12013

VMS Display-For ITS

Neethling McGrath

Design and build a prototype of a variable message system to display traffic
notifications on the overhead message signs on a highway. The system must
make use of the SMART platform to distribute the messages to potentially
multiple VMS displays. A means to confirm delivery and successful display of the
message is required. MTN and Trintel sponsor the project.

Report submitted in partial fulfillment of the requirements of the module
Project (E) 448 for the degree Baccalaureus in Engineering in the Department of
Electrical and Electronic Engineering at the University of Stellenbosch.

Neethling McGrath
Stellenbosch University Engineering Faculty E&E Dept
Study Leader: MJ Booysen

Acknowledgements

Special thanks to:

Thinus Booysen - Guidance during the project

Ashley Cupido - PCB manufacturing

Edwe Cowley - Assistance on Modem and AT commands
Buckley McGrath - Guidance during project

Andreas Pfeffer - Manufacturing of LED display

Cornel Verster - Assistance on Trintel Smart Platform

Ivan Vorster — Report

I1

Declaration of Own Work

I, the undersigned, hereby declare that the work contained in this report is my
own original work unless indicated otherwise.

I11

Summary

Variable Message Sign (VMS) is an electronic display driven by various lighting
solutions that include light bulbs and more recently ultra bright light emitting
diodes (LEDs). Intelligent Transport Systems (ITS) refers to the application of
advance technologies in the fields of electronics, communication, control systems
and sensing to improve safety and efficiency in traffic situations through
transmission of real time information. VMS are used as visual aid to relay real
time information and functions as a component of the larger system.

The focus of this project is to design a VMS display that couples with a larger pre-
constructed ITS, communicating through a GSM modem. The GSM modem
connects to the SMART platform setup by Trintel to simulate the ITS and
provides a graphical interface to input information to be displayed.

IV

Opsomming

Variable Message Sign (VMS) is n elektroniese skerm wat gebruik maak van
gloeilampe en, meer onlangs, ultra helder glimdiodes (Ultra Bright LEDs).
Intelligente vervoerstelsels (ITS) verwys na tegnologie in die velde van
elektronika, kommunikasie, beheerstelsels en sensors wat gebruik word om
vervoer veiliger en meer doeltreffend te stuur deur die oordrag van inligting. Die
VMS word gebruik as ‘n visuele hulpmiddel om informasie grafies te bied en
vorm deel van die groter stelsel.

Hierdie projek fokus op die ontwerp van die VMS wat koppel met die reeds
opgestelde ITS stelsel deur te kommunikeer via n GSM modem. Die GSM modem
koppel die VMS aan Trintel se Smart platform wat opgestel word om die ITS te
simuleer. Dit gee ‘n grafiese koppelvlak om inligting te kan opdateer.

Table of Contents

Acknowledgements

Declaration of Own Work

Summary

Opsomming

List of Figures

List of Tables

Chapter 1: Introduction

L

Il

Introduction
Literature study

ITS and VMS:
SANRAL requirements:
Lighting Source- Ultra Bright LED’s:
Matrix display:
Trintel Smart Platform:
FXT 009 Modem:

Chapter 2: Development

L

Il

Hardware
Adressing:
LED Powering Circuits:
Communications with ITS:

Software:

Serial Periphiral Interface - SPI:
Controlling the display:
M2M and the Trintel Smart platform:

Chapter 3: Design

L

Il

Hardware:
LED:
Controller-Arduino Mega:
LED Matrix:
Voltage Source Driver:
Constant Current Driver:
Modem:
AT Commands:

Software:

Trintel Smart Platform:
Text Formatting:
Program Flow:
Important Functions:

Chapter 4: Results

LED Display performance:
Modem commands received/sent:
Trintel Platform:

Chapter 5: Conclusion & Recommendations

L

Il

Recommendations:
Conclusion:

References

II
III
IV

IX
IX

UT W INN R =

11

12
12
12
14
18
19
19
19
20

21
21
21
21
22
23
25
27
27
29
29
31
32
34

36
36
37
38

39
39
40

41

VI

Appendix A : Project Management
Appendix B : ECSA Outcome

Appendix C : Software
Flow Diagrams of Functions:

Appendix D : Circuit Construction
Gerber files:
Physical Circuit:
System Diagram:
Circuit Diagrams:

Appendix E : Code

43
44

45
45

49
49
50
51
51

54

VII

List of Abbreviations

LED - Light Emitting Diode

M2M - Machine to Machine

ITS - Intelligent Transportation Systems

VMS - Variable Message Sign

GSM - Global System for mobile Communication
SANRAL - South African National Road Agency Limited
CMS - Changeable Message Sign

PWM - Pulse Width Modulation

AT - Attention

SPI - Serial Peripheral Interface Bus

ASCII - The American Standard Code for Information interchange
DC - Direct Current

USB - Universal Serial Bus

MSB - Most Significant Bit

GPS - Global Positioning System

VIII

List of Figures

Figure 1: SANRAL VMS PrOCEAUI [17] ereerreeerereserisssersesssasssesisssesisssesasssesasssssssssssasssssisssssasssessssesssssssssssssinsassanssesanns 3
FIGUIE 2:PIN JUNCUHION c..eeorreeererveeervesesesesss s eseaasesssasssssasssssasssesssssssssssssss s esss s s8R R85 R0 5
Figure 3: Electron Flow in Junction............
Figure 4: Diode V-1 CRATACEETISLICSvccuurreeenserrersesrisesssesssssasssesssssesssssssssssssasssssisssssssssssssssssssssssssessisssssssnes .6
Figure 5: HOW 0 PROEON IS TEICASEA [7] ..veuuererereeerernserisssersessvsssisisssesisssesisssesasssesasssssisssssisssssssssessssssssssssssssssisssssinssssanns 7
Figure 6: LED Junction [7] ...
Figure 7: LED photon distribution [8]........cossseens eeRa AR S AR 8
Figure 8: LED Light intensity relative to current [8]....
FIGUI@ 92 PWM STGIIALcccooeeeerveeerrerteresseeseseeosesesisssssasssesasssesssssssssssssasssssisssssasssesas s esssssesasssssisssesssssssasssssasesssssssssssssssanssssanss 8
Figure 10: LED Allowable current DULY CYCLE [7] ... eoreerosmeerssserisssersssessssssisssssisssesisssesssssesssssssssssssissssinssessnns 9
Figure 11: Basic M2M NEEWOTK [10] .. eeeeoneererserisssrssssesssssssssesssssssasssssssssesssssesssssssssssssisssssessssssnsssssnns .. 10
Figure 12: Sierra Wireless M2M NetWOTK [11] reeoreercrneersneerissserisssesisssssisneens .. 10
Figure 13: Sierra Wireless design process 0f ASSEE [11] .. oeeonmeerinmserosssersssesisssesisssesisssessssesanns w11
Figure 14: Trintel Gadget [11]........ccouue....
Figure 15: Sierra Wireless FXT 009 model [11]
Figure 16: Direct addressing [15]cccoeennueee.
Figure 17: Passive Matrix Addressing.........
Figure 18: Active Addressing [15]crueee.
Figure 19: Basic LED Circuit [8]......conerunne.
Figure 20: LED ..eeeeeerseessirsecrsseissisassessseessenes
Figure 21: LED MatriX [18] ...ececeseerrsenns
Figure 22: Darlington Pair
Figure 23: Current Sinking CirCUitS.......cccrercneernnees
Figure 24: Active Addressing Pixel [15].....ocrconeernnneenns
Figure 25: Arrangement of Flip Flops in Cascade....
Figure 26: SPI WIFING ...ccenersseorsersserssessssssessssssssssssesssssissssassessssessssses
Figure 27: SPI LOGIC LEVEIS....ercoreererrerrsrerrsesrirseerisserians
Figure 28: Dot-Matrix representation of X in HEX.....
Figure 31: LED eeeeeseersevsssrseersseissssissesasseassenas
Figure 32: Arduino MEGA [20] ..eeeecrrerrserrrseerineeriane
Figure 33: LED Display MatriX CONStIUCLION........ouwcremrernmserersseresseeriseeseans
Figure 34: Voltage Source Driver [21].........
Figure 35: Shiftout Code...........cereercnsrernnn.
Figure 36: Voltage Source SPI Data Line...
Figure 37: Voltage Source Latch line...................
Figure 38: Contract Current Driver [22]....
Figure 39: SPI SEtUP COAEuuueereerenrerrsrerirsssrirsseriseesias
Figure 40: Constant Current Driver SPI Data Line............
Figure 41: Constant Current Latch.....................
Figure 42: Pmod Wiring and Contruction [23].
Figure 43: Trintel Transforms [12]c.....
Figure 44: Trintel Metric Construction [12].......
Figure 45: Trintel Dashboard [12].......ecreercnnees
Figure 46: Trintel Job LiSt [12] ...coeecrnerrrreereane.
Figure 47: Lookup Tableecoveercerrersnrerernnenes
Figure 48: Finite State Machine..............o....
Figure 49: Modem Write Command....................
Figure 50: Write Acknowledge Command.
Figure 51: Display Matrix Content in software.

Figure 52: Main 100p refreSh rate tESt COUC .uu oot er ettt et aea s e s ees s s i e
Figure 53: RefreSh 1rate Of AISPIAY..........cocuueeeeeie ettt ettt it s ettt et e e s s ansninn
Figure 54: LED display perpendiCULATccooioeuurrieeee e seceuse et st ettt sea s s ee s s e ensanaens
Figure 55: LED diSPIAY Off CEMEOTovee oottt ettt ettt ettt s e s e s st s st s snannns s s aae s
Figure 56: Display with simple diSPerSION fillTc.coueceoiseeuineiee et ettt es et s e en e

IX

Figure 57: Display with Perspex dispersion.... BTSRRI /4
Figure 58: Serial communication Commands recelved .. 37
Figure 59: Status message and AT COMMANGceoverrereereercrneerisseerisssesisssssssssssisssssesssssanes .37
Figure 60: Smart Platform Jobs Tab ..
Figure 61: updateDisplay(); Flow Diagram
Figure 62: SerialEvent1(); Flow Diagram.

Figure 63: updateDisplayMatrix(); FIow Diagram..........oercesscrnssseenns w47
Figure 64: SerialData(); FIOW DiQGTaM.......cercomeernnsersssererssssisssssisssesissessssssens . .. 48
Figure 65: LED Constant Current Sink Driver Gerber File t0p.......oeecrneerisneerine .49

Figure 66: LED Constant Current Driver Gerber File Bottom
Figure 67: LED Voltage Source Driver Gerber File Top.............
Figure 68: Voltage Source Driver Gerber File Bottom......
Figure 69: LED SINK DI IVETcuiererrersssersssersssesisssesisssessssesssssssssssssssss
Figure 70: LED Voltage Source DYIVerrcresseeens
Figure 71: Full System DiAGTameoneeronseriessesssssesens
Figure 72: TLC 5926 CONNECLIONS......oveernerrereerirserrsserens

Figure 73: MIC 5891 Connections
Figure 74: Arduino CONNECLIONS.........cowverrererrseererseeriseerians
Figure 75: Digilent PMod Serial Voltage Converter CONNECtIONS..........coowermeeerseererseerians w52
Figure 76: TLC 5926 Communication Connections w52
Figure 77: MIC 5891 Communication Connections .53

List of Tables

Table 1: Read and process time of drivers at different speeds 4
Table 2: AT commands sent by Controller 28
Table 3: AT commands received by controller 28
Table 4: Visual representation of Lookup table data 31

XI

Chapter 1: Introduction

1. Introduction

Variable message sign (VMS) displays offer the ability to communicate real time
information to ensure safer and more effective road environment. This is
achieved by relaying real time information concerning the road and traffic
conditions to drivers. Recently, the use of VMS throughout South Africa has
become popular due to the push by the governments mandate to reduce road
accidents and to increase operational efficiency of national roads.

Intelligent Transport Systems refer to the application of electronic and
communication technologies to improve traffic flow and safety. The ITS monitors
road conditions and communicates relevant information to road users or traffic
authorities. The VMS links into the ITS that is operated by SANRAL (or similar
authorities). It serves as a method to relay information to road users. This
ensures the safe and effective flow of traffic. The communications of the ITS with
the VMS is simulated by the Trintel Smart platform that constructs a Dashboard
with various Gadgets that are used to input data that is to be displayed.

The scope of this project is to design and build a VMS prototype. The device
communicates via a GSM modem with Trintel's Smart online platform. The
platform relays only two lines of text that will be displayed on the device. The
device will also be responsible for relaying operating states and acknowledge
that it has received the data.

The display consists of a matrix of ultra-bright LEDs controlled by an
arrangement of constant current sink drivers and constant voltage drivers. The
drivers are controlled by an Arduino Mega microcontroller.

Data is communicated to the device through a serial connection to a GSM
modem. The GSM modem will download the two lines of text from the Smart
platform as data is sent by the ITS. The two lines of text are set on a Dashboard
gadget and saved into variables on a webserver to be gathered by the modem as
stated above. The microcontroller will periodically send status messages and
also acknowledge once a message has been received so that the ITS can monitor
the current messages on display.

The report firstly introduces the reader to previous work done on the field and
literature that has been revised. Thereafter chapter two discusses possible
concepts that could be used to achieve the project requirements. Chapter three
discusses in detail the design choices that were made and how the device was
constructed. The results of the project are discussed in chapter four. Finally
chapter five advises recommendations and concludes the report.

Il. Literature study

ITS and VMS:

The scope of the project does not include the operation of the ITS, however a
communication medium from the intelligent transport systems to the VMS will
be done through the use of the Trintel Smart platform. The ITS is responsible for
the monitoring and reporting of traffic incidents, weather, congestion and
various other events that could have an effect on the safety and efficient flow of
traffic. The ITS utilises the VMS to report information that has been gathered
through monitoring. The VMS is thus only a method of displaying information in
a way that is understandable and functional to road users.

The VMS displays real time information relayed from the ITS to provide
information to road users. There are various types of VMS technologies including
permanent, portable and vehicle mounted. There are also Changeable Message
Signs (CMS). The scope of the project focuses on permanently mounted and
portable VMS’s that are mounted on the side of the road or on overhead gantries
or on vehicles such as trailers [1].

VMS capable of a variety of messages, depending on how the ITS has set up its
procedure. The VMS will report to road users real time traffic information in a
way that that is concise, unambiguous and prevents confusion. Accident
messages will be used to warn traffic of incidents on the road and suggest
alternatives. Congestion messages will display delay time and advise alternative
routes. Roadwork and environmental conditions such as weather will only warn
road users [2].

The messages will need to be in a general format that is both understandable
while still using abbreviations and short sentences. The basic structure to follow
is a problem, location, effect, action and then attention statements. The problem
statement will alert of an accident. The location is self-explanatory however we
require shorthand to present this in an easily readable and understandable
format. The effect statement will indicate the result of the problem and how it
affects the road user. The action statement informs the user what to do with the
information presented by the VMS. The attention statement identifies the users
who this problem is directed to. Thus, an example of a VMS message reads as
follow: Congestion; Ahead; Minor delays; Find alternative Route; Buses [2].

VMS also have the option to not only use text messages but also relay
information through pictures. This is seen as a way to transfer information
quicker and also avoid translation issues completely.

Road users experiences regular problems with VMS use on roads. The main
problem with the VMS is that road users only have a very short period of time to
read the message, understand it and take action. This has to happen without
confusing the user or drawing his/her attention away from maintaining control
of the vehicle. To resolve this issue a few regulations have been put in to place.
Messages that scroll or flash must be avoided as this will distract and confuse the
users. The use of abbreviations is encouraged, however this must be
standardised [3][4]. The length of a message must also be controlled as this
could cause users to focus on the display for too long or not understand the
message that was presented. VMS must also be positioned in a manner that is
regulated too avoid confusion and increase visibility [5].

The messages sent to the VMS device has to be credited by the ITS. This is
outside of the scope of this project. However the device must be able to display
the messages in the format that is regulated by the ITS and must be included in
the design of the project [4].

SANRAL requirements:

a) Policy:

SANRAL'’s traffic management centers operate the VMS in South Africa. They
have developed a specific policy in regards to the content that may be displayed
[17]. This policy requires that messages be easily understood. Messages need to
be reviewed and acknowledged by the traffic management center. There has to
be a message hierarchy that ranks the importance of certain messages above
others. All messages will be displayed in English, as it is not practical to facilitate
all the languages of road users especially in South Africa. A set structure has to
be followed for messages as this promotes consistency and confidence in the
VMS by the users. VMS will be left blank if there is no content to be displayed,
however one continuously flashing LED will be displayed to ensure road users
the device is functional. A standard set of messages will be used unless a special
situation occurs where the supervisor will follow a set protocol. SANRAL will
subcontract the operation of VMS and this policy requires that any operator
adhere to these rules.

Se

|
J

I ~
P Determine the purpose of using a VMS |

7
p———————# Determine which VMS is (are) appropriate to use l
J

\
Determine what to display on the VMS |
J

»

k4
N YN YN

\
Determine how long to display the message |
J

N
+ Resolve any message signing conflicts that exist I
J

Continuously changing information

N

N
——— Display and verify VMS message |
-/

Figure 1: SANRAL VMS Procedure [17]

b) Display:

The actual time it takes a driver to read and process a message on a VMS is a
function of the driver’s speed, text formatting and the distance of the sign to the
driver. The SANRAL policy investigates the driver’s performance and found the
following. These test are based on freeway speeds and reading distances of 44-
94 meters [17].

Table 1: Read and process time of drivers at different speeds [17]

Speed in Km/h No. Of Words Time
80 8 2.94
100 7 2.54
120 6 2.14
c) Content Restrictions:

No event-sponsored names will be used and special event messages must be
traffic related. No advertising, political or personal messages are allowed. No
phone numbers greater than five digits, no websites and no SMS addresses are
allowed. Even though other countries encourage the use of graphical messages
SANRAL has decided against this and it is not allowed. Abbreviations need to be
used sparingly as this could cause confusion and lower the trust of road users in
the message content. Only recommended abbreviations are allowed [17].

Lighting Source- Ultra Bright LED’s:

VMS technology was traditionally designed to utilize light bulbs as a lighting
source, however this presented a few problems. Light bulbs do not last long if
they are toggled and also require a large amount of power. The industry started
looking at alternatives and identified LEDs as a possible solution. This was not a
feasible option at the time as LEDs were not able to provide enough luminance to
replace light bulbs to power large format displays. Over time, LED technology
has improved and was able to create devices with high luminance, higher
durability and lower power requirements than light bulbs. These are essentially
the only requirements for a VMS application.

The LED is a type of diode that uses the basic concept of semi conduction. Semi
conduction refers to the ability to conduct current in one state and in another
totally isolate two conductors. This essential characteristic is achieved through
the use of materials with specific characteristics. A pure conduction material is
mixed with the impurities of another material. This process is called doping.
Pure material atoms bond perfectly, leaving no free electrons to carry current,
creating an isolator. An impure material (created through doping) creates free
electrons that are capable of carrying the current and holes or the absence of
electrons that allow electrons to flow through the material. The semi conductor
with extra electrons is called a N-type material. The semi conductor with extra
holes is known as a P-type material. Bonding a p-type material next to an n-type
material creates a diode (see figure 2).

Figure 2:PN Junction

Applying a positive voltage on the n-type material pulls the electrons to the
terminal creating a depletion zone on the P-N junction, thus no current flows.
Applying a positive voltage on the P-type junction injects electrons into the holes
and current flows, provided the electrons are extracted at the n-type material.
Thus, through this setup of semi conducting materials a device is created that
only conducts current in one direction (see figure 3).

r depletion region

electrons — -— holes electrons =— .. — holes
o el elle » . Je e « s s e s 4 Y ..
. o | L] o-t elsle (*)e LR
e e el e e e e o eFe o « & & e s 4+ - 8 o o s o @
. & s s s s . 2 o s o o e le el e el ete|e-altie slHe e(He
. & & @&+ -
11 s
! L
(a) Forward (b) Reverse

Figure 3: Electron Flow in Junction

The Voltage-Current curve characteristic of a diode is determined by the flow of
electrons through the P-N junction. If a large enough forward voltage is applied
to reduce the size of the depletion region the flow of current is instant. However,
if the forward voltage is not large enough to reduce the size of the depletion
region no current will flow. If a large enough reverse bias voltage is applied the
diode experiences breakdown where a large current flows in the opposite
direction. This is due to the creation of a large amount of hole and electrons. This
will damage the device permanently.

forward
current
-25 -15 -5
| >V
0.1
reverse

saturation current

_Zener or avalanche
breakdown

Figure 4: Diode V-I characteristics

A LED contains a crystal made from Gallium, Arsenic and Phosphorus that
contains a large number of atoms and electrons. The electrons are arranged in
different energy levels around the atom and the furthest electrons can easily
escape the pull of the nucleus. As the electron is rotating around the nucleus it
carries a certain amount of energy. The electron can gain additional energy
through heat or electricity. This requires the electron to jump to a higher energy
band (see figure 5). At this stage the electron is unstable and releases the energy
through a light photon.

Figure 5: How a photon is released [7]

Similar to diodes, the n-type semiconductor has a large number of free electrons.
However, in the case of the light emitting diode, the electrons are in an unstable
position. The N-type semiconductor consists of the Gallium, Arsenic and
Phosphorus crystal. The P-type semiconductor consists of an excess of holes
created by the Zinc atom. As the two materials are joined to form a P-N junction
holes and electrons diffuse into the opposite material. Once a source is connected
to the light emitting diode, electrons move from the n-type and join with holes in
the p-type and release the excess energy in the form of light (see figure 6).
Different color LEDs are constructed through using a different crystal. By
changing the materials that are used to construct the crystal the wavelength of
the photon released is changed, thus changing the color [7].

Figure 6: LED Junction [7]

The brightness of a LED is directly related to the amount of current flowing
through it. Thus the larger the current, the brighter a LED will illuminate [8].

30

40°
50*

70"
80"
90*

0 0.5
SPATIAL DISTRIBUTION

Figure 7: LED photon distribution [8]

Figure 8: LED Light intensity relative to current [8]

LEDs appear brighter when pulsed at higher current levels because the human
eye acts as both an integrator and peak detector. Utilising this unique capability
of the eye, pulsing the LED at a very low duty cycle but high intensity (high
current) makes the LED appear active for longer [8].

Dimming - 0%
1oV |
ov '
Dimming - 25%
O)
ov !
Dimming - 50%
1oV
ol LI

Figure 9: PWM Signal

Pulse Width Modulation (PWM) allows for the LED to be driven at a higher
current. This is due to the fact that the average current over the entire cycle will
still be below the maximum allowed. This means that a LED can be pulsed on at a
higher luminance for a shorter period [8][9].

Figure 10: LED Allowable current Duty Cycle [7]

Matrix display:

In order to display messages LEDs are placed in a dot matrix arrangement. All
characters can be formulated by a specific combination of an 8x8 matrix of LEDs
through this arrangement. Every LED therefore needs to be individually
controlled and be independent of the state of any other LED in the matrix.
Therefore each LED must be addressed individually. There are various schemes
by which to solve this problem. They will be discussed under the concept design
chapter.

Trintel Smart Platform:

Trinity’s Smart platform powered by Sierra Wireless is a Machine-to-Machine
(M2M) solution to remotely monitor devices through the use of a GSM modem.
M2M is defined as the communication of two electronic systems without any
human intervention. The goal is to enable two devices to share data between
each other autonomously [12]. In this project Trintel’s Smart Platform will be
used to collect data and deliver commands through the use of a cellphone
network [12]. Sierra Wireless’s Airvantage portal offers a method of gathering
data from devices through a modem connected to the platform. Through the use
of the Airvantage Configuration tool a user is able to customize the portal to
specific requirements. It has the ability to create variables, setup alerts and
manipulate data. The Airvantage platform updates data to the SMART platform.
The Smart platform provides the option of manipulating data and presenting it in
a graphical interface for users to edit variables [11].

Figure 11: Basic M2M Network [10]

Figure 12: Sierra Wireless M2M Network [11]

10

The Airvantage Configuration tool is used to setup the asset that is used to define
the variables, command, event and alarms. This file is then uploaded to the
Airvantage platform and associated with a specific device. There can be more
than one asset associated with one device [11].

The SMART platform links low level variables to metric models. The metric

models can then be used to manipulate variable data and present it in a graphical
form through the use of gadgets.

gads

=]
D
-~
5
=
=
=
<
=

>

Figure 13: Sierra Wireless design process of Asset [11]

Figure 14: Trintel Gadget [11]

FXT 009 Modem:
The Sierra Wireless modem communicates through serial communication to the
device. Custom versions of AT commands are used to call specific operations.

The modem is used to transmit data between the Airvantage servers and the
device through a GSM connection [11].

Figure 15: Sierra Wireless FXT 009 model [11]

11

Chapter 2: Concept Design

l. Hardware

Adressing:

The main problem presented by a large number of pixels (LEDs) is finding a
method to address each pixel individually; this is referred to as direct
addressing. It is costly and impractical to have a data line for each pixel. This
requires a controller to have as many ports as pixels without expanders.
However, it does have the benefit of being able to constantly keep each LED
illuminated, so there is no flickering [14].

Figure 16: Direct addressing [15]
There are two methods of solving this problem:

a) Passive Matrix:

Passive matrix arrangement multiplexes the LEDs in a matrix with a common
row line and common column. Passive Matrix multiplexing is cost effective and
the most popular addressing method used in VMS. The disadvantages include
crosstalk due to the row pixels being electrically related and minimal
multiplexing capability. Addressing is achieved by selecting row-by-row
scanning through the entire display. Once a row, is selected current is imposed in
all pixels in the row. By selecting each pixel in a column the device is able to
display information. A voltage source is used to supply voltage on the anode of
the LED and a current sinking element is connected on the cathode [15][16].

12

Figure 17: Passive Matrix Addressing

b) Active Matrix:

The Active matrix arrangement uses the exact same multiplexing approach as
the passive matrix. However, there is a switch element on each pixel that
provides a 100% duty cycle. The element is switched on by pulses received from
the row and column that keeps the LED on during the entire cycle. This solution
completely removes all crosstalk and enhances contrast. However, it is more
expensive, as it requires a switching element on each pixel [15][17].

Figure 18: Active Addressing [15]

Through the use of the multiplexing approach the data lines are significantly
reduced.

(1)
Direct Adressing Datalines = no. of pixels
Passive/Active Matrix Datalines = Rows + Columns
no. of pixels = RowsXColumns

13

LED Powering Circuits:

LEDs are constructed out of semiconductor materials that together form a P-N
junction. These materials form a voltage potential difference across the
junction. When the LED is forward biased a current is able to flow through the
element and it emits light. The voltage required to bias the element is called the
biasing voltage. The voltage ranges from 1.5 V to 3 V due to different
materials used for different color LEDs. Thus in order to switch a LED the
element requires aforward voltage that biases the device and a current path that
provides enough current as the luminosity of the LED is directly proportional
to the current flowing through it [8].

Figure 19: Basic LED Circuit [8]

LEDs Voltage-Current characteristics require that current needs to be limited by
another element in the circuit. If a large amount of current is flowing through the
LED junction for too long the element will overheat and be permanently
destroyed. The simple solution is to place a resistor; this will cause a voltage
drop and control the current in the chain. As discussed above, the problem of
addressing requires that there be a similar circuit for each LED. This becomes
very complex as the number of LEDs increases. Integrated circuits, (called
drivers) are coupled to the column and rows of the displaying. As there are two
methods of addressing the types of drivers used for each will be discussed.

14

a) Passive Matrix Driver:

Passive matrix arrangements requires that all the LED’s anodes in a row be
coupled, the cathodes will be coupled in the columns.

Figure 20: LED

Figure 21: LED Matrix [18]

By placing a forward biasing voltage on each row in a sequence the circuit only
needs the cathode to be connected to a current sinking element. A Voltage
Source Driver on the anode (Rows) and a Current Sinking Driver (Column) is
required for this setup.

The Voltage Source Driver needs to be able to supply sufficient current for the
row. The max current will occur when all LEDs in the row are switched on.

Voltage Source Driver Current req = LED Pulse Current * Number of LEDs per row (2)

The Voltage Source Driver must also be able to provide a large enough voltage
potential on the anode to bias the LED so that it switches on. An amplifier is the
element that is used to achieve these requirements focusing on current gain. The
Darlington Pair setup is ideal as the current gain by the first amplifier is
amplified further by the second stage. As this element will be responsible for
sourcing the current the NPN arrangement is fitting. The second stage emitter
node will be connected as output to our row. A Darlington pair is required for
each row to supply current and voltage.

15

Figure 22: Darlington Pair

The current sinking driver will serve the purpose of completing the path for the
current to go to ground. The current sinking drivers will be attached to the
cathode of each LED in the column. This requires an independent current source
that is able to absorb a constant current no matter what load (voltage) is present
on the output terminal. Thus, it must be independent of voltage and able to sink a
constant current.

Figure 23: Current Sinking Circuits

It is important that the current sink maintains a constant set current as (in this
setup) this function will restrict over current through the LED and protect it
from overheating. Once again there will be one constant current sink driver per
column. Figure 23 shows two possible solutions to achieve these requirements.
The input reference current is mirrored on the output. The output current is
scaled due to the input voltage, due to reference current and R1. Thus the output
current is a scaled version of the input reference current.

16

b) Active Matrix Driver:

The active matrix driver focuses on the newer technology of Organic Light
Emitting Devices (OLED) displays. These displays are thinner, lighter, no viewing
angle restriction and more efficient than current LED solutions. As discussed the
active matrix arrangement requires a switching element for every pixel [18].
These switching elements (usually a Thin film Transistor) are addressed through
the columns and rows to activate individual LEDs. Thus the drivers are only
responsible for toggling the switching device on every LED; the switching device
controls the current through the LED.

Figure 24: Active Addressing Pixel [15]

Through active addressing the LED is able to stay active for a longer due to the
thin film transistor having a capacitor attached to keep it conducting for the
entire frame. Once the LED is toggled it remains switched on until it gets
addressed again. A 100% duty cycle is achieved. This is a significant advantage
over the passive matrix addressing. However this is more expensive and not
needed for this projects application as the advantages are focused on visual
quality and contrast, none of which is particularly important to the VMS
application.

17

c) Shift Registers:

Matrix arrangement is a method of reducing the number of data lines. LED
powering drivers do not all need to be active at once yet must be independent of
one another. The voltage source drivers will need to scan through the matrix row
- by - row. The current sinking drivers will be used to select each individual LED
in the row that needs to be active. Coupling shift registers to activate the driver
outputs reduces the number of data lines and allows the use of SPI
communication. Shift registers are basic integrated circuits that consist of flip-
flops in cascade. A flip-flop is a basic element capable of storing a voltage
potential. The flip-flops share a common clock where the data of the next flip-
flop is connected to the previous flip-flop. Once the clock triggers the data shifts
through the cascade of Flip Flops, this results in the data shifting one flip-flop
down the sequence (see figure 25). By connecting the outputs of a shift register
to the voltage source driver gating signal, the entire driver can be controlled by
only one data line and one clock line. This is also true for the constant current
sink driver.

Figure 25: Arrangement of Flip Flops in Cascade

Communications with ITS:

Additionally this project requires that a message is sent back to the ITS
acknowledging that a message has been received and is currently being
displayed. This will ensure that the ITS is aware of what is being displayed on the
VMS at all times.

18

Il. Software:

Serial Periphiral Interface - SPI:

The flip-flops will control the drivers. To toggle the outputs to a specific
sequence the data needs to be clocked into the flip-flops, Serial Peripheral
Interface (SPI) will be used. SP1 is a synchronous communication protocol that
requires four data lines; input and output data, clock and slave select. Data can
be sent to the shift registers through the data lines and expanded to the drivers
through individual flip-flop outputs. The SPI channel needs to be configured
depending on the speed of transmission, polarity of the clock and the most
significant bit of the data.

Figure 26: SPI Wiring

Figure 27: SPI Logic Levels

Controlling the display:

The hardware is now capable of addressing every LED individually. The voltage
and current drivers are controlled via the SPI channels. The data sent to the
drivers now needs to be generated by a controller. As discussed the voltage
source drivers will scan (row-by-row) through the entire display sequentially as
fast as possible to reduce visibility of flickering on the screen. Only a single row
will have a voltage bias at a time. Once the row has been selected the constant
current drivers will ground the anodes of LEDs addressed to be on. On the
controller a two-dimensional Boolean array will represent the matrix display.

19

The controller will thus constantly be required to transmit data through the SPI
channel to keep the display up to date.

The controller must be able to clock data fast enough over the SPI channel such
that no flickering can be seen . It will also require two serial data ports and two
SPI ports to support the peripherals of the project. The memory specifications
require that the controller be able to store the two dimensional Boolean array as
well as vital state machine variables.

The Modem will deliver the string variable from the platform in the form of an
ASCII message. This will be saved in the controller but will need to be formatted,
as it needs to be presented on the display matrix. A conversion from ASCII to Dot
matrix is required. Firstly the individual dot matrix size per character needs to
be determined. There are various sizes, each with advantages in quality and
drawbacks in the number of LEDS required. It was decided that an 8x8 Dot
matrix would be used per character. A lookup table will be used to point the
controller to the Dot Matrix representation of a specific character. It will require
some time to format the entire display array in the controller and a delay can be
expected between receiving data and the data being displayed on the VMS.

Figure 28: Dot-Matrix representation of X in HEX

M2M and the Trintel Smart platform:

M2M application is used in the form of a Sierra Wireless modem attached to the
VMS device. This modem is constantly and autonomously communicating with
the Smart Platform through a GSM network. The Smart Platform will be required
to manage the data required by the device. This includes the string variable used
to store the message that will be displayed and a system status Boolean. The
Platform must also graphically allow an operator to edit the string variable and
display a confirmation message. The AirVantage Configuration tool is used to
setup the Asset as is required by these specifications [10][19].

Figure 29: List of Commands on Trintel Platform Figure 30: List of Variables on Trintel
[12] Platform [12]

20

Chapter 3: Design

For this particular application of LED displays the most important features are
visibility and reliability. The VMS needs to be visible from far away and in
various weather conditions and operators must be confident in the system’s
ability to function at all times. Both addressing systems have features that
contribute to visibility however the active addressing is aimed more at consumer
level television screen rather than VMS application. The passive addressing
scheme was chosen due to its ability to achieve clear visibility and remain cost
effective. The hardware will be designed to be able to display two lines of 10
characters. An 8x8 LED matrix will represent each character adding up to 80
columns and 16 rows. Each frame will thus consist of 1280 LEDs. The controller
must be able to scan through all 16 rows fast enough so that no flickering is
noticed; a frame rate of at least 30 fps is required. The controller must also be
able to present data quick enough to the column drivers such that the row
drivers scan timing is not affected (see figure 71).

l. Hardware:

LED:

The Kingbright Super bright 10 mm LED was chosen as lighting source. This LED
junction consists of Gallium Aluminum Arsenide and produces a red light. A2.5V
forward biasing voltage activates the LED. The LED is capable of a maximum
forward current of 20mA DC and 155mA peak current.

Figure 31: LED

Controller-Arduino Mega:

The controller used is the Arduino Mega. This is open source hardware
developed in 2005 in Italy by student of Interaction Design Institute Ivrea. The
Mega 2560 is the specific Arduino used and is a microcontroller based on the
ATmega2650. It has four UART ports for serial communication. The project
requires two. It operates at a clock frequency of 16 MHz and has enough inputs
and outputs to control the row and column drivers. The controller is powered by
a DC adapter or through USB [20].

21

Figure 32: Arduino MEGA [20]

Unfortunately the Mega only has one hardware implementation of SPI. Thus,
another needs to be programmed in software. This could be problematic as the
speed of the software implementation is significantly slower than the hardware
implementation. The Mega also contains 256 KB flash memory that will be more
than required in this implementation. The Mega is programmed via the Arduino
Environment that uses a hybrid of C-code known as Wiring. Wiring is an open
source electronics platform that uses an IDE also known as Wiring to support the
C coding language [20].

LED Matrix:

The proposed design consists of 14 column and 10 rows. Only the LED display is
constrained by these restrictions. The drivers and software supports the full
display size. The prototype display is constructed by drilling 140 10mm holes
into a square piece of plastic. The LEDs are then placed into the holes. Each row’s
anodes are connected together and each column’s cathodes are also connected.

Figure 33: LED Display Matrix Construction

22

Voltage Source Driver:

The Voltage Source Drivers need to provide at least a 2.5 V potential on the
anode of the LED being powered. Additionally, it must be able to source 20 mA
per LED. Even though the LED is capable of sustaining more current. Testing the
LED at various current levels it was found that the LED becomes blindingly
bright at higher current levels. Current can be increased if required. The VMS is
designed for 80 LEDs in each row, thus the driver must be able to supply enough
current in the case that all are switched on.

Source Current = 20mA = 80 = 1.6 4 (3)
Thus the voltage source must be able to provide a maximum of 1.6 A.

The voltage source driver that was chosen is the MIC5891 made by Micrel. The
MIC5891 is a high voltage, high current latched driver. Each individual driver
output consists of eight Darlington pair transistors. The Darlington pairs are
controlled by CMOS circuitry; this includes the SPI, strobe and output enable
pins. The driver functions at 5 V logic supply voltage and can receive data at a
maximum clock frequency of 5 MHZ. The driver is capable of sourcing up to 35
Volts on the output pins of each driver that is more than sufficient for this
specific application. 8-bit Parallel shift registers control the drivers and data is
clocked in via SPI. Each chip is capable of delivering 500mA per channel if only
one channel is active at a time. This is ideal, as the hardware requires only one
row active at a time. However, the current supply required for the display is 1.6
A. Three MIC5891 integrated circuits are required to power 8 rows (there will
always be one LED per character per row that is off due to the text formatting
see table 4) resulting in a effective number of 70 LEDs per row and 1.4 A [21].

Figure 34: Voltage Source Driver [21]

The VMS display size is constrained to 16 rows, thus requiring two sets of three
MIC5891 parallel integrated circuits. A total of MIC 5891 drivers are used. The
two sets of three MIC5891 are connected in cascade with the first chips Serial
Data Out connected to the next Serial Data Input. The data is transmitted to the
8-bit shift registers on the rising edge of the clock. When the strobe pin is toggled

23

from high to low the data in the shift registers are transferred to the output
buffers [21].

The MIC 5891 driver uses software implementation of SPI. A clocking frequency
of 60 KHz was measured. This emulation is restricted to only clocking in data on
the rising edge, the data was sent most significant bit first (MSB). The voltage
source driver only has one channel active at a time. In the figure one can see that
channel 10 is currently being addressed. Once all 16 bits of data has been clocked
in the latch line is toggled.

zh1f{0ui(35, 34, MSBFIRST, message);
Figure 35: Shiftout Code

Figure 36: Voltage Source SPI Data Line

Figure 37: Voltage Source Latch line

24

Constant Current Driver:

The constant current driver is responsible to complete the circuit and ground the
cathode of the LED while limiting the current on the pre-discussed 20mA. The
project has 80 LEDs in a column that needs to be controlled. The driver chosen is
the Texas Instrument TLC 5926. The TLC5926 has 16 constant current driver
outputs. An external resistor sets the constant current. The IC requires a 5 V
voltage supply and data is clocked in at a frequency of 30 MHZ. A 16-bit parallel
shift register and latches are used to convert the serial data that is received into
parallel format that is used to control the output drivers. The output buffer is
capable of supporting up too 17 V on the output buffers. The high speed clocking
frequency also meets the high data volume data requirement. There are 16
drivers per TLC5926 and the display requires 80 drivers, thus resulting 5 chips
being used. The external current limiting resistor is calculated as 1k Ohm [22].

IOUT,target = (1.25 V/IRex) x 15 (4)
Rext = 1 K Ohm

IOUT,target =18.75 mA

Figure 38: Contract Current Driver [22]

Data is transmitted to the Serial Data Input (SDI) pin from the controller using
SPI into the 16-bit shift registers using the rising edge of the clock. The Latch
(LE) pin is used to transfer data from the shift registers when the pin is toggled
high to low. The output enable (OE) pin controls the output drivers. When OE is
low the output drivers are active. The SPI bus uses a 5 V logic level. The five
TLC5926 chips are connected in cascade with the first Serial Data Output
connected to the Serial Data Input of the next. This results in 80-bits of data
required to control the entire rows LEDs [22].

25

SPI.setBitOrder (MSBFIRST);//Most Signifi
SPI .zet[njtu]rh:wde(fiF'I_f'1I:I[I'EE1);,’,’ Mode 8 Rising edge i
SPI.setClockDivider (SPI_CLOCK_DIV128);//Run the data in
SPI.begin{) ;

Figure 39: SPI setup Code

The program is written with the convention of clocking in the MSB first on the
rising edge of the clock. The clocking frequency is calculated by dividing the
Arduino clocking frequency by 128, this results in a clock frequency of 125 KHz.
All 80 bits are sent sequentially and one can clearly see that only the lowest 16
channels are used in the prototype. The data line is held high during no
transmission. The latch line is only toggled once all 80 bits of data has been
shifted through.

Figure 40: Constant Current Driver SPI Data Line

Figure 41: Constant Current Latch

26

Modem:

As discussed, the project requires the use of the Sierra Wireless FXT 009 GSM
modem sponsored by Trintel. The modem uses an RS-232 connector to
communicate with the controller. The modem uses only ASCII AT commands to
transmit variable and control data. A wall outlet powers the modem. The modem
connects to the Trintel platform through an edge connection supplied by a
gateway from MTN [13].

The controller expects 5 V logic levels on the serial ports for communication,
however the RS232 connection functions on 12 V. In order to convert the
voltages for the controller and vice versa, the Digilent Pmod232 was used. The
Pmod232 uses the Max3322 chip to achieve the voltage conversion [23].

Pins 14,6 are tied _
for handshaking \
v

DB9
DCE Connector

OO0 0000

.
&

Figure 42: Pmod Wiring and Contruction [23]

AT Commands:

AT commands are used to control the modem. The commands are versatile and
can report back system status, queue variable updates, allow commands to be
reported and acknowledge message received. There are a number of commands
that can be sent [24]. The modem is setup to communicate serially at 9600-baud
rate.

27

This table shows a summary of the AT commands sent by the controller:

Table 2: AT commands sent by Controller

AT command

Function

AT+IPR=<rate>

Set the baud rate of the serial
communication of the modem

AT+AWTDA=d, “<Asset Name> “,
Number of Variables, "Variable name,
Type, Value”

Updates a variables on the Smart
platform with specific value

AT+AWTDA=c, “<Asset Name>

,"<Command Name>"

Notifies the Trintel platform that a
command is ready to be received

AT+AWTDA=3, "<Asset Name> “, <Id>

Transmit an acknowledge message to
notify the Trintel platform that a
command has been received

This table shows a summary of the AT received from the modem:

Table 3: AT commands received by controller

OK AT command sent is correctly received
and in the correct format
ERROR AT command not in correct format

+AWTDA: BOOT

Modem is currently booting up

+AWTDA: UP

Modem currently running and
connected

+AWTDA: DOWN

Modem currently running but is not
connected

28

Il. Software:

Trintel Smart Platform:

The Smart platform requires that all basic level variables first be converted into
metric that the platform understands and can manipulate. There are various
transforms that can be applied to the variables before linking them to the metric.
Transforms include basic formulas, Timer difference calculators, Base station
identifiers, GPS location, user input, data input/output and finally commands.
The commands transform is the only one of worth to the project as it is used to
trigger the download of the string variable to the device. [12]

Figure 43: Trintel Transforms [12]

The UpdateString command had to be split into two because the system does not
allow connecting two user inputs to the same command. This one line of the VMS
is connected to one command. The second line is connected to the second
command. The Metric was programmed to connect the UpdateString command
and user input transform to the Command transform and finally couple it to the
Metric UpdateString1l. The same process was followed for UpdateString2.

Figure 44: Trintel Metric Construction [12]

29

The Metrics are then coupled with the text input gadget that allows the user to
manipulate the string variables. The Dashboard (see figure 45) is then setup to
present the operator with the two text box gadgets that represent the two lines
of the VMS. The user edits the text boxes and saves the data. Once the device
communicated with the modem via AT commands that it is ready to accept the
data, the platform transmits the two lines of strings together with a unique job id
tag. This tag is received by the device and relayed back in the form of a
acknowledge message to confirm the command was received and is currently
displaying the message that is on the platform. The system state gadget indicates
the current state of the system. State one indicates a green status. All connections
are active and display running. State two indicates a yellow status. This means
that communications have been lost but is still displaying content. State three
indicates a red status. The system is rebooting no content is being displayed at
this time.

Figure 45: Trintel Dashboard [12]

The operator can validate that an acknowledge message was receive by checking
the jobs tab (see figure 46) and waiting for the status to be “DONE”. “DOING”
indicates that the command has been sent but no acknowledgement message has
been received yet. The first column data is the unique ID that has to be sent back
by the device.

Figure 46: Trintel Job List [12]

30

Text Formatting:

An 8x8 Dot matrix char array lookup table was generated to represent the on
and off states of each LED depending on what character it is supposed to
graphically construct.

The lookup table is a constant character array with 128x8 dimensions. The code
uses the row index as a direct conversion from char ASCII data to an integer. This
method thus only requires that the controller convert the ASCII value directly to
an integer to reference the eight lines of 8-bit Dot matrix data [reference ASCII
table].

Figure 47: Lookup Table

Here “A” represents the 65™ row in the array. The data in each column of the 65t
row represent each column of the Dot matrix representation of an “A”. The result
of the data graphically can be seen in Table 4.

Table 4: Visual representation of Lookup table data of an “A” on its side

0 0x3e
0x7e
0xc8
0xc8
0x7e
0x3e
0x00
0x00

[e=}ellelle) o)) o)

The Trintel Platform sends the command with the two strings and the controller
formats each character into dot matrix format and places it into the display
matrix.

31

Program Flow:

The controller runs a state machine with four states.

Figure 48: Finite State Machine

a) State 1 Initialize:

The first state is responsible for the initialization of the entire device as this is
the first state that is entered after the hardware resets. The serial
communication of the modem and the debugging console is set up according the
predetermined baud rates. The SPI bus is set up to send the most significant bit
first (MSB) on the rising edge of the clock that is set to 4 MHz. All pins that are
required to communicate with the different driver chips are also set up as output
pins and initial states set. All registers are cleared and variables initialized. The
controller’s timer is set up. Finally the modem is tasked to write that the device
is ready to receive the two commands from the Trintel Platform. Once the
initializations are done the program automatically jumps into the second state.

32

b) State 2 Main Program Loop:

The main loop constantly calls the updateDisplay() function. This function is the
heart of the operation and must be the main routine. It must constantly be
serviced for the display not to start flickering, interrupts subroutines must be
kept short. The function steps through the rows and transmits the data that is in
the display matrix array. The row driver’s data requires two 8-bit bytes that are
transmitted through a software emulation of SPI that is somewhat slower this is
transmitted every time a row is selected. The column driver’s data is transmitted
8-bits at a time through the SPI bus until all 80 bits in the selected row’s columns
constant current drivers shift registers has been filled. Once the data has been
transmitted the controller latched the data to the output buffers and the LEDs in
the row are activated. The program then steps to the next row and repeats the
process until the entire frame has been transmitted. Once this is done the main
program loop restarts and the display is updated from the first row again. The
main loop can be interrupted by the UART due to incoming data from the modem
signaling that the Trintel Platform has sent a command or status message. In this
case the program moves into state 3.

c) State 3 Communications Received:

Once the UART triggers the interrupts, the program enters state 3 where the
message in the buffer is interpreted. The function stringFormat() is used to
decide whether the message is the command that is received or a modem status
message. If the messages contain status messages the modem is tasked to update
the state to the online platform with the following AT-command.

Seriall.urite("AT+AWTDA=d,\"YMS\",1,\ " Status, INT32,1");
Seriall.wr '»:{13);

Figure 49: Modem Write Command

This command updates the status variable on the platform to the value “1”,
indicating the system is running correctly. If however a command is received the
data required is extracted from the message, this being the string data and the
unique acknowledge id. The acknowledgement message is then tasked to the
modem as follows.

Figure 50: Write Acknowledge Command

Once the acknowledgement message has been sent the program jumps to state 4
where the display matrix is updated.

33

d) State 4 Display Matrix Update:

The string data has been saved globally and requires to be formatted from
character ASCII data into the dot matrix format of 8x8 per character. The
function updateDisplayMatrix() is used to achieve this. The function takes each
line of the VMS and steps through character-by-character using the lookup table
to write the data into the specific slot in the display matrix. This is done each
time the VMS string data is changed, as the program has to avoid long
subroutines in the main program loop.

Figure 51: Display Matrix Content in software

Important Functions:

a) updateDisplayMatrix();

This function is responsible for the updating of the DisplayMatrix array once the
new messages have been received from the ITS. These messages then get
converted into Dot-Matrix format and placed into the array.

The function begins by initialising a line counter, column counter and character
counter variable. These variables are used to control the nested loops. The first
counter loops through all ten characters of the first line until all characters have
been converted into Dot-Matrix format. Once a character is selected by the outer
loop another loop begins counting through the row lines of the character. The
loop counts through 8 row lines because the project selected an 8x8 character
format. Once a row line has been selected another loop counts through the
columns and reads the Dot-Matrix data from the lookup table. Through this
nested loop sequence each characters Dot-Matrix data gets formatted into the
DisplayMatrix array. This process is repeated for the second line as well (see
figure 63).

34

b) serialData();

This function is only used to interpret the AT commands received from the
modem. It is a case statement with various actions depending on what
commands the modem transmits to the device.

There are various status update messages depending on whether the modem is
operating successfully. Also this function calls the updateDisplayMatrix();
function and transmits the acknowledgement message back to the trintel
platform (see figure 64).

c) UpdateDisplay();

This function is responsible for the drivers containing the correct display data
and needs to be serviced every frame. This function is called in the main program
loop and must not be interrupted.

The outside loop counts through the rows and transmits 16-Bits through SPI to
the voltage source drivers. Inside this loop is another loop that counts through
all columns. 80-Bits of data is then sent through SPI to the constant current
column drivers. Then the column and row driver’s latch lines are toggled and
data is transferred to the outputs. This process gets repeated for every row (see
figure 61).

35

Chapter 4: Results

The VMS system performed as specified by the project requirements. The deviceis
able to fully communicate with the I TS through the modem. The device transmits
status data and acknowledge messages and receives the message datafrom the ITS.
The display is capable of displaying all ASCII characters.

LED Display performance:

The LED display is capable of displaying the message content without any flickering
and achieves a 66 Hz frame rate (shown in figure). The brightness of each LED is
fully visible from a distance, however the viewing angle is very narrow. Unless the
user is perpendicular to the display the brightness greatly reduces.

Figure 52: Main loop refresh rate test code Figure 53: Refresh rate of display

Figure 54: LED display perpendicular Figure 55: LED display off center

36

Due to the narrow viewing angle the use of dispersion film is required. This film
is used to diffuse the light emitted from the LED. However this film greatly
reduces the brightness experienced by the user.

Figure 56: Display with simple dispersion film Figure 57: Display with Perspex dispersion

Modem commands received/sent:

The Trintel platform transmits and received a number of testing data to indicate the
system is fully functioning. These are some of the message received by the device
through the serial communi cations with the modem.

Commands:

Thefirst line is the message received in AT commands from the modem followed by
the message, the unigque command id. The uniqueid is then acknowledged back to the
platform to confirm that the message is received and is being displayed.

Figure 58: Serial communication Commands received

Status:

This indicates the device is operating in the green state, meaning there is
communications and everything is running perfectly. This is then uploaded to
the platform.

Figure 59: Status message and AT command

37

Trintel Platform:

This indicates that the command has been sent from the platform to the device.
The device received the command and acknowledged that it is displaying the
message.

Figure 60: Smart Platform Jobs Tab

38

Chapter 5: Conclusion &
Recommendations

l. Recommendations:

The Ultra-bright LEDs used in this project suffer from a very narrow viewing
angle. This introduces an unforeseen problem in the need to use a dispersion
film. The film however greatly reduces the brightness of the LEDs to viewers. If
the use of a dispersion film is required the hardware allows for the LEDs to be
driven at a higher current value however a current limiting resistor sets this. The
As initially designed, the Voltage Source driver is only capable of delivering
20mA to each LED as it was initially designed. This can easily be solved by
adding more MIC5891 chips in parallel, as there are already three in the current
design.

There are however different options that can be pursued. The use of surface
mount LEDs with much greater viewing angles is recommended. These LEDs do
not offer the same brightness that the Ultra-bright LEDs offer. However
considering this method does not require the use of dispersion film the resulting
visibility of messages will greatly increase over longer distances. These LEDs can
be used in place of the LEDs and will function in the matrix design used.

Due to the controller only having one hardware SPI bus either the column
drivers or row drivers will need data transmitted by software emulation of SPI
hardware. This is significantly slower than the hardware SPI. The controller
therefore limits the frame rate not the drivers used. Even though one SPI bus
would normally be sufficient for IC’s with chip select lines, the drivers used do
not posses this feature. Either a controller with two SPI hardware busses needs
to be used or an improvised chip select line needs to be implemented to increase
the frame rate past its current restriction of 66 Hz.

Implementation of graphical message content can also be added to the system.
However, the online platform is limiting in regard to this. One possible solution is
linking ASCII characters that are not used in messages to graphical message
content saved on the device. However, this could possibly confuse the operator.

It is also recommended that more characters be added to each line, as this will
increase the type of message that can be displayed. This can easily be done by
daisy chaining more TLC 5926 chips and adding more MIC 5891 chips. The
design is very modular with regard to the size of the display but there is a limit to
the size caused by the speed of the SPI busses.

39

1. Conclusion:

The purpose of this document is to report detailed technical information on
researched topic, concept proposal, design, construction and testing of the VMS
project. The system transmits messages from an online platform to the device.
The device then displays the message content, warning road users of possible
hazards or various other message functions.

Chapter one gives an overview of previous work done on the topic. In this
chapter the scope of the project was established and restrictions were identified.
The chapter summarizes current methods of designing VMS and also regulations
put in place to assist in the design process. In chapter two different design
concepts were discussed. Different advantages and disadvantages are weighed
and cursory explanations of the specific concepts are explored.

Chapter two introduces the requirements of this project and discusses possible
concept designs. Chapter three discusses the chosen concept in-depth. The
concepts design is explained in depth regarding the functionality, how it is
connected and all components. This chapter completely explains why the
concept was chosen in regards to its advantages that it possesses and why the
disadvantages are acceptable. Chapter four presents the results of the project.

The VMS was able to successfully display all ASCII characters supported by the
platform and is visible at a reasonable distance. However, this can be improved
by using surface mount LEDs. All channels of both the voltage source drivers and
the constant current sinking drivers are functioning properly. However, only the
channels used by the prototype is drawing current. The display achieves 66 Hz
frame-rate. This is sufficient to remove flickering completely. Once messages are
sent from the platform it takes about 5 seconds to transmit the data to the
device. Once the data is received the display instantly changes the data being
displayed, there is no delay. The online platform operated by Trintel experiences
regular timeouts and this results in messages not being queued, this is outside
the scope of the project but could result in malfunctioning. The online platform
dashboard displays the last messages sent and thus the message being displayed.
Also the dashboard displays the current state of the device, operators are
completely informed regarding the functionality of the VMS at all times. The
device is completely powered off a 5 V voltage source. The prototype display
required a maximum of 200mA depending on what message was being
displayed.

This project achieved all the requirements set out in chapter two and three.
Therefore, this project was successful in achieving the requirements. A video
showing overview of the system and functionality can be found at
http://www.youtube.com/watch?v=QInRh9gu1D8.

40

References

[1]

[2]

[3]

[4]

[3]

[11]

[12]

[13]

New York State Thruway Authority, “GUIDELINES FOR USE OF VARIABLE

MESSAGE SIGNS (VMS),” Department of Maintenance and Operations,
[May 2011]

ALBERTO ARBAIZA, ANTONIO LUCAS-ALBA, “Variable Message Signs
Harmonisation PRINCIPLES OF VMS DESIGN,” EASYWAY, Trans
European, [January 2012]

S Clark, "Variable Message Signs,” Government of South Australia, [June
2010]

Kimley-Horn, ”SANRAL Variable Message Sign (VMS) Usage Policy,” The

South African National Roads Agency Limited, [February 2010]

Phil Margison and Michael Bushby, “Guidelines for the Location and
Placement of Variable Message Signs,” RTA, [December 2008]

The South African National Roads Agency Limited, SANRAL Variable
Message Sign (VMS) Usage Policy, SANRAL, 2010.

Kazuo Murata, “How do LEDs emit light”, OKI DATA Tech Tech Journal,
[January 2004]

KingBright, “10mm Solid State Lamp,” L-813SRC-B [February 2008]
Jim Lepkowski and Mike Hoogstra, “NL27WZ04 Dual Gate Inverter
Oscillator Increases the Brightness of LEDs While Reducing Power
Consumption,” Arizona State University. AND8067/D [October 2007]
M.]. Booysen et al, “Machine-to-Machine (M2M) Communications in
Vehicular Networks,” KSII TRANSACTIONS ON INTERNET AND
INFORMATION SYSTEMS VOL. 6, NO. 2, Feb 2012

Sierra Wireless, AirVantage Platform, pp.1-4.

Trintel, “Trinity-Smart Sight,” [Online]. Available:
http://smart.trintel.co.za [Accessed: Oct, 2013].

Sierra Wireless, “Fastrack Xtend,” AirLink FXT Series Report.
WA_DEV_FEX20_UGD_00, 7 Apr. 2007.

41

[14]

[15]

[20]
[21]

[22]

[23]

[24]

Walid Benzarti et al, “Compact Analytical Physical-Based Model of LTPS
TFT for Active Matrix Displays Addressing Circuits Simulation and
Design,” vol. 51, no.3, Mar. 2004.

[lias Pappas et al, “Active-Matrix Liquid Crystal Displays - Operation,
Electronics and Analog Circuits Design,” Physics Department Aristotle

University of Thessaloniki Thessaloniki, Greece, [online document],
www.intechweb.org [Accessed: Oct, 2013].

Avago, Appl. Note 1216, pp.1-15.
Xiaojun Guo et al, “Investigation on the Current Nonuniformity in Current-

Mode TFT Active-Matrix Display Pixel Circuitry,” vol. 52, no.11, Nov. 2005.

Wouter F. Aerts et al, “Design of an Organic Pixel Addressing Circuit for an
Active-Matrix OLED Display,” vol. 49, no.12, Dec 2002.

M.]. Booysen et al, “PROOF OF CONCEPT: LARGE-SCALE MONITOR AND
CONTROL OF HOUSEHOLD WATER HEATING IN NEAR REAL-TIME,”
International Conference on Applied Energy presented on the 1st of July
2013

Arduino, “Mega 2560,” [Date Unknown]

MICREL, “8-Bit Serial-Input Latched Source Driver,” MIC5891 [May 2006]

Texas Instruments, “16-CHANNELCONSTANT-
CURRENTLEDSINKDRIVERS,” TLC5926 [July 2008]

MAXIM, “RS-232 Transceivers for Multidrop Applications,”
MAX3322EEUP [2003]

Sierra Wireless, “AT Commands Interface Guide for firmware 7.46,”
Interface Guide Series Report. WM_DEV_OAT_UGD, August 2011.

42

Appendix A : Project Management

43

Appendix B : ECSA Outcome

44

Appendix C : Software

Flow Diagrams of Functions:

updateDisplay();

X=0
Y=9
SourceCounter =1

!

No

end; < Counter X< 16

Increase X by 1

WriteSource(highByte(SourceCounter)) :
WriteSource(lowByte(SourceCounter)) :

Decrease Y by 1

WriteSink(DisplayMatrix[x][y]):
LatchSink():

LatchSource():
SourceCounter<<1;

Figure 61: updateDisplay(); Flow Diagram

45

SerialEvent1();

end;

A

Seriall.available()

Add Serial Data to
Buffer

l

End of Line
Character
Received

serialData();
Clear Buffer

l

end,
Figure 62: SerialEvent1(); Flow Diagram

46

Figure 63: updateDisplayMatrix(); Flow Diagram

47

Print "Green”

SerialData();

Yes
Buffer="+AWTDA: UP"

Write Status =1

|

end;

Print "Yellow™

Yes
Buffer="+AWTDA: Down"

Write Status =2

l

end;

Print "Red”

A

Yes

uffer="+AWTDA: BOOT"

Write Status =3

l

end:

Extract String line

A

Yes
Command received

and Ack Code

Y

Send Ack code
through modem

updateDisplayMatrix():

l

end;

Figure 64: SerialData(); Flow Diagram

48

Appendix D : Circuit Construction

Gerber files:

Figure 65: LED Constant Current Sink Driver Gerber File top

Figure 66: LED Constant Current Driver Gerber File Bottom

Figure 67: LED Voltage Source Driver Gerber File Top

49

Physical Circuit:

Figure 68: Voltage Source Driver Gerber File Bottom

Figure 69: LED Sink Driver

Figure 70: LED Voltage Source Driver

50

System Diagram:

Circuit Diagrams:

GND
Pin 51 SPI Data Arduino
Pin 52 SPI Clock Arduino
Pin 2 Arduino Latch
Output 0
Output 1
Output 2
Output 3
Output 4
Output 5
Output 6
Output 7

Figure 71: Full System Diagram

<5V]

TLC 5926 N Jl+axD
1 1 13 13 Res3
22 12 IK
7 3 15 6 SPI Serial Data Output Cascade to next TLC SPI Data Inpyt
4 16 Pin 3 Arduino Output Enable
5 17
3 5 17 3 Output 15
7 6 18 0 Output 14
S 7 19 0 Output 13
) 8 20 1 Output 12
10 9 21 > Output 11
1 10 22 >3 Output 10
B 11 23 52 Output 9
12 24 Output 8
TLC 5926

Figure 72: TLC 5926 Connections

51

MIC 5891

GND ; 1 9 ?0 SPI Serial Data Cascade to next Voltage Source Driver
PIN 34 SPI Clock Arduino 3 2 10 1 5V
PIN 35 SPI Data Arduino sl 3 11 B PIN 30 Arduino Output Enable
PIN 31 Latch Arduino 5 4 12 3 5V
Output 1 5 1 5 13 12 Output 8
Output 2 7 6 14 15 Output 7
Output 3 g 7 15 16 Output 6
Output 4 r 8 16 Output 5
MIC 5891
Figure 73: MIC 5891 Connections
Arduino Mega
5V Ly g8 [Pin51SPIData Current Sink
[GND 21, 9 9—0 Pin 52 SPI Clock Current Sink
[PINZ Current Sink Driver Laich 313 o I Fm345PIClock Voliage Source
[Pin 3 Current Sink Driver Output Enablp- 4 4 11 11—‘ Pin 35 SPI Data Voltage Source
[PIN 31 Voltage Source Driver Latch g 5 12
[PIN 30 Voltage Source Driver Output Enable) L 3 13
7 14
Arduino Mega
Figure 74: Arduino Connections
Digilent Pmod
1 5 : -
DB9 Connector TX to Modem > 1 6 Serial 1 Arduino TX
DB9 Connector RX to Modem 2 Serial 1 Arduino RX
3
4

Digient PMod

Figure 75: Digilent PMod Serial Voltage Converter Connections

| 2 3 4 H 3
PIN 51 SPIData »——— SPlaDaialn SPIData Out |————— SPlaDataln SPIData Out ———\ SPlaDataln SPIData Out F——1 SPraDataln SPIData Out F—— SPraDaain SPIData Owt [SPlaDataln SPIData Out |-+
PIN2 Arduino Latelp——2—] Latch 2 Latch 2 Lach 2 Lach 2 Latch Latch
PIN 52 SPI Clock_W———] SPI Clock SPI Clock SPI Clock SPI Clock SPI Clock SPI Clock
TLC$926 TLC 5936 TLC 5926 TLC 5926 TLC 5926 TLC 5926
1 1 1 1

Figure 76: TLC 5926 Communication Connections

52

PIN 35 SPI Data
PIN 31 Latch/Strobe;
PIN 34 SPI Clock;

4

1 SPIDaaIn SPI Data Out |—+ S SPIDaaln SPI Data Out [+—
2 strobe 2 Strobe
SPI Clock SPI Clock
MIC 5891 Comms MIC 5891 Comms
2 5
1 SPIDaan SPI Data Out |+ 1 SPIDaaln SPI Data Out [4—
2 strobe 2 Strobe
SPI Clock SPI Clock
MIC 5891 Comms MIC 5891 Comms
3 6
L SPIData In SPI Data Out L SPIDataIn SPI Data Out
7 7
3 Strobe 3] Strobe
SPI Clock SPI Clock

MIC 5891 Comms

MIC 5891 Comms

Figure 77: MIC 5891 Communication Connections

53

Appendix E : Code

// Neethling McGrath 15707059
//

#include <SPIL.h>
#include <Timer.h>

Timert;

//Global Variable:

int State ;
String buffer ;

//Flags
int AllowPrint=0 ;

byte DisplayMatrix[16][10];

String CharStringl =" "

String CharString2 =" ;

const char LUT[128][8] =
{
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //

{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}, //
{0x00,0x60,0xfa,0xfa,0x60,0x00,0x00,0x00}, // !
{0x00,0xe0,0xe0,0x00,0xe0,0xe0,0x00,0x00}, // "
{0x28,0xfe,0xfe,0x28,0xfe,0xfe,0x28,0x00}, // #
{0x24,0x74,0xd6,0xd6,0x5¢,0x48,0x00,0x00}, // $
{0x62,0x66,0x0c,0x18,0x30,0x66,0x46,0x00}, // %
{0x0c,0x5e,0xf2,0xba,0xec,0x5e,0x12,0x00}, // &

54

{0x20,0xe0,0xc0,0x00,0x00,0x00,0x00,0x00}, // '
{0x00,0x38,0x7c,0xc6,0x82,0x00,0x00,0x00}, // (
{0x00,0x82,0xc6,0x7¢,0x38,0x00,0x00,0x00}, //)
{0x10,0x54,0x7c,0x38,0x38,0x7c,0x54,0x10}, // *
{0x10,0x10,0x7c,0x7¢,0x10,0x10,0x00,0x00}, // +
{0x00,0x05,0x07,0x06,0x00,0x00,0x00,0x00}, //,
{0x10,0x10,0x10,0x10,0x10,0x10,0x00,0x00}, // -
{0x00,0x00,0x06,0x06,0x00,0x00,0x00,0x00}, // .
{0x06,0x0c,0x18,0x30,0x60,0xc0,0x80,0x00}, // /
{0x7c,0xfe,0x9a,0xb2,0xfe,0x7c,0x00,0x00}, // 0
{0x42,0x42,0xfe,0xfe,0x02,0x02,0x00,0x00}, // 1
{0x46,0xce,0x9a,0x92,0xf6,0x66,0x00,0x00}, // 2
{0x44,0xc6,0x92,0x92,0xfe,0x6¢,0x00,0x00}, // 3
{0x18,0x38,0x68,0xc8,0xfe,0xfe,0x08,0x00}, // 4
{0xe4,0xe6,0xa2,0xa2,0xbe,0x9¢,0x00,0x00}, // 5
{0x3c,0x7e,0xd2,0x92,0x9¢,0x0c,0x00,0x00}, // 6
{0xc0,0xc6,0x8e,0x98,0xf0,0xe0,0x00,0x00}, // 7
{0x6¢,0xfe,0x92,0x92,0xfe,0x6¢,0x00,0x00}, // 8
{0x60,0xf2,0x92,0x96,0xfc,0x78,0x00,0x00}, // 9
{0x00,0x00,0x36,0x36,0x00,0x00,0x00,0x00}, // :
{0x00,0x05,0x37,0x36,0x00,0x00,0x00,0x00}, // ;
{0x10,0x38,0x6¢,0xc6,0x82,0x00,0x00,0x00}, // <
{0x28,0x28,0x28,0x28,0x28,0x28,0x00,0x00}, // =
{0x00,0x82,0xc6,0x6¢,0x38,0x10,0x00,0x00}, // >
{0x40,0xc0,0x8a,0x9a,0xf0,0x60,0x00,0x00}, // ?
{0x7c,0xfe,0x82,0xba,0xba,0xf8,0x78,0x00}, // @
{0x3e,0x7e,0xc8,0xc8,0x7e,0x3e,0x00,0x00}, // A
{0x82,0xfe,0xfe,0x92,0x92,0xfe,0x6¢,0x00}, // B
{0x38,0x7c,0xc6,0x82,0x82,0xc6,0x44,0x00}, // C
{0x82,0xfe,0xfe,0x82,0xc6,0xfe,0x38,0x00}, // D
{0x82,0xfe,0xfe,0x92,0xba,0x82,0xc6,0x00}, // E
{0x82,0xfe,0xfe,0x92,0xb8,0x80,0xc0,0x00}, // F
{0x38,0x7c,0xc6,0x82,0x8a,0xce,0x4€,0x00}, // G
{0xfe,0xfe,0x10,0x10,0xfe,0xfe,0x00,0x00}, // H
{0x00,0x82,0xfe,0xfe,0x82,0x00,0x00,0x00}, // 1
{0x0c,0x0e,0x02,0x82,0xfe,0xfc,0x80,0x00}, //]
{0x82,0xfe,0xfe,0x10,0x38,0xee,0xc6,0x00}, // K
{0x82,0xfe,0xfe,0x82,0x02,0x06,0x0e,0x00}, // L
{0xfe,0xfe,0x60,0x30,0x60,0xfe,0xfe,0x00}, // M
{0xfe,0xfe,0x60,0x30,0x18,0xfe,0xfe,0x00}, // N
{0x38,0x7c,0xc6,0x82,0xc6,0x7c,0x38,0x00}, // O
{0x82,0xfe,0xfe,0x92,0x90,0xf0,0x60,0x00}, // P
{0x78,0xfc,0x84,0x8e,0xfe,0x7a,0x00,0x00}, // Q
{0x82,0xfe,0xfe,0x98,0x9c,0xf6,0x62,0x00}, // R
{0x64,0xe6,0xb2,0x9a,0xde,0x4c,0x00,0x00}, // S
{0xc0,0x82,0xfe,0xfe,0x82,0xc0,0x00,0x00}, // T
{0xfe,0xfe,0x02,0x02,0xfe,0xfe,0x00,0x00}, // U
{0xf8,0xfc,0x06,0x06,0xfc,0xf8,0x00,0x00}, // V
{0xfe,0xfe,0x0c,0x18,0x0c,0xfe,0xfe,0x00}, // W
{0xc6,0xee,0x38,0x10,0x38,0xee,0xc6,0x00}, // X
{0xe0,0xf2,0x1e,0x1e,0xf2,0xe0,0x00,0x00}, // Y
{0xe6,0xce,0x9a,0xb2,0xe2,0xc6,0x8e,0x00}, // Z
{0x00,0xfe,0xfe,0x82,0x82,0x00,0x00,0x00}, // [
{0x80,0xc0,0x60,0x30,0x18,0x0c,0x06,0x003}, // "\"
{0x00,0x82,0x82,0xfe,0xfe,0x00,0x00,0x00}, // |
{0x10,0x30,0x60,0xc0,0x60,0x30,0x10,0x00}, // *
{0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01}, // _
{0x00,0x00,0xc0,0xe0,0x20,0x00,0x00,0x00}, //*
{0x04,0x2e,0x2a,0x2a,0x3¢,0x1e,0x02,0x00}, // a
{0x82,0xfc,0xfe,0x22,0x22,0x3e,0x1c,0x00}, // b
{0x1c,0x3e,0x22,0x22,0x36,0x14,0x00,0x00}, // c
{0x0c,0x1e,0x12,0x92,0xfc,0xfe,0x02,0x00}, // d
{0x1c,0x3e,0x2a,0x2a,0x3a,0x18,0x00,0x00}, // e
{0x12,0x7e,0xfe,0x92,0xc0,0x40,0x00,0x00}, // f
{0x19,0x3d,0x25,0x25,0x1f,0x3e,0x20,0x00}, // g
{0x82,0xfe,0xfe,0x10,0x20,0x3e,0x1e,0x00}, // h
{0x00,0x22,0xbe,0xbe,0x02,0x00,0x00,0x00}, // i
{0x02,0x23,0x21,0xbf,0xbe,0x00,0x00,0x00}, // j
{0x82,0xfe,0xfe,0x08,0x1c,0x36,0x22,0x00}, // k
{0x00,0x82,0xfe,0xfe,0x02,0x00,0x00,0x00}, // 1
{0x3e,0x3e,0x30,0x18,0x30,0x3e,0x1e,0x00}, // m
{0x3e,0x3e,0x20,0x20,0x3e,0x1e,0x00,0x00}, // n
{0x1c,0x3e,0x22,0x22,0x3¢,0x1c,0x00,0x00}, // o
{0x21,0x3f,0x1f,0x25,0x24,0x3c,0x18,0x00}, // p

55

//Global Variable:

{0x18,0x3c,0x24,0x25,0x1f,0x3f,0x21,0x00}, // q

{0x22,0x3e,0x1e,0x22,0x38,0x18,0x00,0x00}, // r
{0x12,0x3a,0x2a,0x2a,0x2€,0x24,0x00,0x00}, // s
{0x00,0x20,0x7c,0xfe,0x22,0x24,0x00,0x00}, // t

{0x3c,0x3e,0x02,0x02,0x3c,0x3€e,0x02,0x00}, // u
{0x38,0x3¢,0x06,0x06,0x3¢,0x38,0x00,0x00}, // v
{0x3c,0x3e,0x06,0x0c,0x06,0x3e,0x3c,0x00}, // w
{0x22,0x36,0x1c,0x08,0x1c,0x36,0x22,0x00}, // x
{0x39,0x3d,0x05,0x05,0x3f,0x3e,0x00,0x00}, // y
{0x32,0x26,0x2e,0x32a,0x32,0x26,0x00,0x00}, // z
{0x10,0x10,0x7c,0xee,0x82,0x82,0x00,0x00}, // {
{0x00,0x00,0x00,0xee,0xee,0x00,0x00,0x00}, // |

{0x82,0x82,0xee,0x7¢,0x10,0x10,0x00,0x00}, // }
{0x40,0xc0,0x80,0xc0,0x40,0xc0,0x80,0x00}, // ~
{0x1e,0x3e,0x62,0xc2,0x62,0x3e,0x1e,0x00}, //

void LatchSource()

{

digitalWrite(31, HIGH);

digitalWrite(31, LOW);

}

void LatchSink()

digitalWrite(2, HIGH);
digitalWrite(2, LOW);

}

void WriteSource(byte message)

{
// digitalWrite(35, HIGH);
shiftOut(35, 34, MSBFIRST, message);
//digitalWrite(35, HIGH);

// LatchSource();

}

void WriteSink(byte message)

{

SPLtransfer(message) ;
//LatchSource() ;
// LatchSink();

}

//Display update Function

void updateDisplayMatrix()

{

int currentBit = 0;
byte constructByte = 0 ;

//Serial.println("Begin") ;

for (int charStringCount = 0 ; charStringCount < 10 ; charStringCount++)

{

for(int lineCount = 7 ; lineCount >= 0 ; lineCount--)

{

//Serial.println(Test,BIN);
constructByte =0 ;

56

for(int colCount = 0 ; colCount < 8 ; colCount++)
//Test = LUT[CharString1[charStringCount]][lineCount] ;
currentBit = bitRead(LUT[CharString1[charStringCount]][colCount],lineCount) ;
//Serial.print(currentBit) ;
if (currentBit == 0)

{
bitWrite(constructByte,colCount,LOW) ;

else if (currentBit == 1)

bitWrite(constructByte,colCount,HIGH) ;
}

}

DisplayMatrix[7-lineCount][charStringCount] = constructByte ;
//Serial.println() ;

}
//Serial.println("End") ;

for (int charStringCount = 0 ; charStringCount < 10 ; charStringCount++)

{

for(int lineCount = 7 ; lineCount >= 0 ; lineCount--)

{

constructByte =0 ;
for(int colCount = 0 ; colCount < 8 ; colCount++)

{

currentBit = bitRead(LUT[CharString2 [charStringCount]][colCount],lineCount) ;
//Serial.print(currentBit) ;

if (currentBit == 0)

{
bitWrite(constructByte,colCount,LOW) ;

else if (currentBit == 1)

bitWrite(constructByte,colCount,HIGH) ;

}

}

DisplayMatrix[15-lineCount][charStringCount] = constructByte ;
//Serial.println() ;

}
//Serial.println("End") ;
}

void serialDisplayout()

{

for(intx=0;x<16; x++)

{

for(inty=0;y<10; y++)
{

for(int lineCount = 0 ; lineCount < 8 ; lineCount++)

{
Serial.print(bitRead(DisplayMatrix[x][y],lineCount));

}

Serial.println();

}

}

void updateDisplay()
{

int SourceCounter=1;
for (intx=0;x<16; x++)

{

WriteSource(highByte(SourceCounter)) ;
WriteSource(lowByte(SourceCounter)) ;

for (inty=9;y>-1 ;y--)
{
WriteSink(DisplayMatrix[x][y]);

}
//Serial.printin() ;
LatchSink();

LatchSource();
// Serial.println(SourceCounter,BIN);
SourceCounter = SourceCounter << 1 ;

//Serial Data Format

void serialData()

{

if (buffer.charAt(8) =="U")
{

Serial.println("Status:Green") ;

State = 1;
Seriall.print("AT+AWTDA=d,\"VMS\",1,\"Status,INT32,1");
Seriall.write(13);

58

}

if (buffer.charAt(8) =="'B")
{

Serial.println("Status:Red") ;

State=3;
Seriall.print("AT+AWTDA=d,\"VMS\",1,\"Status,INT32,3");
Seriall.write(13);

}

if (buffer.charAt(8) =="D’")
{

Serial.println("Status:Yellow") ;

State = 2;
Seriall.print("AT+AWTDA=d,\"VMS\",1,\"Status,INT32,2");
Seriall.write(13);

}

if (buffer.charAt(8) =='c")
{

if (buffer.charAt(34) =="1")
{
// Serial.println("ASAS");
String line ;
String Ack ;
intx=40;

do
{

line += buffer.charAt(x);
X++;

}

while (buffer.charAt(x) I=",");
Serial.println(line) ;
CharString1 = line ;

x=10;

do

{
Ack += buffer.charAt(x);

X++;

}

while (buffer.charAt(x) I=",");

Serial.println(Ack) ;

Seriall.write("AT+AWTDA=a,\"VMS\",");
for (intx = 0 ; x < Ack.length() ; x++)

{
Seriall.write(Ack.charAt(x));

Seriall.write(13) ;

}
if (buffer.charAt(34) =="2")

{
// Serial.println("ASAS");

29

String line ;

String Ack ;

intx=40;

do

{

line += buffer.charAt(x);
X++

}
while (buffer.charAt(x) I=",");
Serial.println(line) ;

CharString?2 = line ;

x=10;

do

{
Ack += buffer.charAt(x);
X++;

z/vhile (buffer.charAt(x) !=",");

Serial.println(Ack) ;

Seriall.write("AT+AWTDA=a,\"VMS\",");
for (intx = 0 ; x < Ack.length() ; x++)

{
Seriall.write(Ack.charAt(x));

}
Seriall.write(13) ;

}

updateDisplayMatrix() ;

}

//Serial Data Format

void setup()

//Pins SETUP
//Sink Pins

pinMode(2, OUTPUT);//XLAT-Sink
pinMode(3, OUTPUT);//output enable-Sink

pinMode(51, OUTPUT);//MOSI DATA-Sink-SPI
pinMode(52, OUTPUT);//SPI Clock-Sink-SPI

//TEST PINS

pinMode(8,0UTPUT) ;
pinMode(9,0UTPUT) ;

60

digitalWrite(8,LOW) ;
//Source Pins

pinMode(31, OUTPUT);//XLAT-Source
pinMode(30, OUTPUT);//output enable-Source

pinMode(34, OUTPUT);//SPI Clock-Source
pinMode(35, OUTPUT);//MOSI DATA-Source

//Pins SETUP

//Coms SETUP

//SPI

SPLsetBitOrder(MSBFIRST);//Most Significant Bit First
SPLsetDataMode(SPI_MODEO);// Mode 0 Rising edge of data, keep clock low
SPLsetClockDivider(SPI_CLOCK_DIV128);//Run the data in at 16MHz/128 - 125 KHz
SPLbegin() ;

//Serial

Serial.begin(9600) ;
Seriall.begin(9600);

//Set Pins====

digitalWrite(2, LOW); //set Latch-Sink low
digitalWrite(3, LOW); //set OE-Sink low
digitalWrite(31, LOW); //set Latch-Source low
digitalWrite(30, LOW); //set OE-Source low

//Init All registers===

for (intx=0;x<16; x++)
{
for (inty=0;y<10;y++)
{
DisplayMatrix[x][y] = 0 ;
}
}

for (int SourceDrivers = 0; SourceDrivers < 2 ; SourceDrivers++)

{

WriteSource(0x00);

}

for (int SinkDrivers = 0; SinkDrivers < 5 ; SinkDrivers++)

{

WriteSink(0x00);

}

updateDisplayMatrix();
// serialDisplayout() ;

//Clear All Registers=

//Setup Command

Seriall.print("AT+AWTDA=c,\"VMS\"\"UpdateString1\"");
Seriall.write(13);

delay(100) ;

61

Seriall.print("AT+AWTDA=c,\"VMS\",\"UpdateString2\"");
Seriall.write(13);

//Setup Timer

introwpos=1;
byte Hbyterow ;
byte Lbyterow ;
int colpos=1;
byte Hbytecol ;
byte Lbytecol ;

for (int Row = 0 ; Row<10 ; Row++)

{

Hbyterow = highByte(rowpos);
Lbyterow = lowByte(rowpos);

WriteSource(Hbyterow);
WriteSource(Lbyterow);

rowpos = rowpos << 1;
colpos=1;
for (int Col = 0 ; Col<14 ; Col++)

Hbytecol = highByte(colpos);
Lbytecol = lowByte(colpos);

WriteSink(Hbytecol);
WriteSink(Lbytecol);
colpos = colpos << 1;

delay(0);

updateDisplayMatrix();
// serialDisplayout() ;
}

int LedState = LOW ;

void loop()

updateDisplay();

if (LedState == LOW)
LedState = HIGH;
else
LedState = LOW;

digitalWrite(8,LedState) ;

}

void serialEvent1() {

62

char temp ;
int stringEnd ;

stringEnd =0 ;

while (Seriall.available()) {

temp = (char)Seriall.read();
buffer += temp;

// Serial.print(temp,DEC) ;
// Serial.print(temp) ;

if(int(temp) == 10)
{
stringEnd = 1;

break;

}
}

if (stringEnd == 1)
{

Serial.print(buffer) ;
serialData();

buffer ="";

63

