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ABSTRACT 
 

Position calculation of mobile objects has challenged engineers and designers for years 

and is still continuing to do so.  There are many solutions available today.  Probably the 

best known and most widely used outdoor system today is the Global Positioning System 

(GPS).  There are very little systems available for indoor use. 

 

An absolute positioning system was developed for this thesis.  It uses a combination of 

ultrasonic and Radio Frequency (RF) communications to calculate a position fix in doors.  

Radar techniques were used to ensure robustness and reliability even in noisy 

environments.  A small mobile robot was designed and built to test and illustrate the use 

of the system. 

 



 

OPSOMMING 

 

Posisiebeheer van mobiele objekte is ’n probleem wat al vir baie jare vir ingenieurs ’n 

uitdaging is.  Menige oplossings is al gevind vir hierdie probleem.  Die bekendste stelsel is 

seker die Globale Posisionering Stelsel (GPS).  Hierdie stelsel is slegs geskik vir 

buitenshuise beheer.  Daar is baie min stelsels beskikbaar vir binnenshuise posisiebeheer. 

 

’n Absolute posisioneringstelsel is vir hierdie tesis ontwikkel.  Dit gebruik ’n kombinasie 

van ultrasoniese en Radio Frekwensie (RF) kommunikasie om ’n posisie-bepaling te 

doen.  Radar tegnieke is gebruik om te verseker dat die stelsel robuust is, selfs in ’n 

raserige omgewing.  ’n Klein mobiele robot (Peete5) is ontwerp en gebou om die stelsel 

te toets en die gebruik daarvan te illustreer. 
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Chapter 1 Introduction 
 

1.1 Design goals 

Peete5 is the name of the small robot developed for this 

thesis.  The design goals of this thesis were to design a 

remote controlled mobile robot with an absolute 

position control system for indoor use. 

 

1.2 Position information and 

robots 

Position control has long been a problem for many 

designers.  Robots (especially autonomous robots) need 

to know where they are. 

 

The paper “Where am I” [3] states:  “Perhaps the most 

important result from surveying the vast body of literature on mobile robot positioning is 

that to date there is no truly elegant solution for the problem”.  This thesis will attempt 

to develop an elegant solution to this problem. 

 

There are two types of position measurements:   

• Relative positioning and 

• Absolute positioning. 

 

Types of relative positioning used are Odometry and Inertial Navigation while 

absolute positioning methods available are Active beacons, Artificial landmark 

recognition, Natural landmark recognition and Model Matching. 

 

1.2.1 Relative positioning 

Odometry uses wheel position (like wheel encoders, stepper motors etc.) to calculate the 

distance travelled by the robot as well as the angle in which the robot is travelling.  The 

advantage of this system is that it can be completely self contained. 
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Inertial Navigation uses inertial sensors like gyroscopes and accelerometers to measure 

the speed and acceleration of the robot in its axes of movement.  The speed and 

acceleration information can be used to calculate the robots position.  This is also a 

method self contained positioning. 

 

The main disadvantage of Odometry and Inertial Navigation is that no reference 

position is used.  This is a problem because of small errors that may accumulate over 

time.  A very accurate and expensive gyroscope may have a rate offset error of 1×10-3
 

deg/sec.  This may sound very small but if it is integrated over an hour, then the robot 

would think that it has turned by 3.6 degrees.  If it travels only 1 meter, then it will have 

made a 6 cm position error! 

 

Relative positioning can be improved quite substantially if the robot could have some 

kind of reference to compare to.  If the gyro error could be calculated, then the robot 

could use the accurate gyro data for short distance navigation and some sort of coarse 

reference to keep it on track. 

 

1.2.2 Absolute positioning 

Absolute positioning is normally less accurate than relative positioning but it has the 

advantage that the magnitude of the errors stays the same where as the magnitude of 

error could grow unchecked with relative positioning. 

 

Active beacons use beacons at known locations to calculate the position of the robot.  

The best known and most advanced example of active beacon position calculation 

today is the Global Positioning System (GPS).  A GPS receiver would measure the 

distance to four ore more satellites orbiting the earth at known positions.  The satellite 

position information together with the distance measurement can be used to calculate the 

position of the GPS receiver with an error as small as 1 meter! 
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Artificial Landmark recognition is used where artificial shapes or objects are used to 

calculate the position of the robot.  One such example would be to paint a grid on the 

floor.  A robot would be able to count the squares that it is moving over to calculate its 

position. 

 

Artificial Landmark recognition requires that the environment be prepared prior to 

unleashing the robots in it.  This may not always be possible or practical.  Natural 

Landmark recognition can be used in such cases.  Unmanned Aerial Vehicles (UAV) 

may look at mountain ranges to make rough position estimations. 

 

Model Matching uses the robots on board sensors to compare its environment to a 

pre-stored map.  If a robot is placed in a room and it could measure the distance to all 

four walls, then it could calculate its position if the dimensions of the room was known. 

 

1.3 Position control in Peete5 

Peete5 will attempt to add a new method of position control to the long list of position 

methods currently available to robot designers.  It will investigate the use of a relative 

positioning system by using stepper motors to calculate its position.  It will also develop 

an absolute positioning system that uses a combination of ultrasonic and Radio 

Frequency (RF) communications. 

 

The position system developed for Peete5 is aimed at short range interior position 

control.  The aim is to develop and demonstrate a positioning system capable of 

calculating the absolute position of the robot with accuracy in the order of millimetres. 

 

1.4 Features of Peete5 

This robot is a small (stands about 200mm tall), two-wheeled robot that can accurately 

calculate its own position by using a network of ultrasonic reference transmitters.  Radar 
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1 techniques like special signal encoding are used to calculate the distance to reference 

beacons.  This information is then used to calculate the robots position. 

 

The position calculation is done in a similar manner to GPS system.  A 13-bit barker 

code is transmitted from a reference board.  This code is modulated on the 40 kHz 

ultrasonic frequency.  Two high speed correlators (both running at 160 k samples per 

second) correlate the received signal and run a peak detection algorithm.  The time when 

the peak is detected, relative to a timing reference transmitted via a radio link, is used to 

calculate the range to the transmitter.  The range information from several beacons is 

then used to calculate the position of the robot. 

 

It can be controlled from a PC via and RF-link.  It is equipped with a video camera and 

video transmitter that enables the remote user to see what the robot is seeing. 

 

Features: 

• Two high-speed, 60MIPS DSP’s, connected with a high speed CAN bus (data 

processing of 120MIPS). 

• Complex demodulating algorithms that enables the robot to know exactly where 

it is (when in view of 3 or more reference transmitters). 

• 19200 baud rate, half duplex 433MHz RF link. 

• USB interface to a PC/laptop. 

• High resolution BW camera with 2.5 GHz video transmitter. 

• Two stepper motors with a control resolution of 56.25µ degrees and a maximum 

speed of 1000degrees/second. 

• Stepper motor current under software control for current between 0 A and 1.2 A. 

• Small, light-weight Lithium Ion battery pack for 18 V, 2 Ah operation. 

• Servo motor for position control of the camera head (up-down movement) in 0.5 

degree steps. 
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1 • Highly accurate, low noise, micro-machined inclinometer and gyroscope 

reference sensors. 

• Switch-mode power supply for input voltages between 12 V and 20 V. 

• 20V, fast switching push-pull configuration used for ultrasonic transmitter. 

• Sensitive 40 kHz ultrasonic receiver. 

• Highly flexible and robust communication network that enables any device in the 

network to talk to any other device. 

• User-friendly real time debugging software has been developed for debugging 

and programming of any device in the RF network. 

• Solid, robust and simple mechanical design. 

 

1.5 Design process 

The goal of this thesis was not only to develop an accurate positioning system but to also 

develop a highly flexible and easy to use feature packed robot (Peete5).  Ease of use and 

robustness was high on the priority list when designing Peete5.  The following steps 

summarize the process followed when developing Peete5: 

 

1. Ultrasonic range finding was selected as the method for position calculation. 

The reason for this is that the slow speed of sound implies long propagation 

delay of the ultrasonic pulses.  Ultrasonic range finding is a commonly used 

method for measuring distance between objects.  It is widely used in motor cars 

today to measure the clearance in front of and behind the car. 

2. The ultrasonic transducer was investigated and modelled. 

A model of an ultrasonic transducer was developed to understand how it works.  

The model was simulated in SPICE to confirm the workings of the transducer.   

3. Development of an ultrasonic transducer driver. 

When the model of the ultrasonic circuit was understood, a circuit was developed 

to optimally drive the ultrasonic transducer. 
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1 4. First PCB was developed. 

A PCB was developed that used a DSP56F801 Digital Signal Processor for both 

transmitting and receiving.  This PCB had a 5 V input voltage and generated 20 V 

(needed to drive the ultrasonic transducer) with a switch mode regulator.  It used 

a complex buffering system for communications over the RF link. 

The 20V switch mode regulator design never worked and the buffering system 

for the communications was unreliable and difficult to handle in the software.  A 

modification was done on the board to eliminate the buffering.  A normal UART 

interface was implemented where the TX/RX operation of the RF transceiver 

was controlled in the software driver layer of the SCI interface on the DSP.  This 

design was also used in the final solution. 

 

The ultrasonic driving circuitry was tested with the use of an external power 

supply.  The receiver algorithm could never be tested on the DSP56F801 because 

it did not have enough RAM to implement the correlation needed.  Although the 

processor had 1 kWords of RAM, and only 700 Words of RAM was needed, it 

could not implement a circular buffer because the compiler uses the RAM 

starting at address 0.  This was overlooked when the processor was chosen. 

 

The modification on the RF transceiver meant that an external SCI port for 

debugging was no longer available.  This made debugging of the hardware and 

software very difficult. 

5. A block diagram was drawn up to state the requirements of a single PCB that 

could be used for ultrasonic transmitting as well as all the circuitry needed to 

control the robot.  This included motor drivers, RF transceiver etc. 

6. The components for the final PCB were selected based on the specifications 

from the block diagram. 

7. Simple test routines were written to ensure that the RX processor would have 

enough RAM for the computational tasks. 
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1 8. A schematic library was created that contained all of the components that would 

be used on the Peete5 motherboard.  This library included both the schematic 

symbol of the component as well as its PCB footprint. 

9. The schematic diagram was drawn up and from there the PCB was developed.   

10. The PCB was made as small as possible in order to simplify the mechanical 

design.  The components on the PCB were placed in groups in such a way that 

shielding could be provided for the RF circuitry.  The sensitive analogue circuitry 

was kept separate from noisy components like the switch mode power supply 

and stepper motor drivers. 

11. PC test software as well as the embedded application software was developed. 

12. Once the functionality of the electronic hardware was verified, the mechanical 

design was done.  The parts for the mechanical components were made and the 

robot could be assembled. 

13. The system was integrated to get to the completed Peete5 robot. 

 

1.6 Organization of chapters 

This document is divided in to 8 chapters.  Chapters 2 & 3 will demonstrate two 

different methods of position control:  absolute and relative. 

 

The next three chapters (chapters 3 to 6) will explain the design of hardware and 

software that supported the position control systems. 

 

The final chapter (chapter 7) expands on the control algorithms used to keep the robot 

upright.  This was not one of the original design considerations of this project. 

 

 



 

 

Chapter 2 Mechanical positioning 
 

 

2.1 Introduction 

 

Two stepper motors control Peete5’s motion.  

The control software is capable of accurately 

controlling the speed of the motors as well as 

keeping track of the precise motion of the 

wheel.  If no wheel slip occurred, and the 

dimensions of the robot could be very 

accurately measured, then the robot’s position 

could be calculated based on the wheel motion 

alone.  This is a relative form of position control.  The robot will start off at a know 

position and calculate its position relative to the original starting position. 

 

This chapter will show how the wheel motion can be used to calculate the robot’s 

position but also explain why this information cannot be used as a stand-alone solution. 

 

This chapter will start by showing how wheel motion can be used to calculate the robot’s 

position.  It will then show how the stepper motors were used to calculate the wheel 

motion.  The chapter ends off by pointing out the problems in relative position control 

systems. 
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2.2 Calculating position 

Figure 2-1 shows some basic forms of robot movement.  The dotted line is the robot’s 

initial position while the bolder line is the final position after some time, ∆t.  The change 

in position, ∆x and ∆y, can be used to calculate the robot’s final position (x,y). 

 

θ

Dr

W/2

W

(x,y)
(x,y) θ

Dr

Dl

(x,y)

DrDl

a b c  
a)  One wheel standing still while the other is moving.  b)  Both wheels turn the same amount but in opposite directions.  c)  

Both wheels turn the same amount in the same direction. 

Figure 2-1:  Basic robot movement 

 

The following equations satisfy all three basic robot movements given in Figure 2-1: 

 

W
DD rl −

=θ  

 2-1 

2
rl DDD +

=  

 2-2 

)sin(
)cos(

θ
θ
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Where: 

Dl and Dr are the distances travelled by the left, and the right wheels respectively. 

W is the width of the robot, measured as the distance between the centres of the 

two wheels. 

θ is the direction faced by the robot. 

 

Based on the equations shown, the robot’s position can be calculated given the 

movement of the two wheels. 

 

2.3 Calculating wheel travel 

The equations derived in section 2.2 had three inputs:  Dl, Dr and W.  W (the width of 

the robot) can be measured manually.  Dl and Dr need to be calculated from the 

movement of the stepper motors. 

 

The two stepper motors have a step size of 1.8°/step.  This means that the wheel will 

turn by 1.8° for every step.  The driver used for controlling the stepper motor also allows 

micro stepping where each stepper motor step can be divided in to 32 micro-steps.  The 

number of micro-steps is determined by the resolution of the DAC (Digital to Analogue 

Converter) of the stepper motor controller.  In this case a 6-bit DAC is used, resulting in 

32 micro steps per step (the MSB of the DAC is used as the sign bit).  This now means 

that for every micro step, the wheel will turn by 0.05625°. 

 

The stepper motor control software maintains a signed 32-bit counter for each of the 

two motors.  Every time a positive step is executed, the counter is increased by 1 and 

decreased by 1 every time that a negative step is executed.  These counters can therefore 

be used to determine the orientation of the wheel. 

 

For example, if the wheel turns by 90°, the counter will increment by: 
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steps
step

1600
/5626.0

90
=

o

o

 

 

To calculate the distance that the wheel travelled, the following equation can be used: 

β×= RDwheel  

 2-4 

Where: 

Dwheel is the distance travelled by the wheel. 

R is the radius of the wheel. 

β is the rotation of the wheel (in radians). 

 

If the radius of the wheel (R) is 40mm and the number of micro steps counted is 1600, 

then the distance travelled by the wheel (Dwheel) is: 

 

mmstepstepsmmDwheel 83.62)180/05625.01600(40 =×××= πo  

 

2.4 Implementation of calculating wheel travel 

The function “calc_position” was written to calculate the robot’s position given only the 

movement of the wheels.  This function stores the previous stepper motor counter 

values and then gets the difference between the stored and current value each time the 

function is called. 

 

The “calc_position” function is called periodically to calculate the robot’s position.  The 

source code for “calc_position” can be found in 1 in APPENDIX D.  It will calculate 

the straight-line movement between the previous position and the current position.  The 

position calculation will increase in accuracy if the function is called more frequently. 
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2.5 Non-idealities 

There are a number of non-idealities that limit the accuracy of the mechanical position 

control.  The most important ones are: 

 

1. Wheel slip. 

2. Wheel radius and robot width. 

3. Step counter resolution. 

 

2.5.1 Step counter resolution 

One pitfall in this method of position control is the wrapping of the counters.  The step 

counters that count the micro steps have a limited size of 32-bits.  This means that it will 

wrap at 231-1 and –231.  This wrapping must be taken in to account when the difference is 

calculated.  These digital limitations are often overlooked and cause havoc that is often 

just regarded as “spurious” behaviour.   

 

In the case of a counter that can count 231-1 micro steps before wrapping, the robot can 

cover a distance of 2.147 billion micro steps before wrapping occurs.  From equation 2.3 

this means that the robot will travel 84km before wrapping occurs.  This is so infrequent 

that one may be tempted to ignore it all together.  This may be the case for Peete5 that is 

only switched on for a short while but these types of problems have to be understood.  

The problem may have been significant if an 8-bit microprocessor was used for example.  

Only four lines of code were used to solve this problem. 

 

2.5.2 Wheel radius and robot width 

Errors when measuring the width of the robot (distance measured between the centres of 

the two wheels) and the wheel radius are big causes of inaccuracy.  The percentage error 

on the wheel radius, for example, directly equates to a percentage error in wheel travel 

and thus robot position.  The same applies to the robot width. 
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These two values were accurately measured as follows: 

Wheel radius: 

1. The wheel radius was measured with a calliper to get a reasonably accurate 

starting value.  The wheel radius was measured to be 42mm. 

2. The measured value was taken and the code was implemented for position 

control.  The robot was then commanded to move forward at a constant speed. 

3. After the robot had travelled a distance of about 3 meters, it was commanded to 

stop.  A tape measure was used to measure the distance that the robot has 

travelled and the calculated value was read back from the robot itself.  The error 

between the measured and calculated value was then fed back in to the original 

wheel radius to get a more accurate measurement. 

4. The final value of the wheel radius was determined to be 40.90841584mm.  With 

this value an error of only 3mm accumulated over a distance of about 3 meters. 

 

Robot width: 

1. A calliper was used to get a starting value. 

2. The robot was turned through 3600° and then the calculated angle was read from 

the robot.  The error was fed back to the width to get a more accurate width. 

3. The final value of the width was 206.38361620mm. 

 

2.5.3 Wheel slip 

Wheel slip makes a large contribution to error in mechanical position calculation.  If the 

robot is moving only forward and backwards on a non-slippery surface then wheel slip is 

not an issue and accurate position information is obtained.  Wheels with a non-zero 

width imply slip when the robot turns and will cause position inaccuracies.  

 

Consider Figure 2-1 (a).  In this figure the robot turns around one wheel only, i.e. the one 

wheel is standing still while the other is turning.  The angle of rotation is calculated by 

using the distance between the two wheels (in this figure the wheels do have a zero 
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width).  The problem is that the stationary wheel will not turn exactly on its centre.  Due 

to the surface of the wheel and the surface that it is turning on, the centre of rotation will 

move.  It is impossible to keep track of the rotation angle when this happens.  The same 

problem will occur not only when the robot is stationary, but whenever it is turning, 

where one wheel is turning at a different speed to the other. 

 

2.6 Conclusion 

Mechanical positioning can be implemented very accurately.  Take modern day ink-jet 

printers for example.  They can accurately control the x-y location of a dot of ink on an 

A4 page to about 1/1200dpi = 21µm!  The printer also uses stepper motors to control 

the position.  The difference however is that the printer controls x and y position 

separately and that very careful measures are taken to ensure no slip. 

 

Although wheel radius and robot width can be accurately determined, a 1% error can 

quickly accumulate because no reference is available to zero the accumulated error.  The 

wheel slip is the final nail in the coffin.  Gyros could be used to counter wheel slip but 

they too have drift that must be taken out.  All-in-all mechanical position control for a 

robot is not a very good idea.  It must not be totally discarded though.  The mechanical 

position can be used to compensate for sensor drift and inaccuracy.  A good position 

calculation solution may be found by combining it with other methods.  An absolute 

method of position control is explained in the next chapter. 

 

 



 

 

Chapter 3 Ultrasonic / RF positioning 
 

 

3.1 Introduction 

Peete5 can be placed at a random location in a room 

and when it is switched on, it will know to within 

about 8 cm exactly where it is.  This means that it 

may navigate the room by using a mental map of the 

room.  Peete5 can do this because it is equipped with 

a sophisticated positioning system that uses both a 

RF communication link as well as ultrasonic range 

finding system.  This chapter will explain how these 

two systems are used together to get an accurate 

position fix on the robot. 

 

This chapter is divided in to three main parts.  The first part will explain the 

communication network used for communications between the different units.  This 

network is the backbone of the positioning process.  It is also used for debugging 

communications from a PC to any one of the boards in the system. 

 

The second part develops the position calculation function.  This is the function that 

Peete5 uses after gathering all the required sensory information.  The matrix maths is 

explained and the final solution of the function is demonstrated.  It will also show how 

the function was simulated on a PC to prove that it works correctly. 

 

The third part explains how the ultrasonic range finding system works.  The range 

information is the actual measurement that is used to calculate the robot’s position.   The 

PC simulation software is demonstrated and the final implementation in the DSP is 

explained. 
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3.2 Communication Network 

3.2.1 Concept 

The communication network used for communication on Peete5 is simple, reliable and 

very flexible network of communications that allow any device in the network to talk to 

any other device in the network.  There are a number of hardware layers that are used for 

communication.  All these layers must be understood and the flow of data over these 

layers is crucial.  The five hardware links used in Peete5 is: 

• USB 

The Universal Serial Bus (USB) is mainly used for debugging and remote control 

of the robot.  The communication over the USB bus will always be between a PC 

and main motherboard CPU.  The data on the USB bus goes through a USB to 

SCI (Serial Communication Interface) converter.  The SCI signal is native to the 

CPU used and can be taken directly in to the CPU for communication. 

• SCI 

The SCI (Serial Controller Interface) is one of the on-board peripherals on the 

CPU’s used.  The physical hardware is set up and controlled by low level driver 

software that was developed for the CPU.  SCI is used for communications 

between a PC and the CPU and for communications from one CPU to another 

over an RF link. 

• SPI 

The SPI (Serial Peripheral Interface) is widely used for inter-device 

communication.  In Peete5 this interface is not part of the main communication 

layer.  The RF IC used has two interfaces.  It uses SPI to control its registers (that 

ultimately controls the functionality of the IC), and SCI for the actual RF 

communications. 

• CAN 

CAN (Controller Area Network) is a high speed, high reliability network interface 

that was developed for high reliability communication between multiple devices 

on the same network.  In Peete5 CAN is used for communication between the 

main control CPU, and the RX CPU that is used for demodulating the received 
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ultrasonic signal.  CAN lend itself to multiple communication layers over the 

same physical interface.  In Peete5 this has been used to great advantage.  Two of 

the ports on the CAN bus has been used for a transparent communication layer.  

This communication layer will work the same as the normal communication 

layer.  Two other ports have been used to quickly flag the start of, and end of an 

ultrasonic transaction. 

• RF 

A 433MHz, FSK RF link is used for the RF communications.  This is a half-

duplex link.  The low-level driver software controls transmit and receive state on 

the RF link.  It does this by monitoring RSSI as well as transmitter and receiver 

interrupts in the CPU hardware. 

 

Because of the interaction between so many modules in the system, there must be an 

easy communication flow of data from one module to another.  A special protocol layer 

has been developed in such a way that one module can talk to another module without 

knowing the path that the data took or the physical hardware medium that was used for 

the data transaction.  This makes development and implementation much easier and 

quicker. 
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Application layer

Protocol layer

Comms layer

Hardware layer

 

Figure 3-1:  Communication layers 

 

Figure 3-1 shows the layers used for data communications.  These layers and their usage 

are: 

• Application layer 

The application layer is the actual program.  This layer simply wants to send and 

transmit pre-defined data packets.  It does not care how a packet is sent, as long 

as the packet can be reconstructed in the same way on the other side. 

• Protocol layer 

The protocol layer is responsible for packing and unpacking of the messages 

from the application layer.  It will work on the byte level where the application 

layer worked on the message buffer level.  It is responsible for ensuring packet 

reliability and transportability.  It does not care how the data is being sent, as long 

as the bytes get to the protocol layer on the other side. 

• Comms layer 

The comms layer is responsible for transmitting and receiving bytes.  It does not 

care what the format of the bytes is, or where it is going.  For example, the SCI 



 5Peete 

 

Chapter 3  Ultrasonic / RF positioning 

 

 
19 

3 

comms layer may receive a burst of bytes when a message is being transmitted or 

received.  Because of physical constraints (the bytes can only be sent over the bus 

at a certain baud rate), it will buffer the bytes and monitor the activity on the bus 

to send/receive the next byte when it becomes available.  The different comms 

layers were described at the start of this section. 

• Hardware layer 

The hardware layer is the physical transport layer.  This layer works on the bit 

level.  It is sending and receiving single bits at a time.  It may be a wire (CAN, 

SCI, USB) with specific voltage levels, or it may be a RF carrier wave. 

  

Each layer and its interfaces are very clearly defined.  This is what made it possible to 

have transparent data communications across the different hardware interfaces.  Any one 

of the layers below the application layer can be changed without affecting the basic 

communication routines.   

 

3.2.2 Example 

 

PC USB/SCI
converter Main DSP RF

transceiver
RF

transceiver Main DSP RX DSP

1 2

3

4

3

5

 

Figure 3-2:  Example of a message transaction 

 

Figure 3-2 shows an example of a communication transaction.  For this example, let’s 

follow the path that a message will follow if the user, on a PC wants to read the status of 

an RX demodulating DSP that is in Peete5 (not connected to a PC).  The transmitted 

message will travel over 5 different comms layers, and 2 different protocol layers.  From 

the user perspective, everything works exactly the same as when it was directly plugged in 

to the RX DSP and the message travelled over only one comms, and one protocol layer. 
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Step 1:  The PC will build up the packet to be transmitted (the data packet format can be 

found in 3.2.3).  The PC software will break up the packet in to a normal SLIP (Serial 

Line Internet Protocol) packet and use the PC’s USB driver to transmit the data.  The 

data will travel over a screened, twisted pair USB cable. 

Step 2:  The USB to SCI converter will convert the USB data to a SCI data stream.  

(Note:  The USB link has its own protocol layer built in).  The SCI data then travels on a PCB 

track, at 3.3V voltage levels. 

Step 3:  The main DSP will receive the SCI bits and an interrupt will be generated when 

a correct byte has been received.  The comms layer will buffer these bytes for later 

retrieval by the protocol layer.  The protocol layer will periodically read in data buffers 

and attempt to reconstruct a complete message.  It will flag the application layer when 

the message has been reconstructed, and pass the reconstructed message to the 

application layer. 

Step 4:  The application layer would have determined that this message was not 

addressed for it (remember that it is addressed to the RX DSP), and will transmit it over 

the RF link.  It will use both the SPI interface (to control the RF device IC) and the SCI 

interface to transmit the packet over the RF link.  It will also now use a different 

protocol layer.  The normal SLIP protocol cannot be used on the RF link because of 

certain data constraints.  The RF-SLIP protocol is now used. 

Step 5:  This is the same as step 4 but in this case the DSP is receiving data over the RF 

link.   The packet will be reconstructed and presented to the application layer.  The 

application will recognize that the packet is not addressed to it, and will forward the 

packet on the CAN bus. 

Step 6:  The protocol layer on the RX board will receive the bytes from the CAN 

comms layer, and attempt to build up the received packet.  Once a complete packet is 

received, it will be presented to the application layer.  In this case, the application layer 

will respond to the message since it is addressed to it.  It will build up a packet to indicate 

its status, and transmit it back on the comms layer that it was received on.  From there 

on, the whole process works again in reverse until the response is received by the PC, 

and is displayed for the user. 
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3.2.3 Data Packet format 

The data packet format describes the format of the data transmitted over the various 

interfaces.  The data packet format has been developed specifically for Peete5.  The 

validity of the transmitted data is guaranteed in this protocol as well as the delivery of a 

data packet.  The protocol is also what makes it possible for the packets to be 

transmitted seamlessly over various interfaces. 

 

Figure 3-3 shows the format of a data packet.  The data packet consists of the following: 

• Preamble 

• Sync word 

• Source address 

• Destination address 

• Data words 

• CRC (calculated over the source address, destination address and data). 

• Stop word. 

 
Preamble (32x 0xAA) Sync (2x 0xFF) Source Adr Dest Adr Data CRC Stop (0xFF)  

Figure 3-3:  Data packet format 

 

3.2.4 Preamble 

If the packet is transmitted using the RF link, then a DC balanced preamble is needed for 

the data slicer to acquire the correct comparison level from its averaging filter.  A 

constant stream of 1’s and 0’s are sent first to accommodate this.  The preamble and the 

sync word are only sent when a message is sent over the RF link.  It is left out for other 

hardware interfaces. 

 

3.2.5 Sync word 

There can be a lot of noise before and even during the preamble.  This may cause the 

UART to detect false start bits and data.  To get the UART to synchronize on the correct 
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start bit in the data stream, 16 bits of 1 are sent.  This means that the data stream will be 

high, with only the stop bit.  The UART should have synchronized after the first synch 

word. 

 

3.2.6 Source Address 

The source address shows the origin of the data packet.  This will be the ID of the 

specific board that sent this packet.  It is an 8-bit wide, unsigned byte. 

 

3.2.7 Destination Address 

Every packet has a destination.  This is the ID of the board that the packet was intended 

for.  It is an 8-bit wide, unsigned byte.  The following are globally used addresses and 

should not be used by individual boards: 

• 0x00 – Addressed to all. 

 

3.2.8 Data 

This block contains the data information to be sent and can be of any length as long as 

the receiving device has enough memory to store the complete packet. 

 

3.2.9 CRC 

Every message is protected with a Carrier Redundancy Check (CRC).  The CRC is 

calculated over the source address to the last byte of data.  It is a 16-bit wide, unsigned 

word. 

 

3.2.10 Stop 

The stop byte signals the end of a message packet. 

 

3.2.11 Packet Protocol 

All the data is sent and received using a specific protocol.  The following bytes are used 

in the transmission protocol and may not be part of the data packet or the address bytes: 
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• 0xAA – This byte is used for the preamble. 

• 0xFF – This byte is used to synchronize the UART and is used to signal the start 

and end of a packet. 

• 0xCC – This byte is used if any of the other protocol specific bytes are part of the 

normal data packet.  It is called the ESC byte. 

 

 Receive new
character

Is it Synch byte?

Put byte in receive buffer.

Is it ESC byte?

Is receive buffer
full?

Flush receive buffer

Wait for byte.

Y

N

N

N

Set ESC flag.

Is ESC flag set?

N

Invert byte and put in
receive buffer.

Clear ESC flag.Y

Is receive
buffer > 3 *

Flush Receive buffer.

N

Y

Calculate packet CRC.

Does CRC check
out OK?

N

Parse packet

Y

*  The smallest possible packet size is 3 bytes.  

Figure 3-4:  Message protocol flow diagram 
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Figure 3-4 shows a flow diagram for receiving a packet using the SLIP message protocol.  

The receiver polls for new characters constantly.  If a Synch character is received then 

the previous message is decoded (if there was any) and the receive buffer is flushed to 

start receiving a new packet. 

 

The data bytes may not contain any of the characters used by the protocol 

implementation.  A special sequence of bytes must be sent when a protocol character is 

present in the data.  For example, if a sync byte needs to be sent, the receiver must send 

an ESC byte followed by the inverted synch byte.  This means that to send 0xFF, the 

receiver must send 0xCC 0x00.  Similarly to send 0xAA the receiver will send 0xCC 

0x55.  The receiver will, on receiving an ESC byte, set a flag to indicate that the next byte 

must be inverted before being placed in the receive buffer. 

 

3.2.12 Response message 

The format of the response message is exactly the same as that of the transmitted 

message (see Figure 3-3).  If the response message is in response to a message that it has 

decoded, then the response identifier will be the same as the command identifier but with 

the highest bit set to indicate that it is a response message. 

 

All modules must always respond to messages that were correctly decoded, i.e. the CRC 

of the message was correct.  If the CRC check of the message failed then it must not 

respond.  If the message cannot be processed then a Not Acknowledge (NAK) 

command must be sent.  A NAK command is a response message with no data words 

and consists of only 3 words (the two address words and the CRC). 

 

If the specific module does not support the specific message, then it must send a NAK. 
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3.2.13 Messages 

Table 3-1 lists all the supported messages within the modules used in Peete5.  This table 

lists all the command identifiers.  Remember that the highest bit of the identifier will be 

set if it is a response message. 

Supported by: Description Command 

identifier RX1 TX2 Main3

 

status 

0x01    

enter_sw_download  0x02    

start_sw_download 0x03    

program_flash 0x04    

stop_sw_download 0x05    

get_raw_adc 0x06    

send_dist_pulse 0x07    

force_calculate_distance 0x08    

reset 0x09    

set_motor_speed 0x0A    

set_motor_current 0x0B    

set_servo_angle  0x0C    

get_last_dist_ 0x0D    

get_mec_pos 0x0E    

get_sensor_data 0x0F    

Peek 0x10    

new_beacon  0x11    

update_position 0x12    

get_beacon_info 0x13    

                                                 
1 Receiver processor (MC56F8322). 
2 Transmitter board (MC56F8346). 
3 Main Robot processor (MC56F8346). 
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get_usonic_pos 0x14    

Table 3-1:  Peete5 communication command messages 

The contents of the messages can be found in APPENDIX B. 

 

3.2.14 Implementation 

It should be clear by now that the implementation of the communication network 

requires various hardware interfaces, as well as different layers of software.  To discuss all 

of this in detail is beyond the scope of this document.  It will require an in depth 

explanation of the different hardware layers, assembler code knowledge, etc.  Instead, the 

references for the different hardware layers, (CAN, SCI, SPI, USB and RF)  can be used 

together with the comments in the source code to better understand the lower two levels 

of the communication network.  See [5], [6], [7], [8] and [9]. 
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3.3 Position calculation 

3.3.1 Position function 

Figure 3-5 shows a two-dimensional (2D) surface with two beacons.  The positions of 

two beacons, B1 and B2 are known as (xB1,yB2) and (xB2,yB2) respectively.  The robot will 

measure the distance (r1 and r2) to the two beacons.  If the robot measures the distance to 

B1, it knows that it is somewhere on the rim of the smaller, blue circle.  Measuring the 

distance to B2 tells it that it is somewhere on the rim of the larger, red circle.  The robots 

absolute position is thus given where these two circles intersect. 

 

x

y

R =(x ,y )1 1 1

B =(x ,y )1 B1 B1

B =(x ,y )2 B2 B2

R =(x ,y )2 2 2

 

Figure 3-5:  2D positioning with 2 beacons. 
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The basic equation used to calculate the position of the robot is given by the equation of 

a point on a circle: 

( ) 222 ryx =+  

 3-1 

To calculate the position of the robot in Figure 3-5, the robots position (x,y) must satisfy 

both of the following equations: 

( ) ( ) 2
1

2
1

2
1 BBB ryyxx =−+−  

 3-2 

( ) ( ) 2
2

2
2

2
2 BBB ryyxx =−+−  

 3-3 

Where rB1 and rB2 are the distance measured by the robot from beacon 1 and beacon 2 

respectively.  This results in two equations with two unknowns.  Simultaneously solving 

these two equations will give the two points shown in Figure 3-5 as R1 and R2.   

 

One more beacon is necessary to resolve the ambiguity between R1 and R2.  Write the 

equation of the distance from the beacon to the robot in a more general form: 

222 )()( ryyxx nn =−+−  

 3-4 

where xn, yn and rn are all vectors, denoting the information from the various beacons.  

Multiplying out this equation gives: 

 

22222 22 ryyyyxxxx nnnn =+⋅−++⋅−  

 3-5 

 

Re-arrange this to a form where the unknowns (x and y) can be written in matrix forms: 
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22222 22 yxyyxxryx nnnnn −−⋅+⋅=−+  

 3-6 

 

and then write in matrix form as: 

 

[ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⋅−=−+

22

222 122
yx

y
x

yxryx nnnnn  

 3-7 

 

The position of the robot can now be solved by: 

 

[ ]( ) [ ]222

22

122 nnnnn ryxyxpinv
yx

y
x

−+⋅−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
 

 3-8 

where pinv is the pseudo-inverse matrix function.  This last equation gives the least-

squares-solution for x and y.   

 

Equation 1-8 is in the form Y = A×X.  The least squares estimate of A can also be 

calculated from: 

 

)'(' XXinvXYA ⋅×⋅=  

 3-9 

Equation 3-9 is the position equation that was implemented in software to calculate the 

robots position.  This equation can easily be tested in Matlab to verify that it works 

correctly. 
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In this example only three beacons are needed to calculate the robots position.  Adding 

more beacons will however have a beneficial effect.  There will always be noise on the 

measurements of rn.  This will result in measurement errors.  Having more beacons and 

taking the least-squares solution will result in better position measurements. 

 

Peete5 moves around in a three dimensional environment.  This means that four beacons 

are needed to get a 3D position fix.  For the purpose of this exercise, the solution was 

simplified to a 2D/3D solution to minimize the amount of hardware needed.  The 

equations used for 2D implementation stay exactly the same for the 3D solution. 

 

x

z

y

rb

z
d

Beacon (x,y,z)

 

Figure 3-6:  Distance measured from a beacon 

Let’s assume that Peete5 will only move on a flat surface, in two dimensions (which is a 

safe assumption since it cannot climb stairs yet).  This surface is the plane of x,y,z where 

z = 0.  Figure 3-6 shows a measurement that will be made from the robot to a beacon 

that is at an arbitrary position.  Let this beacon have the position (x,y,z).  The distance 

measurement that the robot will make is the distance straight to the beacon.  This value is 

denoted by d in Figure 3-6.  If the position calculation is to be simplified, then only the x 

and y location together with rb is needed.  The value of rb can be calculated using 

Pythagoras: 
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22 dzrb −=  

 3-10 

 

The “new_beacon” command (see APPENDIX B) can be used to program in the 

location of a new beacon.  The embedded application code in the main processor will use 

the information of this command to build up two matrixes. 

 

It will pre-calculate the two matrixes shown on the right-hand side in equation 3-9.  It 

will multiply x and y by 2 and also calculate x2 and y2.  This is to speed up the calculation 

when a new distance measurement is made.  The two matrixes are also maintained and 

only one value in one of the matrixes is changed when a new distance measurement is 

made.  The least squares calculation is done for every new measurement to get a new 

position fix. 

 

All the matrix mathematics needed for the calculations shown in equation 3-9) was 

developed for both C and Delphi.  The code was tested first in a Delphi simulation 

before it was ported to the embedded C environment. 

 

3.3.2 Simulation 

The Delphi program “pos_calc_sim.exe” can be used to test the mathematics.  There are 

two versions of the software.  The one is an interactive version where beacons can be 

placed interactively.  The second will take pre-programmed beacons and plot the position 

of the robot over time.  This is useful to see what kind of errors can be expected. 
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Figure 3-7:  Output of pos_calc_sim with 3 reference beacons 

 

 

Figure 3-8:  Output of pos_calc_sim with 6 reference beacons 

 

Figure 3-7 and Figure 3-8 shows the output from the interactive test program.  The 

position of the mouse is displayed in the left top corner.  The distance from the beacon 

to the position of the mouse cursor is displayed underneath.  The positions where all the 

circles intersect are the position of the mouse.  Left-clicking with the mouse will add 

another reference.  The calculated position (shown next to the radius values) will appear 

as soon as three or more reference boards are placed.  It is only then that the software 

can do a position fix. 
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Noise is added to the radius measurements.  The noise levels can be changed in the 

software.  When more beacons are added (as in Figure 3-8), the noise on the calculated 

position comes down although the noise on the radius measurements stays the same. 

 

Figure 3-9 shows the output from the second simulation program.  In this case, it took 

the data from an actual test setup and calculated the robot’s position.  The blue squares 

on the edges of the plots show the position of the beacons.  The cluster of points is the 

positions calculated by the robot. 

 

 

Left:  80mm noise on the measurement.  Right:  10mm noise on the measurement 

Figure 3-9:  Position calculation with three beacons. 

 

Figure 3-9 shows the position calculation with only three beacons.  Note that with 80mm 

of noise on the distance measurement there is an error of almost 200mm in the Y-axis, 

and only 100mm in the X-axis.  The reason for this difference is the placement of the 

reference sensors.  The two circles from the top and the bottom beacon would intersect 

with a greater area than the two circles from the left and bottom beacon.  This is 

illustrated better in Figure 3-10 below.  Both distance calculations use the same beacons 

and the same noise (ε) on the measurement.  However, there is a greater error in the X-

axis of the left measurement than in the right measurement.  The reason for this is the 

area that overlaps both the measurements. 
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ε

Large area.

ε Small area.

 

Figure 3-10:  Dependence of position error on beacon placement 

 

One way of limiting this error would be to add another beacon.  This is shown in Figure 

3-10 where a fourth beacon was added.  The error in the X-axis and Y-axis are now 

almost identical. 

 

 

Left:  80mm noise on the measurement.  Right:  10mm noise on the measurement 

Figure 3-11:  Position calculation with four beacons. 
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3.4 Ultrasonic Positioning 

3.4.1 Concept 

The reason why ultrasonic range finding was used as opposed to conventional RF or 

infrared methods is mainly because of affordability and the speed of sound.  Sound 

waves travel at 343m/second (see [10]) in air at room temperature (20°C).  This can be 

seen as relatively slow compared to the speed of modern processors and negligible 

compared to the speed of light.  It is effectively the difference between the speed of 

sound and the speed of light that is used to calculate the distance between the transmitter 

and the receiver. 

 

dis
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Reference / Transmitter
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Figure 3-12:  Simplified range finding system 

Figure 3-12 shows the concept behind the ultrasonic range finding.  If the robot wants to 

know how far it is from a certain reference board, the following steps will be performed: 

 

1. The robot will send a message (over the RF link) to the reference board, 

requesting an ultrasonic pulse to be sent. 

2. On receiving the request, the reference board will acknowledge the request (again 

over the RF link), and at the same time transmit an ultrasonic pulse.  The RF 
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signal will travel much faster than the ultrasonic one, and its propagation time 

delay can be neglected. 

3. When the robot receives the reply from the reference board, it will signal its 

secondary RX DSP over the CAN bus to start looking for the pulse.  The RX 

DSP will demodulate the received signal, and pass back the distance measured to 

the main DSP. 

 

The range information can now be used in equation 3-9 to calculate the position of the 

robot. 

 

3.4.2 Simple solution 

The simplest solution would be to transmit an ultrasonic pulse on a specific carrier wave 

(CW).  The length of the pulse is of little importance and can possibly only be long 

enough to get the maximum power out of the transducer. 

 

The detection circuit in this case will also be quite simple.  A band pass filter with a level 

detection circuit should do the job.  The receiver would have to measure the time from 

when the signal was sent (as signalled by the transmitter over the RF link) until its 

threshold circuit was triggered. 
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Figure 3-13:  Simple ultrasonic measurements 

 

Figure 3-13 shows some measurements that were done with an ultrasonic transmitter and 

receiver.  A constant CW (40 kHz) was transmitted and the value measured by the 

receiver was sampled by an Analogue to Digital Converter (ADC).  The sampling rate is 

400 kHz.  The left hand side graphs show the measured data, while the right hand side 

shows the spectrum (Fourier transformation) of the measured data. 

 

Three different setups were used to compare measurements (the results of which are 

shown in Figure 3-13): 

• The transmitter and the receiver were placed close to each other (about 15cm 

apart). 

• The transmitter and receiver were placed far apart (> 2m). 

• The transmitter was switched off. 
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The received signal in the first case (receiver and transmitter close together) was very 

strong.  So much so that it started to saturate the RX amplifier.  The effect of the 

saturation can be seen in the spectrum where there is a strong signal at 1.2MHz (3 x 40 

kHz).  The received signal is very strong at about 44dB (this dB value is not an absolute 

value but a relative value).  Very little filtering is necessary to detect this signal. 

 

In the second case (receiver and transmitter far apart), it is impossible for the human eye 

to see the received signal in the raw data.  Only when one looks at the spectrum is it 

possible to see that there is still a signal at 40 kHz (at -81 dB).  The noise floor is at about 

-110dB resulting in a signal-to-noise ratio of 30 dB.  It is still possible to detect this signal 

but the analogue implementation is very difficult. 

 

The biggest hurdle in the analogue path will be the band-pass filter.  A 30 dB signal-to-

noise ratio is only possible if a very narrow filter with a high Q is used (an 8 pole 

Butterworth filter would be needed).  Although it is possible to design such a filter, it is 

almost impossible to realize it without very fine tuning.  For robust, reliable and sensitive 

ultrasonic range determination, a different solution must be found. 

 

3.4.3 Barker code 

The previous section showed that a simple solution is unlikely to solve the problem.  

Luckily there are tools and devices available today that offer a whole new range of 

solutions to the problem.  The one chosen for this problem was digital.  Working in the 

digital domain offers infinitely more possibilities.  The implementation of a band-pass 

filter becomes trivial while the bandwidth of the filter is determined by the resolution of 

the processor.  More bits mean smaller values which result in lower bandwidth. 

 

Radar techniques can be implemented with the use of modern day Digital Signal 

Processors (DSP).  The transmitter can transmit a specially shaped burst of impulses.  
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The receiver can sample the incoming signal and implement a matched filter by 

correlating the signal with the transmitted reference signal. 

 

The question now is what kind of filter (or impulse stream) to use.  One solution would 

be to use a pseudo-random sequence of impulses to modulate the phase of the carrier 

wave.  A 10-bit random stream will look something like [1 0 1 1 0 1 0 0 0 1].  A 1 will 

represent a 0 degree phase in the transmitted signal while a 0 represents a 90 degree 

phase in the transmitted signal.  If the receiver correlates the incoming signal with the 

same stream used by the transmitter, then you have a matched filter. 

 

Figure 3-14 shows the autocorrelation of various lengths of random impulses.  This 

simulation was done in Matlab.4 
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Figure 3-14:  Autocorrelation of different length random streams 

                                                 
4 The source code can be found in \programming\Matlab 
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The value of interest after the correlation has been done is how high the peak value 

stands out above the side-lobes.  The maximum correlation value (or peak value) will 

occur in the centre of the correlation process, or in the case of a transmitter/receiver, 

when the received signal lings up exactly with the reference signal.  The values to the left 

and the right of the peak value are called the side-lobes.  The side-lobes must be as low 

as possible in relation to the peak value in order to get the best noise immunity.  To get a 

more distinguishable correlation value, a longer sequence of impulses can be used.  The 

figure where 60 bits were used has a peak/side-lobe ratio of about 5 where the 10-bit 

correlation has a ratio of 2. 

 

It is however not just the length of the code that is important, but also the code used.  A 

good criterion for a good “random” phase-coded sequence is one where its 

autocorrelation function has equal side-lobes.  The binary phase-coded sequence that 

results in equal side-lobes after passage through the matched filter is called a Barker 

code.  There are 7 known Barker codes ranging in length from 2 bits to 13 bits.  The 13-

bit code has a peak/side-lobe ratio of 13 (or 22.3dB).  It is demonstrated in Figure 3-15.  

This 13-bit sequence has a better peak/side-lobe ratio than the previous 60-bit one! 

 

The 13-bit Barker code sequence is an obvious candidate for the impulse sequence 

needed.  The next section will show how this code was used to determine the distance 

between the transmitter and the receiver. 
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Figure 3-15:  13-bit Barker code autocorrelation 

 

3.4.4 Simulation 

Various methods were investigated to find the best way of simulating the complete 

transmit/receive path.  Matlab is an obvious candidate because of its powerful use of 

matrices and the built-in functions.  A lot of the initial work was done in Matlab5 but the 

final solution was implemented in Delphi6.  The reason for this is that it also made it 

easier to port the final solution to C or assembler in the embedded code. 

 

More than one simulation program was written in Delphi.  It started with a simple 

simulation program where all the variables were fixed.  This soon created limitations 

when trying to understand the effects in the actual transmission.  A more flexible and 

tuneable program was needed and the specifications of a final simulation program were 

written down: 

 

                                                 
5 The matlab examples can be found in \programming\matlab\ 
6 Delphi is an Object Oriented programming language based on Pascal. 
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• All the major variables (ultrasonic frequency, sampling rate, noise, etc.) must be 

configurable at run time. 

• It had to simulate the whole system, from transmitter up to the final peak 

detection in the receiver. 

• The bandwidth of the ultrasonic transducers had to be simulated. 

• All the measurable points in the system must be captured to be displayed on a 

graph or exported to a file for later analysis. 

 

The program u_sonic_sim.exe was developed for simulating the complete system7.  It 

meets all the requirements mentioned above. 

tx_code modulated_tx_code

tx_signal

noise,
time delay

rx_signal

ADC sampler
First 

correlation
second

correlation

Transmitter Transmission
medium

Receiver

 

Figure 3-16:  Complete ultrasonic system 

 

Figure 3-16 shows the complete ultrasonic system that was simulated.  The system is 

divided in to three main parts: 

• Transmitter – The part of the system responsible for generating and transmitting 

the barker-coded impulses. 

• Transmission medium – This will be the air that the ultrasonic signal passes 

through. 

• Receiver – The part of the system responsible for receiving and demodulating the 

transmitted signal. 

 

                                                 
7 The program can be found in \usonic\programming\delphi\usonic sim\ 
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These three systems in turn contain various parts.  Some will be hardware (e.g. ultrasonic 

transducers), and some software (e.g. modulated barker code).  The purpose of the 

simulation software was to implement and simulate all of these.   

 

The rest of this section will explain the ultrasonic solution in detail by explaining all of 

the different parts in the simulation (refer to Figure 3-16). 

 

TX CODE 

The tx_code is the code used to modulate the signal by.  In this case, it will be the Barker 

code:  [1 1 1 1 1 0 0 1 1 0 1 0 1].  The code sequence is adjustable and allows the 

investigation of different code sequences.  A plot of the generated tx_code is shown in 

Figure 3-17.  
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Figure 3-17:  Generated TX code 
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MODULATED TX CODE 
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Figure 3-18:  Modulated TX signal 

 

A 40 kHz carrier wave is used to transmit the ultrasonic signal.  This signal is phase 

modulated by the tx_code.  The resulting signal is shown in Figure 3-18.  It is very 

difficult to see in this small picture, but if one looks closely, then the 180 degree phase 

changes can be seen. 

 

This signal is the final signal generated by the transmitter in software.  It will now be used 

to drive external hardware in order to transmit the signal via the ultrasonic transducer. 
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Figure 3-19:  Spectrum of modulated TX signal 

 

The signal generated in software, and shown in Figure 3-18 is now used to drive the 

external hardware.  The simulation software had to simulate how the hardware would 

react to this signal.  The ultrasonic transducer has a very narrow bandwidth (or high Q) 

(the specifications for the ultrasonic transducer can be found in [11]).  The transducer 

will not be able to transmit the high frequency contents of the generated square wave.   

Figure 3-19 shows the spectrum (Fourier transform) of the modulated TX signal.  Note 

the high frequency contents of the side lobs and their levels when compared to the main 

lobe.  This is much wider than the bandwidth of the ultrasonic transducer.   
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Figure 3-20:  Ultrasonic pulse and its spectrum 

 

A simple measurement was made to determine the bandwidth of the ultrasonic 

transducer.  A single ultrasonic pulse was sent, and the received signal was measured.  

The received signal is shown in the top half of Figure 3-20.  The spectrum of this signal 

is shown in the bottom half.  Note the transient response of the received signal.  This is 

because of the bandwidth of the transmitter and receiver.   

 

The simulation program had to take this bandwidth of the transducer in to account in 

order to get a reasonable representation of the final system.  In order to achieve this, the 

modulated TX signal was sent through a band pass filter (the implementation of an IIR 

filter is given in APPENDIX A) to simulate the response of the ultrasonic transducer.  

The resulting signal is shown in Figure 3-21.  The phase transitions are now more clearly 

defined because of this bandwidth limitation.  Clear gaps are seen where the phase 

changes from 0 degrees phase to 180 degrees phase. 
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Figure 3-21:  Generated TX signal 

 

The signal shown in Figure 3-21 is the signal as it would appear just after it has left the 

ultrasonic transducer.  This signal will now propagate through the transmission medium 

(air).  For now, let’s assume that the transmitter and the receiver are closely spaced.  This 

means that signal degradation can be neglected in order to clearly demonstrate the 

system.  In this case there will be little difference between the transmitted and received 

signal.  The addition of noise will be considered later. 

 

ADC SAMPLER 

The transmitted signal will arrive at the receiver and will be sampled by an Analogue to 

Digital Converter (ADC) in order to digitize the signal.  Further signal conditioning can 

be done once the signal is in the digital domain. 

 

There are a couple of things to keep in mind when using ADC’s.  The mistake is often 

made to think that ADC’s are ideal and convert the analogue signal directly in to a digital 

signal.  Most people will only take the Nyquist frequency (see [12]) in to account where 

they should in fact look at various other factors: 
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1. Quantisation noise of the ADC. 

2. Parasitic capacitance on the ADC itself. 

3. The effects of the ADC sample and hold circuitry. 

 

All of these effects must be taken in to account when designing anti-aliasing filters for 

the ADC and when determining the resolution needed.  For now the sampling rate will 

be chosen as 160 kHz so that it is much higher than the Nyquist frequency of 80 kHz. 
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Figure 3-22:  Output after first correlation 

 

The process of detecting the ultrasonic pulse train is done in two steps, a first correlation, 

and then a second correlation. 

 

Each bit in the Barker code is represented by a number of ultrasonic cycles.  The number 

of cycles was determined by inspection.  If too few cycles are used, then not enough 

power can be transmitted.  The transmitted signal would not reach full strength because 

of the bandwidth of the transducer (Figure 3-20).  If too many cycles per bit are used, 

then it starts to place serious limitations on the amount of memory needed to do the 
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correlation.  The simulation program does allow the changing of the number of 

cycles/bit in order to find a good solution. 

 

The first correlation is used to detect the presence of one code bit.  The length of this 

correlation must be the number of cycles/bit multiplied by the number of samples per 

cycle. 

 

For example: 

If the number of cycles/bit is 20 and the sampling rate is 160 kHz, then the number of 

samples per cycle is 4, and the length of the first correlation is 80. 

 

The values (or taps) of this correlation will simply be the signal that is being detected, 

namely one bit.  This means that it is merely a 40 kHz sine wave sampled at 160 kHz.  

The presence of a bit will be detected when the output of this correlation peaks.  A 

positive output means a bit with a 0 degree phase while a negative output means a bit 

with a 180 degree phase. 
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Figure 3-23:  FIR filter response 
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As mentioned before, the correlation can be seen as a matched filter.  In fact, this 

correlation is nothing else than a Finite Impulse Response (FIR) filter and it can be 

treated as such.  Figure 3-23 shows the impulse response (in both gain and phase) of the 

FIR filter used for the first correlation.  The output of the signal after it passed through 

the first correlation is shown in Figure 3-22 (this may not seem very significant now but 

its effect will become apparent when noise is introduced in to the system). 
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Figure 3-24:  Second correlation output 

 

The final goal is to calculate a good correlation (as shown in Figure 3-15) using the 

information from the first correlation.  The complete received signal must be correlated 

with a known reference signal.  This may end up being impractical.  Due to the length of 

the data used, the correlation will take too long, and use up too much RAM.  What needs 

to be done is correlate a 13-bit code-word with the correct values in the received signal.  

In the example used previously, one bit consisted of 80 samples, therefore only every 80th 

sample from the first correlation need be used to correlate with the 13-bit code word.  

The second correlation thus reduces to a 13-tap correlation. 
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The output of the second correlation, when only taking every Nth output (N is the 

number of ADC samples per bit) sample from the first correlation, is shown in Figure 

3-24. 

 

The distance measurement is now done by taking the time that it took from when the 

signal was transmitted, until the peak value in Figure 3-24 is detected. 

 

NOISE 

 

Figure 3-25:  Output of simulation program with no noise 

 

This system only comes in to its own right once noise is introduced.  Figure 3-25 shows 

the output of the Delphi simulation program.  The data displayed is: 

 

• Generated TX signal (left top). 

• Sampled RX signal (right top). 

• Output after first correlation (left bottom). 

• Output after second correlation (right bottom). 
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In this example, there is no noise, and a perfect correlation peak can be found.  The data 

in the received signal is also clearly visible. 

 

 

Figure 3-26:  Output of simulation program with noise 

 

Figure 3-26 shows the same output from the simulation program but this time noise is 

introduced in to the system.  The generated TX signal (left top) still looks the same 

because the noise is introduced on top of this signal, simulating a noisy transmission 

medium.  The sampled RX signal (right top) clearly contains a lot of noise.  The received 

signal is now almost indistinguishable from the noise.  After the first correlation (left 

bottom), the original signal becomes clear again.  The presence of the Barker code is 

clearly visible by the time that the second correlation has completed (right bottom). 

 

CLOCK ERROR 

One variable that turned out to be a major cause of error is clock synchronization.   
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In order to demodulate the signal correctly, the transmitter and receiver must have their 

clock sources as close as possible to one another.   

 

Figure 3-27 shows the same simulation as above but with a clock error between the 

transmitter and receiver.  In this case, a clock error of only 1% between the transmitter 

and the receiver was used.  Although the first correlation still looks acceptable, the phase 

of the signal is slowly drifting.  The phase information is the information used to decode 

the bit stream, and is crucial for the second correlation.  By the time that the second 

correlation has been performed, the data is completely useless. 

 

 

Figure 3-27:  Output of simulation program with clock error of 400 Hz 

The clock error can be corrected in two ways: 

 

• Use a more accurate (and expensive) clock source. 

• Implement a Phase Lock Loop (PLL) to compensate for the clock error. 
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The second method of a PLL was implemented and tested but required too much 

program RAM.  The final hardware solution was to use a more accurate clock source. 

 

The simulation program contains many other features including: 

 

• Adjustable sampling rate. 

• Different filters for simulating the ultrasonic transducer. 

 

3.4.5 Implementation 

This section will explain how the information gained from the Delphi simulation was 

used to implement the actual range finding system in the microcontrollers.  The concept 

is simple: 

1. Sample the received signal. 

2. Perform the first correlation every time a new value is sampled and store a result 

long enough to hold the complete Barker code. 

3. Take every Nth sample from the first correlation, and correlate it with the Barker 

code. 

4. Maintain a counter and store its value every time that a peak is detected from the 

second correlation.  This counter can later be used to determine the time delay 

between transmission and reception. 

 

This all sound fine in theory, but there are some serious limitations when it comes to 

implementing it.  The greatest of these is the time available.  The complete first and 

second correlation must be done every time that a new value is sampled.  If the first 

correlation contains 80 taps, and the second contains 13 taps, then 93 multiplications and 

additions are needed for every sample.  The sampling rate chosen is 160 kHz meaning 

that all the processing must be done in less than 6.25µs!  This is very little time in deed.  

It would be impossible to do this with normal C code and a standard 8-bit 

microcontroller. 
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The DSP56F8xxE series of DSP’s from Freescale was chosen for use in Peete5.  The 

following features of the DSP make it ideal for the range finding problem: 

• DSP functionality needed for implementing FIR filters, IIR filters, correlations, 

etc. 

• 16-bit processor for high resolution processing. 

• 12-bit ADC converters. 

• Enough RAM and ROM. 

• 60 Million Instructions per Second (MIPS). 

• Complementary pair Pulse Width Modulators (PWM). 

• Quad Timer Module. 

 

With this DSP running at 60 MIPS, there are 375 clock cycles available per ADC sample 

taken.  Although this may sound like enough, not all instructions execute in 1 clock cycle.  

Thorough knowledge of the DSP is needed in order to program it in its assembler 

language.  The user manual [14] and family manual [13] can be consulted for more 

information. 

 

The next two sections will explain how the DSP was used in both the transmitter and the 

receiver. 

 

1.1.1.1. Transmitter 

The transmitter is the simpler part of the solution.  It needs to generate the modulated 

TX signal shown in Figure 3-18.  The following DSP peripherals are used in order to 

achieve this: 

 

• Pulse Width Modulator. 

• Quad timer module. 

 

Pulse Width Modulator 

The interface between the DSP and the ultrasonic transducer is explained later in 4.8.   



 5Peete 

 

Chapter 3  Ultrasonic / RF positioning 

 

 
56 

3 

This interface requires two signals to drive the ultrasonic transducer.  The two signals 

must be 180 degrees out of phase (when the one is high, the other must be low and vice-

versa).  The frequency of these two signals determines the ultrasonic transmission 

frequency and must be 40 kHz.  There must also be some dead-time between the 

transitions of these two signals. 

 

All these requirements are met by the PWM used.  The PWM has certain control 

registers that control its functionality.  These registers were set up to: 

 

• Work in complementary pair mode. 

• Have a duty cycle of 50%. 

• Have frequency of 40 kHz. 

• Have a dead time of 500ns between transitions. 

 

The phase of the two complementary signals can be changed with a single control bit.  

This makes it very easy to insert the 180 degree phase required for the transmitted signal. 

 

Quad Timer Module 

The Quad Timer Module is a module that contains 4 timer modules that can function 

either independently or connected to one another.  A single timer is needed to generate 

the TX pulse.  This timer needs to count only the length of 1 bit and will be used to 

transmit the 13 Barker code bits. 

 

Figure 3-28 shows how the timer and PWM are used to generate the modulated TX 

signal. 
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Figure 3-28:  Flow diagram for generating the modulated TX code 
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1.1.1.2. Receiver 

The receiver does not only use the peripherals of the DSP but also many of its DSP 

functions.   

 

The peripherals used are: 

• Quad Timer Module. 

• ADC converter. 

 

Quad Timer Module 

More than one timer is needed for the receiver.  These timers perform the following 

functions: 

1. Generate the 160 kHz interrupts needed to sample the incoming signal. 

2. Limit the duration of the receiving process.  The receiver does not continue to try 

and demodulate a received signal indefinitely.  A time constraint was placed on 

the receiver.  The time that it takes for an ultrasonic signal to travel 5 meters was 

used. 

 

ADC converter 

The ADC converter was set up to sample a single sample at the maximum conversion 

time whenever it received a synchronization pulse.  The synchronization pulse was 

generated by one of the Timer Modules. 

 

The flow diagram in Figure 3-29 shows the demodulating process.  The two blocks of 

most interest is the two correlation blocks.  The correlation equation is given by: 
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Where: 

• y(n) is the output of the correlation function. 

• x(n) is the input signal 

• M is the number of taps of the correlation. 

• c(k) is the taps of the correlation. 

 

This equation could be implemented as it is in the Delphi code because all the previous 

data of x(n) is stored.  This result in a huge number of data that needs to be stored and is 

clearly impractical for implementation in the DSP with limited RAM.  Inspection of the 

equation shows that the input information before (n-M-1) is not used.  This means that 

this data does not have to be stored.  The question now is: how does one implement 

this? 

 

The solution is to use a circular buffer for storing input and output values.  If the 

correlation has a length of M, then only M words needs to be stored.  As soon as the 

M+1 input is measured, the value at location 0 can be erased, for the M+2 input, the 

location at 1, etc.  In this way, only M words are stored at a given time. 
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Figure 3-29:  Flow diagram for demodulating the received signal 

 

Circular buffers are a trademark of DSP’s.  A circular buffer can be implemented by 

specifying the start and length of the buffer to use.  There are also special functions for 
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running through the data in this circular buffer in different directions, and with different 

increments. 

 

The implementation of such a buffer is best explained by considering some assembler 

code.  Table 3-2 shows the assembler code that was used for the second correlation and 

explains each step. 

 
Step Assembler code Description 

1. moveu.w #(FIRST_CORR_LENGTH-1), 

M01 

The M01 register determines the length of the 

circular buffer.  It is set up by this instruction. 

2. moveu.w corr_index, R0 The R0 register is the index in to the circular buffer.  

It is loaded with the pointer value that was last used.  

This pointer is used to go through x(n-k). 

3. moveu.w R0,R1 The R1 register is used for the same purpose as the 

R0 register.  They are both used for optimization 

purposes. 

4. move.w  A1, X:(R0)+ The output from the previous correlation was stored 

in register A1.  This instruction saves the A1 register 

to the memory location pointed to by R0.  It then 

increments R0. 

5. move.w  R0, corr_index The index in to the circular buffer needs to be saved 

for next time.  The value of R0 is saved back in to the 

variable corr_index (see step 2). 

6. move.w  #-80,N The N register determines the direction and step size 

when stepping through the circular buffer.  It is 

loaded with the value of 80, and indicates that it must 

count backwards. 

7. moveu.w #barker_code, R3 Another pointer is needed to point to c(k).  This 

instruction sets up the pointer register R3.  R3 is not 

used as a circular buffer and will not wrap. 

8. move.w  X:(R1)+N,Y0 This instruction does a lot of things: 

- It takes the value at memory location R0 (this is 

x(n-k)) and stores it in register Y0. 

- It increments the pointer R1 by N.   

- If R1 falls outside the memory space of the 
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circular buffer (determined by register M01) then 

R1 is wrapped correctly in to the correct memory 

space again. 

9. clr     A   X:(R3)+, X0 This instruction does even more: 

- It clears the 32-bit result register A. 

- Takes the value at memory location R3 (this is 

c(k)) and stores it in register Y0. 

- Increments (but does not wrap) R3 by 1. 

10. rep #13 

mac Y0,X0,A X:(R1)+N,Y0 X:(R3)+,X0 

The next instruction is repeated 13 times (to do the 

13-tap correlation) and performs the following tasks: 

- It multiply registers Y0 and X0 with each other 

(c(k) * x(n-k) ) and adds the result to register A. 

- It takes the next value (x(n-k) ) out of the circular 

buffer at location R0, and store the result in Y0. 

- It increments and wraps register R1 as it did in 

step 8. 

- It takes the next value (c(k) ) and stores it in 

register X0. 

- It increments register R3. 

Table 3-2:  Explanation of second correlation assembler code 

 

1.1.1.3. Time synchronization 

The distance measurement is made by measuring the time between transmitting the 

signal and receiving it.  One requirement in this scheme is that the receiver knows exactly 

when the transmitter sends the pulse.  Any error in this time will result in a distance 

measurement error.  There are 2 timing variables: 

 

1. Time that the transmitter takes to start sending the ultrasonic pulse after it has 

signalled to do so over the RF link. 

2. Time that the main DSP takes to signal the RX DSP after it has received 

confirmation from the TX DSP. 
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The length of these two times does not matter as it can be incorporated in to the distance 

calculation.  What is important is that it stays constant for each measurement.  This is not 

very difficult to do, but will result in errors if not taken in to account.  The following 

measures were taken to ensure that the time remains constant: 

• The TX DSP uses a transmitter empty interrupt on its SCI port to know when 

the last byte has been sent over the RF link.  Only once this interrupt has 

triggered does it immediately start to transmit the ultrasonic pulse. 

• The TX DSP disables all interrupts while it is busy sending an ultrasonic pulse to 

ensure correct timing. 

• The Main DSP parses the received RF packet immediately and sends a 

notification to the RX DSP over the CAN interface. 

• A separate CAN pipe is used to signal ultrasonic events.  This ensures that the 

message gets through even if another CAN message is being transmitted. 

 

3.4.6 Distance Calibration 

The output from the distance measurement is the value of a counter when the peak 

correlation value occurred.  This counter value can be converted to a time delay by 

multiplying it with the sampling period (1/160 kHz).  The time can then be used by the 

following equation to determine the distance between the transmitter and receiver: 

 

ε+×= measuredsound tvdist  

 3-12 

Where: 

• dist is the distance measured [in meters] 

• vsound is the speed of sound. 

• tmeasured is the time measured by using the peak counter. 

• ε is an error term.  This will include the timing caused by the communication 

delays on the RF link. 
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This equation was implemented and the speed of sound was verified to make sure that 

the system worked as predicted.  This solution requires two steps in software:   

 

1. Converting the counter value to a time value. 

2. Calculating the distance with the time value. 

 

It was later replaced for a quicker and more robust solution.  This solution took the 

counter value and converts it directly to a distance by implementing the following 

equation for a straight line: 

 
cxmy +⋅=  

 3-13 

Where: 

• m is the slope of the line. 

• c is the offset of the line. 
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Figure 3-30:  Correlation peak counter over distance 

 

Figure 3-30 shows a plot of the correlation peak counter against the distance between the 

transmitter and the receiver.  The points measured forms a straight line.  A least-squares 

estimate was done on the data to determine the values of m and c for the line.  These 
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values were then programmed in to the RX DSP and it could use the equation 3-13 for a 

straight line to convert the counter value directly to a distance measurement. 

 

3.5 Conclusion 

The simulation methods used for the ultrasonic transmitter and receiver were a great 

success.  One of the features not mentioned under simulation was that the output of the 

PC simulation could be used to test the embedded software.  The exact same results were 

obtained to prove that the algorithms were working.  A measurement was then made to 

use actual data for the embedded receiver simulation.  Again the results agreed exactly 

with those of the simulation. 

 

The results of Figure 3-30 show how well the system worked.  The system is completely 

linear and can work as long as there is a good signal to noise ratio.  Failure of the system 

occurs only when the output of the second correlation falls below the noise floor. 

 

One of the problems encountered when testing the system was multi-path.  This is where 

a reflected signal from the transmitter arrives only slightly later at the receiver than the 

actual signal.  The second reflected signal contains all the information of the actual signal 

and causes errors in the receiver.  It would manifest itself as an offset in the distance 

measurement.  This was not a major problem though since the transmitters and receiver 

could be placed in such a way that the direct signal would always be much stronger than 

any reflected signal.  It is a problem though that may be addressed in future revisions of 

this system. 

 

The system worked reliably over the required distances and could be used for the 

position control algorithms explained in the previous chapter.   

 

This system required complicated and powerful hardware.  The design of the electronic 

hardware is explained in the next chapter. 

 



 

 

Chapter 4 Electronic Design 
 

 

4.1 Introduction 
 

The main goal of this thesis was to develop an absolute 

positioning system.  The system described in Chapter 3 

would have been impossible to develop without a good 

and solid electronic design.  This chapter will explain 

the design decisions made when designing the 

electronic circuits for Peete5. 

 

Peete5 contains state of the art micro machined 

reference sensors, two high speed and modern DSP’s, stepper motor drivers capable of 

controlling the motors at high speed and high accuracy to name just a few. 

 

 

 

This chapter will start with a block diagram of the electronic circuit used for Peete5.  The 

functionality of the different components in the block diagram will be explained as well 

as the design process followed to develop and test the electronics. 

 

The same Printed Circuit Board (PCB) can be used for three different purposes 

depending on how it is populated with components.  The functionality of each one of 

these different modules and how they share the basic design will also be explained. 
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4.2 PCB Block Diagram 

 

Figure 4-1:  Motherboard block diagram 

 

Figure 4-1 shows the block diagram of the Printed Circuit Board (PCB) used in Peete5.  

Different configurations of this PCB allow it to be used for either one of the following 

purposes: 

• Peete5 Motherboard 

Almost all the items shown in the block diagram in Figure 4-1 are populated in 

this configuration.  The only exclusion is the Ultrasonic TX block that is 

responsible for converting the signals generated by the Main CPU into ultrasonic 
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pulses.  The motherboard does not need to transmit pulses and it is therefore 

omitted. 

• Peete5 Transmitter Board 

The transmitter board is responsible for transmitting ultrasonic pulses on request.  

It contains only the Main CPU, Ultrasonic TX block, RF transceiver and power 

supply.  The USB section is optional and can be used when debugging the 

system. 

 

The PCB contains the following components: 

• Main CPU 

• RX DSP 

• USB Connector 

• Power Connector 

• USB to UART converter 

• Power Supply (12V; 5V; 3.3V) 

• Stepper Motor drivers 

• Ultrasonic transmit circuitry 

• Ultrasonic transducer 

• Ultrasonic receive circuitry 

• RF Transceiver 

• Rate Gyro and low pass filter 

• Inclinometer and low pass filter 

• Servo motor 

• Interfaces to connect to a video camera and video transmitter 
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4.3 Main CPU 

The DSP56F8346 DSP from Freescale semiconductors was chosen for the main CPU of 

Peete5.  It comes in a 144-pin TQFP package.  This is a 60 MIPS, 16-bit processor.  It 

was chosen for its processing speed, RAM and ROM memories and peripherals [1]. 

 

The following external interface peripherals of the processor were used in the design of 

Peete5: 

• Pulse Width Modulator (PWM) 

• Analogue to Digital Converter (ADC) 

• Serial Controller Interface (SCI) 

• Serial Peripheral Interface (SPI) 

• Controller Area Network (CAN) 

 

4.3.1 Pulse Width Modulator 

The PWM output shown in Figure 4-2 generates the 40 kHz carrier wave frequency 

needed to drive the transducer as well as generate the phase modulations when 

transmitting the Barker code (see 3.4.3:  Barker code). 

 

high high highlow low low

PWM A

PWM A’

 

Figure 4-2:  Complimentary pair PWM with dead time 
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The constraints placed on the driving logic by the interface circuitry were also met by the 

PWM by setting it up in differential pair mode with dead-time insertion.  In this mode, 

two signals are generated by one PWM module.  The one signal is the inverse of the 

other.  Dead time between the two signals is automatically inserted when a transition 

from high to low (or vice versa) occurs.  See Figure 4-2.  The dead time is configured via 

peripheral registers internal to the DSP. 

 

The PWM also has another use.  The stepper motor controllers used to drive the stepper 

motors have a reference voltage input that is used to control the current through the 

stepper motors.  This analogue reference voltage is controlled by using one of the PWM 

outputs (in independent mode) and passing it through a simple Resistor-Capacitor (RC) 

low pass filter with the filter cut-off frequency at least 10 times lower than the PWM 

frequency.  The analogue voltage to the stepper motor driver could then be controlled by 

controlling the duty cycle of the PWM.  The output voltage is given by: 

DVvout ×= 3.3  

 4-1 

Where: 

 vout is the analogue voltage to the stepper motor driver. 

 3.3V is the output-high voltage of the PWM. 

 D is the duty cycle (in %) of the PWM. 

 

The bandwidth of the analogue output is determined by the cut-off frequency of the low 

pass filter. 

 

4.3.2 Analogue to Digital Converter 

The DSP56F8346 contains 16 analogue inputs (channels).  These 16 channels go through 

four multiplexers to be sampled by four 12-bit ADC’s.  The ADC’s can be set up to 

sample two channels simultaneously or to sample in a pre-determined sequence.   
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The ADC’s have a 3.3V voltage reference and are therefore capable of measuring 

voltages between 0V and 3.3V.  A 12-bit ADC with a theoretical resolution of 800µV is 

used.  To realize this resolution, there has to be no digital noise coupling in to the 

analogue circuitry and the ADC must have a clean power supply. 

 

 

Figure 4-3:  Equivalent circuit for ADC loading 

 

Figure 4-3 was copied form the datasheet of the DSP.  It shows an equivalent circuit of 

the ADC.  This circuit contains: 

 

1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base 

coupling. 

2. Parasitic capacitance due to the chip bond pad, ESD protection devices and 

signal routing. 

3. Equivalent resistance for the ESD isolation resistor and the channel select 

multiplexer. 

4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally 

disconnected from the input and is only connected to it at sampling time. 

 

The parasitic components and their effects must be well understood for good ADC 

design.  The following steps were taken to minimize noise on the analogue 

measurements: 
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1. The ADC has high quality, low ESR 100 nF decoupling capacitors very close to 

the pins of the DSP. 

2. The power supply to the ADC is filtered through a Capacitor-Inductor low pass 

filter for noise reduction on the power supply. 

3. A linear regulator is used to power the ADC. 

4. The inputs to the ADC is driven by low impedance sources (Operational 

Amplifiers) where the output capacitance have been matched to the input 

capacitance of the ADC through the process of trail and error. 

 

4.3.3 Serial Controller Interface 

The Serial Controller Interface (SCI) is used for general purpose communications.  It 

uses only two lines for communications.  One for transmit and one for receive.  The two 

devices communicating over this link need to synchronize their clocks for the data 

communications.  All this is done internally by the DSP hardware.  The DSP has two SCI 

controllers.  Both of these controllers are used to perform the following functions: 

 

• Full-duplex communications between a Personal Computer (PC) and the Main 

processor. 

• Half-duplex communications on the RF link. 

 

Two low level drivers were developed for the two different SCI interfaces.  Both drivers 

will buffer data in the transmit (TX) and receive (RX) paths.  This is necessary when 

running communications on a fast processor.  If no buffering were done, it would mean 

that the application layer software would have to wait for every byte to be sent before it 

can send another.  Buffering the data takes the load off the normal software processes. 

 

The buffering is done using different TX and RX interrupts. 
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Figure 4-4:  Double buffering for SCI TX 

Figure 4-4 shows a simplified flow diagram for the double buffering of data to the SCI.  

A similar process will be used on the receive side. 

 

The two SCI drivers (one for the PC communications, and the other for the RF 

communications) are very similar except for the fact that the one is full duplex (PC) and 

the other is only half duplex (RF link).  The SCI driver for the half-duplex RF link also 



 5
 

Peete 

 

Chapter 4  Electronic Design 

 

 
74 

4 

contains control software for controlling the CC1000 RF device.  This ensures that the 

RF link is in the transmit mode whenever the SCI wants to transmit data and that it is in 

the receive mode whenever it is ready to receive data.  It also monitors the Received 

Signal Strength Indicator (RSSI) from the RF device to detect an incoming packet and 

enable the SCI receiver. 

 

4.3.4 Serial Peripheral Interface 

The Serial Peripheral Interface (SPI) differs from the SCI interface in the fact that it 

contains a clock signal in addition to the transmit and receive lines.  No synchronization 

is therefore necessary between the transmitter and the receiver.  As the name suggests, 

this interface is still commonly used to control extra peripherals external to the CPU 

itself. 

 

The DSP has two SPI ports.  These two ports are used to control the stepper motor 

drivers that ultimately control the stepper motors.  The stepper motor controller uses 

two control words to control the current through each of the windings of the stepper 

motor.  The two control words are maintained from the low level motor drivers. 

 

It is necessary to meet the timing requirements on the SPI bus of the stepper motor 

driver.  The timing is controlled by means of special control registers for the SPI.  The 

highest possible bit rate is used to ensure that the time taken to update the control words 

of the stepper motor driver is less that the update period needed to update the currents 

in the motors. 

 

4.3.5 Controller Area Network 

The Controller Area Network (CAN) is a network protocol interface that has been 

developed by Bosch for high speed, high reliability data communications between two or 

more processors connected on the same network.  The specifications of the CAN 

protocol can be found in the Bosch CAN spec [5]. 
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The CAN bus implements a half-duplex communication link.  It is used on Peete5 to 

connect the Main CPU and the RX CPU.  There is no need for a bus driver since these 

two devices are the only devices on the CAN bus.  The TX and RX lines of the two 

processors are connected together forming a single wire communication bus.  The bus 

communication speed is determined by the parasitic capacitance on the CPU and a pull 

up resistor.  The timing of a single CAN bit is controlled via numerous DSP control 

registers.  These registers determine sample period, sampling time, synchronization width 

and propagation delay.  A spread sheet was used to calculate these values.  The 

considerations when setting up a CAN bus can be found in [7]. 

 

4.4 RX DSP 

The RX DSP has only one purpose and that is to demodulate the incoming ultrasonic 

signal and present a distance measurement to the main DSP.  The DSP56F8322 was 

chosen from the same family as the Main DSP.  This meant that most of the initialization 

code as well as many of the peripheral drivers could be shared.  The RX DSP is also a 16-

bit, 60 MIPS processor.  With only 44 pins, it has a much smaller footprint than the 

DSP56F8322.  It has less peripherals, ROM and RAM than the main DSP but does have 

enough RAM for the computational expensive correlation tasks. 

 

The following peripherals are used on the RX DSP: 

 

• Analogue to Digital Converter (ADC) 

• Controller Area Network (CAN) 

 

These peripherals were set up in much the same way as the Main DSP as explained in 

4.3. 
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4.5 USB to UART converter 

A Universal Serial Bus (USB) interface was chosen for the main debug/control port.  

The reason for this is that almost all new PC’s are equipped with a USB interface.  The 

USB interface has the added advantage of supplying 2.5 W of power to the connected 

board.  The specifications of the USB power supply can be found in [8]. 

 

The power supply of the USB eliminates the need for an external power supply when 

debugging.  Although the stepper motor drivers and ultrasonic transmitter cannot be 

powered from the USB, it does supply enough power for the DSP’s, RF transceiver, 

ultrasonic receiver and other electronic circuitry.  This simplifies tasks like controlling the 

robot from a PC.  The user does not need to have a power supply connected to a 

transmitter board but only needs a USB cable. 

 

4.6 Power Supply 

The electronic circuitry on the Peete5 motherboard required the following input voltages 

for different sections of the board: 

 

• 20V unregulated input voltage 

• 12V regulated voltage 

• 5V regulated voltage 

• 3.3V regulated voltage 

 

The susceptibility to voltage errors and noise had to be considered when designing the 

various parts of the power supply.  The input voltage for example is used to drive the 

stepper motors directly.  The stepper motor drivers control the current through the 

motors and are therefore not very susceptible to changes in the supply voltage.  The DSP 

on the other hand does not tolerate an input voltage with an error of more than 300 mV 

(The voltage specifications of the DSP can be found in [1]). 
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Another design consideration is the power handling capabilities of the selected power 

supply.  A linear regulator cannot be used to regulate down from 20 V to 3.3 V if the 

current consumption will exceed its power capabilities. 

 

The following design was chosen to meet all Peete5’s power requirements: 

 

4.6.1 12V regulated voltage 

A LM317 was chosen for the 12 V regulated voltage.  This voltage is only used to power 

the video camera and video transmitter.  The voltage difference over the linear regulator 

may go as high as 8V and dissipate 4W of power over the regulator.  This is acceptable as 

long as proper heat-sinking is provided for the device. 

 

4.6.2 5V regulated voltage 

None of the electronic circuits powered from the 5V rail required a specially filtered and 

noise free power supply.  A voltage ripple of about 100 mV will satisfy the circuit 

requirements.  The LM2595 switch mode regulator was chosen for the 5V power supply.  

It is capable of supplying 1 A of current.  The fact that it is a switch mode power supply 

means that it is not affected by the high voltage drop as is the case with a linear regulator.  

The price paid for this is a slightly higher voltage ripple.  This is still acceptable since the 

servo motors and stepper motor digital circuitry this is only circuitry on the 5V power 

rail. 

 

4.6.3 3.3V regulated voltage 

A clean 3.3 V is needed to supply the power to the DSP, RF transceiver and reference 

sensors.  The LM1117 linear regulator was chosen for the main 3.3 V power supply.  It 

satisfies both the power as well as the voltage requirements.  The 3.3 V regulator does 

not regulate down from the 20 V input supply directly but from the 5 V supply. 
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Using a switch-mode regulator in conjunction with a linear regulator has advantages.  

The linear regulator has a high voltage rejection ratio of noise on the input line while the 

switch-mode regulator is more efficient. 

 

A second 3.3 V linear regulator (The LM2595) is used to supply 3.3 V to the RF circuitry.  

The input to this regulator has additional LC filtering to reduce the amount of noise on 

the RF circuitry as much as possible.  The LM2595 is not capable of driving a lot of 

current but has an exceptionally low specified output noise. 

 

4.7 Stepper Motor drivers 

Peete5 uses stepper motors for propulsion.  Stepper motors were chosen because of their 

accurate position control.  The main disadvantage of stepper motors is that they are more 

difficult to control that DC motors.  The advantage in position control, however out-

weighs the disadvantage of more complex control circuitry. 

 

A stepper motor driver (A3973SB from Allegro) was chosen to control the two stepper 

motors.  Each driver contains two complete H-bridge configurations.  A DC-motor 

solution would have required one.  These two H-bridges control the current through 

each one of the two stepper motor windings (one H-bridge per stepper motor winding). 

 

The current through the stepper motor windings is controlled in three ways: 

 

• Controlling the output value of a DAC that is internal to the stepper motor 

driver.  The output of the DAC is compared with the current measured through 

the motor winding and is fed in to control logic that controls the switching of the 

H-bridge. 

• Selecting the value of a current-sense resistor.  The current through the motor 

windings is measured by measuring the voltage drop over a small resistance to 
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ground.  The resistor value controls the voltage measured depending on the 

current flowing through it (V=I⋅R). 

• Controlling the reference voltage to the DAC.  An external reference voltage is 

used to control the voltage range of the internal DAC. 

 

The number of bits in the DAC determines the number of micro-steps per stepper 

motor step while the external reference voltage can be used to control the mean current 

through the stepper motor. 

 

The output value of the DAC is controlled via the SPI interface to the stepper motor 

driver.  See also 4.3.4  (Serial Peripheral Interface) for more information on the control 

interface between the DSP and the stepper motor driver. 

 

4.8 Ultrasonic transmit circuitry 

An ultrasonic transducer can be modelled as a capacitor.  The two most important 

parameters in the ultrasonic range-finding design are: 

 

1. Range.  Ideally the ultrasonic beacons will be spaced as sparsely as possible with 

3-4 beacons in a room.  The sensors must be able to transmit enough power in 

order to be picked up by the receivers.  A target of 5 meters was set for Peete5. 

2. Noise.  The level of noise will effect both the sensitivity of the receivers, and 

hence the range as well as the accuracy of the measurement. 

 

The ultrasonic transducer chosen for Peete5 is optimally driven from a 20 V peak to peak 

rectangular wave form.  The ultrasonic transmit circuitry has to generate this signal from 

the 3.3 V signals generated from the DSP. 
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Figure 4-5:  Ultrasonic transmitter block diagram 

Figure 4-5 shows the block diagram of the ultrasonic transmitter.  The transmitter 

consists of the following: 

 

• Micro controller 

The PWM output from the DSP is used to generate the ultrasonic reference 

signals.  See also 4.3.1. 

• Digital to Analogue converter 

Some digital to analogue circuitry is needed to convert the signal from the DSP 

to a signal that can drive the ultrasonic transducer. 

• Ultrasonic driving circuitry 

This circuitry must be able to generate the 20 V square wave that drives the 

ultrasonic transducer. 

• Ultrasonic transducer 

An electro-mechanical device that converts voltage pulses in to sound waves.  

The MA40E6-7 piezoelectric ceramic transducer from Murata was chosen for 

both the receiver and transmitter.  It has a wide angle of sensitivity and a very 

narrow frequency response.  The wide angle means that it will radiate over a large 

area.  This is perfect for this project since the robot will move around in a room 

without pointing the receiver. 

 

The ultrasonic transducer can be modelled as a capacitor as shown in Figure 4-6. 
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R
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Figure 4-6:  Simple Model of an ultrasonic transducer 

The value of R is small and can be neglected.  The value of C is given as 2.2nF for the 

MA40E6-7.  The key in driving the ultrasonic transducer efficiently is in the quick 

charging and discharging of the capacitor.  The transducer must be driven with a square 

wave.  High inrush currents are needed to charge up the capacitor on the rising edge of 

the square wave.  High discharge currents are needed on the falling edge. 
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Figure 4-7:  Circuit diagram of ultrasonic transmitter 

 

Figure 4-7 shows the circuit diagram of the ultrasonic transmitter circuitry used on 

Peete5.  The two transistors Q1 and Q3 are used in a push-pull configuration.  It should 

also now be apparent why dead time is needed between the two control lines (Vswitch and 
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Vswitch_N).  If Q3 switches on before Q1 is fully switched off then a short would be 

created between Vcc and ground.  This would have damaged one or both of the two 

transistors.  The resistor R4 is used as a buffer to minimize damage should this still 

happen while developing.  It can be replaced by a 0 ohm resistor in the final solution. 

 

Q1 is a PNP transistor and the base voltage must be switched to Vcc minus the Emitter-

Base voltage of the transistor in order to switch the transistor off.  R6 is used to pull up 

the base voltage to Vcc when Q2 is switched off. 

 

Q2 is used to pull down the base voltage of Q1 to ground and switch it on.  When Q1 is 

on, it will source current in to C5 (C5 simulates the ultrasonic transducer). 

 

Q3 is used to discharge C5.  When Q3 is switched on, it will pull down the voltage on C5 

and discharge the capacitor. 

 

R13 is used to provide a DC path to ground for the base of Q3.  If the input voltage 

from the DSP is floating (which it is when the DSP is off or busy initializing) then the 

state of Q3 must be specified in order to prevent a short between Q1 and Q3.  R13 

ensures that the base voltage of Q3 is at ground unless it is explicitly driven high by 

Vswitch_N. 

 

R12 is used to protect the output pin of the DSP.  The parasitic base-emitter capacitor of 

Q3 (the equivalent circuit of a transistor can be found in [2]) must be charged up in order 

to switch Q3 on.  R12 is used to limit the in-rush current needed from the DSP output 

pin. 

 

C4 and R11 was originally not in the circuit.  It was added later to improve the switch-on 

time of the transistor.  When Vswhich_N changes from 0 V to 3.3 V then the capacitor C4 

looks like a DC short because it has very low impedance when considering the high 

frequency of the 0 V to 3.3 V transition.  This means that R11 is used to charge up the 
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parasitic base-emitter capacitor of Q3.  As C4 charges up, the current through R11 

reduces until C4 goes open circuit at DC and only R12 is used to keep the transistor on.   

 

The value of R11 and C4 was found through simulation in SPICE. 
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Figure 4-8:  SPICE simulation output of ultrasonic transmitter 

Figure 4-8 shows the output of the SPICE simulation.  Note the dead time between the 

control lines in the top graph.  The graph in the middle shows the current in the base of 

Q3.  The values for R11 and C4 were modified until the current was well in range of the 

capabilities of the output pin from the DSP.  The PWM output of the DSP is used to 

drive the transistor and has higher current source/sink capabilities than normal GPIO 

pins. 
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The final waveform driving the ultrasonic transducer has the desired output voltage and 

wave properties.  The duty cycle of the output waveform was dramatically improved with 

the addition of R11 and C4. 

 

The simulation models for the transistors used (BC807 and BC817) was downloaded 

from the supplier and used in the SPICE model to get reliable results.  The results from 

the SPICE simulation were verified with measurements on the actual hardware to ensure 

that the circuit was performing to specifications. 

 

4.9 Ultrasonic receive circuitry 

The ultrasonic receive circuitry is used to filter and amplify the signal received by the 

ultrasonic transducer.  It is also forms the interface to the Analogue to Digital Converter 

of the DSP. 

 

The ultrasonic transducer has a very narrow receive sensitivity.  This reduces the need for 

filtering on the input.  Two simple 2-pole Butterworth filters were used in conjunction 

with two stage amplifier.  Active Butterworth filter design can be found on page 856 in 

[2]. 

 

4.10 RF Transceiver 

An RF transceiver was needed for remote communications and debugging.  The CC1000 

from Chipcon was chosen for the ultrasonic transceiver.  It is a 433 MHz, Frequency 

Shift Keying (FSK) transceiver with a sensitivity of -110 dBm and 10 dBm output power. 

 

The transceiver requires very little external components.  An external inductor for the 

internal Voltage Controlled Oscillator (VCO) and some matching circuitry was all that 

was required to get the transceiver working.  Some careful tuning on the VCO inductor 

was needed to optimize each board. 
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The CC1000 device has two interfaces:  One SPI interface and one SCI interface.  The 

SPI interface is used to control the registers internal to the transceiver.  These registers 

control the current mode (RX or TX), baud rate, output power, etc.  There are more 

than 20 registers that have to be understood and controlled correctly.  The SCI interface 

is the interface to the data that is transmitted over the RF link. 

 

All the control lines to and from the device went through simple RC low pass filters in 

order to prevent noise coupling in to the RF receiver.  The PCB layout was also specially 

designed around the transceiver to ensure that all digital and environmental noise is 

shielded out.  An extra 3.3 V regulator (explained in section 4.6.3) was used to supply 

clean power to the RF transceiver. 

 

The Received Signal Strength Indicator (RSSI) output from the transceiver is filtered 

through an RC filter and then buffered through and operational amplifier to the DSP’s 

ADC.  This signal can be used to monitor the signal strength (in dBm) of a received 

signal.  It is used in Peete5 to trigger the SCI for reception of data.  It was also used at 

design time to ensure that the receiver has enough sensitivity and that the shielding to the 

receiver worked. 

 

4.11 Inclinometer 

The ADXL105 accelerometer from Analog Devices is used to measure the angle at 

which Peete5 is standing.  The accelerometer is used as an inclinometer.  The 

inclinometer measures static acceleration.  This means that it can measure the 

gravitational force of the earth.  It is this force that is used to calculate the robot’s angle.   

The output of the sensor is filtered by a 10 Hz low pass filter.  The output of the filter is 

then matched to the ADC input and further filtering is done in software by means of an 

IIR filter. 
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4.12 Gyro 

The ENV-50G rate gyro from Murata was chosen for the second reference sensor.  The 

rate gyro is used to measure the speed at which the angle of the robot is changing.   

 

The output of the gyro is also filtered by a 10 Hz low pass filter and matched to the 

ADC input. 

 

4.13 Servo Motor 

Peete5 uses a servo motor to control the position of its head.  The servo motor requires 

a 5 V input and a PWM control signal to control the orientation of the axel. 

 

 

Figure 4-9:  Servo motor control signal 

 

Figure 4-9 shows the PWM signal needed to control the servo motor.  The pulse to 

control the angle must be a minimum of 1 ms long.  A pulse of 1 ms corresponds to an 

angle of 0 degrees.  Changing the pulse width by ∆t will change the output angle.  

Changing the pulse width by 1 ms (i.e. ∆t = 1 ms) will move the axel through 180 

degrees.  The pulse must repeat itself every 40ms. 

 

A timer output from the DSP was used to generate these pulses.  This means that no 

extra circuitry was needed to control the servo.  Very little extra processing power is 
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needed from the DSP since the peripheral generates the pulses.  The pulse width is 

changed by changing the value of a single compare register in the timer peripheral. 

 

4.14 Video camera and video transmitter interface 

The video camera and video transmitter does not require any circuitry from the 

motherboard.  They operate independently and it would have been completely possible 

to connect them separate to all of the other electronics.  This would not be very practical. 

 

Two connectors were provided on the motherboard.  Both the antenna and the 2.4 GHz 

video transmitter connect to these connectors.  The 12 V power to the camera and 

transmitter is provided through these two interfaces.  The video feed from the video 

camera is also connected to the video input of the transmitter through a connection on 

the PCB.  This enables the camera and transmitter to be easily connected and it makes 

the two functions as a part of Peete5. 

 

No extra shielding was required (as with the RF transceiver) since the video transmitter 

has its own RF shielding and it is only the camera and transmitter that is powered from 

the 12 V bus. 

 

4.15 Conclusion 

The complete electronic design of Peete5 is contained on a single 100mm by 100mm 

PCB.  Almost all of the components on the PCB are service mount components making 

the electronic design very robust and reliable. 

 

The datasheets of every single component on the board was scrutinized before it was 

added to the PCB.  This ensured that all the components operated well within their 

limits. 
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It is very easy to use the hardware and it has been designed in such a way that it also 

simplified the software design and software overhead required to control the hardware.  

The software developed for Peete5 is explained in the next chapter. 

 

 



 

 

Chapter 5 Software 
 

 

5.1 Introduction 

 

 Software played a significant role in this thesis.  

It may not look like it but every single 

component has something to do with software.  

Thousands of lines of code were developed for 

Peete5.  This included code in Delphi, C, C++ 

and assembler. 

 

Many of the software solutions have been mentioned in the previous chapters.  Although 

software played an extensive part in this project, this chapter will attempt to only briefly 

explain the use of the major software components that were developed.  This is because 

of the vastness of the software developed, from simulation software in Matlab and 

Delphi down to low level device drivers in C and assembler.  This chapter will only focus 

on software that was used in the final solution of Peete5 although many other 

applications were developed.  
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5.2 Delphi software 

Although some C++ PC applications were written, Delphi was used for most of the PC 

applications.  This is because of the fact that almost all of the PC software needed a 

human interface.  Delphi is an object orientated programming language with a built-in 

code generator for human interface applications.  This makes it very quick and simple to 

generate and modify the layout and feel of a program without changing the underlying 

software. 

 

Simulation software and interface software were developed for the PC.  The simulation 

software was used to simulate algorithms, processes and dynamics.  This included the 

algorithms used for the ultrasonic transmitting/receiving as well as simulating the motion 

of the robot. 

 

The following sections will discuss the main Delphi programs:  module_testing8 (used 

for control and debugging), pendulum_sim9 (used for simulating the motion of the 

robot) and u_sonic_sim10 (used for simulating the ultrasonic algorithms).  Various other 

Delphi programs were also developed during the course of the project but did not play a 

major role in the final solution. 

 

5.2.1 Module testing software 

The module testing software is one the most versatile peaces of software developed for 

Peete5.  It is the main debugging tool when programming and controlling the robot.  Its 

functions include: 

 

• Selection of any destination address for communications. 

                                                 
8 .\motherboard\programming\delphi\Module Testing\ 
9 .\programming\delphi\Pendulim Sim\ 
10 .\usonic\programming\delphi\uSonic sim\ 
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• Opening, parsing and programming of Motorola S-record files (program output 

file of C compiler and linker). 

• Real-time graphing and listing of any variable in embedded RAM.  This is done 

by opening and parsing the .map file (output file from linker) and generating peek 

commands that can be sent to the embedded processor.  Any number of 

variables can be viewed at a time.  The only limit will be the maximum packet 

size allowed. 

• Manual control of the robot using the mouse and arrow keys. 

• Special functions for debugging the distance calculation and position calculation 

algorithms. 

• A specially developed command line interface. 

• Built in help for the command line functions. 

• Real time display of communications with special SLIP highlighting. 

 

 

Figure 5-1:  Screen capture of module_testing 

The screen capture shown in Figure 5-1 shows the versatility of the module_testing 

software.  The data in the left hand list shows all the variables available in RAM that can 
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be displayed either graphically, or in a list.  The application uses a Multiple Document 

Interface (MDI).  The top window shows a list view of a variable while the centre view 

shows a graphical plot of two variables.  Any number of variables can be dragged (from 

the list at the left) and dropped on a list window or a graph window. 

 

The bottom window shows a console window.  The console window is the most useful 

interface since any of the supported commands (see APPENDIX B) can be sent from 

this window. 

 

An Object Orientated Programming (OOP) style was followed when writing the module 

testing program.  It is for this reason that this program is called module testing.  All the 

interfaces to the different objects (or modules) were defined to ease the programming 

effort.  Any module can be replaced with a different one as long as the interfaces stay the 

same.  A good example of this will be the difference between the communication 

protocol used for normal USB communications and the one used for RF 

communications.  Both interfaces have a “send_message” command that can be used to 

send a raw message.  The implementation of the protocol will differ and can be selected 

merely by selecting the correct protocol object. 

 

A good example of the advantages when using the OOP style can be found in 

APPENDIX D, section 2.  The code example shows the implementation of the 

get_sensor_data function.  The Tcmd_get_sensor_data object inherits from the base 

class TCommand.  TCommand was written to be the ancestor of all commands.  The 

protocol handling and all other command related functions reside in this class.  The 

implementation of the command is then simplified to a few lines of code that is easily 

linked to the specifications listed in APPENDIX B. 

 

5.2.2 Pendulum simulation 

This simulation program was used to simulate the functionality of the inverse pendulum. 
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Figure 5-2:  Forces simulated in pendulum simulation 

 

Figure 5-2 shows a force diagram of an inverse pendulum.  The software uses integration 

to derive the position, speed and acceleration of the pendulum. 

 

A special type (TRealList) was developed for simulating purposes.  This list maintained 

all the calculated values so that it could be plotted either dynamically, or post simulation.   
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Figure 5-3:  Screen capture of pendulum simulation 

 

Figure 5-3 shows a screen capture of the pendulum simulation program.  It too uses a 

MDI interface.  The list box on the left hand side shows all the variables that have been 

created for the simulation.  Any one of these variables can be dragged and dropped on 

any one of the charts.  The user can create as many charts as the PC memory allows. 

 

Features of the pendulum simulation program include: 

 

• Representative simulation of real-world modals. 

• Multiple graphing capabilities. 

• Visual display of the actual motion of the pendulum. 

• Kalman filter testing. 

• Exporting of data for further processing. 
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5.2.3 Ultrasonic Simulation software 

The ultrasonic simulation software was used to simulate and test the ultrasonic 

algorithms.  The use of this software was explained in 3.4.4 and a screen capture of the 

software can be seen in Figure 3-25. 

 

The features of this software included: 

 

• Complete simulation of transmit and receive algorithms. 

• Simulation of electronic hardware. 

• Run-time adjustable simulation parameters. 

• Data exporting for post-analysis in other programs. 

 

5.3 Matlab software 

A lot of the early simulation work was done in Matlab11 but was eventually done in 

Delphi to simplify the process of porting the final code to the embedded C. 

 

Matlab was mostly used for post processing of data.  All of the FFT analysis shown in 

Chapter 3 was done in Matlab.  Matlab was also used for: 

 

• Filter design (see APPENDIX A) 

• Initial testing of transmit and receive algorithms. 

• Testing of matrix mathematics developed for position calculation. 

 

5.4 C software 

All of the embedded software was developed in C.  There are four different projects that 

were created for the embedded code: 

                                                 
11 Matlab software can be found in .\programming\matlab\ 
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• Main12 was used for the application and control software running on the main 

DSP. 

• RX13 was used for the receive algorithms running on the second RX DSP. 

• TX14 was used to the code running on the main DSP, but when the PCB is used 

as a transmitter board. 

• A Boot loader was developed to run on the two processors used.  The boot 

loader software enables the upgrading of application software through any of the 

communication ports.  It can be used to upgrade any of the robot’s software 

through the RF interface at any time. 

 

 

Figure 5-4:  Partitioning of C software 

 

The first three projects are sub divided in to the following sections: 

 

• Application Layer (APP) 

• Peripherals 

• Hardware Abstraction Layer (HAL) 

 

                                                 
12 .\motherboard\programming\c\main\ 
13 .\motherboard\programming\main\RX\ 
14 .\motherboard\programming\main\TX\ 
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5.4.1 Application Layer 

The APP layer is the part of the software that is very similar to normal PC software.  

This software is completely independent of the platform that it is running on.  This will 

include software like the position calculation routines.  These routines could have been 

developed on a PC and then used in the embedded software.  It simply takes distance 

measurements and calculates the robots position.  It does not know how those 

measurements were made and it cannot control it directly. 

 

This layer of software can be written and changed by anybody that is familiar with the C 

language.  It is physically also separated in to different files to make it easy to distinguish 

from the other layers of software. 

 

5.4.2 Peripherals 

The peripheral layer of software is completely device or platform dependant.  This 

software provides the interface between the application layer and the outside world 

(analogue sensing, flashing of an LED, etc.). 

 

The peripheral software includes all the communication drivers, initialization code, etc.  

It was written in such a way that it could be easily replaced by other drivers should the 

software ever need to run on a different platform.  This ensures that the application layer 

software does not need changing should the need arise to change the processor. 

 

5.4.3 Hardware Abstraction Layer 

The line between the HAL layer and the peripheral layer is often very blurred.  The idea 

of this layer of software is to control hardware that is external to the processor.  External 

hardware is almost always controlled from peripherals and in some cases it would over 

complicate the software if the two were split up. 

 

An example of HAL code is the motor drivers.  The stepper motor driver IC’s are 

controlled by using three of the DSP’s peripherals (PWM, GPIO and SPI).  In this case, 
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it is easier to group everything together in to a single layer.  The peripherals used in such 

a case do not fall under the peripheral layer. 

 

5.5 Conclusion 

Good software will comply with the following basic rules: 

• Has to be stable and reliable. 

• Has to be maintainable. 

• Has to be easy to read and understand. 

• Has to be user friendly. 

 

The software (both PC and embedded) written for Peete5 complies with all of these 

basic rules. 

 

The software is very stable.  Throughout the development of this project, there has not 

been a single crash of the PC or the embedded software.  Re-try mechanisms in the 

communication protocol assures that commands are sent and received correctly even 

with a very bad communication link.  Error and warning messages will give feedback to 

the user whenever there are detectable failures. 

 

The code has been structured in such a way that different parts of the code can be 

improved on with very little to no knowledge of the parts that it interacts with.  This 

means that the code can be maintained and improved very easily.  The OOP style of the 

PC software takes this method of programming even further. 

 

Extensive commenting (see APPENDIX D) and a fixed coding standard throughout all 

the code improve the readability of the software.  Complex blocks of code have good 

explanations prior and during the code.  Assembler code for example has an explanation 

on almost every line and aims at teaching this language even to someone who is not 

familiar with it. 
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A plug and play (or start-up and use) approach was used when developing software to 

ensure that even a novice programmer and user should be able to use and understand the 

software. 

 

 



 

 

Chapter 6 Mechanical Design 
 

 

6.1 Introduction 

 

The mechanical design of the Peete5 is very 

simple.  This was one of the main design goals 

when designing the robot’s mechanical housing.  

The second design goal was to mount and house 

the electronics used. 

 

The simplicity of the final design means that this 

chapter will focus on the design process 

followed rather than the final design itself. 

 

 

The chapter will start of by stating the design goals for the mechanical design of Peete5.   

 

Most of this chapter will show the different designs that were made for Peete5.  It will 

point out the advantages as well as the disadvantages of the different configurations and 

will end off by showing the final design and why it was chosen. 
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6.2 Design Goals 

Peete5 was mainly an electronic and software design.  Although the mechanical design 

was always an after-thought, it did have a reasonable degree of importance.  In order to 

assure a good mechanical design, some design goals were set to lead the mechanical 

design: 

• Must be easy to build. 

This was the first and most imported design goal.  Very little time had to be spent 

on assembling the robot.  Since a lot of debugging would be done once it was 

built, it also had to be easy to get access to the electronics.  Assembling and 

disassembling the robot had to be quick and easy. 

• Must to be robust. 

This requirement speaks for itself.  The robot should be able to withstand 

everyday usage (picking up, placing on desks, etc.). 

• Must protect the electronics. 

This requirement was two-fold.  The electronics had to be protected from 

handling (prevent static damage) as well as provide shielding for the two RF 

sections (transceiver and video transmitter). 

• Must to be light. 

A heavy robot is more difficult to manoeuvre and will require stronger motors.  

The stronger motors would in turn require more complicated electronics and 

batteries. 

• Must be small. 

This requirement is actually derived from easy to build and have to be light.  A 

small robot requires simple tools to put it together and is lighter than a big robot 

made from the same material.  The robot had to be just big enough to house the 

electronics and this had to be as small as possible. 
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6.3 Peete5.0 

 

Figure 6-1:  Mechanical drawing of Peete5.0 

Figure 6-1 shows the first attempt at a mechanical design for Peete5.  This robot is a very 

basic and familiar robot design.  It is a three wheeled robot.  The two front wheels are 

used to propel as well as steer the robot.  The third back wheel would swivel and is there 

only to support the robot. 

 

These types of designs are normally done with a second support wheel.  The two steering 

wheels would sit in the middle of the robot with the two swivelling wheels at the front 

and the back.  The advantage of having a second wheel is that the robot can turn around 

its own centre making it easy to manoeuvre. 

 

This design used DC motors for propulsion for Peete5. 
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Figure 6-2:  Peete5.0 motor assembly 

 

Figure 6-2 shows the motor assembly used for Peete5.0.  The DC motor (shown top 

right) assembled in to a bracket (shown in blue) that was attached to a sheet-metal 

housing.  A long axel would attach the motor to the wheel.  The outer sheet metal part 

provided support for the long axel. 

 

A wheel counter (shown in purple) was attached to the axel to give feedback on the 

current position of the wheels.  The idea was to design a complete motor assembly unit 

with a PCB at the bottom that contained the electronics needed to drive the DC motor 

as well as get the feedback from the wheel counter. 

 

6.3.1 Advantages 

This robot would have been fairly simple to build and assemble.  The separate wheel 

assemblies would also make the final electronic design simpler.  The big platform of the 

robot would mean that extra peripherals (an arm perhaps) could be attached to the back 

of the robot. 
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6.3.2 Disadvantages 

This design had several disadvantages.  The box design would make it easy to build but it 

was very unstable.  Note the large areas in the back corners.  The slightest push in the 

back corners would lift up one of the front wheels.  The back wheel was difficult to 

implement and required its own bracket to be attached to the body of the robot.  

Although the design looks simple, it would have been relatively difficult to make.  

Almost all the sheet metal parts require some machining.   

 

The sheet metal parts required for this robot was bigger than it had to be.  The corners at 

the back were taking up unnecessary space.  This design was eventually scrapped before 

the head could be finished. 

 

6.4 Peete5.1 

 

Figure 6-3:  Mechanical drawing of Peete5.1 
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Figure 6-1 shows the mechanical drawing of Peete5.1.  This design attempted to solve 

the following disadvantages of the previous design: 

• The corners of the robot were taken away making it more stable. 

• The number of metalwork required for the outside of the robot was reduced. 

 

This design used the PCB (shown in green) as the base for the mechanical design.  The 

motor assemblies of the previous design was kept and could be made together would the 

main PCB.  A spring mechanism was added to give some flexibility to the robot making 

it more robust. 

 

The problem of attaching the back wheel is solved relatively easy by attaching a bracket 

(shown in blue) to the back of the PCB.  The bracket holds the back wheel in place. 

 

This robot would have two axes of movement on its head.  The two servo motors were 

attached to one another and the PCB with the use of simple bent brackets.  This enabled 

the robot to look up and down and left and right. 

 

6.4.1 Advantages 

This robot would have been even easier to build than the previous one because it is not 

enclosed in anything.  The back wheel, servo motors and motor assemblies would simply 

attach to the PCB.  The two degrees of freedom on the head would have been a nice to 

have. 

 

The body of the robot forms a triangle making it stable and less susceptible to tip over. 

 

6.4.2 Disadvantages 

This robot required too many special brackets.  The brackets were designed from sheet 

metal parts. 
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Figure 6-4:  Servo bracket – Unfolded 

 

 

Figure 6-5:  Servo bracket - Folded 

Figure 6-4 and Figure 6-5 shows the design of the servo bracket.  The bracket would be 

made but cutting out a peace of sheet metal and drilling the required holes.  The metal is 

then bent on the dotted lines to get the final bracket.  Although these parts are relatively 

easy to make, this design would require six separate parts.  This would have been costly 

and time-consuming to make. 

 

This robot still had a third wheel.  This meant that it could not turn on its own axes. 

 

The mechanical design was completed but it was decided to make something that would 

be simpler to manufacture. 
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6.5 Peete5.2 

 

Figure 6-6:  Mechanical drawing of Peete5.2 

Figure 6-6 shows a mechanical drawing of Peete5.2.  This was the first design to explore 

an upright robot balancing itself.  The reason for making a robot that keep itself upright 

is to get rid of the third back wheel.  The upright design also had the advantage of being 

able to turn on its own axis making autonomist movement easier. 

 

The assembly of this robot would have been very simple.  A framework of square rods is 

used to attach the panels of bodywork.  Everything is screwed together requiring no 
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bonding, bending, welding, etc.  The complete assembly could be made with a single 

screw driver. 

 

6.5.1 Advantages 

The main advantage of this design is easy of assembly.  The design is also very robust 

because all the electronics can be shielded inside the box.  Getting to the electronics 

would require the removal of the front or back panel without compromising the 

mechanical integrity of the box. 

 

6.5.2 Disadvantages 

This design was easier to assemble than the previous two designs but still had some 

disadvantages.  One that may not be so obvious at first is the breadth of the robot.  

Keeping the robot upright was seen as a nice to have but it should have been possible 

not to implement it if the design ran out of time.  If the robot could be put on its back 

with a small wheel, then it would still be able to meet the original design intent al be it 

not so graceful.  This design made it impossible because the two side wheels would not 

reach the ground if the robot was placed on it’s back (see side view in Figure 6-6). 
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6.6 Final solution  

 

Figure 6-7:  Mechanical drawing of final design 

The final design used for Peete5 is shown in Figure 6-7.  Note that this design contains 

more information like the PCB, battery etc. 

 

This design continued on the upright robot shown in the previous design.  It solved the 

shortcomings of the previous design by reducing the size of the robot.  The breadth of 

the robot is much less giving some ground clearance should the robot be placed on its 

back. 
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The amount of material needed was reduced quite substantially.  This was done by using 

smaller motors (the DC motors were dropped because of the simplicity in position 

control of stepper motors – see section 4.7) and moving the head assembly to the outside 

of the box.  The framework with attached panels was also replaced by a thicker base and 

top plate to which the other panels were attached.  Some extra re-enforcements were 

made by using triangular peaces to attach the front at back plates to the sides.  This 

turned out to be unnecessary since the box was strong enough on its own. 

 

6.6.1 Advantages 

This robot was simple to assemble (again using only a screw driver), screened the RF 

parts and protected the electronics.  It is light, small and very robust.  The robot could 

also be operated standing up, or lying on its back (even the camera can swivel to the top 

of the robot looking forward should it lay on its back). 

 

All the design goals set for the mechanical design was met by this design. 
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Figure 6-8:  View of Peete5 without front panel 

The picture shown in Figure 6-8 shows the final assembly of Peete5.  The front panel has 

been removed to clearly show the inside of the robot. 

 

The complete set of assembly drawings of Peete5 can be found in APPENDIX E. 

 

6.6.2 Disadvantages 

Some features were given away in order to meet the original design goals.  The two 

designs before this one had a spring system on the wheel assemblies.  This would have 

smoothed the ride a bit for the electronics and the camera.  Especially the camera view 

would be a lot shakier on this design. 
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6.7 Conclusion 

The final mechanical design meets all the requirements set out in the beginning of this 

chapter. 

 

Figure 6-9:  Photograph of Peete5 

 

Although the final design (Figure 6-9) may look simple, this is exactly what is was 

designed for.  The different designs shown in this chapter showed how good thinking 

and development prior to manufacturing can be used to come up with a mechanical 

design that not only meets, but exceeds all the design expectations. 

 

 



 

 

Chapter 7 Keeping Peete5 upright 
 

 

7.1 Introduction 

Keeping Peete5 upright is a design constraint that has 

been placed on the software and electronics due to the 

mechanical solution described in the previous chapter.  It 

is not one of the requirements of this project and has 

been done purely to demonstrate how a good mechanical 

design can be obtained through the use of simple and 

low cost electronic and software design. 

 

The DSP used on the motherboard is a powerful number 

crunching machine and is ideal for doing the mathematics required for keeping Peete5 

upright.  It contained Analogue to Digital converters already and the only extra 

requirement was inertial reference sensors. 

 

This chapter will explain how the inertial sensors were used.  It will explain how they 

were calibrated and how a Kalman filter can be used to get the best possible 

measurements from the sensors. 
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7.2 Sensor calibration 

Both reference sensors (Inclinometer and Gyro) were calibrated to compensate for slight 

differences in the manufacturing processes of the sensors.  The values calculated during 

calibration were: 

• Scale factor. 

• Offset. 

 

The scale factor of the sensor is the value that when multiplied with the measured ADC 

value will give a value in radians (inclinometer) or radians/second (gyro). 

 

According to the inclinometer datasheet, the 0g offset voltage can differ by as much as 

625 mV while the sensitivity can change by as much as 25 mV depending on the supply 

voltage.  Using the typical values from the datasheet can result in errors of a couple of 

degrees when measuring the orientation of the robot.  A simple calibration procedure 

was used to calibrate the sensor.  These values do not change over time and only a single 

calibration is needed. 

 

Note:  The offset and scale factors will also change over temperature.  These changes can be neglected since 

Peete5 is expected to only operate at room temperature. 

 

7.2.1 Inclinometer 

The Peete5 PCB was placed on a flat surface and connected to a PC.  The RAW ADC 

values were measured using the “Module Testing”15 program.  A protractor was used to 

measure the angle of the PCB relative to the flat surface. 

 

                                                 
15 module_testing.exe 
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Figure 7-1:  RAW ADC values for inclinometer calibration 

 

Figure 7-1 shows the measurements that were made as the PCB was tilted from 0° up to 

90° in 15° steps.  The same measurement was also done from 0° to -90°.  The value 

measured when the robot was standing at 0° is the offset of the inclinometer.  Note how 

the curve followed a sine wave and not a straight line.  This is because the inclinometer is 

measuring the amplitude of a vector down to earth relative to its own orientation. 

 

Measurement
vector ( )u

Gravity ( )g

Measurement
vector ( )u

Gravity ( )g

Measured 
value (v)

θ

a) b)  
a)  Inclinometer at 0°.  b)  Inclinometer at 45°. 

Figure 7-2:  Measuring g with an inclinometer  

Figure 7-1shows an example of two measurements.  The first is at 0° and the measured 

value (v) is zero g.  In the second example the angle is 45°.  Here the measured value (v) 
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will be 21  of g.  The fact that the measurement made in Figure 7-1 is a vector 

measurement must be taken in to account when calibrating the sensor. 

 
Angle [deg] g ADC value ADC - offset Scale factor

90 1 15464 1424 7.0224719101E-04
75 0.96592583 15408 1368 7.0608613033E-04
60 0.8660254 15254 1214 7.1336524200E-04
45 0.70710678 15016 976 7.2449465286E-04
30 0.5 14704 664 7.5301204819E-04
15 0.25881905 14352 312 8.2954822148E-04
0 0 14040 0

-15 -0.25881905 13692 -348 7.4373288823E-04
-30 -0.5 13326 -714 7.0028011204E-04
-45 -0.70710678 13032 -1008 7.0149482261E-04
-60 -0.8660254 12806 -1234 7.0180340663E-04
-75 -0.96592583 12656 -1384 6.9792328489E-04
-90 -1 12612 -1428 7.0028011204E-04

7.2285567603E-04  

Table 7-1:  Calculating inclinometer offset and scale factor 

Table 7-1 shows how the inclinometer offset and scale factor were calculated.  The Angle 

is the angle at which the PCB was tilted when the ADC measurement was made.  The g 

value is sin(angle) and is the value that the inclinometer would have been measuring.  

The scale factor is the value that will convert the measured ADC voltage to the measured 

g value.  The average off all the scale factors was used to obtain the final value. 

 

One g is equal to 90°.  Multiplying the scale factor by π/2 then will convert raw ADC 

values to radians.   

 

Note:  The standard measuring unit used when writing software was radians. 

 

7.2.2 Gyro 

The rate gyro also needed calibration in order to convert the raw ADC value to a rate in 

rad/sec.  The rate gyro was attached to one of the stepper motors of Peete5.  The 

functions for controlling the stepper motors are very accurate and a very accurate angular 

speed command can be sent to the stepper motors.  This angular speed can then be used 

to calculate the scale factor of the sensor.  The same process was followed as that used 
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for the inclinometer calibration, the only difference being that stepper motor speed was 

used, and not the angle of the board. 

 

The offset value of the rate gyro can not be calibrated out.  This is because of the fact 

that all rate gyros have an inherent drift in its offset value.  This drift has to be calculated 

by using the inclinometer output.  A Kalman filter is needed for this and is explained 

next. 

 

7.3 Kalman filter 

The equations for a Continuous-Discrete Kalman Filter are given in [4] as: 

 

The system model is given by: 

GwBuAxx ++=&  

 7-1 

The measurement model is given by: 

kkk vHxz +=  

 7-2 

 

Initialization: 

00 )0(ˆ,)0( xxPP ==  

 7-3 

 

The time update between measurements can be done by: 
TT GQGPAAPP ++=&  

BuxAx += ˆ&̂  

 7-4 
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And the measurement update at times tk is calculated with: 
1])([)( −−− += RHtHPHtPK T

k
T

kk  

)ˆ(ˆˆ
)()()(

−−

−

−+=

−=

kkkk

kkk

xHzKxx

tPHKItP
 

 7-5 

The goal behind all these equations was to calculate the Kalman gain (Kk) which is then 

used to calculated the estimated angle and gyro drift (in the vector xk).  The output of the 

gyro cannot be used unless its drift can be estimated.  The drift will be relatively slow 

(less than 1 Hz) and a Kalman filter can be used to estimate this value.  It can then be 

subtracted from the output of the sensor to get the rate of change in rad/sec.  The value 

measured by the inclinometer can be used to calculate this drift dynamically. 

 

The two measurements made by the sensors are the angle of the inclinometer (θI) and 

the rate of change of the angle (ωg).  The two outputs needed from the Kalman filter will 

be the true angle (θ) and the drift of the gyro (Bg).  The system model (equation 7-1) can 

be described by the following equations: 

 

The rate of change of the angle is equal to the measurement made by the gyro (ωg) minus 

the bias of the gyro (Bg): 

gg B−= ωθ&  

 7-6 

The bias of the gyro is slow can be seen as constant, i.e. its derivative is zero: 

0=gB&  

 7-7 

The system equation can be written in terms of Bg and θ: 
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Taking the derivative yields: 
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 7-9 

 

Equation 7-9 is in the same form as the system model specified in equation 7-1.  This is 

the system model used for the Kalman filter in Peete5. 

 

The next step is to specify the measurement modal that specifies the nature of the 

measurements made.  In this case the measurement model is simply the value measured 

by the inclinometer since it is the only absolute measurement that can be made.  The 

measurement model is given by equation 7-10. 

 

[ ] ⎥
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θ

θ 01  

 7-10 

The system requires initial values.  The initial value of the estimated angle was taken as 

the first inclinometer measurement (θI) and the initial gyro drift is taken as 0. 

 

Finally, the estimated angle and drift can be calculated with: 
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7.4 Simulation 

The pendulum simulation program was used to test and verify the working of the 

Kalman filter.  An offset value in the gyro measurement was simulated to verify that the 

filter correctly estimated the offset angle. 
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Figure 7-3:  Estimating gyro drift 

 

Figure 7-3 shows how the gyro drift was estimated over time.  This output is from the 

pendulum simulation program written in Delphi.  A small, 5 degree/second drift error 

was added to the gyro measurement.  The graph in Figure 7-3 shows how this value was 

estimated by the Kalman filter. 

 

7.5 Conclusion 

Building a robot that would keep itself upright was not a goal of this thesis.  It was done 

to show that innovative electronic design could be used to simplify mechanical design 

constraints.   
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The Kalman filter was implemented successfully.  This is the first step before control 

algorithms can be developed for keeping the robot upright. 

 

A simulation program was developed successfully and showed that the dynamics of the 

robot as well as the sensor readings and Kalman filter could be accurately simulated. 

 

A control algorithm was developed and tested.  It did manage to keep the robot upright 

on its own and it could also withstand small step responses.  The time available for 

working on the control logic was very limited and a stable system could not be developed 

in time.  The level of success obtained in such a short time however did show that it will 

be possible to keep the robot upright and it is seen as a testament to good solid 

electronic design and software development.  Peete5 will be an excellent test bench for 

control logic development.  The ease of use and the quality of the sensors make it a 

stable stepping stone for future development. 
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Chapter 8 Conclusion and suggestions 
 

8.1 Conclusion 

8.1.1 Position control 

Robots are slowly starting to play a bigger and bigger role in human society.  If 

Hollywood writers had their say, there would be a robot in every house already.  Robots 

are slowly starting to change from remote controlled toys to more sophisticated 

autonomous systems that can be left alone to perform a specific task.  Universities and 

companies all over the world host competitions to develop the technologies further and 

today it is possible to buy robot vacuum cleaners and lawn mowers. 

 

One of the biggest dampers on autonomous robots today is position control.  Robots 

need to know where they are and where they are going.  Numerous systems exist to 

attempt and solve this problem.  Almost all of them use some form of artificial landmark 

recognition where distance sensors are used to measure the distance to a wall, table or 

other obstacle.  These systems have a major disadvantage in that it cannot know whether 

or not something is suppose to be there.  Take a robot vacuum cleaner for example.  It 

would navigate through a room by measuring the distance to four walls.  It will generate 

a mental map of what the room looks like, or it may be programmed with a map.  If a 

table is placed next to one of the walls then the robot would not know if it is its sensor 

that is damaged or if something was placed next to a wall.  It is also not possible to 

calculate its exact position any more since the wall was the reference for the position 

calculation. 

 

The main design goal of Peete5 was to solve this problem by developing a system that 

would use absolute positioning.  Peete5 solved this problem in a simple, reliable and 

extremely cost effective way.  This is the first time that an ultrasonic system and RF 

communication link was used to calculate the position of an object.  The system made it 

possible for a robot to be switched on any where in a room and it would immediately 

know where it is.  This is a major improvement on previous systems.  If the robot 



 5
 

Peete 

 

Chapter 8  Conclusion and suggestions  

 

 
123 

8 

vacuum cleaner were to be equipped with such a system, it would be possible to navigate 

its way through a room in its usual manner with the added advantage of knowing where 

it is regardless of obstacles changing in its environment.  Where it was previously almost 

impossible to navigate back to its base station, it would now be a simple task. 

 

Although the system is small and easy to install in a house, it is doubtful that someone 

would go through the trouble when they need a vacuum cleaner.  This system may 

however be perfect for factories and businesses.  Many manufacturing companies use 

robots to carry stock and equipment from one place to another.  They may use solutions 

such as lines painted on the ground for the robots to follow.  These systems have the 

obvious disadvantage that if the line is broken or an obstacle covers the line, the system 

will fail.  The ultrasonic positioning system offers a very low cost solution for robot 

navigation without such problems. 

 

8.1.2 Electronic and software design 

The biggest advantage of the electronic and software design in Peete5 is its stability.  

Good electronic practices were followed when designing the electronic hardware and the 

software.  The small PCB and the fact that almost all the components are surface mount 

make the PCB very robust.  It has been dropped accidentally more than once and it 

never needed repair.  This makes the robot the perfect test bench for future development 

and design.  It can also be used as an example to show good industry practices today. 

 

Possibly the second biggest advantage of the software and electronics is its ease of use.  

The robot can be de-bugged, programmed and controlled with the robot switched on 

and a transmitter board plugged in to a PC’s USB connector.  No power supplies, 

oscilloscopes or other hardware is needed.  This makes it very easy and quick to develop 

and test new software and it is for this reason that Peete5 is such a good test bench.  

Extra communication interfaces (an SCI port) are available on headers on the PCB and 

can also be used in future development should extra hardware be required. 
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The electronic circuits were designed using industry standards.  This means that a 

complete set of documentation is available for the manufacturing of the robot should it 

ever be required.  From the Gerber files for PCB manufacturing down to the parts lists 

for the components. 

 

The electronic and software designs exceed the requirements and goals set out for this 

project.  The robustness, ease of use, expandability and features are testament to this. 

 

8.1.3 Mechanical Design 

The simplicity of the mechanical design was explained in Chapter 6.  It is this very 

simplicity that makes it such a good solution.  The whole of Peete5 can be disassembled 

with a single screw driver.  This makes it very easy to work on and maintain.  The fact 

that everything is securely connected to the mechanical housing makes the robot very 

robust.  Peete5 can easily take the odd bump or knock.   

 

The mechanical design was not only relatively simple but also inexpensive to 

manufacture.  With all the design documentation available, it would be possible to easily 

build another robot should it be required.  The reproducibility of the robot (mechanically 

and electronically) is in itself proof that the designs are very stable and mature. 

 

Brilliant electronics and software is often let down by bad mechanical design when it 

comes to robots.  This was not the case with Peete5.  The fact that an effort was made in 

designing the hardware meant that it does not only serve a purpose, it is also good to 

look at.  Although no mechanical design goals were required, the internal goals 

mentioned in Chapter 6 were all exceeded. 
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8.2 Suggestions 

There can only be no suggestions to a finished design if no lessons were learned in the 

process.  This is not the case with this thesis.  Many lessons were learned.  Many of them 

were fortunately learned in the early stages and could be incorporated in to the final 

design.  Some however could only been seen once the design were finished. 

 

8.2.1 Simulation 

Probably one of the most valuable design tools is simulation.  It may be argued that some 

systems are too complex to simulate and that it is not worth the trouble.  This is not the 

case.  Simulation methods exist even for the robots that recently explored the surface of 

Mars.  More complex systems have a greater requirement for a decent simulation. 

 

The advantage of using simulations is that small deviations can be quickly pointed out 

which are more often than not the source for major problems later on.  One good 

example of this is the correlation algorithm used in assembler.  It seemed to be working 

the first time when compared to the simulation software developed for the PC.  It did 

however show a slight deviation now and again.  It turned out that the number of 

iterations used was incorrect and although it showed only sight differences when working 

with no noise, it did not work at all with the addition of noise. 

 

8.2.2 Electronic design 

Careful investigation of the schematics will show a lot of zero ohm resistors and Space 

Provision Only (SPO) components.  These components are used as place holders.  The 

manufacturing of a PCB is time consuming and expensive.  These extra components on 

the board come at no extra cost.  They are placed in case they may be needed. 

 

Although there are some extra unpopulated components on the board, there could have 

been more.  The main DSP used has plenty of IO pins, ADC ports, PWM outputs and 

many other extra peripherals that are not used.  These should have been brought out on 



 5
 

Peete 

 

Chapter 8  Conclusion and suggestions  

 

 
126 

8 

a header of some kind, or even a prototype section on the PCB.  Extra active filters could 

also be added to the PCB that would have made the addition of more sensors a 

possibility.  This header should also include power outputs (the regulated 3.3V and 5V as 

well as the unregulated 20V) so that additional boards could be made as plug-in additions 

to the robot. 

 

8.2.3 Ultrasonic positioning 

Although the solution is relatively inexpensive, it does require a PCB with a DSP and 

transceiver for every ultrasonic transmitter.  The costs can be reduced considerably if a 

single PCB could drive more than one ultrasonic transducer.  The sensors could be 

placed around a room and be connected to a single PCB per room. 

 

Although the system has been proven to work, it is not without problems.  Multi-path is 

probably the biggest source of errors in position calculation.  The GPS system suffered 

the same problem but it can be corrected when using extra mathematical solutions.  

Adopting the same solutions and using more than three sensors in a small area may 

overcome this problem all together and even lead to more accurate position fixes. 

 

Something that may be explored with the current hardware is working without the RF 

link.  The transmission of the Barker code is nothing else than sending data over a 

carrier.  It may be possible to send longer sequences of code that contain the actual data 

needed for the position fix.  The use of spread spectrum technology may even make it 

possible for more than one transmitter to transmit simultaneously.  This may lead to 

more accurate and quicker position fixes. 
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APPENDIX A :  IIR FILTER IMPLEMENTATION IN DELPHI AND C 

 

This section will explain the implementation of an IIR filter in the MC56F80xxE family 

of DSP’s from Freescale.  It will show how Matlab can be used to design the filter and 

how Matlab and Delphi can be used to verify the correct implementation of the filter. 

 

It uses a second order IIR implementation.  The examples can be expanded to first order 

IIR filters.  Second order IIR filters uses less memory (RAM and ROM) and are less 

susceptible to quantization noise.  The draw-back is that they cannot handle filters with a 

low resolution (typically where the cut off frequency is less than 10 times the sampling 

frequency).  First order IIR filters uses more RAM and ROM but can handle IIR filters 

with a lower resolution. 

 

N>1 

 

Use Matlab to calculate the filter coefficients: 
Fs = 200e3; % sampling frequency. 

Wn = [40e3]*2/Fs; % specify filter parameters. 

[b,a] = butter(5,Wn); 

b = b.*32767; % Convert to Q15.1. 

a = a.*32767; % Convert to Q15.1. 

 
NOTE:  The filter must be designed in such a way that the filter coefficients are all smaller than 1!!  A filter 

with a stop band smaller than 10% of the sampling rate normally results in coefficients larger than 1. 

The following filter equations are used: 

∑ =
+−−=

N

k k nxknwanw
1

)()()(  

∑ =
−=

N

k k knwbny
0

)()(  

Note “N” in the summation (N = the order of the filter, not the number of coefficients). 

 

The following declarations must be done in C: 
// IIR FILTER 0: -------------------------- 

#define IIR0_N 5 

extern sint16  iir0_w_values[IIR0_N]; 

sint16* iir0_w_index; 

const  sint16  iir0_ba[(IIR0_N+1)*2] = {   

                                      3594,      //  b[1] 
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                                     32286,      // -a[1] 

                                      7189,      //  b[2] 

                                    -31910,      // -a[2] 

                                      7189,      //  b[3] 

                                     12660,      // -a[3] 

                                      3594,      //  b[4] 

                                     -3643,      // -a[4] 

                                       719,      //  b[5] 

                                       369,      // -a[5] 

                                       719,      //  b[0]  

                                    -32767  };   // -a[0] 

 

Note the order of a and b and also the fact that a is negated (this is to use mac where only accumulations 

are done). 

 

The extern iir0_w_values is the circular buffer to store w(n) and is declared in an 

assembler file as: 

  global Fiir0_w_values 

 

Fiir0_w_values    bsm   6 

 

The following code will then implement and test the filter: 

 
void test_filter(sint16 value_in) 

{ 

  sint16 value_out; 

  // Note:  value passed in Y0. 

   

  asm 

  { 

    moveu.w #IIR0_N, M01          // Use modula adressing. 

    moveu.w #iir0_ba, R3          // Start at b[1]. 

    moveu.w iir0_w_index, R0      // Load index in to w. 

    move.w  Y0,A                  // w0 = x0. 

    clr     B  X:(R0)+,Y0  X:(R3)+,X0     // y0 = 0; 

                                  // load w[0] and load b[1] point to a[1]. 

    do      #IIR0_N,__end_do 

      macr   Y0,X0, B  X:(R3)+,X0                // y0 += b[i]*w[i]  |  

                                                 // load a[i] 

      macr   Y0,X0, A  X:(R0)+,Y0  X:(R3)+,X0    // w0 += a[i]*w[i]  |  

                                                 // load w[i] and b[i] 

    __end_do: 

    move.w   X:(R0)-, Y0          // This is just to decrement R0. 
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    macr     A1,X0, B             // y[0] = y[0] + w[0]*b[0]. 

    move.w   A1, X:(R0) 

    move.w   R0, iir0_w_index 

    move.w   B1,value_out 

     

    moveu.w #0xFFFF, M01 

  } 

   

  printf("%i \n",value_out); 

} // test_filter 

 

The impulse response given in matlab (using impz): 

0 5 10 15 20 25 30 35
-0.2
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0.3

0.4

0.5

 
Now compare this output with the simulated values in Delphi and finally with that in C: 

 

Simulation in 
Delphi 

Simulation in 
Matlab 

scale 
Matlab 

normalized to 
Q16 

Error between 
Delphi and 

Matlab 

Simulation in 
DSP 

Error between DSP 
and Delphi 

719 0.021939621 32771.76074 719 0 719 0

4302 0.131315765 32771.76074 4303 1 4302 0

10728 0.32741906 32771.76074 10730 2 10728 0

13847 0.422605216 32771.76074 13850 3 13847 0

8372 0.255540671 32771.76074 8375 3 8372 0

-842 -0.02567346 32771.76074 -841 1 -842 0

-4777 -0.145796607 32771.76074 -4778 -1 -4777 0

-2071 -0.06321571 32771.76074 -2072 -1 -2071 0

1512 0.04612992 32771.76074 1512 0 1512 0
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1849 0.056418323 32771.76074 1849 0 1849 0

71 0.002161138 32771.76074 71 0 71 0

-970 -0.029605805 32771.76074 -970 0 -970 0

-501 -0.015318391 32771.76074 -502 -1 -501 0

291 0.008820873 32771.76074 289 -2 291 0

412 0.012566065 32771.76074 412 0 412 0

39 0.001188536 32771.76074 39 0 39 0

-206 -0.006288972 32771.76074 -206 0 -206 0

-120 -0.003652257 32771.76074 -120 0 -120 0

55 0.001687511 32771.76074 55 0 55 0

91 0.002799125 32771.76074 92 1 91 0

13 0.000416087 32771.76074 14 1 13 0

-43 -0.001328801 32771.76074 -44 -1 -43 0

-28 -0.000861775 32771.76074 -28 0 -28 0

10 0.000313528 32771.76074 10 0 10 0

20 0.000620048 32771.76074 20 0 20 0

4 0.00012507 32771.76074 4 0 4 0

-8 -0.000278635 32771.76074 -9 -1 -8 0

-6 -0.000201345 32771.76074 -7 -1 -6 0

1 5.58843E-05 32771.76074 2 1 1 0

4 0.000136572 32771.76074 4 0 4 0

0 3.47369E-05 32771.76074 1 1 0 0

-3 -5.79382E-05 32771.76074 -2 1 -3 0

 

 

N = 1 

Use Matlab to calculate the filter coefficients: 
Fs = 200e3; % sampling frequency. 

Wn = [10e3]*2/Fs; % specify filter parameters. 

[b,a] = butter(1,Wn); 

b = b.*32767; % Convert to Q15.1. 

a = a.*32767; % Convert to Q15.1. 

 
NOTE:  The filter must be designed in such a way that the filter coefficients are all smaller than 1!!  A filter 

with a stop band smaller than 10% of the sampling rate normally results in coefficients larger than 1. 

The following filter equations are used: 

∑ =
+−−=

N

k k nxknwanw
1

)()()(  

∑ =
−=

N

k k knwbny
0

)()(  

Note “N” in the summation (N = the order of the filter, not the number of coefficients). 
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The following declerations is then done in C: 
// IIR FILTER 1: -------------------------- 

#define IIR1_N 1 

const sint16 iir1_ba[(IIR1_N+1)*2] = {  23807,    // -a[1] 

                                         4480,    //  b[1] 

                                         4480,    //  b[0] 

                                       -32767 };  // -a[0] 

                     

sint16 iir1_w_value; 

 

Note the order of a and b and also the fact that a is negated (this is to use mac 

where only accumulations are done). 

 

The following code will implement and test the filter: 

 

void test_filter2(sint16 value_in) 

{ 

  sint16 value_out; 

  // Note:  value passed in Y0. 

   

  asm 

  { 

    moveu.w #iir1_ba,R3           // Point to a1 

    move.w  iir1_w_value, X0      // Load w[0-1] 

    move.w  Y0, A                 // w[0] = x[0] 

    move.w  X:(R3)+,Y0            // Load a1. 

    macr    Y0,X0,A  X:(R3)+,Y0   // w[0] = w[0] + a[1]*w[0-1] || 

                                  // load b1. 

    mpyr    Y0,X0,B  X:(R3)+,Y0   // y[0] = b[1]*[w0-1] || 

                                  // load b0. 

    macr    A1,Y0,B               // y[0] = y[0] + b[0] * w[0]. 

     

    move.w  A1, iir1_w_value      // Save w[0]. 

    move.w  B1, value_out 

  } 

   

  printf("%i \n",value_out); 

} // test_filter 

 

The impulse response given in Matlab (using impz(b,a)): 
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Now compare this output with the simulated values in Delphi and finally with that in C. 

 

 



 

 
134 

APPENDIX B :  COMMUNICATION MESSAGES 

 

1. status 

This command is used to get the status of a specific module.  All modules must respond 

to this message regardless of the state they are in. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Response identifier – see Table 3-1. 

3 Board state – see Table 8-1. 

4-7 Warning bits. 

8-11 Error bits. 

12 Last error/warning. 

13-16 Debug parameter. 

17,18 Message CRC 

 

a. Board states 

The states that a module can be in are listed in the following table.  The state can be 

determined by sending the module a status command. 

 

State Description Value 

Startup The module is busy starting up and initializing. 0x01 

Running The module is functioning normally. 0x02 

Error The board is in the error state.  0x03 
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Software 

download 

The board is in the software download state.  This means that 

the application code is not running, but the loader code. 

0x04 

Table 8-1:  Board states 

 

b. Warning bits 

Bit number Warning 

0 C1000 calibration failed (my still work though if really lucky) 

1  

2  

3-31 Unused. 

Table 8-2:  Warning bits 

 

c. Error bits 

Bit number Error 

0 Data flash programming failed. 

1 Data flash erasure failed. 

2 Program flash programming failed. 

3 Program flash erasure failed. 

4 PLL not locked (it must be to program correctly). 

5 CLKD invalid (must be valid to program correctly). 

6 Application CRC invalid. 

7 Loader CRC invalid. 

8 Application size invalid. 

9-31 Unused. 

Table 8-3:  Warning bits 

2. enter_sw_download 

Use this command to enter the software download state.  If the application code is 

running, then it must jump to the bootloader code and command it to enter the software 



 

 
136 

download state.  No other download command shall be accepted unless the bootloader is 

in the software download state. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Response identifier – see Table 3-1. 

3 0 – Command accepted. 

1 – Command rejected. 

4+5 Message CRC 

 

3. start_sw_download 

Use this command to start a new software download.  The entire data flash and program 

flash sections will be erased on receiving this command. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3 Major part of software version. 

4 Minor part of software version. 

5 Release day. 

6 Release month. 

7 Release year. 

8,9 Message CRC 
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Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Response identifier – see Table 3-1. 

3 0 – Command accepted. 

1 – Command rejected. 

4 TX buffer size.  This size will determine the size of the data packets being sent during 

programming.  A whole data packet shall not be larger than this value. 

5+6 Message CRC 

 

 

4. program_flash 

Use this command to program a block of flash. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3 Number of bytes to follow (N) 

Specify how many data bytes will follow. 

4,5,6,7 Start address. 

This address is the start address (in the flash) of the block of data to follow.  The most 

significant bit specifies weather it is data or program flash.  If the address is greater than 

0x80000000 then it is data flash, and will program to data flash address 0x00000000. 

8 – (N+7) The data to program (MSB,LSB). 

(N+8) + 

(N+9) 

Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Response identifier – see Table 3-1. 

3 0 – Command accepted. 
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1 – Command rejected. 

4+5 Message CRC 

 

 

5. stop_sw_download 

Use this command to stop a software download that is currently in progress.  If a 

programming session was in progress then the CRC of the flash will be checked and 

compared with the CRC sent to it by this command.  The command will only be 

accepted if the calculated CRC is the same as the given CRC. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3,4 Flash CRC.  The boot-loader should get the same value when calculating the CRC over the 

flash. 

5,6,7,8 Number of words that have been programmed (data + program flash) 

9 New device address.  The device shall use this address to compare with the destination address 

of incoming messages. 

10,11 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Response identifier – see Table 3-1. 

3 0 – Command accepted (CRC OK). 

1 – Command rejected (CRC failed or no download was in progress). 

4+5 Message CRC 

 

6. get_raw_adc 

Use this command to read the raw ADC values as sampled by the analog to digital 

converter on the DSP.  The values are all 16-bit values and can be interpreted as signed 

or unsigned.  The sign will depend on the specific application of that ADC. 
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Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Response identifier – see Table 3-1. 

3+4 ADC A0 

5+6 ADC A1 

6+7 ADC A2 

… … 

17+18 ADC A7 

19+20 ADC B0 

… … 

33+34 ADC B7 

35+36 Message CRC 

 

 

7. send_dist_pulse 

Use this command to let the transmitter send out an ultrasonic pulse.  This pulse will be 

the fully modulated code word for ultrasonic range finding. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

Message response: 
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Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

 

8. force_calculate_distance 

This command can be used to force the main processor to attempt a distance calculation.  

This command should only be used if normal distance calculation was disabled in the 

source code. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3 ID of TX node.  The main board will send a “send_dist_pulse” command to the board with 

this ID and use the response to calculate the distance from it. 

4+5 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

9. reset 

This command will force the board to do a software reset. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 
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2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

10. set_motor_speed 

This command can be used to directly control the speed of the stepper motors. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Left motor speed.  The speed is in radians, multiplied by 100. 

5+6 Right motor speed.  The speed is in radians, multiplied by 100. 

7+8 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

11. set_servo_angle 

Use this command to directly control one of the two servo motors.  Note that only one 

may be installed in the robot. 

 

Packet format: 
Byte no. Description 
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0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Servo 0 angle.  This must be a value between 0 and 180 and is the servo angle in degrees 

multiplied by 100. 

5+6 Servo 1 angle.  This must be a value between 0 and 180 and is the servo angle in degrees 

multiplied by 100. 

7+8 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

12. get_last_dist_cntr 

This command can be used to get the last correlation counter that was passed on from 

the RX board to the Main board through the CAN interface.  This counter can be used 

to calculate distance. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Distance measured.  This value is the last distance measured between this Main board and a RX 

board.  This value is distance in mm. 

5+6 Second correlation counter.  This counter is the counter value at the time when the highest 
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correlation value was seen. 

7+8 Correlation peak value.  This is the output value from the second correlation when the peak was 

detected. 

9+10 Message CRC 

 

 

13. get_mec_pos 

Use this command to read the robot’s current position as calculated from the stepper 

motors.  This position is the value calculated by counting the number of steps that each 

motor did.  To get a more accurate position, use the get_usonic_pos command. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3-6 Robot’s x-position [in mm] 

7-10 Robot’s y-position [in mm] 

11-12 Robot’s orientation [in radians] between -π and +π. 

13+14 Message CRC 

 

 

14. get_sensor_data 

Use this command to read the compensated values from the reference sensors. 

 

Packet format: 
Byte no. Description 

0 Source address. 
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1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Inclinometer angle (in degrees x 100) 

5+6 Gyro rate (in degrees/sec x 100) 

7+8 Message CRC 

 

 

15. new_beacon 

Use this command to program in the information about a beacon. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3 Beacon address.  The Destination address of this beacon. 

4+5 X location of the beacon [in mm]. 

6+7 Y location of the beacon [in mm]. 

8+9 Z location of the beacon [in mm]. 

10+11 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 
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16. update_position 

This command can be used to force the robot to do a update on it’s position.  The robot 

will measure the distance to all of the programmed beacons (as if a force_calc_dist 

command has been received, but to all of the beacons).  It will also attempt to get a 

position fix after each beacon’s information has been updated. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

 

17. get_beacon_info 

This command can be used to get the latest information from all of the beacons.  This 

will include the beacon’s position, and the distance measured to the beacon (if a distance 

has been measured before). 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

Message response: 
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Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3 Number of programmed beacons (N). 

4 Address of Beacon 0. 

5+6 X-location of Beacon 0 [in mm]. 

7+8 Y-location of Beacon 0 [in mm]. 

9+10 Z-location of Beacon 0 [in mm]. 

11+12 Last distance measured to Beacon 0 [in mm] 

… … 

4+9*(N-1) Address of Beacon N. 

5+9*(N-1) X-location of Beacon N [in mm]. 

7+9*(N-1) Y-location of Beacon N [in mm]. 

9+9*(N-1) Z-location of Beacon N [in mm]. 

11+9*(N-1) Last distance measured to Beacon N. 

 Message CRC 

 

 

18. get_usonic_pos 

Use this command to read the position that was calculated after an ultrasonic fix was 

made. 

 

Packet format: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3+4 Message CRC 

 

Message response: 
Byte no. Description 

0 Source address. 

1 Destination address. 

2 Command identifier – see Table 3-1. 

3-6 Robot’s x-position [in mm]. 
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7-10 Robot’s y-position [in mm]. 

11-14 Robot’s z-position [in mm]. 

15+16 Message CRC 
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APPENDIX C :  SCHEMATICS 
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APPENDIX D :  SOURCE CODE 

1. Mechanical Position calculation. 

 

The follow block of code demonstrates how the robot’s position could be calculated by 

using the change in position of each wheel. 

 
/* __________________________________________________________________________ 

  /                                                                          \ 

 | calc_position                                                              | 

  \__________________________________________________________________________/ 

  /                                                                          \ 

 | Usage:       Calculate the current position based on the wheel movement    | 

 |              between now and the last time this function was called.       | 

 | Parameters:  None.                                                         | 

 | Returns:     None.                                                         | 

  \__________________________________________________________________________/ 

*/ 

void calc_position(void) 

{ 

  sint32 dl_cntr,dr_cntr; 

  float dist_l,dist_r; 

  float theta; 

  float dist; 

   

  ints_dis(); 

  dl_cntr = -(left_step_cntr - prev_l_step_cntr); 

  dr_cntr = right_step_cntr - prev_r_step_cntr; 

  prev_l_step_cntr = left_step_cntr; 

  prev_r_step_cntr = right_step_cntr; 

  ints_en(); 

   

   

  // It is possible for the step_counters to wrap arround 2^32 and 0.  If 

  // this happens, then a very big delta counter will be calculated.  Check 

  // if the delta counter is very big, and if so, correct for the wrapping: 

  if(dl_cntr > 10000) 

    dl_cntr = dl_cntr - 2^31; 

   

  if(dr_cntr > 10000) 

    dr_cntr = dr_cntr - 2^31; 

     

  // Calculate the distance that each weel traveled: 

  dist_l = RADIANS_PER_USTEP*WHEEL_D*dl_cntr; 

  dist_r = RADIANS_PER_USTEP*WHEEL_D*dr_cntr; 

   

  pos_theta = pos_theta + ((dist_l - dist_r)/ROBOT_W); 
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  if(pos_theta > PI) 

    pos_theta -= 2*PI; 

  else if(pos_theta < -PI) 

    pos_theta += 2*PI; 

   

  dist  = (dist_l + dist_r)/2.0; 

   

  // Update the robot's position: 

  pos_x = pos_x + dist*cos(pos_theta); 

  pos_y = pos_y + dist*sin(pos_theta); 

   

} // calc_position 
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2. Get sensor command 

 

The following block of code shows the implementation of the get sensor data command 

in Delphi: 

 
// -------------------- Get sensor data command -------------------- 

  Tcmd_get_sensor_data = class(TCommand) 

    public 

      // Parsed results: 

      incl_angle : real; 

      gyro_rate : real; 

 

      constructor create; 

      function send_command : boolean; 

      procedure parse_result; override; 

  end; 

// -------------------- End of Get sensor data command ------------- 

 

{  ___________________________________________________________________________ 

  /                                                                           \ 

 | Tcmd_get_sensor_data object                                                 | 

  \___________________________________________________________________________/ 

} 

constructor Tcmd_get_sensor_data.create; 

begin 

  cmd_line := 'get_sensor_data'; 

  parameters := ''; 

  help_line1 := 'get_sensor_data();'; 

  help_line2 := 'Reads the compensated reference sensor data.'; 

end; // create 

 

function Tcmd_get_sensor_data.send_command : boolean; 

begin 

  // Show the command: 

  ReportMessage(Self,cmd_line + '();',msCommand); 

 

  // Create the TX packet: 

  tx_msg.msg_buff[0] := source_addr; 

  tx_msg.msg_buff[1] := dest_addr; 

  tx_msg.msg_buff[2] := cmd_get_sensor_data; 

  tx_msg.length := 3; 

 

  if dispatch_message(tx_msg) = prot_got_msg then 

  begin 

    result := true; 

    parse_result; 

  end 
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  else 

    result := false; 

end; // send_command 

 

procedure Tcmd_get_sensor_data.parse_result; 

var 

  tmp : integer; 

begin 

  tmp := ord(rx_msg.msg_buff[3]) shl 8 + 

         ord(rx_msg.msg_buff[4]); 

  if(tmp > $7FFF) then 

    tmp := tmp - $FFFF - 1; 

  incl_angle := tmp / 10000 * 180/PI; 

 

  tmp := ord(rx_msg.msg_buff[5]) shl 8 + 

         ord(rx_msg.msg_buff[6]); 

  if(tmp > $7FFF) then 

    tmp := tmp - $FFFF - 1; 

  gyro_rate := tmp / 10000 * 180/PI; 

 

  // Display the result: 

  report_string('Incl angle:  ' + floattostrf(incl_angle,ffGeneral,4,6) + 'deg.'); 

  report_string('Gyro rate:  ' + floattostrf(gyro_rate,ffGeneral,4,6) + 'deg/s.'); 

end; // parse_result 

 

{  ___________________________________________________________________________ 

  /                                                                           \ 

 | End of Tcmd_get_sensor_data object                                          | 

  \___________________________________________________________________________/ 

} 
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APPENDIX E :  MECHANICAL DRAWINGS 
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