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Abstract

Deep learning-based frameworks have recently been steadily outperforming
existing state-of-the-art systems in a number of computer vision applications,
but these models require a large number of training samples in order to ef-
fectively train the model parameters. Within the medical field the limited
availability of training data is one of the main challenges faced when using
deep learning to create practical clinical applications in medical imaging. In
this dissertation a novel algorithm for generating artificial training samples
from triangulated three-dimensional (3D) surface models within the context
of dental implant recognition is proposed. The proposed algorithm is based
on the calculation of two-dimensional (2D) parallel projections from a num-
ber of different angles of 3D volumetric representations of computer-aided
design (CAD) surface models. A fully convolutional network (FCN) is sub-
sequently trained on the artificially generated X-ray images for the purpose
of automatically identifying the connection type associated with a specific
dental implant in an actual X-ray image. An ensemble of image processing
and deep learning-based techniques capable of distinguishing between pixels
that belong to an implant from those belonging to the background in an ac-
tual X-ray image is developed. Normalisation and preprocessing techniques
are subsequently applied to the segmented dental implants within the ques-
tioned actual X-ray image. The normalised dental implants are presented to
the trained FCN for classification purposes. Experiments are conducted on
two data sets that contain the simulated and actual X-ray images in order to
gauge the proficiency of the proposed systems. Given the fact that the novel
systems proposed in this study utilise an ensemble of techniques that has not
been employed for the purpose of dental implant classification/recognition
on any previous occasion, the results achieved in this study are encouraging
and constitute a significant contribution to the current state of the art, es-
pecially in scenarios where the proposed systems are combined with existing
systems.
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Opsomming

Diepleergebaseerde raamwerke het onlangs op bestaande staat-van-die-kuns
stelsels in ’n aantal rekenaarvisietoepassings begin verbeter, maar hierdie
modelle verg ’n groot aantal voorbeelde ten einde die modelparameters ef-
fektief af te rig. In die mediese veld is die beperkte beskikbaarheid van
afrigdata een van die hoofuitdagings vir praktiese kliniese toepassings in me-
diese beeldvorming. In hierdie proefskrif word ’n nuwe algoritme vir die
skep van kunsmatige afrigvoorbeelde vanuit driehoekgebaseerde driedimen-
sionele (3D) oppervlakmodelle binne die konteks van tandimplantaatherken-
ning voorgestel. Die voorgestelde algoritme is op die berekening van twee-
dimensionele (2D) parallelle projeksies vanuit ’n aantal verskillende hoeke
van 3D volumetriese voorstellings van rekenaarmatige ontwerp (CAD) op-
pervlakmodelle gebaseer. ’n Vol konvolusie-netwerk (FCN) word vervolgens
op die kunsmatig-gegenereerde X-straalbeelde afgerig met die doel om die
verbindingstipe geassosieer met ’n spesifieke tandimplantaat te identifiseer.
’n Ensemble van beeldverwerkings- en diepleergebaseerde tegnieke, wat in
staat is om piksels wat tot ’n implantaat in ’n werklike X-straalbeeld hoort
van dié wat tot die agtergrond hoort te onderskei, word ontwikkel. Norma-
lisasie en voorverwerkingstegnieke word vervolgens op die gesegmenteerde
tandimplantate in ’n bevraagtekende werklike X-straalbeeld toegepas. Die
genormaliseerde tandimplantate word aan die afgerigte FCN voorgelê vir
klassifikasiedoeleindes. Eksperimente word op twee datastelle, wat gesimu-
leerde en werklike X-straalbeelde bevat, toegepas ten einde die vaardigheid
van die voorgestelde stelsels te beraam. Gegee die feit dat die nuwe stelsels
voorgestel in hierdie studie van ’n ensemble van tegnieke gebruik maak
wat nog nie voorheen vir die doel van tandimplantaatherkenning gebruik
is nie, is die resultate behaal in hierdie studie baie bemoedigend en is dit
’n beduidende bydrae tot die huidige staat van die kuns, veral in scenarios
waar die voorgestelde stelsels met bestaande stelsels gekombineer word.

iii

Stellenbosch University https://scholar.sun.ac.za



Acknowledgements

I would like to express my sincere gratitude to the following people and
organisations for enabling me to successfully complete this study:

• My supervisor, Dr Hanno Coetzer, for his invaluable insight, guidance,
patience, unwavering support, immense knowledge and valuable cri-
tiques of this research work. This study would not have been possible
without his input. It has been an absolute privilege to call him a men-
tor and be able to learn from his immense knowledge and expertise.

• The KU Leuven team, Jeroen Bertels and Professor Dirk Vander-
meulen, for their valuable advice pertaining to this research and for
also facilitating critical collaboration with industry (Medical Care NV)
in Belgium.

• Medical Care NV and Nick Van Dooren for providing the anonymised
database of X-ray images and valuable ideas concerning this work.

• The Postgraduate Funding Department of Stellenbosch University, for
their support and financial assistance.

• The Ball family, for their financial support throughout my postgradu-
ate studies.

• My family and close friends, for their unconditional love and support.

Lastly, I would like to dedicate this dissertation to my late parents, my
mother, Bulie, and my father, Reuben. Thank you for your unconditional
love.

iv

Stellenbosch University https://scholar.sun.ac.za



Contents

Declaration i

Abstract ii

Opsomming iii

Acknowledgements iv

Contents vii

List of Figures viii

List of Tables xv

List of Symbols xvi

List of Acronyms xvii

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . 1
1.2 Key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Artificial generation of synthetic training samples . . . 3
1.2.2 Identification of dental implants . . . . . . . . . . . . . 3
1.2.3 Region of interest detection . . . . . . . . . . . . . . . 4
1.2.4 Pattern recognition . . . . . . . . . . . . . . . . . . . . 4

1.3 Objectives of this study . . . . . . . . . . . . . . . . . . . . . 5
1.4 Overview of this study . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 System design . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 Abbreviated results . . . . . . . . . . . . . . . . . . . . 11

1.5 Contribution of this study . . . . . . . . . . . . . . . . . . . . 12

v

Stellenbosch University https://scholar.sun.ac.za



1.6 Outline of this dissertation . . . . . . . . . . . . . . . . . . . . 13
1.7 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Literature study 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Generation of simulated data sets from three-dimensional mod-

els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Dental implant detection . . . . . . . . . . . . . . . . . . . . . 19
2.4 Dental implant recognition . . . . . . . . . . . . . . . . . . . . 21

3 Generation of simulated X-ray images 24
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 X-ray computed tomography (CT) . . . . . . . . . . . . . . . 25
3.3 Voxelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Two-dimensional projections . . . . . . . . . . . . . . . . . . . 34
3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 39

4 Image segmentation 42
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Semantic segmentation . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Semi-automated detection of the regions of interest . . 43
4.2.2 Fully automated detection of the regions of interest . . 45

4.3 Instance segmentation . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 55

5 Dental implant modelling 56
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Dental implant characteristics . . . . . . . . . . . . . . 58
5.2.2 Modelling and feature extraction . . . . . . . . . . . . 59

5.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 71

6 Dental implant classification 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 81

vi

Stellenbosch University https://scholar.sun.ac.za



7 Experiments 85
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.1 Artificially generated X-ray images . . . . . . . . . . . 85
7.2.2 Actual X-ray images . . . . . . . . . . . . . . . . . . . 87

7.3 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . 89
7.3.1 Experiment 1: Artificially generated X-ray images . . 90
7.3.2 Experiment 2: Automated ROI detection . . . . . . . 92
7.3.3 Experiment 3: Dental implant classification/recognition 93

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.4.1 Experiment 1: Training results for simulated X-ray

images . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.4.2 Experiment 2: Results for dental implant detection in

actual X-ray images . . . . . . . . . . . . . . . . . . . 96
7.4.3 Experiment 3: Results for dental implant recognition

in actual X-ray images . . . . . . . . . . . . . . . . . . 98
7.5 Software and hardware employed . . . . . . . . . . . . . . . . 100
7.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 103

8 Conclusion and future work 105
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vii

Stellenbosch University https://scholar.sun.ac.za



List of Figures

1.1 Schematic representation of the system developed in this study. 7
1.2 Framework of the simulated data generation protocol imple-

mented in this study. The triangulated 3D surface model is
converted into a 3D volumetric representation, where each
voxel constitutes a cube with a value of one. Each simulated
X-ray image is obtained by calculating a 2D projection of the
volumetric representation from a specific angle. . . . . . . . . 8

1.3 Schematic representation of the dental implant recognition
protocol proposed in this study. . . . . . . . . . . . . . . . . . 9

1.4 Conceptualisation of the image segmentation protocol imple-
mented in this study. . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Conceptualisation of the proposed dental implant classifica-
tion protocol. The input image is first segmented, after which
the segmented implant is normalised and processed. Features
are extracted from the input image through the proposed
FCN-1 model and compared to the learned features acquired
from the simulated data. . . . . . . . . . . . . . . . . . . . . . 11

3.1 Overview of the proposed simulated X-ray data generation
protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Acquisition of an X-ray image, with an X-ray source, object
and an X-ray imaging detector [1]. . . . . . . . . . . . . . . . 27

3.3 (a) Geometrical description of the path of integration along a
line ℓ for the 2D problem. (b) Depiction of the analog inte-
gration process for the 3D problem. . . . . . . . . . . . . . . 29

viii

Stellenbosch University https://scholar.sun.ac.za



3.4 Framework of the proposed simulated data generation algo-
rithm. The triangulated 3D surface model is converted into
a 3D volumetric representation, where each voxel constitutes
a cube with a value of one. Each simulated X-ray image is
obtained by calculating a 2D projection of the volumetric rep-
resentation from a specific angle. . . . . . . . . . . . . . . . . 30

3.5 Examples of triangulated surface plots defining the geometry
of dental implants. The depicted implants which belong to
the so-called C1 model have a length of 10 mm and external
diameters of (a) 3.30 mm, (b) 3.75 mm and (c) 5.00 mm. . . 31

3.6 (a) A typical triangle associated with an STL file. (b) Ex-
ample of an STL structure that comprises of three triangles.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Conceptualisation of the ray-tracing algorithm implemented
during the voxelisation process for the purpose of transform-
ing a triangulated 3D surface model into a 3D volumetric rep-
resentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Conceptualisation of the voxelisation process within the con-
text of a pyramid. The individual voxels in each horizontal
layer are not shown. . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 The 3D voxelised implant volumes corresponding to the tri-
angulated surface plots depicted in Figure 3.5. . . . . . . . . 34

3.10 Triangulated surface models defining the geometry of a den-
tal implant and their respective 3D voxelised representations.
(Left) Zoomed-in versions of triangulated surface models. (Right)
Zoomed-in versions of 3D volumetric representations corre-
sponding to the triangulated surface models on the left. . . . 35

3.11 Conceptualisation of the proposed simulated X-ray data ac-
quisition protocol that calculates 2D projections through the
summation of voxels along parallel beams. . . . . . . . . . . 37

3.12 The angles of rotation about the x, y and z axes are referred
to as pitch, roll and yaw, respectively. Assuming that the
simulated X-ray source and sensor are perpendicular to the
roll axis, that is, the scan beams are parallel to the roll axis,
in-plane rotations are associated with rotations about the roll
axis, while out-of-plane rotations are associated with rotations
about the pitch axis. Axial rotations occur about the yaw axis. 37

ix

Stellenbosch University https://scholar.sun.ac.za



3.13 Examples of simulated X-ray images. (Top) Examples of sim-
ulated X-ray images before zero-padding. (Bottom) Exam-
ples of simulated X-ray images corresponding to the images
on the top after zero-padding has been implemented. . . . . 38

3.14 Conceptualisation of parallel beams being projected through
a 3×3×3 volumetric representation in the form of a cube. As-
suming that each blue voxel has a value of one, the blue pixel
in the simulated X-ray detector will have a value of three. In
this application all the voxels associated with a 3D volumetric
representation of a dental implant is assumed to have a value
of one. When the entire voxel does not lie within the path of
a specific beam, a weight that coincides with the fraction of
the volume that intersects the beam is used. . . . . . . . . . . 40

3.15 Examples of simulated X-ray images employed for training the
proposed network. (Top) Examples of unrotated simulated
X-ray images. (Middle) Examples of simulated X-ray images
that underwent an out-of-plane rotation of 30◦. (Bottom)
Examples of simulated X-ray images that underwent an out-
of-plane rotation of 60◦. . . . . . . . . . . . . . . . . . . . . . 41

4.1 Conceptualisation of the proposed image segmentation protocol. 43
4.2 Examples of actual X-ray images containing dental implants. 44
4.3 Examples of manually selected ROIs annotated using polygo-

nal shapes, superimposed onto the actual X-ray images. . . . 44
4.4 Resulting binary images after local adaptive thresholding has

been applied to the images depicted in Figure 4.2. . . . . . . 45
4.5 Detected ROIs after the implementation of ROI-masking. . . 45
4.6 Examples of mask images after the application of morpholog-

ical post-processing techniques. . . . . . . . . . . . . . . . . . 46
4.7 A depiction of the architecture of the proposed FCN-2 model

which is employed for the purpose of automatically detecting
suitable ROIs within an actual X-ray image. . . . . . . . . . . 47

4.8 (Top) Examples of actual X-ray images containing dental im-
plants. (Bottom) Binary versions of the corresponding im-
ages on the top after the application of the proposed semi-
automated segmentation algorithm. These binary versions
serve as a ground truth. . . . . . . . . . . . . . . . . . . . . . 49

x

Stellenbosch University https://scholar.sun.ac.za



4.9 Visualisation of the augmented data. In each row different
augmentation operations are depicted. The output images
after the application of rotations, translations, variations in
scale, as well as horizontal and vertical flipping are respec-
tively depicted in the first row, second row, third row and
fourth row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 (Left) Results of applying the proposed FCN-2 model for the
purpose of automated ROI detection. (Right) Binary ver-
sions of the corresponding images on the left after a probabil-
ity threshold of 0.5 has been applied. . . . . . . . . . . . . . 52

4.11 The automatically detected ROIs after post-processing oper-
ations have been applied to the binary images depicted in
Figure 4.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.12 Examples of labelled connected components within the binary
images, with each dental implant assigned a different label. . 53

4.13 Examples of labelled connected components within the binary
images, with each dental implant assigned a different label and
delimited by a bounding box. . . . . . . . . . . . . . . . . . . 54

4.14 Actual X-ray images after the application of ROI-masking. . 54
4.15 Segmented dental implant images corresponding to Figure 4.14 (b).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Schematic representation of the dental implant recognition
protocol proposed in this study. The testing protocol will
be discussed in detail in Chapter 6. . . . . . . . . . . . . . . . 57

5.2 Structure of a dental implant [2]. . . . . . . . . . . . . . . . . 58
5.3 Examples of dental implants. (a) External hexagon standard

platform. (b) Internal hexagon standard platform. (c) Conical
standard platform. . . . . . . . . . . . . . . . . . . . . . . . . 59

xi

Stellenbosch University https://scholar.sun.ac.za



5.4 Conceptualisation of the rotation of a 3D object about the
three different axes. The 3D volumetric representation resides
in the world coordinate system (x, y, z), and its centre point
coincides with the origin. This defines the relative zero rota-
tion angle with respect to the initial position. Rows: Each row
depicts a rotation of the 3D volumetric representation about
a specific axis. The rotation axes are orthogonal to the 3D ob-
ject as depicted by the arrows. The bounded box (in the first
column) corresponds to the rotation axis associated with the
relevant row. First row: Axial rotations which are associated
with rotations about the yaw axis. Second row: Out-of-plane
rotations which are associated with rotations about the pitch
axis. Third row: In-plane rotations which are associated with
rotations about the roll axis. . . . . . . . . . . . . . . . . . . . 61

5.5 (a) A simulated X-ray image that underwent an out-of-plane
rotation of 40◦. (b) A simulated X-ray image that underwent
an axial rotation of 40◦. (c) A simulated X-ray image that
underwent axial and out-of-plane rotations of 40◦. . . . . . . 63

5.6 (Top) Examples of simulated X-ray images that underwent
out-of-plane rotations of 30◦, 45◦ and 60◦. (Middle) Exam-
ples of simulated X-ray images that underwent axial rotations
of 30◦, 45◦ and 60◦. (Bottom) Examples of simulated X-ray
images that underwent in-plane rotations of 30◦, 45◦ and 60◦. 66

5.7 A typical rotation about the x axis. . . . . . . . . . . . . . . 67
5.8 (a) A simulated X-ray image that underwent an in-plane ro-

tation of 40◦. (b) A simulated X-ray image that underwent
an out-of-plane rotation of 40◦ and an in-plane rotation of
60◦. (c) A simulated X-ray image that underwent axial and
in-plane rotations of 40◦. . . . . . . . . . . . . . . . . . . . . 67

5.9 A depiction of the FCN-1 model architecture employed for
the purpose of assigning a questioned dental implant within
an actual X-ray image to one of nine different connection types
investigated in this study. . . . . . . . . . . . . . . . . . . . . 68

6.1 Conceptualisation of the proposed dental implant classifica-
tion protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Examples of segmented actual X-ray images containing dental
implants. (Top) Implants inserted into pig jaws. (Bottom)
Implants inserted into human jaws. . . . . . . . . . . . . . . 78

xii

Stellenbosch University https://scholar.sun.ac.za



6.3 Examples of actual X-ray images after the Hotelling trans-
form was applied to the images depicted in Figure 6.2. (Top)
Implants within the context of the pig data set. (Bottom)
Implants within the context of the human data set. . . . . . 79

6.4 Noise reduction. Smoothed images after the application of a
suitable Gaussian filter to the images depicted in Figure 6.3. 81

6.5 Contrast enhancement. Examples of actual X-ray images after
a suitable grayscale intensity transformation was applied to
the images depicted in Figure 6.4. (Top) Implants within the
context of the pig data set. (Bottom) Implants within the
context of the human data set. . . . . . . . . . . . . . . . . . 82

6.6 Examples of resized actual X-ray images. (Top) Implants
within the context of the pig data set. (Bottom) Implants
within the context of the human data set. . . . . . . . . . . . 83

6.7 Examples of actual X-ray images of pig implants transformed
into a tuple of 4D arrays. . . . . . . . . . . . . . . . . . . . . 84

6.8 Conceptualisation of the proposed dental implant classifica-
tion protocol. The input image is first segmented, after which
the segmented implant is normalised and processed. Features
are extracted from the input image through the proposed
FCN-1 model and compared to the learned features in the
simulated data. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Examples of the artificially generated X-ray images employed
for training the proposed FCN-1 model. . . . . . . . . . . . . 86

7.2 Total data set composition within the context of the actual
X-ray images. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Examples of actual X-ray images within the context of the
implants inserted into pig jaws. . . . . . . . . . . . . . . . . . 88

7.4 Examples of actual X-ray images within the context of the
implants inserted into human jaws. . . . . . . . . . . . . . . 88

7.5 Visualisation of the filters of the twelve convolutional layers
of the proposed FCN-1 model. The images reflect the filters
at different layers. . . . . . . . . . . . . . . . . . . . . . . . . 91

7.6 Conceptualisation of the proposed data partitioning protocol
within the context of the actual X-ray images. . . . . . . . . 92

7.7 The accuracy achieved during the (a) training and (b) vali-
dation phases of the proposed network, when in-plane rota-
tions of maximally 60◦ are employed and the model is trained
for 1000 epochs across a 5-fold cross-validation protocol. . . 95

xiii

Stellenbosch University https://scholar.sun.ac.za



LIST OF FIGURES xiv

7.8 The loss achieved during the (a) training and (b) validation
phases of the proposed network across a 5-fold cross-validation
protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.9 Qualitative depiction of the proficiency of the proposed au-
tomated ROI detection protocol. (Left) Examples of actual
X-ray images. (Right) Comparison of manually selected and
automatically detected ROIs. The true positive, true nega-
tive, false positive and false negative pixels are depicted in
white, black, green and pink respectively. . . . . . . . . . . . 97

7.10 The confusion matrix of the aggregate across 5-fold cross-
validation for the proposed semi-automated dental implant
classification system when implants inserted into pig jaws are
considered. The predicted and true classes represent the nine
connection types described in Chapter 5 and depicted in Table
5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.11 The confusion matrix of the aggregate across 5-fold cross-
validation for the proposed semi-automated dental implant
classification system when implants inserted into human jaws
are considered. The predicted and true classes represent the
nine connection types described in Chapter 5 and depicted in
Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.12 The confusion matrix of the aggregate across 5-fold cross-
validation for the proposed fully automated dental implant
classification system when implants inserted into pig jaws are
considered. The predicted and true classes represent the nine
connection types described in Chapter 5 and depicted in Table
5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.13 The confusion matrix of the aggregate across 5-fold cross-
validation for the proposed fully automated dental implant
classification system when implants inserted into human jaws
are considered. The predicted and true classes represent the
nine connection types described in Chapter 5 and depicted in
Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Stellenbosch University https://scholar.sun.ac.za



List of Tables

5.1 A summary of the connection type and corresponding geomet-
rical features associated with each MIS dental implant inves-
tigated in this study. The boldfaced phrases are the names of
the dental implant models. . . . . . . . . . . . . . . . . . . . . 64

5.2 The network architecture and hyper-parameters employed by
the proposed FCN-1 model. . . . . . . . . . . . . . . . . . . . 69

7.1 The statistical performance measures employed in this study.
The number of true positives, false positives, true negatives,
and false negatives are denoted by TP, FP, TN, and FN, re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Results for the proposed automated ROI detection protocol.
The results constitute averages from a 5-fold cross-validation
protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Results for the proposed semi-automated dental implant recog-
nition system within the context of implants inserted into pig
jaws and human jaws. The results constitute weighted aver-
ages across the five folds. . . . . . . . . . . . . . . . . . . . . . 100

7.4 Results for the proposed fully automated dental implant recog-
nition system within the context of implants inserted into pig
jaws and human jaws. The results constitute weighted aver-
ages across the five folds. . . . . . . . . . . . . . . . . . . . . . 101

xv

Stellenbosch University https://scholar.sun.ac.za



List of Symbols

δ Dirac delta function

η Learning rate

γ Momentum value

Rf Radon transform of function f

∇E Gradient of the loss function

ϕ Azimuth angle about the z axis

σ Standard deviation

b Bias vector

w Weight vector

θ Elevation angle about the x axis

θp A single rotation about the pitch axis

θr A single rotation about the roll axis

θy A single rotation about the yaw axis

dℓ Line integral along ℓ axis

pj Probability of jth class (output of softmax function)

xi Input for node i

yi Output for node i

xvi

Stellenbosch University https://scholar.sun.ac.za



List of Acronyms

2D Two-dimensional

3D Three-dimensional

CT Computed tomography

CAD Computer-aided design

CNN Convolutional neural network

FCN Fully convolutional network

RT Radon transform

REC Recall

ReLU Rectified linear unit

ROI Region of interest

PRE Precision

SGD Stochastic gradient descent

SGDM Stochastic gradient descent with momentum

xvii

Stellenbosch University https://scholar.sun.ac.za



Chapter 1

Introduction

1.1 Background and motivation

The proficiency of deep learning algorithms to learn abstract and complex
features for many computer vision applications such as object detection,
image segmentation and image classification is well-documented. Recent
advances in machine learning, especially with regard to deep learning, are
assisting to identify, classify, and quantify patterns in medical images, there-
fore helping to diagnose and treat different diseases.

Deep learning-based algorithms in biomedical imaging have produced
impressive diagnostic and predictive results in radiology and pathology re-
search [3, 4]. A number of deep learning-based algorithms have also been
investigated in various medical image analysis processes involving multiple
organs, the brain, pancreas, breast cancer diagnosis and COVID-19 detec-
tion and diagnosis [5–10]. The well-documented success of deep learning in
medical imaging has the potential for meeting dental implant recognition
needs.

Dental implant recognition is crucial to multiple dental specialties, such
as forensic identification and dental reconstruction of broken connections.
Within the context of implant dentistry, implants provide promising pros-
thetic restoration alternatives for patients. In clinical practice where the
dental records of a patient are not readily available, reliable categorisation
of a dental implant previously inserted into the aforementioned patient’s jaw
is often challenging. Dentists often consider an X-ray image of the implant
in question in order to discern the make, model, and dimensions of the im-
plant. Based on this information, the connection type of the implant can
be deduced. The dentist can subsequently order a suitable abutment and

1
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CHAPTER 1. INTRODUCTION 2

artificial tooth to replace an existing one. Dentists may incur significant
costs in scenarios where the wrong abutment or artificial tooth is ordered.
A system that automates the classification of a dental implant based on an
X-ray image of a patient’s jaw may therefore be of great assistance to dental
practitioners.

Deep learning-based models require a large number of training samples
in order to effectively train the model parameters. Although large annotated
image sets (like Caltech 256, PASCAL and ImageNet) exist, the generation
and annotation of a large number of training images for a variety of new
applications is labour intensive, expensive and requires many man-hours.
Within the medical field collecting a large amount of image data from med-
ical facilities can be difficult. The limited availability of training data with
accurate annotations is one of the challenges faced when using deep learning
to create practical clinical applications in medical imaging. Hence in this
study a strategy of artificially generating a large number of training samples
is investigated.

The purpose of this study is twofold. The first objective is to develop a
proficient system that generates a large number of training samples efficiently
within the context of dental implant recognition. The second objective is to
develop a proficient deep learning-based dental implant recognition system,
that is a system that automatically classifies a questioned dental implant
within an actual X-ray image as one of the nine connection types investigated
in this study. The proposed system should be proficient in the sense that it
produces as few erroneous classifications as possible.

The remainder of this chapter is structured as follows: In Section 1.2,
the background to the problem and a discussion of the key concepts of this
study are supplied. An overview of the objectives of this study is presented in
Section 1.3. This is followed by a brief synopsis of the proposed systems (see
Section 1.4). In this dissertation, experiments are conducted on two data sets
that contain the simulated and actual X-ray images (see Section 1.4.2). The
abbreviated results are presented in Section 1.4.3, while the contributions of
this study are listed in Section 1.5. An outline of this dissertation is provided
in Section 1.6. Details about a publication that resulted from this research
is provided in Section 1.7.

1.2 Key concepts

In this study, the development of a proficient end-to-end deep learning-based
dental implant recognition system using synthetic X-ray images is proposed.
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In this section, brief discussions on several of the fundamental concepts in-
volved in such a development are presented.

1.2.1 Artificial generation of synthetic training samples

Synthetic (artificial) data is typically generated in scenarios where the avail-
ability of actual data is limited. Synthetic data should ideally imitate the
original data by replicating important statistical properties, like the distri-
bution of the data and the correlation between variables. Synthetic X-ray
images are typically produced by projecting a three-dimensional (3D) com-
puted tomography (CT) volume onto a two-dimensional (2D) image plane.
A related but different and novel strategy for generating synthetic X-ray
images will be followed in this study as summarised in Section 1.4.

1.2.2 Identification of dental implants

Dental implants have become a popular choice of treatment in replacing a
patient’s lost teeth or even entire dentitions. Each of the components used
in this process are specific to the original implant down to the manufacturer,
type and size, since most implant companies have a unique library of implant
designs, sizes, and platforms. The amount of time it takes to complete an
implant procedure from inception to final restoration can be as long as a
year (for most patients) and can be costly.

There are a number of ways in which an unknown dental implant can
be identified from a radiographic image, which includes the shape of the
collar, groove and apex. The unique characteristics of an implant can be
summarised as follows:

• Dental implant interface. The dental implant interface is the area
associated with the implant connection where the prosthetic screw
comes into contact with the abutment. There are a number of dif-
ferent types of abutment-implant interfaces, all of which are affected
by the particular type of hardware used.

• Dental implant body. The dental implant body is surgically inserted
into the jawbone of a patient to replace a tooth’s root.

• Dental implant screw. The dental implant screw is the device used
to secure the abutment to the implant. The screw is threaded and is
typically tightened to the implant body through the gums to support
the attached artificial tooth.
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1.2.3 Region of interest detection

Image segmentation constitutes the process by which an image is subdivided
into its constituent regions thereby delineating potentially meaningful areas
for further processing, like object classification and detection. Image segmen-
tation techniques can be based on either similarity or discontinuity properties
associated with the image intensity values. Similarity-based thresholding
is often achieved through thresholding, while machine learning algorithms
that employ clustering are also based on this approach. Discontinuity-based
thresholding is often based on edge detection [11].

1.2.4 Pattern recognition

Pattern recognition constitutes the automated assignment of input data to
a specific pattern class, based on prominent features. From a machine-based
perspective the pattern recognition process is generally subdivided into two
key phases, namely learning and testing.

Learning

The learning phase, also referred to as training, is concerned with the con-
struction of a mechanism that is able to interpret and analyse patterns as-
sociated with known input, in such a way that it should be equally adept
at a similar interpretation and analysis of future patterns associated with a
questioned input. This phase is characterised by learning features associated
with the training set. There are two main learning paradigms, namely su-
pervised learning which occurs in scenarios where the label of each training
sample is known beforehand, and unsupervised learning, which occurs in sce-
narios where no class labels are available and the pattern classes have to be
determined automatically, based on relative measures of their location and
dispersion in feature space, which include clustering algorithms.

Testing

The testing phase is concerned with the automatic assignment of a class
label to any questioned pattern submitted for classification. During the
testing phase, a questioned pattern is presented to the trained model with
the intention of extracting features for classification purposes. The feature
set extracted from the questioned image is subsequently compared to the
learned features acquired from the training data. The trained model typically
outputs probability values for predicting the class of the queried pattern.
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1.3 Objectives of this study

This research investigates the feasibility of deep learning for the purpose
of automatically identifying the connection type associated with a specific
dental implant within a questioned X-ray image. The main objectives of this
study can be summarised as follows:

(i) Develop an efficient and proficient system for generating artificial train-
ing samples from triangulated 3D surface models within the context of
dental implant recognition.

(ii) Develop a fully convolutional network (FCN) model, that is the FCN-1
model, to be trained and validated on the artificially generated (simu-
lated) X-ray images for the eventual purpose of assigning a questioned
dental implant within an actual X-ray image to one of the nine con-
nection types investigated in this study. The FCN-1 model therefore
extracts (learns) the prominent discriminative features which describe
the connection type associated with a specific dental implant from sim-
ulated X-ray images.

(iii) Develop efficient and proficient semi-automated and fully automated
image segmentation systems capable of distinguishing between pixels
in an actual X-ray image that belong to a dental implant from those
belonging to the background. In the case of the semi-automated system
suitable regions of interest (ROIs), that contain the dental implants,
are manually specified (selected). Within the context of the fully auto-
mated system, that is a system that employs the FCN-2 model, suitable
ROIs are automatically detected through a deep learning-based tech-
nique.

(iv) Develop a system for the purpose of classifying a questioned dental
implant within an actual X-ray image. The trained FCN-1 model is
therefore applied to an actual X-ray image for the purpose of identifying
the connection type associated with a questioned dental implant.

1.4 Overview of this study

In order to achieve the above mentioned objectives, a deep learning-based
model is trained on a large number of simulated X-ray images generated
through the proposed data generation strategy for the purpose of automati-

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 6

cally assigning a questioned dental implant within an actual X-ray image to
a specific connection type.

In this section, the reader is provided with a brief overview of the pro-
posed end-to-end deep learning-based dental implant recognition system.
A discussion on the experiments conducted in order to evaluate the perfor-
mance of the aforementioned system is provided and the experimental results
are highlighted.

1.4.1 System design

The design of the system developed in this study is conceptualised in Fig-
ure 1.1. The proposed system can be divided into three parts, that is (i) the
proposed strategy for artificially generating simulated X-ray images of den-
tal implants, (ii) the strategy towards dental implant segmentation, and
(iii) dental implant classification/recognition through machine learning.

Generation of simulated X-ray images

In this study, a novel algorithm for generating artificial training samples
from triangulated 3D surface models within the context of dental implant
recognition is proposed. The triangulated 3D surface coordinates of a specific
dental implant are used to construct a 3D volumetric representation of the
computer-aided design (CAD) surface model in question. Subsequently, 2D
parallel projections of the volumetric representation are calculated from a
number of different angles. The concept of X-ray CT for the purpose of
reconstructing images from a series of projections [11–13] inspired the novel
simulated X-ray data generation technique developed in this study. The
implementation of the proposed data generation strategy is conceptualised
in Figure 1.2.

Dental implant representation and modelling

A protocol is developed for extracting suitable features from simulated X-
ray images for the purpose of identifying the connection type associated
with a specific dental implant. The aforementioned protocol is based on
extracting learned features through a deep learning-based technique. The
deep learning-based model is therefore trained and validated on simulated
X-ray images. The dental implant recognition protocol proposed in this
study is conceptualised in Figure 1.3.
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Figure 1.1: Schematic representation of the system developed in this study.

Image segmentation

A semantic segmentation protocol is developed for the purpose of detect-
ing pixels associated with the dental implants in an actual X-ray image.
The aforementioned semantic segmentation protocol can be dichotomised
into semi-automated and fully automated systems. Semantic segmentation
is performed on an actual X-ray image for the purpose of detecting pixels as-
sociated with the dental implants without differentiating implant instances.
Instance segmentation is subsequently applied to the output mask image ac-
quired through the aforementioned semantic segmentation algorithm in order
to differentiate dental implant instances in an actual X-ray image. The im-
age segmentation protocol developed in this study is depicted graphically in
Figure 1.4.
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Figure 1.2: Framework of the simulated data generation protocol imple-
mented in this study. The triangulated 3D surface model is converted into
a 3D volumetric representation, where each voxel constitutes a cube with a
value of one. Each simulated X-ray image is obtained by calculating a 2D
projection of the volumetric representation from a specific angle.

Dental implant classification

The dental implant classification/recognition protocol developed in this study
is based on a deep learning technique. This protocol learns discriminative
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Figure 1.3: Schematic representation of the dental implant recognition pro-
tocol proposed in this study.

features for the purpose of distinguishing between different types of dental
implants in X-ray images. The features are primarily based on the implant’s
external shape. A questioned actual X-ray image which contains only a sin-
gle implant is presented to the trained FCN-1 model with the intention of
extracting features for classification purposes. The aforementioned FCN-1
model therefore extracts features from the questioned dental implant for
the purpose of predicting the connection type associated with the implant.
This new set of features is subsequently compared to the learned features
acquired from the artificially generated data. The proposed dental implant
classification protocol is conceptualised in Figure 1.5.

1.4.2 Data

In this study, experiments are conducted on (1) an artificially generated data
set and (2) an actual X-ray data set.

Artificially generated data set

In this study, the data set that contains simulated X-ray images of dental
implants is generated from triangulated surface models, which constitute
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Semantic segmentation
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• Localisation and
segmentation

Figure 1.4: Conceptualisation of the image segmentation protocol imple-
mented in this study.

standard triangle language (STL) files, engineered by the Make It Simple
(MIS) manufacturing company. The triangulated 3D surface coordinates of
a specific dental implant are used to construct a 3D volumetric represen-
tation of the model in question. A number of projections of the 3D vol-
umetric representation (from different angles) are subsequently generated.
Each projection is obtained by calculating a number of parallel ray-sums
and constitutes a simulated X-ray image.

Actual X-ray images

The actual X-ray images considered in this study constitute a total of 483
labelled and unlabelled images, which contain implants inserted into either
pig or human jaws. The database of X-ray images involving human jaws per-
tains to anonymous dental patients and was made available for this study by
Medical Care NV. The database of X-ray images involving pig jaws was gen-
erated explicitly for this research by inserting the relevant dental implants
into detached pig jaws obtained from butchers, after which the inserted im-
plants were X-rayed with a similar device as the one used within the context
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Figure 1.5: Conceptualisation of the proposed dental implant classification
protocol. The input image is first segmented, after which the segmented
implant is normalised and processed. Features are extracted from the input
image through the proposed FCN-1 model and compared to the learned
features acquired from the simulated data.

of the dental patients.

1.4.3 Abbreviated results

The systems developed in this study are subjected to a rigorous experimen-
tal evaluation protocol in order to gauge the proficiency of the proposed
artificial data generation strategy, automated region of interest (ROI) detec-
tion algorithm, as well as the respective proficiencies of the semi-automated
and fully automated systems within the context of dental implant classifica-
tion/recognition.

Within the context of simulated X-ray images, a high accuracy of 96.56%
and an average loss of 5.42% are achieved during validation across a 5-
fold cross-validation protocol. This demonstrates that the proposed FCN-1
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model (for automated connection type classification) effectively learns the
prominent features associated with each artificially generated dental implant.

The performance of the proposed fully convolutional network (FCN)
model, that is the FCN-2 model for automated dental implant segmentation,
is encouraging. The proposed system is able to classify the pixels associated
with the dental implants (foreground) and those associated with the back-
ground with accuracies of 90.43% and 94.06% within the context of data set
one (implants inserted into pig jaws) and data set two (implants inserted
into human jaws) respectively. The aforementioned data sets are discussed
in more detail in Section 7.2.

Within the context of implants inserted into pig jaws, accuracies of 74.63%
and 71.72% are achieved for the proposed semi-automated and fully au-
tomated dental implant recognition systems respectively. Within the con-
text of implants inserted into human jaws, accuracies of 69.76% and 68.67%
are achieved for the proposed semi-automated and fully automated dental
implant recognition systems respectively. Within the context of the semi-
automated system the dental implants are accurately segmented from the
actual X-ray images. This system therefore also serves as a benchmark in
gauging the performance of the fully automated segmentation protocol.

1.5 Contribution of this study

This dissertation proposes a novel ensemble of techniques within the context
of data generation and dental implant recognition. The feasibility of deep
learning techniques for the purpose of automatically assigning a questioned
dental implant within an actual X-ray image to a specific connection type is
investigated. The key contributions of this dissertation can be summarised
as follows:

• A novel framework for generating artificial training samples from trian-
gulated 3D surface models within the context of dental implant recog-
nition is proposed. The proposed algorithm is based on the calculation
of 2D projections (from a number of different angles) of 3D volumet-
ric representations of CAD surface models. The artificially generated
X-ray images are subsequently employed for training and validating
the FCN-1 model for the purpose of automatically identifying the con-
nection type associated with a specific dental implant within an X-ray
image.

• A framework of data augmentation strategies is implemented on the
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simulated X-ray images in order to ensure that the artificially gen-
erated X-ray images are rendered more representative of the actual
X-ray images. An ensemble of image preprocessing and normalisation
strategies is performed on the actual X-ray images.

• A novel algorithm of object detection within the context of dental
implant recognition which is capable of distinguishing between pixels in
an actual X-ray image that belong to an implant from those belonging
to the background is developed.

• Novel semi-automated and fully automated end-to-end deep learning-
based systems for the purpose of classifying the connection type asso-
ciated with a specific dental implant within an actual X-ray image are
proposed.

1.6 Outline of this dissertation

The dissertation is structured as follows:

Chapter 2: Literature study. A concise overview of existing research
within the context of the systems proposed in this dissertation is presented,
that is a literature review on (i) strategies of artificially generating simu-
lated data sets from three-dimensional models, (ii) strategies towards den-
tal implant segmentation, and (iii) dental implant classification/recognition
through machine learning.

Chapter 3: Generation of simulated X-ray images. The proposed
algorithm for generating artificial training samples by calculating 2D projec-
tions (from a number of different angles) of a 3D volumetric representation of
a dental implant is discussed. This 3D volumetric representation is inferred
from a triangulated 3D CAD surface model of the implant in question.

Chapter 4: Image segmentation. The ensemble of object detection
techniques proposed for the purpose of segmenting dental implants within
an actual X-ray image is presented.

Chapter 5: Dental implant modelling. The proposed deep learning-
based protocol for extracting suitable features from simulated X-ray images
for the purpose of identifying the connection type associated with a specific
dental implant in an actual X-ray image is described in detail.
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Chapter 6: Dental implant classification. The ensemble of image pro-
cessing and deep learning-based techniques employed within the context of
dental implant classification/recognition in the process of identifying the con-
nection type associated with a specific dental implant within a questioned
actual X-ray image is discussed.

Chapter 7: Experiments. The data sets considered in this research and
an outline of the experimental protocol employed in this dissertation are dis-
cussed. This is followed by exhaustive experiments that gauge and analyse
the proficiency of the algorithms proposed in this dissertation.

Chapter 8: Conclusion and future work. The research conducted in
this study, as well as the experimental results are analysed and placed into
perspective, after which avenues for future research are explored.

1.7 Publication

The research presented in this dissertation was published in August 2022
in the Journal of Medical and Biological Engineering and Computing under
the title Deep learning-based dental implant recognition using synthetic X-ray
images [14].

The authors of this publication are Aviwe Kohlakala (the author of this
dissertation), Johannes Coetzer (the supervisor of this dissertation), Jeroen
Bertels (KU Leuven) and Dirk Vandermeulen (KU Leuven).

This research project was initiated in September 2018 when Johannes
Coetzer visited KU Leuven. Jeroen Bertels is credited in this publication,
since he introduced Johannes Coetzer to DeepVoxNet, a deep learning-based
system maintained in KU Leuven for the purpose of analysing 3D medical
images. Jeroen Bertels also provided valuable advice pertaining to the con-
tent of this publication and assisted with the editing process. Dirk Van-
dermeulen is credited in this publication, since he hosted Johannes Coetzer
during his research visit in 2018 and engaged in valuable discussions. Dirk
Vandermeulen also facilitated critical collaboration with industry (Medical
Care NV) in Belgium.

The vast majority of the research presented in this publication (and in
this dissertation) was conducted by the author of this dissertation, Aviwe
Kohlakala.
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Chapter 2

Literature study

2.1 Introduction

During the last few decades, deep learning has been adopted in a number of
domains, which include medical image analysis. With the growing interest
in deep learning-based algorithms and computational design in the biomed-
ical field, the need for large, accessible and diverse data sets is increasing.
The availability of large image data sets has been a crucial factor in the
success of deep learning-based classification and detection methods. Within
the medical field, the adoption of deep learning-based algorithms is often
challenging, since large labelled data sets is rarely available, while privacy is
another major concern.

The artificial generation of synthetic training samples is often crucial in
evaluating algorithms during medical software development. Data scarcity
in the medical field is mainly due to the fact that patient data is deemed
private. Hospitals and physicians are therefore often not allowed to freely
distribute this data, which forces system developers to rely on the acquisi-
tion of synthetic (artificially generated) data. Artificially generated images
should be similar to the actual (real) images in terms of the features that can
be potentially extracted from the objects being imaged. This implies that
the artificially generated images should capture the same anatomical struc-
tures and characteristics as the actual (real) images, and that the features
of interest in the actual images should be accurately represented.

In this chapter, a concise overview of existing research within the con-
text of artificial generation of training samples from three-dimensional (3D)
surface models and dental implant recognition is presented. The discus-
sion provided on the aforementioned systems is in some way related to the

15
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work presented in this dissertation. The systems are therefore categorised
into (1) algorithms proposed for the artificial generation of synthetic training
samples (see Section 2.2), (2) techniques proposed for the purpose of seg-
menting dental implants (see Section 2.3), and (3) proposed feature match-
ing and verification paradigms for the purpose of dental implant classifica-
tion/recognition (see Section 2.3).

Since most existing dental implant-based classification/recognition sys-
tems have not been evaluated on the same data sets than those considered
in this dissertation (mainly due to privacy issues in the medical field), it is
not possible to directly compare the reported proficiency of these systems to
those proposed in this dissertation.

2.2 Generation of simulated data sets from three-
dimensional models

The availability of large training sets is crucial in building proficient deep
learning-based models. The use of synthetic data in a number of computer
vision applications has provided a means of bridging the gap between sim-
ulated and actual training data. A number of algorithms for generating
training samples from 3D models within the context of image classification
have been investigated.

Tremblay et al. [15] proposed an approach of applying simulated data
generated from 3D models to the problem of object detection. The proposed
technique of transforming 3D models into two-dimensional (2D) images is
based upon domain randomisation, that is through a process in which pa-
rameters like lighting, pose, and object textures are varied. The proposed
framework involves the placing of a random number of the objects (such
as cars) in a 3D scene at random positions and orientations. To better
enable the network to learn to ignore objects in the scene that are not of
interest (called flying distractors), a random number of geometric shapes are
added to the scene. Random textures are subsequently applied to both the
objects of interest and the flying distractors. A random number of lights of
different types are inserted at random locations, while the scene is rendered
from a random camera viewpoint, after which the result is composed over a
random background image. The resulting images, with automatically gen-
erated ground truth labels (e.g. bounding boxes), are then used for training
the neural network.

Rozantsev et al. [16] proposed a synthetic data generation technique
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for the purpose of training object detectors. The proposed algorithm esti-
mates the parameters required for generating training images from a given 3D
model of the target object. These parameters can then be reused to gen-
erate an unlimited number of training images of the object of interest in
arbitrary 3D poses, which can then be used to increase classification perfor-
mance. Post-processing methods that involve object boundary and motion
blurring, as well as the addition of noise and the variation of material prop-
erties, are implemented on the synthetic images in order to maximise their
similarity to the actual (real) images. The effect of object boundary blurring
is implemented by applying Gaussian blurring along the object boundaries
after the object image has been overlaid on the background image. For mo-
tion blurring, anisotropic Gaussian blurring is applied to the pixels of the
object in the direction of its motion. Gaussian noise is added to the synthetic
images, while their material properties are varied by changing the weight of
the diffuse reflection, which not only varies the color of the object, but also
introduces some diffuse lighting effects.

Yu et al. [17] proposed a novel synthetic data generation technique for a
vehicle data set. A 3D model of a specific make and model of a car is used to
generate different views of the car in question. This is achieved by changing
the camera distance, direction angle β within an interval β ∈ [0◦, 360◦), and
over angle α within an interval α ∈ [0◦, 90◦). The distance parameter refers
to the distance between the camera and the 3D model. By changing the
camera position, different views of the vehicle are generated. The direction
angle β refers to the direction that the camera is facing in the horizontal
plane. This parameter determines the horizontal orientation of the camera
view. The over angle α determines the vertical orientation of the camera
view in the vertical plane. By adjusting these three parameters, a wide
range of different 2D images can be generated from the 3D model.

Teixeira et al. [18] proposed a novel algorithm for generating synthetic
X-ray images of a patient by considering the patient’s 3D surface geometry.
The synthetic X-ray images are parameterised and can be manipulated by
adjusting a set of body markers which are generated during the X-ray image
prediction process. The proposed framework generates multiple synthetic
X-ray images by varying the surface geometry and perturbing the aforemen-
tioned parameters. This is achieved by training a pair of networks inspired
by the so-called U-Net network [5]. These networks are composed of four
levels of convolutional blocks, where each block consists of three consecutive
convolutional layers, followed by batch normalisation and ReLU layers. Each
network contains 27 convolutional layers, with 32 filters in each layer. The
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first network learns to generate the full image from a partial image and a set
of parameters, while the second network learns to estimate the parameters
given the full image.

Sui et al. [19] proposed a novel framework for generating synthetic train-
ing images of sewer pipes to improve the accuracy of automatic sewer pipe
defect detection. The framework first creates a 3D model of the sewer pipe
using computer-aided design (CAD) software. Once the 3D model has been
created, synthetic images of the pipe are generated by simulating various
imaging conditions, such as changes in lighting, camera position, and sen-
sor settings. Different types of defects, with varying levels of severity, are
included in the images. Additional data augmentation is performed on the
synthetic images in order to generate a wide range of diverse images. The
aforementioned augmentation techniques include the introduction of random
noise and varying blur levels to simulate different types of real-world condi-
tions such as cracks, corrosion, and deformations.

A novel technique for generating synthetic images from 3D volumetric
data of the brain is proposed by Pinaya et al. [20]. The proposed tech-
nique is based on a generative latent diffusion model (LDM). The model is
first trained on a large data set of actual (real) brain images to learn the
statistical patterns and relationships within the data. The trained model is
subsequently used to generate new synthetic brain images by randomly sam-
pling from the model’s learned distribution. Conditioning variables are used
to effectively control the synthetic data generation protocol. These condi-
tioning variables include information about the presence or absence of certain
brain structures, the level of activity in specific brain regions, or other rele-
vant features of the brain. By conditioning the generation process on these
variables, the LDM is guided to generate synthetic images that represent dif-
ferent states or conditions of the brain. By employing this technique 100 000
synthetic brain images are generated.

Moreira et al. [21] proposed an algorithm for generating cone-beam com-
puted tomography (CBCT) of dental implants from 3D surface models in or-
der to accurately determine the pose of a dental implant. The proposed pose
estimation algorithm is accomplished through a three-step approach: (i) a
region of interest (ROI) is manually specified using two operator-defined
points on the implant’s main axis, (ii) a simulated CBCT volume of the
known implant model is generated through Feldkamp-Davis-Kress (FDK)
reconstruction and is coarsely aligned to the defined axis, after which (iii) a
voxel-based rigid registration is performed to optimally align both patient
and simulated CBCT data. The implant’s pose is therefore extracted from
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the optimal transformation. The framework is achieved as follows: Start-
ing with a triangular polygon mesh of the implant model, a ray intersection
method is used to obtain a binary volume of the implant of interest. The
implant mesh is ray-traced in the x, y and z directions, after which a CBCT
reconstruction algorithm is used to obtain the final simulated volume through
the FDK algorithm.

The strategy proposed by Moreira et al. [21] is therefore based on the
implementation of the FDK algorithm, which constitutes an approximation
of filtered backprojection from cone-beam projections with a circular orbit
about the X-ray source.

In this study the novel algorithm proposed for generating artificial dental
implants is based on 2D projections that involve parallel beams. A more
detailed description of the proposed strategy is provided in Chapter 3.

2.3 Dental implant detection

A number of semi-automated and fully automated systems have been pro-
posed for the purpose of segmenting dental implants. The aforementioned
segmentation algorithms are geared towards the detection of the ROIs which
contain the dental implants. In this section an overview of the research that
has been conducted on semi-automated and fully automated dental implant
segmentation is presented.

Morais et al. [22] proposed a dental implant segmentation framework
which uses an active contour protocol for optimally defining the dental im-
plant’s boundaries. The active contour protocol comprises of two steps: (i) ini-
tialisation of the desired model and (ii) evolution/propagation of the model.
The optimal contour is estimated through the minimisation of an energy
function that reflects the target shape. An approximate shape of the target
is required to initialise the segmentation process, making the final implant
boundary dependent on such an initialisation. The major axis of a dental im-
plant is manually defined using a user-selected tip and base. Subsequently, 20
equally spaced lines perpendicular to the major axis are employed during the
contour estimation step by implementing an optimal edge detection strat-
egy. The final contour is achieved using the active contour protocol. In or-
der to evaluate the proposed segmentation strategy, the semi-automatically
detected contour is compared to a ground truth generated by a single ex-
pert observer. In their study, 125 different implant images of size 676×934
pixels are considered for the proposed segmentation strategy. The dice met-
ric, mean absolute distance (MAD) and Hausdorff distance are employed to

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 20

quantify the differences between the contours (semi-automatic and manual),
where a dice metric of 0.97±0.01 pixels, a MAD of 2.24±0.85 pixels and a
Hausdorff distance of 11.12±6 pixels are respectively obtained.

A fully automated segmentation algorithm based on image preprocess-
ing, followed by adjusted and trained active shape models is proposed by
Cunha et al. [23]. The proposed segmentation method comprises of two
steps: (i) image preprocessing which combines denoising filters, morpholog-
ical operations and histogram threshold techniques and (ii) final segmenta-
tion, that involves adjusted and trained active shape models for detecting
the precise location of the intended structures. The second phase of the
segmentation framework involves the tuning and training of three active
shape models, two of them devoted to the detection of the dental implant
contour (one for each side of the implant) and the other one for detecting
the bone line contour. In order to gauge the proficiency of the proposed
segmentation strategy, the resulting measurements are compared to manual
measurements made by experts on representative radiographs from patients.
The calculated intraclass correlation coefficient is 75% and Bland-Altman
analysis shows that 95% of the values are within the limits of agreement.

Pauwels et al. [24] proposed a fully automated dental implant segmen-
tation technique based on contour detection and particle counting. The
proposed technique is based on a three-step automated segmentation proto-
col. Firstly, images are pre-thresholded using Tmin. Next, Sobel operators
are applied for the purpose of contour detection. The edge image is subse-
quently thresholded with a second threshold value Tedge and converted into
a binary mask. After thresholding with Tedge, the binary image is subjected
to particle counting.

The aforementioned state-of-the-art algorithms for segmenting dental im-
plants are mainly based on image processing techniques. The semi-automated
segmentation algorithm proposed by Morais et al. [22] is, for example, based
on an active contour protocol. Within the context of fully automated dental
implant segmentation, an active shape model and contour detection tech-
nique are respectively investigated by Cunha et al. [23] and Pauwels et
al. [24].

The semi-automated segmentation strategy proposed in this study is
based on image processing techniques which include thresholding, connected
component analysis and morphological post-processing. The fully automated
segmentation strategy proposed in this study is based on a deep learning ap-
proach. A detailed description of the proposed segmentation algorithms is
provided in Chapter 4.
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2.4 Dental implant recognition

The identification of dental implants in X-ray images is often challenging due
to the large number of different implant models. A certain degree of expertise
is required to identify and distinguish between the various dental implant
types available on the market. The accurate classification of an implant
model is important in selecting a suitable replacement when the existing
abutment and/or artificial tooth has been lost or damaged. An overview of
the research that has been conducted on dental implant recognition is now
presented.

A k-nearest neighbour (KNN) algorithm is proposed by Morais et al. [22].
In this approach the questioned implant is compared to all the labelled im-
plants available in the reference database. The KNN classifier computes the
distance between the geometric features of the questioned implant and all
the available ones in the database. The reference implant associated with
the smallest distance is considered to be the optimal solution. The proposed
strategy is based upon a simple methodology, which employs an intensive
search to directly compare the questioned implant with all labelled objects
available in the reference database. However, the main disadvantage associ-
ated with this strategy is that it is time-consuming when a large number of
features are considered.

A number of studies [25–28] have investigated deep convolutional neural
networks (DCNN) for the purpose of classifying dental implants.

Lee et al. [25] employed the Neuro-T version 2.0.1 (Neurocle Inc., Seoul,
Korea) tool for the purpose of automatically selecting the best performing
model with optimal hyper-parameters. The aforementioned DCNN-based
model architecture consists of 18 layers and does not contain any dropout
layers. The adaptive momentum estimation (Adam) algorithm is used dur-
ing network training, while L2 regularisation is employed as the baseline for
transfer learning so as to optimise the weights and improve the output power
by adjusting the hyper-parameters. The accuracy of the proposed system is
compared against that of dental professionals using dental radiographic im-
ages collected from three dental hospitals. A total of 11 980 panoramic and
periapical radiographic images with six different types of dental implant mod-
els are divided into a training and test set of 9 584 and 2 396 images, respec-
tively. In order to evaluate the proposed DCNN-based model, 180 images are
randomly selected from the test set, after which the performance metrics are
compared to those of dental professionals. The area under the curve (AUC),
Youden index, sensitivity, and specificity are employed as performance eval-
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uation measures. The proposed network achieves an AUC of 95.4%, Youden
index of 80.8%, sensitivity of 95.5%, and specificity of 85.3%.

Hadj et al. [26], Sukegawa et al. [27] and Kim et al. [28] investigated
DCNN systems with transfer learning strategies for the purpose of classifying
different dental implant models.

Hadj et al. [26] applied preprocessing techniques and transfer learning
to a pretrained GoogLeNet Inception V3 network for the purpose of identi-
fying the brand and model of a dental implant from a radiograph. In their
study experiments are conducted on a total of 1 206 dental implant radio-
graphic images of three different brands and six different models. The data
is partitioned into training, validation and test sets, where 80% of the data is
assigned to the training and validation sets, while 20% is assigned to the test
set. The accuracy, sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), receiver operating characteristic (ROC)
curve, and AUC are employed as performance evaluation measures. The pro-
posed network achieves a diagnostic accuracy of 93.8%, sensitivity of 93.5%,
specificity of 94.2%, PPV of 92% and NPV of 91.5%.

Sukegawa et al. [27] proposed a DCNN system with transfer learning
strategies for the purpose of classifying different dental implant brands. VGG
networks are employed for transfer learning and fine-tuning purposes. Ex-
periments are conducted on a total of 8 859 implant images of 11 implant
systems from digital panoramic radiographs. The accuracy, precision, recall,
ROC curve and F1 score are employed as performance evaluation measures.
The proposed network achieves a recall of 89.4%, a precision of 91.3%, an
accuracy of 92.7% and an F1 score of 90.2%.

Kim et al. [28] employed YOLOv3 for transfer learning and fine-tuning
purposes in order to classify implant fixtures. Experiments are conducted
on a total of 355 periapical radiographs of implant fixtures which constitute
the Superline (Dentium Co. Ltd., Seoul, Korea), TS III (Osstem Implant
Co. Ltd., Seoul, Korea), and Bone Level Implant (Institut Straumann AG,
Basel, Switzerland) dental models acquired from patients who underwent
dental implant treatment. The data was split into a training and test set
at a ratio of 8 to 2. The performance of the network was evaluated on
the test set, while the sensitivity, specificity, and accuracy were employed
as performance evaluation measures. The network achieves a sensitivity
of 94.4%, a specificity of 97.9%, and an accuracy of 96.7%.

In the aforementioned systems the classification of a dental implant is
based on the type of dental implant model. The protocol proposed in this
study delves deeper by investigating the classification of dental implant con-
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nection types. The dental implant connection interface is a key feature to
consider when choosing a replacement model for the abutment. The im-
plant connection interface corresponds to the connection site where the den-
tal implant body connects to the abutment. The accurate identification of
the connection type of an implant is important in order to ensure the cor-
rect abutment is selected during the restorative phase. The dental implant
connection interface can generally be described as either a conical, internal
hexagonal or external hexagonal connection. The geometry of the connection
can be further characterised as either a narrow, standard or wide platform.
A more detailed description of the connection types investigated in this study
is provided in Section 5.3.
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Chapter 3

Generation of simulated X-ray
images

3.1 Introduction

In scenarios where the dental records of a patient are not readily available,
reliable categorisation of a dental implant previously inserted into the afore-
mentioned patient’s jaw is often challenging. In order to discern the connec-
tion type associated with a questioned dental implant, dentists often have
to manually analyse an X-ray image of the implant. In scenarios where
an incorrect abutment or artificial tooth is ordered significant costs may
be incurred. Hence, a system that automates the classification of a dental
implant based on an X-ray image of a patient’s jaw may be of great assis-
tance to dental practitioners. Based on the assumption that a large digital
database of popular dental implant models is available, such an automated
system may significantly reduce the number of possibilities which can save
time and improve accuracy by eliminating the need for manual classification
of the implant type.

The fact that a specific dental implant model may have a wide range of
widths and lengths, while the connection type remains unchanged, further
compounds the problem. Dental implant recognition in scenarios where the
dental records of the patient in question are not readily available, is therefore
currently a costly, time-consuming, and challenging task. The traditional
protocol for dental implant recognition involves an entirely user-dependent
process, where the expert compares a two-dimensional (2D) X-ray image of
the dental implant with a generic database that consists of a large number
of implant models with different designs. Due to a large number of available
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implants and the potential similarity between them, semi-automated or fully
automated frameworks that aid in the recognition of dental implant models
are essential.

The accurate classification of an implant model is important in selecting a
suitable replacement when the existing abutment and/or artificial tooth has
been lost or damaged. The dentists involved in the initial stage of surgically
inserting the dental implants into a patient’s jaw, do not necessarily provide
maintenance for dental implant fixtures. It is therefore essential that dentists
and technicians can accurately identify the inserted implant model and its
associated connection type.

In this study a novel algorithm for generating artificial training samples
from triangulated three-dimensional (3D) surface models within the context
of dental implant recognition is proposed. The triangulated 3D surface co-
ordinates of a specific dental implant are used to construct a 3D volumetric
representation of the computer-aided design (CAD) surface model in ques-
tion. The concept of X-ray computed tomography (CT) for the purpose
of reconstructing images from a series of projections [11–13] inspired the
simulated X-ray data generation technique proposed in this study.

In this chapter the proposed protocol for generating artificial training
data is discussed in detail. The aforementioned protocol is summarised in
Figure 3.1. In Section 3.2, the principles of X-ray CT are discussed in detail.
Subsequently, in Section 3.3, the voxelisation algorithm implemented in order
to transform the triangulated surface model into a 3D volumetric represen-
tation of the model in question is discussed. In Section 3.4, the proposed
strategy of calculating 2D projections of a 3D volumetric representation is
described in detail.

3.2 X-ray computed tomography (CT)

Computed tomography (CT) is an imaging technique that involves propa-
gating X-ray beams through a 3D object after which the attenuated X-ray
intensities are registered by a sensor. Mathematical algorithms are sub-
sequently employed to reconstruct a number of 2D cross-sectional images
or "slices" of the 3D object in question. These slices are often referred
to as tomographic images. During the tomographic reconstruction process
X-ray radiology is employed for the purpose of generating a large number
of radiographic projections, which are subsequently reconstructed using a
mathematical algorithm [12, 29, 30] in order to produce a slice image of the
object being scanned. These reconstructed slices can then be stacked to
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3D triangulated
surface model

Voxelisation

• Transformation of triangulated model

• Ray-tracing algorithm

• 3D logical output volume

2D parallel projections

• Parallel beam projections

• Ray-sums of 3D volumetric representation

• Projection profiles of the 3D voxelised representation
acquired from different angles

• Simulated X-ray images

Figure 3.1: Overview of the proposed simulated X-ray data generation pro-
tocol.

form a 3D representation of the object that can be used in a wide range of
applications [31–34]. The X-rays passing through the object are attenuated
according to the Beer-Lambert law [13],

I(x) = I0e
−µx, (3.1)

where I is the recorded X-ray intensity after passing through the object, I0
is the incident X-ray intensity, x is the length of the X-ray path through the
object, and µ is the linear attenuation coefficient of the material for the X-ray
energy being employed. Equation 3.1 assumes a homogeneous material and
a monochromatic X-ray beam. For inhomogeneous objects like the human
body, the attenuation of the X-rays may consequently be described by

I(x) = I0e
−

∫
µ(x) dx. (3.2)

A CT image is obtained by rotating an X-ray source about the object with
a detector positioned directly opposite the radiation source. The X-ray de-
tector records attenuated intensity values after the X-ray beams penetrated
the object (see Figure 3.2). The resultant intensity value of each detector
pixel is a function of the attenuation coefficient µ and the path followed by
the X-rays. Unlike traditional projection radiography, CT collects multiple
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projections of the same object from different orientations by moving the X-
ray source about the object. CT systems are outfitted with rows of digital
detectors of which the signals serve as direct input to a computer. These sig-
nals are subsequently used to reconstruct one or more cross sections (slices)
of the scanned object. In this way, although CT systems acquire projections
that represent a "shadow" of the object, they generate truly tomographic
images after reconstruction.

Figure 3.2: Acquisition of an X-ray image, with an X-ray source, object and
an X-ray imaging detector [1].

The fundamental measurement required by a CT scanner is the estima-
tion of X-ray attenuation along a line between an X-ray source and an X-ray
detector [12, 13]. In order to reconstruct an image of a 2D cross section, a
collection of such measurements are required along all lines within the cross
section. The mathematical principles of CT were first investigated as early
as 1917, when Johann Radon showed that a function can be reconstructed
from an infinite set of its projections using the Radon transform (RT) [35].
The continuous RT in 2D constitutes an integral transform, that is the inte-
gral of a function along straight lines.

The RT of a 2D function f(x, y) is defined as follows: Let A be a 2D
object in R2 and let f(x) be the bi-dimensional binary function of A, defined
as f(x) = 1, when x lies within the 2D object’s interior, and f(x) = 0
otherwise [31, 36]. The 2D RT (Rf ) of the function f(x) associates with
each pair (η, ρ) the integral of f(x) on the plane P (η, ρ) = {x|xt · η = ρ}
where η = (cos θ, sin θ). The plane P is normal to the direction η and a
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distance ρ from the origin. The RT is therefore defined as

Rf (η, ρ) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − ρ) dxdy

=

∫ ∞

−∞
f(ρ cos θ − ℓ sin θ, ρ sin θ + ℓ cos θ) dℓ,

(3.3)

where the Dirac delta function, δ, converts the 2D integral (with respect to
x and y) to a line integral dℓ along the line x cos θ + y sin θ = ρ and f(x, y)
represents the X-ray attenuation coefficient, which is rotated by an angle θ
with respect to the object location (x, y).

The ℓ axis is aligned with the direction of a given projection, that is, the
lines (beams) along which attenuation information is accumulated through
integration. In the particular case of CT, this coincides with the direction
of the X-rays. For a fixed θ,Rf represents a 1D projection of the 2D object
f(x, y) and {Rf (η, ρ)|θ ∈ [0, π)} constitutes a complete collection of these 1D
projections of the 2D object f(x, y) [12].

In 3D, the RT of a function f(x, y, z) is obtained by integrating along
planes. The 3D RT constitutes a generalisation of Equation 3.3 and is defined
as follows,

Rf (η, ρ) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x)δ(x cosϕ sin θ + y sinϕ sin θ + z cos θ − ρ) dx

(3.4)

where x = (x, y, z) and the unit vector η using spherical coordinates becomes
η = (cosϕ sin θ, sinϕ sin θ, cos θ). The generation of a complete 2D RT-
based data set only requires rotation about one axis, while the generation
of a complete 3D RT-based data set requires a rotation that considers two
angles, for example θ and ϕ that cover the entire unit sphere. In this way
sets of planes that intersect the object at all possible angles are obtained.
Figure 3.3 (a) depicts a straight line using its normal representation and
Figure 3.3 (b) depicts the relevent 3D projection geometry. A more detailed
description of the 3D RT can be found in [37, 38].

The proposed projection protocol simulates the acquisition of a CT scan
that measures the X-ray attenuation along a line between an X-ray source
and an X-ray detector. Each voxel within the 3D volumetric representation
of a CAD surface model associated with a dental implant constitutes a cube
which has a value of one. It is therefore assumed that the material of the den-
tal implant is homogeneous and that all the attenuation coefficients are the
same. The implementation of the data generation strategy (see Figure 3.4)
is described in the following sections.
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Figure 3.3: (a) Geometrical description of the path of integration along a
line ℓ for the 2D problem. (b) Depiction of the analog integration process
for the 3D problem.

3.3 Voxelisation

A triangulated 3D surface model constitutes a series of vertices, edges and
faces stored in stereolithography (STL) format. Examples of triangulated 3D
surface plots of the so-called C1 implant model with a length of 10 mm and
external diameters of 3.30 mm, 3.75 mm and 5.00 mm are presented in Fig-
ure 3.5. The triangles associated with an STL file constitute the object
surface, where each triangle is defined by its normal vector, n, and the coor-
dinates of its three vertices, v1, v2, and v3 (see Figure 3.6). The triangulated
surface model describes only the outer shell or contour of a dental implant
and not the entire volume.

Therefore, as a point of departure, a triangulated 3D surface model of a
dental implant has to be converted into a so-called volumetric representation.
This is achieved through a process known as voxelisation. It is proposed
that a triangulated 3D surface model is converted into a voxel-based model
using an algorithm conceptualised by Aitkenhead [39]. The aforementioned
algorithm is based on ray-tracing as will be discussed shortly.

Aitkenhead’s voxelisation algorithm produces a bounded logical grid rep-
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Generation of simulated X-ray images
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Figure 3.4: Framework of the proposed simulated data generation algorithm.
The triangulated 3D surface model is converted into a 3D volumetric rep-
resentation, where each voxel constitutes a cube with a value of one. Each
simulated X-ray image is obtained by calculating a 2D projection of the vol-
umetric representation from a specific angle.
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Figure 3.5: Examples of triangulated surface plots defining the geometry
of dental implants. The depicted implants which belong to the so-called
C1 model have a length of 10 mm and external diameters of (a) 3.30 mm,
(b) 3.75 mm and (c) 5.00 mm.

resenting the implant shape. The output is a 3D logical volume containing
the voxelised data, where a value of one is assigned to each cube-shaped voxel
located inside the mesh, while a value of zero is assigned to each cube-shaped
voxel located outside the mesh. More specifically, Aitkenhead’s voxelisation
algorithm operates by passing a set of rays through the object along a spe-
cific axis to compute the intersections with the facets. The basic principle
of the ray-tracing algorithm is conceptualised in Figure 3.7.

The set of rays passes through voxel centres that are located in the grid
perpendicular to the chosen axis. The ray-tracing algorithm therefore iter-
ates through each voxel in the grid and considers a ray passing through the
centre of each voxel. The iteration occurs along the two grid directions, typ-
ically the x and y axes, and starts from the minimum value associated with
those directions and continues up to the maximum value. By considering a
ray passing through the centre of each voxel, the algorithm is able to sample
the entire 3D space represented by the voxel grid. Figure 3.8 depicts the
voxelisation process for a shape in the form of a pyramid.

For each iteration, all the possible crossed mesh facets are found. For
every one of these facets it is verified that the ray is on the same side of
the opposing vertex with respect to every edge of the facet. On the other
hand, if the ray crosses exactly on a vertex, it is verified that the nearby
facets have normal components with the same or the opposite direction of
the ray. The z coordinates of the points where the rays cross the mesh are
subsequently individuated. The z coordinates are determined by solving the
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Figure 3.6: (a) A typical triangle associated with an STL file. (b) Example
of an STL structure that comprises of three triangles.

3D volume
data

Ray-tracing

Figure 3.7: Conceptualisation of the ray-tracing algorithm implemented dur-
ing the voxelisation process for the purpose of transforming a triangulated 3D
surface model into a 3D volumetric representation.

following equation that describes the plane of the facet,

Ax+By + Cz +D = 0, (3.5)

where

A = y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2),

B = z1(x2 − x3) + z2(x3 − x1) + z3(x1 − x2),

C = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2) and

D = x1(y3z2 − y2z3) + x2(y1z3 − y3z1) + x3(y2z1 − y1z2).
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Figure 3.8: Conceptualisation of the voxelisation process within the context
of a pyramid. The individual voxels in each horizontal layer are not shown.

Equation 3.5 is subsequently solved by substituting the x and y coordinates
of the points in order to determine z. In order to reduce voxelisation errors,
this procedure is repeated for each direction (x,y,z) so as to produce three
intermediate volumes. These volumes are subsequently combined into a sin-
gle 3D volumetric model by finding all voxels that intersect at least two of
the intermediate volumes.

Linear interpolation is employed to fill in the rays that could not be
voxelised. A ray for which the voxelisation algorithm did not give a clear
result is therefore calculated by interpolating the adjacent rays. Each voxel
in the volumetric representation constitutes a cube with a value of one.

The dimensions of the grid were chosen in such a way that each cube-
shaped voxel has a side length of 1/30 mm. This spatial resolution is con-
sidered to be detailed enough to ensure that important features are not lost
and coarse enough to avoid spatial inefficiency.

A dilation factor of 18 is implemented in all the directions in order not
to deform the object. The initial dimensions of the model are therefore
multiplied by 18 and rounded to the nearest integer.

The logical output grids containing three dental implant shapes are shown
in Figure 3.9. Such a 3D output volume serves as input from which 2D pro-
jections are obtained for the purpose of generating simulated X-ray images.

For visual comparison purposes, a few examples of 3D triangulated sur-
face models and the corresponding 3D volumetric representations are pre-
sented in Figure 3.10
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Figure 3.9: The 3D voxelised implant volumes corresponding to the triangu-
lated surface plots depicted in Figure 3.5.

3.4 Two-dimensional projections

In this study the proposed projection strategy imitates the X-ray emission
protocol in a CT scan by projecting parallel beams modelled by a set of lines
across the 3D volumetric representation of a dental implant from different
angles.

Two-dimensional projections of a 3D volumetric representation are there-
fore computed from a number of different angles. Each projection is obtained
by calculating a number of parallel ray-sums of the 3D volumetric represen-
tation. The projections are acquired by rotating the 3D volumetric repre-
sentation, while keeping the detector and source fixed. Note that in the
case of clinical CT systems, on the other hand, the detector and the source
rotate about the object (patient). The value of a specific pixel within the
projection image is obtained by integrating (summing) the 3D volumetric
representation along a beam in the direction perpendicular to the detector.

In 3D space the generic rotation matrix for the purpose of re-orientating
a 3D function can be derived from basic plane rotations. Such a plane
rotation is typically performed about one of the axes of the Cartesian system.
The following three 3× 3 rotation matrices rotate an arbitrary vector by an
angle θ about the x, y and z axis respectively:

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 and
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Figure 3.10: Triangulated surface models defining the geometry of a dental
implant and their respective 3D voxelised representations. (Left) Zoomed-in
versions of triangulated surface models. (Right) Zoomed-in versions of 3D
volumetric representations corresponding to the triangulated surface models
on the left.
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Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .

According to Euler’s rotation theorem any arbitrary rotation in 3D space
can be achieved by combining the above three rotation matrices through
multiplication:

R = Rz(ϕ)Ry(β)Rx(θ)

=

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

1 0 0
0 cos θ − sin θ
0 sin θ cos θ



=

cosβ cosϕ sin θ sinβ cosϕ− cos θ sinϕ cos θ sinβ cosϕ+ sin θ sinϕ
cosβ sinϕ sin θ sinβ sinϕ+ cos θ cosϕ cos θ sinβ sinϕ+ sin θ cosϕ
− sinβ sin θ cosβ cos θ cosβ

 .

The Euler-Rodrigues angle-axis representation principle may subsequently
be employed, which consists of two components, that is, the unit vector
defining the rotation axis and the angle of rotation [40].

In Figure 3.11 the proposed parallel projection protocol is conceptualised.
The 3D volumetric representation resides in the world coordinate system
(x, y, z), and its centre point coincides with the origin. The 2D projections
are computed as the 3D volumetric representation rotates.

During the X-ray simulation process, each 3D volumetric representation
of an implant undergoes axial, out-of-plane and in-plane rotations through
a number of different angles, before its projection is generated (see Fig-
ure 3.12). The in-plane rotations are conducted during the data augmenta-
tion protocol that forms part of training the model proposed for the purpose
of automatically classifying the connection type associated with a specific
dental implant from an X-ray image (as will be discussed in detail in Chap-
ter 5), while axial and out-of-plane rotations are conducted during the initial
phase of the X-ray simulation process, that is before training. The transfor-
mation is the result of two consecutive rotations where the first rotation is
through an azimuth angle ϕ about the z axis and the second rotation is
through an elevation angle θ about the x axis after which the projected data
is obtained through summation.

The Euler-Rodrigues principle (axis-angle rotation) is employed for the
purpose of computing the rotation matrix about the relevant axis as follows

Q = I+Ω sin θ +Ω2(1− cos θ), (3.6)
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3D volumetric
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X-ray source

Simulated
X-ray detector

Figure 3.11: Conceptualisation of the proposed simulated X-ray data ac-
quisition protocol that calculates 2D projections through the summation of
voxels along parallel beams.

x

z

Yaw

Pitch

Rolly

Figure 3.12: The angles of rotation about the x, y and z axes are referred
to as pitch, roll and yaw, respectively. Assuming that the simulated X-ray
source and sensor are perpendicular to the roll axis, that is, the scan beams
are parallel to the roll axis, in-plane rotations are associated with rotations
about the roll axis, while out-of-plane rotations are associated with rotations
about the pitch axis. Axial rotations occur about the yaw axis.
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where I =

1 0 0
0 1 0
0 0 1

 and Ω represents the cross-product matrix Ω = 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 with ω = [ωx, ωy, ωz]
T being the axis of rotation and θ

the angle of rotation. Once the rotation matrix has been determined, the
re-orientation of the 3D volumetric representation is performed. The 3D
binary volume is rotated about the z axis using a complete azimuth range
of 0◦ to 360◦ with increments of 5◦. The elevation rotations are computed
within the intervals of 0◦ to 60◦, 120◦ to 240◦ and 240◦ to 360◦ with incre-
ments of 5◦. Elevation angles outside the aforementioned intervals are not
expected in practical scenarios. In order to eliminate wraparound effects,
which may be due to trigonometric interpolation, zero-padding is imple-
mented which ensures that the output is a cube. Zero-padding is imple-
mented for each dimension by inserting zero-valued voxels before the first
element and after the last element (see Figure 3.13).

Figure 3.13: Examples of simulated X-ray images. (Top) Examples of sim-
ulated X-ray images before zero-padding. (Bottom) Examples of simulated
X-ray images corresponding to the images on the top after zero-padding has
been implemented.

For fixed angles θ and ϕ the beam-sum of voxels within the 3D volumetric
representation is obtained. By iterating through all the parallel beams which
intersect the 3D volumetric representation for fixed values for θ and ϕ a sin-
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gle 2D projection profile is obtained. A projection profile of the 3D voxelised
representation acquired from specific angles θ and ϕ therefore constitutes a
simulated X-ray image. A particular pixel value within the simulated X-ray
image is the beam-sum that constitutes the accumulated intensities of the 3D
volumetric representation along the beam in question. By iteratively chang-
ing θ and ϕ and repeating the procedure, a large number of projections can
be obtained. These projections can theoretically be acquired by considering
rotations through the entire range of 360◦.

Simulated X-ray images are therefore obtained when projections along
parallel beams of a 3D voxelised representation of a dental implant are com-
puted from specified directions. To generate a projection, a set of parallel
beams are projected through the 3D volumetric representation, with each
beam passing through a series of voxels at regular intervals. Along each
beam, the contributions of the voxels intersected by the beam are subse-
quently summed to obtain a single value for a pixel in the final projected
image. This resulting value therefore coincides with the intensity of the
corresponding pixel in the 2D image. In Figure 3.14, the proposed parallel
projection protocol is conceptualised.

As the 3D volumetric representation rotates about an axis, 2D paral-
lel projections are calculated. For the purpose of illustrating the proposed
out-of-plane rotation strategy implemented in generating simulated training
samples, a number of examples of the dental implant model C1 with a conical
narrow platform, external diameters of 3.30 mm and 5.00 mm and lengths
of 10 mm and 16 mm are represented in Figure 3.15.

In addition to the out-of-plane and axial rotations (conducted before
training), a number of in-plane rotations are conducted during the data aug-
mentation protocol (as part of training) which are described in more detail
in Chapter 5.

3.5 Concluding remarks

In this chapter an algorithm based on the calculation of 2D projections
(from a number of different angles) of 3D volumetric representations for the
purpose of generating artificial training samples from triangulated 3D surface
models within the context of dental implant recognition was proposed. The
artificially generated X-ray images serve as input for training and validating
the proposed network for the purpose of identifying the connection type
associated with a specific dental implant within a questioned X-ray image.
This will be discussed in more detail in Chapter 5.
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Figure 3.14: Conceptualisation of parallel beams being projected through a
3×3×3 volumetric representation in the form of a cube. Assuming that each
blue voxel has a value of one, the blue pixel in the simulated X-ray detector
will have a value of three. In this application all the voxels associated with a
3D volumetric representation of a dental implant is assumed to have a value
of one. When the entire voxel does not lie within the path of a specific beam,
a weight that coincides with the fraction of the volume that intersects the
beam is used.
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Figure 3.15: Examples of simulated X-ray images employed for training the
proposed network. (Top) Examples of unrotated simulated X-ray images.
(Middle) Examples of simulated X-ray images that underwent an out-of-
plane rotation of 30◦. (Bottom) Examples of simulated X-ray images that
underwent an out-of-plane rotation of 60◦.
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Chapter 4

Image segmentation

4.1 Introduction

In this chapter, the novel semi-automated and fully automated image seg-
mentation systems proposed in this study are discussed. In the case of the
semi-automated system suitable regions of interest (ROIs), that contain the
dental implants, are manually specified (selected). Within the context of the
fully automated system, suitable ROIs are automatically detected through
a deep learning-based technique. A semantic segmentation algorithm is pro-
posed for the purpose of detecting pixels associated with the dental im-
plants without differentiating implant instances in an actual X-ray image (see
Section 4.2). Instance segmentation is subsequently applied to the output
mask image acquired through the aforementioned semantic segmentation al-
gorithm in order to differentiate dental implant instances in an actual X-ray
image (see Section 4.3). The image segmentation protocol developed in this
study is depicted graphically in Figure 4.1.

4.2 Semantic segmentation

In this section, the two types of image segmentation systems proposed in
this study, that is, the semi-automated and fully automated systems, are
discussed.

The proposed semi-automated system involves manual selection of suit-
able ROIs that contain dental implants. This means that a human operator
needs to first identify and specify the areas where the dental implants are
located. Once the ROIs are identified, the proposed system uses image pro-
cessing techniques to perform semantic segmentation in order to detect the

42
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Image segmentation

Actual X-ray image

Semantic segmentation

Semi-automated
detection
of ROIs

• Manual annotation of ROIs

• Image preprocessing

• Morphological post-processing

Fully automated
detection
of ROIs

• Deep learning protocol

• Post-processing

Instance segmentation

• Localisation and
segmentation

Figure 4.1: Conceptualisation of the proposed image segmentation protocol.

pixels associated with the dental implants. On the other hand, the proposed
fully automated system uses deep learning-based techniques to automatically
detect suitable ROIs without human intervention.

In both cases, the main purpose of the segmentation process is to identify
the pixels that are associated with the dental implants and those associated
with the background. The system does not differentiate between different
implant instances, and only detects the pixels that are associated with im-
plants.

4.2.1 Semi-automated detection of the regions of interest

An ensemble of image processing techniques are implemented for the pur-
pose of detecting pixels associated with the dental implants (foreground) and
discarding those associated with the background without differentiating im-
plant instances in the actual X-ray image. In Figure 4.2, a few examples of
actual X-ray images are depicted. The suitable ROIs that contain the dental
implants are manually selected within the actual X-ray images. Polygonal
shapes are used to annotate the ROIs which contain the dental implants
within a questioned image. In Figure 4.3 the manually selected ROIs are
superimposed onto the dental implants.
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(a) (b) (c)

Figure 4.2: Examples of actual X-ray images containing dental implants.

(a) (b) (c)

Figure 4.3: Examples of manually selected ROIs annotated using polygonal
shapes, superimposed onto the actual X-ray images.

Local adaptive thresholding is applied to an actual X-ray image for the
purpose of converting it from grey-scale to binary format (see Figure 4.4).
The manually selected ROIs are subsequently employed as a mask image
in order to remove the pixels not associated with the dental implants (see
Figure 4.5).

In order to reduce the noise in the binary images depicted in Figure 4.5
and render the foreground boundaries more regular, the images are subjected
to morphological post-processing. For this purpose a morphological hole-
filling operation is applied which is subsequently followed by morphological
closing. The aforementioned post-processing techniques are performed in
order to eliminate noise, fill in the holes and enhance the binary mask image.
The results are depicted in Figure 4.6. The post-processed binary masks also
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(a) (b) (c)

Figure 4.4: Resulting binary images after local adaptive thresholding has
been applied to the images depicted in Figure 4.2.

(a) (b) (c)

Figure 4.5: Detected ROIs after the implementation of ROI-masking.

serve as a ground truth for the purpose of automatically detecting suitable
ROIs that contain the dental implants.

4.2.2 Fully automated detection of the regions of interest

In this study two independent fully convolutional network (FCN) models
are investigated: (i) the first model (FCN-1) is proposed for the purpose
of automatically classifying the connection type associated with a specific
dental implant from an X-ray image, while (ii) the second model (FCN-2) is
proposed for the detection of suitable ROIs that contain the dental implants
in an actual X-ray image. Model FCN-1 will be described in more detail in
Chapter 6.
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(a) (b) (c)

Figure 4.6: Examples of mask images after the application of morphological
post-processing techniques.

The FCN-2 model is proposed for the detection of suitable ROIs which
contain the dental implants in an actual X-ray image. The FCN-2 model con-
stitutes a two-dimensional (2D) convolutional neural network (CNN) within
an encoder-decoder architecture, which performs semantic pixel-wise seg-
mentation [5, 41, 42]. The architecture of the proposed FCN-2 model is
depicted in Figure 4.7 and described in detail below.

Encoder

The input images (the actual X-ray images and the corresponding segmen-
tation mapping) are fed through the encoder network so that downsampled
feature maps are generated. The proposed encoder network consists of ten
convolutional layers, where each of these layers is followed by a rectified
linear unit (ReLU), batch normalisation (BN) and maximum pooling layer.

The encoder performs spatial convolution on the input image to produce a
set of feature maps. An element-wise ReLU function is subsequently applied
to the feature map which sets all of the negative pixel values in the feature
map equal to zero. This process can be formulated as follows,

f(xi) = ReLU(Wi ∗ Xi + bi) for i = 1, . . . , N, (4.1)

where N is the number of convolutional layers, Wi and bi denote the weights
and biases respectively, ∗ represents the convolution operator, Xi is the input
image and ReLU(x) = max(0, x) is the activation function.

Batch normalisation is subsequently applied to the output feature maps
followed by max pooling. Max pooling is employed for the purpose of down-
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Network architecture

Encoder

Conv2D (7× 7× 8) + ReLU

Conv2D(7× 7× 8) + ReLU

BN

Max pooling2D (2× 2)

Dropout (5%)

Conv2D (7× 7× 16) + ReLU

Conv2D (7× 7× 16) + ReLU

BN

Max pooling2D (2× 2)

Dropout (5%)

Conv2D (7× 7× 32) + ReLU

Conv2D (7× 7× 32) + ReLU

BN

Max pooling2D (2× 2)

Dropout (5%)

Conv2D (7× 7× 64) + ReLU

Conv2D (7× 7× 64) + ReLU

BN

Max pooling2D (2× 2)

Dropout (5%)

Conv2D (7× 7× 128) + ReLU

Conv2D (7× 7× 128) + ReLU

Decoder

Upsampling (2× 2× 64)

Conv2D (7× 7× 64) + ReLU

Conv2D (7× 7× 64) + ReLU

BN

Upsampling (2× 2× 32)

Conv2D (7× 7× 32) + ReLU

Conv2D (7× 7× 32) + ReLU

BN

Upsampling (2× 2× 16)

Conv2D (7× 7× 16) + ReLU

Conv2D (7× 7× 16) + ReLU

BN

Upsampling (2× 2× 8)

Conv2D (7× 7× 8) + ReLU

Conv2D (7× 7× 8) + ReLU

BN

Conv2D (1× 1× 1) + sigmoid

Figure 4.7: A depiction of the architecture of the proposed FCN-2 model
which is employed for the purpose of automatically detecting suitable ROIs
within an actual X-ray image.

sampling the feature maps in order to achieve translation invariance over
small spatial shifts in the input image. A dropout rate of 5% is implemented
which removes a random set of activations by setting them equal to zero,
thereby essentially forcing the network to be redundant [43]. This implies
that the network should be able to provide the correct classification or output
even when certain activations are removed, therefore rendering the network
less prone to overfitting, which in turn leads to better generalisation.

Decoder

The decoder network is implemented for the purpose of upsampling the fea-
ture maps to the same size as the original image. The upsampling layers are
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followed by convolutional layers so as to generate dense feature maps. Each
convolutional layer is followed by a ReLU layer. A batch normalisation step
is then applied to each of the feature maps. A sigmoid function is applied to
the final feature map in order to compute the probability distribution across
the binary classes. The sigmoid function classifies each pixel independently.
The output of the sigmoid classifier is a K-channel image of probabilities
where K is the number of binary classes. The predicted segmentation cor-
responds to the class with maximum probability for each pixel.

Training

The input images and their corresponding segmentation maps are used to
train the proposed model. The final binary masks acquired through the
proposed semi-automated segmentation protocol serve as the ground truth.
Typical examples of the training samples are presented in Figure 4.8.

During training, the actual X-ray images and the corresponding ground
truth masks are augmented by applying geometric transformations. The
following data augmentation techniques are implemented,

• rotations within an interval of [0◦, 50◦),

• scaling variations within a range of [0.05, 0.2],

• translations within a range of [0, 2] pixels in the x and y directions,
and

• horizontal and vertical flipping of the input images.

Since the images are augmented in real-time during training, a nearest neigh-
bour interpolation technique is employed to fill in the missing information.
Examples of output images acquired after the implementation of data aug-
mentation are depicted in Figure 4.9.

During each forward pass of the training phase, information from the
input images is propagated through the different layers of the network to ob-
tain the predicted (network) output. The binary entropy between the model
output and the ground truth (see Equation 4.2) serves as a loss function
and is subsequently used during the backward pass to update the weights
(parameters) within each layer of the network,

L = − 1

M

M∑
i=1

[yi log(pi) + (1− yi) log(1− pi)], (4.2)
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: (Top) Examples of actual X-ray images containing dental im-
plants. (Bottom) Binary versions of the corresponding images on the top
after the application of the proposed semi-automated segmentation algo-
rithm. These binary versions serve as a ground truth.

where M is the total number of pixels in the image and yi ∈ (0, 1) is the label
of the i-th pixel where 0 indicates that the pixel belongs to the background
and 1 indicates that the pixel belongs to the foreground. The network is
trained by employing the adaptive momentum estimation (Adam) algorithm
which optimises the model parameters by iteratively updating the weights
using a batch of training data so as to minimise the error function [44].

Selected illustrational results and post-processing

Selected results illustrating the proficiency of the proposed FCN-2 model
for the purpose of segmenting dental implant images into foreground and
background regions are presented in Figure 4.10. The probability that a
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Figure 4.9: Visualisation of the augmented data. In each row different aug-
mentation operations are depicted. The output images after the application
of rotations, translations, variations in scale, as well as horizontal and verti-
cal flipping are respectively depicted in the first row, second row, third row
and fourth row.
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pixel belongs to the foreground is denoted with a shade of red in Fig-
ures 4.10 (a), 4.10 (c) and 4.10 (e). The binarised images (using a probability
threshold of 0.5) corresponding to the aforementioned probability matrices
are depicted in Figures 4.10 (b), 4.10 (d) and 4.10 (f) respectively. The mor-
phological post-processing techniques implemented within the context of the
proposed semi-automated segmentation protocol are also conducted within
the context of the proposed fully automated segmentation protocol, after
which small connected components are removed. The results are depicted in
Figure 4.11.

4.3 Instance segmentation

In this section instance segmentation is applied to the post-processed mask
images acquired through the proposed semi-automated or fully automated al-
gorithms in order to differentiate dental implant instances in an actual X-ray
image. Each mask image (see Figure 4.11) is partitioned into its constituent
components through connected component analysis and the detected dental
implants are therefore localised and segmented.

A two-pass algorithm is employed for detecting the connected compo-
nents and labelling each connected component within the binary image. A
different label is therefore assigned to each dental implant (see Figure 4.12).
Each component is delimited by a bounding box which is subsequently used
to segment the actual X-ray image into its constituent dental implants for
the purpose dental implant classification (see Figure 4.13).

ROI masking

During the final stage of segmentation an actual X-ray image is partitioned
into its constituent components. The post-processed binary images acquired
through the proposed semi-automated or fully automated algorithms are
employed as mask images in order to isolate dental implants in the actual
X-ray images (see Figure 4.14). Each masked X-ray image is subsequently
segmented into its constituent dental implants by using the bounding boxes
acquired through the connected component algorithm. Figure 4.15 depicts
an actual X-ray image segmented into its constituent dental implants. Each
segmented implant serves as input for the dental implant classification frame-
work that attempts to accurately classify the connection type associated with
the implant in question.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: (Left) Results of applying the proposed FCN-2 model for the
purpose of automated ROI detection. (Right) Binary versions of the cor-
responding images on the left after a probability threshold of 0.5 has been
applied.
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(a) (b) (c)

Figure 4.11: The automatically detected ROIs after post-processing opera-
tions have been applied to the binary images depicted in Figure 4.10.

(a) (b) (c)

Figure 4.12: Examples of labelled connected components within the binary
images, with each dental implant assigned a different label.
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(a) (b) (c)

Figure 4.13: Examples of labelled connected components within the binary
images, with each dental implant assigned a different label and delimited by
a bounding box.

(a) (b) (c)

Figure 4.14: Actual X-ray images after the application of ROI-masking.
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(a) (b) (c)

Figure 4.15: Segmented dental implant images corresponding to Fig-
ure 4.14 (b).

4.4 Concluding remarks

In this chapter the proposed semi-automated and fully automated image
segmentation systems for the detection of ROIs associated with the dental
implants within an actual X-ray image were discussed. Within the context of
the semi-automated system suitable ROIs, that contain the dental implants,
are manually specified (selected). For the fully automated system, suitable
ROIs are automatically detected through a deep learning-based technique.
A set of morphological post-processing techniques were conducted in order
to eliminate noise and enhance the binary mask images. The post-processed
binary masks were subsequently employed for ROI-masking purposes in or-
der to segment the dental implants within an actual X-ray image into its
constituent instances. The segmented dental implants serve as input for the
dental implant classification framework discussed in Chapter 6.
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Chapter 5

Dental implant modelling

5.1 Introduction

In this chapter a discussion is provided on the framework developed for the
purpose of dental implant recognition. Within the context of this study,
dental implant recognition is dichotomised as follows:

• Training: a model is trained on simulated X-ray images in order to learn
a set of features associated with each of the nine different connection
types investigated in this study.

• Testing: the trained model is applied to an actual X-ray image for the
purpose of identifying the connection type associated with a questioned
dental implant. The testing protocol will be discussed in Chapter 6.

A protocol is developed for extracting suitable features from simulated X-ray
images for the purpose of identifying the connection type associated with a
specific dental implant. The aforementioned protocol is based on extracting
learned features through a deep learning-based technique. The deep learning-
based model is trained on simulated X-ray images generated through the two
dimensional (2D) parallel projection strategy discussed in Chapter 3.

The rationale behind employing a deep learning-based technique for the
extraction of features within the context of dental implant recognition is the
well-documented fact that deep learning algorithms have a powerful abil-
ity to learn abstract and complex features. Deep learning models, such as
convolutional neural networks (CNNs), have been successfully applied to a
wide range of image recognition tasks, including medical image analysis [5–
10]. The well-documented success and proficiency of deep learning-based

56
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algorithms in medical image analysis can potentially be extended to den-
tal implant recognition as well. Overall, deep learning has the potential
to transform and improve dental implant recognition by providing a highly
accurate and efficient method for identifying and locating dental implants
within X-ray images.

This chapter is organised as follows. In Section 5.2, the key concepts
regarding dental implant recognition within the context of this study are
presented. In Section 5.3, a description of the proposed fully convolution
network (FCN-1) trained for the purpose of classifying the connection type
associated with a specific dental implant within an actual X-ray image is
provided. The dental implant recognition protocol proposed in this study is
conceptualised in Figure 5.1.

LEARNING

Database of
simulated

X-ray images

Training and validation
on the simulated data

• FCN-1 model

• Data augmentation

• Training and validation

Dental implant
classification model

• Trained model

• Learned features

• Nine connection types

Segmented dental
implant image

Post-processing

• Hotelling transformation

• Noise removal

• Contrast enhancement

Connection type
classification

• Extracted features

• Probabilities

• Prediction of implant
category

TESTING

Figure 5.1: Schematic representation of the dental implant recognition pro-
tocol proposed in this study. The testing protocol will be discussed in detail
in Chapter 6.

5.2 Overview

In this section the key aspects typically associated with dental implant rep-
resentation and classification are discussed.
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5.2.1 Dental implant characteristics

A dental implant is a medical device surgically inserted into the jawbone
of a patient to replace a tooth’s root. A typical dental implant consists of
three main components, that is the dental implant body, the dental implant
abutment and the dental implant crown (see Figure 5.2). The dental implant
abutment is typically attached to the implant body by the abutment fixation
screw and extends through the gums to support the attached artificial tooth.

Figure 5.2: Structure of a dental implant [2].

The dental implant abutment connection can be categorised into three
main types, that is an external connection, an internal connection, and a
conical connection. An external connection constitutes a geometric feature
that extends above the coronal surface of the implant (see Figure 5.3 (a)),
while in the case of an internal connection the implant abutment connection
is recessed into the body of the implant (see Figure 5.3 (b)). A conical
connection constitutes a particular kind of internal connection with a conical,
root-shaped geometry (see Figure 5.3 (c)). The dental implants depicted
in Figure 5.3 are produced by the Make It Simple (MIS) manufacturing
company.

The dental implants depicted in Figure 5.3 (a) have an external hexagon
connection. This implant has apex grooves, and the apex has a dome shape.
The implant body is tapered with buttress threads. The wide implant head
constitutes the cervical part where the implant connects with the abutment.
The dental implants depicted in Figure 5.3 (b) have an internal hexagon
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connection. This implant has a sharp cutting tapered apex. The body of
the implant is straight with a parallel V-shaped thread design. The implant
head is cylindrical with a bevel geometry. The dental implants depicted
in Figure 5.3 (c) have a conical connection. The implant connection is in-
terthreaded with a six spline and morse taper inner geometry. The body of
the implant is tapered with square threads and the head has microthreads
at the crest module region. The implant apex has a flat shape with apical
grooves.

The aforementioned geometrical attributes which describe the dental im-
plants constitute the salient (discriminative) features learned during training
for the purpose of assigning a questioned dental implant within an actual X-
ray image to one of the nine different connection types investigated in this
study.

(a) (b) (c)

Figure 5.3: Examples of dental implants. (a) External hexagon standard
platform. (b) Internal hexagon standard platform. (c) Conical standard
platform.

5.2.2 Modelling and feature extraction

In this study a fully convolutional network (FCN) model, the FCN-1 model,
is proposed for the purpose of classifying the connection type associated
with a specific dental implant within an X-ray image. The FCN-1 model
extracts (learns) the prominent discriminative features which describe the
connection type associated with a specific dental implant. The aforemen-
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tioned FCN-1 model constitutes a three dimensional (3D) convolutional neu-
ral network (CNN) which takes as input the simulated X-ray images acquired
through the 2D parallel projection algorithm outlined in Chapter 3. The
FCN-1 model employs DeepVoxNet [45] which is a deep learning process-
ing framework for Keras developed in the Medical Imaging Research Cen-
ter (MIRC) at KU Leuven for the efficient processing of 3D medical images.

The discriminative features learned during training are employed in the
process of classifying the connection type associated with a specific den-
tal implant within a questioned actual X-ray image. Morphological post-
processing techniques are also applied to the questioned actual X-ray image
during testing (see Chapter 6).

5.3 Feature extraction

In this section an in-depth description of the proposed feature extraction
protocol which is based on deep learning is provided. The data, data aug-
mentation protocol, model architecture and model training employed in this
study are discussed in detail in the following sections.

Data

The simulated X-ray data set acquired through the proposed data generation
protocol (see Chapter 3) is employed for training and validating the proposed
FCN-1 model. The FCN-1 model is trained for the purpose of automatically
identifying the connection type associated with a specific dental implant
within an actual X-ray image.

The proposed strategy for generating the artificial training samples is
based on the calculation of 2D projections (from a number of different an-
gles) of a 3D volumetric representation of a dental implant. For each 3D
volumetric representation of a dental implant three rotation axes are se-
lected. These axes are orthogonal to the 3D volumetric representation and
defined relative to it. The projections are acquired after rotating the 3D
volumetric representation. The rotation of the 3D object is achieved by im-
plementing three 3× 3 rotation matrices Rp, Ry, Rr. Each matrix is defined
by a single rotation angle θp, θy, and θr. These matrices affect rotations
about the pitch, yaw, and roll axes respectively. After placing the 3D object
in the initial position, 2D parallel projections are calculated as the 3D volu-
metric representation is rotated about one of the yaw, pitch or roll axes (see
Figure 5.4).
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Figure 5.4: Conceptualisation of the rotation of a 3D object about the three
different axes. The 3D volumetric representation resides in the world coor-
dinate system (x, y, z), and its centre point coincides with the origin. This
defines the relative zero rotation angle with respect to the initial position.
Rows: Each row depicts a rotation of the 3D volumetric representation about
a specific axis. The rotation axes are orthogonal to the 3D object as depicted
by the arrows. The bounded box (in the first column) corresponds to the
rotation axis associated with the relevant row. First row: Axial rotations
which are associated with rotations about the yaw axis. Second row: Out-
of-plane rotations which are associated with rotations about the pitch axis.
Third row: In-plane rotations which are associated with rotations about the
roll axis.
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The 3D volumetric representation is rotated using the classical Euler
sequence [46], that is the yaw–pitch–roll sequence. The yaw, pitch and roll
rotation axes are orthogonal to the 3D volumetric representation and defined
relative to it as depicted by the arrows in Figure 5.4. The 3D volumetric
representation is first rotated about the pitch and the yaw axes and finally
about the roll axis (during network training).

Similar to the Euler sequence, the first rotation is about the z axis, that
is the yaw axis (see Figure 5.4). These rotations are also referred to as axial
rotations. The second rotation is about y axis, that is the pitch axis (see
Figure 5.4). These rotations are also referred to as out-of-plane rotations.

It is important to note that, after a 3D volumetric representation has
been reorientated by implementing the above two rotations, a 2D projection
of the reorientated 3D representation is calculated from a specific angle in
order to obtain a simulated X-ray image. These rotations are conducted
statically, that is before network training. In Figure 5.5, examples of the
simulated X-ray images acquired after the application of axial and out-of-
plane rotations are presented.

The resulting simulated X-ray image is finally rotated through an arbi-
trary angle. This is equivalent to rotating the 3D volumetric representation
about the x axis or roll axis and is referred to as an in-plane rotation. These
in-plane rotations are conducted on the fly during the data augmentation
protocol that forms part of training the proposed model for the purpose
of automatically classifying the connection type associated with a specific
dental implant from an X-ray image.

In this study, dental implants with nine connection types are investigated.
Experiments are conducted on the dental implants produced by MIS. The
three main connection types investigated in this study, that is the external,
internal and conical connections, can be further characterised as either a
narrow, standard or wide platform.

Dental implants with an external diameter of 3.30 mm are referred to
as "narrow platform" (NP), while implants with external diameters of 3.75
mm, 3.90 mm, 4.20 mm and 4.30 mm are referred to as "standard plat-
form" (SP). Implants with external diameters of 5.0 mm and 6.00 mm are
referred to as "wide platform" (WP). Only dental implants with the afore-
mentioned diameters are considered in this study. The implant lengths con-
sidered in this study are 6 mm, 8 mm, 10 mm, 11 mm, 13 mm and 16
mm.

The dental implants are categorised into nine connection types according
to the implant’s characteristics as follows:
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(a) (b) (c)

Figure 5.5: (a) A simulated X-ray image that underwent an out-of-plane ro-
tation of 40◦. (b) A simulated X-ray image that underwent an axial rotation
of 40◦. (c) A simulated X-ray image that underwent axial and out-of-plane
rotations of 40◦.

• Four connection types for dental implant models V3 and C1 (conical):

∗ NP - implant model V3

∗ NP - implant model C1

∗ SP - implant models V3 and C1

∗ WP - implant model C1

• Three connection types for dental implant models SEVEN and M4 (in-
ternal hexagon):

∗ NP - implant models SEVEN and M4

∗ SP - implant models SEVEN and M4

∗ WP - implant models SEVEN and M4

• Two connection types for dental implant model LANCE (external hexagon):

∗ SP - implant model LANCE

∗ WP - implant model LANCE

A summary of the dental implants considered in this study is presented in
Table 5.1. As depicted in Table 5.1, each unique connection type is assigned
an integer value between 1 and 9. This process is called ordinal encoding
or integer encoding. The classes are mutually exclusive and each implant is
assigned to one (and only one) label.
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Connection type Dental implant type Length (mm)

(1) Conical narrow platform (V3) V3: External diameter 3.30 mm
Internal diameter 2.75 mm 10, 11, 13, 16

(2) Conical narrow platform (C1) C1: External diameter 3.30 mm
Internal diameter 2.75 mm 10, 11, 13, 16

(3) Conical standard platform V3: External diameter 3.90 mm
Internal diameter 3.15 mm 8, 10, 11, 13, 16

V3: External diameter 4.30 mm
Internal diameter 3.15 mm 8, 10, 11, 13, 16

V3: External diameter 5.00 mm
Internal diameter 3.15 mm 8, 10, 11, 13, 16

C1: External diameter 3.75 mm
Internal diameter 3.15 mm 8, 10, 11, 13, 16

C1: External diameter 4.20 mm
Internal diameter 3.15 mm 8, 10, 11, 13, 16

(4) Conical wide platform C1: External diameter 5.00 mm
Internal diameter 4.00 mm 8, 10, 11, 13, 16

(5) Internal hex narrow platform
SEVEN: External diameter 3.30 mm
Internal diameter 2.10 - 3.30 mm 10, 11, 13, 16

M4: External diameter 3.30 mm
Internal diameter 2.10 - 3.30 mm 10, 11, 13, 16

(6) Internal hex standard platform SEVEN: External diameter 3.75 mm
Internal diameter 2.45 - 3.75 mm 8, 10, 11, 13, 16

SEVEN: External diameter 4.20 mm
Internal diameter 2.45 - 3.75 mm 6, 8, 10, 11, 13, 16

M4: External diameter 3.75 mm
Internal diameter 2.45 - 3.75 mm 8, 10, 11, 13, 16

M4: External diameter 4.20 mm
Internal diameter 2.45 - 3.75 mm 6, 8, 10, 11, 13, 16

(7) Internal hex wide platform SEVEN: External diameter 5.00 mm
Internal diameter 2.45 - 4.50 mm 6, 8, 10, 11, 13, 16

SEVEN: External diameter 6.00 mm
Internal diameter 2.45 - 4.50 mm 6, 8, 10, 11, 13

M4: External diameter 5.00 mm
Internal diameter 2.45 - 4.50 mm 6, 8, 10, 11, 13, 16

M4: External diameter 6.00 mm
Internal diameter 2.45 - 4.50 mm 6, 8, 10, 11, 13

(8) External hex standard platform LANCE: External diameter 3.75 mm
Internal diameter 2.70 mm 10, 11.5, 13, 16

LANCE: External diameter 4.20 mm
Internal diameter 2.70 mm 8, 10, 11.5, 13, 16

(9) External hex wide platform LANCE: External diameter 5.00 mm 8, 10, 11.5, 13, 16

Table 5.1: A summary of the connection type and corresponding geometrical
features associated with each MIS dental implant investigated in this study.
The boldfaced phrases are the names of the dental implant models.

The simulated X-ray data set is partitioned into training and validation
sets for the purpose of assigning a questioned dental implant within an actual
X-ray image to one of the nine connection types investigated in this study.
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The training set (seen data) is used to learn the parameters (weights) for
the proposed FCN-1 model, while the validation set is used for avoiding
overfitting by enforcing a stopping criterion.

The proposed FCN-1 model is fed training samples (X, l) with X con-
stituting the input images, each of size 540×540 pixels, and l the associated
ground truth label, that is the class assigned to the connection type associ-
ated with a specific dental implant. Data preprocessing is implemented for
the purpose of transforming the input X into a tuple of four dimensional (4D)
arrays with three spatial dimensions and one feature dimension, that is a
volume V of dimensions {width× height× depth}, where {width× height}
represents the spatial dimensions of the input image and depth the number of
colour channels. The input X therefore has a shape defined as (540, 540, 1, 1).

A total of 403 200 simulated X-ray images are generated through the
application of the axial and out-of-plane rotations. The background of the
artificially generated X-ray images is set to black. A total of 322 560 sim-
ulated X-ray images (80%) are used for training purposes, while 80 640
simulated X-ray images (20%) are used for validation purposes. A few train-
ing samples from the artificially generated data set are presented in Figure
5.6.

Data augmentation

Data augmentation techniques in deep learning can be applied either stat-
ically or on the fly. Static data augmentation refers to appending the aug-
mented data to the training data set and using the augmented data set for
training the model. In this study, only in-plane rotations are conducted on
the fly. The artificially generated data set is augmented in each batch while
the model is being trained. On the fly augmentation is more efficient in
terms of computational and storage requirements.

During training, the simulated X-ray images are augmented by in-plane
rotations of maximally 60◦. An in-plane rotation occurs about the so-called
roll axis (see Figure 5.4) and is associated with rotations in the yz plane. A
typical rotation about the x axis is depicted in Figure 5.7 and implemented
by applying the following rotation matrix,

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

An affine transformation is applied for the purpose of rotating the simu-
lated X-ray images. The above rotation matrix is therefore used to generate
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Figure 5.6: (Top) Examples of simulated X-ray images that underwent out-
of-plane rotations of 30◦, 45◦ and 60◦. (Middle) Examples of simulated
X-ray images that underwent axial rotations of 30◦, 45◦ and 60◦. (Bot-
tom) Examples of simulated X-ray images that underwent in-plane rotations
of 30◦, 45◦ and 60◦.

in-plane rotations of maximally 60◦. In Figure 5.8, examples of the simu-
lated X-ray images acquired after the application of axial, out-of-plane and
in-plane rotations through a number of different angles are presented.

Architecture

The proposed FCN-1 model is trained on simulated X-ray images for the
purpose of assigning a questioned dental implant within an actual X-ray
image to one of nine different connection types. The aforementioned FCN-1
model consists of twelve convolutional layers, where each of these layers
is followed by a rectified linear unit (ReLU) and maximum pooling layer.
The first ten convolutional layers employ 32 kernels (filters) of size 3×3×1
pixels. Each pooling layer has a size of 2×2×1 pixels. A dropout layer
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Figure 5.7: A typical rotation about the x axis.

(a) (b) (c)

Figure 5.8: (a) A simulated X-ray image that underwent an in-plane rotation
of 40◦. (b) A simulated X-ray image that underwent an out-of-plane rotation
of 40◦ and an in-plane rotation of 60◦. (c) A simulated X-ray image that
underwent axial and in-plane rotations of 40◦.

with a dropout rate of 50% is added before the final layer. The output of
the final convolutional layer is fed to a softmax function which results in
a probability distribution across the nine classes investigated in this study.
The architecture of the proposed FCN-1 model is depicted in Figure 5.9.

The FCN-1 model takes as input the preprocessed 4D tensor data. The 3D
convolution filter applies a convolutional operation (dot product of tensor)
to produce the feature map. The 3D convolutional layer can be formulated
as follows [47],

vxyzij = bij +

M(i−1)∑
m=1

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m , (5.1)
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FCN-1 architecture
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Figure 5.9: A depiction of the FCN-1 model architecture employed for the
purpose of assigning a questioned dental implant within an actual X-ray
image to one of nine different connection types investigated in this study.

where vxyzij is the output at the position (x, y, z), bij is the bias for the
feature map, M(i−1) is the number of feature maps at the (i − 1)-th layer,
Pi, Qi and Ri denote the size of the 3D filter at the i-th layer, wpqr

ijm is
the weight at position (p, q, r) of the kernel of the m-th feature map and
v
(x+p)(y+q)(z+r)
(i−1)m represents the value of the m-th feature map at the position

(x+ p, y + q, z + r) in the (i− 1)-th layer. The weights and biases of each
filter are trained to extract the salient features associated with the dental
implant connection types from the input data.

Stride, padding and filter size are a few common hyper-parameters defin-
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ing convolutional operations. Stride denotes the step size that filters move at
a time. Maximum pooling layers are added between successive convolutional
layers in the model. The pooling layers progressively reduce the spatial size
of the data through downsampling. The 3D pooling layer associated with
the m-th feature map and a pooling kernel of size k×k×k can be formulated
as follows,

vxyzij = max
p,q,r∈{0,1,...,k−1}

v
(kx+p)(ky+q)(kz+r)
(i−1)m . (5.2)

The activation layers are employed for the purpose of introducing nonlin-
earity into the model. The ReLU activation function takes the input tensor
and performs an element-wise nonlinear transformation g(v) = max(0, v),
where g is the activation function and v is the output feature map as defined
in Equation 5.1.

A detailed summary of the proposed network architecture is provided in
Table 5.2.

Layer Activation map Kernel size Output shape Trainable
parameters

Input 540× 540× 1× 1

CONV3D1 540× 540× 1× 32 3× 3× 1 538× 538× 1× 32 320
CONV3D2 538× 538× 1× 32 3× 3× 1 536× 536× 1× 32 9 248

POOL3D1 536× 536× 1× 32 2× 2× 1 268× 268× 1× 32

CONV3D3 268× 268× 1× 32 3× 3× 1 266× 266× 1× 32 9 248

CONV3D4 266× 266× 1× 32 3× 3× 1 264× 264× 1× 32 9 248

POOL3D2 264× 264× 1× 32 2× 2× 1 132× 132× 1× 32

CONV3D5 132× 132× 1× 32 3× 3× 1 130× 130× 1× 32 9 248

CONV3D6 130× 130× 1× 32 3× 3× 1 128× 128× 1× 32 9 248

POOL3D3 128× 128× 1× 32 2× 2× 1 64× 64× 1× 32

CONV3D7 64× 64× 1× 32 3× 3× 1 62× 62× 1× 32 9 248

CONV3D8 62× 62× 1× 32 3× 3× 1 60× 60× 1× 32 9 248

POOL3D4 60× 60× 1× 32 2× 2× 1 30× 30× 1× 32

CONV3D9 30× 30× 1× 32 3× 3× 1 28× 28× 1× 32 9 248

CONV3D10 28× 28× 1× 32 3× 3× 1 26× 26× 1× 32 9 248

POOL3D5 26× 26× 1× 32 2× 2× 1 13× 13× 1× 32

CONV3D11 13× 13× 1× 64 13× 13× 1 1× 1× 1× 64 346 176

Dropout (50%) 1× 1× 1× 64 1× 1× 1× 64

CONV3D12 1× 1× 1× 9 1× 1× 1 1× 1× 1× 9 585

Table 5.2: The network architecture and hyper-parameters employed by the
proposed FCN-1 model.

The first convolutional layer (CONV3D1) processes an input image of
size 540×540×1×1 with 32 different kernels (filters). Each kernel has a size
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of 3×3×1 pixels. The layer therefore contains 540× 540× 1 = 291 600 neu-
rons, with ((3 × 3 × 1 × 1) + 1) × 32 = 320 trainable parameters (weights).
Non-linearity is introduced into the network through the application of ReLU
layers.

The output feature map of the CONV3D1 layer has a size of 538×538×1
for each of the 32 filters. The aforementioned feature map serves as the input
of the second convolutional layer (CONV3D2). The CONV3D2 layer has ((3
× 3 × 1 × 32) + 1) × 32 = 9 248 trainable parameters. The resulting
activation maps, each of size 536×536×1 are subsequently subjected to max
pooling (POOL3D1) by considering kernels (filters) of size 2×2×1 pixels.
This results in an output tensor of size 268×268×1×32.

The output of each convolutional layer constitutes the learned feature
maps of the input. Only the convolutional layers have trainable parame-
ters. The first ten convolutional layers, each employs 32 kernels (filters) of
size 3×3×1 pixels. Each pooling layer has a size of 2×2×1 pixels.

The eleventh and twelfth convolutional layers (CONV3D11 and CONV-
3D12) employ 64 and 9 different kernels (filters) respectively. Within the
context of CONV3D11, each kernel has a size of 13×13×1 pixels, while
for CONV3D12, each kernel has a size of 1×1×1 pixels. The CONV3D11

layer is followed by a ReLU layer, while no pooling layers are employed
within the context of CONV3D11 and CONV3D12.

A dropout layer with a dropout rate of 50% is added after the CONV3D11

layer. The output of the final layer, that is the CONV3D12 layer is trans-
formed into a 1D vector of length nine since there are nine connection types.
The activation function of the final layer is a softmax function, also referred
to as the normalised exponential function which takes the 1D input vector
and maps it to a probability distribution, with each value (probability) in
the range (0,1), where the aforementioned values (probabilities) sum to 1.
The softmax function is implemented as follows,

ỹi =
exp (zi)∑K

k=1 exp (zk)
for i = 1, . . . , 9, (5.3)

where the vector z = [z1, z2, ..., zk] is the output of the final convolutional
layer CONV3D12. The softmax function of the input vector z = [z1, z2, ..., z9]
is therefore also a vector,

softmax(z) =

[
exp (z1)∑K
k=1 exp (zk)

,
exp (z2)∑K
k=1 exp (zk)

, . . . ,
exp (z9)∑K
k=1 exp (zk)

]
.

(5.4)
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These probabilities are used to assign an input image to one of nine
disjoint classes (during the evaluation phase) and for the computation of
the loss function (during the training phase). The predicted class is decided
by the maximum probability in the output. Subsequently, at each training
iteration, categorical cross entropy is used to measure the difference between
the predicted class and the true label. The loss function is then minimised
and back propagated to adjust the weights.

Model training

When training the FCN-1 model, the predicted value and the ground truth
associated with the training data set are used to calculate the loss value.
During training the weights are updated through the stochastic gradient
descent (SGD) optimisation technique. Back propagation is used to adjust
the network parameters. During training the network loss is minimised until
it converges. The categorical cross entropy (LCCE) between the network’s
predictions and the ground truth labels is adopted as a loss function and
computed as follows,

LCCE = − 1

N

N∑
n=1

K∑
k=1

y∗i log(ỹi), (5.5)

where N and K denote the number of training samples and the number of
classes respectively, y∗i the i-th true class associated with the training sample
and ỹi the predicted class.

The proposed FCN-1 model is trained using stochastic gradient descent
with a momentum value of γ = 0.9 and an initial learning rate of ϵ = 0.001.
The kernels are updated as follows,

wi+1 = wi − ϵγi+1. (5.6)

A cross validation algorithm (see Chapter 7) is used to gauge the profi-
ciency of the proposed model, as well as its capability to generalise to unseen
data.

5.4 Concluding remarks

In this chapter, the training and validating protocol of the proposed FCN-1
model for the purpose of distinguishing between different types of dental im-
plants in X-ray images, primarily based on the implant’s external shape,
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were presented. The proposed FCN-1 model was trained on artificially
generated (simulated) X-ray images for the eventual purpose of assigning
a questioned dental implant within an actual X-ray image to one of the nine
connection types investigated in this study. A quantitative analysis of the
proficiency of the proposed FCN-1 model will be conducted in Chapter 7.
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Chapter 6

Dental implant classification

6.1 Introduction

In this study, the proposed dental implant classification/recognition protocol
is based on a deep learning technique. The proposed dental implant classi-
fication/recognition protocol learns discriminative features for the purpose
of distinguishing between different types of dental implants in X-ray images.
The features are primarily based on the implant’s external shape. In this
study the task of distinguishing between different connection types uses su-
pervised learning. Supervised learning refers to predictive modelling where
a class label is predicted for given input data. The model learns to predict
the output variables from the input variables using labelled data. Within
the context of classification the model assigns the output variable to one of
several discrete classes. The classification task can be binary, multi-class or
multi-labelled. Multi-class refers to a classification task that has more than
two class labels and multi-labelled implies that more than one class exists in
the input data.

In this study the dental implant classification task is a multi-class prob-
lem. The connection types are mutually exclusive and each implant is as-
signed to one label. Within the context of the dental implant data set em-
ployed in this study, there exists a one-to-one correspondence between the
external shape of an implant and the internal connection of the implant.

The proposed fully convolutional network (FCN) model, that is the FCN-1
model (outlined in Chapter 5) which was trained and validated on artificially
generated X-ray images is employed for testing purposes. The trained FCN-1
model is applied to a questioned actual X-ray image in order to predict the
specific connection type associated with the questioned dental implant. The

73
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Classification system

Segmented X-ray image

Image processing

• Hotelling transformation

• Noise removal

• Contrast enhancement

Connection type
classification

• Extracted features

• Probabilities

• Prediction of implant identity

Figure 6.1: Conceptualisation of the proposed dental implant classification
protocol.

proposed FCN-1 model considers an actual X-ray image which contains only
a single dental implant as input. The actual X-ray images are first segmented
through the segmentation protocol discussed in Chapter 4. During testing
the segmented actual X-ray images are subjected to image processing tech-
niques in order to render the segmented actual X-ray images similar to the
simulated dental implants before being presented to the trained model.

In this chapter the testing protocol employed within the context of den-
tal implant classification/recognition is presented. In Section 6.2 the image
processing techniques employed for transforming the actual X-ray images
are discussed. Each preprocessed questioned X-ray image is presented to
the learned classification model which subsequently predicts the connection
type (see Section 6.3). The proposed dental implant classification protocol
is depicted in Figure 6.1.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. DENTAL IMPLANT CLASSIFICATION 75

6.2 Image processing

The segmented dental implants acquired through the proposed semi-automa-
ted or fully automated systems (see Chapter 4) serve as input for the dental
implant classification framework. The following image processing techniques
are applied to the segmented X-ray images in order to render the actual
X-ray images similar to the simulated X-ray images.

Hotelling transform

The Hotelling transform [11] is applied to each questioned dental implant
image for the purpose of eliminating in-plane rotations. The Hotelling trans-
form, also referred to as the Karhunen–Loève transform [48, 49], eliminates
rotational variations in the data. The Hotelling transform is therefore used
to improve the robustness of an algorithm within the context of rotational
and translational variations. The Hotelling transform is equivalent to prin-
cipal components analysis (PCA), a technique which is widely used in image
processing and data analysis.

The Hotelling transform is based on the statistical properties of a vector
representation of the data. Given a population of random n-dimensional
vectors [11],

x =


x1
x2
...
xn

 , (6.1)

the mean vector of the population is defined as

mx = E{x}, (6.2)

where E denotes the expected value of the population. The covariance matrix
of the population is defined as

Cx = E{(x−mx)(x−mx)
T }. (6.3)

Element cii of Cx is the variance of xi, that is the i-th component of the vec-
tors in the population, and element cij is the covariance between components
xi and xj . The matrix Cx is symmetric and real.
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For a sample of K vectors from a random population, the mean vector
and covariance matrix can be estimated as follows,

mx =
1

K

K∑
k=1

xk, (6.4)

Cx =
1

K

K∑
k=1

xkx
T
k −mxmx

T . (6.5)

Since Cx is symmetric and real it is always possible to find a set of n or-
thonormal eigenvectors. If A is a matrix of which the rows are the eigenvec-
tors of Cx, ordered in such a way that the first row of A is the eigenvector
that corresponds to the largest eigenvalue of Cx and the last row of A is
the eigenvector that corresponds to the smallest eigenvalue of Cx, A and its
transpose can be depicted as follows,

A =


eT1
eT2
...
en

 and AT =
[
e1 e2 · · · en

]
, (6.6)

where ei, i = 1, 2, . . . , n denote the eigenvectors of Cx.
Now suppose that A is a transformation matrix that maps a vector x to

a vector y using the following transformation,

y = A(x−mx). (6.7)

The above equation constitutes the Hotelling transform. The mean of the
transformed y vectors is zero, while Cx and Cy have the same eigenvalues.

The Hotelling transform performs a linear transformation of a set of n-
dimensional vectors that decorrelates the n coordinates. When the Hotelling
transform is applied to an image, the resulting image is geometrically aligned
along the principal axes. From the point of view of PCA, the first principal
component (PC1) is the linear combination that accounts for the maximum
variance. Geometrically, it corresponds to the direction of the longest axis
of the object. That is, the geometric effect of the transformation given in
Equation 6.7 on an object in an image constitutes both a translation and
a rotation, so that the centroid of the object (the average of the x and y
coordinates of all the object pixels) is translated to the origin and the object
is rotated by an angle that minimises its moment of inertia [50]. Within the
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context of image recognition this transformation is often important, since
aligning the image with its principal axes eliminates the effects of translation
and rotation in the analysis.

Figure 6.2 depicts examples of segmented actual X-ray images acquired
through the proposed semi-automated or fully automated systems outlined
in Chapter 4. Each segmented actual X-ray image contains a single den-
tal implant. Figure 6.3 depicts examples of the resulting images after the
Hotelling transform was applied to the images in Figure 6.2. Note that the
general shape of the object is preserved, and that the original implant is only
translated and rotated in a convenient way.

Spatial filtering and intensity transformation

Within the context of image recognition, the proficiency of the recognition
system is significantly affected by the quality of the images. The three pri-
mary factors that determine the quality of an X-ray image are noise, contrast
and artefacts.

An artefact in an X-ray image is a feature that does not correlate with
the physical properties of the subject being imaged and may confound or
obscure interpretation of the X-ray image [51]. In X-ray images noise may
come into being as a result of the quantum noise properties of photons and
the electronic noise associated with the detector system. The quantum noise
is random as it relates to the number of photons detected, while the electronic
noise originates from the X-ray detector system. Noise in X-ray images is
often referred to as quantum mottle. Radiographic contrast constitutes the
density difference in the signal or brightness between the structure of interest
and its surroundings in a radiograph. High radiographic contrast is observed
in radiographs where density differences are notably distinguished (black
versus white). Low radiographic contrast is evident in radiographic images
where adjacent regions have a low density difference (black versus gray).

Within the context of X-ray images, there are a number of different fil-
ters that can be applied for the purpose of noise reduction. The grayscale
intensity can be adjusted using image post-processing techniques where pixel
values are transformed in order to provide the expected range of contrast
depending upon the specific clinical requirements. The contrast-to-noise ra-
tio (CNR) and the signal-to-noise ratio (SNR) are the basic measures mostly
considered in X-ray images. The CNR is used to estimate the contrast be-
tween the tissue of interest and the background (i.e. the neighbouring tissue),
while the SNR estimates the ratio between the intensity of the signal and
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(a) (b) (c)

(d) (e) (f)

Figure 6.2: Examples of segmented actual X-ray images containing dental
implants. (Top) Implants inserted into pig jaws. (Bottom) Implants in-
serted into human jaws.

the intensity of the background noise.
In this study an ensemble of grayscale intensity transformation and spa-

tial filtering techniques are implemented for the purpose of enhancing the
contrast and suppressing noise in the actual X-ray images.

Within the context of noise reduction, the application of a Gaussian
lowpass filter [52] to the actual X-ray images is deemed appropriate. A
Gaussian lowpass filter is therefore employed to smoothen each questioned
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: Examples of actual X-ray images after the Hotelling transform
was applied to the images depicted in Figure 6.2. (Top) Implants within the
context of the pig data set. (Bottom) Implants within the context of the
human data set.

dental implant image.
Within the context of the actual X-ray images, a total of 483 labelled

and unlabelled images, which contain implants inserted into either human
or pig jaws, are considered. The aforementioned actual X-ray images are
partitioned into two independent sets. The data partitioning protocol will
be discussed in more detail in Chapter 7.

Different parameters for the Gaussian kernel size are employed for the
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purpose of smoothing the pig and human implant images. Since the noise
levels are more significant in the human implants than is the case for the
pig implants, different parameters are deemed appropriate. An average SNR
of 2.742 is estimated for the pig data set, while an average SNR of 1.273
is estimated for the human data set. The human data set therefore has
a lower SNR which is typically associated with grainy images. Within the
context of the pig implants, the smoothing of the X-ray images is achieved by
applying a Gaussian kernel of size 5× 5, with a standard deviation of σ = 3,
to the image in question. In the case of the human implants, a Gaussian
kernel of size 11× 11, with a standard deviation of σ = 3, is employed. The
aforementioned parameters were found to be optimal in removing a sufficient
amount of noise while retaining the prominent features associated with a
dental implant. Examples of smoothed actual X-ray images are presented in
Figure 6.4.

A grayscale intensity transformation is implemented for the purpose of
adjusting the dynamic range of the pixels in such a way that the dark pix-
els are significantly darkened while the bright pixels are only slightly dark-
ened (see Figure 6.5). The aforementioned grayscale intensity transformation
and spatial filtering techniques are implemented for the purpose of enhanc-
ing contrast and suppressing noise in the questioned image so as to render
each actual X-ray image similar to the simulated dental implants.

The post-processed images are subsequently resized to a resolution of
540×540 pixels (see Figure 6.6). Finally, a suitable data transformation
is implemented for the purpose of transforming the images into a tuple of
four dimensional (4D) arrays with three spatial dimensions and one feature
dimension, that is a volume V of dimensions {width × height × depth},
where {width×height} represents the spatial dimensions of the input image
and depth the number of colour channels. The transformed test images
therefore has a shape defined as (540, 540, 1, 1) (see Figure 6.7).

6.3 Classification

The trained fully convolutional network (FCN) model, that is the FCN-1
model discussed in Chapter 5, is presented with an actual X-ray image (see
Figure 6.7) which contains only a single implant with the intention of extract-
ing features for classification purposes. The aforementioned FCN-1 model
therefore extracts features from the questioned dental implant for the pur-
pose of predicting the connection type associated with the implant. The new
set of features extracted from the questioned implant are subsequently com-
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Noise reduction. Smoothed images after the application of a
suitable Gaussian filter to the images depicted in Figure 6.3.

pared to the learned features in the artificially generated data. The model
subsequently outputs probability values for predicting the implant category.
The proposed dental implant classification protocol is conceptualised in Fig-
ure 6.8.

6.4 Concluding remarks

In this chapter, the ensemble of image processing techniques employed in the
process of identifying the connection type associated with a specific dental
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Contrast enhancement. Examples of actual X-ray images after
a suitable grayscale intensity transformation was applied to the images de-
picted in Figure 6.4. (Top) Implants within the context of the pig data set.
(Bottom) Implants within the context of the human data set.

implant within a questioned actual X-ray image were discussed. These image
processing techniques were implemented in order to render each actual X-ray
image similar to the simulated dental implants. The protocol for identifying
the connection type from a questioned dental implant was presented.

In the next chapter the data considered in this research within the con-
text of the actual X-ray images and the artificially generated simulated X-ray
images, as well as the data partitioning protocol, are discussed in detail. This

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. DENTAL IMPLANT CLASSIFICATION 83

(a) (b) (c)

(d) (e) (f)

Figure 6.6: Examples of resized actual X-ray images. (Top) Implants within
the context of the pig data set. (Bottom) Implants within the context of
the human data set.

is followed by an outline of the experimental protocol. Exhaustive experi-
ments are also conducted in order to evaluate the proposed artificial data
generation strategy, automated region of interest (ROI)-detection strategy,
as well as the proposed semi-automated and fully automated systems for the
purpose of classifying a questioned dental implant within an actual X-ray
image.
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(a) (b) (c)

Figure 6.7: Examples of actual X-ray images of pig implants transformed
into a tuple of 4D arrays.

Classification system

Questioned image Segmented images Post-processed images

Normalised image

FCN-1 model trained
on the simulated

X-ray images


p0

p1
...
p9


Probabilities

Classification

Figure 6.8: Conceptualisation of the proposed dental implant classification
protocol. The input image is first segmented, after which the segmented
implant is normalised and processed. Features are extracted from the input
image through the proposed FCN-1 model and compared to the learned
features in the simulated data.
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Chapter 7

Experiments

7.1 Introduction

In this chapter exhaustive experiments are conducted in order to gauge the
proficiency of the proposed artificial data generation strategy, automated
region of interest (ROI) detection algorithm, as well as the respective profi-
ciencies of the semi-automated and fully automated systems developed in this
study within the context of classifying a questioned dental implant within an
actual X-ray image. The aforementioned experiments are conducted on two
data sets that contain the simulated and actual X-ray images. These data
sets are described in detail in Section 7.2. The experimental protocol that
is followed for each of the individual experiments is outlined in Section 7.3.
The experimental results are presented and quantitatively analysed in Sec-
tion 7.4. An overview of the software developed and hardware utilised in this
study is presented in Section 7.5. Finally, an analysis of the results acquired
for the experiments conducted in this study is presented in Section 7.6.

7.2 Data

In this study, experiments are conducted on (1) an artificially generated data
set and (2) an actual X-ray data set. The aforementioned independent data
sets are discussed in the following subsections.

7.2.1 Artificially generated X-ray images

The data set that contains simulated X-ray images of dental implants is gen-
erated from triangulated surface models, which constitute standard triangle
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language (STL) files, engineered by the Make It Simple (MIS) manufactur-
ing company. The triangulated 3D surface coordinates of a specific dental
implant are used to construct a 3D volumetric representation of the model in
question. Subsequently, 2D parallel projections of the volumetric represen-
tation are calculated from a number of different angles. Each projection is
obtained by calculating a number of parallel-ray sums of the 3D volumetric
representation. Each projection profile constitutes a simulated X-ray image.

During the X-ray simulation process, each 3D volumetric representation
of an implant undergoes axial, out-of-plane and in-plane rotations through a
number of different angle combinations, after which a projection is generated.
A total of 403 200 simulated X-ray images are generated in this way. The
background of the artificially generated X-ray images is set to black. During
training, the simulated X-ray images are augmented by in-plane rotations of
maximally 60◦.

A total of 322 560 simulated X-ray images (80%) are used for training
purposes, while 80 640 simulated X-ray images (20%) are used for validation
purposes. A number of training samples from the artificially generated data
set are presented in Figure 7.1.

The simulated X-ray data set is employed for training and validating
the proposed fully convolutional network (FCN) model, that is the FCN-1
model, for the purpose of classifying the connection type associated with a
specific dental implant within an actual X-ray image.

(a) (b) (c)

Figure 7.1: Examples of the artificially generated X-ray images employed for
training the proposed FCN-1 model.
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7.2.2 Actual X-ray images

Within the context of the actual X-ray images, a total of 483 labelled and
unlabelled images, which contain implants inserted into either pig or human
jaws, are considered (see Figure 7.2).

Total data set
483 X-ray images

Pig data set

Labelled images
82 X-ray images

Unlabelled images
8 X-ray images

Human data set

Labelled images
87 X-ray images

Unlabelled images
306 X-ray images

Figure 7.2: Total data set composition within the context of the actual X-ray
images.

The database of X-ray images involving implants inserted into human
jaws pertains to anonymous dental patients and was made available for this
study by Medical Care NV. The database of X-ray images involving pig jaws
was generated explicitly for this research by inserting the relevant dental
implants into detached pig jaws obtained from butchers, after which the in-
serted implants were X-rayed with a similar device as the one used within
the context of dental patients. Figures 7.3 and 7.4 depict examples of ac-
tual X-ray images within the context of the implants inserted into pig jaws
and human jaws, respectively. All procedures performed in studies involv-
ing human participants were in accordance with the ethical standards of the
institutional and national research committees and with the 1964 Helsinki
declaration and its later amendments or comparable ethical standards. In-
formed consent was obtained from all individual participants included in the
study. All applicable international, national, and institutional guidelines for
the care and use of animals were followed.

Within this context, labelled dental implant images refer to those X-ray
images that are associated with a specific dental implant model and brand,
while unlabelled X-ray images constitute dental implants with unknown mod-
els and brands. The labelled dental implant images comprise of four different
brands (Anthogyr, Astra, MIS and Nobel Biocare).

The images are captured in grayscale format. Each of these images is
resized to 512 × 512 pixels and saved in JPEG format. The data set (both
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(a) (b) (c)

Figure 7.3: Examples of actual X-ray images within the context of the im-
plants inserted into pig jaws.

(a) (b) (c)

Figure 7.4: Examples of actual X-ray images within the context of the im-
plants inserted into human jaws.

the labelled and unlabelled X-ray images) are annotated for the purpose of
training the proposed fully convolutional network (FCN) model, that is the
FCN-2 model, to facilitate the automatic detection (segmentation) of the
dental implants (discussed in Chapter 4). Within the context of semantic
segmentation, the annotated data set contains the binary masks which sep-
arate the dental implants from the background in a pixel-wise fashion. The
constructed data set therefore consists of the X-ray images and the corre-
sponding set of masks that represent the ground truth associated with the
segmentation protocol.
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7.3 Experimental protocol

In this study, three main independent experiments are conducted for the
purpose of investigating the proficiency of the proposed systems. The exper-
imental protocol is categorised as follows:

(1) Experiment 1. This experiment investigates the proficiency of the
proposed strategy of artificially generating simulated X-ray images of
dental implants. The aforementioned data generation strategy is based
on the calculation of 2D projections (from a number of different angles)
of a 3D volumetric representation of a dental implant. Each projec-
tion is obtained by calculating a number of parallel ray-sums of the 3D
volumetric representation.

(2) Experiment 2. This experiment investigates the proficiency of the
proposed automated detection of regions of interest (ROIs) which contain
the dental implants in actual X-ray images.

(3) Experiment 3. This experiment investigates the proficiency of the pro-
posed network for the purpose of classifying a questioned dental implant
within an actual X-ray image. This experiment is further dichotomised
into two sub-experiments:

(a) Experiment 3A. In this sub-experiment, a semi-automated seg-
mentation strategy based on image processing techniques is imple-
mented for the purpose of segmenting an actual X-ray image. This
is followed by the classification/recognition of the connection type
associated with a questioned dental implant.

(b) Experiment 3B. In this sub-experiment, a fully automated segmen-
tation strategy, which is based on deep learning, is employed for the
detection of suitable ROIs that contain the dental implants in an ac-
tual X-ray image. This is followed by the classification/recognition
of the connection type associated with a questioned dental implant.

In order to ensure that the results reported in this study represent a compre-
hensive and unbiased estimation of the proposed systems’ performance, the
experimental protocol incorporates a k-fold cross-validation protocol within
the context of the proposed deep learning-based algorithms.
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7.3.1 Experiment 1: Artificially generated X-ray images

In this section an experimental protocol is proposed to gauge the proficiency
of the proposed fully convolutional network (FCN) model, that is the FCN-1
model, which is trained and validated on artificially generated X-ray images
for the purpose of assigning a questioned dental implant within an actual X-
ray image to one of nine different connection types investigated in this study.
In order to investigate the feasibility of the proposed FCN-1 model for the
aforementioned purpose, the experiments are conducted on the simulated
X-ray images. The experiments conducted in this section are used to gauge
the proficiency of the proposed artificial data generation strategy.

The proposed FCN-1 model is trained from scratch. The filter weights
are randomly initialised and optimally adjusted during training. The learned
filters of the proposed FCN-1 model are visualised in Figure 7.5 where the
corresponding filters for each network layer are depicted. Every filter is dif-
ferent so that different aspects of the image is enhanced in the output. When
comparing some of the filters visually, interesting features can be noted. Al-
though the input data is grayscale, the colours are used for visualisation
purposes to depict how the different convolutional filters affect the output.

From Figure 7.5, it can be observed that the size of the first ten convo-
lutional layers is 3×3×1 pixels and that the final convolutional layer which
is fed to the softmax layer for classification purposes is a one dimensional
feature vector. Within the context of deep learning-based classification for
feature extraction, the proposed FCN-1 model which constitutes a 3D CNN
takes a batch of consecutively simulated X-ray images as input and gen-
erates different feature maps which are then transformed into a final one
dimensional feature vector.

The simulated X-ray data is partitioned into training and validation sets,
where 80% of the data is assigned to the training set, while 20% of the
data is assigned to the validation set. A k-fold cross-validation protocol is
employed during training for data splitting, which implies that the training
set is divided into k different folds. One fold is held out as the validation
set. The model is trained on the remaining k − 1 folds and then applied to
the validation set, after which the predictive performance is recorded. This
process is repeated k times so that each fold has been used as a validation set
once. This process ensures that different samples are used for the purpose of
model training and validation, thereby avoiding potential overfitting, whilst
still ensuring that all the samples represented in the data set are considered
for evaluation. The recorded predictive performances are then averaged.
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conv3d_1 (3, 3, 1, 32, 32)

conv3d_2 (3, 3, 1, 32, 32)

conv3d_3 (3, 3, 1, 32, 32)

conv3d_4 (3, 3, 1, 32, 32)

conv3d_5 (3, 3, 1, 32, 32)

conv3d_6 (3, 3, 1, 32, 32)

conv3d_7 (3, 3, 1, 32, 32)

conv3d_8 (3, 3, 1, 32, 32)

conv3d_9 (3, 3, 1, 32, 32)

conv3d_10 (3, 3, 1, 32, 32)

conv3d_11 (3, 3, 1, 32, 32)

conv3d_12 (13, 13, 1, 32, 64)

Figure 7.5: Visualisation of the filters of the twelve convolutional layers of
the proposed FCN-1 model. The images reflect the filters at different layers.
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7.3.2 Experiment 2: Automated ROI detection

In this experiment, the data set of X-ray images which consists of both la-
belled and unlabelled images is first partitioned into two independent sets.
In set one, the labelled dental implants in pig jaws are employed for test pur-
poses. In set two, the labelled dental implants in human jaws are employed
for test purposes. For set one, the X-ray images in human jaws and the unla-
belled X-ray images in pig jaws are used for training and validation purposes
respectively. For set two, the X-ray images in pig jaws and the unlabelled
X-ray images in human jaws are used for training and validation purposes
respectively. The aforementioned data partitioning protocol is depicted in
Figure 7.6.

Data partitioning

Set one

Training data

Human data set and unlabelled pig data
401 X-ray images (83%)

Test data

Labelled pig data
82 X-ray images (17%)

Training data
338 images (70%)

Validation data
63 images (13%)

Test data
82 images (17%)

Set two

Training data

Pig data set and unlabelled human data
396 X-ray images (82%)

Test data

Labelled human data
87 X-ray images (18%)

Training data
338 images (70%)

Validation data
58 images (12%)

Test data
87 images (18%)

Figure 7.6: Conceptualisation of the proposed data partitioning protocol
within the context of the actual X-ray images.

In order to conduct a robust analysis, a 5-fold cross-validation proce-
dure is carried out. During network training, at the end of each epoch, the
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validation sets are used to gauge the proficiency of the model.
In this section an experimental protocol is proposed to gauge the profi-

ciency of the fully convolutional network (FCN-2) model proposed for the
automatic detection of suitable ROIs which contain the dental implants
in an actual X-ray image. The binary masks of the dental implants ac-
quired through the proposed semi-automated segmentation system serve as
the ground truth for the purpose of training the proposed FCN-2 model.

The output of the FCN-2 model is compared to the manually selected
ROIs for the purpose of evaluating the proposed segmentation protocol. The
pixels that are correctly classified as part of the implant are referred to as
true positives, while those correctly classified as part of the background are
referred to as true negatives. False positives constitute those pixels that are
erroneously classified as part of the implant, while the pixels that are erro-
neously classified as part of the background are referred to as false negatives.

7.3.3 Experiment 3: Dental implant classification/recogni-
tion

In this section, experiments are conducted in order to investigate the pro-
ficiency of the proposed systems for the purpose of classifying a questioned
dental implant within an actual X-ray image. In this experiment, the den-
tal implants are extracted from actual X-ray images and presented to the
trained model for evaluation purposes.

A questioned actual X-ray image is presented to the FCN-1 model trained
and validated on artificially generated X-ray images in order to predict the
specific connection type associated with the questioned dental implant. Dur-
ing the classification phase the trained FCN-1 model considers an actual
X-ray image which contains only a single dental implant as input. The
questioned dental implant is loaded and reshaped so as to match the input
shape of the proposed FCN-1 model. Image processing techniques are imple-
mented on the questioned implant image, after which the processed image
is converted to an array and the dimensions of said array are expanded so
that it represents a batch containing a single sample.

The redefined sample is fed to the proposed FCN-1 model which subse-
quently extracts features from the questioned dental implant for the purpose
of predicting the connection type associated with the implant. The new
set of features extracted from the questioned implant are subsequently com-
pared to the learned features in the artificially generated data. The model
subsequently outputs probability values for predicting the implant category.
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Experiment 3A: Semi-automated dental implant recognition in ac-
tual X-ray images

In this sub-experiment the suitable ROIs that contain the dental implants
in the actual X-ray images, are manually specified and segmented through
the proposed semi-automated system which is based on image processing
techniques. The segmented dental implants are presented to the FCN-1
model for the purpose of classifying each questioned dental implant within
each actual X-ray image.

Experiment 3B: Fully automated dental implant recognition in ac-
tual X-ray images

In this sub-experiment the suitable ROIs which contain the dental implants
in an actual X-ray image are automatically detected through the proposed
FCN-2 model. This is followed by classification of the connection type asso-
ciated with the questioned dental implant.

7.4 Results

In this section, the performance of the proposed systems is reported and a
comprehensive analysis of the results pertaining to the experimental proto-
cols outlined in the previous section, is presented. The relevant statistical
performance measures employed in this study for the purpose of quantifying
the proficiency of the proposed systems are listed and defined in Table 7.1.

Performance measure Definition
Precision (PRE) TP/(TP+FP)
Recall (REC) TP/(TP+FN)
Accuracy (ACC) (TP+TN)/(TP+FN+FP+TN)
F1 score 2 * PRE * REC/(PRE+REC)

Table 7.1: The statistical performance measures employed in this study. The
number of true positives, false positives, true negatives, and false negatives
are denoted by TP, FP, TN, and FN, respectively.
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7.4.1 Experiment 1: Training results for simulated X-ray
images

The proposed FCN-1 model is trained on artificially generated X-ray images.
During training the simulated data set is augmented by in-plane rotations
of maximally 60◦. The training algorithm is run for a maximum of 1000
epochs and validated across a 5-fold cross-validation protocol. The accuracy
of the network is measured after each epoch, by employing the independent
validation set.

During training, an average accuracy of 98.64% is achieved (see Fig-
ure 7.7 (a)), while an average loss of 3.56% is achieved (see Figure 7.8 (a)).
An average accuracy of 96.56% and an average loss of 5.42% are achieved
during validation across a 5-fold cross-validation protocol. The accuracy
and loss achieved during validation are depicted in Figure 7.7 (b) and Fig-
ure 7.8 (b), respectively.

(a) (b)
Figure 7.7: The accuracy achieved during the (a) training and (b) validation
phases of the proposed network, when in-plane rotations of maximally 60◦

are employed and the model is trained for 1000 epochs across a 5-fold cross-
validation protocol.

From Figure 7.7 it is clear that the training accuracy increases as the
number of epochs increases, while the same trend is observed for the val-
idation accuracy, especially after 500 epochs. The training and validation
accuracies exceed 80% after 600 epochs. It is furthermore evident from Fig-
ure 7.8 that the training and validation loss decrease rapidly as the number
of epochs increases. This decrease is more pronounced in the case of the
training loss. It can therefore be concluded that the model converges as
expected during training and performs well and robustly on the validation
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data.

(a) (b)
Figure 7.8: The loss achieved during the (a) training and (b) validation
phases of the proposed network across a 5-fold cross-validation protocol.

7.4.2 Experiment 2: Results for dental implant detection in
actual X-ray images

In order to conduct a robust analysis within the context of the proposed
automatic ROI detection protocol, a 5-fold cross-validation procedure is car-
ried out. During network training, at the end of each epoch, the validation
sets are used to gauge the proficiency of the model. For sets one and two
respectively, accuracies of 97.84% and 97.21% are achieved by analysing the
segmentation performance in terms of pixel-wise accuracy during training.
In order to evaluate the proficiency of the proposed ROI detection frame-
work during the test phase, the evaluation is conducted on the predicted
segmentation maps before post-processing is carried out. The precision, re-
call, accuracy, and F1 score are employed as performance measures for both
sets. The results achieved during testing are presented in Table 7.2.

Performance measure Set one Set two
PRE 74.38% 68.31%

REC 90.98% 78.64%

ACC 90.43% 94.06%

F1 score 80.73% 84.48%

Table 7.2: Results for the proposed automated ROI detection protocol. The
results constitute averages from a 5-fold cross-validation protocol.
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Note that the precision metric is significantly lower than the accuracy and
recall metrics. The proposed model therefore incorrectly classifies instances
as positive on a number of occasions.

Selected results illustrating the proficiency of the proposed FCN-2 model
for the purpose of segmenting dental implants into foreground and back-
ground regions are presented in Figure 7.9. The true positive, true negative,
false positive and false negative pixels are depicted in white, black, green
and pink respectively.

(a) (b)

(c) (d)

Figure 7.9: Qualitative depiction of the proficiency of the proposed auto-
mated ROI detection protocol. (Left) Examples of actual X-ray images.
(Right) Comparison of manually selected and automatically detected ROIs.
The true positive, true negative, false positive and false negative pixels are
depicted in white, black, green and pink respectively.
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7.4.3 Experiment 3: Results for dental implant recognition
in actual X-ray images

In order to provide a more detailed perspective into the the proposed dental
implant recognition protocol, confusion matrices are computed for the nine
connection types across the five folds. These confusion matrices provide in-
depth insight into the classification of each connection type within the actual
X-ray images.

Experiment 3A: Results for the semi-automated dental implant
recognition system

In this subsection the results for the proposed semi-automated dental implant
classification system are presented. This system employs a protocol in which
the ROI is manually selected through the proposed semi-automated frame-
work. In Figures 7.10 and 7.11, the confusion matrices for the proposed
semi-automated dental implant classification system within the context of
implants inserted into pig jaws and human jaws are respectively depicted.

Figure 7.10: The confusion matrix of the aggregate across 5-fold cross-
validation for the proposed semi-automated dental implant classification sys-
tem when implants inserted into pig jaws are considered. The predicted and
true classes represent the nine connection types described in Chapter 5 and
depicted in Table 5.1.
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Figure 7.11: The confusion matrix of the aggregate across 5-fold cross-
validation for the proposed semi-automated dental implant classification sys-
tem when implants inserted into human jaws are considered. The predicted
and true classes represent the nine connection types described in Chapter 5
and depicted in Table 5.1.

From Figure 7.10 which constitutes a confusion matrix across 5-fold cross-
validation within the context of the dental implants inserted into pig jaws,
it can be observed that classes zero and one which represent dental implants
with a conical narrow connection type are underrepresented. From the afore-
mentioned figure it can also be observed that there are no test samples for
class eight which constitutes external hexagonal wide platform dental im-
plants.

From Figure 7.11 which constitutes a confusion matrix across 5-fold cross-
validation within the context of the dental implants inserted into human jaws,
it can be observed that a high number of classes are underrepresented. From
the aforementioned figure it can also be observed that a high number of test
samples constitute class two which represents the conical standard platform
connection type.

In order to further evaluate the proficiency of the proposed system, the
precision, recall, F1 score and accuracy are estimated from the confusion
matrices. Recall that the data employed for dental implant recognition is
imbalanced and that certain classes are underrepresented. In order to ad-
dress the aforementioned data imbalance, weighted average metrics within
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the context of the precision, recall and F1 score are estimated from the con-
fusion matrices.

In Table 7.3, results for the proposed semi-automated system are sum-
marised for dental implants inserted into pig jaws and human jaws, respec-
tively. The precision, recall, accuracy and F1 score are employed as perfor-
mance evaluation measures.

Performance measure Pig set Human set
PRE 73.04% 70.52%

REC 74.63% 69.76%

F1 score 72.23% 69.70%

ACC 74.63% 69.76%

Table 7.3: Results for the proposed semi-automated dental implant recogni-
tion system within the context of implants inserted into pig jaws and human
jaws. The results constitute weighted averages across the five folds.

Experiment 3B: Results for the fully automated dental implant
recognition system

In this subsection the results for the proposed fully automated dental implant
classification system are presented. The aforementioned system employs a
protocol in which the ROI is automatically detected through deep learning.

Figures 7.12 and 7.13 depict the confusion matrices for the proposed fully
automated dental implant classification system when implants inserted into
pig jaws and human jaws are respectively considered.

From the confusion matrices, weighted average metrics within the con-
text of the precision, recall and F1 score are estimated for implants inserted
into pig jaws and human jaws, respectively. The results are summarised in
Table 7.4.

7.5 Software and hardware employed

The proposed framework for the purpose of artificially generating X-ray
images is implemented in MATLABTM. The aforementioned framework
employs a voxelisation algorithm [39] for the purpose of transforming the
triangulated 3D surface coordinates of a specific dental implant into a 3D
volumetric representation.
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Figure 7.12: The confusion matrix of the aggregate across 5-fold cross-
validation for the proposed fully automated dental implant classification sys-
tem when implants inserted into pig jaws are considered. The predicted and
true classes represent the nine connection types described in Chapter 5 and
depicted in Table 5.1.

Performance measure Pig set Human set
PRE 73.12% 70.55%

REC 71.72% 68.67%

F1 score 70.75% 67.60%

ACC 71.72% 68.67%

Table 7.4: Results for the proposed fully automated dental implant recogni-
tion system within the context of implants inserted into pig jaws and human
jaws. The results constitute weighted averages across the five folds.

The neural network-based experimental protocols for the purpose of im-
age segmentation and classification are implemented in TensorFlow [53], a
premier open source library for handling complex back-end machine learn-
ing operations. TensorFlow offers a simple and powerful Python application
program interface (API) to manage the computational graph implemented
in C++ and is an excellent tool for model diagnostics and evaluating per-
formance giving it great reliability and flexibility. Keras [54] is used in
conjunction with TensorFlow as a front-end API that is easy to use with
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Figure 7.13: The confusion matrix of the aggregate across 5-fold cross-
validation for the proposed fully automated dental implant classification sys-
tem when implants inserted into human jaws are considered. The predicted
and true classes represent the nine connection types described in Chapter 5
and depicted in Table 5.1.

TensorFlow as the powerful back-end. This combination of Keras and Ten-
sorFlow makes Python one of the most popular languages used when dealing
specifically with neural networks. In addition to the aforementioned libraries
employed within the context of neural network-based experimental protocols,
the DeepVoxNet [45] module is employed for the efficient processing of the
artificially generated X-ray images. DeepVoxNet is a deep learning process-
ing framework for Keras developed in the Medical Imaging Research Center
(MIRC) at KU Leuven for the efficient processing and analysis of 3D medical
images.

The data preprocessing and post-processing techniques are implemented
in NumPy which is a scientific computation library, as well as Scikit and
OpenCV which are open source computer vision libraries within the Python
environment.

The experimental protocols for the proposed deep learning-based models
are conducted on the Nvidia Tesla V100 processor through the Kraken server.
Model inspection and evaluation are performed in the Google collaboratory
environment which offers free GPU usage for interactive sessions in a Jupyter
Notebook-like environment.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 7. EXPERIMENTS 103

7.6 Concluding remarks

Within the context of simulated X-ray images, a high accuracy of 96.56% and
an average loss of 5.42% are achieved during validation across a 5-fold cross-
validation protocol. This demonstrates that the proposed FCN-1 model (for
automated connection type classification) effectively learns the prominent
features associated with each artificially generated dental implant. Within
this context, the simulated X-ray images are partitioned into a training and
validation set. The proposed network uses the training data for learning
prominent features, while the network is tested against the validation data
after every epoch in order to prevent overfitting. Data augmentation is
implemented in order to ensure that the model learns varied samples of the
data so as to increase its capability to generalise on unseen data.

The performance of the proposed FCN-2 model (for automated dental im-
plant segmentation) is encouraging. The proposed system is able to classify
the pixels associated with the dental implants (foreground) and those associ-
ated with the background with accuracies of 90.43% and 94.06% within the
context of sets one and two respectively. The proposed model is trained to
perform semantic segmentation. Morphological post-processing techniques
are applied to the output binary masks in order to remove noise and com-
ponents not associated with the dental implants.

Within the context of implants inserted into pig jaws, classification accu-
racies of 74.63% and 71.72% are achieved for the proposed semi-automated
and fully automated dental implant recognition systems respectively. Within
the context of implants inserted into human jaws, classification accuracies
of 69.76% and 68.67% are achieved for the semi-automated and fully auto-
mated dental implant recognition systems respectively. Recall that within
the context of the semi-automated system the dental implants are accu-
rately segmented from the actual X-ray images. This system therefore also
serves as a benchmark in gauging the performance of the fully automated
segmentation protocol. The classification accuracies within the context of
the fully automated dental implant recognition system are therefore slightly
lower compared to that of the semi-automated dental implant recognition
system, which is expected. The proficiency of the proposed semi-automated
and fully automated end-to-end systems within the context of dental implant
recognition in actual X-ray images is significantly lower than the validation
accuracy reported for the proposed FCN-1 system, which was trained and
validated on the artificially generated X-ray images. This observation is also
not surprising.
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The proficiency of the proposed dental implant recognition systems is
slightly lower for human implants than is the case for pig implants, which
may be attributed to the presence of more significant noise levels in the
human implants (as was discussed in more detail in Chapter 4). The signal-
to-noise ratio (SNR) can be employed to measure the noise (e.g. random
quantum mottle) in the actual X-ray images. An average SNR of 2.742 is
estimated for the pig data set, while an average SNR of 1.273 is estimated for
the human data set. The human data set has a lower SNR which is typically
associated with grainy images.

The aforementioned results clearly demonstrate that the proposed proto-
col is proficient at generating artificial (simulated) X-ray images that closely
resemble actual X-ray images. The ensemble of algorithms proposed in this
study provides valuable insight into artificial data generation and automatic
implant segmentation within the context of dental implant recognition.

A number of studies [22, 25–28, 55] have applied machine learning and
especially deep learning algorithms for the purpose of classifying dental im-
plants and achieved accuracies of 63% to 96%. It is important to reiterate
that these systems considered different data sets than those considered in
this study. In the aforementioned systems the classification of a dental im-
plant is furthermore based on the type (brand or model) of the implant. The
protocol proposed in this study delved deeper by investigating the classifi-
cation of dental implant connection types. The dental implant connection
interface is a vital feature to consider when choosing an abutment replace-
ment model. The compatibility of the dental implant connection interface
varies depending on the model. A number of implant models are incompat-
ible with those of other brands [56]. It is therefore important to accurately
classify the dental implant connection type. Since the system developed in
this study is conceptually different from existing state-of-the-art systems, it
is conceivable that the system proposed here will be complimentary to exist-
ing systems. When the proposed system is combined with any other existing
state-of-the-art system, the combined system should therefore be superior to
the existing system.
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Chapter 8

Conclusion and future work

8.1 Conclusion

In this dissertation, novel deep learning-based dental implant recognition
systems using synthetic X-ray images were proposed. Firstly, a novel al-
gorithm for generating artificial training samples from triangulated three-
dimensional (3D) surface models within the context of dental implant recog-
nition was proposed. The proposed algorithm is based on the calculation of
two-dimensional (2D) projections (from a number of different angles) of 3D
volumetric representations of computer-aided design (CAD) surface models.
The 2D projections were obtained by calculating a number of parallel ray-
sums of each 3D volumetric representation. Each acquired 2D projection
constitutes an artificially generated X-ray image. A fully convolutional net-
work (FCN), that is the so-called FCN-1 model, was subsequently trained
on the artificially generated X-ray images for the purpose of automatically
identifying the connection type associated with a specific dental implant
in an actual X-ray image. Semi-automated and fully automated systems
were proposed for the purpose of segmenting questioned dental implants
from the background in actual X-ray images. Within the context of the
semi-automated system suitable regions of interest (ROIs), that contain the
dental implants, were manually specified (selected). However, as part of the
fully automated system, suitable ROIs were automatically detected, which is
facilitated by a deep learning-based model (the so-called FCN-2 model) and
morphological post-processing. Normalisation and preprocessing techniques
were applied to the segmented dental implants within a questioned actual
X-ray image. The normalised dental implants were presented to the trained
FCN-1 model for classification purposes.

105
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In this dissertation, exhaustive experiments were conducted for the pur-
pose of investigating the proficiency of the proposed systems, that is: (i) train-
ing and validation using artificially generated (simulated) X-ray images of
dental implants, (ii) segmentation of dental implants within an actual X-ray
image and (iii) dental implant classification/recognition.

The aforementioned experiments were conducted in order to gauge the
proficiency of the proposed artificial data generation strategy, automated
ROI detection algorithm, as well as the respective proficiencies of the semi-
automated and fully automated systems developed in this study within the
context of classifying a questioned dental implant within an actual X-ray
image. The experiments were conducted on two data sets that contain the
simulated and actual X-ray images. Within the context of the proposed
artificial data generation protocol, the performance of the aforementioned
system was demonstrated to be proficient at generating artificial (simulated)
X-ray images that closely resemble actual X-ray images.

The ensemble of algorithms proposed in this dissertation provides valu-
able insight into artificial data generation in terms of biomedical imaging
and automatic implant segmentation within the context of dental implant
recognition.

8.2 Future work

Although the research conducted in this study provides valuable insight into
numerous aspects relating to deep learning-based dental implant recogni-
tion using artificially generated training samples, the following alternative
avenues can also be pursued and may represent interesting future work:

(1) A more in-depth investigation may be conducted into a model that is
also capable of distinguishing between implants with the same external
shape, but with different internal connection types. This may be the
case in exceptional scenarios within the context of dental implants from
Nobel Replace. Once it is established that the predicted implant type
is associated with more than one connection type, the ROI that only
contains the connection may be submitted to a different model that
only differentiates between the connection types in question.

(2) The proposed strategy of generating 2D projections (from a number
of angles) of 3D volumetric representations of CAD surface models is
also applicable to a wide range of other objects. The CAD models for a
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variety of objects such as vehicles, aircraft, and animals are either readily
available or relatively easy to create within a short time-period.

Potential applications for this research include areas such as:

(i) vehicle detection and classification in traffic scenes,

(ii) the identification of aircraft, as well as

(iii) the categorisation of animals from aerial cameras.

(3) Within the context of simulated X-ray image generation, an investiga-
tion into a more realistic simulated X-ray acquisition process may be
conducted. This can be achieved by also considering the physical atten-
uation process of the X-rays as they propagate through the material.

(4) Transfer learning may be employed by fine-tuning the proposed FCN-1
model, which is trained and validated on the artificially generated (sim-
ulated) X-ray images, by also utilising a number of actual X-ray images
for training and validation purposes. This technique should improve the
proficiency of assigning a questioned dental implant within an actual
X-ray image to one of the nine connection types investigated in this
dissertation.
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