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ABSTRACT 

Title : The effect of a potential protein binder on ruminal and post-ruminal  

protein digestion responses  

Name : Abraham Johannes Hendrik Burger 

Supervisor : Prof. C.W. Cruywagen 

Institute : Department of Animal Sciences, Stellenbosch University 

Degree : MScAgric (Animal Science)

The objectives of this study were to determine the effect of a potential protein binder on in 

sacco and in vitro protein disappearance parameters, protein solubility, degradability of 

soluble protein and intestinal protein digestibility. Soybean, sunflower and canola oilcake 

meal (OCM) were the three protein feedstuffs used in the trials as they are commonly 

included in dairy cattle diets in South Africa. Substrates in all trials were treated with 

Bioprotect® at a rate equivalent to 0.5 L per tonne for each 1% CP (crude protein) in the 

substrate. Distilled water was used as the control treatment and was applied at the same 

rates. Ruminally cannulated lactating Holstein cows were used in an in sacco trial and were 

also used as rumen liquid donors for the in vitro trials.  

In the first trial, the in sacco procedure was used to determine degradation kinetic 

parameters over time. All three OCMs were used and rumen incubation was done in four 

cows. Incubation times were 0, 2, 4, 8, 16, 24 and 48 hours. For the 0 h values, samples 

were water washed and not incubated in the rumen. Dry matter and CP degradation data 

were fitted to a non-linear model to determine kinetic parameters and effective degradability. 

The protein binder did not increase resistance against microbial degradation. The 0 h values 

were increased after Bioprotect® treatment, resulting in higher model-derived a-values, 

which also resulted in higher effective degradability values for all three substrates compared 

to the control treatment.  

In the second trial, a DaisyII incubator (ANKOM Technology, New York) was used for the in 

vitro incubations. The same three OCMs were used as in Trial 1 and incubation times were 

also similar. Treatment * time interactions indicated that the protein binder reduced CP 

degradation of canola meal after 8 h (49.3 vs. 54.2% for Control; P = 0.022) and 16 h of 

incubation (63.3 vs. 67.5% for Control; P = 0.04). For soybean meal, treatment also tended 

(P = 0.06) to reduce 16 h CP degradability (72.6 vs. 77.9% for Control). It seems that 
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Bioprotect® appears to increase CP solubility; however the effect of treatment on CP 

degradability was not conclusive because of different tendencies observed in the in sacco 

and in vitro trials. However, the difference between treatments in the magnitude of in vitro 

CP degradability observed from 4 to 16 h suggested that Bioprotect® may indeed have a 

reducing effect on the degradability of the potentially degradable fraction but this effect may 

be shadowed by the increase in the soluble fraction observed in the Bioprotect® treatment.  

The third trial was done to determine intestinal protein digestibility using the Ross assay. All 

three OCMs were used and rumen liquid was collected from six lactating Holstein cows. The 

first phase of the assay represented a 12 h rumen incubation, which was followed by a one-

hour gastric digestion phase and finally, a 24 h intestinal digestion phase. Results showed 

no difference in protein degradability between treatments. 

The fourth trial investigated the effect of Bioprotect® treatment on the solubility of the 

substrate proteins. Each OCM with and without Bioprotect treatement was incubated in a 

borate-phosphate buffer for one hour. Samples were analysed for N only. Bioprotect® 

treatment increased protein solubility and the soluble protein content of soybean oilcake but 

had no effect on the other oil cakes. The soluble protein content of soybean oil cake was 

20.2% for the Bioprotect® treatment vs. 13.1% for the Control (P < 0.001). 

The fifth trial determined the degradability of the soluble protein in soybean OCM. This was 

because it was the only substrate where the soluble protein content differed between 

treatments. After solubilising the protein using the same protocol as in Trial 4, the 

supernatant was added to a buffered rumen liquid incubation medium similar to that of the in 

vitro trial above. Samples were incubated at 39°C for 0, 2, 8 and 24 hours, followed by N 

analysis. Bioprotect® significantly reduced the rate and extent of the soluble protein 

degradation. Over the entire 0 – 24 h incubation period, the mean degradation rate (kd) was 

0.028/h-1 for the Bioprotect® treatment and 0.036/h-1 for the Control treatment, clearly 

demonstrating the depressing effect of Bioprotect® on soluble protein degradation. 

The protein binder, Bioprotect®, seem to have some potential to reduce ruminal CP 

degradability in some OCMs as the degradation of soluble protein in soybean oil cake meal 

was clearly decreased by Bioprotect®. This may warrant further research as soybean oil 

cake is a major protein sources in dairy cattle. Further research with lactating dairy cows is 

warranted to investigate the effect of Bioprotect® on milk production response, especially 

when lowering the CP content of the diet.  
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UITTREKSEL 

Titel : Die invloed van ‘n potensiële proteïenbinder op ruminale en post-

ruminale proteïenverteringsresponse       

Kandidaat : Abraham Johannes Hendrik Burger 

Studieleier : Prof C.W. Cruywagen 

Instansie : Departement Veekundige Wetenskappe. Universiteit van Stellenbosch 

Graad : MScAgric (Veekunde) 

Die doel van hierdie studie was om die invloed van ‘n potensiële proteïenbinder op in sacco 

en in vitro proteïen-verdwyningsparameters, oplosbaarheid van proteïen, degradeerbaarheid 

van oplosbare proteïen en intestinale proteïenverteerbaarheid te bepaal. Drie proteïen-

grondstowwe wat algemeen in melkbeesdiëte in Suid-Afrika ingesluit word, naamlik soja-, 

sonneblom- en kanola-oliekoekmeel, is in die proewe gebruik. Bioprotect® is as proteïen-

binder gebruik en in al die proewe is die substrate met Bioprotect® óf gedistilleerde water 

(kontrole) behandel deur dit op die onderskeie substrate te spuit teen ‘n peil ekwivalent aan 

0.5 L per ton vir elke 1% RP (ruproteïen). Rumen-gekannuleerde lakterende Holsteinkoeie is 

in ‘n in sacco proef gebruik en dieselfde koeie is ook gebruik as rumenvloeistofskenkers vir 

die in vitro proewe.  

In die eerste proef is die in sacco-prosedure gebruik om die kinetiese degradeerbaarheids-

parameters oor tyd te bepaal. Al drie OKM substrate is gebruik en rumeninkubasies is in vier 

koeie gedoen. Inkubasietye was 0, 2, 4, 8, 16, 24 en 48 ure en die 0-ure waardes is verkry 

deur die onderskeie substrate in dacronsakkies in water te was. Droëmateriaal- en RP 

degradeerbaarheidsdata is met behulp van ‘n nie-lineêre model ontleed om die kinetiese 

parameters en effektiewe degradeerbaarhede te bepaal. Die proteïenbindmiddel het nie 

weerstand teen mikrobiese degradeerbaarheid verhoog nie. Die 0-ure waardes het wel 

verhoog ná Bioprotect® behandeling en dit het hoër model-afgeleide a-waardes tot gevolg 

gehad. In vergelyking met die kontrolebehandeling, is die effektiewe RP-degradeerbaarheid 

ook in al die substrate deur Bioprotect® behandeling verhoog. 

In die tweede proef is ‘n DaisyII incubator (ANKOM Technology, New York) vir die in vitro-

inkubasies gebruik. Dieselfde drie OKM substrate is gebruik en inkubasietye was ook 

dieselfde. Behandeling * tyd interaksies het daarop gedui dat die proteïenbinder die RP 
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degradeerbaarheid van kanolameel na 8 ure inkubasie verlaag het (49.3 teenoor 54.2% vir 

die Kontrole; P = 0.022), asook na 16 ure (63.3 teenoor 67.5% vir die Kontrole; P = 0.04). In 

die geval van soja OKM het die behandeling geneig (P = 0.06) om die RP 

degradeerbaarheid na 16 ure inkubasie te verlaag (72.6 vs. 77.9% vir die Kontrole). Die 

afleiding is gemaak dat Bioprotect® die RP oplosbaarheid verhoog, maar die invloed van 

behandeling op RP degradeerbarheid is onduidelik a.g.v. verskillende neigings wat in die in 

sacco- en in vitro-proewe waargeneem is. Die verskil in die ordegrootte van RP 

degradeerbaarheid wat vanaf 4 tot 16 ure inkubasie tussen behandelings waargeneem is, 

dui wel daarop dat Bioprotect® ‘n onderdrukkende invloed op die degradeerbaarheid van die 

potensieel degradeerbare RP fraksie mag hê, maar dat hierdie invloed moontlik oorskadu 

word deur ‘n toename in die oplosbare RP fraksie wat met die Bioprotect® behandeling 

waargeneem is. 

Die derde proef is gedoen om die invloed van behandeling op intestinale proteïen-

verteerbaarheid te bepaal deur gebruik te maak van die Ross-analisemetode. Al drie 

proteïensubstrate is weereens gebruik en vir die ruminale inkubasiefase is rumenvloeistof 

van ses lakterende Holsteinkoeie verkry. Die eerste fase van die analise verteenwoordig ‘n 

12-ure rumen-inkubasie, gevolg deur ‘n een-uur gastriese verteringfase en uiteindelik ‘n 24-

ure intestinale verteringfase. Resultate het daarop gedui dat behandeling geen invloed op 

die totale intestinale proteïenvertering gehad het nie.  

Die vierde proef is gedoen om die invloed van Bioprotect®-behandeling op die RP 

oplosbaarheid van die onderskeie substrate te ondersoek. Elke OKM is geïnkubeer in ‘n 

boraat-fosfaatbuffer vir een uur. Monsters is daarna slegs ontleed vir N-inhoud. Bioprotect® 

behandeling het proteïenoplosbaarheid en die oplosbare proteïeninhoud van soja OKM 

verhoog, maar het geen invloed op die ander oliekoeke gehad nie. Die oplosbare 

proteïeninhoud van soja OKM was 20.2% vir die Bioprotect® behandeling teenoor 13.1% vir 

die Kontrole (P < 0.001). 

Die vyfde, en finale proef, is gedoen om die degradeerbaarheid van oplosbare proteïen te 

bepaal. Slegs soja OKM is in hierdie proef gebruik, aangesien dit die enigste substraat is 

waar die oplosbare proteïeninhoud deur behandeling beïnvloed is. Dieselfde prosedure is 

gevolg as dié in Proef 4 om oplosbare proteïen vir die hierdie proef te verkry. Die oplosbare 

proteïen supernatant is daarna by ‘n gebufferde rumenvloeistof-inkubasiemedium, 

soortgelyk aan dié van die in vitro proef hierbo beskryf, gevoeg en die monsters is vir 0, 2, 8 

en 24 ure by 39°C geïnkubeer, gevolg deur N-analises. Bioprotect® het die 

degradeerbaarheidstempo, sowel as die hoeveelheid RP wat gedegradeer is, betekenisvol 

verlaag. Tydens die totale 0 tot 24-ure inkubasieperiode, was die degradeerbaarheidstempo 
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(kd) 0.028/h-1 vir die Bioprotect®-behandeling en 0.036/h-1 vir die kontrolebehandeling, wat 

duidelik op die neerdrukkende effek van Bioprotect® op die degradeerbaarheid van die 

oplosbare proteïenfraksie dui. 

 

Die finale gevolgtrekking is gemaak dat die proteïenbinder, Bioprotect®, die potensiaal het 

om ruminale RP-degradeerbaarheid in sekere oliekoeke te verlaag. In die geval van soja 

OKM, wat een van die belangrikste proteïenbronne in melkbeesdiëte is, het Bioprotect®-

behandeling die degradeerbaarheid van die oplosbare proteïenfraksie aansienlik verlaag. 

Verdere navorsing met lakterende melkkoeie is geregverdig om die invloed van Bioprotect® 

op melkproduksierespons te ondersoek, veral indien die RP-inhoud van die dieët verlaag 

word. 
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Chapter 1 

General introduction 

 

Proteins are made up of 50 or more amino acid (AA) chains. Cows have a certain 

requirement for each individual AA to execute different functions including maintenance, 

growth, reproduction and milk production (De Ondarza et al., 2004). There is a great interest 

in the balancing of dairy cattle diets for AA chains.  Increases in N intake, milk N and milk 

protein may be potentially beneficial as it may contribute to farm profitability while reducing 

environmental impacts. The AA’s available for absorption in the small intestine are supplied 

by microbial protein, ruminal undegradable protein (RUP) and endogenous protein in 

sufficient quantities to high producing dairy cows in order to meet metabolisable protein 

requirements (Paz et al., 2014).    

The protein component in the diet of dairy cows is widely accepted as the most expensive 

nutrient. Dietary protein plays an important role in supplying AA’s and N for microbial protein 

synthesis. The total feed cost is dependent on the balance of requirement and supply of 

protein, as well as the chosen protein source in the diet (Imran et al., 2018). Bypass protein 

levels vary in different feedstuffs and the cost of bypass protein could amount to about 30 

percent more than merely total crude protein (CP). Fish meal, for example, has a CP content 

of more than 600 g/kg, of which about 65% escapes rumen degradation (Guthrie and West, 

1991). Despite the high nutritional protein quality, the high cost of fish meal limits its 

inclusion in ruminant diets. The high cost of bypass protein sources has resulted in an 

ongoing search for alternatives (Wright and Lackey, 2003).  

Rumen degradable (RDP) and undegradable (RUP) protein define dietary protein. Non-

protein nitrogen (NPN) and some true protein contribute to the RDP fraction which is 

degraded by microorganisms in the rumen. Undegradable protein passes to the small 

intestine and is protected from ruminal degradation (Bach et al., 2005). Protein nutrition for 

dairy cows includes a requirement for both RDP and RUP. In diet formulation, attempts are 

made to optimise RDP:RUP ratios in order to lower the total CP content without 

compromising production efficiency. The inclusion of digestible RUP in diets has true value 

to the amount absorbed AA (NRC, 2001). The protein requirement of high yielding dairy 

cows can only be met when the required amount of RUP is supplied (De Ondarza, 2004) 

and microbial protein alone cannot meet the requirement for metabolisable protein in such 

cows (Hedqvist et al., 2006).  
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Protein that is protected against ruminal degradation flows to the small intestine where it is 

digested enzymatically and the AA’s absorbed. Many studies have been reported in which 

protein protection was achieved through using heat and/or chemical treatment for a number 

of oilcake meals (NRC, 2001). Oilcake meals included in dairy diets aim to provide high 

quality protein. Soybean, sunflower, canola and cottonseed meals are the most abundant 

that are produced and used in the South African animal feed industry (DAFF, 2017). Heat 

treatment of protein sources, however, may result in a loss of lysine and cysteine, because 

of their heat sensitivity (Ljøkjel et al., 2000).  

Many feedstuffs have a low RUP content; therefore, the provision of a protein supplement or 

protected protein is of importance in dairy cow nutrition (NRC, 2001). Protein feeds differ in 

their degree of ruminal degradation. Degradation rates have been determined to ensure 

optimal formulation of dairy cow diets (Mohamed et al., 2008). In sacco, in vitro and in vivo 

techniques have been used to determine a reasonable estimate for protein degradability in 

the rumen (Van der Walt et al., 1988). According to Mohamed et al (2008), the in sacco 

technique is the most effective, while in vitro has been shown to be a good alternative. The 

in vitro method is less expensive but is still dependent on cannulated animals for the use of 

rumen fluid.    

Formulating dairy cow diets to meet protein requirements has shifted from formulating for CP 

alone to that of metabolisable protein (MP), which is digested and absorbed as AA in the 

small intestine (Ross et al., 2013). The MP is derived from RUP, microbial protein and 

endogenous protein (De Ondarza, 2004). Improving accuracy of diet formulation would result 

in more space for other raw materials and would be more economical (JHC van Zyl, 2019; 

personal communication). Determining accurate intestinal protein digestibility estimates is 

thus important to predict and ensure an adequate intestinal AA supply. A few in vitro 

methods are available to determine intestinal digestibility, but a re-development of these 

methods was done by Ross et al (2013) for protein feedstuffs used in dairy nutrition.  

Soluble protein is the amount of CP of a feed being dissolved when entering the rumen. This 

amount of CP is usually accepted to be rapidly digested by rumen microbes. However, 

according to Hedqvist et al. (2006), proteins differ in the rate of soluble protein degradation. 

The soluble protein part of a feed can be determined by mixing a phosphate-borate buffer 

solution with a sample of the feedstuff (Western Dairy Science, 2004). Degradation of the 

soluble protein cannot, however, be determined by the in sacco method and alternative ways 

have to be explored.  

Stellenbosch University https://scholar.sun.ac.za



3 

The objectives of the current study were therefor to determine the effect of a potential protein 

binder on: 

• in sacco and in vitro protein disappearance parameters

• protein solubility and the degradability of soluble protein and

• intestinal protein digestibility
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Chapter 2 

 

Literature review 

 

2.1 Introduction 

Protein plays an important role in almost all biological processes, for example transport, 

storage, immunology, mechanical support and metabolism control (Van der Walt and Meyer, 

1988). The stomach of the ruminant consists of four compartments, each with a different 

function. The rumen, which is the biggest of the four, is the habitat of the microbial 

population. Ruminal digestion is defined as a dynamic process of food entering ruminal fluid 

and resulting in an output of microorganisms, food not degraded and fluids (Andrade-

Montemayor et al., 2009). Rumen microorganisms degrade plant protein from the diet to 

various degrees and synthesise protein from the resulting ammonia, namely microbial 

protein. Microbial protein and protein not degraded in the rumen pass to the small intestine, 

where they are broken down to amino acids (AA) and where absorption takes place (Rounds 

and Herd, 1987). The protein requirement for ruminants is primarily supplied by microbial 

protein (Wattiaux, 1994). 

Supplementing protein is an expensive cost added to the diet. The use of protein in the 

ruminant system can be optimized to increase the production of the animal or decrease the 

quantity of protein inclusion in the diet (Tandon et al., 2008). By decreasing the protein 

quantity in the diet, more space for other raw materials would be available (JHC van Zyl, 

2019; personal communication).  

Dietary protein not degraded in the rumen, commonly referred to as bypass protein, is 

utilized in the small intestine to contribute towards the metabolisable protein requirements of 

the animal. Rumen undegradable protein (RUP) is required by the dairy cow to meet the 

requirement for absorbed protein. The requirements of protein for high milk production 

cannot be supplied by microbial protein alone and is supplemented by RUP to meet 

requirements (De Ondarza, 2004). Different feedstuff has different natural bypass protein 

values. Fishmeal, cottonseed cake, coconut meal and maize gluten meal are some of the 

feeds with high bypass protein value (Walli et al., 1995).  

The balance between the RDP and RUP is important for the efficient utilisation of nitrogen. 

An excessive amount of RDP or RUP would result in wastage of nitrogen and be excreted 
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into the environment. The protein not absorbed is excreted in the urine. Only 45% of the 

protein from RDP is absorbed in the small intestine as AA and it has an absorbing 

percentage of about 85% in the small intestine as AA (Stallings, 2002).  

There are a number of ways to protect protein against ruminal degradation. Heat treatment 

or using a chemical reagent are most commonly used methods (Walli et al., 1995). There 

are a few methods that can be used to determine the degradability of feed proteins 

(Mohamed and Chaudhry, 2008), each one with its own advantages and disadvantages. The 

nylon bag technique is the most widely used technique to determine the degradation of 

protein (Walli et al., 1995). 

2.2 Protein digestion and metabolism 

Crude protein (CP) is defined as the dietary protein in a feedstuff and it consists of true 

protein and non-protein nitrogen (NPN). Dietary protein is the CP ingested via the feed. In a 

ruminant animal, dietary CP may be degraded in the rumen by microorganisms at a certain 

rate, depending on factors such as feed degradability and passage rate from the rumen 

(Bach et al., 2005). The degradable fraction is hydrolysed in the rumen and available for 

microbial protein synthesis, also referred to as microbial protein (Andrade-Montemayor et al., 

2009). The feed CP fraction resistant to ruminal degradation passes to the small intestine to 

contribute towards the metabolisable protein (MP) requirement (Wattiaux, 1994).  

2.2.1 Rumen degradable protein (RDP)  

The end products of protein degradation in the rumen by microorganisms include branched 

chain fatty acids, peptides, AA and ammonia, which are major sources of nitrogen for 

microbial growth (Wattiaux, 1994). The microbes use these N sources, as well as energy 

from carbohydrate digestion, to form their own protein, called microbial protein, which is 

used for growth, production and reproduction (Wattiaux, 1994). The bacteria in the rumen 

attach to the feed particles and undergo proteolysis. Smaller peptides and AA are 

transported inside microbial cells. The AA can be incorporated into microbial protein or 

deaminated to volatile fatty acids (VFA), CO2 and ammonia. Peptides can be degraded to 

AA through peptidases. The AA can either be used directly for microbial protein synthesis or 

trans-aminated, if energy is available. When energy is limited, AA will be deaminated and 

their carbon skeletons will be fermented into VFA. Peptidolysis and deamination play an 

important role in controlling degradation (Bach et al., 2005). The rumen microbes are then 

flushed from the rumen, through the reticulum and omasum, to the abomasum where they 

are killed by the acidic environment. The amount of microbial protein that is flushed to the 

abomasum depends mainly on the amount of N and energy available in the diet (Moran, 
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2005). The resulting protein supplied by microbial and undegraded protein, collectively 

referred to as metabolisable protein, is digested to AA and absorbed in the small intestine to 

be used by the animal for growth, reproduction, milk production and maintenance (Das et al., 

2014). Some VFA’s are produced from fermented AA when the carbohydrate requirements 

are not met (De Ondarza, 2004). 

Highly degradable protein or an excessive amount of protein in the diet leads to an excess 

amount of ammonia in the rumen, some of which will be transported to the liver and 

converted to urea, which is released into the blood. This process occurs when an excessive 

amount of ammonia is produced, more than what the rumen microbes can use. Two routes 

can be followed for urea to return back to the rumen, through saliva or the rumen wall 

(Parish et al., 2009). Urea that reaches the rumen again is converted to ammonia and can 

be used for bacterial growth. Too much protein in a diet will lead to less recycling of urea and 

more excretion in urine by the kidneys. A deficit of protein in the diet will cause more urea to 

recycle to the rumen, where it is available for microbes to produce microbial protein 

(Wattiaux, 1994). The recycling process is a waste of protein and energy, because 

conversion of ammonia to urea in the liver comes at an ATP cost (De Ondarza, 2004).  

Bacteria and protozoa are found in the rumen, which produce proteolytic enzymes that 

degrade protein. Proteolytic activity is normally linked with bacterial cells. The rate of 

proteolysis and the retention time in the rumen determine the rate of protein degradation. 

The proteolysis is more important than the retention time, but the protein exposure time to 

enzymatic activity plays an important role in the degradability (Van der Walt and Meyer, 

1988). 

Solubility of rumen degradable protein: 

The classification of soluble or insoluble protein is an important factor, because more 

nitrogen is available for rumen microorganisms to use from soluble proteins (Andrade-

Montemayor et al., 2009). Solubility is a very important factor for protein sources and gives a 

good indication of their functionality (Zayas, 1997). Small AA chains or NPN solubilize in the 

rumen fluid and is absorbed across the rumen wall (Heeg, 2016). Proteolysis, the protein 

breakdown to AA or smaller peptides, occurs more with soluble proteins than insoluble 

protein.  

Four types of protein are found in protein supplements, namely albumin, globulin, prolamins 

and glutelins. Albumins and globulins have a higher biological value having a better AA 
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composition. Albumin and globulin are soluble in rumen fluid while prolamins and glutelins in 

contrast are less soluble. High molecular weight, disulphide bonds and more cross-linking 

are found in prolamins and glutelins, which make them less soluble (Clark et al., 1987). 

Disulphide bonds are found with some soluble albumins, which cause a slow degradation in 

the rumen (Bach et al., 2005).  

Protein solubility and degradability is not the same (Stern et al., 1994). Previous in vivo 

studies done by Stern and Satter (1984) have shown that there is a correlation of about 0.26 

between solubility of N and protein degradability. The soluble fraction of feedstuffs has 

different degradation rates. Approximately 50% of the soluble fraction in some feedstuffs is 

resistant to degradation in the rumen and will be digested in the small intestine (Dyck et al., 

2015).  

Table 2.1 shows that the protein degradation in feedstuff differs, as well as the difference 

between soluble protein and degradability.  

Table 2.1 Calculated RDP and RUP (Dyck et al., 2015). 

% of total 
protein 

Canola meal Linseed meal Field seed peas Soybean meal 

Soluble protein 24.4 28.6 77.8 16.9 

RUP 44 45 71 68 

RDP 56 55 29 32 

     

2.2.2 Undegradable dietary protein (RUP)  

The protein that escapes ruminal degradation and protein that is directly available to the cow 

is known as RUP (Moran, 2005). Cows have a requirement for absorbed protein which can 

be met when the total protein is enough, by supplementing microbial protein with an amount 

of RUP. Heat or chemical treatments to the protein are common procedures to increase the 

amount of protein that would be resistant to degradation (De Ondarza, 2004). Protein 

digestion starts with acid-pepsin digestion in the abomasum, where protein is broken down 

to AA and absorbed by the small intestine with pancreatic and intestinal proteases (Stern et 

al., 2006). This results in a contribution to the metabolic protein pool, which is available to 

the animal for use. The amount of different AA provided by RUP is more than that of 

microbial protein (Moran, 2005). Each protein source’s level of rumen degradation differs, 

where by-products normally consist of a higher resistance to rumen degradation than 

forages. At least 40% of the AA absorbed by the small intestines is from RUP (Wattiaux, 

1994).  
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2.2.3 Metabolisable protein (MP) 

Protein that flows from the rumen and is digested and absorbed in the small intestine as AA 

is known as metabolisable protein (MP). Microbial protein, RUP and endogenous protein all 

contribute to the MP. Microbial protein contributes almost 60% to the MP while the other 

40% is supplied by the RUP (De Ondarza, 2004). All excess AA are transported to and 

broken down in the liver. In the case of lactating cows a portion moves to the mammary 

gland to produce milk protein. The AA is used for muscle growth in young growing animals 

and used for the calf in pregnant cows. Tissue growth and tissue turnover (the process 

where tissues are replaced by new tissues) are also a major function (WDSI, 2004).  

 

2.2.4 Non-protein nitrogen (NPN)  

Non-protein nitrogen is not a true protein and does not contain AA but nitrogen that can be 

used by ruminants. Non-protein nitrogen is converted to ammonia in the rumen and used by 

the rumen microbes to form microbial protein. Some of the microbes have a specific 

requirement for ammonia. The microbes use carbohydrates when they are available to 

incorporate AA and NPN and produce microbial protein (De Ondarza, 2004).  

Urea and anhydrous ammonia are examples of NPN. Urea, which contains about 47% 

nitrogen, is rapidly hydrolysed to ammonia by urease from ureolytic bacteria. The resulting 

ammonia can be used to synthesise a significant amount of microbial protein (Cassel, 1996) 

while surplus ammonia is absorbed via the rumen wall and transported to the liver. Amino 

Acids resulting from protein degradation may also combine with ammonia and carbohydrate 

metabolism products to form microbial protein (Stanton and Whittier, 2006).  

Non-protein nitrogen is not as expensive as plant or animal based proteins. Non-protein 

nitrogen is added to the grain mix with forages, but makes up a small percentage because of 

low palatability (Cassel, 1996). About 50% of the total N in maize silage can be contributed 

from NPN and 10 to 20% NPN in the case of alfalfa hay. The inclusion of more nitrogen than 

needed in the diet cannot be used or stored and must leave the body. When more N is 

consumed than required, the excretion systems can be damaged, overloading of AA 

deamination and the capacity of detoxifying the liver occurs. The inclusion of N at a lower 

level than needed to meet the requirements, will cause a decrease in feed conversion ratio 

(FCR) and growth rate (Karcol et al., 2016). 
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Figure 2.1 Protein metabolism in the dairy cow (Wattiaux, 1994). 

Urea is one of the products of protein metabolism in mammals (Figure 2.1). Some urea 

produced by the animal is excreted through urine/milk or returns to the digestive tract via 

saliva. Non-protein nitrogen occurs in components, such as DNA, RNA, AA, ammonia and 

small peptides but only nitrogen from ammonia, AA and small peptides are used for 

microbial growth (Bach et al., 2005). 

Urea poisoning may occur when high levels are included in diets and it can result in deaths. 

Symptoms include rapid breathing, bloat, tetany and an increase in rumen pH (8) and blood 

ammonia levels (Stanton and Whittier, 2006).  
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2.3 Determining rumen undegradable protein (RUP) 

The degradability in the rumen and intestine of ruminants are required by the protein 

evaluation systems (Paengkoum et al., 2013). In ruminants the dietary proteins are 

degraded in the rumen by microbial fermentation or in the small intestine by enzymatic 

hydrolysation. The feedstuff and animal characteristics determine the extent of degradation. 

There is no totally accurate procedure to determine the rumen degradability of feedstuffs for 

ruminants (Van Straalen et al., 1993). The disappearance of DM or N from feedstuff in nylon 

bags situated in the rumen of cannulated animals can be measured. The measurement of 

the amount of nutrients flowing to the small intestine can also be used to determine the 

degradability. There is interest in an alternative approach to the in sacco method, which is 

both less expensive and more convenient, namely the in vitro (Mohamed and Chaudhry, 

2008). Both approaches will be discussed.     

2.3.1 In sacco 

A certain amount of dietary protein escapes rumen degradation. One of the most widely 

used techniques to determine the extent of feedstuff degradation in the rumen is by using 

the in sacco nylon bag technique, also known as the in situ method. Small amounts of a 

specific feedstuff are incubated in the bags in the rumen of cannulated cows for incremental 

periods of time. The correct procedure and equipment need to be followed to have reliable 

data. The combined information of disappearance rate of nitrogen and the out-flow rate to 

the small intestines from the rumen, is obtained from this technique (Ganev et al, 1979). 

There are some factors influencing the results, such as the sample weight, sample 

processing, size of the bags, size of the pores, washing method, microbial N contamination 

of bags and the diet of the host animal. 

The fibre bag technique was used by Quin et al. in 1938 for the first time and it was done on 

cannulated sheep. The bags were cylindrical and natural silk. The use of artificial fibre bags 

was first used by Erwin and Elliston in 1959 and improved the understanding of the 

degradation of feed components in the rumen (Ørskov et al, 1980).  

Not only is the simplicity of this method an advantage, but the number of samples that can 

be handled simultaneously, makes it a popular technique (Pienaar et al., 1989). Another 

advantage is that the digestive system of a live animal is used, so there is less chance of 

error in comparison to other techniques (Stern et al, 1994). The rate of degradation in the 

rumen is also measured by this technique (Ørskov et al, 1980). According to Ørskov and 

Shand (1997), the technique is also used for roughage evaluation, which identifies the 

factors of plants (soluble, insoluble and fermentable fractions) affecting the roughage 
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consumption.  Optimal NH3 and S concentrations, as well as the optimal pH can also be 

determined with this method. The requirement of measurements is fewer with in sacco 

studies in comparison with other techniques.   

The in sacco approach is, however, not without problems. For example, the samples in the 

bags are not exposed to chewing and rumination, which means that no mechanical 

breakdown will occur as would have been the case if it were fed to the animal. The samples 

will also not be able to leave the rumen when a certain particle size is reached, as it would in 

normal situations. The actual measurement is the breakdown of particles to a very small size 

to be able to leave the bag (Ørskov et al., 1980). Not only is the microbial contamination an 

error that affects the DM and N disappearance, but the size of the sample in the bag as well. 

Studies have shown that an increase in sample weight reduced DM digestibility with short 

incubation times (Mohamed and Chaudhry, 2008).    

The nominal pore size of the bags is not fixed and can range from 10 μm to 53 μm (Ørskov 

et al., 1980). Pore size smaller than 15 μm causes decreases in degradability because of the 

restriction of microbial colonisation and diversity as well as trapping of fermentation gases. 

Pore sizes bigger than 40 μm can cause a loss of undegradable particles and solubles. The 

size of the sample to bags ratio should be correct to ensure that no overfilling or under filling 

occurs. This technique is useful if the bag is large enough to allow for free movement of the 

substrate (Mohamed and Chaudhry, 2008).  

2.3.2 In vitro 

Alternative methods for in sacco or in situ trials include different types of in vitro approaches 

which may involve buffers, chemical solutions, rumen fluid and enzymes. Such methods can 

be used to estimate rumen degradation and fermentation parameters, either directly or via 

gas production trials. The methods may, however, not meet realistic expectations (Taysom, 

2013), although a high degree of correlation is usually found between in vitro and in vivo 

trials for DM digestibility (Holden, 1999).  

The advantage of in vitro trials is that a number of samples can be done simultaneously, 

which means that the amount of labour is reduced while increasing the precision of this 

technique (Holden, 1999). In vitro studies are not expensive and they provide the opportunity 

to analyse the residue and the metabolites of microbial degradation. Factors influencing 

degradation, such as the environment, microbial and animal factors are more controllable 

than with other methods (Mohamed and Chaudhry, 2008).  

The buffer solution, macromineral, micromineral, incubation medium and reducing solution 

are usually prepared according to Goering and Van Soest (1970). In vitro incubation can be 
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done in fermentation tubes, Erlenmeyer flasks or in a DAISY II incubator used for in vitro 

procedures and is done according to ANKOM protocol. The rumen fluid to in vitro solution 

ratio is 1:4 and samples are incubated at 39.5˚C for specific incubation times (Holden, 1999). 

Rumen fluid is collected from ruminally cannulated animals (Mohamed and Chaudhry, 2008).

  

2.3.3 In vivo 

In vivo refer to live animals and the method is currently not as popular as the in sacco or in 

vitro methods. However in vivo trials are trustworthy and preferred in terms of protein 

degradability and feeding value (Acar, 2018). The costs and risks related to in vivo studies 

are high and they are more labour intensive than in sacco and in vitro experiments (Stern et 

al., 2006). Furthermore, the large quantities of feed required and the number of replications 

play an important role in the total costs. Multiple animals are normally used for in vivo 

studies and the maintenance cost is expensive. These expenses make this technique 

impractical (Filho et al., 2003).  

2.4 Determination of intestinal digestibility 

Dynamic models estimating nutrient balance and supply, as well as requirements, are 

becoming more accurate and precise. Diet formulation for dairy cows to meet protein 

requirements are firstly done according to CP requirements before addressing the 

contribution of metabolisable protein and AA availability. Estimating the intestinal digestibility 

(ID) of protein and AA accurately is becoming more important to supply nutrients for 

optimum production. Outdated data used for MP requirement may lead to over or under 

supply. Previous published in vitro methods were modified by Ross et al. (2013) to develop a 

laboratory system for the estimation of ID. The procedure has become known as the Ross 

assay. 

In vitro digestion methods started with a two-step procedure by Tilley and Terry (1963) who 

combined ruminal digestion and pepsin digestion. A three-step in situ bag technique was 

developed by Calsamiglia and Stern (1995) where the bag residues were exposed to HCl 

and pepsin digestion, before introducing a pancreatin digestion step. This procedure was 

modified by Gargallo (2006) who used the ANKOM Daisy incubator.    

The control substrates used in the Ross assay are CSND (corn silage neutral detergent), 

freeze dried blood (positive control) and burnt blood meal (negative control). The CSND is 

used as a fermentation control sample, which accounts for microbial contamination. The 

burnt blood meal is used as the negative control, because of their low (almost negligible) 
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ruminal and intestinal digestibility whereas the freeze-dried blood serves as a control to 

verify maximum N digestibility.   

    

2.5 Methods to increase bypass or RUP values of protein feedstuffs  

Undegradable dietary protein (RUP) is one of the two metabolizable protein sources for 

ruminants, the other one being bacterial protein. Feedstuffs that are treated to increase RUP 

values contain high levels of CP. Bypass techniques are used to improve the effective 

utilization of protein. Nitrogen and energy balance are increased with protected proteins, 

which leads to a higher milk yield. The contribution towards the total metabolizable protein 

supply is much higher when a bypass technique is used. About 80% of the protein that 

passes from the rumen is digestible in the small intestine (Harmon et al., 1986).  

There are different treatments that can be applied to protect protein from degradability in the 

rumen. These include physical treatment, chemical treatment and more recently, protein 

binders. To choose one of these treatments, one would have to look at the cost and how 

effective the product is protected, based on scientific studies. The success of bypass 

treatment would be apparent when less protein is included in the diet without compromising 

milk production, thus saving costs (Harmon et al., 1986).  

2.5.1 Physical treatment 

2.5.1.1 Heat treatment 

The drying of forages with heat is known to prevent some of the protein to be degraded in 

the rumen. The heat that applied during the manufacturing of oilseed meals varies in 

temperature (°C) which determines the different degrees of protection. Effective protection 

against degradability in the rumen is provided when denaturation of the protein occurs. 

Denaturation happens when intensive heat is applied to protein. By providing heat to the 

protein supplement for 2 to 4 hours at 125 to 150˚C would result in a high degree of 

protection (Tandon et al., 2008). The Maillard reaction occurs between sugar aldehydes and 

AA’s, and acid detergent insoluble nitrogen (ADIN) is increased with extended heating time. 

The peptide linkage between AA’s and the two α-amino acids, glutamine and asparagine, 

are more resistant to enzymatic hydrolysis when heated. High temperature heating of 

proteins may cause a loss of lysine, arginine, cysteine, methionine and tyrosine. The lysine 

is made indigestible by the reactions between the amide groups of glutamine and 

asparagine and the ԑ-amino group of lysine (Kamalak et al., 2005).  Heat treatment is cost 

effective and one of the most practical methods (Mudgal and Sengar, 1984). Trials that were 
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done with sheep and calves showed that the rumen ammonia concentration levels were low, 

and an improvement of nitrogen balance or better growth were observed. In dairy cows, this 

has also had a positive effect on milk yield. The flow of protein to the small intestine may be 

increased by heat treatment, but too much heat may result in a lower quantity of some AA’s 

and may also decrease the digestibility in the small intestine (Kamalak et al., 2005). 

2.5.1.2 Encapsulation 

Encapsulation can be applied on a variety of solids, gases or liquids with a very small 

capsule. Nutrients, enzymes, drugs, feedstuff or bacteria can be encapsulated. Because of 

the additional costs involved, protein encapsulation is only done on protein sources that 

have a high biological value (Tandon et al., 2008). The coating can vary in thickness, 

depending on where in the gastrointestinal tract (GIT) the release should take place. A 

barrier is created between the encapsulated substance and the (rumen) environment. The 

polymer is soluble in the more acidic conditions such as the abomasum but will be insoluble 

in the rumen. Protection against rumen microbial degradation is not the only advantage of 

encapsulation, but it could prevent oxidation and enzymic degradation of nutrients as well. 

The masking of odours and taste is another advantage of encapsulation that is often applied 

in the food industry (Emanuele et al., 2006).  

Encapsulating AA has become quite common. In a study by Rogers et al. (1987), 

encapsulation was done for the individual AA’s methionine and lysine. Lysine that bypassed 

the rumen increased the feed intake, milk yield and the utilization of methionine. The 

production of milk protein was increased by both of these rumen protected amino acids 

(Rogers et al., 1987). Encapsulation of methionine was done by Papas et al. (1984) and it 

was shown to protect the AA successfully and to deliver it post ruminally for enzymatic 

digestion.  

2.5.2  Chemical treatment  

2.5.2.1 Formaldehyde treatment   

This is the most widely used chemical treatment for protein protection. High quality protein 

treated with formaldehyde forms cross-links with the amino groups and results in a less 

susceptible protein to microbial attack. Such protein has been shown to be more digestible in 

the small intestine. The solubility of protein is reduced at pH 6 and much will pass to the 

small intestines for digestion, where the bonds are broken under the more acidic conditions 

(Tandon et al., 2008). The decrease in urinary nitrogen and increase in faecal nitrogen 

excretion indicate that the protein protection is effective. This treatment might be beneficial 
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for the animal, but in certain cases, especially when over processed, it could decrease 

productivity, because of a reduction in the synthesis of microbial protein. Over processing 

can thus have a negative effect on the nutritional value and a decrease in protein digestibility 

in the small intestine (Kamalak et al., 2005). Other aldehydes that can be used are not as 

easily available and more expensive than formaldehyde (Tandon et al., 2008).  

2.5.2.2 Tannic acid 

Secondary compounds that have anti-nutritional properties, such as tannins, are found in 

many plants. The reason for tannin to be anti-nutritional is because of the negative effect on 

protein digestibility (Wina and Abdurohman, 2005). Furthermore, tannins may result in lower 

feed intake, rate of protein and fibre breakdown and efficiency of microbial protein synthesis 

(Nsahlai, 2011). Tannins can be divided into two groups, namely hydrolysable and 

condensed tannins. On the positive side, the binding of tannin to protein may result in an 

increased protection of protein against rumen degradation, which could lead to increased 

small intestine digestion and thus increased productivity (Wina and Abdurohman, 2005; 

Yusiati et al., 2018).     

The types of binding between tannins and proteins can be hydrogen bonds, covalent bonds, 

ionic bonds or hydrophobic interactions. The binding between tannin and protein is a 

complex process involving multiple sites for protein to bind, because of the high degree of 

hydroxylation. The stability of the binding is pH dependent and at a low pH the complexes 

are capable to release protein (Hagerman and Butler, 1981). Tannins usually bind to protein 

but can also bind to starch and structural polysaccharides. These bindings may result in 

lower nutrient bioavailability in the digestive tract and seen as anti-nutritional, because of the 

decrease of protein digestibility. The flow of protein to the small intestine and dissociation in 

abomasum occurs because of the pH dependent, reversible tannins and protein binding 

(Martínez, 2005).  

Ethiopian Menz sheep used in one study received oilseed cake meal, followed by tannin rich 

browses. The sheep gained more weight than those being fed the diet in the reversed order. 

The protein and tannin interactions and the proteolytic activity being depressed were the 

reason for more protein bypassing the rumen (Nsahlai, 2011).  

2.5.2.3 Protein binders 

A product that has shown to provide protection against ruminal degradation of highly 

digestible starch components of feed is BioProtect® (Realistic Agri). BioProtect® is a dark 

liquid and is a stable non-volatile organic salt, which reacts with primary or secondary amino 

Stellenbosch University https://scholar.sun.ac.za



18 
 

groups of protein and hydroxyl groups of starches. The aldehyde (HCHO) reacts with the 

amino groups, but H2SO3 being produced by hydrolysis of Bioprotect®, can react with amino 

groups as well.  At a neutral pH the complexes are stable, typically in the rumen where the 

pH ranges between 6 and 7. In the abomasum and small intestine, where the pH drops to 2 

or 3, the bonds dissociate for effective digestion and absorption of nutrients (Dunshea et al., 

2012). 

According to the suppliers (Realistic Agri), the protein protection ability of Bioprotect® in the 

rumen is much stronger than that of formaldehyde treatment. They also claim that the active 

ingredient is three times more reactive than formaldehyde, because of the three double-bond 

oxygen atoms.  

Dunshea et al (2012), Gonzalez et al (2014) and Van Zyl (2017) have done studies on starch 

treated with the protein binder. The undegraded starch passed to the small intestine 

successfully.     

 

2.6 Protein sources 

2.6.1 Plant protein by-products 

2.6.1.1 Oilcake meals 

Canola oilcake meal  

This high-quality protein feed is used by dairy farmers as well as beef cattle farmers. The 

high protein quality makes it a popular feed to use for milk production and growth (CCC, 

2015). This feed is a by-product and is produced after oil has been extracted through 

physical or solvent extraction (Mailer, 2004). Its AA profile well balanced and contains high 

levels of histidine, methionine, cysteine and threonine (CCC, 2009).  

Canola oilcake meal can be produced by different methods. Cold press is the separation of 

oil and the meal by physical actions without heat. Expelling is the physical extraction of oil 

and meal with heat. Both these methods result in an 8 to 12% oil residue and they differ in 

characteristics because of different temperatures (less than 60˚C) applied. The method 

which results in less than 1% oil residue is solvent extraction where physical expeller 

extraction precedes solvent washing. This method includes processes such as flaking, 

physical and solvent extraction, toasting, additives and heat treatment (Mailer, 2004). Canola 

expeller meal showed similar or better results for milk production than solvent extracted 
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canola meal (CCC, 2015). Crude protein and moisture content of the meal are the factors 

that play a role in the quality (Mailer, 2004). 

Less than half (48.1%) of the protein in canola meal is degraded in the rumen (CCC, 2015).    

Canola oilcake meal has a high palatability, which might be a result of the sucrose content, 

and it results in a higher DM intake than diets including other oilcake meals.  

Cottonseed oilcake meal  

Cottonseed oilcake meal is a protein source often included in dairy cow diets and known to 

be economical (Bangani et al., 2000). The extraction procedures applied to produce 

cottonseed oilcake meal resulted in a high-quality protein source of about 40% CP (Meric et 

al., 2011). This meal contains higher levels of RUP than soybean meal, but it is lower in 

essential AA concentrations (e.g. lysine). Studies have shown that replacing soybean meal 

with cottonseed meal had no decreasing effect on animal performance (Imaizumi et al., 

2015). Cottonseed products contain gossypol, a phenolic compound, that can be toxic to 

monogastric animals and young calves where the rumen is not fully developed. The rumen 

can, however, detoxify gossypol by binding with soluble proteins or absorbing gossypol at a 

slower rate as a result of dilution (Bangani et al., 2000).       

Sunflower oilcake meal 

Sunflower seed is one of the major crops for oil production. Sunflower seeds are partially 

dehulled and oil is extracted to form sunflower oilcake meal. Hydraulic pressure or solvent 

extraction is used to remove the oil (McDonald, 2011). Dehulling can be controlled before 

extraction of the oil. The more hulls removed, the more the fibre content will decrease with a 

resultant increase in density of the meal (Nell et al., 1993). By removing the hulls the CP 

content is increased and a more digestible meal is produced (McDonald, 2011). The higher 

protein types have a CP content of 38 to 42%, where the lower protein types have a CP 

content of around 28%. Palatability is not always high, and the bypass value of the protein is 

not high either.  

The high fibre content of sunflower meal reduces the inclusion levels to about 3 or 4% in 

monogastric animal diets (McDonald, 2011). The maximum inclusion level for adult cattle is 

200 kg/ton in diets and inclusion is not recommended for calve diets. Low lysine levels occur 

and high methionine levels, but it is a useful protein source (McDonald, 2011). 
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Soybean oilcake meal 

Soybean oilcake meal is one of the best protein sources available to farm animals 

(McDonald, 2011). The meal appears pale yellow or light brown with flakes of irregular 

shapes (Soybean trading, 2016). The oilcake meal is a commonly found in the diet of 

lactating dairy cows as a protein source (Imran et al., 2018). The CP content of soybean 

meal is around 44% to 49% and the protein digestibility about 88% (Banaszkiewicz, 2011). 

The RDP value is high, and it has a good AA profile as well. Furthermore, the cell wall 

digestibility of the hulls is high and often included in ruminant diets. As a major protein 

source in dairy cow diets, soybean meal shows an increase in milk yield, milk protein content 

and dry matter intake (Imran et al., 2018).  

Mechanical or solvent extraction methods are used for the production of soybean oil and 

soybean flakes. The soybean flakes are toasted or boiled to produce the final meal. The 

hulls are added back afterwards, which results in differences in the fibre and protein content 

of soybean meals (Banaszkiewicz, 2011). The production location, soybean variety and the 

process methods also cause soybean meals to vary in quality. The meals that do not contain 

hulls have a higher proportion of CP, AA and MP (Dozier et al., 2012).  

Soybean meal contains all the essential AAs, with methionine being the first limiting AA. 

Soybean meal has high levels of arginine, leucine and lysine (Banaszkiewicz, 2011). Despite 

having a deficiency in B vitamins, it is still a valuable protein source for animals and widely 

used (McDonald, 2011). 

2.6.1.2 Grain by-products 

Dried brewers’ grain 

The extraction of malt from barley grain, produce brewers’ grain which is the remaining 

residue and used as a by-product in dairy cow nutrition (Griffiths, 1971). The CP content is 

about 26% with a well-balanced good AA composition (Dhiman et al., 2003). Dried brewers’ 

grain used as a protein source resulted in better performance and improved efficiency 

compared to soybean meal and urea in a study using beef calves (Murdock et al., 1981).  

Corn gluten meal and corn gluten feed 

Two valuable protein products result from the wet-milling industry of maize. Following the 

removal of starch, fibre and germ from maize and separation of the bran, the residue is dried 

to produce corn gluten meal with a 60% CP content. (Blasi et al., 2001). Corn gluten meal is 

also known as prime gluten. The bran that is removed, also contains some gluten protein 
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and is known as corn gluten feed or gluten 20, as it contains 20% CP. High concentrations of 

prolamins and glutelins protect the protein to a certain extent from ruminal degradation, 

whereas  the favourable methionine:lysine ratio of corn gluten meal ensures a high quality 

RUP. Inconsistent milk production has been reported in some studies when corn gluten meal 

replaced soybean meal. The increased milk production was the result of the high RUP, 

whereas decreased milk production was caused by insufficient RDP or an EAA imbalance 

(Imran et al., 2018). Another product, corn gluten meal 40, is a mixture of corn gluten meal 

60 and corn gluten feed (containing hulls and germ).     

Distillers grain 

During the production of ethanol, used in beverage liquor and for fuel, distillers grain 

becomes available as a co-product. The production process is done by fermentation of 

grains to alcohol, whereby further processing takes place to form the co-products (Curzaynz-

Leyva et al., 2019). Dried distillers grain (DDG) and dried distillers grain with solubles 

(DDGS) are the most common of these co-products that are used in animal nutrition. The 

RUP content of DDG is around 55% of the CP and that of DDGS around 47%. A high 

intestinal digestibility has also been reported (Linn et al., 1996).  

2.6.2 Animal proteins 

2.6.2.1 Fishmeal 

Fishmeal is an excellent source of protein for production animals. The primary product is 

fresh fish being cooked, pressed, dried and milled to get rid of most oil and water. In the 

case of brown fish meal, the fish used to produce it is not in demand by humans. Fishmeal in 

animal diets showed improvement in fertility, forage utilization, milk output and health. 

Protein digestibility can be as high as 95% in well-processed fish meals but when too much 

heat is used in processing, the protein digestibility can be as low as 60% (McDonald et al., 

2011).  Fishmeal consists of at least 60% CP, with a RUP of 60 to 70%. Fishmeal is one of 

the best AA balanced protein feedstuffs that can be provided to cows for growth and milk 

production. High calcium and phosphorus levels are also found in fishmeal (Guthrie and 

West, 1991). Fishmeal is also a good source of the vitamin B complex, especially choline, 

vit. B12 and riboflavin (McDonald et al., 2011). According to the RSPCA, a maximum 

inclusion level of 10% of total dietary DM is recommended. Adaptation should be applied 

slowly, because of the palatability and odour (Guthrie and West, 1991). The usage of 

fishmeal fluctuates, because of availability, price and the product mix. The price of fishmeal 

is high, but it is still one of the best protein sources available (DAFF, 2017).  
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2.6.2.2 Blood meal 

Blood meal, obtained from abattoirs as a by-product, is a high-quality protein source. The 

product is dried (spray, batch and ring) before use and is well known for the high degree of 

RUP it provides. Only 20% of the 87% CP is degraded in the rumen. Lysine, arginine, 

methionine, cysteine and leucine are supplied by blood meal (McDonald, 2011). If excessive 

heat is applied during the drying process, the protein will be damaged and digestibility will be 

poor, resulting in an inferior quality product. Blood meal is mostly included in diets of 

lactating cows for production, because of the supply of limiting AA, especially lysine. 

Recommendations are not to exceed 300g per cow per day. When this amount is exceeded, 

palatability and milk fat may be reduced (Western Dairy Science Inc, 2004).  

2.6.2.3 Meat and bone meal 

Meat and bone meal is a rendered product from mammal tissues and bones. Calcium and 

phosphorus levels are high, because of the bone inclusion (Guthrie and West, 1991). It 

contains a minimum of 4% of phosphorus and the calcium level is usually not more than 2.2 

times that of phosphorus. The CP content varies between 50 and 55% depending on the 

amount of bone included and approximately 50% of the CP is rumen degradable (Harris et 

al., 2003). Because of the possible contamination of bone with nervous tissue, meat and 

bone meal may not be fed to cattle so as to prevent any possibility of spreading BSE in cattle 

(Tisch, 2006). Therefore, non-cattle sources should be used in cattle diets (Shaver, 2001). 

The processing procedure may cause variation in CP levels, digestibility and AA composition 

(Bozkurt et al., 2004). 

2.6.2.4 Feather meal 

Hydrolysed poultry feather meal is obtained from steam cooking under pressure of clean, 

undecomposed feathers. Raw feathers are indigestible because the protein is in the form of 

keratin. Hydrolysation breaks the keratin bonds and renders the product quite digestible. 

Despite the high CP content of up to 85%, the protein quality is regarded as only fair due to 

the suboptimal amino acid profile (Tisch, 2006). According to McDonald (2011), histidine and 

lysine are the first limiting amino acids in feather meal. Palatability is usually not a problem. 

According to Guthrie and West (1991), the RUP content is almost 70% RUP, but it should 

not be included at more than 10% of a concentrate mix (Guthrie and West, 1991).  
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2.7 General aspects of protein sources 

The most important characteristics of protein sources are summarised in Table 2.2. 

 

 

Table 2. 2 Rumen undegradable protein (RUP), intestinal CP digestion (ID) and intestinally 
absorbable dietary protein (IADP) of important protein sources (Stern et al., 2006). 

Protein source N RUP (% of 
CP) Avg ± SD 

(Range)  

ID (% of RUP) 
Avg ± SD 
(Range) 

IADP 
AVG ± SD 
(Range)    

Plant proteins     

Cottonseed meal, solvent 1 46 71 33 

Cottonseed meal, mechanical 1 55 80 43 

Soybean meal 5 25±3 (22-29) 90±4 (86-93) 22±2 (20-25) 

Soybean meal, expeller 6 47±6 (38-53) 93±7 (83-100) 44±3 (38-53) 

Soybean meal, non-

enzymatically browned 

6 66±8 (57-77) 88±4 (82-92) 58±7 (49-67) 

Grain by-products     

Brewers grain, dried 5 57±5 (50-63) 77±2 (73-79) 44±5 (37-49) 

Corn gluten meal 2 83±2 (82-85) 89±4 (86-91) 74±5 (70-77) 

Distillers grains, dried 5 56±8 (47-64) 81±5 (72-85) 46±8 (36-53) 

Animal proteins     

Blood meal, batch-dried 12 88±6 (78-98) 63±17 (29-86) 55±14 (25-75) 

Blood meal, ring-dried 10 83±4 (76-89) 81±6 (72-90) 67±7 (58-76) 

Feather meal, hydrolysed 12 76±11 (50-88) 67±6 (58-75) 51±9 (36-64) 

Fish meal, Menhaden 13 65±4 (59-73) 80±5 (73-88) 52±4 (43-57) 

Meat and bone meal 11 59±13 (40-88) 55±10 (41-70) 33±10 (21-56) 
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2.8 Conclusion 

Formulating dairy cattle diets to meet protein requirements for dairy cows has shifted from 

formulating for CP alone to that of metabolisable protein which is digested and absorbed as 

AA in the small intestine. The MP is derived from RUP, microbial protein and endogenous 

protein, but a fine balance between RUP and RDP is required for optimal microbial protein 

synthesis and animal production. Optimising diet formulation would also result in more space 

for other raw materials. In this review, attention was given to protein digestion and 

metabolism, ways to manipulate protein degradability and different protein sources available 

for animal production. From the literature, it appears that there is need for research on 

protein binders to decrease ruminal protein degradability of oil cake meals and the effect 

thereof on intestinal digestibility. 
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Chapter 3 

 

The effect of Bioprotect® on in sacco and in vitro protein 
degradation 

 

Abstract 

 

The objectives of the study were to determine the effect of a protein binder on in sacco DM 

and CP degradability, as well as effective CP degradability on protein feedstuffs commonly 

used in dairy cow diets in South Africa. An in vitro trial was also done where the same 

protein sources were incubated for 0, 4, 8 and 16 h to compare CP degradation with values 

obtained in the in sacco trial. Soybean, sunflower and canola oilcake meals were identified 

as the protein sources. Oilcake meals were ground through a 1 mm screen and then sieved 

through a 106 μm sieve. Feedstuffs weretreated with either distilled water or Bioprotect® at 

a rate depending on the CP content of the oil cake meal. The application rate was equivalent 

to 0.5L for each 1% CP in the substrate per tonne. In the in sacco trial, the treated feedstuffs 

were weighed out in a series of dacron bags for ruminal incubation of 0, 2, 4, 8, 16, 24 and 

48 hours. Four ruminally cannulated lactating Holstein cows were used as donorsof rumen 

liquid for the in sacco trial.  Bioprotect® increased the a-value (0 h incubation) of all the 

substrates, indicating a higher water solubility following treatment. In the in sacco trial, 

Bioprotect® did not lower DM or CP degradability for any of the substrates. As a result of the 

higher a-values obtained with Bioprotect® treatment, the effective CP degradability 

(eDegCP) of all the substrates increased. The respective eDegCP values obtained with the 

Bioprotect® and Control treatments were 24.6 and 13.2% for soybean oilcake (P = 0.018), 

59.4 and 45.4% for sunflower oilcake (P = 0.005) and 44.9 and 33.1% for canola oilcake (P 

< 0.001). In the in vitro trial, treatment*time interactions showed that Bioprotect® decreased 

CP degradation of canola meal after 8 h (49.3 vs. 54.2% for Control); P= 0.022) and 16 h of 

incubation (63.3 vs. 67.5% for Control; P = 0.04). For soybean meal, treatment also tended 

(P = 0.06) to decrease 16 h CP degradability (72.6 vs. 77.9% for Control). It was concluded 

that Bioprotect® appears to increase CP solubility, but the effect of treatment on CP 

degradability was not conclusive due to different tendencies observed in the in sacco andin 

vitrotrials. However, the difference between treatments in the magnitude of in vitro CP 

Stellenbosch University https://scholar.sun.ac.za



33 
 

degradability observed from 4 to 16 h suggested that Bioprotect® may indeed have a 

depressing effect on the degradability of the potentially degradable fraction but this effect 

may be shadowed by the increase in the soluble fraction observed in the Bioprotect® 

treatment. Due to the significant impact of the soluble fraction on the calculation of effective 

degradability, the end result is a higher effective CP degradability observed in the 

Bioprotect® treatments.     

3.1 Introduction 

Rumen microbes play an essential role in fulfilling nutrient requirements of the ruminant host, 

both in terms of fermentation end products in the rumen and by delivering a significant part 

of the metabolizable protein in the duodenum. Nitrogen requirements of the rumen microbes 

can be met by ammonia, but the host’s organs and tissues need to be supplied with AA’s. 

The AA’s are provided via rumen undegradable protein (RUP) and microbial protein. This 

has resulted in systems being developed to determine the ruminal degradability of dietary 

protein in order to estimate RUP that enter the duodenum and can be digested to AA’s for 

absorption from the small intestine (Walli et al., 1993). 

The feed protein fraction that escapes degradation in the rumen and passes to the small 

intestine is especially beneficial for high-yielding cows and increases profitability (NRC, 

2001). The requirement of RUP is the difference between the total protein requirement by 

the host animal for milk production and the protein supplied by microbes. Low producing 

cows have low RUP requirements therefore microbial protein can supply most of the cows’ 

total protein requirements (De Ondarza, 2004).  

Meeting the daily nutrient requirements of dairy cows would result in optimum production. To 

meet these requirements the ruminal degradation of each feedstuff in the diet must be 

estimated to enable formulating a diet correctly. (Mohamed and Chaudhry, 2008). 

Accurate measurement of ruminal nutrient degradability is required for use in feeding 

systems. In the current trial, both in sacco and in vitro methods have been used, but each 

method has its own set of problems. In the in sacco method, feed samples are placed in 

polyester dacron bags and inserted into the rumen of cannulated cows to determine the 

degradability of a specific nutrient in a feedstuff by measuring the disappearance of, for 

example, DM, NDF or N. The in vitro technique is a convenient, easier and less expensive 

alternative (Mohamed and Chaudhry, 2008), while in vivo techniques are expensive and 

require more labour to estimate intestinal digestion of protein (Stern et al., 2007).  
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Oilcake meals contain high levels of CP, but they are highly degradable in the rumen. 

Fishmeal is higher in CP than oilcake meals and it has a high RUP content, but it is very 

expensive. Different treatments to oilcake meals could potentially increase the RUP value, 

which would increase milk yield of high producing dairy cows. Denaturing the protein of a 

feedstuff by heat treatment could produce a less rumen digestible feedstuff, but too much 

heat would result in a significant maillard reaction that would render the protein indigestible 

in the small intestine (De Ondarza, 2004). Over-processing with chemicals, such as 

formaldehyde, can also reduce nutritional value and protein digestibility in the small intestine.  

The objective of the current trial was: 

• To determine the effect of a potential protein binder on DM and CP disappearance 

parameters using in sacco and in vitro methods.  

3.2 Materials and methods 

3.2.1 Animals 

Four ruminally cannulated lactating Holstein cows, 137 ± 18 (SE) DIM and weighing 713 ± 

11 (SE) kg, were used in the trial. The cows were housed at the Welgevallen Experimental 

Farm of Stellenbosch University, Western Cape, South Africa. The animals were kept in a 

free stall barn with the rest of the milking herd. Cows received a TMR twice daily (7h00 and 

16h00). All procedures carried out in the current trial were approved by the Research Ethics 

Committee: Animal Care and Use at Stellenbosch University (protocol reference number 

AUC-2018-6802).  

3.2.2 Treatments 

The protein feedstuffs used in this study were three different oilcake meals, namely soybean, 

sunflower and canola. Each feedstuff was milled using a hammer mill (Scientic, RSA) with a 

1 mm screen. The residues were sieved through a 106 μm screen with a brush to remove 

fine particles which could pass through the dacron pores undegraded. The residues on the 

top half of the sieve were stored in a cold room (4˚C) in plastic containers until used.   

Two treatments were used on the samples for both the in sacco and in vitro trials: 

1. Bioprotect® 

2. Distilled water (Control) 

Treatment of substrates with Bioprotect® and distilled water was done by spraying the 

relevant solutions on the substrates at a rate equivalent to 0.5 L per 1% CP per tonne. For 
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example, if soybean oil cake contains 47% of CP, the application (Bioprotect® or water) 

would be equivalent to 23.5 L/tonne 

3.2.3 Procedure 

3.2.3.1 In sacco 

The dimensions of the dacron bags used in the trial were 100 mm x 200 mm with a nominal 

mean pore size of 53 μm. The bags were numbered with a permanent marker and dried at 

50˚ C for 24 hours in a forced draught oven. After drying, the bags were cooled in a 

desiccator for 30 minutes before weighing. For each oil cake meal and treatment, an amount 

of 8 g of the treated substrate was accurately weighed and transferred to the bags. The open 

end of each bag was folded over twice before folding the seam in a tobacco bag manner and 

tying with a cable tie. The bags were placed into ladies’ opaque stockings (size large to hold 

6 bags per stocking). Each bag was separated with a knot in the stocking, in an order to 

ensure that each numbered bag was retrieved at the correct incubation time. Each stocking 

had a large glass marble (35 mm diameter) in the toe end, to add weight to ensure that the 

stocking would be kept down into the rumen fluid.  

So-called catcher stockings were tied to the inside of the cannula lid and the stockings 

containing the Dacron bags were tied to the catcher as explained by Cruywagen (2006). The 

catchers were also marked with cable ties of different colours to facilitate treatment 

recognition when bags are retrieved.  Six stockings (3 oilcakes, 2 treatments) were 

incubated in the rumen of each cow. The bags were inserted at 14:00 and retrieved after 

the following incubation times:  2 h, 4 h, 8 h, 16 h, 24 h and 48 h (NRC, 2001). A 0 h 

incubation time was also included where the bags were not incubated in the rumen but 

washed in cold water according to the NRC (2001) procedure. The 0 h incubation represents 

the a-value (soluble and rapidly degradable fraction) in the first order model that was used 

for data processing and analysis. 

The collected bags were washed under tap water until the water ran clear and then placed in 

ice water for 15 minutes. The bags were then gently squeezed and dried between sheets of 

paper towel before they were stored in a cold room (4˚C). After retrieval of the last bags (48 

hours) all the bags were washed in a washing machine using a gentle cycle setting 

according to the NRC (2001) protocol. After spin drying, the bags were dried at 60˚C for 48 

hours in a forced draught oven. 
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3.2.3.2 In vitro 

Dacron bags were prepared in the same way as for the in sacco trial with 8 g of substrate 

per bag, but instead of ruminal incubation, the bags were incubated in jars using the ANKOM 

DaisyII Incubator (ANKOM Technology, New York).The incubation medium per jar consisted 

of 200 ml of rumen fluid as microbial inoculant and 800 ml of the Goering and Van Soest 

buffer (Goering and Van Soest, 1970), the composition of which is presented in Table 3.1. 

Rumen fluid was collected from the same cows that were used for the in sacco trials. After 

addition of the rumen fluid and before the incubation started, each jar was gassed with CO2. 

A number of eighteen bags were incubated per jar and the trial was done in two runs. Four 

jars were used per run which included one jar per cow per treatment, thus using two cows 

per run resulting in four replications. In the second run, two different cows were used as 

rumen liquid donors, thus using the same four cows that had been used in the in sacco trial. 

The Daisy incubator was located in a heat controlled warm room at 39°C. After incubation, 

bags were retrieved and treated in the same way as the bags from the in sacco trial 

explained above. 

3.2.3.3 Rumen fluid collection 

Rumen fluid was collected in the morning before 07h00 on the day of incubation.  Ethical 

clearance was obtained from Stellenbosch University’s Animal Ethics Committee (Protocol 

reference number AUC-2018-6802).  

Before collection, 1 L thermos flasks were filled with boiling water to preheat the flasks. 

Cows were put in a crush for rumen fluid collection. After removing the rumen cannula plugs, 

they were put into a bucket of hot water to become more flexible for easier replacing into the 

cannula opening. Rumen fluid was collected from different parts in the rumen and strained 

through two layers of cheesecloth into the flask through a funnel. Enough fluid was removed 

to fill the flasks to the brim to keep the content anaerobic. The cannula plug was then 

replaced into the cannula opening.  

In the laboratory, the rumen fluid of each flask was strained through another four layers of 

cheesecloth into 2 L glass Erlenmeyer flasks that were preheated (39˚C). After straining, the 

pH was recorded, and each flask was gassed with CO2 before taking them to the warm room 

(39°C) where the incubations were done. 

3.2.3.4 In vitro incubation medium  

The incubation medium (Goering and van Soest, 1970) was prepared according to the 

method of Goering and VanSoest, (1970) as indicated in Table 3.1.  800 ml of the medium 
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was measured into each incubation jar. Following addition of the reducing solution, the jars 

were gassed with CO2 and taken to the incubation room (room temperature of 39°C). The 

rest of the procedure is discussed above.               

Table 3.1 Reagents and quantity of the in vitro solutions (Goering and Van Soest, 1970). 

Reagent Quantity 

Buffer solution: 

Distilled water (dH2O) 

Ammonium bicarbonate (NH4HCO3) 

Sodium bicarbonate (NaHCO3) 

Macromineral solution: 

Distilled water (dH2O)                                                                                  

Di-sodium hydrogen orthophosphate (Na2HPO4) (anhydrous)                       

Potassium dihydrogen orthophosphate (KH2PO4) (anhydrous)                      

Magnesium sulphate heptahydrate (MgSO4.7H2O)     

Micromineral solution:      

Calcium chloride dehydrate (CaCl2.2H2O) 

Manganese chloride tetrahydrate (MnCl2.4H2O) 

Cobalt (ll) chloride hexahydrate (CoCl2.6H2O) 

Ferric chloride hexahydrate (FeCl3.6H2O)  

Incubation medium: 

Distilled water (dH2O) 

Tryptose 

Micromineral solution 

Macromineral solution 

Rezasurin 

Reducing solution: 

Flask 1: Distilled water (dH2O) 

             Cysteine hydrochloride (C3H7NO2HCl) 

             Potassium hydroxide pellets (KOH) 

Flask 2: Distilled water (dH2O) 

              Sodium sulphide nonahydrate (NaS) 

 

1000 ml 

4 g 

35 g 

 

1000 ml 

5.7 g 

6.2 g 

0.6 g 

 

13.2 g 

10 g 

1 g 

8 g 

 

1600 ml 

8 g 

400 μl 

800ml 

4 ml 

 

80 ml 

1 g 

40 

80 ml 

1 g 
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3.2.4 Chemical analysis 

After drying the bags at 60˚C for 48 h, they were cooled for 30 minutes in a desiccator and 

weighed. Bags were then opened and emptied into small bottles to collect samples for N 

determination.  

 A Leco FP-528 was used to determine the N content according to the AOAC (2002) protein 

(crude) in animal feed and pet feed protocol. The N content of the original feedstuffs before 

treatment and the residue of each bag after incubation, drying and weighing was 

determined. The N percentage was multiplied by 6.25 to determine the CP content of each 

sample (AOAC, 2002). Before calculating disappearance values, the final DM content of all 

the substrates and residues was determined by drying samples at 105°C for 24 h. The ash 

content was determined according to the AOAC (2002) official method 942.05 (ash of animal 

feed).  

3.2.5 Data analysis  

The Solver function of Microsoft Office Excel was used to fit the DM and CP disappearance 

data according to a non-linear model (Ørskov and McDonald, 1979):    

Y = a + b (1 – e
-ct

)  

where Y = degradation at time t  

a = soluble and rapidly degradable fraction  

b = fraction that will potentially be degraded over time  

c = rate of degradation of fraction b  

 e = natural logarithm 

 

The effective CP degradability was calculated as follows: 

 

D
eff 

= a + (bc / c + kp)  

where D
eff 

= effective degradability  

a,b and c = degradability parameters determined with the non-linear model   

kp = passage rate from the rumen   

The effective degradability includes kp because passage rate from the rumen affects 

degradation.  
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Data were analysed according to a main effects ANOVA using Statistica 10 (2011). The 

main effects were treatment, time and cow. For the in vitro trial, repeated measures analysis 

was done to determine the CP disappearance over time, because there were not enough 

incubation times to determine non-linear parameters.  In all cases, significance was declared 

at P ≤ 0.05 and tendencies at P ≤ 0.10. 

3.3 Results and discussion 

The chemical composition of the raw materials used in the study is shown in Table 3.1. The 

three oilcake meals differed mainly in protein content being higher in soybeans in 

comparison to sunflower OCM and canola OCM. . Because the level of Bioprotect® 

treatment depends on the CP content of the feedstuff, it follows that the higher the CP 

content is, the more Bioprotect®would be required for treatment. 

Table 3.2 The chemical composition of the protein sources used in this study. 

 

 SBM 

(%) 

SFM 

(%) 

CM 

(%) 

DM 89.4 91.4 88.8 

CP 47.0 30.5 34.6 

Ash 7.8 5.6 8.0 
SBM = soybean oilcake meal, SFM = sunflower oilcake meal, CM = canola  

oilcake meal, DM = dry matter, CP = crude protein 

 
3.3.1 In sacco DM degradability 

 

In sacco DM disappearance results are presented in Table 3.3. Trend lines (Figure 3.1) were 

fitted using the parameters derived from the non-linear function. 

3.3.1.1 Effect of Bioprotect® treatment on a-values for DM degradability 

The a-values (soluble and rapidly degradable fraction) of all three protein sources (Table 

3.3) differed between treatments, with Bioprotect® resulting in higher values. Because the 

samples were sieved through 106 µm before treatment, the values and differences between 

treatments cannot be ascribed to fine particle washout. The higher a-values observed for 

Bioprotect® would suggest that this treatment increased water solubility of nutrients, 

including protein.  
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It was expected that the Bioprotect® treatment would result in lower a-values as Bioprotect® 

seems to bind to the amino groups of proteins, thus protecting them against degradation. 

However, because the a-values represent the 0 h values (water washing), these values do 

not reflect ruminal degradation. It should, however, be kept in mind that the DM in the 

oilcakes contained more nutrients than protein alone and that the effect of treatment on DM 

a-values involves various nutrients. Although the effect between the treated and control 

means was unexpected, it was similar for soybean and canola oil cake meal but not for 

sunflower oilcake meal. Nel (2012) reported higher a-values (34 and 33%) than those in the 

current study for similarly sieved soybean and sunflower meal. In the current study, the 

increase observed in the soluble fraction after Bioprotect® treatment cannot be readily 

explained. The results of further investigations on the solubility of the treated feedstuffs are 

discussed in Chapter 5.  

Table 3.3 The effect of Bioprotect® treatment of different protein sources on in sacco 
ruminal DM degradation parameters in lactating Holstein cows. 

                   Treatment   

Oilcake meal Bioprotect® Control SEM P 

Soybean     

a1 24.9 14.0 0.489 < 0.001 

b 70.9 71.1 2.839 0.968 

c 0.033 0.032 0.001 0.108 

effDeg2 45.7 34.2 0.818 0.002 

Sunflower     

a 5.5 2.4 0.446 0.02 

b 42.4 47.1 0.916 0.035 

c 0.09 0.08 0.005 0.357 

effDeg 27.8 26.5 0.339 0.05 

Canola     

a 11.0 6.5 0.237 < 0.001 

b 50.6 48.8 1.237 0.382 

c 0.06 0.05 0.005 0.179 

effDeg 32.8 25.5 0.968 0.013 
 

SEM = Standard error of the mean. 
1a = soluble and rapidly degradable fraction; b = potentially degradable fraction; c = rate at which b is degraded 
2effDeg = effective degradability (kp = 0.08)  

 

Rates and extent of DM degradation are shown in Figure 3.1 (A-C). 
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Figure 3.1 (A-C) The effect of Bioprotect® treatment of different 
protein sources on in sacco DM disappearance over time. 
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3.3.1.2 Effect of Bioprotect® treatment on b-values for DM degradability 

The potentially degradable DM fraction for soybean and canola oilcake meals showed no 

significant differences between the two treatments. The b-values of sunflower oilcake meal, 

however, differed significantly (P<0.05) between treatments, with the mean value of 

Bioprotect® being lower than that of the control group. Although the difference was 

significant (P = 0.035), it was small and in Figure 3.1 (B) it can be seen that treatment effects 

only start to become apparent after around 40 hours of incubation. Griffiths (2004) reported 

that extrusion increased the DM b-fraction in soybean, canola and sunflower oil cakes.In a 

study by Nel (2012) who used similarly sieved oilcakes, similar b-values were reported 

forsoybean meal (66%) and sunflower meal (40%). 

The discussion of DM disappearance alone cannot lead to a final conclusion, but it may 

indicate that material can potentially be protected by Bioprotect®. Results on CP 

disappearance are discussed later. 

3.3.1.3 Effect of Bioprotect® treatment on c-values for DM degradability 

There was no significant difference between treatments in any of the three protein sources 

for the rate at which b-value (potentially degradable fraction) was degraded. Table 3.1 shows 

that the consistent numerical difference between treatments was as small as 0.001 and 0.01 

for the three oilcake meals. In the non-linear model that was used to solve the degradability 

estimations, the different parameters (a-, b- and c-values) are interdependent and the one 

affects the other. For example, a high a-value, as well as a high b-value, would result in a 

high c-value, and vice versa. This result in some marked differences were observed between 

different studies. Nel (2012), for example, reported much higher c-values for soybean meal 

(0.078) and sunflower meal (0.148) than what were observed in the current study, due to the 

higher a- and b-values reported in that study.  

3.3.1.4 Effect of Bioprotect® treatment on effective DM degradability 

The passage rate of feed from the rumen of lactating dairy cows (kp) is accepted to be  8% 

per hour, and as passage rate and rumen retention time are reciprocals of each other, the 

mean rumen retention time for kp = 0.08 is calculated to be 12.5 hours. Significant 

differences were observed (Table 3.1) for all three oilcakes where Bioprotect® resulted in 

higher effective degradability (effDeg) values compared to Control. The difference between 

Treatment and Control was much smaller for sunflower oilcake than for soybean and canola, 

which was expected as the b-value of sunflower oilcake was significantly lower. Because 
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effective DM degradability does not really have practical value, no documented results were 

found to compare with the current study.   

3.3.2 In sacco CP degradability 

In sacco CP disappearance results are presented in Table 3.4. Curves (Figure 3.2) were 

also constructed using the parameters derived from the non-linear function. 

Table 3.4 The effect of Bioprotect® treatment of different protein sources on in sacco 
ruminal CP degradation parameters in lactating Holstein cows. 

                   Treatment   

Oilcake meal Bioprotect® Control SEM P 

Soybean     

 a1 8.9 0.5 1.224 0.017 

b 86.3 82.7 5.224 0.661 

C 0.019 0.015 0.001 0.124 

effDeg2 24.6 13.2 1.722 0.018 

Sunflower     

a 12.4 7.2 1.062 0.042 

b 76.3 80.2 1.412 0.142 

c 0.133 0.076 0.005 0.004 

effDeg 59.4 45.4 0.592 0.005 

Canola     

a 16.4 6.2 0.634 0.002 

b 65.9 55.2 5.022 0.232 

c 0.061 0.087 0.015 0.318 

effDeg 44.9 33.1 0.554 <0.001 
 

SEM = Standard error 
1a = soluble and rapidly degradable fraction; b = potentially degradable fraction; c = rate at which b is degraded 
2effDeg = effective degradability (kp = 0.08) 

 3.3.2.1 Effect of Bioprotect® treatment on a-values for CP degradability 

The a-values of all three protein sources (Table 3.2) were higher with the Bioprotect® 

treatment compared to the Control. As mentioned previously, the samples were sieved 

through 106 µm before treatment, and the differences between treatments can thus not be 

ascribed to fine particle washout. The higher a-values observed for Bioprotect® would 

suggest that this treatment increased the water solubility of proteins.  
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Figure 3.2 The effect of Bioprotect® treatment of different protein 
sources on in sacco CP disappearance over time. 
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For reasons mentioned previously, it was expected that the Bioprotect® treatment would 

result in lower a-values, but because the a-values (0 h) represent the water washing phase, 

these values do not reflect ruminal degradation. As in the case of DM, the difference 

between treatments was consistent for all the oilcakes. Erasmus (1988) reported an a-value 

of 10% for unsieved soybean meal and 46% for sunflower. Nel (2012) reported a-values of 

30.5% for unsieved soybean meal and 16.3% for 106 µm sieved samples. Corresponding 

values for sunflower meal were 37.3% (unsieved) and 130.5% (sieved). According to 

Griffiths (2004) extrusion (compared to untreated) decreased the a-value of CP in soybean 

and canola oilcakes but increased it in the case of sunflower oilcake. It can be expected that 

different treatments and different batches of the same type of feedstuff may have different 

effects on CP solubility. In the current study, the reason for higher a-values after Bioprotect® 

treatment are unclear and results of further investigations on the solubility of the treated 

feedstuffs are discussed in Chapter 5. 

3.3.2.2 Effect of Bioprotect® treatment on b-values for CP degradability 

All three protein sources showed no significant b-value differences between Bioprotect® and 

Control. As it was expected that Bioprotect® would provide protection against CP 

degradability, the current results were unexpected. In a study by Griffiths (2004), extrusion 

increased the b-values of soybean and sunflower oilcakes but had no effect on canola 

oilcake. Nel (2012) sieved samples of protein sources through different sieve sizes to 

remove fine particles that could be washed out of dacron bags without being digested. She 

reported that whereas sieving decreased the a-values it increased the b-values of soybean 

and sunflower meals from 71.1% to 88% (soybean meal) and from 55.9% to 62.3% 

(sunflower meal). As in the case of treatment effects on solubility, it appears that different 

treatments and batches have different effects on the potential CP degradability of protein 

sources.  

The curves in Figure 3.2 show marked differences over time between the Control and 

Bioprotect® treatments for all three oilcakes. An asymptote was not reached with soybean 

meal (A) which was still increasing at 100 hours. Final degradation values of soybean and 

canola meals after 96 h were higher in the Bioprotect® treatment compared to the Control, 

but values were quite similar in the case of sunflower meal. In sunflower meal, the higher 

rate of degradation can be observed in the Bioprotect® treatment.   

3.3.2.3 Effect of Bioprotect® treatment on c-values for CP degradability 

There was no significant difference between treatments in the rate of degradation for both 

soybean and canola oilcakes. However, sunflower oilcake meal was degraded significantly 
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faster in the Bioprotect® treatment. Since there were no differences between treatments in 

the c-values regarding DM, the current result was not expected. Extrusion had no effect on 

the CP degradation of soybean oilcake but lowered the rate in sunflower oilcake and tended 

to lower it in canola oil cake (Griffiths, 2004). Nel (2012) reported no effect of sieving in c-

values of soybean and sunflower meals.     

3.3.2.4 Effect of Bioprotect® treatment on effective CP degradability 

Calculated at kp = 0.08, which would be equivalent to a mean rumen retention time of 12.5 h, 

a significant difference in effDeg was observed between treatments for all three protein 

sources. Bioprotect® resulted in significantly higher effDeg values, which was the opposite 

of what was expected when the trial commenced. When protein sources were extruded, 

Griffiths (2004) observed significant decreases in effDeg.  Literature values of effective CP 

degradability for soybean meal and canola meal are generally higher than those reported in 

the current study. Erasmus et al. (1988) reported effDeg values of 51.4% for soybean meal 

and 76% for sunflower meal, whereas Nel (2012) reported fairly similar values of 55.3% and 

72% for the same oilcakes. According to Schroeder et al. (1995), effDeg was 73% for 

soybean meal. Susmel et al. (1993), using a kp of 0.07, reported 52% for soybean meal and 

76% for sunflower meal. Using a kp of 0.06, Alexandrov (1998) found effDeg values of 

sunflower meal to be 74%. Although effDeg values obtained in the current study are lower 

than most reported in the literature, Biotin consistently increased effDeg of CP. For both 

treatments, sunflower oilcake had the highest effDeg values, followed by canola oilcake 

whereas soybean oilcake had the lowest values. This is consistent with the literature (Ha 

and Kennelly, 1984; Erasmus et al., 1988).  

3.3.3 In vitro CP degradability 

Following the in sacco trial, it was decided to do another trial to confirm the results which 

were contrary to what was expected. The effect of Bioprotect® treatment on the same three 

protein sources was thus evaluated again, but in an in vitro trial. In vitro trials require less 

labour and are less expensive than in sacco trials (Holden, 1999). In the in vitro trial, the 

effect of treatment was determined on CP degradability only, and samples were incubated 

for 4, 8 and 16 h.          

Results are presented in Table 3. 5 and Figure 3.3 (A to C). 
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Table 3.5 The effect of Bioprotect® treatment of three protein sources on in vitro CP 
degradation at various time points. Values are LS means expressed as % of CP. 

 

Oilcake meal Time Treatment P-value 

 
 

 Bioprotect® Control  

 
Soybean 

 
0 

 

12.3 

 

2.2 

 

< 0.001 

 4 50.0 49.5 0.832 

 8 52.6 54.2 0.536 

 16 72.6 77. 0.060 

     

Sunflower 0 17.1 3.4 < 0.001 

 4 74.2 71.6 0.078 

 8 78.4 79.9 0.244 

 16 88.7 89.3 0.681 

     

Canola 0 15.0 7.4 < 0.001 

 4 47.9 40.3 0.002 

 8 49.3 54.2 0.022 

 16 
 

63.3 67.5 0.040 

 

Although the magnitude of the 0 h values differed somewhat from the model derived a-

values observed in the in sacco trial, the soluble and rapidly degradable fraction was again 

significantly higher for the Bioprotect® treated oilcakes (Table 3.5). In the control treatment 

of a study by Griffiths (2004), much higher a-values (comparable to 0 h in the current study) 

were reported for canola, namely 70% which is unrealistic and 29% for sunflower meal. Nel 

(2012) reported 11.5% for soybean meal and 27.4% for sunflower meal. The higher CP 

degradability of the Bioprotect® treated oilcakes in the current study was still observed after 

4 h for canola oilcake, while a tendency to this effect (P = 0.08) was observed for sunflower 

oilcake. In the case of soybean oilcake, there was no difference between treatments at 4h.  

After 8 h of incubation, no treatment effects were observed for soybean meal and CP 

disappearance values were similar. The 8 h disappearance value obtained in the Control 

(54%) was lower than the 77% reported for Control by Griffiths (2004). After 8 h in the 

current study, CP degradation started to decrease for the Bioprotect® treatment and by 16 h 
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Figure 3.3 (A-C) The effect of Bioprotect® treatment of different protein 
sources on in vitro CP disappearance over time. 

there was a strong tendency (P < 0.06) towards lower CP degradation in the Bioprotect® 

treatment.  
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Considering that the soluble CP fraction of the Bioprotect® treated soybean meal was 

already 10 percentage units higher than the control, the degradation of soybean CP from 

that point onwards was in effect much lower than that of the Control (60% vs. 75%, 

respectively). This is also visible in Figure 3.3 (A). Nel (2012) reported 12 h CP 

disappearance values of soybean meal and sunflower meal to be 57% and 81.3%, 

respectively. These values are intermediate between 8 and 16 h values found in the current 

study. 

In the case of sunflower meal, no treatment effects on CP degradability were observed from 

8 to 16 h. As in the case of soybean meal, the degradation (disregarding the soluble fraction) 

of sunflower meal CP from 0 h to 16 h appeared to have been lower for the Bioprotect® 

treatment than for the Control (71.6% vs. 85.9%). This can be observed in Figure 3.3 (B). 

Canola meal showed a similar tendency than the other oilcakes, but the effects were more 

significant (Table 3.5 and Figure 3.3 C). At 4 h the CP degradability was still higher in the 

Bioprotect® treatment, but between 4 and 8 h it appears that degradation started to slow 

down and by 8 h, CP degradation in the Bioprotect® treatment was significantly lower (P = 

0.02) than in the Control. Again, when taking the soluble CP fraction into account, the net CP 

degradation after 0 h up to 16 h was less in the Bioprotect® treatment (48.3%) than in the 

Control (60.1%). 

3.4 Conclusion 

Bioprotect® increased the a-value (0 h incubation) of all the substrates, indicating a higher 

water solubility following treatment. In the in sacco trial, Bioprotect® did not lower DM or CP 

degradability for any of the substrates. As a result of the higher a-values obtained with 

Bioprotect® treatment, the effective CP degradability (eDegCP) of all the substrates 

increased. In the in vitro trial, treatment * time interactions showed that Bioprotect® 

decreased CP degradation in canola meal after 8 and 16 h of incubation and tended to 

decrease 16 h CP degradability in soybean meal. It was concluded that Bioprotect® appears 

to increase CP solubility, but the effect of treatment on CP degradability was not conclusive 

due to different tendencies observed in the in sacco and in vitro trials. However, the 

difference between treatments in the magnitude of in vitro CP degradability observed from 4 

to 16 h suggested that Bioprotect® may indeed have a depressing effect on the 

degradability of the potentially degradable fraction but this effect may be shadowed by the 

increase in the soluble fraction observed in the Bioprotect® treatment. Due to the significant 

impact of the soluble fraction on the calculation of effective degradability, the result was a 
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higher effective CP degradability observed in the Bioprotect® treatments. The CP 

degradability of the soluble protein fraction is unknown and warrants investigation. This was 

the objective of a study that will be discussed in Chapter 5. 
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Chapter 4 

 

The effect of a protein binder on intestinal digestibility using the 
Ross assay 

 

Abstract 

 

The objective of the study was to determine the effect of a potential protein binder 

(Bioprotect®) on the intestinal digestibility of three protein sources. The assay developed by 

Ross et al. (2013) was used to determine the intestinal digestibility of treated soybean, 

sunflower and canola oilcake meals (OCM). Each OCM was milled through a 4.5 mm screen 

before treatment. Treatment was done by spraying sub-samples of the OCM with either 

distilled water (Control) or Bioprotect®, both at a rate equivalent to 0.5 L/tonne for each 1% 

CP in the substrate. Rumen liquid was collected from six lactating Holstein cows, fitted with 

rumen cannulae. Rumen fermentation, gastric digestion and intestinal digestion were the 

three phases of the assay, where the first phase represents microbial digestion in the rumen 

and the last two phases represent intrinsic enzyme digestion. Incubation times were 12 

hours for the rumen fermentation phase, 1 hour   for the gastric digestion phase and 24 

hours for the intestinal digestion phase. In this trial, the interest was in the total apparent 

digestibility values of all three phases, representing total intestinal digestibility (ID). No 

significant differences in ID were observed between the protein binder and the control group 

for all OCMs. Respective values for the protein binder and control treatments were 74.7 and 

73.6% for soybean meal, 62.1 and 63.9% for canola meal, and 70.5 and 71.5% for sunflower 

meal. It was concluded that treatment of oil cake meals with the specific protein binder did 

not increase total intestinal digestibility.   
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4.1 Introduction 

The potential increase of milk protein and N efficiency can be the result of balancing dairy 

cow diets for AA. The available AA in the small intestine (SI) of cows are supplied by ruminal 

microbial CP, rumen undegradable protein (RUP) and endogenous protein (Paz et al., 

2014). The intestinal digestibility (ID) of RUP is an important parameter determining milk 

production of dairy cows. Before the NRC (2001) published RUP digestibility values that 

range from 50% to 100%, all ID values of feedstuffs were accepted as 80%. Research 

showed, however, that the ID values of RUP from concentrates are higher than those 

derived from forages after 16 hours of rumen incubation (Wang et al., 2015). Concentrates 

undergo different processing methods and vary in terms of nutrient sources, whereas 

forages differ in terms of type and harvesting time (maturity), which would result in different 

digestibility percentages (Wang et al., 2015).  

Dairy cow diet formulations are often based on feed library estimates. More accurate models 

are developed to predict the nutrient supply and nutrient balance, especially when nutrient 

values are known for the specific feedstuffs that are available. Diets are formulated to meet 

and not exceed the MP requirement, confirming the importance of accurate intestinal 

digestibility estimates of protein and AA’s. A three-step assay to estimate in vitro intestinal 

digestibility values of protein feedstuffs used in ruminant diets was developed by Ross et al. 

(2013).  

Methods used to determine ID of RUP include the original three step in vitro (OTS) method 

developed by Tilley and Terry (1963), the modified three step in vitro (MTS) method 

developed by Ross et al. (2013), the acid detergent insoluble nitrogen (ADIN) method 

described by Goering et al. (1970) and the widely used mobile nylon bag (MNB) method, as 

described by Ørskov and McDonald (1979). The last-mentioned method has many 

advantages including the significant correlation of the values with the in vivo method. 

Disadvantages were found for each method, for example time-consuming, expensiveness 

and environmental pollution (Wang et al., 2015). Sample loss and variation was eliminated 

with the development of the Ross assay (Ross et al., 2013).       

The objective of the current trial was to determine the effect of a potential protein binder on 

the intestinal digestibility of soybean meal, canola meal and sunflower meal.  
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4.2 Materials and methods 

4.2.1 Animals 

Six ruminally cannulated lactating Holstein cows, 163 ± 20 (SE) DIM and weighing 728 ± 14 

(SE) kg, were used for this trial. The same rumen fluid collection procedure was followed as 

the one discussed in Chapter 3.2.3.3. The cows were housed at the Welgevallen 

Experimental Farm of Stellenbosch University, Western Cape, South Africa. The animals 

were kept in a free stall barn with the rest of the milking herd and received a lactating cow 

TMR twice daily (07h00 and 16h00). All procedures carried out in the current trial were 

approved by the Research Ethics Committee: Animal Care and Use at Stellenbosch 

University (protocol reference number AUC-2019-6802).  

4.2.2 Treatments 

Three oilcake meals (soybean, sunflower and canola) were used in this trial. Each oilcake 

was milled through a 4.5 mm screen using a laboratory hammer mill (Scientic, RSA) and 

samples were stored in honey jars in a cold room at 4˚C until used. 

Oilcake meals were then treated with either distilled water (dH2O) or Bioprotect®. Treatment 

was done by spraying the relevant solution at a rate equivalent to 0.5 L per 1% CP per 

tonne.  

4.2.3 Preparations  

The CSND was included in the assay as a fermentation control sample and for the 

estimation of microbial protein contamination. Maize silage samples were collected from a 

farm near Klipheuwel, Western Cape, RSA.  

4.2.3.1 ND solution used to prepare CSND 

The following were added to a 5 L glass beaker with a magnetic stirrer (20-40 cm): 93.05 g 

of EDTA, 34.05 g of sodium tetra borate, 22.8 g of disodium-hydrogen orthophosphate, 150 

g of sodium lauryl sulphate and 3 L of distilled water. After addition of 50 ml of 2-

ethoxyethanol to the glass beaker, the beaker was heated, and the contents stirred until all 

the salts were dissolved. The stirrer bar was removed, and the solution was transferred to a 

5 L volumetric flask and filled with distilled water to the 5 L mark. The solution was 

thoroughly mixed before it was used. 
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4.2.3.2 Ammonium sulphate solution 1M 

Distilled water (800 ml) and 132.14 g of ammonium sulphate, along with a 20 cm stirrer bar, 

were added to a 1 L glass beaker. Once the salt was dissolved, the stirrer bar was removed, 

and the solution transferred to a 1 L volumetric flask. 

4.2.3.3 Preparation of CSND  

The fresh silage was dried at 50˚C for 72 hours. The dried silage was milled through a 2 mm 

screen using a laboratory hammer mill (Scientic, RSA) and stored in a cold room (4˚C) until 

used. An amount of 120 g of dried maize silage and 120 g of sodium sulphite was mixed in a 

5 L glass beaker with the addition of 3 L of ND solution, as well as 24 ml of heat stable 

amylase (Ankom Technology, Fairport, NY). The solution was boiled under a fume hood for 

75 min and stirred occasionally. The contents were then washed with boiling water through a 

106 μm sieve and placed on a tinfoil tray and dried overnight at 100˚C. 

Because the resultant residue is only 20 to 25% of the originally weighed dry silage, the 

process had to be repeated until enough CSND (at least 15 g) was prepared. All the 

residues were milled through a 2 mm sieve using a laboratory hammer mill (Scientic, RSA). 

In the final step of CSND preparation, an amount of 15 g of the previously prepared CSND 

residue and 1 L of the ammonium sulphate solution (1M) were mixed together in a 2 L Schott 

bottle. The mixture was incubated at 39˚C overnight before the contents were washed three 

times through a 106 μm sieve with boiling water. Drying overnight at 100˚C was done before 

the residue was milled again through a 2 mm sieve and stored at 4°C until used.  

4.2.3.4 Potassium phosphate buffer and enzyme mixture 

The buffer was made up of two solutions. The first solution (A) was prepared in a 1 L 

volumetric flask with 500 ml of distilled water added. Then, an amount of 313.52 g of 

dipotassium phosphate (K2HPO4) was added and dissolved before filling to the mark with 

distilled water. The second solution (B) was prepared by dissolving 244.94 g of 

monopotassium phosphate (KH2PO4) in 500 ml of distilled water in a 1 L volumetric flask 

before filling to the mark. Volumes of 875 ml of solution A and 125 ml of solution B were 

transferred to a clean 1 L glass beaker. A stirrer bar was added, and the solutions were 

thoroughly mixed while measuring the pH. Small volumes of solution B were added with a 

micropipette until the pH reached 7.75.  

In the final step of the buffer preparation, the following amounts of enzymes were added 

while stirring continued until everything was dissolved:  
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1.  Trypsin, 24 U/ml (Sigma T9201). 

2. Chymotrypsin, 20 U/ml (Sigma C4129).  

3. Amylase, 50 U/ml (Megazyme, BLAAM100). 

4. Lipase, 4 U/ml (Sigma L3126). 

5. Bile, 1 g/L (Sigma B3883).  

 

4.2.4 Intestinal digestibility procedure 

The modified Tilley and Terry (1963) assay that was developed by Ross et al. (2013) was 

followed to determine the intestinal digestibility. 

Of each oilcake sample, an amount of 0.5 g was weighed out into a labelled 250 ml Nalgene 

bottle. Magnetic stirrers were inserted into the bottles and each bottle was placed on a 

magnetic stirrer plate. Rumen fluid (10 ml) was added to all the samples, except for two of 

the CSND control bottles. An amount of 40 ml of the Goering and Van Soest (1970) buffer 

was added to each sample, but 50 ml were added to the two CSND control bottles that did 

not contain rumen fluid. All the Nalgene bottles were gassed with CO2 and the incubations 

were done in a temperature-controlled room at 39°C. After 12 hours of incubation (Phase 1), 

2 ml of 3M HCl was added to each bottle, followed by 2 ml of the pepsin solution (0.013 M 

HCl and 0.6 g pepsin per 1 L solution). This initiated Phase 2 of the procedure where 

incubations were done for one hour, followed by the addition of 2 mL of 2M NaOH to 

neutralize the solution at a pH of around 5. In Phase 3, 10 ml of the potassium phosphate 

buffer (1.8M) with a pH of 7.75 was added to all the sample bottles followed by incubation for 

24 hours. After the incubation period, 2 ml of 3M HCl were added to each bottle to inhibit 

further microbial activity. All the bottle contents were transferred to 125 ml plastic cups. 

Bottles were flushed with distilled water until all the residues were transferred to the cups. 

Glass microfiber filters with a pore size of 1.5 μm (Whatman 934-AH; Piscataway, New York) 

were numbered and dried in a 50˚C oven overnight before cooling and weighing them 

accurately. All the samples were then filtered through the glass microfiber filters under 

vacuum and dried for 12 hours in a forced draught oven at 100˚C. After drying, samples 

were cooled in a desiccator and accurately weighed.  

4.2.5 Chemical analyses 

The dry matter (DM) content of the oilcake meals, maize silage neutral detergent (CSND), 

positive (freeze dried blood) and negative (burnt blood) controls were done by drying 
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samples for 24 h at 105°C in a forced draught oven according to the AOAC (2002) Official 

Method 934.01. Ash was determined according to the AOAC (2002) Official Method 942.05. 

A Leco FP-528 was used to determine the N content of all the substrates according to the 

AOAC (2002) Official Method 990.03. Because some of the fine particles, including 

undigested CP, would have been impregnated in the microfibre filters, the complete filter 

discs had to be analysed for N. The Leco used for N analysis in the Department’s laboratory 

cannot accommodate such large samples, therefore the filter discs containing the residues 

were sent to the Analytical Laboratory of the Western Cape Department of Agriculture at 

Elsenburg for N determination. The filter discs were digested according to the Kjeldahl 

method and N was read using a Gallery Discrete Analyzer (Thermo Fisher Scientific, 

Waltham, Mass, USA). 

4.2.6 Statistical analysis 

The trial was conducted as a randomized block design; therefore, data were analysed 

according to a main effects ANOVA using Statistica 10 (2018). Main effects were treatment 

(Bioprotect® vs distilled water), protein source (soybean, canola or sunflower meal) and 

block (rumen fluid from six different cows). Significance was declared at P ≤ 0.05 and 

tendencies at P ≤ 0.10. 

4.3 Results and discussion 

Results of the intestinal digestion trial are presented in Table 4.1. 

 

  

                  

 

1Treatments:  Protein substrates were treated with either Bioprotect® or dH2O at a rate equivalent 
  to 0.5 L per 1% CP per tonne. 
2OCM = oil cake meal. 
 SEM = Standard error of the mean. 

 

 Treatment1   

Protein source Bioprotect® Control SEM       P 

 

Soybean OCM2 

Canola OCM 

Sunflower OCM 

 

74.7 

62.1 

70.53 

 

73.6 

63.9 

71.5 

 

0.872 

0.711 

0.520 

 

0.378 

0.142 

0.239 

Table 4.1 The effect of Bioprotect® treatment of three protein sources on total intestinal CP 
digestion (%), as determined with the Ross assay. 
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No significant differences in intestinal CP digestibility were observed between treatments for 

any of the oilcake meals. However, when analysing the different oilcakes as main effects, 

CP ID differed (P < 0.001) between all three protein sources. Mean values were 74.2% for 

soybean meal, 71.0% for sunflower meal and 63.0% for canola meal. Results from the in 

sacco trial (Chapter 3) indicated that Bioprotect® increased effective protein degradation in 

the rumen, whereas the in vitro trial suggested that Bioprotect® decreased CP degradability 

of canola meal after 8 and 16 h of incubation and tended to decrease degradability of 

soybean CP after 16 h. The magnitude of the differences in CP degradation between 

treatments observed from 4 to 16 h in the in vitro trial and discussed in Chapter 3, suggested 

that Bioprotect® may indeed have a depressing effect on CP degradability, but that the 

effect may be shadowed by an increase in the soluble fraction that had been observed in the 

Bioprotect® treatment. The current trial was thus done to determine if Bioprotect® might 

have a post-ruminal effect on undegraded protein, but results indicated that treatment had 

no effect on the ID (sum of the ruminal, gastric and small intestine digestibility valus) of CP in 

any of the substrates.  An increase in the water solubility of CP was observed after treating 

all three protein sources with Bioprotect® (Chapter 3). The effect of treatment on the 

degradation of the soluble protein is, however, unknown and this was the focus of a next trial 

that will be discussed in Chapter 5.  

Results of the current study were consistent with those found in documented studies. In a 

previous in vitro intestinal digestibility study reported by Borucki Castro et al. (2007), it was 

found that different treatments of soybean OCM resulted in similar CP digestibility values as 

those observed in the current trial. These authors found that expeller, lignosulfonate and 

heat treatment of soybean meal resulted in disappearance values ranging from 74.3 to 

79.4%, whereas in the current study the values were 74.7% (Control) and 73.6% 

(Bioprotect®). In a study by Paz et al. (2014), the intestinal digestibility of canola RUP was 

reported to be 72.4%.   

The variation observed between different studies may occur due to different varieties of 

soybean and different geographic locations of soybean production. The processing of 

feedstuffs also affects the RUP digestibility. Small intestinal digestibility of CP was 

determined by Wang et al. (2016) for the same three OCMs that had been used in the 

current study. These authors used an in situ intestinal incubation method and found 

digestibility values of 98.1% for soybean, 82.6% for sunflower and 88.5% for rapeseed 

(canola) meal. Borucki Castro et al. (2007) did an in situ and in vitro trial and also found the 

in situ CP digestion values of soybean meal to be high (98.5%). The higher values found in 

the in situ trial could have been caused by the particle loss during intestinal transit or 

machine water washing of bags. Another reason for the values to differ could have been 
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caused by hindgut proteolytic bacteria during the total tract in situ procedure where bags 

were retrieved from faeces (Borucki Castro et al., 2007).     

Different methods were used in previous studies and some showed similar results when 

compared with the current study. Although the Ross assay is often used by feed analysis 

laboratories and results are used in feed formulation programs, not many results have been 

published where this assay had been used to determine treatment effects on intestinal CP 

digestibility.  

4.4 Conclusion 

Bioprotect® (a potential protein binder) treatment of three protein-rich oilcake meals 

commonly used in dairy cow diets, had no effect on the intestinal CP digestibility. In the 

previous chapter, results suggested that Bioprotect® treatment might increase RUP values 

of certain protein sources (e.g. canola meal) at specific incubation times (8 and 16 h), but 

results were not conclusive. Considering the nett effects of Bioprotect® (in sacco and in 

vitro) it appeared that Bioprotect® treatment rather increased apparent ruminal CP 

degradation. However, regardless of the treatment effect on ruminal CP degradation, 

positive or negative, the effect was not extended to total intestinal CP digestion as 

determined by the Ross assay. Because of an increase in the water solubility of CP effected 

by Bioprotect® treatment in all three protein meals, followed by a lack of treatment response 

on ID values, it is hypothesised that Bioprotect® treatment might decrease the degradability 

of soluble protein. This was the focus of the next chapter.  
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Chapter 5 

The effect of Bioprotect® on buffer soluble protein and 
degradability of soluble protein 

 

Abstract 

This study included two trials and the objectives were to determine the effect of a potential 

protein binder on buffer soluble protein and then to determine, the degradability of the 

soluble protein. The protein-rich feedstuffs, commonly included in dairy cow diets, which 

were used in the soluble protein trial were soybean, sunflower and canola oilcake meals. 

Each OCM was milled through a 1 mm sieve using a laboratory hammer mill before treating 

with either Bioprotect® or distilled water (Control). The relevant treatments were applied by 

spraying an equivalent of 0.5 L per 1% CP per tonne onto the substrates. In the first trial, 

samples were incubated in a borate-phosphate buffer for 1 hour at 39˚C. Following 

centrifugation, the supernatants were analysed for N content and soluble protein was 

calculated. To determine the degradability of soluble protein in the second trial, the same 

treatment and buffer solubility protocols were followed, but because soybean meal had the 

greatest buffer solubility in the first trial, it was used as the protein source of choice for the 

second trial.  After the buffer solubility phase, 20 ml of the respective supernatants were 

added to an incubation medium consisting of 40 ml of Goering-Van Soest buffer and 10 ml of 

rumen liquid. Four ruminally cannulated lactating Holstein cows were used as rumen liquid 

donors. Samples were incubated in 100 ml Nalgene bottles in a temperature-controlled room 

at 39°C for 0, 2, 8 or 24 hours, before they were centrifuged, and the supernatant analysed 

for N content. Bioprotect® and distilled water treatment of the protein sources resulted in 

respective protein buffer solubility values, expressed as percentage of CP, of 20.2 and 

13.1% for soybean meal (P < 0.001), 27.5 and 26.6% for canola meal (P = 0.475) and 28.4 

and 27.1% for sunflower meal (P = 0.594).  Because buffer solubility of CP was only 

increased in the case of soybean meal, it was decided to use only soybean meal to 

determine the effect of treatment on the degradability of soluble protein. Results showed that 

Bioprotect® decreased (P < 0.05) the degradability of soluble protein. After 2, 8 and 24 h of 

incubation, protein degradation values were 83.8, 85.4 and 88.4% for the Bioprotect® 

treatment and 94.3, 98.3 and 99.1% for the Control treatment, respectively. It was concluded 

that, although Bioprotect® increased the buffer solubility of soybean meal CP, it decreased 

the in vitro CP degradation thereof. It therefore appears that soluble protein is not 
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necessarily degraded completely in the rumen and that certain treatments of protein sources 

may alter the extent of degradation.  

5.1 Introduction 

Optimization of protein utilisation has become an important factor in ruminant animal diets 

because of protein being a high cost nutrient. Attention was drawn to the breakdown of feed 

proteins and microbial protein synthesis in the rumen since the seventies and eighties 

(Meyer and Van der Walt, 1983). Protein solubility is one of the factors that affect ruminal 

protein degradation (Stern et al., 2006) with soluble protein being fully degraded in the 

rumen. According to Zayas (1997), information about potential protein utilisation and 

functionality of feeds can be derived from their solubility values.   

Multiple factors affect the solubility of proteins. Environmental factors, such as pH, 

temperature, ionic strength and processing conditions all play a role (Zayas, 1997). 

Regarding processing conditions, heat has a significant effect on protein solubility (Sashikala 

et al., 2015). Other factors include molecular weight, composition and sequence of AA, as 

well as polar and non-polar groups (Zayas, 1997).   

Protein solubility plays an important role in the determination of protein degradability (Bach 

et al., 2005) and it is an indicator of degradation when different samples of the same 

feedstuff are compared (Stern et al., 1994). The susceptibility of protein to microbial 

proteases is determined by the solubility of the protein, which thus affects degradability 

(Bach et al., 2005). The water solubility of all proteins is important for the digestion and 

absorption of protein (Žilić et al., 2006). 

Degradation of soluble protein cannot be estimated by the in sacco method (Hedqvist et al., 

2006). A variety of buffers were used in previous studies to measure the solubility of the 

protein source, aiming to correlate it with the in sacco method (Hedqvist et al., 2006). 

Proteins degraded by rumen microorganisms are assumed to be related to the solubility of 

these proteins with comparable ionic strength and pH in rumen fluid or a mineral buffer 

(Mahadevan et al., 1980). 

The objectives of the current study were firstly to determine the effect of Bioprotect® 

treatment of soybean meal, canola meal and sunflower meal on buffer solubility of protein, 

and secondly to determine the degradability of soluble soybean protein.  
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5.2 Materials and methods for protein solubility (Trial 1) 

5.2.1 Treatments 

Oilcake meals of soybean, sunflower and canola were used in the trial. Each oilcake feed 

was milled through a 1 mm screen using a laboratory hammer mill (Scientic, RSA). 

Treatments included the potential protein binder (Bioprotect®) and distilled water (Control). 

Treatments were applied by spraying the relevant solutions on the substrates at a rate 

equivalent to 0.5L per 1% CP per tonne.  

5.2.2 Preperation 

The Nordic Feed Evaluation System (Åkerlind et al., 2011) was used to determine crude 

protein solubility. In the method, a modified version of the borate-phosphate buffer proposed 

by Licitra et al. (1996) was used. The buffer preparation is indicated in Table 5.1. 

 

 

The reagents were accurately weighed out and transferred to a 1 L volumetric flask. A 

volume of 900 ml of distilled water was added and the contents swirled until all the reagents 

have dissolved, before filling the flask to the 1 L mark with distilled water. The pH of the 

solution was checked to confirm the required value of 6.75. The buffer solution was then pre-

heated to 39˚C before incubation started. 

5.2.3 Procedure   

An amount of 1.5 g of each protein source was accurately weighed out and transferred to 

100 ml screw-top centrifuge tubes before adding 50 ml of the borate-phosphate buffer (39˚C) 

to each tube. A blank sample (50 ml of the buffer alone) was also included in the incubation 

series. Samples were stirred with a glass rod, capped and incubated for one hour at 39˚C in 

a temperature-controlled room. During incubation, the tubes were shaken by hand every 15 

Table 5.1 Preparation of the borate-phosphate buffer (NorFor, 2006) used in the trial as 
modified from Licitra et al. (1996). 

Reagents  Quantity 

  

Mono-sodium dihydrogen phosphate monohydrate 

(NaH2PO4· H2O) 

  12.2 g 

di-sodium tertraborate decahydrate (Na2B4O7 · 10 H2O)    8.91 g 

Distilled water    1 L 
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min. After incubation, samples were centrifuged at 3000 x g for 10 min, before pipetting 20 

ml of the supernatant into 30 ml glass vials. The whole process was repeated three times. 

Samples were analysed for N in the analytical laboratory of the Western Cape Department of 

Agriculture at Elsenburg.  

5.2.4 Chemical analysis 

Dry matter of treated substrates was determined after drying samples at 105°C for 24 h in a 

forced draught oven (AOAC, 2002: Official Method 934.01). Ash was determined after DM 

analysis according to the AOAC (2002) Official Method 942.05. In the case of the soluble 

protein supernatants where no substrate digestion was required, N content of the solution 

was read directly using a Gallery Discrete Analyzer (Thermo Fisher Scientific, Waltham, 

Mass, USA). 

5.2.5 Statistical analysis 

A one-way analysis of variance (ANOVA) was used to determine the effect of treatment 

(Bioprotect® vs distilled water) for each protein source separately, using Statistica 10 

(2018). Significance was declared at P ≤ 0.05 and tendencies at P ≤ 0.10.  

5.3 Materials and methods for degradability of soluble CP (Trial 2) 

5.3.1 Treatments 

Because the buffer solubility of CP only differed between treatments in the case of soybean 

OCM, it was decided to determine the degradability of soluble protein in soybean OCM only. 

Milling of the meal, as well as the application of Bioprotect® or distilled water to the 

substrate, was the same as for Trial 1, described in section 5.2.1.   

5.3.2 Preparation  

The procedures of collecting rumen liquid and preparation of the Goering and Van Soest 

(1970) buffer were as previously explained in Chapter 3 (Protocol reference number AUC-

2018-6802). Amounts of 1.5 g of the substrate were accurately weighed out in 100 ml 

Nalgene bottles and a 20 mm magnetic stirrer was added to each bottle. Buffer soluble 

protein was prepared in the same way as in Trial 1 (Table 5.1). 

5.3.3 Procedure 

Only two methods were found in the literature to determine the degradation rate of soluble 

protein (Hedqvist and Udén, 2006; Crossland et al. 2012). The method of Crossland et al. 

(2012) is elaborate and, according to the authors, it has not been validated. The method 
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described by Hedqvist and Udén (2006) was modified by the supervisor of the current study 

by using borate-phosphate buffer (as used in Trial 1) to solubilise the protein instead of 

McDougall’s buffer. Another modification was to use the Goering and Van Soest (1970) 

buffer in the incubation medium instead of the one described by Hedqvist and Udén (2006). 

A reagent blank, as well as a rumen fluid blank, were included in the current trial, while 

Hedqvist and Udén (2006) only included rumen fluid blanks in their method. The method 

used in the current trial has not been used before and should be tested in future validation 

studies as well. 

After preparing the samples, 40 ml of the Goering and Van Soest (1970) buffer and 10 ml of 

rumen liquid were added to each Nalgene bottle. Rumen liquid was collected from four 

lactating and ruminally cannulated Holstein cows, resulting in four sets of incubation 

preparations per treatment. In addition to the above, 20 ml of either the soluble protein 

supernatant or the borate-phosphate buffer was accurately pipetted into the bottles. The 

supernatants were obtained after treating substrates with either Bioprotect® or distilled 

water. A control group (rumen liquid blank) that did not contain the oil cake substrate, was 

included for each cow and incubation time, containing rumen liquid, Goering and Van Soest 

(1970) buffer and borate-phosphate buffer. Bottles were subsequently gassed with CO2 and 

placed on stirrer plates in a temperature-controlled room with the temperature set at 39°C. 

Incubation times were 0, 2, 8 and 24 h. The 0 hours did not contain any rumen liquid, but 

only Goering and Van Soest (1970) buffer and supernatant and was used as a reagent 

control. To stop the fermentation after each incubation time, the bottles were placed in ice 

water for 15 minutes, where after they were centrifuged at 3000 x g for 10 minutes. Aliquots 

of 20 ml of the supernatant were transferred to 30 ml screw top test tubes and submitted to 

the analytical laboratory of the Western Cape Department of Agriculture at Elsenburg for N 

analysis. The rumen liquid blank was used to correct for microbial protein. 

5.3.4 Chemical analysis 

The soybean oil cake was analysed according to AOAC (2002) methods for DM (Official 

Method 934.01) and ash (Official Method 942.05). For CP analyses of the oil cakes, a Leco 

FP-528 was used to determine N content according to the AOAC Official Method 990.03. In 

the case of the soluble protein supernatants where no substrate digestion was required, N 

content of the post-incubation supernatants was read directly using a Gallery Discrete 

Analyzer (Thermo Fisher Scientific, Waltham, Mass, USA). 
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5.3.5 Statistical analysis 

Protein disappearance data per time were subjected to a main effects ANOVA using 

Statistica 10 (2018). Main effects were treatment (Bioprotect® vs distilled water) and cow 

(rumen liquid was collected from different cows). Significance was declared at P ≤ 0.05 and 

tendencies at P ≤ 0.1.  

5.4 Results and discussion 

5.4.1 Protein solubility 

Results of the buffer solubility of protein in the different oil cakes are presented in Table 5.2. 

Protein solubility is expressed as % of substrate DM, as well as % of CP. Treatment only 

affected buffer solubility (P < 0.001) in the case of soybean meal, where Bioprotect® 

increased soluble CP as % of substrate DM with 44% and soluble CP as % of substrate CP 

with 54%. This is contrary to what has been observed in the in sacco trial (Chapter 3) where 

fwater solubility of CP was increased by Bioprotect® in all three oil cakes. Griffiths (2004) 

also observed significant differences between water solubility and borate-phospahte buffer 

solubility of various protein sources, including soybean, sunflower and canola oil cakes. 

However, water solubility cannot necessarily be compared with solubility in a borate-

phosphate buffer. According to Lee et al. (2003), the solubility of soybean protein in different 

solutions depend on the pH of the solution, the ionic strength of the salts in the solution, and 

temperature of the solution.  

 

Table 5.2 The effect of Bioprotect® treatment of different protein oil cakes on the solubility of 
protein in a phosphate-borate buffer. 

  Treatment   

Oilcake meal Control Bioprotect® SEM P 

Soybean     

     Soluble protein, % of DM 5.7 8.2 0.098 <0.001 

     Soluble CP, % of CP 13.1 20.2 0.642 <0.001 

Sunflower     

     Soluble protein, % of DM 11.7 11.5 0.344 0.683 

     Soluble CP, % of CP 27.1 28.4 1.718 0.594 

Canola     

     Soluble protein, % of DM 11.6 11.2 0.178 0.147 

     Soluble CP, % of CP 26.6 27.5 0.808 0.475 
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Heat treatment of the protein source (e.g. roasting and extrusion of the oil cake) also has a 

significant effect on the protein solubility. According to Mosimanyana and Mowat (1992), 

heat treatment of protein sources caused a decrease in the amount of rapidly soluble N, as 

well as in the rate and extent of CP degradation. The amount of slowly degradable CP, 

however, increased. Similar observations were made by Griffiths (2004) where extrusion 

decreased both water and buffer solubility of various protein sources. 

In the current study, buffer soluble CP values were lower than those reported by Nel (2012). 

In that study, where the same borate-phosphate buffer was used, soluble CP values of 

25.5% and 42.3% were reported for soybean and sunflower oil cakes, respectively. For the 

same protein sources, Griffiths (2004) reported soluble CP values of 29% and 26%, 

respectively. In the latter case, the value for sunflower protein agreed with that of the current 

study. Macgregor et al. (1978) used solvent extracted and dehulled soybean meal and 

reported a protein solubility of 22.4%. 

Differences in documented CP solubility values are not only the result of the physical or 

chemical characteristics of the specific protein source. Inter-laboratory differences have 

been observed by Nel (2012) where significant differences in the borate-phosphate solubility 

of various protein sources were obtained on split samples by two independent laboratories. 

Because soybean oil cake had the highest soluble protein values in the current study, and 

also because the values were higher for the Bioprotect® treatment than for the dH2O 

treatment, it was decided to determine the degradability of soluble protein only for soybean 

oil cake.  

5.4.2 Degradation of soluble protein 

Results of the treatment effects on soluble protein degradability of soybean meal is 

presented in Table 5.3 and Figure 5.1. 

Table 5.3 Effect of Bioprotect® treatment1 on the degradability of soluble protein (%). 

1Substrates were either treated with Bioprotect® or dH2O by spraying at a rate equivalent to  
 0.5 L per 1% CP per tonne. 
2SEM = Standard error of the mean. 

 

Incubation time Bioprotect® Control SEM2 P 

0 h 

2 h 

8 h 

24 h 

20.2 

83.8 

85.4 

88.4 

13.1 

94.3 

98.3 

99.1 

0.642 

1.679 

1.122 

0.400 

< 0.001 

   0.022 

   0.004 

< 0.001 
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Table 5.3 indicates that Bioprotect® significantly increased the solubility of CP (0 h), which 

has been discussed above, but when the soluble protein was exposed to rumen liquid, 

Bioprotect® significantly decreased the degradability of soluble CP over time. The 

magnitude of the decrease effected by treatment was 11.1% after 2 h, 13.1% after 8 h and 

10.8% after 24 h of incubation. 

Not all soluble protein, soluble oligopeptides, or soluble amino acids are hydrolysed to 

ammonia in the rumen. Some escape ruminal degradation but under in vitro conditions they 

cannot be removed from the incubation vessel. Reynal et al. (2007) reported that, on aver-

age across diets, 27, 75, and 93% of soluble amino acids in soluble protein (>10 kDa), 

oligopeptides (3 to 10 kDa), and small peptides plus free amino acids (< 3 kDa) that escaped 

the rumen were of dietary origin. Hence, more ammonia can be produced in vitro than in 

vivo. 

Mahadevan (1980) concluded that the solubility or insolubility of a protein per sé does not 

necessarily imply that the protein is resistant to ruminal hydrolysis by bacterial proteases, but 

that crosslinking disulfide bonds determine resistance to degradation.  

Hedqvist and Udén (2006) found a significant variation in degradation rates of soluble 

protein between feeds, confirming that not all soluble protein is degraded in the rumen. They 

incubated soluble protein samples for 0, 20, 40, 60, 80, 100, 120, 160, 200 and 240 minutes 

and reported kd values (h-1) between 0.33 for red clover to 1.00 for casein. No documented 

results were found regarding the effect of specific treatments on soluble protein degradation. 

The effect of Bioprotect® on soluble protein degradation at various time intervals obtained in 

the current study is presented in Figure 5.1.  
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Figure 5.1 Effect of Bioprotect® treatment on the degradability of soluble protein (%). 

In Figure 5.1 it can be seen that degradation during the first two hours was significant for 

both treatments. Mean kd values of 0.32/h-1 and 0.41/h-1 were calculated for the Bioprotect® 

and Control treatments during this time and it is apparent that the Bioprotect® treatment had 

an immediate effect on the rate of degradation. From 2 to 8 h, mean kd values were 0.003/h-1 

for the Bioprotect® treatment and 0.007/h-1 for Control. Between 8 and 24 h, the respective 

kd values were 0.002/h-1 and 0.0005/h-1. Except for the period between 8 and 24 h, kd values 

were much lower for Bioprotect® than for Control. Between 8 and 24 h, the Control 

treatment approached 100% degradation, hence the extremely low kd value. Over the entire 

0 – 24 h incubation period, the mean degradation rate was 0.028/h-1 for the Bioprotect® 

treatment and 0.036/h-1 for the Control treatment, clearly demonstrating the depressing effect 

of the Bioprotect®.  

5.5 Conclusion 

In the previous chapters it has been shown that the treatment of soybean, canola and 

sunflower oil cakes with Bioprotect® resulted in increased CP degradation and increased CP 

solubility compared to the Control treatment (dH2O). However, although Bioprotect® 

treatment of soybean OCM again resulted in higher protein solubility compared to the 

Control, the degradability of the soluble protein was significantly lower than that of the 

Control treatment. The manufacturers of Bioprotect® claim that the product binds to the 

amino groups of proteins, thus slowing the degradation rate and increasing the RUP value of 

vegetable protein sources. In all the trials discussed in the current study, the only 

suppressing effect of Bioprotect® on protein degradability was observed in soluble protein. 

The manufacturers also claim that by using Bioprotect®, the dietary CP content of lactating 
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dairy cow feeds can be lowered by one or two percentage units without compromising milk 

production. If the soluble protein content of protein sources is high enough and the 

depressing effect of Bioprotect® on soluble protein degradation in the rumen is significant 

enough, the nett effect might be carried through to milk responses, but this hypothesis 

should be tested in a future milk production trials.   
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Chapter 6 

 

General Conclusion 

 

According to the suppliers of the protein binder, Bioprotect® slows the rate of ruminal protein 

degradation because it binds to the amino groups of proteins. The objectives of this study 

were thus to determine the effect of the potential protein binder on in sacco and in vitro 

protein disappearance parameters, protein solubility, degradability of soluble protein and 

intestinal protein digestibility. Soybean, sunflower and canola oilcake meals were the three 

protein feedstuffs used in the trials. These feedstuffs are commonly included as protein 

sources in dairy cattle diets in South Africa. 

Formulating dairy cattle diets to meet protein requirements has shifted from formulating for 

CP alone to that of metabolisable protein which is digested and absorbed as AA in the small 

intestine. The MP is derived from RUP, microbial protein and endogenous protein, but there 

needs to be a fine balance between RUP and RDP for optimal microbial protein synthesis 

and animal production. Optimising diet formulation would also result in more space for other 

raw materials. From the literature, it appears that there is a need for research on ways to 

treat protein sources in order to decrease ruminal protein degradability of oil cake meals and 

the effect thereof on intestinal digestibility. 

Bioprotect® increased the a-value (0 h incubation) of all the substrates, indicating a higher 

water solubility following treatment. In the in sacco trial, Bioprotect® did not lower DM or CP 

degradability for any of the substrates. As a result of the higher a-values obtained with 

Bioprotect® treatment, the effective CP degradability (eDegCP) of all the substrates 

increased. In the in vitro trial, treatment * time interactions showed that Bioprotect® 

decreased CP degradation in canola meal after 8 and 16 h of incubation and tended to 

decrease 16 h CP degradability in soybean meal. It was concluded that Bioprotect® appears 

to increase CP solubility, but the effect of treatment on CP degradability was not conclusive 

due to different tendencies observed in the in sacco and in vitro trials. However, the 

difference between treatments in the magnitude of in vitro CP degradability observed from 4 

to 16 h suggested that Bioprotect® may indeed have a depressing effect on the 

degradability of the potentially degradable fraction but this effect may be shadowed by the 

increase in the soluble fraction observed in the Bioprotect® treatment. Due to the significant 

impact of the soluble fraction on the calculation of effective degradability, the result was a 
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higher effective CP degradability observed in the Bioprotect® treatments. The CP 

degradability of the soluble protein fraction was unknown and was consequently investigated 

in the last part of this study.  

The effect of Bioprotect® treatment on the intestinal protein digestibility of the three oil cakes 

was the focus of the second phase of the study. The Ross assay was used in this trial, but 

results showed that treatment had no effect on the intestinal CP digestibility of any of the 

three protein sources. Although results of the in vitro trial suggested that Bioprotect® 

treatment might increase RUP values of certain protein sources (e.g. canola meal) at 

specific incubation times (8 and 16 h), the nett effects of the in sacco and in vitro trials 

indicated that Bioprotect® treatment rather increased apparent ruminal CP degradation. 

However, regardless of the treatment effect on ruminal CP degradation, positive or negative, 

the effect was not extended to total intestinal CP digestion as determined by the Ross assay. 

Because of an increase in the water solubility of CP effected by Bioprotect® treatment in all 

three protein meals, followed by a lack of treatment response on ID values, it was 

hypothesised that Bioprotect® treatment might decrease the degradability of soluble protein.  

The focus of the last trial was firstly to investigate the effect of Bioprotect® on CP solubility 

of the three oil cake meals in a borate-phosphate buffer. Although the a-values of the in vitro  

and in sacco trials showed that water washing after Bioprotect® treatment increased CP 

solubility of all three oil cakes, it appeared that treatment only had an effect on buffer 

solubility of CP in the case of soybean oil cake. Therefore, only soybean oil cake was used 

to investigate the effect of Bioprotect® on the degradability of soluble CP. Whereas the 

buffer solubility of CP was increased following Bioprotect® treatment, the degradability of the 

soluble protein was significantly lower than that of the Control treatment. The manufacturers 

of Bioprotect® claim that the product binds to the amino groups of proteins, thus slowing the 

degradation rate and increasing the RUP value of vegetable protein sources. In all the trials 

done in the current study, the only suppressing effect of Bioprotect® on protein degradability 

was observed in soluble protein. The manufacturers also claim that by using Bioprotect®, 

the dietary CP content of lactating dairy cow feeds can be lowered by one or two percentage 

units without compromising milk production. If the soluble protein content of protein sources 

is high enough and the depressing effect of Bioprotect® on soluble protein degradation in 

the rumen is significant enough, the nett effect might be carried through to milk responses, 

but this hypothesis should be tested in future milk production trials. 
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