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Summary 

This dissertation investigates the moment method solution of electromagnetic 
radiation and scattering problems using parallel computers. In particular, 
electromagnetically large problems with arbitrary geometries are considered. 
Such problems require a large number of unknowns to obtain adequate ap­
proximate solutions, and make great computational demands. This disserta­
tion considers in detail the efficient exploitation of the potential offered by 
parallel computers for solving such problems, and in particular the class of 
local memory Multiple Instruction, Multiple Data systems. 

A brief history of parallel computing is presented. Methods for quantify­
ing the efficiency of parallel algorithms are reviewed. The use of pseudo-code 
for documenting algorithms is discussed and a pseudo-code notation is de­
fined that is used in later chapters. 

A new parallel conjugate gradient algorithm, suitable for the solution 
of general systems of linear equations with complex values, is presented. 
A method is described to handle efficiently the Hermitian transpose of the 
matrix required by the algorithm. Careful attention is paid to the theoretical 
analysis of the algorithm's parallel properties (in particular, speed-up and 
efficiency). Pseudo-code is presented for the algorithms. Timing results for a 
moment method code, running on a transputer array and using this conjugate 
gradient solver, are presented and compared to the theoretical predictions. 

A parallel LU algorithm is described and documented in pseudo-code. A 
new graphical description of the algorithm is presented that simplifies the 
identification of the parallelism and the analysis of the algorithm. The use 
of formal methods for extracting parallelism via the use of invariants is pre­
sented and new examples given. The speed-up and efficiency of the algorithm 
are analyzed theoretically, using new methods that are simpler than those de­
scribed in the literature. Techniques for optimizing the efficiency of parallel 
algorithms are introduced, and illustrated with pseudo-code. New parallel 
forward and backward substitution algorithms using the data distribution 
required for the parallel LV algorithm are described, and documented with 
pseudo-code. Results obtained with a Occam 2 moment method code run­
ning on a transputer array using these parallel LU solver and substitution 
algorithms are presented and compared with the theoretical predictions. 

PARNEC, a new Occam 2 implementation of the thin-wire core of NEC2, 
is discussed. The basic 'theory of NEC2 is reviewed. Problems with early at­
tempts at combining Occam and FORTRAN are reported. Methodologies 
for re-coding an old code written in an unstructured language in a. modern 
structured language are discussed. Methods of parallelizing the matrix gen­
eration are discussed. The accuracy of large moment method formulations 
is investigated, as is the effect of machine precision on the solutions. The 
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use of the biconjugate gradient method to accelerate convergence is briefly 
considered and rejected. The increased size of problem that can be handled 
by PARNEC, running on a transputer array, is demonstrated. 

Conclusions are dra.wn regarding the contributions of this dissertation to 
the development of efficient parallel electromagnetic moment method algo­
rithms. 
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Opsomming 

Hierdie proefskrif ondersoek die momentmetode oplossing van elektromag­
netiese straling- en strooiingprobleme d.m.v. multiverwerkers. In beson­
der, elektromagneties groot probleme met arbitrere geometriee word beskou. 
Sulke probleme vereis 'n groot aantal onbekendes om 'n voldoende benaderde 
oplossing te kry, en stel groot berekenings vereistes. Hierdie proefskrif beskou 
in detail die doeltreffende benutting van die potensiaal wat multiverwerkers 
vir sulke problem hied, in besonder die klas van lokale geheue Veelvoudige 
Instruksie, Veelvoudige Data stelsels. 

'n Kort geskiedenis van multiverwerkers word gegee. Metodes vir die 
kwantifisering van die effektiwiteit van multiverwerkers word hersien. Die 
. gebruik van pseudokode vir die dokumentering van algoritmes word bespreek 
en 'n pseudokode notasie word gedefinieer wat gebruik word in latere hoof­
stukke. 

'n Nuwe parallelle toegevoegde helling-algoritme wat geskik is vir die 
oplossing van algemene stelsels van lineere vergelykings word aangebied. 'n 
Metode word beskryf om op 'n doeltreffende wyse die Hermitiese transpo­
nent van die matriks, wat deur die algoritme benodig word, te hanteer. 
Sorgvuldige aandag word aan die teoretiese analise van die paralleleienskappe 
van die algoritme gegee (in die besonder, versnelling en doeltreffendheid). 
Pseudokode word aangebied vir die algoritmes. Resultate vir die looptyd 
van 'n momentmetode program, wat op 'n transputerskikking loop, word 
gegee en vergelyk met die teoretiese voorspellings. 

'n Parallelle L U algoritme word beskryf en gedokumenteer in pseudokode. 
'n Nuwe grafiese beskrywing van die algoritme, wat die identifikasie van paral­
lelisme en die analise van die algoritme vergemaklik, word gegee. Die gebruik 
van formele metodes vir die onttrekking van parallelisme d.m.v. invariante 
word getoon en nuwe voorbeelde word gegee. Die versnelling en doeltreffend­
heid van die algoritme word teoreties geanaliseer, d.m.v. nuwe metodes wat 
eenvoudiger is as die wat in die literatuur beskryf word. Tegnieke vir die op­
timering van die doeltreffendheid van parallelle algoritmes word ingevoer, en 
gelllustreer met pseudokode. Nuwe parallelle voor- en truwaarts-substitusie 
algoritmes wat die data verspreiding van die parallelle LU algoritme gebruik 
word beskryf, en gedokumenteer met pseudokode. Resultate verkry met 'n 
Occam 2 momentmetode program wat op 'n transputerskikking loop en die 
parallelle L U en substit'usie algoritmes gebruik, word gegee en vergelyk met 
teoretiese voorspellings. 

PARNEC, 'n nuwe Occam 2 implementering van die dun-draad kern van 
NEC2, word bespreek. Die basiese teorie van NEC2 word opgesom. Verslag 
word gedoen oor probleme met vroee pogings orh Occam en FORTRAN 
te kombineer. Metodes om 'n ou program, geskryf in 'n ongestruktureerde 
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taal, in 'n moderne gestruktureerde taal te herskryf word bespreek. Metodes 
om die matriksopwekking te paralleliseer word bespreek. Die akkuraatheid 
van groot momentmetode formulerings word ondersoek, asook die effek van 
masjienpresisie op die oplossings. Die gebruik van die dubbeltoegevoegde 
helling-metode om konvergensie te versnel word kortliks beskou en verwerp. 
Die vergrote probleemgrootte, wat met PARNEC op- 'n transputerskikking 
uitgevoer kan word, word gedemonstreer. 

Gevolgtrekkings word gemaak rakende die bydraes van hierdie proefskrif 
tot die ontwikkeling van doeltreffende parallelle elektromagnetiese moment­
metode algoritmes. 
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Abstract 

This dissertation investigates the moment method solution of electromagnetic 
radiation and scattering problems using parallel computers. In particular, 
electromagnetically large problems with arbitrary geometries are considered. 
Such problems require a large number of unknowns to obtain adequate ap­
proximate solutions. These problems arise due to the requirement for solving 
radiation and scattering problems in the "gap" region between the moment 
method and the geometrical theory of diffraction. Existing techniques for 
extending the frequency coverage of these methods are reviewed, including 
the exploitation of symmetry, the impedance matrix localization method, 
hybrid methods and iterative methods. The suitability of these methods for 
addressing the "gap" problem is discussed. Then the possibility of exploit­
ing the capabilities of parallel computers to address this "gap" problem by 
providing the necessary computational capabilities for conventional moment 
method formulations is introduced. It is this topic that this dissertation 
considers in detail, in particular the efficient exploitation of the potential 
offered by parallel computers, in particular the class of Multiple Instruction, 
Multiple Data systems. 

A brief history of parallel computing is presented. Methods for quantify­
ing the efficiency of parallel algorithms are reviewed. The use of pseudo-code 
for documenting algorithms is discussed and a pseudo-code notation is de­
fined that is used in later chapters. 

A new parallel conjugate gradient algorithm, suitable for the solution 
of general systems of linear equations with complex values, is presented. 
A method is described to handle efficiently the Hermitian transpose of the 
matrix required by the algorithm. Careful attention is paid to the theoretical 
analysis of the algorithm's parallel properties (in particular, speed-up and 
efficiency). Pseudo-code is presented for the algorithms. Timing results for a 
moment method code, running on a transputer array and using this conjugate 
gradient solver, are presented and compared to the theoretical predictions. 

A parallel LU algorithm is described and documented in pseudo-code. 
The parallelism in this algorithm is not obvious and a new graphical descrip­
tion of the algorithm is presented that simplifies the identification of the 
parallelism and the analysis of the algorithm. The use of formal methods 
for extracting pa.ra.llelism via. the use of inva.ria.nts is presented; new exam­
ples a.re given of the a.pplica.tion of the methods. The use of forma.l methods 
for the a.na.lysis of the L U algorithm is shown in considerably greater deta.il 
tha.n is a.va.ila.ble in the literature. Pseudo-code for the pa.ra.llel L U algo­
rithm is given. The speed-up a.nd efficiency of the algorithm a.re a.na.lyzed 
theoretically, using new methods tha.t a.re simpler tha.n those described in 
the literature. Techniques for optimizing the efficiency of pa.ra.llel algorithms 
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are introduced, and illustrated with pseudo-code. New parallel forward and 
backward substitution algorithms using the data distribution required for 
the parallel L U algorithm are described. Pseudo-code for these algorithms is 
given. Results obtained with an Occam 2 moment method code for straight, 
thin wires using these parallel LU solver and substitution algorithms are 
presented and compared with the theoretical predictions. 

PARNEC, a new Occam 2 implementation of the thin-wire core of NEC2, 
is discussed. The basic theory of the code is reviewed. Problems with early 
attempts combining Occam and FORTRAN are reported. A methodology 
for re-coding an old code written in a non-structured language in a mt>dern 
structured language is presented; an example is given of the methodology 
applied to one of the more complex subroutines of NEC2. Methods of paral­
lelizing the matrix generation are discussed. The stability of moment method 
solutions for problems requiring a large number of unknowns is investigated 
by using a physically symmetrical structure and solving the problem both 
with and without exploiting the symmetry. The effect of machine precision 
is also investigated and shown to affect the rate of convergence. The use 
of the biconjugate gradient method to accelerate convergence is considered 
and rejected, since for the test cases investigated with a large number of 
unknowns, the biconjugate gradient method is shown either to require more 
iterations than the conjugate gradient algorithm, or not to converge at all. 

Conclusions are drawn regarding the role of the work in: deriving, 
analysing and implementing an efficient parallel conjugate gradient algo­
rithm; introducing, analysing and implementing an efficient parallel LU algo­
rithm; the development of theoretical models for predicting algorithm perfor­
mance on local memory MIMD systems; the use of formal methods in parallel 
algorithm development and analysis; the use of pseudo-code for document­
ing parallel algorithms; the re-writing of major parts of a powerful general­
purpose moment method code, NEC2, to properly exploit parallelism; inves­
tigating the accuracy of the moment method applied to electromagnetically 
large problems; and finally popularizing parallel computing in computational 
electromagnetics. 

The dissertation is based on original research done by the author, except 
where explicit reference is made to the work of others. 
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Notation 
\lx 

V'· 
X 

E 

O(Mn) 
[A] 
[A]T 
[A]t 
[A]* 

ll[x]ll 

LxJ 
fxl 

V 
V 

1\ 

lzl 
K 
z+ 
IKI 
:::} 

The curl operation 
The divergence operation 
The vector cross product of two vectors or the Cartesian 
product of two sets - the meaning will be clear from 
the context 
The (field) vector E 

lim 
of the order of Mn. Formally, .N = O(M) :::}M-+oo log.N flog M= n 
The matrix A 
The Hermitian (complex conjugate) transpose of matrix A 
The transpose of matrix A (interchange of row and columns only) 
The complex conjugate of matrix A 
The ij-th element of matrix A 
The (algebraic) vector x 
The i-th element of vector [x] 
The Euclidean norm of the vector [x] of length n; ll[x]ll = 2:f=1 lxil2

• 

When necessary, the notation ll[x]ll2 will be used to distinguish 
this norm from other norms. 
The floor function of x, i.e. the integer part of x 
The ceiling function of x, i.e. the smallest integer 2:: x 
is defined as 
for all 
The Boolean OR operation 
The Boolean AND operation 
Absolute value of z 
The set K 
The set of positive integers 
The size of K (i.e. number of elements) 
implies 
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Glossary 

• Banked memory: Memory that is split into separate banks that can be 
accessed in parallel by the CPU. 

• Benchmarking: Establishing the real performance of a computer by 
measuring the execution time taken on a certain typical problem. The 
performance measured is in general a function of the problem. 

• Concurrent: A synonym for parallel in the context of parallel process­
mg. 

• Central processing unit (CPU): The unit that is responsible for fetch­
ing instructions from memory, moving data to and from memory, and 
carrying out logical or arithmetic functions. 

• Complexity: The number of elementary arithmetic operations required 
by some operation. A synonym for "operation count". 

• Deadlock: Deadlock occurs when two communicating processes are both 
waiting for an event that can never happen. A typical example is that 
process A is waiting to send a message to process B, but process B is 
waiting to send a message to process A. 

• Direct Memory Access (DMA): Communication paths to memory. 

• Geometrical Theory of Diffraction (GTD): An analytical technique for 
the prediction of high-frequency diffraction phenomena. The theory is 
essentially an extension of geometrical optics to include diffracted rays, 
in addition to direct, reflected and refracted rays, to describe the total 
field at a point in space. 

• Memory bandwidth: The rate at which data can be moved from the 
CPU to memory and vice-versa. Normally measured in MBytes/s. 

• A1ethod of Moments (MoM) or Moment Method: A numerical technique 
for reducing an operator equation to a set of linear equations. It is most 
closely related to the Method of Weighted Residuals. A more complete 
discussion will be found in Chapter 1. 

• Multiple Instruction, Multiple Data (MIMD ): A class of computer that 
performs different instructions on different data simultaneously. 

• A1ultiple Instruction, Single Data (MISD): A class of computer with 
multiple instructions operating on the same datum simultaneously (pri­
marily of theoretical interest). 
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• MFLOP js: Million floating point operations per second. This is the 
primary computational specification of interest in numerical analysis. 

• MIP /s: Million instructions per second. This specification must be 
used with caution, since it is not necessarily a good indication of the 
rate of floating point computation. 

• The Numerical Electromagnetics Code - Method of Moments Version 
2 (NEC2): A public domain code that uses the method of moments to 
solve electromagnetic radiation and scattering problems. It is discussed 
in more detail in Chapter 6. 

• paradigm: An accepted way of looking at something. 

• procedural language: Also known as an imperative language. This is 
the type of language generally used in science and engineering. The 
program instructs the computer to carry out a sequence of operations. 
Examples are FORTRAN, Pascal and Occam. (Languages such as LISP 
represent a different type of language, namely declarative languages). 

• Random access memory (RAM): The memory available for code and 
data on a computer. 

• Reduced Instruction Set Computer (RISC): A computer with a small 
instruction set containing only frequently used instructions. The com­
puter is, however, designed to execute these instructions as fast as 
possible. 

• Scaling: A scalable algorithm is one whose efficiency is a function of the 
"grain" of the problem, where the "grain" is a function of the number 
of matrix elements per processor, in the context of this thesis. 

• S£ngle Inst·ruction, Multiple Data (SIMD ): A class of computer that 
performs the same instruction on different data simultaneously. 

• Single Instruction, Single Data (SISD): A class of computer that per­
forms one operation on one datum at a time. 

• Virtual Memory: Memory that is obtained by swapping the contents 
of real memory (RAM) with a mass storage device, typically a disk. 
This allows users to access massive amounts of memory that would 
not be economically viable to provide as real memory. This "paging" 
(swapping) is transparent to the user, in that he does not have to 
write any code to initiate or control the paging, which is handled by 
the operating system. However, the paging does impose ·some time 
penalty. 

XV Ill 
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Chapter 1 

Introduction 

Even if we do discover a complete unified theory, it would not 
mean that we would be able to predict events in general ... even 
it we do find a complete set of basic laws, there will still be in 
the years ahead the intellectually challenging task of develop­
ing better approximation methods, so that we can make useful 
predictions of the probable outcomes in complicated and realistic 
situations. 

from "A Brief History of Time", S. Hawking, Bantam 1988, 
pp .168-9 (the present author's emphasis). 

Maxwell's equations provide a. complete classical description of electro­
magnetic wave propagation and interaction with structures. They are invari­
ant under the Lorentz transform and hence automatically incorporate special 
relativistic effects [Kon86, p.1]. The theory is classical in that quantum effects 
are not included. The necessary extension to include quantum theory may 
however be effected by replacing the field vectors by operators; see [HM89, 
p.xxi] and [Kon86, Section 5.10]. In the modern form, the equations are 

\l·D=p (1.1) 

\l·B=O (1.2) 

- 8-
(1.3) VxE=--B 

at 

- - 8-
V x H = J + BtD (1.4) 

where the field vectors have their usual meaning [Kon86, p.2]. · Maxwelh 
original work is still available in the Dover reprint edition [Max54] and it 
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CHAPTER 1. INTRODUCTION 2 

is interesting to compare his notation with that of modern electromagnet­
ics. These equations were first written in the modern form given above by 
Heaviside and Hertz working independently, and for some years bore the 
name Hertz-Heaviside equations [Nah88, plll]. Maxwell wrote out his equa­
tions in Cartesian component form; he also used quaternionic concepts in his 
notation 1 [N ah88, p.l 09]. 

The solution of Maxwell's equations is not simple for general problems. 
With time-harmonic fields, i.e. frequency domain problems, the problem of 
the solution of the equations, with appropriate boundary conditions, can be 
formulated as a boundary value problem. Analytical solutions exist only 
for a very special class of problems requiring that the boundary(ies) of the 
problem coincide with a constant coordinate surface. For arbitrary problems, 
where the geometry does not satisfy this requirement, computer methods 
have become the standard method of solving the resultant equations. With 
time-domain problems, the problem can be formulated as an initial value 
problem, and again, computer methods have become the standard method 
of solution. 

There are two fundamentally different approaches used in the computer 
solution of Maxwell's equations. These are: 

• The Method of Moments (or Moment Method) The moment method 
embraces a very wide array of numerical methods based on a finite se­
ries approximation of the unknown field quantity. It will be discussed 
in more detail shortly. References on this subject are legion; useful 
introductory treatments are to be found in [Ell81, Chapter 7], [ST81, 
Chapter 7] and [Bal89, Chapter 12]. More advanced treatments may be 
found in [Har82, Mit73, Skw81, MP86, Wan91]. Several survey papers 
on the topic are available; two useful ones are [Ney85] and [Har87]. 
Hansen's collection of reprints contains many of the seminal papers 
[Han90]. A short history of the method of moments applied to electro­
magnetic field computation is given by Harrington [Har90] 2

• Miller's 
tutorial paper [Mil88] on computational electromagnetics concentrates 
on the moment methods: the theoretical basics of the various moment 
methods are very succinctly summarized, as well as the computational 
requirements of each method. The moment method has no inherent 
theoretical limitations regarding frequency, but the computational re­
quirements of the method limit the electromagnetic size of object that 

1Quaternions enjoyed substantial support in the nineteenth century amongst mathe­
maticians and physicists, but have since been relegated to mathematical history by the 
far simpler vector notation. Heaviside devoted part of his career to promoting the use of 
vector notation [Nah88, Chapter 9]. . 

2 This paper also explains Harrington's choice of the name "method of moments" -
the name originates with the Russian mathematicians Kantorovich and Akilov. 
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CHAPTER 1. INTRODUCTION 3 

can be solved; more detail is given shortly. The moment methods 
are thus "low-frequency" methods in the sense that there are upper 
bounds to the frequencies that can be tackled in practice. However, 
in the absolute sense, moment methods are frequently used well into 
the microwave spectral region, depending on the physical dimensions 
of the structure. 

• Asymptotic methods The geometrical theory of diffraction is a well 
known asymptotic method, and is based on asymptotic approximation 
of the fields. A most useful textbook on the topic is that of McNamara 
[MPM90]; another good text is that of James [Jam86] and Balanis pro­
vides a very useful coverage [Bal89, chapter 13). Many seminal papers 
on the topic may be found in Hansen's collection of reprints [Han81]. 
The GTD, being based on optics, is a high-frequency method. 

The moment method may be defined formally as a method to convert a 
linear operator equation to a matrix equation3

. The basic procedure may be 
summarized in its most general form as follows: 

Consider the inhomogeneous equation 

£f=g (1.5) 

The unknown function f is expanded in a set of basis (or expansion or trial 
functions) as 

M 

f-;::::, 'Lxifj (1.6) 
j=l 

where fJ is the known j-th basis function and Xj is the j-th unknown am­
plitude of this basis function. Using the linearity of the operator £, equa­
tion ( 1.5) becomes 

M 

'LxJ£fJ-;::::, g 
j=l 

This yields one equation in M unknowns. Re-writing equation (1. 7) as 

M 

"X.(' f·- g- R LJ J"""'.J -
j=l 

(1. 7) 

(1.8) 

3 Thus defined, the moment method encompasses all the other non-asymptotic com­
puter methods used in computational electromagnetics which use either the Ivtaxwell curl 
equations or source integrals employing Green's functions [Mil88, p.l283). Examples of 
the former are the finite element and finite difference methods; an example of the latter, 
the boundary element method. 
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CHAPTER 1. INTRODUCTION 4 

yields the residual R; this can then be forced to zero at M points to produce 
the desired set of M equations -the collocation method used in NEC2 -
or more generally, weighted with a set of M weighting functions, wi, and the 
weighted residuals set equal to zero as 

M 

I: < Wi, Xj.Cfi- g >= 0 i = 1, 2, ... 'M. 
j=l 

(1.9) 

The weighting of the residuals with the weighting functions may be viewed as 
forming a moment, hence the name of the method. This method is also known 
in the general engineering literature as the Method of Weighted Residuals 
[FS66]. The < ·, · > symbol defines an inner product with the necessary 
mathematical properties, see [Kre78, p.129]. 

Equation (1.9) can be re-written in matrix notation as 

[A][x] = [b] (1.10) 

where 

and 
bi =< Wi,9 > 

and hence the linear operator equation has been converted to a matrix prob­
lem, namely the solution of a system of linear equations. 

Different choices of weighting function correspond to various well-known 
methods: a set of Dirac delta functions yields the collocation method; iden­
tical weighting and testing functions produce the Galerkin method. If the 
operator is positive definite, then it may be shown that the Galerkin tech­
nique is equivalent to the Rayleigh-Ritz variational procedure, permitting a 
proof of convergence [Dud85]. 

The moment method considered in this thesis uses source integrals em­
ploying a Green's function4

; the unknown is the (equivalent) surface current 
on the surface of the structure5

. Time-harmonic excitation is assumed, per­
mitting the problem to be formulated in the frequency domain. This is a. very 
efficient formulation for the problem out of which the work reported in this 
thesis grew, namely the requirement by local industry for the prediction of 
antenna. performance on vehicles composed of highly conducting materials. 
More details on the specific formulation will be found in Chapter 6. 

For the analysis problems considered in this dissertation, the moment 
methods generate matrices of the form 

4The specific integral equation is the Electric Field Integral Equation[BP8)a, p.3]; this 
is a Fredholm integral equation of the first kind [DM85, p.3]. 

5Such a formulation may also be called a boundary element formulation [SF90, p.l63]. 
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[A][x] = [b] (1.11) 

where the matrix [A] is known (it represents the discretized version of the 
operator .C), the vector [b) is known (it corresponds to the excitation field), 
and the vector [x) is unknown and must be solved for. The computationally 
expensive parts of the method of moments6 are: 

• Filling the matrix [A] - an O(M2
) operation, where M is the num­

ber of unknowns required to adequately discretize the problem, and is 
proportional to frequency. 

• Solving the system of equations [A][x] = [b] -an O(M3
) operation. 

These issues will be discussed in more detail in Chapter 2. The storage 
requirement is O(M2

). 

As has already been briefly mentioned, the moment methods have no in­
herent theoretical limitation in terms of the electromagnetic size of the prob­
lem, unlike the asymptotic methods. However, the moment methods become 
very expensive computationally as the number of unknowns increases. The 
asymptotic methods, such as the GTD, require that the problem be suffi­
ciently large in terms of wavelengths; all reflection/diffraction and source 
points must be of the order of at least one wavelength apart, and a simi­
lar restriction pertains to the geometrical dimensions of the structure (for 
instance the radius of a cylinder). Using conventional MoM formulations 
and conventional computers, it transpires that there is a substantial "gap" 
between the capabilities of the MoM and the GTD. This will be illustrated 
by an example in Chapter 2. 

This thesis addresses the question of the computational capability required 
for the moment method solution of problems which require a large number of 
unknowns for an accurate solution, but are electmmagnetically too small for 
the asymptotic methods such as the GTD to be applied reliably. In particu­
lar, this thesis addresses the design, implementation and testing of efficient 
parallel algorithms for the solution of MoM formulations on local memory 
Multiple Instruction, Multiple Data (MIMD) computers. 

In Chapter 2, the computational requirements of the MoM are reviewed, 
and various methods that have been proposed to allow a moment method for­
mulation to handle large numbers of unknowns in a computationally efficient 

6The basic operations of matrix fill and matrix solve are normally the most time­
consuming part of any moment method code, but the specific orders given here are for the 
formulation using source integrals employing Green's functions that is used in this thesis. 
Other formulations, such as a finite element formulation [SF90, Mor90] have different com­
putational dependencies, see [l'vlil88, Table VII], and also different storage requirements. 
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manner are discussed in some detail. The advantages and disadvantages of 
each are discussed. It is shown that for problems involving arbitrary geome­
tries, none of the methods is entirely satisfactory at present. The chapter is 
concluded with a discussion of the very substantially increased computational 
capability that can be obtained if the possibilities offered by parallel comput­
ing can be systematically and efficiently exploited; it is this approach that 
is investigated in detail in this dissertation. Chapter 3 presents a review of 
parallel computing, with special application to computational electromagnet­
ics. Attention is focused on pipelined and replicated systems. Examples are 
given of two computers exemplifying these different approaches, the CRAY-1 
and a transputer array. Parallel computers using arrays of transputers are 
discussed in some detail, since such a machine was used to run the paral­
lel programs described in this thesis. However, the algorithms described in 
this thesis are suitable for any local memory MIMD system, and are not 
restricted to transputer arrays. Pseudo-code is introduced that is used in 
later chapters to document the parallel algorithms. Chapter 4 discusses a 
parallel iterative solver, the conjugate gradient method. A new parallel con­
jugate gradient algorithm is proposed, theoretically analyzed, implemented 
and measured timing results compared with results predicted by the theoret­
ical analysis. Chapter 5 describes a parallel LU algorithm and new parallel 
forward and backward substitution algorithms. Formal methods are intro­
duced and applied to systematically extract potential parallelism, both for 
simple examples and for the L U method. A new graphical exposition is 
given that greatly simplifies understanding the algorithm. Theoretically ob­
tained timing results available in the literature are checked and new, simpler 
derivations presented. The parallel LU algorithm is also implemented, and 
predicted and measured timing results compared. The accuracy of the L U 
method for moment method problems with a large number of unknowns is 
also investigated. Chapter 6 considers the parallelization of a very impor­
tant public domain code, NEC2 [BP81c]. The problems encountered will 
be discussed and the methodology used by the author to re-engineer very 
substantial parts of the code in Occam 2 described. The new code runs very 
efficiently on a transputer array. The accuracy of the new code was checked 
carefully using physical symmetry to permit the comparison of the solution 
of a large system of equations with the solution of a rather smaller, but 
equivalent, system of e~Juations. Some work on attempting to accelerate the 
convergence of the conjugate gradient algorithm, by using the biconjugate 
gradient algorithm, is also described and results presented. Chapter 7 draws 
some general conclusions about the work, and highlights the contributions. 
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Chapter 2 

The MoM Solution of Large 
Problems 

' ... my circuits are now irrevocably committed to calculating the 
answer to the Ultimate Question of Life, the Universe and Every­
thing ... but the programme will take me a little while to run.' 

Fook glanced impatiently at his watch. 

'How long?' he said. 

'Seven and a half million years,' said Deep Thought. 

from "The Hitch Hiker's Guide to the Galaxy", by Douglas 
Adams, Pan 1979, p.130. 

2.1 Introduction 

Solving electromagnetically large problems with the method of moments is 
computationally taxing. In this chapter, the basic computational require­
ments of the particular moment method used in this thesis are given. Var­
ious methods that have been described in the literature, including the use 
of symmetry, artificially zeroing matrix entries, hybridizing the MoM and 
GTD, and iterative methods, are considered. The advantages and disadvan­
tages of each are discussed, with special regard to the solution of the general 
problems encountered in antenna engineering out of which this work grew, 
namely the prediction of the performance of antennas mounted on complex 
structures. Then the use of parallel computers to handle the generation and 
solution of the large matrices arising from a conventional MoM formulation 
is discussed; this is the main subject of this dissertation. This is put into 
perspective with the other methods. 

7 
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2.2 Discretization of Electromagnetic Prob­
lems for a MoM solution 

It has been found experimentally that around ten segments per wavelength 
are required to provide adequate sampling for a MoM formulation [BP81c, 
p.3); if a surface is being modelled this squares to one hundred segments 
per square wavelength and if a volume is being modelled, it cubes to one 
thousand segments per cubic wavelength. The time required to solve the 
system of linear equations (using the L U method) goes up as the third power 
of the number of segments for a full matrix, so an integral equation formu­
lation has a computational dependency of the power six for surfaces and of 
power nine for volumes [Mil88, Table VII, p 1286). If the body is composed 
of a homogeneous material, the problem dimension can be reduced by one 
by an equivalent current formulation on the contour / surface for two and 
three dimensional problems respectively. This is expressed succinctly in the 
following formula [ibid.) 

Tw ex ( :L)3(D-l) ; D t {2, 3} (2.1) 

where Tw is the solution time, L is the problem size, 6.L is the spatial reso­
lution and D is the problem dimension; the D-1 assumes a homogeneous (or 
impenetrable) body where the source integrals are usually one dimension less 
than the problem dimension, as already noted1

• 

At the time of writing, a typical "departmental" computer can solve a 
moment method problem with about 500 to 600 unknowns in an hour2

• For 
objects of the size of the space shuttle, to take an example from [Mil90a, 
p.50], with a surface area of ·around 540 m2, the maximum frequency at 
which a MoM code will be able to solve such a problem in an hour on the 
above computer is about 30 MHz. The controlling equation in this case is 
the following 

~ 
fmax = cy AJ2 (2.2) 

1This formula is not valid for a one dimensional problem, where the relevant power is 
three. 

2 These figures are based on a Digital Equipment Corporation VAX 3600, the largest 
system readily available to. the author at the University of Stellenbosch; the machine is 
rated at 2.9 VAX MIP/s; this performance rating is relative to the VAX 11/780, which is 
rated at 1 VAX MIP/s. The 3600 and 11/780 are representative of the type of computer 
readily available to the average university department at the time of writing. Note also 
that these figures assume that one has the machine entirely at one's disposal - such a 
job will normally be running in a batch queue and almost certainly will be. sharing the 
machine's resources with interactive users and other batch queues, so the elapsed time is 
more likely to be several hours. 
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where .fmax is the maximum frequency, c is the velocity of light in m/s, A1max 
is the maximum number of unknowns that can be solved in one hour, A 
is the area in m2 and d is the sampling density in samples per wavelength 
(with d = 10 for the preceding calculation). If an antenna is mounted on 
the fuselage, which is several metres across (say 3 m), the lowest frequency 
at which the GTD is usable is about 100 MHz, and such calculations may 
well be of dubious validity. Clearly there is a "gap" in the coverage of ex­
isting techniques, which for the space shuttle sized vehicle falls in the VHF 
communication band - a most inconvenient place to be unable to predict 
antenna performance. 

Inadequately discretizing a structure can generate plausible but danger­
ously incorrect results. The degradation can be gradual, as shown by the 
author in work for his Master's degree (reported in [DM87] and in more de­
tail in [Dav86, Chapter 4]), or dramatic, as shown in Figures 2.1 and 2.2. 
These figures shows the radiation pattern of an antenna mounted on the rear 
of a truncated cone cylinder at S-band (nominally 2-4 GHz). The problem 
was modelled using the body of revolution formulation [DM87]. The total 
length of the generatrix was about 8 to 9 wavelengths. Figure 2.1 shows 
the radiation pattern obtained using approximately 30 segments - approxi­
mately ~ of the number required by the ten segments per wavelength guide­
line. Figure 2.2 shows the same results, but with 89 segments. The main 
lobe has moved from approximately broadside to front-firing - where one 
would expect it to be from the viewpoint of the travelling wave excited on the 
cone/ cylinder. The under-discretized solution is thus completely misleading. 

2.3 The Exploitation of Symmetry 

The most efficient way of handling larger problems is to exploit whatever 
symmetry may be available; for the majority of structures of practical en­
gineering importance this is unlikely to be more than left-right symmetry 
for the basic structure, and the antenna is very likely to be mounted asym­
metrically. Methods such as the Numerical Green's Function (NGF) option 
available in NEC2 [BPSl c, p.89-92] permit one to model the basic structure 
(without the antenna) using symmetry, perform a LU decomposition on the 
symmetrical structure, save a NGF file (which is essentially the factored ma­
trix), then add an antenna to the structure and use methods to factor the full 
(and now asymmetrical) matrix that re-use the already facto red matrix rep­
resenting the structure, without major additional computational cost. \Nhile 
simple in concept, it greatly complicates the coding- a. very substantial part 
of NEC2 is devoted to handling the NGF option. In any case, this left-right 
symmetry decreases the computational load by at most about four; this can 
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Rear mounted antenna, S band . 
.Approximately 30 elements 

0 20 40 60 80 100 120 140 160 180 

Theta 

Figure 2.1: Capped cone-cylinder, S band, approximately 30 unknowns, pitch 
plane radiation pattern. Under-discretized by a factor of three according to 
the ten segments per wavelength guideline. 
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Rear mounted antenna, s band. 
89 elements 

0 20 40 60 80 100 120 140 160 180 

Theta 

Figure 2.2: Capped cone-cylinder, S band, 89 unknowns, pitch plane ra­
diation pattern. Correctly discretized according to the ten segments per 
wavelength guideline. Note shift of main lobe compared to previous figure. 
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be computed as follows: 
The general formula for the time to compute a single frequency MoM 

solution in free space for the MoM formulation used in this thesis is given by 
the following formula, adapted from [BP81b, p. 165): 

M2 M3 
T=As+B 52 (2.3) 

where M is the number of segments (the number of unknowns for NEC2), S is 
the number of degrees of symmetry, and A and B are parameters dependant 
on the computer and algorithm used. The first term represents the matrix 
fill operation and the second term the matrix solve operation. There is also 
a term of O(M2 ) representing the substitution step(s) and a term of O(M) 
representing the calculation of radiation patterns. These terms are not shown 
in the above, since for large systems, the two terms shown are the dominant 
terms unless an extra-ordinary number of different excitations and/or field 
points are required. The constant A may also be weakly geometry dependant 
if the numerical solution enforces current continuity between segments, as is 
the case with NEC2. 

Hence halving the number of unknowns using left-right symmetry will 
result in a saving of time of the order of four [BP81 b, p.32). 

2.4 The Impedance Matrix Localization 
Method 

Another more radical method is that recently reported by Canning [Can90], 
the Impedance Matrix Localization (IML) method. The origin of the method 
is the idea of limiting the interaction distance between elements, only com­
puting matrix elements within this limited interaction distance and zeroing 
the rest. Such methods been reported by Moore and Pizer [MP86, Chapter 
15]; they called the method the sparse matrix approximation. The result is a 
matrix with a number of zero elements, and if correctly numbered (which is 
not in general a. trivial problem), the resultant matrix is banded, which can 
be exploited by an LU solver to save both memory and time. Alternately, an 
iterative solver may be used to avoid the re-numbering problem, also with 
attendant memory and time savings. 

The IML method is an extension of this idea. Canning's ideas grew 
out of two observations: firstly, one has a very wide choice of basis and 
testing functions in the MoM, and if one could choose them in some fashion 
to make nearly all the MoM matrix entries negligible - something which 
cannot be said of the standard interaction distance limiting methods with 
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any certainty - then the desired result has been achieved. Secondly, this 
must be possible, since the GTD achieves this in the high-frequency limit. 

The IML may be written mathematically as 

[T] = [A][Z][Af (2.4) 

where [Z] is the interaction (impedance) matrix generated by a conventional 
MoM formulation, [A] is some transformation matrix and [T] the transformed 
matrix [Can90, eqn.l]. The idea is to develop a set of basis functions which 
correspond to a matrix [A] which accomplishes the near-zeroing of most of 
the elements of [T]. 

Initial work produced a transformation matrix that was very ill­
conditioned, but Canning's later work produced a suitable, well conditioned 
transformation matrix. Canning reports very promising results [ Can90]. The 
result of Canning's work is to demonstrate that it is possible to reduce the 
number of significant matrix elements from O(M2 ) to order 0(.!11). 

This work appeared during the closing stages of the work reported in this 
thesis; it should be emphasized that the very promising results reported by 
Canning do not invalidate the basic contents of this thesis. By incorporating 
Canning's work into the now existing parallel MoM codes, far larger problems 
could be addressed than is presently possible, since the IML method will still 
be time-intensive for large problems. Indeed, Canning comments "V..'hat is 
needed today is a method which scales better with problem size, so that 
it may be efficient on these modern (powerful) computers" [Can90, p.lS]. 
Canning's present method requires iterative solvers, using an incomplete LU 
decomposition, and this thesis considers both parallel iterative solvers and 
parallel L U decomposition. 

2.5 Hybrid MoM-GTD formulations 

Several researchers have investigated the possibility of combining the MoM 
and GTD. Thiele and Newhouse [TNSl] augmented the MoM impedance 
matrix elements b:y including GTD contributions. Burnside, Yu and Marhe­
fka [BYMSl] computed the field due to MoM currents at a distance from 
the segments sufficiently great that the field can be matched to a. GTD scat­
tered field. This permitted them to extend the GTD to problems where the 
canonical diffraction terms were unknown. 

For complex structures with many possible optical paths for the 
diffracted/reflected rays, the ray-tracing problem is far from trivial com­
putationa.lly and the codes can have very substantial computational require­
ments, sufficient to warrant para.llelizing the code [Sch90]. Such multiple 
interactions remain significant in the "gap" region where the structure is 
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electromagnetically relatively small. Hence a. hybrid code can be expected 
to have substantial computational requirements in the "gap" region. 

The basic requirements of the GTD in terms of electromagnetic size will 
also have to carefully monitored in the regions where the MoM is not used. 
For reliable operation, a. typical GTD code such as the Numerical Electro­
magnetic Code - Basic Scattering Code [BMY73] requires that all plate 
structures should have edges at least a wavelength long; the major and minor 
radii and length of all elliptic cylinders should also be at least a wavelength 
and each antenna. element should be at least a. wavelength from all edges and 
the curved surface. These limitations will not disappear with a. hybrid for­
mulation; the use of the MoM in the region near the antenna. will result in a. 
relaxation of the requirements in this region, but not for the entire structure. 

It would be reasonable to view the hybrid methods as attempting to 
close the "gap" between the conventional MoM and GTD by pushing the 
minimum usable frequency of the GTD downwards, as opposed to the work 
on different MoM formulations that attempts to push the maximum usable 
frequency upwards. The author is not aware of any general purpose code 
readily available at the time of writing that successfully combines the two 
methods at a. fundamental level. 

2.6 Iterative Methods 

Recent years have seen much debate on the topic of iterative methods as a. 
method for solving large problems [DM88, JvRM88, RP88, \\Ta.n90a., \\Tan90b, 
Wan91, Sar88]. Two issues may be identified in the debate: 

• The first relates to the relationship of the "direct" iterative methods 
and the moment methods, and the convergence of each to the exact 
solution; 

• the second relates to the question of computational efficiency. 

The debate on the first issue was precipitated by Sa.rkar [Sa.r86]. Great 
stress was laid in his article on the difference between the application of 
the CG method for the solution of the system of linear equations resulting 
from a MoM formulation, and the "direct" application of the CG method to 
the underlying operator equation itself, without (explicitly) discretizing the 
equation, as required by any moment method formulation. The guaranteed 
convergence property of the CG algorithm was then used to argue that the 
"direct" method converges to the exact solution as the number of unknowns 
increases. Similar claims were emphatically repeated in [Sar87b]; Sarkar 
stated "There is a heaven and hell difference between the application of 
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the conjugate gradient method to solve a matrix equation in the method of 
moments, as compared to the application of this method directly to solve an 
operator equation" (sic) [Sar87b]. 

The author tested the claims in Sarkar's controversial paper [Sar86] by 
applying the method to the solution of radiation from a body of revolution; 
details have been published in [DM88]. The result was the observation that 
the "direct" application to the operator equation and the application to the 
system of linear equations generated by a MoM collocation (delta weighting 
functions) formulation using pulse expansion functions led to precisely the 
same systems of linear equations, and the solutions were numerically iden­
tical. The run-time for the "direct" application was rather longer than for 
the CG- MoM program since the matrix elements were essentially being re­
computed at each iteration. Similar findings were published by Janse van 
Rensburg and McNamara [JvR:M88]; their results using the "direct" method 
for scattering from a straight thin wire were also indistinguishable from a 
MoM formulation. The reason for this may be found in the theory of func­
tional analysis. In order to represent an operator in discrete form (i.e. as a 
matrix representation) for computational purposes, it is necessary to restrict 
its domain (range) to some finite-dimensional subspace of the continuous do­
main (range) and select basis functions in both these subspaces. The basis 
functions of this restricted domain of the operator will be the set of expan­
sion functions for the unknown, while the basis functions for the restricted 
range of the operator will be the weighting functions. These observations 
also permit the adjoint operator, required by the "direct" CG method, to be 
constructed very simply using the well-known fact that in any finite dimen­
sional Hilbert space, the adjoint operator is simply the Hermitian transpose 
[Kre78]. This point is elucidated in [JvRM88]. 

Ray and Peterson's paper [RP88] is a particularly well written exposi­
tion of the first issue, demonstrating clearly the difference between what 
they identified as solution convergence and algorithm convergence. Solution 
convergence addresses the question: as the representation of the function im­
proves (i.e. more unknowns are used in the finite series representation), how 
well does it approximate the exact continuous solution? Algorithm conver­
gence and error address the question: given an estimate of a solution within a 
particular representation(i.e. a particular number of unknowns), how close is 
it to the best possible solution within that representation? By (incorrectly) 
overlooking the implicit discretization in the "direct" approach, Sa.rkar used 
results for algorithm convergence to (incorrectly) claim solution convergence. 

Despite the conclusive results of Ra.y and Peterson's work, as well as 
the supporting results of several others, the present author included [DMSS, 
JvRM88, Sa.r88], an exchange indicating a. difference of views on this subject 
was still in progress at the time of writing [Wa.n90a, Wan90b, Wa.n91]. 

--------------------- ~~--------
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Another important claim made for the "direct" method is that it does not 
break down at frequencies corresponding to internal resonances [NRS87]; this 
related to the debate on the first issue. This is also a controversial claim since 
the problem is that the underlying operator is ill-conditioned in this case, not 
just the discretized MoM formulation. It is shown later in this thesis that 
the CG method is very robust, permitting the solution of very ill-conditioned 
matrices that even a double precision L U solver is unable to solve. This thesis 
does not investigate this claim further, but the author would suggest that 
it is this robustness of the CG algorithm rather than the application of the 
"direct" method per se that permits one to obtain solutions at frequencies 
corresponding to internal resonances, and that the same results would have 
been obtained had a conventional MoM formulation with a CG matrix solver 
been used. Mittra and Klein [MK75, p.l40] show that for the case of a square 
cylinder, at frequencies corresponding to internal resonances, the condition 
number of the matrix becomes very large- it is, however, finite. Thus the 
author's explanation of the results observed by the "direct" method adherents 
at internal resonance frequencies have a reasonable basis. It is also supported 
by [RP88, Section V]. 

The debate on this first issue has tended to overshadow the second is­
sue, namely the memory saving and computational efficiency claimed for the 
method. This issue is the more important one in the context of this disserta­
tion. Both the memory saving and the computational efficiency are actually 
the result of exploiting Toeplitz symmetry. Very similar time and memory 
savings have been obtained in conventional MoM codes that correctly exploit 
the available symmetry; an example will be given shortly. 

It has been claimed that the iterative methods permit the modelling of 
much larger structures than the conventional MoM [Sar86]. This claim is 
rather misleading, for the following reasons. Vlhile it is true that the "direct" 
CG formulation only requires storage for several vectors of O(.M) as opposed 
to the MoM which requires storage for a matrix of 0(1.52), it does that at 
the cost of essentially re-computing the coefficient matrix at each iteration 
[\Van91, p.257]. It is only when the Fast Fourier Transform (FFT)3 can be 
used to evaluate the matrix elements that the "direct" CG method becomes 
a viable computational contender, and this occurs only with a Toeplitz oper­
ator [Sar86]. The finite dimensional matrix representation (using a uniform 
discretization) of a Toeplitz operator is also obviously Toeplitz. A classic ex­
ample of Toeplitz symmetry arises with the Mol\1 formulation for radiation 
or scattering from a uniformly discretized straight, thin wire. It should be 
noted that for this case, algorithms exist with similar computational require-

3 Many of the methods that exploit the computational efficiency of the FFT can be 
traced back to work by Bojarski, reported in [Boj82] 
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ments to the "direct" CG method (viz Mlog2(M) per iteration; note that 
there is an error in the closing paragraph of [Sar86, p.ll] where it is stated 
that the dependence is O(M); the previous page [Sar86, p.lO] gives the cor­
rect order). An example is given in [PM85b, p.l29] where the CG method 
is used to solve the set of linear equations generated by the MoM, but the 
matrix-vector products required by the method are implemented using the 
fact that with a Toeplitz matrix, this operation can be viewed as a discrete 
convolution and the FFT used to implement the multiplication. It is notable 
that in work on problems without the convolutional property required to ex­
ploit the FFT, the adherents of the "direct" approach frequently do not give 
run-times for the algorithms [NRS87]. If the FFT is used with the "direct" 
method interpretation, a MoM interpretation is still possible, but the details 
are rather more involved [PM85b]. Some other problems with using the FFT 
were noted by Steyn and Davidson [SD90]. 

When the necessary symmetry exists, permitting the full exploitation of 
the FFT, impressive results are possible. Zwamborn has recently described 
an iterative formulation that permits a full three dimensional model of an 
inhomogeneous object using around 27 000 cells (30 x 30 x 30) [Zwa91, 
p.l38]. The Toeplitz symmetry is obtained by embedding the target in a 
cube, using a contrast function to differentiate the target and the free space 
"embedding" and using an regular grid. Such methods are, however, difficult 
if not impossible to apply accurately to general problems involving arbitrarily 
orientated surfaces, such as the vehicle mounted antenna problems of engi­
neering interest that initiated the work reported in this thesis. 

2.7 Parallel Computing 

This chapter has considered a number of methods for the solution of elec­
tromagnetically large problems. One final method has yet to be considered 
- the exploitation of far more powerful computers. On the one hand, this 
solution is trivial if one waits for conventional computers to increase in speed, 
as they have been doing consistently for the last four and a half decades. On 
the other hand, there is the challenge of developing new algorithms to exploit 
the radical increase in processing power made possible by the development 
of parallel processing. To develop such algorithms so that they will run effi­
ciently on this new class of computers is a very far from trivial problem. It 
is this problem that is addressed in this thesis. 

The emergence of vector supercomputers has permitted the solution of 
much larger problems than could previously be handled. These computers, 
epitomized by the CRAY series, the first of which was installed in 1976, rep­
resented a tremendous increase in computational resources for researchers 
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with access to one. However, such systems are extremely expensive, and not 
readily available outside the U.S.A., Europe and Japan at the time of writ­
ing. This thesis considers the use of a rather cheaper type of computer, the 
local memory Multiple Instruction Multiple Data (MIMD) computer. Such 
systems offer performance rivaling that of the vector supercomputers, but 
require that the algorithms be very carefully designed to exploit the parallel 
architecture and obtain something approaching the manufacturer's claimed 
peak performance. The burden of this thesis is primarily the derivation, 
analysis, implementation and testing of such algorithms. 

The parallel algorithms and timing models that will be developed in this 
thesis are applicable to any local memory MIMD system, and the theoret­
ical results depend on only two machine dependant parameters, the speed 
of computation and communication. To validate the theoretical analysis, 
the algorithms are implemented in Occam 2 and run on a transputer array; 
the machine parameters mentioned are obtained by benchmarking and the 
predicted and measured results compared. These specific timing results are 
inevitably dependant on the particular computer used, but the basic algo­
rithms and theoretical analysis will not date as newer computing technologies 
replace the transputer technology that was available at the time of writing. 

It is also important to ensure that the large systems of equations can 
indeed be solved accurately, and that the rounding errors imposed by finite 
digit arithmetic do not degrade the solutions. In general, the matrices gen­
erated by moment methods do not permit use of the existing theorems on 
the growth of rounding errors in LU or iterative solutions of systems of linear 
equations, and the question of accuracy must be investigated by computa­
tional validation. 

While the use of more powerful computers with existing algorithms is still 
ultimately limited by the third power law on the solution of the system of 
equations, it has been seen from the example given that the "gap" between 
the MoM and GTD does not require a tremendous increase in the maxi­
mum usable frequency of the MoM to bridge; for the space shuttle example 
discussed, the ratio of the minimum reliable frequency for the GTD to the 
maximum usable frequency for the 11oM is about three, using the criteria 
discussed in Section 2.2 (viz. for the MoM, one hour of CPU time on a 
typical system such a.s the VAX discussed- about 500 to 600 unknowns­
and for the GTD, miD;imum dimension approximately L\). An increase in 
computational speed by a. factor of slightly less than 1 000 would be sufficient 
to bridge this gap4

• While the maximum number of processors used in this 

4 At the time of writing, the Jet. Propulsion Laboratory, California Institute of Tech­
nology, were installing an array of 512 Intel i860 processors [Cwi91). The i8q0 is a rather 
faster processor than the T800 transputers used in this thesis. 
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thesis was 31, the algorithms that are described demonstrate excellent scal­
ing properties, and will run efficiently on much larger numbers of processors, 
so the basic premise of extending the MoM using large processor arra.ys is 
valid and tenable. 

2.8 Conclusions 

The methods receiving attention in the literature for the solution of electro­
magnetically large problems have been reviewed. The discretization require­
ments for reliable approximate solutions have been discussed and an example 
shown to illustrate the "gap" between the MoM and the GTD for a problem 
representative of those of practical interest. The possibilities offered by ex­
ploiting symmetry have been reviewed; many problems of practical interest 
do not unfortunately possess the necessary symmetry. The Impedance Ma­
trix Localization Method, an extension of the sparse matrix approximation, 
has been described. Preliminary results obtained with the method appear 
promising. Hybrid MoM-GTD formulations have been briefly described and 
also show promise in closing the MoM-GTD "gap". The use of iterative 
methods has been reviewed and a. debate in the literature regarding the rela­
tionship of "direct" iterative methods to iterative solvers applied to moment 
method codes has been summarized. The computational efficiency of the 
iterative methods is the result of the exploitation of Toeplitz symmetry; this 
limits the applicability of the methods to the general problems of interest in 
this thesis. 

Finally, the systematic and efficient exploitation of parallel processing has 
been identified as a topic of great interest. Other methods discussed such 
as the Impedance Matrix Localization method will also benefit from the 
availability of efficient parallel algorithms. The work on extending the MoM 
(on the one hand via algorithms with lower computational requirements such 
as the Impedance Matrix Localization method, and on the other through the 
development of parallel algorithms that will run efficiently on large processor 
arrays- the subject of this dissertation) should be viewed as complementing 
work on hybridizing the GTD and MoM. 

In the next chapter, a. review of parallel computing is presented, con­
centrating on the types of computers that have shown the greatest utility 
for computational electroma.gnetics, namely pipelined vector computers and 
replicated MIMD arra.ys. Examples are given of contemporary machines 
epitomizing these two approaches. 
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Chapter 3 

A Review of Parallel 
Computing 

3.1 Introduction 

This chapter provides an overview of parallel computing, with referenc~ to 
numerical analysis in general and computational electromagnetics in partic­
ular. The chapter starts with a brief review of the history of parallelism 
and the general principles, then goes on to look at two examples of paral­
lel computers that embody the two main types of parallelism encountered, 
viz. pipelining and replication. Then the classification of parallel comput­
ers in general is discussed. The question of quantifying the performance of 
a. parallel algorithm is addressed. Theoretically predicting the approximate 
performance of an algorithm on particular hardware can save much wasted 
coding, by allowing the comparison of different algorithms without having 
to implement them all and then compare by benchmarking. A pseudo-code 
notation is introduced that is used to document the parallel algorithms in 
the rest of the thesis. 

3.2 General Principles and Historical Back­
ground 

The fundamental principle underlying parallel (or concurrent) processing is 
that once the limits on speed imposed by a. certain computing technology 
have been reached, the most obvious way of building a faster computer is to 
perform operations simultaneously. Two fundamental ways of implementing 
parallelism have emerged, namely 

• Pipe-lining: overlapping parts of operations in time. 

20 
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• Replication: providing more that one functional unit ( eg CPU). 

These are discussed in more detail in Sections 3.3 and 3.4 respectively. 
The history of modern (i.e. digital, electronic) computers begins towards 

the end of World War II; the first general purpose electronic digital com­
puter was ENIAC, and rather interestingly contained many parallel aspects 
-for example, 25 independent computing units [HJ88, p.8). Over a century 
previously, the initial designs of the machine generally regarded as the first 
computer, Babbage's Analytical Engine, also contained the concept of par­
allelism - although this appears to have been dropped in his later designs 
[HJ88, p.8]. 

Some form of parallelism has long been a feature of computer designs. 
By the 1960's most scientific computers were using bit-parallel arithmetic, 
i.e. processing the bits of a word in parallel. The 1953 IBM 701 was an early 
computer to use bit-parallel arithmetic [HJ88, p.l2). Another form of par­
allelism long used is parallelizing the I/0 and arithmetic units by providing 
an I/0 channel, to allow useful work to continue during read to / write from 
(almost inevitably slower) peripheral units. The IBM 704, commissioned in 
1955, is an early example of such as system [ibid.) 

These forms of parallelism are ideal from the user's viewpoint, since they 
are entirely transparent to him and all he sees is a machine with faster 
through-put. The next stage of computer development involved pipelining, 
that is the overlapping of operations in time. These operations could be 
instruction processing, where the operation of instruction fetch, decode, ad­
dress calculation and operand fetch are overlapped on successive operations. 
An early example was the University of Manchester /Ferranti (later ICL) AT­
LAS machine (1961) [HJ88, p.14]. Alternatively, pipelining can be applied 
to arithmetic operations. 

Possibly the biggest single advance in computational power was the in­
troduction in 1976 of the CRAY-1 1

• This computer successfully combined a 
number of important concepts, incorporating pipelining, interleaved memory 
and an attention to the detail of parallelism that made the machines the 
fastest computers in the world when first delivered in 1976 [HJ88, p.118). 
Due to the historical importance of the CRAY, it is described in more detail 
in Section 3.3.2. 

However, there is a limit to the amount of parallelism that can be ex­
tracted via. pipelining - it is certainly difficult to see how general purpose 
pipelines can be developed for much more than the basic operations already 
described. Recent designs have thus increasingly exploited replication to 
increase processing speed. 

1Cray's eponymously named computer is one of lhe few thus distinguished. 
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When first introduced, replication tended to involve either providing a 
few, powerful processing elements, or providing a massive number of very 
simple processing elements. The former was the approach used on the CRAY­
XMP- the XMP is essentially one, two or four CRAY-1-like CPU's sharing 
a common memory [HJ88, p.123]2. The latter was the approach that ICL 
followed with their DAP (Distributed Array Processor) [HJ88, p.290]. The 
first production models3 contained a two-dimensional array of 4096 1-bit 
processors. 

The introduction by INMOS of the transputer4 has had a major impact 
on parallel processing, due to the fast processing and communication speeds, 
the simple and effective provision made for communication between trans­
puters, and the relatively low cost [HJ88, p.322]. The transputer was prob­
ably the first microprocessor to fully exploit the possibilities of VLSI (Very 
Large Scale Integration) technology for concurrent processing. The technol­
ogy required to build moderately large transputer arrays (64 processor arrays 
are not uncommon) is rather simpler than that required for a pipelined su­
percomputer, making supercomputers based on replicated transputer arrays 
rather cheaper than a pipelined supercomputer, but with impressive compu­
tational potential. The algorithms developed in this thesis were tested on a 
transputer array, and more detail is provided on transputers in Section 3.4.2. 
Such arrays fall in between the extremes of the CRAY-XMP and DAP. 

In the next section, pipelining and replication are discussed in detail. 

3.3 Pipelining 

3.3.1 Description of Pipelining 

Suppose it is desired to add two floating point vectors [a] and [b] together, 
to produce the vector [c]. In the first clock cycle (or tick), the first elements 
a1 and b1 are fetched, in the second tick they are added, and in the third 
tick the result is stored. Thus an output is obtained every third tick. Now, 
by tick 2, the hardware dedicated to fetching operands is idle, and by tick 3, 
both this unit and the arithmetic unit are idle. Only on tick 4 is new data 
fetched. This is illustrated in Figure 3.1 for the case of vectors of length 3. 

Instead of leaving these units idling, assume that it can be arranged that 
while the arithmetic unit is adding a1 and b1 , the fetch unit is fetching a2 and 
b2 on tick 2, and on tick 3 the fetch unit is fetching a3 and ~' the arithmetic 

2The two processor version was announced in 1982 and the four processor version in 
1984 [HJ88, p.l18). 

3The first. DAP computer was delivered in 1980. 
4Transpu ters were first available in 1984. 
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unit is computing a2 and b2 and the output unit is outputting c1 = a1 + b1 . 

Thus the operations have been overlapped in time, and now (after an initial 
hiatus of two ticks) a result is obtained every tick instead of every third. 
This situation is illustrated in Figure 3.2. Thus, with the same technology 
the computer has been speeded up by almost three. On real computers, the 
amount of work that can be done in one clock cycle is rather less than in 
this idealized example, so the pipelines are generally deeper, offering more 
potential for speed-up. 

tick1 m b ---+ a1; 1 

tick2 cl := al + bl 

tick3 
out 

CJ ---+ 

tick4 
m b ---+ a2; 2 

tick5 c2 := a2 + b2 

tick6 
out 

c2 ---+ 

ticki m ~ ---+ a3; 
tick8 c3 := a3 + b2 

tick9 
out 

C3---+ 

Figure 3.1: Sequential execution of a+ b . 

. k tn b tzc·1 --+ a1; 1 

tick2 c1 := a1 + b1 

tic/..~3 

tick4 

tick5 

out 
cl ---+ 

m 1-._ 
---+ a2; 112 

c2 := a2 + b2 
out 

c2 --+ 

Figure 3.2: Pipelined execution of a+ b with a pipe of depth 3. 

In general, the time, tpipe, to operate on a vector of length n is 

tpipe = [s + l + (n- 1)]r (3.1) 

where l is the length of the pipe, sr is the set-up time, and represents the 
penalty to be paid with a pipeline - a certain amount of time is required to 
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set it up - and T represents the interval between ticks. The set-up time is 
constant irrespective of the length of the vector. It can therefore be expected 
that the pipeline will not be efficient for short vectors, where ST is of the same 
order as ( n - 1 )T. The actual values of s and T are determined either from a 
detailed knowledge of the specifications of the computer or via benchmarking 
(measurement). 

A useful general form of characterization for parallel processors intro­
duced by Hockney and Jesshope [HJ88, Section 1.3.2] is the (r00 , n1; 2 ) model. 
The execution time of an operation on a vector of length n is given by 

(3.2) 

This discussion has not specified what operation is implied. Each basic arith­
metic operation is often allocated a special purpose pipeline, as will be seen 
in the example of the CRAY-1. 

The maximum or asymptotic performance r 00 is the maximum rate of 
computation in MFLOP /s. For a pipelined computer, this occurs as the 
length of the vector tends to infinity, hence the name. Comparing equations 
(3.1) and (3.2), r00 = T- 1 for a pipelined computer. The half-performance 
length n1; 2 is the vector length required to obtain half the maximum perfor­
mance. For a pipelined computer, n1; 2 = s + l- 1. 

3.3.2 An Example- the CRAY-1 

This section describes the CRAY-1 5 computer, which at the time of writ­
ing was a most important computer, very successfully exploiting pipelining. 
It can be expected that technological developments will date this particular 
section; however, as has already been stated in the introduction to this chap­
ter, the parallel processing principles used in this thesis are not tied to the 
specific computer technology of 1991. 

The CRAY-1 is a pipelined vector machine. Three floating point, 
pipelined, functional units are provided, one each for addition, multiplication 
and reciprocal approximation. The pipelines are 6, 7 and 14 deep respectively. 
These can produce a result every clock cycle (8.5ns on later models). Eight 
vector registers, each able to hold 64 64- bit long floating point numbers, are 
provided, along with three 64-bit data paths for direct memory access, and 
a set of 32 machine instructions for manipulating and performing arithmetic 
on these vectors [HJSS, Section 2.2.2]. 

5Cray was a founding member of Control Data Corporation (CDC), and was intimately 
involved with the design of the CDC 6600, a 1960's machine that combined principles such 
as pipelining and memory interleaving. In 1972 he left CDC to start his own company, 
with the aim of producing the fastest computer in the world. In the very short space of 
four years he succeeded, and in 1976 the first CRAY-1 was delivered. 
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The CRAY -1 benchmarked by Hockney and Jesshope [HJ88, Section 2.2] 
had a clock time of 9.5ns, which would imply a maximum through-put of 
around 105 MFLOP /s per pipeline. (Note that there are three such pipelines 
that can be chained; this concept is discussed later). The maximum rate at 
which one pipeline can produce results is also the maximum rate at which 
the system can transfer (on two separate 64 bit DMA links) the two operands 
from memory and (on another DMA link) the output to memory. However, 
the vector registers are provided to allow further operations on data without 
first transferring results to main memory. This helps reduce the memory 
bandwidth problem. On the subject of memory, the CRAY-1 also uses banked 
(also known as interleaved) memory, which is another type of parallelism 
encountered on virtually all supercomputers. Memory banks are groups of 
memory, which can send data to the processor in parallel. Thus relatively 
slow memory can be matched to a fast processor. (This concept was found 
in the very successful CDC 66006 of the 1960's [HJ88, p.l6].). 

The CRAY-1 also permitted chaining of vector instructions. Chaining 
means that if, for example, two vector operations using different pipelines 
are to be executed sequentially, the second pipeline starts as soon as a result 
is produced. Thus the system does not wait for the first pipeline to empty 
before initiating the second, but rather as soon as data is available. The 
result is to effectively multiply the length of the pipeline by the number of 
units that can be chained (assuming that the pipe lengths are approximately 
the same). 

The CRAY-1 achieved its success by using the fastest semiconductor tech­
nology available at the time of its design, using pipelining, using vector reg­
isters to store temporary results and by carefully matching memory and 
processing requirements. Note that pipelining on its own is not enough -
a designer of a large pipelined system has many other problems to consider, 
the most important of which are firstly, providing mechanisms to get data 
to the pipelines from memory and vice versa sufficiently fast to keep them 
occupied, and secondly, providing enough (sufficiently fast) memory. 

The CRAY series supports FORTRAN as its main scientific language. 
Software support for parallel processing is provided in a. special multi-tasking 
library, invoked by calls to FORTRAN routines in this library. At the time 
of writing, there was to be little in the way of standards for the parallel 
languages. This is an issue that the committee specifying FORTRAN SX 
were addressing [HJ88, p.407). 

The CRA Y -1 was chosen here as an example to illustrate pipelining, since 
it is a most successful working example of such an implementation. The 
CRAY-1 regularly achieved 130 MFLOP /s on suitable problems, such as 

6 Also designed by Cray. 
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matrix multiplication. The biggest problem with the system is cost and 
availability. The systems cost several tens of millions of dollars at the time 
of writing, and the installations require special refrigeration gear for cooling 
purposes. (A CRAY-XMP weighs 5~ tons, requires two 25-ton compressors 
and a 175 kVA generator [HJ88, p.120)). Virtually all such systems have been 
installed in large computer centres7 The state of the art in supercomputers at 
the time of writing was probably the CRAY-2, with a maximum theoretical 
throughput of 2 GFLOP /s- 430 MFLOP /s has been reported on favourable 
problems [HJ88, Section 2.2.7]. The CRAY-2 has a clock period of 4.1ns, and 
uses some novel concepts, such as three-dimensional pluggable modules to 
keep interconnection distances short, and liquid immersion cooling, whereby 
all circuit boards and power supplies are totally immersed in a bath of slowly 
circulating clear inert fluorocarbon liquid. The CRA Y -3 is an implementation 
in gallium arsenide, which is expected to allow a clock period of 1ns. 

The CRAY series was chosen as example of a vector supercomputer, but 
before moving on to replicated designs, mention should be made of the re­
cent trend towards minisupercomputers, such as the Convex range [HJ88, 
p.49]. These provide many of the capabilities previously reserved for CRAY 
users at a much cheaper price. The Convex is broadly similar to the CRA Y 
series, in that it is based on a series of functional units working from vector 
registers. The entry-level system, the C-1, (now known as the C-120) has 
been benchmarked at 14 MFLOP /s after careful hand optimization. This is 
about an order of magnitude slower than a CRAY-1, but then it also costs 
one-tenth the cost of a CRA Y -1. The Convex systems are air-cooled and are 
thus far easier to install and maintain. 

3.4 Replication 

3.4.1 Description of Replication 

Returning to the basics of parallel processing, consider Figure 3.3. Suppose 
that instead of using a pipeline, additional processors are provided, each one 
of which took three ticks to do the required work, i.e. each one working at the 
same speed as the single processor in Figure 3.1, and hence all using the same 
technology. If enough processors are available (three in the example shown), 
then all the answers will be available simultaneously after three ticks. 

This example can also be used to illustrate the different philosophies pos­
sible with replication. Each processor may have its own local memory -

i At the time of writing, there were in addition entirely non-technical political problems: 
the U .S. government was only permitting the export of supercomputers to a relatively small 
number of countries. 
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tick1 
m b 
~ a1; 1 m b ~ a2; 2 m b 

~ a3; 3 

tick2 c1 := a 1 + b1 c2 := a 2 + b2 c3 := a3 + ~ 
tick3 

out out out 
cl~ c2 ~ C3 ~ 

processor 1 2 3 

Figure 3.3: Execution of a+ b on an array with three processors. 

an example being a transputer array. Alternatively, the memory may be 
global (shared) - an example being the CRAY-XMP. All the processors 
may be executing the same instruction simultaneously ("lock-step" in com­
puter parlance), or each processor may be running totally different programs. 
The former is frequently referred to as SIMD (Single Instruction, Multiple 
Data) and the latter as MIMD (Multiple Instruction, Multiple Data); this 
nomenclature is discussed in detail in Section 3.5. Communication is required 
between the processors; this can either be implemented using global mem­
ory (which requires complex hardware and/or software mechanisms to avoid 
memory contention problems8 ), by explicitly passing messages from proces­
sor to processor, or by a combination of these mechanisms. A transputer 
array implements a message passing system. 

The performance degradation due to the start-up time of the pipe-line 
has its analogy with processing arrays. Three different mechanisms can be 
identified which degrade the performance of the system, namely 

• Scheduling: The efficiency with which the available work is divided up 
among the processors. This is also known as load balancing. 

• Synchronization: Synchronizing the different processors so that opera­
tions take place in the correct order. 

• Communication: Different processors almost always need to commu­
nicate results at some stage of the algorithm; time will be spent in 
performing this communication that could have otherwise been spent 
computing. 

Which effects are important will depend on the system used. Hockney and 
Jesshope [HJSS, Section 1.3.6) develop a characterization that incorporates 
all the above effects following the (r00 , n112 ) model used to describe SIMD 
performance. Another frequently used one parameter model - used in this 

8Two or more processors simultaneously trying to access the same address in memory. 
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thesis - incorporates all the above effects into a parameter termed speed­
up, S. Speed-up tells the user how much faster his algorithm will run on N 
processors than on one, which is really the fundamental issue of importance 
for the user. It is the ratio of time taken by an equivalent serial algorithm 
running on one processor, T8 , to the time taken by the parallel algorithm 
using N processors, Tp. 

(3.3) 

S has an upper bound of N. 
Another parameter, namely efficiency, t, tells the user how efficiently the 

N processors are being used. It is simply the speed-up normalized by N 9 

s 
t=-

N 
(3.4) 

t is normally bounded10 from above by 1. For systems where the degradation 
is primarily due to communication, such as the transputer array to be studied, 
this can be explicitly represented by [F JL *88, Chapter 3] 

(3.5) 

where fc is the fractional communication overhead. S may be written as 

N 
S=--

1 + fc 
(3.6) 

There has been some debate on what times should be compared in the defi­
nition of S, since the optimal serial algorithm is not necessarily the optimal 
parallel algorithm. This point will not be developed further, since it is of no 
concern for the parallel algorithms described in this thesis. Note also that 

9Speed-up and efficiency have become standard termsin the applied parallel processing 
community, due largely to books such as [FJL*88], published relatively recently. Karp 
and Flatt have recently introduced another metric, the experimentally determined serial 
fraction, and claim this to be superior to the speed-up/ efficiency characterization [KF90]. 
The present author has not investigated their work in detail. 

1°From time to time, a paper will appear showing an efficiency exceeding 100%. The 
author suggests that this is possible, but only under extreme circumstances and due to 
very subtle design details of the computers. For example, a very short code with very 
small data requirements co.uld just exceed the 4kB of fast, on-chip RAM available on one 
t.ransputer- but with two transputers, the code and data (divided by two) now fit into the 
4kB of each transputer. Using exclusively on-chip RAM produces an immediate speed-up 
of around three, so a code with minimal communication requirements is likely to show a 
speed-up of about six and an efficiency of about 300% when run on two transputers. This 
is speculation and the author has not actually observed this effect, but it is theoretically 
possible. It will not of course be repeatable on a general MIMD array. 
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the use of Tp here is not exactly the same as in [HJ88, 1.3.6), but agrees with 
[FJL*88) and [Mod88, p36). 

3.4.2 A Local Memory MIMD Example - Trans­
puter Arrays 

The example given here is an example of a local memory MIMD array, us­
ing transputers as processing elements. The specifications given are germane 
to the transputers readily available at the time of writing; the performance 
ratings given will of course become dated. However, INMOS, the company 
who manufactures the transputer, has recently announced a new genera­
tion of transputers with greatly improved specifications. This should ensure 
the longevity of transputer based array processors; the code written for the 
transputers described here will also run on the new generation of transput­
ers. With MIMD processors, computer languages and extensions to existing 
languages were very specific to particular computers at the time of writing. 
Hence the language tha.t the algorithms described in this thesis were written 
in (Occa.m 2) is discussed and compared to the other main contender for the 
transputer, Parallel FORTRAN. 

The transputer is a type of processor chip incorporating a CPU, memory 
and communication links. When introduced in 1984, the extensive exploita­
tion of VLSI (Very Large Scale Integration) technology distinguished the 
transputer from its competitors. Several variants of transputer are available; 
at the time of writing, the T400, T414, T425, T800, T801 and T805. This 
description concentrates on the 800 class (the last three), which is the class 
of transputer useful for numerical analysis, since a floating-point processor 
has been added to the chip. (This is on the same chip as the CPU, mem­
ory and conununication links). In particular, the TSOO is described, since the 
transputer array available to the author, the Massively Concurrent Computer 
(MC2

), used the T800. 
'I'he transputer is a 32-bit RISC11 design. See Figure 3.4 for a schematic 

of the floating point chip. The 20 MHz TSOO transputers used in the MC2 are 
specified at 10 MIP /s and 1.5 MFLOP /s. The four "links" provide bidirec­
tional communication either with a host processor or with other transputers. 
The link speed is 20 Mbit/s. Each link has a DMA channel into the memory 
system- this does slig4tly reduce the memory-bandwidth to the CPU12 , but 
not significantly. All components execute concurrently; each of the four links 
and the floating point processor can perform useful work while the proces­
sor is executing other instructions. The link concurrency is exploited in the 

11 See glossary. 
12The rate at which the CPU can get data to and from memory. 
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applications considered in this thesis. 4kB of on-chip RAM is also provided, 
but this is not significant for the applications considered in this thesis. 

I Floating point unit I 
1 

CPU 

RAM 1 
4 bidirectional 

Links 
serial links 

I Memory interface I 

Figure 3.4: Floating point transputer. After [INM89, p.31] 

When introduced, the transputer was a very powerful processor in its own 
right - benchmarking using NEC2 showed that one TSOO transputer was 
slightly faster than a MICROVAX II rated at 0.9 VAX MIP /s13 [lRBdPCSS]. 
\-\Then first introduced, one application of transputers was as an "accelerator" 
board hosted in a PC or VAX system. Programs were developed and filed 
using the normal host operating system - on a. PC, DOS. The compilers 
and compiled code then ran on the transputer, permitting a. great increase 
in computational power for especially PC users14

• This application has de­
creased in importance as the host systems have increased in speed. 

However, it is the use of the transputer as an element of a processing array 
that is of significance to this thesis. From its inception, the tra.nsputer was 
designed as an element of a para.llel computer, so many critical issues such 
as communication were efficiently addressed using special hardware. Devel­
oping a transputer based parallel computer required primarily developing 
the inter-transputer switching network; on simpler machines this was hard­
wired, whereas more complex machines provided software control over the 
switches, permitting different interconnection topologies to be implemented 
for different applications. More detail on issues related to interconnecting 

13See Section 2.2. 
14 Information regarding the present commercial availability of transputer hardware is 

available in (Dav90b, p.9) 
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processors are considered in Section 3.6. Details of the specific switching 
strategy adopted by the designers of the MC2 are available in (Vil89]. 

At the time of writing, the transputer array at the University of Stellen­
bosch contained 64 TSOO's, 16 with 1MB of RAM, 29 with 2MB, 14 with 
4MB, 4 virtual memory boards and 1 special purpose board. The MC2 com­
puter is nominally rated at 100 MFLOP /s, giving a maximum throughput 
in the same order as a CRAY-115 • However, to achieve anything approach­
ing this will requires very careful coding to fully exploit the hardware. Such 
issues will be discussed in detail in Chapters 4, 5 and 6. 

Just prior to submission of this thesis, INMOS recently released full pre­
liminary technical information on the next generation of transputer, the 
T9000 (INM91]. The T9000 is specified at 200 MIP /s or 25 MFLOP fs. It has 
a 64 bit floating point unit on chip (similar to the T800). The four serial links 
each provide a bidirectional bandwidth of 20 MByte/s, as opposed to the 20 
MBit/s of the T800. The T9000 also incorporates a 16 kB instruction and 
data cache, which should be far more useful for general applications that the 
4 kB on-chip RAM of the T800. Also described is the C104 packet routing 
switch, a low-latency (less than lfi.S packet latency) 32 by 32 crossbar switch 
that should greatly simplify the design of large transputer arrays. INMOS 
plan to release the T9000 and C104 in 1992. 

Thus far, the technical details of the transputer have been discussed. 
Now it is time to consider the languages available for coding algorithms 
to run on transputer arrays. The algorithms described in this thesis were 
implemented in Occam 2. For transputer applications, the user is faced with 
on the one hand, the group of general purpose procedural languages with 
parallel extensions, namely Parallel FORTRAN, Pascal, Modula 2 and C, 
and on the other, Occam (which is also a procedural language but is based on 
the fundamental requirement to express parallelism as naturally as possible). 

Occam16 implements the concept of Communicating Sequential Processes, 
which was introduced by Hoare at O:>..ford University in the mid-1970's 
(Hoa85]. This concept views a computational process as a group of sequential 
processes which have to communicate with each other at certain times. The 

15 An important question for potential users of a system is the financial cost thereof. 
\Vhile exact figures have not been publicly released, the MC2 /64 computer described in 
this thesis cost about two hundred thousand U .S. dollars. At the time of writing, such a 
system would cost rather less: since it was delivered, the price of transputers has dropped 
dramatically, and the memory chips required have also dropped in price. It has also been 
noted that slightly slower - and rather cheaper - memory could have been used; see 
(Dav90b, p.l7). 

160ccam takes its name from the minimalist philosophy of the 14th century philosopher 
William of Occam, from which derives Occam's Razor - "Entia non sunt multiplicanda 
praeter necessitatem", which translates as "Entities should not be multiplied ·beyond ne­
cessity". This can be loosely paraphrased as "Seek the simplest solution" (Gal90, p.3). 
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transputer was designed to implement this philosophy. 
Programming in Occam requires rather more effort than FORTRAN for 

some tasks; the I/0 routines are not as comprehensive as the FORTRAN 
standard17 and Occam does not support complex numbers, requiring the 
user to write the necessary procedures. These disadvantages are outweighed 
by the advantages of the very simple and efficient handling of inter-processor 
communication in Occam, and the excellent integrated development environ­
ment, the Transputer Development System (TDS)18

• Programs are developed 
using a "folding editor". Briefly, the concept is that sections of code are put 
into folds - similar to taking a piece of paper and folding part of it away . 
A fold does not affect program operation at all, but greatly improves read­
ability, since a section of code devoted to input can be put in a fold and then 
the fold marked "input section". It was used consistently in developing the 
codes described in this thesis, and greatly aided proper "top-down" design. 
The post-mortem (i.e. not interactive) debugger was also extensively used 
for debugging. At the time of writing, a version of FORTRAN supporting 
debugging had just become available; when the work was initiated, the FOR­
TRAN compiler had no debugging support at all. A detailed description of 
the TDS will be found in [Dav90b, p.l0-11). 

The TDS runs under DOS but uses its own filing system. A stand-alone 
Occam 2 compiler is provided with the Occam Toolset. This also incorpo­
rates a post-mortem debugger similar to that of the TDS. An interactive 
debugger is also provided with the Toolset; it is restricted to codes running 
on one transputer. Unfortunately, when tested by the author, the interac­
tive debugger worked satisfactorily for simple test codes but failed to work 
at all for real codes, such as code stubs of PARNEC that the author was 
debugging. 

A parallel FORTRAN compiler, Parallel FORTRAN Version 2.0 [ParSS), 
was also available to the author, and initially it had been planned to develop 
the codes in FORTRAN. However, the author encountered very serious prob­
lems with the Parallel FORTRAN compiler; codes would often run once and 
then fail on a second pass, and even very simple test codes would often not 
run reliably. The Parallel FORTRAN package did not support any debug­
ging at all. The problems with Parallel FORTRAN were so serious that 
the approach outlined in [Dav90b, p.ll), namely using the Occam Toolset's 
ability to mix alien languages and Occam, was eventually rejected19 . It had 
been hoped to develop an Occam "harness" which would handle the inter-

17 An example of this is that the task of reading in a set of real numbers, separated by 
blanks, requires the user to write a special routine to implement the necessary parsing, 
whereas FORTRAN handles this implicitly- at least, FORTRAN 77 does. 

18The latest version available at the time of writing was the TDS3. 
19This is discussed in more detail in Section 6.3. 
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processor communication and interface the Occam matrix solvers with the 
rest of the FORTRAN code. This would have been a very elegant solution if 
the FORTRAN compiler had worked reliably. The concept remains attrac­
tive, since it would be easier to apply to improve the performance of existing 
codes. This would permit the bulk of the code to be retained in the original 
language, and only the computationally intensive parts of the program would 
be parallelized in Occam. As the compilers improve, it may well become a 
practical method. 

This discussion has been presented to motivate the author's choice of 
Occam as the implementation language for the algorithms described in this 
thesis. Different parallel processors support different languages, and this dis­
cussion relates thus specifically to a transputer based array processor. It 
should be appreciated that the software technology available to the author 
for the work reported in this thesis was not of the level that one finds on PC's, 
V AXes and workstations, either in terms of functionality (for example, inter­
active debuggers) or reliability. Despite these problems, the linear equation 
solvers and moment method codes developed by the author are functional 
and reliable. 

Transputer hardware and software has been discussed in this section. 
Now it will be shown how the previously discussed vector addition example 
would be parallelized on an array of three transputers; see Figure 3.5. The 
connections (links) are shown from processor 1 (running process [1]) to pro­
cessors 2 and 3 (running process [2] and process [3] respectively). Unused 
links are left unconnected. Processor 1 is acting as the "master" transputer 
in this example, and is also connected to the "host" (typically a PC or VAX). 
This example uses pseudo-code to be defined in Section 3.7; note that each 
processor has a process "mapped" onto it. These processes can be debugged 
by simulating all three parallel processes on one actual transputer. Once the 
program has been debugged, the processes are mapped onto physical proces­
sors to obtain the speed-up required. This interchangeability of "simulated" 
and "real" parallelism is due to the fundamental design of the transputer 
and makes the transputer particularly attractive for developing code to run 
on very large arra.ys; the development and debugging can all be done on one 
transputer and only the final speed-up tests need be performed on the actual 
array. 

3.5 Classification of Parallel Computers 

The proliferation of parallel hardware has given rise to a need for a. sys­
tematic classification of parallel computers. One of the earliest was Flynn's 
classification [Fly72]; it has retained its utility to the present. He based his 
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To host 
I 

- process[l] -

I 

- process[2] f.- - process[3] 

process [1] : 
begin 

par 

I 

send a2,b2 to process[2] 
send a3,b3 to process[3] 
cl := al+bl 

par 
receive c2 from process[2] 
receive c3 from process[3] 

end{process[l]} 

process [2] 
begin 

I 

receive a2,b2 from process[l] 
c2 := a2+b2 
send c2 to process[l] 

end{process[2]} 

process [3] 
begin 

receive a3,b3 from process[!] 
c3 := a3+b3 
send c3 to process[l] 

end{process[3]} 

1-

Figure 3 .. 5: Vector addition parallelized for three transputers 
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taxonomy on the multiplicity of data and instructions. This leads to four 
distinct classes of machine: 

• Single Instruction, Single Data (SISD): A system with one instruction 
stream operating on one datum at a. time. 

• Single Instruction, Multiple Data (SIMD): A system with one instruc­
tion stream, where each processing element operates on different data. 
in lockstep with the global instruction stream. 

• Multiple Instruction, Single Data (MISD }: A system with multiple in­
struction str~a.ms operating on one datum. 

• Multiple Instruction, Multiple Data (M/MD}: A system where each 
processing element operates independently with potentially different 
instructions on different data.. 

Within the SISD classification, most machines based on the von Neuma.nn 
a.rchitecture20 reside, such as the ubiquitous PC, most of the VAX range, and 
most worksta.tions. The ICL DAP array, briefly mentioned previously, is an 
example of a. SIMD system. Arra.ys such as the tra.nsputer array are clearly 
MIMD systems. MISD systems are primarily of theoretical interest [HJSS, 
p.57]. 

Flynn's taxonomy has a. very important advantage: it is very simple. It 
is also descriptive - up to a point. Thus it is very common to encounter 
the terms SIMD and MIMD in the literature. However, Flynn's taxonomy 
suffers from the problem of over-simplification for some applications. (The 
reason for this is probably that the work that his classification was based on 
dates to the mid-1960's, when parallel computers in general were primarily of 
theoretical interest). Firstly, pipelining does not fit into the above scheme at 
all comfortably. \Vhile pipelined machines are often grouped under the SIMD 
classification, this ignores the fact that pipelining derives from an overlapping 
in time of operations, not a replication of processing elements. Since at any 

20 "von Neumann" refers to the architecture proposed by von Neumann for the computer 
built at the Princeton Institute for Advanced Study in the later 1940's; a von Neumann 
architecture refers loosely to any computer not employing concurrency [FJL*88, p.491). 
In the parallel processing literature, the term sometimes carries a slightly pejorative sen­
timent. It is important to remember von Neumann's crucial contribution of the concept 
of the stored program, which was central to his thinking, whereby the computer program 
is also data, stored in the computer's memory. This idea is so ubi-quitous nowadays it is 
difficult to conceive the methods used to program the world's first electronic computer, 
the ENIAC, which was re-programmed by resetting switches and replugging cables. A 
popular account of von Neumann's pioneering work on computers may be found in Regis's 
history of the Princeton Institute for Advanced Study [Reg87, Chapter 5]. 
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one time, different parts of an operation are being performed on different 
data, one could possibly argue that pipelined machines belong in the MIMD 
class. Another argument is that different operations are being performed 
on the same data. in the pipeline, so pipelined machines should be classified 
as MISD systems. It is at best an unresolved question. In the author's 
view, pipelining should best be treated as a separate entity, orthogonal to 
the instruction/ data. stream classification, since both a SIMD and a MIMD 
computer can incorporate pipelining in the processing elements21

• 

The second point, and the more significant in this thesis, is that the clas­
sification ignores the question of memory. Particularly with MIMD systems, 
the question of whether memory is local (i.e. may only be accessed directly 
by the processor that it is attached to) or global (i.e. all processors have 
access to the same memory) can totally change the suitability of a parallel 
algorithm. 

Nonetheless, Flynn's taxonomy, if extended slightly to also give informa­
tion about pipelining (if present) and memory type, provides a. sound basis 
for further sub-division. It should be viewed as analogous to the classification 
of animals by family in the familiar biological and zoological taxonomy -
further sub-division is necessary for an accurate description. Hockney and 
Jesshope provide such a. further sub-division [HJ88, Section 1.2.5]. As an 
example, the CRAY-1 is classified as a single instruction stream computer; 
with pipelined execution units - this is a parallel unicomputer in Hockney 
and Jesshope's taxonomy. It can be further subdivided into the class of such 
parallel unicomputers with vector instructions with special purpose pipes. 

Hockney and Jesshope also develop an algebraic-style structural (ASN) 
notation [HJ88, Section 1.2.4], which allows a very detailed description of 
a computer, down to data. path widths, clock speeds, memory interleaves 
etc. This is very elaborate for most purposes but is useful as a. succinct but 
complete (albeit cryptic) description of a. machine. This ASN notation is not 
used in this thesis. 

3.6 Interconnection Topologies 

\Vith a. local memory processing array, each processor must communicate 
with other processors at some stage of the algorithm. Such communication 
is obtained via the interconnect topology. This may be done dynamically, i.e. 
during program execution, or statically, i.e. set up before the run and left 

21 Intel's i860 chip, suitable for use in a MIMD array, uses pipelined arithmetic units to 
obtain an impressive peak throughput of a claimed 80 M FLOP js. 
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unaltered during execution22
• Consider a general array, consisting of nodes 

- the node is the processor plus memory23
• For a general system with P 

inputs and Q outputs,there are pQ possible mappings (including P! one-to­
one and the rest one-to-many), and these can be implemented using a full 
crossbar switch with PQ switches24

• This rapidly becomes very expensive. 
An N node transputer array contains 4N inputs and 4N outputs, since each 
transputer has four bi-directional links. A detailed treatment of switching 
networks requires permutation theory and can be found in [HJ88, Section 
3.3]. 

Hafner [Haf89] has described some popular interconnection topolo­
gies. Probably the most generally encountered with transputer arrays are 
pipelines, rings, meshes, trees and hypercubes. Some examples are shown in 
Figures 3.6, 3. 7 and 3.8. The "dimension" of a hypercube has the conven­
tional geometrical interpretation for hypercubes up to dimension 3. Graph 
theory can be used to obtain certain important properties of these topologies; 
these are summarized in Table 3.1. Diameter means the maximum number 
of links required to connect any two nodes25 . Wraparound means that the 
left-most and right-most columns of processors in the lattice are connected 
together, as are the upper-most and lower-most rows. See [Mod88] for a 
review of graph theory. 

The topologies used in this thesis were the binary tree and the mesh. 
The former was used for the parallel conjugate gradient algorithm to be 
described in Chapter 4, and the latter for the parallel LU algorithm described 
in Chapter 5. The motivation for each choice is presented in the relevant 
chapter. Both are of course implementable on a general transputer array 
permitting any link on any processor to be connected to any link on any 
other processor. 

3. 7 A Pseudo-code Notation 

For documenting the algorithms to be presented in the rest of this thesis, 
it is useful to introduce a pseudo-code notation. Some of this notation is 
very loosely based on Occam 2 [Gal90]. The notation emphasizes 1'eadability. 
The notation is an extension of that defined in [FJL*SS, Appendix A]; a 

22 Programs written for the transputer require an explicit mapping of "channels" (the 
software communication abstraction) onto actual physical links at compile time, hence 
transput.er arrays are always statically switched. 

23The following results are summarized from [HJ88, p.259-61). 
24 Note in this context that the Communicating Sequential Processes (discussed in Sec­

tion 3.4.2) concept allows only one process to communicate with one other process at a. 
time, i.e. only one-to-one mappings are permitted. 

25 Vertices and edges, respectively, in graph theory. 
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Topology Order .Number of processors Diameter Comments 

Binary tree d N = 2d+I -1 2d 
Hypercube d N = 2d d 

Lattice Mesh - N 2{_N- 2 No wraparound 
Lattice Mesh - N 2ltvNJ Wraparound 

Linear (pipeline) - N N -1 
Cyclic (ring) - N fN/2l 

Table 3.1: Properties of common interconnection topologies 

Figure 3.6: Interconnection topologies - hypercube dimension 3 

3 6 

1 2 4 5 

Figure 3.7: Interconnection topologies- binary tree depth 2 
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Figure 3.8: Interconnection topologies - mesh (lattice) without wrap­
around. N = 9. 

notation similar to but not as extensive as that used in this thesis will be 
found in [vdVB89]. Pseudo-code will also be used as part of the software 
re-engineering procedure to be described in Section 6.4. 

Firstly, the assignment statement is defined: 

a := 1 

This assigns the value of the right hand side of the equation to the variable 
on the left hand side. 

Then a begin-end construct similar to that of Pascal is introduced: 

begin 
code stub 

end 

Everything within the begin-end demarcation is executed sequentially, 
unless the following par construct is encountered: 

par 
code stub1 
code stub2 

other code stubs 
end{par} 

Then code stub1 and code stub2 and .... other code stubs are ex­
ecuted concurrently. These code stubs can of course consist of begin-end 
constructs, which can in turn consist of nested begin-end and/or par con­
structs. The curled braces { ... } are used to demarcate a comment. 
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The par construct indicates concurrent execution. This may be obtained 
by time-sharing of resources such as the CPU26 or actual parallel hardware, 
such as multiple processors27 or hardware support for concurrent execution, 
for example concurrent computation and communication28

• The par con­
struct is taken directly from Occam. Occam does not have an explicit 
begin-end construct; the equivalent is the SEQ construct, which looks as 
follows: 

SEQ 
code stub 

Note that there is no end statement in Occam. This thesis will use the 
begin-end construct in preference to the SEQ construct. 

A conditional loop is required; this is provided by the while construct: 

while (some Boolean expression) 
code stub 

end{while} 

This loop evaluates some Boo lean express ion; if FALSE, it behaves as a 
SKIP construct (to be defined), i.e. does nothing, and the loop terminates. If 
TRUE, code stub is executed , and then some Boolean expression evalu­
ated again. Obviously some action must ultimately change the value of some 
Boolean expression, or the loop will never terminate. A repeat for a 
given number of times construct is usefuF9 ; this is provided by the repeat 
for construct: 

repeat for i = start.index to stop.index 
code stub 

end{repeat} 

The section of code in code stub is executed for i from start. index 
to stop. index (both inclusive); if start. index exceeds stop. index it be­
haves as a SKIP construct (to be defined), i.e. does nothing, and the loop 
terminates. 

A conditional construct is required; this is the if-then-else construct: 

26 Used on the transputer to "simulate" parallelism during code development, as dis­
cussed in Section 3.4.2. Note that by no means all MI:MD processors support such a 
concept -on such systems the code development and debugging must then be performed 
on the real array. 

27In the context of transputers, multiple transputers with some form of interconnection 
network. 

28Such support is provided on the transputer; the links and the floating point unit were 
designed to operate concurrently. 

29This can actually be implemented using the ~hile construct but it is convenient to 
define this additional construct. 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 3. A REVIEW OF PARALLEL COMPUTING 

if (some Boolean expression) 
then code stub1 
else code stub2 

end{if} 

41 

If the Boolean expression is TRUE, then code stub1 is executed; if FALSE, 
then code stub2 is executed instead. 

A SKIP process is also defined that does nothing; it is derived from Oc­
cam and permits explicit coding of a condition that requires no action. An 
example of its use is to convert the if-then-else to effectively an if-then 
construct by making code stub2 in the if-then-else a SKIP. 

Communication will be written out in English: 

begin 
receive z from process[k] 
send z to process[s] 

end 

It is not always known on wha.t channels the data will be available on 
first, so the al t construct is defined: 

alt 
receive from process[k] 

code stub1 
receive from process[l] 

code stub2 
end 

If process [k] is ready with data first, then code stub1 is executed; 
otherwise if process [1] is the first ready, code stub2 is executed. 

A procedure is a group of statements; it is generally given a name and 
a list of arguments may be passed when instantiated. 

Constants and variables will not be explicitly typed (i.e. declared); their 
type will be clear from the context30

• 

A process construct is declared: 

30 0ccam is a strictly typed language; this means all variables and constants must be 
explicitly declared. While initially somewhat verbose to someone used to FORTRAN's 
default typing, the advantages for generating checkable code are quickly appreciated and 
the FORTRAN default typing is seen as the very dangerous construct that it is after a 
number of Occam codes have been written. Some versions of FORTRAN can be forced to 
obey strict typing. 
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process [s] 
begin 

code stub 
end 

end{process[s]} 

42 

The process will in general be numbered or named in some fashion; this 
is done by assigning a number or name to s. Such a process will run on one 
processor. (When coded, the process may contain procedures, be part of a 
larger procedure or be the main procedure itself; generally it is only parts of 
the whole code that need explicit documentation using pseudo-code and the 
presence of a larger structure is assumed where necessary). 

Finally, a placed par construct is defined (also taken from Occam). The 
placed par is used to indicate that the different processes are placed on 
different processors. 

placed par 
processor1 

some process 
processor2 

some other process 
other processors with associated processes 

No go-to construct is defined for the excellent reasons laid down by the 
"father" of structured programming, Dijkstra [Dij76}. 

The use of this notation will be illustrated by the examples given in 
Chapters 4, 5 and 6. 

3.8 Amdahl's Law 

Any work on parallel processing should note Amdahl's law [FJL*88, Section 
3.6], which states that if an algorithm contains both a serial and a parallel 
part, the relative time taken by the serial part increases as parallelization re­
duces that of the parallel part, and a law of diminishing returns holds: further 
parallelization has increasingly little influence on run-time. \Vhile this ob­
servation is perfectly true, for many problems the ultimate aim is to increase 
the problem size that can be handled. Thus as more paralleliza.tion is made 
available, larger problems are tackled and the overall serial/parallel split re­
mains fairly constant. Hence Amdahl's law is not the immutable barrier that 
it has often been held to be, and it will be shown clearly in Chapters 4, 5 
and 6 that for the electromagnetically large problems of interest, it is not an 
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obstacle. Gustafson arrived at very similar conclusions following work on a 
variety of problems in computational mechanics and fluid dynamics [Gus88). 

3.9 Parallel Algorithms 

The rest of this thesis concentrates on the development of parallel algorithms. 
Several excellent books appeared during the course of the author's research 
that provide a good treatment of the basic ideas31

, but not of the specific 
algorithms considered in this thesis. For the technological background, Hack­
ney and Jesshope's second edition [HJ88) is invaluable. For the development 
of algorithms and establishing the efficiency thereof, Fox et al. [F JL *88) pro­
vides a very sound foundation. Although based on their experiences with a 
hypercube type machine with 128 nodes at Caltech, the book is sufficiently 
general tha.t the principles developed are applicable to other types of ma­
chines. (Note that many books available with "parallel" or "concurrent" 
somewhere in the title are frequently aimed at a very specific computer, 
and the methodologies developed may only be applicable to that machine). 
Fox's book is particularly suitable for the solution of large-grained problems. 
Another book by Bertsekas et. al. [BT89] is particularly strong on the math­
ematical analysis of algorithms. Modi's book [Mod88) is also a most useful 
text, being directed specifically at parallel matrix algorithms, but not the 
specific algorithms considered in this thesis32

• 

Parallel algorithms are also published in a number of specialist journals: 
these include Parallel Computing, Journal of Parallel and Distributed Com­
puting, Concurrency: Practice and Experience and IEEE Transactions on 
Parallel and Distributed Systems. Other established journals in the field 
of applied numerical analysis also publish work of interest; examples are 
Communications of the A CAf33 , SIAAf34 Journal on Scientific and Statistical 
Computing, SIAM Review, and Compute1· Physics Communications .. 

31 As already mentioned, the author's initial research started before these books were 
available. 

32 A very recently published book on solving linear systems. only available to the author 
following examination of his thesis, is that of Dongarra et al. [DDSvdV91). It. concentrates 
on vector and shared memory computers, whereas this thesis concentrates on local memory 
computers. 

33 Association for Computing Machinery. 
34 The Society for Industrial and Applied l'v!athematics. 
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3.10 Conclusions 

In this chapter a suitable introduction has been provided for the use of par­
allel computing to solve computational electromagnetic problems. A brief 
review of the history of parallelism and the general principles has been pro­
vided. The two main types of parallelism encountered, viz. pipelining and 
replication, have been described and examples given of present day parallel 
computers that embody those principles. The question of quantifying the 
performance of a parallel algorithm has been addressed. The classification 
of parallel computers has been discussed. A pseudo-code notation has been 
introduced that will be used to document the parallel algorithms in the rest 
of the thesis. A brief review of the relevant literature on parallel algorithms 
has been presented. Some of the work presented in this chapter has been 
published as a tutorial paper [Dav90b]. 

It should be clear from the discussion in this chapter that at present a 
major effort is required by the user to properly exploit parallel processing, in 
particular for MIMD systems. Automatic vectorizing compilers have simpli­
fied the task for pipelined vector computers and similar tools exist for very 
small MIMD systems (with 2 or 4 processors), but for large scale MIMD sys­
tems the user must carefully select, analyse and implement suitable parallel 
algorithms. It is this problem that occupies Chapters 4, 5 and 6. 
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Chapter 4 

A Parallel CG Algorithm 

4.1 Introduction 

Iterative methods offer one method of solving the system of linear equations 

[A][x] = [b] ( 4.1) 

where [A] is a non-singular known matrix, [b] a known vector and [x] a 
required (and unknown) vector. Most MoM codes in the past have used LU 
decomposition followed by forward and backward substitution. (This method 
is addressed in more detail in the next chapter). Iterative methods for solving 
the system of linear equations have only attracted much attention over the 
last decade, since previously, for the size of problems (number of unknowns) 
being solved, the LU method was quite sufficient. The iterative methods 
are attractive for two reasons: firstly, ·with a method with a monotonically 
decreasing error such a.s the CG method, the iterations can be stopped once 
a specified error criterion has been met, and secondly, iterative methods do 
not suffer from the accumulation of round-off error that compromises the 
accuracy of the L U method when the matrix [A] is ill-conditioned. 

In this chapter, a parallel conjugate gradient algorithm is proposed, ana­
lyzed theoretically, implemented and tested on a transputer array, using the 
binary tree interconnection topology described in Chapter 3. 1\1easured re­
sults for speed-up and efficiency are compared to the theoretical predictions. 
The parallel algorithm uses as its basic building block tv,·o parallel matrix­
vector products, so efficient parallel matrix-vector product algorithms are 
investigated in detail. Important fundamental methods for optimizing the 
efficiency of a parallel algorithm are discussed. The basic parameters used 
in the theoretical analysis are established using benchmarking. The problem 
of developing a general configuration description, able to handle any depth 
of binary tree, is considered and a solution briefly discussed. The problem 

45 
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of ter:rrllnating a parallel algorithm is considered and a solution given for the 
CG algorithm. It is shown that the proposed CG algorithms scales essentially 
with the number of rows per processor1

. 

The question of the rate of convergence of the CG algorithm for electro­
magnetically large, complex problems is deferred to Chapter 6. 

4.2 Iterative Methods 

Iterative solvers for the solution of equation ( 4.1) can be subdivided into 
two categories, namely stationary and gradient methods2

• With a stationary 
iterative method, succeeding error vectors can be written as 

(4.2) 

where k refers to iteration number and [ek], the error vector, is defined by 

For the Jacobi method, the [M] matrix is given by 

where 

and 

[J\1]Jacobi = [L] + [U] 

l -~2,1 
[L] = 

-aM,! 

[U] = [ : 

0 
0 

( 4.3) 

(4.4) 

(4.5) 

(4.6) 

Note that [L] and [U] as defined here are not the same as the [L] and [U] 
resulting from a LU decomposition. 

The matrix [l\1] remains constant for each iteration, hence the name "sta­
tionary". 

It can be shown fot the Jacobi method that a necessary and sufficient 
condition for convergence to the correct solution [x] is that all the eigenvalues 
of [A] should lie within a unit circle centered on 1 + jO when plotted on the 
complex plane. This condition is not necessarily satisfied by an arbitrary 

1Scaling is discussed in more detail in Section 4.4. 
2 This section is based on [Jen85, Chapter 6]. 
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matrix. Other examples of stationary methods a.re the Ga.uss-Seidel method 
[Jen85, p.183] a.nd the various relaxation methods such as successive over­
relaxation [Jen85, p.l86]. 

The gradient methods use a different approach. One may write succinctly 
that 

(4.7) 

where the [M] matrix is now different on each iteration. However, this is not 
the form in which the methods are usually given. 

Define a residual 
[r] = [b]- [A][x] (4.8) 

where x is the approximation to [x]. If the matrix [A] is symmetric and 
positive definite (i.e. [xjT[A][x] > 0 , V [x] =f. 0), then it may be shown 
that its inverse is also symmetric and positive definite. If [A] is not positive 
definite, it can always be made so by solving the modified system of equations 

[A ][x] = [b] (4.9) 

where [A] = [AjT[A] and [b] = [AjT[b]. The transpose operator (superscript 
T) must be interpreted in the formal sense as the Hermitian transpose if the 
elements of [A] are complex. One drawback with this procedure is that if 
the matrix [A] is ill conditioned, then the matrix [ A ] is very much more 
ill-conditioned than [A], and this can adversely affect the rate of convergence 
for large systems3 • Nonetheless, the results in Chapter 6 show that the rate 
of convergence is satisfactory for a. typical matrix equation generated by a. 
MoM discretiza.tion. 

Consider the iteration formula 

( 4.10) 

where o:k is chosen to minimize the error function 

( 4.11) 

and the direction vector [dk] is discussed below. The positive definite nature 
of [Aj- 1 ensures that the function h~ 2: 0; if h~ = 0, then [xk+ 1] = [x] and the 

3 The example given in J ennings [Jen85. p.221] shows how this procedure effectively 
squares the condition number of the matrix used in the example. The condition number 
of a matrix is a measure of the sensitivity of the solution of the system in equation ( 4.1) to 
small variations in [x]. It will be defined formally in Chapter 5. The condition number can 
be shown to be the square root of the ratio of the maximum to minimum eigenvalues. The 
eigenvalue clustering affects the rate of convergence of the conjugate gradient algorithm 
in particular [Jen85, p.217). Thus "spreading" the eigenvalues by squaring the condition 
number decreases the rate of convergence. 
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system of equations has been solved. The subscript k refers to the iteration 
number. 

Substituting for [r] from equation (4.8) into equation (4.11), it may be 
shown that h2 is quadratic in [x]. Differentiating the resultant expression 
with respect to O:k to minimize the error function, it may be shown that 

( 4.12) 

The various gradient methods - principally the method of steepest de­
scent and the method of conjugate gradients - differ in the choice of the 
direction vectors [dk]· In the method of steepest descent, [dk] is chosen to be 
the direction of maximum gradient of the function a.t the point [xk]; this can 
be shown to be proportional to the residual vector [rk]· The result of this 
choice is a.n algorithm that tends to overshoot [Jen85, p.214]. 

The conjugate gradient method chooses a.s direction vectors a. set of vec­
tors (p0], [pi], etc., which are chosen to be a close a.s possible to the direction 
of steepest descent corresponding to the points [x 0 ], [xi], etc., but with the 
overriding condition that they be mutually conjugate with respect to [A] and 
hence satisfy the condition 

( 4.13) 

The result of the orthogonality property is an algorithm that (in the absence 
of round-off error) converges after !11 steps, where !11 is the dimension of the 
problem. Thus, strictly speaking, the CG method is not an iterative method. 
However, it is usually applied iteratively- a. check is kept on the normalized 
residual (the residual divided by the norm of [b]) and when it is sufficiently 
small, the iterative improvement stops. 

Another way of viewing the CG method is that the solution is given in the 
space spanned by the basis functions {[b), [A][b), [A] 2 [b], ... , [A]M-I [b]}, with 
the weights emerging during the course of the iterations; a. demonstration of 
this may be found in Sarkar [Sa.r86]4

. 

Regarding the convergence of the conjugate gradient method, it may be 
shown that the residual norm decreases monotonically [PM85b, p.16]. The 
mte of convergence is governed by the eigenva.lue spread of the coefficient 
matrix. If the eigenvalues are clustered in a. small number of groups, the 
convergence is very rapid. Conversely, if there are a large number of small 
but distinct eigenva.lues, the rate of convergence is slow. 

4 This property is used by Sarkar [Sar86] to argue the fundamental difference between 
the "direct" CG method and the CG-MoM method, but as soon as the problem is dis­
cretized - which it must be to solve on a computer - a finite basis is implied and such 
an argument is invalidated [RP88]. See Section 2.6. 

L__-----------------------~~~ ---- ---~ 
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The CG method, extended for the general case of a matrix [A] where it 
is not known if the matrix is positive definite, is as follows: 

[uk] [A][pk] Step 1 

llEJ.lE Step 2 Ok k 

ll[uk]W 

[xk+I] [xk] + ok(pk] Step 3 

[rk+l] - [rk] - ok[uk] Step 4 ( 4.14) 

[rk+d [AJT[rk+1] Step 5 

f3k il[rktdW Step 6 llhliF 

(pk+l] [rk+d + f3k[Pk] Step 7 

with initial values 
[r0] = [b] - [A][x0] ( 4.15) 

and 
[ro] = (po] = [A]T[ro] ( 4.16) 

The initial value of [x], viz. [x0], is frequently chosen as [0], and this is 
the choice used by the author. If an approximation for [x] is available -
for example, from a geometrical optics solution - then this can be used as 
an alternate starting value. Rather interestingly, the rate of convergence is 
frequently a very weak function of [x0] [PM85a]. 

The approximate floating point operation (FLOP) count per iteration is 
shown in Table 4.1, retaining only the largest order term for each operation5

. 

On the transputer, the time for a floating point addition or multiplication is 
identical, so these operations are not listed separately. (This will be shown 
in Section 4. 7). Note that o and f3 in Steps 3, 4 and 7 are real, not complex, 
and this affects the conversion from complex to real FLOPs. One complex 
addition is equivalent to two real FLOPs and one complex multiplication 
is equivalent to six real FLOPs; since it is the number of additions and 
multiplications that dominate the FLOP count, and furthermore the addition 
and multiplication FLOP counts are almost identical, an average factor of 
four can be used. The FLOP counts of Steps 1 and 5 (the matrix-vector 
products) are of 0(1112 ) whereas the other steps are of O(Af) - it is thus 
Steps 1 and 5 that will be parallelized. 

5 Because of this, a term -2M is missing in the real operations counts in both Steps 1 
and 5; this comes from the number of additions, which is actually M(M- 1), not M 2 . 

The impact on the analysis is minimal; it is convenient to use the M 2 approximation 
for the parallel matrix-vector analysis, and this also indicates clearly the difference be­
tween the parallelized matrix-vector products and the unparallelized vector operations in 
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Step Complex operations Real FLOP count 
1 2M2 8./\£2 

2 4M 16M 
3 2M 4M 
4 2.M 4M 

5 2M2 8M2 

6 4./\1 16M 
7 2M 4M 

Table 4.1: FLOP count of conjugate gradient algorithm 

4.3 A Parallel Matrix-Vector Product Algo­
rithm 

The computationally expensive parts of the CG method have been shown 
to be the two matrix-vector products, hence the pa.rallelization of a matrix­
vector product is investigated in detail as a precursor to the development of 
a parallel CG algorithm6

• The parallel algorithms of this section are suitable 
for any local memory MIMD system. 

Several paradigms for parallel processing have been identified7
• The 

paradigm used in this thesis is domain decomposition, whereby the data 
is partitioned over the processing array. An example of this has already been 
shown in Chapter 3 for the problem of the addition of two vectors. In that 
case, the decomposition was simple and obvious -one element of each vector 
per processor. For the linear system solvers of interest in this thesis, there 
will be rather more unknowns than processors, so some form of clusterinif 
is required. For the matrix vector product (and also the CG algorithm) the 
decomposition and clustering is relatively straightforward to describe. The 
LU algorithm considered in the next chapter has a rather more complex 
decomposition clustering strategy, and more formal mathematical methods 
will be introduced to extract the parallelism (i.e. perform the decomposition) 

equation ( 4.39). 
6 Very little has been published on parallel iterative methods for full matrices. What 

has been published normally concentrates on sparse systems, for example [DDSvdV91, 
Chapter i]. 

7 Examples are domain decomposition, see [FJL *88, Chapter 1], and the processor farm, 
algorithmic parallelism and geometric parallelism [HJ88, Section 4.5]. Domain decompo­
sition [FJL *88, Chapter 1] is the same as Hackney and Jesshope's geometric parallelism. 

8 Clustering is the grouping of matrix elements on a. processor. 
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and analyze the clustering. The algorithms described in this chapter will be 
re-considered from this formal viewpoint in Chapter 5. 

The product of a M x M matrix by a vector of length .!11 can be considered 
from two viewpoints. The first is as the forming of M inner products. These 
inner products can be computed in parallel. The second approach is as the 
forming of A12 products, followed by an accumulation process. The M 2 

products can be computed in parallel, and the accumulation process can 
be parallelized. The computational dependence of both is very similar -
detailed expressions will be derived shortly. These viewpoints imply the 
following two possibilities for forming a parallel matrix-vector product: 

• Row-block decomposition: Splitting up the matrix by row block, dis­
tributing these row blocks over the processor array, broadcasting the 
entire vector to all processors, performing the inner products in par­
allel and then gathering together the different parts of the vector split 
up over the processors 

or 

• Column-block decompos£tion: Splitting up the matrix by column, dis­
tributing these column blocks over the processor array, scattering the 
vector over the processing array, performing partial inner products in 
parallel, and then accumulating the resultant vector. This is a special 
case of the 1112 parallel product approach, with all the elements of a 
column clustered on a processor, and entire columns clustered in turn. 

The four communications paradigms required by the two different decom­
positions can be formally defined as follows, assuming N processors and a 
matrix dimension of 111: 

1. Broadcast: This process broadcasts identical copies of the same vector 
to all the elements of the array. 

2. Gather: This process builds a. vector up from its N disjoint sections of 
length M /N distributed over the array after the parallel (row-block) 
matrix/vector product. 

3. Scatter: This process is the reverse of gather in that it scatters a vector 
over the array so that each of the N processors has a different sub­
vector of length 111/ N. 

4. Accumulate This process accumulates the partial inner products re­
sulting from the column-block decomposition. 
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The row-block decomposition algorithm can be simply illustrated by con­
sidering a 2 by 2 matrix partitioned on two processors. 

(4.17) 

where the upper elements are on processor 1 and the lower on processor 2. 
If partitioned by column block, it appears as follows: 

( 4.18) 

It is important to note that this decomposition of the matrix by column 

block is the same as the decomposition of the transposed matrix by row block 
- this is the method used by the author to develop the parallelized conju­
gate gradient algorithm of the next section, and avoids having to form the 
matrix transpose required in the general form of the CG algorithm given in 

equation ( 4.14 ). 
To carry out the matrix-vector product using a. row-block decomposition, 

it is clear that every processor needs every element of the vector, thus the 
broadcast paradigm. This approach then forms the inner products 

( 4.19) 

on processor 1 and 

( 4.20) 

on processor 2 in pamllel, i.e. concurrently. After the parallel product of 
matrix [A] and vector [x] has been formed, the situation is as follows: 

(4.21) 

\\'here again the upper element is on processor 1 and the lower on processor 
2. To collect these, the gather paradigm is required. 

The other two paradigms arise from the column-block decomposition; the 
parallel multiplication requires only certain elements per processor; in this 
case it will require element 1 on processor 1 and element 2 on processor 2. 
The column block decomposition forms the partial inner products 

( 4.22) 

on processor 1 and 
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( 4.23) 

on processor 2 in parallel. 
This is the scatter paradigm and is simply the reverse of gather. 
Following the parallel matrix-vector multiplication using column-block 

decomposition, the final paradigm, accumulate, is required. After the multi­
ply, the situation is as follows, with the left row on processor 1 and the right 
row on processor 2: 

[ 
Aux1 I A12x2] 
A21X1 A22x2 

(4.24) 

and these rows must be summed at the master node. 
Given the restrictions of the transputer hardware- four links- a binary 

tree is a natural topology for this problem, for the following reasons. It is 
only necessary to communicate information to and from the processor at the 
top of the tree from and to other lower level processors, and not from one 
side of the tree to the other. Thus for approximately the same number of 
processors, the effective diameter9 of the binary tree is actually one less than 
the diameter of the equivalent hypercube. The processor at the top of the 
tree can either be used purely for co-ordinating the process, or can also share 
the workload. The algorithm described here follows the former process; in 
Figure 3.7 processor 7 would be the master and the other 6 would be worker 
processors. It is possible to use a ternary tree, but this does not map very 
conveniently onto available arrays, where the available number of processors 
generally follows some power of two. 

Having identified the parallelism in the problem, the next stage of al­
gorithm analysis is the development of timing equations. These will allow 
the prediction of the speed-up and efficiency defined in Equations (3.3) and 
(3.4). Consider first the broadcast process: 

Define the time required to send one complex word10 from one processor 
to another adjacent processor as tcomm· Then the time to send !11 words 
is simply M tcomm. In the binary tree, the number of levels that must be 
traversed is d, so the time to send kf complex words from the top to the 
bottom of the tree is .M dtcomm 11

• Here the set-up time of the communication 
process and the buffering time necessary to write the input to memory from 

9 See Section 3.6. 
10 A complex word consists of the real and imaginary parts; on a transputer, in single 

precision a complex word is 8 bytes and in double precision, 16 bytes. 
11 This discussion does not. consider the use of pipelining, which could be used to reduce 

the communication time of the broadcast operation to around Mtcomm. Pipelining is 
discussed in detail in Section 5.10. 
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the input link and then write it out to the output link has been ignored. If 
the processors at each level of the tree are able to output the vectors to the 
next lower levels in parallel 12 , the total time for the broadcast operation is 
then approximately the same as the time for one vector to traverse the tree 
from top to bottom, i.e. 

tbroadcast = M dtcomm 

Pseudo-code for this is given in Figures 4.1 and 4.2. 

begin{broadcast section:master} 
par 

send vector to lower left processor 
send vector to lower right processor 

end{par} 
end{broadcast section:master} 

Figure 4.1: Pseudo-code for broadcast: master process 

begin{broadcast section: worker} 
receive vector from higher processor 
if (not at bottom of tree) 

then 
par 

send vector to lower left processor 
send vector to lower right processor 

end{par} 
else SKIP 

end{if} 
end{broadcast section: worker} 

Figure 4.2: Pseudo-code for broadcast: worker process 

( 4.25) 

The timing equation for the gather process may be derived as follows. 
The information quantum for this case is M/ N - the vector sections split 
over the array. The gather process starts at the bottom of the tree and works 

12The transputer has such capabilities; see Section 3.4.2. 
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its way up. Referring to Figure 3. 7, the first process, i.e. the communications 
1-+3, 2-+3, 4-+6 and 5-+6 all proceed simultaneously, as do the next level 
of communications, 3-+ 7 and 6-+ 7. But note that this level now involves 
packets of length 3!11 /N. In general then, for a tree of depth d, the total 
communication time will be 

!11 d ] N[1+3+7+ ... +(2 -1)icomm ( 4.26) 

Manipulating the series into a geometric series, and using N = 2(d+l)- 2, 

where N is now interpreted as the number of worker processors (i.e. excluding 
the processor at the top of the tree) 13

, this simplifies to 

igather = M[1 - dj N]icomm ( 4.27) 

Pseudo-code for the gather operation is given in Figures 4.3 and 4.4. The 
indices of the various vector stubs are computed from the data distribution; 
referring to Figure 3. 7, the processor numbers relate to the group of rows 
clustered on the processor, i.e. a vector of length 12 distributed over the 
binary tree in Figure 3.7 would have rows 1 and 2 on processor 1, rows 3 and 
4 on processor 2 e.t.c.14 . These details are not shown in the pseudo-code. 

begin{gather section:master} 
par 

receive vector stub1 from lower left processor 
receive vector stub2 from lower right processor 

end{par} 
end{gather section:master} 

Figure 4.3: Pseudo-code for gather: master process 

The scatter paradigm is the reverse of gather, except that instead of build­
ing up the vectors from the bottom of the tree up, at each stage combining 
the vector sections from the two lower processors and the processor's own 

13The top-most processor, processor 7, is used purely to synchronize the processes, and 
does not perform any of the matrix-vector multiplication work itself. The result is that 
the maximum speed-up is thus N -1 with N processors. As used in this chapter, N is the 
number of worker processors, thus the total number of processors is N + 1 For reasonable 
numbers of processors - 15, for example - the performance lost by thus not using the 
top-most processor is negligible, and the coding was simplified. 

14 As noted, processor 7 is performing synchronizing functions, and does not contribute 
to the matrix-vector product. Thus N = 6 in this case. 
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begin{gather section: worker} 
if (not at bottom of tree) 

then 
par 

receive vector stub1 from lower left processor 
receive vector stub2 from lower right processor 

end{par} 
else SKIP 

end {if} 
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form new vector stub from vector stub1 & stub2 & own vector stub 
send n~w vector stub to higher processor 

end{gather section: worker} 

Figure 4.4: Pseudo-code for gather: worker process 

local vector section, the vector now "trifurcates" 15 from the top of the tree 
down. The timing equation is thus exactly the same as t 9ather· Similarly, the 
accumulate paradigm is the reverse of the broadcast paradigm. Thus 

iscatter = M[l - dj N]tcomm ( 4.28) 

iaccumulate = M dicomm ( 4.29) 

As for the row-block case, it was assumed that communications paral­
lelism has been exploited. It was also assumed that 111/ N is somewhat larger 
than 1. Note also that there is a certain amount of computation that occurs 
after each communication phase with the accumulate paradigm, arising from 
the addition of two sub-vectors at each level; this should be included in the 
overall compute time. The additional term is 2111 d (the factor 2 arising from 
the conversion from complex to real arithmetic). 

The amount of computation involved in a matrix-vector product is 1112 

complex multiplications and 111(M - 1) complex additions, from Table 4.1. 
On most modern processors, the time required for a floating point addition 
and a. floating point multi plication are approximately the sa.me16

. Thus the 
total amount of computation is approximately 2M2 complex FLOPs or 81H2 

real FLOPs. This is Ts, the time for the serial operation. \iVere there no 
communication, the time for the parallel operation, Tp(N), would be simply 

15Since the processor at the top of the tree is not used for the para.!lel products, the 
vector actually bifurcates at the top level. 

16 As will be shown in Section 4. i for the transputer. 
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8M2 f N. Adding the communication time for the row-block decomposition 
g1ves 

where tcalc is the time required for a real floating point addition or multipli­
cation. Using equations (3.3), ( 4.25) and ( 4.27) yields the speed-up as 

N 
S ';:::::, N 1 

1 + SM fJ [ d ( 1 - N) + 1] 
( 4.30) 

where 
fJ = icomm 

ica.lc 

This result was derived for the row-block decomposition case, but because the 
communication times are the same, the results for the column-block case will 
be virtually identical. (As noted, there is a small additional computational 
overhead with the latter decomposition). 

Defining n as the number of rows per processor, n = ~, the result can 
be re-written as 

N 
5';:::::, --~6~----------

1 + Sn [ d ( 1 - N) + 1] 
(4.31) 

Referring to the previous discussion in Section 3.4, the term ! [d( 1 - ~) + 1] 
is clearly identified as .fc· For d 2:: 2, N ;::::: 2d+l, hence d ';:::::, log 2N - 1, and 
the following approximations for S and t: 

N 
5';:::::, i3 

1 + Sn log2 N 
( 4.32) 

1 
t: ......, ---.,..----

......, 1 + _Q_log N 
Sn 2 

( 4.33) 

are excellent for trees of depth 2 or more. This equation is very important; 
it indicates clearly that the matrix-vector product scales essentially with nr, 
the number of rows per processor, and rather weakly (logarithmically) with 
the number of processors. Hence, for a given nr, the efficiency is almost 
independent of the number of processors. 

Figure 4.5 shows the efficiency for the MC2 array. A value of 6.6 was used 
for /J, computed from the manufacturers specifications1i[Dav90b, p.14]. The 

liThe results shown in Figure 4.5 were obtained early in this research, and are nai've, in 
that they assume the manufacturers specifications. The value for tcalc used here assumed 
that the transputer was using its fast internal memory. Since there is only 4kB of this, 

'------------------------------------------------------ ------------
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curve shown in Figure 4.5 is smooth. In reality, the dimension of the problem 
will not usually be an integral multiple of the number of processors. This can 
be handled by either loading different processors differently or by padding 
the matrix and vector with the necessary zeros. The former implies time 
"wasted" while the more lightly loaded processors do nothing; the latter 
implies "wasted" computation, and is the approach used in the author's 
Occam 2 implementation. Note that this "wasted" time or computation 
does not increase the run-time; while either waiting or operating on zero 
entries, the lightly loaded processors cannot perform any useful work in any 
case due to the load-balancing problem. This can be incorporated into the 
preceding analysis by replacing nr by f nr l The effect on Figure 4.5 is to 
replace the smooth curve by a stairstep function. 

It is also of interest to determine the point at which E = 50%, or fc = 1. 
Then 

(4.34) 

Thus with 62 worker processors, and j3 = 6.6, lvf1; 2 ~ 300, where 1111; 2 = 
N n 1; 2 . This is a reasonable number of unknowns and indicates that the 
matrix-vector product is very well suited to the proposed parallelization. 
Note that d is a rather weak function of N, so it can be stated in general that 
.M1; 2 is approximately several times N. This is classified as a "large-grained" 
decomposition - ea.ch processor ha.s a. substantial number of unknowns -
and is a. typical property of a MIMD array with powerful processors and local 
memory. 

The actual run-time can be obtained from 

81112 
nl/2 

Tp ~ tcalc~[l + --] 
1, n 

( 4.35) 

Note that this is in a. form similar to Hockney and Jesshope's two pa­
rameter model. Recognizing that the amount of work s is 8fltf2, defining the 
half-performance length s1; 2 = s 

11

~2 , and recognizing that r;;} = tcalc/ N, 
equation (4.3.5) can be re-written as 

( 4.36) 

large problems will involve off-chip memory. Typically, a T800 slows down by a factor 
of three when it has to access off-chip memory. This can be incorporated in an obvious 
fashion into the above analysis- the effect is to decrease f3 and thus reduce n 112 . Note 
that the actual run-time also increases. Futhermore, the actual value for tcomm also differs 
from the specifications. The full CG analysis of the next section uses results for f3 obtained 
from benchmarking. 
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Figure 4.5: Efficiency of parallel matrix-vector product for the MC2 . 
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4.4 A Parallel Conjugate Gradient Algo­
rithm 

The theoretical techniques for the analysis of parallel algorithms developed 
for the matrix-vector product in Section 4.3 can now be incorporated into a 
parallel conjugate gradient algorithm, and S and c predicted. The algorithm 
exploits the complementary roles of the row- and column-block decomposi­
tion; the matrix-vector product is done using the row-block decomposition 
and the (Hermitian) transpose matrix-vector product is done by applying the 
column-block decomposition algorithm to the row-block matrix data (with 
the necessary change of sign of the imaginary part of the matrix entries). 
This avoids having to either explicitly form the matrix transpose - a very 
expensive operation on a parallel processor with local memory - or store 
an additional copy of the Hermitian transpose· of the matrix - and thus 
double the memory requirements of the code. This crucial contribution was 
the author's (Dav90b], and has not been published elsewhere, to the best of 
his knowledge. 

From Table 4.1, the serial time is: 

Ts ~ (161\12 + 441\1)tcalc ( 4.37) 

The parallel time is the sum of the parallelized matrix-vector products, the 
unparallelized vector operations and the additional computationa.l overhead 
of the accumulate paradigm, and the communication requirements of the 
broadcast, gather, scatter and accumulate paradigms: 

Tp ~ (161\12 /N + 441\1 + 2dl\1)icalc + (21\1[1- djJ\T] + 2J\1d)icomm (4.38) 

Forming the quotient of Ts and Tp and simplifying yields 

( 4.39) 

Note that this result is actually the efficiency of one iteration; since by far 
the majority of time required by the algorithm is in the iterative cycles, the 
algorithm as a whole can be characterized by its performance per iteration. 

Comparing to Equation (4.31), many similarities are obvious. Under the 
assumption 1\1 ::;p 1, the numerators are identical (within a factor N; re­
member that Sand c are being compared). The two additional terms in the 
denominator of equation ( 4.39) represent, respectively: the amount of un­
parallelized computation contained in steps 2, 3, 4, 6 and 7; and the amount 
of additional computation required in the accumulate process. Note that 
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process[master.cg] 
begin 

initialization 
while (not finished) 

begin 
broadcast p.k 
gather u.k 
compute alpha.k 
update x.k+1 and r.k+1 
scatter r.k+1 
accumulate r.bar.k+1 
compute beta.k 
update p .k+1 
compute and print normalized residual 
check termination 

end 
end{while} 

end{process[master.cg]} 

Figure 4.6: Pseudo-code for parallel CG algorithm: master process 
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both the amount of (parallelized) computation and the amount of communi­
cation approximately double since a matrix-vector product and a. Hermitian 
transpose matrix-vector product are required; thus the factor of two in both 
computation and communication cancels. 

Under the assumption 111, N :::;}> 1, this can be simplified to 

1 
( 4.40) 

t = 1 + ~(2.75 + 0.125d + log~N{j) 

Pseudo-code for the algorithm is given in Figures 4.6 and 4.7 for the 
master and worker(s) respectively. 

The correct termination of the algorithm and the configuration of the 
workers for an arbitrary depth of binary tree will be now be considered in 
the next two sect. ions .. 

4.5 Terminating the Algorithm 

Ensuring the correct termination of a parallel algorithm is not, in general, 
a trivial problem, especially with heterogeneous processes. It is simpler 

'------------------------------------------- --
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process[worker.cg] 
begin 

initialization 
while (not finished) 

begin 
broadcast p.k 
perform matrix-vector product 
gather u.k 
scatter r.k+1 
perform transpose matrix-vector product 
accumulate r.bar.k+1 
check termination 

end 
end{ while} 

end{process[worker.cg]} 

Figure 4.7: Pseudo-code for parallel CG algorithm: worker process 
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with the homogeneous worker processes used for the parallel CG code, but 
nonetheless requires careful coding to terminate all the concurrent processes 

in the correct sequence. 
\~Tith a. sequential algorithm, the termination is normally fairly simple: 

the code executes and then terminates (provided it has been properly written 
and does not contain any infinite loops - livelock in Occam parlance). The 
fundamental principle of terminating a group of parallel processes (the master 
and workers executing the CG algorithm in this case) is that some explicit 
termination action is required, initiated by one of the processes. In the code 
considered, the termination criteria is that either the normalized residual 
error must ha.ve decreased to less than the user-specified value or that some 
maximum number of iterations must ha.ve been executed. The former can 
only be determined by the master processor. Hence it is necessary for the 
master process, a.t the end of each iteration, to monitor the termination 
criteria .. If one (or both) of the termination criteria has been satisfied, then 
the master must explicitly inform the workers, who then inform the lower 
level workers and terminate their execution. \~Thile appearing obvious, if not 
carefully coded it is rather easy to terminate intermediate level workers before 
they have terminated the lower level workers, leading to a particularly subtle 
"deadlock" that only manifests itself on the next run of the code. Pseudo­
code for the correct termination procedure is given in Figures 4.8 and 4.9. 
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begin{terminate stub: master} 
if termination criteria satisfied 

then 
begin 

flag := terminate 
finished := TRUE {to stop while loop} 

end 
else 

begin 
flag := continue 
finished := FALSE {to continue while loop} 

end 
send flag to two lower workers 
end{if} 

end{terminate stub: master} 

Figure 4.8: Pseudo-code for the termination stub on the master. 
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Note that the requirement for terminating parallel algorithms properly is 
a general property of parallel processing, requiring special care on a local 
memory MIMD array. 

4.6 Configuring for an Arbitrary Depth of 
Binary Tree 

The requirement of a configuration description should be reviewed at this 
stage. The master and worker processes defined thus far are in general written 
using channels, which are software abstractions of the actual communication 
channels. The mapping of these channels onto the real hardware links and the 
explicit placing of processes on real processors is the task of the configurer. 
Precisely how this is implemented will vary from computer to computer, and 
also from language to language. The description that follows is specific to 
Occam 2 on a. transputer array; but a. similar procedure must be applied on 
any MIMD computer, and the general procedure followed remains valid. 

The problem of generating a configuration description that allows the 
specification of a. binary tree of arbitrary (integer) depth is not a simple one. 
Related to this is the problem of how one actually connects the tra.nsputer 
links in such a. way that their switching is guaranteed to be the same as that 
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begin{terminate stub: worker} 
receive flag from higher processor 
if not at bottom of tree 

then send flag to lower workers 
end{if} 
if flag = terminate 

then finished := TRUE 
else finished := FALSE 

end{if} 
end{terminate stub: worker} 

Figure 4.9: Pseudo-code for the termination stub on the worker. 

defined by the configuration file. 
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For a small numbers of processors, the problem can be solved manually, 
by sketching a. graph of the network, assigning links to channels and then ex­
plicitly placing each channel and process. But this rapidly becomes unwieldy 
for large networks and an automatic method becomes necessary. If the bi­
nary tree is numbered as shown in Figure 4.10, then a very elegant scheme 
is possible [Gal90], which is used as the basis for the author's configuration. 

However, this scheme is complicated by the following restriction imposed 
by the MC 2 ; note that this is a very specific restriction of a particular type 
of transputer array. Because of the Euler colouring algorithm used [Vil89], 
the link interconnection is restricted to even-to-even and odd-to-odd link 
switching. This requires that the even numbered and odd numbered nodes be 
handled separately. The situation is further complicated by the requirement 
to provide a "boot-path"; the transputer network loader is only able to load 
the network over one link, so the highest level nodes (l.and 2 in Figure 4.10) 
require an extra connection to provide this. Developing a configuration file 
that handles all this is somewhat complicated. The subtleties (that cause 
the problems) are lost in pseudo-code, so the necessary Occam configuration 
code is given in Appendix A. 

Once the configuration code is developed, the problem remains of en­
suring that the switching of the MC2 is correct. This switching is software 
controlled, and the necessary link switching is read from an ASCII file by the 
Domain 111anagement System running on the MC2 controller. 

A utility program, swi tchtds, was written in Turbo Pascal by the author 
to take the "wiring diagram" that the TDS can generate from a configuration 
file and automatically generate an I'v1C 2 switch file from it. A check was also 
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performed to ensure that the even-even and odd-odd switching requirements 
were met. The program also checks that links are actually connected: e.g. 
if processor 1, link 3 is defined as being connected to processor 2, link 1, 
then the program checks that processor 2, link 1 is in turn indeed connected 
to processor 1, link 3. Program switchtds is of course applicable to any 
parallel program running under the TDS program, not just the binary tree 
configuration 18

• 

0 

1 2 

3 4 5 

Figure 4.10: Interconnection topologies - binary tree dimension 2, re­
numbering following [Gal90, p.123] 

4.7 Benchmarking 

The previous analysis requires hvo fundamental parameters to characterize 
the machine: the computation and communication speeds. The most reliable 
way of obtaining this data is by benchmarking - actually measuring the 
performance of the system under conditions simulating those of the actual 
code. Two simple benchmarks were developed: the first tested computation 
speed and the second communication speed. Such benchmarking is necessary 
for any parallel computer; the pseudo-code presented here will be useful for 
benchmarking any local memory MIMD system; the specific results are for 
the transputer arrays tested. 

The computation benchmark involved the addition of 7 vectors of length 
1000. The core of the benchmark is shown in Figure 4.11. It was attempted 

18Another utility developed by the author is program Euler, a variant of switchtds, 
which checks only the even-even and odd-odd properties and link connectedness of a 
supplied switching file. An invalid file will not load, but the Domain Management System 
produces only an extremely cryptic error message, and does not indicate where the fault 
lies, hence the requirement for tools such as Euler. 

6 
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begin{flop benchmark} 
repeat for i = 

begin 
vector2 [i] 
vector3[i] 
vector4[i] 
vector5[i] 
vector6 [i] 
vector7[i] 
vector8[i] 

end 
end{for} 

1 to 1000 

·= vector1 [i] 

·= vector1 [i] 

·= vector3 [i] 

·= vector3[i] 
:= vector4[i] 

·= vector4 [i] 

·= vectorS [i] 

end{~lop benchmark}. 

+ vector2[i] 
- vector2[i] 
+ vector2[i] 
- vector2[i] 
+ vector3[i] 
- vector3[i] 
+ vector4[i] 

Figure 4.11: Pseudo-code for FLOP benchmark 
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to ensure that there were dependencies between the various vectors to pre­
vent any optimization of the code by the compiler - such optimization is 
potentially very dangerous with benchmarking since one may well not realize 
that it is occurring. (For example, some compilers may be able to recognize 
the operation of adding zero to all the elements of a vector as not affecting 
the vector at all, and not generate any code for these operations.) Seven op­
erations were chosen to minimize the role of loop overhead (the incrementing 
and testing of i) which could adversely affect the measurement. A vector 
length of 1000 was chosen to be sufficiently long to obtain a proper average. 
This exercise was performed for single and double precision and then re­
peated for multiplication. No division operations were included in tests since 
the number of divisions required by the algorithms considered in this thesis 
was insignificant. Results are given in Table 4.2 and 4.3 for the MC 2 and a 
TM4 board19 respectively. Both systems use 20 MHz TSOO transputers. The 
approximately 10% improvement on the l\1C 2 is due to the faster memory 
used on that system. It is interesting to note that addition and multiplica­
tion take exactly the same time. It is also notable that double precision ( 64 
bit) arithmetic is about only 1.4 times slower than 32 bit arithmetic- the 
floating point unit on the TSOO is a 64 bit unit. The approximation of 0.5 
MFLOP /s used previously [Da.v90b] is thus shown to be quite accurate for 
single precision. 

The pseudo-code used for the benchmarking of the communication speed 

19The TM4 board consists of one T800 transputer with 4 MB of RAM. 

~~- ----- ---
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Precision Operation MFLOP/s 
Single Addition 0.53 
Double Addition 0.38 
Single Multiplication 0.53 
Double Multiplication 0.38 

Table 4.2: Computation benchmarks on the M C2 

Precision Operation MFLOP/s 

Single Addition 0.48 
Double Addition 0.34 
Single Multiplication 0.48 
Double Multiplication 0.34 

Table 4.3: Computation benchmarks on the TM4 board 

process[master.link] 
begin 

par 
begin 

send sp.vector to processor[1] 
receive sp.vector from processor[1] 

end 
begin 

send dp.vector to processor[2] 
receive dp.vector from processor[2] 

end 
end{par} 

end{process[master.link]} 
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Figure 4.12: Pseudo-code for communication benchmark: master process 
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process[sp.worker.link] 
begin 

receive sp.vector from processor[O] 
send sp.vector to processor[O] 

end 
end{process[sp.worker.link]} 
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Figure 4.13: Pseudo-code for communication benchmark: single precision 
worker process 

process[dp.worker.link] 
begin 

receive sp.vector from processor[O] 
send sp.vector to processor[O] 

end 
end{process[dp.worker.link]} 

Figure 4.14: Pseudo-code for communication benchmark: double precision 
worker process 

process{link benchmark} 
placed par 

processor [0] 
process[master.link] 

processor [1] 
process[sp.worker.link] 

processor [2] 
process[dp.worker.link] 

end{link benchmark} 

Figure 4.15: Pseudo-code for communication benchmark: configuration 
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is given in Figure 4.12, 4.13 and 4.14 for the master and the two workers 
respectively and the configuration code is given in Figure 4.15. This commu­
nication benchmark combines two tests: firstly, it checks the transfer rate for 
single and double precision, and secondly, it checks that the links can indeed 
be operated efficiently in parallel. The vector sp. vector is a single precision 
vector of length x, and dp. vector is a double precision vector of length x /2. 
Both processes should thus take the same time; for the double precision case, 
half as many elements, each individually twice as long, will be sent. Results 
of the test are given in Tables 4.4 and 4.5. 

Precision MBytejs 
Single 1.32 
Double 1.39 

Table 4.4: Communication benchmarks on the MC2 

Precision MByte/s 
Single 0.87 
Double 0.90 

Table 4.5: Communication benchmarks on the TX4 

The TX4 board20 has its links set to 10 MBit/s; one byte is 8 bits and 
the transputer's link protocol adds 3 padding bits per byte, hence we expect 
a theoretical value of about 0.91 MByte/s, very close to the 0.87 and 0.9 
measured. This clearly shows that the links can indeed operate concurrently 
with an efficiency of very close to 100%. 

The link speed of the I\1C2 is specified a.t 20 MBit/s, i.e. 1.82 MByte/s, 
taking the 3 bits padding per byte into account. The benchmark, which 
gives very reliable results in the case of the TX4, shows only about 75% of 
the predicted value for the M C2

. The reason is probably the delays in the 
electronic link switches that interconnect links on the MC2 . (The TX4 links 
are hardwired using jumper cables; there is no electronic circuitry between 
one transputer's links and another on the TX4 board). 

20The TX4 board has 4 T800 transputers each with 256kB of RAM; it can be plugged 
into an expansion slot in a PC. 

L ______________________________________________________ __ 
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The parameter f3 can now be computed from the benchmark results for 
the case of single and double precision21

• The numerical values given in 
Table 4.6 are for the MC2

• 

Precision f3 
Single 3.22 
Double 4.37 

Table 4.6: (3 = icommftcalc 

4.8 Results and Discussion 

This section describes results obtained by the author using his Occam 2 
implementation of the algorithm described in this chapter. It represents 
the experimental validation of the timing models developed in this chapter. 
The implementation was very time-consuming due on the one hand to the 
inadequate software tools available - for instance the absence of interactive 
debuggers made debugging a very slow and tedious process - and on the 
other hand, due to the absence of any paradigms for writing parallel codes. 
The fundamental parallelizing paradigms used for the code were developed 
entirely by the author before useful books on the subject such as [F JL *88] 
were available. The pseudo-code stubs given in this thesis appear rather 
simple only with the benefit of hindsight. 

The algorithm as described was implemented by the author. Initial vali­
dation of the code for correctness wa.s done using a test set of different linear 
systems, for which the solutions were checked using MATLAB~s (implicit) 
linear system solvers [MAT89]. The parallelism was simulated on one trans­
puter for this, as discussed in Section 3.4.2; this was far more convenient 
for debugging than running the code on the M C2

. Further validation was 
performed when the parallel CG solver was used as the matrix solver in 
PARNEC; see Section 6.6. This validation used real parallelism on the MC 2 • 

Following the initial validation for code correctness, the algorithm \Vas 
run on the MC 2

, to validate the timing predictions. Measured efficiencies 
are shown in Figure 4.16. Theoretically, equation (4.39) predicts that the 

21 An example of the calculation for single precision: the time for a floating point cal­
culation, from Table 4.2, is tcalc = 1.88ps. One single precision complex word is 8 bytes, 
thus tcomm = 6.06JLS. Thus /3 = 3.22. For the double precision case, the results for double 
precision must be used, and one double precision word is 16 bytes. 
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efficiency should be a function mainly of the number of rows per processor, 
~, and a weak function of d, the depth of the tree. These predictions are 
confirmed in Figure 4.17. Thus the CC algorithm exhibits a most desirable 
property - it scales with the number of rows per processor. With a given 
number of rows per processor, the efficiency of the algorithm is a rather weak 
function of the number of processors. 

Finally, the measured and predicted results for 2 and 30 workers are 
shown in Figures 4.18 and 4.19 respectively. At the time of writing, the 
system was missing one or two processors so tests could not be conducted 
on the full array, but no larger problem could have been solved since the 
worker processes are all identical and hence the transputer with the smallest 
memory determines the total memory that the complete parallel program 
can use22

• 

It will be noted that in Figures 4.18 and 4.19, the measured and predicted 
curves agree very well regarding the shape of the curve, but there is an offset 
between the measured and predicted curves. The aim of the modelling is 
not to be able to predict the performance exactly, in the sense that one 
predicts an antenna's radiation pattern, for example; the aim is simply to 
indicate trends and determine whether the performance (efficiency) will be 
satisfactory for the problems of interest. Furthermore, the predictions serve 
as a check on the correct functioning of the code. 

In the regime of small ~, various effects that were ignored in the anal­
ysis, such as latency23

, come into play. However, this regime is of minimal 
importance for the solution of large, time-consuming problems. (The aim 
of parallel processing should always be borne in mind, namely to provide 
computational power for tackling problems that are prohibitively expensive 
computationally on a single processor). In the region of large ~, the "serial" 
times are based on extrapolation. The largest problem whose serial time 
vvas measured used 428 segments; using double precision this requires close 
on 4 MB of memory, the maximum RAM available on one processor on the 
MC2 . The measured data for the larger problems are based on extrapolation 
of the serial times, and as such, this "measured" data should be treated with 
some caution 24

• Furthermore, the theoretical timing model ignores some of 

22 At the time of writing, for the complete MC:.\ this limit was imposed by the transput.ers 
with 1 MB. Thus with 62 workers, 62 l'v!B is available - only 1 MB of the 2 1\·IB and 
4 MB boards' memory is thus used. There were sufficient 2 MB and 4 MB boards for 30 
workers to use 2 MB, thus a total of 60 MB. 

23 Lat.ency is the delay caused when initiating communications. Using Occam 2 on a 
transputer array, it is only significant for very short vectors. 

24It should be possible to run larger tests using the virtual memory boards but the time 
required becomes quite impractical and one would then have to consider the question: is 
the "serial" time measured using the virtual memory boards a true reflection of the time 
that the problem would have run had there been enough RAM available on one transputer 
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the finer detail of the implementation; for instance, Occa.m does not by de­
fault permit separate parts of vectors to be accessed in parallel, so the actual 
Occam implementation of the gather process differs slightly from the pseudo­
code given in this chapter. This is discussed in more detail in Section 5.10. 
In the light of this the offset noted is not surprising, and again it must be 
emphasized, not important when the goal of the modelling is borne in mind. 

The measured data shown was obtained from PARNEC, the parallel ver­
sion of NEC2 to be described in Chapter 6. Double precision was used. The 
value for (3 used in the theoretical model was that measured in Section 4.7. 

4.9 Conclusions 

In this chapter, a parallel conjugate gradient algorithm has been proposed, 
analyzed theoretically, implemented and tested on a transputer array. 1v1ea­
sured results for speed-up and efficiency are compared to the theoretical pre­
dictions. The parallel algorithm used as its basic building block two parallel 
matrix-vector products, so two efficient parallel matrix-vector product algo­
rithms were investigated in detail. The exploitation of the complementary 
role of these two methods permitted the Hermitian transpose matrix-vector 
product, required in addition to the matrix-vector product by the general 
form of the CG algorithm, to be solved very elegantly using only one copy of 
the matrix and without the additiona.l communication overhead that would 
have been required had the transpose been explicitly formed. The basic pa­
rameters used in the theoretical analysis were established using benchmark­
ing. The problem of developing a general configuration description, able to 
handle any depth of binary tree, has been considered and a solution pre­
sented. Automatic methods for connecting the links (the "switching") on an 
electronically switched array have been described; specific details have been 
provided for the particular transputer array used. The problem of termi­
nating a parallel algorithm has been considered and a solution given for the 
CG algorithm. Experimental validation of the theoretical models has been 
performed by measuring efficiencies of an Occam 2 implementation of the 
algorithm on a transputer arrays. 

It has been shown, both theoretica.lly and experimentally, that the pro­
posed CG algorithm scales essentially with the number of rows per processor 
- the development of scalable algorithms is very important for large MIMD 
systems. A scalable algorithm is one whose efficiency is a function of the 
"grain" of the problem, where the "grain" is related to the number of un­
knowns per processor; in the case of the CG algorithm, it is the number of 
rows per processor. Hence a.s the problem size grows, more processors can 

board, or is the virtual memory management. degrading the performance substantially? 
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be brought to bear on the problem and the efficiency remains approximately 
constant - and hence the actual speed-up increases linearly with the number 
of processors. 

Some of the work reported in this chapter was presented at international 
symposia. as [DC89, Dav90a]. 

The CG algorithm is one of the standard methods used in computational 
electromagnetics for solving the system of linear equations resulting from a 
MoM formulation. Another standard method of solving the system of linear 
equations generated by the MoM is L U decomposition. Initially, it appears 
a rather unlikely candidate for efficient parallelization when compared to the 
CG algorithm considered in this chapter, and introduces a new problem only 
hinted at (since it was of no significance) in the work on the CG algorithm, 
namely load balancing. Chapter 5 considers the development of a parallel L U 
algorithm, with an efficiency comparable to that of the parallel CG method 
for a similar problem size and number of processors. 
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Chapter 5 

A Parallel LU Algorithm 

5.1 Introduction 

The L U method is probably the most widely used algorithm in the solu­
tion of square systems of linear equations. Given a system with a moderate 
number of equations, it is normally the best algorithm to use, provided that 
the system is not extraordinarily ill-conditioned. For certain special classes 
of matrix, such as positive definite matrices, it may be shown that the ma­
trix is non-singular [BF85) and furthermore, that the algorithm is stable with 
respect to the growth of round-off errors. Variants of the LU method exploit­
ing positive-definiteness such as the Choleski method (which forms [L][L]T) 
combined with methods to exploit bandedness permit the very efficient ap­
plication of the method to matrices generated by the finite element method 
[SF90, Chapter 10). Given the fundamental role of the LU algorithm, the de­
velopment of an efficient algorithm suitable for a local memory MIMD array 
is an essential research topic for parallel computational electromagnetics. · 

LU decomposition (an O(M3 operation, where Af is the dimension of the 
problem) followed by forward and backward substitution (each of O(M2 )) is 
always better to use when solving a system of equations than forming the 
explicit inverse of the matrix and then multiplying the inverse matrix by the 
right hand side vector; the reason is very simply that forming the e>.."Plicit in­
verse amounts to an L U decomposition, followed by Af forward and backward 
substitutions (these M substitutions adding an additional O(M3 ) operation). 
This is clearly more expensive computationally, and the accuracy of the so­
lution can also be deg~aded by the additional operations. These points are 
made in almost all books on numerical analysis and the applications thereof, 
eg. [BF85, p.318) and [SF90, Chapter 10). 

In this chapter the basic L U algorithm is reviewed. Then the question of 
parallelizing the algorithm is discussed, and a parallel algorithm presented 

78 
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using a new, simple, graphical approach. The use of "formal" methods is con­
sidered for the extraction of the parallelism. The problem of load-balancing 
is potentially serious with a parallel LU algorithm, and a solution utilizing 
a row and column interleaved scheme is described. Pseudo-code is given for 
the parallel algorithm. Then, new parallel forward and backward substitu­
tion algorithms are proposed that use the same data decomposition as the 
parallel L U algorithm. Pseudo-code is given for these algorithms. Timing 
results obtained using a matrix generated by a simple thin-wire MoM code 
are presented and discussed. 

The ability to solve massive systems of equations made possible by this 
technique is used to investigate the accuracy of the L U method for large 
problems, by monitoring the convergence of the input impedance of a dipole 
computed using a MoM code and also by comparison with the results of 
the parallel CG solver for the same MoM code. It is established that the 
L U method only fails when the basic rules for a MoM discretization are 
seriously violated, permitting the conclusion that .for large electromagnetic 
problems discretized according to the established rules, the L U method will 
be sufficiently accurate. 

5.2 The Basic LU Algorithm 

Before considering the parallel version of the L U algorithm, the serial form 
will be briefly reviewed. 

The LU algorithm factors a matrix A into the product of an upper ([U]) 
and lower ([L]) triangular matrix as follows: 

[ lo,o 
0 

IM-~M-1 l [L] = 11,0 111 
' 

/M-l 0 - · · • /M-l,M-2 

(5.1) 

and 

(5.2) [T 
uo,l Uo,M-1 

[U] = u1,1 
U1,M-1 l 

0 UM-l,M-1 

The diagonal elements of [L] are most commonly chosen as 1. The al­
gorithm can be found in virtually any book on matrix algebra, for example 
[BF85, p. 345], and can be derived by noting that ai,j (the ij-th element of 
A; i,j t {0, 1, ... , .M- 1}; M is the dimension of the matrix1 ) is the product 

1The matrix entries have been numbered from 0 to M-1 for later convenie~ce: an array 
a in Occam is numbered ao, a1, .... 
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of the i-th row of [L] with the j-th column of [U]. Exploiting the triangular 
properties of [L] and [U] then yields the algorithm: 

• Step 0, which computes the first row of [U] and the first column of [L], 
is defined as follows: 

ao,o 
uoo=-

, loo 
' 

_ ao,j 
UoJ -­

loo 
' 

1 
_ aj,O 

j,o-­
uo,o 

(5.3) 

(5.4) 

(5.5) 

• Step i, which computes the i-th row of [U] and the i-th column of [L], 
is repeated fori= 1, ... , M- 2 and is defined as follows: 

1 i-1 

u· ·=-[a .. -"'"' l· kUk ·] t,l l·. t,t ~ t, ,t 
t,t k=O 

(5.6) 

Repeat for all j = i + 1, ... ,Af- 1: 

1 i-1 

u· · = -[a· ·- "'"'l· kUk ·] t,J l·. t,J ~ ,, ,J 
t,t k=O 

(5.7) 

(5.8) 

li,j and ui,j represent the i, j-th element of the [L] and [U] matrices 
respectively. 

• Step M-1 completes the algorithm by computing the last diagonal ele­
ment and is given by 

1 M-2 

UM-1,M-1 = 1 [aM-1,M-1 - L lM-l,kUk,M-d (5.9) 
M-l,M-1 k=O 

If at any stage li,iui,i = 0 then the algorithm is terminated with an error 
message to the effect that factorization is impossible. 

It will be noted that the LU decomposition as defined above leaves M 
degrees of freedom; generally either the diagonal elements of [L] are set to 1 
(the most common procedure with a general matrix), or the diagonals of [L] 
and [U] are set equaF (the approach used in Choleski decomposition, where 
the matrix A is positive definite). 

2With a complex valued matrix, the diagonal of [L] and the complex conJugate of the 
diagonal of [U] are set equal. 
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It is rather interesting that L U decomposition is very closely related to 
the CG method; both the LU method and the CG method may be derived 
as special cases of what Sarkar has called the method of conjugate directions 
(essentially a gradient method) [SA85]. This is perhaps not surprising since 
the CG algorithm (in the absence of round-off error) reduces the dimension 
of search by one for each iteration, which is also what the LU method does. 

Following the factorization of [A] into the product of [L] and [U], the 
unknown left-hand side is solved for in a two-step process; the first step is 
forward substitution and the second step backward substitution. Consider 

[A][x] = [b] (5.10) 

with A facto red as 
[A]= [L][U] (5.11) 

Thus we must solve 
[L][U][x] = [b] (5.12) 

Define 
[U][x] = [z] (5.13) 

Then [z] can be solved for using forward substitution from 

[L][z] = [b] (5.14) 

since [L] is lower triangular; then x can be solved using backward substitution 
from the preceding equation since [U] is upper triangular. 

Using the following useful formulae 

n 1 
Li = ~(n)(n + 1) 
j=l ~ 

(5.15) 

n 1 
Li2 = 6(n)(n + 1)(2n + 1) 
J=l 

(5.16) 

it may be shown that the timing requirements of LU decomposition are ap­
proximately A;3 + 0(1112) + 0(111) additions and approximately the same 
number of multiplications. The constants associated with the lower order 
terms are small integers, so for all practical purposes, the amount of work re­
quired is 2At operations. The factor of 2 comes from the additions and multi­
plications. Similarly, the dominant term in the time for forward substitution 
is 1112 operations, and the same result also holds for backward substitution. 
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5.3 Parallelizing the LU Algorithm- an In­
troduction 

5.3.1 A Brief Review of Previous Work 

This discussion of the serial algorithm now leads to the question of the iden­
tification of the parallelism in the algorithm. Compared to the CG algorithm 
in Chapter 4, the parallelism is hardly obvious. Nonetheless, very efficient 
parallel algorithms can be developed. Since LU decomposition is such a fun­
damental algorithm in linear algebra, much work has been done, but very 
often the work is not applicable to the problem of a full matrix, without any 
special properties. For example, Fox et.al. [FJL*88, Chapter 20] describe a 
banded matrix L U decomposition. Brief reviews of parallel L U decomposi­
tion may be found in [Hel78, GHN87]; a rather more recent review paper is 
[GPS90). Many of the papers published are extremely specific to a particular 
processor, or are of a very basic theoretical nature - for example, establish­
ing a lower bound on the operation count given as many processors as can be 
used. They are thus not suitable for the problem of developing parallel al­
gorithms on a MIMD system, with a reasonable - but restricted - number 
of processors. Recent work by van de Vorst [vdV88, vdVB89] has described· 
a parallel L U algorithm suitable for a MIMD array. Previous work (such as 
that reviewed in [GPS90, p.99]) is shown to be a special case of van de Vorst's 
algorithm. The work was published in computer science journals, and is very 
difficult to read without a grounding in formal methods and the use of post­
conditions3 as a mathematical tool for extracting parallelism. However, the 
basic ideas can be explained far more simply than is done in van de Vorst's 
papers. This will first be done using a new graphical approach developed 
by the author and then van de Vorst's formal approach will be presented 
in Section 5.5; rather more detail and elucidation will be presented than is 
available in van de Vorst's papers and rather simpler methods developed by 
the author for deriving many of his results are given. 

5.3.2 A Parallel LU Algorithm - a Graphical De-
scription 

The essence of the parallel algorithm is the following observation. Instead of 
waiting for step i to compute Ui,j and Ij,i, as in the serial algorithm described 
in the previous section, the summations in equations ( 5. 7) and ( 5.8) may 
be performed as soon as data is available, given sufficient processors. As an 
example, the first summation for each element of row 2 of [U] may begin as 

3 Formal methods and post-conditions will be discussed in Section 5.4. 
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soon as the relevant element of row 1 of [U] and column 1 of [L] is available. 
All the summations required for row 2 may of course be performed in parallel, 
since there is no dependence within a row of [U) or a column of [L) (other than 
on the diagonal element for the final division). Similarly, the first summations 
for row 3, 4 etc. may also begin as soon as the results of row 1 and column 1 
are available4 • The required summations for row i of [U] and column i of [L) 
are thus computed using a series of partial sums performed in parallel at each 
step which terminates in Step i. Hence the maximum degree of parallelism 
in this algorithm is M 2• As will be noted shortly, the algorithm requires at 
least 2M steps to execute. 

The algorithm can be most easily understood graphically. Figures 5.1 to 
5.4 show the evolution of the algorithm for a matrix of dimension 4 on a 4 
by 4 array of processors, i.e. one processor per element. (This is the upper 
limit of the parallelism that can be extracted with this algorithm). The • 
represents elements that are critical i.e. in the last stage of computation. 
The o represents elements that are active, i.e. forming the partial sums. 
Blank entries represent passive elements, where no work is performed, since 
the relevant element of [L) or [U) has been computed in a previous step. 
The echelons of completed elements step diagonally downwards in an almost 
wave-front fashion. 

This graphical presentation also shows the most serious problem with the 
algorithm - load balancing. The work in each row and column decreases as 
the algorithm proceeds, resulting in idle processors, producing a lower bound 
on the efficiency of only approximately 33%5

• This load balancing problem 
may be solved very elegantly using a double-interleaving scheme for data 
distribution described in [vdVSS, vdVB89], whereby both row and columns 
are scattered moduloJ]V over a square array of J]V by vfN transputers, 
with VN <t: A1. This is of course the situation of interest, since it is most 
unlikely that an array of several million transputers will be available to solve 
problems with a few thousand unknowns. The distribution of a matrix of 
dimension 9 on a 3 by 3 array using this double interleaved distribution is 
shown in Figures 5.5 and 5.6. 

Note that at each step i, corresponding to one of the Figures 5.1 to 5.4, 
the algorithm needs two discrete computational steps: firstly, to compute 
the i-th column of [L], and secondly, to then update the partial sums on the 
active processors6

• Hence with M processors the algorithm will take 2.Mtcalc 

4 0ne could of course perform the serial algorithm in exactly the same v.'ay, but in 
the serial case, nothing would be gained, and the algorithm would appear unnecessarily 
complex. 

5 This is derived in detail in Section 5.8. 
6This assumes the choice of diagonal elements of [L) as in equation (5.29), and the 

correct initialization as discussed in Section 5.5; in this case, all computations required by 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 5. A PARALLEL LU ALGORITHM 84 

[ 
.... ] 
• 0 0 0 

• 0 0 0 

• 0 0 0 

Figure 5.1: Step 1 of LU decomposition 

[ ... ] • 0 0 

• 0 0 

Figure 5.2: Step 2 of LU decomposition 

[ : : l 
Figure 5.3: Step 3 ofLU decomposition 

[ .] 
Figure 5.4: Step 4 of LU decomposition 
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to terminate, assuming the times for floating point addition, subtraction, 
multiplication and division to be similar. 

[ 

00 01 02] 
10 11 12 
20 21 22 

Figure 5.5: 3 by 3 processor array (mesh) numbering 

aoo ao3 aoo aOl ao4 ao7 ao2 a os a os 

a30 a33 a36 a31 a34 a37 a32 a3s a3s 

aoo a63 a66 a61 a64 a67 a62 a6s a6s 

a10 a13 a16 an a14 a17 a12 a1s a1s 

a4o a43 a46 a41 a44 a47 a42 a4s a4s 

a7o a73 a7s an a74 a77 an a75 a7s 

a2o a23 a2s a21 a24 a27 a22 a2s a2s 

a so as3 as6 as1 as4 as7 as2 ass ass 

a so as3 a86 as1 a84 as7 as2 ass ass 

Figure 5.6: Scattered grid distribution; 3 by 3 processor array (mesh). The 
elements in the upper left corner map onto processor 00, those in the upper 
centre onto 01, those in the left centre onto 10, etc. 

5.4 The Use of Formal Methods 

van de Vorst used formal methods in the development of his parallel 
program[vdVSS]. The formal methods that he uses are an extension of the 
work of Owicki and Gries [OG76b, OG76a]. van de Vorst's paper is quite 
formidable as a result of the methods used, although the results are quite 
simple once the underlying principles are understood. 

Formal methods are techniques used by computer scientists to analyze al­
gorithms, primarily from the viewpoint of correctness. This frequently seems 
a rather obvious exercise to the numerical analyst, since the algorithms being 
coded have already been put on a. sound foundation using the mathematics of 

step i for row i of [U] have been completed. 
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numerical analysis. However, there are many problems in computer science 
that arise from problems involving communicating processes - this led to 
Hoare's work on Communicating Sequential Processes [Hoa85] - and these 
can be intractable problems indeed, since the times of communication and 
even the communication paths themselves may be non-deterministic. Hence 
the development of formal methods. However, how successful they have been 
in their stated goal of increasing software reliability is a subject for heated 
debate; Stover's comments on software testing and methods of software val­
idation make very interesting reading[Sto90b, Sto90a]. 

It will also have been noted thus far in this thesis that the extraction 
of parallelism has been largely an intuitive process, relying frequently on a 
geometrical viewpoint to establish the fundamental data indepedencies. The 
pseudo-code has been used for documenting, not developing, the parallel al­
gorithms. This section discusses a mathematics to formalize the extraction of 
parallelism. The necessary mathematics will be introduced by way of several 
examples, leading up to the full LU problem. The mathematics follows that 
of van de Vorst [vdV88]; the elucidation is primarily the present author's, as 
is the discussion of the analysis of the matrix-vector product using formal 
methods. 

5.4.1 An Introductory Example 

Consider the problem of forming the sum of two vectors: 

[c] = [a]+ [b] · (5.17) 

This can be written in an equivalent form by defining a postcondition R which 
must be true after the code stub executing this has terminated: 

R = ( Vi : 0 :::; i :::; M - 1 : Ci = ai + bi) (5.18) 

This is of course simply the definition of the addition of two vectors. 
For the development of a program, we can do this by introducing the 

concept of an invariant. One possible invariant is Pseq, defined as follows: 

Pseq = ( Vi : 0 :::; i :::; k : Ci = ai + bi) ; 0 :::; k :::; l l E z+ (5.19) 

The upper value of l is left unspecified at present. The value of k which 
satisfies the postcondition will be determined shortly. Pseq is computed in 
an ordered sequence, as k is incremented from 0. To maintain the validity of 
the invariants at each stage of the process, the code stub 

c [i] : = a [i] + b [i] 
k := k+1 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 5. A PARALLEL LU ALGORITHM 87 

must be executed. ('With an example this simple, this is stating the obvious). 
Once all the components of Pseq have been computed, which occurs when 
k = M- 1, the operation is complete and the truth of the post condition is 
established, to use the necessary formal terms. Symbolically, we can write 

Pseq 1\ ( k = M - 1) :::} R (5.20) 

(The code will actually terminate with k = M, but this does not affect 
equation (5.20) ). The symbol 1\ is used for the logical AND operation; 
this is standard practice in the computer science literature and is therefore 
retained in this thesis. 

Another possible invariant is the following: 

Ppar = (Vi E K : ci = ai + bi); K = {0, 1, ... , M- 1} (5.21) 

What we have now achieved is to remove the sequential index increment­
ing, and indicate clearly that the order in which the components of [c) are 
computed (using the above code stub) is irrelevant. Furthermore, 

Ppar 1\ (IKI =M) :::} R (5.22) 

in other words, the truth of the postcondition is established. j.j is the "size 
of" operator. 

5.4.2 The Matrix-Vector Product Revisited Using 
Formal Methods 

The preceding example is given in [vdV88]. Another, new, example will 
be considered, namely the matrix vector product [c) = [A][b], which was 
of course parallelized in the previous chapter. In this case, the necessary 
postcondition is 

M-1 

R = (Vi: 0 ~ i ~M- 1; ci = L ai,jbj) (5.23) 
j=O 

One possible invariant is the following: 

M-1 

Ppar =(Vi: i E K;ci = L ai,jbj); K = {0,1, ... ,M -1} . (5.24) 
j=O 

This corresponds to the row-block decomposition with a clustering by rows. 
The maximum parallelism is M, the number of rows. This formal notation 
makes clear the independence of the order of row computation and hence a 
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possible parallization technique. The complexity (order of operation count) 
is M 2 IN. With M processors, a lower bound on the complexity of the row­
block decomposition is M. (The complexity of the serial algorithm is M 2

). 

The truth of the postcondition R may be established as in equation (5.22). 
It must be noted that these methods do not necessarily indicate all the 

potential parallelism. Returning to the matrix-vector product problem, an­
other valid invariant is the following: 

P;ar = (Vi,j: i E l,j E J;di,i = ai,ibi); I,J = {0,1, ... ,M -1} (5.25) 

M-1 

p' = (Vi: 0 < i < k· c· = " d· ·) · 0 < k <M- 1 (5.26) seq - - ' 1 ~ I,J ' - _ 
j=O 

and 

[P;ar 1\ (Ill= M) 1\ (IJI =M)] 1\ [P;eq 1\ (k =M -1)]:::;. R (5.27) 

The first invariant is the parallel matrix-vector product; the complexity, 
M 2 IN, assuming a .JN x .JN lattice, so given sufficient processors the lower 
bound on the complexity is 1. The second, sequential, invariant is the ac­
cumulate paradigm described in Chapter 4. The complexity of P;eq is M 2 • 

Similar ideas can now be applied to parallelize P;eq, for example by replacing 

P I • hP" seq Wit par: 

M-1 

P;~r =(Vi: i E K;ci = L di,j);K = {0,1, ... ,M -1} (5.28) 
j=O 

This indicates that the summations required for each element of the vector 
can be performed in parallel. The complexity of this is M 2 j .JN if the same 
lattice used for the multiplications is used; given the same maximum number 
of processors, the lower bound on the complexity is M. But this still does 
not indicate all the potential parallelism. The summations for each vector 
can be para.llelized by summing columns in parallel; for example on an 8 x 8 
processor array, columns 0 and 1, 2 and 3, 4 and 5 and 6 and 7 can all 
be summed in parallel in one step, leaving four columns. The same can be 
repeated at the next step, leaving two columns. In the third and final step, 
one column is left - which is the required vector. Given .A12 processors, a 
lower bound on the complexity of this operation may be shown to be log2 Af, 
assuming M to be a power of 2. Hence a lower bound on the complexity of 
the column-block decomposition is 1 + log2 M, using M 2 processors. This 
should be compared with the lower bound on the row-block decomposition 
of M, using M processors. 
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It will be noted that these lower bounds entirely ignore the effect of 
communication - which has been shown to be very important in Chapter 
4 - so these results are mainly of theoretical interest. Nonetheless, they 
indicate the utility of extracting parallelism using formal methods. 

5.5 A Parallel LU Algorithm Derived Using 
Formal Methods 

The following algorithm7 assumes the choice of diagonal element 

ls,s = 1 , Vs : 0 ~ S ~ M- 1 (5.29) 

Firstly we write the post-conditions8 , which are derived by the use of the 
triangular properties of [L] and [U] and equation (5.29): 

s-l 

Vs ~ t as,t = Us,t + L ls,jUj,t 
j=o 

t-1 

Vs > t : as,t = ls,tUt,t + L ls,jUj,t 
j=o 

(5.30) 

(5.31) 

To put this a slightly different way, the problem is to find the matrix [X] 

such that 
s-l 

Xs,t = as,t- L ls,jUj,t ; Vs ~ t 
j=O 

t-1 

Xs,tUt,t = as,t- I: ls,jUj,t ; Vs > t 
j=O 

(5.32) 

(5.33) 

[X] represents [L] and [U]; the lower triangular part is [L], and the diagonal 
and upper triangular part is [U], or formally, ls,t = Xs,t ; Vs > t ; Us,t = 
Xs,t; Vs ~ t. Now a sum function f(s, t, k) is defined: 

k-1 

f(s, t, k) = as,t- 2::: ls,jUj,t; Vk: 0 < k ~NI- 1 
j=O 

(5.34) 

7This section follows [vdV88] in spirit, but not precisely in detail. van de Vorst's 
original work has been expanded in places, simplified in others and re-written for clarity 
in yet others. In addition, later work by van de Vorst [vdVB89] has also been included. 

8These are valid 'v's, t > 0; for s, t = 0, the required postcondition is the term before 
the summation only. This special case is trivial and will not be explicitly indicated in the 
rest of the analysis; however, the code that implements this must of course implement this 

case correctly. 
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and the post-condition is formalized: 

R := {\Is, t R[s, t] : 0 ~ s, t ~ M- 1} (5.35) 

This post-condition is a set of local post-conditions, defined as: 

R[s, t] = (xs,t = f(s, t, s) 1\ s ~ t) V (xs,tUt,t = f(s, t, t) 1\ s > t) (5.36) 

In f(s, t, v) the first two indices (sand t) refer to the indices of the element 
x - representing either l or u - whereas the last index v refers to the upper 
summation index. The symbol V is used for the logical OR operation. 

The following should be noted: 

• there are M2 post-conditions 

• a start can be made on establishing the truth of each post-condition 
R[s, t] as soon as any elements of row s of [L) and the corresponding 
elements of column t of [U) are available 

This second point is formalized by introducing a new variable k, which will 
play the role of a global "clock" 9 for the processor array. As a first guess, 
the invariant Xs,t = .f(s, t, k) 1\ (0 ~ k ~ min(s, t)) is thus obtained, and the 
following set of set of invariants is proposed 

P = {\ls,tP[s,t]: 0 ~ s,t ~M -1} 

P[s,t] = {[x~,t = f(s,t,k) 1\0 ~ k ~ min(s,t)] 

V [R(s, t) 1\ min(s, t) < k ~M]} 

(5.37) 

(5.38) 

Note that this is only one possible set of invariants; others may well be ad­
missible. Unlike the trivial example of Section 5.4.1, the code required to 
maintain the validity of the invariants as 1.~ is increased is not as immedi­
ately obvious; the necessary initialization, and the operations required as k 
is incremented, will now be established. 

The algorithm is initialized as follows: 

.k ·- 0 

[X] ·- [A] 

It is useful to identify the following four different regions: 

• active if k < min(s,t) 

(5.39) 

9 0n a transputer array, the "clock" is simulated by an explicit synchronizing message. 
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• critical if k = t As> t (all non-passive l in column k) 

• pseudo-critical if k =sA s :S t (all non-passive u in row k) 

• passive,if k > min(s,t) 

The graphical interpretation of these is shown in Figure 5.7. 

passive elements 
• critical elements 
* pseudo-critical elements 
o active elements 

* * * * 
• 0 0 0 

• 0 0 0 

• 0 0 0 

Figure 5.7: Graphical interpretation of regions defined in pseudo-code 

As the "clock" k is incremented, the invariants must remain valid. For 
active processes, the following code fragment must be executed: 

x [s, t] : = x [s, t] - 1 [s, k] u [k, t] 

k := k +1 

For critical processes, the following code fragment must be executed: 

x[s,t] := x[s,t]/u[k,k] 

k : = k +1. 

For pseudo-critical and passive processes, incrementing k leaves P[s, t] in­
variant, hence no action is required. 

These computations may each be performed concurrently. This is the cru­
cial fact that the application of the formal methodology extracts; it does this 
by explicitly indicating that each post-condition may be satisfied incremen­
tally, via the variable k, rather than all at once a.s in the conventional serial 
formulations. 

The maximum degree of parallelism is A12
, since there are that number 

of post-conditions P[s,t], but the complexity has a lower bound10 of M, not 

10The operation count is 2M, when the sequencing of operations within a step are taken 
in to account, as already discussed in Section 5.3.2. 
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1, since the computations for row (and column) k + 1 cannot be finalized 
until row (and column) k have been computed. Another way of stating this 
is that the computations are ordered, and van de Vorst goes on to use the 
"partial" ordering of the post-conditions to examine deadlock, i.e. does P[i,j] 
need the results of P[k,l] but similarly does P[k,l] need the results of P[ij] 
to continue? He shows theoretically that it does not occur; however, once 
the algorithm is understood as explained in Section 5.3.2 it is obvious that 
deadlock cannot occur. 

5.6 Pseudo-code for the LU algorithm 

With the formal development completed, it is useful to recap how the algo­
rithm proceeds. The initialization of equation (5.39) establishes the first row 
of [U] -actually before the algorithm has started. 

• On step 0, the first column (column 0) of [L] is computed, and then 
this column, as well as the first row (row 0) of [U] is sent to all the 
critical processes so that the partial sums can be computed. Note that 
by the end of step k = 0, the computations for the second row (row 1) 
of [U] have been completed. 

• On step 1, the second column (column 1) of [L] is computed, and this 
column, as well as the second column of [U], can be sent to all remaining 
critical processes so that ongoing partial sums can be computed. By 
the end of step k = 1, the computations for the third row of [U] (row 
2) have been completed. 

• The algorithm proceeds thus, until k = .M. 

Figure 5.8 shows the communications executed by the algorithm. In the 
latter figure, the l indicates communication to all the active elements of 
the column, and similarly the --+ indicates communication to all the active 
elements of the row. The '\.. symbol indicates both l and --+. 

Pseudo-code for the algorithm is given in Figure 5.9. Note that the 
pseudo-code assumes 1112 processors; if this is not the case, then cluster­
ing as described in Section 5.3.2 and also Section 5.8 is required. It should 
be appreciated that efficiently implementing the clustering and communica­
tions made the actual Occam code much more complex than the pseudo-code 
shown. 
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passive elements 
• critical elements 
* pseudo-critical elements 
o active elements 

. * * * * * 

• -+ 0 0 0 

. • -+ 0 0 0 

• -+ 0 0 0 

Figure 5.8: Communication in parallel LU algorithm. 

5. 7 Pivoting 

93 

One point that has not been considered thus far in the analysis is pivoting. 
Pivoting is a. strategy to optirnize numerical stability by ensuring that the 
largest (in some sense) element is on the diagonal. Two possibilities are listed 
below: 

• maximal column pivoting: Select the element in the same column that is 
below the diagonal and has the largest absolute value, and interchange 
rows to carry this element onto the diagonal. This algorithm is also 
known as partial pivoting, since only the part of the matrix below the 
diagonal is considered. The first step requires M comparisons, the 
second M-1 etc. Using equation (5.15) the number of comparisons can 
be shown to be tM"2 + O(M). 

• maximal pivoting: At step k, search all the elements ai,j with i,j > k, 
and then interchange rows and columns to carry this element onto the 
diagonal. To use the notation previously defined, this requires a. search 
of all the active elements. Hence the other name for the method, viz. 
total pivoting. This can be shown to require ~M3 + O(M2 ) + O(.Af) 
comparisons [BF85, p.329]. 

van de Vorst has sho\vn that partial pivoting may be incorporated into 
a parallel L U algorithm without a major effect on the efficiency of the algo­
rithm; however, the coding becomes even more complicated than that already 
required. 

The author did not incorporate pivoting into the parallel code he de­
veloped, because pivoting was thought to be unnecessary with the typical 
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process[s,t] : 
begin 

x[s,t] := a[s,t] {initialize matrix} 
k := 0 {initialize global clock} 
while k < n do 

begin 
if k < min(s,t) then 

begin{active} 
par 

receive l[s,k] from process [s,k] 
receive u[k,t] from process [k,t] 

end{par} 
x{s,t] := x[s,t] - l[s,k]*u[k,t] 

end{active} 
else if k = t AND s > t then 

begin{critical} 
receive u[k,k] 
x[s,t] := x[s,t] I u[k,k] {note k=t!} 
send x[s,t] to all processes[s,q] with q > k 

end{critical} 
else if k = s AND s < or = t then 

begin{pseudo-critical} 
send x[s,t] to all processes[q,t] with q > k 

end{pseudo-critical} 
else if k > min(s,t) then 

SKIP {passive} 
k := k + 1 

end 
end{while} 

end. { process[s,t]] } 

94 

Figure 5.9: Pseudo-code for the parallel LU algorithm; adapted from [vd\188]. 
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systems generated by MoM discretizations, for the reason that such a sys­
tem, although not strictly diagonally dominant11 , normally has its largest 
elements on the diagonal, since these represent self-impedance terms and all 
the other off-diagonal elements represent mutual impedance terms. (This ar­
gument assumes a more or less uniform discretization; it will not necessarily 
be true if very different segment lengths were used on different parts of the 
structure.) In Section 5.13 it is shown that where a L U decomposition has 
been shown to fail, partial pivoting was of no help in any case12

. 

5.8 Theoretical Timing Equations for the 
Parallel Algorithm and the Clustering 
Strategy 

The load balancing problem of the algorithm has already been mentioned 
and a solution proposed in terms of the double-interleave distribution. It 
was mentioned that the lower bound on efficiency was about 33%; this shall 
now shown formally. 

Consider the extreme case where the number of processors N = M 2 • As 
has been discussed in Section 5.3.2, the algorithm then terminates in 2M2 

steps. The serial time has been shown to be ~M3 ; see Section 5.2. Hence the 
speed-up is M /3, and the efficiency 33%. 

This is a lower bound on the efficiency as a result of load balancing; in 
any real case of interest N ~ M 2 and the actual effect of load balancing 
will not be quite as serious. Nonetheless, the effect is sufficiently serious to 
warrant attention. The solution has already been given, namely the double 
interleaved scheme. More formally, let 

V=:{s:O:S:s<.M} (5.40) 

Then we partition V into .JN partitions Vi and Wj, each of size ~: 

{Vi : 0 :::; i < VN} (5.41) 

11 A strictly diagonally dominant matrix is defined by the property that ja;,;j > 
L,J~~.~;ti ja;,jl· It can be shown that the LU decomposition of such a system does not 
require any pivoting and the computations are stable with respect to rounding errors 
[BF85, p.335). 

12 Work published by Cwik [Cwi91), just prior to submission of this thesis, on the paral­
lel MoM codes with LU solvers developed at the Jet Propulsion Laboratory in Pasadena, 
California, mentioned that their parallel LU solvers perform a substantial amount of piv­
oting for a typical MoM run; further work is needed before a definitive statement on the 
necessity or otherwise of pivoting for linear systems generated by the MoM can be made. 

-----------------------· .. -·- -· 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 5. A PARALLEL LU ALGORITHM 96 

and 
(5.42) 

The ffi x ffi Cartesian distribution of elements on processors is given by 

Note that the indices i,j refer to processor indices on a square mesh; see 
Figure 5.5. It is assumed that M is an integer multiple of ffi in this anal­
ysis. The case where this is not so requires padding; this is considered in 
Section 5.11. 

The previously discussed double-interleaved Cartesian distribution is de­
fined formally as G: 

G = {Gi X Hj: 0 ~ i,j < VN} 

with 
Gi = { s : s E V A s mod VN = i} VO ~ i < .JN 
Hj = {t: t E VAt modVN = j}VO ~ j < .JN 

and mod(a) the modulo(a) operator. 
For the case illustrated in Figures 5.5 and 5.6: 

Go {0,3,6} 
G1 - {1,4,7} 
G2 {2,5,8} 

and similarly 

Ho = {0,3,6} 
H1 {1,4,7} 
H2 {2,5,8} 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

The Cartesian product Go x Ho gives the indices of the 9 elements clustered 
on processor00 i 3

• The full distribution G is shown in Figure 5.6. 
It may be seen by inspection that with this double-interleaved scheme, 

only on the final ffi steps is any processor left with no work to do and the 
impact is thus minimai for any reasonably large grained problem. This may 
be confirmed by the following analysis, which establishes an upper bound on 
the overall computation count and from this, the load-balancing count. The 

130n processor00 , a 11 is thus a33 of the original matrix. This shows the difference 
between the local and global indices, and is another complication that must be taken care 
of in the code. 
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maximum load is carried by processor..;N-Iv'N-l (the processor at the lower 
right of the processor array). The amount of work in the last cycle- where 
there is only one element left to update - is approximately 2( .Jiii) (the 
factor 2 comes from the multiplication followed by subtraction); on the pre­
ceding cycle 2(4v'N\ and so on back to the first cycle with 2([M/.Jiii] 2ffi). 
Summing over all M/ .JN cycles yields an upper bound of 

2M3 M 2 

31V+ .JN (5.48) 

The first term is clearly the parallelized computations; thus the second term 
is the additional computational overhead caused by load-balancing. This is 
confirmed by van de Vorst 's analysis of load balancing for a general rectan­
gular mesh. For the special case of a square mesh as used by the present 
author, he obtains the same upper bound on the load-balancing operation 
count; this is the second term in equation (3.11) [vdVB89Jl4

. 

For the communication count, the following should be noted. At step k, 
the algorithm requires the row broadcast of all the elements of column k of [L] 
that have just gone critical, and a column broadcast of all the elements of row 
k of [U] that have just gone pseudo-critical. These can be broadcast using two 
concurrent pipelines15 for efficiency. An upper bound for the communication 
can be derived as follows: 

Consider the processor column carrying the heaviest communication load. 
By inspection, it is the most right-most column. For the first .Jiii steps, the 
amount of data to be communicated is ffi· For the next .JN steps - the 
algorithm has completed one cycle through the processor array and has now 
returned to the first processor16

- the amount of data is -Jfv -1. The upper 

bound on the communication count 17 is thus 

imesh:::; {[(:!N)VN] + [(:!N -l)VN] + · · · + [(l)v!JV]}icomm (5.49) 

There are ffi square-bracketed terms in total in the above equation (i.e. the 
number of cycles), which can be re-written as 

(5.50) 

14The author checked most of the results in van de Vorst's work; only one error was 
noted. In [vdV88, Section 6.5] the first term in E(grids) should be ~

2

, not nt. 
15 Pipelines are discussed in detail in Section 5.10. 
16 Remember that the distribution is moduloVN. 
17The pipelines are modelled simply by the time required to output. the data; it is 

assumed that the vector lengths to be output are much greater than the diameter of the 
mesh, so that complex pipeline models of the type discussed in Section 3.3 are not required. 
The set-up time for a pipeline on a transputer array using Occam 2 is negligible. 
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which can be simply manipulated using equation (5.15) to give 

1M2 

tmesh ::; 2 VJii + O(M) (5.51) 

This result is also given in [vdVB89, equation 3.19). (If pivoting is included, 
the result is very similar but with a constant of ~ for the dominant -% term 
[vdVB89, equation 3.20]). van de Vorst's full communication analysis was 
checked by the author, with special regard for the highest order terms. Some 
minor differences were observed in the lower order terms. 

It can be easily seen from the preceding why a mesh distribution is better 
than either a column or row distribution. With either of these, the amount of 
data to be communicated at each step is 0( M) - an entire column (or row) 
must be communicated - whereas using the grid distribution the amount 
of data at each step is 0(~ ). Furthermore, the column and row broadcast 
pipelines run concurrently with the grid distribution. It may be shown for­
mally that for a local memory MIMD array, as regards communication, a 
square grid is the optimal grid distribution of the general class of rectangular 
grid distributions for this parallel L U algorithm [vdV88, vdVB89]. 

A theoretical model for the efficiency will now be derived. The serial time, 
using a conversion factor from complex to real fiops 18 of 4 , is ( ~M3 )tcalc; the 
parallel time is the sum of the parallelized computations, viz. ( ~ M 3 I N)tcalc, 
the load-balancing term (from van de Vorst's analysis, as discussed above) is 
(4M2 /VN)tcalc and the communication term is ( ~ M 2 I .J'N)tcomm. Summing 
the last three, using equation (3.3) and simplifying yields 

1 
E~--=----

1 + v'N(~ + ~) 
M 2 16-y 

(5.52) 

The symbol f3 has the meaning defined in Chapter 4, viz. ~t . 
'?-talc 

It is interesting to compare this result with that for the l....iG solver, equa-
tion ( 4.40), repeated here for convenience: 

1 
(5.53) E~ 1+ ~;(2.75+0.125d+log(/3) 

It is notable that the dominant terms in the denominator ha.ve a Z multi­
plier in the CG case, the reciprocal of the number of rows of the matrix per 
processor, whereas in the LU case, the multiplier is '{§,the reciprocal of the 
square root of lv12 IN, this last term being the number of matrix elements 

18The number of additions and multiplications is almost identical, and the former has 
a conversion factor of 2, the latter 6. 
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per processor. The latter is the smaller multiplier - this indicates that the 
L U algorithm scales better than the CG algorithm19

• This is an impressive 
result, considering how initially unsuitable for parallelism the LU algorithm 
appeared, and is confirmed by the results in Section 5.12. It is also interest­
ing to note that for typical values of f3 (between 3 and 4 approximately for 
the M C2 , as shown in Chapter 4), the load imbalance term is of the same 
order of importance as the communication term. 

5.9 Parallel Forward and Backward Substi­
tution 

Following the factorization of [A] into the product of [L] and [U], the unknown 
LHS is solved for in a two-step process; see Section 5.2, equations (5.12) to 
(5.14). 

A parallel version of the forward and backward substitution algorithms 
is also necessary, not because of the computation time, which is O(M2

), but 
because it is most undesirable to communicate all the elements of the [L] and 
[U] matrices back to a master processor, since the master must then have 
enough memory to store the entire matrix and the communication procedure 
takes time. The former is the more serious problem for a typical MIMD array 
with local memory; sufficient memory is not available on any one node (pro­
cessor plus memory) to store the entire matrix. Suitable parallel substitution 
algorithms have been derived by the author20 and the pseudo-code is given 
in Figures 5.10 and 5.11. 

The substitution algorithms operate on only one column of the processing 
array at a time, and the latest version of the relevant vector ([z] or [x]) is 
passed from column to column as the algorithm proceeds. This is far from 
the most efficient parallel substitution algorithm possible, since only .JN 
processors are active concurrently, but has the major advantage of using the 
same scattered grid distribution as the parallel LU algorithm. 

5.10 Coding for Maximum Efficiency 

The aim of developing a parallel algorithm is obviously to obtain the maxi­
mum reasonably possible speed-up, and in this section, some important gen-

19This remains true even if pipelining was fully exploited in the CG algorithm; the effect 
of this is to replace the log2N term by 1 

20 van de Vorst and Bisseling [vdVB89] mention the existence of parallel substitution 
algorithms developed by them, but these had not been published in readily accessible 
journals at the time that the author was carrying out his own research. 
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process[s] : 
begin 

z[s] := b[s]; k = 0 {initialize} 
while k < n do 

begin 
if k < s then 

receive z[k] from process [k] 
z[s] := z[s] - L[s] [k] z[k] 

else if k = s then 
z [s] : = z [s] I L [s, s] 
send z[s] to all processes q with q > k 

else if k > s then 
SKIP 

k := k+1 
end 

end. { process[s]] } 

Figure 5.10: Forward substitution pseudo-code; solve [L][z]=[b] 

process[s] : 
begin 

x[s] := z[s]; k = n-1 {initialize} 
while k >= 0 do 

begin 
if k > s then 

receive x[k] from process [k] 
x [s] : = x [s] - U [s] [k] x [k] 

else if k = s then 
x [s] : = x [s] I U [s, s] 
send x[s] to all processes q with q < k 

else if k < s then 
SKIP 

k := k-1 {note k counts backwards} 
end 

end.· {process[s]] } 

Figure 5.11: Bacbvard substitution pseudo-code; solve [U][x]=[z] 
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procedure broadcast_column_to_right(length) 
begin 

{initialize pipeline} 
{note: length of vector passed as argument} 
receive vector[1] from left processor 
repeat for i = 2 to length 

par{run pipeline} 
receive vector[i] from left processor 
send vector[i-1] to right processor 

end{par} 
end{repeat} 
{flush pipeline} 
send vector[length] to right processor 

end{procedure broadcast_column_to_right} 

101 

Figure 5.12: Pseudo-code for rightwards pipelined column broadcast proce­
dure: worker 

eral techniques that were used for the parallel L U algorithm are described in 
detail. 

Firstly, it has already been shown that the links can operate in parallel. 
This has been exploited in the CG algorithm, see Figures 4.1 and 4.2 for the 
broadcast process. But this technique can be refined even further by using 
a pipeline, where outputting of the vector is overlapped with the inputting 

, thereof, so that the input and output links are overlapped in time. Note that 
a pipeline has thus been implemented on a fundamentally replicated system. 
Such methods are quite advanced and were not used in the CG algorithm, 
which was one of the first parallel programs written by the author, but were 
implemented in the L U algorithm. 

Pseudo-code for the pipelined rightwards broadcast of columns procedure 
is given in Figure 5.12. A similar procedure is assumed for the leftwards 
broadcast, since the direction of communication varies during a "sweep". 
The al t construct was used to detect which input channel was active. This 
is shown in Figure 5.13: A similar procedure is needed for the row broadcast. 
The row and column broadcast procedures must run concurrently for opti­
mum efficiency, as shown in Figure 5.14. For coding efficiency reasons, the 
Occam code differs slightly from the pseudo-code, although the principles are 
identical. 

On the general subject of coding for maximum efficiency, it should be 
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procedure broadcast_column 
begin 

alt 
receive length from left processor 

call procedure broadcast_column_to_right(length) 
receive length from right processor 

call procedure broadcast_column_to_left(length) 
end{procedure broadcast_column} 
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Figure 5.13: Pseudo-code for pipelined column broadcast procedure: worker 

procedure broadcast 
begin 

par 
call broadcast_column 
call broadcast_row 

end{par} 
end{procedure broadcast} 

Figure 5.14: Pseudo-code for broadcast procedure: worker 
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begin{gather} 
par 

receive one part of vector 
receive a different part of vector 

end{par} 
end{gather} 
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Figure 5.15: Pseudo-code for a valid Occam construct that is not accepted 
by the compiler 

noted that there are some valid constructs that the Occam compiler does not 
(by default) permit one to use. The construct shown in Figure 5.15, although 
valid, is rejected by the compiler21

• 

The reason for this is that Occam does not permit parallel access to an 
array - even though the elements of the array can be established as disjoint 
at compile time22 • The author worked around the problem by establishing 
two separate arrays, and then building up the total array once the two halves 
have been received. Alternately, one can disable the compiler's usage checking 
-a dangerous idea since the usage checker picks up many potential faults. 
Sacrificing a very small loss in speed for comprehensive error checking is, to 
the author, quite acceptable. 

5.11 Some Coding Details 

Pipe-lining, as expounded in the preceding section, was exploited in the cod­
ing of this algorithm; the vertical (column) and horizontal (row) pipes were 
run concurrently for maximum speed-up. The section of the code correspond­
ing to the active processes was coded as efficiently as possible, since this is a 
time-critical part of the algorithm. Padding, required to ensure an integral 
number of unknowns per processor, is not as simple as in the CG case, where 
additional rows and columns of zeros were introduced23

• A check was made 
21 This construct was not required in the previous pipelining examples shown, but was 

required elsewhere in the CG and LU codes. 
22 INMOS admits that this is a bug 
23 Padding has a slight effect on run-time; as noted previously on page 58, if measured 

with sufficient resolution, it will be found that the graph of efficiency is actually a stairstep, 
not a smooth, function. The run-time increases from the value predicted for the actual 
value of M j.../N to that predicted for r M f.../Nl. For example, a problem with 10 unknowns 
on a 3 x 3 processor array, i.e. M j.../N = 3.33, will run at the same speed as a problem 
with Mj.../N = 4, i.e. 12 unknowns. For large M, the effect is insignificant for the values 
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on the local index to check whether the corresponding global index exceeded 
the actual matrix dimension, and if so, the process was terminated. This code 
used implicit termination, where each processor monitors the global index k, 
as opposed to the explicit termination used in the CG algorithms, where the 
master process monitored the termination criteria and explicitly informed 
the worker processes when to terminate. The clustering - the double in­
terleaved distribution - and concurrent horizontal and vertical pipelined 
communications resulted in a complex (but efficient) code; the parallel L U 
code is about 2500 lines of Occam. By comparison, the serial L U code is 
about 100 lines. The reason the code is this complex is to obtain efficiency, 
and indicates the time and effort required to develop efficient parallel code 
at present. 

For the initial code development stages, the matrix was read in from disk 
and then scattered over the processor array. When testing of the parallel 
performance started, the code was extended to include a thin-wire MoM 
formulation (which is described in detail in the Section 5.12), and the indices 
were set up to generate the matrix in parallel and with the correct double­
interleaved distribution. 

Testing the correctness of this code proved rather more difficult than for 
the CG code. The reason is that the CG code has fewer potential failure 
mechanisms, since the data distribution is far simpler. The combination of 
processors on the edge of the mesh requiring special handling, the double 
interleaved distribution and the requirement for padding proved challenging; 
correcting one bug tended to introduce a new and different one, or reveal 
another bug that was masked by the previous bug. The only debugger avail­
able was a post-mortem dump debugger; finding bugs frequently required 
running the code with a STOP (conditional on the processor index and/or 
array index) intentionally inserted to cause an error; the system could then 
be examined using the post-mortem dump debugger. If the guess regarding 
where to halt the code was incorrect, it required changing the position of the 
STOP and/or the conditions, re-compiling, running and then examining the 
results, and repeating until the fault was identified. This process is lengthy 
and tedious, and the development of interactive debu.ggers able to examine 
concurrent programs is imperative for the large scale adoption of parallelism 
by the scientific and engineering community. 

Returning to the problem of validation, a standard test set was built up to 
check a standard sequence of problems of different dimensions on simulated 
meshes of different sizes. This permitted rapid checking of any modifications 
for unexpected side-effects . 

. As for the CG algorithm, writing general purpose configuration code was 

of N available for this research. 
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not trivial. The actual parallel codes were run using the Occam Toolset24
, 

described in Section 3.4.2 It was while tests were being run that a technical 
problem was discovered with the MC2

; although what little documentation 
exists gives the impression that any valid switching satisfying the even-even 
/ odd-odd requirements discussed in Section 4.6 can be switched, this is ac­
tually only true on one cluster of 16 processors. The reason is the restricted 
number of inter-cluster links. The problem is a hardware peculiarity of the 
particular transputer hardware available and has no effect on the basic dis­
cussion in this chapter25 . 

5.12 Timing Results 

The algorithms described in this chapter have been implemented by the au­
thor in Occam 2 for a transputer array. Figure 5.16 shows efficiencies for 
a number of different array sizes as a function of matrix dimension. The 
timing results are for single precision runs. The matrix was generated using 
a simple thin-wire moment method scheme using sinusoidal basis functions 
and collocation, using results from [ST81, Section 7.5] for the field radiated 
by a sinusoidal current. This MoM code was also written in Occam 2. The 
largest problem solved was a 1500 unknown problem, using 25 transputers. 
The LU solver took about 15 minutes to run, which corresponds to a compu­
tation speed of 9.6 MFLOP fs, and an efficiency of close on 90%. The matrix 
was also generated in parallel and the efficiency of the entire code is very 
similar to that of the LU part, which is of course the most computationally 
expensive part. The forward and backward substitution algorithms have also 
been implemented and despite having rather poor efficiency (as expected), 
the overall impact on the code is negligible due to the O(Af2) computational 
cost of the substitution algorithm. 

Figure 5.17 shows theoretical predictions, which can be seen to be rather 
~ptimistic, although the general trend is correctly predicted. This is due to 
the rather fine grain of communication, which is difficult to model accurately, 
as well as the effect of loop overhead etc. To permit comparison of the parallel 
LU and CG a.lgorithms, measurements for a parallel CG algorithm are also 
shown in Figure 5.17 for 14 transputers26

• The CG results were measured 

24 lt was initially thought that the TDS would not run on the MC2 . The Toolset has 
a slightly different configuration strategy to the TDS, but the details are very subtle and 
the effects on the basic principles unimportant. The configuration code for the parallel 
LU algorithm as run under the Toolset on the MC2 is given in Appendix B. 

25 With the new C104 packet-routing switch mentioned in Section 3.4.2, the problem 
should not exist with the next generation of T9000 based transputer arrays using the 
C104 packet-routing switch. 

26The binary tree and mesh topologies cannot use exactly the same number of processors; 
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with a single precision version of PARNEC. (Note that the results shown in 
Chapter 4 are for the double precision version of PARNEC.) 

van de Vorst shows similar measured results in [vdVB89); the numerical 
values for efficiency shown in Figure 5.16 are not directly comparable with van 
de Vorst 's results, since his results are presumably for real valued matrices, 
although the latter is not explicitly stated in his paper. The form of the 
curves is nonetheless very similar, and the numerical values fairly close. 

5.13 Accuracy Studies 

The availability of a MoM code able to handle massive data structures per­
mits the exploration of the accuracy of the code, by investigating the con­
vergence of the input impedance of a thin wire. The code used the "frill" 
generator model [ST81, Section 7.7]. Results are shown in Table 5.1 for the 
convergence of the input impedance of a centre-fed thin wire dipole for a 
fairly thin wire27 • The wire radius a and equivalent coaxial radius b of the 
"frill" generator were chosen to give Zo = 50r! in an air-filled cable. The 
results were obtained using a double precision code. For the 1499 segment 
case, the input impedance was checked using a version of the same MoM 
code, but using the CG matrix solver described in Chapter 4. The input 
impedance computed with the CG solver was 2 x ( 43.89 + j25.25)r228

; the 
difference between the LU and CG results was thus about 0.4%. The specified 
residual norm tolerance on the CG solver was 1%, so the difference between 
the impedances is within the specified accuracy of the CG solution. 

With single precision versions of the these codes, the difference between 
the impedance computed with the CG and LU solvers was about 7%. The 
single and double precision versions (of both the CG and L U solvers) gave 
results differing by about 20% for the reactance, with a normalized residual 
of 1% specified for the CG solver. Clearly the precision with which the 
matrix entries are generated affects the solution for such large problems, and 
indicates that in the 1499 segment case, double precision was required. This 
is a function of the problem; results shown in Section 6.7 for more realistic 
problems using similar numbers of unknowns indicate that single precision is 
acceptable. 

The results display several interesting phenomena. Firstly, the results 

a tree of 14 and a mesh of 16 is a fair comparison. 
27Due to a coding error, the results shown in these tables must be multiplied by 2 to 

obtain the actual dipole impedance. This will be indicated by an explicit factor of 2 in 
the discussions in this section. The results for conductance and susceptance shown in 
Figures 5.18 and 5.19 have been corrected. 

28See previous footnote. 
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obtained for the input impedance using the customary guideline of 10 seg­
ments per wavelength (see Chapter 2) were worthless; a much higher order of 
discretization is required. This is due to the very thin wire used; as the wire 
was made thicker, so did a smaller number of unknowns generate more useful 
data. Secondly, the impedance appears29 to genuinely converge, in contrast 
to results frequently reported using other models (such as delta-fed gaps and 
impressed E-field models). This is shown clearly in Figures 5.18 and 5.19 for 
the conductance and susceptance of the input admittance30 plotted against 
the number of unknowns; the latter parameter is plotted logarithmically31

• 

By way of comparison, the second order King-Middleton solution gives ap­
proximately 2 x (43.1 + j20.4)0; this result was obtained by interpolating 
linearly from [Ell81, Table 7.5, p.315). Finally, the LU code generates correct 
results with large matrices - for this particular geometry. 

The experiment was repeated using a somewhat thicker wire. Much more 
rapid convergence was noted - but also a very interesting breakdown of the 
algorithm at between 499 and 549 segments. The negative input impedance 
predicted by the code for 549 segments is physically impossible for a passive 
system; this is an example of the use of basic physics to check the operation 
of a numerical code as proposed by Miller [Mil88). Results are shown in 
Table 5.2. Results computed for more than 549 segments are not shown 
since they are worthless. The results were checked using a double precision 
CG solver and 1499 segments; the program terminated after 2998 iterations 
with a normalized residual of about 0.2% and gave the input impedance as 
2 x (58.02 + j28.6)0. (For this case, the CG code was set to terminate when 
the normalized residual had decreased below 0.01% or when the number of 
iterations exceeded twice M). This result agrees very well with the 400 
segment case, so it can be concluded that the CG solution is valid. Hence 
we can conclude that the double precision LU solver is not reliable beyond 
about 400 segments for the particular case under consideration. Using single 
precision, the problem manifests itself with fewer unknowns, as expected: 

29 Following examination of this thesis, it was been pointed out[Mil91a] that for Table 5.2, 
the thin wire requirement s > L/2a, where s is the segment length, is violated for M > 25. 
Similarly for Table 5.1, the thin wire requirement is violated beyond M > 250. Hence, 
although the results show convergence, one should be cautious in drawing the conclusion 
that the results have converged to the correct impedance value, especially in the case of 
Table 5.2. It has also been commented (Mil9la) that. for the thinner wire, convergence 
should be more rapid since the current is better approximated as a sinusoid. The results 
shown here, intended primarily to validate the LU code for large problems, would benefit 
from further investigation of the electromagnetic aspects. Such research should also take 
note of Janse van Rensburg's work [JvR90]. 

30 Admittance is the inverse of impedance; conductance and susceptance are respectively 
the real and imaginary parts of the admittance. 

31 This plotting procedure was suggested to the author by Miller [Mil9lb]. 
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Convergence of the conductance 
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Figure 5.18: Convergence of the conductance of a dipole, ~ 
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Number of Re Zin/2 Im Zin/2 
Segments (n) (n) 

5 1.28 0.48 
9 2.17 0.98 
19 4.45 2.24 
29 6.79 3.52 
39 9.19 4.82 
49 11.58 6.12 
69 16.33 8.69 
99 22.97 12.29 
149 31.65 17.07 
199 37.08 20.16 
299 41.67 22.96 
399 42.92 23.90 
599 43.41 24.43 
999 43.57 24.84 
1249 43.62 24.99 
1499 43.67 25.12 

Table 5.1: Convergence of the input impedance of a dipole, ~ = 0.5, ~ = 
O.OOI,t = 0.0023. Double precision LU code. 
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the problem was encountered with between 250 and 300 unknowns for the 
same wire shown in Table 5.1 when single precision was used. 

Number of Re Zin/2 lm Zin/2 
Segments (0) (n) 

5 13.4 4.24 
9 23.28 8.23 
19 41.09 15.27 
29 48.27 18.71 
39 50.96 20.46 
49 52.23 21.53 
69 53.58 22.98 
99 54.77 24.16 
199 56.90 26.44 
249 57.57 27.14 
299 58.11 27.71 
349 58.57 28.18 
399 58.97 28.59 
499 69.29 19.23 
549 -5.05 -12.83 

Table 5.2: Convergence of the input impedance of a dipole, ~ = 0.5, ~ 
0.01,} = 0.023 

This is hardly surprising; it is well known in computational electromag­
netics that one cannot use very short segments with a thin-wire kernel, cer­
tainly not when the length of the segment starts becoming a fraction of the 
wire radius. Elliott [Ell81, Appendix E) presents a detailed analysis of the 
thin-wire kernel, and concludes that the approximation is valid if the com­
putations include an integration that extends over a length of the dipole of 
at least plus and minus several wire diameters; compare this with a length to 
diameter ratio of about 0.06 at the point at which the problems were noted 
(for the double precision case). 

The underlying theory aside, what happens numerically to the coefficient 
matrix in this case is that the entries just off the diagonal become so close 
to the diagonal that the division required in the L U algorithm cannot be 
computed with the necessary accuracy. It should be noted that no pivoting 
strategy can fix this problem; pivoting aims to get the largest (in some sense) 
element on the diagonal. It cannot fix the problem of the elements adjacent to 
the diagonal having almost the same value as the diagonal element. This was 
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confirmed by the following: the point where the single precision L U method 
failed used sufficiently few unknowns to run on one transputer, and the serial 
algorithm did implement partial pivoting. The pivot elements were all the 
diagonals, i.e. no pivoting occurred. Even the more costly total pivoting 
strategy will also be of no avail here. 

However, it is also clear that to generate a problem using a MoM formu­
lation that the LU method solves incorrectly required breaking virtually every 
guideline for discretizing structures. Hence, the LU solver should encounter 
no problem with the matrices encountered in normal MoM analyses. 

The condition number of a matrix gives a formal indication of the ill­
posedness of a system of equations. The condition number of the square 
matrix [A] is defined as [MK75, p.131] 

cond([A]) = II[A]II·II[At
1 ll (5.54) 

where 11 [A] II is the norm of the matrix [A]. Using the Euclidean norm32
, the 

condition number is [Mit73, p.l31] 

cond([A]) = V Amax/ Amin (5.55) 

where Amax and Amin are the maximum and minimum (in magnitude) eigen­
values of [AjT[A]. Jones also discusses condition numbers; see [Jon87, p.75]. 

The application of the condition number is as follows; suppose that the 
system of equations [A][x] = [b] is perturbed as follows 

[A][x + 8x] = [b + 8b] (5.56) 

Then 

11 [8x]ll < ([ ]) 11 [8b] 11 
11 [x+8x] 11- cond A 11 [b+hb]ll 

(5.57) 

Similarly, if [A] is perturbed, then 

11 [8xJII < 11 [8AJII 
11 [x + 8x]ll - cond([A]) 11 [A+ 8AJII 

(5.58) 

Hence if the condition number is large, then small variations in [A] or [b] 
result in large variations in the solution [x]. Computing the matrix condition 
number is expensive computationally, and the following inequality is often 
used to obtain a rough estimate of the condition number [Mit73, p.l33]: 

(5.59) 

32 Also known as the 2-norm. For a matrix, IIAII2 = ~~~~~~ II[A][x]ll2· Thu~ the matrix 
norm is defined in terms of a vector norm. 
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where the oo subscript refers to the infinity norm, which is defined as 

M-1 
max "" 11 [A]IIoo =o$i$M-t L...J laiil 

j=O 

This is the maximum row sum of [A]. 
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(5.60) 

It would be useful to build in a matrix condition number estimator in 
the parallel solver. This has not been done for the parallel code, and should 
be addressed by future research. However, such facilities are available in 
MATLAB33

. Results are shown in Table 5.3 for the 2-norm condition number 
of the coefficient matrix of a 0.01 .>. wire. The program was unable to compute 
the condition number for the 399 segment case, terminating with an error 
message while trying to compute the condition number, a clear indication 
of the ill-posedness of the problem. It is thus clear that the matrix is so 
ill-posed for the case of 399 (and more) segments that no reliable solution 
can be obtained. A common rule of thumb is that log10 ( cond[A]) gives the 
number of digits of accuracy lost due to round-off error [MAT89, p.3-41], and 
this is also shown in Table 5.3. 

Number of Re Zin/2 lm Zin/2 cond([A]) log10cond([A]) 
Segments (0) (n) 

9 23.28 8.23 83.19 1.92 
19 41.09 15.27 108.4 2.03 
29 48.27 18.71 103.5 2.01 
49 52.23 21.53 106.0 2.02 
99 54.77 24.16 114.0 2.06 
199 56.90 26.44 3031 3.48 
249 57.57 27.14 50 330 4.70 
299 58.11 27.71 887 070 5.95 
349 58.57 28.18 1.63x107 ·· 7.21 
399 58.97 28.59 Error Error 

Table 5.3: Condition number of the coefficient matrix of a MoM formulation 
for a dipole, ~ = 0.5, }: = 0.01,* = 0.023 

The topic of the accurate computation of the input impedance of a thin 

33 MATLAB 386 was available to the author, and illustrated graphically how much had 
been achieved with the parallel algorithms on the transputer arrays. The 386 PC used 
produced a maximum benchmarked speed of about 0.2 MFLOP /son LU decomposition; 
compare this with the almost 10 MFLOP /s achieved on 25 transputers for the same 
operation. 
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wire is a. very complex one [JvRl\189, JvRl\190, JvR90]; these experiments 
were performed primarily with the aim of checking the accuracy of the LU 
code by monitoring the convergence behavior and comparing the results com­
puted using an LU and a CG solver for the same system of equations. How­
ever, these results also indicate the type of work possible with the parallel 
software tools now available for MoM codes. 

The ability of the CG solver to produce excellent results in situations 
where an L U solver is useless was alluded to in Chapter 2; the results shown 
here demonstrate this property. They also show how the CG method could 
indeed generate a solution for a problem where internal resonance phenomena 
are encountered. 

5.14 Conclusion 

In this chapter, the basic L U algorithm has been reviewed. Then the question 
of parallelizing the algorithm was discussed. A simple graphical exposition 
of a parallel algorithm was then introduced. The use of formal methods 
was considered for the extraction of the parallelism; several examples were 
given, the matrix-vector product of Chapter 4 was re-visited and the parallel 
LU algorithm was analyzed using formal methods. The problem of load­
balancing was shown to be potentially serious with a parallel LU algorithm, 
and a solution utilizing a. row-and-column interleaved scheme was described. 
Pseudo-code was presented for the parallel algorithm. Parallel forward and 
backward substitution algorithms were proposed that use the same data. de­
composition as the parallel L U algorithm. Pseudo-code was given for these 
algorithms. Timing results obtained using a. matrix generated by a. simple 
thin-wire MoM code were presented and discussed. Some of the results pre­
sented in this chapter have been presented at an international symposium 
[Da.v91c]. 

The basic algorithm described in this chapter comes from recently pub­
lished work in the computer science literature [vdV88, vdVB89]: the contri­
bution of this work on the L U algorithm is: 

• confirming van de Vorst's theoretical results [vdV88, vdVB89), 

• extracting the essence of the method, 

• presenting new and far simpler methods for deriving the results than 
those of van de Vorst [vdVSS, vdVB89], 

• presenting a new and much easier to understand graphical exposition 
of the algorithm, 
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• implementing the algorithm to provide a working parallel LU code for 
MoM codes, and also providing independent experimental confirmation 
of van de Vorst's measured results [vdVB89). 

In addition, the sections on parallel forward and backward substitution 
are new and of course the integration of the L U solver into a MoM code is 
new. The timing results for complex valued matrices values are also new, 
as is the comparison with the CG solver. The investigation of the accuracy 
of the L U solver using a problem of engineering interest in computational 
electromagnetics is also new; a systematic study of the convergence properties 
of the thin-wire collocation formulation has also been performed, using the 
parallel L U solver to permit the inclusion of large numbers of unknowns in 
the study; such a study does not appear to have been undertaken previously. 
It was established that the L U method only fails when the basic rules for 
a MoM discretization are seriously violated, permitting the conclusion that 
for large electromagnetic problems discretized according to the established 
rules, the L U method is accurate. It was also confirmed that the condition 
number does indeed provide a reliable indication of an unstable solution. 

The main thrust of this thesis is developing the tools for the efficient 
exploitation of parallel processing for the solution of MoM problems, which 
this chapter has done for the LU solver - the results given in the closing 
section of this chapter indicate the type of work now possible with these· 
tools, and future research topics. 

Stellenbosch University http://scholar.sun.ac.za



Chapter 6 

P ARNEC - A Parallel 
Version of NEC2 

Cry "Havoc", and let slip the dogs of war. 

from "Julius Caesar", Act Ill, Scene I, by William Shakespeare 

6.1 Introduction 

This chapter reports one of the most intricate parts of this research: namely, 
the application of parallelism to a large, existing code, written in an old, 
unstructured language. The code in question was the Numerical Electro­
magnetics Code - Method of Moments Version 2, normally abbreviated to 
NEC2. NEC2 uses the MoM to solve radiation and scattering problems in­
volving perfect or very good conductors. Both a. thin-wire Electric Field 
Integral Equation (EFIE) formulation and a patch Magnetic Field Integral 
Equation (MFIE) formulation are available; the latter requires that the re­
gion where patches are used be a smooth, closed structure. It is a. very 
powerful code - in addition to free space problems, it can handle ground 
planes, and, when used in conjunction with SOMNEC, even lossy grounds. 

The difficulties were not of a fundamental, theoretical nature relating to 
parallelism - these problems have been solved in Chapters 4 and 5. The 
problems were rather related to software re-engineering, and indicate funda­
mental problems to be solved in that field. 

A brief review of the theory underlying NEC2 is given. Methods to paral­
lelize the matrix generation, which is not as simple as for the demonstration 
program used in Chapter 5 for the LU method, are discussed. An attempt 
to use an Occa.m "harness" to provide a link between various FORTRAN 
processes is discussed; the poor results obtained with this approach led ·to 
the necessity for re-coding NEC2 in Occa.m. Fundamental problems posed 

118 
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by such a re-write are highlighted. A systematic (but not presently auto­
matic) methodology for untangling "spaghetti" 1 code is presented; its use is 
illustrated by application to one of the more formidable NEC2 subroutines. 

Methods used to validate the code are described - initially for small 
structures, and then for large structures. With the former, the problem is 
simply to ensure that the Occam re-code is a valid re-implementation of 
the code. With the latter, the problem is more fundamental: is the code 
accurate for electromagnetically very large structures, or does machine pre­
cision impose some limit on the size of structure that can be modelled? This 
is investigated using a symmetrical structure, solved both using, and then 
without using, symmetry. The effect of single as opposed to double precision 
is also investigated; it is shown to primarily affect only the convergence rate 
of the CG algorithm, not the final answers. The biconjugate gradient method 
is also briefly investigated; it is shown that the method's initial promise for 
small systems fails on large systems, where the biconjugate gradient method 
fails to converge. The biconjugate gradient method is also shown to be far 
more sensitive to precision than the CG method. 

6.2 A Review of the Theoretical Basis of 
NEC2 

6.2.1 The Electric Field Integral Equation 

The thin-wire part of NEC2 is based on the Electric Field Integral Equation 
(EFIE). The full derivation of the EFIE is lengthy; the derivation is similar 
to that used in the Stratton-Chu formulation [Ell81, Section 1.7]. Poggio and 
Miller present a full derivation in [PM73]. 

The form of the EFIE used in NEC22 follows from an integral represen­
tation for the electric field of a volume current density J, 

where 

E(r) = - jTJ f ](r') · G(r, r')dF' 
47rk Ar 

(
- _,) e-ik!T-r'l 

g r, r = -,-_-_-,-, 
r-r 

(6.1) 

1 "Spaghetti" code is the generic name used in the literature for code written using 
unstructured languages [LWA91]; the name originates from the appearance of a flow-chart 
of the code. 

2This section is based on [BP81a, pp.3-5]. 
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k=w~ 

"7 = VJ-Lo/co 
and the time convention is eiwt. The prime and unprimed coordinates refer 
to source and field points respectively. E(r) is the elec!!ic field at field point 
F, and J(r) is the~olume current at source point r. I is the identity dyad 
(xx + yy + zz). G(r, r') is the free space dyadic Green's function. Tai's 
monograph provides a comprehensive exposition of dyadic Green's functions 
in electromagnetics [Tai71], and summaries of the topic may be found in 
[Kon86, Wan91]. 

If the body is a perfect conductor, the volume integral reduces to a surface 
integral, and equation ( 6.1) becomes 

E(r) = - jry [ J(r') · G(r, r')dS' 
41rk ls 

with J(F') the surface current density. 

(6.2) 

The observation point r is restricted to be off the surfaces so that F =f r'. 
If r approaches S as a limit, the integral must be understood as a principal 
value integral. 

Using the boundary condition for the tangential electric field at a con­
ductor - it must be zero - an integral equation for the current induced on 
S by an incident field E

1 
can be obtained as: 

(6.3) 

where E
8 (r) is the field of the induced current, given by equation (6.2), and 

n(r) is the unit normal vector of the surface at r. 
Vlhen the surface is a thin wire, several simplifying approximations can 

be made. These are: 

• Transverse currents can be neglected relative to axial currents on the 
wire. 

• The circumferential variation in the axial current can be neglected. 

• The current can be represented by a filament on the wire axis. 

• The boundary condition on the electric field need be enforced in the 
axial direction only. 

These "thin-wire" approximations are valid as long as the wire radius is 
much less than a wavelength and also much less than the wire length and seg­
ment length; the la.st requirement has already been discussed in Section 5.13. 
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The first three assumptions permit the surface current density J s ( r') on 
a wire of radius a to be replaced by a filamentary current I where 

where s' is the distance parameter along the wire axis at r' and ;, is the unit 
vector tangent to the wire axis at r'. 

Using this thin-wire approximation and enforcing the boundary condition 
in the axial direction only reduces the EFIE to the following scalar integral 
equation: 

. [)2 
- s. E1(r) = _..!.!.!._ f I(s')(k2s. s'- )g(r,r')ds' (6.4) 

47r k j L as as' 

6.2.2 Numerical Solution 

In equation (6.4) E\r) is assumed to be known; for instance it could be a 
plane wave or the field impressed between the terminals by a source; I is the 
unknown axially directed current which must be solved for. NEC2 solves for 
the unknown current using the Method of Moments (MoM), as described in 
Chapter 1. 

6.2.3 The Current Expansion Functions 

NEC2 uses a relatively complex set of current basis functions: each expansion 
function consists of a sine, cosine and constant term. Each basis function is 
centered on a segment, but also "spills over" onto all connected segments. 
Each expansion function i, centered on segment i, is then forced to satisfy 
the following conditions 

• The current must go to zero at the outer edges of all the connected 
segments with zero derivative. 

• The current must be continuous a.t the junction of two segments. 

• The current must satisfy a condition derived by Wu and King [\\'K76] 
related to charge continuity3 . 

It is important to note that the conditions on current continuity and 
charge continuity are satisfied by each individual basis function; since the 
total current on the wire is a linear combination of all the basis functions 

3 From the continuity equation for the time harmonic case \7 · J = -jwp, ·a condition 
on charge continuity is equivalent to a condition on the spatial current derivative. 
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on the segment, if each basis function satisfies current and charge continuity, 
then the total current will also. The second and third points itemized above 
are thus sufficient, but not necessary conditions; it is at least theoretically 
possible to enforce the condition of current and charge continuity on only 
the total current. This is a subtle point, requiring a rather intense study of 
[BP81a, p.ll-16] to fully appreciate it. 

Using these conditions, it can be shown that there is only one independent 
unknown coefficient per basis function - it is chosen arbitrarily to be that 
associated with the constant term. The coefficients of the cosine and sine 
terms are related to that of the constant term by expressions involving only 
the geometry of the segments (length, radius and connectivity). They are 
given by equations ( 43-63) in [BP81a]. The author checked these results; 
there is a factor of 1/k missing consistently in equations (43-51), but this is 
compensated for by a. missing factor k in equations (52-53), so the results 
may be used as given. (The same error will also be found in (54-57) and 
(58-61).) Note also that Q in NEC2 is not the Wu-King q(z); it is rather the 
constant in Wu and King [WK76, equation (25)]. 

6.3 The Occam Harness 

It is a. generally accepted fact for large, numerically intensive programs that 
a relatively small part of the total code is responsible for a disproportionately 
large amount of the run time. It is often referred to as the 90-10 or 80-20 
rule, where the first number refers to the percentage of run-time consumed 
by the time-intensive code and the second to the percentage of the total code 
comprising this time-intensive code. With NEC2, the most time-consuming 
part is the LU factorization of around 100 lines. The total code is several 
thousand lines. It would thus be a very satisfactory solution if it were pos­
sible to leave the majority of the code in the original language (FORTRAN 
in the case of NEC2) and develop parallel code for only the relatively small, 
time-intensive code. The Occam Toolset allows one to do this: a module 
written in an "alien" 4 language can be called by an Occam code. Communi­
cation between the Occam "harness" and the FORTRAN code can then take 
place over channels. For a. parallel program, Occa.m worker processes with 
embedded FORTRAN processes would be distributed over the processing ar­
ray, with the inter-processor communication handled by the Occam harness. 
More details on the harness concept ma.y be found in [ AHZ90]. 

The Occam/FORTRAN interface code supplied was tested, and the au­
thor was able to get simple test cases working - but not reliably. The 
problems have already been described in Section 3.4.2, and were due to the 

4 0n the transputer, any language other than Occam. 
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unreliability of the FORTRAN compiler and the total absence of debugging 
support in the FORTRAN environment. The author initiated development 
of an Occam harness to parallelize the matrix generation. This work was 
extended by Malan, but the parallel code was very inefficient and did not 
work reliably [Mal90]. 

It must be emphasized that the fault here is the inadequate FORTRAN 
compiler; the basic philosophy is sound and sensible, but was rendered un­
workable by the very poor FORTRAN compiler. Other researchers have 
reported some success along these lines, for example Schuilenburg with a 
large GTD code [Sch90] and Nitch with NEC2 [NF90b]. Nitch parallelized 
NEC2 using the harness methodology outlined above and obtained impres­
sive speed-ups, but comments that the effort of manipulating the FORTRAN 
source code led him to start re-coding NEC2 in c++ for his future work 
[NF90a]. 

6.4 The Occam Re-write: Philosophy and 
Methodology 

NEC2 is an exceptionally well documented code, and the three part doc­
umentation (theory description, code description and user's guide [BP81a, 
BP81b, BP81c]) could well be prescribed for courses in software documen­
tation. This made possible the re-write; without this documentation the 
project would not have been feasible. 

NEC2 is written in one of earlier versions of FORTRAN, probably FOR­
TRAN 66, although the version distributed with the initial NEEDS 5 release 
also contained a number of VAX-specific FORTRAN extensions. FORTRAN 
66 was released before the advent of structured programming, which dates 
back to the around 1970 and the work of Dijkstra and \.Virth - the latter 
being responsible for Pascal. As such, the authors of NEC2 had to use a 
number of unstructured constructs which made the re-write a very far from 
trivial issue. It must be commented again that, considering the languages 
available when NEC2 was developed, the development and documentation 
was done with admirable care. The problems highlighted here were inherently 
unavoidable in FORTRAN 66. 

There are two fundamental problems with FORTRAN from the viewpoint 
of structured coding: the infamous go-to and related constructs, and the 
common block. The go-to construct greatly complicates the goal of re-using 
software [L\VA91], and old FORTRAN codes contain numerous examples of 
the "spaghetti" code that can be produced using several suitably ~nterwoven 

5 Distributed by the Applied Computational Electromagnetics Society. 
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go-to's. Dijkstra identified the go-to as a highly undesirable construct, 
and using structured programming its use can be entirely avoided, using 
constructs such as those defined in Section 3. 7. The common block is a 
specifically FORTRAN construct, and is a special case of the almost always 
undesirable global variable. It would appear very useful to be able to define 
an area in memory common to several routines, and hence create a global 
variable. The problem is that the use of the common block makes it very 
difficult to discover exactly what side effects a sub-routine will have, since 
not only variables passed as arguments will be affected by a sub-routine 
containing common blocks. FORTRAN 77 is a tremendous improvement 
from the viewpoint of structured coding, but as already mentioned, NEC2 is 
essentially written in FORTRAN 66. 

Occam 2, the target language, is a modern, structured, strictly typed 
language and does not support the go to statement at all. Common blocks 
could be simulated using global variables which are in scope for all pro­
cedures, but this is not the modern, structured, approach, which calls for 
different modules, isolated from one another completely except for the pa­
rameters passed (either by value or reference) in the argument list. Extensive 
use was made of separate compilation units. A separately compiled unit6 is a 
self-contained section of code, communicating with other units only via the 
argument list (and in Occam of course, via channels as well.) All subroutines 
and functions in the FORTRAN code were converted to separately compiled 
units in the Occam re-write. 

The strict typing; of Occam permits an Occam compiler to perform exten­
sive checking at compile time, which detects a large number of faults before 
the program even has an opportunity to run incorrectly with them. An ex­
ample will suffice to motivate this: a very difficult problem to detect with 
FORTRAN is the incorrect agreement of parameters in a subroutine call (i.e. 
the number and/or type of parameters in the defining SUBROUTINE state­
ment does not agree with the number and/or type in the calling statement). 
The fault is particularly insidious if it is the precision that is incorrect, and 
such faults can be very difficult to detect. Occa.m checks agreement of both 
type and number of parameters across the calling and defining statements. 
Another insidious FORTRAN bug is the accidental mis-spelling of a. vari­
able; the compiler's default typing automatically assumes that this is a new 
variable. Most dialects of FORTRAN 77 now include an IMPLICIT NONE 
statement that can be used to detect the accidental mis-spelling faults, but 

6 A separately compiled unit is the same as a ThrboPascal unit. 
;Strict. typing means that all variables and constants must have their type explicitly de­

clared before they are referenced. FORTRAN is not, by default, a strictly type<;! language; 
the FORTRAN default is that all variables beginning with the letters I-N are integers, 
and the rest real. 
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a facility to check parameters lists across calls in FORTRAN is not generally 
provided. 

The one undisputed advantage that FORTRAN does have is its complex 
data type; the author had to split the real and imaginary parts and compute 
each separately. 

The most serious problems during the re-write were encountered with 
several rather tightly coded routines that used a large number of go-to's. 
At first sight, the functioning of the routines was so disguised by these go-to's 
as to be utterly unintelligible. One of the most difficult routines to convert 
was SBF, which contains no less that 22 go-to's and computed go-to's in 
about 130 lines of FORTRAN. Another major problem was the use of common 
blocks to communicate data to subroutines, as discussed earlier. 

The fundamental problems can be summarized as follows: 

• Ensuring that the necessary data is passed to the procedures. 

• Recovering the underlying logic of the procedures. 

The former is the easier problem. To solve it, extensive use was made of 
the cross-referenced listing that most good compilers can generate - the au­
thor used a VAX system for this. These listings will typically include a list of 
variables, a warning regarding use in common blocks and equivalencing8 , 

lines accessed and how accessed (i.e. read, write). This data was used to de­
termine if a particular common block parameter was used in a routine, since 
by no means all such parameters were actually required in all the routines 
that contained a common block referencing a particular parameter. 

The latter problem was rather more difficult. \Vhen re-engineering a 
code, the aim is as far as possible to avoid having to understand the precise 
operation of the original code, to capitalize on the original intellectual in­
vestment in the code. This was not always possible with the procedures with 
substantial "spaghetti" code components. The procedure adopted for these 
cases was the following: the original logic was recovered using a flow-chart, 
and then recoded using structured constructs in pseudo-code: primarily the 
if-then-else and while constructs. Once functionally equivalent pseudo­
code had been derived, the pseudo-code was simplified and then implemented 
in Occam. 

As an example of t~1is approach, the re-coding of subroutine TRIO is 
considered. TRIO evaluates a.ll the parts of current expansion functions 
on a single segment due to each of the segments connected to the given 
segment. It is only 41 lines of FORTRAN, but contains no less than 11 

8 Another powerful and potentially dangerous FORTRAN command, originally provided 
to conserve scarce memory but frequently the source of very subtle bugs. 
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go-to's, if-go-to combinations and if (number) i,j ,k constructs (an­
other unstructured construct), indicating how even a short code stub can 
pose major problems. The original FORTRAN is shown in Figure 6.1. 

The flow chart for the program is drawn up. This is shown in Figure 6.2. 
Now the flow chart is examined for fundamental operation. The first action 
is to decouple parts of the flow chart.· Label 8 corresponds to some action 
followed by termination, so it can be seen that first part of the problem has 
been reduced to the structure (one hesitates to call it a loop) between the 
first test on j cox ( <, =, > 0) and the second such test on either the main 
path or the branch on the right hand side of the flow chart labelled Branch 
A. Hence, this is a "loop" that must execute until some termination criteria 
has been met. This leads one to consider a while structure. Eventually, the 
pseudo-code given in Figure 6.3 results. 

To read the flow chart and pseudo-code, it is necessary to know the fol­
lowing about how NEC2 keeps track of connectivity data. The j cox test 
determines whether a segments has any connections: Array icon1 contains 
connectivity data for end 1 of segment i. 

• if 0, there are no connected segments 

• if k , it is connected to end 2 of segment k 

• if -k , it is connected to end 1 of segment k 

Similar definitions hold for icon2, containing connectivity data for end 2 of 
segment i, except that the role of k and -k are interchanged. An example: 
if segments are connected 1-2-3-1, then the arrays icon1 and icon2 will be 
the following: icon1 = [312) and icon2 = [231). With multiple wire con­
nections, segment connectivity data is stored cyclically, only the next lowest 
segment's number being stored, and hence a "daisy chain" must be traversed 
to determine whether a segment is possibly connected to several others. 

Further improvements are possible. Inspection of the pseudo-code shown 
in Figure 6.3 reveals that the code is actually executing the same instructions 
for each end; it would be rather clearer if this was shown explicitly rather 
than incorporated in the first if construct inside the while and also in the 
j cox <> j code stub . The code given in Figure 6.4 shows this; note how 
the readability of the code is increasing. The actual Occam implementation 
of TRIO is essentially 'the code given in Figure 6.3 but the technique of 
simplifying the pseudo-code further once pseudo-code functionally equivalent 
to the flow-chart had been obtained was applied to several other routines, for 
instance routines SBF and TBF, which contain similar structures. Note that 
for simplicity, global variables are used within a procedure such as TRIO; the 
total procedure length is small enough to avoid problems. It is the concept of 
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global variables for the whole code or major parts thereof that is dangerous 
software engineering practice. 

The method had to rely on a certain amount of trial and error; it is 
extraordinarily difficult to recover the underlying logic from "spaghetti" code. 
The methods outlined for TRIO did not have to be applied to all the NEC2 
procedures; some could be converted relatively easily without a full flow-chart 
and pseudo-code analysis, or only using this analysis in places. However, the 
following procedures all required a full flow-chart and pseudo-code approach 
similar to that shown for TRIO: TBF, SBF, INTX and ISEGNO. 

At the time of writing, only a limited number of the capabilities provided 
by the full NEC2 were available, but the basic thin-wire formulation had been 
completely implemented. The code is around 5000 lines in length, and con­
sists of around 20 major procedures corresponding to the original FORTRAN 
subroutines and functions. Following good software engineering practice, a 
code manual and user manual similar to the original NEC2 documentation 
[BP81b, BP81c] have been produced [Dav91 b, Dav91a]. 

PARNEC has been written so that changing the maximum array dimen­
sions or the number of worker transputers is trivial; these parameters are 
declared in two library files. (This should be compared to trying to change 
the dimensions in the original FORTRAN co<;le- a painstaking and far from 
trivial job as anyone who has done it, such as the author, will vouch.) 

The re-write required a detailed knowledge of FORTRAN, and also -
in places - of the underlying application. Developing a program able to 
convert the FORTRAN Figure 6.1 into the readable, functional and struc­
tured pseudo-code of Figure 6.4 should be a viewed by computer scientists 
as a great cha.llenge9

, and would be of great utility for engineers and scien­
tists wishing to port old codes to new languages, to efficiently exploit new 
architectures, or merely to improve the maintainability of the code. 

6.5 Parallelizing the Matrix Fill 

It has been mentioned that a test Mol\1 code using a simple straight thin 
wire was implemented, and that parallelizing the matrix fill was a trivial the­
oretical problem. This demonstration code used a sinusoidal basis function, 
collocation, and an analytical solution for the field radiated by an sinusoidal 
current [ST81, Chapter 7]. Matrix element a;j is the field of basis function j 
a.t test point i, and is given by the sum of three terms involving the distance 

9 A rather easier problem would be the development of a code that will automatically 
convert a program written in Pascal to one in Occam, since these languages share very 
similar structures and are both strictly typed . This is also a rather easier exercise to 
perform manually. 
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SUBROUTIIE TRIO (J) 
C COMPUTE THE COMPOIEITS OF ALL BASIS FUICTIOIS 01 SEGMEIT J 

COKMOI /DATA/ LD,I1,12,1,1P,M1,M2,M,MP,l(300),Y(300),Z(300), 
1SI(300),BI(300),ALP(300),BET(300),ICOI1(300),ICOI2(300), 
2ITAG(300),ICOII(300),WLAM,IPSYM 

COKMOI /SEGJ/ Al(30),Bl(30),CI(30),JC0(30),JSIO,ISCOI(SO),ISCOI, 
1IPCOI(10) ,IPCOI 

DATA JM!l/30/ 
JSIO=O 
JCOX=ICOI1(J) 
IF (JCOX.GT.10000) GO TO 7 
JEiiD=-1 
IEID=-1 
IF (JCOX) 1,7,2 

1 JCOX=-JCOX 
GO TO 3 

2 JEiiD=-JEID 
3 IF (JCOX.EQ.J) GO TO 6 

JSIO=JS1i0+1 
IF (JSIO.GE.JMAX) GO TO 9 
CALL SBF (JCOX,J,Al(JSIO),BX(JSIO),Cl(JSIO)) 
JCO(JSJO)=JCOX 
IF (JEID.EQ.1) GO TO 4 
JCOX=ICOI1(JCOX) 
GO TO S 

4 JCOX=ICOI2(JCOX) 
S IF (JCOX) 1,9,2 
6 IF (IEID.EQ.l) GO TO 8 
7 JCOX=ICOI2(J) 

IF (JCOX.GT.10000) GO TO 8 
JEID=1 
IEID=1 
IF (JCOX) 1,8,2 

8 JSIO=JSIO+l 
CALL SBF (J,J,AX(JSiiO),BX(JSIO),Cl(JSIO)) 
JCO(JSIO)=J 
RETURI 

9 WRITE(6,10) J 
STOP 

c 
10 FORMAT (44H TRIO - SEGMEIT COiiiECTIOI ERROR FOR SEGMEiiT,I5) 

EliD 

Figure 6.1: FORTRAN source for subroutine TRIO. 
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L..._ __ ,__-{ 3 

jsno: = jsno+ 1 

coil SBF 
jco(jsno ): = j 

RETURN 

BRANCH A 
~j 
~--~--t--t--~---,_;::::L! __ ~ 

•J ® I jsno:=jsno+ll 

Figure 6.2: Flow chart for subroutine TRIO. 
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process(trio) 
begin{ trio} 

variable declarations 
{initialize} 
jsno := 0 
jcox := iconl[j] 
patch.error, seg.conn.error, finished := FALSE 
iend, jend := -1 
vhi1e (JOT patch.error) AID (JOT seg.conn.error) AID (JOT finished) 

begin 
if{test for connected end} 

jcox = 0 then 
begin{jcox = 0} 

j cox : = icon2 [j] 
{patch test; not shovn} 
iend, jend :=1 
if {It is necessary to re-check jcox since it has nov changed} 

jcox < 0 then jcox := -jcox 
jcox > 0 then jend := -jend 
jcox 0 then finished := TRUE 

end{if} 
end{jcox=O} 

jcox < 0 then jcox := -jcox 
jcox > 0 then jend := -jend 

if 
BOT finished then 

begin{IOT finished} 
if 

jcox = j then 
if 

iend = 1 then finished := TRUE 
iend = -1 then 

begin{iend = -1} 
jcox := icon2[j] 
{patch test; not shovn} 
jend, iend := 1 
if 

jcox = 0 then finished := TRUE 
jcox <> 0 then SliP -- and repeat the vhi1e 

end{iend = -1} 
jcox <> j then 

begin{jcox <> j} 
jsno := jsno + 
if 

jsno > jmax then seg.conn.error := TRUE 
jsno <= jmax then 

begin{jsno <= jmax} 
call process sbf 
jco[jsno] := jcox 
if 

jend 1 then jcox := icon2[jcox] 
jend -1 then jcox := icon1[jcox] 

if 
jcox 0 then seg.conn.error ·= TRUE 
jcox <> 0 then SliP 

end{jcox <> j} 
end{BOT finished} 

finished then SliP {occurs if second end is unconnected} 
end{!.hile} 
end_code stub{corresponding to branch 8} 

end{trio} 

Figure 6.3: Pseudo-code for subroutine TRIO; first pass. 

_j 
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process(trio) 
begin{ trio} 

variable declarations 
procedure end{declare procedure} 

begin{procedure end} 
while (lOT patch.error) AID (lOT seg.conn.error) AID (lOT finished) 

begin 
if{test for connected end} 

if 

jcox = 0 then finished := TRUE 
jcox < 0 then jcox := -jcox 
jcox > 0 then jend := -jend 

lOT finished then 
begin{BOT finished} 

if 
jcox = j then finished := TRUE 
jcox <> j then 

begin{jcox <> j} 
jsno := jsno + 1 
if 

jsno > jmax then seg.conn.error := TRUE 
jsno <= jmax then 

begin{jsno <= jmax} 
call process sbf 
jco[jsno] := jcox 
if 

jend = 1 then jcox := icon2[jcox] 
jend = (-1) then jcox := icon1[jcox] 

if 
jcox = 0 then seg.conn.error := TRUE 
jcox <> 0 then S!IP 

end{jsno <= jmax} 
end{jcox <> j} 

end{IOT finished} 
finished then S!IP 

end{if} 
end 

end{vhile} 
end{procedure end} 

{actual start of main code} 
jsno := 0 

{initialize for end 1} 
jcox := icon1 [j] 
patch.error, seg.conn.error, finished := FALSE 
iend, jend := -1 
call procedure end {for end 1} 

{initialize for end 2} 
jcox := icon2[j] 
patch.error, seg.conn.error, finished ·= FALSE 
iend, jend := 1 
call procedure end {for end 2} 

end_code stub{corresponding to branch 8} 
end{ trio} 

Figure 6.4: Pseudo-code for subroutine TRIO; improved structure. 
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from the two ends and the middle of basis function j to the test point. It is 
of absolutely no concern in what sequence the calculations are performed, so 
the i, j index set for each processor can be chosen to suit whatever clustering 
is desired; row block clustering for the CG algorithm and double interleaved 
clustering for the LU algorithm. 

However, matters are not so simple with NEC2. The reason is that the 
explicit enforcement of current and charge continuity results in segments with 
possibly very different numbers all contributing to the current on segment 
j. NEC2 adds the necessary contributions to the relevant matrix entry as 
the segment index increments, which is of course trivial on a serial processor 
with the matrix in core10 . Thus, one cannot decompose the matrix fill of 
NEC2 by segment, since it is very possible that a segment on one processor 
would be connected electrically to a segment on another processor, and this 
will require complex coding to handle. 

A very simple way of decomposing the problem is to rather do it by field 
point. This is the way that NEC2's out-of-core storage works: that problem 
is of course very similar to the parallel decomposition problem, since in the 
former case one does not want to continually modify elements stored on 
disk and in the latter case, the same holds for elements stored on different 
processors. It is also ( serendipitously) the row- block decomposition chosen 
for the CG algorithm- although modifying the CG algorithm to a column 
block decomposition is an almost trivial operation, one would simply have 
to interchange the order in which the parallel matrix-vector multiplication 
paradigms were used. 

For use with the parallel LU solver, a row-block clustering to double 
interleaved clustering mapping scheme will be required. This will require 
communication of O(M2 ) and will thus have minimal effect on the overall 
code efficiency. 

6.6 Software Validation 

\Vith any large and complex piece of software, such as the re-engineered 
PARNEC, the question of va.lidating the code is crucial. One must be partic­
ularly careful regarding MoM formulations, since some of the "observa.bles" 
such as the radiated far fields, gain and radar cross section be ma.y station­
ary functionals of the surface current. Hence the fields are degraded by the 
second variation of the current, to use the terminology of the variational 
calculus. An example- a 10% error in current will reduce to a 1% error 

10In finite element parlance, this is an assembly by elements, as opposed to an assembly 
by nodes; see [NdV78, p.48] . 
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in the radiated far fields [Har61, p.335]. The variational aspects of the mo­
ment method have been discussed in detail by Richmond [Ric91]. Thus a 
validation procedure using the far fields is a fundamentally unsound check. 

A far better check is on the currents themselves or the input impedance11 • 

The latter is a particularly suitable one-parameter check on the code, and 
was used in the later stages of the code development, when substantial parts 
of the code had already been validated. However, for the initial debugging 
stages, the matrix elements had to be inspected directly. 

A representative test set, involving dipoles (with very simple connectiv­
ity) and boxes (to represent a far more connected wire structure) was built 
up, using initially a fairly small number of unknowns. The absence of a 
(working) interactive Occam de bugger has already been noted in Chapter 3. 
The solution adopted was the insertion of write statements at various criti­
cal parts of the code (such as preceding and following a procedure call). To 
permit more selective debugging, these statements were coded so that they 
could be selected using a library debug file. This avoided having to edit the 
source code if one wanted to select or de-select certain outputs. These inter­
mediate results were then compared to results in the corresponding place in 
the original FORTRAN code, using the excellent interactive VMS debugger 
available on the VAX cluster. 

During validation of the code, it was noted that in many cases there 
were minor differences in the interaction matrix elements. Typically these 
were in the fourth or fifth significant figure. This initially appeared strange, 
since although the codes were written in two different languages, they were 
executing precisely the same logic. The reason is that the Occam compiler on 
the transputer uses standard IEEE arithmetic, whereas the VAX uses its own 
(and different) standard. This primarily affects the representation of floating 
point numbers and the precision of operation. Thus, even logically identical 
code will not produce the same results if extensive floating point operations 
are involved. This shows up clearly in INTX, the Romberg integration routine 
used in NEC2. 

It is rather tempting to glibly attribute differences in the results to the 
afore-mentioned differences in floating point precision, whereas the differ­
ences may actually be due to an underlying logical error. This was com­
prehensively investigated by converting to double precision (64 bits per real 
number) operation. This also required a double precision version of NEC2, 
which due to the alread)r noted unstructured character of FORTRAN 66 is 
also a non-trivial job. The methodology adopted to produce a reliable double 
precision version is described in Appendix C. The finished double precision 

11 Richmond [Ric91) shows that the impedance can also be stationary, if a Galerkin 
formulation is used. NEC2 uses collocation. 

J 
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Mean Standard Deviation 
2.579 X 10-' 4.026 X 10-' 

Table 6.1: Mean and standard deviation of the normalized differences be­
tween the interaction matrices generated by PARNEC and NEC2. 

code was checked by comparing results computed using the double and single 
precision FORTRAN codes for example 1 in the NEC2 user manual [BP81c, 
p.98] and against a box-like structure with about 130 segments; only very 
minor differences were noted, in line with the difference in precision. The 
conversion took an entire man-day. By comparison, the Occam re-code took 
half-an-hour, thanks to the strict typing in Occam. Using the TDS edi­
tor's search-and-replace facility, all occurrences of REAL32 were changed to 
REAL64 and the single precision library calls were replaced by their double 
precision equivalents. Unlike FORTRAN, Occam does not have generic func­
tion names. If the incorrect precision function is used, the compiler flags an 
error, so the conversion is very safe. 

With the double precision versions available, the validation could con­
tinue. Differences in the matrix elements in the fourth and fifth significant 
places were still noted. Then the Romberg error criterion (RX in INTX) was 
reduced from 10-4 to 10-8

, and the number of significant digits of agree­
ments immediately improved dramatically. A Romberg error criterion of 
10-4 should indeed only generate about 4 digits of precision. 

Once all these steps outlined had been taken, the validation showed agree­
ment to working precision for small numbers of unknowns. However, this may 
not adequately test all the possible paths the code ma.y take; for instance 
NEC2 uses an approximate method to perform the numerical integration 
for segments separated by more than that specified by parameter RKH. But 
with large structures, examining the interaction matrices manually is a po­
tentially error-prone operation. Hence the process was automated, and a 
Pascal program zmat was written to read in the NEC2 and PARNEC in­
teraction matrices and compare them. The program computes the standard 
deviation and mean of the differences on a element by element basis, and 
also finds the largest absolute and relative differences. It was then applied 
to several test structures; a typical result for a 50 segment problem, a cube 
with a monopole, with the Romberg error criterion set to 10-8

, is shown in 
Table 6.1. The mean error is close to the Romberg error criterion. 

It is interesting to apply the software metric concept to PARNEC. One 
useful one is due to Halstead [Sto90b]; it gives the expected number of errors 
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in a program after compilation (i.e. the program syntax is correct but the 
logic has not been tested) as 

with 

(Nt + N2)log2(n 1 + n2) 
3000 

N1 : the total number of operators; 

N 2 : the total number of operands; 

n 1 the number of distinct operators; 

n 2 the number of distinct operands. 

(6.5) 

PARNEC Version 1.1 ran to around 5000 lines of code; a substantial part 
of this was in-code documentation, so the executable instructions probably 
comprised about 3000 lines. The average number of operators per line is 
probably about 2, giving N1 ~ 6000. The total number of operands is 
probably fairly similar, so N 2 :::::::: 6000. The number of distinct operators is 
around 20 and the number of distinct operands around 50. Thus Halstead's 
metric gives an expected number of errors of 25. The actual number of errors 
detected during validation was about 6. Each procedure was also checked by 
hand and compared to the original FORTRAN subroutine before validation, 
which explains the smaller number of errors. 

6. 7 Some Results for a Large Problem 

Once the validation of PARNEC had been satisfactorily completed, attention 
could be turned to the problem of whether the code was able to solve large 
problems accurately, or whether machine precision would limit the useful 
range of the MoM, as has been suggested previously [Han81, p.384]. Care is 
needed in designing an experiment to investigate this. Obtaining really good 
agreement between measured and numerically predicted data is a. problem 
in computational electromagnetics, especially on such a. sensitive parameter 
as input impedance. The reasons are legion; perhaps two of the more com­
mon are inaccurate numerical models and inaccurate measurements. The 
former could be caused by approximations in the underlying theory, or by 
inadequate representation of the structure (i.e. a. piecewise linear approxi­
mation of a. curved surface). The applied E-field model used in NEC2 and 
PARNEC falls into the first class- it is known to only approximate the ac­
tual impedance. Hence numerically modelling an electromagnetically large 
structure with PARNEC and comparing the results to measurements will not 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 6. PARNEC- A PARALLEL VERSION OF NEC2 136 

be a very good test of the inherent accuracy of the MoM, given the problems 
known to exist with the source model. 

A very fast computer with a very high working precision and very large 
memory would be the ideal benchmark - but it is of course the absence 
of such a. machine that led to the research reported in this thesis. But 
there is a wa.y in which electromagnetically large structures can be simulated 
without generating a correspondingly large system of equations, and that is 
by exploiting symmetry12

• 

The problem investigated was a cone-cylinder [1R89], shown in Figure 6.5. 
The full structure consists of a cylinder of length 397 mm and diameter 
53 mm, capped by a cone of length 1 07mm at one end and a closed off at the 
other. 4 monopoles, each 1 mm in diameter and 25 mm long are mounted on 
the cylinder 28 mm from the cone-cylinder interface. The monopoles make an 
angle of 30° with the cylinder. The monopoles are mounted symmetrically, 
i.e. 90° apart. The frequency of operation is 3 GHz. The monopoles are 
exactly a quarter of a wavelength long at this frequency. 

The structure is ideal for the required validation purpose. It is electro­
magnetically long- about 4 wavelengths. Using a 10 mm nominal segment 
length requires a.bout 1500 segments to model the structure. The wire ra­
dius for the wire-grid used to simulate the surface satisfied the "same surface 
area." rule (or more accurately the "twice surface area rule") [Lud87]. The 
structure exhibits four-way symmetry. 

The numerical experiment was the following: the double precision NEC2 
version was applied to the problem using the symmetry, which reduced the 
number of unknowns to just under 400. The full problem was then solved 
using the double-precision version of PARNEC13 and the results are given in 
Table 6.2. The Romberg error criterion was set to 10-8 , and the normalized 
residual error tolerance for the CG solver was set to 10-4 (0.01%). The 
results agree to four significant digits, the expected accuracy of the CG solver. 
Results are also shown for the same experiment repeated with the single 
precision version of PARNEC. The other parameters were as for the double 
precision run. Agreement to 3 decimal places is noted; this is not quite the 
precision set by the normalized CG error criterion but is due to the matrix 
fill procedure, involving subtracting very similar numbers. These results a1·e 
very significant; they show that a problem with about 1500 unknowns can 

12The author thought of this independently, but subsequent discussions revealed that 
this method for checking the accuracy of matrix generators and solvers for large MoM 
systems has been used before [Mil90b]. 

13The results shown in this chapter were generally computed using 14 or 30 worker 
transputers; the number of transputers- 1 for the serial code, and 2, 6, 14 or 30 worker 
transputers for the parallel code - had a very small effect on the impedance values, but 
always less than the normalized CG error tolerance. 
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PARNEC PARNEC NEC2 
Single Precision Double Precision Double Precision 

(Symmetry not used) (Symmetry used) 
Re I m Re I m Re I m 

23.289 -12.410 23.301 -12.435 23.300 -12.432 

Table 6.2: Input impedances for the 1516 segment model (f!) 

be solved to a very high degree of accuracy - certainly far more than the 
underlying accuracy of the modelling process. For this size of problem, these 
results also show that the effect of precision on accuracy is insignificant when 
using a CG solver, unless more than three significant digits of accuracy are 
required. 

A number of smaller versions of the cone-cylinder were also created. All 
used the same discretization (a nominal segment length of 10 mm); the dif­
ference was the amount of the structure modelled. It is these models that 
were used to generate the timing data for the parallel CG algorithm shown in 
Chapter 4. A summary of these models is given in Table 6.3. The length of 
cylinder is the length from the cone-cylinder junction. The input impedances 
computed are also tabulated; these were computed using the double preci­
sion PARNEC, Romberg error criterion 10-8

, and normalized residual error 
tolerance 10-2 (except for the 1996 problem that used single precision). The 
impedances all checked to within the precision expected by the CG solver 
with the results for the double precision NEC2, and in many cases were rather 
better than the approximately 1% accuracy expected from the 10-2 normal­
ized residual tolerance specified. The stringent normalized residua.l tolerance 
used for Table 6.2 was relaxed for these runs since the 10-4 criterion resulted 
in very long execution times. The limitations of the applied E-field model 
should also be borne in ·mind. 

These results do not show convergence as a function of improving dis­
cretization of the same structure, but rather the convergence as a function of 
the same discretization of an improving model of the structure14

. The effect 
of the lower part of the cylinder on input impedance is clearly nunima.l. Note 
that the radiation patterns, however, are strongly affected [1R89]. 

The efficiencies of the parallel matrix generation algorithm were also in­
vestigated. No theoretical model was derived for this, since the operation is 

14The la.5t model, with 1996 segments, is actually of a rather longer cylinder; it was 
included to check the operation of the code for large problems using single precision. The 
1516 segment model is the most accurate model of the actual geometry. 
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. Figure 6.5: Cone-cylinder. 
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PARNEC NEC2 
(Symmetry not used) (Symmetry used) 

Number of Description Input impedance (f!) Input impedance (f! 
segments Re I m Re I m 

124 30 mm long cylinder only; 105.1 -40.75 105.1 -40.78 
open at both ends 

188 40 mm long cylinder only; 43.46 -45.30 43.47 -45.30 
open at both ends 

316 80 mm long cylinder only; 24.59 -1.793 24.58 -1.700 
open at both ends 

428 60 mm long cylinder; 16.74 -14.79 16.78 -14.75 
cone; cylinder capped. 

876 200 mm long cylinder; 23.32 -12.84 23.34 -12.78 
cone; cylinder capped. 

1196 300 mm long cylinder; 23.25 -12.58 23.34 -12.52 
cone; cylinder capped. 

1516 400 mm long cylinder; 23.21 -12.50 23.30 -12.43 
cone; cylinder capped. 

1996 5.50 mm long cylinder: 23.19 -12.42 23.28 -12.38 
cone; cylinder capped. 

Table 6.3: Different cone-cylinder models 
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rather simple - a one-off broadcast of the relevant geometrical data to all 
the processors - and it is difficult to develop a timing model of the matrix 
fill. The reason for this is the searches required to set up the connection 
data; the particular numbering scheme used has a very strong effect on this. 
Results are shown in Figure 6.6. Results are not shown for problems larger 
that 428 segments since serial timing data was not available, and efforts to 
extrapolate the available serial data for the larger problems led to efficiencies 
exceeding lOO%; the reason for this failure is the already noted connectivity 
searches. It is also irrelevant for large problems; Table 6.4 shows the ratio of 
time required for the matrix fill to the matrix solve for a normalized residual 
error of 10-2 , and a Romberg error criterion of 10-4

• All data except for 
the last entry are for double precision; the 1996 segment data used single 
preCISIOn. 

Number of segments isolve/i fill 
50 1.0 
124 2.2 
188 2.7 
316 2.4 
428 7.2 
876 9.1 
1196 10.4 
1516 11.9 
1996 21.1 

Table 6.4: Ratio of the matrix fill to solve times: 30 workers 

Results for the efficiencies of the CG solver have already been given in 
Chapter 4. Efficiencies for the whole code are dominated fairly rapidly by 
the CG solver, as shown in Table 6.4, so the efficiency of the whole code is 
not plotted. 

One final point that was also investigated was the effect of precision on 
rate of convergence. This data is presented in Table 6.5. The single pre­
cision data is for a Romberg error criterion of 10-\ the double precision 
for w-s. The differen~e in the Romberg error criterion alone produces a 
maximum difference of one or two iterations (from data not shown), so the 
differences in Table 6.5 are due to the different precision. The N /A stands 
for "not available"; the problem required too much memory for the available 
resources. It is clear that the time advantage gained using single precision is 
negated by the slower convergence. The only reason to use single precision 
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is the memory saving; double precision requires twice as much memory as 
single precision for a given number of segments. 

Number of segments Number of iterations 
Single Precision Double Precision 

50 23 14 
124 82 75 
188 155 134 
316 152 131 
428 519 372 
876 519 405 
1196 521 409 
1516 529 414 
1996 543 NjA 

Table 6.5: Number of iterations required to obtain convergence; normalized 
residual of 10-2 (1 %) specified. 

The very slow increase in number of iterations required. as the number 
of segments is increased beyond 428 is very noticeable. Almost doubling 
the number of segments from 876 to 1516 requires only an additional four 
iterations. It was also noticed in the earlier work on the body of revolution 
problem, discussed in Chapter 2. It that case, the problem geometry was 
fixed, but the number of segments was increased [DM88]. Peterson et.al. 
have recently provided an explanation of this [PSM88]; the CG method is 
minimizing a. norm involving only those eigenvalues corresponding to eigen­
vectors needed to represent the initial residual The 428 segment problem is 
a. very reasonable approximation of the whole problem; clearly the eigenva.l­
ues associated with this problem are also a good representation of those for 
the whole problem. 

Figures 6.7 and 6.8 show the normalized residual error squared as a. 
function of iteration number. It is notable how the method hits stagnant 
"plateaus" requiring many iterations to break out of. Then the error drops 
quite rapidly again, until another plateau is reached. This behavior has been 
noted by other researchers but the author is not aware of an explanation at 
present. 

One final point that may now be commented on: is it better to use a. 
CG or a. LU solver? The answer is clearly that it depends on theproblem. 
Since the efficiencies of both methods are comparable, the serial break-even 
point can be used, namely where the number of iterations is 1/6 of the 
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matrix dimension. Even in the largest case investigated, this fraction was 
closer to 1/4, and was even larger for smaller problems. This was using a 
normalized error criterion of 10-2

, giving an error of around 1%. So, unless 
one is satisfied with a larger error, the L U method would have been slightly, 
to considerably, faster for all the problems investigated. With a multiple 
right-hand side problem, such as a typical radar cross section problem, the 
superiority of the LU method has long been acknowledged. The work of 
Smith et. al. [SPM89] on using the CG method to solve multiple right-hand 
sides, by re-using some of the data generated for previous right-hand sides, 
showed that although significant time savings compared to the standard CG 
method were possible, for many right-hand sides the LU method remained 
the better approach. However, a new technique recently proposed by Kastner 
and Herscovici [KH90] shows promising results for a multiple right-hand side 
CG formulation. 

6.8 The Biconjugate Gradient Method 

The closing comments in the previous section lead one to the following ques­
tion: can one not improve the convergence rate of the CG method? Several 
possibilities have been touted for this: one that has been very successful in 
Finite Element analysis is pre-conditioning [Sun88]. Another is the biconju­
gate gradient method, details of which are available in [Sar87 a] and [SPM90]. 
Details on both pre-conditioning and the biconjugate gradient method may 
also be found in [DDSvdV91, chapter 7]15

. 

The iterative part of the biconjugate gradient algorithm is given as fol­
lows: 

15The parallel implementations of these discussed in this reference are for vector and 
shared memory computers and sparse linear systems, not local memory computers and 
full matrices as considered in this thesis. 
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Figure 6.8: Convergence versus number of iterations: 1516 unknowns. 
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[uk] - [A][pk] 

O'k 
[rk]t[qk]* 
[uk]t[wk]• 

[xk+I] [xk] + a~;[pk] 
[rk+I] - [rk] - ak[uk] 
[qk+I] [qk] - akAT[wk] 

[ck] 
[rk+I]t[qk+I]* 

[rlt[qk]* 
[pk+I] [rk+I] + ck[pk] 

[wk] [qk+d + ck[wk+d (6.6) 

Initial conditions are chosen as follows 

[rk] [b] 
[pk] [b] 
[qk] - [b*] 

[wk] [qk] (6.7) 

This choice is known as Jacob's choice [SPM90]. Note that the expressions 
for ak and ck (the latter corresponding to f3k in [SPM90]) are the complex 
conjugates of those in [SPM90); the reason is the choice of inner product as 

< [x], [y] >= [x]t[y]* 

in the algorithm given above, whereas Smith used 

< [x], [y] >= [xf[y] 

so these inner products are complex conjugates of one another, and~: =(V*· 
Both pre-conditioning and the biconjugate gradient method were investi­

gated by the author, and results for the body of revolution formulation dis­
cussed in Chapter 2 may be found in [DM88]. Pre-conditioning was shown to 
be not at all attractive, but the results reported in [D.l\188) implied that the 
biconjugate gradient method converged approximately twice as fast as the 
CG method for moderately large problems. Unfortunately, this did not sur­
vive a more detailed investigation for really large problems using PARNEC. 
Results are summarized in Table 6.616and it is clear that for large problems, 

16The results shown in Table 6.6 were all computed using a Romberg error criterion 
of 10-4

, except for the double precision CG case, which used 10-8 . As noted in Sec­
tion 6.7, the differences in impedances computed, and iterations required, using the dif­
ferent Romberg criteria were negligible. 
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Number of Number of iterations: CG Number of iterations: BiCG 
segments Single Double Single Double 

50 23 14 15 15 
124 82 75 55 54 
188 155 134 102 83 
316 152 131 137 109 
428 519 372 U nconverged 405 
876 519 405 1049 594 
1196 521 409 1203 1020 
1516 529 414 1455 753 
1996 541 N/A U nconverged N/A 

Table 6.6: Number of iterations required to obtain convergence as a function 
of precision; normalized residual of 10-2 specified. 

the biconjugate gradient method converges rather more slowly than the CG 
method17 • Note also the very strong influence of precision on the convergence 
of the biconjugate gradient method. 

This ?tagnation is confirmed by Smith et. al. [SPM90]; they also dis­
cuss a. modification to accelerate the convergence of the biconjugate gradient 
method, which was not implemented by the author. 

6.9 Conclusions 

In this chapter, a brief review of the underlying theory of NEC2 has been 
given. An attempt to use an Occam "harness" to provide a link between 
various FORTRAN processes was discussed; the poor results obtained with 
this approach led to the necessity for re-coding NEC2 in Occam. Funda­
mental problems posed by such a re-write were highlighted. A systematic 
(but not presently automatic) methodology for untangling "spaghetti" code 
was presented, using flowcharts and pseudo-code; its use was illustrated by 
application to one of the more formidable NEC2 sub-routines. Methods to 
parallelize the matrix generation, which was not as simple as for the demon­
stration program used in Chapter 5 for the LU method, were discussed. 

Methods used to validate the code were described - initially for small 
structures, and then for large structures. With the former, the problem 

17Sometimes iterative algorithms converge slowly due to coding errors. The Occam code 
was checked by writing a MATLAB file to implement the algorithm. Results were identical 
to within working precision on the computers. 
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was simply to ensure that the Occam re-code was a valid re-implementation 
of the code. With the latter, the problem was more fundamental: is the 
code accurate for electromagnetically very large structures, or does machine 
precision impose some limit on the size of structure that can be modelled? 
This was investigated using a symmetrical structure, solved both using, and 
without using, symmetry. The effect of single as opposed to double precision 
was also investigated; it was shown to affect only the convergence rate of the 
CG algorithm, not the final results. The biconjugate gradient method was 
also briefly investigated; it was shown that the initial promise shown by the 
method for small systems did not hold for large systems, where the method 
failed to converge. 

It is important to emphasize some of the specific details of what has been 
achieved. The DEC VAX 360018 available at the University of Stellenbosch at 
the time of writing this dissertation took three-quarters of an hour to solve a 
problem with approximately 500 unknowns- a 2000 segment problem with 
four-way symmetry. The time-saving scales as approximately the square of 
the number of degrees of symmetry, as shown in Chapter 2. Hence, had the 
machine enough memory (which it did not) this would have taken about 12 
hours to compute. Using 30 worker transputers, this problem was solved in 
an hour. (This is equivalent to a sustained rate of around 10 MFLOP fs.) 
This computation could have been done in slightly less time had the parallel 
LU solver been used - it had not been incorporated into PARNEC at the 
time of writing. Looked at from another viewpoint- the one-hour measure 
-the largest problem that could be handled by this specific VAX was about 
600 segments. This has now been trebled to 2000 segments, increasing the 
maximum frequency that can be used by almost 2. 

The time invested in re-writing NEC2 in Occam is time well spent, even 
if some future parallel system that one wishes to port the code to does not 
support Occam. The close similarity of Occam to other modern, structured 
languages, and the tremendous effort expended in modularizing the code 
and re-implementing the logic using structured constructs makes a further 
re-write a much simpler proposition, and the possibility of automating the 
process is much better. 

In concluding this chapter, when the T9000, described in Section 3.4.2, 
becomes available, further substantial gains should be possible. Using 30 
T9000's with enough memory, PARNEC, the code described in this chapter, 
should be able to handle about 6000 segment problems in one hour. 

11'See Chapter 2 for the specifications of this computer. 

_j 
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Chapter 7 

General Conclusions 

When the research documented in this dissertation was initiated, it was 
thought that parallel computing should have significance for computational 
electromagnetics. The fundamental contribution of this research has been the 
successful, quantitative, demonstration that this is indeed so. This has been 
done through the derivation, analysis, and implementation of efficient par­
allel algorithms for electromagnetic moment method formulations, and the 
quantification of the effectiveness, both theoretically and from measured tim­
ing data, of two fundamental algorithms required by the method of moments. 
A large part of a very important moment method code, NEC2, has been ef­
ficiently parallelized, and electromagnetically large problems have been both 
rapidly and accurately solved using the parallel NEC2. 

Specific contributions of this work are the following: 

• The parallel conjugate gradient (CG) algorithm: 

- The first published parallel CG algorithm suitable for general, 
full matrices with complex entries for local memory MIMD sys­
tems, in the computational electromagnetics and related literature 
[Dav90b). 

- A detailed theoretical analysis, supported by measured results, of 
the timing properties- speed-up and efficiency- of the parallel 
CG algorithm. 

Publication of pseudo-code for the parallel CG algorithm. 

A comprehensive investigation into the convergence of the CG 
method; confirmation of the convergence behavior presented in 
the literature; and the conclusion that machine precision has some 
effect on the number of iterations - typically 10% to 25% more 
iterations were required with single than with double precision. 

149 
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An investigation into the biconjugate gradient method and the 
confirmation that the method is not suitable for application to 
large problems without some modifications as recently proposed 
in the literature [SPM90]. 

• The parallel L U algorithm: 

- The identification of a LU algorithm suitable for a local memory 
MIMD system. 

- A new, simple graphical exposition of the fundamental parallel 
operation of the algorithm. 

- New, simplified methods for the analysis of the parallel LU algo­
rithm. 

- A detailed check of previously published theoretical timing results 
of the parallel L U algorithm. 

- New parallel forward and backward substitution algorithms using 
the same data distribution as the parallel L U algorithm. 

- A new, detailed investigation of the accuracy of the L U algorithm 
using the parallel code for large systems - 1 500 complex un­
knowns - by monitoring the convergence of the input impedance 
of a thin dipole, and also by comparing the results obtained with 
the parallel LU and CG codes, and the resulting conclusion that, 
provided the basic discretization rules of computational electro­
magnetics are satisfied, the LU method is accurate for large prob­
lems. 

• General properties of the parallel CG and LU matrix solvers: 

- The demonstration of the scaling properties of the two solvers; the 
algorithms described will run efficiently on much larger processor 
arrays than those that the codes were tested on. 

- The development and description of methods for increasing effi­
ciency, such as pipelined, concurrent communications. 

- The integration of the parallel matrix solvers with moment method 
codes. 

• Parallelizing NEC2: 

The development of PARNEC, a re-engineered version of the thin­
wire parts of the important general-purpose moment method code, 
NEC2, in Occam 2. 

----~~--~~ 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 7. GENERAL CONCLUSIONS 151 

- The development and description of a systematic approach, us­
ing flowchart analysis and pseudo-code, for re-engineering a code 
written in an unstructured language such as FORTRAN 66 in a 
modern, structured language such as Occam 2. 

A careful investigation of the accuracy of PARNEC for large prob­
lems - 1 ·soo to 2 000 complex valued unknowns - and the 
demonstration of the accuracy of the code by comparison with 
results computed using a smaller but equivalent problem that ex­
ploited symmetry, and the demonstration that single precision is 
adequate for three digits of accuracy in the solution of the matrix 
equation for problems of the above size. · 

• General contributions to parallel computing in computational electro­
magnetics: 

- The development of theoretical models for predicting algorithm 
performance suitable for local memory MIMD systems - of which 
a transputer array is but one example- and the identification of 
the ratio of two fundamental machine parameters (rate of compu­
tation and communication) as a critical parameter in determining 
the efficiency. 

- The definition of a more extensive pseudo-code than has been 
published in the literature for documenting parallel algorithms in 
an easily understood format. 

- The demonstration of the utility of the formal methods to extract 
parallelism: both for the L U method, with a detailed elucidation 
of a formal approach published in the literature, and a new appli­
cation to the parallel matrix-vector problem. 

- Making parallel computing more understandable and accessible in 
the computational electromagnetics context [Dav90b]. 

This work has raised many points which would benefit from further in­
vestigation. Those issues requiring further research in primarily the compu­
tational electromagnetics field are the following: 

• Extensions of the existing work 

Implementing pipe-lining in the parallel CG solver. 

Implementing pivoting in the parallel L U solver and investigating 
typical pivoting patterns for moment method problems. 

Extending PARNEC to include more facilities than at present. 
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Further validation of PARNEC for different structures. 

Incorporation of the parallel LU solver into PARNEC. 

152 

Further investigation of the convergence behaviour of the 
impedance of thin wires, discussed in Section 5.13. 

• Work of a more fundamental natu1·e 

- Exploitation of the Impedance Matrix Localization method. 

- Accelerating the convergence of the CG method. 

Fundamental issues have also been highlighted that require attention from 
primarily computer scientists. The automatic re-engineering of old codes has 
been touched on in Chapter 6, and is a problem that will become increasingly 
pressing as fundamental software re-engineering of old codes is required for 
efficient execution on new architectures. The requirement for interactive 
parallel debuggers has also been clearly stated. 

Computer technology does not stand still. The particular transputer 
hardware on which the algorithms described in this dissertation were imple­
mented is already being outdated by developments in micro-electronics at 
the time of submission. However, the fundamental algorithms and the anal­
ysis methods described are valid for the broad class of local memory MIMD 
computers and, since both serial processors and parallel processors rely on 
the same underlying micro-electronic technology, the importance of parallel 
processing will not diminish in the future- as serial processors become more 
powerful, so will parallel processors. Thus the research represented by this 
dissertation, and the scalable, efficient, parallel moment method codes, will 
retain their relevance, permitting yet larger moment method problems to be 
solved on future parallel computers as computer technology improves. 
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Appendix A 

CG Configuration Code 

Notes: 

1. The parameters number. of. transputers, num. nodes and num .leaves 
are defined in a separate file of constants. 

2. This configuration code was developed for the Occam 2 TDS 3 enviro­
ment. 

3. The { { { a.nd } } } indicate the start and end of "folds". 

--{{{ hard configuration 
--{{{ Compiler USAGE checking notes 

Due to compiler defects, the USAGE checking option must be disabled 
to compile the folloving code. It should OILY be disabled once the rest of 
the code is vorking. Rote that the construct is valid, accessing disjoint 
arrays in parallel. 

--}}} 

--{{{ Rotes on the configuration 
The configuration is designed to be as general purpose as possible. 
The folooving important limitations must, hovever, be noted: 
1. The MCC can only svitch even to even and odd to odd links to the 

the hardvare svitching netvork. 
2. A boot path must be provided to allov the root to boot the vhole 

netvork over only one link. This is provided by a special treatment 
of processors 1 and 2, vhose lover links follov the pattern 

--}}} 

of the rest of the netvork but vhose upper links are special and 
these processors also have side-vays links to provide a boot path. 
Hence processors 1 and 2 are excluded from the nodal declarations. 

This method is valid for all except the case of only tvo 
vorker processors; this can hovever be fixed in the library 
file ''cgtpts'' by declaring num.leaves as 0, not 2, for the tvo 
processor case. Unfortunately, the configuration language is not 
sufficiently poverful to handle this special case in the code. 

--{{{ channel declarations 
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[2]CHAR OF messages boot.path 
[number.of.transputers+S]CBAI OF messages dovn 
[number.of.transputers+S]CHAI OF messages up 

+1 because first channel element (element 0) not used 
-- and additional +4 for esse of tvo processors (used instead 
--of dummy channels for that case). 
[(number.of.transputers/2)+1]CBAI OF messages dummy.dovn.left 
[(number.of.transputers/2)+1]CBAI OF messages dummy.dovn.right: 
[(number.of.transputers/2)+1]CBAR OF messages dummy.up.left 
[(number.of.transputers/2)+1]CBAI OF messages dummy.up.right 
--}}} 
PLACED PAR -- See Galletly p123 for details. 

-- processor 1 and 2 ; special treatment to provide boot path 
--{{{ processor 1 
-- processor 1 
PLACED PAR 

PROCESSOR 1 T8 
PLACE dovn[3) AT link1.out : 
PLACE up [3) AT link1 . in 
PLACE dovn[4] AT link2.out 
PLACE up[4] AT link2.in 
PLACE dovn[1] AT link3.in 
PLACE up [1] AT link3. out 
PLACE boot.path[O] AT linkO.out 
PLACE boot.path[1] AT linkO.in: 
nec.vorker(dovn[1],up[1], 
dovn[3],up[3],dovn[4],up[4]) 

--}}} 
--{{{ processor 2 
-- processor 2 
PLACED PAR 

PROCESSOR 2 T8 
PLACE dovn[S] AT link1.out : 
PLACE up[S] AT linkl.in 
PLACE dovn[6) AT link2.out 
PLACE up[6] AT link2.in 
PLACE dovn[2] AT link3.in 
PLACE up[2] AT link3.out 
PLACE boot.path[O] AT linkO.in 
PLACE boot.path[l] AT linkO.out: 
nec.vorker(dovn[2),up[2], 
dovn[S],up[5],dovn[6],up[6]) 

--}}} 

-- nodes; note excludes nodes 1 and 2 
--{{{ odd numbered nodes 
-- odd numbered nodes 
PLACED PAR i = 2 FOR (num.nodes/2) -1 

VAL Index IS (2•i)-1: 
PROCESSOR Index T8 

VAL Parent IS Index: 
VAL Left IS (2•Index)+1: 
VAL Right IS (2•Index)+2: 
PLACE dovn[Left] AT linkl.out 
PLACE up[Left] AT linkl.in 
PLACE dovn[Right] AT link2.out 
PLACE up[Right] AT link2.in 
PLACE dovn[Parent] AT link3.in 
PLACE up[Parent] AT link3.out : 
nec.vorker(dovn[Parent] ,up[Parent], 
dovn[Left],up[Left] ,dovn[Right] ,up[Right]) 

--}}} 

--{{{ even numbered nodes 
-- even numbered nodes 
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PLACED PAR i = 2 FOR (num.nodes/2) -1 
VAL Index IS (2•i): 
PROCESSOR Index T8 

VAL Parent IS Index: 
VAL Left IS (2•Index)+1: 
VAL Right IS (2•Index)+2: 
PLACE dovn[Left] AT link1.out 
PLACE up[Left] AT link1.in 
PLACE dovn[Right] AT link2.out 
PLACE up[Right] AT link2.in 
PLACE dovn[Parent] AT linkO.in 
PLACE up[Parent] AT linkO.out : 
nec.vorker(dovn[Parent],up[Parent], 
dovn[Left],up[Left],dovn[Right],up[Right]) 

--}}} 
-- leaves; note must be commented out for the case of only tvo processors 
--{{{ odd numbered leaves 
-- odd numbered leaves 
PLACED PAR i = (num.nodes/2)+1 FOR num.leaves/2 

VAL Index IS (2•i)-1: 
PROCESSOR Index T8 

VAL Parent IS Index: 
VAL Dummy.Index IS Index- (num.nodes+1): --to minimize num of dummy chans 
PLACE dovn[Parent] AT link3.in 
PLACE up[Parent] AT link3.out : 
PLACE dummy.up.left[Dummy.Index] AT link1.in: 
PLACE dummy.dovn.left[Dummy.Index] AT link1.out: 
PLACE dummy.up.right[Dummy.Index] AT link2.in: 
PLACE dummy.dovn.right[Dummy.Index] AT link2.out: 
nec.vorker(dovn[Parent],up[Parent], 
dummy.dovn.left[Dummy.Index] ,dummy.up.left[Dummy.Index], 
dummy.dovn.right[Dummy.Index],dummy.up.right[Dummy.Index]) 

--}}} 
--{{{ even numbered leaves 
-- even numbered leaves 
PLACED PAR i = (num.nodes/2)+1 FOR num.leaves/2 

VAL Index IS (2•i): 
PROCESSOR Index T8 

VAL Parent IS Index: 
VAL Dummy.Index IS Index- (num.nodes+1): to minimize num of dummy chans 
PLACE dovn[Parent] AT linkO.in 
PLACE up[Parent] AT linkO.out : 
PLACE dummy.up.left[Dummy.Index] AT link1.in: 
PLACE dummy.dovn.left[Dummy.Index] AT link1.out: 
PLACE dummy.up.right[Dummy.Index) AT link2.in: 
PLACE dummy.dovn.right[Dummy.Index) AT link2.out: 
nec.vorker(dovn[Parent) ,up[Parent], 
dummy.dovn.left[Dummy.Index) ,dummy.up.left[Dummy.Index], 
dummy.dovn.right[Dummy.Index],dummy.up.right[Dummy.Index]) 

--}}} 
--}}} 
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L U Configuration Code 

Notes: 

1. This configuration code is for the Occam 2 Toolset. 

2. The parameter mesh. size is defined in a separate file of constants. 

IIBCLUDE "lillkaddr. inc" -- lillk addresses 
IIliCLUDE "hostio.inc" 
IIICLUDE "pmomlib. inc" 
IUSE "master21.c8h" 
IUSE "vorker21.c8h" 
-- Declare the channels. 

-- host i/o constants 
-- constant and protocol definitions 

linked vorker process 
lillker master process 

CBAli OF messages soft2.in, soft2.out : 
[mesh.size]CBAli OF messages dummyl, dummy2 
[mesh.size+1)[mesh.size+1] CBAI OF messages left.in, 

right.in, 
up.in, 
dovn.in 

-- Special channels (lillk 0) to communicate vith host. 
CBAI OF SP fs, ts: 

-- Placement statements 

PLACED PAR 
-- 00 process. 
VAL IIIT j IS 0 
VAL IIIT i IS 0 
PLACED PAR 

PROCESSOR ((i•mesh.size)+j) T8 
PLACE fs AT linkO.in · from host; special for 00 
PLACE ts AT lillkO. out to host; 
PLACE left.in[i][j] AT linkl.in left in; special for 00 
PLACE right.in[i][mesh.size-1] AT lillkl.out : --left.out; 
PLACE right.in[i)[j] AT link3.in right in 
PLACE left.in[i][j+l] AT link3.out right out 
PLACE dovn.in[i][j] AT link2.in dovn in 
PLACE up.in[i+1][j] AT link2.out dovn out 
-- Declare internal soft channel for the 00 processor only 
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CBAI OF messages to.master2, from.master2 
IF 

number.of.transputers > 1 
PAR 

master(fs,ts,to.master2, from.master2) 
-- 00 process (to run on master transputer) 
vorker(left.in[i)[j), right.in[i)[mesh.size-1), 

right. in[i) [j), left. in[i) [j+1), 
from.master2, to.master2, 
dovn.in[i] [j), up.in[i+1) [j] ,i,j) 

number.of.transputers = 1 
master(fs,ts,to.master2, from.master2) 

-- first rov processes ezcept last column 
VAL liT i IS 0 : 
PLACED PAR j = 1 FOR mesh.size -2 

PROCESSOR ((i•mesh.size)+j) T8 
PLACE left.in[i)[j] AT link1.in --left in 
PLACE right.in[i)[j-1) AT link1.out --left out 
PLACE right.in[i)[j) AT link3.in --right in 
PLACE left.in[i][j+1] AT link3.out --right out 
PLACE up. in[i] [j] AT linkO. in -- up in (unused) 
PLACE dummy1[j] AT linkO. out -- up out (unused) 
PLACE dovn.in[i][j] AT link2.in -- dovn in 
PLACE up.in[i+1][j] AT link2.out -- dovn out 
vorker(left. in[i) [j], right. in[i] [j-1], 

right. in[i] [j), left. in[i] [j+1], 
up.in[i][j], dummy1[j], 
dovn.in[i] [j), up.in[i+1) [j) ,i,j) 

-- upper right-most element 
VAL liT i IS 0 : 
VAL liT j IS mesh.size -1 : 
PROCESSOR ((i~esh.size)+j) T8 

PLACE left. in[i) [j) AT link1. in -- left in 
PLACE right.in[i][j-1) AT link1.out --left out 
PLACE right.in[i][j] AT link3.in --right in 
PLACE left.in[i][O] AT link3.out --right out (vraparound) 
PLACE up.in[i][j] AT linkO.in --up in (unused) 
PLACE dummy1[j] AT linkO.out --up out (unused) 
PLACE dovn.in[i][j] AT link2.in -- dovn in 
PLACE up.in[i+1][j] AT link2.out -- dovn out 
vorker(left.in[i][j], right.in[i][j-1], 

right. in[i][j], left. in[i)[O], 
up. in [i] [j] , dummy1 [j] , 
dovn. in[i][j], up. in[i+1][j],i,j) 

-- first column processes 
VAL IIIT j IS 0 : 
PLACED PAR i = 1 FOR mesh.size -1 

PROCESSOR ((i•mesh.size)+j) T8 
PLACE left.in[i][j] AT link1.in : --left in 
PLACE right.in[i][mesh.size-1] AT link1.out left out (vraparound) 
PLACE right. in[i] [j] .AT link3. in -- right in 
PLACE left.in[i][j+1] AT link3.out --right out 
PLACE up.in[i][j] AT linkO.in --up in 
PLACE dovn.in[i-1][j] AT linkO.out --up out 
PLACE dovn.in[i][j] AT link2.in -- dovn in 
PLACE up.in[i+1][j] AT link2.out -- dovn out 
vorker(left.in[i][j], right.in[i)[mesh.size-1], 

right. in[i] [j], left. in[i] [j+1], 
up. in[i][j], dovn. in [i -1][j], 

168 

Stellenbosch University http://scholar.sun.ac.za



APPENDIX B. LU CONFIGURATION CODE 

dovn.in[i] [j], up.in[i+1] (j] ,i,j) 

interior processes 
PLACED PAR i = 1 FOR mesh.size -1 

PLACED PAR j = 1 FOR mesh.size -2 
PROCESSOR ((i•mesh.size)+j) TB 

PLACE left.in[i][j] AT link1.in --left in 
PLACE right.in[i][j-1] AT link1.out --left out 
PLACE right.in[i][j] AT link3.in --right in 
PLACE left.in[i][j+1] AT link3.out --right out 
PLACE up.in[i][j] AT linkO.in --up in 
PLACE dovn.in[i-1][j] AT linkO.out --up out 
PLACE dovn.in[i](j] AT link2.in -- dovn in 
PLACE up.in[i+1][j] AT link2.out -- dovn out 
vorker(left.in[i](j], right.in[i][j-1], 

right.in[i][j], left.in[i][j+1], 
up.in[i][j], dovn.in[i-1][j], 
dovn.in[i)[j), up.in[i+1)(j],i,j) 

-- last column (except upper right-most element) 
VAL !IT j IS mesh.size -1: 
PLACED PAR i = 1 FOR mesh.size -1 

PROCESSOR ((i•mesh.size)+j) TB 
PLACE left.in[i][j] AT link1.in --left in 
PLACE right.in[i)[j-1] AT link1.out --left out 
PLACE right.in[i][j) AT link3.in --right in 
PLACE left.in[i)[O] AT link3.out --right out 
PLACE up. in (i][j] AT linkO. in -- up in 
PLACE dovn.in[i-1)[j) AT linkO.out --up out 
PLACE dovn.in[i][j] AT link2.in -- dovn in 
PLACE up.in[i+1][j] AT link2.out -- dovn out 
vorker(left.in[i][j), right.in[i)[j-1], 

right. in[i] [j] , left. in [i) [0) , 
up.in[i][j), dovn.ill[i-1)[j], 
dovn.in[i] [j], up.in[i+1] [j] ,i,j) 
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Appendix C 

FORTRAN Precision 
Conversion 

The procedure to convert the single precision FORTRAN version of NEC2 
to a double precision version is summarized below. The procedure was car­
ried out manually; as an one-off procedure, it was not deemed worthwhile 
automating the process. 

• IMPLICIT DOUBLE PRECISION (A-H,O-Z) was added at the start of 
each program unit. 

• COMPLEX was changed to DOUBLE COMPLEX. 

• REAL (and REAL*4) declarations were changed to DOUBLE PRECISION. 

• REAL*8 was changed to DOUBLE PRECISION (for uniformity). 

• CMPLX was changed to DCMPLX; note that CMPLX takes two REAL*8 and 
creates a COMPLEX*8 from them. This could lead to a baffling lack of 
precision if assigned to a COMPLEX*16 data type, which will of course 
simply convert the COMPLEX*8 to COMPLEX*16 using FORTRAN 1s (un­
type-checked) re-typing rules. 

• REAL was changed to DREAL and AIMAG to DIMAG; there are no generic 
functions for this. 

• Specific functions ( eg CSQRT, CEXP) were changed to the equivalent 
generic function (viz SQRT, EXP). 

The first six steps were done using the editor 1s search facility; the last 
was done by compiling and picking up errors. After the program compiled 
successfully, the cross-referenced listing was searched for (erroneous) R*4 and 
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C*S, and the list. of functions referenced was examined to look for similar 
errors. Note that the VAX compiler does not list CMPLX, REAL and AIMAG in 
its list of functions referenced; hence the need for great caution here. 
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