
 
 

THE EFFECTS OF DIFFERENT 
SELENIUM SOURCES ON THE MEAT 

QUALITY AND BIOAVAILABILITY OF 
SELENIUM IN LAMBS 

 

by  
Jacobus Johannes Esterhuyse 

December 2012  

Thesis presented in fulfilment of the requirements for the degree of  
Master of Science in Agriculture in the Faculty of AgriSciences at 

Stellenbosch University 

Supervisor: Dr WFJ van de Vyver 
Co-supervisor: Prof CW Cruywagen 

 



ii 
 

 

 

 

Declaration 
 
 
By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, 

original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that 

reproduction and publication thereof by Stellenbosch University will not infringe and third party rights and I 

have not previously in its entirety or in part submitted it for obtaining any qualification. 

 

 

 

Date:  December 2012 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2012 Stellenbosch University 
 

All rights reserved 

Stellenbosch University http://scholar.sun.ac.za



iii 
 

Abstract 

THE EFFECTS OF DIFFERENT SELENIUM SOURCES ON THE MEAT QUALITY AND 

BIOAVAILABILITY OF SELENIUM IN LAMBS  

by 

Jacobus Johannes Esterhuyse 

 
Supervisor:  Dr W.F.J. van de Vyver 
Co-supervisor:  Prof. C.W. Cruywagen 

Department:  Animal Sciences 

Faculty:  Agricultural Sciences 

University:  Stellenbosch 

Degree:  MSc Agric (Animal Science) 

 
 
In many parts of the world, soil is depleted of selenium (Se), leading to selenium-poor plants, animals 

and, therefore, humans. It was recognised that a study to examine the functionality of new products on 

the market to address this problem was required. 

   

The purpose of this research were threefold: to compare the effects of sodium selenite (NaSe) and 

organically bound selenium sources on small ruminant performance, to investigate the bioavailability of 

these Se sources, and analyse their influence on carcass characteristics, meat quality and antioxidant 

capabilities. Fourty growing Döhne Merino wethers from the Southern Cape region, a selenium-deficient 

area, were used for the study. The animals were all fed the same basal diet in the adaptation period and 

were then allocated to one of four treatment groups: Control (CT), inorganic selenium (IS), organically 

bound Se A (OSA) or B: (OSB). The period of supplementation was 90 days.  

 

This first study assessed the effect of the different Se sources on growth and Se bioavailability in the 

wethers. The wethers and the feed they consumed were regularly weighed to determine their growth and 

feed conversion rate (FCR) in the trial period. To gauge their Se level, blood samples were collected via 

jugular venipuncture at monthly intervals. The wool around the jugular was shorn and samples were 

collected on day 0 and day 90 for comparative Se level analysis. Liver, skeletal muscle and kidney 

samples were collected at day 90, directly after slaughter, to determine the Se level in these tissues. 

 

No effect could be reported in the growth and FCR of the wethers between the supplementation groups. 

For whole blood Se levels there was an effect in the early part of the study, with a greater increase in Se 

levels for the organically bound Se groups, but in the end no effect on whole blood levels could be seen 

between the different Se treatments. Neither could any difference between the inorganic Se and organic 

bound Se treatments be found in the liver – however, the total Se concentration of the wool, kidney and 
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meat samples was greater in those animals offered organically bound Se when compared with those 

receiving a comparable dose of inorganic Se.  

 

The second study evaluated the antioxidant capabilities of the different Se supplements in the wethers. 

Blood samples were taken monthly for plasma collection to test for Glutathione peroxidase (GSH-Px) 

activity and total antioxidative capacity (TAC) with the oxygen radical absorbance capacity (ORAC) assay. 

Liver, skeletal muscle and kidney samples were collected at day 90, immediately after slaughter and 

measured for GSH-Px activity.  

 

With TAC, there was a significant effect for the treatment period between day 0 and day 90, however the 

treatments did not show any significant difference. No significant differences could be established 

between the different Se treatments for the GSH-Px analysis in any of the tissues. For the mean plasma 

values of the treatments no significant differences can be reported, but a significant difference was 

observed at day 30 in the contrast between the organically bound Se and the other treatment groups.  

 

The third study was to evaluate the quality and lipid oxidation of muscle from those wethers 

supplemented with different Se sources. Skeletal muscle samples were collected at day 90, directly after 

slaughter to determine this. No differences in the meat quality of the wethers could be detected between 

Se sources after the 90-day supplementation period. Lipid oxidation was measured by determining TBA 

reactive substances (TBARS) and once again no differences could be detected.  

 

Based on the results found in this investigation, it may be inferred that organically bound Se (OSA & 

OSB) supplementation will hold a number of advantages for small ruminants over inorganic Se 

supplementation. Animals fed the organically bound Se had reached adequate Se levels sooner on the 

organically bounded treatments than the inorganically bounded treated animals. The greater 

bioavailability of organically bounded Se over inorganic Se was proven by the increased Se levels in 

certain tissues and organs. Additionally, only the organically bounded Se could find a pathway to the 

wool, confirming that it was carried in an organic form (probably selenomethionine) in the body. 

Organically bound Se will therefore have a positive impact on small ruminant health and production, 

which will result in an indirect advantage for consumer health. 

 
 

 

 

 
 
 
 
 
 
 
 

Stellenbosch University http://scholar.sun.ac.za



v 
 

Opsomming 
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Die grond in groot dele van die wêreld word selenium-arm en dit lei na selenium-arm plante, diere en 

mense. Dit is waargeneem dat ‘n studie wat kyk na die funksionaliteit van nuwe produkte op die mark om 

die probleem aan te spreek nodig is. 

   

Die doelwit van die studie was om verskillende selenium (Se) bronne te vergelyk en die uitwerking 

daarvan op klein herkouer prestasie te evalueer. Daar is gekyk na die biobeskikbaarheid, invloed daarvan 

op die karkas eienskappe en antioksidant vermoëns van die verskillende Se bronne. Veertig groeiende 

Dohne Merino-hamels van die Suid-Kaap-streek, 'n Se arm gebied is gebruik vir die studie. Die diere is 

almal dieselfde basale dieet gevoer in die aanpassing periode en dan toegeken aan een van vier 

behandelings: kontrole (CT), anorganiese Se (IS), organies gebinde Se A (OSA) of B: (OSB). Die tydperk 

van die aanvulling was 90 dae.   

 

In die eerste studie is gekyk na die effek van die verskillende bronne van Se op die groei en die 

biobeskikbaarheid daarvan aan die hamels. Die hamels en voer verbruik, is gereeld geweeg sodat hul 

groei en voer omset verhouding (VOV) in die proef tydperk te bepaal. Bloedmonsters is versamel deur 

middel van die jugulêre venipuncture vir die Se vlak bepaling daarvan. Lewer, skeletspier en nier 

monsters is versamel op dag 90, direk na die slagting vir die Se vlak bepaling. Die wol rondom die 

nekslagaar is geskeer en monsters is versamel op dag 0 en 90 vir Se vlak analise. 

 

Geen effek kan gerapporteer word vir die groei en VOV van die hamels tydens die aanvullings periode 

nie. Vir die bloed Se vlakke was daar 'n uitwerking in die vroeë deel van die studie, met 'n vinniger 

toename in Se vlakke vir die organies gebinde Se groepe, maar aan die einde kon geen effek gesien 

word tussen die verskillende Se behandelings nie. Geen verskil tussen die NaSe en organiese gebonde 

Se behandelings kon gevind word in die lewer nie. Die totale Se konsentrasie van die wol-, nier-en vleis 
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monsters groter was in die diere wat organies gebinde Se ontvang het wanneer dit vergelyk word met die 

wat 'n soortgelyke dosis van IS ontvang het. 

 

Die tweede studie het die antioksidant vermoëns van die verskillende Se aanvullings in die hamels 

geëvalueer. Bloedmonsters is maandeliks geneem om plasma in te samel en te toets vir die glutathione 

peroksidase (GSH-Px) aktiwiteit en die totale anti-oksidant kapasiteit (TAC) met die suurstof radikale 

absorbansie kapasiteit (ORAC) toets. Lewer, skeletspier en nier monsters is versamel op dag 90, direk 

nadat die hamels geslag is. Glutathione peroksidase aktiwiteit is gemeet in die plasma, lewer, spier en 

niere. Daarbenewens is die TAC van die plasma ontleed, deur gebruik te maak van die ORAC toets. 

 

Met TAC, was daar 'n effek vir die behandelings tydperk tussen dag 0 en dag 90, maar geen beduidende 

verskille tussen die behandelings nie. Geen beduidende verskille kon tussen die verskillende Se 

behandelings vir die GSH-Px analise in enige van die weefsel gevind word nie. Vir die gemiddelde 

plasma-waardes van die behandelings was daar geen beduidende verskille om te rapporteer nie, maar 'n 

beduidende verskil is met die kontraste tussen die organies gebinde en die ander behandelings 

waargeneem op dag 30. 

 

Die derde studie was om die gehalte en lipied oksidasie van die spiere van hamels wat met verskillende 

Se bronne aangevul is, te evalueer. Skeletspier monsters is versamel op dag 90, direk nadat die diere 

geslag is om die gehalte daarvan bepaal. Geen verskille tussen Se bronne kon opgespoor word in die 

vleis gehalte van die hamels na die aanvullings tydperk van 90 dae nie. Lipied oksidasie is gemeet deur 

die bepaling van TBA reaktiewe stowwe (TBARS) en geen verskille kon opgespoor word nie. 

 

Gebaseer op die resultate wat verkry is in hierdie ondersoek, kan dit afgelei word dat organies gebinde 

Se (OSA & OSB) aanvullings 'n aantal voordele sal inhou vir klein herkouers in verhouding tot die 

anorganiese Se aanvulling. Organies gebinde Se het 'n beter biobeskikbaarheid as NaSe want dit is beter 

geabsorbeer en geassimileer in die liggaam proteïen. Dit sal dus 'n positiewe impak op klein herkouer 

gesondheid en produksie hê, wat sal lei tot 'n indirekte voordeel vir die gesondheid van die mens. 
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CHAPTER 1 
 

General introduction 
 

In world hunger, the most significant deficiency is protein-energy malnutrition. This is the shortage of 

sufficient protein (from meat and other sources) and other foods that produce energy, measured in 

calories, found in all of the basic food groups (World hunger, 2011). 

 

New technologies and better farming systems are required to meet the growing demand for protein. 

South Africa is no different from the rest of the world and the soil is becoming depleted of Se, leading to 

selenium-poor plants, animals and therefore humans. Selenium is recognised as an essential trace 

element for the maintenance of health, growth and a myriad of biochemical-physiological functions. In 

recent years the importance of adequate Se levels to maintain human and animal health has become 

more evident. 

 

In South Africa, thousands of people are directly dependent on sheep farming for their food and 

livelihood, with millions dependent in turn on livestock farmers to provide them with sufficient good quality 

protein. The world population is growing, with more mouths to feed and shrinking land resources suitable 

for livestock production. Therefore, with ‘food security’ the new buzz-word, new technology and better 

farming systems are required to meet this demand.  

 

The specific purpose of this research were threefold: to compare the effects of inorganic and organically 

bound Se sources on small ruminant performance, to investigate the bioavailability of these Se sources, 

and analyse their influence on carcass characteristics, meat quality and antioxidant capabilities. 
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Chapter 2 

Literature review 

 

1. Selenium 

 

In 1817 selenium (Se) was discovered in the flue dust of iron pyrite burners by the Swedish chemist, Jons 

Jacob Berzelius (Levander, 1986; Sunde, 1997). Since its discovery Se has had an interesting history. In 

the 1930s Se was identified as a toxic agent implicated in alkali disease and blind staggers (Franke, 

1934; Franke & Potter, 1935; Moxon, 1937) and in 1943, Nelson et al. classified Se as a carcinogen. It 

was considered a dangerous element until 1957 when Schwarz and Foltz identified Se to be one of three 

compounds that prevented liver necrosis in rats, thus establishing Se as a nutritionally essential trace 

mineral. Nutritionists and scientists then started numerous studies to discover the metabolic function of 

the element and record the consequences of its deficiency in human and animal diets. It was not until 

1974 that Se was added as a supplement to animal diets. 

  

The discovery of severe Se deficiency in certain parts of China in the 1970s has proven that this trace 

element is also an essential nutrient for human health (Keshan Disease Research Group, 1979; 

Whanger, 1989; Levander, 1991; Ge & Yang, 1993), and its role has been reviewed recently (Rayman, 

2000, 2004). It was reported (Phipps et al., 2008) that between 1975 and 1995, Se intake in the United 

Kingdom decreased from around 60 to 34 μg/d per person, which means that the current (2011) intake is 

about half of the UK Reference Nutrient Intake. The Se content of foods obtained from plants and animals 

are, to a great extent, influenced by the availability of soil Se for uptake by plants (Shrift, 1969). Evidence 

suggests that the Se intake in large parts of Europe is too low when compared to the recommended 

intake (Rayman, 1997; Rayman, 2000).  

                                                                                                                                                       

The decreasing Se intake in the last decades has been mainly credited to a change in the source of 

wheat for bread and cereal products, from primarily North American to European origin (from a high to low 

selenium content). These are reflected in decreasing levels of Se in human plasma and serum (Biesalski, 

2005). This decline has caused concern because suboptimal intake is associated with a number of 

serious health issues. 

  

Two diseases have been associated with severe endemic Se deficiency in humans: a juvenile 

cardiomyopathy (Keshan disease), and a chondrodystrophy (Kaschin-Beck disease). Each occurs in rural 

areas of China and Russia in food systems with exceedingly low Se supplies. Keshan disease has been 

noted in mountainous areas where the soil Se levels are very low (Combs, 2001). In these areas humans 

have shown the lowest reported Se levels. Dramatic reductions in Keshan disease incidence have been 

achieved by the use of oral Sodium selenite or selenite-fortified table salt (Keshan Disease Res. Group, 

1979). Low blood Se levels have been measured in patients with several other diseases (Combs, 2001). 
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Children with protein deficiency diseases, Kwashiorkor or marasmus, tend to be low in Se as Se occurs in 

food proteins. 

  

In nature Se occurs inorganically as selenite, selenate, elemental Se or selenide, and organically 

bounded forms include selenomethionine (SeMet) and selenocysteine (SeCys) (Ike et al., 2000). A 

number of positive effects were observed in feeding trials, when researchers increased the Se dosage for 

the animals. The US Government gave approval for the supplementation of Se to the diets of animals in 

1979, while they regulated both the concentration (0.1 ppm) and the source (sodium selenite or selenate) 

of supplemental selenium. In 1987 the regulation was modified and the allowed supplemental Se level 

was increased to 0.3 ppm in ruminant diets, but the approved sources (sodium selenite and selenate) did 

not change. With constant research and new data, the FDA (2003) had to update the regulation in 

September 2003 to permit the use of organically bound Se in the form of Se yeast in the diets of beef and 

dairy livestock. The maximum supplementation rate allowed in the US was maintained at 0.3 ppm of Se, 

though it was higher at 0.5ppm in Europe. 

 

2. Absorption and metabolism 

 

Selenium absorption in the intestine is affected by the form of dietary Se (Sunde, 1997). A number of 

studies done on various animal species including sheep, pigs (Wright & Bell, 1966) and rats (Whanger et 

al., 1976) confirmed that the duodenum is the site were the greater part of dietary Se is absorbed, 

regardless of source. Selenium that occurs naturally in feeds is largely found as selenoamino acids, with 

selenomethionine (SeMet) compromising more than 50 % of total Se in many feed ingredients, it fulfils the 

criteria of an essential aminoacid (Schrauzer, 2003). Inorganic selenium is generally supplemented in 

animal diets as sodium selenite. Sodium selenite is absorbed through the small intestine by simple 

diffusion, while SeMet is actively absorbed by the same amino-acid transport system as methionine 

(Sunde, 1997). Both forms of Se are well absorbed in monogastric animals. Overall, however, the 

absorption of Se is poorer in ruminants and this may be connected to the reduction of dietary Se to 

insoluble forms in the rumen environment (Spears, 2003). The absorption of Se is not regulated by 

dietary Se concentration or Se status, and Se homeostasis is primarily regulated by the urinary excretion 

of Se (Schlegel et al., 2008).  

 

The chemical form and the amount of Se ingested will regulate the metabolism thereof. Following 

absorption, sodium selenite and SeMet are metabolised differently (Sunde, 1997). Sodium selenite is 

reduced to selenide which can be used for synthesis of selenocysteine (SeCys), or methylated and 

excreted in urine. Selenocysteine is the form of Se present in selenoenzymes such as Glutathione 

peroxidase (GSH-Px). SeMet can be incorporated into proteins in place of methionine, or be reformed to 

SeCys. Dietary methionine levels will affect the extent to which SeMet is incorporated into general 

proteins (Butler et al., 1989). The pathway of the metabolism of NaSe was summarised by Sunde (1997). 

First, the selenate is converted to selenite (Axley & Stadtman., 1989); this is then nonenzymically reduced 
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by glutathione to elemental Se, forming seleno-diglutathione (Ganther, 1966). With the lack of oxygen, 

selenide is formed by glutathione reductase from seleno-diglutathione (Hsieh & Ganther, 1975); from 

where it can take varies routes. The selenide can be methylated to various forms (Hsieh & Ganther, 

1977), but the relevant path is where selenide bind to selenium-binding proteins. It can also form part of 

the synthesis of selenoproteins (Sunde, 1997) by tRNA, which will convert the inorganic Se to its 

organically bound form, which is found in mammalian tissues. 

 

According to Sunde (1997); organically bound Se are metabolised in a different way than NaSe. This Se 

can easily be integrated into a protein such as selenomethionine (SeMet), (Hoffman et al., 1970; 

McConnell & Hoffman, 1972) this can then be metabolised to Se-adenosyl methionine, and then further to 

Se-adenosyl homocysteine (SeAH; Markham et al., 1980). The SeAH can then be converted to 

selenocysteine (SeCys), which can then be then be degraded. The degrading process will release 

selenite, or differently be degraded to elemental Se, which can be reduced further to selenide (Esaki et 

al., 1982). The metabolism of the SeMet can follow another route as describe by Steele & Benevenga in 

1979, where the SeMet is transaminated to methaneselenol. The methaneselenol can then be further 

converted into selenide, (Sunde, 1997) from where the metabolism will follow the route as described 

above. 

 

3. Bioavailability 

 

Bioavailability may be defined as that part of Se absorbed from the gastrointestinal tract which is 

metabolically available for the maintenance of the normal structures and physiological processes of an 

organism under defined conditions (Wolffram, 1999). The bioavailability of organically bound trace 

minerals in ruminants is proven to be superior to that of inorganic sources (Kincaid et al., 1997; Spears, 

2003). Criteria that have been used to assess Se bioavailability include GSH-Px activity (Gabrielsen & 

Opstvedt, 1980), tissue Se concentrations (Osman & Latshaw, 1976), and prevention of Se deficiency 

symptoms (Cantor et al., 1975a, b). Bioavailability estimates for Se sources (especially SeMet relative to 

selenite) varies greatly depending on the criterion used. Feeding SeMet or selenised yeast increases Se 

concentrations in blood (Ortman & Pehrson, 1999) and muscle compared with selenite (Osman & 

Latshaw, 1976; Mahan et al., 1999). Glutathione peroxidase activity is the preferred criterion for 

assessing Se bioavailability and measures the utilisation of Se in animals fed on selenium-deficient diets. 

The activity of GSH-Px in plasma, red blood cells, and a number of organs responds in a dose manner to 

dietary Se concentrations which fall below requirement (Oh et al., 1976). Clearly Se incorporation into 

non-specific proteins does not represent utilisation of Se for a specific biochemical function. When chicks 

were fed selenium-deficient diets after receiving supplemental Se from either selenite or SeMet, whole 

blood (Moksnes & Norheim, 1986) and plasma GSH-Px (Payne & Southern, 2005) declined more rapidly 

in birds which had originally received selenite. This confirms that SeMet from non-specific proteins is 

released during normal protein catabolism and used as a source of Se for GSH-Px synthesis. 
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4. Selenium deficiency 
 

Deficiencies of Se have been observed in cattle and sheep under grazing conditions worldwide. These 

deficiency symptoms include white muscle disease (Muth et al., 1958), particularly in young animals or 

lambs born to selenium-deficient ewes, loss of Glutathione peroxidase activity and selenoprotein (Yeh et 

al., 1997), suppression of immunity (Yamini & Mullaney, 1985) and infertility in ewes grazing in selenium-

poor pastures. The economic losses of poor performance and wool growth due to marginal Se deficiency 

may be underestimated because of the absence of clinical signs (Hill et al., 1969). 

   

Likely responses to supplementation can be expected in growth, wool growth and fertility in sheep with 

selenium-poor grazing or diets (<0.1 mg Se/kg DM). Van Ryssen et al. (1989) observed that the greatest 

effects of inorganic Se versus high-selenium wheat on Se concentration in tissues were to be found in the 

liver, muscle and wool. Clinical deficiency symptoms are however not readily observed; Van Ryssen and 

co-workers (1999) recognised lambs with Se concentrations of between 9 and 26ng Se/ml whole blood as 

selenium-deficient, although clinical deficiency symptoms had not been observed. Puls (1994) regarded 

levels of < 50ug/L as indicative of Se deficiency in sheep. However, Se levels regarded as deficient, 

marginally deficient and adequate differ slightly between sources. 

 

Inorganic Se supplementation is still the norm to prevent Se deficiency in ruminant animals, but evidence 

is now emerging that the organic form has additional benefits over inorganic Se supplementation of 

livestock feeds. According to Mahan, (1999) inorganic Se has a lower bioavailability in the rumen and 

some of the consumed Se is utilised by microorganisms for their metabolism and only small amounts is 

incorporated into body proteins (Wolfram, 1999).    

 

Organicly bound Se on the other hand can by-pass the rumen, as it is in the form of selenoamino acids. 

Selenomethionine is found naturally in edible plant protein and is actively transported through intestinal 

membranes during absorption and actively accumulated in the liver and muscle (Lyons et al., 2007). 

Those different characteristics make commercially available organically bound Se supplements a suitable 

form of Se for animal nutritional supplementation. 

 

5. Selenium concentrations in tissue 

 

The concentration of Se that can be found in the body tissues is dependent on a number of factors. The 

chemical form, the length of time over which it was consumed, the amount of Se provided by the diet and 

the species of animal, will all have an influence. Although Se is present in all tissues, an especially high 

concentration is found in the liver, kidney, and spleen, and to a lesser extend, skeletal muscle, cardiac 

muscle, intestine, and lung. Tissue concentration of Se is influenced by amount and chemical form of Se 

in the diet (Pond et al., 1995). About 45% of total body Se is associated with the muscle, 4.6% with the 

liver and 6.9% with the kidneys (Grace, 1985). 
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In young animals, Se concentration can also depend on the level of dietary Se consumed by the dam. 

When NaSe is fed to a young subject, the tissue concentration approaches a plateau as the Se level in 

the diet rises. The effect is not the same when SeMet is the Se source; the Se concentration keeps on 

rising to some threshold beyond that of selenite. Latshaw (1975) reported that the Se concentration of 

chicken liver and muscle was doubled by feeding Se in natural feedstuffs as opposed to feeding the same 

level of NaSe. The result was not the same when measuring the blood Se concentration of chickens 

which were fed SeMet, compared to an equivalent amount of selenite. Cantor et al. (1982) reported that 

SeMet greatly increased Se concentrations in the pancreas, muscle, and gizzard but not in the liver when 

compared to selenite. 

 

6. Selenium toxicity 

 

Originally the importance of Se in animal health was related to its toxic properties when it was proven that 

it causes malformation in animals and in extreme situation can lead to death (Moxon, 1937; Meyer & 

Buran, 1995), and certain plants such as the Astragalus species in the USA were found to accumulate 

selenium. Livestock grazing on these plants was poisoned, a condition called alkali disease (Thacker, 

1961). The signs of acute Se toxicity in ruminants include elevated temperature and pulse rate, watery 

diarrhoea, extensive tissue haemorrhage and oedema. Death is due to circulatory failure and myocardial 

damage (Howell, 1983). Chronic Se toxicity occurs when sheep consume plants for a period of time 

which contain >3ppm Se and it is associated with loss of appetite, lameness, poor growth and wool 

production, delayed conception and blindness (Howell, 1983). In 2006, Tiwary concluded that the 

organically bound Se source, SeMet is slightly less toxic than the inorganic Se source, NaSe.  

 

7. Selenoproteins 
 

The physiological roles of Se began with ground-breaking work by Rotruck et al. (1973) which identified 

Se as a stoichiometric component of Glutathione peroxidase. Soon thereafter in the mid-1980s, more 

selenoproteins were discovered and selenium biochemistry began to broaden. Selenium has now been 

identified as an important part of more than 30 selenoproteins (Sunde, 1997; Arthur, 2000). 

 

7.1 Glutathione peroxidase   

The processes of oxidation and reduction are part of the body’s biochemistry and as respiration happen, 

a by-product known as peroxides are produced. These peroxides can produce free radicals, which can be 

destructive to the body as it could damage or destroy cells (Arthur, 2000). However, a group of enzymes, 

known as Glutathione peroxidases (GSH-Px), are in place to defend the body against these harmful 

peroxides (Arthur, 2000).   

 

In 1957, Mills was the first to communicate the actions of GSH-Px, this was followed by Rotruck et al. in 

early 1973 that implied that Se formed an important part of GSH-Px, this was confirmed later that year by 

Flohe et al. (1973). The metabolic function of GSH-Px is imperative for cells, as it forms part of the 
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process that is in charge of the metabolism and the detoxification of oxygen. The best known biochemical 

role for Se is as part of the active site of the enzyme GSH-Px, as it helps to prevent oxidative damage to 

body tissues (Hoekstra, 1974) and DNA (Combs & Clark, 1985). 

 

Ursini et al. (1995) described four structurally and genetically different forms of selenium-containing GSH-

Px that exist in different tissues or parts of the cell. However, in excess of thirty selenoproteins have been 

identified, including several forms of GSH-Px and other tissue-specific selenoproteins with antioxidant 

activity (Behne et al., 1994). 

 

 

7.2 Other selenoproteins 

Selenoproteins that have also been identified are Iodothyronine deiodinases (ID), selenoprotein P, 

selenoprotein W, thioredoxin reductase, selenium binding proteins, sperm capsule selenoprotein and a 

protein in the epithelial cells of the rat prostate. The ID group is after GSH-Px the largest group of 

selenoproteins, and is further divided into ID 1; ID 2 and ID 3. The main function of ID is performed 

around the actions of the thyroid hormone and Se forms an integral part of this (Kohrle et al., 2000). 

 
Selenoprotein P was first described by Hill et al. (1991), but at this point, its function in the body is still 

unclear. The cause of lambs suffering from white muscle disease was identified by Pederson et al. (1972) 

to be a missing selenoprotein; it was later recognised by Vendeland et al. (1995) to be muscle 

selenoprotein W. The selenoprotein thioredoxin reductase is involved in the regulation of disulphide 

groups within enzymes and transcription factors (Sun et al., 1999). The sperm capsule selenoprotein 

forms a major part of the sperm capsule, which is consistent with the role of Se in maintaining normal 

fertility (Venzina et al., 1996).  

 

The diversity of these identified selenoproteins emphasises the wide range of biochemical pathways and 

thus physiological functions that can be caused by changes in Se status of the animal. Thus 

characterisation of ‘newer’ selenoproteins may identify clinical problems that have not been linked to Se 

deficiency. 

 

8. Immunology 

 

Selenium deficiency has been reported to decrease both cellular and humoral immune function in man 

and laboratory animals (Combs & Combs, 1986). The knowledge of specific mechanisms in livestock is 

less detailed than in laboratory animals although the increase in susceptibility to disease in deficient 

livestock is well documented (Maas, 1998). Sordillo et al. (1997) reported that Se deficiency is an 

established risk factor in mastitis incidence and has been correlated with decreased bactericidal activity of 

neutrophils and the severity of mastitis infection. Injections of barium selenite decreased the incidence of 

mastitis in dairy goats (Sanchez et al., 2007), and Se yeast in the diet has decreased episodes of 
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diarrhoea in calves (Guyot et al., 2007). Marginal Se depletion has lowered the resistance of chickens to 

the protozoan parasite Eimeria tenella (Colnago et al., 1994). 

 

9. Oxidation 

  

Most animals, plants, and microorganisms depend on oxygen for the efficient production of energy. 

However, free radicals derived from oxygen can damage many types of biological molecules and is 

potentially toxic for living organisms. The formation of free radicals is a pathobiochemical mechanism 

involved in the initiation or progression of various diseases (Hogg, 1998).  The presence of natural 

antioxidants in living organisms enables their survival in an oxygen-rich environment (Halliwell, 1994). In 

livestock production, free radical generation and lipid peroxidation are responsible for the development of 

various diseases, reduction in animal productivity, and product quality (Hurley & Doane, 1989; Weiss, 

1998; McDowell, 2000). 

 

There are several methods that exist to measure total antioxidant capacity, but the majority of literature 

refers to three methods; 

1. FRAP (ferric reducing ability of plasma – Benzie,1996) 

2. TEAC (trolox equivalent antioxidant capacity – Rice-Evans,1994) 

3. ORAC (oxygen radical absorbance capacity – Cao,1999) 

 

Accordind to Cao (1998) is the ORAC method of measuring antioxidant status the most accepted, 

because its measurements are based on fluorescence rather than absorbance. The ORAC test is a 

hydrogen atom transfer assay that determines antioxidant capacity by measuring competitive kinetics. It 

consists of three basic components: a fluorescent probe, a radical donor and a fixed amount of 

antioxidant against which to compare the sample antioxidant capacity. As the radical donor increases, the 

fixed amount of fluorescent agent present in the reaction mixture will progressively become quenched. 

Any antioxidant present in the system would scavenge the radicals, effectively out-competing the 

fluorescent probe as substrate (Cao et al., 1993). It is the only methodology that links the inhibition time 

with the degree of inhibition (Ou et al., 2001), thus increasing the sensitivity and so permits a lower molar 

ratio of antioxidant sample to reagents, thus minimising the possibility of cross-reactions between the two. 

 

A variety of different stress conditions are associated with the over-production of free radicals and thus 

cause a disturbance in the prooxidant/antioxidant balance, leading to potential tissue damage (Jaeschke, 

1995). Stress conditions are usually grouped into: nutritional, environmental, and internal stress of which 

all will stimulate the generation of free radicals. Once free radical production exceeds the antioxidant 

system’s capacity to neutralise it, lipid peroxidation causes damage to unsaturated lipids in cell 

membranes, amino acids in proteins, and nucleotides in DNA, resulting in membrane and cell integrity 

disruption. This inevitably will result in decreased productive and reproductive performance (Dalton et al., 

1999). 
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10. Selenium in meat 
 

Selenium plays an important role in muscle (meat), not only to increase Se availability for human 

consumption through food, but also to improve meat quality. Meat colour, fat content, in pack purge and 

price determine how consumers perceive quality, which in turn influences purchasing behaviour (Grunert, 

1997; 2006). Meat colour is the foremost selection criterion used by consumers in the purchase of meat 

and is commonly used as an indicator of freshness. Cooked meat colour, juiciness and tenderness are 

also important product quality cues during consumption. Consumers regard meat tenderness as the most 

important palatability trait (Pietisik & Shand, 2004) and juicy meat is generally preferred over dry meat 

(Risvik, 1994).  

 

According to various trials, the majority of the physical properties of meat described above (i.e., colour, 

texture, and firmness of raw meat; juiciness and tenderness of cooked meat) will be to some extent be 

dependent on the meat’s water-holding capacity (WHC) (DeVore et al., 1983; Avanzo et al., 2001; Lawrie, 

1998). Although some of these trials are confounded by the inclusion of other components such as 

Vitamin C and E (Munoz et al., 1996; Torrent, 1996). Mahan et al. (1999) reported no difference for drip 

loss in pig meat with NaSe addition, and a linear increase in Hunter L value (paleness) of muscle also 

with added selenite. There are a number of trials looking at drip loss in broiler meat, and some suggest a 

positive effect of Se-yeast over NaSe, but overall the evidence is inconclusive (Edens, 1996; Naylor et al., 

2000). Clyburn et al. (2000) suggested a trend for beef flavour and flavour intensity to be improved by 

organically bounded Se, although the data reported were somewhat inconclusive. 

 

11. Selenium in wool 

 

Wool is composed of a complex protein named keratin, and is built up from different amino acids (D’Arcy, 

1990). With a number of trials on the influence of amino acids on wool growth, Reis & Schinckel (1963), 

Reis et al. (1967, 1979 and 1990) pointed out that the amino acid, methionine play a major role in wool 

production. Selenomethionine (as described earlier) are a product from the metabolism of the two 

sources of Se supplementation as pointed out by Edens (2002). We come to expect the results from 

Wilkins & Kilgour, (1982), Hill et al. (1969) and Langlands et al. (1991a, 1991b) which established that 

wool is very sensitive to selenium deficiency and that Se supplementation significantly increased wool 

production. 

 

However, Wright & Bell, (1966) and Kincaid et al. (1997) found that the absorption and metabolism of 

these two sources are different, especially in ruminants, because of the microorganisms in the rumen and 

it was Spears (2003) who concluded that the bioavailability of organic trace minerals is superior to 

inorganic sources in ruminants. Consequently, we have to hypothesise that the organic Se source, 

SeMet, which will be used in the current study will have a greater deposition in the wool fibres than will 

the inorganic source. This will confirm the results from Davis et al. (2008) and Van Ryssen et al. (1989) 
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who found that the wool from sheep supplemented with organically bound Se sources had significantly 

higher Se levels than those supplemented with inorganic sources. 

 

 12. Organically bound v. inorganic Se 

 

For many years it has been recognised that the selenoamino acids SeMet and SeCys are the sources of 

naturally occurring Se (Burk, 1976; Levander, 1986; Cai et al., 1995) and constitute 50-80% of the total 

Se in plants and grains (Butler & Peterson, 1967). Selenomethionine cannot be directly synthesised from 

selenite or selenate by animals (Cummins & Martin, 1967; Sunde, 1990). 

 

The tissue retention of organically bound or inorganic Se differs (Ku et al., 1973). Inorganic Se has a 

reduced bioavailability in the ruminant because of the anaerobic conditions in the rumen. Although part of 

the oxidised form of Se (Sodium selenite) is reduced in the rumen to the unabsorbable elemental or 

inorganic selenide forms, which is not absorbed through the rumen or the intestinal tract, some of the 

consumed NaSe is used by rumen microbes for their metabolism. The microbial protein thus formed with 

Se can pass into the small intestine and serve as a source of dietary Se for the ruminant. The selenium-

enriched yeast protein is hydrolysed in the rumen and small intestine to the respective amino acids. The 

selenoamino acid, SeMet can be non-specifically incorporated into body protein (Kincaid, 1995) and most 

probably serve as Se storage capacity. Subsequent research has demonstrated that blood GSH-Px 

activity in ruminants is lower when the inorganic form of the element is fed to dairy animals, but that Se 

levels in milk can be increased up to four or five times by feeding the lactating cows organically bound Se 

(Pehrson et al., 1999).   

 

13. OSA and OSB 

 

In this study two organically bound Se sources produced from whole cell yeasts were investigated, along 

with Sodium selenite.  The first organically bound Se source was OSA (organically bound selenium A) 

and is an inactivated whole cell yeast product containing elevated levels of Se. OSA contains 2000ppm of 

total Se, the major part in its natural food form, L(+) selenomethionine. It is produced by growing yeast, 

Saccharomyces cerevisae, in the presence of measured amounts of Se. Live yeast cells absorb the Se 

and biochemically transform it into selenomethionine and other selenoproteins (Lallemand, 2007). The 

second source investigates; OSB (organically bound selenium B) differs from OSA in the application of 

fermentation method and the resulting amino-acid profile. It contains similar levels of total Se as well as 

selenomethionine as OSA. 

 

Several studies conducted in collaboration with different research partners have demonstrated the main 

effects of OSA in meat type and fattening ruminants. It has a higher bioavailability, producing increased 

selenium levels in blood and tissue, with increased GSH-Px activity in the blood (antioxidant seleno-

dependant enzyme). A decrease in muscular problems and the occurrence of myopathies (white muscle 

disease) in young animals was recorded along with an recovery of the meat quality, which became less 
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exudative. Organic selenium OSA increases this phenomenon owing to its active transportation through 

the intestinal gut, compared to the passive way for the inorganic forms (Lallemand, 2007). 

 

In this study, two organically bound Se sources (labelled OSA and OSB) were compared with each other 

and NaSe supplementation, or no Se supplementation (Control) for its effects on the performance of 

lambs, the effect of the supplementation on tissue and plasma Se levels and anti-oxidant status of the 

animals and finally the effect thereof on meat characteristics of lambs. 

  

References 

 
Aberle, E.D., Forrest, J.C., Gerrard, D.E. & Mills, E.W., 2001. Principles of Meat Science 4th Ed. Kendall/ 

Hunt Publishing Comp. Dubuque, Iowa. 

Arthur, J.R., 2000. Glutathione peroxidase. Cell. Mol. Life Sci. 57, 1825-1835. 

Avanzo, J.L., de Mendonca, C.X. Jr., Pugine, S.M. & de Cerqueira, C.M., 2001. Effect of vitamin E and 

selenium on resistance to oxidative stress in chicken superficial pectoralis muscle. Comp. Biochem 

Physicol C Toxicol Pharmacol, 129(2), 163-173. 

Axley, M.J. & T.C. Stadtman., 1989. Selenium metabolism and selenium-dependent enzymes in 

microorganisms. Annu. Rev. Nutr. 9, 127-137. 

Behne, D., Weiss-Nowak, C., Kalcklosch, M., Westphal, C., Gessner, H. & Kyriakopoulos, A., 1994. 

Application of nuclear analytical methods in the investigation and identification of new 

selenoproteins. Biol. Trace Elem. Res. 43-45, 287-297. 

Benzie, I.F.F. & Strain, J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of 

antioxidant power: The FRAP assay. Anal. Biochem. 239, 70-76. 

Biesalski, H.K. 2005. Meat as a component of a healthy diet – are there any risks or benefits if meat is 

avoided in the diet. Meat Science. 70, 509-524. 

Burk, R.F. 1976. Selenium in man: Trace elements in human health and disease. A.S. Prasad. Ed. 

Londen: Academic Press. 2, 105-133. 

Butler, G.W. & Peterson, P.J., 1967. Uptake and metabolism of inorganic forms of selenium-75 by 

Spirodela oligorrhiza. Aust. J. of Biol. Sci. 20, 77-86. 

Butler, J.A., Beilstein, M.A. & Whanger, P.D., 1989. Influence of dietary methionine on the metabolism of 

selenomethionine in rats. J. Nutr. 119, 1001-1009. 

Cai, X.J., Block, E., Uden, P.C., Zhang, Z., Quimby, B.D. & Sallivan, J.J., 1995. Allium chemistry: 

identification of selenoamino acids in ordinary and selenium enriched garlic, onion and broccoli 

using gas chromatography with atomic emission detection. J. Agric. Food. Chem. 43, 1754-1757. 

Cantor, A.H., Scott, M.L. & Noguchi, T., 1975a. Biological availability of selenium in feedstuffs and 

selenium compounds for prevention of exudative diathesis in chicks. J. Nutr. 105, 96-105. 

Cantor, A.H., Langevin, M.L., Noguchi, T. & Scott, M.L., 1975b. Efficacy of selenium in selenium 

compounds and feedstuffs for prevention of pancreatic fibrosis in chicks. J. Nutr. 105, 106-111. 

Stellenbosch University http://scholar.sun.ac.za



12 
 

Cantor, A.H. & Tarino, J.Z., 1982. Comparative effects of inorganic and organic dietary sources of 

selenium on selenium levels and selenium-dependent Glutathione peroxidase activity in blood of 

young turkeys. J. Nutr. 112, 2187-2196. 

Cao, G., Alessio, H.M. & Cutler, R.G., 1993. Oxygen-radical absorbance capacity assay for antioxidants. 

Free Radical Biology and Medicine. 14, 303-311. 

Cao, G. & Prior, R.L., 1998. Comparison of different analytical methods for assessing total antioxidant 

capacity of human serum. Clin. Chem. 44, 1309-1315. 

Cao, G. & Prior, R.L., 1999. The measurement of oxygen radical absorbance capacity in biological 

samples. Methods Enzymol. 299, 50-62. 

Clyburn, B.S., Richardson, C.R., Miller, M.F., Cloud, C.E., Mikus, J.H. & Pollard, G.V., 2000. Vitamin E 

levels and selenium form: Effects of beef performance and meat quality. In Proc. of Alltech’s 16th 

Ann. Symp. Lexington. KY, 197.  

Colnago, G.L., Jensen, L.S. & Long, P.L., 1994. Effect of selenium and vitamin E on the development of 

immunity to coccidiosis in chickens. Poultry Sci. 63, 1136-1143. 

Combs, G.F. & Clark, L.C., 1985. Can dietary selenium modify cancer risk? Nutrition Reviews. 43, 325-

331. 

Combs, G.F., Jr. & Combs, S.B., 1986. The role of selenium in nutrition. Orlando, Florida: Academic 

press. 

Combs, G.F., 2001. Selenium in global food systems. Brit. J. of Nutr. 85, 517-547. 

Cummins, L.M. & Martin, J.L., 1967. Are selenocysteine and selenomethionine synthesized in vivo from 

Sodium selenite in animals. Biochem. 6, 3162-3168. 

Dalton, T.P., Shertzer, H.G. & Puga, A., 1999. Regulation of gene expression by reactive oxygen. Annu. 

Rev. Pharmacol. Toxicol. 39, 67-101. 

D’Arcy, J.B., 1990. Sheep Management and wool technology. Kensington, N.S.W.: New South Wales 

University Press. 3rd ed: 77. 

Davis, P.A., Mcdowell, L.R., Wilkinson, N.S., Buergelt, C.D., Van Alstyne, R., Weldon, R.N., Marshall, 

T.T. & Matsuda-Fugisaki, E.Y., 2008. Comparative effects of various dietary levels of Se as 

Sodium selenite or Se yeast on blood, wool, tissue Se concentrations of weather sheep. Small 

Rum. Res. 74,149-158. 

DeVore, V.R., Colnago, G.L., Jensen, L.S. & Greene, B.E., 1983. Thiobarbituric acid values and 

Glutathione peroxidase activity in meat from chickens fed a selenium supplemented diet. J. Food. 

Sci. 48, 300-301. 

Edens, F.W., 1996. Organic selenium: from feathers to muscle integrity to drip loss: five years onward: no 

more selenite. Biotech. in the Feed Industry. In: Proc. of Alltech’s 12th Ann. Symp. Nottingham 

University Press. UK. 165-185. 

Esaki, N., Tanaka, H., Uemura, S., Suzuki, T. & Soda, K., 1982. Selenocysteine lyase, a novel enzyme 

that specifically acts on selenocysteine. J. Biol. Chem. 257, 4386-4391. 

FDA., 2003. Food additives permitted in feed and drinking water of animals; Selenium yeast. Federal 

Register 68 (170), 52339-52340 (Sept. 3). 

Stellenbosch University http://scholar.sun.ac.za



13 
 

Flohé, L., Günzler, W.A. & Schock, H.H., 1973. Glutathione peroxidase: a selenoenzyme. FEBS Lett. 32, 

132-134. 

Franke, K.W., 1934. A new toxicant occurring naturally in certain samples of plant foodstuffs. II. The 

occurrence of the toxicants in the protein fraction. J. Nutr. 8, 609.  

Franke, K.W. & Potter, V.R., 1935. A new toxicant occurring naturally in certain samples of plant 

foodstuffs. IX. The toxic effects of orally ingested selenium. J. Nutr. 10, 213-218. 

Gabrielsen, B.O. & Opstvedt, J., 1980b. Availability of selenium in fish meal in comparison with soybean 

meal, corn gluten meal and selenomethionine relative to selenium in Sodium selenite for restoring 

Glutathione peroxidase activity in selenium-depleted chicks. J. Nutr. 110, 1096-1100. 

Ganther, H.E., 1966. Enzymic synthesis of dimethyl selenide from Sodium selenite in mouse liver 

extracts. Biochemistry. 5, 1089-1098. 

Ge, K.Y. & Yang, G.Q., 1993. The epidemiology of selenium deficiency in the etiologic study of endemic 

diseases in China. Am. J. Clin. Nutr. 57, 259-263. 

Grace, N.D. & Watkinson, J.H., 1985. The distribution and the amounts of selenium associated with 

various tissues and liveweight gains of grazing sheep. 490-493. In: Trace Elements Metabolism in 

man and animals (TEMA-5), Mills, C.F., Bremner, I., Chester, J.K. (eds). Farnham Royal, 

Commonwealth Agric. Bureaux. 

Grunert, K.G., 2006. Future trends and consumer lifestyles with regard to meat consumption. Meat Sci. 

74, 149-160. 

Grunert, K.G., 1997. What’s in a steak? A cross-cultural study on the quality perception of beef. Food 

quality and preference, 8, 157-174. 

Guyot, H., Spring, P., Andrieu, S. & Rollin, F., 2007. Comparative responses to Sodium selenite and 

organic selenium supplements in Belgium Blue cows and calves. Livestock Sci. 111, 259-263. 

Halliwell, B., 1994. Free radicals and antioxidants: A personal view. Nutr. Rev. 52:253-265. P contains 10 

TGA codons in the open reading frame. J. Biol. Chem. 266, 10050-10053. 

Hill, K.E., Lloyd, R.S., Yang, J.G., Read, R. & R.F. Burk, R.F., 1991. The cDNA for rat selenoprotein. 

Hill, M.K., Walker, S.D. & Taylor, A.G., 1969. Effects of marginal deficiencies of copper and selenium on 

growth and productivity of sheep. N.Z. J. Agric. Res. 12, 261-70. 

Hoekstra, W.G., 1974. Biochemical Role of Selenium. In: Trace Element Metabolism in Animals, Vol. 2. 

W.G. Hoekstra, J.W. Suttie, H.E. Ganther, & W. Mertz, ed. Univ. Park Press, Baltimore. MD. 61-77. 

Hoffman, J.L., MacConnell, K.P. & Carpenter, D.R., 1970. Aminoacylation of Escherichia coli methionine 

tRNA by selenomethionine. Biochem. Biophys. Acta. 199, 531-534. 

Hogg, N., 1998. Free radicals in disease. Semin. Reprod. Endocril. 16, 241-248. 

Howell, J. McC., 1983. Toxicity problems associated with trace element in domestic animals.. Trace 

Elements in animal Production and Veterinary Practice. Suttle, N.F.; Gunn, R.G.; Allen, W.M.107-

117.  

Hsieh, H.S. & Ganther, H.E., 1975. Acid-volatile selenium formation catalyzed by glutathione reductase. 

Biochem. 14, 1632-1636. 

Hsieh, H.S. & Ganther, H.E., 1977. Biosynthesis of dimethyl selenide from Sodium selenite in rat liver and 

kidney cell-free systems. Biochem. Biophys. Acta. 497, 205-217. 

Stellenbosch University http://scholar.sun.ac.za



14 
 

Hurley, M.L. & Doane, R.M., 1989. Recent developments in the roles of vitamins and minerals in 

reproduction. J. Dairy Sci. 72, 784-804. 

Ike, M., Takahasi, K., Fugita, T., Kashiwe, M. & Fugita, M., 2000. Selenate reduction by bacteria isolated 

from aquatic environment free from selenium contamination. Wat. Res. 34(11), 3019-3025. 

Jaeschke, H., 1995. Mechanisms of oxidant stress-induced acute tissue injury. Proc. Soc. Exp. Biol. Med. 

209, 104-111. 

Keshan Disease Research Group of the Chinese Academy of Medical Sciences., 1979. Observations on 

effect of Sodium selenite in prevention of Keshan disease. Chin. Med. J. 92, 5471-476. 

Kincaid, R.L., 1995. The biological basis for selenium requirements of animals. The Prof. Anim. Sci. 11, 

26. 

Kincaid, R.L., Chew, B.P. & Cronrath, J.D., 1997. Zinc oxide and amino acids as sources of dietary zinc 

for calves: effects on uptake and immunity. J. Dairy Sci. 80, 1381 – 1388. 

Kohrle, J., Brigelius-Flohe, R., Bock, A., Gartner, R., Meyer, O. & Flohe, L., 2000. Selenium in biology: 

facts and medical perspectives. Biol. Chem. 381, 849-864. 

Ku, P.K., Miller, E.R., Wahlstrom, R.C., Groce, A.W., Hitchcock, J.P. & Ullrey, D.E., 1973. Selenium 

supplementation of naturally high selenium diets for swine. J. Anim. Sci. 37, 501. 

Lallemand, 2007. www.lallemand.com 

Langlands, J.P., Donald, G.E., Bowles, J.E. & Smith, A.J., 1991a. Subclinical selenium insufficiency 1. 

Selenium status and the response in liveweight and wool production of grazing ewes 

supplemented with selenium. Aust. I. Exp. Agric. 31, 25-31. 

Langlands, J.P., Donald, G.E., Bowles, J.E. & Smith, A.J., 1991b. Subclinical selenium insufficiency 3. 

The selenium status and productivity of lambs born to ewes supplemented with selenium. Aust. J. 

Exp. Agric. 31, 37-43. 

Latshaw, J.D., 1975. Natural and selenite selenium in the hen and eggs. J. Nutr. 105, 32-40. 

Lawrie, R.A., 1998. Meat science, 6th Ed. Cambridge England: Woodhead Publishing Ltd. 

Laws, J.E., J.D. Latshaw and M. Biggert, 1986. Selenium bioavailability in foods and feeds. Nutr. Reports 

Int. 33, 13-24. 

Levander, O.A., 1991. Scientific rationale for the 1989 recommended dietary allowance for selenium. J. 

Am. Diet. Assoc. 91, 1572-1576. 

Levander, O.A., 1986. Selenium as trace elements in human and animal nutrition. W. Mertz, ed. 

Academic Press, N.Y. 209-219. 

Lyons, M.P., Papazyan, T.T. & Surai, P.F., 2007. Selenium in food chain and animal nutrition: Lessons 

from nature. Asian-Aust. J. Anim. Sci. 20(7), 1135-1155. 

Maas, J., 1998. Studies on selenium metabolism in cattle: deficiency, supplementation and environmental 

fate of supplemented selenium. In: Selenium-Tellurium Development Ass. 6th International Symp. 

Scottsdale, AZ. 

Mahan, D.C., Cline, T.R. & Rickert, B., 1999. Effects of dietary levels of selenium-enriched yeast and 

Sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue 

selenium, serum Glutathione peroxidase activity, carcass characteristics, and loin quality. J. Anim. 

Sci. 77, 2172-2179. 

Stellenbosch University http://scholar.sun.ac.za



15 
 

Markham, G.D., Hafner, E.W., Tabor, C.W. & Tabor, H., 1980. Adenosylmethionine synthetase from 

Escherichia coli. J. Biol. Chem. 255, 9082-9092. 

McConnell, K.P. & Hoffman, J.L., 1972. Methionine-selenomethionine parallels in rat liver polypeptide 

chain synthesis. FEBS Lett. 24, 60-62. 

McDowell, L.R., 2000. Reevaluation of the metabolic essentiality of the vitamins. Review. Saian-Aust. J. 

Anim. Sci. 13, 115-125.  

McDowell, L.R., 2003. Minerals in Animal and human Nurition. 2nd ed. Elsevier Sience, Amsterdam, The 

Netherlands. 

Meyer R.D. &  Buran, R.G., 1995. The geochemistry and biogeochemistry of selenium in relation to its 

deficiency and toxicity in animals. In: Selenium in the Enviroment: Essential Nutrient, Potential 

Toxicant. Proc. of the National Symp. Univ. of CA. 38. 

Mills. G.C., 1957. Haemoglobin metabolism I. Glutathione peroxidase, an erythrocyte enzyme which 

protects haemoglobin from oxidative damage. Archives of Anim. Nutr. 63, 56-65. 

Moksnes, K. & Norheim, G., 1986. A comparison of selenomethionine and Sodium selenite as a 

supplement in chicken feed. Acta Vet. Scand. 27, 103-114. 

Moxon, A.L., 1937. Alkali disease, or selenium poisoning. South Dakota Agriculture. Experiment Station 

Bulletin 311. South Dakota State University, Brookings. 1-84. 

Munoz, A., Garrido, M.D. & Granados, M.V., 1996. Effect of selenium yeast and vitamins C and E on pork 

meat exudation. (personal communication). 

Muth, O.H., Oldfield, J.E., Reennert. L.F., 1958. Effects of selenium and vitamin E on white muscle 

disease. Sci. 128, 1090. 

Naylor, A.J., Choct, M. & Jacques, K.A., 2000. Effect of feeding Sel-Plex organic selenium in diets of 

broiler chickens on liver selenium concentrations. Southern Poultry Sci. Atlanta, Georgia. 

Nelson, A.A., Fitzhugh, O.A. & Calvery, H.O., 1943. Liver tumors following cirrhosis caused by selenium 

in rats. Cancer Res. 3, 230-236. 

Oh, S.H., Sunde, R.A., Pope, A.L. & Hoekstra, W.G., 1976. Glutathione peroxidase response to selenium 

intake in lambs fed a torula yeast-based, artificial milk. J.Anim. Sci. 42, 977-983. 

Ortman, K. & Pehrson, B., 1999. Effect of selenite as a feed supplement to dairy cows in comparison to 

selenite and selenium yeast. J. Anim. Sci. 77, 3365-3370. 

Osman, M. & Latshaw, J.D., 1976. Biological potency of selenium from Sodium selenite, 

selenomethionine, and selenocysteine in the chick. Poultry Sci. 55, 987-994. 

Ou, B., Hampsch-Woodill, M. & Prior, R.L., 2001. Development and validation of an improved oxygen 

radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food 

Chem. 49, 4619-4926. 

Payne, R.L. & Southern, L.L., 2005. Changes in Glutathione peroxidase and tissue selenium 

concentrations of broilers after consuming a diet adequate in selenium. Poultry Sci. 84, 1268-1276. 

Pederson, N.D., Whanger, P.D., Weswig, P.D. &  Muth, O.H., 1972. Selenium binding proteins in tissues 

of normal and selenium-responsive myopathic lambs. Bioinorg. Chem. 2, 33-45. 

Pehrson, B., Knutsson, M. & Gyyllensward, M., 1989. Glutathione peroxidase activity in heifers fed diets 

supplemented with organic and inorganic selenium compounds. Swedish J. Agric. Res. 19, 53-57. 

Stellenbosch University http://scholar.sun.ac.za



16 
 

Pehrson, B., Ortman, K., Madjid, N. & Trafikowska, U., 1999. The influence of dietary selenium as 

selenium yeast or Sodium selenite on the concentration of selenium in the milk of suckler cows 

and on selenium status of their calves. J. Anim. Sci. 77, 3371-3376. 

Phipps, R.H., Grandison, A.S., Jones, A.K., Juniper, D.T., Ramos-Morales, E. & Bertin, G., 2008. 

Selenium supplementation of lactating dairy cows: effects of milk production and total selenium 

content and speciation in blood, milk and cheese. Animal. 2 (11), 1610-1618. 

Piertisik, Z. & Shand, P.J., 2004. Effect of blade tenderization and tumbling time on the processing 

characteristics and tenderness of injected cooked roast beef. Meat Sci. 66, 871-879. 

Pond, W.G., Church, D.C. & Pond, K.R., 1995. Inorganic mineral elements. In: Basic Animal Nutrition and 

Feeding (4th ed.). John Wiley & Sons. New York. 167-224. 

Puls, R., 1994. Mineral levels in animal health: diagnostic data. 2nd ed. BC, Canada: Sherpa International. 

Rayman, M.P., 1997. Dietary selenium: time to act. Br. Med. J. 314, 387-388. 

Rayman, M.P., 2000. The importance of selenium to human health. Lancet: 356, 233-241. 

Rayman, M.P., 2004. The use of high-selenium yeast to raise selenium status: how does it measure up? 

Brit. J. Nutr. 92, 557-573. 

Reis, P.J., 1967. The growth and composition of wool. IV. the differential response of growth and of 

sulphur content of wool to the level of sulphur-containing amino acids given per abomasum. Aust. 

J. Biol. Sci. 20, 809-825. 

Reis, P.J., 1979. Effects of amino acids on the growth and properties of wool. In: J.C. Black and P.J. Reis 

(Eds.) Physiological and environmental limitations to wool growth. The University of New England 

Publishing Unit. Armidale, Aust. 223-242. 

Reis, P.J. & Schinckel, P.G., 1963. Some effects of S-containing amino acids on the growth and 

composition of wool. Aust. j. Biol. Sci. 16, 218-230. 

Reis, P.J., Tunks, D.A. & Munro, S.G., 1990. Effects of the infusion of amino acids into abomasum of 

sheep, with emphasis on the relative value of methionine, cysteine and homocysteine for wool 

growth. J. Agri. Sci. (Camb.). 114, 59-68. 

Rice-Evans, C.A. & Miller, N.J., 1994. Total antioxidant status in plasma and body fluids. Methods in 

Enzymology. 234, 279-293. 

Risvik, E., 1994. Sensory properties and preferences. Meat Sci. 36, 67-77. 

Rotruck, J.T., Pope, A.L., Ganther, H.E., Swanson, A.B., Hafeman, D.G. & W.G. Hoekstra, W.G., 1973. 

Selenium: Biochemical role as a component of Glutathione peroxidase. Sci. 179,  588-590. 

Sanchez, J., Montes, P., Jimenez, A. & Andres, S., 2007. Prevention of clinical mastitis with barium 

selenite in dairy goats from a selenium-deficient area. J. of Dairy Sci. 90, 2350-2430.  

Schlegel, P., Durosoy, S. & Jongbloed, A.W., 2008. Trace elements in animal production. Wageningen 

Academin Pub. 168. 

Schrauzer, G.N., 2003. The nutritional significance, metabolism and toxicology of selenomethionine. Adv. 

Food Nutr. Res. 47, 73-112. 

Schwarz, K. & Foltz, C.M., 1957. Selenium as an integral part of factor 3 against dietary liver 

degeneration. J. Am. Chem. Soc. 79, 3292-3293. 

Stellenbosch University http://scholar.sun.ac.za



17 
 

Scott, M.G., Neishein, M.C. & Young, R.J., 1982. Nutrition of the chicken. 3rd Edition. M.L. Scott & 

Associates, Ithaca, NY. 

Shrift, A., 1969. Aspects of selenium metabolism in higher plants. Annu. Rev. Plant Physiol. 20:475. 

Sordillo, L.M., Shafer-Weaver, K. & DeRosa, D., 1997. Immunobiology of the mammary gland. J. Dairy 

Sci. 80, 1851-1865. 

Spears, J.W., 2003. Trace mineral bioavailability  in ruminants. J. Nutr. 133, 1506S-1509S. 

Steele, R.D. & Benevenga, N.J., 1979. The metabolism of 3-methylthiopropionate in rat liver 

homogenates. J. Biol. Chem. 254, 8885-8890. 

Sunde, R.A., 1997. Selenium. In: O'Dell, B.L. and R.A. Sunde (Eds.), Handbook of Nutritionally Essential 

Elements. Marcel Dekker, Inc., New York, NY. 493-556. 

Sun, Q-A., Wu, Y., Zappacosta, F., Jeang, K.T., Lee, B.J., Hatfield, D.L. & Gladyshev, V.N., 1999. Redox 

regulation of cell signalling by selenocysteine in mammalian thioredoxin reductases. J. Biol. Chem. 

274, 24522-24530. 

Surai, P.F., 2002a. Selenium in poultry nutrition 1. Antioxidant properties, deficiency and toxicity. Worlds 

Poultry Sci. J. 58, 333-347. 

Thacker, E.J., 1961. Effect of selenium on animals. Selenium in Agriculture. Agriculture Handbook 200. 

U.S. Department of Agriculture. 46. 

Tiwary, A.K., Stegelmeier, B.L., Panter, K.E., James, L.F. & Hall, J.O., 2006. Comparitive toxicosis of 

sodium selenite and selenomethionine in lambs. J. Vet. Diagn. Invest 18, 61-70. 

Torrent, J., 1996. Selenium yeast and pork quality. Biotech. in the feed Industry. In: Proc. of Alltech’s 12th 

Ann. Symp. Nottingham University Press. UK. 

Ursini, F., Maiorino, M., Brigeliusflohe, R., Aumann, K.D., Roveri, A., Schomburg, D. & Flohe, L., 1995. 

Diversity of Glutathione peroxidase. Meth. Enzymol. 252, 38-53. 

Van Ryssen, J.B., Deagen, J.T., Beilstein, M.A. & Whanger, P.D., 1989. Comparative metabolism of 

organic and inorganic selenium by shepp. J. Agric. Food Chem. 37, 1358-1363. 

Van Ryssen, J.B.J., De Villiers, J.F. & Coertze, R.J., 1999. Supplementation of selenium to sheep grazing 

kikuyu or ryegrass: II. Effect on selenium concentration in the grass and body tissue. S. Afr. J. 

Anim. Sci. 29, 145-153. 

Vendeland, S.C., Beilstein, M.A., Yeh, J.Y., Ream, W. & Whanger, P.D., 1995. Rat skeletal muscle 

selenoprotein W: cDNA clone and mRNA modulation by dietary selenium. Proc. Natl. Acad. Sci. 

USA 92, 8749-8753. 

Venzina, D., Mauffette, F. & Roberts, K.D., 1996. Selenium vitamin E supplementation in infertile men. 

Biol. Trace Elem. Res. 53, 65-83. 

Weiss, W.P., 1998. Requirements of fat soluble vitamins for dairy cows: A review. J. Dairy Sci. 81, 2493-

297. 

Whanger, P.D., 1989. China, a country with both selenium deficiency and toxicity: some thoughts and 

impressions. J. Nutr. 119, 1236-1239. 

Whanger, P.D., Pedersen, N.D., Hatfield, J. & Weswig, P.D., 1976. Absorption of selenite and 

selenomethionine from ligated digestive tract segments in rats. Proc. Soc. Exp. Biol. Med. 153, 

295-297. 

Stellenbosch University http://scholar.sun.ac.za



18 
 

Wilkens, J.F. & Kilgour, R.J., 1982. Production responses in selenium supplemented sheep in northern 

New South Wales 1. Infertility in ewes and associated production. Aust. J. Exp. Agric. Anim. Husb. 

22, 18-23. 

Wolffram, S., 1999. Absorption and metabolism of Selenium: difference between organic and inorganic 

sources. In: Biotech. in the Feed Industry. Lyons, T.P. and K.A. Jacques, ed. Nottingham 

University Press, Nottingham NG11 0AX, UK. Proc. 15th Annual Symp. 15, 547-566. 

Wright, P.L. & Bell, M.C., 1966. Comparative metabolism of selenium and tellurium in sheep and swine. 

Am. J. Physiol. 211, 6-10. 

Yamini, B. & Mullaney, T.P., 1985. Vitamin E and selenium deficiency as a possible cause of abortion in 

food animals. Proc. 28th Ann. Mtg. Am. Assoc. Vet. Lab. Diagn., Madison, WI. 131. 

Yeh, J., Gu, Q., Beistein, M.A., Forsberg, N.E. & Whanger, P.D., 1997. Selenium influence on tissue 

levels of selenoprotein W in sheep. J. Nutr. 127, 394-396. 

 

 

Stellenbosch University http://scholar.sun.ac.za



19 
 

CHAPTER 3 

General materials and methods 

 

Abstract 

 

This study aimed to determine the effects of dietary supplementation of Döhne Merino wethers with 

different selenium (Se) sources on various measurable parameters. Fourty growing Döhne Merino 

wethers from the Southern Cape region of South Africa, a selenium-deficient area, were used for the 

study. The animals were all fed the same basal diet in the adaptation period and were then allocated at 

random to one of four dietary treatment groups: Control (CT), containing Se from the basal diet only; the 

inorganically bounded group, of basal diet with added Sodium selenite (IS); or one of two groups fed 

organically bounded Se in the basal diet with added organically bound Se A (OSA) or B: (OSB). The 

period of supplementation was 90 days.  

 

 

Introduction 

 

Selenium is recognised as an essential trace element and its deficiency in ruminants can result in 

numerous deficiency symptoms. According to Edens (2002) there are two sources of Se with which to 

supplement animal diets, an inorganic source and an organically bound source. Inorganic Se is available 

mostly in the form of Sodium selenite (NaSe), while organically bound Se is most common as selenised 

yeast in the form of selenomethionine. According to Mahan (1999) NaSe has a lower bioavailability in the 

rumen and some of the consumed Se is utilised by microorganisms for their metabolism. Organically 

bound Se instead can by-pass the rumen as it is in the form of selenoamino acids.  

 

OSA is an inactivated whole cell yeast product containing elevated levels of Se. OSA contains 2000ppm 

of total Se, the major part in its natural food form, L(+)selenomethionine. It is produced by growing yeast, 

Saccharomyces cerevisiae, in the presence of measured amounts of Se. Live yeast cells absorb Se and 

biochemically transform it into SeMet and other selenoproteins. Selenomethionine is naturally found in 

edible plant protein and is highly bioavailable. Those different characteristics make OSA the most suitable 

form of Se for animal nutritional supplementation. OSB differs from OSA in fermentation method and the 

resulting amino-acid profile, but it contains the same levels of total Se as well as SeMet as OSA.  

 

Expected likely responses to supplementation with OSA can include increases in tissue and blood Se 

content, increases in the GSH-Px (antioxidant selenodependant enzyme) activity in the blood due to the 

higher bioavailability of OSA, a decrease in muscular problems and myopathies (white muscle disease) in 

young animals, and an improvement in meat quality. The aim of this study was to establish the 

Stellenbosch University http://scholar.sun.ac.za



20 
 

advantages of supplementing Döhne Merino wethers with OSA and OSB rather than the norm of Sodium 

selenite (IS). 

   

Materials and methods 
 

The study was carried out at Stellenbosch University’s experimental farm, Welgevallen, Stellenbosch, 

South Africa. The project was approved and conducted under the ethical clearance of Subcommittee B of 

the Research Committee of Stellenbosch University; reference number: 2007B03006 

 

Animals and feeds 
 

Forty Döhne Merino wethers, each with an average initial body weight of 40.7 kg, were purchased from 

the Bredasdorp area in the Southern Cape, a selenium-deficient area. The Döhne Merino is a well-

balanced dual-purpose sheep breed that allows the producer to market a quality, heavyweight lamb and 

fine-medium white wool. It has established itself as one of the leading woollen breeds in South Africa, and 

its percentage of the national flock is rising. There are a number of advantages synonymous with the 

versatility of the Döhne Merino, including hardiness, adaptability and less selective grazing habits (which 

minimise management and production costs). Their high fertility and rapid lamb growth, heavy carcasses 

with low fat distribution, excellent feed conversion makes them ideal to finish on good pastures or in the 

feedlot, and of course the production of high-quality wool. Overall they give an added stability to the 

economy of woollen sheep farming (Döhne Merino Breed Society of SA). 

 

The wethers were randomly allocated into individual pens (1m x 2m) in an enclosed but adequately 

ventilated shed with a wooden slatted floor. The animals had free access to drinking water. In the pre-trial 

period the lambs were adapted to a selenium-poor diet (Table 3.1), which also served as the control diet 

during the trial, until sufficiently low blood selenium concentrations were reached.  

 

Table 3.1: Formulation of the basal diet indicating the calculated selenium concentrations 

Feedstuff % Inclusion (As is) Se mg/kg Se inclusion 

Wheat straw 76.00 0.11 0.08 

Maize starch 15.00 0.01 0.00 

Molasses meal 5.00 0.00 0.01 

Urea 1.00 0.00 0.00 

Premix Control 3.00 0.85 0.02 

Total 100  0.11 mg/kg (0.14)* 

* Value in bracket indicates the actual analysed selenium concentration as opposed to the calculated 

concentration based on the formulation of the feed from the individual ingredient’s Se content 
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The basal diet consisted mainly of wheat straw, corn starch as an energy source and urea, with the 

addition of Mutton Gainer (NuTec (Pty) Ltd., Pietermaritzburg, South Africa) (Table 3.3) containing the 

various treatments (CT, IS, OSA or OSB). The raw materials were analysed individually for Se levels; 

these values were used to formulate a basal diet with a calculated Se value of 0.11mg/kg. The complete 

final basal diet was also analysed with the true Se concentration in the basal diet at 0.14mg/kg. Vitamin E 

was allowed at the level of 312.5 IU/kg as part of the Mutton Gainer, and included in 3% of the diet. 

Whole blood Se concentration was monitored until the concentration was in the range of 80-100ng/ml, 

indicating a marginal Se deficiency (Koller et al., 1983). This marked the onset of the trial and the lambs 

were randomly grouped and assigned to one of four dietary treatments (Table 3.2): Control (CT, 

0.14mg/kg Se), containing Se from the basal diet only; the inorganic group, of basal diet with added 

Sodium selenite (IS, 0.36mg/kg Se); or one of two groups fed organically bound selenium (Se) in the 

basal diet, with added organically bound Se A (OSA, 0.32mg/kg Se) or B: (OSB, 0.36mg/kg Se). 

 

Selenium-poor raw materials were sourced for the basal diet, all were individually analysed for Se levels, 

according to which the feed was formulated. The wheat straw was finely chopped in a hammer mill and 

was hand-mixed with other raw materials for the trial with the specially prepared premixes from NuTec 

(Pty) Ltd., Pietermaritzburg, South Africa (Table 3.3) – which had been supplemented with different 

sources of selenium to reach a supplemental selenium level of +/- 0.27mg/kg (Table 3.2).  

 

Table 3.2: Physical and chemical composition of treatment feeds (Control (CT), Inorganic Se (IS), 

Organic Se B (OSB), Organic Se A (OSA))  indicating selenium concentration of the experimental diets 

fed to the Döhne Merino wethers  

  CT  IS OSB OSA 

  Raw material composition, As fed basis  
Wheat straw g/kg 760 760 760 760 
Maize starch g/kg 150 150 150 150 
Molasses meal g/kg 50 50 50 50 
Urea g/kg 10 10 10 10 
Premix CT g/kg 30 0 0 0 
Premix IS g/kg 0 30 0 0 
Premix OSB g/kg 0 0 30 0 
Premix OSA g/kg 0 0 0 30 

 Chemical Composition, DM basis 
Moisture g/kg 95.9 100.9 104.3 105.8 
Ash g/kg 50.2 63.7 55.0 70.6 
Crude fat g/kg 6.5 6.9 7.0 6.9 
Crude fibre g/kg 395.8 370.9 315.8 341.2 
Crude protein g/kg 84.7 110.7 93.1 125.0 
N g/kg 13.6 16.2 14.9 17.3 
Se mg/kg 0.11 (0.14)* 0.27 (0.36)* 0.26 (0.36)* 0.27 (0.32)* 
* Values in brackets indicates the actual value as per analysis as opposed to the calculated 
concentration based on the formulation of the feed from the individual ingredient’s Se content 
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All the final feed mixes were analysed to get the actual Se levels in the feed, and these values differed 

slightly from the formulated values. This could be attributed to ineffective hand-mixing with a high 

percentage of wheat straw in the diet.  

 

Table 3.3: Chemical composition of Mutton Gainer 125 as per specification of NuTec (Pty) Ltd., 

(Pietermaritzburg, South Africa) adapted for for inclusion in the Control (CT), inorganic selenium (IS), 

organically bounded selenium A (OSA) or B (OSB) dietary treatments 

 CT IS OSB OSA 

 g/kg g/kg g/kg g/kg 

Protein (min) 1250 1250 1250 1250 

% from NPN 100 100 100 100 

Urea (max) 354.7 354.7 354.7 354.7 

Fibre (max) 50 50 50 50 

Moisture (max) 120 120 120 120 

Calcium (max) 140 140 140 140 

Phosphorus (min) 2.3 2.3 2.3 2.3 

Magnesium (min) 7.33 7.33 7.33 7.33 

Sulphur (min) 19.88 19.88 19.88 19.88 

  mg/kg mg/kg mg/kg mg/kg 

Cobalt 7.82 7.82 7.82 7.82 

Copper 193.75 193.75 193.75 193.75 

Iodine 7.82 7.82 7.82 7.82 

Iron 843.76 843.76 843.76 843.76 

Maganese 562.5 562.5 562.5 562.5 

Selenium CT 0 0 0 0 

Selenium IS 0 6.25 0 0 

Selenium OSB 0 0 6.25 0 

Selenium OSA 0 0 0 6.25 

Zinc 562.5 562.5 562.5 562.5 

Vitamin B1 125 125 125 125 

Niacin 3155 3155 3155 3155 

Salinomycin 625.03 625.03 625.03 625.03 

Zinc Bacitracin 625.03 625.03 625.03 625.03 

  IU/kg IU/kg IU/kg IU/kg 

Vitamin A 125 000 125 000 125 000 125 000 

Vitamin D3 31 250 31 250 31 250 31 250 

Vitamin E 312.5 312.5 312.5 312.5 

Mass 16 kg 16 kg 16 kg 16 kg 
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Chemical analysis was performed on the four experimental diets by the Animal Science Laboratory, 

Stellenbosch University, South Africa, for Moisture, Ash, Crude Protein, Crude Fibre, Ether extract and 

Nitrogen. Ash was determined according to the official method of AOAC International (2002), method 

942.05, Moisture according to the AOAC (2002) official method 934.01, Crude Fibre according to the 

AOAC (2002) official method 962.09, and Fat (crude) or Ether extract according to the AOAC (2002) 

official method 920.39. Nitrogen was determined on a Leco-FP528 according to the official method of 

AOAC International (2002). The chemical composition of the diets is presented in Table 3.2.   

 
Sampling 
 

Feed samples were collected throughout the trial of all treatments, and finely milled and sealed. Blood 

samples were collected at monthly intervals via jugular venipuncture with an 18-gauge needle into a 6ml 

vacutainer (K3E K3EDTA) and packed in ice. Liver, muscle and kidney samples were collected after 

slaughter by stunning and exsanguination sealed separately and stored on ice. The wool around the 

jugular was shorn and samples were collected on day 0 and 90, individually packed and sealed.  

 

The sheep were slaughtered at a commercial abattoir using standard South African techniques. 

Treatment (transport, handling, etc.) was similar for all groups. After being electrically stunned (4 Ampere, 

200 Volts for 4 seconds) the sheep were exsanguinated and dressed. No electrical stimulation was 

applied. 
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CHAPTER 4 

The effect of different sources of selenium supplementation on the growth 

and selenium deposition in the whole blood, tissue and wool of Döhne Merino 

wethers 

 

Abstract 

 

This study aimed to determine the effect of different selenium (Se) source supplementation on the growth, 

whole blood Se levels, tissues and wool of Döhne Merino wethers, which are marginally deficient in Se. 

Forty growing Döhne Merino wethers from the Southern Cape region, a selenium-deficient area were 

used for the study. The animals were all fed the same basal diet containing marginal levels of Se in the 

adaptation period and were then randomly allocated to one of four dietary treatment groups once 

sufficiently low Se levels were reached: Control (CT), containing Se from the basal diet only; the inorganic 

group, basal diet with added Sodium selenite (IS); or one of two groups fed organically bound selenium 

(Se) in the basal diet with added organically bound Se A (OSA) or B: (OSB). The period of 

supplementation was set at 90 days, wherein the wethers, and the feed consumed, were regularly 

weighed to determine their growth and feed conversion rate (FCR) in the trial period. Blood samples were 

collected via jugular venipuncture for Se level determination at monthly intervals. Liver, skeletal muscle 

and kidney samples were collected at day 90 after slaughter by stunning and exsanguination for Se level 

determination. The wool around the jugular was shorn and samples were collected on days 0 and 90 for 

Se level analysis. 
 

No effect was observed on the growth and FCR of the wethers across the supplementation groups. 

However, there was a greater increase in Se levels for the organically bound Se groups in the early part 

of the study. At the end of the trial, no effect from treatment could be seen across the different Se sources 

supplemented in the basal diets. Results from the liver analysis were in contrast to findings of previous 

researchers, and no difference between the inorganic and organically bound Se treatments could be 

found. However, the total Se concentration of the wool, kidney and meat samples was greater in those 

animals offered organically bound Se when compared with those receiving a comparable dose of Se 

selenite. This confirmed our hypothesis that organic Se sources have a greater bioavailability in small 

ruminants and are more readily available than that of inorganic sources. Therefore, organically bound Se 

supplementation rather than inorganic supplementation can have advantages for animal and human 

health. 

 

Key words: selenium bioavailability, wethers, Sodium selenite, organically bound selenium 
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Introduction 

 

Selenium is recognised as an essential trace element and its deficiency in ruminants results in white 

muscle disease (Muth et al., 1958), loss of glutathione peroxidase activity (Rotruck et al., 1973), reduced 

selenoprotein W content in the muscle which can possibly have an influence on the incidence of white 

muscle disease (Yeh et al., 1997), suppression of immunity (Yamini & Mullaney, 1985), and impaired 

growth and fertility (Weiss et al., 1990). Because feed grown in many areas of the world, including the 

Southern Cape region of South Africa (Van Ryssen, 2001) is deficient in Se, its supplementation is often 

necessary to prevent the potential clinical signs of Se deficiency in livestock grazing these areas (Stevens 

et al., 1985). There are two forms of Se available to supplement livestock diets with (Edens, 2002), an 

inorganic mineral salt, such as NaSe, or an organic form such as Se-enriched yeast. The absorption and 

metabolism of these two sources can be different, especially in ruminants, because of the 

microorganisms in the rumen which partly convert the inorganic Se compounds to insoluble elemental Se 

or selenide, which cannot be absorbed in the lower intestinal tract (Butler & Peterson, 1961; Wright & 

Bell, 1966). Another limitation with inorganic Se supplementation is the apparent short duration of Se 

storage in the animal (Surai, 2006a, b). Selenium from organic sources can however be absorbed 

through amino acid transport, and directly incorporated into body protein, improving its absorption and 

retention (Peter et al., 1982). There is a higher deposition of Se in the tissues of animals when the 

organically bound form of Se is supplemented compared to inorganic Se supplementation (Mahan & 

Parrett, 1996; Kim & Mahan, 2001a, b). Selenium reserves can therefore be build-up in the body with 

organically bound Se, which can then be utilised when increased levels of Se is required under stress 

conditions (Rock et al., 2001). Both forms of Se appear to be used in the body to construct specific 

selenoproteins, but according to Rayman et al. (2008) Se enters cellular metabolism at different points, 

depending on its chemical form. 

 

The objective of this research was to compare the effect of specific organically bound Se sources, against 

that of inorganic Se looking at the growth in sheep and the depositing thereof into the blood, body tissues 

(liver, muscle, kidney) and wool.  

 

Materials and methods 
The reader is referred to Chapter 3 for the description of the experimental procedures and the treatments 

used in determining the effect of the different Se supplementations on the performance of the lambs.  

Table 3.2 is included again for the benefit of the reader regarding the different treatments used in the 

study. 
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Table 3.2: Physical and chemical composition of the control (CT), inorganic selenium (IS), organically 

bounded selenium A (OSA) or B (OSB) diets, indicating the selenium concentration of the experimental 

diets fed to the Döhne Merino wethers 

 CT IS OSB OSA 

 Physical composition, As fed basis  
Wheat straw g/kg 760 760 760 760 
Maize starch g/kg 150 150 150 150 
Molasses meal 50 50 50 50 
Urea g/kg 10 10 10 10 
Premix CT g/kg 30 0 0 0 
Premix IS g/kg 0 30 0 0 
Premix OSB g/kg 0 0 30 0 
Premix OSA g/kg 0 0 0 30 

 Chemical Composition, DM basis 
Moisture g/kg 95.9 100.9 104.3 105.8 
Ash g/kg 50.2 63.7 55 70.6 
Crude fat g/kg 6.5 6.9 7 6.9 
Crude fibre g/kg 395.8 370.9 315.8 341.2 
Crude protein g/kg 84.7 110.7 93.1 125 
N g/kg 13.6 16.2 14.9 17.3 
Se mg/kg 0.08 (0.14)* 0.27 (0.36)* 0.26 (0.36)* 0.27 (0.32)* 
* Values in brackets indicates the actual value as per analysis 

 

 

Performance characteristics 

 

Animal growth performance was measured by weighing the wethers individually at the start off the trial 

(day 0), day 30, day 60 and day 90, just before they were slaughtered. Average daily gain (ADG) was 

calculated from these values. All four groups received 1.2kg of their specific complete mixed feed every 

day, 600g in the morning and 600g in the afternoon. Daily feed intake was calculated by weighing the 

previous day’s leftover feed, before feeding again. The feed conversion ratio (FCR) of the wethers was 

calculated by dividing the total feed consumed by the lambs in each group by their total weight gain over 

the experimental period (feed consumed (kg) per kg gain). 

 

Sample preparation 

 

The wool around the jugular was shorn to clear the vein for easy blood collection. These wool samples 

from the jugular were collected on days 0 and 90 of the trial, individually packed and sealed for 

subsequent Se analysis. Blood samples were collected on a monthly basis via jugular venipuncture with 

an 18-gauge needle into a 6ml vacutainer (K3E K3EDTA) and packed in ice. Liver, muscle and kidney 

samples were collected after slaughter by stunning and exsanguination separately sealed and stored in 

ice. All the samples were taken to the Western Cape Provincial Veterinary Laboratory, Stellenbosch, 

South Africa for Se analysis immediately after collection. 
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Chemical analysis 

 

All Se analysis (whole blood, liver, muscle, wool and kidney) was done by the Western Cape Provincial 

Veterinary Laboratory, Stellenbosch, South Africa; employing the fluorometric method of Koh & Benson 

(1983) to determine the Se levels in all the provided samples. One ml of the blood samples and 0.1g of 

the liver, muscle, wool and kidney samples were measured and placed in a digestion tube. Four blank 

tubes consisting of 1ml of 0.1M HNO3 and four tubes for each standard containing 1ml of standard were 

also prepared with the samples. Four ml of acid mixture were added and placed in the digestion block 

which is housed in the wash-down fume cupboard. 

 

The temperature controller was set to heat at 120oC for 1 hour, then to heat at 160oC for 6 hours and 

maintained at 120oC for 30 hours. Tubes were removed and allowed to cool for a few minutes, 1ml 1:1 

HCl was added to the tubes and placed in the digestion block at 120oC for 30 minutes. Tubes were 

removed and allowed to cool for a few minutes. Fifteen millilitres EDTA solution and 1ml DAN solution 

and then 5ml cyclohexane were added. Tubes were then placed in a shaker for 1 minute and then in a 

60oC water bath for 40 minutes. The warm water was replaced with tap water and tubes were cooled 

down for 5 minutes. It was shaken again and left to stand for 30 minutes. The fluorescence of the 

supernatant cyclohexane was measured by aspirating it directly into the fluorometer (Perkin-Elmer, 

Selton, USA.). The Se content of the blood was reported as ng/ml (ppb) and that of the tissue and wool 

samples as mg/kg (ppm).  

 

Statistical analysis 
 

Repeated measures ANOVA were made of treatments over a number of days to measure whether 

interactions between treatments and days were significant, and multiple comparisons were made of the 

interaction effects. Appropriate contrasts were investigated among treatments. If interactions were not 

significant, the main effects were similarly analysed. When ANOVAs were done on the interested 

response variables among the treatments, the treatment effects were analysed with Bonferroni multiple 

comparisons (if significant) with appropriate contrast among the treatment effects (Statistica version 8.1 

(2008)). Differences were considered as significant when P<0.05. 

 

Results and discussion 
 

The wethers’ growth performance, final body weight, weight gain, average daily gain (ADG), feed intake 

and feed conversion ratio (FCR) were not significantly influenced by the dietary supplementation of 

different Se sources (Table 4.1). The control (CT) group received 0.14mg/kg DM (Table 3.2) of Se which 

was present in the basal feed raw materials. The results, combined with the fact that the lambs had reach 

maturity indicate that the Se content of the CT diet may have satisfied the Se requirements of the group.   
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Growth rate is not likely to be influenced by Se supplementation, unless there is a clear shortage of the 

mineral (Johansson et al., 1990). No significant results on growth rate, feed intake or feed to gain ratio 

could be found by Juniper et al. (2006), in a 112 day feeding trial, where growing lambs were either 

supplemented with an organically bound Se source or an inorganic Se source. Additionally, no influence 

could be reported in a trial on growing calves by Skřivanová et al. (2007), were they looked at different 

levels and source of Se and the influence thereof on the performance of the calves. The physical 

performance of finishing beef steers was left unaffected by Se source and the concentration thereof 

(Lawler et al., 2004). 

 

Table 4.1: Growth performance data of wethers supplemented with different selenium sources in their 

diets. Mean ± standard error of the mean 

Variable CT IS OSB OSA 

N 10 10 10 10 

Initial body weight (kg) 39.85 ± 0.93 39.65 ± 0.98 40.55 ± 0.71 41.45 ± 0.79 

Final body weight (kg) 43.65 ± 0.70 42.6   ± 0.83 43.95 ± 0.67 44.05 ± 0.99 

Body weight gain (kg) 3.8 2.95 3.4 2.6 

Average daily gain (g) (ADG) 46 36 41.5 31 

Daily feed consumption (kg) 1.03 1.04 1.03 1.05 

Feed conversion ratio (FCR, 

kg feed per kg gain) 
22.4 28.8 24.8 33.8 

# No significant differences were found between treatments for any of the parameters 

 

With Se supplementation to sheep (Hartley & Grant, 1961) and young cattle (Wichtel et al., 1996) positive 

effects could only be reported in cases where exceptionally low levels of Se were present. However, in 

studies with beef cattle and dairy cows no effect could be seen on the weight gain when the marginally 

and normal concentration diets were supplemented with Se (Weiss et al., 1983 & Gunter et al., 2003).  

 

In the present study, the Se status of the wethers at the start of the trial was classified as marginally 

deficient accoring to Se concentrations reported by Puls (1994). Background Se present in the 

compositional feedstuffs may also have been sufficient to meet the basic Se requirements of the wethers. 

This can possibly explain the lack of difference in growth performance between the various trial groups 

additionally to the animals already having reached puberty. 

  

Whole blood was collected on a monthly basis and analysed immediately afterwards by the Western 

Cape Veterinary Laboratory, Stellenbosch, South Africa, and the values received are displayed in Table 

4.2. After the Se depletion period, and although the wethers were randomly assigned to the treatments, 

the OSB group had significantly (P=0.017) lower Se levels than the rest at the start of the trial. This must 

be brought into the equation throughout the rest of the trial when conclusions are made. On day 30 the 

OSA group had significantly (P=0.037) higher Se levels than the CT group, with the OSB group having 
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the biggest increase in average Se levels from day 0. However, the large variance in data observed is 

likely the explanation for a lack in significant differences (0.059) between the OSA and IS treatments. 

Bringing into account the low starting value of the OSB group and the low P value of the OSA group, the 

organically bound Se treatments had a definite tendency to create higher Se levels than the IS and CT 

groups at day 30.  

 

Table 4.2: Whole blood selenium levels measured in Dönhe Merino wethers supplemented with different 

selenium sources. Mean ± standard error of the mean 

 Treatment  

Parameter CT(ng/ml) IS(ng/ml) OSB(ng/ml) OSA(ng/ml) P-value 

Day 0 102.0a   ± 8.59 95.0ab     ± 5.78 86.11b   ± 10.89 98.67ab  ± 12.94 0.02 

Day 30 100.8a   ± 6.58 100.88ab ± 9.63 111.0ab  ± 13.51 113.7b   ± 8.51 0.04 

Day 60 199.11a ± 13.89 195.1a    ± 19.42 212.0a   ± 9.26 213.6a   ± 16.88 0.07 

Day 90 129.78a ± 7.17 134.75a  ± 10.74 136.63a ± 10.32 137.89a ± 12.09 0.37 
ab Means in the same row with different superscripts differ (P<0.05) 

 

 

 

This result is consistent with previous reports by Juniper et al.  (2008) and Nicholson et al. (1991) in beef 

cattle, Gunter et al. (2003), Ortman & Pehrson (1997, 1999) in dairy cows and Van Ryssen et al. (1989), 

Qin et al. (2007), Davis et al. (2008) in sheep. All reported greater whole blood Se concentrations in 

animals supplemented with organically bound Se than those offered diets with comparable amounts of IS 

Sodium selenite as the source of supplementary Se. Therefore, it is concluded that organically bound Se 

can readily improve an animal’s Se status and is superior to IS in this regard. 

  

However, on day 60 of the trial there was a great increase across all of the groups in whole blood Se 

levels, with no significant differences that could be detected between treatments. It is evident therefore 

that IS can result in an improved Se status of the animals, and to the same extent as an organically 

bound Se source, but that IS requires a longer period of supplementation to attain this level.  

  

This result corresponds to findings of Petrera et al. (2009) in goats, Pehrson et al. (1999) in cows and 

Nicholson et al. (1993), Awadeh et al. (1998) in beef cattle, who  reported no overall difference in whole 

blood Se when the diets were supplemented with an organically bound Se or inorganic Se source. 

 

Looking at the whole picture it is evident that the two organically bound Se sources were the quickest to 

improve the whole blood Se levels of the Döhne Merino wethers in the first 30 days of the trial. Adequate 

whole blood Se levels were reached at this point by the organically bound Se sources and the inorganic 

Se source could catch up. This led to no detectable differences between treatments at the end of the trial, 

which resulted in the conclusion that IS can result in an improved Se status to the same extent as an 

organically bound Se source, but that IS requires a longer period of supplementation to attain this level.  
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The Se levels of the muscle, liver and kidney samples that were collected after slaughter are presented in 

Table 4.3. These results are consistent with the reports by Taylor (2005), Juniper et al. (2008) and Combs 

& Combs (1986) which indicated that the Se concentrations ranked the highest in the kidney, followed by 

the liver and the skeletal muscle. However, in diets of extremely high Se concentration, the liver can have 

higher Se concentrations than the kidney in lambs (Cristaldi et al., 2004). 

 

Table 4.3: Selenium levels of muscle, liver and kidney samples of wethers supplemented with different 

selenium sources measured on a fresh tissue basis. Mean ± standard error of the mean 

 Treatment  

Parameter CT(mg/kg) IS(mg/kg) OSB(mg/kg) OSA(mg/kg) P-Value 

Muscle 0.538a ±0.084 0.535a ±0.059 0.756b ±0.074 0.809b ±0.182 < 0.01 

Kidney 4.11a   ±0.82 4.4a     ±0.66 4.63ab  ±0.55 5.4b     ±0.71 < 0.01 

Liver 1.55a    ±0.069 2.71b   ±0.42 2.66b   ±0.362 2.96b   ±0.647 < 0.01 
ab Means in the same row with different superscripts vary (P≤0.05)  

 

In the skeletal muscle, the two organically bound Se treatments resulted in significantly higher Se 

concentrations than the control and the inorganically supplemented treatments, with no difference 

between the control and the inorganic Se treatment. This is consistent with Ehlig et al. (1967), Van 

Ryssen et al. (1989) and Qin et al. (2007), who reported a greater incorporation of organically bound Se 

into skeletal muscle than that from inorganic sources.  

 

The kidney tissue from the organically bound OSA group showed significantly higher Se levels than the 

inorganic selenium (IS) and that of the CT; these levels did not however differ significantly from the OSB 

supplement (P=0.0537). Similarly, Qin et al. (2007) and Juniper et al. (2008) have found that organically 

bound Se fed to ruminants resulted in higher amounts of Se in the kidney than did inorganically bound 

Se.  

   

All three Se treatments resulted in significantly higher Se levels in the liver, but there were no differences 

between the inorganic and organic treatments. This is in contrast to previous research by Van Ryssen et 

al. (1989) and Weiss (2003), who indicated that, in addition to muscle, the liver is one of the organs where 

one often finds better effects of organically bound Se supplements. These researchers did however also 

report higher Se levels in the blood of the animals at the end of their studies, which differs from the 

current study. Once the Se is absorbed into the blood, regardless of its form, it will be absorbed by the 

liver where it will be utilised. The liver Se level is therefore not dependent on the supplemented form so 

much as on the Se levels present in the blood.  

 

In 1980, White reported that Se concentrations in wool have a significant linear correlation with the Se 

intake. In the present study wool samples were collected from the Döhne Merino wethers at the start (day 
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0) and at the end (day 90) of the trial and sent to the laboratory for determination of the Se levels (Table 

4.4).  At day 0 after random allocation of the wethers into their four groups, the OSA group had 

significantly higher Se levels than the CT group. This difference was however put into perspective at day 

90, when the OSA group had a threefold advantage over the CT group, and more than double the levels 

of the IS group. The OSB group has also outperformed the CT and IS groups significantly, with no 

difference present between CT and IS.  

 

Table 4.4: Selenium levels of wool from wethers supplemented with different selenium sources measured 

at the beginning and end of the trial. Mean ± standard error of the mean 

 Treatment  

Parameter CT (ppm) IS (ppm) OSB (ppm) OSA (ppm) P-Value 

Onset 0.358a ±0.053 0.391ab ±0.048 0.435ab ±0.118 0.458b ±0.074 0.02 

Termination 0.43a   ±0.06 0.53a    ±0.09 0.95b    ±0.26 1.26c   ±0.27 < 0.01 
abc Means in the same row with different superscripts vary (P<0.05)  

 

The outcome of this trial is consistent with Van Ryssen et al. (1989) and Davis et al. (2008) who both 

found significantly higher levels of Se in the wool of sheep that were fed with an organically bound 

selenium source than an inorganic source. 

 

The contrast estimates were calculated (Table 4.5) for the Se concentration in the blood between the CT 

and the organic Se (OSA and B) groups, the CT and the IS, and for the IS and the OS (A and B) groups. 

All contrasts were calculated at day 30 as well as day 90. Significant results were found between the CT 

and OS (A and B), and between the IS and OS at day 30. This correlates with the previous findings of the 

benefit of OS over IS at day 30, in line with a number of researchers (as discussed earlier). The lack of 

any response at day 90 complements the findings of other researchers who reported no difference 

between IS and OS in whole blood. 

 

The contrast estimates were also calculated for the Se concentration in the kidney, muscle, liver and wool 

between the CT and the IS group, the CT and OS groups and the IS and OS groups. Significant results 

were found across all calculations for the muscle, kidney and wool contrast estimates. Looking at the 

contrast estimates for whole blood at day 90 and the liver between IS and OS, no differences were 

observed. This strengthens the earlier argument that differences between Se sources will only appear in 

the liver if differences were observed in the blood.  
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Table 4.5: P-value contrast estimates between different selenium treatment groups for whole 

blood, tissue and wool samples    

  P-values 

Whole blood CT vs IS CT vs OS IS vs OS 

Day 30 0.345 0.000* 0.007* 

Day 90 0.208 0.982 0.162 

    

Tissue & wool CT vs SE CT vs OS  IS vs OS 

Muscle 0.000* 0.000* 0.000* 

Kidney 0.009* 0.002* 0.022* 

Liver 0.000* 0.000* 0.599 

Wool 0.000* 0.000* 0.000* 
* Means the contrast estimate is highly significant (P<0.01) 

 

Conclusion 
  

In recent years the importance of adequate Se levels to maintain human and animal health has become 

more evident. Since the acceptance of organically bound Se supplementation for animals, a number of 

studies have been performed on all species to establish the advantages thereof.  

 

In the present study no advantage could be established for the supplementation of Se in any form to 

improve the growth and FCR of wethers. The reason for this could be because Se levels in the wethers 

were only marginally deficient and that there was some Se available to all groups from the feed, which 

may have been sufficient to meet the basic Se requirements of the wethers. Also, the wethers had 

relatively high BW and age at the onset of the experimental phase of the study, thereby decreasing their 

growth potential and therefore the potential to observe significant growth responses. 

 

In the whole blood Se study, it was found that organically bound Se is more readily available in the first 30 

days of the trial to the wethers to rectify their Se shortages than the inorganic source. At the end of the 

trial (day 90) no differences were observed between treatments. It is therefore evident that inorganic Se 

can also result in an improved Se status of the animals, and to the same extent as an organically bound 

Se source, but that inorganic Se requires a longer period of supplementation to attain this level. 

 

With the tissue and wool analysis, results consistent with previous reports were obtained in the muscle, 

kidney and wool samples, with greater incorporation of organically bound Se into these tissues than that 

of inorganic sources. The organically bound Se was therefore proven to have a higher bioavailability for 

wethers than the inorganic Se source. This is mainly due to the different absorption paths of the two Se 

sources: unlike inorganic Se, the organically bound sources can be absorbed through amino-acid 

transport and directly incorporated into body protein (Hoffman et al., 1970). A possible advantage of this 
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is that the Se reserves which are built up in the body from the organically bound Se will be available in 

stress conditions when the Se requirement is increased. This however still needs further studies to 

confirm that this accumulation of selenium will be available to the animal in stress conditions. The Se 

accumulation in the body protein will also hold benefits for the consumers of these animal products, 

providing more available Se in their diets.  Therefore, organically bound Se sources can be utilised in the 

production of functional food for human consumption. 

 

Results for Se levels in the liver for the present study contradicts with previous research reports, showing 

no significant differences in Se levels between the inorganic and organically bound Se treatments. 

However, the whole blood Se levels found at the end of the trial of the current study also differed from 

these previous reports; suggesting that Se levels in the liver are probably be more dependent on the Se 

levels present in the blood of the animal than on the supplemented form of Se.  

 

It is clear that organically bound Se has a higher bioavailability for small ruminants than NaSe. 

Organically bound Se will therefore have a positive impact on small ruminant health and production, 

which will result in an indirect advantage for human health. 
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CHAPTER 5 

The effect of different sources of selenium supplementation on the 

antioxidant status in the plasma and body tissues of Döhne Merino wethers 

 

Abstract 

 

The effects of different selenium (Se) supplements on the antioxidant status of small ruminants were 

studied in forty Dohne-Merino wethers purchased from the Southern Cape region of South Africa, a 

selenium-deficient area. The animals were all fed the same basal diet in the adaptation period and were 

then randomly allocated to one of four dietary treatment groups: Control (CT), containing Se from the 

basal diet only; the inorganic group, fed the basal diet with added Sodium selenite (IS); or one of two 

groups fed organically bound selenium (Se) in the basal diet with added organically bound Se A (OSA) or 

B (OSB). The period of supplementation was 90 days. Blood samples were taken monthly for plasma 

collection to test for Glutathione peroxidase (GSH-Px) activity and total antioxidative capacity (TAC) with 

the oxygen radical absorbance capacity (ORAC) assay. Liver, skeletal muscle and kidney samples were 

collected at day 90, after the wethers were slaughtered, and measured for GSH-Px activity.  

 

There was a noticeable effect in TAC between day 0 and day 90 but the Se treatments did not differ 

significantly. No significant differences in the GSH-Px analysis in any of the tissues could be established 

between the different selenium treatments. For the mean plasma values of the treatments no significant 

differences could be reported, but a significant difference was observed at day 30 with a contrast between 

the organically bound Se and the other groups. It does appear that the organically bound Se is more 

readily available for the wethers to rectify any Se shortages and therefore increase the GSH-Px activity in 

the plasma. The supplementation of wethers with organically bound Se, rather than inorganic selenium, 

can have advantages for wethers in their recovery time from such ailments as white muscle disease.  

  

Key words: antioxidant status, selenium, wethers, GSH-Px, ORAC 

 

Introduction 

 

Free radicals are produced by all animals as a by-product of metabolism; these can cause cell damage or 

even cell death (Weiss, 2005). But to prevent or counteract this damage nature produces various 

antioxidants, including superoxide dismutase (SOD), catalase and GSH-Px (Özturk-Ürek et al., 2001). 

  

As early as 1957, Mills discovered GSH-Px and in 1973, Rotruck et al. identified Se as an integral part of 

the enzyme, six GSH-Px enzymes have been identified since (Sunde, 1997). The primary functions of the 

GSH-Px enzymes are to detoxify hydrogen peroxide (H2O2) and to convert lipid hydroperoxides to non-

toxic alcohols (Jenkinson et al., 1982; Halliwell & Gutridge, 1989).  
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Antioxidants are molecules that can easily and harmlessly give up an electron. GSH-Px requires Se as a 

cofactor and contains a SeCys amino acid residue in the active site of each monomer that participates in 

the actual mechanism of the enzyme. The oxidation of NADPH to NADP+ is accompanied by a decrease 

in absorbance at 340nm (A340). The rate of decrease in the A340 is directly proportional to the GSH-Px 

activity in the sample. One unit of GSH-Px is defined as the amount of enzyme that will cause the 

oxidation of 1 nmole of NADPH to NADP+ per minute at 25ºC. Glutathione Peroxidase activity is therefore 

expressed as nmole/min/ml/ug protein = Units/ml (u/ml) (Stressgen, Assay Designs, Michigan, USA).  

 

Considering the role that Se has in the GSH-Px enzymes and taking into account the function of these 

enzymes, we can hypothesise that different sources of Se will have an influence on plasma antioxidant 

capacity. The measure of antioxidant capacity considers the cumulative action of all the antioxidants 

present (vitamin A, E, C, superoxide dismutase, catalase, reduced glutathione and GSH-Px) (Pasupathi, 

et al., 2009) in plasma and body fluids, thus providing an integrated parameter rather than the simple sum 

of measurable antioxidants (Ghiselli et al., 2000).  

 

In 1996, Paszkowski & Clarke defined total antioxidant capacity (TAC) as a measure of overall free-

radical scavenging potential. TAC is therefore the total ability of the body to protect itself from the 

destructive side-effects of physiological metabolism. Antioxidant capacity can be measured by means of 

several methods, such as trolox equivalent antioxidant capacity (TEAC) (Miller et al., 1993), total radical-

trapping antioxidant parameter (TRAP) (Ghiselli et al., 1995), ferric reducing ability of plasma and 

biological antioxidant potential (FRAP & BAP) (Benzie & Strain, 1996), and the oxygen radical 

absorbance capacity (ORAC) assay (Cao et al., 1993). The ORAC assay is arguably the most accepted 

and accurate indicator of antioxidant capacity, mainly because it is based on measurements of 

fluorescence rather than absorbance (Cao & Prior, 1998).  It is also the only assay that measures both 

inhibition time and degree of inhibition for an antioxidant (Huang et al., 2002; Huang et al., 2005). 

  

ORAC is a hydrogen atom transfer (HAT) assay that determines antioxidant capacity by measuring 

competitive kinetics. It consists of three basic components: a fluorescent probe, a radical donor and a 

fixed amount of antioxidant to compare the sample antioxidant capacity against a standard as described 

by Ou et al. (2001). Basically, as the radicals increase, the fixed amount of fluorescent agent present in 

the reaction mixture progressively becomes quenched. Any antioxidant present in the system would 

scavenge the radicals, effectively out-competing the fluorescent probe as substrate. This ultimately 

results in the extended viability of the fluorescent probe and would thus increase the area under the curve 

(AUC) generated. By measuring fluorescent intensities over time, a kinetic curve can be drawn from 

which the antioxidant capacity in any given sample can be deduced from the total AUC.  

 

The aim of this study was to investigate the effect of supplementing Döhne Merino wethers with different 

sources of Se on their antioxidant status. Their total antioxidant capacity and GSH-Px activity in the 

plasma, muscle, kidney and liver were measured and used as indicators of their antioxidant status. 
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Materials and methods 
The reader is referred to Chapter 3 for the description of the experimental procedures and the treatments 

used in determining the effect of the different Se supplementations on the performance of the lambs.  

Table 3.2 is included again for the benefit of the reader regarding the different treatments used in the 

study. 

 

Table 3.2: Physical and chemical composition of treatment feeds indicating selenium concentration of the 

experimental diets fed to the Döhne Merino wethers  

  CTR IS OSB OSA 

 Physical composition, As fed basis  
Wheat straw g/kg 760 760 760 760 
Maize starch g/kg 150 150 150 150 
Molasses meal g/kg 50 50 50 50 
Urea g/kg 10 10 10 10 
Premix CT g/kg 30 0 0 0 
Premix IS g/kg 0 30 0 0 
Premix OSB g/kg 0 0 30 0 
Premix OSA g/kg 0 0 0 30 

 Chemical Composition, DM basis 
Moisture g/kg 95.9 100.9 104.3 105.8 
Ash g/kg 50.2 63.7 55 70.6 
Crude fat g/kg 6.5 6.9 7 6.9 
Crude fibre g/kg 395.8 370.9 315.8 341.2 
Crude protein g/kg 84.7 110.7 93.1 125 
N g/kg 13.6 16.2 14.9 17.3 
Se mg/kg 0.08 (0.14)* 0.27 (0.36)* 0.26 (0.36)* 0.27 (0.32)* 
* Values in brackets indicates the actual value as per analysis 

 
Sampling 

Blood samples were collected on a monthly basis via jugular venipuncture with an 18-gauge needle into 

an anticoagulant 6ml vacutainer (K3E K3 EDTA) and packed in ice. These samples were taken to the 

laboratory, centrifuged at 1500 x g for 10-20 minutes at 4°C and the upper yellow plasma was collected 

with a pipet and stored at -80°C according to Stressgen, Assay Designs, Michigan, USA,  for the GSH-Px 

and ORAC assays.  

 

Liver, muscle and kidney samples were collected after slaughter by stunning and exsanguination. The 

tissue samples were perfused with 1 * PBS plus 0.16mg/mL heparin to remove blood components and 

clots. The tissues were then homogenised in 5-10ml/g of tissue 1 x cold assay buffer containing 0.4mM 

PMSF, other protease inhibitors, and 1% Triton X-100 (peroxide-free). The samples were centrifuged at 

10,000 x g for 10-20 minutes at 4ºC to remove insoluble material, the supernatants were recovered into 

small aliquots, snap-frozen and stored at -80ºC according to Stressgen (Assay Designs, Michigan, USA) 

for analysis of the GSH-Px activity.  
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Chemical analysis 

 

The ORAC procedure used an automated plate reader (FLx800 Fluorescence Microplate Reader) with 

96-well plates. Analyses were conducted in phosphate buffer (PB) pH 7.4 at 37°C. Peroxyl radical was 

generated using 2.2’-Azobis (2-amidino-propane) dihydrochloride (AAPH) (153mM), which was prepared 

fresh for each run. Fluorescein (8.16*10-5mM) was used as the substrate and Trolox (400µM) was used 

for standard curve. Plasma samples were defrosted at room temperature and diluted 200 x with distilled 

water. Twenty-five µl of PB, Trolox and sample were pipetted into their designated wells, 150µl 

fluorescein was added to every plate, and the plates were incubated for 10 minutes at 37°C. To each 

well, 25µl AAPH were added which initiated the reaction. Fluorescence was measured for 180 minutes at 

1 minute intervals. Excitation wavelength = 485±20 nm; emission wavelength = 530±nm 

 

A glutathione peroxidase activity kit was purchased from Stressgen, Catalog # 900-158, (Assay Designs, 

Michigan, USA) and the absorbance was calculated with an ELx800 Absorbance Microplate Reader at 

25°C. The principle of the coupled enzymatic assay first described by Paglia & Valentine (1967) was 

applied. Glutathione (GSH), glutathione reductase (GR) and NADPH dissolved in phosphate buffer and 

sample were mixed in cuvettes. Then tert-butylhydroperoxide (BHPx) was added to initiate the reaction in 

a total volume of 200µL, immediately after the reaction was initiated, absorbance was measured at 

340nm every minute over a 15 minute period. The protein concentrations of the samples were calculated 

by the method of Bradford, (1976) to express GSH-Px activity per unit of protein. 

 

Statistical analysis 
 

Repeated measures ANOVA were done on treatments over a number of days to measure if interactions 

between treatments and days were significant, and multiple comparisons were made on the interaction 

effects. Appropriate contrasts were investigated among treatments between successive days. If 

interactions were not significant, main effects were similarly analysed. When ANOVAs were done on the 

relevant response variable among the treatments, the treatment effects were analysed with Bonferroni 

multiple comparisons (if significant) with appropriate contrast among the treatment effects (Statistica 

version 8.1 (2008)). Differences were considered significant when P<0.05. 

 

Results and discussion 
 

Whole blood was taken on a monthly basis from the wethers and the plasma was collected from these 

blood samples in the laboratory. The ORAC assay was followed and the total antioxidant capacity (TAC) 

of the plasma was calculated, and is displayed in Table 5.1. No significant differences could be 

established between any of the treatments, suggesting that the level of naturally occurring selenium 

present in the feed raw materials may have satisfied the selenium requirements of the CT group. Large 
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variation was observed throughout the ORAC analysis and could possibly have played a role in the lack 

of significant results between the treatments.  

 

Table 5.1: Total antioxidant capacity (TAC) of wether plasma with different selenium treatments. Mean ± 

standard error of the mean 

 Treatment  

Parameter CT(µmol/l) IS(µmol/l) OSB(µmol/l) OSA(µmol/l) P-Value 

Day 0 5 228a        ± 1 118 4 982a       ± 1 581 4 526a      ± 1 525 5 392a        ± 2 021 0.53 

Day 30 6 201       ± 1 441 6 033       ± 1 402 5 544       ± 1 824 5 919       ± 1 962 0.58 

Day 60 7 582       ± 2 447 7 180       ± 2 984 7 390       ± 1 760 6 695       ± 3 004 0.56 

Day 90 7 468b        ± 2 266 7 735b        ± 4 502 8 674b       ± 3 554 8 066b        ± 1 102 0.88 
ab Means in the same column with different superscripts differ (P<0.05) 

# No significant differences were found between any of the treatments 

 

Similarly, Mikulski et al. (2009) could not find differences in turkeys and Khajali et al. (2010) in broilers for 

the antioxidant capacity between different Se sources. In 2008, Tang et al. reported that Se 

supplementation, but not the source, had an influence on the serum antioxidant capacity of rats, and in 

contrast with this result, Zong-yun et al. (2007) reported that there was a significant difference between 

organically bound Se and inorganic Se for the antioxidant capacity of cows.  

 

A steady increase was observed for all treatments over the sampling period with a significant effect 

between day 0 and day 90 (P < 0.01) but no effect between the treatments. Very few studies have been 

publised to date on the effect of Se sources on the TAC of animal plasma, and in most cases different 

assays were used to determine the TAC, which makes comparisons very difficult and inconclusive. 

Consistent with the results of earlier studies, no conclusion can be derived from the effect of different Se 

sources on TAC of wether plasma and further studies on this topic is recommended.  

 

About 11.8% of total selenium in the organism forms part of the GSH-Px complex (Awadeh et al., 1998). 

Whole blood was taken on a monthly basis from the wethers and the plasma was collected from these 

blood samples in the laboratory. The plasma was analysed with the Stressgen Kit (Assay Designs Inc., 

Michigan, USA) and the results are presented in Table 5.2.  

 

The OSA group had a slightly higher value than the other treatment groups after they were randomly 

assigned at the start of the trial; this may have had some influence on the later results. At day 30 of the 

trial no significant differences could be established between different Se treatments for the GSH-Px 

activity in the plasma. However, considering the contrast estimates (Table 5.3) the organically bound Se 

treatments (OS) produced significantly higher values at day 30 over the CT (P=0.049) and IS (P=0.037) 

groups.  At day 60 and 90 of the trial no significant differences were observed between treatments and 

the advantage that the OS group had with the contrast estimates in Table 5.3 was lost (P=0.429 and P= 

0.504). Similarly to the whole blood Se levels, organically bound Se supplementation led to a quicker 
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response of the GSH-Px levels in plasma, after which an adequate level was reached. Inorganic Se 

supplementation matched the GSH-Px levels of the OS treatments, but took more time to reach it. 

  

Table 5.2: Plasma GSH-Px activity of Döhne Merino wethers fed diets with different selenium supplements. 

Mean ± standard error of the mean 

  Treatment 

Parameter CT (u/ml) IS (u/ml) OSB (u/ml) OSA (u/ml) P-Value 

Day 0 11.95  ±2.67 11.38  ±6.03 10.99  ±2.72 14.72   ±3.36 0.77 

Day 30 8.68    ±3.64 8.38    ±5.89 12.61  ±4.99 13.69   ±6.42 0.25 

Day 60 10.87  ±2.98 10.25  ±2.74 10.99  ±2.72 11.03   ±2.15 0.87 

Day 90 13.51  ±5.67 13.69  ±3.89 13.71  ±3.51 16.29   ±4.85 0.87 

# No significant differences were found between treatments for any of the parameters. 

 

The findings of the present study are consistent with previous ruminant research (Nicholson et al., 1993; 

Awadeh et al., 1998; Knowles, et al., 1999; Malbe et al., 1995; Ortman & Pehrson, 1997; Gunter et al., 

2003) which could not find any significant differences between the GSH-Px activities in the blood of 

animals that were supplemented with different Se sources. An average increase in GSH-Px activity of 

16% was however reported by Weiss (2003) when cattle were fed with organically bound Se. 

 

Significant differences were however reported by Knowles et al. (1999) in dairy cows, Pehrson et al. 

(1989) in dairy heifers and Qin et al. (2006) who reported that organically bound Se was more effective 

than Sodium selenite in increasing blood GSH-Px activity in lambs. Furthermore, Rock et al. (2001) 

reported that lambs born to ewes fed with an organically bound Se source had higher concentrations of 

Se and GSH-Px activity in their blood than lambs born to ewes supplemented with an inorganic Se 

source.  

  

Table 5.3: P-values of the GSH-Px contrast estimates of the plasma and muscle samples between 

different treatment groups 

 P-values 

Plasma CT vs OS IS vs OS Tissue CT vs SE CT vs OSA 

Day 30 0.049* 0.037* Muscle 0.151 0.112 

Day 90 0.429 0.504       

*P-value ≤ 0.05 

 

Tissue samples (muscle, liver and kidney) were collected at the abattoir after the wethers were 

slaughtered at the end of the 90-day trial. The tissue samples were analysed, and the results are 

presented in Table 5.4. No significant relation between the form of selenium added to the feed and GSH-

Px activity in the tissues could be established. Relevant contrast estimates were calculated, as presented 

in Table 5.3, with no significant contrast in the muscle sample to be reported.  
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The lack of an effect between different Se supplementations in the tissue samples could possibly be 

explained by looking back to the whole blood Se levels (Table 4.2) and to the GSH-Px activity in the 

plasma (Table 5.2). In both these trials there were differences between treatments at day 30, after which 

these differences disappeared by day 60 and 90. It was concluded that organically bound Se could have 

a greater effect in the initial supplementation period over an inorganic Se source. However, the 

differences between sources would disappear over an extended period of time. Therefore no differences 

were expected between the treatments for the GSH-Px activity in the tissue samples at day 90 when the 

wethers were slaughtered. 

 

Similar to the present study, Van Ryssen et al. (1989) reported no differences between Se sources for the 

GSH-Px activity in the liver, pancreas or muscle. Also, Juniper et al. (2009) could not find differences 

between sources in the muscle (Longissimus thoracis). Some research groups researched other animal 

species with Kuricová et al. (2003) and Petrovic et al. (2006) who could not find a relationship between 

Se source and GSH-Px activity in the tissue samples of chickens whereas Deagen et al. (1986) showed 

that the Se source could have an influence on GSH-Px activity in the testes and muscle but not in the 

liver and kidney of rats. Zhan et al. (2007) did not observe an effect in the tissue samples of pigs.  

  

Table 5.4: The tissue GSH-Px activity of Döhne Merino wethers fed diets with different selenium 

supplements. Mean ± standard error of the mean 

  Treatment 

Parameter CT (u/ml) IS (u/ml) OSB (u/ml) OSA (u/ml) P-Value 

Muscle 3.35   ±1.09 4.79   ±3.56 4.09   ±1.62 5.06   ±1.14 0.37 

Kidney 12.59 ±4.76 11.15 ±7.25 9.97   ±2.92 12.79 ±4.44 0.65 

Liver 13.19 ±8.06 14.29 ±2.89 14.58 ±3.12 15.32 ±4.04 0.86 

# No significant differences were found between treatments for any of the parameters 

 

An explanation for the lack of any effect between the different Se sources on GSH-Px activity, especially 

in the tissue samples was based on the fact that all Se compounds must be split into H2Se before SeCys 

is synthesised and incorporated into the active centre of the selenoenzymes (Schrauzer, 2000). GSH-Px 

activity will therefore not be so much dependent on the Se source as on the level of Se supplementation. 

Another explanation can be that a large amount of the organically bound Se has been directly 

incorporated into the body protein (Table 4.3 & 4.5), which will have left less Se available for 

selenoenzymes.  This was indeed the case in the present study where higher Se levels were observed in 

the muscle of the wethers (Chapter 4).   
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Conclusion 
 

The importance of antioxidant status in human and animal health is well established, with many studies 

currently focussing on the provision of food with an antioxidant capacity value, or otherwise known as 

functional food. Numerous diseases are directly linked to oxidative stress of the body. The role of 

selenium in GSH-Px and its role in preventing oxidation and increasing the antioxidative status of humans 

and animals are well known and studied. With the increased bioavailability of organically bound Se over 

inorganic Se now established, this study investigated further advantages of organically bound Se 

products.  

 

Previous reports on the effect of different Se source supplementation on GSH-Px activity in animals has 

established a constant trend of numerically higher values for the organically bound Se sources. This 

could not be confirmed in the present study; the availability of the organically bound Se sources was 

however observed in the first period of the study. Confirming conclusions made in Chapter 4 that 

organically bound Se has a higher bioavailability for small ruminants, and supplementation with it will yield 

a faster response than with inorganic Se supplementation. Over long periods of selenium 

supplementation there will however not be any differences between Se sources. No effect on GSH-Px 

activity in the tissue samples between the different Se sources was observed. This can be explained by 

the route of metabolism and absorption of Se in ruminants which will cause GSH-Px activity to be more 

dependent on the level of Se supplementation than on its source.   

 

This study has highlighted a few shortcomings in TAC studies and opened the door for further trials. Very 

few studies have been done to date on the supplementation effect of different Se sources on the TAC of 

small ruminants and further studies are recommended.  In the present study no effect on TAC between 

the different treatments could be reported, which is consistent with similar trials in other animal species, 

but varies from a study on cows. The fact that there are numerous different assays to calculate the TAC 

makes it nearly impossible to make comparisons between studies. Therefore, a standardised assay to 

calculate TAC is highly recommended. 
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CHAPTER 6 

The reaction of meat quality (colour, tenderness, cooking loss and drip loss) and lipid 

oxidation (TBARS) in Döhne Merino wethers fed different selenium source 

supplementation 

 

 

Abstract 

 

The objective of this study was to evaluate the quality and lipid oxidation of M. longissimus dorsi from 

wethers supplemented with different selenium (Se) sources. Forty growing Döhne Merino wethers from 

the Southern Cape region of South Africa, a selenium-deficient area, were used for the study. The 

animals were all fed the same basal diet in the adaptation period and were then randomly allocated to 

one of four dietary treatment groups: Control (CT), containing Se from the basal diet only; the NaSe 

group, fed the basal diet with added Sodium selenite (IS); or one of two groups fed organically bound 

selenium (Se) in the basal diet with added organically bound Se A (OSA) or B (OSB). The period of 

supplementation was set at 90 days.  

 

Skeletal muscle samples M. longissimus dorsi were collected at day 90 after slaughter to determine their 

quality. No differences between Se source treatments could be detected in the meat quality (colour, 

tenderness, drip and cooking loss) after the 90-day supplementation period. Lipid oxidation was 

measured by determining TBA reactive substances (TBARS) and no differences could be detected. 

Despite the higher Se levels in the muscles of the organically bound Se groups (see Chapter 4) both Se 

supplementation and source of Se supplementation failed to have an influence on the lipid oxidation and 

meat quality of wethers.  

 

Key words: selenium, meat quality, lipid oxidation, TBARS 

 

Introduction 

 

With the discovery of GSH-Px by Rotruck et al. (1973) in the early 1970s, a specific biological role for 

selenium became apparent in the form of selenocysteine, which forms the active centre of this enzyme 

(Behne & Kyriakopoulos, 2001). The antioxidant functions of Se, via GSH-Px activity, have been shown to 

persist post-mortem in poultry muscle tissue (DeVore et al., 1983), delaying the onset of oxidation 

reactions, which adversely affects both the nutritive value and flavour of meat products (Morrissey et al., 

1998). A correlation exists between GSH-Px activity and Se content in the tissues of ruminants (Scholz et 

al., 1981; Gatellier et al., 2004). Therefore the supplementation of diets with Se may increase the 

oxidative stability of meat.  
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Almost all meat quality factors are in some way influenced by oxidation, and it has been established that 

the first line of protection against oxidation is formed by the antioxidant enzymes (Glutathione peroxidase, 

superoxide dismutase and catalase) (Gatellier et al., 2004). It will therefore protect the organism against 

lipid oxidation and its by-products. Some of these by-products are known to be toxic or carcinogenic while 

others alter meat flavour negatively (Du & McCormick, 2009). A secondary defence against oxidation can 

be provided by the natural antioxidants in pastures or feed (Daly et al., 1999). 

 

The quality of a potential meat cut purchased is determined by a combination of characteristics that 

define the level of acceptability for the consumer (Kramer & Twigg, 1962). The visual appearance in the 

form of colour and in pack purge when the meat is bought; odour and juiciness when the meat is cooked; 

flavour and tenderness when it is consumed, are some of the characteristics by which the consumer will 

evaluate the quality of meat (Smith et al., 1970).  

 

The meat must please the eye; therefore meat colour is the main selection parameter which affects the 

acceptability at the time of purchase (Faustman & Cassens, 1989). Discolouration of the meat surface 

decreases consumer acceptance (Carpenter et al., 2001) and annually millions are lost in revenue. 

Nearly 15% of discount retail beef has been reduced in price due to surface discolouration (Smith et al. 

2000). Meat colour depends on a concentration of pigments (myoglobin, haemoglobin), their chemical 

states, the type of myoglobin molecule, and the light-scattering properties of meat (Lawrie, 1998). The 

bright red colour of lamb is due to the oxygenation of myoglobin when meat is exposed to the air. Colour 

stability is very important, especially in retail display, and can be influenced by several factors, but is 

mostly linked to oxidation. The strategy to maintain optimum meat colour thus involves the delay of 

pigment oxidation (Faustman & Cassens, 1989). This can be done with the addition of an antioxidant like 

rosemary powder to the meat (Sanchez-Escalante et al., 2001). As reported by Warren et al. (2002) and 

Wood et al. (2004) the formulation of the diet to contain Vitamin E can cause the delay of colour 

oxidation. 

 

The water-holding capacity (WHC) of meat is defined by Sales (1996) as the ability of meat to retain its 

water during the application of external factors such as cutting, mincing and storage. Many of the meat 

quality properties including colour, in pack purge, texture, juiciness and tenderness are only partially 

dependent on WHC (Lawrie, 1998; Barge et al., 1991; Honikel, 1998), while cooking loss and drip loss 

are directly influenced by WHC (Immonen et al., 2000). Normally, muscle post-mortem glycolysis will 

proceed to an ultimate pH close to the isoelectric point of meat (Lawrie, 1998). This means that there will 

always be some loss of water post-mortem. Thus, the higher the ultimate pH of muscle, the stronger the 

binding of water in that muscle (Thomas et al., 2004). Therefore, anything that affects the pH and 

specifically the rate of pH decline, will affect the WHC. This can affect other aspects of meat quality, 

including juiciness, which plays an important role in the overall palatability of meat. 
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The consumer considers meat tenderness to be the most important palatability trait (Gonzalez et al., 

2001). Meat tenderness is influenced by the myofibrillar component (ultrastructure of the myofibrillar 

proteins) and the stromal components (content, composition and structure of connective tissue proteins) 

of the muscle (Muir et al., 1998). Pre-slaughter feeding and animal growth rate have a direct effect on 

meat tenderness (Fishell et al., 1985) and oxidation might also play a role in controlling the proteolytic 

activity of enzymes (Starke-Reed & Oliver, 1989) and could be linked to meat tenderness. 

 

Lipid oxidation in meat is one of the most important factors responsible for quality-loss during food 

storage and production because of the formation of rancid odours and deterioration of flavour (Asghar et 

al., 1988; Pearson et al., 1977). Any degree of lipid oxidation in raw meat accelerates the development of 

oxidised off-flavours in cooked meat, due to the free-radical chain-reaction nature of lipid oxidation (Rhee, 

1989). The major factors influencing lipid oxidation in raw meat include their fatty-acid composition, 

endogenous pro-oxidative or anti-oxidative constituents, and non-meat additives (anti-oxidative or pro-

oxidative) (Gheisari et al., 2010). The degree of lipid oxidation is measured with the thiobarbituric acid 

reactive substances (TBARS) test, which measures the malonaldehyde (MD) content of the meat, a 

secondary oxidation product of polyunsaturated fatty acids (Du & McCormick, 2009). It is the most 

preferred and frequently used test for the determination of lipid oxidation in meat, because of a high and 

consistent correlation between rancid flavours, aroma scores and TBARS values (Nolan et al., 1989). 

 

The objective of this study was to determine if Se supplementation and the type of supplementation 

(inorganic or organically bound Se) has any influence on the meat quality of small ruminants and its post-

mortem oxidative stability. 

 

Materials and methods 
 

The reader is referred to Chapter 3 for the description of the experimental procedures and the treatments 

used in determining the effect of the different Se supplementations on the performance of the lambs.  

Table 3.2 is included again for the benefit of the reader regarding the different treatments used in the 

study. 
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Table 3.2: Physical and chemical composition of treatment feeds indicating selenium concentration of the 

experimental diets fed to the Döhne Merino wethers  

  CT IS OSB OSA 

 Physical composition, As fed basis  
Wheat straw g/kg 760 760 760 760 
Maize starch g/kg 150 150 150 150 
Molasses meal g/kg 50 50 50 50 
Urea g/kg 10 10 10 10 
Premix CT g/kg 30 0 0 0 
Premix IS g/kg 0 30 0 0 
Premix OSB g/kg 0 0 30 0 
Premix OSA g/kg 0 0 0 30 

 Chemical Composition, DM basis 
Moisture g/kg 95.9 100.9 104.3 105.8 
Ash g/kg 50.2 63.7 55 70.6 
Crude fat g/kg 6.5 6.9 7 6.9 
Crude fibre g/kg 395.8 370.9 315.8 341.2 
Crude protein g/kg 84.7 110.7 93.1 125 
N g/kg 13.6 16.2 14.9 17.3 
Se mg/kg 0.08 (0.14)* 0.27 (0.36)* 0.26 (0.36)* 0.27 (0.32)* 
* Values in brackets indicates the actual value as per analysis 

 

 

Chemical characteristics 

 

Chemical and physical characteristic measurements were conducted on the M. longissimus dorsi (LD) 

after it had been excised in the abattoir from the carcasses’ left side from between the 8th and 11th 

thoracic vertebrae, according to descriptions by Honikel (1998). Before any physical analyses were 

carried out, all visible fat was trimmed from the muscles.  

 

Lipid oxidation was measured by the thiobarbituric acid reactive substances (TBARS) method as 

proposed by Lynch & Frei (1993) and adapted and modified by Gattellier et al. (2001); Rosmini et al. 

(1996) and Fernandez-Lopez et al. (2007). Muscle samples (LD) of 1g each were homogenised in 10ml 

of a prepared mix (5.6g KCl + 0.01g BHT and 500ml distilled water) with a Polytron homogenizer (1 

minute, medium speed). Samples of 0.5ml homogenate were incubated with 1% (w/v) 2-thiobarbituric 

acid in 50mM NaOH (0.25ml) and 2.8% (w/v) trichloroacetic acid (0.25ml) in a boiling water bath for 10 

minutes. After cooling to room temperature under running tap water, 2ml n-Butanol was added and 

placed in a vortex to extract the pink chromogen, and its absorbance was measured at 53nm against a 

blank of n-Butanol. TBARS concentrations were calculated using 1,1,3,3 tetraethoxypropane (0-0.8µM) 

as standard. Results were expressed as TBARS in mg malondialdehyde (MDA) per kg muscle. 
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Physical characteristics 
 

For the colour measurements of the muscle, freshly cut slices (1.5–2.0cm thick) were allowed to bloom for 

thirty minutes at room temperature (18-19 °C). After the colour was recorded in triplicate, in positions 

selected at random on the slice surface (Stevenson et al., 1989) the colour was expressed by the 

coordinates L*, a* and b* of the CIELab colorimetric space (Commision Internationale de l’Eclairage, 

1976) with the use of a Colour guide 450/00 colorimeter (BYK-Gardner, USA). The L* represents lightness 

in meat colour, a* indicates red-green range and b* the yellow-blue range (Poulsen et al., 2004).  

 

Weighed muscle slices (1.5–2.0cm thick), cut perpendicular to the longitudinal axis of the muscle on the 

caudal side of the removed LD were used to determine drip loss. The slices were suspended in inflated 

plastic bags, ensuring that the slices did not come into contact with the bag, and left in a refrigerator (40C) 

for 24 hours. After the storage period the samples were blotted dry with absorbent paper and weighed 

again. The drip loss was expressed as a percentage of the initial weight of the sample (Honikel, 1998).  

 

Cooking loss of the LD was determined by placing freshly cut, weighed samples (1.5–2.0cm thick), in 

thin-walled sealed plastic bags, and in a preheated water bath (80 °C) for 1 hour (Honikel, 1998). The 

cooked meat samples were then removed from the water bath and allowed to cool under running water. 

Excess water was blotted with absorbent paper before the weight was recorded. Cooking loss was 

calculated as the difference in sample weight before and after cooking, expressed as a percentage of the 

initial weight of the sample.  

 

The same muscle samples that were used to determine cooking loss were used for the assessment of 

tenderness. Muscle samples were stored overnight (4 °C) and care was taken to ensure that no visible 

connective tissue was included in the sample before tenderness was determined. The tenderness 

assessment was performed as described by Wheeler et al. (2001) and Honikel (1998), by using a 

Warner-Bratzler device, with a load cell of 2.000kN, attached to the Model 4444 Instron texture machine 

(Apollo Scientific cc, South Africa). Three core samples were cut perpendicular to the longitudinal axis of 

the muscle fibres so that the influence of the myofibrillar proteins on the shear force could be measured 

(Voisey, 1976). These samples were placed in the Warner-Bratzler device, so that the knife blade of the 

device cut across the fibres at a right angle. Mean shear force values were calculated from the recorded 

shear force values for three cylindrical cores from each muscle sample and used in the statistical 

analysis. A higher value indicated greater shear force and therefore, tougher meat (Honikel, 1998).  

  

Statistical analysis 
 

Repeated measures ANOVA were made of treatments over a number of days to measure if interactions 

between treatments and days were significant, and multiple comparisons were made of the interaction 

effects. If interactions were not significant, main effects were similarly analysed. When ANOVAs were 

made of the appropriate response variable among the treatments, the treatment effects were analysed 
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with Bonferroni multiple comparisons (if significant) with appropriate contrast among the treatment effects 

(Statistica version 8.1 (2008)). Differences were considered significant when P<0.05. 

 

Results and discussion 
 

The TBARS values essentially represent the shelf-life of the meat post-mortem. Analysis was done on 

days 0, 6 and 12 after slaughter and the results are presented in Table 6.1. No Se supplementation or 

source influenced the results and no significant differences were detected.  

 

Table 6.1: TBARS values (mg MDA/kg meat) over a 12-day period of muscle samples from wethers 

supplemented with different selenium sources. Mean ± standard error of the mean 

 Treatment  

Parameter CT IS OSB OSA P-value 

Day 0 2.94   ± 0.4 2.93   ± 0.4 2.03   ± 0.5 2.46   ± 0.4 0.75 

Day 6 3.61   ± 1.3 5.37   ± 1.3 3.2     ± 1.5 4.89   ± 1.1 0.41 

Day 12 3.65   ± 1.1 3.82   ± 1.1 3.12   ± 1.3 4.25   ± 1.1 0.30 

# No significant differences were found between treatments for any of the parameters  

 

These results are consistent with previous reports by Vignola et al. (2009) and Juniper et al. (2009) who 

could not find any significant differences in the muscle TBARS values of the lambs supplemented with 

different Se sources. The lack of any effect on the oxidative stability (TBARS) of the M. longissimus 

thoracis (LT) in calves was reported in a similar investigation of different types of Se supplementation by 

Skřivanová et al. (2007).  

 

Juniper et al. (2008) also reported no statistical differences in TBARS values for LM among Se treatments 

in beef cattle. Taylor et al. (2008) confirmed these results, reporting that the shelf-life of steaks from Se 

supplemented cattle was the same as those from cattle which had not undergone supplementation. 

 

In this present study a number of parameters whereby meat quality is defined (cooking loss, drip loss, 

tenderness and colour) were analysed. The possible influences on these parameters by supplementing 

small ruminants with different sources of Se were determined. The results (Table 6.2) indicated no 

significant effects and that no relationship between Se source and meat quality could be established. 

 

Similar results were reported by Marounek et al. (2006) who found that Se yeast supplementation for veal 

calves did not influence these quality parameters. No significant differences in these meat quality 

parameters could be found by Vignola et al. (2009) when lambs were supplemented with different Se 

sources. Skřivanova et al. (2007) fed calves with different Se supplement sources but could not establish 

different effects between sources of supplementation on muscle drip-loss or colour. 
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Table 6.2: Meat quality parameters of Döhne Merino wethers fed diets with different selenium treatments. 

Mean ± standard error of the mean 

 Treatment  

Parameter CT IS OSB OSA P-value 

Cooking loss % 30.15   ± 2.6 31.69   ± 3.5 31.18   ± 2.3 32.37   ± 2.6 0.35 

Drip Loss % 2.13     ± 0.3 2.2       ± 0.6 2.18     ± 0.4 2.3       ± 0.4 0.84 

Tenderness (N) 3.26     ± 0.3 3.16     ± 0.4 3.01     ± 0.3 3.06     ± 0.6 0.58 

Colour L* 36.43   ± 3.7 37.7     ± 3.7 39.99   ± 2.7 39.48   ± 6.1 0.23 

           a* 13.76   ± 1.5 13.2     ± 1.1 12.87   ± 0.8 13.37   ± 1.9 0.57 

           b* 10.09   ± 1.7 9.89     ± 2.1 10.75   ± 1.2 10.9     ± 1.7 0.44 

# No significant differences were found between treatments for any of the parameters  

 

Conversely, Zhan et al. (2007) concluded that dietary SeMet contributed to a significant reduction in drip 

loss from the loin muscle in finishing pigs and that it also played a role in meat colour. However, Mahan et 

al. (1999) and Mateo et al. (2007) reported a higher numerical drip loss in pig meat when the pigs were 

fed diets supplemented with inorganic sodium selenite than with an organically bound Se source. The Se 

source had a non-significant influence on the colour as well. A number of trials looked at drip loss in 

broiler meat and suggested a positive effect of Se-yeast over inorganic or conventional Se 

supplementation (Edens, 1996; Naylor et al., 2000; Downs et al., 1999). Dunshea et al. (2005) found that 

organic forms of Se might have a beneficial impact on meat quality, related to its effects on drip loss. 

 

It therefore appears that different Se sources (the organically bound Se providing the greatest advantage) 

will have an influence on the meat quality of monogastric animals, but not in small ruminants as observed 

in this study. 

 

Conclusions 
 

An argument was postulated that organically bound Se, which has been proven to be more bioavailable 

than it’s inorganic or conventional counterpart, should have a positive influence on lipid oxidation and 

meat quality. This was however proven incorrect in the present study and confirmed by numerous other 

researchers who found similar results. This was expected after it was discovered (see Chapter 5) that the 

Se source did not influence the activity of the GSH-Px in the muscle samples.  

 

It can therefore be concluded that the Se source will not influence meat quality or lipid oxidation in Dohne 

Merino sheep if there is no difference between the GSH-Px activities in the meat. This strengthens the 

argument in Chapter 5 that because of the route of absorption and metabolism of Se in ruminants, the Se 

source will not have an influence on GSH-Px activity. Therefore, the ability of the Se source to improve 

the meat quality and self-life of meat is very limited.  
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CHAPTER 7 
 

General conclusion 
 
 
In South Africa, thousands of people are directly dependent on sheep farming for their food and 

livelihood, with millions dependent in turn on livestock farmers to provide them with sufficient good quality 

protein.  

 

The specific objectives of this research were threefold: to compare the effects of inorganic and organically 

bound selenium sources on small ruminant performance, to investigate the deposition of these selenium 

sources in various tissue types and wool and to analyse their influence on carcass characteristics, meat 

quality and antioxidant capabilities. 
 

New technologies and better farming systems are required to meet the growing demand for protein. 

South Africa is no different from the rest of the world and the soil is becoming depleted of Se, leading to 

selenium-poor plants, animals and therefore humans. Selenium is recognised as an essential trace 

element for the maintenance of health, growth and a myriad of biochemical-physiological functions. In 

recent years the importance of adequate Se levels to maintain human and animal health has become 

more evident. 

 

This project was conducted to obtain more information on the differences between inorganic and 

organically bound Se sources and to assess their effects and advantages on small ruminants. This was 

done by supplementing a group of Döhne Merino wethers with different Se sources in a controlled and 

measurable intake. A number of different samples (blood, wool and tissue) were collected during the set 

period of 90 days of the study. These samples were analysed with a variety of kits and protocols 

(production parameters, deposition levels, GSH-PX, ORAC, TBARS and meat quality) to find the 

differences between organically bound and inorganic Se supplementation for Döhne Merino wethers.    

 

Results obtained from the production and performance of the sheep did not produce any differences 

between the different Se sources. Selenium levels in the wethers were only marginally deficient at the 

start of the trial; some Se was available to all groups from the basal diet and this may have been sufficient 

to meet the basic Se requirements of the lambs.  They had also passed their optimal growth phase after 

the adaptation period. These could be some of the alternative reasons behind the insignificant difference 

in results between the various Se sources. Therefore, a possible difference in effect between Se sources 

cannot be ruled out, under different environment and conditions. 

 

The results from the deposition level (bioavailability) study produced interesting results. In the whole 

blood Se study it was found that organically bound Se was more readily available to the wethers and 

would therefore be the preferable choice to rectify evident Se deficiency in small ruminants.  However, 

when Se was supplemented for extended periods, there was no difference between the sources 
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according to the whole blood Se levels. The Se source used to supplement small ruminants for extended 

periods can therefore be the consumer’s choice. 

 

Significant differences (P<0.05) were observed between the deposition levels of the Se sources in the 

analysis of the muscle, kidney and wool samples. The organically bound Se sources were proven to have 

a greater incorporation into the tissue samples than the inorganic Se source. This is mainly due to the 

different absorption paths of the two Se sources whereby the organically bound sources can be absorbed 

through amino-acid transport and directly incorporated into body protein. Small ruminants which are 

supplemented with organically bound Se sources will therefore have the advantage of accumulated Se 

reserves in the body. This Se reserve could be available in stress conditions when the requirement for Se 

is high, but needs further investigation. The Se accumulation in the body protein will also hold benefits for 

the consumers of these animal products, with more natural Se available in their diets. 

 

Results for the Se deposition in the liver were inconsistent with previous research reports. No significant 

(P>0.05) differences were observed between the Se sources. The only difference between this study and 

previous reports was in the blood Se levels recorded at the end of the trial, just before tissue collection. 

Therefore, the Se levels in the liver are probably more dependent on the Se levels present in the blood of 

the small ruminant, than on the supplemented form used in the diet.  

 

Selenium forms part of the GSH-Px enzyme, which plays an important role in human and animal health 

as a natural antioxidant. Similar results were recorded with the GSH-Px activity in the plasma as with the 

Se levels in the whole blood, with significant (P<0.05) contrast recorded in the early stages (first 30 days) 

of the study but no differences between sources at the end of the study. With no differences between the 

GSH-Px activities in the plasma at the end of the trial, the results from the tissue samples were only to be 

expected. No differences between the Se sources could be detected in the GSH-Px activity in the tissue 

samples. These results confirmed that organically bound Se is more readily available to small ruminants 

than inorganic Se, but that there are no differences between Se sources if it is supplemented for 

extended periods of time.    

 

Regarding the TAC of the plasma from the supplemented animals, which was measured with the ORAC 

assay, no differences between treatments could be observed. This is consistent with the few previous 

TAC studies on different animal species. Very few studies have been done to date on the 

supplementation effects of different Se sources on the TAC of small ruminants, and further studies are 

recommended. The fact that there are numerous different assays to calculate the TAC makes it nearly 

impossible to make proper comparisons between studies. Therefore, a standardised assay to calculate 

TAC is also highly recommended. 

 

Since no differences were reported between Se sources in the GSH-Px activity in the muscle samples, no 

differences were expected in the lipid oxidation study, and this was confirmed by the TBARS analysis. 

The Se source did not influence the shelf-life of the meat and no differences occurred between the Se 
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sources for any of the meat quality parameters (cooking loss, drip loss, tenderness and colour), which 

was consistent with a number of previous reports. It was concluded that if there are no differences in 

GSH-Px activity in the meat between treatment groups, the Se source will not influence the meat quality 

or lipid oxidation of meat in ruminants. This strengthens the argument that because of the route of 

absorption and metabolism of Se in ruminants, the Se source will not have an influence on GSH-Px 

activity. Therefore, the Se source has limited potential for improving the quality of meat or its shelf-life.  

 

Based on the results obtained in this investigation, it may be inferred that organically bound Se (OSA & 

OSB) supplementation will hold a number of advantages for small ruminants over inorganic Se 

supplementation. Organically bound Se has a greater bioavailability than does inorganic Se, as it is better 

absorbed and assimilated into body protein. It will therefore have a positive impact on small ruminant 

health and production, which will result in an indirect advantage for consumer health. Are these 

advantages of organically bound Se cost-effective? What is the economic impact of changing from an 

inorganic Se source to an organically bound Se source for supplementation? These are questions that 

need to be answered in further studies. 
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