
Parallel Algorithms for Electromagnetic
Moment Method Formulations

David Bruce Davidson

Dissertation accepted for the Degree of
Doctor of Philosophy in Engineering at

the University of Stellenbosch

Promoters:
Prof. J.H.Cloete, University of Stellenbosch
Prof. D.A.McNamara, University of Pretoria

November 1991

Declaration

I the undersigned hereby declare that the work contained in this disser­
tation is my own original work and has not been previously in its entirety or
in part been submitted at any university for a degree.

Signature Date: 11 November 1991

Stellenbosch University http://scholar.sun.ac.za

Summary

This dissertation investigates the moment method solution of electromagnetic
radiation and scattering problems using parallel computers. In particular,
electromagnetically large problems with arbitrary geometries are considered.
Such problems require a large number of unknowns to obtain adequate ap­
proximate solutions, and make great computational demands. This disserta­
tion considers in detail the efficient exploitation of the potential offered by
parallel computers for solving such problems, and in particular the class of
local memory Multiple Instruction, Multiple Data systems.

A brief history of parallel computing is presented. Methods for quantify­
ing the efficiency of parallel algorithms are reviewed. The use of pseudo-code
for documenting algorithms is discussed and a pseudo-code notation is de­
fined that is used in later chapters.

A new parallel conjugate gradient algorithm, suitable for the solution
of general systems of linear equations with complex values, is presented.
A method is described to handle efficiently the Hermitian transpose of the
matrix required by the algorithm. Careful attention is paid to the theoretical
analysis of the algorithm's parallel properties (in particular, speed-up and
efficiency). Pseudo-code is presented for the algorithms. Timing results for a
moment method code, running on a transputer array and using this conjugate
gradient solver, are presented and compared to the theoretical predictions.

A parallel LU algorithm is described and documented in pseudo-code. A
new graphical description of the algorithm is presented that simplifies the
identification of the parallelism and the analysis of the algorithm. The use
of formal methods for extracting parallelism via the use of invariants is pre­
sented and new examples given. The speed-up and efficiency of the algorithm
are analyzed theoretically, using new methods that are simpler than those de­
scribed in the literature. Techniques for optimizing the efficiency of parallel
algorithms are introduced, and illustrated with pseudo-code. New parallel
forward and backward substitution algorithms using the data distribution
required for the parallel LV algorithm are described, and documented with
pseudo-code. Results obtained with a Occam 2 moment method code run­
ning on a transputer array using these parallel LU solver and substitution
algorithms are presented and compared with the theoretical predictions.

PARNEC, a new Occam 2 implementation of the thin-wire core of NEC2,
is discussed. The basic 'theory of NEC2 is reviewed. Problems with early at­
tempts at combining Occam and FORTRAN are reported. Methodologies
for re-coding an old code written in an unstructured language in a. modern
structured language are discussed. Methods of parallelizing the matrix gen­
eration are discussed. The accuracy of large moment method formulations
is investigated, as is the effect of machine precision on the solutions. The

11

Stellenbosch University http://scholar.sun.ac.za

use of the biconjugate gradient method to accelerate convergence is briefly
considered and rejected. The increased size of problem that can be handled
by PARNEC, running on a transputer array, is demonstrated.

Conclusions are dra.wn regarding the contributions of this dissertation to
the development of efficient parallel electromagnetic moment method algo­
rithms.

l1l

Stellenbosch University http://scholar.sun.ac.za

Opsomming

Hierdie proefskrif ondersoek die momentmetode oplossing van elektromag­
netiese straling- en strooiingprobleme d.m.v. multiverwerkers. In beson­
der, elektromagneties groot probleme met arbitrere geometriee word beskou.
Sulke probleme vereis 'n groot aantal onbekendes om 'n voldoende benaderde
oplossing te kry, en stel groot berekenings vereistes. Hierdie proefskrif beskou
in detail die doeltreffende benutting van die potensiaal wat multiverwerkers
vir sulke problem hied, in besonder die klas van lokale geheue Veelvoudige
Instruksie, Veelvoudige Data stelsels.

'n Kort geskiedenis van multiverwerkers word gegee. Metodes vir die
kwantifisering van die effektiwiteit van multiverwerkers word hersien. Die
. gebruik van pseudokode vir die dokumentering van algoritmes word bespreek
en 'n pseudokode notasie word gedefinieer wat gebruik word in latere hoof­
stukke.

'n Nuwe parallelle toegevoegde helling-algoritme wat geskik is vir die
oplossing van algemene stelsels van lineere vergelykings word aangebied. 'n
Metode word beskryf om op 'n doeltreffende wyse die Hermitiese transpo­
nent van die matriks, wat deur die algoritme benodig word, te hanteer.
Sorgvuldige aandag word aan die teoretiese analise van die paralleleienskappe
van die algoritme gegee (in die besonder, versnelling en doeltreffendheid).
Pseudokode word aangebied vir die algoritmes. Resultate vir die looptyd
van 'n momentmetode program, wat op 'n transputerskikking loop, word
gegee en vergelyk met die teoretiese voorspellings.

'n Parallelle L U algoritme word beskryf en gedokumenteer in pseudokode.
'n Nuwe grafiese beskrywing van die algoritme, wat die identifikasie van paral­
lelisme en die analise van die algoritme vergemaklik, word gegee. Die gebruik
van formele metodes vir die onttrekking van parallelisme d.m.v. invariante
word getoon en nuwe voorbeelde word gegee. Die versnelling en doeltreffend­
heid van die algoritme word teoreties geanaliseer, d.m.v. nuwe metodes wat
eenvoudiger is as die wat in die literatuur beskryf word. Tegnieke vir die op­
timering van die doeltreffendheid van parallelle algoritmes word ingevoer, en
gelllustreer met pseudokode. Nuwe parallelle voor- en truwaarts-substitusie
algoritmes wat die data verspreiding van die parallelle LU algoritme gebruik
word beskryf, en gedokumenteer met pseudokode. Resultate verkry met 'n
Occam 2 momentmetode program wat op 'n transputerskikking loop en die
parallelle L U en substit'usie algoritmes gebruik, word gegee en vergelyk met
teoretiese voorspellings.

PARNEC, 'n nuwe Occam 2 implementering van die dun-draad kern van
NEC2, word bespreek. Die basiese teorie van NEC2 word opgesom. Verslag
word gedoen oor probleme met vroee pogings orh Occam en FORTRAN
te kombineer. Metodes om 'n ou program, geskryf in 'n ongestruktureerde

!V

Stellenbosch University http://scholar.sun.ac.za

taal, in 'n moderne gestruktureerde taal te herskryf word bespreek. Metodes
om die matriksopwekking te paralleliseer word bespreek. Die akkuraatheid
van groot momentmetode formulerings word ondersoek, asook die effek van
masjienpresisie op die oplossings. Die gebruik van die dubbeltoegevoegde
helling-metode om konvergensie te versnel word kortliks beskou en verwerp.
Die vergrote probleemgrootte, wat met PARNEC op- 'n transputerskikking
uitgevoer kan word, word gedemonstreer.

Gevolgtrekkings word gemaak rakende die bydraes van hierdie proefskrif
tot die ontwikkeling van doeltreffende parallelle elektromagnetiese moment­
metode algoritmes.

V

Stellenbosch University http://scholar.sun.ac.za

Abstract

This dissertation investigates the moment method solution of electromagnetic
radiation and scattering problems using parallel computers. In particular,
electromagnetically large problems with arbitrary geometries are considered.
Such problems require a large number of unknowns to obtain adequate ap­
proximate solutions. These problems arise due to the requirement for solving
radiation and scattering problems in the "gap" region between the moment
method and the geometrical theory of diffraction. Existing techniques for
extending the frequency coverage of these methods are reviewed, including
the exploitation of symmetry, the impedance matrix localization method,
hybrid methods and iterative methods. The suitability of these methods for
addressing the "gap" problem is discussed. Then the possibility of exploit­
ing the capabilities of parallel computers to address this "gap" problem by
providing the necessary computational capabilities for conventional moment
method formulations is introduced. It is this topic that this dissertation
considers in detail, in particular the efficient exploitation of the potential
offered by parallel computers, in particular the class of Multiple Instruction,
Multiple Data systems.

A brief history of parallel computing is presented. Methods for quantify­
ing the efficiency of parallel algorithms are reviewed. The use of pseudo-code
for documenting algorithms is discussed and a pseudo-code notation is de­
fined that is used in later chapters.

A new parallel conjugate gradient algorithm, suitable for the solution
of general systems of linear equations with complex values, is presented.
A method is described to handle efficiently the Hermitian transpose of the
matrix required by the algorithm. Careful attention is paid to the theoretical
analysis of the algorithm's parallel properties (in particular, speed-up and
efficiency). Pseudo-code is presented for the algorithms. Timing results for a
moment method code, running on a transputer array and using this conjugate
gradient solver, are presented and compared to the theoretical predictions.

A parallel LU algorithm is described and documented in pseudo-code.
The parallelism in this algorithm is not obvious and a new graphical descrip­
tion of the algorithm is presented that simplifies the identification of the
parallelism and the analysis of the algorithm. The use of formal methods
for extracting pa.ra.llelism via. the use of inva.ria.nts is presented; new exam­
ples a.re given of the a.pplica.tion of the methods. The use of forma.l methods
for the a.na.lysis of the L U algorithm is shown in considerably greater deta.il
tha.n is a.va.ila.ble in the literature. Pseudo-code for the pa.ra.llel L U algo­
rithm is given. The speed-up a.nd efficiency of the algorithm a.re a.na.lyzed
theoretically, using new methods tha.t a.re simpler tha.n those described in
the literature. Techniques for optimizing the efficiency of pa.ra.llel algorithms

VI

Stellenbosch University http://scholar.sun.ac.za

are introduced, and illustrated with pseudo-code. New parallel forward and
backward substitution algorithms using the data distribution required for
the parallel L U algorithm are described. Pseudo-code for these algorithms is
given. Results obtained with an Occam 2 moment method code for straight,
thin wires using these parallel LU solver and substitution algorithms are
presented and compared with the theoretical predictions.

PARNEC, a new Occam 2 implementation of the thin-wire core of NEC2,
is discussed. The basic theory of the code is reviewed. Problems with early
attempts combining Occam and FORTRAN are reported. A methodology
for re-coding an old code written in a non-structured language in a mt>dern
structured language is presented; an example is given of the methodology
applied to one of the more complex subroutines of NEC2. Methods of paral­
lelizing the matrix generation are discussed. The stability of moment method
solutions for problems requiring a large number of unknowns is investigated
by using a physically symmetrical structure and solving the problem both
with and without exploiting the symmetry. The effect of machine precision
is also investigated and shown to affect the rate of convergence. The use
of the biconjugate gradient method to accelerate convergence is considered
and rejected, since for the test cases investigated with a large number of
unknowns, the biconjugate gradient method is shown either to require more
iterations than the conjugate gradient algorithm, or not to converge at all.

Conclusions are drawn regarding the role of the work in: deriving,
analysing and implementing an efficient parallel conjugate gradient algo­
rithm; introducing, analysing and implementing an efficient parallel LU algo­
rithm; the development of theoretical models for predicting algorithm perfor­
mance on local memory MIMD systems; the use of formal methods in parallel
algorithm development and analysis; the use of pseudo-code for document­
ing parallel algorithms; the re-writing of major parts of a powerful general­
purpose moment method code, NEC2, to properly exploit parallelism; inves­
tigating the accuracy of the moment method applied to electromagnetically
large problems; and finally popularizing parallel computing in computational
electromagnetics.

The dissertation is based on original research done by the author, except
where explicit reference is made to the work of others.

Vll

Stellenbosch University http://scholar.sun.ac.za

Dedicated to my parents

Vlll

Stellenbosch University http://scholar.sun.ac.za

Contents

1 Introduction 1

2 The MoM Solution of Large Problems 7
2.1 Introduction . 7
2.2 Discretization of Electromagnetic Problems for a MoM solution 8
2.3 The Exploitation of Symmetry 9
2.4 The Impedance Matrix Localization Method 12
2.5 Hybrid MoM-GTD formulations 13
2.6 Iterative Methods . 14
2. 7 Parallel Computing 17
2.8 Conclusions 19

3 A Review of Parallel Computing 20
20
20

3.1
3.2
3.3

3.4

3.5
3.6
3.7
3.8
3.9
3.10

Introduction
General Principles and Historical Background
Pipelining
3.3.1 Description of Pipelining ...

·. 22
22

3.3.2 An Example- the CRAY-1 24
Replication 26
3.4.1 Description of Replication . . 26
3.4.2 A Local Memory MIMD Example - Transputer Arrays 29
Classification of Parallel Computers . 33
Interconnection Topologies 36
A Pseudo-code Notation 37
Amdahl 's Law . . .
Parallel Algorithms
Conclusions .· . . .

42
43
44

4 A Parallel CG Algorithm 45
45
46
50

4.1 Introduction
4.2 Iterative Methods
4.3 A Parallel Matrix-Vector Product Algorithm

IX

Stellenbosch University http://scholar.sun.ac.za

4.4 A Parallel Conjugate Gradient Algorithm
4.5 Terminating the Algorithm
4.6 Configuring for an Arbitrary Depth of Binary Tree
4.7 Benchmarking
4.8 Results and Discussion
4.9 Conclusions

60
61
63
65
70
72

5 A Parallel LU Algorithm 78
5.1 Introduction . 78
5.2 The Basic LU Algorithm 79
5.3 Parallelizing the LU Algorithm- an Introduction . 82

5.3.1 A Brief Review of Previous Work 82
5.3.2 A Parallel LU Algorithm- a Graphical Description 82

5.4 The Use of Formal Methods 85
5.4.1 An Introductory Example 86
5.4.2 The Matrix-Vector Product Revisited Using Formal

Methods . 87
. 5.5 A Parallel LU Algorithm Derived Using Formal Methods 89
5.6 Pseudo-code for the LU algorithm 92
5.7 P1votmg . 93
5.8 Theoretical Timing Equations for the Parallel Algorithm and

the Clustering Strategy 95
5.9 Parallel Forward and Backward Substitution 99
5.10 Coding for Maximum Efficiency 99
5.11 Some Coding Details . 103
5.12 Timing Results . 105
5.13 Accuracy Studies . 106
5.14 Conclusion 116

6 PARNEC- A Parallel Version of NEC2 118
6.1 Introduction 118
6.2 A Review of the Theoretical Basis of NEC2 . 119

6.2.1 The Electric Field Integral Equation . 119
6.2.2 Numerical Solution 121
6.2.3 The Current Expansion Functions . . . 121

6.3 The Occam Harness 122
6.4 The Occam Re-write: Philosophy and Methodology . 123
6.5 Parallelizing the Matrix Fill 127
6.6 Software Validation 132
6.7 Some Results for a Large Problem . . 135
6.8 The Biconjugate Gradient Method . 142
6.9 Conclusions 14 7

X

Stellenbosch University http://scholar.sun.ac.za

7 General Conclusions 149

References 153

A CG Configuration Code 164

B LU Configuration Code 167

c FORTRAN Precision Conversion 170

Xl

Stellenbosch University http://scholar.sun.ac.za

List of Figures

2.1 Capped cone-cylinder, S band, approximately 30 unknowns,
pitch plane radiation pattern. Under-discretized by a factor
of three according to the ten segments per wavelength guideline. 10

2.2 Capped cone-cylinder, S band, 89 unknowns, pitch plane ra­
diation pattern. Correctly discretized according to the ten
segments per wavelength guideline. Note shift of main lobe
compared to previous figure. . 11

3.1 Sequential execution of a+ b. 23
3.2 Pipelined execution of a+ b with a pipe of depth 3. 23
3.3 Execution of a+ b on an array with three processors. 27
3.4 Floating point transputer. After [INM89, p.31) 30
3.5 Vector addition parallelized for three transputers . . . 34
3.6 Interconnection topologies- hypercube dimension 3 38
3. 7 Interconnection topologies - binary tree depth 2 . . 38
3.8 Interconnection topologies - mesh (lattice) without wrap-

around. N = 9. 39

4.1 · Pseudo-code for broadcast: master process 54
4.2 Pseudo-code for broadcast: worker process 54
4.3 Pseudo-code for gather: master process . . 55
4.4 Pseudo-code for gather: worker process . . 56
4.5 Efficiency of parallel matrix-vector product for the MC2

• 59
4.6 Pseudo-code for parallel CG algorithm: master process 61
4.7 Pseudo-code for parallel CG algorithm: worker process 62
4.8 Pseudo-code for the termination stub on the master. 63
4.9 Pseudo-code for the termination stub on the worker. . . 64
4.10 Interconnection topologies - binary tree dimension 2, re-

numbering following [Gal90, p.123] 65
4.11 Pseudo-code for FLOP benchmark 66
4.12 Pseudo-code for communication benchmark: master process 67
4.13 Pseudo-code for communication benchmark: single precision

worker process 68

Xll

Stellenbosch University http://scholar.sun.ac.za

4.14 Pseudo-code for communication benchmark: double precision
worker process . 68

4.15 Pseudo-code for communication benchmark: configuration . . 68
4.16 Measured efficiency of parallel conjugate algorithm versus un­

knowns for the M C2 • 7 4
4.17 Measured efficiency of parallel conjugate algorithm versus rows

per processor for the MC2
• 75

4.18 Efficiency of parallel conjugate algorithm (2 worker transput-
ers) for the MC2

• 76
4.19 Efficiency of parallel conjugate algorithm (30 worker transput-

ers) for the MC2
• • • • • • • 77

5.1 Step 1 of LU decomposition 84
5.2 Step 2 of LU decomposition 84
5.3 Step 3 of LU decomposition 84
5.4 Step 4 of LU decomposition 84
5.5 3 by 3 processor array (mesh) numbering 85
5.6 Scattered grid distribution; 3 by 3 processor array (mesh).

The elements in the upper left corner map onto processor 00,
those in the upper centre onto 01, those in the left centre onto
10, etc. 85

5.7 Graphical interpretation of regions defined in pseudo-code . . 91
5.8 Communication in parallel LU algorithm. 93
5.9 Pseudo-code for the parallel LU algorithm; adapted from

[vdV88]. 94
5.10 Forward substitution pseudo-code; solve [L][z]=[b] . . . 100
5.11 Backward substitution pseudo-code; solve [U][x]=[z] . . 100
5.12 Pseudo-code for rightwards pipelined column broadcast pro-

cedure: worker 101
5.13 Pseudo-code for pipelined column broadcast procedure: worker 102
5.14 Pseudo-code for broadcast procedure: worker 102
5.15 Pseudo-code for a valid Occam construct that is not accepted

by the compiler 103
5.16 Measured efficiencies of the single precision parallel LU solver. 107
5.17 Comparative efficiencies for the single precision L U and CG

solvers for similar numbers of transputers. 108
5.18 Convergence of the conductance of a dipole, ~ = 0.5, X =

0.001,f = 0.0023 llO
5.19 Convergence of the susceptance of a dipole, ~ = 0.5, X =

0.001,f = 0.0023 . l11

6.1 FORTRAN source for subroutine TRIO. 128

Xlll

Stellenbosch University http://scholar.sun.ac.za

6.2 Flow chart for subroutine TRIO. 129
6.3 Pseudo-code for subroutine TRIO; first pass. 130
6.4 Pseudo-code for subroutine TRIO; improved structure. 131
6.5 Cone-cylinder. 138
6.6 Efficiencies for the parallel matrix fill. 143
6.7 Convergence versus number of iterations: 428 unknowns. 144
6.8 Convergence versus number of iterations: 1516 unknowns. . 145

XIV

Stellenbosch University http://scholar.sun.ac.za

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1

5.2

5.3

Properties of common interconnection topologies .

FLOP count of conjugate gradient algorithm .
Computation benchmarks on the MC2 ••••

Computation benchmarks on the TM4 board .
Communication benchmarks on the MC2

Communication benchmarks on the TX4

Convergence of the input impedance of a dipole, ~ = 0.5,
I = 0.001,t = 0.0023. Double precision LU code.
Convergence of the input impedance of a dipole, ~ = 0.5,
I = 0.01,t = 0.023
Condition number of the coefficient matrix of a MoM formu-
lation for a dipole, ~ = 0.5, I= 0.01,t = 0.023

6.1 Mean and standard deviation of the normalized differences
between the interaction matrices generated by P ARNEC and

38

50
67
67
69
69
70

112

113

115

NEC2. 134
6.2 Input impedances for the 1516 segment model (0) 137
6.3 Different cone-cylinder models 139
6.4 Ratio of the matrix fill to solve times: 30 workers 140
6.5 Number of iterations required to obtain convergence; normal-

ized residual of 10-2 (1%) specified 141
6.6 Number of iterations required to obtain convergence as a func-

tion of precision; normalized residual of 10-2 specified. 14 7

XV

Stellenbosch University http://scholar.sun.ac.za

Notation
\lx

V'·
X

E

O(Mn)
[A]
[A]T
[A]t
[A]*

ll[x]ll

LxJ
fxl

V
V

1\

lzl
K
z+
IKI
:::}

The curl operation
The divergence operation
The vector cross product of two vectors or the Cartesian
product of two sets - the meaning will be clear from
the context
The (field) vector E

lim
of the order of Mn. Formally, .N = O(M) :::}M-+oo log.N flog M= n
The matrix A
The Hermitian (complex conjugate) transpose of matrix A
The transpose of matrix A (interchange of row and columns only)
The complex conjugate of matrix A
The ij-th element of matrix A
The (algebraic) vector x
The i-th element of vector [x]
The Euclidean norm of the vector [x] of length n; ll[x]ll = 2:f=1 lxil2

•

When necessary, the notation ll[x]ll2 will be used to distinguish
this norm from other norms.
The floor function of x, i.e. the integer part of x
The ceiling function of x, i.e. the smallest integer 2:: x
is defined as
for all
The Boolean OR operation
The Boolean AND operation
Absolute value of z
The set K
The set of positive integers
The size of K (i.e. number of elements)
implies

XVI

Stellenbosch University http://scholar.sun.ac.za

Glossary

• Banked memory: Memory that is split into separate banks that can be
accessed in parallel by the CPU.

• Benchmarking: Establishing the real performance of a computer by
measuring the execution time taken on a certain typical problem. The
performance measured is in general a function of the problem.

• Concurrent: A synonym for parallel in the context of parallel process­
mg.

• Central processing unit (CPU): The unit that is responsible for fetch­
ing instructions from memory, moving data to and from memory, and
carrying out logical or arithmetic functions.

• Complexity: The number of elementary arithmetic operations required
by some operation. A synonym for "operation count".

• Deadlock: Deadlock occurs when two communicating processes are both
waiting for an event that can never happen. A typical example is that
process A is waiting to send a message to process B, but process B is
waiting to send a message to process A.

• Direct Memory Access (DMA): Communication paths to memory.

• Geometrical Theory of Diffraction (GTD): An analytical technique for
the prediction of high-frequency diffraction phenomena. The theory is
essentially an extension of geometrical optics to include diffracted rays,
in addition to direct, reflected and refracted rays, to describe the total
field at a point in space.

• Memory bandwidth: The rate at which data can be moved from the
CPU to memory and vice-versa. Normally measured in MBytes/s.

• A1ethod of Moments (MoM) or Moment Method: A numerical technique
for reducing an operator equation to a set of linear equations. It is most
closely related to the Method of Weighted Residuals. A more complete
discussion will be found in Chapter 1.

• Multiple Instruction, Multiple Data (MIMD): A class of computer that
performs different instructions on different data simultaneously.

• A1ultiple Instruction, Single Data (MISD): A class of computer with
multiple instructions operating on the same datum simultaneously (pri­
marily of theoretical interest).

XVll

Stellenbosch University http://scholar.sun.ac.za

• MFLOP js: Million floating point operations per second. This is the
primary computational specification of interest in numerical analysis.

• MIP /s: Million instructions per second. This specification must be
used with caution, since it is not necessarily a good indication of the
rate of floating point computation.

• The Numerical Electromagnetics Code - Method of Moments Version
2 (NEC2): A public domain code that uses the method of moments to
solve electromagnetic radiation and scattering problems. It is discussed
in more detail in Chapter 6.

• paradigm: An accepted way of looking at something.

• procedural language: Also known as an imperative language. This is
the type of language generally used in science and engineering. The
program instructs the computer to carry out a sequence of operations.
Examples are FORTRAN, Pascal and Occam. (Languages such as LISP
represent a different type of language, namely declarative languages).

• Random access memory (RAM): The memory available for code and
data on a computer.

• Reduced Instruction Set Computer (RISC): A computer with a small
instruction set containing only frequently used instructions. The com­
puter is, however, designed to execute these instructions as fast as
possible.

• Scaling: A scalable algorithm is one whose efficiency is a function of the
"grain" of the problem, where the "grain" is a function of the number
of matrix elements per processor, in the context of this thesis.

• S£ngle Inst·ruction, Multiple Data (SIMD): A class of computer that
performs the same instruction on different data simultaneously.

• Single Instruction, Single Data (SISD): A class of computer that per­
forms one operation on one datum at a time.

• Virtual Memory: Memory that is obtained by swapping the contents
of real memory (RAM) with a mass storage device, typically a disk.
This allows users to access massive amounts of memory that would
not be economically viable to provide as real memory. This "paging"
(swapping) is transparent to the user, in that he does not have to
write any code to initiate or control the paging, which is handled by
the operating system. However, the paging does impose ·some time
penalty.

XV Ill

Stellenbosch University http://scholar.sun.ac.za

Acknowledgements

The author would like to acknowledge most gratefully the efforts of
his promoters, Prof. J .H. Cloete of the University of Stellenbosch, and
Prof. D.A. McNamara of the University of Pretoria. Their support and guid­
ance of his research, their very careful review of the first draft of this disserta­
tion and their constructive criticism have been most appreciated. The author
would also like to acknowledge the efforts of Prof. Cloete in establishing the
antenna and electromagnetic facilities at the University of Stellenbosch.

A number of people contributed to this thesis through advice, discus­
sion, preparation of illustrations and the provision of computational facilities.
They are P.J. Bakkes, T.\V. Coates, C.F. du Toit, S. Mostert, Prof. J.J. du
Plessis, Prof. P.W. van der Walt and D.M. Weber, of the University of
Stellenbosch. The author in particular wishes to acknowledge the efforts
of Prof. J.J. du Plessis in obtaining the MC2 computer, the transputer array
on which the parallel algorithms described in this thesis were implemented
and tested. He also wishes to acknowledge D.M. Weber for the provision and
maintainance of the VAX cluster on which many of the validation exercises
and much of the debugging was performed, and for introducing the author
to 1\TEX. Others who contributed to the initial research through frequent
discussion were Dr. D.J. Janse van Rensburg of the University of Pretoria,
Prof. J.C. Olivier, now at the University of Potchefstroom, Dr l.M.A. Gled­
hill of the Council for Scientific and Industrial Research (CSIR) in Pretoria,
and Dr. D.L. Hawla, previously of the CSIR and now at Hibbit, Karlson and
Sorensen, Inc., Rhode Island. The help of Miss R.E. Cloete with the proof
reading of the references was much appreciated.

The author would also like to acknowledge the contributions of Prof.
J .A. G. Malherbe of the University of Pretoria for initially interesting the
author in electromagnetics, and Dr. D.E. Baker, previously of the CSIR and
now at EM-Lab, Pretoria, for further stimulating this interest.

The work was done at facilities provided by the Department of Electrical
and Electronic Engineering of the University of Stellenbosch. Some of the
initial work reported in Chapter 2 was carried out while the author was at
the CSIR.

The probing questions of Dr. E.K. Miller of Los Alamos National Lab­
oratories, New Mexico, regarding computational electromagnetics, and in
particular his regular PCs for AP column in the IEEE Antennas and Prop­
agation Society Magazine (which is about rather more than just personal
computers) have been a constant source of ideas for the author. The au­
thor would also like to acknowledge the comments and encouragement of
the Magazine's editor, Dr. \V.R. Stone, of Expersoft Corporation~ La Jolla,
California.

XIX

Stellenbosch University http://scholar.sun.ac.za

This thesis was typeset by the author in 17\TEX, Dr. L. Larnport's exten­
sion of Prof. D. Knuth's typesetting program 'fEX.

XX

Stellenbosch University http://scholar.sun.ac.za

Chapter 1

Introduction

Even if we do discover a complete unified theory, it would not
mean that we would be able to predict events in general ... even
it we do find a complete set of basic laws, there will still be in
the years ahead the intellectually challenging task of develop­
ing better approximation methods, so that we can make useful
predictions of the probable outcomes in complicated and realistic
situations.

from "A Brief History of Time", S. Hawking, Bantam 1988,
pp .168-9 (the present author's emphasis).

Maxwell's equations provide a. complete classical description of electro­
magnetic wave propagation and interaction with structures. They are invari­
ant under the Lorentz transform and hence automatically incorporate special
relativistic effects [Kon86, p.1]. The theory is classical in that quantum effects
are not included. The necessary extension to include quantum theory may
however be effected by replacing the field vectors by operators; see [HM89,
p.xxi] and [Kon86, Section 5.10]. In the modern form, the equations are

\l·D=p (1.1)

\l·B=O (1.2)

- 8-
(1.3) VxE=--B

at

- - 8-
V x H = J + BtD (1.4)

where the field vectors have their usual meaning [Kon86, p.2]. · Maxwelh
original work is still available in the Dover reprint edition [Max54] and it

1

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

is interesting to compare his notation with that of modern electromagnet­
ics. These equations were first written in the modern form given above by
Heaviside and Hertz working independently, and for some years bore the
name Hertz-Heaviside equations [Nah88, plll]. Maxwell wrote out his equa­
tions in Cartesian component form; he also used quaternionic concepts in his
notation 1 [N ah88, p.l 09].

The solution of Maxwell's equations is not simple for general problems.
With time-harmonic fields, i.e. frequency domain problems, the problem of
the solution of the equations, with appropriate boundary conditions, can be
formulated as a boundary value problem. Analytical solutions exist only
for a very special class of problems requiring that the boundary(ies) of the
problem coincide with a constant coordinate surface. For arbitrary problems,
where the geometry does not satisfy this requirement, computer methods
have become the standard method of solving the resultant equations. With
time-domain problems, the problem can be formulated as an initial value
problem, and again, computer methods have become the standard method
of solution.

There are two fundamentally different approaches used in the computer
solution of Maxwell's equations. These are:

• The Method of Moments (or Moment Method) The moment method
embraces a very wide array of numerical methods based on a finite se­
ries approximation of the unknown field quantity. It will be discussed
in more detail shortly. References on this subject are legion; useful
introductory treatments are to be found in [Ell81, Chapter 7], [ST81,
Chapter 7] and [Bal89, Chapter 12]. More advanced treatments may be
found in [Har82, Mit73, Skw81, MP86, Wan91]. Several survey papers
on the topic are available; two useful ones are [Ney85] and [Har87].
Hansen's collection of reprints contains many of the seminal papers
[Han90]. A short history of the method of moments applied to electro­
magnetic field computation is given by Harrington [Har90] 2

• Miller's
tutorial paper [Mil88] on computational electromagnetics concentrates
on the moment methods: the theoretical basics of the various moment
methods are very succinctly summarized, as well as the computational
requirements of each method. The moment method has no inherent
theoretical limitations regarding frequency, but the computational re­
quirements of the method limit the electromagnetic size of object that

1Quaternions enjoyed substantial support in the nineteenth century amongst mathe­
maticians and physicists, but have since been relegated to mathematical history by the
far simpler vector notation. Heaviside devoted part of his career to promoting the use of
vector notation [Nah88, Chapter 9]. .

2 This paper also explains Harrington's choice of the name "method of moments" -
the name originates with the Russian mathematicians Kantorovich and Akilov.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

can be solved; more detail is given shortly. The moment methods
are thus "low-frequency" methods in the sense that there are upper
bounds to the frequencies that can be tackled in practice. However,
in the absolute sense, moment methods are frequently used well into
the microwave spectral region, depending on the physical dimensions
of the structure.

• Asymptotic methods The geometrical theory of diffraction is a well
known asymptotic method, and is based on asymptotic approximation
of the fields. A most useful textbook on the topic is that of McNamara
[MPM90]; another good text is that of James [Jam86] and Balanis pro­
vides a very useful coverage [Bal89, chapter 13). Many seminal papers
on the topic may be found in Hansen's collection of reprints [Han81].
The GTD, being based on optics, is a high-frequency method.

The moment method may be defined formally as a method to convert a
linear operator equation to a matrix equation3

. The basic procedure may be
summarized in its most general form as follows:

Consider the inhomogeneous equation

£f=g (1.5)

The unknown function f is expanded in a set of basis (or expansion or trial
functions) as

M

f-;::::, 'Lxifj (1.6)
j=l

where fJ is the known j-th basis function and Xj is the j-th unknown am­
plitude of this basis function. Using the linearity of the operator £, equa­
tion (1.5) becomes

M

'LxJ£fJ-;::::, g
j=l

This yields one equation in M unknowns. Re-writing equation (1. 7) as

M

"X.(' f·- g- R LJ J"""'.J -
j=l

(1. 7)

(1.8)

3 Thus defined, the moment method encompasses all the other non-asymptotic com­
puter methods used in computational electromagnetics which use either the Ivtaxwell curl
equations or source integrals employing Green's functions [Mil88, p.l283). Examples of
the former are the finite element and finite difference methods; an example of the latter,
the boundary element method.

Stellenbosch University http://scholar.sun.ac.za

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

yields the residual R; this can then be forced to zero at M points to produce
the desired set of M equations -the collocation method used in NEC2 -
or more generally, weighted with a set of M weighting functions, wi, and the
weighted residuals set equal to zero as

M

I: < Wi, Xj.Cfi- g >= 0 i = 1, 2, ... 'M.
j=l

(1.9)

The weighting of the residuals with the weighting functions may be viewed as
forming a moment, hence the name of the method. This method is also known
in the general engineering literature as the Method of Weighted Residuals
[FS66]. The < ·, · > symbol defines an inner product with the necessary
mathematical properties, see [Kre78, p.129].

Equation (1.9) can be re-written in matrix notation as

[A][x] = [b] (1.10)

where

and
bi =< Wi,9 >

and hence the linear operator equation has been converted to a matrix prob­
lem, namely the solution of a system of linear equations.

Different choices of weighting function correspond to various well-known
methods: a set of Dirac delta functions yields the collocation method; iden­
tical weighting and testing functions produce the Galerkin method. If the
operator is positive definite, then it may be shown that the Galerkin tech­
nique is equivalent to the Rayleigh-Ritz variational procedure, permitting a
proof of convergence [Dud85].

The moment method considered in this thesis uses source integrals em­
ploying a Green's function4

; the unknown is the (equivalent) surface current
on the surface of the structure5

. Time-harmonic excitation is assumed, per­
mitting the problem to be formulated in the frequency domain. This is a. very
efficient formulation for the problem out of which the work reported in this
thesis grew, namely the requirement by local industry for the prediction of
antenna. performance on vehicles composed of highly conducting materials.
More details on the specific formulation will be found in Chapter 6.

For the analysis problems considered in this dissertation, the moment
methods generate matrices of the form

4The specific integral equation is the Electric Field Integral Equation[BP8)a, p.3]; this
is a Fredholm integral equation of the first kind [DM85, p.3].

5Such a formulation may also be called a boundary element formulation [SF90, p.l63].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

[A][x] = [b] (1.11)

where the matrix [A] is known (it represents the discretized version of the
operator .C), the vector [b) is known (it corresponds to the excitation field),
and the vector [x) is unknown and must be solved for. The computationally
expensive parts of the method of moments6 are:

• Filling the matrix [A] - an O(M2
) operation, where M is the num­

ber of unknowns required to adequately discretize the problem, and is
proportional to frequency.

• Solving the system of equations [A][x] = [b] -an O(M3
) operation.

These issues will be discussed in more detail in Chapter 2. The storage
requirement is O(M2

).

As has already been briefly mentioned, the moment methods have no in­
herent theoretical limitation in terms of the electromagnetic size of the prob­
lem, unlike the asymptotic methods. However, the moment methods become
very expensive computationally as the number of unknowns increases. The
asymptotic methods, such as the GTD, require that the problem be suffi­
ciently large in terms of wavelengths; all reflection/diffraction and source
points must be of the order of at least one wavelength apart, and a simi­
lar restriction pertains to the geometrical dimensions of the structure (for
instance the radius of a cylinder). Using conventional MoM formulations
and conventional computers, it transpires that there is a substantial "gap"
between the capabilities of the MoM and the GTD. This will be illustrated
by an example in Chapter 2.

This thesis addresses the question of the computational capability required
for the moment method solution of problems which require a large number of
unknowns for an accurate solution, but are electmmagnetically too small for
the asymptotic methods such as the GTD to be applied reliably. In particu­
lar, this thesis addresses the design, implementation and testing of efficient
parallel algorithms for the solution of MoM formulations on local memory
Multiple Instruction, Multiple Data (MIMD) computers.

In Chapter 2, the computational requirements of the MoM are reviewed,
and various methods that have been proposed to allow a moment method for­
mulation to handle large numbers of unknowns in a computationally efficient

6The basic operations of matrix fill and matrix solve are normally the most time­
consuming part of any moment method code, but the specific orders given here are for the
formulation using source integrals employing Green's functions that is used in this thesis.
Other formulations, such as a finite element formulation [SF90, Mor90] have different com­
putational dependencies, see [l'vlil88, Table VII], and also different storage requirements.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

manner are discussed in some detail. The advantages and disadvantages of
each are discussed. It is shown that for problems involving arbitrary geome­
tries, none of the methods is entirely satisfactory at present. The chapter is
concluded with a discussion of the very substantially increased computational
capability that can be obtained if the possibilities offered by parallel comput­
ing can be systematically and efficiently exploited; it is this approach that
is investigated in detail in this dissertation. Chapter 3 presents a review of
parallel computing, with special application to computational electromagnet­
ics. Attention is focused on pipelined and replicated systems. Examples are
given of two computers exemplifying these different approaches, the CRAY-1
and a transputer array. Parallel computers using arrays of transputers are
discussed in some detail, since such a machine was used to run the paral­
lel programs described in this thesis. However, the algorithms described in
this thesis are suitable for any local memory MIMD system, and are not
restricted to transputer arrays. Pseudo-code is introduced that is used in
later chapters to document the parallel algorithms. Chapter 4 discusses a
parallel iterative solver, the conjugate gradient method. A new parallel con­
jugate gradient algorithm is proposed, theoretically analyzed, implemented
and measured timing results compared with results predicted by the theoret­
ical analysis. Chapter 5 describes a parallel LU algorithm and new parallel
forward and backward substitution algorithms. Formal methods are intro­
duced and applied to systematically extract potential parallelism, both for
simple examples and for the L U method. A new graphical exposition is
given that greatly simplifies understanding the algorithm. Theoretically ob­
tained timing results available in the literature are checked and new, simpler
derivations presented. The parallel LU algorithm is also implemented, and
predicted and measured timing results compared. The accuracy of the L U
method for moment method problems with a large number of unknowns is
also investigated. Chapter 6 considers the parallelization of a very impor­
tant public domain code, NEC2 [BP81c]. The problems encountered will
be discussed and the methodology used by the author to re-engineer very
substantial parts of the code in Occam 2 described. The new code runs very
efficiently on a transputer array. The accuracy of the new code was checked
carefully using physical symmetry to permit the comparison of the solution
of a large system of equations with the solution of a rather smaller, but
equivalent, system of e~Juations. Some work on attempting to accelerate the
convergence of the conjugate gradient algorithm, by using the biconjugate
gradient algorithm, is also described and results presented. Chapter 7 draws
some general conclusions about the work, and highlights the contributions.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

The MoM Solution of Large
Problems

' ... my circuits are now irrevocably committed to calculating the
answer to the Ultimate Question of Life, the Universe and Every­
thing ... but the programme will take me a little while to run.'

Fook glanced impatiently at his watch.

'How long?' he said.

'Seven and a half million years,' said Deep Thought.

from "The Hitch Hiker's Guide to the Galaxy", by Douglas
Adams, Pan 1979, p.130.

2.1 Introduction

Solving electromagnetically large problems with the method of moments is
computationally taxing. In this chapter, the basic computational require­
ments of the particular moment method used in this thesis are given. Var­
ious methods that have been described in the literature, including the use
of symmetry, artificially zeroing matrix entries, hybridizing the MoM and
GTD, and iterative methods, are considered. The advantages and disadvan­
tages of each are discussed, with special regard to the solution of the general
problems encountered in antenna engineering out of which this work grew,
namely the prediction of the performance of antennas mounted on complex
structures. Then the use of parallel computers to handle the generation and
solution of the large matrices arising from a conventional MoM formulation
is discussed; this is the main subject of this dissertation. This is put into
perspective with the other methods.

7

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. THE MOM SOLUTION OF LARGE PROBLEMS 8

2.2 Discretization of Electromagnetic Prob­
lems for a MoM solution

It has been found experimentally that around ten segments per wavelength
are required to provide adequate sampling for a MoM formulation [BP81c,
p.3); if a surface is being modelled this squares to one hundred segments
per square wavelength and if a volume is being modelled, it cubes to one
thousand segments per cubic wavelength. The time required to solve the
system of linear equations (using the L U method) goes up as the third power
of the number of segments for a full matrix, so an integral equation formu­
lation has a computational dependency of the power six for surfaces and of
power nine for volumes [Mil88, Table VII, p 1286). If the body is composed
of a homogeneous material, the problem dimension can be reduced by one
by an equivalent current formulation on the contour / surface for two and
three dimensional problems respectively. This is expressed succinctly in the
following formula [ibid.)

Tw ex (:L)3(D-l) ; D t {2, 3} (2.1)

where Tw is the solution time, L is the problem size, 6.L is the spatial reso­
lution and D is the problem dimension; the D-1 assumes a homogeneous (or
impenetrable) body where the source integrals are usually one dimension less
than the problem dimension, as already noted1

•

At the time of writing, a typical "departmental" computer can solve a
moment method problem with about 500 to 600 unknowns in an hour2

• For
objects of the size of the space shuttle, to take an example from [Mil90a,
p.50], with a surface area of ·around 540 m2, the maximum frequency at
which a MoM code will be able to solve such a problem in an hour on the
above computer is about 30 MHz. The controlling equation in this case is
the following

~
fmax = cy AJ2 (2.2)

1This formula is not valid for a one dimensional problem, where the relevant power is
three.

2 These figures are based on a Digital Equipment Corporation VAX 3600, the largest
system readily available to. the author at the University of Stellenbosch; the machine is
rated at 2.9 VAX MIP/s; this performance rating is relative to the VAX 11/780, which is
rated at 1 VAX MIP/s. The 3600 and 11/780 are representative of the type of computer
readily available to the average university department at the time of writing. Note also
that these figures assume that one has the machine entirely at one's disposal - such a
job will normally be running in a batch queue and almost certainly will be. sharing the
machine's resources with interactive users and other batch queues, so the elapsed time is
more likely to be several hours.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. THE MOM SOLUTION OF LARGE PROBLEMS 9

where .fmax is the maximum frequency, c is the velocity of light in m/s, A1max
is the maximum number of unknowns that can be solved in one hour, A
is the area in m2 and d is the sampling density in samples per wavelength
(with d = 10 for the preceding calculation). If an antenna is mounted on
the fuselage, which is several metres across (say 3 m), the lowest frequency
at which the GTD is usable is about 100 MHz, and such calculations may
well be of dubious validity. Clearly there is a "gap" in the coverage of ex­
isting techniques, which for the space shuttle sized vehicle falls in the VHF
communication band - a most inconvenient place to be unable to predict
antenna performance.

Inadequately discretizing a structure can generate plausible but danger­
ously incorrect results. The degradation can be gradual, as shown by the
author in work for his Master's degree (reported in [DM87] and in more de­
tail in [Dav86, Chapter 4]), or dramatic, as shown in Figures 2.1 and 2.2.
These figures shows the radiation pattern of an antenna mounted on the rear
of a truncated cone cylinder at S-band (nominally 2-4 GHz). The problem
was modelled using the body of revolution formulation [DM87]. The total
length of the generatrix was about 8 to 9 wavelengths. Figure 2.1 shows
the radiation pattern obtained using approximately 30 segments - approxi­
mately ~ of the number required by the ten segments per wavelength guide­
line. Figure 2.2 shows the same results, but with 89 segments. The main
lobe has moved from approximately broadside to front-firing - where one
would expect it to be from the viewpoint of the travelling wave excited on the
cone/ cylinder. The under-discretized solution is thus completely misleading.

2.3 The Exploitation of Symmetry

The most efficient way of handling larger problems is to exploit whatever
symmetry may be available; for the majority of structures of practical en­
gineering importance this is unlikely to be more than left-right symmetry
for the basic structure, and the antenna is very likely to be mounted asym­
metrically. Methods such as the Numerical Green's Function (NGF) option
available in NEC2 [BPSl c, p.89-92] permit one to model the basic structure
(without the antenna) using symmetry, perform a LU decomposition on the
symmetrical structure, save a NGF file (which is essentially the factored ma­
trix), then add an antenna to the structure and use methods to factor the full
(and now asymmetrical) matrix that re-use the already facto red matrix rep­
resenting the structure, without major additional computational cost. \Nhile
simple in concept, it greatly complicates the coding- a. very substantial part
of NEC2 is devoted to handling the NGF option. In any case, this left-right
symmetry decreases the computational load by at most about four; this can

Stellenbosch University http://scholar.sun.ac.za

-5

-10

I '

-15

-20

-25

-30

-35

CHAPTER 2. THE MOM SOLUTION OF LARGE PROBLEMS 10

Rear mounted antenna, S band .
.Approximately 30 elements

0 20 40 60 80 100 120 140 160 180

Theta

Figure 2.1: Capped cone-cylinder, S band, approximately 30 unknowns, pitch
plane radiation pattern. Under-discretized by a factor of three according to
the ten segments per wavelength guideline.

Stellenbosch University http://scholar.sun.ac.za

0

-5

-10

""'
-15

m.
"t7
0 -20"
Q)

~
I

w
-25

-30

-35

-40

CHAPTER 2. THE MOM SOLUTION OF LARGE PROBLEMS 11

Rear mounted antenna, s band.
89 elements

0 20 40 60 80 100 120 140 160 180

Theta

Figure 2.2: Capped cone-cylinder, S band, 89 unknowns, pitch plane ra­
diation pattern. Correctly discretized according to the ten segments per
wavelength guideline. Note shift of main lobe compared to previous figure.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. THE MOM SOLUTION OF LARGE PROBLEMS 12

be computed as follows:
The general formula for the time to compute a single frequency MoM

solution in free space for the MoM formulation used in this thesis is given by
the following formula, adapted from [BP81b, p. 165):

M2 M3
T=As+B 52 (2.3)

where M is the number of segments (the number of unknowns for NEC2), S is
the number of degrees of symmetry, and A and B are parameters dependant
on the computer and algorithm used. The first term represents the matrix
fill operation and the second term the matrix solve operation. There is also
a term of O(M2) representing the substitution step(s) and a term of O(M)
representing the calculation of radiation patterns. These terms are not shown
in the above, since for large systems, the two terms shown are the dominant
terms unless an extra-ordinary number of different excitations and/or field
points are required. The constant A may also be weakly geometry dependant
if the numerical solution enforces current continuity between segments, as is
the case with NEC2.

Hence halving the number of unknowns using left-right symmetry will
result in a saving of time of the order of four [BP81 b, p.32).

2.4 The Impedance Matrix Localization
Method

Another more radical method is that recently reported by Canning [Can90],
the Impedance Matrix Localization (IML) method. The origin of the method
is the idea of limiting the interaction distance between elements, only com­
puting matrix elements within this limited interaction distance and zeroing
the rest. Such methods been reported by Moore and Pizer [MP86, Chapter
15]; they called the method the sparse matrix approximation. The result is a
matrix with a number of zero elements, and if correctly numbered (which is
not in general a. trivial problem), the resultant matrix is banded, which can
be exploited by an LU solver to save both memory and time. Alternately, an
iterative solver may be used to avoid the re-numbering problem, also with
attendant memory and time savings.

The IML method is an extension of this idea. Canning's ideas grew
out of two observations: firstly, one has a very wide choice of basis and
testing functions in the MoM, and if one could choose them in some fashion
to make nearly all the MoM matrix entries negligible - something which
cannot be said of the standard interaction distance limiting methods with

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. THE MOM SOLUTION OF LARGE PROBLEMS 13

any certainty - then the desired result has been achieved. Secondly, this
must be possible, since the GTD achieves this in the high-frequency limit.

The IML may be written mathematically as

[T] = [A][Z][Af (2.4)

where [Z] is the interaction (impedance) matrix generated by a conventional
MoM formulation, [A] is some transformation matrix and [T] the transformed
matrix [Can90, eqn.l]. The idea is to develop a set of basis functions which
correspond to a matrix [A] which accomplishes the near-zeroing of most of
the elements of [T].

Initial work produced a transformation matrix that was very ill­
conditioned, but Canning's later work produced a suitable, well conditioned
transformation matrix. Canning reports very promising results [Can90]. The
result of Canning's work is to demonstrate that it is possible to reduce the
number of significant matrix elements from O(M2) to order 0(.!11).

This work appeared during the closing stages of the work reported in this
thesis; it should be emphasized that the very promising results reported by
Canning do not invalidate the basic contents of this thesis. By incorporating
Canning's work into the now existing parallel MoM codes, far larger problems
could be addressed than is presently possible, since the IML method will still
be time-intensive for large problems. Indeed, Canning comments "V..'hat is
needed today is a method which scales better with problem size, so that
it may be efficient on these modern (powerful) computers" [Can90, p.lS].
Canning's present method requires iterative solvers, using an incomplete LU
decomposition, and this thesis considers both parallel iterative solvers and
parallel L U decomposition.

2.5 Hybrid MoM-GTD formulations

Several researchers have investigated the possibility of combining the MoM
and GTD. Thiele and Newhouse [TNSl] augmented the MoM impedance
matrix elements b:y including GTD contributions. Burnside, Yu and Marhe­
fka [BYMSl] computed the field due to MoM currents at a distance from
the segments sufficiently great that the field can be matched to a. GTD scat­
tered field. This permitted them to extend the GTD to problems where the
canonical diffraction terms were unknown.

For complex structures with many possible optical paths for the
diffracted/reflected rays, the ray-tracing problem is far from trivial com­
putationa.lly and the codes can have very substantial computational require­
ments, sufficient to warrant para.llelizing the code [Sch90]. Such multiple
interactions remain significant in the "gap" region where the structure is

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. THE MOM SOLUTION OF LARGE PROBLEMS 14

electromagnetically relatively small. Hence a. hybrid code can be expected
to have substantial computational requirements in the "gap" region.

The basic requirements of the GTD in terms of electromagnetic size will
also have to carefully monitored in the regions where the MoM is not used.
For reliable operation, a. typical GTD code such as the Numerical Electro­
magnetic Code - Basic Scattering Code [BMY73] requires that all plate
structures should have edges at least a wavelength long; the major and minor
radii and length of all elliptic cylinders should also be at least a wavelength
and each antenna. element should be at least a. wavelength from all edges and
the curved surface. These limitations will not disappear with a. hybrid for­
mulation; the use of the MoM in the region near the antenna. will result in a.
relaxation of the requirements in this region, but not for the entire structure.

It would be reasonable to view the hybrid methods as attempting to
close the "gap" between the conventional MoM and GTD by pushing the
minimum usable frequency of the GTD downwards, as opposed to the work
on different MoM formulations that attempts to push the maximum usable
frequency upwards. The author is not aware of any general purpose code
readily available at the time of writing that successfully combines the two
methods at a. fundamental level.

2.6 Iterative Methods

Recent years have seen much debate on the topic of iterative methods as a.
method for solving large problems [DM88, JvRM88, RP88, \\Ta.n90a., \\Tan90b,
Wan91, Sar88]. Two issues may be identified in the debate:

• The first relates to the relationship of the "direct" iterative methods
and the moment methods, and the convergence of each to the exact
solution;

• the second relates to the question of computational efficiency.

The debate on the first issue was precipitated by Sa.rkar [Sa.r86]. Great
stress was laid in his article on the difference between the application of
the CG method for the solution of the system of linear equations resulting
from a MoM formulation, and the "direct" application of the CG method to
the underlying operator equation itself, without (explicitly) discretizing the
equation, as required by any moment method formulation. The guaranteed
convergence property of the CG algorithm was then used to argue that the
"direct" method converges to the exact solution as the number of unknowns
increases. Similar claims were emphatically repeated in [Sar87b]; Sarkar
stated "There is a heaven and hell difference between the application of

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. THE MOM SOLUTION OF LARGE PROBLEMS 15

the conjugate gradient method to solve a matrix equation in the method of
moments, as compared to the application of this method directly to solve an
operator equation" (sic) [Sar87b].

The author tested the claims in Sarkar's controversial paper [Sar86] by
applying the method to the solution of radiation from a body of revolution;
details have been published in [DM88]. The result was the observation that
the "direct" application to the operator equation and the application to the
system of linear equations generated by a MoM collocation (delta weighting
functions) formulation using pulse expansion functions led to precisely the
same systems of linear equations, and the solutions were numerically iden­
tical. The run-time for the "direct" application was rather longer than for
the CG- MoM program since the matrix elements were essentially being re­
computed at each iteration. Similar findings were published by Janse van
Rensburg and McNamara [JvR:M88]; their results using the "direct" method
for scattering from a straight thin wire were also indistinguishable from a
MoM formulation. The reason for this may be found in the theory of func­
tional analysis. In order to represent an operator in discrete form (i.e. as a
matrix representation) for computational purposes, it is necessary to restrict
its domain (range) to some finite-dimensional subspace of the continuous do­
main (range) and select basis functions in both these subspaces. The basis
functions of this restricted domain of the operator will be the set of expan­
sion functions for the unknown, while the basis functions for the restricted
range of the operator will be the weighting functions. These observations
also permit the adjoint operator, required by the "direct" CG method, to be
constructed very simply using the well-known fact that in any finite dimen­
sional Hilbert space, the adjoint operator is simply the Hermitian transpose
[Kre78]. This point is elucidated in [JvRM88].

Ray and Peterson's paper [RP88] is a particularly well written exposi­
tion of the first issue, demonstrating clearly the difference between what
they identified as solution convergence and algorithm convergence. Solution
convergence addresses the question: as the representation of the function im­
proves (i.e. more unknowns are used in the finite series representation), how
well does it approximate the exact continuous solution? Algorithm conver­
gence and error address the question: given an estimate of a solution within a
particular representation(i.e. a particular number of unknowns), how close is
it to the best possible solution within that representation? By (incorrectly)
overlooking the implicit discretization in the "direct" approach, Sa.rkar used
results for algorithm convergence to (incorrectly) claim solution convergence.

Despite the conclusive results of Ra.y and Peterson's work, as well as
the supporting results of several others, the present author included [DMSS,
JvRM88, Sa.r88], an exchange indicating a. difference of views on this subject
was still in progress at the time of writing [Wa.n90a, Wan90b, Wa.n91].

--------------------- ~~--------

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. THE MOM SOLUTION OF LARGE PROBLEMS 16

Another important claim made for the "direct" method is that it does not
break down at frequencies corresponding to internal resonances [NRS87]; this
related to the debate on the first issue. This is also a controversial claim since
the problem is that the underlying operator is ill-conditioned in this case, not
just the discretized MoM formulation. It is shown later in this thesis that
the CG method is very robust, permitting the solution of very ill-conditioned
matrices that even a double precision L U solver is unable to solve. This thesis
does not investigate this claim further, but the author would suggest that
it is this robustness of the CG algorithm rather than the application of the
"direct" method per se that permits one to obtain solutions at frequencies
corresponding to internal resonances, and that the same results would have
been obtained had a conventional MoM formulation with a CG matrix solver
been used. Mittra and Klein [MK75, p.l40] show that for the case of a square
cylinder, at frequencies corresponding to internal resonances, the condition
number of the matrix becomes very large- it is, however, finite. Thus the
author's explanation of the results observed by the "direct" method adherents
at internal resonance frequencies have a reasonable basis. It is also supported
by [RP88, Section V].

The debate on this first issue has tended to overshadow the second is­
sue, namely the memory saving and computational efficiency claimed for the
method. This issue is the more important one in the context of this disserta­
tion. Both the memory saving and the computational efficiency are actually
the result of exploiting Toeplitz symmetry. Very similar time and memory
savings have been obtained in conventional MoM codes that correctly exploit
the available symmetry; an example will be given shortly.

It has been claimed that the iterative methods permit the modelling of
much larger structures than the conventional MoM [Sar86]. This claim is
rather misleading, for the following reasons. Vlhile it is true that the "direct"
CG formulation only requires storage for several vectors of O(.M) as opposed
to the MoM which requires storage for a matrix of 0(1.52), it does that at
the cost of essentially re-computing the coefficient matrix at each iteration
[\Van91, p.257]. It is only when the Fast Fourier Transform (FFT)3 can be
used to evaluate the matrix elements that the "direct" CG method becomes
a viable computational contender, and this occurs only with a Toeplitz oper­
ator [Sar86]. The finite dimensional matrix representation (using a uniform
discretization) of a Toeplitz operator is also obviously Toeplitz. A classic ex­
ample of Toeplitz symmetry arises with the Mol\1 formulation for radiation
or scattering from a uniformly discretized straight, thin wire. It should be
noted that for this case, algorithms exist with similar computational require-

3 Many of the methods that exploit the computational efficiency of the FFT can be
traced back to work by Bojarski, reported in [Boj82]

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. THE MOM SOLUTION OF LARGE PROBLEMS 17

ments to the "direct" CG method (viz Mlog2(M) per iteration; note that
there is an error in the closing paragraph of [Sar86, p.ll] where it is stated
that the dependence is O(M); the previous page [Sar86, p.lO] gives the cor­
rect order). An example is given in [PM85b, p.l29] where the CG method
is used to solve the set of linear equations generated by the MoM, but the
matrix-vector products required by the method are implemented using the
fact that with a Toeplitz matrix, this operation can be viewed as a discrete
convolution and the FFT used to implement the multiplication. It is notable
that in work on problems without the convolutional property required to ex­
ploit the FFT, the adherents of the "direct" approach frequently do not give
run-times for the algorithms [NRS87]. If the FFT is used with the "direct"
method interpretation, a MoM interpretation is still possible, but the details
are rather more involved [PM85b]. Some other problems with using the FFT
were noted by Steyn and Davidson [SD90].

When the necessary symmetry exists, permitting the full exploitation of
the FFT, impressive results are possible. Zwamborn has recently described
an iterative formulation that permits a full three dimensional model of an
inhomogeneous object using around 27 000 cells (30 x 30 x 30) [Zwa91,
p.l38]. The Toeplitz symmetry is obtained by embedding the target in a
cube, using a contrast function to differentiate the target and the free space
"embedding" and using an regular grid. Such methods are, however, difficult
if not impossible to apply accurately to general problems involving arbitrarily
orientated surfaces, such as the vehicle mounted antenna problems of engi­
neering interest that initiated the work reported in this thesis.

2.7 Parallel Computing

This chapter has considered a number of methods for the solution of elec­
tromagnetically large problems. One final method has yet to be considered
- the exploitation of far more powerful computers. On the one hand, this
solution is trivial if one waits for conventional computers to increase in speed,
as they have been doing consistently for the last four and a half decades. On
the other hand, there is the challenge of developing new algorithms to exploit
the radical increase in processing power made possible by the development
of parallel processing. To develop such algorithms so that they will run effi­
ciently on this new class of computers is a very far from trivial problem. It
is this problem that is addressed in this thesis.

The emergence of vector supercomputers has permitted the solution of
much larger problems than could previously be handled. These computers,
epitomized by the CRAY series, the first of which was installed in 1976, rep­
resented a tremendous increase in computational resources for researchers

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. THE MOM SOLUTION OF LARGE PROBLEMS 18

with access to one. However, such systems are extremely expensive, and not
readily available outside the U.S.A., Europe and Japan at the time of writ­
ing. This thesis considers the use of a rather cheaper type of computer, the
local memory Multiple Instruction Multiple Data (MIMD) computer. Such
systems offer performance rivaling that of the vector supercomputers, but
require that the algorithms be very carefully designed to exploit the parallel
architecture and obtain something approaching the manufacturer's claimed
peak performance. The burden of this thesis is primarily the derivation,
analysis, implementation and testing of such algorithms.

The parallel algorithms and timing models that will be developed in this
thesis are applicable to any local memory MIMD system, and the theoret­
ical results depend on only two machine dependant parameters, the speed
of computation and communication. To validate the theoretical analysis,
the algorithms are implemented in Occam 2 and run on a transputer array;
the machine parameters mentioned are obtained by benchmarking and the
predicted and measured results compared. These specific timing results are
inevitably dependant on the particular computer used, but the basic algo­
rithms and theoretical analysis will not date as newer computing technologies
replace the transputer technology that was available at the time of writing.

It is also important to ensure that the large systems of equations can
indeed be solved accurately, and that the rounding errors imposed by finite
digit arithmetic do not degrade the solutions. In general, the matrices gen­
erated by moment methods do not permit use of the existing theorems on
the growth of rounding errors in LU or iterative solutions of systems of linear
equations, and the question of accuracy must be investigated by computa­
tional validation.

While the use of more powerful computers with existing algorithms is still
ultimately limited by the third power law on the solution of the system of
equations, it has been seen from the example given that the "gap" between
the MoM and GTD does not require a tremendous increase in the maxi­
mum usable frequency of the MoM to bridge; for the space shuttle example
discussed, the ratio of the minimum reliable frequency for the GTD to the
maximum usable frequency for the 11oM is about three, using the criteria
discussed in Section 2.2 (viz. for the MoM, one hour of CPU time on a
typical system such a.s the VAX discussed- about 500 to 600 unknowns­
and for the GTD, miD;imum dimension approximately L\). An increase in
computational speed by a. factor of slightly less than 1 000 would be sufficient
to bridge this gap4

• While the maximum number of processors used in this

4 At the time of writing, the Jet. Propulsion Laboratory, California Institute of Tech­
nology, were installing an array of 512 Intel i860 processors [Cwi91). The i8q0 is a rather
faster processor than the T800 transputers used in this thesis.

Stellenbosch University http://scholar.sun.ac.za

-;,.-_<

CHAPTER 2. THE MOM SOLUTION OF LARGE PROBLEMS 19

thesis was 31, the algorithms that are described demonstrate excellent scal­
ing properties, and will run efficiently on much larger numbers of processors,
so the basic premise of extending the MoM using large processor arra.ys is
valid and tenable.

2.8 Conclusions

The methods receiving attention in the literature for the solution of electro­
magnetically large problems have been reviewed. The discretization require­
ments for reliable approximate solutions have been discussed and an example
shown to illustrate the "gap" between the MoM and the GTD for a problem
representative of those of practical interest. The possibilities offered by ex­
ploiting symmetry have been reviewed; many problems of practical interest
do not unfortunately possess the necessary symmetry. The Impedance Ma­
trix Localization Method, an extension of the sparse matrix approximation,
has been described. Preliminary results obtained with the method appear
promising. Hybrid MoM-GTD formulations have been briefly described and
also show promise in closing the MoM-GTD "gap". The use of iterative
methods has been reviewed and a. debate in the literature regarding the rela­
tionship of "direct" iterative methods to iterative solvers applied to moment
method codes has been summarized. The computational efficiency of the
iterative methods is the result of the exploitation of Toeplitz symmetry; this
limits the applicability of the methods to the general problems of interest in
this thesis.

Finally, the systematic and efficient exploitation of parallel processing has
been identified as a topic of great interest. Other methods discussed such
as the Impedance Matrix Localization method will also benefit from the
availability of efficient parallel algorithms. The work on extending the MoM
(on the one hand via algorithms with lower computational requirements such
as the Impedance Matrix Localization method, and on the other through the
development of parallel algorithms that will run efficiently on large processor
arrays- the subject of this dissertation) should be viewed as complementing
work on hybridizing the GTD and MoM.

In the next chapter, a. review of parallel computing is presented, con­
centrating on the types of computers that have shown the greatest utility
for computational electroma.gnetics, namely pipelined vector computers and
replicated MIMD arra.ys. Examples are given of contemporary machines
epitomizing these two approaches.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3

A Review of Parallel
Computing

3.1 Introduction

This chapter provides an overview of parallel computing, with referenc~ to
numerical analysis in general and computational electromagnetics in partic­
ular. The chapter starts with a brief review of the history of parallelism
and the general principles, then goes on to look at two examples of paral­
lel computers that embody the two main types of parallelism encountered,
viz. pipelining and replication. Then the classification of parallel comput­
ers in general is discussed. The question of quantifying the performance of
a. parallel algorithm is addressed. Theoretically predicting the approximate
performance of an algorithm on particular hardware can save much wasted
coding, by allowing the comparison of different algorithms without having
to implement them all and then compare by benchmarking. A pseudo-code
notation is introduced that is used to document the parallel algorithms in
the rest of the thesis.

3.2 General Principles and Historical Back­
ground

The fundamental principle underlying parallel (or concurrent) processing is
that once the limits on speed imposed by a. certain computing technology
have been reached, the most obvious way of building a faster computer is to
perform operations simultaneously. Two fundamental ways of implementing
parallelism have emerged, namely

• Pipe-lining: overlapping parts of operations in time.

20

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 21

• Replication: providing more that one functional unit (eg CPU).

These are discussed in more detail in Sections 3.3 and 3.4 respectively.
The history of modern (i.e. digital, electronic) computers begins towards

the end of World War II; the first general purpose electronic digital com­
puter was ENIAC, and rather interestingly contained many parallel aspects
-for example, 25 independent computing units [HJ88, p.8). Over a century
previously, the initial designs of the machine generally regarded as the first
computer, Babbage's Analytical Engine, also contained the concept of par­
allelism - although this appears to have been dropped in his later designs
[HJ88, p.8].

Some form of parallelism has long been a feature of computer designs.
By the 1960's most scientific computers were using bit-parallel arithmetic,
i.e. processing the bits of a word in parallel. The 1953 IBM 701 was an early
computer to use bit-parallel arithmetic [HJ88, p.l2). Another form of par­
allelism long used is parallelizing the I/0 and arithmetic units by providing
an I/0 channel, to allow useful work to continue during read to / write from
(almost inevitably slower) peripheral units. The IBM 704, commissioned in
1955, is an early example of such as system [ibid.)

These forms of parallelism are ideal from the user's viewpoint, since they
are entirely transparent to him and all he sees is a machine with faster
through-put. The next stage of computer development involved pipelining,
that is the overlapping of operations in time. These operations could be
instruction processing, where the operation of instruction fetch, decode, ad­
dress calculation and operand fetch are overlapped on successive operations.
An early example was the University of Manchester /Ferranti (later ICL) AT­
LAS machine (1961) [HJ88, p.14]. Alternatively, pipelining can be applied
to arithmetic operations.

Possibly the biggest single advance in computational power was the in­
troduction in 1976 of the CRAY-1 1

• This computer successfully combined a
number of important concepts, incorporating pipelining, interleaved memory
and an attention to the detail of parallelism that made the machines the
fastest computers in the world when first delivered in 1976 [HJ88, p.118).
Due to the historical importance of the CRAY, it is described in more detail
in Section 3.3.2.

However, there is a limit to the amount of parallelism that can be ex­
tracted via. pipelining - it is certainly difficult to see how general purpose
pipelines can be developed for much more than the basic operations already
described. Recent designs have thus increasingly exploited replication to
increase processing speed.

1Cray's eponymously named computer is one of lhe few thus distinguished.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 22

When first introduced, replication tended to involve either providing a
few, powerful processing elements, or providing a massive number of very
simple processing elements. The former was the approach used on the CRAY­
XMP- the XMP is essentially one, two or four CRAY-1-like CPU's sharing
a common memory [HJ88, p.123]2. The latter was the approach that ICL
followed with their DAP (Distributed Array Processor) [HJ88, p.290]. The
first production models3 contained a two-dimensional array of 4096 1-bit
processors.

The introduction by INMOS of the transputer4 has had a major impact
on parallel processing, due to the fast processing and communication speeds,
the simple and effective provision made for communication between trans­
puters, and the relatively low cost [HJ88, p.322]. The transputer was prob­
ably the first microprocessor to fully exploit the possibilities of VLSI (Very
Large Scale Integration) technology for concurrent processing. The technol­
ogy required to build moderately large transputer arrays (64 processor arrays
are not uncommon) is rather simpler than that required for a pipelined su­
percomputer, making supercomputers based on replicated transputer arrays
rather cheaper than a pipelined supercomputer, but with impressive compu­
tational potential. The algorithms developed in this thesis were tested on a
transputer array, and more detail is provided on transputers in Section 3.4.2.
Such arrays fall in between the extremes of the CRAY-XMP and DAP.

In the next section, pipelining and replication are discussed in detail.

3.3 Pipelining

3.3.1 Description of Pipelining

Suppose it is desired to add two floating point vectors [a] and [b] together,
to produce the vector [c]. In the first clock cycle (or tick), the first elements
a1 and b1 are fetched, in the second tick they are added, and in the third
tick the result is stored. Thus an output is obtained every third tick. Now,
by tick 2, the hardware dedicated to fetching operands is idle, and by tick 3,
both this unit and the arithmetic unit are idle. Only on tick 4 is new data
fetched. This is illustrated in Figure 3.1 for the case of vectors of length 3.

Instead of leaving these units idling, assume that it can be arranged that
while the arithmetic unit is adding a1 and b1 , the fetch unit is fetching a2 and
b2 on tick 2, and on tick 3 the fetch unit is fetching a3 and ~' the arithmetic

2The two processor version was announced in 1982 and the four processor version in
1984 [HJ88, p.l18).

3The first. DAP computer was delivered in 1980.
4Transpu ters were first available in 1984.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 23

unit is computing a2 and b2 and the output unit is outputting c1 = a1 + b1 .

Thus the operations have been overlapped in time, and now (after an initial
hiatus of two ticks) a result is obtained every tick instead of every third.
This situation is illustrated in Figure 3.2. Thus, with the same technology
the computer has been speeded up by almost three. On real computers, the
amount of work that can be done in one clock cycle is rather less than in
this idealized example, so the pipelines are generally deeper, offering more
potential for speed-up.

tick1 m b ---+ a1; 1

tick2 cl := al + bl

tick3
out

CJ ---+

tick4
m b ---+ a2; 2

tick5 c2 := a2 + b2

tick6
out

c2 ---+

ticki m ~ ---+ a3;
tick8 c3 := a3 + b2

tick9
out

C3---+

Figure 3.1: Sequential execution of a+ b .

. k tn b tzc·1 --+ a1; 1

tick2 c1 := a1 + b1

tic/..~3

tick4

tick5

out
cl ---+

m 1-._
---+ a2; 112

c2 := a2 + b2
out

c2 --+

Figure 3.2: Pipelined execution of a+ b with a pipe of depth 3.

In general, the time, tpipe, to operate on a vector of length n is

tpipe = [s + l + (n- 1)]r (3.1)

where l is the length of the pipe, sr is the set-up time, and represents the
penalty to be paid with a pipeline - a certain amount of time is required to

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 24

set it up - and T represents the interval between ticks. The set-up time is
constant irrespective of the length of the vector. It can therefore be expected
that the pipeline will not be efficient for short vectors, where ST is of the same
order as (n - 1)T. The actual values of s and T are determined either from a
detailed knowledge of the specifications of the computer or via benchmarking
(measurement).

A useful general form of characterization for parallel processors intro­
duced by Hockney and Jesshope [HJ88, Section 1.3.2] is the (r00 , n1; 2) model.
The execution time of an operation on a vector of length n is given by

(3.2)

This discussion has not specified what operation is implied. Each basic arith­
metic operation is often allocated a special purpose pipeline, as will be seen
in the example of the CRAY-1.

The maximum or asymptotic performance r 00 is the maximum rate of
computation in MFLOP /s. For a pipelined computer, this occurs as the
length of the vector tends to infinity, hence the name. Comparing equations
(3.1) and (3.2), r00 = T- 1 for a pipelined computer. The half-performance
length n1; 2 is the vector length required to obtain half the maximum perfor­
mance. For a pipelined computer, n1; 2 = s + l- 1.

3.3.2 An Example- the CRAY-1

This section describes the CRAY-1 5 computer, which at the time of writ­
ing was a most important computer, very successfully exploiting pipelining.
It can be expected that technological developments will date this particular
section; however, as has already been stated in the introduction to this chap­
ter, the parallel processing principles used in this thesis are not tied to the
specific computer technology of 1991.

The CRAY-1 is a pipelined vector machine. Three floating point,
pipelined, functional units are provided, one each for addition, multiplication
and reciprocal approximation. The pipelines are 6, 7 and 14 deep respectively.
These can produce a result every clock cycle (8.5ns on later models). Eight
vector registers, each able to hold 64 64- bit long floating point numbers, are
provided, along with three 64-bit data paths for direct memory access, and
a set of 32 machine instructions for manipulating and performing arithmetic
on these vectors [HJSS, Section 2.2.2].

5Cray was a founding member of Control Data Corporation (CDC), and was intimately
involved with the design of the CDC 6600, a 1960's machine that combined principles such
as pipelining and memory interleaving. In 1972 he left CDC to start his own company,
with the aim of producing the fastest computer in the world. In the very short space of
four years he succeeded, and in 1976 the first CRAY-1 was delivered.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEvV OF PARALLEL COMPUTING 25

The CRAY -1 benchmarked by Hockney and Jesshope [HJ88, Section 2.2]
had a clock time of 9.5ns, which would imply a maximum through-put of
around 105 MFLOP /s per pipeline. (Note that there are three such pipelines
that can be chained; this concept is discussed later). The maximum rate at
which one pipeline can produce results is also the maximum rate at which
the system can transfer (on two separate 64 bit DMA links) the two operands
from memory and (on another DMA link) the output to memory. However,
the vector registers are provided to allow further operations on data without
first transferring results to main memory. This helps reduce the memory
bandwidth problem. On the subject of memory, the CRAY-1 also uses banked
(also known as interleaved) memory, which is another type of parallelism
encountered on virtually all supercomputers. Memory banks are groups of
memory, which can send data to the processor in parallel. Thus relatively
slow memory can be matched to a fast processor. (This concept was found
in the very successful CDC 66006 of the 1960's [HJ88, p.l6].).

The CRAY-1 also permitted chaining of vector instructions. Chaining
means that if, for example, two vector operations using different pipelines
are to be executed sequentially, the second pipeline starts as soon as a result
is produced. Thus the system does not wait for the first pipeline to empty
before initiating the second, but rather as soon as data is available. The
result is to effectively multiply the length of the pipeline by the number of
units that can be chained (assuming that the pipe lengths are approximately
the same).

The CRAY-1 achieved its success by using the fastest semiconductor tech­
nology available at the time of its design, using pipelining, using vector reg­
isters to store temporary results and by carefully matching memory and
processing requirements. Note that pipelining on its own is not enough -
a designer of a large pipelined system has many other problems to consider,
the most important of which are firstly, providing mechanisms to get data
to the pipelines from memory and vice versa sufficiently fast to keep them
occupied, and secondly, providing enough (sufficiently fast) memory.

The CRAY series supports FORTRAN as its main scientific language.
Software support for parallel processing is provided in a. special multi-tasking
library, invoked by calls to FORTRAN routines in this library. At the time
of writing, there was to be little in the way of standards for the parallel
languages. This is an issue that the committee specifying FORTRAN SX
were addressing [HJ88, p.407).

The CRA Y -1 was chosen here as an example to illustrate pipelining, since
it is a most successful working example of such an implementation. The
CRAY-1 regularly achieved 130 MFLOP /s on suitable problems, such as

6 Also designed by Cray.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEH' OF PARALLEL COMPUTING 26

matrix multiplication. The biggest problem with the system is cost and
availability. The systems cost several tens of millions of dollars at the time
of writing, and the installations require special refrigeration gear for cooling
purposes. (A CRAY-XMP weighs 5~ tons, requires two 25-ton compressors
and a 175 kVA generator [HJ88, p.120)). Virtually all such systems have been
installed in large computer centres7 The state of the art in supercomputers at
the time of writing was probably the CRAY-2, with a maximum theoretical
throughput of 2 GFLOP /s- 430 MFLOP /s has been reported on favourable
problems [HJ88, Section 2.2.7]. The CRAY-2 has a clock period of 4.1ns, and
uses some novel concepts, such as three-dimensional pluggable modules to
keep interconnection distances short, and liquid immersion cooling, whereby
all circuit boards and power supplies are totally immersed in a bath of slowly
circulating clear inert fluorocarbon liquid. The CRA Y -3 is an implementation
in gallium arsenide, which is expected to allow a clock period of 1ns.

The CRAY series was chosen as example of a vector supercomputer, but
before moving on to replicated designs, mention should be made of the re­
cent trend towards minisupercomputers, such as the Convex range [HJ88,
p.49]. These provide many of the capabilities previously reserved for CRAY
users at a much cheaper price. The Convex is broadly similar to the CRA Y
series, in that it is based on a series of functional units working from vector
registers. The entry-level system, the C-1, (now known as the C-120) has
been benchmarked at 14 MFLOP /s after careful hand optimization. This is
about an order of magnitude slower than a CRAY-1, but then it also costs
one-tenth the cost of a CRA Y -1. The Convex systems are air-cooled and are
thus far easier to install and maintain.

3.4 Replication

3.4.1 Description of Replication

Returning to the basics of parallel processing, consider Figure 3.3. Suppose
that instead of using a pipeline, additional processors are provided, each one
of which took three ticks to do the required work, i.e. each one working at the
same speed as the single processor in Figure 3.1, and hence all using the same
technology. If enough processors are available (three in the example shown),
then all the answers will be available simultaneously after three ticks.

This example can also be used to illustrate the different philosophies pos­
sible with replication. Each processor may have its own local memory -

i At the time of writing, there were in addition entirely non-technical political problems:
the U .S. government was only permitting the export of supercomputers to a relatively small
number of countries.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEVl OF PARALLEL COMPUTING 27

tick1
m b
~ a1; 1 m b ~ a2; 2 m b

~ a3; 3

tick2 c1 := a 1 + b1 c2 := a 2 + b2 c3 := a3 + ~
tick3

out out out
cl~ c2 ~ C3 ~

processor 1 2 3

Figure 3.3: Execution of a+ b on an array with three processors.

an example being a transputer array. Alternatively, the memory may be
global (shared) - an example being the CRAY-XMP. All the processors
may be executing the same instruction simultaneously ("lock-step" in com­
puter parlance), or each processor may be running totally different programs.
The former is frequently referred to as SIMD (Single Instruction, Multiple
Data) and the latter as MIMD (Multiple Instruction, Multiple Data); this
nomenclature is discussed in detail in Section 3.5. Communication is required
between the processors; this can either be implemented using global mem­
ory (which requires complex hardware and/or software mechanisms to avoid
memory contention problems8), by explicitly passing messages from proces­
sor to processor, or by a combination of these mechanisms. A transputer
array implements a message passing system.

The performance degradation due to the start-up time of the pipe-line
has its analogy with processing arrays. Three different mechanisms can be
identified which degrade the performance of the system, namely

• Scheduling: The efficiency with which the available work is divided up
among the processors. This is also known as load balancing.

• Synchronization: Synchronizing the different processors so that opera­
tions take place in the correct order.

• Communication: Different processors almost always need to commu­
nicate results at some stage of the algorithm; time will be spent in
performing this communication that could have otherwise been spent
computing.

Which effects are important will depend on the system used. Hockney and
Jesshope [HJSS, Section 1.3.6) develop a characterization that incorporates
all the above effects following the (r00 , n112) model used to describe SIMD
performance. Another frequently used one parameter model - used in this

8Two or more processors simultaneously trying to access the same address in memory.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 28

thesis - incorporates all the above effects into a parameter termed speed­
up, S. Speed-up tells the user how much faster his algorithm will run on N
processors than on one, which is really the fundamental issue of importance
for the user. It is the ratio of time taken by an equivalent serial algorithm
running on one processor, T8 , to the time taken by the parallel algorithm
using N processors, Tp.

(3.3)

S has an upper bound of N.
Another parameter, namely efficiency, t, tells the user how efficiently the

N processors are being used. It is simply the speed-up normalized by N 9

s
t=-

N
(3.4)

t is normally bounded10 from above by 1. For systems where the degradation
is primarily due to communication, such as the transputer array to be studied,
this can be explicitly represented by [F JL *88, Chapter 3]

(3.5)

where fc is the fractional communication overhead. S may be written as

N
S=--

1 + fc
(3.6)

There has been some debate on what times should be compared in the defi­
nition of S, since the optimal serial algorithm is not necessarily the optimal
parallel algorithm. This point will not be developed further, since it is of no
concern for the parallel algorithms described in this thesis. Note also that

9Speed-up and efficiency have become standard termsin the applied parallel processing
community, due largely to books such as [FJL*88], published relatively recently. Karp
and Flatt have recently introduced another metric, the experimentally determined serial
fraction, and claim this to be superior to the speed-up/ efficiency characterization [KF90].
The present author has not investigated their work in detail.

1°From time to time, a paper will appear showing an efficiency exceeding 100%. The
author suggests that this is possible, but only under extreme circumstances and due to
very subtle design details of the computers. For example, a very short code with very
small data requirements co.uld just exceed the 4kB of fast, on-chip RAM available on one
t.ransputer- but with two transputers, the code and data (divided by two) now fit into the
4kB of each transputer. Using exclusively on-chip RAM produces an immediate speed-up
of around three, so a code with minimal communication requirements is likely to show a
speed-up of about six and an efficiency of about 300% when run on two transputers. This
is speculation and the author has not actually observed this effect, but it is theoretically
possible. It will not of course be repeatable on a general MIMD array.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 29

the use of Tp here is not exactly the same as in [HJ88, 1.3.6), but agrees with
[FJL*88) and [Mod88, p36).

3.4.2 A Local Memory MIMD Example - Trans­
puter Arrays

The example given here is an example of a local memory MIMD array, us­
ing transputers as processing elements. The specifications given are germane
to the transputers readily available at the time of writing; the performance
ratings given will of course become dated. However, INMOS, the company
who manufactures the transputer, has recently announced a new genera­
tion of transputers with greatly improved specifications. This should ensure
the longevity of transputer based array processors; the code written for the
transputers described here will also run on the new generation of transput­
ers. With MIMD processors, computer languages and extensions to existing
languages were very specific to particular computers at the time of writing.
Hence the language tha.t the algorithms described in this thesis were written
in (Occa.m 2) is discussed and compared to the other main contender for the
transputer, Parallel FORTRAN.

The transputer is a type of processor chip incorporating a CPU, memory
and communication links. When introduced in 1984, the extensive exploita­
tion of VLSI (Very Large Scale Integration) technology distinguished the
transputer from its competitors. Several variants of transputer are available;
at the time of writing, the T400, T414, T425, T800, T801 and T805. This
description concentrates on the 800 class (the last three), which is the class
of transputer useful for numerical analysis, since a floating-point processor
has been added to the chip. (This is on the same chip as the CPU, mem­
ory and conununication links). In particular, the TSOO is described, since the
transputer array available to the author, the Massively Concurrent Computer
(MC2

), used the T800.
'I'he transputer is a 32-bit RISC11 design. See Figure 3.4 for a schematic

of the floating point chip. The 20 MHz TSOO transputers used in the MC2 are
specified at 10 MIP /s and 1.5 MFLOP /s. The four "links" provide bidirec­
tional communication either with a host processor or with other transputers.
The link speed is 20 Mbit/s. Each link has a DMA channel into the memory
system- this does slig4tly reduce the memory-bandwidth to the CPU12 , but
not significantly. All components execute concurrently; each of the four links
and the floating point processor can perform useful work while the proces­
sor is executing other instructions. The link concurrency is exploited in the

11 See glossary.
12The rate at which the CPU can get data to and from memory.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIE\V OF PARALLEL COMPUTING 30

applications considered in this thesis. 4kB of on-chip RAM is also provided,
but this is not significant for the applications considered in this thesis.

I Floating point unit I
1

CPU

RAM 1
4 bidirectional

Links
serial links

I Memory interface I

Figure 3.4: Floating point transputer. After [INM89, p.31]

When introduced, the transputer was a very powerful processor in its own
right - benchmarking using NEC2 showed that one TSOO transputer was
slightly faster than a MICROVAX II rated at 0.9 VAX MIP /s13 [lRBdPCSS].
\-\Then first introduced, one application of transputers was as an "accelerator"
board hosted in a PC or VAX system. Programs were developed and filed
using the normal host operating system - on a. PC, DOS. The compilers
and compiled code then ran on the transputer, permitting a. great increase
in computational power for especially PC users14

• This application has de­
creased in importance as the host systems have increased in speed.

However, it is the use of the transputer as an element of a processing array
that is of significance to this thesis. From its inception, the tra.nsputer was
designed as an element of a para.llel computer, so many critical issues such
as communication were efficiently addressed using special hardware. Devel­
oping a transputer based parallel computer required primarily developing
the inter-transputer switching network; on simpler machines this was hard­
wired, whereas more complex machines provided software control over the
switches, permitting different interconnection topologies to be implemented
for different applications. More detail on issues related to interconnecting

13See Section 2.2.
14 Information regarding the present commercial availability of transputer hardware is

available in (Dav90b, p.9)

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEVl OF PARALLEL COMPUTING 31

processors are considered in Section 3.6. Details of the specific switching
strategy adopted by the designers of the MC2 are available in (Vil89].

At the time of writing, the transputer array at the University of Stellen­
bosch contained 64 TSOO's, 16 with 1MB of RAM, 29 with 2MB, 14 with
4MB, 4 virtual memory boards and 1 special purpose board. The MC2 com­
puter is nominally rated at 100 MFLOP /s, giving a maximum throughput
in the same order as a CRAY-115 • However, to achieve anything approach­
ing this will requires very careful coding to fully exploit the hardware. Such
issues will be discussed in detail in Chapters 4, 5 and 6.

Just prior to submission of this thesis, INMOS recently released full pre­
liminary technical information on the next generation of transputer, the
T9000 (INM91]. The T9000 is specified at 200 MIP /s or 25 MFLOP fs. It has
a 64 bit floating point unit on chip (similar to the T800). The four serial links
each provide a bidirectional bandwidth of 20 MByte/s, as opposed to the 20
MBit/s of the T800. The T9000 also incorporates a 16 kB instruction and
data cache, which should be far more useful for general applications that the
4 kB on-chip RAM of the T800. Also described is the C104 packet routing
switch, a low-latency (less than lfi.S packet latency) 32 by 32 crossbar switch
that should greatly simplify the design of large transputer arrays. INMOS
plan to release the T9000 and C104 in 1992.

Thus far, the technical details of the transputer have been discussed.
Now it is time to consider the languages available for coding algorithms
to run on transputer arrays. The algorithms described in this thesis were
implemented in Occam 2. For transputer applications, the user is faced with
on the one hand, the group of general purpose procedural languages with
parallel extensions, namely Parallel FORTRAN, Pascal, Modula 2 and C,
and on the other, Occam (which is also a procedural language but is based on
the fundamental requirement to express parallelism as naturally as possible).

Occam16 implements the concept of Communicating Sequential Processes,
which was introduced by Hoare at O:>..ford University in the mid-1970's
(Hoa85]. This concept views a computational process as a group of sequential
processes which have to communicate with each other at certain times. The

15 An important question for potential users of a system is the financial cost thereof.
\Vhile exact figures have not been publicly released, the MC2 /64 computer described in
this thesis cost about two hundred thousand U .S. dollars. At the time of writing, such a
system would cost rather less: since it was delivered, the price of transputers has dropped
dramatically, and the memory chips required have also dropped in price. It has also been
noted that slightly slower - and rather cheaper - memory could have been used; see
(Dav90b, p.l7).

160ccam takes its name from the minimalist philosophy of the 14th century philosopher
William of Occam, from which derives Occam's Razor - "Entia non sunt multiplicanda
praeter necessitatem", which translates as "Entities should not be multiplied ·beyond ne­
cessity". This can be loosely paraphrased as "Seek the simplest solution" (Gal90, p.3).

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 32

transputer was designed to implement this philosophy.
Programming in Occam requires rather more effort than FORTRAN for

some tasks; the I/0 routines are not as comprehensive as the FORTRAN
standard17 and Occam does not support complex numbers, requiring the
user to write the necessary procedures. These disadvantages are outweighed
by the advantages of the very simple and efficient handling of inter-processor
communication in Occam, and the excellent integrated development environ­
ment, the Transputer Development System (TDS)18

• Programs are developed
using a "folding editor". Briefly, the concept is that sections of code are put
into folds - similar to taking a piece of paper and folding part of it away .
A fold does not affect program operation at all, but greatly improves read­
ability, since a section of code devoted to input can be put in a fold and then
the fold marked "input section". It was used consistently in developing the
codes described in this thesis, and greatly aided proper "top-down" design.
The post-mortem (i.e. not interactive) debugger was also extensively used
for debugging. At the time of writing, a version of FORTRAN supporting
debugging had just become available; when the work was initiated, the FOR­
TRAN compiler had no debugging support at all. A detailed description of
the TDS will be found in [Dav90b, p.l0-11).

The TDS runs under DOS but uses its own filing system. A stand-alone
Occam 2 compiler is provided with the Occam Toolset. This also incorpo­
rates a post-mortem debugger similar to that of the TDS. An interactive
debugger is also provided with the Toolset; it is restricted to codes running
on one transputer. Unfortunately, when tested by the author, the interac­
tive debugger worked satisfactorily for simple test codes but failed to work
at all for real codes, such as code stubs of PARNEC that the author was
debugging.

A parallel FORTRAN compiler, Parallel FORTRAN Version 2.0 [ParSS),
was also available to the author, and initially it had been planned to develop
the codes in FORTRAN. However, the author encountered very serious prob­
lems with the Parallel FORTRAN compiler; codes would often run once and
then fail on a second pass, and even very simple test codes would often not
run reliably. The Parallel FORTRAN package did not support any debug­
ging at all. The problems with Parallel FORTRAN were so serious that
the approach outlined in [Dav90b, p.ll), namely using the Occam Toolset's
ability to mix alien languages and Occam, was eventually rejected19 . It had
been hoped to develop an Occam "harness" which would handle the inter-

17 An example of this is that the task of reading in a set of real numbers, separated by
blanks, requires the user to write a special routine to implement the necessary parsing,
whereas FORTRAN handles this implicitly- at least, FORTRAN 77 does.

18The latest version available at the time of writing was the TDS3.
19This is discussed in more detail in Section 6.3.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 33

processor communication and interface the Occam matrix solvers with the
rest of the FORTRAN code. This would have been a very elegant solution if
the FORTRAN compiler had worked reliably. The concept remains attrac­
tive, since it would be easier to apply to improve the performance of existing
codes. This would permit the bulk of the code to be retained in the original
language, and only the computationally intensive parts of the program would
be parallelized in Occam. As the compilers improve, it may well become a
practical method.

This discussion has been presented to motivate the author's choice of
Occam as the implementation language for the algorithms described in this
thesis. Different parallel processors support different languages, and this dis­
cussion relates thus specifically to a transputer based array processor. It
should be appreciated that the software technology available to the author
for the work reported in this thesis was not of the level that one finds on PC's,
V AXes and workstations, either in terms of functionality (for example, inter­
active debuggers) or reliability. Despite these problems, the linear equation
solvers and moment method codes developed by the author are functional
and reliable.

Transputer hardware and software has been discussed in this section.
Now it will be shown how the previously discussed vector addition example
would be parallelized on an array of three transputers; see Figure 3.5. The
connections (links) are shown from processor 1 (running process [1]) to pro­
cessors 2 and 3 (running process [2] and process [3] respectively). Unused
links are left unconnected. Processor 1 is acting as the "master" transputer
in this example, and is also connected to the "host" (typically a PC or VAX).
This example uses pseudo-code to be defined in Section 3.7; note that each
processor has a process "mapped" onto it. These processes can be debugged
by simulating all three parallel processes on one actual transputer. Once the
program has been debugged, the processes are mapped onto physical proces­
sors to obtain the speed-up required. This interchangeability of "simulated"
and "real" parallelism is due to the fundamental design of the transputer
and makes the transputer particularly attractive for developing code to run
on very large arra.ys; the development and debugging can all be done on one
transputer and only the final speed-up tests need be performed on the actual
array.

3.5 Classification of Parallel Computers

The proliferation of parallel hardware has given rise to a need for a. sys­
tematic classification of parallel computers. One of the earliest was Flynn's
classification [Fly72]; it has retained its utility to the present. He based his

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING

To host
I

- process[l] -

I

- process[2] f.- - process[3]

process [1] :
begin

par

I

send a2,b2 to process[2]
send a3,b3 to process[3]
cl := al+bl

par
receive c2 from process[2]
receive c3 from process[3]

end{process[l]}

process [2]
begin

I

receive a2,b2 from process[l]
c2 := a2+b2
send c2 to process[l]

end{process[2]}

process [3]
begin

receive a3,b3 from process[!]
c3 := a3+b3
send c3 to process[l]

end{process[3]}

1-

Figure 3 .. 5: Vector addition parallelized for three transputers

34

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 35

taxonomy on the multiplicity of data and instructions. This leads to four
distinct classes of machine:

• Single Instruction, Single Data (SISD): A system with one instruction
stream operating on one datum at a. time.

• Single Instruction, Multiple Data (SIMD): A system with one instruc­
tion stream, where each processing element operates on different data.
in lockstep with the global instruction stream.

• Multiple Instruction, Single Data (MISD }: A system with multiple in­
struction str~a.ms operating on one datum.

• Multiple Instruction, Multiple Data (M/MD}: A system where each
processing element operates independently with potentially different
instructions on different data..

Within the SISD classification, most machines based on the von Neuma.nn
a.rchitecture20 reside, such as the ubiquitous PC, most of the VAX range, and
most worksta.tions. The ICL DAP array, briefly mentioned previously, is an
example of a. SIMD system. Arra.ys such as the tra.nsputer array are clearly
MIMD systems. MISD systems are primarily of theoretical interest [HJSS,
p.57].

Flynn's taxonomy has a. very important advantage: it is very simple. It
is also descriptive - up to a point. Thus it is very common to encounter
the terms SIMD and MIMD in the literature. However, Flynn's taxonomy
suffers from the problem of over-simplification for some applications. (The
reason for this is probably that the work that his classification was based on
dates to the mid-1960's, when parallel computers in general were primarily of
theoretical interest). Firstly, pipelining does not fit into the above scheme at
all comfortably. \Vhile pipelined machines are often grouped under the SIMD
classification, this ignores the fact that pipelining derives from an overlapping
in time of operations, not a replication of processing elements. Since at any

20 "von Neumann" refers to the architecture proposed by von Neumann for the computer
built at the Princeton Institute for Advanced Study in the later 1940's; a von Neumann
architecture refers loosely to any computer not employing concurrency [FJL*88, p.491).
In the parallel processing literature, the term sometimes carries a slightly pejorative sen­
timent. It is important to remember von Neumann's crucial contribution of the concept
of the stored program, which was central to his thinking, whereby the computer program
is also data, stored in the computer's memory. This idea is so ubi-quitous nowadays it is
difficult to conceive the methods used to program the world's first electronic computer,
the ENIAC, which was re-programmed by resetting switches and replugging cables. A
popular account of von Neumann's pioneering work on computers may be found in Regis's
history of the Princeton Institute for Advanced Study [Reg87, Chapter 5].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 36

one time, different parts of an operation are being performed on different
data, one could possibly argue that pipelined machines belong in the MIMD
class. Another argument is that different operations are being performed
on the same data. in the pipeline, so pipelined machines should be classified
as MISD systems. It is at best an unresolved question. In the author's
view, pipelining should best be treated as a separate entity, orthogonal to
the instruction/ data. stream classification, since both a SIMD and a MIMD
computer can incorporate pipelining in the processing elements21

•

The second point, and the more significant in this thesis, is that the clas­
sification ignores the question of memory. Particularly with MIMD systems,
the question of whether memory is local (i.e. may only be accessed directly
by the processor that it is attached to) or global (i.e. all processors have
access to the same memory) can totally change the suitability of a parallel
algorithm.

Nonetheless, Flynn's taxonomy, if extended slightly to also give informa­
tion about pipelining (if present) and memory type, provides a. sound basis
for further sub-division. It should be viewed as analogous to the classification
of animals by family in the familiar biological and zoological taxonomy -
further sub-division is necessary for an accurate description. Hockney and
Jesshope provide such a. further sub-division [HJ88, Section 1.2.5]. As an
example, the CRAY-1 is classified as a single instruction stream computer;
with pipelined execution units - this is a parallel unicomputer in Hockney
and Jesshope's taxonomy. It can be further subdivided into the class of such
parallel unicomputers with vector instructions with special purpose pipes.

Hockney and Jesshope also develop an algebraic-style structural (ASN)
notation [HJ88, Section 1.2.4], which allows a very detailed description of
a computer, down to data. path widths, clock speeds, memory interleaves
etc. This is very elaborate for most purposes but is useful as a. succinct but
complete (albeit cryptic) description of a. machine. This ASN notation is not
used in this thesis.

3.6 Interconnection Topologies

\Vith a. local memory processing array, each processor must communicate
with other processors at some stage of the algorithm. Such communication
is obtained via the interconnect topology. This may be done dynamically, i.e.
during program execution, or statically, i.e. set up before the run and left

21 Intel's i860 chip, suitable for use in a MIMD array, uses pipelined arithmetic units to
obtain an impressive peak throughput of a claimed 80 M FLOP js.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIE\V OF PARALLEL COMPUTING 37

unaltered during execution22
• Consider a general array, consisting of nodes

- the node is the processor plus memory23
• For a general system with P

inputs and Q outputs,there are pQ possible mappings (including P! one-to­
one and the rest one-to-many), and these can be implemented using a full
crossbar switch with PQ switches24

• This rapidly becomes very expensive.
An N node transputer array contains 4N inputs and 4N outputs, since each
transputer has four bi-directional links. A detailed treatment of switching
networks requires permutation theory and can be found in [HJ88, Section
3.3].

Hafner [Haf89] has described some popular interconnection topolo­
gies. Probably the most generally encountered with transputer arrays are
pipelines, rings, meshes, trees and hypercubes. Some examples are shown in
Figures 3.6, 3. 7 and 3.8. The "dimension" of a hypercube has the conven­
tional geometrical interpretation for hypercubes up to dimension 3. Graph
theory can be used to obtain certain important properties of these topologies;
these are summarized in Table 3.1. Diameter means the maximum number
of links required to connect any two nodes25 . Wraparound means that the
left-most and right-most columns of processors in the lattice are connected
together, as are the upper-most and lower-most rows. See [Mod88] for a
review of graph theory.

The topologies used in this thesis were the binary tree and the mesh.
The former was used for the parallel conjugate gradient algorithm to be
described in Chapter 4, and the latter for the parallel LU algorithm described
in Chapter 5. The motivation for each choice is presented in the relevant
chapter. Both are of course implementable on a general transputer array
permitting any link on any processor to be connected to any link on any
other processor.

3. 7 A Pseudo-code Notation

For documenting the algorithms to be presented in the rest of this thesis,
it is useful to introduce a pseudo-code notation. Some of this notation is
very loosely based on Occam 2 [Gal90]. The notation emphasizes 1'eadability.
The notation is an extension of that defined in [FJL*SS, Appendix A]; a

22 Programs written for the transputer require an explicit mapping of "channels" (the
software communication abstraction) onto actual physical links at compile time, hence
transput.er arrays are always statically switched.

23The following results are summarized from [HJ88, p.259-61).
24 Note in this context that the Communicating Sequential Processes (discussed in Sec­

tion 3.4.2) concept allows only one process to communicate with one other process at a.
time, i.e. only one-to-one mappings are permitted.

25 Vertices and edges, respectively, in graph theory.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 38

Topology Order .Number of processors Diameter Comments

Binary tree d N = 2d+I -1 2d
Hypercube d N = 2d d

Lattice Mesh - N 2{_N- 2 No wraparound
Lattice Mesh - N 2ltvNJ Wraparound

Linear (pipeline) - N N -1
Cyclic (ring) - N fN/2l

Table 3.1: Properties of common interconnection topologies

Figure 3.6: Interconnection topologies - hypercube dimension 3

3 6

1 2 4 5

Figure 3.7: Interconnection topologies- binary tree depth 2

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEVl OF PARALLEL COMPUTING 39

Figure 3.8: Interconnection topologies - mesh (lattice) without wrap­
around. N = 9.

notation similar to but not as extensive as that used in this thesis will be
found in [vdVB89]. Pseudo-code will also be used as part of the software
re-engineering procedure to be described in Section 6.4.

Firstly, the assignment statement is defined:

a := 1

This assigns the value of the right hand side of the equation to the variable
on the left hand side.

Then a begin-end construct similar to that of Pascal is introduced:

begin
code stub

end

Everything within the begin-end demarcation is executed sequentially,
unless the following par construct is encountered:

par
code stub1
code stub2

other code stubs
end{par}

Then code stub1 and code stub2 and other code stubs are ex­
ecuted concurrently. These code stubs can of course consist of begin-end
constructs, which can in turn consist of nested begin-end and/or par con­
structs. The curled braces { ... } are used to demarcate a comment.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 40

The par construct indicates concurrent execution. This may be obtained
by time-sharing of resources such as the CPU26 or actual parallel hardware,
such as multiple processors27 or hardware support for concurrent execution,
for example concurrent computation and communication28

• The par con­
struct is taken directly from Occam. Occam does not have an explicit
begin-end construct; the equivalent is the SEQ construct, which looks as
follows:

SEQ
code stub

Note that there is no end statement in Occam. This thesis will use the
begin-end construct in preference to the SEQ construct.

A conditional loop is required; this is provided by the while construct:

while (some Boolean expression)
code stub

end{while}

This loop evaluates some Boo lean express ion; if FALSE, it behaves as a
SKIP construct (to be defined), i.e. does nothing, and the loop terminates. If
TRUE, code stub is executed , and then some Boolean expression evalu­
ated again. Obviously some action must ultimately change the value of some
Boolean expression, or the loop will never terminate. A repeat for a
given number of times construct is usefuF9 ; this is provided by the repeat
for construct:

repeat for i = start.index to stop.index
code stub

end{repeat}

The section of code in code stub is executed for i from start. index
to stop. index (both inclusive); if start. index exceeds stop. index it be­
haves as a SKIP construct (to be defined), i.e. does nothing, and the loop
terminates.

A conditional construct is required; this is the if-then-else construct:

26 Used on the transputer to "simulate" parallelism during code development, as dis­
cussed in Section 3.4.2. Note that by no means all MI:MD processors support such a
concept -on such systems the code development and debugging must then be performed
on the real array.

27In the context of transputers, multiple transputers with some form of interconnection
network.

28Such support is provided on the transputer; the links and the floating point unit were
designed to operate concurrently.

29This can actually be implemented using the ~hile construct but it is convenient to
define this additional construct.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING

if (some Boolean expression)
then code stub1
else code stub2

end{if}

41

If the Boolean expression is TRUE, then code stub1 is executed; if FALSE,
then code stub2 is executed instead.

A SKIP process is also defined that does nothing; it is derived from Oc­
cam and permits explicit coding of a condition that requires no action. An
example of its use is to convert the if-then-else to effectively an if-then
construct by making code stub2 in the if-then-else a SKIP.

Communication will be written out in English:

begin
receive z from process[k]
send z to process[s]

end

It is not always known on wha.t channels the data will be available on
first, so the al t construct is defined:

alt
receive from process[k]

code stub1
receive from process[l]

code stub2
end

If process [k] is ready with data first, then code stub1 is executed;
otherwise if process [1] is the first ready, code stub2 is executed.

A procedure is a group of statements; it is generally given a name and
a list of arguments may be passed when instantiated.

Constants and variables will not be explicitly typed (i.e. declared); their
type will be clear from the context30

•

A process construct is declared:

30 0ccam is a strictly typed language; this means all variables and constants must be
explicitly declared. While initially somewhat verbose to someone used to FORTRAN's
default typing, the advantages for generating checkable code are quickly appreciated and
the FORTRAN default typing is seen as the very dangerous construct that it is after a
number of Occam codes have been written. Some versions of FORTRAN can be forced to
obey strict typing.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIE1V OF PARALLEL COMPUTING

process [s]
begin

code stub
end

end{process[s]}

42

The process will in general be numbered or named in some fashion; this
is done by assigning a number or name to s. Such a process will run on one
processor. (When coded, the process may contain procedures, be part of a
larger procedure or be the main procedure itself; generally it is only parts of
the whole code that need explicit documentation using pseudo-code and the
presence of a larger structure is assumed where necessary).

Finally, a placed par construct is defined (also taken from Occam). The
placed par is used to indicate that the different processes are placed on
different processors.

placed par
processor1

some process
processor2

some other process
other processors with associated processes

No go-to construct is defined for the excellent reasons laid down by the
"father" of structured programming, Dijkstra [Dij76}.

The use of this notation will be illustrated by the examples given in
Chapters 4, 5 and 6.

3.8 Amdahl's Law

Any work on parallel processing should note Amdahl's law [FJL*88, Section
3.6], which states that if an algorithm contains both a serial and a parallel
part, the relative time taken by the serial part increases as parallelization re­
duces that of the parallel part, and a law of diminishing returns holds: further
parallelization has increasingly little influence on run-time. \Vhile this ob­
servation is perfectly true, for many problems the ultimate aim is to increase
the problem size that can be handled. Thus as more paralleliza.tion is made
available, larger problems are tackled and the overall serial/parallel split re­
mains fairly constant. Hence Amdahl's law is not the immutable barrier that
it has often been held to be, and it will be shown clearly in Chapters 4, 5
and 6 that for the electromagnetically large problems of interest, it is not an

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 43

obstacle. Gustafson arrived at very similar conclusions following work on a
variety of problems in computational mechanics and fluid dynamics [Gus88).

3.9 Parallel Algorithms

The rest of this thesis concentrates on the development of parallel algorithms.
Several excellent books appeared during the course of the author's research
that provide a good treatment of the basic ideas31

, but not of the specific
algorithms considered in this thesis. For the technological background, Hack­
ney and Jesshope's second edition [HJ88) is invaluable. For the development
of algorithms and establishing the efficiency thereof, Fox et al. [F JL *88) pro­
vides a very sound foundation. Although based on their experiences with a
hypercube type machine with 128 nodes at Caltech, the book is sufficiently
general tha.t the principles developed are applicable to other types of ma­
chines. (Note that many books available with "parallel" or "concurrent"
somewhere in the title are frequently aimed at a very specific computer,
and the methodologies developed may only be applicable to that machine).
Fox's book is particularly suitable for the solution of large-grained problems.
Another book by Bertsekas et. al. [BT89] is particularly strong on the math­
ematical analysis of algorithms. Modi's book [Mod88) is also a most useful
text, being directed specifically at parallel matrix algorithms, but not the
specific algorithms considered in this thesis32

•

Parallel algorithms are also published in a number of specialist journals:
these include Parallel Computing, Journal of Parallel and Distributed Com­
puting, Concurrency: Practice and Experience and IEEE Transactions on
Parallel and Distributed Systems. Other established journals in the field
of applied numerical analysis also publish work of interest; examples are
Communications of the A CAf33 , SIAAf34 Journal on Scientific and Statistical
Computing, SIAM Review, and Compute1· Physics Communications ..

31 As already mentioned, the author's initial research started before these books were
available.

32 A very recently published book on solving linear systems. only available to the author
following examination of his thesis, is that of Dongarra et al. [DDSvdV91). It. concentrates
on vector and shared memory computers, whereas this thesis concentrates on local memory
computers.

33 Association for Computing Machinery.
34 The Society for Industrial and Applied l'v!athematics.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 44

3.10 Conclusions

In this chapter a suitable introduction has been provided for the use of par­
allel computing to solve computational electromagnetic problems. A brief
review of the history of parallelism and the general principles has been pro­
vided. The two main types of parallelism encountered, viz. pipelining and
replication, have been described and examples given of present day parallel
computers that embody those principles. The question of quantifying the
performance of a parallel algorithm has been addressed. The classification
of parallel computers has been discussed. A pseudo-code notation has been
introduced that will be used to document the parallel algorithms in the rest
of the thesis. A brief review of the relevant literature on parallel algorithms
has been presented. Some of the work presented in this chapter has been
published as a tutorial paper [Dav90b].

It should be clear from the discussion in this chapter that at present a
major effort is required by the user to properly exploit parallel processing, in
particular for MIMD systems. Automatic vectorizing compilers have simpli­
fied the task for pipelined vector computers and similar tools exist for very
small MIMD systems (with 2 or 4 processors), but for large scale MIMD sys­
tems the user must carefully select, analyse and implement suitable parallel
algorithms. It is this problem that occupies Chapters 4, 5 and 6.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4

A Parallel CG Algorithm

4.1 Introduction

Iterative methods offer one method of solving the system of linear equations

[A][x] = [b] (4.1)

where [A] is a non-singular known matrix, [b] a known vector and [x] a
required (and unknown) vector. Most MoM codes in the past have used LU
decomposition followed by forward and backward substitution. (This method
is addressed in more detail in the next chapter). Iterative methods for solving
the system of linear equations have only attracted much attention over the
last decade, since previously, for the size of problems (number of unknowns)
being solved, the LU method was quite sufficient. The iterative methods
are attractive for two reasons: firstly, ·with a method with a monotonically
decreasing error such a.s the CG method, the iterations can be stopped once
a specified error criterion has been met, and secondly, iterative methods do
not suffer from the accumulation of round-off error that compromises the
accuracy of the L U method when the matrix [A] is ill-conditioned.

In this chapter, a parallel conjugate gradient algorithm is proposed, ana­
lyzed theoretically, implemented and tested on a transputer array, using the
binary tree interconnection topology described in Chapter 3. 1\1easured re­
sults for speed-up and efficiency are compared to the theoretical predictions.
The parallel algorithm uses as its basic building block tv,·o parallel matrix­
vector products, so efficient parallel matrix-vector product algorithms are
investigated in detail. Important fundamental methods for optimizing the
efficiency of a parallel algorithm are discussed. The basic parameters used
in the theoretical analysis are established using benchmarking. The problem
of developing a general configuration description, able to handle any depth
of binary tree, is considered and a solution briefly discussed. The problem

45

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 46

of ter:rrllnating a parallel algorithm is considered and a solution given for the
CG algorithm. It is shown that the proposed CG algorithms scales essentially
with the number of rows per processor1

.

The question of the rate of convergence of the CG algorithm for electro­
magnetically large, complex problems is deferred to Chapter 6.

4.2 Iterative Methods

Iterative solvers for the solution of equation (4.1) can be subdivided into
two categories, namely stationary and gradient methods2

• With a stationary
iterative method, succeeding error vectors can be written as

(4.2)

where k refers to iteration number and [ek], the error vector, is defined by

For the Jacobi method, the [M] matrix is given by

where

and

[J\1]Jacobi = [L] + [U]

l -~2,1
[L] =

-aM,!

[U] = [:

0
0

(4.3)

(4.4)

(4.5)

(4.6)

Note that [L] and [U] as defined here are not the same as the [L] and [U]
resulting from a LU decomposition.

The matrix [l\1] remains constant for each iteration, hence the name "sta­
tionary".

It can be shown fot the Jacobi method that a necessary and sufficient
condition for convergence to the correct solution [x] is that all the eigenvalues
of [A] should lie within a unit circle centered on 1 + jO when plotted on the
complex plane. This condition is not necessarily satisfied by an arbitrary

1Scaling is discussed in more detail in Section 4.4.
2 This section is based on [Jen85, Chapter 6].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 47

matrix. Other examples of stationary methods a.re the Ga.uss-Seidel method
[Jen85, p.183] a.nd the various relaxation methods such as successive over­
relaxation [Jen85, p.l86].

The gradient methods use a different approach. One may write succinctly
that

(4.7)

where the [M] matrix is now different on each iteration. However, this is not
the form in which the methods are usually given.

Define a residual
[r] = [b]- [A][x] (4.8)

where x is the approximation to [x]. If the matrix [A] is symmetric and
positive definite (i.e. [xjT[A][x] > 0 , V [x] =f. 0), then it may be shown
that its inverse is also symmetric and positive definite. If [A] is not positive
definite, it can always be made so by solving the modified system of equations

[A][x] = [b] (4.9)

where [A] = [AjT[A] and [b] = [AjT[b]. The transpose operator (superscript
T) must be interpreted in the formal sense as the Hermitian transpose if the
elements of [A] are complex. One drawback with this procedure is that if
the matrix [A] is ill conditioned, then the matrix [A] is very much more
ill-conditioned than [A], and this can adversely affect the rate of convergence
for large systems3 • Nonetheless, the results in Chapter 6 show that the rate
of convergence is satisfactory for a. typical matrix equation generated by a.
MoM discretiza.tion.

Consider the iteration formula

(4.10)

where o:k is chosen to minimize the error function

(4.11)

and the direction vector [dk] is discussed below. The positive definite nature
of [Aj- 1 ensures that the function h~ 2: 0; if h~ = 0, then [xk+ 1] = [x] and the

3 The example given in J ennings [Jen85. p.221] shows how this procedure effectively
squares the condition number of the matrix used in the example. The condition number
of a matrix is a measure of the sensitivity of the solution of the system in equation (4.1) to
small variations in [x]. It will be defined formally in Chapter 5. The condition number can
be shown to be the square root of the ratio of the maximum to minimum eigenvalues. The
eigenvalue clustering affects the rate of convergence of the conjugate gradient algorithm
in particular [Jen85, p.217). Thus "spreading" the eigenvalues by squaring the condition
number decreases the rate of convergence.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 48

system of equations has been solved. The subscript k refers to the iteration
number.

Substituting for [r] from equation (4.8) into equation (4.11), it may be
shown that h2 is quadratic in [x]. Differentiating the resultant expression
with respect to O:k to minimize the error function, it may be shown that

(4.12)

The various gradient methods - principally the method of steepest de­
scent and the method of conjugate gradients - differ in the choice of the
direction vectors [dk]· In the method of steepest descent, [dk] is chosen to be
the direction of maximum gradient of the function a.t the point [xk]; this can
be shown to be proportional to the residual vector [rk]· The result of this
choice is a.n algorithm that tends to overshoot [Jen85, p.214].

The conjugate gradient method chooses a.s direction vectors a. set of vec­
tors (p0], [pi], etc., which are chosen to be a close a.s possible to the direction
of steepest descent corresponding to the points [x 0], [xi], etc., but with the
overriding condition that they be mutually conjugate with respect to [A] and
hence satisfy the condition

(4.13)

The result of the orthogonality property is an algorithm that (in the absence
of round-off error) converges after !11 steps, where !11 is the dimension of the
problem. Thus, strictly speaking, the CG method is not an iterative method.
However, it is usually applied iteratively- a. check is kept on the normalized
residual (the residual divided by the norm of [b]) and when it is sufficiently
small, the iterative improvement stops.

Another way of viewing the CG method is that the solution is given in the
space spanned by the basis functions {[b), [A][b), [A] 2 [b], ... , [A]M-I [b]}, with
the weights emerging during the course of the iterations; a. demonstration of
this may be found in Sarkar [Sa.r86]4

.

Regarding the convergence of the conjugate gradient method, it may be
shown that the residual norm decreases monotonically [PM85b, p.16]. The
mte of convergence is governed by the eigenva.lue spread of the coefficient
matrix. If the eigenvalues are clustered in a. small number of groups, the
convergence is very rapid. Conversely, if there are a large number of small
but distinct eigenva.lues, the rate of convergence is slow.

4 This property is used by Sarkar [Sar86] to argue the fundamental difference between
the "direct" CG method and the CG-MoM method, but as soon as the problem is dis­
cretized - which it must be to solve on a computer - a finite basis is implied and such
an argument is invalidated [RP88]. See Section 2.6.

L__-----------------------~~~ ---- ---~

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 49

The CG method, extended for the general case of a matrix [A] where it
is not known if the matrix is positive definite, is as follows:

[uk] [A][pk] Step 1

llEJ.lE Step 2 Ok k

ll[uk]W

[xk+I] [xk] + ok(pk] Step 3

[rk+l] - [rk] - ok[uk] Step 4 (4.14)

[rk+d [AJT[rk+1] Step 5

f3k il[rktdW Step 6 llhliF

(pk+l] [rk+d + f3k[Pk] Step 7

with initial values
[r0] = [b] - [A][x0] (4.15)

and
[ro] = (po] = [A]T[ro] (4.16)

The initial value of [x], viz. [x0], is frequently chosen as [0], and this is
the choice used by the author. If an approximation for [x] is available -
for example, from a geometrical optics solution - then this can be used as
an alternate starting value. Rather interestingly, the rate of convergence is
frequently a very weak function of [x0] [PM85a].

The approximate floating point operation (FLOP) count per iteration is
shown in Table 4.1, retaining only the largest order term for each operation5

.

On the transputer, the time for a floating point addition or multiplication is
identical, so these operations are not listed separately. (This will be shown
in Section 4. 7). Note that o and f3 in Steps 3, 4 and 7 are real, not complex,
and this affects the conversion from complex to real FLOPs. One complex
addition is equivalent to two real FLOPs and one complex multiplication
is equivalent to six real FLOPs; since it is the number of additions and
multiplications that dominate the FLOP count, and furthermore the addition
and multiplication FLOP counts are almost identical, an average factor of
four can be used. The FLOP counts of Steps 1 and 5 (the matrix-vector
products) are of 0(1112) whereas the other steps are of O(Af) - it is thus
Steps 1 and 5 that will be parallelized.

5 Because of this, a term -2M is missing in the real operations counts in both Steps 1
and 5; this comes from the number of additions, which is actually M(M- 1), not M 2 .

The impact on the analysis is minimal; it is convenient to use the M 2 approximation
for the parallel matrix-vector analysis, and this also indicates clearly the difference be­
tween the parallelized matrix-vector products and the unparallelized vector operations in

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 50

Step Complex operations Real FLOP count
1 2M2 8./\£2

2 4M 16M
3 2M 4M
4 2.M 4M

5 2M2 8M2

6 4./\1 16M
7 2M 4M

Table 4.1: FLOP count of conjugate gradient algorithm

4.3 A Parallel Matrix-Vector Product Algo­
rithm

The computationally expensive parts of the CG method have been shown
to be the two matrix-vector products, hence the pa.rallelization of a matrix­
vector product is investigated in detail as a precursor to the development of
a parallel CG algorithm6

• The parallel algorithms of this section are suitable
for any local memory MIMD system.

Several paradigms for parallel processing have been identified7
• The

paradigm used in this thesis is domain decomposition, whereby the data
is partitioned over the processing array. An example of this has already been
shown in Chapter 3 for the problem of the addition of two vectors. In that
case, the decomposition was simple and obvious -one element of each vector
per processor. For the linear system solvers of interest in this thesis, there
will be rather more unknowns than processors, so some form of clusterinif
is required. For the matrix vector product (and also the CG algorithm) the
decomposition and clustering is relatively straightforward to describe. The
LU algorithm considered in the next chapter has a rather more complex
decomposition clustering strategy, and more formal mathematical methods
will be introduced to extract the parallelism (i.e. perform the decomposition)

equation (4.39).
6 Very little has been published on parallel iterative methods for full matrices. What

has been published normally concentrates on sparse systems, for example [DDSvdV91,
Chapter i].

7 Examples are domain decomposition, see [FJL *88, Chapter 1], and the processor farm,
algorithmic parallelism and geometric parallelism [HJ88, Section 4.5]. Domain decompo­
sition [FJL *88, Chapter 1] is the same as Hackney and Jesshope's geometric parallelism.

8 Clustering is the grouping of matrix elements on a. processor.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CC ALGORITHM 51

and analyze the clustering. The algorithms described in this chapter will be
re-considered from this formal viewpoint in Chapter 5.

The product of a M x M matrix by a vector of length .!11 can be considered
from two viewpoints. The first is as the forming of M inner products. These
inner products can be computed in parallel. The second approach is as the
forming of A12 products, followed by an accumulation process. The M 2

products can be computed in parallel, and the accumulation process can
be parallelized. The computational dependence of both is very similar -
detailed expressions will be derived shortly. These viewpoints imply the
following two possibilities for forming a parallel matrix-vector product:

• Row-block decomposition: Splitting up the matrix by row block, dis­
tributing these row blocks over the processor array, broadcasting the
entire vector to all processors, performing the inner products in par­
allel and then gathering together the different parts of the vector split
up over the processors

or

• Column-block decompos£tion: Splitting up the matrix by column, dis­
tributing these column blocks over the processor array, scattering the
vector over the processing array, performing partial inner products in
parallel, and then accumulating the resultant vector. This is a special
case of the 1112 parallel product approach, with all the elements of a
column clustered on a processor, and entire columns clustered in turn.

The four communications paradigms required by the two different decom­
positions can be formally defined as follows, assuming N processors and a
matrix dimension of 111:

1. Broadcast: This process broadcasts identical copies of the same vector
to all the elements of the array.

2. Gather: This process builds a. vector up from its N disjoint sections of
length M /N distributed over the array after the parallel (row-block)
matrix/vector product.

3. Scatter: This process is the reverse of gather in that it scatters a vector
over the array so that each of the N processors has a different sub­
vector of length 111/ N.

4. Accumulate This process accumulates the partial inner products re­
sulting from the column-block decomposition.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 52

The row-block decomposition algorithm can be simply illustrated by con­
sidering a 2 by 2 matrix partitioned on two processors.

(4.17)

where the upper elements are on processor 1 and the lower on processor 2.
If partitioned by column block, it appears as follows:

(4.18)

It is important to note that this decomposition of the matrix by column

block is the same as the decomposition of the transposed matrix by row block
- this is the method used by the author to develop the parallelized conju­
gate gradient algorithm of the next section, and avoids having to form the
matrix transpose required in the general form of the CG algorithm given in

equation (4.14).
To carry out the matrix-vector product using a. row-block decomposition,

it is clear that every processor needs every element of the vector, thus the
broadcast paradigm. This approach then forms the inner products

(4.19)

on processor 1 and

(4.20)

on processor 2 in pamllel, i.e. concurrently. After the parallel product of
matrix [A] and vector [x] has been formed, the situation is as follows:

(4.21)

\\'here again the upper element is on processor 1 and the lower on processor
2. To collect these, the gather paradigm is required.

The other two paradigms arise from the column-block decomposition; the
parallel multiplication requires only certain elements per processor; in this
case it will require element 1 on processor 1 and element 2 on processor 2.
The column block decomposition forms the partial inner products

(4.22)

on processor 1 and

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 53

(4.23)

on processor 2 in parallel.
This is the scatter paradigm and is simply the reverse of gather.
Following the parallel matrix-vector multiplication using column-block

decomposition, the final paradigm, accumulate, is required. After the multi­
ply, the situation is as follows, with the left row on processor 1 and the right
row on processor 2:

[
Aux1 I A12x2]
A21X1 A22x2

(4.24)

and these rows must be summed at the master node.
Given the restrictions of the transputer hardware- four links- a binary

tree is a natural topology for this problem, for the following reasons. It is
only necessary to communicate information to and from the processor at the
top of the tree from and to other lower level processors, and not from one
side of the tree to the other. Thus for approximately the same number of
processors, the effective diameter9 of the binary tree is actually one less than
the diameter of the equivalent hypercube. The processor at the top of the
tree can either be used purely for co-ordinating the process, or can also share
the workload. The algorithm described here follows the former process; in
Figure 3.7 processor 7 would be the master and the other 6 would be worker
processors. It is possible to use a ternary tree, but this does not map very
conveniently onto available arrays, where the available number of processors
generally follows some power of two.

Having identified the parallelism in the problem, the next stage of al­
gorithm analysis is the development of timing equations. These will allow
the prediction of the speed-up and efficiency defined in Equations (3.3) and
(3.4). Consider first the broadcast process:

Define the time required to send one complex word10 from one processor
to another adjacent processor as tcomm· Then the time to send !11 words
is simply M tcomm. In the binary tree, the number of levels that must be
traversed is d, so the time to send kf complex words from the top to the
bottom of the tree is .M dtcomm 11

• Here the set-up time of the communication
process and the buffering time necessary to write the input to memory from

9 See Section 3.6.
10 A complex word consists of the real and imaginary parts; on a transputer, in single

precision a complex word is 8 bytes and in double precision, 16 bytes.
11 This discussion does not. consider the use of pipelining, which could be used to reduce

the communication time of the broadcast operation to around Mtcomm. Pipelining is
discussed in detail in Section 5.10.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 54

the input link and then write it out to the output link has been ignored. If
the processors at each level of the tree are able to output the vectors to the
next lower levels in parallel 12 , the total time for the broadcast operation is
then approximately the same as the time for one vector to traverse the tree
from top to bottom, i.e.

tbroadcast = M dtcomm

Pseudo-code for this is given in Figures 4.1 and 4.2.

begin{broadcast section:master}
par

send vector to lower left processor
send vector to lower right processor

end{par}
end{broadcast section:master}

Figure 4.1: Pseudo-code for broadcast: master process

begin{broadcast section: worker}
receive vector from higher processor
if (not at bottom of tree)

then
par

send vector to lower left processor
send vector to lower right processor

end{par}
else SKIP

end{if}
end{broadcast section: worker}

Figure 4.2: Pseudo-code for broadcast: worker process

(4.25)

The timing equation for the gather process may be derived as follows.
The information quantum for this case is M/ N - the vector sections split
over the array. The gather process starts at the bottom of the tree and works

12The transputer has such capabilities; see Section 3.4.2.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 55

its way up. Referring to Figure 3. 7, the first process, i.e. the communications
1-+3, 2-+3, 4-+6 and 5-+6 all proceed simultaneously, as do the next level
of communications, 3-+ 7 and 6-+ 7. But note that this level now involves
packets of length 3!11 /N. In general then, for a tree of depth d, the total
communication time will be

!11 d] N[1+3+7+ ... +(2 -1)icomm (4.26)

Manipulating the series into a geometric series, and using N = 2(d+l)- 2,

where N is now interpreted as the number of worker processors (i.e. excluding
the processor at the top of the tree) 13

, this simplifies to

igather = M[1 - dj N]icomm (4.27)

Pseudo-code for the gather operation is given in Figures 4.3 and 4.4. The
indices of the various vector stubs are computed from the data distribution;
referring to Figure 3. 7, the processor numbers relate to the group of rows
clustered on the processor, i.e. a vector of length 12 distributed over the
binary tree in Figure 3.7 would have rows 1 and 2 on processor 1, rows 3 and
4 on processor 2 e.t.c.14 . These details are not shown in the pseudo-code.

begin{gather section:master}
par

receive vector stub1 from lower left processor
receive vector stub2 from lower right processor

end{par}
end{gather section:master}

Figure 4.3: Pseudo-code for gather: master process

The scatter paradigm is the reverse of gather, except that instead of build­
ing up the vectors from the bottom of the tree up, at each stage combining
the vector sections from the two lower processors and the processor's own

13The top-most processor, processor 7, is used purely to synchronize the processes, and
does not perform any of the matrix-vector multiplication work itself. The result is that
the maximum speed-up is thus N -1 with N processors. As used in this chapter, N is the
number of worker processors, thus the total number of processors is N + 1 For reasonable
numbers of processors - 15, for example - the performance lost by thus not using the
top-most processor is negligible, and the coding was simplified.

14 As noted, processor 7 is performing synchronizing functions, and does not contribute
to the matrix-vector product. Thus N = 6 in this case.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM

begin{gather section: worker}
if (not at bottom of tree)

then
par

receive vector stub1 from lower left processor
receive vector stub2 from lower right processor

end{par}
else SKIP

end {if}

56

form new vector stub from vector stub1 & stub2 & own vector stub
send n~w vector stub to higher processor

end{gather section: worker}

Figure 4.4: Pseudo-code for gather: worker process

local vector section, the vector now "trifurcates" 15 from the top of the tree
down. The timing equation is thus exactly the same as t 9ather· Similarly, the
accumulate paradigm is the reverse of the broadcast paradigm. Thus

iscatter = M[l - dj N]tcomm (4.28)

iaccumulate = M dicomm (4.29)

As for the row-block case, it was assumed that communications paral­
lelism has been exploited. It was also assumed that 111/ N is somewhat larger
than 1. Note also that there is a certain amount of computation that occurs
after each communication phase with the accumulate paradigm, arising from
the addition of two sub-vectors at each level; this should be included in the
overall compute time. The additional term is 2111 d (the factor 2 arising from
the conversion from complex to real arithmetic).

The amount of computation involved in a matrix-vector product is 1112

complex multiplications and 111(M - 1) complex additions, from Table 4.1.
On most modern processors, the time required for a floating point addition
and a. floating point multi plication are approximately the sa.me16

. Thus the
total amount of computation is approximately 2M2 complex FLOPs or 81H2

real FLOPs. This is Ts, the time for the serial operation. \iVere there no
communication, the time for the parallel operation, Tp(N), would be simply

15Since the processor at the top of the tree is not used for the para.!lel products, the
vector actually bifurcates at the top level.

16 As will be shown in Section 4. i for the transputer.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 57

8M2 f N. Adding the communication time for the row-block decomposition
g1ves

where tcalc is the time required for a real floating point addition or multipli­
cation. Using equations (3.3), (4.25) and (4.27) yields the speed-up as

N
S ';:::::, N 1

1 + SM fJ [d (1 - N) + 1]
(4.30)

where
fJ = icomm

ica.lc

This result was derived for the row-block decomposition case, but because the
communication times are the same, the results for the column-block case will
be virtually identical. (As noted, there is a small additional computational
overhead with the latter decomposition).

Defining n as the number of rows per processor, n = ~, the result can
be re-written as

N
5';:::::, --~6~----------

1 + Sn [d (1 - N) + 1]
(4.31)

Referring to the previous discussion in Section 3.4, the term ! [d(1 - ~) + 1]
is clearly identified as .fc· For d 2:: 2, N ;::::: 2d+l, hence d ';:::::, log 2N - 1, and
the following approximations for S and t:

N
5';:::::, i3

1 + Sn log2 N
(4.32)

1
t:, ---.,..----

......, 1 + _Q_log N
Sn 2

(4.33)

are excellent for trees of depth 2 or more. This equation is very important;
it indicates clearly that the matrix-vector product scales essentially with nr,
the number of rows per processor, and rather weakly (logarithmically) with
the number of processors. Hence, for a given nr, the efficiency is almost
independent of the number of processors.

Figure 4.5 shows the efficiency for the MC2 array. A value of 6.6 was used
for /J, computed from the manufacturers specifications1i[Dav90b, p.14]. The

liThe results shown in Figure 4.5 were obtained early in this research, and are nai've, in
that they assume the manufacturers specifications. The value for tcalc used here assumed
that the transputer was using its fast internal memory. Since there is only 4kB of this,

'-- ------------

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 58

curve shown in Figure 4.5 is smooth. In reality, the dimension of the problem
will not usually be an integral multiple of the number of processors. This can
be handled by either loading different processors differently or by padding
the matrix and vector with the necessary zeros. The former implies time
"wasted" while the more lightly loaded processors do nothing; the latter
implies "wasted" computation, and is the approach used in the author's
Occam 2 implementation. Note that this "wasted" time or computation
does not increase the run-time; while either waiting or operating on zero
entries, the lightly loaded processors cannot perform any useful work in any
case due to the load-balancing problem. This can be incorporated into the
preceding analysis by replacing nr by f nr l The effect on Figure 4.5 is to
replace the smooth curve by a stairstep function.

It is also of interest to determine the point at which E = 50%, or fc = 1.
Then

(4.34)

Thus with 62 worker processors, and j3 = 6.6, lvf1; 2 ~ 300, where 1111; 2 =
N n 1; 2 . This is a reasonable number of unknowns and indicates that the
matrix-vector product is very well suited to the proposed parallelization.
Note that d is a rather weak function of N, so it can be stated in general that
.M1; 2 is approximately several times N. This is classified as a "large-grained"
decomposition - ea.ch processor ha.s a. substantial number of unknowns -
and is a. typical property of a MIMD array with powerful processors and local
memory.

The actual run-time can be obtained from

81112
nl/2

Tp ~ tcalc~[l + --]
1, n

(4.35)

Note that this is in a. form similar to Hockney and Jesshope's two pa­
rameter model. Recognizing that the amount of work s is 8fltf2, defining the
half-performance length s1; 2 = s

11

~2 , and recognizing that r;;} = tcalc/ N,
equation (4.3.5) can be re-written as

(4.36)

large problems will involve off-chip memory. Typically, a T800 slows down by a factor
of three when it has to access off-chip memory. This can be incorporated in an obvious
fashion into the above analysis- the effect is to decrease f3 and thus reduce n 112 . Note
that the actual run-time also increases. Futhermore, the actual value for tcomm also differs
from the specifications. The full CG analysis of the next section uses results for f3 obtained
from benchmarking.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 59

80

100
I _ -------- r:;- ------------------. y--- ·-· -·. ·---------. ~-. ·---· .. -.. --- ·----
"Y····- I I ----6----------l~ .. ······I t:.---------

' :v I --~------. _
I ' I - I ~ I

..;. I

. / . / . I
...........
~_,..

. I .
I

/;. . I

>..
u
c 60

I i
f !

i

V . I
u I
~ . I -V

. ~ .
i

0
u r7

I
I
I

..-,.J 40 V
I

I
1-
0
V
..c
1-

I
I
I
I
I
I
I .

20 i I

~ i i t:. d=-5 (N=-62) I I I
! V d::at (N=-2) ! I I

! I
I

I I
I

I

l I
I
i
I I 0

0 20 40 60 80 100

M/N

Figure 4.5: Efficiency of parallel matrix-vector product for the MC2 .

Stellenbosch University http://scholar.sun.ac.za

I

I·

CHAPTER 4. A PARALLEL CG ALGORITHM 60

4.4 A Parallel Conjugate Gradient Algo­
rithm

The theoretical techniques for the analysis of parallel algorithms developed
for the matrix-vector product in Section 4.3 can now be incorporated into a
parallel conjugate gradient algorithm, and S and c predicted. The algorithm
exploits the complementary roles of the row- and column-block decomposi­
tion; the matrix-vector product is done using the row-block decomposition
and the (Hermitian) transpose matrix-vector product is done by applying the
column-block decomposition algorithm to the row-block matrix data (with
the necessary change of sign of the imaginary part of the matrix entries).
This avoids having to either explicitly form the matrix transpose - a very
expensive operation on a parallel processor with local memory - or store
an additional copy of the Hermitian transpose· of the matrix - and thus
double the memory requirements of the code. This crucial contribution was
the author's (Dav90b], and has not been published elsewhere, to the best of
his knowledge.

From Table 4.1, the serial time is:

Ts ~ (161\12 + 441\1)tcalc (4.37)

The parallel time is the sum of the parallelized matrix-vector products, the
unparallelized vector operations and the additional computationa.l overhead
of the accumulate paradigm, and the communication requirements of the
broadcast, gather, scatter and accumulate paradigms:

Tp ~ (161\12 /N + 441\1 + 2dl\1)icalc + (21\1[1- djJ\T] + 2J\1d)icomm (4.38)

Forming the quotient of Ts and Tp and simplifying yields

(4.39)

Note that this result is actually the efficiency of one iteration; since by far
the majority of time required by the algorithm is in the iterative cycles, the
algorithm as a whole can be characterized by its performance per iteration.

Comparing to Equation (4.31), many similarities are obvious. Under the
assumption 1\1 ::;p 1, the numerators are identical (within a factor N; re­
member that Sand c are being compared). The two additional terms in the
denominator of equation (4.39) represent, respectively: the amount of un­
parallelized computation contained in steps 2, 3, 4, 6 and 7; and the amount
of additional computation required in the accumulate process. Note that

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM

process[master.cg]
begin

initialization
while (not finished)

begin
broadcast p.k
gather u.k
compute alpha.k
update x.k+1 and r.k+1
scatter r.k+1
accumulate r.bar.k+1
compute beta.k
update p .k+1
compute and print normalized residual
check termination

end
end{while}

end{process[master.cg]}

Figure 4.6: Pseudo-code for parallel CG algorithm: master process

61

both the amount of (parallelized) computation and the amount of communi­
cation approximately double since a matrix-vector product and a. Hermitian
transpose matrix-vector product are required; thus the factor of two in both
computation and communication cancels.

Under the assumption 111, N :::;}> 1, this can be simplified to

1
(4.40)

t = 1 + ~(2.75 + 0.125d + log~N{j)

Pseudo-code for the algorithm is given in Figures 4.6 and 4.7 for the
master and worker(s) respectively.

The correct termination of the algorithm and the configuration of the
workers for an arbitrary depth of binary tree will be now be considered in
the next two sect. ions ..

4.5 Terminating the Algorithm

Ensuring the correct termination of a parallel algorithm is not, in general,
a trivial problem, especially with heterogeneous processes. It is simpler

'--- --

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM

process[worker.cg]
begin

initialization
while (not finished)

begin
broadcast p.k
perform matrix-vector product
gather u.k
scatter r.k+1
perform transpose matrix-vector product
accumulate r.bar.k+1
check termination

end
end{ while}

end{process[worker.cg]}

Figure 4.7: Pseudo-code for parallel CG algorithm: worker process

62

with the homogeneous worker processes used for the parallel CG code, but
nonetheless requires careful coding to terminate all the concurrent processes

in the correct sequence.
\~Tith a. sequential algorithm, the termination is normally fairly simple:

the code executes and then terminates (provided it has been properly written
and does not contain any infinite loops - livelock in Occam parlance). The
fundamental principle of terminating a group of parallel processes (the master
and workers executing the CG algorithm in this case) is that some explicit
termination action is required, initiated by one of the processes. In the code
considered, the termination criteria is that either the normalized residual
error must ha.ve decreased to less than the user-specified value or that some
maximum number of iterations must ha.ve been executed. The former can
only be determined by the master processor. Hence it is necessary for the
master process, a.t the end of each iteration, to monitor the termination
criteria .. If one (or both) of the termination criteria has been satisfied, then
the master must explicitly inform the workers, who then inform the lower
level workers and terminate their execution. \~Thile appearing obvious, if not
carefully coded it is rather easy to terminate intermediate level workers before
they have terminated the lower level workers, leading to a particularly subtle
"deadlock" that only manifests itself on the next run of the code. Pseudo­
code for the correct termination procedure is given in Figures 4.8 and 4.9.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM

begin{terminate stub: master}
if termination criteria satisfied

then
begin

flag := terminate
finished := TRUE {to stop while loop}

end
else

begin
flag := continue
finished := FALSE {to continue while loop}

end
send flag to two lower workers
end{if}

end{terminate stub: master}

Figure 4.8: Pseudo-code for the termination stub on the master.

63

Note that the requirement for terminating parallel algorithms properly is
a general property of parallel processing, requiring special care on a local
memory MIMD array.

4.6 Configuring for an Arbitrary Depth of
Binary Tree

The requirement of a configuration description should be reviewed at this
stage. The master and worker processes defined thus far are in general written
using channels, which are software abstractions of the actual communication
channels. The mapping of these channels onto the real hardware links and the
explicit placing of processes on real processors is the task of the configurer.
Precisely how this is implemented will vary from computer to computer, and
also from language to language. The description that follows is specific to
Occam 2 on a. transputer array; but a. similar procedure must be applied on
any MIMD computer, and the general procedure followed remains valid.

The problem of generating a configuration description that allows the
specification of a. binary tree of arbitrary (integer) depth is not a simple one.
Related to this is the problem of how one actually connects the tra.nsputer
links in such a. way that their switching is guaranteed to be the same as that

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM

begin{terminate stub: worker}
receive flag from higher processor
if not at bottom of tree

then send flag to lower workers
end{if}
if flag = terminate

then finished := TRUE
else finished := FALSE

end{if}
end{terminate stub: worker}

Figure 4.9: Pseudo-code for the termination stub on the worker.

defined by the configuration file.

64

For a small numbers of processors, the problem can be solved manually,
by sketching a. graph of the network, assigning links to channels and then ex­
plicitly placing each channel and process. But this rapidly becomes unwieldy
for large networks and an automatic method becomes necessary. If the bi­
nary tree is numbered as shown in Figure 4.10, then a very elegant scheme
is possible [Gal90], which is used as the basis for the author's configuration.

However, this scheme is complicated by the following restriction imposed
by the MC 2 ; note that this is a very specific restriction of a particular type
of transputer array. Because of the Euler colouring algorithm used [Vil89],
the link interconnection is restricted to even-to-even and odd-to-odd link
switching. This requires that the even numbered and odd numbered nodes be
handled separately. The situation is further complicated by the requirement
to provide a "boot-path"; the transputer network loader is only able to load
the network over one link, so the highest level nodes (l.and 2 in Figure 4.10)
require an extra connection to provide this. Developing a configuration file
that handles all this is somewhat complicated. The subtleties (that cause
the problems) are lost in pseudo-code, so the necessary Occam configuration
code is given in Appendix A.

Once the configuration code is developed, the problem remains of en­
suring that the switching of the MC2 is correct. This switching is software
controlled, and the necessary link switching is read from an ASCII file by the
Domain 111anagement System running on the MC2 controller.

A utility program, swi tchtds, was written in Turbo Pascal by the author
to take the "wiring diagram" that the TDS can generate from a configuration
file and automatically generate an I'v1C 2 switch file from it. A check was also

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 65

performed to ensure that the even-even and odd-odd switching requirements
were met. The program also checks that links are actually connected: e.g.
if processor 1, link 3 is defined as being connected to processor 2, link 1,
then the program checks that processor 2, link 1 is in turn indeed connected
to processor 1, link 3. Program switchtds is of course applicable to any
parallel program running under the TDS program, not just the binary tree
configuration 18

•

0

1 2

3 4 5

Figure 4.10: Interconnection topologies - binary tree dimension 2, re­
numbering following [Gal90, p.123]

4.7 Benchmarking

The previous analysis requires hvo fundamental parameters to characterize
the machine: the computation and communication speeds. The most reliable
way of obtaining this data is by benchmarking - actually measuring the
performance of the system under conditions simulating those of the actual
code. Two simple benchmarks were developed: the first tested computation
speed and the second communication speed. Such benchmarking is necessary
for any parallel computer; the pseudo-code presented here will be useful for
benchmarking any local memory MIMD system; the specific results are for
the transputer arrays tested.

The computation benchmark involved the addition of 7 vectors of length
1000. The core of the benchmark is shown in Figure 4.11. It was attempted

18Another utility developed by the author is program Euler, a variant of switchtds,
which checks only the even-even and odd-odd properties and link connectedness of a
supplied switching file. An invalid file will not load, but the Domain Management System
produces only an extremely cryptic error message, and does not indicate where the fault
lies, hence the requirement for tools such as Euler.

6

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM

begin{flop benchmark}
repeat for i =

begin
vector2 [i]
vector3[i]
vector4[i]
vector5[i]
vector6 [i]
vector7[i]
vector8[i]

end
end{for}

1 to 1000

·= vector1 [i]

·= vector1 [i]

·= vector3 [i]

·= vector3[i]
:= vector4[i]

·= vector4 [i]

·= vectorS [i]

end{~lop benchmark}.

+ vector2[i]
- vector2[i]
+ vector2[i]
- vector2[i]
+ vector3[i]
- vector3[i]
+ vector4[i]

Figure 4.11: Pseudo-code for FLOP benchmark

66

to ensure that there were dependencies between the various vectors to pre­
vent any optimization of the code by the compiler - such optimization is
potentially very dangerous with benchmarking since one may well not realize
that it is occurring. (For example, some compilers may be able to recognize
the operation of adding zero to all the elements of a vector as not affecting
the vector at all, and not generate any code for these operations.) Seven op­
erations were chosen to minimize the role of loop overhead (the incrementing
and testing of i) which could adversely affect the measurement. A vector
length of 1000 was chosen to be sufficiently long to obtain a proper average.
This exercise was performed for single and double precision and then re­
peated for multiplication. No division operations were included in tests since
the number of divisions required by the algorithms considered in this thesis
was insignificant. Results are given in Table 4.2 and 4.3 for the MC 2 and a
TM4 board19 respectively. Both systems use 20 MHz TSOO transputers. The
approximately 10% improvement on the l\1C 2 is due to the faster memory
used on that system. It is interesting to note that addition and multiplica­
tion take exactly the same time. It is also notable that double precision (64
bit) arithmetic is about only 1.4 times slower than 32 bit arithmetic- the
floating point unit on the TSOO is a 64 bit unit. The approximation of 0.5
MFLOP /s used previously [Da.v90b] is thus shown to be quite accurate for
single precision.

The pseudo-code used for the benchmarking of the communication speed

19The TM4 board consists of one T800 transputer with 4 MB of RAM.

~~- ----- ---

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM

Precision Operation MFLOP/s
Single Addition 0.53
Double Addition 0.38
Single Multiplication 0.53
Double Multiplication 0.38

Table 4.2: Computation benchmarks on the M C2

Precision Operation MFLOP/s

Single Addition 0.48
Double Addition 0.34
Single Multiplication 0.48
Double Multiplication 0.34

Table 4.3: Computation benchmarks on the TM4 board

process[master.link]
begin

par
begin

send sp.vector to processor[1]
receive sp.vector from processor[1]

end
begin

send dp.vector to processor[2]
receive dp.vector from processor[2]

end
end{par}

end{process[master.link]}

67

Figure 4.12: Pseudo-code for communication benchmark: master process

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM

process[sp.worker.link]
begin

receive sp.vector from processor[O]
send sp.vector to processor[O]

end
end{process[sp.worker.link]}

68

Figure 4.13: Pseudo-code for communication benchmark: single precision
worker process

process[dp.worker.link]
begin

receive sp.vector from processor[O]
send sp.vector to processor[O]

end
end{process[dp.worker.link]}

Figure 4.14: Pseudo-code for communication benchmark: double precision
worker process

process{link benchmark}
placed par

processor [0]
process[master.link]

processor [1]
process[sp.worker.link]

processor [2]
process[dp.worker.link]

end{link benchmark}

Figure 4.15: Pseudo-code for communication benchmark: configuration

Stellenbosch University http://scholar.sun.ac.za

i

CHAPTER 4. A PARALLEL CG ALGORITHM 69

is given in Figure 4.12, 4.13 and 4.14 for the master and the two workers
respectively and the configuration code is given in Figure 4.15. This commu­
nication benchmark combines two tests: firstly, it checks the transfer rate for
single and double precision, and secondly, it checks that the links can indeed
be operated efficiently in parallel. The vector sp. vector is a single precision
vector of length x, and dp. vector is a double precision vector of length x /2.
Both processes should thus take the same time; for the double precision case,
half as many elements, each individually twice as long, will be sent. Results
of the test are given in Tables 4.4 and 4.5.

Precision MBytejs
Single 1.32
Double 1.39

Table 4.4: Communication benchmarks on the MC2

Precision MByte/s
Single 0.87
Double 0.90

Table 4.5: Communication benchmarks on the TX4

The TX4 board20 has its links set to 10 MBit/s; one byte is 8 bits and
the transputer's link protocol adds 3 padding bits per byte, hence we expect
a theoretical value of about 0.91 MByte/s, very close to the 0.87 and 0.9
measured. This clearly shows that the links can indeed operate concurrently
with an efficiency of very close to 100%.

The link speed of the I\1C2 is specified a.t 20 MBit/s, i.e. 1.82 MByte/s,
taking the 3 bits padding per byte into account. The benchmark, which
gives very reliable results in the case of the TX4, shows only about 75% of
the predicted value for the M C2

. The reason is probably the delays in the
electronic link switches that interconnect links on the MC2 . (The TX4 links
are hardwired using jumper cables; there is no electronic circuitry between
one transputer's links and another on the TX4 board).

20The TX4 board has 4 T800 transputers each with 256kB of RAM; it can be plugged
into an expansion slot in a PC.

L __ __

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 70

The parameter f3 can now be computed from the benchmark results for
the case of single and double precision21

• The numerical values given in
Table 4.6 are for the MC2

•

Precision f3
Single 3.22
Double 4.37

Table 4.6: (3 = icommftcalc

4.8 Results and Discussion

This section describes results obtained by the author using his Occam 2
implementation of the algorithm described in this chapter. It represents
the experimental validation of the timing models developed in this chapter.
The implementation was very time-consuming due on the one hand to the
inadequate software tools available - for instance the absence of interactive
debuggers made debugging a very slow and tedious process - and on the
other hand, due to the absence of any paradigms for writing parallel codes.
The fundamental parallelizing paradigms used for the code were developed
entirely by the author before useful books on the subject such as [F JL *88]
were available. The pseudo-code stubs given in this thesis appear rather
simple only with the benefit of hindsight.

The algorithm as described was implemented by the author. Initial vali­
dation of the code for correctness wa.s done using a test set of different linear
systems, for which the solutions were checked using MATLAB~s (implicit)
linear system solvers [MAT89]. The parallelism was simulated on one trans­
puter for this, as discussed in Section 3.4.2; this was far more convenient
for debugging than running the code on the M C2

. Further validation was
performed when the parallel CG solver was used as the matrix solver in
PARNEC; see Section 6.6. This validation used real parallelism on the MC 2 •

Following the initial validation for code correctness, the algorithm \Vas
run on the MC 2

, to validate the timing predictions. Measured efficiencies
are shown in Figure 4.16. Theoretically, equation (4.39) predicts that the

21 An example of the calculation for single precision: the time for a floating point cal­
culation, from Table 4.2, is tcalc = 1.88ps. One single precision complex word is 8 bytes,
thus tcomm = 6.06JLS. Thus /3 = 3.22. For the double precision case, the results for double
precision must be used, and one double precision word is 16 bytes.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 71

efficiency should be a function mainly of the number of rows per processor,
~, and a weak function of d, the depth of the tree. These predictions are
confirmed in Figure 4.17. Thus the CC algorithm exhibits a most desirable
property - it scales with the number of rows per processor. With a given
number of rows per processor, the efficiency of the algorithm is a rather weak
function of the number of processors.

Finally, the measured and predicted results for 2 and 30 workers are
shown in Figures 4.18 and 4.19 respectively. At the time of writing, the
system was missing one or two processors so tests could not be conducted
on the full array, but no larger problem could have been solved since the
worker processes are all identical and hence the transputer with the smallest
memory determines the total memory that the complete parallel program
can use22

•

It will be noted that in Figures 4.18 and 4.19, the measured and predicted
curves agree very well regarding the shape of the curve, but there is an offset
between the measured and predicted curves. The aim of the modelling is
not to be able to predict the performance exactly, in the sense that one
predicts an antenna's radiation pattern, for example; the aim is simply to
indicate trends and determine whether the performance (efficiency) will be
satisfactory for the problems of interest. Furthermore, the predictions serve
as a check on the correct functioning of the code.

In the regime of small ~, various effects that were ignored in the anal­
ysis, such as latency23

, come into play. However, this regime is of minimal
importance for the solution of large, time-consuming problems. (The aim
of parallel processing should always be borne in mind, namely to provide
computational power for tackling problems that are prohibitively expensive
computationally on a single processor). In the region of large ~, the "serial"
times are based on extrapolation. The largest problem whose serial time
vvas measured used 428 segments; using double precision this requires close
on 4 MB of memory, the maximum RAM available on one processor on the
MC2 . The measured data for the larger problems are based on extrapolation
of the serial times, and as such, this "measured" data should be treated with
some caution 24

• Furthermore, the theoretical timing model ignores some of

22 At the time of writing, for the complete MC:.\ this limit was imposed by the transput.ers
with 1 MB. Thus with 62 workers, 62 l'v!B is available - only 1 MB of the 2 1\·IB and
4 MB boards' memory is thus used. There were sufficient 2 MB and 4 MB boards for 30
workers to use 2 MB, thus a total of 60 MB.

23 Lat.ency is the delay caused when initiating communications. Using Occam 2 on a
transputer array, it is only significant for very short vectors.

24It should be possible to run larger tests using the virtual memory boards but the time
required becomes quite impractical and one would then have to consider the question: is
the "serial" time measured using the virtual memory boards a true reflection of the time
that the problem would have run had there been enough RAM available on one transputer

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 72

the finer detail of the implementation; for instance, Occa.m does not by de­
fault permit separate parts of vectors to be accessed in parallel, so the actual
Occam implementation of the gather process differs slightly from the pseudo­
code given in this chapter. This is discussed in more detail in Section 5.10.
In the light of this the offset noted is not surprising, and again it must be
emphasized, not important when the goal of the modelling is borne in mind.

The measured data shown was obtained from PARNEC, the parallel ver­
sion of NEC2 to be described in Chapter 6. Double precision was used. The
value for (3 used in the theoretical model was that measured in Section 4.7.

4.9 Conclusions

In this chapter, a parallel conjugate gradient algorithm has been proposed,
analyzed theoretically, implemented and tested on a transputer array. 1v1ea­
sured results for speed-up and efficiency are compared to the theoretical pre­
dictions. The parallel algorithm used as its basic building block two parallel
matrix-vector products, so two efficient parallel matrix-vector product algo­
rithms were investigated in detail. The exploitation of the complementary
role of these two methods permitted the Hermitian transpose matrix-vector
product, required in addition to the matrix-vector product by the general
form of the CG algorithm, to be solved very elegantly using only one copy of
the matrix and without the additiona.l communication overhead that would
have been required had the transpose been explicitly formed. The basic pa­
rameters used in the theoretical analysis were established using benchmark­
ing. The problem of developing a general configuration description, able to
handle any depth of binary tree, has been considered and a solution pre­
sented. Automatic methods for connecting the links (the "switching") on an
electronically switched array have been described; specific details have been
provided for the particular transputer array used. The problem of termi­
nating a parallel algorithm has been considered and a solution given for the
CG algorithm. Experimental validation of the theoretical models has been
performed by measuring efficiencies of an Occam 2 implementation of the
algorithm on a transputer arrays.

It has been shown, both theoretica.lly and experimentally, that the pro­
posed CG algorithm scales essentially with the number of rows per processor
- the development of scalable algorithms is very important for large MIMD
systems. A scalable algorithm is one whose efficiency is a function of the
"grain" of the problem, where the "grain" is related to the number of un­
knowns per processor; in the case of the CG algorithm, it is the number of
rows per processor. Hence a.s the problem size grows, more processors can

board, or is the virtual memory management. degrading the performance substantially?

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 73

be brought to bear on the problem and the efficiency remains approximately
constant - and hence the actual speed-up increases linearly with the number
of processors.

Some of the work reported in this chapter was presented at international
symposia. as [DC89, Dav90a].

The CG algorithm is one of the standard methods used in computational
electromagnetics for solving the system of linear equations resulting from a
MoM formulation. Another standard method of solving the system of linear
equations generated by the MoM is L U decomposition. Initially, it appears
a rather unlikely candidate for efficient parallelization when compared to the
CG algorithm considered in this chapter, and introduces a new problem only
hinted at (since it was of no significance) in the work on the CG algorithm,
namely load balancing. Chapter 5 considers the development of a parallel L U
algorithm, with an efficiency comparable to that of the parallel CG method
for a similar problem size and number of processors.

Stellenbosch University http://scholar.sun.ac.za

.....
X,
:::71
u
s:
Q,)
u ...
"" "" ~

CHAPTER 4. A PARALLEL CG ALGORITHM i4

Efficiency or 111atrix solue CCG soluer)
188

98 .x· ... · · · · · · · · · · ·X •• •• ·:~:::: : : :::::: :::::: :::::: :. ...
....

x··
88 ··+· ..

• •••••••• ·11· .,
····•·····

78 ...

. ... ·
&8

'lf.··· o

• • Gi' •••
...

58 .. :
48 ,:,·

38 : X 2 tpts
(:>

+ & tpts
28

* 14 tpts

m·
18

0 38 tpts

8
8 58 188 158 288 25B 3B8 35B 4BB

ttu111ber or seg111ents

Figure 4.16: Measured efficiency of parallel conjugate algorithm versus un­
knowns for the M C2

•

-

-

-

-

-

-

-

-

-

45B

Stellenbosch University http://scholar.sun.ac.za

,...
X

...,;

:::7'1
u
~
4l ...
u -c..

c..
~

CHAPTER 4. A PARALLEL CG ALGORITHM

188

9B

88

7B

68

58

4B

3B

2B

1B

Efficienc~ of Matrix solve CCG solver)

• • . • ·.:;; _:: :.: :· :·~·~ ~ .= .= ~~-~: .~ .'::: :~ • • • • • .. •,, 1 • • I rt•. • • •X • • • • • • • • • • • • • • • • •. • • • • •X

x· .·· .. ··
-t." : ... :it'·::.~;) .. ; . 1:> .•

;.Jt.: ...

~-- .'f-l

//.
·l[:p

:1

0

.j:

Ill
X

+

*
0

2 tpts

6 tpts

14 tpts

3B tpts

75

-

-

-

-

-

-

-

8~----------------~----------------~--------------------~-----------------L--------------~
B SB 188 158 288 258

Figure 4.17: Measured efficiency of parallel conjugate algorithm versus rows
per processor for the MC2 •

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 76

Efficiency of CG soluer - predicted and Measured
188

98 . (:)•··········•1.")·························(3······················0 -

BB
(!)"

-
78 -

~

:'I: 68 'W -
::1'1
(,)

58 s:
Gl --(,) ... 48

""' -
""' ~

38 2 tpts (predicted) -

28 -

18 0 2 tpts (Measured) -

8
8 188 288 388 488 588

NuMber of segnents

Figure 4.18: Efficiency of parallel conjugate algorithm (2 worker transputers)
for the MC2 • ·

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. A PARALLEL CG ALGORITHM 77

Efficiency of CG soluer - predicted and ~easured

• {!>" ••••••••••••• • • • ···Cl

.~:l 0

38 tpts (predicted)

o 38 tpts (~easured)

488 688 888 1888 1288 1488

Hu~ber of seg~ents

Figure 4.19: Efficiency of parallel conjugate algorithm (30 worker transput­
ers) for the MC 2

.

1688

Stellenbosch University http://scholar.sun.ac.za

Chapter 5

A Parallel LU Algorithm

5.1 Introduction

The L U method is probably the most widely used algorithm in the solu­
tion of square systems of linear equations. Given a system with a moderate
number of equations, it is normally the best algorithm to use, provided that
the system is not extraordinarily ill-conditioned. For certain special classes
of matrix, such as positive definite matrices, it may be shown that the ma­
trix is non-singular [BF85) and furthermore, that the algorithm is stable with
respect to the growth of round-off errors. Variants of the LU method exploit­
ing positive-definiteness such as the Choleski method (which forms [L][L]T)
combined with methods to exploit bandedness permit the very efficient ap­
plication of the method to matrices generated by the finite element method
[SF90, Chapter 10). Given the fundamental role of the LU algorithm, the de­
velopment of an efficient algorithm suitable for a local memory MIMD array
is an essential research topic for parallel computational electromagnetics. ·

LU decomposition (an O(M3 operation, where Af is the dimension of the
problem) followed by forward and backward substitution (each of O(M2)) is
always better to use when solving a system of equations than forming the
explicit inverse of the matrix and then multiplying the inverse matrix by the
right hand side vector; the reason is very simply that forming the e>.."Plicit in­
verse amounts to an L U decomposition, followed by Af forward and backward
substitutions (these M substitutions adding an additional O(M3) operation).
This is clearly more expensive computationally, and the accuracy of the so­
lution can also be deg~aded by the additional operations. These points are
made in almost all books on numerical analysis and the applications thereof,
eg. [BF85, p.318) and [SF90, Chapter 10).

In this chapter the basic L U algorithm is reviewed. Then the question of
parallelizing the algorithm is discussed, and a parallel algorithm presented

78

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 79

using a new, simple, graphical approach. The use of "formal" methods is con­
sidered for the extraction of the parallelism. The problem of load-balancing
is potentially serious with a parallel LU algorithm, and a solution utilizing
a row and column interleaved scheme is described. Pseudo-code is given for
the parallel algorithm. Then, new parallel forward and backward substitu­
tion algorithms are proposed that use the same data decomposition as the
parallel L U algorithm. Pseudo-code is given for these algorithms. Timing
results obtained using a matrix generated by a simple thin-wire MoM code
are presented and discussed.

The ability to solve massive systems of equations made possible by this
technique is used to investigate the accuracy of the L U method for large
problems, by monitoring the convergence of the input impedance of a dipole
computed using a MoM code and also by comparison with the results of
the parallel CG solver for the same MoM code. It is established that the
L U method only fails when the basic rules for a MoM discretization are
seriously violated, permitting the conclusion that .for large electromagnetic
problems discretized according to the established rules, the L U method will
be sufficiently accurate.

5.2 The Basic LU Algorithm

Before considering the parallel version of the L U algorithm, the serial form
will be briefly reviewed.

The LU algorithm factors a matrix A into the product of an upper ([U])
and lower ([L]) triangular matrix as follows:

[lo,o
0

IM-~M-1 l [L] = 11,0 111
'

/M-l 0 - · · • /M-l,M-2

(5.1)

and

(5.2) [T
uo,l Uo,M-1

[U] = u1,1
U1,M-1 l

0 UM-l,M-1

The diagonal elements of [L] are most commonly chosen as 1. The al­
gorithm can be found in virtually any book on matrix algebra, for example
[BF85, p. 345], and can be derived by noting that ai,j (the ij-th element of
A; i,j t {0, 1, ... , .M- 1}; M is the dimension of the matrix1) is the product

1The matrix entries have been numbered from 0 to M-1 for later convenie~ce: an array
a in Occam is numbered ao, a1,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 80

of the i-th row of [L] with the j-th column of [U]. Exploiting the triangular
properties of [L] and [U] then yields the algorithm:

• Step 0, which computes the first row of [U] and the first column of [L],
is defined as follows:

ao,o
uoo=-

, loo
'

_ ao,j
UoJ -­

loo
'

1
_ aj,O

j,o-­
uo,o

(5.3)

(5.4)

(5.5)

• Step i, which computes the i-th row of [U] and the i-th column of [L],
is repeated fori= 1, ... , M- 2 and is defined as follows:

1 i-1

u· ·=-[a .. -"'"' l· kUk ·] t,l l·. t,t ~ t, ,t
t,t k=O

(5.6)

Repeat for all j = i + 1, ... ,Af- 1:

1 i-1

u· · = -[a· ·- "'"'l· kUk ·] t,J l·. t,J ~ ,, ,J
t,t k=O

(5.7)

(5.8)

li,j and ui,j represent the i, j-th element of the [L] and [U] matrices
respectively.

• Step M-1 completes the algorithm by computing the last diagonal ele­
ment and is given by

1 M-2

UM-1,M-1 = 1 [aM-1,M-1 - L lM-l,kUk,M-d (5.9)
M-l,M-1 k=O

If at any stage li,iui,i = 0 then the algorithm is terminated with an error
message to the effect that factorization is impossible.

It will be noted that the LU decomposition as defined above leaves M
degrees of freedom; generally either the diagonal elements of [L] are set to 1
(the most common procedure with a general matrix), or the diagonals of [L]
and [U] are set equaF (the approach used in Choleski decomposition, where
the matrix A is positive definite).

2With a complex valued matrix, the diagonal of [L] and the complex conJugate of the
diagonal of [U] are set equal.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 81

It is rather interesting that L U decomposition is very closely related to
the CG method; both the LU method and the CG method may be derived
as special cases of what Sarkar has called the method of conjugate directions
(essentially a gradient method) [SA85]. This is perhaps not surprising since
the CG algorithm (in the absence of round-off error) reduces the dimension
of search by one for each iteration, which is also what the LU method does.

Following the factorization of [A] into the product of [L] and [U], the
unknown left-hand side is solved for in a two-step process; the first step is
forward substitution and the second step backward substitution. Consider

[A][x] = [b] (5.10)

with A facto red as
[A]= [L][U] (5.11)

Thus we must solve
[L][U][x] = [b] (5.12)

Define
[U][x] = [z] (5.13)

Then [z] can be solved for using forward substitution from

[L][z] = [b] (5.14)

since [L] is lower triangular; then x can be solved using backward substitution
from the preceding equation since [U] is upper triangular.

Using the following useful formulae

n 1
Li = ~(n)(n + 1)
j=l ~

(5.15)

n 1
Li2 = 6(n)(n + 1)(2n + 1)
J=l

(5.16)

it may be shown that the timing requirements of LU decomposition are ap­
proximately A;3 + 0(1112) + 0(111) additions and approximately the same
number of multiplications. The constants associated with the lower order
terms are small integers, so for all practical purposes, the amount of work re­
quired is 2At operations. The factor of 2 comes from the additions and multi­
plications. Similarly, the dominant term in the time for forward substitution
is 1112 operations, and the same result also holds for backward substitution.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 82

5.3 Parallelizing the LU Algorithm- an In­
troduction

5.3.1 A Brief Review of Previous Work

This discussion of the serial algorithm now leads to the question of the iden­
tification of the parallelism in the algorithm. Compared to the CG algorithm
in Chapter 4, the parallelism is hardly obvious. Nonetheless, very efficient
parallel algorithms can be developed. Since LU decomposition is such a fun­
damental algorithm in linear algebra, much work has been done, but very
often the work is not applicable to the problem of a full matrix, without any
special properties. For example, Fox et.al. [FJL*88, Chapter 20] describe a
banded matrix L U decomposition. Brief reviews of parallel L U decomposi­
tion may be found in [Hel78, GHN87]; a rather more recent review paper is
[GPS90). Many of the papers published are extremely specific to a particular
processor, or are of a very basic theoretical nature - for example, establish­
ing a lower bound on the operation count given as many processors as can be
used. They are thus not suitable for the problem of developing parallel al­
gorithms on a MIMD system, with a reasonable - but restricted - number
of processors. Recent work by van de Vorst [vdV88, vdVB89] has described·
a parallel L U algorithm suitable for a MIMD array. Previous work (such as
that reviewed in [GPS90, p.99]) is shown to be a special case of van de Vorst's
algorithm. The work was published in computer science journals, and is very
difficult to read without a grounding in formal methods and the use of post­
conditions3 as a mathematical tool for extracting parallelism. However, the
basic ideas can be explained far more simply than is done in van de Vorst's
papers. This will first be done using a new graphical approach developed
by the author and then van de Vorst's formal approach will be presented
in Section 5.5; rather more detail and elucidation will be presented than is
available in van de Vorst's papers and rather simpler methods developed by
the author for deriving many of his results are given.

5.3.2 A Parallel LU Algorithm - a Graphical De-
scription

The essence of the parallel algorithm is the following observation. Instead of
waiting for step i to compute Ui,j and Ij,i, as in the serial algorithm described
in the previous section, the summations in equations (5. 7) and (5.8) may
be performed as soon as data is available, given sufficient processors. As an
example, the first summation for each element of row 2 of [U] may begin as

3 Formal methods and post-conditions will be discussed in Section 5.4.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 83

soon as the relevant element of row 1 of [U] and column 1 of [L] is available.
All the summations required for row 2 may of course be performed in parallel,
since there is no dependence within a row of [U) or a column of [L) (other than
on the diagonal element for the final division). Similarly, the first summations
for row 3, 4 etc. may also begin as soon as the results of row 1 and column 1
are available4 • The required summations for row i of [U] and column i of [L)
are thus computed using a series of partial sums performed in parallel at each
step which terminates in Step i. Hence the maximum degree of parallelism
in this algorithm is M 2• As will be noted shortly, the algorithm requires at
least 2M steps to execute.

The algorithm can be most easily understood graphically. Figures 5.1 to
5.4 show the evolution of the algorithm for a matrix of dimension 4 on a 4
by 4 array of processors, i.e. one processor per element. (This is the upper
limit of the parallelism that can be extracted with this algorithm). The •
represents elements that are critical i.e. in the last stage of computation.
The o represents elements that are active, i.e. forming the partial sums.
Blank entries represent passive elements, where no work is performed, since
the relevant element of [L) or [U) has been computed in a previous step.
The echelons of completed elements step diagonally downwards in an almost
wave-front fashion.

This graphical presentation also shows the most serious problem with the
algorithm - load balancing. The work in each row and column decreases as
the algorithm proceeds, resulting in idle processors, producing a lower bound
on the efficiency of only approximately 33%5

• This load balancing problem
may be solved very elegantly using a double-interleaving scheme for data
distribution described in [vdVSS, vdVB89], whereby both row and columns
are scattered moduloJ]V over a square array of J]V by vfN transputers,
with VN <t: A1. This is of course the situation of interest, since it is most
unlikely that an array of several million transputers will be available to solve
problems with a few thousand unknowns. The distribution of a matrix of
dimension 9 on a 3 by 3 array using this double interleaved distribution is
shown in Figures 5.5 and 5.6.

Note that at each step i, corresponding to one of the Figures 5.1 to 5.4,
the algorithm needs two discrete computational steps: firstly, to compute
the i-th column of [L], and secondly, to then update the partial sums on the
active processors6

• Hence with M processors the algorithm will take 2.Mtcalc

4 0ne could of course perform the serial algorithm in exactly the same v.'ay, but in
the serial case, nothing would be gained, and the algorithm would appear unnecessarily
complex.

5 This is derived in detail in Section 5.8.
6This assumes the choice of diagonal elements of [L) as in equation (5.29), and the

correct initialization as discussed in Section 5.5; in this case, all computations required by

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 84

[
....]
• 0 0 0

• 0 0 0

• 0 0 0

Figure 5.1: Step 1 of LU decomposition

[...] • 0 0

• 0 0

Figure 5.2: Step 2 of LU decomposition

[: : l
Figure 5.3: Step 3 ofLU decomposition

[.]
Figure 5.4: Step 4 of LU decomposition

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 85

to terminate, assuming the times for floating point addition, subtraction,
multiplication and division to be similar.

[

00 01 02]
10 11 12
20 21 22

Figure 5.5: 3 by 3 processor array (mesh) numbering

aoo ao3 aoo aOl ao4 ao7 ao2 a os a os

a30 a33 a36 a31 a34 a37 a32 a3s a3s

aoo a63 a66 a61 a64 a67 a62 a6s a6s

a10 a13 a16 an a14 a17 a12 a1s a1s

a4o a43 a46 a41 a44 a47 a42 a4s a4s

a7o a73 a7s an a74 a77 an a75 a7s

a2o a23 a2s a21 a24 a27 a22 a2s a2s

a so as3 as6 as1 as4 as7 as2 ass ass

a so as3 a86 as1 a84 as7 as2 ass ass

Figure 5.6: Scattered grid distribution; 3 by 3 processor array (mesh). The
elements in the upper left corner map onto processor 00, those in the upper
centre onto 01, those in the left centre onto 10, etc.

5.4 The Use of Formal Methods

van de Vorst used formal methods in the development of his parallel
program[vdVSS]. The formal methods that he uses are an extension of the
work of Owicki and Gries [OG76b, OG76a]. van de Vorst's paper is quite
formidable as a result of the methods used, although the results are quite
simple once the underlying principles are understood.

Formal methods are techniques used by computer scientists to analyze al­
gorithms, primarily from the viewpoint of correctness. This frequently seems
a rather obvious exercise to the numerical analyst, since the algorithms being
coded have already been put on a. sound foundation using the mathematics of

step i for row i of [U] have been completed.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 86

numerical analysis. However, there are many problems in computer science
that arise from problems involving communicating processes - this led to
Hoare's work on Communicating Sequential Processes [Hoa85] - and these
can be intractable problems indeed, since the times of communication and
even the communication paths themselves may be non-deterministic. Hence
the development of formal methods. However, how successful they have been
in their stated goal of increasing software reliability is a subject for heated
debate; Stover's comments on software testing and methods of software val­
idation make very interesting reading[Sto90b, Sto90a].

It will also have been noted thus far in this thesis that the extraction
of parallelism has been largely an intuitive process, relying frequently on a
geometrical viewpoint to establish the fundamental data indepedencies. The
pseudo-code has been used for documenting, not developing, the parallel al­
gorithms. This section discusses a mathematics to formalize the extraction of
parallelism. The necessary mathematics will be introduced by way of several
examples, leading up to the full LU problem. The mathematics follows that
of van de Vorst [vdV88]; the elucidation is primarily the present author's, as
is the discussion of the analysis of the matrix-vector product using formal
methods.

5.4.1 An Introductory Example

Consider the problem of forming the sum of two vectors:

[c] = [a]+ [b] · (5.17)

This can be written in an equivalent form by defining a postcondition R which
must be true after the code stub executing this has terminated:

R = (Vi : 0 :::; i :::; M - 1 : Ci = ai + bi) (5.18)

This is of course simply the definition of the addition of two vectors.
For the development of a program, we can do this by introducing the

concept of an invariant. One possible invariant is Pseq, defined as follows:

Pseq = (Vi : 0 :::; i :::; k : Ci = ai + bi) ; 0 :::; k :::; l l E z+ (5.19)

The upper value of l is left unspecified at present. The value of k which
satisfies the postcondition will be determined shortly. Pseq is computed in
an ordered sequence, as k is incremented from 0. To maintain the validity of
the invariants at each stage of the process, the code stub

c [i] : = a [i] + b [i]
k := k+1

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 87

must be executed. ('With an example this simple, this is stating the obvious).
Once all the components of Pseq have been computed, which occurs when
k = M- 1, the operation is complete and the truth of the post condition is
established, to use the necessary formal terms. Symbolically, we can write

Pseq 1\ (k = M - 1) :::} R (5.20)

(The code will actually terminate with k = M, but this does not affect
equation (5.20)). The symbol 1\ is used for the logical AND operation;
this is standard practice in the computer science literature and is therefore
retained in this thesis.

Another possible invariant is the following:

Ppar = (Vi E K : ci = ai + bi); K = {0, 1, ... , M- 1} (5.21)

What we have now achieved is to remove the sequential index increment­
ing, and indicate clearly that the order in which the components of [c) are
computed (using the above code stub) is irrelevant. Furthermore,

Ppar 1\ (IKI =M) :::} R (5.22)

in other words, the truth of the postcondition is established. j.j is the "size
of" operator.

5.4.2 The Matrix-Vector Product Revisited Using
Formal Methods

The preceding example is given in [vdV88]. Another, new, example will
be considered, namely the matrix vector product [c) = [A][b], which was
of course parallelized in the previous chapter. In this case, the necessary
postcondition is

M-1

R = (Vi: 0 ~ i ~M- 1; ci = L ai,jbj) (5.23)
j=O

One possible invariant is the following:

M-1

Ppar =(Vi: i E K;ci = L ai,jbj); K = {0,1, ... ,M -1} . (5.24)
j=O

This corresponds to the row-block decomposition with a clustering by rows.
The maximum parallelism is M, the number of rows. This formal notation
makes clear the independence of the order of row computation and hence a

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 88

possible parallization technique. The complexity (order of operation count)
is M 2 IN. With M processors, a lower bound on the complexity of the row­
block decomposition is M. (The complexity of the serial algorithm is M 2

).

The truth of the postcondition R may be established as in equation (5.22).
It must be noted that these methods do not necessarily indicate all the

potential parallelism. Returning to the matrix-vector product problem, an­
other valid invariant is the following:

P;ar = (Vi,j: i E l,j E J;di,i = ai,ibi); I,J = {0,1, ... ,M -1} (5.25)

M-1

p' = (Vi: 0 < i < k· c· = " d· ·) · 0 < k <M- 1 (5.26) seq - - ' 1 ~ I,J ' - _
j=O

and

[P;ar 1\ (Ill= M) 1\ (IJI =M)] 1\ [P;eq 1\ (k =M -1)]:::;. R (5.27)

The first invariant is the parallel matrix-vector product; the complexity,
M 2 IN, assuming a .JN x .JN lattice, so given sufficient processors the lower
bound on the complexity is 1. The second, sequential, invariant is the ac­
cumulate paradigm described in Chapter 4. The complexity of P;eq is M 2 •

Similar ideas can now be applied to parallelize P;eq, for example by replacing

P I • hP" seq Wit par:

M-1

P;~r =(Vi: i E K;ci = L di,j);K = {0,1, ... ,M -1} (5.28)
j=O

This indicates that the summations required for each element of the vector
can be performed in parallel. The complexity of this is M 2 j .JN if the same
lattice used for the multiplications is used; given the same maximum number
of processors, the lower bound on the complexity is M. But this still does
not indicate all the potential parallelism. The summations for each vector
can be para.llelized by summing columns in parallel; for example on an 8 x 8
processor array, columns 0 and 1, 2 and 3, 4 and 5 and 6 and 7 can all
be summed in parallel in one step, leaving four columns. The same can be
repeated at the next step, leaving two columns. In the third and final step,
one column is left - which is the required vector. Given .A12 processors, a
lower bound on the complexity of this operation may be shown to be log2 Af,
assuming M to be a power of 2. Hence a lower bound on the complexity of
the column-block decomposition is 1 + log2 M, using M 2 processors. This
should be compared with the lower bound on the row-block decomposition
of M, using M processors.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 89

It will be noted that these lower bounds entirely ignore the effect of
communication - which has been shown to be very important in Chapter
4 - so these results are mainly of theoretical interest. Nonetheless, they
indicate the utility of extracting parallelism using formal methods.

5.5 A Parallel LU Algorithm Derived Using
Formal Methods

The following algorithm7 assumes the choice of diagonal element

ls,s = 1 , Vs : 0 ~ S ~ M- 1 (5.29)

Firstly we write the post-conditions8 , which are derived by the use of the
triangular properties of [L] and [U] and equation (5.29):

s-l

Vs ~ t as,t = Us,t + L ls,jUj,t
j=o

t-1

Vs > t : as,t = ls,tUt,t + L ls,jUj,t
j=o

(5.30)

(5.31)

To put this a slightly different way, the problem is to find the matrix [X]

such that
s-l

Xs,t = as,t- L ls,jUj,t ; Vs ~ t
j=O

t-1

Xs,tUt,t = as,t- I: ls,jUj,t ; Vs > t
j=O

(5.32)

(5.33)

[X] represents [L] and [U]; the lower triangular part is [L], and the diagonal
and upper triangular part is [U], or formally, ls,t = Xs,t ; Vs > t ; Us,t =
Xs,t; Vs ~ t. Now a sum function f(s, t, k) is defined:

k-1

f(s, t, k) = as,t- 2::: ls,jUj,t; Vk: 0 < k ~NI- 1
j=O

(5.34)

7This section follows [vdV88] in spirit, but not precisely in detail. van de Vorst's
original work has been expanded in places, simplified in others and re-written for clarity
in yet others. In addition, later work by van de Vorst [vdVB89] has also been included.

8These are valid 'v's, t > 0; for s, t = 0, the required postcondition is the term before
the summation only. This special case is trivial and will not be explicitly indicated in the
rest of the analysis; however, the code that implements this must of course implement this

case correctly.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 90

and the post-condition is formalized:

R := {\Is, t R[s, t] : 0 ~ s, t ~ M- 1} (5.35)

This post-condition is a set of local post-conditions, defined as:

R[s, t] = (xs,t = f(s, t, s) 1\ s ~ t) V (xs,tUt,t = f(s, t, t) 1\ s > t) (5.36)

In f(s, t, v) the first two indices (sand t) refer to the indices of the element
x - representing either l or u - whereas the last index v refers to the upper
summation index. The symbol V is used for the logical OR operation.

The following should be noted:

• there are M2 post-conditions

• a start can be made on establishing the truth of each post-condition
R[s, t] as soon as any elements of row s of [L) and the corresponding
elements of column t of [U) are available

This second point is formalized by introducing a new variable k, which will
play the role of a global "clock" 9 for the processor array. As a first guess,
the invariant Xs,t = .f(s, t, k) 1\ (0 ~ k ~ min(s, t)) is thus obtained, and the
following set of set of invariants is proposed

P = {\ls,tP[s,t]: 0 ~ s,t ~M -1}

P[s,t] = {[x~,t = f(s,t,k) 1\0 ~ k ~ min(s,t)]

V [R(s, t) 1\ min(s, t) < k ~M]}

(5.37)

(5.38)

Note that this is only one possible set of invariants; others may well be ad­
missible. Unlike the trivial example of Section 5.4.1, the code required to
maintain the validity of the invariants as 1.~ is increased is not as immedi­
ately obvious; the necessary initialization, and the operations required as k
is incremented, will now be established.

The algorithm is initialized as follows:

.k ·- 0

[X] ·- [A]

It is useful to identify the following four different regions:

• active if k < min(s,t)

(5.39)

9 0n a transputer array, the "clock" is simulated by an explicit synchronizing message.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 91

• critical if k = t As> t (all non-passive l in column k)

• pseudo-critical if k =sA s :S t (all non-passive u in row k)

• passive,if k > min(s,t)

The graphical interpretation of these is shown in Figure 5.7.

passive elements
• critical elements
* pseudo-critical elements
o active elements

* * * *
• 0 0 0

• 0 0 0

• 0 0 0

Figure 5.7: Graphical interpretation of regions defined in pseudo-code

As the "clock" k is incremented, the invariants must remain valid. For
active processes, the following code fragment must be executed:

x [s, t] : = x [s, t] - 1 [s, k] u [k, t]

k := k +1

For critical processes, the following code fragment must be executed:

x[s,t] := x[s,t]/u[k,k]

k : = k +1.

For pseudo-critical and passive processes, incrementing k leaves P[s, t] in­
variant, hence no action is required.

These computations may each be performed concurrently. This is the cru­
cial fact that the application of the formal methodology extracts; it does this
by explicitly indicating that each post-condition may be satisfied incremen­
tally, via the variable k, rather than all at once a.s in the conventional serial
formulations.

The maximum degree of parallelism is A12
, since there are that number

of post-conditions P[s,t], but the complexity has a lower bound10 of M, not

10The operation count is 2M, when the sequencing of operations within a step are taken
in to account, as already discussed in Section 5.3.2.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 92

1, since the computations for row (and column) k + 1 cannot be finalized
until row (and column) k have been computed. Another way of stating this
is that the computations are ordered, and van de Vorst goes on to use the
"partial" ordering of the post-conditions to examine deadlock, i.e. does P[i,j]
need the results of P[k,l] but similarly does P[k,l] need the results of P[ij]
to continue? He shows theoretically that it does not occur; however, once
the algorithm is understood as explained in Section 5.3.2 it is obvious that
deadlock cannot occur.

5.6 Pseudo-code for the LU algorithm

With the formal development completed, it is useful to recap how the algo­
rithm proceeds. The initialization of equation (5.39) establishes the first row
of [U] -actually before the algorithm has started.

• On step 0, the first column (column 0) of [L] is computed, and then
this column, as well as the first row (row 0) of [U] is sent to all the
critical processes so that the partial sums can be computed. Note that
by the end of step k = 0, the computations for the second row (row 1)
of [U] have been completed.

• On step 1, the second column (column 1) of [L] is computed, and this
column, as well as the second column of [U], can be sent to all remaining
critical processes so that ongoing partial sums can be computed. By
the end of step k = 1, the computations for the third row of [U] (row
2) have been completed.

• The algorithm proceeds thus, until k = .M.

Figure 5.8 shows the communications executed by the algorithm. In the
latter figure, the l indicates communication to all the active elements of
the column, and similarly the --+ indicates communication to all the active
elements of the row. The '\.. symbol indicates both l and --+.

Pseudo-code for the algorithm is given in Figure 5.9. Note that the
pseudo-code assumes 1112 processors; if this is not the case, then cluster­
ing as described in Section 5.3.2 and also Section 5.8 is required. It should
be appreciated that efficiently implementing the clustering and communica­
tions made the actual Occam code much more complex than the pseudo-code
shown.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM

passive elements
• critical elements
* pseudo-critical elements
o active elements

. * * * * *

• -+ 0 0 0

. • -+ 0 0 0

• -+ 0 0 0

Figure 5.8: Communication in parallel LU algorithm.

5. 7 Pivoting

93

One point that has not been considered thus far in the analysis is pivoting.
Pivoting is a. strategy to optirnize numerical stability by ensuring that the
largest (in some sense) element is on the diagonal. Two possibilities are listed
below:

• maximal column pivoting: Select the element in the same column that is
below the diagonal and has the largest absolute value, and interchange
rows to carry this element onto the diagonal. This algorithm is also
known as partial pivoting, since only the part of the matrix below the
diagonal is considered. The first step requires M comparisons, the
second M-1 etc. Using equation (5.15) the number of comparisons can
be shown to be tM"2 + O(M).

• maximal pivoting: At step k, search all the elements ai,j with i,j > k,
and then interchange rows and columns to carry this element onto the
diagonal. To use the notation previously defined, this requires a. search
of all the active elements. Hence the other name for the method, viz.
total pivoting. This can be shown to require ~M3 + O(M2) + O(.Af)
comparisons [BF85, p.329].

van de Vorst has sho\vn that partial pivoting may be incorporated into
a parallel L U algorithm without a major effect on the efficiency of the algo­
rithm; however, the coding becomes even more complicated than that already
required.

The author did not incorporate pivoting into the parallel code he de­
veloped, because pivoting was thought to be unnecessary with the typical

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM

process[s,t] :
begin

x[s,t] := a[s,t] {initialize matrix}
k := 0 {initialize global clock}
while k < n do

begin
if k < min(s,t) then

begin{active}
par

receive l[s,k] from process [s,k]
receive u[k,t] from process [k,t]

end{par}
x{s,t] := x[s,t] - l[s,k]*u[k,t]

end{active}
else if k = t AND s > t then

begin{critical}
receive u[k,k]
x[s,t] := x[s,t] I u[k,k] {note k=t!}
send x[s,t] to all processes[s,q] with q > k

end{critical}
else if k = s AND s < or = t then

begin{pseudo-critical}
send x[s,t] to all processes[q,t] with q > k

end{pseudo-critical}
else if k > min(s,t) then

SKIP {passive}
k := k + 1

end
end{while}

end. { process[s,t]] }

94

Figure 5.9: Pseudo-code for the parallel LU algorithm; adapted from [vd\188].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LV ALGORITHM 95

systems generated by MoM discretizations, for the reason that such a sys­
tem, although not strictly diagonally dominant11 , normally has its largest
elements on the diagonal, since these represent self-impedance terms and all
the other off-diagonal elements represent mutual impedance terms. (This ar­
gument assumes a more or less uniform discretization; it will not necessarily
be true if very different segment lengths were used on different parts of the
structure.) In Section 5.13 it is shown that where a L U decomposition has
been shown to fail, partial pivoting was of no help in any case12

.

5.8 Theoretical Timing Equations for the
Parallel Algorithm and the Clustering
Strategy

The load balancing problem of the algorithm has already been mentioned
and a solution proposed in terms of the double-interleave distribution. It
was mentioned that the lower bound on efficiency was about 33%; this shall
now shown formally.

Consider the extreme case where the number of processors N = M 2 • As
has been discussed in Section 5.3.2, the algorithm then terminates in 2M2

steps. The serial time has been shown to be ~M3 ; see Section 5.2. Hence the
speed-up is M /3, and the efficiency 33%.

This is a lower bound on the efficiency as a result of load balancing; in
any real case of interest N ~ M 2 and the actual effect of load balancing
will not be quite as serious. Nonetheless, the effect is sufficiently serious to
warrant attention. The solution has already been given, namely the double
interleaved scheme. More formally, let

V=:{s:O:S:s<.M} (5.40)

Then we partition V into .JN partitions Vi and Wj, each of size ~:

{Vi : 0 :::; i < VN} (5.41)

11 A strictly diagonally dominant matrix is defined by the property that ja;,;j >
L,J~~.~;ti ja;,jl· It can be shown that the LU decomposition of such a system does not
require any pivoting and the computations are stable with respect to rounding errors
[BF85, p.335).

12 Work published by Cwik [Cwi91), just prior to submission of this thesis, on the paral­
lel MoM codes with LU solvers developed at the Jet Propulsion Laboratory in Pasadena,
California, mentioned that their parallel LU solvers perform a substantial amount of piv­
oting for a typical MoM run; further work is needed before a definitive statement on the
necessity or otherwise of pivoting for linear systems generated by the MoM can be made.

-----------------------· .. -·- -·

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 96

and
(5.42)

The ffi x ffi Cartesian distribution of elements on processors is given by

Note that the indices i,j refer to processor indices on a square mesh; see
Figure 5.5. It is assumed that M is an integer multiple of ffi in this anal­
ysis. The case where this is not so requires padding; this is considered in
Section 5.11.

The previously discussed double-interleaved Cartesian distribution is de­
fined formally as G:

G = {Gi X Hj: 0 ~ i,j < VN}

with
Gi = { s : s E V A s mod VN = i} VO ~ i < .JN
Hj = {t: t E VAt modVN = j}VO ~ j < .JN

and mod(a) the modulo(a) operator.
For the case illustrated in Figures 5.5 and 5.6:

Go {0,3,6}
G1 - {1,4,7}
G2 {2,5,8}

and similarly

Ho = {0,3,6}
H1 {1,4,7}
H2 {2,5,8}

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

The Cartesian product Go x Ho gives the indices of the 9 elements clustered
on processor00 i 3

• The full distribution G is shown in Figure 5.6.
It may be seen by inspection that with this double-interleaved scheme,

only on the final ffi steps is any processor left with no work to do and the
impact is thus minimai for any reasonably large grained problem. This may
be confirmed by the following analysis, which establishes an upper bound on
the overall computation count and from this, the load-balancing count. The

130n processor00 , a 11 is thus a33 of the original matrix. This shows the difference
between the local and global indices, and is another complication that must be taken care
of in the code.

Stellenbosch University http://scholar.sun.ac.za

p----

CHAPTER 5. A PARALLEL LU ALGORITHM 97

maximum load is carried by processor..;N-Iv'N-l (the processor at the lower
right of the processor array). The amount of work in the last cycle- where
there is only one element left to update - is approximately 2(.Jiii) (the
factor 2 comes from the multiplication followed by subtraction); on the pre­
ceding cycle 2(4v'N\ and so on back to the first cycle with 2([M/.Jiii] 2ffi).
Summing over all M/ .JN cycles yields an upper bound of

2M3 M 2

31V+ .JN (5.48)

The first term is clearly the parallelized computations; thus the second term
is the additional computational overhead caused by load-balancing. This is
confirmed by van de Vorst 's analysis of load balancing for a general rectan­
gular mesh. For the special case of a square mesh as used by the present
author, he obtains the same upper bound on the load-balancing operation
count; this is the second term in equation (3.11) [vdVB89Jl4

.

For the communication count, the following should be noted. At step k,
the algorithm requires the row broadcast of all the elements of column k of [L]
that have just gone critical, and a column broadcast of all the elements of row
k of [U] that have just gone pseudo-critical. These can be broadcast using two
concurrent pipelines15 for efficiency. An upper bound for the communication
can be derived as follows:

Consider the processor column carrying the heaviest communication load.
By inspection, it is the most right-most column. For the first .Jiii steps, the
amount of data to be communicated is ffi· For the next .JN steps - the
algorithm has completed one cycle through the processor array and has now
returned to the first processor16

- the amount of data is -Jfv -1. The upper

bound on the communication count 17 is thus

imesh:::; {[(:!N)VN] + [(:!N -l)VN] + · · · + [(l)v!JV]}icomm (5.49)

There are ffi square-bracketed terms in total in the above equation (i.e. the
number of cycles), which can be re-written as

(5.50)

14The author checked most of the results in van de Vorst's work; only one error was
noted. In [vdV88, Section 6.5] the first term in E(grids) should be ~

2

, not nt.
15 Pipelines are discussed in detail in Section 5.10.
16 Remember that the distribution is moduloVN.
17The pipelines are modelled simply by the time required to output. the data; it is

assumed that the vector lengths to be output are much greater than the diameter of the
mesh, so that complex pipeline models of the type discussed in Section 3.3 are not required.
The set-up time for a pipeline on a transputer array using Occam 2 is negligible.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 98

which can be simply manipulated using equation (5.15) to give

1M2

tmesh ::; 2 VJii + O(M) (5.51)

This result is also given in [vdVB89, equation 3.19). (If pivoting is included,
the result is very similar but with a constant of ~ for the dominant -% term
[vdVB89, equation 3.20]). van de Vorst's full communication analysis was
checked by the author, with special regard for the highest order terms. Some
minor differences were observed in the lower order terms.

It can be easily seen from the preceding why a mesh distribution is better
than either a column or row distribution. With either of these, the amount of
data to be communicated at each step is 0(M) - an entire column (or row)
must be communicated - whereas using the grid distribution the amount
of data at each step is 0(~). Furthermore, the column and row broadcast
pipelines run concurrently with the grid distribution. It may be shown for­
mally that for a local memory MIMD array, as regards communication, a
square grid is the optimal grid distribution of the general class of rectangular
grid distributions for this parallel L U algorithm [vdV88, vdVB89].

A theoretical model for the efficiency will now be derived. The serial time,
using a conversion factor from complex to real fiops 18 of 4 , is (~M3)tcalc; the
parallel time is the sum of the parallelized computations, viz. (~ M 3 I N)tcalc,
the load-balancing term (from van de Vorst's analysis, as discussed above) is
(4M2 /VN)tcalc and the communication term is (~ M 2 I .J'N)tcomm. Summing
the last three, using equation (3.3) and simplifying yields

1
E~--=----

1 + v'N(~ + ~)
M 2 16-y

(5.52)

The symbol f3 has the meaning defined in Chapter 4, viz. ~t .
'?-talc

It is interesting to compare this result with that for the l....iG solver, equa-
tion (4.40), repeated here for convenience:

1
(5.53) E~ 1+ ~;(2.75+0.125d+log(/3)

It is notable that the dominant terms in the denominator ha.ve a Z multi­
plier in the CG case, the reciprocal of the number of rows of the matrix per
processor, whereas in the LU case, the multiplier is '{§,the reciprocal of the
square root of lv12 IN, this last term being the number of matrix elements

18The number of additions and multiplications is almost identical, and the former has
a conversion factor of 2, the latter 6.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 99

per processor. The latter is the smaller multiplier - this indicates that the
L U algorithm scales better than the CG algorithm19

• This is an impressive
result, considering how initially unsuitable for parallelism the LU algorithm
appeared, and is confirmed by the results in Section 5.12. It is also interest­
ing to note that for typical values of f3 (between 3 and 4 approximately for
the M C2 , as shown in Chapter 4), the load imbalance term is of the same
order of importance as the communication term.

5.9 Parallel Forward and Backward Substi­
tution

Following the factorization of [A] into the product of [L] and [U], the unknown
LHS is solved for in a two-step process; see Section 5.2, equations (5.12) to
(5.14).

A parallel version of the forward and backward substitution algorithms
is also necessary, not because of the computation time, which is O(M2

), but
because it is most undesirable to communicate all the elements of the [L] and
[U] matrices back to a master processor, since the master must then have
enough memory to store the entire matrix and the communication procedure
takes time. The former is the more serious problem for a typical MIMD array
with local memory; sufficient memory is not available on any one node (pro­
cessor plus memory) to store the entire matrix. Suitable parallel substitution
algorithms have been derived by the author20 and the pseudo-code is given
in Figures 5.10 and 5.11.

The substitution algorithms operate on only one column of the processing
array at a time, and the latest version of the relevant vector ([z] or [x]) is
passed from column to column as the algorithm proceeds. This is far from
the most efficient parallel substitution algorithm possible, since only .JN
processors are active concurrently, but has the major advantage of using the
same scattered grid distribution as the parallel LU algorithm.

5.10 Coding for Maximum Efficiency

The aim of developing a parallel algorithm is obviously to obtain the maxi­
mum reasonably possible speed-up, and in this section, some important gen-

19This remains true even if pipelining was fully exploited in the CG algorithm; the effect
of this is to replace the log2N term by 1

20 van de Vorst and Bisseling [vdVB89] mention the existence of parallel substitution
algorithms developed by them, but these had not been published in readily accessible
journals at the time that the author was carrying out his own research.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM

process[s] :
begin

z[s] := b[s]; k = 0 {initialize}
while k < n do

begin
if k < s then

receive z[k] from process [k]
z[s] := z[s] - L[s] [k] z[k]

else if k = s then
z [s] : = z [s] I L [s, s]
send z[s] to all processes q with q > k

else if k > s then
SKIP

k := k+1
end

end. { process[s]] }

Figure 5.10: Forward substitution pseudo-code; solve [L][z]=[b]

process[s] :
begin

x[s] := z[s]; k = n-1 {initialize}
while k >= 0 do

begin
if k > s then

receive x[k] from process [k]
x [s] : = x [s] - U [s] [k] x [k]

else if k = s then
x [s] : = x [s] I U [s, s]
send x[s] to all processes q with q < k

else if k < s then
SKIP

k := k-1 {note k counts backwards}
end

end.· {process[s]] }

Figure 5.11: Bacbvard substitution pseudo-code; solve [U][x]=[z]

100

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM

procedure broadcast_column_to_right(length)
begin

{initialize pipeline}
{note: length of vector passed as argument}
receive vector[1] from left processor
repeat for i = 2 to length

par{run pipeline}
receive vector[i] from left processor
send vector[i-1] to right processor

end{par}
end{repeat}
{flush pipeline}
send vector[length] to right processor

end{procedure broadcast_column_to_right}

101

Figure 5.12: Pseudo-code for rightwards pipelined column broadcast proce­
dure: worker

eral techniques that were used for the parallel L U algorithm are described in
detail.

Firstly, it has already been shown that the links can operate in parallel.
This has been exploited in the CG algorithm, see Figures 4.1 and 4.2 for the
broadcast process. But this technique can be refined even further by using
a pipeline, where outputting of the vector is overlapped with the inputting

, thereof, so that the input and output links are overlapped in time. Note that
a pipeline has thus been implemented on a fundamentally replicated system.
Such methods are quite advanced and were not used in the CG algorithm,
which was one of the first parallel programs written by the author, but were
implemented in the L U algorithm.

Pseudo-code for the pipelined rightwards broadcast of columns procedure
is given in Figure 5.12. A similar procedure is assumed for the leftwards
broadcast, since the direction of communication varies during a "sweep".
The al t construct was used to detect which input channel was active. This
is shown in Figure 5.13: A similar procedure is needed for the row broadcast.
The row and column broadcast procedures must run concurrently for opti­
mum efficiency, as shown in Figure 5.14. For coding efficiency reasons, the
Occam code differs slightly from the pseudo-code, although the principles are
identical.

On the general subject of coding for maximum efficiency, it should be

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM

procedure broadcast_column
begin

alt
receive length from left processor

call procedure broadcast_column_to_right(length)
receive length from right processor

call procedure broadcast_column_to_left(length)
end{procedure broadcast_column}

102

Figure 5.13: Pseudo-code for pipelined column broadcast procedure: worker

procedure broadcast
begin

par
call broadcast_column
call broadcast_row

end{par}
end{procedure broadcast}

Figure 5.14: Pseudo-code for broadcast procedure: worker

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM

begin{gather}
par

receive one part of vector
receive a different part of vector

end{par}
end{gather}

103

Figure 5.15: Pseudo-code for a valid Occam construct that is not accepted
by the compiler

noted that there are some valid constructs that the Occam compiler does not
(by default) permit one to use. The construct shown in Figure 5.15, although
valid, is rejected by the compiler21

•

The reason for this is that Occam does not permit parallel access to an
array - even though the elements of the array can be established as disjoint
at compile time22 • The author worked around the problem by establishing
two separate arrays, and then building up the total array once the two halves
have been received. Alternately, one can disable the compiler's usage checking
-a dangerous idea since the usage checker picks up many potential faults.
Sacrificing a very small loss in speed for comprehensive error checking is, to
the author, quite acceptable.

5.11 Some Coding Details

Pipe-lining, as expounded in the preceding section, was exploited in the cod­
ing of this algorithm; the vertical (column) and horizontal (row) pipes were
run concurrently for maximum speed-up. The section of the code correspond­
ing to the active processes was coded as efficiently as possible, since this is a
time-critical part of the algorithm. Padding, required to ensure an integral
number of unknowns per processor, is not as simple as in the CG case, where
additional rows and columns of zeros were introduced23

• A check was made
21 This construct was not required in the previous pipelining examples shown, but was

required elsewhere in the CG and LU codes.
22 INMOS admits that this is a bug
23 Padding has a slight effect on run-time; as noted previously on page 58, if measured

with sufficient resolution, it will be found that the graph of efficiency is actually a stairstep,
not a smooth, function. The run-time increases from the value predicted for the actual
value of M j.../N to that predicted for r M f.../Nl. For example, a problem with 10 unknowns
on a 3 x 3 processor array, i.e. M j.../N = 3.33, will run at the same speed as a problem
with Mj.../N = 4, i.e. 12 unknowns. For large M, the effect is insignificant for the values

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 104

on the local index to check whether the corresponding global index exceeded
the actual matrix dimension, and if so, the process was terminated. This code
used implicit termination, where each processor monitors the global index k,
as opposed to the explicit termination used in the CG algorithms, where the
master process monitored the termination criteria and explicitly informed
the worker processes when to terminate. The clustering - the double in­
terleaved distribution - and concurrent horizontal and vertical pipelined
communications resulted in a complex (but efficient) code; the parallel L U
code is about 2500 lines of Occam. By comparison, the serial L U code is
about 100 lines. The reason the code is this complex is to obtain efficiency,
and indicates the time and effort required to develop efficient parallel code
at present.

For the initial code development stages, the matrix was read in from disk
and then scattered over the processor array. When testing of the parallel
performance started, the code was extended to include a thin-wire MoM
formulation (which is described in detail in the Section 5.12), and the indices
were set up to generate the matrix in parallel and with the correct double­
interleaved distribution.

Testing the correctness of this code proved rather more difficult than for
the CG code. The reason is that the CG code has fewer potential failure
mechanisms, since the data distribution is far simpler. The combination of
processors on the edge of the mesh requiring special handling, the double
interleaved distribution and the requirement for padding proved challenging;
correcting one bug tended to introduce a new and different one, or reveal
another bug that was masked by the previous bug. The only debugger avail­
able was a post-mortem dump debugger; finding bugs frequently required
running the code with a STOP (conditional on the processor index and/or
array index) intentionally inserted to cause an error; the system could then
be examined using the post-mortem dump debugger. If the guess regarding
where to halt the code was incorrect, it required changing the position of the
STOP and/or the conditions, re-compiling, running and then examining the
results, and repeating until the fault was identified. This process is lengthy
and tedious, and the development of interactive debu.ggers able to examine
concurrent programs is imperative for the large scale adoption of parallelism
by the scientific and engineering community.

Returning to the problem of validation, a standard test set was built up to
check a standard sequence of problems of different dimensions on simulated
meshes of different sizes. This permitted rapid checking of any modifications
for unexpected side-effects .

. As for the CG algorithm, writing general purpose configuration code was

of N available for this research.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 105

not trivial. The actual parallel codes were run using the Occam Toolset24
,

described in Section 3.4.2 It was while tests were being run that a technical
problem was discovered with the MC2

; although what little documentation
exists gives the impression that any valid switching satisfying the even-even
/ odd-odd requirements discussed in Section 4.6 can be switched, this is ac­
tually only true on one cluster of 16 processors. The reason is the restricted
number of inter-cluster links. The problem is a hardware peculiarity of the
particular transputer hardware available and has no effect on the basic dis­
cussion in this chapter25 .

5.12 Timing Results

The algorithms described in this chapter have been implemented by the au­
thor in Occam 2 for a transputer array. Figure 5.16 shows efficiencies for
a number of different array sizes as a function of matrix dimension. The
timing results are for single precision runs. The matrix was generated using
a simple thin-wire moment method scheme using sinusoidal basis functions
and collocation, using results from [ST81, Section 7.5] for the field radiated
by a sinusoidal current. This MoM code was also written in Occam 2. The
largest problem solved was a 1500 unknown problem, using 25 transputers.
The LU solver took about 15 minutes to run, which corresponds to a compu­
tation speed of 9.6 MFLOP fs, and an efficiency of close on 90%. The matrix
was also generated in parallel and the efficiency of the entire code is very
similar to that of the LU part, which is of course the most computationally
expensive part. The forward and backward substitution algorithms have also
been implemented and despite having rather poor efficiency (as expected),
the overall impact on the code is negligible due to the O(Af2) computational
cost of the substitution algorithm.

Figure 5.17 shows theoretical predictions, which can be seen to be rather
~ptimistic, although the general trend is correctly predicted. This is due to
the rather fine grain of communication, which is difficult to model accurately,
as well as the effect of loop overhead etc. To permit comparison of the parallel
LU and CG a.lgorithms, measurements for a parallel CG algorithm are also
shown in Figure 5.17 for 14 transputers26

• The CG results were measured

24 lt was initially thought that the TDS would not run on the MC2 . The Toolset has
a slightly different configuration strategy to the TDS, but the details are very subtle and
the effects on the basic principles unimportant. The configuration code for the parallel
LU algorithm as run under the Toolset on the MC2 is given in Appendix B.

25 With the new C104 packet-routing switch mentioned in Section 3.4.2, the problem
should not exist with the next generation of T9000 based transputer arrays using the
C104 packet-routing switch.

26The binary tree and mesh topologies cannot use exactly the same number of processors;

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 106

with a single precision version of PARNEC. (Note that the results shown in
Chapter 4 are for the double precision version of PARNEC.)

van de Vorst shows similar measured results in [vdVB89); the numerical
values for efficiency shown in Figure 5.16 are not directly comparable with van
de Vorst 's results, since his results are presumably for real valued matrices,
although the latter is not explicitly stated in his paper. The form of the
curves is nonetheless very similar, and the numerical values fairly close.

5.13 Accuracy Studies

The availability of a MoM code able to handle massive data structures per­
mits the exploration of the accuracy of the code, by investigating the con­
vergence of the input impedance of a thin wire. The code used the "frill"
generator model [ST81, Section 7.7]. Results are shown in Table 5.1 for the
convergence of the input impedance of a centre-fed thin wire dipole for a
fairly thin wire27 • The wire radius a and equivalent coaxial radius b of the
"frill" generator were chosen to give Zo = 50r! in an air-filled cable. The
results were obtained using a double precision code. For the 1499 segment
case, the input impedance was checked using a version of the same MoM
code, but using the CG matrix solver described in Chapter 4. The input
impedance computed with the CG solver was 2 x (43.89 + j25.25)r228

; the
difference between the LU and CG results was thus about 0.4%. The specified
residual norm tolerance on the CG solver was 1%, so the difference between
the impedances is within the specified accuracy of the CG solution.

With single precision versions of the these codes, the difference between
the impedance computed with the CG and LU solvers was about 7%. The
single and double precision versions (of both the CG and L U solvers) gave
results differing by about 20% for the reactance, with a normalized residual
of 1% specified for the CG solver. Clearly the precision with which the
matrix entries are generated affects the solution for such large problems, and
indicates that in the 1499 segment case, double precision was required. This
is a function of the problem; results shown in Section 6.7 for more realistic
problems using similar numbers of unknowns indicate that single precision is
acceptable.

The results display several interesting phenomena. Firstly, the results

a tree of 14 and a mesh of 16 is a fair comparison.
27Due to a coding error, the results shown in these tables must be multiplied by 2 to

obtain the actual dipole impedance. This will be indicated by an explicit factor of 2 in
the discussions in this section. The results for conductance and susceptance shown in
Figures 5.18 and 5.19 have been corrected.

28See previous footnote.

Stellenbosch University http://scholar.sun.ac.za

,..
X
~
t.l
s:
G)
t.l
""' ""' ~

CHAPTER 5. A PARALLEL LU ALGORITHM 107

188

98

88

78

68

58

48

38

28

18

8
8

Measured Erriciencies or Parallel LU Solver

..,..,. - --.-:-:., : : ·_:..:. ·. ·.;.:.: ~: -~: ·..:.:. ~ - 0- 0-.-0-.-.- 0 -t:)

~-- ······ . ..e·­,- ,.,. . ..,
......... ···:_.-·

-t" . . 116" •
/.,.·/.

/ : .
of' ... <"If
I .· I I : .

I : /
,~· /
I: .I
I .~.6

./. /{
:/
!i
ii ...

c6

288 488 688 888 1888

Hu~ber or unknowns

-·-

1288

4 tpts

9 tpts

16 tpts

25 tpts

1488

Figure 5.16: Measured efficiencies of the single precision parallel LU solver.

1688

Stellenbosch University http://scholar.sun.ac.za

,...
=--~

::n
CJ
s:
I) -CJ -c..

c..
~

CHAPTER 5. A PARALLEL LU ALGORITHM

188

98 I
I

I

/ ,

CoNparatiue efficiencies; LU and CG soluers

~----,- -....J

• (l)• •••••••••••••••••••••••• (.")

...

108

88 Cl" •. x····················~····················X -

78
~··

68

58

~·
48

38

28

18

8
B 288 488

.

688

0

LU predicted (16 tpts)

LU - Neasured (16 tpts)

x CG Neasured (14 tpts)

888 1888 1288 1488

HuNber or unknowns

Figure 5.17: Comparative effi.ciencies for the single precisiOn L U and CG
solvers for similar numbers of transputers.

-

-

-

-

-

-

-

1688

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LV ALGORITHM 109

obtained for the input impedance using the customary guideline of 10 seg­
ments per wavelength (see Chapter 2) were worthless; a much higher order of
discretization is required. This is due to the very thin wire used; as the wire
was made thicker, so did a smaller number of unknowns generate more useful
data. Secondly, the impedance appears29 to genuinely converge, in contrast
to results frequently reported using other models (such as delta-fed gaps and
impressed E-field models). This is shown clearly in Figures 5.18 and 5.19 for
the conductance and susceptance of the input admittance30 plotted against
the number of unknowns; the latter parameter is plotted logarithmically31

•

By way of comparison, the second order King-Middleton solution gives ap­
proximately 2 x (43.1 + j20.4)0; this result was obtained by interpolating
linearly from [Ell81, Table 7.5, p.315). Finally, the LU code generates correct
results with large matrices - for this particular geometry.

The experiment was repeated using a somewhat thicker wire. Much more
rapid convergence was noted - but also a very interesting breakdown of the
algorithm at between 499 and 549 segments. The negative input impedance
predicted by the code for 549 segments is physically impossible for a passive
system; this is an example of the use of basic physics to check the operation
of a numerical code as proposed by Miller [Mil88). Results are shown in
Table 5.2. Results computed for more than 549 segments are not shown
since they are worthless. The results were checked using a double precision
CG solver and 1499 segments; the program terminated after 2998 iterations
with a normalized residual of about 0.2% and gave the input impedance as
2 x (58.02 + j28.6)0. (For this case, the CG code was set to terminate when
the normalized residual had decreased below 0.01% or when the number of
iterations exceeded twice M). This result agrees very well with the 400
segment case, so it can be concluded that the CG solution is valid. Hence
we can conclude that the double precision LU solver is not reliable beyond
about 400 segments for the particular case under consideration. Using single
precision, the problem manifests itself with fewer unknowns, as expected:

29 Following examination of this thesis, it was been pointed out[Mil91a] that for Table 5.2,
the thin wire requirement s > L/2a, where s is the segment length, is violated for M > 25.
Similarly for Table 5.1, the thin wire requirement is violated beyond M > 250. Hence,
although the results show convergence, one should be cautious in drawing the conclusion
that the results have converged to the correct impedance value, especially in the case of
Table 5.2. It has also been commented (Mil9la) that. for the thinner wire, convergence
should be more rapid since the current is better approximated as a sinusoid. The results
shown here, intended primarily to validate the LU code for large problems, would benefit
from further investigation of the electromagnetic aspects. Such research should also take
note of Janse van Rensburg's work [JvR90].

30 Admittance is the inverse of impedance; conductance and susceptance are respectively
the real and imaginary parts of the admittance.

31 This plotting procedure was suggested to the author by Miller [Mil9lb].

Stellenbosch University http://scholar.sun.ac.za

,..
(/)

= Cl
£
Cl -Cf.l
Cl
tJ

= 11:$
+I
tJ
:I

"'=
= c
u

CHAPTER 5. A PARALLEL LU ALGORITHM

Convergence of the conductance

8.25

8.2

8.15

8.1

8.85

Hunber of unknowns

Figure 5.18: Convergence of the conductance of a dipole, ~
O.OOl,t = 0.0023

110

o.s, I

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM

-8.82

'; -8.84
s:
Q)

£
Q) ...
"'-8.8&

Q)
u
s:
I!S -8.88

......
g.
Q)
CJ
Cll
~ -8.1

-8.12

Convergence of the susceptance

Hu~ber of unknowns

Figure 5.19: Convergence of the susceptance of a dipole, b.
,\

0.001,* = 0.0023 .

111

o.5, I

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 112

Number of Re Zin/2 Im Zin/2
Segments (n) (n)

5 1.28 0.48
9 2.17 0.98
19 4.45 2.24
29 6.79 3.52
39 9.19 4.82
49 11.58 6.12
69 16.33 8.69
99 22.97 12.29
149 31.65 17.07
199 37.08 20.16
299 41.67 22.96
399 42.92 23.90
599 43.41 24.43
999 43.57 24.84
1249 43.62 24.99
1499 43.67 25.12

Table 5.1: Convergence of the input impedance of a dipole, ~ = 0.5, ~ =
O.OOI,t = 0.0023. Double precision LU code.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 113

the problem was encountered with between 250 and 300 unknowns for the
same wire shown in Table 5.1 when single precision was used.

Number of Re Zin/2 lm Zin/2
Segments (0) (n)

5 13.4 4.24
9 23.28 8.23
19 41.09 15.27
29 48.27 18.71
39 50.96 20.46
49 52.23 21.53
69 53.58 22.98
99 54.77 24.16
199 56.90 26.44
249 57.57 27.14
299 58.11 27.71
349 58.57 28.18
399 58.97 28.59
499 69.29 19.23
549 -5.05 -12.83

Table 5.2: Convergence of the input impedance of a dipole, ~ = 0.5, ~
0.01,} = 0.023

This is hardly surprising; it is well known in computational electromag­
netics that one cannot use very short segments with a thin-wire kernel, cer­
tainly not when the length of the segment starts becoming a fraction of the
wire radius. Elliott [Ell81, Appendix E) presents a detailed analysis of the
thin-wire kernel, and concludes that the approximation is valid if the com­
putations include an integration that extends over a length of the dipole of
at least plus and minus several wire diameters; compare this with a length to
diameter ratio of about 0.06 at the point at which the problems were noted
(for the double precision case).

The underlying theory aside, what happens numerically to the coefficient
matrix in this case is that the entries just off the diagonal become so close
to the diagonal that the division required in the L U algorithm cannot be
computed with the necessary accuracy. It should be noted that no pivoting
strategy can fix this problem; pivoting aims to get the largest (in some sense)
element on the diagonal. It cannot fix the problem of the elements adjacent to
the diagonal having almost the same value as the diagonal element. This was

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 114

confirmed by the following: the point where the single precision L U method
failed used sufficiently few unknowns to run on one transputer, and the serial
algorithm did implement partial pivoting. The pivot elements were all the
diagonals, i.e. no pivoting occurred. Even the more costly total pivoting
strategy will also be of no avail here.

However, it is also clear that to generate a problem using a MoM formu­
lation that the LU method solves incorrectly required breaking virtually every
guideline for discretizing structures. Hence, the LU solver should encounter
no problem with the matrices encountered in normal MoM analyses.

The condition number of a matrix gives a formal indication of the ill­
posedness of a system of equations. The condition number of the square
matrix [A] is defined as [MK75, p.131]

cond([A]) = II[A]II·II[At
1 ll (5.54)

where 11 [A] II is the norm of the matrix [A]. Using the Euclidean norm32
, the

condition number is [Mit73, p.l31]

cond([A]) = V Amax/ Amin (5.55)

where Amax and Amin are the maximum and minimum (in magnitude) eigen­
values of [AjT[A]. Jones also discusses condition numbers; see [Jon87, p.75].

The application of the condition number is as follows; suppose that the
system of equations [A][x] = [b] is perturbed as follows

[A][x + 8x] = [b + 8b] (5.56)

Then

11 [8x]ll < ([]) 11 [8b] 11
11 [x+8x] 11- cond A 11 [b+hb]ll

(5.57)

Similarly, if [A] is perturbed, then

11 [8xJII < 11 [8AJII
11 [x + 8x]ll - cond([A]) 11 [A+ 8AJII

(5.58)

Hence if the condition number is large, then small variations in [A] or [b]
result in large variations in the solution [x]. Computing the matrix condition
number is expensive computationally, and the following inequality is often
used to obtain a rough estimate of the condition number [Mit73, p.l33]:

(5.59)

32 Also known as the 2-norm. For a matrix, IIAII2 = ~~~~~~ II[A][x]ll2· Thu~ the matrix
norm is defined in terms of a vector norm.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM

where the oo subscript refers to the infinity norm, which is defined as

M-1
max "" 11 [A]IIoo =oiM-t L...J laiil

j=O

This is the maximum row sum of [A].

115

(5.60)

It would be useful to build in a matrix condition number estimator in
the parallel solver. This has not been done for the parallel code, and should
be addressed by future research. However, such facilities are available in
MATLAB33

. Results are shown in Table 5.3 for the 2-norm condition number
of the coefficient matrix of a 0.01 .>. wire. The program was unable to compute
the condition number for the 399 segment case, terminating with an error
message while trying to compute the condition number, a clear indication
of the ill-posedness of the problem. It is thus clear that the matrix is so
ill-posed for the case of 399 (and more) segments that no reliable solution
can be obtained. A common rule of thumb is that log10 (cond[A]) gives the
number of digits of accuracy lost due to round-off error [MAT89, p.3-41], and
this is also shown in Table 5.3.

Number of Re Zin/2 lm Zin/2 cond([A]) log10cond([A])
Segments (0) (n)

9 23.28 8.23 83.19 1.92
19 41.09 15.27 108.4 2.03
29 48.27 18.71 103.5 2.01
49 52.23 21.53 106.0 2.02
99 54.77 24.16 114.0 2.06
199 56.90 26.44 3031 3.48
249 57.57 27.14 50 330 4.70
299 58.11 27.71 887 070 5.95
349 58.57 28.18 1.63x107 ·· 7.21
399 58.97 28.59 Error Error

Table 5.3: Condition number of the coefficient matrix of a MoM formulation
for a dipole, ~ = 0.5, }: = 0.01,* = 0.023

The topic of the accurate computation of the input impedance of a thin

33 MATLAB 386 was available to the author, and illustrated graphically how much had
been achieved with the parallel algorithms on the transputer arrays. The 386 PC used
produced a maximum benchmarked speed of about 0.2 MFLOP /son LU decomposition;
compare this with the almost 10 MFLOP /s achieved on 25 transputers for the same
operation.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 116

wire is a. very complex one [JvRl\189, JvRl\190, JvR90]; these experiments
were performed primarily with the aim of checking the accuracy of the LU
code by monitoring the convergence behavior and comparing the results com­
puted using an LU and a CG solver for the same system of equations. How­
ever, these results also indicate the type of work possible with the parallel
software tools now available for MoM codes.

The ability of the CG solver to produce excellent results in situations
where an L U solver is useless was alluded to in Chapter 2; the results shown
here demonstrate this property. They also show how the CG method could
indeed generate a solution for a problem where internal resonance phenomena
are encountered.

5.14 Conclusion

In this chapter, the basic L U algorithm has been reviewed. Then the question
of parallelizing the algorithm was discussed. A simple graphical exposition
of a parallel algorithm was then introduced. The use of formal methods
was considered for the extraction of the parallelism; several examples were
given, the matrix-vector product of Chapter 4 was re-visited and the parallel
LU algorithm was analyzed using formal methods. The problem of load­
balancing was shown to be potentially serious with a parallel LU algorithm,
and a solution utilizing a. row-and-column interleaved scheme was described.
Pseudo-code was presented for the parallel algorithm. Parallel forward and
backward substitution algorithms were proposed that use the same data. de­
composition as the parallel L U algorithm. Pseudo-code was given for these
algorithms. Timing results obtained using a. matrix generated by a. simple
thin-wire MoM code were presented and discussed. Some of the results pre­
sented in this chapter have been presented at an international symposium
[Da.v91c].

The basic algorithm described in this chapter comes from recently pub­
lished work in the computer science literature [vdV88, vdVB89]: the contri­
bution of this work on the L U algorithm is:

• confirming van de Vorst's theoretical results [vdV88, vdVB89),

• extracting the essence of the method,

• presenting new and far simpler methods for deriving the results than
those of van de Vorst [vdVSS, vdVB89],

• presenting a new and much easier to understand graphical exposition
of the algorithm,

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. A PARALLEL LU ALGORITHM 117

• implementing the algorithm to provide a working parallel LU code for
MoM codes, and also providing independent experimental confirmation
of van de Vorst's measured results [vdVB89).

In addition, the sections on parallel forward and backward substitution
are new and of course the integration of the L U solver into a MoM code is
new. The timing results for complex valued matrices values are also new,
as is the comparison with the CG solver. The investigation of the accuracy
of the L U solver using a problem of engineering interest in computational
electromagnetics is also new; a systematic study of the convergence properties
of the thin-wire collocation formulation has also been performed, using the
parallel L U solver to permit the inclusion of large numbers of unknowns in
the study; such a study does not appear to have been undertaken previously.
It was established that the L U method only fails when the basic rules for
a MoM discretization are seriously violated, permitting the conclusion that
for large electromagnetic problems discretized according to the established
rules, the L U method is accurate. It was also confirmed that the condition
number does indeed provide a reliable indication of an unstable solution.

The main thrust of this thesis is developing the tools for the efficient
exploitation of parallel processing for the solution of MoM problems, which
this chapter has done for the LU solver - the results given in the closing
section of this chapter indicate the type of work now possible with these·
tools, and future research topics.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6

P ARNEC - A Parallel
Version of NEC2

Cry "Havoc", and let slip the dogs of war.

from "Julius Caesar", Act Ill, Scene I, by William Shakespeare

6.1 Introduction

This chapter reports one of the most intricate parts of this research: namely,
the application of parallelism to a large, existing code, written in an old,
unstructured language. The code in question was the Numerical Electro­
magnetics Code - Method of Moments Version 2, normally abbreviated to
NEC2. NEC2 uses the MoM to solve radiation and scattering problems in­
volving perfect or very good conductors. Both a. thin-wire Electric Field
Integral Equation (EFIE) formulation and a patch Magnetic Field Integral
Equation (MFIE) formulation are available; the latter requires that the re­
gion where patches are used be a smooth, closed structure. It is a. very
powerful code - in addition to free space problems, it can handle ground
planes, and, when used in conjunction with SOMNEC, even lossy grounds.

The difficulties were not of a fundamental, theoretical nature relating to
parallelism - these problems have been solved in Chapters 4 and 5. The
problems were rather related to software re-engineering, and indicate funda­
mental problems to be solved in that field.

A brief review of the theory underlying NEC2 is given. Methods to paral­
lelize the matrix generation, which is not as simple as for the demonstration
program used in Chapter 5 for the LU method, are discussed. An attempt
to use an Occa.m "harness" to provide a link between various FORTRAN
processes is discussed; the poor results obtained with this approach led ·to
the necessity for re-coding NEC2 in Occa.m. Fundamental problems posed

118

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 119

by such a re-write are highlighted. A systematic (but not presently auto­
matic) methodology for untangling "spaghetti" 1 code is presented; its use is
illustrated by application to one of the more formidable NEC2 subroutines.

Methods used to validate the code are described - initially for small
structures, and then for large structures. With the former, the problem is
simply to ensure that the Occam re-code is a valid re-implementation of
the code. With the latter, the problem is more fundamental: is the code
accurate for electromagnetically very large structures, or does machine pre­
cision impose some limit on the size of structure that can be modelled? This
is investigated using a symmetrical structure, solved both using, and then
without using, symmetry. The effect of single as opposed to double precision
is also investigated; it is shown to primarily affect only the convergence rate
of the CG algorithm, not the final answers. The biconjugate gradient method
is also briefly investigated; it is shown that the method's initial promise for
small systems fails on large systems, where the biconjugate gradient method
fails to converge. The biconjugate gradient method is also shown to be far
more sensitive to precision than the CG method.

6.2 A Review of the Theoretical Basis of
NEC2

6.2.1 The Electric Field Integral Equation

The thin-wire part of NEC2 is based on the Electric Field Integral Equation
(EFIE). The full derivation of the EFIE is lengthy; the derivation is similar
to that used in the Stratton-Chu formulation [Ell81, Section 1.7]. Poggio and
Miller present a full derivation in [PM73].

The form of the EFIE used in NEC22 follows from an integral represen­
tation for the electric field of a volume current density J,

where

E(r) = - jTJ f](r') · G(r, r')dF'
47rk Ar

(
- _,) e-ik!T-r'l

g r, r = -,-_-_-,-,
r-r

(6.1)

1 "Spaghetti" code is the generic name used in the literature for code written using
unstructured languages [LWA91]; the name originates from the appearance of a flow-chart
of the code.

2This section is based on [BP81a, pp.3-5].

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 120

k=w~

"7 = VJ-Lo/co
and the time convention is eiwt. The prime and unprimed coordinates refer
to source and field points respectively. E(r) is the elec!!ic field at field point
F, and J(r) is the~olume current at source point r. I is the identity dyad
(xx + yy + zz). G(r, r') is the free space dyadic Green's function. Tai's
monograph provides a comprehensive exposition of dyadic Green's functions
in electromagnetics [Tai71], and summaries of the topic may be found in
[Kon86, Wan91].

If the body is a perfect conductor, the volume integral reduces to a surface
integral, and equation (6.1) becomes

E(r) = - jry [J(r') · G(r, r')dS'
41rk ls

with J(F') the surface current density.

(6.2)

The observation point r is restricted to be off the surfaces so that F =f r'.
If r approaches S as a limit, the integral must be understood as a principal
value integral.

Using the boundary condition for the tangential electric field at a con­
ductor - it must be zero - an integral equation for the current induced on
S by an incident field E

1
can be obtained as:

(6.3)

where E
8 (r) is the field of the induced current, given by equation (6.2), and

n(r) is the unit normal vector of the surface at r.
Vlhen the surface is a thin wire, several simplifying approximations can

be made. These are:

• Transverse currents can be neglected relative to axial currents on the
wire.

• The circumferential variation in the axial current can be neglected.

• The current can be represented by a filament on the wire axis.

• The boundary condition on the electric field need be enforced in the
axial direction only.

These "thin-wire" approximations are valid as long as the wire radius is
much less than a wavelength and also much less than the wire length and seg­
ment length; the la.st requirement has already been discussed in Section 5.13.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 121

The first three assumptions permit the surface current density J s (r') on
a wire of radius a to be replaced by a filamentary current I where

where s' is the distance parameter along the wire axis at r' and ;, is the unit
vector tangent to the wire axis at r'.

Using this thin-wire approximation and enforcing the boundary condition
in the axial direction only reduces the EFIE to the following scalar integral
equation:

. [)2
- s. E1(r) = _..!.!.!._ f I(s')(k2s. s'-)g(r,r')ds' (6.4)

47r k j L as as'

6.2.2 Numerical Solution

In equation (6.4) E\r) is assumed to be known; for instance it could be a
plane wave or the field impressed between the terminals by a source; I is the
unknown axially directed current which must be solved for. NEC2 solves for
the unknown current using the Method of Moments (MoM), as described in
Chapter 1.

6.2.3 The Current Expansion Functions

NEC2 uses a relatively complex set of current basis functions: each expansion
function consists of a sine, cosine and constant term. Each basis function is
centered on a segment, but also "spills over" onto all connected segments.
Each expansion function i, centered on segment i, is then forced to satisfy
the following conditions

• The current must go to zero at the outer edges of all the connected
segments with zero derivative.

• The current must be continuous a.t the junction of two segments.

• The current must satisfy a condition derived by Wu and King [\\'K76]
related to charge continuity3 .

It is important to note that the conditions on current continuity and
charge continuity are satisfied by each individual basis function; since the
total current on the wire is a linear combination of all the basis functions

3 From the continuity equation for the time harmonic case \7 · J = -jwp, ·a condition
on charge continuity is equivalent to a condition on the spatial current derivative.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 122

on the segment, if each basis function satisfies current and charge continuity,
then the total current will also. The second and third points itemized above
are thus sufficient, but not necessary conditions; it is at least theoretically
possible to enforce the condition of current and charge continuity on only
the total current. This is a subtle point, requiring a rather intense study of
[BP81a, p.ll-16] to fully appreciate it.

Using these conditions, it can be shown that there is only one independent
unknown coefficient per basis function - it is chosen arbitrarily to be that
associated with the constant term. The coefficients of the cosine and sine
terms are related to that of the constant term by expressions involving only
the geometry of the segments (length, radius and connectivity). They are
given by equations (43-63) in [BP81a]. The author checked these results;
there is a factor of 1/k missing consistently in equations (43-51), but this is
compensated for by a. missing factor k in equations (52-53), so the results
may be used as given. (The same error will also be found in (54-57) and
(58-61).) Note also that Q in NEC2 is not the Wu-King q(z); it is rather the
constant in Wu and King [WK76, equation (25)].

6.3 The Occam Harness

It is a. generally accepted fact for large, numerically intensive programs that
a relatively small part of the total code is responsible for a disproportionately
large amount of the run time. It is often referred to as the 90-10 or 80-20
rule, where the first number refers to the percentage of run-time consumed
by the time-intensive code and the second to the percentage of the total code
comprising this time-intensive code. With NEC2, the most time-consuming
part is the LU factorization of around 100 lines. The total code is several
thousand lines. It would thus be a very satisfactory solution if it were pos­
sible to leave the majority of the code in the original language (FORTRAN
in the case of NEC2) and develop parallel code for only the relatively small,
time-intensive code. The Occam Toolset allows one to do this: a module
written in an "alien" 4 language can be called by an Occam code. Communi­
cation between the Occam "harness" and the FORTRAN code can then take
place over channels. For a. parallel program, Occa.m worker processes with
embedded FORTRAN processes would be distributed over the processing ar­
ray, with the inter-processor communication handled by the Occam harness.
More details on the harness concept ma.y be found in [AHZ90].

The Occam/FORTRAN interface code supplied was tested, and the au­
thor was able to get simple test cases working - but not reliably. The
problems have already been described in Section 3.4.2, and were due to the

4 0n the transputer, any language other than Occam.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 123

unreliability of the FORTRAN compiler and the total absence of debugging
support in the FORTRAN environment. The author initiated development
of an Occam harness to parallelize the matrix generation. This work was
extended by Malan, but the parallel code was very inefficient and did not
work reliably [Mal90].

It must be emphasized that the fault here is the inadequate FORTRAN
compiler; the basic philosophy is sound and sensible, but was rendered un­
workable by the very poor FORTRAN compiler. Other researchers have
reported some success along these lines, for example Schuilenburg with a
large GTD code [Sch90] and Nitch with NEC2 [NF90b]. Nitch parallelized
NEC2 using the harness methodology outlined above and obtained impres­
sive speed-ups, but comments that the effort of manipulating the FORTRAN
source code led him to start re-coding NEC2 in c++ for his future work
[NF90a].

6.4 The Occam Re-write: Philosophy and
Methodology

NEC2 is an exceptionally well documented code, and the three part doc­
umentation (theory description, code description and user's guide [BP81a,
BP81b, BP81c]) could well be prescribed for courses in software documen­
tation. This made possible the re-write; without this documentation the
project would not have been feasible.

NEC2 is written in one of earlier versions of FORTRAN, probably FOR­
TRAN 66, although the version distributed with the initial NEEDS 5 release
also contained a number of VAX-specific FORTRAN extensions. FORTRAN
66 was released before the advent of structured programming, which dates
back to the around 1970 and the work of Dijkstra and \.Virth - the latter
being responsible for Pascal. As such, the authors of NEC2 had to use a
number of unstructured constructs which made the re-write a very far from
trivial issue. It must be commented again that, considering the languages
available when NEC2 was developed, the development and documentation
was done with admirable care. The problems highlighted here were inherently
unavoidable in FORTRAN 66.

There are two fundamental problems with FORTRAN from the viewpoint
of structured coding: the infamous go-to and related constructs, and the
common block. The go-to construct greatly complicates the goal of re-using
software [L\VA91], and old FORTRAN codes contain numerous examples of
the "spaghetti" code that can be produced using several suitably ~nterwoven

5 Distributed by the Applied Computational Electromagnetics Society.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 124

go-to's. Dijkstra identified the go-to as a highly undesirable construct,
and using structured programming its use can be entirely avoided, using
constructs such as those defined in Section 3. 7. The common block is a
specifically FORTRAN construct, and is a special case of the almost always
undesirable global variable. It would appear very useful to be able to define
an area in memory common to several routines, and hence create a global
variable. The problem is that the use of the common block makes it very
difficult to discover exactly what side effects a sub-routine will have, since
not only variables passed as arguments will be affected by a sub-routine
containing common blocks. FORTRAN 77 is a tremendous improvement
from the viewpoint of structured coding, but as already mentioned, NEC2 is
essentially written in FORTRAN 66.

Occam 2, the target language, is a modern, structured, strictly typed
language and does not support the go to statement at all. Common blocks
could be simulated using global variables which are in scope for all pro­
cedures, but this is not the modern, structured, approach, which calls for
different modules, isolated from one another completely except for the pa­
rameters passed (either by value or reference) in the argument list. Extensive
use was made of separate compilation units. A separately compiled unit6 is a
self-contained section of code, communicating with other units only via the
argument list (and in Occam of course, via channels as well.) All subroutines
and functions in the FORTRAN code were converted to separately compiled
units in the Occam re-write.

The strict typing; of Occam permits an Occam compiler to perform exten­
sive checking at compile time, which detects a large number of faults before
the program even has an opportunity to run incorrectly with them. An ex­
ample will suffice to motivate this: a very difficult problem to detect with
FORTRAN is the incorrect agreement of parameters in a subroutine call (i.e.
the number and/or type of parameters in the defining SUBROUTINE state­
ment does not agree with the number and/or type in the calling statement).
The fault is particularly insidious if it is the precision that is incorrect, and
such faults can be very difficult to detect. Occa.m checks agreement of both
type and number of parameters across the calling and defining statements.
Another insidious FORTRAN bug is the accidental mis-spelling of a. vari­
able; the compiler's default typing automatically assumes that this is a new
variable. Most dialects of FORTRAN 77 now include an IMPLICIT NONE
statement that can be used to detect the accidental mis-spelling faults, but

6 A separately compiled unit is the same as a ThrboPascal unit.
;Strict. typing means that all variables and constants must have their type explicitly de­

clared before they are referenced. FORTRAN is not, by default, a strictly type<;! language;
the FORTRAN default is that all variables beginning with the letters I-N are integers,
and the rest real.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 125

a facility to check parameters lists across calls in FORTRAN is not generally
provided.

The one undisputed advantage that FORTRAN does have is its complex
data type; the author had to split the real and imaginary parts and compute
each separately.

The most serious problems during the re-write were encountered with
several rather tightly coded routines that used a large number of go-to's.
At first sight, the functioning of the routines was so disguised by these go-to's
as to be utterly unintelligible. One of the most difficult routines to convert
was SBF, which contains no less that 22 go-to's and computed go-to's in
about 130 lines of FORTRAN. Another major problem was the use of common
blocks to communicate data to subroutines, as discussed earlier.

The fundamental problems can be summarized as follows:

• Ensuring that the necessary data is passed to the procedures.

• Recovering the underlying logic of the procedures.

The former is the easier problem. To solve it, extensive use was made of
the cross-referenced listing that most good compilers can generate - the au­
thor used a VAX system for this. These listings will typically include a list of
variables, a warning regarding use in common blocks and equivalencing8 ,

lines accessed and how accessed (i.e. read, write). This data was used to de­
termine if a particular common block parameter was used in a routine, since
by no means all such parameters were actually required in all the routines
that contained a common block referencing a particular parameter.

The latter problem was rather more difficult. \Vhen re-engineering a
code, the aim is as far as possible to avoid having to understand the precise
operation of the original code, to capitalize on the original intellectual in­
vestment in the code. This was not always possible with the procedures with
substantial "spaghetti" code components. The procedure adopted for these
cases was the following: the original logic was recovered using a flow-chart,
and then recoded using structured constructs in pseudo-code: primarily the
if-then-else and while constructs. Once functionally equivalent pseudo­
code had been derived, the pseudo-code was simplified and then implemented
in Occam.

As an example of t~1is approach, the re-coding of subroutine TRIO is
considered. TRIO evaluates a.ll the parts of current expansion functions
on a single segment due to each of the segments connected to the given
segment. It is only 41 lines of FORTRAN, but contains no less than 11

8 Another powerful and potentially dangerous FORTRAN command, originally provided
to conserve scarce memory but frequently the source of very subtle bugs.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 126

go-to's, if-go-to combinations and if (number) i,j ,k constructs (an­
other unstructured construct), indicating how even a short code stub can
pose major problems. The original FORTRAN is shown in Figure 6.1.

The flow chart for the program is drawn up. This is shown in Figure 6.2.
Now the flow chart is examined for fundamental operation. The first action
is to decouple parts of the flow chart.· Label 8 corresponds to some action
followed by termination, so it can be seen that first part of the problem has
been reduced to the structure (one hesitates to call it a loop) between the
first test on j cox (<, =, > 0) and the second such test on either the main
path or the branch on the right hand side of the flow chart labelled Branch
A. Hence, this is a "loop" that must execute until some termination criteria
has been met. This leads one to consider a while structure. Eventually, the
pseudo-code given in Figure 6.3 results.

To read the flow chart and pseudo-code, it is necessary to know the fol­
lowing about how NEC2 keeps track of connectivity data. The j cox test
determines whether a segments has any connections: Array icon1 contains
connectivity data for end 1 of segment i.

• if 0, there are no connected segments

• if k , it is connected to end 2 of segment k

• if -k , it is connected to end 1 of segment k

Similar definitions hold for icon2, containing connectivity data for end 2 of
segment i, except that the role of k and -k are interchanged. An example:
if segments are connected 1-2-3-1, then the arrays icon1 and icon2 will be
the following: icon1 = [312) and icon2 = [231). With multiple wire con­
nections, segment connectivity data is stored cyclically, only the next lowest
segment's number being stored, and hence a "daisy chain" must be traversed
to determine whether a segment is possibly connected to several others.

Further improvements are possible. Inspection of the pseudo-code shown
in Figure 6.3 reveals that the code is actually executing the same instructions
for each end; it would be rather clearer if this was shown explicitly rather
than incorporated in the first if construct inside the while and also in the
j cox <> j code stub . The code given in Figure 6.4 shows this; note how
the readability of the code is increasing. The actual Occam implementation
of TRIO is essentially 'the code given in Figure 6.3 but the technique of
simplifying the pseudo-code further once pseudo-code functionally equivalent
to the flow-chart had been obtained was applied to several other routines, for
instance routines SBF and TBF, which contain similar structures. Note that
for simplicity, global variables are used within a procedure such as TRIO; the
total procedure length is small enough to avoid problems. It is the concept of

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 127

global variables for the whole code or major parts thereof that is dangerous
software engineering practice.

The method had to rely on a certain amount of trial and error; it is
extraordinarily difficult to recover the underlying logic from "spaghetti" code.
The methods outlined for TRIO did not have to be applied to all the NEC2
procedures; some could be converted relatively easily without a full flow-chart
and pseudo-code analysis, or only using this analysis in places. However, the
following procedures all required a full flow-chart and pseudo-code approach
similar to that shown for TRIO: TBF, SBF, INTX and ISEGNO.

At the time of writing, only a limited number of the capabilities provided
by the full NEC2 were available, but the basic thin-wire formulation had been
completely implemented. The code is around 5000 lines in length, and con­
sists of around 20 major procedures corresponding to the original FORTRAN
subroutines and functions. Following good software engineering practice, a
code manual and user manual similar to the original NEC2 documentation
[BP81b, BP81c] have been produced [Dav91 b, Dav91a].

PARNEC has been written so that changing the maximum array dimen­
sions or the number of worker transputers is trivial; these parameters are
declared in two library files. (This should be compared to trying to change
the dimensions in the original FORTRAN co<;le- a painstaking and far from
trivial job as anyone who has done it, such as the author, will vouch.)

The re-write required a detailed knowledge of FORTRAN, and also -
in places - of the underlying application. Developing a program able to
convert the FORTRAN Figure 6.1 into the readable, functional and struc­
tured pseudo-code of Figure 6.4 should be a viewed by computer scientists
as a great cha.llenge9

, and would be of great utility for engineers and scien­
tists wishing to port old codes to new languages, to efficiently exploit new
architectures, or merely to improve the maintainability of the code.

6.5 Parallelizing the Matrix Fill

It has been mentioned that a test Mol\1 code using a simple straight thin
wire was implemented, and that parallelizing the matrix fill was a trivial the­
oretical problem. This demonstration code used a sinusoidal basis function,
collocation, and an analytical solution for the field radiated by an sinusoidal
current [ST81, Chapter 7]. Matrix element a;j is the field of basis function j
a.t test point i, and is given by the sum of three terms involving the distance

9 A rather easier problem would be the development of a code that will automatically
convert a program written in Pascal to one in Occam, since these languages share very
similar structures and are both strictly typed . This is also a rather easier exercise to
perform manually.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 128

SUBROUTIIE TRIO (J)
C COMPUTE THE COMPOIEITS OF ALL BASIS FUICTIOIS 01 SEGMEIT J

COKMOI /DATA/ LD,I1,12,1,1P,M1,M2,M,MP,l(300),Y(300),Z(300),
1SI(300),BI(300),ALP(300),BET(300),ICOI1(300),ICOI2(300),
2ITAG(300),ICOII(300),WLAM,IPSYM

COKMOI /SEGJ/ Al(30),Bl(30),CI(30),JC0(30),JSIO,ISCOI(SO),ISCOI,
1IPCOI(10) ,IPCOI

DATA JM!l/30/
JSIO=O
JCOX=ICOI1(J)
IF (JCOX.GT.10000) GO TO 7
JEiiD=-1
IEID=-1
IF (JCOX) 1,7,2

1 JCOX=-JCOX
GO TO 3

2 JEiiD=-JEID
3 IF (JCOX.EQ.J) GO TO 6

JSIO=JS1i0+1
IF (JSIO.GE.JMAX) GO TO 9
CALL SBF (JCOX,J,Al(JSIO),BX(JSIO),Cl(JSIO))
JCO(JSJO)=JCOX
IF (JEID.EQ.1) GO TO 4
JCOX=ICOI1(JCOX)
GO TO S

4 JCOX=ICOI2(JCOX)
S IF (JCOX) 1,9,2
6 IF (IEID.EQ.l) GO TO 8
7 JCOX=ICOI2(J)

IF (JCOX.GT.10000) GO TO 8
JEID=1
IEID=1
IF (JCOX) 1,8,2

8 JSIO=JSIO+l
CALL SBF (J,J,AX(JSiiO),BX(JSIO),Cl(JSIO))
JCO(JSIO)=J
RETURI

9 WRITE(6,10) J
STOP

c
10 FORMAT (44H TRIO - SEGMEIT COiiiECTIOI ERROR FOR SEGMEiiT,I5)

EliD

Figure 6.1: FORTRAN source for subroutine TRIO.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 129

L..._ __ ,__-{ 3

jsno: = jsno+ 1

coil SBF
jco(jsno): = j

RETURN

BRANCH A
~j
~--~--t--t--~---,_;::::L! __ ~

•J ® I jsno:=jsno+ll

Figure 6.2: Flow chart for subroutine TRIO.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 130

process(trio)
begin{ trio}

variable declarations
{initialize}
jsno := 0
jcox := iconl[j]
patch.error, seg.conn.error, finished := FALSE
iend, jend := -1
vhi1e (JOT patch.error) AID (JOT seg.conn.error) AID (JOT finished)

begin
if{test for connected end}

jcox = 0 then
begin{jcox = 0}

j cox : = icon2 [j]
{patch test; not shovn}
iend, jend :=1
if {It is necessary to re-check jcox since it has nov changed}

jcox < 0 then jcox := -jcox
jcox > 0 then jend := -jend
jcox 0 then finished := TRUE

end{if}
end{jcox=O}

jcox < 0 then jcox := -jcox
jcox > 0 then jend := -jend

if
BOT finished then

begin{IOT finished}
if

jcox = j then
if

iend = 1 then finished := TRUE
iend = -1 then

begin{iend = -1}
jcox := icon2[j]
{patch test; not shovn}
jend, iend := 1
if

jcox = 0 then finished := TRUE
jcox <> 0 then SliP -- and repeat the vhi1e

end{iend = -1}
jcox <> j then

begin{jcox <> j}
jsno := jsno +
if

jsno > jmax then seg.conn.error := TRUE
jsno <= jmax then

begin{jsno <= jmax}
call process sbf
jco[jsno] := jcox
if

jend 1 then jcox := icon2[jcox]
jend -1 then jcox := icon1[jcox]

if
jcox 0 then seg.conn.error ·= TRUE
jcox <> 0 then SliP

end{jcox <> j}
end{BOT finished}

finished then SliP {occurs if second end is unconnected}
end{!.hile}
end_code stub{corresponding to branch 8}

end{trio}

Figure 6.3: Pseudo-code for subroutine TRIO; first pass.

_j

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 131

process(trio)
begin{ trio}

variable declarations
procedure end{declare procedure}

begin{procedure end}
while (lOT patch.error) AID (lOT seg.conn.error) AID (lOT finished)

begin
if{test for connected end}

if

jcox = 0 then finished := TRUE
jcox < 0 then jcox := -jcox
jcox > 0 then jend := -jend

lOT finished then
begin{BOT finished}

if
jcox = j then finished := TRUE
jcox <> j then

begin{jcox <> j}
jsno := jsno + 1
if

jsno > jmax then seg.conn.error := TRUE
jsno <= jmax then

begin{jsno <= jmax}
call process sbf
jco[jsno] := jcox
if

jend = 1 then jcox := icon2[jcox]
jend = (-1) then jcox := icon1[jcox]

if
jcox = 0 then seg.conn.error := TRUE
jcox <> 0 then S!IP

end{jsno <= jmax}
end{jcox <> j}

end{IOT finished}
finished then S!IP

end{if}
end

end{vhile}
end{procedure end}

{actual start of main code}
jsno := 0

{initialize for end 1}
jcox := icon1 [j]
patch.error, seg.conn.error, finished := FALSE
iend, jend := -1
call procedure end {for end 1}

{initialize for end 2}
jcox := icon2[j]
patch.error, seg.conn.error, finished ·= FALSE
iend, jend := 1
call procedure end {for end 2}

end_code stub{corresponding to branch 8}
end{ trio}

Figure 6.4: Pseudo-code for subroutine TRIO; improved structure.

Stellenbosch University http://scholar.sun.ac.za

t

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 132

from the two ends and the middle of basis function j to the test point. It is
of absolutely no concern in what sequence the calculations are performed, so
the i, j index set for each processor can be chosen to suit whatever clustering
is desired; row block clustering for the CG algorithm and double interleaved
clustering for the LU algorithm.

However, matters are not so simple with NEC2. The reason is that the
explicit enforcement of current and charge continuity results in segments with
possibly very different numbers all contributing to the current on segment
j. NEC2 adds the necessary contributions to the relevant matrix entry as
the segment index increments, which is of course trivial on a serial processor
with the matrix in core10 . Thus, one cannot decompose the matrix fill of
NEC2 by segment, since it is very possible that a segment on one processor
would be connected electrically to a segment on another processor, and this
will require complex coding to handle.

A very simple way of decomposing the problem is to rather do it by field
point. This is the way that NEC2's out-of-core storage works: that problem
is of course very similar to the parallel decomposition problem, since in the
former case one does not want to continually modify elements stored on
disk and in the latter case, the same holds for elements stored on different
processors. It is also (serendipitously) the row- block decomposition chosen
for the CG algorithm- although modifying the CG algorithm to a column
block decomposition is an almost trivial operation, one would simply have
to interchange the order in which the parallel matrix-vector multiplication
paradigms were used.

For use with the parallel LU solver, a row-block clustering to double
interleaved clustering mapping scheme will be required. This will require
communication of O(M2) and will thus have minimal effect on the overall
code efficiency.

6.6 Software Validation

\Vith any large and complex piece of software, such as the re-engineered
PARNEC, the question of va.lidating the code is crucial. One must be partic­
ularly careful regarding MoM formulations, since some of the "observa.bles"
such as the radiated far fields, gain and radar cross section be ma.y station­
ary functionals of the surface current. Hence the fields are degraded by the
second variation of the current, to use the terminology of the variational
calculus. An example- a 10% error in current will reduce to a 1% error

10In finite element parlance, this is an assembly by elements, as opposed to an assembly
by nodes; see [NdV78, p.48] .

_j

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 133

in the radiated far fields [Har61, p.335]. The variational aspects of the mo­
ment method have been discussed in detail by Richmond [Ric91]. Thus a
validation procedure using the far fields is a fundamentally unsound check.

A far better check is on the currents themselves or the input impedance11 •

The latter is a particularly suitable one-parameter check on the code, and
was used in the later stages of the code development, when substantial parts
of the code had already been validated. However, for the initial debugging
stages, the matrix elements had to be inspected directly.

A representative test set, involving dipoles (with very simple connectiv­
ity) and boxes (to represent a far more connected wire structure) was built
up, using initially a fairly small number of unknowns. The absence of a
(working) interactive Occam de bugger has already been noted in Chapter 3.
The solution adopted was the insertion of write statements at various criti­
cal parts of the code (such as preceding and following a procedure call). To
permit more selective debugging, these statements were coded so that they
could be selected using a library debug file. This avoided having to edit the
source code if one wanted to select or de-select certain outputs. These inter­
mediate results were then compared to results in the corresponding place in
the original FORTRAN code, using the excellent interactive VMS debugger
available on the VAX cluster.

During validation of the code, it was noted that in many cases there
were minor differences in the interaction matrix elements. Typically these
were in the fourth or fifth significant figure. This initially appeared strange,
since although the codes were written in two different languages, they were
executing precisely the same logic. The reason is that the Occam compiler on
the transputer uses standard IEEE arithmetic, whereas the VAX uses its own
(and different) standard. This primarily affects the representation of floating
point numbers and the precision of operation. Thus, even logically identical
code will not produce the same results if extensive floating point operations
are involved. This shows up clearly in INTX, the Romberg integration routine
used in NEC2.

It is rather tempting to glibly attribute differences in the results to the
afore-mentioned differences in floating point precision, whereas the differ­
ences may actually be due to an underlying logical error. This was com­
prehensively investigated by converting to double precision (64 bits per real
number) operation. This also required a double precision version of NEC2,
which due to the alread)r noted unstructured character of FORTRAN 66 is
also a non-trivial job. The methodology adopted to produce a reliable double
precision version is described in Appendix C. The finished double precision

11 Richmond [Ric91) shows that the impedance can also be stationary, if a Galerkin
formulation is used. NEC2 uses collocation.

J

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 134

Mean Standard Deviation
2.579 X 10-' 4.026 X 10-'

Table 6.1: Mean and standard deviation of the normalized differences be­
tween the interaction matrices generated by PARNEC and NEC2.

code was checked by comparing results computed using the double and single
precision FORTRAN codes for example 1 in the NEC2 user manual [BP81c,
p.98] and against a box-like structure with about 130 segments; only very
minor differences were noted, in line with the difference in precision. The
conversion took an entire man-day. By comparison, the Occam re-code took
half-an-hour, thanks to the strict typing in Occam. Using the TDS edi­
tor's search-and-replace facility, all occurrences of REAL32 were changed to
REAL64 and the single precision library calls were replaced by their double
precision equivalents. Unlike FORTRAN, Occam does not have generic func­
tion names. If the incorrect precision function is used, the compiler flags an
error, so the conversion is very safe.

With the double precision versions available, the validation could con­
tinue. Differences in the matrix elements in the fourth and fifth significant
places were still noted. Then the Romberg error criterion (RX in INTX) was
reduced from 10-4 to 10-8

, and the number of significant digits of agree­
ments immediately improved dramatically. A Romberg error criterion of
10-4 should indeed only generate about 4 digits of precision.

Once all these steps outlined had been taken, the validation showed agree­
ment to working precision for small numbers of unknowns. However, this may
not adequately test all the possible paths the code ma.y take; for instance
NEC2 uses an approximate method to perform the numerical integration
for segments separated by more than that specified by parameter RKH. But
with large structures, examining the interaction matrices manually is a po­
tentially error-prone operation. Hence the process was automated, and a
Pascal program zmat was written to read in the NEC2 and PARNEC in­
teraction matrices and compare them. The program computes the standard
deviation and mean of the differences on a element by element basis, and
also finds the largest absolute and relative differences. It was then applied
to several test structures; a typical result for a 50 segment problem, a cube
with a monopole, with the Romberg error criterion set to 10-8

, is shown in
Table 6.1. The mean error is close to the Romberg error criterion.

It is interesting to apply the software metric concept to PARNEC. One
useful one is due to Halstead [Sto90b]; it gives the expected number of errors

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 135

in a program after compilation (i.e. the program syntax is correct but the
logic has not been tested) as

with

(Nt + N2)log2(n 1 + n2)
3000

N1 : the total number of operators;

N 2 : the total number of operands;

n 1 the number of distinct operators;

n 2 the number of distinct operands.

(6.5)

PARNEC Version 1.1 ran to around 5000 lines of code; a substantial part
of this was in-code documentation, so the executable instructions probably
comprised about 3000 lines. The average number of operators per line is
probably about 2, giving N1 ~ 6000. The total number of operands is
probably fairly similar, so N 2 :::::::: 6000. The number of distinct operators is
around 20 and the number of distinct operands around 50. Thus Halstead's
metric gives an expected number of errors of 25. The actual number of errors
detected during validation was about 6. Each procedure was also checked by
hand and compared to the original FORTRAN subroutine before validation,
which explains the smaller number of errors.

6. 7 Some Results for a Large Problem

Once the validation of PARNEC had been satisfactorily completed, attention
could be turned to the problem of whether the code was able to solve large
problems accurately, or whether machine precision would limit the useful
range of the MoM, as has been suggested previously [Han81, p.384]. Care is
needed in designing an experiment to investigate this. Obtaining really good
agreement between measured and numerically predicted data is a. problem
in computational electromagnetics, especially on such a. sensitive parameter
as input impedance. The reasons are legion; perhaps two of the more com­
mon are inaccurate numerical models and inaccurate measurements. The
former could be caused by approximations in the underlying theory, or by
inadequate representation of the structure (i.e. a. piecewise linear approxi­
mation of a. curved surface). The applied E-field model used in NEC2 and
PARNEC falls into the first class- it is known to only approximate the ac­
tual impedance. Hence numerically modelling an electromagnetically large
structure with PARNEC and comparing the results to measurements will not

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 136

be a very good test of the inherent accuracy of the MoM, given the problems
known to exist with the source model.

A very fast computer with a very high working precision and very large
memory would be the ideal benchmark - but it is of course the absence
of such a. machine that led to the research reported in this thesis. But
there is a wa.y in which electromagnetically large structures can be simulated
without generating a correspondingly large system of equations, and that is
by exploiting symmetry12

•

The problem investigated was a cone-cylinder [1R89], shown in Figure 6.5.
The full structure consists of a cylinder of length 397 mm and diameter
53 mm, capped by a cone of length 1 07mm at one end and a closed off at the
other. 4 monopoles, each 1 mm in diameter and 25 mm long are mounted on
the cylinder 28 mm from the cone-cylinder interface. The monopoles make an
angle of 30° with the cylinder. The monopoles are mounted symmetrically,
i.e. 90° apart. The frequency of operation is 3 GHz. The monopoles are
exactly a quarter of a wavelength long at this frequency.

The structure is ideal for the required validation purpose. It is electro­
magnetically long- about 4 wavelengths. Using a 10 mm nominal segment
length requires a.bout 1500 segments to model the structure. The wire ra­
dius for the wire-grid used to simulate the surface satisfied the "same surface
area." rule (or more accurately the "twice surface area rule") [Lud87]. The
structure exhibits four-way symmetry.

The numerical experiment was the following: the double precision NEC2
version was applied to the problem using the symmetry, which reduced the
number of unknowns to just under 400. The full problem was then solved
using the double-precision version of PARNEC13 and the results are given in
Table 6.2. The Romberg error criterion was set to 10-8 , and the normalized
residual error tolerance for the CG solver was set to 10-4 (0.01%). The
results agree to four significant digits, the expected accuracy of the CG solver.
Results are also shown for the same experiment repeated with the single
precision version of PARNEC. The other parameters were as for the double
precision run. Agreement to 3 decimal places is noted; this is not quite the
precision set by the normalized CG error criterion but is due to the matrix
fill procedure, involving subtracting very similar numbers. These results a1·e
very significant; they show that a problem with about 1500 unknowns can

12The author thought of this independently, but subsequent discussions revealed that
this method for checking the accuracy of matrix generators and solvers for large MoM
systems has been used before [Mil90b].

13The results shown in this chapter were generally computed using 14 or 30 worker
transputers; the number of transputers- 1 for the serial code, and 2, 6, 14 or 30 worker
transputers for the parallel code - had a very small effect on the impedance values, but
always less than the normalized CG error tolerance.

_j

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 137

PARNEC PARNEC NEC2
Single Precision Double Precision Double Precision

(Symmetry not used) (Symmetry used)
Re I m Re I m Re I m

23.289 -12.410 23.301 -12.435 23.300 -12.432

Table 6.2: Input impedances for the 1516 segment model (f!)

be solved to a very high degree of accuracy - certainly far more than the
underlying accuracy of the modelling process. For this size of problem, these
results also show that the effect of precision on accuracy is insignificant when
using a CG solver, unless more than three significant digits of accuracy are
required.

A number of smaller versions of the cone-cylinder were also created. All
used the same discretization (a nominal segment length of 10 mm); the dif­
ference was the amount of the structure modelled. It is these models that
were used to generate the timing data for the parallel CG algorithm shown in
Chapter 4. A summary of these models is given in Table 6.3. The length of
cylinder is the length from the cone-cylinder junction. The input impedances
computed are also tabulated; these were computed using the double preci­
sion PARNEC, Romberg error criterion 10-8

, and normalized residual error
tolerance 10-2 (except for the 1996 problem that used single precision). The
impedances all checked to within the precision expected by the CG solver
with the results for the double precision NEC2, and in many cases were rather
better than the approximately 1% accuracy expected from the 10-2 normal­
ized residual tolerance specified. The stringent normalized residua.l tolerance
used for Table 6.2 was relaxed for these runs since the 10-4 criterion resulted
in very long execution times. The limitations of the applied E-field model
should also be borne in ·mind.

These results do not show convergence as a function of improving dis­
cretization of the same structure, but rather the convergence as a function of
the same discretization of an improving model of the structure14

. The effect
of the lower part of the cylinder on input impedance is clearly nunima.l. Note
that the radiation patterns, however, are strongly affected [1R89].

The efficiencies of the parallel matrix generation algorithm were also in­
vestigated. No theoretical model was derived for this, since the operation is

14The la.5t model, with 1996 segments, is actually of a rather longer cylinder; it was
included to check the operation of the code for large problems using single precision. The
1516 segment model is the most accurate model of the actual geometry.

_j

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 138

30.00"

53.00

0
0
,...:
Cl ..,

. Figure 6.5: Cone-cylinder.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 139

PARNEC NEC2
(Symmetry not used) (Symmetry used)

Number of Description Input impedance (f!) Input impedance (f!
segments Re I m Re I m

124 30 mm long cylinder only; 105.1 -40.75 105.1 -40.78
open at both ends

188 40 mm long cylinder only; 43.46 -45.30 43.47 -45.30
open at both ends

316 80 mm long cylinder only; 24.59 -1.793 24.58 -1.700
open at both ends

428 60 mm long cylinder; 16.74 -14.79 16.78 -14.75
cone; cylinder capped.

876 200 mm long cylinder; 23.32 -12.84 23.34 -12.78
cone; cylinder capped.

1196 300 mm long cylinder; 23.25 -12.58 23.34 -12.52
cone; cylinder capped.

1516 400 mm long cylinder; 23.21 -12.50 23.30 -12.43
cone; cylinder capped.

1996 5.50 mm long cylinder: 23.19 -12.42 23.28 -12.38
cone; cylinder capped.

Table 6.3: Different cone-cylinder models

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 140

rather simple - a one-off broadcast of the relevant geometrical data to all
the processors - and it is difficult to develop a timing model of the matrix
fill. The reason for this is the searches required to set up the connection
data; the particular numbering scheme used has a very strong effect on this.
Results are shown in Figure 6.6. Results are not shown for problems larger
that 428 segments since serial timing data was not available, and efforts to
extrapolate the available serial data for the larger problems led to efficiencies
exceeding lOO%; the reason for this failure is the already noted connectivity
searches. It is also irrelevant for large problems; Table 6.4 shows the ratio of
time required for the matrix fill to the matrix solve for a normalized residual
error of 10-2 , and a Romberg error criterion of 10-4

• All data except for
the last entry are for double precision; the 1996 segment data used single
preCISIOn.

Number of segments isolve/i fill
50 1.0
124 2.2
188 2.7
316 2.4
428 7.2
876 9.1
1196 10.4
1516 11.9
1996 21.1

Table 6.4: Ratio of the matrix fill to solve times: 30 workers

Results for the efficiencies of the CG solver have already been given in
Chapter 4. Efficiencies for the whole code are dominated fairly rapidly by
the CG solver, as shown in Table 6.4, so the efficiency of the whole code is
not plotted.

One final point that was also investigated was the effect of precision on
rate of convergence. This data is presented in Table 6.5. The single pre­
cision data is for a Romberg error criterion of 10-\ the double precision
for w-s. The differen~e in the Romberg error criterion alone produces a
maximum difference of one or two iterations (from data not shown), so the
differences in Table 6.5 are due to the different precision. The N /A stands
for "not available"; the problem required too much memory for the available
resources. It is clear that the time advantage gained using single precision is
negated by the slower convergence. The only reason to use single precision

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 141

is the memory saving; double precision requires twice as much memory as
single precision for a given number of segments.

Number of segments Number of iterations
Single Precision Double Precision

50 23 14
124 82 75
188 155 134
316 152 131
428 519 372
876 519 405
1196 521 409
1516 529 414
1996 543 NjA

Table 6.5: Number of iterations required to obtain convergence; normalized
residual of 10-2 (1 %) specified.

The very slow increase in number of iterations required. as the number
of segments is increased beyond 428 is very noticeable. Almost doubling
the number of segments from 876 to 1516 requires only an additional four
iterations. It was also noticed in the earlier work on the body of revolution
problem, discussed in Chapter 2. It that case, the problem geometry was
fixed, but the number of segments was increased [DM88]. Peterson et.al.
have recently provided an explanation of this [PSM88]; the CG method is
minimizing a. norm involving only those eigenvalues corresponding to eigen­
vectors needed to represent the initial residual The 428 segment problem is
a. very reasonable approximation of the whole problem; clearly the eigenva.l­
ues associated with this problem are also a good representation of those for
the whole problem.

Figures 6.7 and 6.8 show the normalized residual error squared as a.
function of iteration number. It is notable how the method hits stagnant
"plateaus" requiring many iterations to break out of. Then the error drops
quite rapidly again, until another plateau is reached. This behavior has been
noted by other researchers but the author is not aware of an explanation at
present.

One final point that may now be commented on: is it better to use a.
CG or a. LU solver? The answer is clearly that it depends on theproblem.
Since the efficiencies of both methods are comparable, the serial break-even
point can be used, namely where the number of iterations is 1/6 of the

J

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 142

matrix dimension. Even in the largest case investigated, this fraction was
closer to 1/4, and was even larger for smaller problems. This was using a
normalized error criterion of 10-2

, giving an error of around 1%. So, unless
one is satisfied with a larger error, the L U method would have been slightly,
to considerably, faster for all the problems investigated. With a multiple
right-hand side problem, such as a typical radar cross section problem, the
superiority of the LU method has long been acknowledged. The work of
Smith et. al. [SPM89] on using the CG method to solve multiple right-hand
sides, by re-using some of the data generated for previous right-hand sides,
showed that although significant time savings compared to the standard CG
method were possible, for many right-hand sides the LU method remained
the better approach. However, a new technique recently proposed by Kastner
and Herscovici [KH90] shows promising results for a multiple right-hand side
CG formulation.

6.8 The Biconjugate Gradient Method

The closing comments in the previous section lead one to the following ques­
tion: can one not improve the convergence rate of the CG method? Several
possibilities have been touted for this: one that has been very successful in
Finite Element analysis is pre-conditioning [Sun88]. Another is the biconju­
gate gradient method, details of which are available in [Sar87 a] and [SPM90].
Details on both pre-conditioning and the biconjugate gradient method may
also be found in [DDSvdV91, chapter 7]15

.

The iterative part of the biconjugate gradient algorithm is given as fol­
lows:

15The parallel implementations of these discussed in this reference are for vector and
shared memory computers and sparse linear systems, not local memory computers and
full matrices as considered in this thesis.

Stellenbosch University http://scholar.sun.ac.za

,..,
X,
::7'1
u
s::
ll -u -"" "" ~

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 143

188

98

88 +'

78

68
......

58

48

38

ZB

18

B
B 58

.· .·

.· .·

.·
.·

188

Efficiency of natrix fill

................ ··t-· -•·· ········ +

lli •••••.........
...

• 1:1 ••••••••••••• -m·

158 ZBB 258

·····························-11·

••.. .m. .•.•••...•.•.•...•..•... 0

x Z tpts

+ 6 tpts

* 14 tpts

o 38 tpts

388 358 4BB

Figure 6.6: Efficiencies for the parallel matrix fill.

458

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 144

Hor~alized residual error us. iterations; 428 seg. cylinder ~odel
189

""='

" 18-1.

"' Ill
:I
t1'
~

"' 18-2
0

"' "' " -Ill
18-3 :I

""=' ...
~

" "'
""=' 18-4

" N ... -Ill
E

"' 18-5
0
z:

18-6 ~----~----~------~----~----~------~----~----~----~
8 188 288 388 488 588 688 788 888 988

Iterations

Figure 6. i: Convergence versus number of iterations: 428 unknowns.

Stellenbosch University http://scholar.sun.ac.za

... -

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 145

Nornalized residual error us. iterations; 1516 seg. cylinder nodel
Ut9

1BBB 12BB 14BB 16BB

Iterations

Figure 6.8: Convergence versus number of iterations: 1516 unknowns.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 146

[uk] - [A][pk]

O'k
[rk]t[qk]*
[uk]t[wk]•

[xk+I] [xk] + a~;[pk]
[rk+I] - [rk] - ak[uk]
[qk+I] [qk] - akAT[wk]

[ck]
[rk+I]t[qk+I]*

[rlt[qk]*
[pk+I] [rk+I] + ck[pk]

[wk] [qk+d + ck[wk+d (6.6)

Initial conditions are chosen as follows

[rk] [b]
[pk] [b]
[qk] - [b*]

[wk] [qk] (6.7)

This choice is known as Jacob's choice [SPM90]. Note that the expressions
for ak and ck (the latter corresponding to f3k in [SPM90]) are the complex
conjugates of those in [SPM90); the reason is the choice of inner product as

< [x], [y] >= [x]t[y]*

in the algorithm given above, whereas Smith used

< [x], [y] >= [xf[y]

so these inner products are complex conjugates of one another, and~: =(V*·
Both pre-conditioning and the biconjugate gradient method were investi­

gated by the author, and results for the body of revolution formulation dis­
cussed in Chapter 2 may be found in [DM88]. Pre-conditioning was shown to
be not at all attractive, but the results reported in [D.l\188) implied that the
biconjugate gradient method converged approximately twice as fast as the
CG method for moderately large problems. Unfortunately, this did not sur­
vive a more detailed investigation for really large problems using PARNEC.
Results are summarized in Table 6.616and it is clear that for large problems,

16The results shown in Table 6.6 were all computed using a Romberg error criterion
of 10-4

, except for the double precision CG case, which used 10-8 . As noted in Sec­
tion 6.7, the differences in impedances computed, and iterations required, using the dif­
ferent Romberg criteria were negligible.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 147

Number of Number of iterations: CG Number of iterations: BiCG
segments Single Double Single Double

50 23 14 15 15
124 82 75 55 54
188 155 134 102 83
316 152 131 137 109
428 519 372 U nconverged 405
876 519 405 1049 594
1196 521 409 1203 1020
1516 529 414 1455 753
1996 541 N/A U nconverged N/A

Table 6.6: Number of iterations required to obtain convergence as a function
of precision; normalized residual of 10-2 specified.

the biconjugate gradient method converges rather more slowly than the CG
method17 • Note also the very strong influence of precision on the convergence
of the biconjugate gradient method.

This ?tagnation is confirmed by Smith et. al. [SPM90]; they also dis­
cuss a. modification to accelerate the convergence of the biconjugate gradient
method, which was not implemented by the author.

6.9 Conclusions

In this chapter, a brief review of the underlying theory of NEC2 has been
given. An attempt to use an Occam "harness" to provide a link between
various FORTRAN processes was discussed; the poor results obtained with
this approach led to the necessity for re-coding NEC2 in Occam. Funda­
mental problems posed by such a re-write were highlighted. A systematic
(but not presently automatic) methodology for untangling "spaghetti" code
was presented, using flowcharts and pseudo-code; its use was illustrated by
application to one of the more formidable NEC2 sub-routines. Methods to
parallelize the matrix generation, which was not as simple as for the demon­
stration program used in Chapter 5 for the LU method, were discussed.

Methods used to validate the code were described - initially for small
structures, and then for large structures. With the former, the problem

17Sometimes iterative algorithms converge slowly due to coding errors. The Occam code
was checked by writing a MATLAB file to implement the algorithm. Results were identical
to within working precision on the computers.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 148

was simply to ensure that the Occam re-code was a valid re-implementation
of the code. With the latter, the problem was more fundamental: is the
code accurate for electromagnetically very large structures, or does machine
precision impose some limit on the size of structure that can be modelled?
This was investigated using a symmetrical structure, solved both using, and
without using, symmetry. The effect of single as opposed to double precision
was also investigated; it was shown to affect only the convergence rate of the
CG algorithm, not the final results. The biconjugate gradient method was
also briefly investigated; it was shown that the initial promise shown by the
method for small systems did not hold for large systems, where the method
failed to converge.

It is important to emphasize some of the specific details of what has been
achieved. The DEC VAX 360018 available at the University of Stellenbosch at
the time of writing this dissertation took three-quarters of an hour to solve a
problem with approximately 500 unknowns- a 2000 segment problem with
four-way symmetry. The time-saving scales as approximately the square of
the number of degrees of symmetry, as shown in Chapter 2. Hence, had the
machine enough memory (which it did not) this would have taken about 12
hours to compute. Using 30 worker transputers, this problem was solved in
an hour. (This is equivalent to a sustained rate of around 10 MFLOP fs.)
This computation could have been done in slightly less time had the parallel
LU solver been used - it had not been incorporated into PARNEC at the
time of writing. Looked at from another viewpoint- the one-hour measure
-the largest problem that could be handled by this specific VAX was about
600 segments. This has now been trebled to 2000 segments, increasing the
maximum frequency that can be used by almost 2.

The time invested in re-writing NEC2 in Occam is time well spent, even
if some future parallel system that one wishes to port the code to does not
support Occam. The close similarity of Occam to other modern, structured
languages, and the tremendous effort expended in modularizing the code
and re-implementing the logic using structured constructs makes a further
re-write a much simpler proposition, and the possibility of automating the
process is much better.

In concluding this chapter, when the T9000, described in Section 3.4.2,
becomes available, further substantial gains should be possible. Using 30
T9000's with enough memory, PARNEC, the code described in this chapter,
should be able to handle about 6000 segment problems in one hour.

11'See Chapter 2 for the specifications of this computer.

_j

Stellenbosch University http://scholar.sun.ac.za

Chapter 7

General Conclusions

When the research documented in this dissertation was initiated, it was
thought that parallel computing should have significance for computational
electromagnetics. The fundamental contribution of this research has been the
successful, quantitative, demonstration that this is indeed so. This has been
done through the derivation, analysis, and implementation of efficient par­
allel algorithms for electromagnetic moment method formulations, and the
quantification of the effectiveness, both theoretically and from measured tim­
ing data, of two fundamental algorithms required by the method of moments.
A large part of a very important moment method code, NEC2, has been ef­
ficiently parallelized, and electromagnetically large problems have been both
rapidly and accurately solved using the parallel NEC2.

Specific contributions of this work are the following:

• The parallel conjugate gradient (CG) algorithm:

- The first published parallel CG algorithm suitable for general,
full matrices with complex entries for local memory MIMD sys­
tems, in the computational electromagnetics and related literature
[Dav90b).

- A detailed theoretical analysis, supported by measured results, of
the timing properties- speed-up and efficiency- of the parallel
CG algorithm.

Publication of pseudo-code for the parallel CG algorithm.

A comprehensive investigation into the convergence of the CG
method; confirmation of the convergence behavior presented in
the literature; and the conclusion that machine precision has some
effect on the number of iterations - typically 10% to 25% more
iterations were required with single than with double precision.

149

J

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. GENERAL CONCLUSIONS 150

An investigation into the biconjugate gradient method and the
confirmation that the method is not suitable for application to
large problems without some modifications as recently proposed
in the literature [SPM90].

• The parallel L U algorithm:

- The identification of a LU algorithm suitable for a local memory
MIMD system.

- A new, simple graphical exposition of the fundamental parallel
operation of the algorithm.

- New, simplified methods for the analysis of the parallel LU algo­
rithm.

- A detailed check of previously published theoretical timing results
of the parallel L U algorithm.

- New parallel forward and backward substitution algorithms using
the same data distribution as the parallel L U algorithm.

- A new, detailed investigation of the accuracy of the L U algorithm
using the parallel code for large systems - 1 500 complex un­
knowns - by monitoring the convergence of the input impedance
of a thin dipole, and also by comparing the results obtained with
the parallel LU and CG codes, and the resulting conclusion that,
provided the basic discretization rules of computational electro­
magnetics are satisfied, the LU method is accurate for large prob­
lems.

• General properties of the parallel CG and LU matrix solvers:

- The demonstration of the scaling properties of the two solvers; the
algorithms described will run efficiently on much larger processor
arrays than those that the codes were tested on.

- The development and description of methods for increasing effi­
ciency, such as pipelined, concurrent communications.

- The integration of the parallel matrix solvers with moment method
codes.

• Parallelizing NEC2:

The development of PARNEC, a re-engineered version of the thin­
wire parts of the important general-purpose moment method code,
NEC2, in Occam 2.

----~~--~~

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. GENERAL CONCLUSIONS 151

- The development and description of a systematic approach, us­
ing flowchart analysis and pseudo-code, for re-engineering a code
written in an unstructured language such as FORTRAN 66 in a
modern, structured language such as Occam 2.

A careful investigation of the accuracy of PARNEC for large prob­
lems - 1 ·soo to 2 000 complex valued unknowns - and the
demonstration of the accuracy of the code by comparison with
results computed using a smaller but equivalent problem that ex­
ploited symmetry, and the demonstration that single precision is
adequate for three digits of accuracy in the solution of the matrix
equation for problems of the above size. ·

• General contributions to parallel computing in computational electro­
magnetics:

- The development of theoretical models for predicting algorithm
performance suitable for local memory MIMD systems - of which
a transputer array is but one example- and the identification of
the ratio of two fundamental machine parameters (rate of compu­
tation and communication) as a critical parameter in determining
the efficiency.

- The definition of a more extensive pseudo-code than has been
published in the literature for documenting parallel algorithms in
an easily understood format.

- The demonstration of the utility of the formal methods to extract
parallelism: both for the L U method, with a detailed elucidation
of a formal approach published in the literature, and a new appli­
cation to the parallel matrix-vector problem.

- Making parallel computing more understandable and accessible in
the computational electromagnetics context [Dav90b].

This work has raised many points which would benefit from further in­
vestigation. Those issues requiring further research in primarily the compu­
tational electromagnetics field are the following:

• Extensions of the existing work

Implementing pipe-lining in the parallel CG solver.

Implementing pivoting in the parallel L U solver and investigating
typical pivoting patterns for moment method problems.

Extending PARNEC to include more facilities than at present.

Stellenbosch University http://scholar.sun.ac.za

CHAPTER 7. GENERAL CONCLUSIONS

Further validation of PARNEC for different structures.

Incorporation of the parallel LU solver into PARNEC.

152

Further investigation of the convergence behaviour of the
impedance of thin wires, discussed in Section 5.13.

• Work of a more fundamental natu1·e

- Exploitation of the Impedance Matrix Localization method.

- Accelerating the convergence of the CG method.

Fundamental issues have also been highlighted that require attention from
primarily computer scientists. The automatic re-engineering of old codes has
been touched on in Chapter 6, and is a problem that will become increasingly
pressing as fundamental software re-engineering of old codes is required for
efficient execution on new architectures. The requirement for interactive
parallel debuggers has also been clearly stated.

Computer technology does not stand still. The particular transputer
hardware on which the algorithms described in this dissertation were imple­
mented is already being outdated by developments in micro-electronics at
the time of submission. However, the fundamental algorithms and the anal­
ysis methods described are valid for the broad class of local memory MIMD
computers and, since both serial processors and parallel processors rely on
the same underlying micro-electronic technology, the importance of parallel
processing will not diminish in the future- as serial processors become more
powerful, so will parallel processors. Thus the research represented by this
dissertation, and the scalable, efficient, parallel moment method codes, will
retain their relevance, permitting yet larger moment method problems to be
solved on future parallel computers as computer technology improves.

Stellenbosch University http://scholar.sun.ac.za

Bibliography

[AHZ90]

[Bal89]

[BF85]

[BMY73]

[Boj82]

[BP81a]

[BP81b]

[BP81c]

[BT89]

R. J. Allan, L. Heck, and S. Zurek. Parallel FORTRAN in sci­
entific computing: a new Occam harness called Fortnet. Com­
puter Physics Communications, 59(2):325-344, June 1990.

C. A. Balanis. Advanced Engineering Electromagnetics. John
Wiley and Sons, New York, 1989.

R. L. Burden and J. D. Faires. Numerical Analysis. Prindle,
\Veber and Schmidt, Boston, 3rd edition, 1985.

W. D. Burnside, R. J. Marhefka, and C. L. Yu. Roll-plane anal­
ysis of on-aircraft antennas. IEEE Trans. Antennas Propagat.,
AP-21(6):780-786, November 1973.

N. N. Bojarski. The k-space formulation of the scattering prob­
lem in the time domain. J. Acoust. Soc. Am., 72(2):570-584,
August 1982.

G. J. Burke and A. J. Poggio. Numerical Electromagnetics
Code (NEC) - Method of Moments; Part I: Program Descrip­
tion - Theory. January 1981.

G. J. Burke and A. J. Poggio. Numerical Electromagnetics
Code (NEC) - Method of Moments; Part II: Program Descrip­
tion - Code. January 1981.

G. J. Burke and A. J. Poggio. Numerical Electromagnetics
Code (NEC)- Method of Moments; Part Ill: User Guide. Jan­
uary 1981.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed
computation: Numerical Methods. Prentice-Hall, Englewood
Cliffs, New Jersey, 1989.

153

_ _j

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 154

[BYM81]

[Can90]

[Cwi91]

[Dav86]

[Dav90a]

[Dav90b]

[Dav91a]

[Dav91b]

[Dav91c]

[DC89]

\V. D. Burnside, C. L. Yu, and R. J. Marhefka. A technique
to combine the Geometrical Theory of Diffraction and the mo­
ment method. In R.C. Hansen, editor, Geometric Theory of
Diffraction, pages 393-399, IEEE Press, New York, 1981.

F. X. Canning. The impedance matrix localization (IML)
method for moment-method calculations. IEEE Antennas
Propagat. Magazine, 32(5):18-30, October 1990.

T. Cwik. The solution and numerical accuracy of large MoM
problems. In Symposium digest of the 1991 URSI Radio Science
!Meeting, page 96, June 1991. Held in London, Ontario, Canada.

D. B. Davidson. Predicting electromagnetic radiation from and
coupling between antennas mounted on a body of revolution us­
ing the method of moments technique. Master's thesis, Dept.
Electronic Engineering, University of Pretoria, December 1986.

D. B. Davidson. Parallel matrix solvers for moment method
codes using transputer arrays. In Symposium digest of the 1990
URSI Radio Science Meeting, page 70, May 1990. Held in
Dallas, Texas, USA.

D. B. Davidson. A parallel processing tutorial. IEEE Antennas
P1·opagat. Magazine, 32(2):6-19, April1990.

D. B. Davidson. Antenna Modelling Code Project PARNEC
Version 1.0 Part 1: User's Guide. February 1991. Institute for
Electronics, University of Stellenbosch, 15 pages.

D. B. Davidson. Antenna Modelling Code Project PARNEC
Version 1.0 Part Il: Code Manual. February 1991. Institute for
Electronics, University of Stellenbosch, 105 pages.

D. B. Davidson. Parallel LU decomposition on a transputer
array. In Symposium digest, llol Ill, of the 1991 IEEE AP-S
International Symposium, pages 1500-1503, June 1991. Held
in London, Ontario, Canada.

D. B. Davidson and J. H. Cloete. NEC2 in a MIMD com­
puting environment. In Symposium digest of the 1989 URSI
Radio Science Meeting, page 131, June 1989. Held in San Jose,
California, USA.

_ _j

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 155

[DDSvdV91] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A.
van der Vorst. Solving Linear Systems on Vector and Shared
Memory Computers. SIAM, Philadelphia, 1991.

[Dij 76]

[DM85]

[DM87]

[DM88]

[Dud85]

[Ell81]

[FJL*88]

[Fly72]

[FS66]

[Gal90]

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, New Jersey, 1976.

L. M. Delves and J. L. Mohamed. Computational Methods for
Integral Equations. Cambridge University Press, Cambridge,
1985.

D. B. Davidson and D. A. McNamara. Predicting radiation pat­
terns from aperture antennas on structures using the method
of moments body .of revolution technique. The Transactions of
the South African Institute of Electrical Engineers, 78(2):25-30,
December 1987.

D. B. Davidson and D. A. McNamara. Comparisons of the
application of various conjugate-gradient algorithms to electro­
magnetic radiation from conducting bodies of revolution. Afi­
crowave and Optical Technology Letters, 1(7):243-246, Septem­
ber 1988.

D. G. Dudley. Error minimization and convergence in numerical
methods. Electromagnetics, 5(2-3):89-98, 1985.

R. S. Elliott. Antenna Theory and Design. Prentice-Hall, En­
glewood Cliffs, New Jersey, 1981.

G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. \V. Otto, J. K.
Salmon, and D. \V. \\Talker. Solving Problems on Concurrent
Processo1·s, Vol I: General Techniques and Regular Problems.
Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

M. J. Flynn. Some computer organizations and their effec­
tiveness. IEEE Transactions on Computers, C-21(9):948-60,
September 1972.

B. A. Finlayson and L. E. Scriven. The method of weighted
residuals- a review. Applied Mechanics Reviews, 19(9):735-48,
September 1966.

J. Galletly. Occarn 2. Pitma.n, London, 1990.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 156

[GHN87]

[GPS90]

[Gus88]

[Haf89]

[Han81]

[Han90]

[Har61]

[Har82]

[Har87]

[Har90]

[Hel78]

[HJ88]

[HM89]

G. A. Geist, M. T. Heath, and E. Ng. Parallel algorithms
for matrix computations. In L. H. Jamieson, D. B. Gannon,
and R. J. Douglass, editors, The Characteristics of Parallel
Algorithms, MIT Press, Cambridge,MA, 1987.

K. A. Gallivan,.R. J. Plemmons, and A. H. Sameh. Parallel al­
gorithms for dense linear algebra computations. SIAM Review,
32(1):54-135, March 1990.

J. L. Gustafson. Reevaluating Amdahl's law. Communications
of the AGM, 31(5):532-533, May 1988.

C. Hafner. Parallel computation of electromagnetic fields on
transputers. IEEE Antennas Propagat. Society Newsletter,
31(5):6-12, October 1989.

R. C. Hansen, editor. Geometric Theory of Diffraction. IEEE
Press, New York, 1981.

R. C. Hansen, editor. Moment Methods in Antennas and Scat­
tering. Artech House, Boston, 1990.

R. F. Harrington. Time-Harmonic Electromagnetic Fields.
McGraw-Hill, New York, 1961.

R. F. Harrington. Field Computation by Moment Methods.
Robert E. Krieger, Malabar, Florida, 1982. Reprint of 1968
edition.

R. F. Ha.rrington. The method of moments in electromagnetics.
Journal of electmmagnetic waves and applications, 1(3):181-
200, 1987.

R. F. Harrington. Origin and development of the method of mo­
ments for field computation. IEEE Antennas Propagat. A1aga­
zint, 32(3):31-36, June 1990.

D. Helier. A survey of parallel linear algorithms in numerical
linear algebra. SIAM Review, 20(4):740-777, October 1978.

R. VI/. Hockney and C. R. Jesshope. Parallel Computers 2.
Adam Hilger, Bristol, 1988.

H. A. Haus and J. R. Melcher. Electromagnetic Fields and
Energy. Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 157

[Hoa85)

[INM89)

[INM91)

[Jam86)

[Jen85)

[Jon87)

[JvR90)

[JvRM88)

[JvRM89]

[JvRM90]

[KF90]

[KH90]

C. A. R. Hoare. Communicating Sequential Processes. Prentice­
Hall, Englewood Cliffs, New Jersey, 1985.

INMOS. The transputer databook, 2nd edition. 1989.

INMOS. The T9000 transputer products overview manual, 1st
edition. ·1991.

G. L. James. Geometrical Theory of Diffraction for Electro­
magnetic Waves. Peter Peregrinus, 3rd revised edition, 1986.

A. Jennings. Matrix Computation for Engineers and Scientists.
John Wiley and Sons, Chichester, 1985.

D. S. Jones. Methods in Electromagnetic Wave Propagation.
Oxford University Press, Oxford, 1987. Volume 1: Theory and
Guided Waves.

D. J. Janse van Rensburg. On the computation of electromag­
netic observables of conducting thin wire radiators. PhD disser­
tation, Dept. Electronic & Computer Engineering, University
of Pretoria, 1990.

D. J. Janse van Rensburg and D. A. McNamara. Conjugate
gradient algorithm based on matrix representation of linear op­
erators in finite dimensional Hilbert spaces. Electronic Letters,
24(7):405-406, 31st March 1988.

D. J. Janse van Rensburg and D. A. McNamara. A rapidly
convergent Ga.lerkin-Collocation (GC) method for the analysis
of electromagnetic scattering from thin-wire structures. Mi­
crowave and Optical Technology Letters, 2(10):355-357, Octo­
ber 1989.

D. J. Janse van Rensburg and D. A. McNamara. On quasi­
static source models for wire dipole antennas. :Microwave and
Optical Technology Lette1·s, 3(11):396-398, November 1990.

A. H. Ka.rp and H. P. Flatt. Measuring parallel processor per­
formance·. Communications of the ACA1, 33(5):539-543, May
1990.

R. Kastner and N. Herscovici. A concise conjugate gradient
computation of plate problems with many excitations. IEEE
Tmns. Antennas Propagat., 38(8):1239-1243, August 1990.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 158

[Kon86] J. A. Kong. Electromagnetic Wave Theory. John \V'iley and
Sons, New York, 1986.

[Kre78] E. Kreyszig. Introductory Functional Analysis with Applica­
tions. John Wiley and Sons, New York, 1978.

[1R89] J. J.le Roux. The Numerical Electromagnetic Analysis of Com­
plex Structures with Specific Reference to HF Radiation from
the Aerospatiale SA 330 Puma Helicopter. Master's thesis,
Dept. E & E Engineering, University of Stellenbosch, 1989.

[1RBdPC88] J. J. le Roux, P. J. Bakkes, J. J du Plessis, and J. H. Cloete.
Execution of the NEC2 electromagnetic moment method code
on the INMOS T800 transputer. Electronic Letters, 24(16):991-
992, 4th August 1988.

[Lud87] A. C. Ludwig. Wire grid modelling of surfaces. IEEE Trans.
Antennas Propagat., AP-35(9):1045-1048, September 1987.

[LWA91] A. D. Lipworth, A. J. \V'alker, and H. J. Annegarn. FORTRAN
package renewal using object-centred design techniques. The
Transactions of the South African Institute of Electrical Engi­
neers, 82(1):43-51, March 1991.

[Mal90] J. F. Malan. Private communication. 1990. University of Stel­
lenbosch, Stellenbosch, South Africa.

[MAT89] MATLAB: The MathWorks, Inc. Version 3.5 User's Guide.
1989. The MathWorks, Inc.

[Max54] J. C. Maxwell. A Treatise on Electridty and Magnetism. Dover,
New York, 1954. Republication of Clarendon Press 1891 (3rd
edition).

[Mil88] E. K. Miller. A selective survey of computational electro­
magnetics. IEEE Trans. Antennas Propagat., 36(9):1281-1305,
September 1988.

[Mil90a] E. I\.. Miller. PCs for AP. IEEE Trans. Antennas Propagat.
Magazine, 32(5):48-51, October 1990.

[Mil90b] E. K. Miller. Private communication. June 1990. 1990 IEEE
AP-S International Symposium, Dallas, Texas.

[Mil91a.] E. K. Miller. Private communication. October 1991. Exam­
iner's report.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 159

[Mil91b)

[Mit73)

[MK75)

[Mod88)

[Mor90)

[MP86)

[MPM90)

[Nah88)

[NdV78)

[Ney85)

[NF90a)

[NF90b)

E. K. Miller. Private communication. June 1991. 1991 IEEE
AP-S International Symposium, London, Ontario, Canada.

R. Mittra, editor. Computer Techniques for Electromagnetics.
Pergamon, Oxford, 1973.

R. Mittra and C. A. Klein. Stability and convergence of mo­
ment method solutions. In R. Mittra, editor, Numerical and
Asymptotic Techniques in Electromagnetics, Springer-Verlag,
New York, 1975.

J. J. Modi. Parallel algorithms and matrix computation.
Clarendon Press, Oxford, 1988.

M. A. Morgan, editor. Finite Element and Finite Difference
Methods in Electromagnetic Scattering. Progress in Electro­
magnetic Research Series Number 2, Elsevier, New York, 1990.

J. Moore and R. Pizer, editors. Atfoment Methods in Elec­
tromagnetics Techniques and Applications. Research Studies
Press, Letchworth, Hertfordshire, 1986.

D. A. McNamara, C. W. I Pistorius, and J. A. G. Malherbe.
The Uniform Geometrical Theory of Diffraction. Artech House,
Boston, 1990.

P. J. Nahin. Oliver Heaviside: Sage in Solitude. IEEE Press,
New York, 1988.

D. H. Norrie and G. de Vries. An Introduction to Finite Element
Analysis. Academic Press, New York, 1978.

M. M. Ney. Method of moments as applied to electromag­
netic problems. IEEE Trans. Aficrowave Theory Tech., MTT-
33(10):972-980, October 1985.

D. C. Nitch and A. P. C. Fourie. Adapting the numerical elec­
troma.gnetics code to run in parallel on a network of tra.nsput­
ers. In Pmceedings of the 1990 IEEE/SAIEE Joint AP-MTT
Symposium, pages 31-38, August 1990. Held in Somerset \Vest,
South Africa.

D. C. Nitch and A. P. C. Fourie. Adapting the Numerical Elec­
tromagnetics Code to run in parallel on a network of tra.nsput­
ers. Applied Computational Electmmagnetics Society Jounwl,
5(2):76-86, \iVinter 1990.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 160

[NRS87]

[OG76a]

[OG76b]

[Par SS]

[PM73]

[PM85a]

[PM85b]

[PSl\188)

[Reg87)

[Ric91]

[RP88]

K. Na.yanthara, S. M Rao, and T. K. Sarkar. Analysis of two­
dimensional conducting and dielectric bodies utilizing the con­
jugate gradient method. IEEE Trans. Antennas Propagat., AP-
35(4):451-453, April1987.

S. Owicki and D. Gries. An axiomatic proof technique for par­
allel programs I. Acta Informatica, 6:319-340, 1976.

S. Owicki and D. Gries. Verifying properties of parallel pro­
grams: an axiomatic approach. Communications of the AGM,
19(5):279-285, May 1976.

Parallel FORTRAN. User Guide Version 2.0.1. 1988. 3L Ltd.,
Peel House, Ladywell, Livingstone EH54 6AG, Scotland.

A. J. Poggio and E. K. Miller. Integral equation solutions of
three dimensional scattering problems. In R. Mittra, editor,
Computer Techniques for Electromagnetics, Pergamon, Oxford,
1973.

A. F. Peterson and R. Mittra. Method of conjugate gradients
for the numerical solution of large-body electromagnetic scat­
tering problems. Journal of the Optical Society of America,
Part A, 2(6):971-977, June 1985.

A. F. Peterson and R. Mittra. On the implementation and per­
formance of iterative methods for computational electromag­
netics. December 1985. Technical report No 85-9, Electromag­
netic Communication Lab., Dept. of Electrical and Computer
Engineering, Univ. of Illinois, Urbana, IL.

A. F. Peterson, C. F. Smith, and R. Mittra. Eigenva.lues of
the moment-method matrix and their effect on the convergence
of the conjugate gradient algorithm. IEEE Trans. Antennas
Propagat., 36(8):1177-1179, August 1988.

E. Regis. H'ho got Einstein's office? Addison-\Vesley, Reading,
MA, 1987.

J. H. Richmond. On the variational aspects of the moment
method. IEEE Trans. Antennas P1·opagat., 39(4):473-479,
April 1991.

S. L. Ray and A. F. Peterson. Error and convergence in numer­
ical implementations of the conjugate gradient method. IEEE
Trans. Antennas Pmpagat., 36(12):1824-1827, December 1988.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 161

[SA85]

[Sar86]

[Sar87a]

[Sar87b]

[Sar88]

[Sch90]

[SD90]

[SF90]

[Skw81]

T. K. Sarkar and E. Arvas. On a class of finite step iterative
methods (conjugate directions) for the solution of an operator
equation arising in electromagnetics. IEEE Trans. Antennas
Propagat., AP-33(10):1058-1066, October 1985.

T. K. Sarkar. The conjugate gradient method as applied to
electromagnetic field problems. IEEE Antennas Propagat. So­
ciety Newsletter, 28(4):5-14, August 1986.

T. K. Sarkar. On the application of the generalized biconju­
gate gradient method. Journal of Electromagnetic l¥aves and
Applications, 1(3):223-242, 1987.

T. K. Sarkar. Some of the misconceptions associated with the
conjugate gradient method. In Symposium digest, Vol I, of the
1987 IEEE AP-S International Symposium, pages 84-86, June
1987. Held in Blacksburg, Virginia, USA.

T. K. Sarkar. Comments on "Comparison of the FFT conjugate
gradient method and the finite-difference time domain method
for the 2-D absorption problem" and reply by D. T. Borup
and 0. P. Gandhi. IEEE Trans. Microwave Theory Tech.,
36(1):166-170, January 1988.

A. M. Schuilenburg. Parallelisation of basic scattering code.
In Proceedings of the 1990 IEEE/SAIEE Joint AP-MTT Sym­
posiu.m, pages 259-266, August 1990. Held in Somerset West,
South Africa.

P. Steyn and D. B. Davidson. Solution stability of iterative
schemes utilizing the FFT. In Symposium digest Vol I! of
the 1990 IEEE AP-S Intemational Symposium, pages 614-617,
May 1990. Held in Dallas, Texas, USA.

P. P. Silvester and R. L. Ferrari. Finite Elements for Eleci7'i­
cal Engineers. Cambridge University Press, Cambridge, 2nd
edition, 1990.

J. K. Skwirzynski, editor. Theoretical methods for determining
the interaction of electromagnetic waves with structures. Si­
jthoff and Noordhoff, Alphen aan den Rijn, The Netherlands,
1981.

J

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 162

[SPM89]

[SPM90]

[ST81]

[Sto90a]

[Sto90b]

[Sun88]

[Tai71]

[TN81]

[vd\188]

[vdVB89]

[Vil89]

C. F. Smith, A. F. Peterson, and R. Mittra. A conjugate gradi­
ent algorithm for the treatment of multiple incident electromag­
netic fields. IEEE Trans. Antennas Propagat., 37(11):1490-
1493, November 1989.

C. F. Smith, A. F. Peterson, and R. Mittra. The biconjugate
gradient method for electromagnetic scattering. IEEE Trans.
Antennas Propagat., 38(6):938-940, June 1990.

W. L. Stutzman and G. A. Thiele. Antenna Theory and Design.
John Wiley and Sons, New York, 1981.

V. Stover. Rendezvous with a computer scientist: methods of
software validation. Applied Computational Electromagnetics
Society Newsletter, 5(2):16-23, July 1990.

V. Stover. Rendezvous with a computer scientist: software test­
ing. Applied Computational Electromagnetics Society Newslet­
ter, 5(1):36-43, March 1990.

D. Sundholm. A block preconditioned conjugate gradient
method for solving high-order finite element matrix equations.
Computer Physics Communications, 49, 1988.

C. T. Tai. Dyadic Green's Functions in Electromagnetic The­
ory. Intext Educational Publishers, Scranton, 1971.

G. A. Thiele and T. H. Newhouse. A hybrid technique for
combining moment methods with the Geometrical Theory of
Diffraction. In R. C. Hansen, editor, Geometric Theory of
Dijfraction, pages 385-392, IEEE Press, New York, 1981.

J. G. G. van de Vorst. The formal development of a paral­
lel program performing LU-decomposition. Acta lnformatica,
26:1-17, 1988.

J. G. G. van de Vorst and R. H. Bisseling. Parallel L U­
decomposition on a transputer network. In Lecture Notes in
Computer Science, pages 61-77, Springer-Verlag, Berlin, 1989.

N. Viljoe~. An overview of transputer based computers and a
description of the MC2 machine. In H. Neishlos, editor, Par­
allel processing: technology and applications, pages 131-137,
IOS,Van Diemenstra.at 94, 1013 CN Amsterdam, 1989. Pro­
ceedings of the International Symposium on Parallel Process­
ing, 26-28 October 1988, Johannesburg, South Africa..

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 163

[Wan90a]

[Wan90b]

[Wan91]

[WK76]

[Zwa91]

J. J. H. Wang. Comments on "From 'reaction concept' to
'conjugate gradient': have we made any progress?" and reply
by T. K. Sarkar. IEEE Trans. Antennas Propagat. Magazine,
32(1):64-65, February 1990.

J. J. H. Wang. Further comments on "From 'reaction concept'
to 'conjugate gradient': have we made any progress?" and reply
by T. K. Sarkar. IEEE Trans. Antennas Propagat. Magazine,
32(4):70-71, August 1990.

J. J. H. Wang. Generalized Moment Methods in Electromag­
netics. John Wiley and Sons, New York, 1991.

T. T. ·wu and R. W. P. King. The tapered antenna and its
application to the junction problem for thin wires. IEEE Trans.
Antennas Propagat., AP-24(1):42-45, January 1976.

A. P. M. Zwamborn. Scattering by Objects with Electric Con­
trast. PhD dissertation, Faculty of Engineering, Technical Uni­
versity of Delft, June 1991.

Stellenbosch University http://scholar.sun.ac.za

Appendix A

CG Configuration Code

Notes:

1. The parameters number. of. transputers, num. nodes and num .leaves
are defined in a separate file of constants.

2. This configuration code was developed for the Occam 2 TDS 3 enviro­
ment.

3. The { { { a.nd } } } indicate the start and end of "folds".

--{{{ hard configuration
--{{{ Compiler USAGE checking notes

Due to compiler defects, the USAGE checking option must be disabled
to compile the folloving code. It should OILY be disabled once the rest of
the code is vorking. Rote that the construct is valid, accessing disjoint
arrays in parallel.

--}}}

--{{{ Rotes on the configuration
The configuration is designed to be as general purpose as possible.
The folooving important limitations must, hovever, be noted:
1. The MCC can only svitch even to even and odd to odd links to the

the hardvare svitching netvork.
2. A boot path must be provided to allov the root to boot the vhole

netvork over only one link. This is provided by a special treatment
of processors 1 and 2, vhose lover links follov the pattern

--}}}

of the rest of the netvork but vhose upper links are special and
these processors also have side-vays links to provide a boot path.
Hence processors 1 and 2 are excluded from the nodal declarations.

This method is valid for all except the case of only tvo
vorker processors; this can hovever be fixed in the library
file ''cgtpts'' by declaring num.leaves as 0, not 2, for the tvo
processor case. Unfortunately, the configuration language is not
sufficiently poverful to handle this special case in the code.

--{{{ channel declarations

164

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. CG CONFIGURATION CODE

[2]CHAR OF messages boot.path
[number.of.transputers+S]CBAI OF messages dovn
[number.of.transputers+S]CHAI OF messages up

+1 because first channel element (element 0) not used
-- and additional +4 for esse of tvo processors (used instead
--of dummy channels for that case).
[(number.of.transputers/2)+1]CBAI OF messages dummy.dovn.left
[(number.of.transputers/2)+1]CBAI OF messages dummy.dovn.right:
[(number.of.transputers/2)+1]CBAR OF messages dummy.up.left
[(number.of.transputers/2)+1]CBAI OF messages dummy.up.right
--}}}
PLACED PAR -- See Galletly p123 for details.

-- processor 1 and 2 ; special treatment to provide boot path
--{{{ processor 1
-- processor 1
PLACED PAR

PROCESSOR 1 T8
PLACE dovn[3) AT link1.out :
PLACE up [3) AT link1 . in
PLACE dovn[4] AT link2.out
PLACE up[4] AT link2.in
PLACE dovn[1] AT link3.in
PLACE up [1] AT link3. out
PLACE boot.path[O] AT linkO.out
PLACE boot.path[1] AT linkO.in:
nec.vorker(dovn[1],up[1],
dovn[3],up[3],dovn[4],up[4])

--}}}
--{{{ processor 2
-- processor 2
PLACED PAR

PROCESSOR 2 T8
PLACE dovn[S] AT link1.out :
PLACE up[S] AT linkl.in
PLACE dovn[6) AT link2.out
PLACE up[6] AT link2.in
PLACE dovn[2] AT link3.in
PLACE up[2] AT link3.out
PLACE boot.path[O] AT linkO.in
PLACE boot.path[l] AT linkO.out:
nec.vorker(dovn[2),up[2],
dovn[S],up[5],dovn[6],up[6])

--}}}

-- nodes; note excludes nodes 1 and 2
--{{{ odd numbered nodes
-- odd numbered nodes
PLACED PAR i = 2 FOR (num.nodes/2) -1

VAL Index IS (2•i)-1:
PROCESSOR Index T8

VAL Parent IS Index:
VAL Left IS (2•Index)+1:
VAL Right IS (2•Index)+2:
PLACE dovn[Left] AT linkl.out
PLACE up[Left] AT linkl.in
PLACE dovn[Right] AT link2.out
PLACE up[Right] AT link2.in
PLACE dovn[Parent] AT link3.in
PLACE up[Parent] AT link3.out :
nec.vorker(dovn[Parent] ,up[Parent],
dovn[Left],up[Left] ,dovn[Right] ,up[Right])

--}}}

--{{{ even numbered nodes
-- even numbered nodes

165

Stellenbosch University http://scholar.sun.ac.za

APPENDIX A. CG CONFIGURATION CODE

PLACED PAR i = 2 FOR (num.nodes/2) -1
VAL Index IS (2•i):
PROCESSOR Index T8

VAL Parent IS Index:
VAL Left IS (2•Index)+1:
VAL Right IS (2•Index)+2:
PLACE dovn[Left] AT link1.out
PLACE up[Left] AT link1.in
PLACE dovn[Right] AT link2.out
PLACE up[Right] AT link2.in
PLACE dovn[Parent] AT linkO.in
PLACE up[Parent] AT linkO.out :
nec.vorker(dovn[Parent],up[Parent],
dovn[Left],up[Left],dovn[Right],up[Right])

--}}}
-- leaves; note must be commented out for the case of only tvo processors
--{{{ odd numbered leaves
-- odd numbered leaves
PLACED PAR i = (num.nodes/2)+1 FOR num.leaves/2

VAL Index IS (2•i)-1:
PROCESSOR Index T8

VAL Parent IS Index:
VAL Dummy.Index IS Index- (num.nodes+1): --to minimize num of dummy chans
PLACE dovn[Parent] AT link3.in
PLACE up[Parent] AT link3.out :
PLACE dummy.up.left[Dummy.Index] AT link1.in:
PLACE dummy.dovn.left[Dummy.Index] AT link1.out:
PLACE dummy.up.right[Dummy.Index] AT link2.in:
PLACE dummy.dovn.right[Dummy.Index] AT link2.out:
nec.vorker(dovn[Parent],up[Parent],
dummy.dovn.left[Dummy.Index] ,dummy.up.left[Dummy.Index],
dummy.dovn.right[Dummy.Index],dummy.up.right[Dummy.Index])

--}}}
--{{{ even numbered leaves
-- even numbered leaves
PLACED PAR i = (num.nodes/2)+1 FOR num.leaves/2

VAL Index IS (2•i):
PROCESSOR Index T8

VAL Parent IS Index:
VAL Dummy.Index IS Index- (num.nodes+1): to minimize num of dummy chans
PLACE dovn[Parent] AT linkO.in
PLACE up[Parent] AT linkO.out :
PLACE dummy.up.left[Dummy.Index] AT link1.in:
PLACE dummy.dovn.left[Dummy.Index] AT link1.out:
PLACE dummy.up.right[Dummy.Index) AT link2.in:
PLACE dummy.dovn.right[Dummy.Index) AT link2.out:
nec.vorker(dovn[Parent) ,up[Parent],
dummy.dovn.left[Dummy.Index) ,dummy.up.left[Dummy.Index],
dummy.dovn.right[Dummy.Index],dummy.up.right[Dummy.Index])

--}}}
--}}}

166

Stellenbosch University http://scholar.sun.ac.za

Appendix B

L U Configuration Code

Notes:

1. This configuration code is for the Occam 2 Toolset.

2. The parameter mesh. size is defined in a separate file of constants.

IIBCLUDE "lillkaddr. inc" -- lillk addresses
IIliCLUDE "hostio.inc"
IIICLUDE "pmomlib. inc"
IUSE "master21.c8h"
IUSE "vorker21.c8h"
-- Declare the channels.

-- host i/o constants
-- constant and protocol definitions

linked vorker process
lillker master process

CBAli OF messages soft2.in, soft2.out :
[mesh.size]CBAli OF messages dummyl, dummy2
[mesh.size+1)[mesh.size+1] CBAI OF messages left.in,

right.in,
up.in,
dovn.in

-- Special channels (lillk 0) to communicate vith host.
CBAI OF SP fs, ts:

-- Placement statements

PLACED PAR
-- 00 process.
VAL IIIT j IS 0
VAL IIIT i IS 0
PLACED PAR

PROCESSOR ((i•mesh.size)+j) T8
PLACE fs AT linkO.in · from host; special for 00
PLACE ts AT lillkO. out to host;
PLACE left.in[i][j] AT linkl.in left in; special for 00
PLACE right.in[i][mesh.size-1] AT lillkl.out : --left.out;
PLACE right.in[i)[j] AT link3.in right in
PLACE left.in[i][j+l] AT link3.out right out
PLACE dovn.in[i][j] AT link2.in dovn in
PLACE up.in[i+1][j] AT link2.out dovn out
-- Declare internal soft channel for the 00 processor only

167

Stellenbosch University http://scholar.sun.ac.za

APPENDIX B. LU CONFIGURATION CODE

CBAI OF messages to.master2, from.master2
IF

number.of.transputers > 1
PAR

master(fs,ts,to.master2, from.master2)
-- 00 process (to run on master transputer)
vorker(left.in[i)[j), right.in[i)[mesh.size-1),

right. in[i) [j), left. in[i) [j+1),
from.master2, to.master2,
dovn.in[i] [j), up.in[i+1) [j] ,i,j)

number.of.transputers = 1
master(fs,ts,to.master2, from.master2)

-- first rov processes ezcept last column
VAL liT i IS 0 :
PLACED PAR j = 1 FOR mesh.size -2

PROCESSOR ((i•mesh.size)+j) T8
PLACE left.in[i)[j] AT link1.in --left in
PLACE right.in[i)[j-1) AT link1.out --left out
PLACE right.in[i)[j) AT link3.in --right in
PLACE left.in[i][j+1] AT link3.out --right out
PLACE up. in[i] [j] AT linkO. in -- up in (unused)
PLACE dummy1[j] AT linkO. out -- up out (unused)
PLACE dovn.in[i][j] AT link2.in -- dovn in
PLACE up.in[i+1][j] AT link2.out -- dovn out
vorker(left. in[i) [j], right. in[i] [j-1],

right. in[i] [j), left. in[i] [j+1],
up.in[i][j], dummy1[j],
dovn.in[i] [j), up.in[i+1) [j) ,i,j)

-- upper right-most element
VAL liT i IS 0 :
VAL liT j IS mesh.size -1 :
PROCESSOR ((i~esh.size)+j) T8

PLACE left. in[i) [j) AT link1. in -- left in
PLACE right.in[i][j-1) AT link1.out --left out
PLACE right.in[i][j] AT link3.in --right in
PLACE left.in[i][O] AT link3.out --right out (vraparound)
PLACE up.in[i][j] AT linkO.in --up in (unused)
PLACE dummy1[j] AT linkO.out --up out (unused)
PLACE dovn.in[i][j] AT link2.in -- dovn in
PLACE up.in[i+1][j] AT link2.out -- dovn out
vorker(left.in[i][j], right.in[i][j-1],

right. in[i][j], left. in[i)[O],
up. in [i] [j] , dummy1 [j] ,
dovn. in[i][j], up. in[i+1][j],i,j)

-- first column processes
VAL IIIT j IS 0 :
PLACED PAR i = 1 FOR mesh.size -1

PROCESSOR ((i•mesh.size)+j) T8
PLACE left.in[i][j] AT link1.in : --left in
PLACE right.in[i][mesh.size-1] AT link1.out left out (vraparound)
PLACE right. in[i] [j] .AT link3. in -- right in
PLACE left.in[i][j+1] AT link3.out --right out
PLACE up.in[i][j] AT linkO.in --up in
PLACE dovn.in[i-1][j] AT linkO.out --up out
PLACE dovn.in[i][j] AT link2.in -- dovn in
PLACE up.in[i+1][j] AT link2.out -- dovn out
vorker(left.in[i][j], right.in[i)[mesh.size-1],

right. in[i] [j], left. in[i] [j+1],
up. in[i][j], dovn. in [i -1][j],

168

Stellenbosch University http://scholar.sun.ac.za

APPENDIX B. LU CONFIGURATION CODE

dovn.in[i] [j], up.in[i+1] (j] ,i,j)

interior processes
PLACED PAR i = 1 FOR mesh.size -1

PLACED PAR j = 1 FOR mesh.size -2
PROCESSOR ((i•mesh.size)+j) TB

PLACE left.in[i][j] AT link1.in --left in
PLACE right.in[i][j-1] AT link1.out --left out
PLACE right.in[i][j] AT link3.in --right in
PLACE left.in[i][j+1] AT link3.out --right out
PLACE up.in[i][j] AT linkO.in --up in
PLACE dovn.in[i-1][j] AT linkO.out --up out
PLACE dovn.in[i](j] AT link2.in -- dovn in
PLACE up.in[i+1][j] AT link2.out -- dovn out
vorker(left.in[i](j], right.in[i][j-1],

right.in[i][j], left.in[i][j+1],
up.in[i][j], dovn.in[i-1][j],
dovn.in[i)[j), up.in[i+1)(j],i,j)

-- last column (except upper right-most element)
VAL !IT j IS mesh.size -1:
PLACED PAR i = 1 FOR mesh.size -1

PROCESSOR ((i•mesh.size)+j) TB
PLACE left.in[i][j] AT link1.in --left in
PLACE right.in[i)[j-1] AT link1.out --left out
PLACE right.in[i][j) AT link3.in --right in
PLACE left.in[i)[O] AT link3.out --right out
PLACE up. in (i][j] AT linkO. in -- up in
PLACE dovn.in[i-1)[j) AT linkO.out --up out
PLACE dovn.in[i][j] AT link2.in -- dovn in
PLACE up.in[i+1][j] AT link2.out -- dovn out
vorker(left.in[i][j), right.in[i)[j-1],

right. in[i] [j] , left. in [i) [0) ,
up.in[i][j), dovn.ill[i-1)[j],
dovn.in[i] [j], up.in[i+1] [j] ,i,j)

169

Stellenbosch University http://scholar.sun.ac.za

Appendix C

FORTRAN Precision
Conversion

The procedure to convert the single precision FORTRAN version of NEC2
to a double precision version is summarized below. The procedure was car­
ried out manually; as an one-off procedure, it was not deemed worthwhile
automating the process.

• IMPLICIT DOUBLE PRECISION (A-H,O-Z) was added at the start of
each program unit.

• COMPLEX was changed to DOUBLE COMPLEX.

• REAL (and REAL*4) declarations were changed to DOUBLE PRECISION.

• REAL*8 was changed to DOUBLE PRECISION (for uniformity).

• CMPLX was changed to DCMPLX; note that CMPLX takes two REAL*8 and
creates a COMPLEX*8 from them. This could lead to a baffling lack of
precision if assigned to a COMPLEX*16 data type, which will of course
simply convert the COMPLEX*8 to COMPLEX*16 using FORTRAN 1s (un­
type-checked) re-typing rules.

• REAL was changed to DREAL and AIMAG to DIMAG; there are no generic
functions for this.

• Specific functions (eg CSQRT, CEXP) were changed to the equivalent
generic function (viz SQRT, EXP).

The first six steps were done using the editor 1s search facility; the last
was done by compiling and picking up errors. After the program compiled
successfully, the cross-referenced listing was searched for (erroneous) R*4 and

170

Stellenbosch University http://scholar.sun.ac.za

APPENDIX C. FORTRAN PRECISION CONVERSION 171

C*S, and the list. of functions referenced was examined to look for similar
errors. Note that the VAX compiler does not list CMPLX, REAL and AIMAG in
its list of functions referenced; hence the need for great caution here.

Stellenbosch University http://scholar.sun.ac.za

