mode drive.
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Figure 6.2: NRMSE of the iteration-on-iteration change in trip distance tables for mode bus.

travel times parsed from the arrival data from such a simulation will have artificially high trip
lengths due to all the trips between TAZs being forced through the shortest path. This causes
the next iteration to have a different trip distribution from the previous one, as it is based on
the trip length distribution of all TAZs.

Reducing the fleet size, and fixing a portion of routes to the shortest path in terms of length
corresponds to an increase in trip length stability. A smaller fleet size is more effective at
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Figure 6.3: NRMSE of the iteration-on-iteration change in trip distance tables for mode taxi.

increasing trip length stability for all modes except when reducing the fleet size to a number
which does not significantly increase the number of fleets that are simulated.

6.2 Trip table stability

Trip length stability should lead to stable trip distributions between TAZs. However, a stable
trip distribution could still be skewed towards an average trip length between TAZs, which is
not representative of actual trip times. This would cause the gravity model to calibrate towards
skewed trips times, which over time will cause the framework to destabilise. The stability of
the trip distributions is evaluated on the same criteria as the trip length stability, using the
NRMSE of the trip tables. This gives an indication of how much trip distributions change from
one iteration to the next.

Figure 6.4 shows the trip stability in terms of the NRMSE between trip tables for the mode
drive. A reduction in NRMSE is seen between iterations 1 to 4. The large increase at iteration
5 is due to the second parameter calibration. The NRMSE then decreases during iterations 6, 7
and 8 until the next parameter calibration at iteration 9. The NRMSE at iteration 12 is lower
than the NRMSE at iteration 9 for MED and SMALL.

The trip stability for the mode bus in Figure 6.5 improves until iteration 6. The NRMSE
increases between iteration 9 and 12 for the simulations FAST, FAST75 and MED75. On average
the NRMSE for the simulations FAST, FAST75, MED, MED75, SMALL and SMALL75 is 174,
151, 156, 160, 135 and 137. Except for the larger fleet size in simulations FAST and FAST75,
fixing a portion of trips to a shortest path route is detrimental to trip stability.
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Figure 6.4: Trip table stability for mode drive.
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Figure 6.5: Trip table stability for mode bus.
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Figure 6.6: Trip table stability for mode taxi.

The trip distributions stability for the mode taxi in terms of the NRMSE in Figure 6.6 shows
that like with trip stability for the mode bus, on average reducing the fleet size is beneficial
for trip stability. With an average of 204 and 207 for simulations FAST and FAST75, the
increased stability at larger fleet sizes is absent compared to the other modes. Fixing routes
to the shortest path is marginally detrimental to trip stability for the mode taxi. The average
NMRSE for simulations MED, MED75, SMALL and SMALL75, are 192, 194, 177 and 181,
respectively.

The trip table stability should not be interpreted as only a measure for convergence of the trip
distributions. It also gives insight into the underlying behaviour on a per mode bases in this
instance. A less stable trip distribution means that the process that generated the distribution
is more sensitive to changes in trip lengths than a more stable trip distribution. Individuals
who drive to work have a larger degree of freedom in their travel choices and where they work.
Of the individuals that use public transportation, those who use buses are less constrained in
their travel preferences than those using taxis. It is therefore expected that the iterative trip
distribution for the mode drive should be less stable than for the mode bus, which should be
less stable than for the mode taxi.

6.3 Route convergence

Sensitivity analysis on the route convergence provides insight into how the framework reacts to
a change in the fleet size and route decision criteria. If the routes converge to a stable set of
network segments, it implies that the routing is nearing an equilibrium. This sensitivity analysis
investigates if different parameter settings have an effect on the convergence speed of the trip
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Figure 6.7: Total number of intra- and inter-TAZ routes, given a 50% overlap for the mode drive.

The number of routes, based on a 50% overlap, is strongly correlated for both inter and intra
trips for the mode drive. There exists a strong positive correlation between the number of intra
routes for all the simulations (15 pairs) with an average R-squared of 0.95 with a standard
deviation of 0.02. The inter-TAZ trips are also positively correlated with an average R-squared
of 0.9 and standard deviation of 0.06. A negative correlation is observed between the number of
inter- and intra-TAZ routes with an average R-squared of 0.85 and standard deviation of 0.07
(36 pairs). Figure 6.7 shows the number of intra- and inter-TAZ routes for each simulation. The
fleet size for the mode drive does therefore not have a large enough effect on the trip distribution
to change the split between inter and intra trips. The route selection parameter does however
increase the number of intra-TAZ trips due to the inflated congestion on the shortest distance
routes. It also generates more routes due to the higher utilisation of the TAZ connectors.
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Figure 6.8: Total number of intra- and inter-TAZ routes, given a 50% overlap for mode bus.

Figure 6.8 increasing the c to 0.25 offsets the effect of a decrease in fleet size for the mode
bus. The shortest distance distance routed bus traffic through congested parts of the network
within the TAZ, thereby skewing the average intra trip travel time for the mode. This causes
subsequent iterations to have more inter-TAZ routes.
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Figure 6.9: Total number of intra- and inter-TAZ routes, given a 50% overlap for the mode taxi.

The number of taxi routes are stable after the second parameter calibration for simulation
configurations FAST, FAST75, MED and MED75. The number of intra-TAZ routes increase
after the third parameter calibration for simulations SMALL and SMALL75. The increase in
fleet size resulted in a calibration of αt = 0.75 for SMALL and αt = 0.5 for SMALL75. Based on
the trip table stability sensitivity analysis for the mode taxi of the previous section, the higher
number of smaller fleets resulted in a less skewed average trip time. The more accurate average
trip times translated to the intra-TAZ trip adjustment parameter increase from 0.25 to 0.5 and
0.75 for the simulations SMALL and SMALL75, respectively. The increase in intra-TAZ trips
can be seen in Figure 6.9. The number of routes with 10% and 90% overlap can be seen in
Figures A.16 to A.21.

Even if the number of routes are stable it is not a sufficient condition for route convergence. The
total number of routes might remain the same, but they could be changing location within the
network itself. If the routes are converging, then there should be continuity in the set of network
segments that these routes are comprised of. To test for this convergence the betweenness
centrality for each segment is calculated for every iteration [22]. That is, the number of routes
from TAZ i to j that passed through a specific segment. The set Ω is defined as the top 20% of
segments with regards to their betweenness centrality and is selected for each iteration, for all
combination of TAZs.

These sets of segments are compared by calculating the RMSEkt20 which, given iteration number
k ≥ 2 and betweenness centrality γkaij for a segment a ∈ Ω, the set containing the top 20% of
segments can be expressed as,

RMSEkt20 =

√√√√∑
i

∑
j

∑
a

(γkaij − γ
(k−1)a
ij )2∑

i

∑
j

∑
a 1

. (6.1)

Figure 6.10 shows that the edges with the highest total flow volumes are not significantly sensitive
to a change in either fleet size or route selection criteria.
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Figure 6.10: RMSE of the on iteration change to the top 20% used edges in terms of flow volumes.

6.4 Flow analysis

The vehicle counts are compared to the simulated flows for each of the simulations. The average
sum of the NRMSE over all the vehicle counting stations are 81.3, 79.2, 72.1, 73.2, 73.8, 68.5
for simulations FAST, FAST75, MED, MED75, SMALL and SMALL75 over all iterations. The
sum of the NRMSE over all iterations are 975.4, 950.3, 865.3, 878.6, 885.9, 822.2 for FAST,
FAST75, MED, MED75, SMALL and SMALL75. Figure 6.11 shows the sum of the NRMSE
over all vehicle counting stations for each iteration.

The iterative process is observable in the difference between the observed counts and the simu-
lated flows which oscillates between higher and lower NRMSE values. Increasing c to 0.25 does
increase the accuracy of the flows for the simulations FAST and SMALL. On average, smaller
fleet sizes translate to simulated traffic flows that matches traffic count data better.
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Figure 6.11: The sum of the NRMSE all the vehicle counting stations when compared to the simulated
flows of each of the configurations.

6.5 Departures and arrivals

Figure 6.12 shows that the process that generates the departure times for the trips in the
simulation is consistent. There are no significant differences between the departure times for
each of the simulation configurations. The arrival distribution for all modes (see Figure 6.12)
also does not show any significant differences between the different configurations.

6.6 TLD convergence

The sensitivity analysis has shown that changes to the fleet size and route decision criteria
impact the trip distance table and, therefore, the trip distributions. This section evaluates how
these changes affected the aggregate trip length distribution of the simulated, compared to the
aggregate TLD obtained from the NHTS.

The arrival data for each iteration is compared to the observed TLD for each of the configurations
and modes. Figure 6.14 plots the RMSE of each iteration for the mode drive. All the RMSE
values that are stated hereafter are expressed in terms of 10−4 and rounded to the nearest
decimal. The average RMSE for the first four iterations are 5.3, 3.8, 4.9, 4.5, 4.1, and 4.3 for
the simulations FAST, FAST75, MED, MED75, SMALL and SMALL75. During the first four
iterations a smaller fleet size produced a more accurate trip length distribution. Adjusting the
route decision criteria from 1 to 0.75 improved the fit of the simulated trips to the observed
distribution, except for simulation SMALL and SMALL75, where the adjustment increased
the RMSE. This pattern persists through iterations 5 to 8 and 9 to 12. A smaller fleet size
consistently leads to a lower RMSE values when c = 1 at the final iterations, 4, 8 and 12, before
the next parameter calibration.

Figure 6.15 shows the RMSE of the TLD of the simulated traffic compared to the survey data for
the mode bus. The average RMSE values for the first four iterations for the different parameter
sets are, 3, 3.2, 3.2, 3.2, 3.1 and 3.1 and are not significantly different. The fleet size of simulations
SMALL and SMALL75 produce higher RMSE values on average during iterations 5 to 8, than
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Figure 6.12: A graph of the proportion of departure times for all modes and simulation configurations
compared to the observed departure time proportions.
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Figure 6.13: A graph of the proportion of arrival times for all modes and simulation configurations
compared to the observed arrival time proportions.
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Figure 6.14: A graph of the RMSE between OTLD and the TLD parsed from the arrival data of the
traffic simulation data output for the mode drive.

MED and MED75. The average RMSE for the mode bus is 1.7, 1.6, 1.4, 1.4, 1.5 and 1.4
for the simulations FAST, FAST75, MED, MED75, SMALL and SMALL75, respectively. The
simulated TLD is not as sensitive to a change in fleet size or route selection criteria for the mode
bus as drive. This is consistent with expectations because most of the trips for the mode bus
are inter-TAZ trips.

The simulated TLD for the mode taxi is influenced by both the fleet size and route decision
criteria. The average RMSE of the simulation configurations during iterations one to four are
3.3, 3.2, 3, 2.9, 2.9 and 2.7 for the simulations FAST, FAST75, MED, MED75, SMALL and
SMALL75, respectively. A smaller fleet size translates to a more accurate simulated TLD. On
average the RMSE during iterations 5 to 8 is 1.9, 2.1, 1.7, 1.8, 1.5 and 1.5. Fixing 25% of the
routes to follow the shortest path in terms of edge length has a detrimental effect on the RMSE
during this iteration period. After the third parameter calibration the average RMSE for each
of the simulations are 1.8. 1.6, 1.5, 1.5, 1.3 and 1.1. This corresponds to the increase in αt from
0.25 to 0.75 for SMALL and from 0.25 to 0.5 for SMALL75.

6.7 Simulation time scale

The line search procedure takes on average 35 minutes on a Intel i5-4690k (3.5 Ghz) with 8 GB
of RAM when the work load of enumerating the parameter space is uniformly spread across its
four cores. Solving the gravity model for the Western Cape takes on average 1.5 seconds on a
single core. The time it takes the line search procedure will scale linearly with the number of
cores available.
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Figure 6.15: A graph of the RMSE between OTLD and the TLD parsed from the arrival data of the
traffic simulation data output for the mode bus.
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Figure 6.16: A graph of the RMSE between OTLD and the TLD parsed from the arrival data of the
traffic simulation data output for the mode taxi.

Table 6.2 contains the run time and output of the traffic simulation for the different simulation
parameter settings. As expected larger fleet sizes, produce less routes and therefore complete
faster. The route selection criteria parameter c, has a small effect on simulation run time as well
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as the outputs that it produces. The difference in run time between simulations FAST and MED
is small due to the relatively small difference in the number of fleets. The simulation routes a
tenth of the trips for a time period t before updating the network. The workload of finding
the shortest routes through the network is spread over four cores. Once the shortest routes are
determined, updating the network by flowing the trips is executed with a single thread.

The flowing dominates finding the shortest paths through the network for the fleet sizes in
simulations FAST, FAST75, MED and MED75. As large fleets are split, it creates more fleets
that have to be flowed. The time gained in finding the shortest route through the network is
eventually lost when the large fleets are broken into smaller fleets. Therefore fleet large fleet
sizes (FAST,FAST75) do not reduce the run time to justify the less representative average trip
lengths.

Simulation Route output Arrival data Total average Average time
name file size (MB) file size (MB) number of fleets per iteration (minutes)

FAST 113 14.3 22565 56
FAST75 107 14.1 22271 55
MED 142 18.0 28582 58
MED75 145 17.8 28476 62
SMALL 385 52.7 84370 106
SMALL75 398 52.5 84065 105

Table 6.2: The parameter settings for the group sizes used in the the different simulations.

Decreasing the fleet size to that of the simulation parameters for SMALL and SMALL75 do
give marginally beneficial gains to the other metrics discussed in this chapter. However the
run times almost double going from MED to SMALL. The average iteration time will increase
hyperbolically, up to the upper bound of simulating each trip, as the total average number of
fleets increase as fleet sizes are reduced.

6.8 Chapter conclusion

The trip length stability analysis showed that decreasing the fleet size leads to more stable
trips. This is in line with expected simulation behaviour. Smaller simulated fleets produce more
representative average travel times for both intra-TAZ and inter-TAZ trips. The stability can
further be improved by decreasing the route selection parameter c from 1 to 0.75. When a fleet
can be routed to the shortest distance path a quarter of the time, it also increases the trip length
table stability. The mode drive is the most sensitive to a change in fleet size and route selection
parameter because it makes up the bulk of PCEs in the network. The mode taxi is less sensitive
to a change in the parameters than drive, but more sensitive than the mode bus.

Decreasing the route selection parameter c to 0.75 is only beneficial to trip table stability across
all modes for the fleet sizes in configurations FAST and FAST75. The increase in trip length
stability did not translate to an increase in trip table stability when the route selection parameter
is increased. This is expected because routing a quarter of trips through the shortest distance-
route irrespective of congestion, creates more congestion and skews average trip lengths.

The framework is partially sensitive to a change in c. It causes a marginal shift from intra-
TAZ trips to inter-TAZ trips for the mode drive. The increased congestion caused by routing
trips through the shortest distance route, ignoring congestion causes the trips distribution to
destabilise. This does not translate to destabilising the split between the number of intra-
TAZ and inter-TAZ routes or the route stability, it does however changes at what point the
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equilibrium is approached.

Smaller fleet sizes does on average translate to a better match between simulated flows and
observed vehicle counts. A decrease in c from 1 to 0.75 lead to more accurate simulated flows
for the fleet sizes of FAST and SMALL. This could be an indication that drivers will ignore
congestion if it is on the shortest distance route. More likely it could be that the increased
levels of congestion produces more accurate traffic flows because it compensates for the absence
of traffic from other trip purposes. It should be noted that the marginal accuracy gains of the
smaller fleet sizes come at a great computational cost.

The TLD convergence analysis shows that the framework is marginally affected by changes in the
fleet size as well as a decrease in c. This means that the framework when used in conjunction with
the proposed gravity model is robust enough to find trip distributions such that it reproduces
the OTLD for morning peak commuter traffic in the Western Cape. This could lead to less
accurate trip distributions if only the TLD or average trip length is considered. It is therefore
important that all aspects discussed in this chapter should be taken into consideration when
and if the traffic simulation parameters are be calibrated or when traffic modelling is conducted.

This chapter illustrated to what extent the framework is sensitive to changes in route criteria
and fleet size parameters. The results and visual output from the framework is discussed in the
next chapter.
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The previous chapter contained a sensitivity analysis of the traffic simulator parameters. This
chapter contains a discussion of the outputs produced by the framework.

7.1 Visual output

The final simulation output from the Python simulation is inserted into a PostGIS enabled
Postgres database. Once in Postgres, the output can be visualised with QGIS.

7.1.1 Routes

Zone 9020 is selected as an example because the trip length distributions, for each mode, as can
be seen in Figures A.7, A.8 and A.9 is significantly different.

Figures 7.1,7.2 and 7.3 shows the routes of the trips originating from zone 9020, which is shaded
in grey, produced by the traffic simulator, simulating the proposed model from simulation med.
The width of the network edges in Figures 7.1(a), 7.2(a) and 7.3(a) are representative of the
passenger car equivalents (PCE) for each of the modes. The width of the edges in Figures 7.1(b),
7.2(b) and 7.3(b) are representative of the number of trips. The graphical output highlights how
inefficient driving to work alone is in terms of taking up space on the road compared to using
public transportation based on the assumption that buses and taxis transport 33 and 15 people,
respectively.

The thickness of the lines extend further for the mode bus, than for drive and taxi which is
expected based on the fitted density functions in Appendix A. The fitted density function for
the mode bus have more trips which are 100 minutes or longer. Figures 7.4,7.5 and 7.6 show the
routes used by trips destined for zone 9020. From the graphical output it is evident that there

79
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(a) drive PCE (b) drive trips

Figure 7.1: Graphical output of routes taken from trips originating from zone 9020 mode drive.

(a) bus PCE (b) bus trips

Figure 7.2: Graphical output of routes taken from trips originating from zone 9020 mode bus.

(a) taxi PCE (b) taxi trips

Figure 7.3: Graphical output of routes taken from trips originating from zone 9020 mode drive.
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are many more trips destined for zone 9020, than leaving it. This is consistent with the input
data, Table A.7, which shows that there are 152507 jobs in zone 9020 but only 95295 workers.

(a) drive PCE (b) drive trips

Figure 7.4: Graphical output of routes taken from trips destined to zone 9020 for mode drive.

(a) bus PCE (b) bus trips

Figure 7.5: Graphical output of routes taken from trips destined to zone 9020 for mode bus.

7.1.2 Congestion

The congestion can be visualised as seen in Figure 7.7. The width of the lines is representative
of the flow rate in terms of passenger car equivalents. The colours of the lines represent the level
of congestion expressed in terms of the flow rate as a percentage of flow capacity.

Figure 7.8 shows a snapshot of where vehicles are present in the network at the end of an
interval. The colours represent how full the edge is and the width indicates how many passenger
car equivalents are present on the edge. This highlights the limitations of the traffic simulator
which uses vertical queues to model congestion. The congestion would cause a ripple effect
downstream causing more roads to be at their physical standing capacity.

The vertical queue sizes in Figure 7.9 represents the scale of congestion. Due to the limitation
of the vertical queueing of the traffic simulator, congestion is not propagated back through the
network, but queued everywhere when a vehicle arrives at a segment that does not have capacity.
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(a) taxi PCE (b) taxi trips

Figure 7.6: Graphical output of routes taken from trips destined to zone 9020 for mode taxi.

(a) 05:00 - 05:15 (b) 06:00 - 06:15

(c) 07:00 - 07:15 (d) 08:00 - 08:15

Figure 7.7: Traffic flow at 05:00–05:15, 06:00–06:15, 07:00–07:15 and 08:00–08:15.

This means that vehicles travel through the network until they arrive at a segment that has been
fully saturated and is then placed in a queue. These queues then build up over time due to the
arrivals outpacing the segment capacity constraints.
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(a) 05:15 (b) 06:15

(c) 07:15 (d) 08:15

Figure 7.8: PCE present at 05:00–05:15, 06:00–06:15, 07:00–07:15 and 08:00–08:15.

7.2 Estimated congestion

The estimated congestion can be calculated by comparing each Cij of the last iteration with the
free flow times. The increase in travel time is expressed in terms of a 30 minute trip. For all trips
destined for TAZ 9030, Central Cape Town, the estimated congestion can be found in Table 7.1.
Trips leaving earlier have to travel further to get to Cape Town, but will eventually get stuck in
traffic unless they depart before 05:30. The output of the traffic simulator estimates that trips
leaving for ZONE 9030 at 06:30 suffer the effects of congestion the most with an average travel
time increase of 72%. This corresponds to the 2015 estimated congestion figure from TomTom
[48].

7.3 Chapter conclusion

The results contained in this chapter are an example of the outputs that the framework is
capable of producing. It is based on a traffic network built out of assumptions of a very small
segment sample size as well as only the input data of the morning commuter traffic, which does
not include traffic from other purposes. Despite these shortcomings it accurately estimated the
average level of congestion affecting trips destined for the central business district in Cape Town
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(a) 05:15 (b) 06:15

(c) 07:15 (d) 08:15

Figure 7.9: PCE queues at 05:15, 06:15, 07:15 and 08:15.

Minutes Percentage
Departure time drive bus taxi drive bus taxi

05:30 8.56 8.99 13.55 29% 30% 45%
06:00 17.87 17.9 17.53 60% 60% 58%
06:30 21.66 22.55 22.13 72% 75% 74%
07:00 19.9 22.61 21.45 66% 75% 71%
07:30 19.91 20.45 20.57 66% 68% 69%
08:00 17.15 9.01 18.03 57% 30% 60%

Table 7.1: Estimated average congestion on a 30 minute trip destined for TAZ 9030.

(TAZ 9030). This can be attributed to the data preparation of the network which consisted of
discerning the number of lanes on the national highways and provincial roads through Google
Maps satellite imagery.

This chapter is used to show and discuss examples of the output that is produced by the
framework. The next chapter serves as the conclusion to the thesis.
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The previous chapter contained a discussion of the outputs of the framework. This chapter
summarises the findings of the thesis and serves as its conclusion.

The research conducted in this thesis investigated the feasibility of a scalable traffic modelling
framework. It puts forth an extension to the doubly constrained gravity model, traditionally
used in the FSM methodology, within a temporally dynamic iterative equilibrium estimation
framework.

The thesis introduction in Chapter 1 contains a brief discussion on the concepts of traffic con-
gestion and the nuances associated with transportation modelling. The problem statement in
Section 1.3 highlights the importance of accurate transportation modelling: Infrastructure in-
vestment based on a misaligned view of congestion could lead to detrimental long term effects.
This is the impetus for modelling transportation at a provincial level within the South African
context. A more comprehensive framework with regards to the study size, should make it pos-
sible to more accurately quantify the up- and down stream of changes caused by a change to
infrastructure or worker behaviour. The outputs of such a framework can be used to better
inform policy decisions or infrastructure development plans. The following list of objectives
served as a guide to construct the framework set forth within this thesis:

• Conduct a literature review on existing transportation modelling methodologies.
• Evaluate available data sources.
• Select and implement a traffic modelling framework.
• Validation of the framework.
• Sensitivity analysis of the framework.
• Conclusions and recommendations.

85
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8.1 Key findings

The first objective is achieved in Chapter 2, which consists of an overview of different methods for
modelling transportation. Most of the transportation methodologies do not scale well and one of
the key findings of the literature review chapter is that the method for modelling transportation
is very data dependent. The framework is therefore limited to be constructed around what data
is available for the South African context.

The CSIR GAP, Open Street Map, 2011 National census and 2013 NHTS are identified as the
available data sources for modelling South African transportation, and is discussed in Chapter
3. The available data is suitable to use in a disaggregate approach of transportation modelling.
The discussion contained in Chapter 3 completes the second thesis objective.

A proposed gravity model is therefore developed by augmenting the doubly constrained gravity
model typically used in literature. The augmentations aim to improve the temporal stability,
which addresses a critique of the FSM methodology, and intra-TAZ trip attraction, to account
for the incompleteness of the 2013 NHTS. The traditional FSM approach fits a impedance of
travel function through a calibration process. In order to improve scalability to multiple TAZs,
the proposed gravity model uses survey data to construct these impedance of travel function for
each TAZ. This proposed model, defined in Chapter 4, is calibrated based on the intra-zonal
and temporal parameter space, rather than fitting an impedance of travel function.

Both the traditional and proposed gravity models are implemented for trip distribution and
modal split within a FSM framework. The framework uses an iterative, DTA method for route
selection and is implemented within a mesoscopic traffic simulator.

The comparative analysis of the two gravity models contained in Chapter 5 also serves as the
validation and verification of the framework implementation and completes the fourth thesis
objective. The analysis shows that while both models converge, the proposed gravity model
produces more accurate trip distributions than that of the traditional gravity model. The trip
distributions of the proposed gravity model are also more sensitive to changes in the trip length
tables.

The fifth thesis objective is achieved with the sensitivity analysis of the framework to changes in
simulation parameters are evaluated in Chapter 6. The framework reacted within expectations
of the changes to the fleet size and route selection criteria parameters. Assigning a proportion
of routes based on the shortest travel distance increases trip length stability at the cost of
destabilising the trip table convergence. The simulated traffic flows that routed a portion of
trips through the shortest distance path, where trips are routed irrespective of congestion, were
closer to observed traffic flows for a typical week day than the flows produced by simulations
routing through the shortest travel time path. It is unclear whether this is a reflection of driver
behaviour or an effect of only simulating the morning commuter traffic.

Smaller fleets, or simulating more trips, produce marginally more accurate trip distributions,
that matches observed traffic flows better, at a linear cost to computational time and simulation
output file size. The average trip lengths in the trip length tables become more representative as
more fleets are simulated through the network which translate to more stable trip distributions.

The output obtained from the framework is visualised in a GIS environment in Chapter 7. The
framework accurately predicts the level of congestion experienced by commuters destined to the
central business district in Cape Town.

The framework constructed within this thesis establishes the precedence of large scale trans-
portation modelling techniques. The recommendations that stem forth from its development are
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aimed towards future researchers, current practitioners and transportation authorities. These
recommendations fulfil the sixth and final thesis objective.

8.2 Conclusions and recommendations

As urban areas grow larger, it compounds the growing problem of traffic congestion. Changes
in infrastructure have up- and down-stream effects, some of which cannot be fully accounted
for, due to the limited scope of the traditional transportation modelling approaches. To avoid
detrimental infrastructure investment or policy decisions, their impacts need to be assessed on
a larger than previously necessary scale, due to the increase in urban population density.

The traditional gravity model is calibrated through finding an impedance of travel function
which minimises the difference between the modelled and observed trip length distribution.
This means that the same impedance of travel function, or underlying travel behaviour, is used
to model the trip distribution for each TAZ. This approach does not scale well. A larger study
area means there are more potential differences in travel behaviour from one TAZ to another.

The framework put forth in this thesis establishes a precedence for the viability of large scale
transportation modelling. The proposed gravity model leverages the same survey data to pro-
duce temporally and spatially adjusted trip distributions that are more accurate than that of
the traditional gravity model. The proposed gravity model requires an impedance of travel
function to be fitted and fixed for each TAZ. It then calibrates the temporal adjustment and
intra-zonal attraction parameters to find a parameterisation, that when the trip distributions
for each TAZ is aggregated it, adds up to the observed aggregate travel behaviour. This is a
fundamental paradigm shift wherein each TAZ’s trip length distribution is preserved as opposed
to each zone being assigned the same impedance of travel function that, when used to distribute
trips, produces a similar aggregate TLD to that of the observed TLD. The proposed gravity
model therefore improves upon the scalability of modelling methodologies based on a doubly
constrained gravity model.

The use of large scale transportation modelling, based on a DTA approach, is recommended as
an integral tool to assist practitioners. It provides a robust framework with which the potential
up and down stream impacts of large infrastructure investments or to guide policy decisions
regarding transportation can be evaluated. In addition, because transportation modelling is
data dependent, it is recommended that:

• Researchers should further investigate and refine large scale transportation modelling tech-
niques. Urban population density is forecast to increase, which will compound the up and
down stream effects of changes to infrastructure or policy. Effective techniques should be
available to evaluate these impacts.
• Practitioners should avoid an one size fits all or black box approach to transportation

modelling. A fundamental understanding of the transportation modelling techniques, their
limitations and data requirements should inform the selection of a suitable transportation
modelling methodology.
• Transportation authorities should maintain a detailed spatial database of all transportation

infrastructure. A central database containing the physical attributes of the transporta-
tion network and other related data will facilitate the implementation of more accurate
transportation modelling.
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8.3 Future work

The framework, as it is implemented in this thesis, is not sufficient to evaluate policy deci-
sions or infrastructure investment, as it only incorporates people travelling to work during the
morning peak. In order to measure the effect of increased public transportation, all instances
of travel should be incorporated into the framework. This includes commercial vehicles (heavy
and light), scholars/students travelling to school/academic institutions, as well as travel related
to recreational purposes. Bus stops and taxi ranks should also be incorporated in to the TAZ
connector selection.

8.3.1 Breadth-wise

Given that the road network data is accurate enough in terms of capacity and types of facilities,
and that the traffic simulator is enhanced to incorporate horizontal queues spilling backwards,
the framework developed in this thesis can be used to:

• estimate and forecast through traffic and the split between inter zonal travel per TAZ for
more detailed single TAZ micro simulation models,
• determine specific routes between travel analysis zones that can be used for methods than

have a proven equilibrium,
• measure congestion given that all reasons and modes for travelling are incorporated,
• estimate vehicular emissions,
• evaluate the effect of additional road capacity and
• investigate the effect of a shift from private to public transportation on congestion.

8.3.2 Depth-wise

The line search procedure used in this thesis to determine the gravity model parameters can be
improved upon by means of an algorithm that dynamically searches the parameter space. A
directed search method could be a more efficient than uniformly sampling the parameter space
and could produce parameters that lead to more accurate trip distributions.

8.4 Chapter conclusion

The proposed gravity model put forth in this thesis aims to improve the scalability of disag-
gregate traffic demand modelling. It produces trip distributions that are more accurate than
the traditionally used gravity model, within the framework presented in this thesis. Although
it requires fitted kernel density functions from survey data to define unique impedance of travel
functions for each TAZ, it improves the scalability of the doubly constrained gravity model.
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APPENDIX A

Auxiliary formulas figures and graphs

Given the parameters in Table A.1,

Symbol Definition

TF Length of simulation time frame
vf Free-flow speed
Q Capacity
kn Density at capacity
vn Speed at capacity
tf Free-flow travel time
tn Travel time at capacity
dn Traffic delay at capacity
hn Average headway at capacity
Ln Average spacing at capacity
qo Flow limit for free-flow speed
xo Saturation below which speed equals free-flow speed
qa Number of traffic arrivals

Table A.1: Parameter definitions for calculating the flow speed in a network segment.

the flow speed, v can be expressed as

v =



vf

(1+0.25vfTf

(
z+

√
z2+8kd

x′−xo
QTf

+
16kdN

(QTf )2

) for N > 0

vf

(1+0.25vfTf

(
x−1+

√
(x−1)2+8kd

x−xo
QTf

) for N = 0

vf for qa < qo.

, (A.1)

The parameters x, xo, kd and z are defined as

x =
qa
Q

(A.2)

x0 =
qo
Q

(A.3)

kd =
2Q(

vf
vn
− 1)2

v2
fTf (1− xo)

, (A.4)

z = x− 1 +
2N

QTf
(A.5)
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Enumeration Area type

Collective living quarters
Commercial
Farms
Formal residential
Industrial
Informal residential
Parks and recreation
Small holdings
Traditional residential
Vacant

Table A.2: Census Enumeration Area types

Enumeration Area gtype

Farms
Traditional
Urban

Table A.3: Census Enumeration Area gtypes
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Figure A.1: Binned surveyed departure times from the 2013 NHTS for respondents who drove all the
way to work in the Western-Cape.
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Figure A.2: Binned surveyed departure times from the 2013 NHTS for respondents who took a bus all
the way to work in the Western-Cape.
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Figure A.3: Binned surveyed departure times from the 2013 National Household Travel Survey for
respondents who took a taxi all the way to work in the Western-Cape.
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Figure A.4: Binned surveyed travel times from the 2013 National Household Travel Survey for respon-
dents who drove all the way to work in the Western-Cape.
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Figure A.5: Binned surveyed travel times from the 2013 National Household Travel Survey for respon-
dents who took a bus all the way to work in the Western-Cape.
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Figure A.6: Binned surveyed travel times from the 2013 National Household Travel Survey for respon-
dents who took a taxi all the way to work in the Western-Cape.
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Road Type

access 2
motorway 2
motorway junction 2
motorway link 1
primary 2
primary link 1
residential 2
residential link 2
road 2
secondary 2
secondary link 1
service 2
services 2
tertiary 2
tertiary link 1
trunk 2
trunk link 1
turning circle 2

Table A.4: Lane Assumptions for network development

Free-flow speed (km/h) Capacity Q (pce/h/lane)

120 2400
110 2350
100 2300
90 2250
80 1850
70 1800
60 1800
<60 1800

Table A.5: Table of capacity in terms of passenger car equivalent per lane per for different free-flow
speeds.

lanes Adjustment Factor

1 1
2 0.838
3 0.872
4 0.776
5 0.74
6 0.698
7 0.585
8 0.438

Table A.6: Table of flow capacity factors derived from vehicle counting station data.
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TAZ name TAZ id workers jobs

Matzikama 9001 13208 17358
Cederberg 9002 8130 10377
Bergrivier 9003 12698 18270
Saldanha Bay 9004 33039 30443
Swartland 9005 27722 32951
Witzenberg 9006 21590 29736
Drakenstein 9007 69974 80542
Stellenbosch 9008 40295 55872
Langeberg 9009 37885 49554
Langeberg 9010 20263 24801
Theewaterskloof 9011 25220 31101
Overstrand 9012 24709 25976
Mossel Bay 9015 24897 25254
Oudtshoorn 9016 18296 19857
George 9017 52126 56290
George Rural/Knysna/Bitou 9018 1963 1846
Central Karoo 9019 1728 1979
Northern Corridor 9020 95295 152507
Kraaifontein 9021 64353 32059
Parow/Bellville 9023 104736 174904
Blue Downs 9024 87596 18654
Belgravia 9025 61675 42842
Grassy Park 9026 96702 67234
Mitchells Plain/Gugulethu 9027 170203 99574
Khayelitsha 9028 119027 19153
Somerset West 9029 9601 26627
Central Cape Town 9030 52523 290323
Kuilsrivier 9031 33689 37615
Durbanville 9032 37640 9430
Oostenberg 9033 59395 86061
Langa/Bishop Lavis 9035 62779 67439
Strand 9036 72933 48769
Simonstown 9037 47863 40251
Wynberg 9038 56498 116447
Sea Point 9040 54201 28778
Cape Agulhas/Swellendam 9041 9989 10598
Cape Agulhas/Swellendam 9042 7904 10205
Hessequa 9043 12142 13859
Hessequa 9044 3907 3865
George Rural/Knysna/Bitou 9045 14261 15667
George Rural/Knysna/Bitou 9046 20256 20546
Central Karoo 9047 7829 9450
Central Karoo 9048 2286 2535

Table A.7: Table of the number of workers and jobs within a TAZ.
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Figure A.7: Fitted kernel density functions with binned data histogram for TAZ 9020 for modes drive
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Figure A.8: Fitted kernel density functions with binned data histogram for TAZ 9020 for modes bus
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Figure A.9: Fitted kernel density functions with binned data histogram for TAZ 9020 for modes taxi
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Station Code Station Code

035 5012
085 5016
1040 5017
1114 5019
1132 5021
1203 5022
1229 5023
1243 5025
1275 5026
1328 5027
1330 5028
1331 5029
1336 5050
1337 5060
1366 5061
1397 5062
1398 610
1399 612
2324 706
2325 708
2400 710
2402 712
2403 720
279 880
5005 881
5006 917
5008 970
5011

Table A.8: Vehicle counting station codes.
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Figure A.10: Total number of intra- and inter-zonal routes, given a 10% overlap for the mode drive.
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Figure A.11: Total number of intra- and inter-zonal routes, given a 90% overlap for the mode drive.
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Figure A.12: Total number of intra- and inter-zonal routes, given a 10% overlap for the mode bus.
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Figure A.13: Total number of intra- and inter-zonal routes, given a 90% overlap for the mode bus.

1 2 3 4 5 6 7 8 9 10 11 12

20

40

iteration

N
u
m
b
er

o
f
ro
u
te
s

(a) intra

1 2 3 4 5 6 7 8 9 10 11 12
850

900

950

1,000

iteration

proposed

traditional

(b) inter

Figure A.14: Total number of intra- and inter-zonal routes, given a 10% overlap for the mode taxi.
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Figure A.15: Total number of intra- and inter-zonal routes, given a 90% overlap for the mode taxi.
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Figure A.16: Total number of intra- and inter-zonal routes, given a 10% overlap for the mode drive.
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Figure A.17: Total number of intra- and inter-zonal routes, given a 90% overlap for the mode drive.
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Figure A.18: Total number of intra- and inter-zonal routes, given a 10% overlap for the mode bus.
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Figure A.19: Total number of intra- and inter-zonal routes, given a 90% overlap for the mode bus.
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Figure A.20: Total number of intra- and inter-zonal routes, given a 10% overlap for the mode taxi.
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Figure A.21: Total number of intra- and inter-zonal routes, given a 90% overlap for the mode taxi.
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