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Abstract 

The Northern Cape Province of South Africa has played host to numerous mining activities 

for over a century. To date, most of the mining activity has ceased, leaving the area laden 

with derelict mine sites and unlined tailings dumps. One such site is the Spektakel mine 

situated to the west of the town of Springbok. The unlined copper and sulphide rich tailings 

at the site have the potential to leach elevated concentrations of copper and acidic water into 

the Buffels River downslope of the site. This poses a threat to the surrounding communities 

that rely mainly on the river to supply water for drinking, livestock and irrigation.  

The soil surrounding the tailings dumps was characterised in terms of its mineralogical and 

chemical properties. The results indicate that the soil contains elevated concentrations of 

Cu2+, which is bound in the soil in the form of the secondary copper hydroxy mineral 

atacamite (Cu2(OH)3Cl). No other secondary copper minerals were identified at the site. 

Analysis of the solution present on the surface of the tailings dumps indicate that the tailings 

are the main source of the high Cu2+, Mg2+ and SO4
2- concentrations observed in the 

surrounding soils. As this solution migrates through the tailings dumps, into the soil, it 

accumulates Cl- through halite dissolution. The resulting acidic Cu2+, Mg2+, SO4
2- and Cl- 

solution reacts with the calcite in the soil, replacing it with atacamite. 

To determine why only a copper chloride mineral formed in the sulphate rich environment a 

synthetic solution with the composition of a solution in equilibrium with the soil was 

evaporated, both in the presence and absence of calcite. The results indicate that when the 

solution comes into contact with calcite, atacamite immediately precipitated, removing the 

Cu2+ from the solution. In the absence of calcite Cu2+ remains conservative, accumulating in 

the solution without precipitating a copper sulphate mineral. This establishes that the 

elevated Mg2+ concentration of the solution induces the formation MgSO4 aqueous 

complexes that reduce the activity of free sulphate, thus restricting copper sulphate mineral 

formation.  

The results from the soil characterization indicate that the atacamite stabilization 

mechanisms (circumneutral pH, high Cl- concentration and calcite) in the soil are 

diminishing. During sporadic rain events the acidic tailings solutions dissolve the calcite and 

temporarily reduce the Cl- concentration of the soil. To determine how these decreases will 

influence Cu2+ mobility in the soil, the stability of atacamite was tested by reducing the pH 

both in the presence and the absence of chloride. The results indicate that an elevated Cl- 

concentration and a pH > 6 stabilizes atacamite. A decrease in either of these parameters 

destabilizes atacamite and favours its dissolution.  
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The study concludes that the current chemical conditions in the soil at Spektakel favour the 

stability of atacamite. However, continued sporadic rain events will reduce the Cl- 

concentration in the soil by increasing the SO4
2- concentration. This acidic solution will 

dissolve the calcite in the soil, thus reducing the buffering capacity of the soil, leading to the 

instability of atacamite, resulting in the leaching of large quantities of Cu2+ into the 

surrounding water bodies.   
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Opsomming 

Die mynbou bedryf was die ekonomiese dryfkrag van die Noord-Kaap Provinsie van Suid-

Afrika vir meer as ‘n eeu. Die area was die gasheer vir ‘n verskeidenheid mynbou aktiwiteite 

tot die mynmaatskappye besluit het om mynproduksie te staak en die gebied te verlaat. Die 

mynmaatskappye het geen rehabilitasie aan die myne en mynhope verrig nie. Die verlate 

myne lê verspreid in die area met oop mynhope wat koper en ander swaar metale in die 

grond, sowel as in die water, na omliggende areas kan versprei. Een van dié verlate myne is 

die Spektakel myn 40 km wes van Springbok. Die mynhope by Spektakel kan moontlik koper 

en ander swaar metale in die Buffelsrivier, wat langs die myn verby loop, loog. Dit dien as ‘n 

bedreiging vir die omliggende gemeenskappe wat staatmaak op die water vir drinkwater en 

besproeiing. 

Die grond rondom die mynhope was ge-analiseer om te bepaal hoe erg ‘n bedreiging die 

mynhope vir die omgewing is. Die resultate dui daarop dat die grond hoë konsentrasies Cu2+ 

bevat wat vasgebind is in die sekondêre koper mineral atakamiet (Cu2(OH)3Cl). Geen ander 

sekondêre koper minerale is in die grond geïdentifiseer. Die analise van die oplossing wat 

bo-op die mynhoop aangetref is dui aan dat dié oplossing suur en gekonsentreerd is t.o.v. 

Cu2+, Mg2+ en SO4
2-. Terwyl die oplossing deur die mynhoop migreer los dit haliet in die 

grond op wat Cl- tot die oplossing byvoeg. Wanneer hierdie suur en Cu2+, Mg2+, SO4
2- en Cl- 

ryke oplossing met die kalsiet in die grond reageer word die kalsiet vervang met atakamiet 

(Garrels en Stine, 1948). 

Om vas te stel waarom slegs 'n koperchloried mineraal vorm in die sulfaat ryke grond was ‘n 

oplossing, met ‘n samestelling soortgelyk aan 'n oplossing in ewewig met die grond, 

verdamp in beide die teenwoordigheid en afwesigheid van kalsiet. Die resultate van die 

eksperiment dui daarop dat wanneer die oplossing in kontak kom met kalsiet atakamiet 

onmiddellik neerslaan en Cu2+ uit die oplossing verwyder. In die afwesigheid van kalsiet bly 

Cu2+ konserwatief in die oplossing; die Cu2+ hoop op in die oplossing en slaan nooit neer nie. 

Daar is vasgestel dat die verhoogde Mg2+ in die grondoplossing MgSO4 water komplekse 

vorm wat die aktiwiteit van SO4
2- verlaag en verhoed dat kopersulfaat minerale kan vorm. 

Verdere navorsing dui aan dat die chemiese meganismes wat atakamiet in die grond 

stabiliseer besig is om te kwyn. Gedurende sporadiese reën buie word die kalsiet in die 

grond opgelos deur die suur mynhoop oplossings wat die pH van die grond verlaag. Die 

mynhoop oplossing verryk ook die grond t.o.v SO4
2- wat die Cl- konsentrasie verlaag. Om te 

bepaal hoe hierdie afname in Cl- konsentrasie en pH die migrasie van Cu2+ beïnvloed was 

atakamiet oplossbaarheid bepaal. Atakamiet was onderskeidelik geplaas in ‘n suiwer water 

en chloried oplossing tewyl die pH verlaag was om te bepaal hoe atakamiet oplos in elk van 
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die oplossings. Die resultate dui aan dat 'n verhoogde Cl- konsentrasie en pH > 6 atakamiet 

stabiliseer. Die afname van beide hierdie veranderlikes het veroorsaak dat atakamiet 

makliker ontbind en Cu2+ vrystel. 

Die gevolgtrekking van die studie is dat die huidige chemiese toestande in die grond by 

Spektakel gunstig is vir die stabiliteit van atakamiet. Met sporadiese reën buie neem die Cl- 

konsentrasie in die grond af en los kalsiet op. Hierdie afname in pH en Cl- konsentrasie 

maak atakamiet meer onstabiel wat gevolglik Cu2+ in die grond en water rondom Spektakel 

vrystel.  
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 Introduction 1

1.1 Overview 

The Northern Cape province of South Africa has played host to large scale mining activity for 

more than two centuries. Due to the lack of regulations governing the disposal of mine waste 

and the initially primitive mining techniques, some depleted mine sites have been 

abandoned without any rehabilitation. The most prominent problem at these sites is the 

presence of unlined and exposed sulphide-rich mine tailings dumps. One such a site is the 

derelict Spektakel mine situated in the Buffels River valley.  

To date only limited research has been conducted in order to determine the potential threat 

the Spektakel site poses to the surrounding environment. Preliminary studies by Hohne and 

Hansen (2008) and Newmark (2010) indicate that the largest threat posed by the site is the 

dispersion of copper-bearing acid mine drainage solutions into the soil and water systems 

surrounding the site. This corresponds with research performed on similar sites that noted 

that unlined sulphide-rich mine tailings are the main source of acid mine drainage at 

abandoned mine sites (Vigneault et al., 2001). As these solutions move through the tailings 

dumps they have the potential to leach metals from the tailings (Geller et al., 1998) into the 

surrounding soil profile and nearby water bodies. This is problematic in the case of the 

Spektakel site, which is situated upslope of the Buffels River and unconfined Buffels River 

aquifer. The Buffels River is the main water source of the largest aquifers in the region, 

namely the Spektakel, Buffels River and Kleinsee aquifers (Benito et al., 2010). These 

aquifers contribute a large proportion of the drinking and irrigation water to the surrounding 

communities. Possible leaching of these acidic copper rich solutions from the tailings into 

these water systems could have disastrous consequences for the people in the area. 

Preliminary studies found that the secondary copper mineral atacamite is present in the soil 

surrounding the mine tailings (Hohne and Hansen, 2008; Newmark, 2010). It is still uncertain 

whether or not atacamite is the only secondary copper mineral phase in the soil surrounding 

the site. Nevertheless the presence of atacamite does illustrate the secondary copper 

mineral forming potential of the soil. To date, little is known about the conditions governing 

the formation and dissolution of atacamite in soils, although some research has indicated 

that that atacamite is the prevailing secondary Cu mineral present in supergene oxide zones 

of Cu deposits in the Atacama Desert (Hannington, 1993). Additionally it has been reported 

that atacamite forms at high Cl- concentrations and pH conditions similar to normal sea 

water (Woods and Garrels, 1986) which is contrary to the acidic characteristic of the site. 
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This leads to the question as to how the continuous supply of acidic solutions from the 

tailings influences the stability of atacamite, as no research to determine its dissolution 

potential has been conducted. 

Aside from the preceding observations little is understood about the chemistry of the soil 

surrounding the site. Due to the arid evaporative climate (Hahn et al., 2005) and sporadic 

rainfall (MacKellar et al., 2007), the soil at Spektakel is exposed to a range of different 

chemical conditions. It is also still uncertain as to how the climate contributes to the 

chemistry of the soil and the formation of atacamite. Although atacamite has been detected 

in the soil, a question arises as to why the sulphate equivalent (brochantite [Cu4(OH)6SO4]) 

is not present. The stability of secondary Cu phases under current and future (more acidic) 

soil conditions is still unknown. The geographical position of the mine as well as the 

sensitivity of the local ecosystem make an understanding of secondary Cu mineral formation 

and stability  essential to understand the potential risks the contaminated soils pose to the 

environment. 

1.2 Aims and objectives 

The overall aim of this study is to characterise the chemical environment within the 

Spektakel soils in order to understand and predict the conditions needed for the formation 

and stability of secondary Cu minerals in the soil.  

This will be achieved through the following objectives: 

• Characterization of the soil surrounding the tailings in terms of mineralogy and 

physical and chemical properties, with the aim of determining what other 

secondary copper minerals are present in the soil, as well as the concentration of 

soluble ions in the soil. 

 

• Determining the composition of the solutions at the surface of the tailings dumps 

in order to define how it contributes to the chemistry of the soil. 

 

• Investigating the influence that the absolute Cl- and SO4
2- concentrations have on 

the formation of atacamite and brochantite in the presence of calcite. 

 

• Determine how a solution that is in equilibrium with the soil surrounding the 

tailings dumps evolves chemically during evaporation, both in the presence and 

the absence of calcite, to establish how evaporation aids the formation of 

atacamite or other secondary copper minerals. 
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• Investigating the stability of atacamite under the chemical conditions present in 

the soil, as well as under conditions of decreased salinity and increased acidity. 

1.3 Spektakel site location and description 

The derelict Spektakel mine is situated in the Northern Cape province of South Africa 

(29°39'30.41"S, 17°35'1.65"E), 40km west of the town of Springbok on the R355 (Figure 

1.1). It is the easternmost Cu mine of the Okiep Copper District (OCD) and is situated at the 

foot of the Nababeep plateau in the Buffels Rivier Valley. The valley is bound by the edge of 

the Sandveld coastal plain, 50km from the Atlantic coast at an approximate elevation of 

200m above sea level. On the southern side of the site, adjacent to the road, there are signs 

of old exposed dump sites as well as the remnants of a leaching pond. One of the troubling 

aspects about the site is the proximity of the Buffels River which borders on the south of the 

site (Figure 1.2). 

 

Figure 1.1: Position of the Namaqualand region relative to the Northern Cape province in South Africa. 
The location of the Spektakel mine is indicated by a red X. 
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During the life span of the mine both underground and opencast mining were practiced. The 

mine shaft was sunk to the north of the site adjacent to the Open Pit (Figure 1.2). Four 

tailings dumps are located to the west and east of the shaft (Figure 1.2). Tailings Dump 1 is 

the remnant of the original tailings dump and contains large quantities of unprocessed ore 

material which is a result of initially crude mining techniques. At some stage in the mines 

history heap leaching was performed on this dump in order to try and extract the remaining 

unprocessed material. The remnants of the heap leaching process are visible in Tailings 

Dump 3 and adjacent Leach Pond. Tailings Dump 2 was created at a later stage of active 

mining. The improved mining techniques produced less unprocessed material producing a 

potentially “less hazardous” tailings dump relative to Tailings Dumps 1, 3 and the Leach 

Pond. The Open Pit is approximately 450m2 in diameter and contains water at the base. 

 

Figure 1.2: Google Earth image of the Spektakel mine site labelling each of the key physical features at 
the site. The red line indicates the road (R355) that accesses the Spektakel mine and each dot marks a 
key physical feature at the site. 

During its existence, the mine was repeatedly opened and closed as the copper price 

fluctuated. This is reflected by the fact that the mine has played host to an array of different 

mining activities, as is evident from the current observations of the site. The Okiep Copper 

Company (OCC) operated three mills in the area prior to 1975, one at Carolusberg, one at 

Okiep and another at Nababeep, with a maximum yearly milling rate of 3 million tons during 
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1971 and 1972 (Gadd-Claxton, 1981). However, the mill at Okiep was closed in April 1975 

and relocated to the Spektakel mine site to resuming production in early 1981. Remnants of 

this milling activity, in the form of poorly covered dump sites and leach ponds are still visible 

at the site (Gadd-Claxton, 1981). 

It is not certain what remediation work was conducted prior to closure. There is evidence to 

suggest that soil from around the site has been used to cover the tailings material of Tailings 

Dump 2 (Figure 1.2), in an attempt to rehabilitate the tailings and reintroduce some of the 

local vegetation. This can be seen on the western side of the tailings where the surface soils 

have been scraped and underlying calcrete and dorbank subsoil horizons are exposed. This 

attempt to cover the tailings is inadequate as the tailings are still exposed, allowing material 

to be blown onto the surrounding land cover, farmland and into the Buffels River. 

1.4 Background information of the region and area surrounding Spektakel 

1.4.1 Historical overview of the Okiep region 

The Okiep Copper District (OCD) is located in the western part of the Namaqua 

Metamorphic Complex. Exploration of copper by the Namaqua tribes in the OCD predates 

the arrival of the Dutch Settlers in 1652 (Miller, 1995). By 1661 the trade of copper between 

these tribes and settlers gave rise to the idea that mineral wealth could be found in this area. 

The first copper discovered by the Dutch settlers in 1685 was located in the Koperberg area 

east of current town Springbok. Due to the remoteness and harsh conditions of the area, 

exploration only began in earnest in the 1840s (Gibson and Kisters, 1996). In 1852 the 

Okiep District became the first proclaimed mining district in the Namaqualand region. 

Although the froth flotation process was first patented in 1860, it was only after the 1950s 

that it reached real efficiency as an extraction method. Thus during this early period hand 

cobbing was the only means of extracting copper from the easily mineable ores.  

During the period of active mining, the district was controlled by the Cape Copper Company 

(1862-1919) and the Namaqua Copper Company (1888-1931) (Smalberger, 1975) who 

managed the Nababeep, Okiep and Spektakel mines (Clifford et al., 1975). Mining ended 

after the closure of the Namaqua Copper Company, but was re-opened by the Okiep Copper 

Company (OCC) in 1940 (Clifford et al., 1975) until, in the mid-1980’s Gold Fields of South 

Africa took control of OCC (Kisters et al., 1996). 

The revival of mining by the OCC in 1940 was accomplished by large scale exploration in an 

effort to try and find additional minable deposits. To date more than 30 deposits have been 

mined, ranging in size from 0.2 – 37.5 Mt with grades ranging between 1.71 – 14% Cu 

(Cairncross, 2004). Total copper production in the district from 1940 till 1998 amounted to 
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105,6Mt of ore at 1,75% copper. This implies that an enormous quantity of waste material 

(slimes and tailings) must have been left behind as a legacy of the copper mining. Mining in 

the OCD finally ceased altogether with the closure of the Carolusberg mine in 1998 

(Cairncross, 2004). 

1.4.2 Namaqualand  

1.4.2.1 Physical landscape 

The Namaqualand region is located in the north-west corner of South Africa (Figure 1.1). 

The Orange River marks the region’s northern boundary as well as the international border 

between South Africa and Namibia. The southern boundary of the region is defined by the 

Olifants River and Bokkeveld escarpment (Desmet, 2007). Namaqualand forms part of the 

western escarpment of South Africa and includes the coastal plain, the mountain ranges and 

the escarpment itself and covers approximately 45 000 km2 (Desmet, 2007). In general the 

landscape of the region consists of steep slopes, rock sheets and gravel plains. The inland 

region is comprised of quartzite mountain complexes and some complex geology consisting 

mainly of metamorphic and igneous terrains (Desmet, 2007).  

1.4.2.2 Geology 

The Namaqualand region is characterised by large granite-gneiss domes that contrast with 

the dominantly flat topography of the surrounding areas, Steinkopf and Bushmanland, to the 

north and east respectively (Kisters et al., 1996). The area comprises Namaqua-age (1000-

1250 Ma) voluminous, stratified, sub-horizontal granite gneisses and granites which intrude 

and dismember the older granitoid gneisses and metavolcanosedimentary rocks (Benedict et 

al., 1964; Clifford et al., 1975; Holland and Marais, 1983; Lombaard and The Exploration 

Department Staff of the O'okiep Copper Company Ltd, 1986). Intrusive into these granite-

gneiss successions are dyke- and sill-like structures of the Koperberg Suite (Kisters et al., 

1996; Lombaard et al, 1986). These bodies are mainly anorthitic and dioritic in composition, 

although noritic and pyroxenitic varieties of the Koperberg Suite are developed in places 

(Lombaard et al, 1986; Schoch and Conradie, 1990). To the west of the Okiep Copper 

District the granitic basement is overlain by the late Proteozoic to early Phanerozoic clastic 

sediments of the Nama Group (Kisters et al., 1996). 

To date no literature indicates which primary copper minerals are present at the Spektakel 

mine. Research conducted on the mines surrounding Spektakel indicates that major 

sulphide minerals are the dominant primary copper minerals of the Okiep Copper District 

and consist mainly of bornite, chalcopyrite and chalcocite. Some accessory minerals 

associated with these ores include vallerite, millerite, niccolite, molybdenite, linnaeite, 
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melonite, sylvanite, hessite, coloradoite and tetradymite. The main secondary copper 

minerals observed in the oxidized zones are chrysocolla and subordinate malachite and 

brochantite (Gadd-Claxton, 1981). 

1.4.2.3 Soil 

According to the land type survey (Land Type Survey Staff, 1987) the soils on the lower 

terrain units of the Buffels river valley are comprised of red, shallow, base rich soils. The 

soils on the foot slope terrain unit (where the actual mine is situated) are comprised mainly 

of shallow eutrophic Hutton soils while the soils on the valley floor (downslope of the mine) 

are largely alluvial Dundee soils. Unfortunately no modal profile data is available for the map 

unit in which Spektakel falls (Land Type Survey Staff, 1987) 

The soil surrounding the Spektakel mine consists mainly of red sands. Even though they are 

described as deep sands there is abundant evidence for differentiation into horizons for 

example, bleaching, clay elluviation and secondary cementing by silica and carbonate. 

There is little information available on the Namaqualand soils, making soil studies in this 

area especially challenging as there is no reference material available (Francis et al., 2007). 

The formation of hardpans is a prominent feature in the soils of the Namaqualand soil. Three 

dominant types of hardpans are found in SA namely dorbank, silcrete and calcrete. These 

three formations can occur in the same landscape and can form in different erosional 

surface soil horizons (Ellis and Lambrechts, 1994). These hardpans are a prominent feature 

in the soil profiles around the Spektakel mine site as is the presence of ancient termite 

mounds, locally known as “heuweltjies”. These termite mounds occur in the soil as hard 

circular subsoil features consisting of more alkaline, calcareous and sodic rich soil enriched 

with silica (Ellis, 2002) 

1.4.2.4 Climate and vegetation 

Namaqualand is classified as a semi-arid winter rainfall region, (MacKellar et al., 2007) with 

high diurnal and seasonal temperature ranges. The maximum temperature rarely exceeds 

37 °C in the summer whereas sub-zero temperatures can be experienced in the winter 

months (Hahn et al., 2005). The rainfall in the region is low, 50 - 70 mm per annum on 

average, with the lowest rainfall figures occurring in the west, near the coast close to 

Spektakel (Kelso and Vogel, 2007). Contrary to this, the area occasionally experiences 

extremely wet years, during which the annual precipitation may increase to up to 400 mm 

(MacKellar et al., 2007). 

The climate and topography of the region provide ideal conditions to sustain its unique 

succulent biome. Recent studies indicate that the flora of the Succulent Karoo is part of the 
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Greater Cape Floral Kingdom (Desmet, 2007) and is also one of only two desert regions 

worldwide that is recognised as a global bio-diversity hotspot. The Succulent Karoo contains 

an estimated 3500 species in 1354 families and 724 genera’s of flora covering approximately 

25% of Namaqualand (Desmet, 2007).  

1.5 Thesis layout 

This thesis presents research conducted in an effort to determine the chemical conditions in 

the soil at the Spektakel mine site that contribute to the formation and dissolution of 

secondary copper minerals 

 This chapter provides an overview of the project describing; the area surrounding 

Spektakel and the site itself, the position of Spektakel within South Africa, the 

physical landscape of the region surrounding Spektakel, the history of mining in the 

area and at the site, and a general overview of the climate and vegetation in the 

area. 

 

 Chapter 2 provides a detailed description of the analytical techniques performed on 

the samples collected during the experiments. 

 

 Chapter 3 describes the bulk chemistry and mineralogical characteristics of the soil at 

the Spektakel site. The chemical composition of solutions in equilibrium with the soil 

was determined to acquire an understanding of the solubility of the secondary 

minerals in the event that the soil becomes waterlogged after a rain event. 

 

 Chapter 4 firstly details how the absolute SO4
2- and Cl- concentration in the soil 

influence secondary copper mineral formation in the presence of calcite. Secondly it 

details the chemical evolution, during evaporation, of a solution in equilibrium with the 

soil at Spektakel both in the presence and absence of calcite to determine how 

evaporation influences copper mineral formation. 

 

 Chapter 5 describes how increasing acidity and decreasing salinity influence 

atacamite dissolution. 

 

 Chapter 6 provides an overall discussion which relates the experimental work to the 

processes occurring within the soil in order to make a deduction regarding the risk 

that the secondary mineral phases in the soil pose to the environment. 

 

 Chapter 7 concludes the research and suggests further work   
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 Analytical techniques 2

The experiments that follow in the study all make use of the following analytical techniques 

and equipment. In each of the following chapters reference will be made as to the specific 

techniques employed for the various analyses. All the techniques are described in full detail 

in the following section. All the analyses were conducted at Stellenbosch University 

excluding the X-Ray Diffraction which was conducted at iThemba Labs. 

Cation analysis – ICP-AES and ICP-MS 

The major cation analysis was conducted using a Varian ICP-AES (Inductively Coupled 

Plasma - Atomic Emission Spectroscopy) and the trace cation analysis using an Agilent 

7700 ICP-MS (Inductively Coupled Plasma - Mass Spectrometer). A quality control standard 

was analysed prior to the sample runs to verify the accuracy of the calibration standards, 

while control standards were used throughout the analyses to monitor accuracy and 

instrument drift. On the ICP-MS, internal standards were continuously introduced with the 

samples and standards to correct for drift due to high matrix load. 

Ion chromatography (IC) 

The anion concentrations were analysed using a Metrohm 761 Compact Ion Chromatograph 

(IC) with a Metrohm Metrosep A Supp 5 - 250/4.0mm Anion Column. To quantify the results 

each time new eluent was prepared the IC was calibrated with the Fluka range of IC 

calibration standards. It was calibrated for the following anions, Cl-, SO4
2-, NO3

-, PO4
3- and F- 

with the following concentration ranges, 0.3 - 30ppm for F-, PO4
3- and NO3

- and 1 - 400ppm 

for Cl- and SO4
2-.  

X-Ray fluorescence (XRF) 

X-ray Fluorescence (XRF) analysis was conducted using an Axios from PANalytical with a 

2.4kW Rh X-ray Tube. The international (NIST®) and national (SARM®) standards were 

used in the calibration procedures and quality control (precision and accuracy) for both major 

and trace element analyses of the XRF. Detection limits for the elements quoted, depending 

on the matrix (combination of elements present), are approximately 0.5 ppm for trace 

elements on a pressed pellet and approximately 0.001 wt% for major elements on a fused 

bead.  

X-Ray diffraction (XRD) 

XRD analysis was performed at iThemba Labs using a BRUKER AXS (Germany) with a D8 

Advance diffractometer and measurement of - scan in locked coupled mode. The tube 

used Cu-K radiation at (K1=1.5406Å) with a 1600 Channel PSD Vantec-1, Gas detector. 
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Measurements were conducted at a tube voltage of 40kV, tube current of 40mA with variable 

slits at V20 and a measurement time of 1 sec/step which is statistically satisfactory. The 

analysis does not indicate the presence of specific mineral orientations but measures the 

bulk abundance of all the minerals present, regardless of orientation. It should be kept in 

mind that XRD analysis is not strictly a quantitative technique and that the results are only 

semi-quantitative at best. 

pH and Electrical conductivity (EC) 

The pH measurements were conducted using a Metrohm 905_1 pH Electrode and the EC 

was measured with a Eutech Instruments CyberScan Series 60 Waterproof EC Meter. 
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 Morphological, chemical and mineralogical characteristics of 3

the soil at Spektakel 

3.1 Introduction 

The Northern Cape province of South Africa has played host to large scale mining activity 

since the mid 1800’s (Cairncross, 2004). Due to the lack of regulations for the disposal of 

mine waste and the initial primitive mining techniques, some mine sites were abandoned 

without any rehabilitation. The most prominent problem at these sites is the unlined and 

exposed sulphide rich mine tailings dumps. One such a site is the derelict Spektakel mine 

situates at the base of the Spektakel Pass in the Buffels River valley.  

The limited research that has been conducted at the site indicates that the tailings and soil 

surrounding the site contain elevated concentrations of trace metals, especially copper 

(Hohne and Hansen, 2008). The results of the a fore mentioned study found bulk copper 

concentrations of up to 6.2 wt% in soil samples collected at Spektakel. The work conducted 

by Newmark (2010) and Hohne and Hansen (2008) found the secondary copper hydroxyl 

chloride mineral, atacamite (Cu2(OH)3Cl), to be present in the soil surrounding the site. 

The limited studies performed at the site indicate that extended research is required in order 

to acquire a more informed understanding of the chemical mechanisms active in the tailings 

and soil at Spektakel. Research performed at sites similar to Spektakel has found that 

unlined sulphide rich mine tailings are the main source of acid mine drainage at abandoned 

mine sites (Vigneault et al., 2001). The presence of these acidic solutions can potentially 

leach major and trace metals from the tailings into the soil and water bodies around the 

tailings, constituting a threat to the surrounding environment (Geller et al., 1998). 

To date atacamite is the only documented secondary Cu mineral phase in the soil at 

Spektakel and little is known about the formation of other secondary copper minerals. The 

aim of this chapter is to characterise the mineralogical and chemical conditions in which 

these minerals form to determine whether or not atacamite is the only secondary copper 

mineral present in the soil. 
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3.2 Materials and methods 

3.2.1 Sample description and collection 

Sample collection was performed during the dry season (January 2011) at varying distances 

downslope of Tailings Dump 1 (Figure 3.1). 

 

Figure 3.1: Google Earth image indicating the samples collection sites near the Spektakel Mine. The red 
line indicates the road (R355) that accesses the Spektakel mine. The dots indicate a key physical feature 
and the sample collection sites. 

Sampling sites were chosen based on visible evidence of contamination (salt crusts and/or 

denuded vegetation). River sediments within the Buffels River (SP3 to SP5) were also 

sampled (Figure 3.1). Soils were sampled by means of a soil auger and were collected from 

every identifiable horizon within the soil profiles, to a maximum depth of 1 m. Sample SP1 

was collected by Newmark (2010) as part of her unpublished Honours research. Sample 

SP2 was collected in one of the old leach ponds and samples SP3 to SP5 were collected 

south of the R355 close to the Buffels River. A green soil horizon was identified and 

collected adjacent to the R355 (Green Sample). Profile descriptions of the sampled soils 

were made (Table 3.1) and, where possible, soils were classified according to the South 

African Soil Classification System (Table 3.1: Soil Classification Group, 1991). 

Stellenbosch University http://scholar.sun.ac.za



 

13 

 

At the time of sampling the leach pond on the tailings dump (Figure 3.2a) was dry, and thus 

a crust sample of the evaporate salts was collected (Figure 3.2b) in order to determine the 

composition of water leaching from the dumps. Unfortunately pond solution could not be 

collected, as no means of storage was available at the time to collect the fluid. 

 

Figure 3.2: a) Acid water ponded on the surface of the tailings dump (photo taken November 2010) and 
(b) salt crust of the same pond (photo taken January 2011) 

The soil and crust samples were placed in plastic bags and sealed to prevent loss of water. 

Each section was labelled according to the depth at which they were collected. Samples 

were transported to the laboratory and stored in the refrigerator at 4 °C. The soil samples 

were sieved through a 2mm sieve, in their field moist condition, to remove any coarse 

fragments. These sieved samples were placed in air tight containers and refrigerated at 4 °C 

to try and eliminate moisture loss. All further analyses were conducted on these field moist 

fine earth fractions (<2mm) correcting for moisture content as discussed below. 

3.2.2 Chemical analysis 

The salt crust, sampled from the leach pad, was dissolved in MilliQ water using a 1:5 solid 

liquid ratio. The solution was filtered through 0.2µm GVS Cellulose Acetate Membrane 

Syringe Filters before analysis.  

The moisture content of the soil was determined by weighing off 10g of the field moist 

sample and drying it at 104 °C for 24 hours. The samples were re-weighing and the moisture 

loss was calculated. The EC and pH of the soil samples was determined using a 1:2.5 soil to 

water ratio by adding 10g of soil with known water content and 25ml of DI water in a 50ml 

centrifuge tube. The samples were shaken for 30 min and left to settle for 10 min before the 

pH and EC were measured in the supernatant. 

A saturated paste was made with the collected soil samples; 200 g of each soil sample was 

placed in glass acid washed containers and dried overnight at 102 °C. The dried soil 

(a) (b) 
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samples were milled in a tungsten carbide mill to help achieve rapid equilibration of the 

solution with the solid phase. The saturated paste was prepared by adding deionised water 

to the milled sample until the soil formed a glistening paste. The container and paste were 

weighed to determine the amount of water added to the soil sample. The container was 

covered with Parafilm to limit water loss, and left to equilibrate for 24 hours before the fluid 

was extracted (Sparks et al., 1996). Prior to extraction the EC and pH of the paste were 

measured (Refer to Chapter 2). The solution of each sample was extracted under vacuum, 

into 50 ml centrifuge tubes through Whatman filter paper using a Buchner funnel. The 

extracts were filtered a second time through 0.45 µm GVS Cellulose Acetate Membrane 

Syringe Filters to remove any particles still suspended in the fluid. The alkalinity of the 

solution extracts were determined by manual titration using 0.001M HCl. The concentration 

of dissolved silica in the samples was determined colorimetrically following the method of 

Mortlock and Froelich (1989). The solution samples were analysed for major and trace ions 

through ICP-MS, ICP-AES and IC analysis (Refer to Chapter 2).  

3.2.3 Mineralogical analysis 

Mineral analysis was performed on dry clay powder extracts and powdered soil samples. 

The clay extract was prepared on 50g of milled dry soil material. The milled soil samples 

were suspended in 500ml of deionized water. During continuous stirring the pH was adjusted 

to just above 9.5 by the drop wise addition of a 2M Na2CO3 solution. To aid in the 

deflocculation of the clay, two drops of calgon (1g hexametephosphate in 100ml deionized 

water) were added to the solution. The samples were left to settle for 30 min in order to 

determine whether or not the clay remained deflocculated. If the clay flocculated, the 

samples were stirred up and more calgon was added until the clay particles remained in a 

deflocculated state. Once the clay remained in a deflocculated state, the suspension was 

allowed to settle for 4 hours. The top 5cm (approximately 80ml) of suspension was removed 

and placed into two 50 ml centrifuge tubes (40 ml in each). The clay suspension was 

flocculated by adding 10ml of KCl and MgCl2 respectively. The pH of the MgCl2 solution was 

lowered to 5 using 0.1M HCl to prevent the precipitation of brucite. The samples were 

centrifuged for 4 minutes at 1500rpm to flocculate the clay particles. The supernatant that 

remained after centrifuging was decanted and 25ml of the same KCl and MgCl2 solutions 

was added to the flocculated clay. After the clays had equilibrated with the newly added salt 

solution the samples were centrifuged for 4 minutes at 1500 rpm. The clay particles were 

washed repeatedly with 25ml of both deionised water and methanol, the supernatant was 

decanted and tested for Cl- using AgNO3 until no more precipitated formed. The samples 

were washed for a final time with 95% acetone, the clay extracts were dried overnight before 

it was sent for XRD analysis. (Refer to Chapter 2) 

Stellenbosch University http://scholar.sun.ac.za



 

15 

 

The powdered soil samples were prepared by milling dried soil samples by hand in an agate 

mortar and pestle. Some white and green flecks visible in the soil samples were also 

collected and milled. All the milled samples were sent for XRD analysis (Refer to Chapter 2). 

3.3 Results 

3.3.1 Soil classification and description 

The soil samples collected at the Spektakel Mine (SP) are numbered according to their 

proximity to the mine, SP1 being the closest and SP5 the furthest (Table 3.1). The sample 

depth ranges are between 35cm and 120cm with noticeable visual changes occurring along 

the length of the profiles. No vegetation was present at the sample sites. 

During sample preparation green and white mottles were observed in the SP3 B and SP3 C 

soil horizons. The white mottles were friable, approximately 3mm in diameter and did not 

react with 10% HCl. The green mottles were more solid, approximately 3mm in diameter and 

dissolved when reacted with 10% HCl. 

The green soil sample that was collected consists of a green soil horizon with a 5cm top soil 

cover. The total depth of the horizon was not determined; the horizon remained green to a 

depth of 20 cm (Figure 3.3). The green soil was slightly moist, sandy loam, containing 

coarse fragments and some green mottles were present.  

 

Figure 3.3: Image of the green soil collected for the Green Sample next to the R355. Geological hammer 
is 30 cm in length. 

Stellenbosch University http://scholar.sun.ac.za



 

16 

 

Table 3.1: Profile description of sample SP1 to SP5 (descriptions were performed in the field): Each 
description starts at the soil surface and moves down the soil profile. Descriptions were performed 
according to the South African Soil Classification Guideline (Soil Classification Group, 1991). 

Horizon Depth (cm) Description 
Diagnostic 

Horizon 
Form 

SP1 A 0-7 Slightly Moist, Yellow Brown, Fine Sandy Loam, Apedal, Slightly 

Friable, No Reaction With HCl, Abrupt Transition. 

Orthic A 

Witbank 

 B1 7-17 Slightly Moist, Green, Fine Sandy Loam, Friable, Pure Aggregates 

(Green slightly striated aggregates with some yellow zones) No 

Reaction with HCl. Gradual Transition. 

 B2 17-27 Moist, Brown, Loam/Clay, Apedal, Slightly Friable, Slight Reaction 

With HCl, No Green Mottles in soil material Manmade 

soil deposit  B3 27-37 Moist, Brown, Fine Sandy Loam, Apedal, Loose, Abrupt transition, 

Strong Reaction With HCl. 

SP2           A 0-5 Dry, Yellow Brown, Silty Clay, Massive, Brittle Consistency, Few 

Green Mottles, Abrupt Transition, No Reaction with HCl. 
Orthic A 

Hutton/Witbank 
 B 5-40 Slightly Moist, Red Brown, Sandy Loam, Apedal, Loose, Black 

Lenses, Small Green mottles, Large Course Fragments, Root 

Fragments, No Reaction with HCl. 

Red 

Apedal B/ 

Man made 

deposit 

SP3     A 0-15 Slightly Moist, Moist Brown, Silty Clay, Very Fine - Sub-Angular 

Blocky, Slightly Friable, Thin Clay Layers, Depositional, Many White 

Salt Flakes, No Reaction with HCl. 

Orthic A 

Dundee  B 15-30 Slightly Moist, Light Green, Sandy Loam, Apedal, Loose, Few White 

Salt Lenses, Green Mottles, No Reaction with HCl. Stratified 

Alluvium  C 30-35 Slightly Moist, Light Green, Sandy Loam, Apedal, Loose, Few White 

Salt Lenses, Green Mottles, Reacted with HCl. 

SP4 A 0-24 Slightly Moist - Moist, Silty Clay/Loam, Apedal, Loose 

Orthic A 

Dundee 

 B 24-67 Moist, Brown, Clay, Friable, Fine Angular Blocky, Yellow Mottles, Few 

Glade Mottles, Few Orange Mottles, No Reaction with HCl. 

 C 67-94 Moist, Yellow/Orange/Brown, Sandy Loam, Apedal, Friable/Loose, 

Many Gravel Fragments, No Reaction with HCl. 

Stratified 

Alluvium 

SP5 A 0-20 Dry, Light Brown, Coarse/Medium , No Reaction with HCl.Sand, 

Apedal, Loose, Fine and Course Fragments, Few Roots 

Orthic A 

Dundee 

 B 20-35 Slightly Moist, Yellow Brown, Fine Angular Blocky, Sandy Clay, 

Apedal, Loose, Few Fine Roots, Clay Lenses, No Reaction with HCl.  

 C 35-57 Slightly Moist, Yellow Brown, Sandy Loam, Apedal, Loose, Few 

Roots, Large Clay lenses, Possible Green Lenses, No Reaction with 

HCl. 
Stratified 

Alluvium  D 57-92 Slightly Moist, Orange Brown, Sandy, Apedal, Loose, Some Very 

Coarse Fragments, No Reaction with HCl. 

 E 92-120 Wet, Yellow Orange, Sandy, Apedal, Loose, Free Water 
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3.3.2 Soil chemistry 

3.3.2.1 Bulk chemical composition of the soil surrounding the Spektakel mine 

tailings  

As a comparison, the bulk trace element concentrations are displayed alongside the Dutch 

Soil Standard Guideline (DSSG) (Table 3.3). To date the Dutch Soil Standard Guidelines 

(DSSG) is the most comprehensive set of soil screening guidelines available (Dutch Soil 

Screening Guidelines, 2009). The results indicate that the most abundant major ions in the 

soil are SiO2>Al2O3>K2O>Fe2O3>CaO>=MgO>=Na2O (Table 3.2) and the most abundant 

trace elements are Cu>S>Ba>Sr>Rb>Cr (Table 3.3). The CaO, MgO and Na2O 

concentrations vary in each of the soil profiles. In some cases the MgO concentration 

exceeds the Na2O and CaO concentration and in other cases vice versa (Table 3.2). The 

Na2O concentration is most elevated in the top horizons of the soil profiles and decreases 

moving down the profile. 

The highest Cu concentrations are in samples SP1 B1, SP1 B2 and SP2 A, however Cu is 

elevated relative to the DSSG in all the horizons of each soil profile (Table 3.3). The Cu 

concentration in SP1 increases abruptly moving from the A to B horizon and decreases 

further down the profile. A decrease in Cu is observed in sample SP2 A moving down the 

profile and the same decrease is again observed in SP3. The Cu concentration in sample 

SP4 increases moving down through horizon SP4 A and SP4 B and decreases at SP4 C.  

The change in S concentration defines two different trends in the soil profiles. In sample SP2 

and SP4 the S concentration decreases moving down the profile and in SP3 the S 

concentration increases moving down the profile (Table 3.3). The Cr concentration only 

exceeds the DSSG in SP1 B1 and SP4 B (Table 3.3). 
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Table 3.2: Bulk major elemental composition of each soil horizon collected down soil profiles SP1 to SP4. Data from sample SP1 was collected by (Newmark, 2010) 

  

Depth 

(cm) 
Al2O3 CaO Cr2O3 Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 TiO2 LOI H2O SUM 

Sample Horizon 

 

Concentration (wt%) 

SP1 A 0-7 11.97 1.71 0.01 2.79 4.60 1.55 0.06 2.00 0.15 68.51 0.51 4.73 0.80 99.40 

 

B1 7-17 13.05 5.16 0.04 5.82 3.45 2.80 0.08 2.07 0.66 55.70 0.54 8.06 0.70 98.13 

 

B2 17-27 12.03 1.97 0.01 3.00 4.48 1.73 0.06 1.89 0.16 63.96 0.44 6.92 1.99 98.63 

 

B3 27-37 12.78 2.63 0.01 3.73 4.23 2.77 0.07 1.81 0.19 63.03 0.54 6.45 1.08 99.30 

SP2 A 0-5 13.68 1.66 - 4.52 3.90 1.66 0.14 1.84 0.18 59.92 0.68 9.94 2.15 100.28 

 

B 5-40 12.24 1.57 0.01 2.83 4.75 0.87 0.10 1.94 0.17 69.75 0.42 3.94 0.96 99.55 

SP3 A 0-15 13.62 4.58 0.02 6.70 3.02 2.40 0.12 2.46 0.24 51.32 0.80 14.15 2.51 101.94 

 

B 15-30 11.32 3.76 - 3.04 4.04 1.04 0.08 1.68 0.12 62.48 0.52 9.53 2.26 99.87 

 

C 30-35 10.44 6.92 - 2.78 3.56 1.28 0.06 1.76 0.12 56.58 0.44 15.02 3.00 101.96 

SP4 A 0-24 15.12 2.15 0.02 6.02 3.31 1.98 0.15 2.34 0.19 55.96 0.81 11.70 2.19 101.94 

 

B 24-67 16.14 1.36 0.04 9.70 3.28 2.62 0.10 1.36 0.28 55.32 0.88 9.59 1.09 101.76 

 

C 67-86 15.13 1.05 0.02 9.55 3.50 2.11 0.07 1.55 0.26 55.95 0.91 9.26 2.04 101.40 
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Table 3.3: Bulk trace elemental composition of each soil horizon collected down soil profiles SP1 to SP4 displayed along the Dutch Soil Standard Guidelines 
(Dutch Soil Screening Guidelines, 2009) Data from sample SP1 was collected by (Newmark, 2010) 

  

Depth 
(cm) 

V Cr Co Ni Cu Zn Ga Rb Sr Zr Nb Ba Ce Pb Th U S 

Sample Horizon 

 

Concentration (mg/kg) 

SP1 A 0-7 54 44 67 29 4175 48 14 218 198 236 13 647 135 38 46 8 - 

 

B1 7-17 85 249 88 206 20335 131 18 157 500 163 8 819 181 39 26 11 - 

 

B2 17-27 53 56 42 37 14442 64 13 208 210 184 9 511 115 42 34 10 - 

 

B3 27-37 65 43 60 28 3123 62 16 205 200 198 13 617 137 40 46 8 - 

SP2 A 0-5 107 89 79 80 11389 271 17 217 163 284 17 595 138 52 41 14 7841 

 

B 5-40 55 54 51 53 6770 104 15 220 209 337 12 698 88 81 44 15 3836 

SP3 A 0-15 84 146 31 71 2972 113 18 178 439 194 17 357 106 38 39 12 13050 

 

B 15-30 61 52 32 16 1579 50 14 198 249 310 13 556 92 40 43 11 16546 

 

C 30-35 52 50 30 18 1293 44 13 174 257 260 12 446 75 29 32 12 32104 

SP4 A 0-24 115 126 40 66 2222 163 20 211 169 234 20 484 160 43 41 13 6523 

 

B 24-67 163 282 57 85 3841 133 23 206 217 180 20 602 162 42 43 17 4945 

 

C 67-86 172 153 59 60 3419 113 22 239 173 216 23 600 164 37 47 19 3333 

DSSG  - 250 180 190 100 190 720 - - - - - - - 130 - - - 
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3.3.2.2 The chemical composition of solutions in equilibrium with the soil (saturated 

paste extract) and the fluids of the tailings ponds 

The EC of the soil solutions decreases down each of the soil profiles (Table 3.4) with similar 

decreases being observed in the samples moving away from the mine site. The pH of the 

soil falls largely in the circumneutral range with the exception of SP2 A (4.87). The 

abundance of the soluble major elements follows a similar trend in most of the profiles with 

Cl->SO4
2->Na+>Mg2+>Ca2+>K+>NO3

- (Table 3.4). The Cu2+ concentration in SP2A (2.95 

mmol/l) is elevated compared to the other soil horizons, which have Cu2+ concentrations 

between 0 and 0.04 mmol/L. The Cl-, Na+, SO4
2- and Mg2+ concentrations are highest in the 

A horizon of SP1-SP4 decreasing in concentration down the profile, while the concentrations 

of these same elements vary with depth in the SP5 profile. The alkalinity of the samples is 

low. The concentration of dissolved salts decreases with distance away from the site in the 

direction of the Buffels River.  

The chemical composition of the solution comprised of the redissolved leach pad crust 

indicates that the solution in the ponds on the surface of the tailings contained a range of 

soluble major and trace elements, SO4
2->Mg2+>Cu2+>Mn2+>Na+>Cl- (Table 3.5). The Na+ and 

Cl- concentration of this solution is depleted relative to the equilibrium soil solutions. The 

Cu2+ concentration in the solution exceed the Cu2+ concentration of the equilibrium soil 

solution to a large extent. 
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Table 3.4: Chemical composition of the solution in equilibrium with soil (saturated paste extract) of samples SP1 to SP5. The elemental concentrations of the 
solutions are expressed in mmol/l 

Profile Horizon Depth EC pH Soluble ion concentrations 

  

(cm) (mS/cm) 

 

(mmol/l) 

   

1:2.5 Solid Soil 
Solution Silica HCO3

-
 Ca

2+
 Mg

2+
 Na

+
 K

+
 Cl

-
 SO4

2-
 NO3

-
 F

-
 Cu

2+
 Mn

2+
 

SP1 A 0-7 38.91 6.83 0.25 0.31 13.46 67.04 86.97 13.89 96.96 71.73 0.66 0.25 0.01 0.03 

 

B1 7-17 26.8 6.51 0.27 0.27 14.68 36.22 45.20 9.66 50.02 41.28 0.10 0.11 0.01 0.02 

 

B3 27-37 25.65 7.59 0.39 0.43 24.33 35.27 46.48 9.04 35.13 53.85 0.06 0.23 0.00 0.00 

SP2 A 0-5 20.93 4.87 1.10 0.17 23.05 223.37 247.21 15.28 495.51 142.54 0.26 1.66 2.95 14.96 

 

B 5-40 3.73 6.23 0.36 0.35 16.49 34.85 24.84 5.84 27.45 52.06 0.22 0.07 0.03 2.94 

SP3 A 0-15 29.03 7.23 0.17 0.40 40.30 134.36 651.32 7.67 810.04 62.39 0.37 0.39 0.01 0.22 

 

B 15-30 11.11 7.68 0.40 0.65 25.21 39.48 203.31 3.61 218.00 43.79 0.13 0.72 0.00 0.06 

 

C 30-35 12.07 7.84 0.41 0.85 29.86 47.90 231.87 3.86 296.51 49.54 0.15 0.47 0.00 0.02 

SP4 A 0-24 21.05 6.75 0.33 1.30 41.21 132.13 349.35 7.54 568.23 54.21 0.00 0.17 0.04 2.13 

 

B 24-67 3.56 5.39 0.94 0.25 20.14 13.38 38.01 2.68 36.37 28.72 0.48 0.02 0.04 0.35 

 

C 67-86 3.25 5.18 1.01 0.37 7.44 10.35 41.48 2.70 45.26 11.54 0.23 0.00 0.02 0.05 

SP5 A 0-20 1.587 7.24 0.18 1.30 6.64 8.08 58.10 0.48 64.09 6.69 0.15 0.16 0.00 0.01 

 

B 20-35 2.3869 6.62 0.16 0.37 9.43 12.39 74.98 0.49 94.33 7.47 0.19 0.09 0.00 0.01 

 

C 35-57 6.625 5.04 0.37 0.21 9.23 12.37 80.72 0.74 102.88 6.98 0.22 0.03 0.03 0.04 

 

D 57-92 0.79 6.07 0.11 0.30 2.33 2.98 29.40 0.32 28.09 2.56 0.10 0.15 0.00 0.00 

 

E 92-120 3.283 6.37 0.07 0.57 11.16 18.61 120.94 0.79 156.16 9.10 0.08 0.08 0.00 0.05 

Table 3.5: Solution composition of the redissolved tailings crust (LP). The elemental concentration of the solutions are expressed in mmol/l 

 

pH Silica Ca
2+

 Mg
2+

 Na
+
 Cl

-
 SO4

2-
 NO3

-
 F

- 
Cu

2+
 Mn

2+
 

  

Concentration (mmol/l) 

LP 4.46 0.25 12.52 276.33 11.58 21.48 381.16 0.08 5.68 90.20 12.56 
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3.3.3 Mineralogical composition of the soil surrounding the Spektakel mine 

A mineralogical study was performed on milled whole soil samples (Figure 3.4a and Figure 

3.4b), dried clay extractions (Figure 3.5) and the green soil and mottles collected in the soil 

profiles (Figure 3.6 and Figure 3.7). Some of the peaks in the whole soil samples and clay 

extract could not be identified. 

The whole soil samples (Figure 3.4) contain elevated quartz concentrations which tend to 

mask the other smaller mineral peaks. The dominant primary mineralogy, however, 

remained identifiable, being made up of quartz, micas (biotite, muscovite) and feldspars 

(albite, microcline). The secondary minerals present are halite, gypsum, anhydrite, 

bassanite, kaolinite and atacamite. The gypsum concentration is elevated in the SP3 soil 

profile and the A horizon of SP2 relative to the other profiles. Halite is elevated in the surface 

horizons of the soil profiles. The copper hydroxy chloride mineral atacamite (Cu2(OH)3Cl) is 

observed in SP1 B1 and SP2 A.  

The clay extraction aids in the interpretation of the XRD analysis by minimizing the masking 

effect the quartz peak has on the other mineral peaks. The XRD analysis of the clay fraction 

(Figure 3.5) indicates that the clay fraction has a mineral composition similar to that of the 

whole soil fraction, although an increase in calcite abundance is observed moving down the 

profiles. The abundance of calcite in SP2 and SP4 is reduced compared to SP3. The results 

obtained from the clay fraction indicate that kaolinite is the major secondary clay mineral.  

In the case of the mottles only the peaks relevant to the mottles were identified (Figure 3.6 

and Figure 3.7). The green mottles (Figure 3.6) were identified as atacamite. The soil of the 

green horizon was found to consist mainly of atacamite type minerals and the white fleck 

collected from the SP3 B soil profile (Figure 3.7) consists of the gypsum (CaSO4·2H2O) and 

bassanite (2CaSO4·H2O).  

The black dashed lines on the XRD patterns (Figure 3.4a, Figure 3.4b and Figure 3.5) 

indicate the position on the graphs where the brochantite peak would be expected. As can 

be seen, neither brochantite, nor any other copper sulphate minerals were identified in any 

of the soil samples. 
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Figure 3.4: Powder XRD patterns of each horizon in sample SP1 to SP2. The red dashed lines indicate the 
dominant peaks of each mineral identified, along with their d-distance value and mineral name. The 
absent brochantite peak positions are indicated with black dashed lines. 

(a) 
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Figure 3.4 (Continued): Powder XRD patterns for SP3 and SP4. The red dashed lines indicate the 
dominant peaks of each mineral identified along with their d-distance value and mineral name. The 
absent brochantite peak positions are indicated with black dashed lines.  

(b) 
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Figure 3.5: XRD patterns of clay extracts from profiles SP2, SP3 and SP4. The red dashed lines indicate 
the dominant peaks of each mineral identified, along with their d-distance value and mineral name. The 
absent brochantite peaks are indicated with black dashed lines. 

 

Figure 3.6: The XRD pattern of the green mottles collected in the B and C horizons of the SP3 soil profile 
is compared to the XRD pattern of the green soil collected in the Green Sample. The red dashed lines 
indicate the dominant peaks of each mineral identified along with their d-distance value and mineral 
name.  
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Figure 3.7: XRD patterns of the white mottles in collected in horizon B and C in the SP3 soil profile. The 
red dashed line indicates the dominant gypsum and bassanite peaks identified along with their d-
distance value and mineral name. 
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3.4 Discussion 

The soil samples in the area immediately surrounding the mine (profiles SP1 and SP2) are 

highly heterogeneous and show signs of disturbance. These soils are therefore best 

classified as Witbank soils (containing a manmade soil deposit).The soil samples outside the 

perimeter of the mine (SP3 to SP5) show clear clay and sand stratifications, inferring these 

soils are relatively young alluvial soils (Dundee soils).  

The bulk chemical analysis of the soil indicates that the soil contains high concentrations of 

both major and trace elements (Table 3.2 and Table 3.3). These elements could either be 

present as primary and secondary minerals or bound to the soil structure through cation 

exchange or chemisorption. In this study the focus is to determine the secondary mineral 

phases retaining these elements in the soil. 

The results of the soil characterization indicate that the mining activity at Spektakel has been 

the major factor influencing the evolution of the chemistry of the soil surrounding the site. In 

addition, during the time of mining, water from the Buffels River was used in the processing 

of ore (A. Rozendaal, .Pers. Comm). Analysis done on the Buffels River water indicates that 

its water comprises of 97.99-164.01 mg/l Na+, 19.88-33.12 mg/l Mg2+, 348.87-339.8 mg/l Cl- 

and 0.04-0.085 mg/l Cu2+ (Hohne and Hansen, 2008). The highly evaporative conditions of 

this arid area resulted in the accumulation of these elements in the topsoil surrounding the 

site. This is indicated by the elevated bulk concentration of NaO (Table 3.2) and the elevated 

soluble Na+ and Cl- concentrations of the equilibrium soil solutions (Table 3.4).  

The unlined and exposed copper sulphide rich tailings dumps that were produced during the 

ore processing have been identified as the main distributors of large quantities of Cu2+ into 

the soil surrounding site. Studies performed on sites similar to Spektakel, indicate that that 

Cu2+ concentrations in the soil surrounding the tailings dumps can range between 300 and 

4000 mg/kg (Antonijević et al., 2012; Kelm et al., 2009). These observations correlate with 

the Cu2+ concentrations present at Spektakel. The bulk Cu2+ observed in the soil at 

Spektakel is present in concentrations which exceed the intervention value of 130 ppm Cu2+ 

prescribed by the DSSG guidelines (Table 3.3) (Dutch Soil Screening Guidelines, 2009). 

This elevated concentration of Cu2+ in the soil could become a health risk for the plant life 

and the inhabitants surrounding the site if it becomes mobilized. It has been reported that 

elevated Cu2+ concentrations are toxic to humans (Brewer, 2010; Davis and Mertz, 1987), 

animals at concentration higher than 4000 ppm (Davis and Mertz, 1987) and plants 

(Balsberg Pahlsson, 1989; Fernandes and Henriques, 1991).  
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Preliminary soil analysis performed by Hohne and Hansen (2008) provide an indication of 

the background chemical composition of the soil in the region. This data indicates a mean 

Cu2+ concentration of 6.2mg/kg. The 25th percentile is 24 mg/kg, while the 75th percentile is 

49 mg/kg. This indicates that the Cu2+ concentration in the soil surrounding the tailings 

dumps at Spektakel exceeds the regional background concentration by a significant amount. 

The solution analysis of the redissolved tailings crust (Table 3.5) emphasizes the 

contribution the tailings dumps make to the total Cu2+, SO4
2- ,Mg2+ and other trace metals 

present in the soil. During rain events exposed sulphate and copper salts, at the surface of 

the tailings, dissolve forming acidic Cu2+, SO4
2- and Mg2+ rich solutions (Table 3.5). The 

elevated concentrations of Cu2+ and SO4
2- present on the tailings, (Table 3.3 and Table 3.5) 

are the remnants of unprocessed copper sulphide minerals. These exposed minerals are 

oxidized over time, leaving the tailings laden with mobile copper and sulphate:  

                     
                                                    [Eq 1] 

The oxidation of these sulphide minerals produces acid mine drainage (AMD) solutions in 

the tailings, thus acidifying both the soil as well as the tailings (Akcil and Koldas, 2006). 

These solutions migrate through the tailings, dissolving the soluble salts present in the soil 

and accumulating Cu2+, SO4
2- and Mg2+ (along with Na2+, Cl- and K+) in the surface horizons 

of the soil surrounding the site (Table 3.4). 

Despite the addition of acidity, when the soil is placed in equilibrium with water, the results 

indicate that the pH of the soil solution is circumneutral and the mobile Cu2+ concentration is 

as low as 0.02 mmol/l (Table 3.4) in some cases. The circumneutral pH is achieved by the 

dissolution of calcite (Figure 3.5) as the acidic tailings solution migrates through the soil and 

reacts with calcite. The addition of hydroxyl and carbonate groups absorbs the excess 

protons, buffering the solution to a neutral pH. 

                              
                                   [Eq 2] 

    
                                                          [Eq 3] 

In conjunction with this the solutions that move through the soil dissolve the soluble salts, 

depleting the topsoil of soluble ions especially Cl-. Both the equilibrium solution data (Table 

3.4) and the XRF data (Table 3.2 and Table 3.3) indicate a decrease in elemental 

concentration moving down the soil profiles. The same depletion is observed in the samples 

further away from the site (Table 3.4).  

The most noticeable result observed in the soil solutions, is that the Cu2+ and Cl- 

concentrations (Table 3.4) differ from the tailings pond solutions (Table 3.5). Compared to 

the leach pond solution the soil solutions have an elevated Cl- concentration and a reduced 
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Cu2+ concentration (Table 3.4). The mineralogy of the soil provides an indication of which 

mineral phases these elements are bound to. 

The bulk mineralogical analysis of the soil samples (Figure 3.4a and Figure 3.4b) indicates 

that the mineralogy of the soil correlates with the mineralogy of the granite-gneiss domes of 

the Koperberg Suite (Schoch and Conradie, 1990). This indicates that the weathering of 

these granite-gneiss domes is the main contributor to the mineralogy of the soil. Apart from 

the presence of kaolinite (Figure 3.5), a secondary clay mineral produced by the weathering 

of the feldspar in the soil (Espejo et al., 1993), the clay phase is predominantly dominated by 

primary minerals. This suggests that there has been minimal weathering of primary minerals 

to secondary minerals. This low abundance of clay minerals reduces the capacity of the soil 

to sequester contaminants on cation exchange sites. This indicates that the Cu must be 

bound to secondary Cu mineral phases. 

The secondary minerals present in the soil are dominated by the evaporate minerals halite, 

calcite, gypsum and bassanite (Figure 3.5). The abundance of halite correlates with the 

elevated concentrations of soluble Na2+ and Cl- present in the soil (Table 3.4). The presence 

of gypsum is expected due to the elevated SO4
2- and Ca2+ concentrations introduced by the 

tailings and calcite in the soil respectively. The calcite abundance increases down the soil 

profiles which indicate that the acid mine solutions are dissolving the calcite and lowering the 

buffer capacity of the soil. 

Currently no literature indicates which primary copper minerals are present at the Spektakel 

mine site. However research performed on the mines surrounding Spektakel indicates that 

the dominant primary copper minerals in the area are bornite, chalcopyrite and chalcocite. 

These sites also contain variable quantities of pyrrhotite, pyrite, galena and sphalerite 

(Gadd-Claxton, 1981). None of these primary minerals were observed in the soil surrounding 

the Spektakel mine (Figure 3.4a, Figure 3.4b, Figure 3.5), only secondary copper minerals 

were present. The main secondary Cu2+ mineral observed in the soil surrounding the site is 

atacamite. Atacamite is a common secondary Cu2+ phase first described in the weathered 

portions of sulphide deposits in the arid Atacama Desert and is also found in chloride rich 

environments such as the modern seafloor (Hannington, 1993). The atacamite in the soil 

occurs dominantly in the top horizons of the soil profiles (Figure 3.4a, Figure 3.4b and Figure 

3.5). Atacamite is known to form through the replacement of calcite in a copper chloride rich 

solution (Garrels and Stine, 1948). This instantaneous reaction removes most of the copper 

from the solution preventing further migration though the soil profile. As the calcite is 

dissolved through atacamite formation more atacamite will form and copper will be able to 

migrate deeper into the soil profile.  
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The most striking aspect about this observation is that atacamite is the only secondary Cu2+ 

mineral observed at the site and that no secondary copper sulphate mineral was identified 

(Figure 3.5, Figure 3.6 and Figure 3.7). This does not correlate with the site characteristics, 

as the tailings solutions are dominated by Cu2+ and SO4
2- indicating that some form of 

copper sulphate mineral would be expected to be present in the soil.  

3.5 Conclusion 

The aim of the chapter was to characterise the chemistry of the tailings ponds solution and 

the soil surrounding the tailings dumps at the Spektakel mine. Analysis of the tailings 

solution indicates that the solution is acidic and contains elevated Cu2+, SO4
2- and Mg2+ 

concentrations with little soluble Cl-. The bulk chemical analysis of the soil indicates that the 

soil contains elevated major and trace metals, mainly SO4
2-, Cl- and Mg2+, with a bulk Cu2+ 

concentration exceeding the DSSG intervention value. These elements accumulate in the 

top soil through evaporation as a result of the arid climate of the area. The equilibrium soil 

solution data indicates that when the soil becomes waterlogged after a rain event, the salts 

in the top soil dissolve enriching the solution with respect to SO4
2-, Cl- and Mg2+ at a 

circumneutral pH. Only a small amount of Cu2+ is dissolved in the equilibrium soil solution 

compared to the tailings pond solution. This indicates that despite the high Cu2+ 

concentration in the leachate water, the majority of the Cu2+ is retained in the soil. The 

mineralogical data of the soil indicates that the soil contains a range of primary minerals and 

secondary evaporate minerals. From this data it was concluded that atacamite is the only 

secondary copper mineral in the soil surrounding the tailing, as no brochantite was 

observed.  

The mineralogical data indicates that the soil is enriched in calcite, the dissolution of this 

calcite results in the circumneutral pH of the soil. This same pH effect contributes to the 

formation of atacamite through the replacement of calcite. This precipitation of atacamite 

through the dissolution of calcite stabilizes the mobile Cu2+ fraction preventing it from moving 

through the soil profile. In order to acquire a better understanding of the longevity of this 

Cu2+ retention mechanism in the soil we need to understand the physicochemical controls on 

the formation and dissolution of atacamite in the soil. 
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 Physicochemical controls on the formation of secondary Cu 4

minerals 

4.1 Introduction 

The soil characterization analyses conducted in the previous chapter indicates that the soil 

contains elevated concentrations of SO4
2-, Cl- and Cu2+. These elements accumulate in the 

soil during rain events when the Cu2+ and SO4
2- rich tailings solution percolates through the 

tailings into the soil. Compared to the tailings solution the soil solution contains more soluble 

Cl- and less soluble Cu2+. A mineralogical analysis has indicated that atacamite is the only 

secondary copper mineral present in the soil, as no brochantite was detected. To date no 

work has been conducted at Spektakel to determine the mechanisms active in the soil during 

the formation of secondary copper mineral phases.  

The research conducted on atacamite focused mainly on the formation and stability of 

atacamite in a marine environment with little reference to a terrestrial setting (Pollard et al, 

1989; Reich et al, 2008). It is evident from literature that atacamite and its polymorphs 

paratacamite and clinoatacamite (Cu2(OH)3Cl) are the prevailing secondary Cu minerals 

present in supergene oxide zones of Cu deposits in the Atacama Desert (Hannington, 1993). 

In contrast to this atacamite is a common secondary Cu phase present in the weathered 

portions of sulphide deposits of the modern seafloor (Hannington, 1993). Stability diagrams 

based on Gibbs free energy calculations for the basic copper salts, indicate that tenorite 

should be the stable product of seafloor weathering of Cu sulphides. However, Woods and 

Garrels (1986) interpreted their free energy calculations to indicate that atacamite is the 

more likely stable phase at the pH and Eh of normal seawater. 

The free-energy data reported by Woods and Garrels (1986) indicate that atacamite and 

paratacamite are equally stable in surface seawater when in equilibrium with the atmosphere 

at a CO2 partial pressure of 10-3.5 bar. However, because their stabilities are so close, the 

preferred species depends criticality on the local p(CO2) which may be a function of 

temperature, depth and local biological activity (Woods and Garrels, 1986). The 

thermodynamic properties of the species are not the only mechanism contributing to the 

formation of these minerals. Formation kinetics, nucleation and growth play an important role 

in the crystallisation of these basic copper salts. Woods and Garrels (1986) noted that under 

experimental conditions the rate of crystallization (which is strongly dependent on the 

concentration of dissolved Cu2+ and the ratio of Cl- and H+ in solution) controls the formation 

of which particular species is formed. This was deduced from the fact that paratacamite 
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(Cu4Cl2(OH)6), the dimorph of atacamite, formed under acidic conditions and atacamite 

under more alkaline conditions (Woods and Garrels, 1986). 

Research conducted by Rose (1976) determined that under acidic, oxidising conditions, Cu+ 

and Cu2+ are carried in seawater (saline) solutions dominantly as cuprous chloride 

complexes (CuCl2- and CuCl3
2-) and Cu2+ ions. The release of Cu2+ and the stability of CuCl2- 

and CuCl3
2- complexes under these conditions allow the solubility of Cu-bearing phases in 

excess of 1000 ppm. The solubility of copper is highest at a low pH, decreasing sharply at 

slightly alkaline pH values. This results in the precipitation of atacamite where the oxidizing 

solutions come into contact with ambient seawater. In contrast, atacamite will dissolve 

readily in fresh water and therefore is rare in subaerial environments. 

The chemical conditions necessary for brochantite formation are not as well understood as 

those for atacamite formation. Brochantite is a secondary copper hydroxy sulphate mineral 

often observed in the oxidized zones of copper deposits (Zamana and Usmanov, 2007). It is 

the most common copper hydroxy sulphate mineral found in nature (Woods and Garrels, 

1986) and is known to precipitate in solutions with a Cu2+ concentration of 8.56 kg/l (Zamana 

and Usmanov, 2007). The poorly constrained chemical conditions necessary for the 

formation of brochantite mean that it is unclear as to why brochantite is not observed in the 

Spektakel soils, despite the high sulphate signature of the soil solution. 

To understand how the chemical mechanisms in the soil behave during the formation of 

atacamite and other secondary minerals, all the characteristics at the site need to be taken 

into account. According to literature the circumneutral pH and the presence of calcite 

(Chapter 3) will be the main characteristics contributing to the formation of atacamite in the 

soil. The analyses conducted in the previous chapter indicate that calcite is dominant in the 

subsoil horizons surrounding the tailings dumps. Along with this, the evaporative conditions, 

due to the arid climate, accumulates elevated concentrations of Cl-, SO4
2- and Cu2+ in the 

form of evaporate minerals.  

The aim of this chapter is to determine why the copper hydroxy chloride mineral atacamite 

(Cu2(OH)3Cl) forms in preference to its sulphate equivalent brochantite (Cu4(OH)6SO4). Two 

types of experiments were conducted to determine this. Firstly the influence of varying Cl- 

and SO4
2- activities on Cu mineral formation was determined and secondly the effect of 

evaporation on Cu mineral formation was determined.  
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4.2 Materials and Methods 

4.2.1 Mineral formation experiment with change in absolute Cl- and SO4
2- 

concentration 

4.2.1.1 Solution preparation and experimental procedure 

To determine the effect that varying Cl- and SO4
2- concentrations and the presence of calcite 

will have on secondary Cu mineral formation, various synthetic solutions were prepared. The 

Cl- and SO4
2- concentration range of the synthetic solutions are based on the concentrations 

observed in the saturated paste extracts (Chapter 3). The concentrations were adjusted in 

five steps, in samples S1 to S5. The Cu2+ concentration was kept constant at 0.1M 

throughout all five steps (Table 4.1). To regulate the Cl- and SO4
2- concentrations NaCl and 

Na2SO4 were added. The experiment was executed in triplicate for each of the five different 

concentration combinations. The solutions were placed in 200ml Erlenmeyer flasks, 50ml of 

solution and 1g of calcite powder were added to each of the containers. The containers were 

covered with Parafilm, to minimize evaporation, and left to equilibrate at 25 ˚C in a MRC 

temperature controlled unit for one month. After equilibration the solutions were extracted 

and analysed for the change in Cu2+, Cl- and SO4
2- concentration via ICP-MS and IC analysis 

to determine the change in solution composition. The precipitate was extracted, dried and 

analysed for mineral composition using XRD analysis. (Refer to Chapter 2) 

Table 4.1: Theoretical compositional range of solutions S1 to S5 (in mol/l) to perform the mineral 
formation experiment in the presence of calcite.  

Sample Cl- SO4
2- Cu2+ 

 Concentration (mol/l) 

S1 0.500 0.010 0.100 

S2 0.250 0.025 0.100 

S3 0.100 0.100 0.100 

S4 0.025 0.250 0.100 

S5 0.010 0.500 0.100 
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4.2.2 Evaporation experiment of a synthetic solution with a composition similar to a 

solution in equilibrium with the soil 

4.2.2.1 Synthetic solution preparation 

A synthetic soil solution, modelled on the saturated paste extract of the SP2 A soil horizon, 

was used in the evaporation experiment as this sample contains atacamite, gypsum and 

high concentrations of Cu2+. To prepare the solution the salts were added individually and 

left to fully dissolve prior to the addition of the next salt. The sequence of salt addition of (1) 

CaCl2, 2) MgSO4, 3) MgCl2, 4) NaCl, 5) KCl, 6) CuCl2 and 7) NaHCO3 was used to reduce 

mineral precipitation during preparation. Immediately after the dissolution of all the salts the 

solution was filtered through a 0.45µm Whatman Duradisc 25 NYL disposable syringe filter 

with polypropylene housing, to remove any suspended precipitate that formed. The 

evaporation experiment was conducted immediately after filtration in order to prevent 

additional precipitation prior to the initiation of the experiment.  

Table 4.2: Comparison between the composition of the original saturated paste extract from the SP2 A 
soil horizon (SPE) (Chapter 3) and the synthetic solution prepared to use in the evaporation experiment 
(NC Evap). Concentration of the solutions are expressed in mg/l 

 

Samples 

 

SP2 A 

 

SPE NC Evap 

Elements 
Concentration 

(mg/l) 

Ca2+ 923.9 846.7 

K+ 597.2 549.1 

Mg2+ 5428.9 5436.0 

Na+ 5683.3 5765.3 

Cl- 17567.4 13331.2 

SO4
2- 13692.2 10192.3 

Cu2+ 193.3 169.9 

HCO3- 10.7 21.4 

pH 4.9 4.9 
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4.2.2.2 Evaporation procedure and sample collection 

Two treatments were used in the evaporation experiments. In one treatment 1g of CaCO3 

powder was added to the solution (labelled as CC Evap) and in the second treatment CaCO3 

was omitted from the solution (labelled as NC Evap). Both treatments were run in triplicate. 

The synthetic SP2 A solution was divided equally into six 800ml acid washed glass flasks 

and 300g of solution was added to each container. All six containers were placed in a 

temperature controlled unit at 25˚C and the solutions were sampled at 24 hour intervals. This 

sampling involved collecting an aliquot of solution, measuring the pH and weighing the glass 

container to determine the loss in weight.  

With evaporation, the ions in solution become concentrated increasing the solution density, 

making a gravimetric determination of water loss difficult. In order to eliminate this change in 

density, the total weight of salt in the solution of each sample was calculated using the total 

dissolved salts (TDS) values (Figure 4.4). The total salt weight was subtracted from the 

weight of the solution at each specific collection, to determine the total weight of water 

remaining in the container. Using the weight of water still remaining in the container the 

concentration factor of each solution was determined as follow: 

    
        

       
                                          [Eq 4] 

where the concentration factor (CF) is equal to the initial weight of the solution (WInitial), after  

the total salt weight was subtracted, divided by the remaining solution weight (WRemain), after 

the total salt weight was subtracted. The increase in CF represents the loss of fluid as the 

solution evaporates. 

The pH measurement was conducted by submerging the pH probe as far as possible into 

the evaporating solution in an attempt to get as accurate as possible a reading (Refer to 

Chapter 2). Towards the end of the evaporation experiment the volumes of the solution in 

the containers were too low to collect an accurate pH reading.  

The collected aliquots were filtered with a 0.2 µm GVS Cellulose Acetate Membrane Syringe 

Filter. Each of the filtered aliquots were diluted with MiliQ deionized water and stored in a 

50ml centrifuge tube. The dilution factor of each filtered aliquot was determined by using the 

concentration of the previous collection. Diluted samples were placed in a refrigerator at 4˚C, 

to prevent precipitation of minerals, and sealed to prevent leaks. Each of the diluted samples 

were analysed for cations and anions. After all free water had been evaporated from the 

flasks the crystal precipitate at the bottom of the containers was collected and prepared for 

XRD powder analysis. (Refer to Chapter 2)  
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4.2.3 Analytical methods 

The major cations were analysed by means of ICP-AES and the trace cations were analysed 

using ICP-MS. The anions were analysed with a Methrohm 761 compact ion chromatograph 

(IC). The mineral analysis was conducted by means of X-Ray diffraction analysis. (Refer to 

Chapter 2) 

4.2.4 PHREEQC modelling 

The evaporation was modelled using PHREEQC 2.18.3.5570 (Parkhurst and Appello, 1999). 

The basis of the model is set up to replicate the conditions of the evaporation experiment. A 

temperature of 25 °C and a CO2 partial pressure of 10-3.5 were used for all simulations. The 

solution composition of sample NC Evap was used as the initial solution. The evaporation 

process is simulated by removing water, in moles, from the solution in the same volumetric 

increments observed in the evaporation experiment. To replicate the evaporation of NC 

Evap and CC Evap, the solution composition of NC Evap was used for both samples. 

However in order to replicate CC Evap, the simulation was placed in Equilibrium with 1 mol 

of calcite. The SIT (Specific Ion-Interaction Theory) database was used due to the high ionic 

strength of the solutions (Parkhurst and Appello, 1999). 

The chemical composition of each of the collected samples was modelled in PHREEQC to 

determine the percentage error of the solution data as well as the activity and molality of the 

respective ions. This made it possible to compare the composition of the evaporation 

samples with the PHREEQC model, as PHREEQC does not calculate molarity only molality. 

The activity data was used, along with the pH, to track the stability of atacamite and 

brochantite during the experiments. 
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4.3 Results 

4.3.1 The effect of absolute Cl- and SO4
2- concentrations on Cu secondary mineral 

formation 

The initial composition of the solutions S1 to S5 (Table 4.3) closely resembles the theoretical 

solution composition (Table 4.1). After the solutions reacted with the calcite the Cu2+ 

concentrations decreased from approximately 100 mmol/l to less than 0.0028 mmol/l. The 

SO4
2- concentration decreased in all the samples. An increase in Cl- is observed in S3 to S5. 

The pH of the samples increases from between 4.29 and 4.68, to between 7.44 and 8.05 

(Table 4.3). 

Table 4.3: Chemical composition of the initial solution (a) (before calcite was added) vs. the composition 
of the solution after the experiment was completed (b). The concentration of the solutions is expressed 
in mol/l. 

(a) Initial concentration 

 
Cl- SO4

2- Cu2+ 
 

Sample mmol/l pH 

S1 488.49 7.84 102.81 4.29 

S2 218.31 18.88 89.23 4.26 

S3 79.93 71.37 103.91 4.54 

S4 15.68 189.47 85.53 4.63 

S5 6.83 429.89 84.63 4.68 

     
(b) Concentration after 

 
Cl- SO4

2- Cu2+ 
 

Sample mmol/l pH 

S1 475.20 7.61 0.0028 7.62 

S2 183.12 9.14 0.0028 7.44 

S3 85.07 17.92 0.0028 7.75 

S4 16.95 146.26 0.0049 8.05 

S5 7.08 386.42 0.0403 7.98 

The XRD patterns of samples S1 to S5 indicate the formation of gypsum, atacamite and 

malachite (Figure 4.1). Using to the peak intensity as an indication of the quantity of mineral 

formed, it becomes apparent that the decrease in SO4
2- and Cl- concentration (Table 4.3) 

can be related to the formation of SO4
2- and Cl- minerals. Sample S1 and S2 (high Cl- and 

low SO4
2-) formed atacamite and little to no gypsum. Sample S3 (equal Cl- and low SO4

2-) 
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formed more gypsum than atacamite. Samples S4 and S5 (high SO4
2- and low Cl-) 

predominantly formed gypsum with minor malachite. Brochantite was not detected in any of 

the treatments. 

 

Figure 4.1: XRD patterns for samples S1 to S5. The minerals identified in each of the samples are 
indicated along with the d-distance which correlates with each peak. The concentration of the ions in 
each of the solutions, before and after the experiment, is displayed in Table 4.3. The black dashed lines 
indicate the position where the two most intense peaks for brochantite should occur. 
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4.3.2 The effect of evaporation on secondary Cu mineral formation in the presence 

and absence of calcite 

4.3.2.1 Evaporation experiment vs. PHREEQC model 

This section details a comparison between the data collected during the evaporation 

experiment and the modelled data produced by the PHREEQC evaporation simulation. The 

data collected during evaporation is expressed as NC Evap (no calcite added to solution) 

and CC Evap (calcite added to solution). The PHREEQC simulation data is expressed as 

CC Sim (in equilibrium with calcite) and NC Sim (not in equilibrium with calcite). 

4.3.2.2 Evaporation rate 

During the experiment a difference in evaporation rate between NC Evap and CC Evap was 

observed (Figure 4.2). Initially, the evaporation rate is similar, at collection number six the 

concentration rate of NC Evap starts to decrease relative to CC Evap. In the final stages of 

evaporation the colour of the NC Evap solution changed from transparent to yellow, this 

change was not observed in CC Evap. At the end of evaporation experiment the precipitate 

in CC Evap was dry and the precipitate in NC Evap remained a moist paste. The moist 

precipitate of NC Evap was left at 25 °C for an extended two weeks to determine if it would 

dry completely, but it did not. To determine how the NC Evap solution would evolve if 

complete evaporation occurred the concentration factor of CC Evap was used for NC Sim. 

 

Figure 4.2: Comparison between the rates of evaporation, illustrated as the change in concentration 
factor (CF), of each collected sample in CC Evap, CC Sim, NC Evap and NC Sim. Each data point is 
indicated with a () and distinguished by a different colour.  
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4.3.2.3 Solution pH and total dissolved salts (TDS) 

The pH of the evaporation experiment and the PHREEQC simulation follow a similar trend 

(Figure 4.3). In the case of CC Evap and CC Sim the pH of the solution increases from 4.89 

to 7.64 with calcite addition. During evaporation the pH of CC Evap and CC Sim remains in 

the circumneutral range. The pH of CC Sim increases more than CC Evap during initial 

evaporation as well as decreasing more toward the end of evaporation comparatively. The 

pH evolution of NC Evap and NC Sim indicates that the pH decreases during evaporation. 

Toward the end of evaporation NC Evap becomes more acidic than NC Sim.  

 

Figure 4.3: Comparison of the pH evolution between the evaporation experiment [CC Evap (), NC Evap 

()] and the PHREEQC model [CC Sim (−), NC Sim (−)]. The X-axis of the graph is reduced to amplify the 

pH change of NC Evap. 

The accumulation of the total dissolved salts (TDS) of the evaporation and simulation follow 

a similar trend during initial evaporation (Figure 4.4). However, in the final stages of 

evaporation the TDS of CC Evap starts to decrease whereas the TDS of CC Sim continues 

to increase. The NC Evap solution did not evaporate to the same CF as CC Evap thus this 

observation could not be made for NC Evap. The TDS of CC Sim and NC Sim increases 

linearly throughout the simulation. 
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Figure 4.4: The change in the total dissolved salts (TDS) of the evaporation samples and the PHREEQC 
simulation. The TDS as used here is the SUM total of the major ions expressed as log(mol/kg) vs. logCF. 
Error bars indicate the calculated standard deviation for the evaporation data. Refer to Figure 4.3 for 
symbols. 

4.3.2.4 Evolution of ion concentration during evaporation 

The concentration of Cl-, Na+, SO4
2- and K+ in CC Evap increases during the initial stages of 

evaporation and decreases toward the end of evaporation (Figure 4.5a). The CC Sim 

indicates that the concentration of Cl-, Na2+, SO4
2- and K+ remains conservative throughout 

the simulation. The final Mg2+ and Ca2+ concentration of CC Sim deviates strongly from CC 

Evap. The Mg2+ concentration of CC Evap increases with evaporation and starts to stabilize 

at logCF 5. The Mg2+ concentration of CC Sim increases initially and starts to decrease after 

logCF 5. The Ca2+ concentration of CC Evap increases between logCF 1 and 2 and then 

start to decrease. The Ca2+ concentration of CC Sim decreases from the start, stabilizing at 

logCF 13 and increases in the final simulation step.  

The activity of Cl-, Na+, Mg2+, SO4
2- and K+ in CC Evap increases during the initial stages of 

evaporation and decreases at the end of evaporation (Figure 4.5b). The activities of Na2+, 

Mg2+ and K+ in CC Sim follow the same trend as the CC Evap activities. The Cl- activity in 

CC Sim increases in the final step of the simulation. The SO4
2- and Ca2+ activity of CC Sim 

deviates strongly from CC Evap. The SO4
2- activity of CC Evap has a close to linear trend 

whereas the SO4
2- activity of CC Sim starts with a stable positive trend and decreases after 

logCF 10. The Ca2+ activity of CC Evap increases between logCF 1 and 2 and decreases 

during evaporation the rest of the evaporation. The Ca2+ activity of NC Sim starts with a 

close to stable trend which increases after logCF 10. 
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Figure 4.5: Comparison between the log(concentration) and log(activity) of CC Evap () and CC Sim (−). (a) log(concentration) in mol/kg vs. logCF of CC Evap and 

CC Sim. (b) log(activity) vs. logCF of CC Evap and CC Sim. The calculated standard deviation is indicated with error bars for the NC Evap data. 
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The evolution of NC Evap is only plotted to a logCF of 13 as NC Evap did not evaporate to the 

same extent as CC Evap. Too aid in the understanding of how the solution would evolve if NC 

Evap evaporated completely the NC Sim data is plotted against the CF calculate for CC Evap 

(Figure 4.6).  

The concentration of Cl-, Na+, SO4
2- and K+ in NC Evap increases during evaporation (Figure 4.6a). 

The NC Sim data indicates that the concentration of Cl-, Na2+, SO4
2- and K+ evolves in a fashion 

similar to NC Evap up to logCF 13 and remains conservative throughout the simulation. The Mg2+ 

and Ca2+ concentrations of NC Sim, however deviate strongly from NC Evap. The Mg2+ 

concentration of NC Evap increases with evaporation and starts to stabilize at logCF 5, whereas 

the Mg2+ concentration of NC Sim increases initially and then decreases after logCF 13. The Ca2+ 

concentration of NC Evap increases between logCF 1 and 2 after which it decrease until it reaches 

logCF 13. The Ca2+ concentration in NC Sim decreases from the start, levels out after logCF 10 

and then increases in the final simulation step. 

The activity of Cl-, Na+, Mg2+ and K+ in NC Evap increases during the initial stage of evaporation 

(Figure 4.6b). The activity of Na2+, Mg2+ and K+ in CC Sim follow the same trend as the NC Evap 

showing a decrease in the final simulation step. The Cl- activity of NC Sim increases in the final 

step of the simulation. The SO4
2- and Ca2+ activity of NC Sim deviates strongly from NC Evap. The 

SO4
2- activity of NC Evap has a stable linear evolution during evaporation while the SO4

2- activity of 

NC Sim initially evolves linearly and then decreases at the end of the simulation. The Ca2+ 

concentration of NC Evap increases between logCF 1 and 2 and then starts to decrease to logCF 

13. The Ca2+ concentration in NC Sim decreases from the start, stabilizes at logCF 13 and 

increases in the final simulation steps. 
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Figure 4.6: Comparison between the log(molality) and log(activity) of NC Evap () and NC Sim (−). (a) log(molality) in mol/kg vs. logCF of NC Evap and NC Sim. (b) 

log(activity) vs. logCF of NC Evap and NC Sim. The CF used for NC Sim is based on the CF from CC Evap. The calculated standard deviation is indicated with error 
bars for the NC Evap data.   
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The change in Cu2+ concentration and activity during evaporation is shown in Figure 4.7. The 

concentration of Cu2+ is conservative in CC Sim, NC Evap and NC Sim (Figure 4.7a). After 

calcite was added to the CC Evap solution Cu2+ is removed from the solution reducing the 

concentration from 169 mg/l to 0.4 mg/l. When the calcite settled on the base of the 

container a green precipitate formed on the surface of the calcite powder. The activity of 

Cu2+ evolves along a trend similar to the molality (Figure 4.7b). 

 

Figure 4.7: Comparison of the evolution of Cu
2+

 during evaporation (CC Evap and NC Evap) and the 
PHREEQC simulation (CC Sim and NC Sim) in the presence and absence of calcite: (a) change in 
log(concentration) of Cu

2+
 expressed in mol/kg vs logCF, (b) change in log(activity) of Cu

2+
 vs logCF. 

Refer to Figure 4.3 for symbols. 

4.3.2.5 Mineralogy of the precipitate collected after completed evaporation 

The mineral precipitate collected, after evaporation of CC Evap and NC Evap, indicates that 

different minerals form in the presence and absence of calcite. The minerals that formed in 

CC Evap are gypsum, starkeyite (leonhardtite) (MgSO4·4H2O), halite and atacamite. The 

minerals present in the NC Evap precipitate are bassanite, kieserite (MgSO4·H2O) and halite 

(Figure 4.8). Mineral abundance is proportional to the concentration of ions, that contribute 

to the formation of the various minerals, in solution.  
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Figure 4.8: XRD patterns of air dried precipitate collected after evaporation of CC Evap and NC Evap. The 
red dashed lines indicate the main peaks of each identified mineral. Each identified mineral name and d-
distance is indicated. 
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4.4 Discussion 

The purpose of this research was to determine the chemical mechanisms active in the soil 

surrounding the Spektakel mine tailings and how they influence secondary copper mineral 

formation. Specifically it was to determine why the sulphate rich environment at the mine 

favours the formation of a copper chloride mineral (atacamite) over its sulphate counterpart 

(brochantite).  

4.4.1 The effect of chloride and sulphate concentrations on secondary Cu mineral 

formation 

The initial experiment investigated how the ratio of Cl- to SO4
2- influences the formation of 

atacamite and brochantite in the presence of calcite. It was found that the mobility of Cu2+ in 

a solution, containing Cl- and SO4
2-, is controlled by the pH and the activity of the Cl- and 

SO4
2- ions, these findings are consistent with that of Mann and Deutscher (1977). The low 

pH values (4.29 – 4.68) (Table 4.3) of the initial solutions is due to the hydrolysis of Cu2+, as 

described by the following equation: 

                                                               [Eq 5] 

The addition of calcite adds carbonate ions to the system buffering the pH through the 

following mechanism: 

                              
                                   [Eq 6] 

    
                                                         [Eq 7] 

Thus, the dissolution of calcite increases the Ca2+ concentration of the sample solution and 

increases the gypsum forming potential of the high SO4
2 solutions S3 to S5 (Table 4.3). This 

observation correlates with the XRD data (Figure 4.1) that indicated gypsum formed in the 

solutions with elevated SO4
2- concentrations. Conversely, the reduced SO4

2- concentrations 

of samples S1 and S2 did not result in the formation of gypsum. 

The XRD data of samples S1 to S5 indicate that atacamite and malachite were the only 

copper minerals that formed during the experiment and no brochantite was observed. Work 

conducted by Mann and Deutscher (1977) shows that the change in Cl- and SO4
2- activity 

influences the mobility of Cu2+ in the presence of carbonate, resulting in the formation of 

different copper mineral phases. To do this they calculated which mineral phases restrict the 

mobility of Cu2+ in solution with changing Cl- and SO4
2- activities. It was determined that in 

acidic solutions the increase in SO4
2- and Cl- activity lowers the activity of Cu2+ in solution. 

Increasing SO4
2- activity produced antlerite and brochantite, whereas increasing Cl- activity 

produced atacamite. In an alkaline solution, depending on the SO4
2- activity, malachite limits 
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the mobility of Cu2+ (Figure 4.9). Stability diagrams based on the calculations by Mann and 

Deutscher (1977) indicate how the change in Cl- and SO4
2- activity influences mineral 

stability at a pH between 2 and 12 (Figure 4.9). The pH, along with the Cl- and SO4
2- 

activities of sample S1 to S5, before and after calcite addition, were plotted on these 

diagrams. The results from the experiment correlate with the conclusions of Mann and 

Deutscher (1977). In sample S3, S4 and S5, after calcite addition, the high pH and SO4
2- 

activity along with a low Cl- activity favours the formation of malachite (Figure 4.9) as is 

observed in the XRD patterns (Figure 4.1). In sample S1 and S2, after calcite addition, the 

high Cl- and low SO4
2- activity favour the formation of atacamite (Figure 4.9) in agreement 

with the XRD mineral analysis (Figure 4.1). 

 

Figure 4.9: Stability diagram indicating the mineral phases that limit the mobility of Cu
2+

, at different Cl
-
 

and SO4
2-

 activities, in solution before and after the addition of calcite (modified from Mann and Deutcher, 
1977). The solution compositions of sample S1 to S5 (), before and after calcite addition, were plotted 
on the diagram to indicate the mineral stability of each solution before and after the experiment. The 
results are expressed as the log activity of SO4

2-
(logaSO4

2-
) vs pH 

The solution composition of S4 and S5 replicates the composition of the tailings pond 

solution (Table 3.5), i.e. elevated SO4
2- and reduced Cl- concentrations relative to the soil 

present at the site. At a pH similar to the tailings pond solution (4.46 (Table 3.5)), prior to the 

addition of calcite, antlerite/brochantite will be the stable phase in these solutions (Figure 

4.9a). The composition of solution S3 represents the solution composition of the equilibrium 

soil solutions, consisting of a similar Cl- and SO4
2- concentrations (Table 3.4). This solution 

will plot in the brochantite stability field at low pH. When calcite is added to solutions S3, S4 

and S5, the pH increases to above 7 forming a solution that favours malachite stability. It is 
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only when the SO4
2- concentration is decreased and the Cl- concentration is increased, in 

solutions S1 and S2, that the solutions start to favour atacamite stability. 

These results do not correspond with observations made in the Spektakel soils. The soil 

contains elevated Cl- and SO4
2, similar to S3, however atacamite is still the dominant 

secondary copper mineral phase. No malachite or brochantite is observed. This indicates 

that changes in absolute Cl- and SO4
2- concentrations are not the only mechanism that is 

effecting secondary copper mineral formation. 

4.4.2 The effect of evaporation on the formation of secondary copper mineral 

formation  

To determine which other chemical mechanisms influence the formation of secondary 

copper minerals in the soil at Spektakel, focus was placed on the environmental conditions 

at the site. The main environmental parameter influencing the soil at Spektakel is the arid 

climate. Namaqualand is known for its very hot and dry summer months when temperatures 

can reach up to 38°C (Francis et al., 2007). This causes the soil of the Namaqualand to act 

like a shallow ephemeral aquifer with a saline lake characteristic, promoting the formation of 

secondary minerals (Francis et al., 2007). After a rain event the fluid that is in equilibrium 

with the soil, evaporates before it has time to filter through the soil profile or flow away from 

the site. This causes salt to build up in the surface horizons of the soil profiles near the 

tailings.  

This experiment investigated how the evaporation of a solution in equilibrium with the soil 

surrounding the site, influences secondary copper mineral formation. The data collected 

from the evaporation experiment is compared to a PHREEQC simulation which replicates 

the experiment. The data produced by the PHREEQC simulation correlated well with the 

data obtained from the evaporation experiment giving confidence as to the accuracy of the 

data. This result helps promote the validity of using a model to help predict the outcome of 

experimental data. 

The results of the evaporation experiment showed that the rate of evaporation of CC Evap 

was faster than NC Evap, an observation identical to those of Lazar et al. (1983). The NC 

Evap samples formed a yellow gel-like substance after a CF of 13 which remained stable for 

the remainder of the experiment without further water loss. This could represent increased 

amounts of structural water being included in the structure of the precipitated minerals. It is 

also not clear as to why the presence of calcite prevented this from occurring in the CC Evap 

treatment. It is still unclear why the evaporation rate is higher in CC Evap or why NC Evap 

would not evaporate to complete dryness. 
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During evaporation the pH of CC Evap remained circumneutral and the pH of NC Evap 

followed a decreasing trend. This difference in pH behaviour of each of the two solutions is 

controlled by the same mechanism as in the previous experiment. The hydrolysis of Cu2+ 

reduces the pH of the initial solution before evaporation starts. The addition of calcite to CC 

Evap removes the Cu2+ ions (Figure 4.7) discontinuing the hydrolysis reaction and 

neutralizing the solution by adding carbonate ions through the dissolution of calcite (Figure 

4.3). During the evaporation of NC Evap Cu2+ behaves conservatively accumulating in 

solution (Figure 4.5). Thus the hydrolysis reaction and associated lowering of the pH during 

evaporation continues (Figure 4.3). 

The evolution of dissolved species during the evaporation experiment and simulation are 

given in Figure 4.5 and Figure 4.6 respectively. Initially the solutions are in chemical 

equilibrium producing a charge balance of equal molar equivalent concentrations (   of 

cations and anions: 

                                                                [Eq 8] 

In the case of this experiment this charge balance is as follows: 

                                 
               

        
            [Eq 9] 

As the solution evaporates the ions become more concentrated in the solution. When the 

solution becomes saturated with respect to a specific mineral that mineral will start to 

precipitate reducing the concentration of those ions in solution. To maintain the chemical 

equilibria both cations and anions are removed maintaining a neutral charge. 

During the evaporation it was observed that the TDS of CC Evap decreases toward the end 

of evaporation and the TDS of NC Evap remained conservative (Figure 4.4) indicating that 

some of the conservative ions in CC Evap precipitated during the final stages of evaporation. 

However, calcite has the capacity to adsorb both metallic and non-metallic elements 

(Comans and Middelburg, 1987; Zachara et al., 1991). It is therefore possible that during the 

final stages of evaporation, the ions in CC Evap adsorbed onto the calcite crystal surface 

reducing the total concentration of soluble salts in solution. 
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Hardie and Eugster (1970) have done extensive research on the evolution of saline brine 

solutions with chemical compositions similar to the equilibrium soil solutions from Spektakel. 

They produced a chemical model that predicts the evolution of these saline solutions during 

evaporation. According to Hardie and Eugster (1970) during evaporation the first phase to 

precipitate will be CaCO3 removing both Ca2+ and CO3
2- from the solution. In a solution with 

a                   ratio, all the carbonate species will be removed. Consequently little to 

no CaCO3 will precipitate from the NC Evap solution, as the alkalinity is very low. 

Alternatively, as in the case of CC Evap, the general abundance of calcite will mask any 

extra calcite formation. The second step in the evaporation model of Hardie and Eugster 

(1970) predicts the precipitation of gypsum and, thus, the removal of both Ca2+ and SO4
2- 

from the solution. In this evaporation experiment, before evaporation was initiated, both the 

CC Evap and NC Evap solutions were in equilibrium with gypsum. This indicates that the 

initial phase to precipitate will be gypsum rather than calcite. As solutions CC Evap and NC 

Evap evaporated the Ca2+ concentration increased and only started to decrease at CF 1.5 

(Figure 4.10). The results in Figure 4.11 indicate that when the Ca2+ concentration starts to 

decrease the SO4
2- concentration increases at a lower rate, compared to the rest of the 

evaporation, in CC Evap indicating that gypsum started to precipitate. A similar change in 

Ca2+ and SO4
2- concentration is not observed in NC Evap, as the low Ca2+ concentration 

masks any noticeable decrease in SO4
2-. The results from the PHREEQC simulation do not 

correlate with the evaporation results, as the simulation predicts that gypsum precipitation 

should occur from the start of evaporation (Figure 4.10). The reason for the Ca2+ 

concentration increase in the final stages of the PHREEQC simulation is unclear. 

 

Figure 4.10: Change in Ca
2+

 concentration during the evaporation of CC Evap, NC Evap, CC Sim and NC 
Sim. The results are expressed as concentration (mol/kg) vs CF. Refer to Figure 4.3 for symbols. 
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Figure 4.11: Comparison between the decreases in the concentration of SO4
2-

 (mol/kg) vs. Ca
2+

 (mol/kg) 
during gypsum precipitation in the evaporation experiment (a) CC Evap Ca (−), CC Evap SO4 (−),(b) 
NC Evap Ca (−) and NC Evap SO4 (−) 

It was this observation of gypsum formation that lead to the second section of the Hardie and 

Eugster evaporation model (1970) being referred to as a chemical divide. It predicts that the 

evaporation of a solution in equilibrium with gypsum with a 1:1 SO4
2- and Ca2+ ratio removes 

both Ca2+ and SO4
2- at a similar rate without changing the Ca2+/SO4

2- ratio in the solution. 

However the evaporation of a solution with Ca2+< SO4
2- (as in this experiment) the SO4

2- ions 

will accumulate while the Ca2+ ions are depleted (Figure 4.12). This uneven chemical divide 

is observed in both CC Evap and NC Evap during evaporation (Figure 4.12). The data from 

the PHREEQC simulation predicts the same Ca2+ and SO4
2- evolution for CC Evap and NC 

Evap. The increase in Ca2+ concentration towards the end of the CC Sim and NC Sim (CF = 

15) is difficult to explain as a similar increase was not observed in the evaporation 

experiments (Figure 4.12). 
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Figure 4.12: Indication of the chemical divide between Ca
2+

 and SO4
2-

 for the evaporation experiment (CC 
Evap and NC Evap) indicated with a () and the PHREEQC simulation (CC Sim and NC Sim) indicated 

with a (−) expressed in log mg/l vs. CF. The colours indicate the SO4
2-

 and Ca
2+

 concentration in both the 

presence of calcite (CC) and absence of calcite (NC). The simulation results for CC and NC are identical 
resulting in the lines masking each other. The line thickness of each sample was adjusted in an 
attempted to make the results more clear. The error bars indicate the calculated standard deviation of the 
results. 

Aside from the evolution of the ions mentioned up to this point, the rest of the ions in the 

solution remained conservative until final evaporation. The only difference was observed in 

the evolution of Cu2+ in CC Evap in comparison with NC Evap (Figure 4.13). The Cu2+ 

concentration of NC Evap, CC Sim and NC Sim behave conservatively during evaporation. 

After calcite is added to CC Evap the Cu2+ concentration is decreased from 2.77x10-3 mol/kg 

to 1.1x10-4 mol/kg (Figure 4.13). This indicates that the addition of calcite has a strong effect 

on the retention of Cu2+ in the solution. 
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Figure 4.13: Indication of the evolution of Cu
2+

 during the evaporation experiment (CC Evap and NC 
Evap) and PHREEQC simulation (CC Sim and NC Sim). The results indicate the log(concentration) of Cu

2+
 

in mol/kg vs logCF. The error bars indicate the calculated standard deviation of the results. Refer to 
Figure 4.3 for symbols. 

The reaction between calcite and Cu2+ was first described by Garrels and Stine (1948) who 

noticed that calcite is replaced by atacamite in a CuCl2 solution. The mechanism describing 

this reaction consists of two interrelated, but separate reactions (Equation 1). The 

mechanism dictates that atacamite formation cannot occur without the formation of a 

carbonate ion. As H+ is produced by the hydrolysis reaction of CuCl2 the pH of the solution 

decreases. This lowered pH causes the dissolution of calcite producing carbonate and OH- 

ions on the surface of the calcite. As the Cu2+ and Cl- in solution come in contact with the 

OH- on the calcite surface, atacamite saturation is exceeded and it is precipitated onto the 

calcite surface. Precipitation of Cu2(OH)3Cl starts at an approximate pH of 4 (Sharkey and 

Lewin, 1972). The amount of atacamite formed does not have to be equivalent to the amount 

of calcite dissolved (Garrels and Stine, 1948).  

 

Equation 1: Chemical mechanism for the replacement of calcite by atacamite (Garrels and Stine, 1948) 

                                                            
                                     + 2Cl- ↔ Cu4(OH)6Cl2 

 4CuCl2  ↔  4Cu2+ 
                           +     + 6Cl- 

                            6H2O     ↔  6OH- + 6H+ 
                                      + 

        3CaCO3 ↔  3Ca2+ + 3CO3- 

                                          ↕ 
                                                                      3H2CO3 ↔  3H2O + 3CO2 

[Eq 10] 

[Eq 11] 

[Eq 12] 
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Precipitates were collected after evaporation was completed to provide clues regarding the 

evolution of the solutions. Due to the fact that the precipitate of NC Evap remained moist the 

sample collected from the precipitate had to be heated to 100 °C to remove the remaining 

water. The precipitate collected at the base of the containers in sample CC Evap and NC 

Evap consists of typical saline brine minerals, such as halite, starkeyite and kieserite (Figure 

4.8; Lowenstein and Hardie, 1985). According to Lowenstein and Hardie (1985) the mineral 

composition of the precipitate that forms during the evaporation of a brine solution depends 

on the composition of the evaporating solution. In most instances the precipitate consists of 

a single dominant mineral species. It has been documented that in most arid saline 

environments halite is the dominant secondary mineral phase (Lowenstein and Hardie, 

1985). This correlates with the precipitate collected in CC Evap and NC Evap which has a 

dominant halite signature (Figure 4.8). As has been mentioned the presence of gypsum is 

expected according to the Hardie and Eugster evaporation model (1970; Figure 4.8). The 

heating of the precipitate from NC Evap altered the chemistry of the mineral species 

observed in NC Evap and CC Evap. The heating of the precipitate dehydrated gypsum 

(CaSO4·2H2O) to form bassanite (2CaCO3·H2O) in NC Evap (Mees and Stoops, 2003). 

Similarly starkeyite (MgSO4·4H2O) dehydrated to form kieserite (MgSO4·H2O). The only 

copper mineral observed in the precipitate samples was atacamite as no other secondary 

copper minerals could be identified. 

To understand how evaporation influenced the evolution of the solution chemistry with 

respect to secondary Cu minerals, the change in solution chemistry was plotted on an 

oxidised Cu2+ mineral stability diagram (Figure 4.14 and Figure 4.15). The initial solution 

composition of CC Evap and NC Evap plot in the atacamite-paratacamite stability field, 

adjacent to the brochantite and antlerite stability fields (Figure 4.14). After the addition of 

calcite to CC Evap the chemical composition of the solution changes placing the solution 

chemistry close to the atacamite-paratacamite and tenorite field boundary. The only 

difference between these two solutions at this stage is the pH. The addition of calcite 

increases the pH of CC Evap which influences the evolution of the solution. However during 

evaporation the chemical composition of CC Evap and NC Evap remain in the atacamite-

paratacamite stability field. The activity of SO4
2- never reaches the optimum brochantite 

activity range, thus correlating with the observation made in Figure 4.5 and Figure 4.6, 

indicating that the increase in SO4
2- activity is less than the molality of SO4

2- during 

evaporation. 
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Figure 4.14: Stability diagram illustrating the relative stability fields of oxidized copper minerals at 25 °C 

calculated using thermodynamic data provided by Woods and Garrels (1986). The activity values of Cl
-
 

and SO4
2-

 were calculated with PHREEQC running the SIT database. Predicted pH values were used for 
the CC Sim and NC Sim the collected pH values were used for CC Evap and NC Evap. For symbols refer 
to Figure 4.3. The arrows indicate the direction of the evolution of the ions during evaporation. 

 

Figure 4.15: Stability diagram illustrating the relative stability fields of oxidized copper minerals at 25 °C 

calculated with the free energy of formation values used by Woods and Garrels (1986) at CO2 partial 
pressures of 10

-3.5
. The activity values of Cl

-
 and SO4

2-
 were calculated with PHREEQC running the SIT 

database. For symbols refer to Figure 4.3. The arrows indicate direction of the evolution of the ions 
during evaporation.  
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The difference between the activity and molality of SO4
2- indicates that some other factor is 

inhibiting its evolution. It has been noted that Mg2+ and SO4
2- can form ion pairs in solution 

(Martin, 2000). This correlates with the elevated Mg2+ concentration observed in the 

equilibrium soil solutions determined in Chapter 3. The mechanism predicted by Atkins and 

Petrucci (1966) indicates: 

              
        [         ]  [        ]  [     ]          [Eq 13] 

where W represents the water molecule trapped in between the ions. A comparison between 

the activities of SO4
2-, MgSO4 (aqueous complex) and Cl- (Figure 4.16) indicates that the 

activity of SO4
2- in all the experiments is lower than activities of Cl- and MgSO4 (aqueous 

complex). This indicates that the formation of these MgSO4 complexes reduces the activity 

of free SO4
2- in solution. The increased Cl- activity and reduced SO4

2- activity provide the 

ideal conditions for the formation of atacamite formation rather than brochantite, or indeed 

any other copper sulphate mineral. The unique chemical characteristic of the Spektakel soil, 

thus provide the ideal conditions for the formation of atacamite over brochantite. 

 

Figure 4.16: Comparison of the activities of Cl
-
, SO4

2-
 and MgSO4 (aqueous complex) in the evaporation 

experiment (CC Evap and NC Evap) indicated with () and the PHREEQC simulation (CC Sim and NC 

Sim) indicated with (−). Indicated as log(activity) vs logCF. Each colour represents the activity of a 

specific ion for both the evaporation experiment and the PHREEQC simulation. The simulation results for 
CC Sim and NC Sim are identical resulting in the lines masking each other. The line thickness of each 
sample was adjusted in an attempted to make the results more clear. 
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4.5 Conclusion 

The focus of this chapter was to determine the physiochemical controls on the formation of 

secondary copper minerals in the soil at the Spektakel mine site. The initial formation 

experiment indicated that SO4
2- and Cl- activity combined with pH are the dominant factors 

controlling the formation of atacamite over brochantite in the presence of calcite. The 

evaporation experiment indicated that the chemical evolution of the solution in equilibrium 

with calcite differs from the solution excluding calcite. The addition of calcite to the 

evaporation solution buffered the pH in the circumneutral range, triggering the formation of 

atacamite through the calcite replacement mechanism. The elevated sulphate and increased 

calcium concentrations that occur, due to calcite dissolution, result in conditions perfect for 

the formation of gypsum.  

The evaporation of the solution excluding calcite indicated that Cu2+ will remain conservative, 

accumulating in the solution. As the solution becomes more concentrated during 

evaporation, magnesium sulphate aqueous complexes form which reduce the activity of free 

sulphate ions in the solution. This reduced SO4
2- activity and increased Cl- favoured the 

formation of the chloride mineral atacamite over the sulphate end member brochantite or any 

other copper sulphate mineral.  
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 The stability of atacamite under conditions of decreased salinity 5

and increased acidity 

5.1 Introduction 

The research in the previous chapters shows that the soil surrounding the Spektakel site 

contains high concentrations of Cu2+ and that atacamite is the dominant, secondary Cu 

phase retaining Cu2+ in the soil. Dissolution of the atacamite has the potential to leach large 

quantities of Cu2+ into the Buffels River and Buffels River aquifer. This has serious 

implications for the surrounding community as these are the main sources for both drinking 

water and irrigation. To understand the long term impact that the dissolution of atacamite will 

have on the ground and surface waters surrounding the site it is crucial to understand the 

stability of atacamite and how it will behave if the geochemical conditions in the soil suddenly 

changed.  

Little research has been conducted on the stability of atacamite and most of the literature 

focuses on the formation of atacamite in arid saline environments (Cameron et al., 2007; 

Hannington, 1993; Reich et al., 2008). These studies concluded that atacamite formation 

requires saline water, rather than fresh meteoric water, as atacamite dissolves rapidly or 

changes phase when exposed to fresh meteoric water (Reich et al., 2008). It has also been 

noted that some assemblages of cupric hydroxy minerals, atacamite, brochantite, malachite, 

and tenorite, respond rapidly to changes of solution composition, in most cases, within 

weeks (Woods and Garrels, 1986). Contrary to these studies, research conducted by Miles 

et al. (1998) indicates that atacamite is insoluble in water. 

The soil conditions at Spektakel, to some extent, correlate with the conditions required for 

atacamite formation indicated in the aforementioned studies. The solutions on the surface of 

the tailings dams contain elevated concentrations of mobile Cu2+, Mg2+ and SO4
2-. During 

rain events these elements are mobilized and filter through the tailings into the soil. These 

solutions dissolve the halite present in the soil and form acidic Cl-, Mg2+, SO4
2- and Cu2+ rich 

solutions. When this solution reacts with the calcite in the soil the pH of the solution is 

neutralized and Cu2+ is removed and retained in the soil as atacamite. The saturated paste 

extracts performed in Chapter 3 indicate that after a sporadic rain event, when the soil 

containing atacamite becomes waterlogged the solution becomes enriched with Cl-, SO4
2- 

and Mg2+ at a circumneutral pH. These experiments showed that only a fraction of the Cu2+ 

relative to the original tailings solutions becomes mobilized, indicating that atacamite 

remains, to a large extent, stable under these circumneutral conditions. The focus of this 
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chapter is to determine how atacamite will react should continued rain events remove the 

elevated Cl- concentration and calcite buffering capacity of the soil.  

The effect of pH on the dissolution rate of atacamite was determined both in the presence 

and absence of chloride. This will replicate how atacamite will behave in both the saline 

equilibrium soil solutions discussed in Chapter 3 and solutions with reduced soluble ion 

concentrations. To limit external factors influencing the dissolution, pure atacamite was 

synthesized.  

5.2 Materials and methods 

5.2.1 Atacamite preparation 

Synthetic atacamite crystals were prepared according to the method proposed by Sharkey 

and Lewin (1972) that produces a 3g atacamite yield by adding 1g of powdered calcite to a 

0.1M CuCl2 solution. To increase the atacamite yield, the initial quantities of the formation 

solution and calcite was multiplied by a factor of ten. One litre of 1.0M CuCl2 solution was 

prepared and set to stir on a magnetic stirrer. In total, 10g of calcite power was added to the 

stirring solution. The calcite powder was added in 2g increments to prevent the solution from 

bubbling over due to the CO2 gas release during the reaction. After the calcite was added 

the solution was left to stir for 24 hours to complete the reaction.  

At completion of the reaction the atacamite minerals remained suspended in solution. A 

0.5M Mg(NO3)2 solution was used to help flocculate the atacamite minerals and wash the 

remaining Cu2+ and Cl- ions from the mineral surface. This was achieved by decanting 40ml 

of the atacamite-CuCl2 solution and 10ml of 0.5 Mg(NO3)2 solution into a 50ml centrifuge 

tube. The tubes were vortexed for 5 minutes to remove as much of the remaining Cu2+ and 

Cl- from the mineral surface as possible. The tubes were centrifuged for 15 minutes at 3500 

rpm to flocculate atacamite crystals. The washing and flocculation was repeated until all the 

atacamite crystals were removed from the initial solution. The collected atacamite crystals 

were washed with a 0.2M Mg(NO3)2 solution until the bulk of the remaining Cu2+ and Cl- was 

removed. The solution was checked for Cl- with AgNO3 after each wash. After washing, the 

crystals were dried overnight at 50 °C and milled into a powder using an agate mortar and 

pestle. The dry milled sample was sent for XRD mineral analysis to determine the purity of 

the sample.  
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5.2.2 Dissolution experiment parameters 

The dissolution experiment was designed to replicate the conditions present in the soil. The 

solutions used for the experiment consist of MiliQ Deionized water (DI water) and a 0.5M 

NaCl solution (chloride solution). The acidity of the solutions was adjusted in four increments 

(5.5, 5.0, 4.5 and 4.0) to replicate how the acidic tailings solutions will influence atacamite 

dissolution during rain events.  

Before the pH adjustment experiment was performed 0.4 g of atacamite was equilibrated 

with 40 ml of DI water and chloride solution respectively, to determine the solubility of 

atacamite before the pH was reduced. The solutions were stirred for two hours collecting 

samples at different time intervals (Figure 5.1).  

During the pH adjustment experiment, identical experimental procedures were performed on 

both the deionized water and saline solution samples. The experiment was performed on a 

solution with a 1:10 atacamite solution ratio. A 50ml glass container was filled with 40 ml of 

solution and 0.4 g of atacamite added. Before the pH adjustment was performed, atacamite 

was added to the solution and a 0.7 ml aliquot of sample was collected to determine the 

initial Cu2+ concentration. After commencement of the pH adjustment, the first sample was 

only collected when the solution reached the pH specified for that run. A 0.7 ml aliquot of 

solution was collected incrementally at 1,2,3,4,5,10 and 20 minutes. The collected aliquots 

were filtered with a 0.2 µm GVS Cellulose Acetate Membrane Syringe Filter. The filtered 

aliquot was diluted ten times with MiliQ deionized water and stored in a 10ml centrifuge tube. 

Each of the solutions were analysed for its Cu2+ concentration by means of ICP-MS (Refer to 

Chapter 2)  

Unfortunately the solutions could not be buffered to a set pH before atacamite addition as 

organic solvents tend to complex with Cu2+ (Cardoso Fonseca et al., 1992). The pH of the 

solutions was adjusted by adding 1M HNO3 by means of a Methrohm Titrano Autotitrator. 

The drawback of this method is that the time required to reach each pH is different. This 

results in different initial Cu2+ concentrations for each of the solutions. 
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5.2.3 Calculations 

The significance between the difference of the initial pH and Cu2+ concentration of DI water 

and the chloride solution was determined by performing a one-tailed t-test. The calculations 

were performed in Microsoft Excel.  

The buffering capacity (Bc) of the DI water and chloride solution was determined by dividing 

the difference between the initial pH and the pH after atacamite addition to the sample (ΔpH) 

by the concentration of H+ added (ΔH+) to the solution to reach that specific pH.  

    
   

   
                                                         [Eq 14] 

5.3 Results 

Figure 5.1 illustrates the change in Cu2+ concentration in DI water and the chloride solution 

after both solutions were equilibrated with atacamite for 120 minutes (7200 seconds). The 

results indicate that more Cu2+ was released in DI water than in the chloride solution. The 

Cu2+ remained stable in the Chloride solution, a slight increase in Cu2+ is observed in the DI 

water.  

 

Figure 5.1: Change in Cu
2+

 concentration, with addition of atacamite, over 120 min (7200 seconds) in DI 
water () and the chloride solution (). The time is expresses in seconds passed (s). The concentration 
of Cu

2+
 is expressed in mmol/l. 
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The average initial Cu2+ concentration, after atacamite addition (Figure 5.2), indicates that 

significantly more (n=6, P<0.01) Cu2+ is released in DI water than in the chloride solution. 

After atacamite addition the average concentration of Cu2+ in DI water increases to 0.3 

mmol/l and to 0.004 mmol/l in the chloride solution (Figure 5.2). 

 

Figure 5.2: Average concentration of Cu
2+

 (expressed in mmol/l) in DI water (H2O) and the chloride 
solution (NaCl) after atacamite addition. The error bars indicate the standard deviation of the Cu

2+
 

concentration in each solution after atacamite addition. 
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The initial pH of DI water and the chloride solution is similar (Figure 5.3). After atacamite 

addition a significant difference in pH (n=6, P<0.01) is observed between the two solutions. 

The DI water pH increase to 6.17 compared to 6.7 in the chloride solution (Figure 5.3).  

 

Figure 5.3: Change in solution pH before and after atacamite addition. pH Blank indicates the pH of DI 
water (H2O) and the chloride solution (NaCl) before atacamite addition. pH Ata indicates the pH of DI 
water (H2O) and the chloride solution (NaCl) after atacamite addition. The error bars on pH Ata (for both 
H2O and NaCl) indicate the standard deviation of the pH after atacamite addition.  

The dissolution rate of atacamite with increasing acidity (Figure 5.4 and Table 5.1) indicates 

an elevated dissolution rate in DI water relative to the chloride solution. At pH 5.5 and 5.0 

more Cu2+ is mobilized in DI water compared to the chloride solution (Figure 5.4a and Figure 

5.4b). The initial dissolution rate is higher in DI water than in the chloride solution (Table 

5.1). As the pH decreases, the volume of Cu2+ mobilized in the chloride solution tends to 

equal the concentration mobilized in DI water (Figure 5.4c and Figure 5.4d). At pH 4.5 and 

4.0 (Figure 5.4c and Figure 5.4d) the dissolution rate of the chloride solution and DI water 

are fairly similar at 26.3 mmol/l and 31.7 mmol/l respectively (Table 5.1). 
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Figure 5.4: Dissolution rate of atacamite, at pH between 5.5 and 4.0, expressed as the accumulation of Cu
2+

 in mmol/l 
over time (in seconds (s)) in DI water () (H2O) and in the chloride solution () (NaCl). 

 

Table 5.1: Initial dissolution rate of atacamite, at pH between 5.5 and 4.0, in Di water (H2O) and the chloride solution 
(NaCl) expressed as the accumulation of Cu

2+
 over time (mmol.l

-1
.s

-1
) 

 

Initial Dissolution Rate 

 

H2O NaCl 

pH 

 

 

mmol.l-1.s-1 

5.5 0.0035 0.000045 

5.0 0.0206 0.00251 

4.5 0.0329 0.0219 

4.0 0.0354 0.0389 
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The results in Figure 5.5 indicate that the reaction order of atacamite dissolution in both DI 

water and the chloride solution is not uniform over the experimental pH range. Below pH 

values of 4.5, the reaction order in DI water is 1.5 with respect to pH while the reaction order 

of the chloride solution is 3.5 with respect to pH. At pH above 4.5 the reaction order of DI 

water is 0.063 with respect to pH and the reaction order of the chloride solution is 0.5 with 

respect to pH. 

 

Figure 5.5: The difference in reaction order, with respect to pH, in (a) DI water (H2O) and the (b) chloride 
solution (NaCl). The dissolution orders of the samples are divided into dissolution order at pH above 
4.5() and pH below 4.5 (). log[H

+
] indicates the concentration of protons in equilibrium with the 

solution (pH). logR indicates the initial dissolution rate (mmol.l
-1

.s
-1

) at pH between 4.0 and 5.5 

The dissolution data indicates that at an identical initial pH, more Cu2+ is mobilized in DI 

water relative to the chloride solution (Figure 5.6). As the specific pH required for each 

solution decreases (Figure 5.6a to Figure 5.6d) the volume of acid required to reach that 

specific pH increases. Figure 5.6a indicates that only 1.2 mmol of [H+] for the chloride 

solution and 1.75 mmol of [H+] for DI water was required to maintain a stable pH of 5.5. At 

pH 5.5 the concentration of Cu2+ remained stable. The data indicates that the volume of acid 

required for reaching a pH of 5.0 and below is directly proportional to the concentration of 

Cu2+ in the solution for both DI water and the chloride solution (Figure 5.6a, Figure 5.6b and 

Figure 5.6c). As more acid is added to each of the solutions, more Cu2+ is released. 
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Figure 5.6: Comparison between the concentration of Cu
2+

 (in mmol/l) and the volume of acid added (in 
mmol [H

+
]), in Di water () (H2O) and the chloride solution () (NaCl), between pH 5.0 and 4.5 

Table 5.2 indicates that the buffer capacity of the chloride solution is lower than DI water 

indicating that DI water requires more acid to reduce its pH to the same level as the chloride 

solution. 

Table 5.2: The buffer capacity of DI water (H2O) and the chloride solution (NaCl) expressed as ΔpH/ Δ[H+]. 
ΔpH = difference between initial pH and the pH after atacamite addition. Δ[H+] = volume of acid added to 
reach stable pH. 

Buffer Capacity 

 

H2O NaCl 

pH  ΔpH/ Δ[H+] 

5.5 0.571 1.017 

5.0 0.376 0.769 

4.5 0.128 0.529 

4.0 0.104 0.234 
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5.4 Discussion 

In this chapter, the effect of pH on the dissolution rate of atacamite was examined in both the 

presence and absence of chloride. It has been indicated that atacamite dissolves when 

exposed to meteoric water and requires a saline solution to form i.e. atacamite dissolution 

will be reduced in a saline solution (Reich et al., 2008). The concentration of Cu2+ observed 

in DI water and the chloride solution (Figure 5.2) indicates that at pH > 6 the atacamite 

dissolution is low. The elevated Cu2+ concentration in DI water compared to the chloride 

solution indicates that elevated Cl- restricts atacamite dissolution. To determine if the 

observation made in Figure 5.1 is due to the presence of Cl- in the solution, significance 

tests were performed (Figure 5.2). The results indicate that Cu2+ in DI water is significantly 

higher than in the chloride solution (n=6, P<0.01) confirming that the presence of Cl- in the 

solution limits atacamite dissolution. 

A similar calculation was performed to determine the significance of the change in initial pH 

with addition of atacamite to DI water and the chloride solution (Figure 5.3). The results 

indicate that the pH is significantly lower in DI water in comparison with the chloride solution 

after atacamite addition (n=6, P<0.01). The more acidic pH of DI water is due to the elevated 

Cu2+ concentration compared to the chloride solution. The hydrolysis effect of Cu2+ is more 

pronounced in DI water with a higher Cu2+ concentration reducing the pH these findings are 

consistent with that the results from  Paulson and Kester (1980). 

To understand how atacamite will react under conditions similar to those occurring in the soil 

the dissolution rate of atacamite was determined by decreasing the pH, in both the presence 

and absence of chloride (Table 5.1). This replicates an increase in soil acidity as the acidic 

tailings solutions move into the soil dissolving the calcite and thus removing the buffer 

capacity of the soil. The change in Cl- concentration mimics the decrease in soil salinity 

when a large rainfall event dissolves the evaporate minerals and flushes the soil profile 

removing the soluble Cl-. The initial dissolution rate of atacamite, at pH 5.5 and pH 5.0, is 

lower in the chloride solution than in DI water. At pH 4.5 and 4.0 the dissolution rate in DI 

water stabilizes and the dissolution rate in the chloride solution starts to match the rate of DI 

water. The dissolution rate data was used to calculate the difference in reaction order with 

respect to pH, between DI water and the chloride solution, in order to determine how 

dependant atacamite dissolution is on the change in pH (Figure 5.5). The results indicated 

that the dissolution rate in the chloride solution is more dependent on the change in pH than 

dissolution rate in DI water.  
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This correlates with the different buffer capacities of DI water and the chloride solution 

(Table 5.2). More acid was required to reduce the pH of DI water than was required to 

reduce the pH of the chloride solution. Thus, the increase in atacamite dissolution increases 

the buffer capacity of the solutions. The atacamite dissolution releases more OH- molecules 

that consume the excess protons and forming water, thus buffering the pH. This observation 

is best explained by the dissolution reaction of atacamite expressed through the following 

dissolution equation (Woods and Garrels, 1986): 

                                                      [Eq 15] 

This equilibrium equation is used to explain the influence of chloride activity on the atacamite 

dissolution. The stoichiometry of the solution indicates that the equilibrium constant of 

atacamite in solution is expressed as: 

                
[    ]  [   ]

[  ] 
                    [Eq 16] 

This equation indicates that to maintain equilibrium when acidity is increased the activity of 

Cl- and Cu2+ also needs to increase. In DI water, this mechanism indicates that the increase 

in acidity will dissolve atacamite increasing the Cu2+ and Cl- activity, favouring the forward 

reaction. In the chloride solution the increased Cl- activity interferes with this mechanism. As 

the acidity increases less atacamite will dissolve as the elevated Cl- activity forces the back 

reaction reducing the Cu2+ activity. This indicates that the elevated Cl- activity of the chloride 

solution restricts atacamite dissolution. This explains why less acid is required to reduce the 

pH of the chloride solution as less atacamite is dissolved producing less OH- molecules to 

consume the protons. 

The soil at Spektakel is concentrated with Cl- and has a circumneutral pH (Chapter 3), which 

according to the results in this chapter favour the stability of atacamite. Should a large rain 

event occur, the elevated water volume will dissolve the soluble chloride salts reducing the 

soil Cl- concentration of the soil. A similar decrease will be observed in the pH of the soil as 

the acidic tailings solutions will move into the soil depleting the soil’s calcite buffer capacity. 

It is evident from the results that this reduction in Cl- concentration and increased acidity will 

increase the dissolution rate of atacamite mobilizing Cu2+ into the soil and surrounding water 

supplies. 
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5.5 Conclusion 

The aim of this chapter was to determine how a rapid change in the chemical conditions in 

the soil at Spektakel will affect the dissolution rate of atacamite. Specifically, the experiments 

were focused on the impact that a decrease in Cl- concentration and an increase in acidity 

will have on atacamite dissolution. The results indicate that, even though the dissolution 

rates are generally low, when atacamite is equilibrated with both deionized water and a 

chloride solution, significantly more Cu2+ is released in deionized water. The decrease in pH 

of the deionized water and the chloride solution indicated that the deionized water had a 

higher buffering capacity than the chloride solution. The reaction order data indicates that 

the dissolution rate of atacamite is more dependent on pH in the chloride solution than in DI 

water. The results suggest that the current condition in the soil at Spektakel favour the 

stability of atacamite. When a large rain event dilutes the Cl- concentration of the soil and 

reduces the buffer capacity, atacamite dissolution will increase, mobilizing large quantities of 

Cu2+. This will place the surrounding communities at risk as the water sources adjacent to 

Spektakel contribute to their main water supply.  
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 General discussion 6

The overall aim of this study was to acquire an understanding of the physiochemical controls 

on the formation and stability of secondary copper minerals in the soil surrounding the 

Spektakel mine. Chapter 3 describes the chemical characteristics of the soils, while 

Chapters 4 and 5 describe a number of laboratory experiments that were designed to 

delineate the conditions of formation and dissolution of secondary Cu minerals. In this 

discussion the findings of Chapters 3, 4 and 5 are related to conditions occurring in the soil 

environment. 

The initial characterization of the soil (Chapter 3) indicates that the soil contains elevated 

concentrations of major (SiO2>Al2O3>K2O>Fe2O3>CaO>=MgO>=Na2O) and trace (Cu>S> 

Ba>Sr>Rb>Cr) elements with only Cu2+ exceeding the Dutch Soil Standard Guidelines 

(Dutch Soil Screening Guidelines, 2009). This indicates that the current copper 

concentration in the soil is hazardous to human health and that remediation is required to 

reduce the Cu2+ concentration. This is problematic due to the proximity of the site with 

respect to the water sources in the area. The Spektakel mine is situated upslope of the 

Buffels River which is the main water source feeding into the Buffels River aquifer. These 

water sources constitute the main water supply to the communities situated downstream of 

the site (Benito et al., 2010). If the copper in the soil is mobilized and leaches into these 

water sources it will place the health of these communities at risk. 

To determine if the water sources are at risk of mass Cu2+ mobilization, analyses were 

performed to determine how the copper and other major and trace elements accumulate and 

disperse in the soil profiles during and after rain events (Chapter 3). The results indicate that 

during rain events an acidic solution (pH 4.8) enriched in Cu2+, SO4
2-, Mg2+ accumulates on 

the surface of the tailings dumps. As this solution percolates through the tailings into the soil 

it dissolves other evaporate minerals, mainly halite, producing an acidic Cu2+, SO4
2-, Mg2+ 

and Cl- rich solution. However, when the soil is placed in equilibrium with water, analysis 

indicates that the soil has a circumneutral pH and a much lower Cu2+ concentration when 

compared to the tailings solution. This indicates that some chemical mechanisms are 

buffering the pH and retaining the Cu2+ in the soil. The mineralogical study indicates that the 

Cu2+ is retained in the soil through the formation of the copper hydroxy chloride mineral 

atacamite. Neither the sulphate equivalent, brochantite, nor any other copper sulphate 

mineral was observed in the soil, which contrasts with the sulphate rich conditions of the soil. 

The results from the mineral formation experiment indicate that the circumneutral pH of the 

soil is achieved by the dissolution of calcite present in the soil (Chapter 4). It is this same 

calcite dissolution reaction which forms the basis of the Cu2+ retention in the soil. During 
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dissolution the calcite is replaced by atacamite (Garrels and Stine, 1948) (Chapter 4). This 

formation mechanism is controlled by activity of Cl- and SO4
2- in the soil solution. When the 

solution, in equilibrium with the soil, evaporates the elevated Mg2+ in the soil solution 

complexes (Martin, 2000) with SO4
2- reducing the activity of SO4

2- reducing its ability to 

complex with Cu2+. This inhibits the formation of brochantite or any other secondary copper 

sulphate mineral. 

The conditions currently present in the soil at Spektakel (circumneutral pH, high Cl- and Mg2+ 

concentration and calcite in the soil (Chapter 3, Chapter 4 and Chapter 5)) favour the 

stability of atacamite reducing the risk of mass Cu2+ mobilization. However as continued rain 

events flush meteoric water through the tailings and soil surrounding Spektakel, the 

availability of the components involved in the mechanisms that stabilize atacamite are 

reduced (Chapter 3 and Chapter 4). The acidic tailings solutions dissolve the calcite in the 

soil reducing the soils ability to buffer its pH. As more of the tailings solution moves into the 

soil, it concentrates the soil with respect to SO4
2- diluting the Cl- concentration. The 

increased acidic soil pH, combined with the reduction in chloride concentration will reduce 

the ability of atacamite to form and retain Cu2+ in the soil (Chapter 3, Chapter 4 and Chapter 

5). The increased acidity and diluted Cl- concentration favours the dissolution of atacamite 

and will mobilize Cu2+ into the soil solutions (Chapter 5). After rain events, when the copper 

rich soil solution evaporates, Cu2+ will remain conservative in the solution (Chapter 4). The 

abundance of Mg2+ in the soil solution reduces the activity of SO4
2- by forming MgSO4 

aqueous complexes (Martin, 2000). This reduced activity inhibits SO4
2- reacting with Cu2+ to 

form a copper sulphate mineral, therefore less Cu2+ will be retained in the soil (Chapter 4). If 

the sporadic rain events continue to strip the soil of the Cu2+ retaining mechanisms, the 

acidic metal rich tailings solution will eventually percolate into the surrounding water 

supplies, risking the health of the people in the area. 

The result of this study indicates that the tailings and the soil at the site have the potential to 

mobilize large volumes of Cu2+ into the surrounding water sources. To prevent this it is 

recommend that as much calcite as possible needs to be added into the soil and tailings. 

This is the most cost effective approach to retain the copper and, keep the soil pH neutral. A 

more permanent, and more expensive, solution would be to remove the copper rich tailings 

dumps and dispose of it at a secure hazardous waste disposal site.  
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 Conclusions and further work 7

The overall aim of the study was to determine the physiochemical conditions governing the 

formation and dissolution of secondary copper minerals, specifically atacamite, in the soil at 

the Spektakel mine.  

 The site characterization established that the soil surrounding the tailings contains 

elevated concentrations of major and trace elements, with a Cu2+ concentration 

exceeding the Dutch Soil Standard Guidelines (Dutch Soil Screening Guidelines, 

1991). The saturated paste extracts indicate that the soils are extremely saline with a 

circumneutral pH. The mineralogical analysis indicates that the soil contains a range 

of secondary mineral phases and that atacamite is the only secondary copper phase 

in the soil. No brochantite or any other secondary copper sulphate minerals was 

observed. 

 The analysis of the tailings pond solution indicates that the solution is acidic and 

contains elevated concentrations of Cu2+, Mg2+ and SO4
2-. The Cl- concentration of 

the solution is low compared to the other elements. When this solution percolates 

through the tailings it accumulates Cl- through halite dissolution forming an acidic 

Cu2+, Mg2+ and SO4
2- and Cl- solution. This solution enriches the surrounding soil with 

respect to its chemical composition and neutralizes the soil pH through calcite 

dissolution. The dissolution of the calcite retains the Cu2+ from the solution in the soil 

replacing the calcite with atacamite.  

 It was identified that the absolute Cl- and SO4
2- concentration is not the only 

mechanism governing the formation of atacamite and restricting the formation of 

brochantite or any other copper sulphate mineral. The main mechanism of formation 

relies on the pH and the activity of the Cl- and SO4
2- ions in the solution.  

 The evaporation of a solution in equilibrium with the soil indicated that the elemental 

evolution adhered to the evaporation model described by Hardie and Eugster (1970). 

All the elements remained conservative during evaporation except for Ca2+ which 

was removed through gypsum precipitation. The solution containing calcite indicated 

that Cu2+ was removed after calcite addition inhibiting the formation of any other 

secondary copper mineral phases. The results of the solution excluding calcite, 

indicated that no brochantite or any other copper sulphate mineral was formed. It was 

concluded that due to the abundance of Mg2+ in the solution MgSO4 aqueous 

complexes formed reducing the activity of SO4
2-, reducing the ability of SO4

2- to 

complex with Cu2+. 
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 It was established that in a solution with a pH > 6 and a high chloride concentration 

atacamite will remain stable. As the solution becomes more acidic and less 

concentrated with respect to Cl-, dissolution rate of atacamite will increase mobilizing 

more Cu2+. 

 The overall conclusion that follows from this study is that the current chemical 

conditions of the soil favour the formation and stability of atacamite, thus retaining 

Cu2+ in the soil. As the acidic tailings solutions flush through the soil during sporadic, 

rain events, it concentrates the soil with respect to SO4
2-, decreasing the Cl- 

concentration and dissolving the calcite in the soil. This reduced soil pH and lowered 

Cl- concentration favours atacamite dissolution and will result in the leaching of large 

quantities of Cu2+ into the surrounding water bodies contaminating the water supply. 

The results of the study indicate that more work can be conducted at Spektakel. In the future 

more focus should be placed on determining the distribution of copper with respect to the 

site. How does the concentration of Cl- combined with the reduction in pH influence 

atacamite dissolution? Do the “heuweltjies” influence the migration pathway of Cu2+ in the 

soil? Additional analyses should be conducted to determine whether or not Cu2+ is present in 

the Buffels River and Buffers River aquifer. 
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