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Abstract 

Polypropylene (PP) has been identified as the second most abundant plastic waste in landfills 

globally and the fastest growing plastic waste in South Africa. The increasing numbers have 

been attributed to the limitation of conventional mechanical recycling not being able to 

handle plastic wastes contaminated with other organic wastes. Recycling via pyrolysis has 

been identified as a promising option to managing these plastic wastes due to its ability to 

handle significant levels of contamination and also yielding products with huge fuel prospects 

from plastics. Pyrolysis under vacuum conditions for other organic wastes such as biomass 

has demonstrated promising yields of condensable products. Unfortunately, pyrolysis of 

plastics under vacuum has received very little attention. Also, transition from bench to 

industrial scale applications of pyrolysis processes could be complicated and pilot scale 

processes to mediate between both levels are very helpful towards attaining the sustainable 

commercialisation of plastics pyrolysis into fuels. 

The aim of the study was to investigate the effects of key process parameters (that include 

temperature and heating rate) on products yield distribution and quality of condensable 

products from the pyrolysis of waste PP plastics at bench scale under atmospheric and 

vacuum conditions. Four temperatures (450, 488, 525 and 600 ᵒC) were investigated at two 

distinct heating rates of 15 ᵒC/min (slow), 175 ᵒC/min (fast). As part of the aims of the study, 

a 5 kg/h pyrolysis pilot plant was also designed and commissioned after which tests obtained 

from atmospheric fast heating rates were scaled-up to the commissioned pilot. 

Pyrolysis of PP under atmospheric slow and fast heating rates revealed maximum 

condensable products (oil and wax) yields of 85.6 and 84.5 wt.% respectively all attained at 

488 ᵒC after which further increase of temperature resulted in secondary cracking reactions 

which promoted yields of permanent gases against condensables. Cracking was however 

more severe under fast heating rates due to the combined effects of higher temperature and 

faster heating rate. Gas Chromatography/ Mass Spectrometry (GC/MS) analysis of 

condensable products obtained under these conditions also revealed that production of 

gasoline range compounds was favoured mostly under reactions where some cracking 

reactions occur. Also, Higher Heating Values (HHVs) of condensable products recovered under 

atmospheric conditions ranged between 41 - 45 MJ/kg. HHVs were however seen to decrease 
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at severe temperature and heating rate conditions due to the increased production of 

aromatics. 

Maximum yields of condensable products for slow and fast heating rates under vacuum 

conditions were reported to be 92.7 wt.% (at 525 ᵒC) and 91.8 wt.% (at 488 ᵒC) respectively. 

Total yields of condensable products under vacuum were observed to be higher than the 

corresponding yields under atmospheric conditions. Unlike atmospheric conditions, diesel 

range compounds predominated all condensable products recovered under vacuum 

pyrolysis. In addition, HHVs of condensable products retrieved under vacuum ranged 

between 42 - 46 MJ/kg and were seen to remain high even at severe conditions of 

temperature and heating rate. 

Lastly, tests under atmospheric fast heating rates at bench were mimicked on the 

commissioned pilot plant (because they both employ a pre-heated reactor). Compared to the 

bench scale test, temperature at which maximum yield of condensable products were 

retrieved on the pilot decreased by 28 ᵒC with the maximum condensable products yield also 

decreasing by 6%. These differences were blamed on different reactor length configurations. 

Physico-chemical properties of oils recovered from the pilot when compared to commercial 

diesel and gasoline fuels disclosed that PP derived oils contained compositions of both diesel 

and gasoline range compounds. 
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Opsomming 

Polipropolien (PP) is uitgeken as die plastiek wat wêreldwyd die tweede meeste voorkom in 

vullisterreine en dit is die vinnigste groeiende plastiekmateriaalafval in Suid Afrika. Die 

groeiende syfers word toegeken aan die die feit dat konvensionele meganiese herwinning 

beperkte kapasiteit het om afvalplastiekmateriaal wat met organiese afval gekontamineer is, 

the hanteer. Herwinning via pirolise is geïdentifiseer as ŉ belowende opsie om plastiekafval 

te bestuur, as gevolg van pirolise se vermoë om beduidende vlakke van kontaminasie te 

hanteer, asook die oplewering van produkte met belowende brandstof eienskappe. Pirolise 

onder vakuumkondisies van ander organiese afvalmateriaal, soos biomass, toon belowende 

opbrengste van kondenseerbare produkte. Ongelukkig, vind pirolise van plastiek onder 

vakuumkondisies baie min aandag. Verder, kan dit ingewikkeld wees om van banktoetsskaal 

na industriële skaal oor te gaan en lootsskaal prosesse kan hulpvaardig wees om tussen die 

twee vlakke te bemiddel om volhoubare kommersialisering van plastiekpirolise om brandstof 

the maak, te bekom. 

Die doelwit van die studie was om die effekte van sluetel-proses-parameters (insluitend 

temperatuur en verhittingstempo) op die verspreiding en kwaliteit van kondenseerbare 

produkte vanaf die pirolise van afval PP-plastiek by banktoetsskaal onder atmosferiese en 

vakuumdruk kondisies te ondersoek. Vier temperature (450, 488, 525 en 600 ᵒC) was 

onderoek by twee duidelike verhittingstempo’s van 15 ᵒC /min (stadig) en 175 ᵒC /min 

(vining). As deel van die doelwitte van die studie, is ‘n 5 kg/h pirolise lootsaanleg ook ontwerp 

en opgedra, waarna toetse verkry vanaf atmosferiese vinnige verhittingstempo’s, 

opgeskaleer is na die lootsaanleg. 

Pirolise van PP onder atmosferiese stadige en vinnige verhittingstempo’s het maksimale 

kondenseerbare produkte (olie en was) opbrengste gelewer van 85.6 wt.% en 84.5 wt.% 

onderskeidelik, als verkry by 488 °C, waarna ŉ verdere toename in temperatuur sekondêre 

kraking reaksies tot gevolg gehad het wat opbrengste van permanente gasse teenoor 

kondenseerbare produkte bevorder. Kraking was egter hewiger onder vinnige 

verhittingstempo as gevolg van die gekombineerde gevolge van hoër temperatuur en vinniger 

verhittingstempo. GC/MS-analise van kondenseerbare produkte wat onder hierdie toestande 

verkry is het ook gewys dat produksie van petrol bestek samestellings is meestal bevoordeel 

waar sekondêre kraking reaksies voorkom. Verder, was die hoërverhittingswaarde (HHV) van 
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herwinde kondenseerbare produkte onder atmosferiese kondisies in bestek van 41 - 45 

MJ/kg. HHVs het egter verminder by geweldige temperature en verhittingstempo kondisies 

a.g.v die toenemende vervaardiging van aromatiese verbindings. 

Maksimale kondenseerbare produkte opbrengste vir stadige en vinnige verhittingstempo’s 

onder vakuum is gerapporteer as 92.7 wt.% (by 525 °C) en 91.8 wt.% (by 488 °C) 

onderskeidelik. Totale opbrengste van kondenseerbare produkte onder vakuum was hoër as 

die ooreenstemmende opbrengste van olies onder atmosferiese toestande. Anders as 

atmosferiese toestande, het diesel bestek verbindings alle kondenseerbare produkte wat 

onder vakuum pirolise herwin is oorheers. Verder, het kondenseerbare produkte wat onder 

vakuum herwin is, HHV’s wat in die bestek van tussen 42 - 46 MJ/kg geval het en dit was 

gevind om hoog te bly selfs onder geweldige kondisies van temperatuur en verhittingstempo. 

Laastens, is toetse onder atmosferiese vinnige verhittingstempo’s op banktoetsskaal 

nageboots op die lootsaanleg (want hulle altwee benut ‘n voorverhitte reaktor). In 

vergelyking met die banktoetsskaal toetse, het die temperatuur waarby maksimum opbrengs 

van kondenseerbare produkte herwin is, met 28 °C verminder. Die maksimum opbrengs van 

kondenseerbare produkte het ook met 6% verminder. Hierde verskille is toegeken aan die 

verskil in lengte konfigurasies van die reaktore. Physico-chemiese eienskappe van olies 

herwin uit die lootsaanleg, as vergelyk word met kommersiële diesel en petrol brandstowwe, 

het gewys dat die samestelling van PP afgeleide olies in die bestek van beide diesel en petrol 

samestellings val.   
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Condensable products- Condensable gases which were recovered as both oil and wax 

Cyclisation- It is the formation of cyclic/closed ring and aromatic hydrocarbons also caused by 

secondary reactions 

Naphthenes- Any group of cyclic aliphatic hydrocarbons 

Olefins- Class of unsaturated hydrocarbons 

Paraffins- Saturated hydrocarbons 

Recombination reactions- Also a form of secondary reaction but it involves the reaction of 

two different primary radicals/products into one single final product. 

Secondary reactions- The further reaction of primary pyrolysis products into much more 

stable compounds. 

Simulated distillation- It is a chromatographic technique which correlates retention times of 

hydrocarbons from a GC/MS spectrum with boiling points of the same compounds. 
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Introduction 

1.1 Background 

In today’s modern society, plastics provide a basic contribution to many daily activities, 

ranging from agriculture to packaging (Pinto et al., 1999; Lopez, et al., 2017). However, the 

build-up of extensive amounts of plastic waste worldwide has raised environment concerns 

(Siddiqui & Redhwi, 2009; Pinto et al., 2013; Abbas-Abadi et al., 2014; Ahmad et al., 2015). A 

survey conducted on the flow of plastic materials in 2007 revealed that 260 million tons of 

plastics were produced worldwide with this figure increasing at a rate of 4 to 5% annually (Al-

Salem et al., 2010; Kunwar et al., 2016; Lopez et al., 2017). Also, in 2013, plastic production 

worldwide has increased to a little below 300 million tonnes (Sharuddin et al., 2016). It is also 

estimated that about 60% of these generated plastic wastes end up at landfills globally 

(Valavanidis et al., 2008; Al-Salem et al., 2010). In South Africa, a total of about 1.3 million 

tonnes of plastic are manufactured out of which only about 20% are recycled with the 

remaining being landfilled. This is according to a survey conducted by Plastics SA, a 

representative organisation for all sectors of the South African plastic industry in 2012.  

Although more innovative technologies have been used over the past couple of years to 

recover plastics, there still remains a substantial fraction of plastic wastes which is difficult to 

recycle mechanically as a result of impurities, lack of markets or the failure to sort and remove 

the plastics that make recovery unattainable (Panda & Singh, 2013; Heydariaraghi et al., 

2016). Most of these non-recycled plastics then become landfilled or incinerated (which is not 

very prevalent in South Africa) (Williams & Williams, 1997; Demirbas & Taylan, 2015; 

Heydariaraghi et al., 2016).  

Landfilling is not an ideal remedy for plastic waste management because sites for building 

suitable landfills have been increasingly scarce mainly due to opposition executed by nearby 

inhabitants and pressures from law-making bodies (Adewole & Wolkowicz, 1999; Achilias et 

al., 2008; Panda et al., 2010). Secondly, is the poor biodegradability of plastics which 

promotes soil leaching and impregnation as well as consequent pollution of underground 

waters. Besides, the lifelong effects of degradation of these plastics have still not been 
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validated (Pinto et al., 1999; Achilias et al., 2008; Lu et al., 2015) Also, the increasing cost of 

transport and disposal has caused landfilling of plastic wastes an unpleasant option (Williams 

& Williams, 1997; Achilias et al., 2008; Al-Salem et al., 2009; Miskolczi et al., 2009; Panda et 

al., 2010). Lastly, a substantial amount of plastic waste have also ended up in the ocean, and 

should the current usage and disposal of plastics continue, there will be more plastics than 

fish in the ocean by 2050 (Geyer et al., 2017; World Economic Forum, 2016). 

Presently, plastic recycling can be grouped into four categories; primary or closed-loop, 

secondary, tertiary and quaternary (Wong et al., 2000; Abbas & Shubar, 2008; Al-Salem et al., 

2009; Siddiqui & Redhwi, 2009; Hopewell et al., 2009; Wong et al., 2015). Primary and 

secondary recycling falls under mechanical recycling processes. Primary recycling involves the 

conversion of plastics to products with identical properties as virgin plastics (Hopewell et al., 

2009; Wong et al., 2000; Achilias et al., 2008). Secondary recycling also known as downgrading 

is the conversion of plastic wastes into new products of depreciated value (Ali & Siddiqui, 

2001; Low, et al., 2001; Lu et al., 2015). Downgrading also refers to a recycling technique 

where waste plastic material is used to build an object that will usually not be made with 

virgin plastics. A typical example is plastic lumber that can be used in place of a much more 

expensive timber (Hopewell et al., 2009). Tertiary recycling is defined as the processing of 

plastics back into their monomer structures, petrochemicals and/or fuel compounds (Ali & 

Siddiqui, 2001; Wong et al., 2000). Quaternary recycling employs incineration with or without 

energy recovery from plastic products (Ali & Siddiqui, 2001; Hopewell et al., 2009; Wong et 

al., 2000). Primary and secondary recycling have helped in managing waste plastic materials, 

but they have limitations on properties and uses of final products (Low et al., 2001; Wong et 

al., 2000; Lu et al., 2015). Quaternary recycling minimizes amount of plastic wastes deposited 

in landfills and substantial amount of energy can be retrieved on combustion. It nonetheless 

comes with the release of substantial amount of toxic gases and dusts which are not 

environmentally friendly. (Pinto et al., 1999; Wong et al., 2000; Larraín et al., 2017). Also, it is 

very inefficient since considerable cost is incurred in managing the large volumes of flue gases 

generated.  

Since management of plastic wastes via landfill and incineration pose serious threats to the 

environmental with mechanical recycling techniques being limited in terms of feedstock 

purity and product quality, pyrolysis as a type of tertiary recycling has been acknowledged as 
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a promising route to managing waste plastics (Lin & Yen, 2005; Lee & Shin, 2007; Miskolczi et 

al., 2009; Jung et al., 2010; Panda & Singh, 2013). Pyrolysis, a major type of thermochemical 

conversion, is the degradation of polymers at elevated temperatures in the absence of oxygen 

to produce valuable products such as char and volatiles, which can be separated into a 

condensable fraction and permanent gases. Pyrolysis leads to the breakdown of long chain 

polymers of plastics into shorter chain compounds and monomers, from which the plastics 

are initially made, and other useful fuels and chemicals (Wong et al., 2015; Miskolczi et al., 

2009). It also has the advantage of processing to some extent unwashed and unsorted plastics 

and multilayer films that are difficult to recycle mechanically thus both clean and 

contaminated plastics have the potential to be recycled in this fashion (Scheirs, 2006). This 

implies that polymer mixtures as well as highly contaminated plastics such as mulch film could 

be processed to yield products with high rate of returns. However, change in composition of 

feedstock and proportion of contaminants influences product yield and properties (Scheirs, 

2006).   

Pyrolysis of polypropylene plastics is the focus of this study because, Plastics SA has reported 

that plastic tubs, punnets, trays, iced cream and yoghurt containers have increased 

considerably in the South African plastic waste stream. These materials made up of 

polypropylene (PP) happens to be one of the least recycled post-consumer plastics with only 

about 18% recycled as at 2012. This is due to the high level of contamination with other non-

plastic materials such as food and other organics wastes from domestic streams (Plastics SA, 

2015). Also, polypropylene (PP) is the second most manufactured and utilised plastic product 

worldwide behind Polyethylene (PE) (Al-Salem et al., 2010; Wong et al., 2015). Closed-loop 

recycling of plastic materials requires that the feed material is free of contaminants, which in 

real life is often unrealistic (Hopewell et al., 2009; Al-Salem et al., 2010). Therefore, 

valorisation of waste PP plastics into useful fuels via pyrolysis, has been identified as a 

promising alternative. 

1.2 Motivation for the research 

When considering plastics pyrolysis to produce condensable fuel products, several factors 

affect the yield and quality of products generated from the process. These include 

temperature, heating rate, residence time of volatiles and solids, among others. A number of 

works on PP plastics pyrolysis employed only a single condition of heating rate (Heydariaraghi 
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et al., 2016; Yan et al., 2015; Hájeková and Bajus, 2005) with others (Miskolczi et al., 2009; 

Zhou et al., 2004; Takuma et al., 2001) not even reporting the heating rate used. This resulted 

in a wide range of condensable product yields (49 - 83 wt.%) reported for similar heating rate 

conditions. Also, different reactor configurations employed by the various researchers made 

the comparison of these studies challenging. The number of studies investigating the 

influence of heating rate (Encinar & González, 2008; Fakhrhoseini & Dastanian, 2013) are also 

limited. For a clearer picture of the influence of heating rate and potential interactions with 

temperature on conversion mechanisms and yields, there is a need to vary both factors. 

Moreover, condensable products recovered from PP pyrolysis are sometimes reported as wax 

(Aguado et al., 2002; Arabiourrutia et al., 2012), liquid (Lu et al., 2015; Owusu et al., 2018) or 

a mixture of the two  (Yan et al., 2015; Hájeková & Bajus, 2005) and in most cases, these are 

not highlighted. As these properties influence the potential application of the products, it is 

vital to understand the effects of the process conditions on the physical properties of the 

condensed product. 

Additionally, most pyrolysis experiments reported in literature on PP pyrolysis were 

conducted under atmospheric conditions (Al-Salem et al., 2017). However, pyrolysis 

processes can also be conducted under vacuum (below atmospheric) (Miranda et al., 2001). 

Pyrolysis under vacuum conditions limit secondary cracking reactions since primary products 

generated are quickly extracted from the hot part of the reactor by the vacuum suction. This 

process in effect increases the yield of condensable products (oil/wax) and minimises the 

production of permanent gases. Unlike biomass, pyrolysis of plastics under vacuum 

conditions received very little attention. From literature, only Miranda et al., (2001) was 

found to report the vacuum pyrolysis of PP. Their investigation was however conducted at 

only a single condition of temperature. The effects of how the variation of temperature and 

heating rate affect the product yield distribution and quality of condensable products under 

vacuum pyrolysis of PP has been identified as gap. 

Also, the scale-up of bench-scale processes to pilot scale on the pyrolysis PP and other plastics 

is hardly covered in literature. Most scale-ups covered were rather from milligram scale (TGA) 

to bench scale (Bradfield, 2014; Chomba, 2018). Scale-up to pilot is important because, when 

laboratory scale pyrolysis experiments look promising and there is the tendency for 

commercialisation, scaling up helps to further investigate its viability for commercialisation 

Stellenbosch University  https://scholar.sun.ac.za



5 
 

and also ascertain the validity of bench-scale experiments (Arena & Mastellone, 2006). This 

will therefore contribute significantly to efforts being made towards the sustainable 

commercialisation of plastics pyrolysis into fuels since pilot plants bridge the gap between 

laboratory and industrial scale processes. 

This study therefore seeks to investigate the pyrolysis conversion of PP into liquid fuels, with 

attention given to the effects of key operating parameters, including temperature and heating 

rate on the yield and quality of obtained fuel oils. Also, to be examined are the effects of 

vacuum pyrolysis at bench scale on oil yield and quality and how they compare with PP 

pyrolysis under atmospheric conditions also at bench. Lastly, the design, installation and 

commissioning of a 5 kg/h pyrolysis pilot plant will also be conducted as part of the study. 

Bench scale atmospheric tests will then be scaled up to the installed pilot plant. 

  

1.3 Research Aims and Objectives 

1.3.1 Aim 

The aim of the research was to investigate the effects of key parameters that include 

temperature and heating rate on the pyrolysis of waste polypropylene (PP) plastics into liquid 

fuels, at both bench and pilot scale on a pilot plant that will be built as part of the study. 

1.3.2 Objectives 

To realise this aim, the following objectives need to be performed: 

1. To design, install and commission a 5 kg/h pyrolysis pilot plant that converts plastics 

and non-plastic materials into pyrolysis products. 

2. To investigate the effects of temperature and heating rate on yield and quality of PP 

derived oils under vacuum and atmospheric pyrolysis conditions at bench scale. 

3. To scale up atmospheric bench scale processes to the commissioned pilot plant. 

4. To characterise oils recovered from the pilot for Physico-chemical properties that 

include density, viscosity, pour point, cetane index and compare with commercial 

diesel and gasoline fuels. 
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1.4 Research Questions 

To successfully optimise the conversion of waste polypropylene (PP) plastics into liquid fuels 

via atmospheric and vacuum pyrolysis at bench and pilot scale, on a pilot plant that will be 

installed and commissioned, certain key questions need to be addressed. These include; 

1. How will factors such as temperature and heating rate affect the yields of condensable 

products (oil and wax) from PP pyrolysis at bench scale? 

2. How does temperature and heating rate affect the quality of condensable products 

recovered from the bench scale atmospheric and vacuum pyrolysis of PP? 

3. How will the investigations for condensable products yield and quality at bench scale 

under atmospheric conditions compare with those for vacuum? 

4. Will the pilot plant that will be used for scale-up study be successfully designed and 

commissioned? 

5. How will factors such as temperature and heating rate affect condensable products 

yield and quality from the pyrolysis of PP at pilot scale? 

6. How will the investigations carried out at pilot scale compare to those for 

atmospheric conditions at bench? 

7. How will condensable products recovered from pilot pyrolysis of PP compare with 

commercial diesel and gasoline fuels? 

1.5 Thesis Overview 

This thesis is organized into five major chapters. Chapter 1 highlights the background, 

motivation, aims and objectives of the research. Chapter 2 provides a literature review on the 

flow of plastic wastes in South Africa, types of pyrolysis, a review on PP pyrolysis, 

characteristics of commercial fuels and also a review on pilot plant components that was used 

in designing the pilot plant. All experimental research methods used in this study were 

explained in Chapter 3. Moreover, results obtained from experimental work were discussed 

in Chapter 4. Lastly, key conclusions made from the study were presented in Chapter 5. Also 

presented in that chapter were recommendations for future work. 
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Literature review 

2.1 Introduction 

This chapter considers the various types of plastic waste management, their advantages and 

disadvantages. Also, the most interesting waste management route was highlighted. The 

chapter also covers the physical and chemical properties of polypropylene (PP) and why PP is 

the focus of this research work. Also considered in this chapter is the comparison of the 

chemical and physicochemical properties of commercial liquid fuels to oils derived from PP 

pyrolysis. In addition, major factors affecting plastics pyrolysis as well as the types of pyrolysis 

were highlighted. Finally, overview of the various components associated with typical pilot 

and commercial scale pyrolysis plants as well as some brief descriptions of some existing pilot 

pyrolysis plants were also mentioned.   

2.2  Flow of Polypropylene in South Africa 

Table 2.1. Plastics waste distribution in South Africa as at 2012 reported by Plastics SA 

Plastic 
type 

Amount 
manufactured 
(tonnes) 

Amount 
recycled 
(tonnes) 

Amount 
landfilled 
(tonnes) 

percentage 
recovered 
(%) 

percentage 
landfilled 
(%) 

PE-LD/LLD 345000 98971 246029 28.69 71.31 

PE-HD 200000 45950 154050 22.98 77.03 

PP 260000 47080 212920 18.11 81.89 

PET 160000 54424 105576 34.02 65.99 

PS 63000 3394 59606 5.39 94.61 

PVC 159000 16812 142188 10.57 89.43 

OTHER 183000 6060 176940 3.31 96.69 

Total 1370000 272691 1097309 
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PP has been identified as one of the least primary recycled plastic wastes in South Africa by 

Plastics SA, (2013). As of 2012, out of about 260,000 tonnes of PP manufactured, only about 

18% were recycled in a closed-loop (primary) fashion (Chomba, 2018; Plastics SA, 2013). This 

means that close to 82% of waste PP plastics end up at landfill sites. It was assumed that 

incinerated plastic tonnages were negligible since very little information is available on the 

amount of incinerated plastics in South Africa. Based on the HHV of PP (45 MJ/kg), the 

estimated amount of PP ending up at landfills could generate about 10 Terajoules of energy 

equivalent to 1,250 barrels of liquid fuel. More detailed flow of PP and other plastics in South 

Africa have been presented in Table 2.1.  

2.3 Plastic Waste Management  

Usage and discarding of plastic materials recently nonetheless has given rise to serious 

environmental concerns since they are not easily biodegradable (Marcilla et al., 2003; Lin et 

al., 2010; Papuga et al., 2016). Also, a large percentage of plastics produced per annum are 

used in the manufacture of mainly disposable packaging materials and/or other transitory 

products which are rejected within about 12 months of their production (see Appendix A) 

(Hopewell et al., 2009). Due to the durability of the constituents of plastic materials, a huge 

amount of disposed plastic materials are accumulating in landfills and eventually in the ocean 

(Panda et al., 2010; Hopewell et al., 2009). Plastics SA reported that, primary recycling (a 

commonly used recycling technique) of plastics more specifically PP, is problematic since 

plastic wastes are mostly contaminated with other non-plastic wastes which makes recycling 

challenging. Pyrolysis, a tertiary recycling technique, tends to be a promising route for 

recycling plastic materials which are not compatible with primary recycling (Siddiqui & 

Redhwi, 2009; Rashid & Sarker, 2013). Plastic pyrolysis, yields products composed of mainly 

hydrocarbon mixtures which can be used as alternate heating/energy sources or as 

petrochemical feedstock (Low et al., 2001; Wang et al., 2015). Pyrolysis has the following 

advantages over conventional primary recycling techniques (Low et al., 2001; Miranda, et al., 

2001; Scheirs, 2006; Almeida & Marques, 2016); 

i. Its ability to recycle waste commingled plastics which are difficult to be recycled 

mechanically. 

ii. It can handle to some extent the recycling of unwashed and dirty plastics such as 

agricultural plastic wastes. 
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iii. It allows to a degree, the recycling of plastic laminates, coextrusions as well as 

multilayer packaging films especially aluminium foil layers which are not easily 

recycled via the conventional mechanical recycling methods.  

2.4  Pyrolysis and factors influencing plastics pyrolysis 

Products obtained from the pyrolysis of plastics are mainly composed of volatiles with 

relatively little amount of char (Walendziewski, 2006; Xingzhong, 2006). The volatile 

composition is made up of a condensable fraction and a non-condensable gaseous stream 

(Scheirs, 2006; Williams, 2006). The condensable fraction can be either in the form of oil or 

wax depending on the reaction conditions and type of plastic material (Hajekova & Bajus, 

2005; Scheirs, 2006; Williams, 2006; Gao, 2010). The relative proportion of each product 

(char, oil and gases) depends on the chemical composition of polymer fed, as well as operating 

conditions of the pyrolysis process (Buekens, 2006; Jung & Fontana, 2006; Thorat et al., 2013). 

The mechanism of the degradation of a solid fuel via pyrolysis is shown in Figure 2.1. The solid 

residue at the end of the conversion is referred as char. As observed from the figure, applying 

heat in an inert environment to a solid fuel (plastic in this case) sparks the devolatilization of 

the fuel accompanied with the release of volatiles. Solid residue that remain at the end of the 

reaction is referred to as the char (negligible amounts are usually obtained from plastics 

pyrolysis). 

 

Figure 2.1. Mechanism of Pyrolysis of a solid fuel (Redrawn from Zajec, 2009) 

 

Stellenbosch University  https://scholar.sun.ac.za



10 
 

Several factors affect the product stream of all plastics pyrolysis. These include but not limited 

to; chemical composition of plastic material, pyrolysis temperature, heating rate, solid and 

vapour residence time (also affected by whether vacuum is applied to the system or not) and 

operating pressure (Buekens, 2006; Sharrudin et al., 2016; Williams, 2006). These are 

discussed below. Detailed effects of temperature and heating rate on PP pyrolysis are 

however discussed in section 2.6.2. 

2.4.1 Chemical composition of plastic material 

Primary products of pyrolysis are directly related to the chemical structure of the feed 

polymer. Functional side groups present in polymers as well as the branched structures have 

substantial effects on the pyrolysis product distribution (Gao, 2010; Scheirs, 2006). Example, 

the pyrolysis of polystyrene (PS) and condensation polymers such as PET and polyamides, 

results in the formation of mainly derived compounds of their respective monomer units 

(styrene for PS and benzoic acid for PET) due to the aromatic ring stability (Karaduman et al., 

2001; Scheirs, 2006; Gao, 2010). Also, condensable products generated from PP contains 

mainly hydrocarbons that are similar to the molecular skeleton of PP (Scheirs, 2006). 

Practically, waste plastics are contaminated with other materials which may also alter the 

products obtained from their pyrolysis (Ciliz et al., 2004; Gao, 2010; Adrados et al., 2012). 

2.4.2 Temperature and Heating rate 

Temperature is the most significant operating parameter in pyrolysis as it dictates the 

feedstock stability, thermal decomposition rate, as well as reaction products (Buekens, 2006; 

Scheirs, 2006; Lu et al., 2015; Sharuddin et al., 2016). Conversion temperatures varies with 

different types of plastics and desired product compositions. Generally, at temperatures 

above 500 ˚C, products are mainly composed of mixed fuel gases such as methane and other 

light hydrocarbons. Thus, increase in temperature increases the yield of gaseous products and 

light hydrocarbons (C1-C6) and decreases the yield of heavy hydrocarbons (C21-C30) 

(Xingzhong, 2006; Almeida & Marques, 2016). Also, high pyrolysis temperatures of plastics 

favour the production of stable aromatic compounds (Predel & Kaminsky, 2000; Jung et al., 

2010; Obeid et al., 2014; Miandad et al., 2016a). High temperature means high reactivity and 

recombination until a stable compound is produced. These trends are evident in the work 

conducted by Jung et al., (2010) when they pyrolysed PP within the temperature range, 668-

746 ˚C in a fluidised bed reactor. They observed a drastic decrease in oil yield from about 43 
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wt.% to 30 wt.% and a corresponding increase in the yield of permanent gases from about 50 

wt.% to 66 wt.% when temperature advanced from 668 to 746 ᵒC. Also, aromatic fractions in 

the oils recovered increased sharply from about 22 wt.% to 97 wt.% for the same temperature 

range. They also experienced equivalent trends when PE was pyrolysed under the same set 

of conditions. Similar conclusion was also drawn by Demirbas, (2004) when he pyrolysed a 

mixture of PE, PP and PS in a stainless steel batch reactor. For all plastic materials, 

temperature range for optimising the production of liquid products was reported to be in the 

range 300 - 500 ᵒC whereas temperatures above 500 ˚C favoured the production of 

permanent gases (Buekens, 2006; Xingzhong, 2006; Sharuddin, 2016). 

2.4.3 Heating rate 

Heating rate is also another thermodynamic variable that influences pyrolysis. It is defined in 

this context of study as the increase in sample temperature per unit of time. Generally, high 

heating rates augment bond cleavage which facilitates the production of light molecular 

weight products (Buekens, 2006). In continuous pyrolysis processes, heating rate can be high 

up to 10,000 ˚C/min (Gao, 2010; Jung & Fontana, 2006). In slow pyrolysis systems, sample is 

heated from ambient temperature to the final pyrolysis temperature at a fixed heating rate 

usually controlled by a programmable temperature controller (Williams & Williams, 1999a; 

Gao, 2010). Heating rate for such processes is relatively low and ranges between 10 – 100 

˚C/min (Miranda et al., 2001; Jung & Fontana, 2006; Williams & Williams, 1997b). 

2.4.4  Residence Time 

Residence time can be found in literature, to describe either vapour residence time or solid 

residence time in the hot part of the reactor. Solid residence time is defined as the amount of 

time that solid particles spend in the reactor until they are removed (Gao, 2010; Sharuddin et 

al., 2016). Vapour residence time is the time spent by vapour products from the time they are 

produced till the time they exit the reactor. Longer vapour residence time, especially at higher 

pyrolysis temperatures above 500 ˚C, favours the cracking of primary products into much 

more thermally stable light molecular mass hydrocarbons, non-condensable gases and 

aromatics (Gao, 2010; Arena & Mastellone, 2006; Buekens, 2006; Encinar & González, 2008; 

Sharuddin et al., 2016; Al-Salem et al., 2017). 
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2.4.5 Pressure 

Most pyrolysis experiments reported in literature were conducted under atmospheric 

conditions (Al-Salem et al., 2017). Pyrolysis processes can however be conducted under 

vacuum (below atmospheric pressure), atmospheric or above atmospheric pressure 

conditions (Pinto et al., 1999; Bilgesü et al., 2006; Williams & Slaney, 2007). Low pressure 

pyrolysis takes place under vacuum (below atmospheric pressure). Vacuum pyrolysis favours 

the production of primary products because primary products are quickly removed from the 

reactor once they are formed, preventing secondary reactions (Miranda et al., 2001a; 

Karaduman et al., 2003; Li et al., 2004). 

2.5 Types of Pyrolysis 

Based on the residence time and heating rate in the course of a pyrolysis process, pyrolysis 

may be categorised as slow, intermediate, fast and vacuum (Gao, 2010). The difference 

between these processes can be ambiguous and technologies must be defined based on the 

operating conditions. General definitions of these processes are highlighted below. 

2.5.1 Slow Pyrolysis 

Slow pyrolysis is characterised by relatively low heating rates, which can be up to but normally 

below 100 ̊ C/min (Mašek et al., 2016; Williams, 2006; Gao, 2010). In slow pyrolysis processes, 

feedstock materials are heated progressively from ambient temperature to the desired final 

temperature (Williams & Williams, 1999; Gao, 2010). Slow pyrolysis usually occurs at 

temperatures up to 600˚C (Williams, 2006) with relatively a longer vapour residence time of 

few minutes. 

2.5.2 Fast Pyrolysis 

It usually occurs at temperatures between 500 - 950 ˚C with rapid heating rate, up to 10,000 

˚C/min (about 167 ˚C/s) (Zajec, 2009; Gao, 2010). It also operates under a very short hot 

volatile residence time, usually less than 1 second with rapid quenching or cooling which leads 

to the formation of mainly condensable products (Williams, 2006). To sustain the high heating 

rates in fast pyrolysis, the feedstock needs to be reduced to very small particle sizes normally 

lower than a few millimetres (Mašek et al., 2016). Keeping the vapour residence time below 

a few seconds is a key feature of fast pyrolysis, aided by the rapid cooling hence preventing 

secondary vapour phase decomposition reactions (Jung & Fontana, 2006).  
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2.5.3 Intermediate Pyrolysis 

Intermediate pyrolysis fits between slow and fast pyrolysis. It therefore has a product yield 

distribution between those typical for fast and slow pyrolysis (Mašek et al., 2016). 

Intermediate pyrolysis can combine some of the advantages of fast (high yield of liquid 

products) and slow pyrolysis (ability to use larger particles of feedstock) (Mašek et al., 2016). 

It happens to be the most recent development in pyrolysis and a number of different 

technologies have been implemented (Hornung and Seifert, 2006; Henrich et al., 2007; Mašek 

et al., 2016).  

2.5.4 Vacuum Pyrolysis 

Vacuum pyrolysis is a comparatively new technique of pyrolysis suitable for biomass, waste 

plastics, waste tyres and sewage sludge conversion (Rabe, 2005; Lopez et al., 2010). In 

vacuum pyrolysis, feedstock is thermally disintegrated below atmospheric pressure as low as 

2 kPa, absolute (Miranda et al., 2001). The vacuum suction quickly removes vapour products 

from the reaction chamber reducing the vapour residence time in the process and also 

minimising secondary reactions (Rabe, 2005; Encinar & González, 2008). This is believed to 

limit the formation of carbon residue and promotes oil yield. 

2.6 Review on PP pyrolysis 

 

Figure 2.2.  Formation of polypropylene polymer from propylene monomer (Adapted from; 
Polymer Science Learning Centre, 2016) 

 

Polypropylene (PP) is generated by the polymerization of propylene monomers into lengthy 

chain polymer molecules. Several routes exist towards the polymerization of propylene 

monomers into PP. However, majority of commercially used PP are manufactured with 
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catalysts which gives them their semi crystalline characteristic (Kissel et al., 1999; Zorriqueta, 

2006). Formation of PP from its monomers is illustrated in Figure 2.2.  

2.6.1 Physical Properties of Polypropylene (PP) 

Polypropylene is one of the lightest thermoplastic materials with a density ranging between 

0.85 - 1.3 g/cm3 (Lin & Yen, 2005; Kaminsky & Zorriqueta, 2007; Gao, 2010; Arabiourrutia et 

al., 2012; Lu et al., 2015; Wang et al., 2015) and melting point ranging between 150 - 170 ˚C 

(Beyler & Hirschler, 2001; Kaminsky & Zorriqueta, 2007; Achilias et al., 2008; Gao, 2010; Lu et 

al., 2015; Wang et al., 2015; Das & Tiwari, 2018). Higher Heating Value of PP has also been 

reported to be around 45 MJ/kg (Sorum et al., 2001; Arabiourrutia et al., 2012). The different 

values of the physical properties reported in literature could be attributed to the different 

types of PP that might have been used and also the degree of additives or contamination (Lin 

& Yen, 2005; Yan et al., 2015). Polypropylene has become a significant component of mixed 

plastic waste stream in recent years due to the exponential increase in the quantity of 

municipal solid waste (MSW) and with pyrolysis identified as a promising option to managing 

waste plastic mixtures, the pyrolysis of PP into useful fuel oil is considered in this study.  

2.6.2 Pyrolysis of Polypropylene (PP) 

 Thermogravimetric degradation of PP 

Table 2.2. Thermal decomposition of PP in TGA experiments 

Heating 

Rate 

(˚C/min) 

Degradation 

temperature 

Range (˚C) 

Maximum 

decomposition 

temperature (˚C) 

Carrier gas References 

5 337 - 450 434 Argon 
(Chan & 

Balke, 1997) 

5 300 - 500 440 Nitrogen 
(Jung et al., 

2010) 

5 340 - 481 456 Argon 
(Gersten et 

al., 2000) 
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Heating 

Rate 

(˚C/min) 

Degradation 

temperature 

Range (˚C) 

Maximum 

decomposition 

temperature (˚C) 

Carrier gas References 

10 354 - 489 469 Argon 
(Gersten et 

al., 2000) 

10 350 - 500 440 Vacuum 
(Miranda et 

al., 2001b) 

10 400 - 450 500 Nitrogen 
(Jung et al., 

2010) 

10 400 - 500 455 Nitrogen 
(Lee & Shin, 

2007) 

10* 407 - 458 427 Nitrogen 
(Ciliz et al., 

2004) 

10** 423 - 472 458 Nitrogen 
(Ciliz et al., 

2004) 

15 371 - 394 477 Argon 
(Gersten et 

al., 2000) 

20 387- 497 472 Argon 
(Chan & 

Balke, 1997) 

20 400 - 525 500 Nitrogen 
(Jung et al., 

2010) 

*Waste PP      **Pure PP       

The mechanism of thermal degradation of plastic materials is quite complex (Encinar & 

González, 2008). Thermogravimetric analysis (TGA) is extensively considered as a very 

important technique in studying the decomposition processes of solid materials. It can be 

defined as the measurement of the weight change of a material with the increase of time and 

temperature. A lot of TGA experiments have been performed on PP under various conditions 

to assess its thermal behaviour.  
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Table 2.2 shows some thermal degradation behaviour of PP at various conditions. From the 

table, it was observed that generally, degradation of PP can begin at temperatures as low as 

300 ˚C and end at about 525 ˚C. Temperature at which maximum decomposition occurs, also 

ranged from about 430 - 500 ˚C. It was also detected that, high heating rates increased the 

maximum degradation temperature, as can been seen with the experiments performed by 

Gersten et al., (1997) and Jung et al., (2010). An indication that higher heating rates enhances 

faster degradation of PP. Single peak temperatures recorded for all data generated signifies 

that PP degradation is a single-step process. Ciliz et al., (2004), also studied the thermal 

behaviour of waste and pure PP. They observed that thermogravimetric onset temperature 

for waste PP was lower than for uncontaminated/pure which could be as a result of impurities 

interfering with the thermal degradation of PP.  

The varying temperature degradation behaviour observed by the various studies was 

corroborated to the different grades of PP utilised. For instance, Jung et al., (2010) used waste 

PP for their studies whereas Gersten et al., (1997) and Ciliz et al., (2004) used different grades 

of virgin PP (E-50-E and MH418 respectively) with obviously varying proportions of additives. 

 

 

Figure 2.3. TGA curves for PP degradation at heating rates of 5, 10 and 20 °C/min (Reproduced 
from Jung et al., 2010 with permission from Elsevier) 
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Typical TGA and DTG curves of PP as obtained by Jung et al., (2010) were represented in Figure 

2.3 and Figure 2.4. Tests were conducted at three different heating rates (5, 10 and 20 °C/min) 

and a final temperature of 800 °C. As highlighted earlier, it was observed from both figures 

that degradation of PP at all heating rates started at around 400 °C and was virtually complete 

at 500 °C. It was also noticed that degradation experiments conducted at higher heating rates 

resulted in slightly higher maximum degradation temperatures (as clearly observed in DTG 

curves) which is an indication of enhanced thermal degradation of PP at higher heating rates. 

 

Figure 2.4. DTG curves for PP degradation at heating rates of 5, 10 and 20 °C/min (Reproduced 
from Jung et al., 2010 with permission from Elsevier) 

 

 Effects of temperature and heating rate on PP pyrolysis products 

Pyrolysis of PP plastics is usually aimed at yielding maximum oil fraction, which preferably 

should exhibit properties of conventional liquid fuels. The major influencing factors identified 

from literature are temperature, heating rate and pressure (atmospheric and vacuum). A 

review on the effects of temperature, heating rate and other key process parameters on 

product distribution for PP pyrolysis in various process systems have been presented in Table 

2.3 and Table 2.4 respectively with focus on condensable fractions (oil and wax). Also, a 

statitical model was fitted on data gathered from literature to ascertain the effects of 
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temperature and heating rate on the distribution of condensable products (oil/wax). This 

followed similar analysis performed on literature data by Neves et al., (2011). 

 

Temperature 

 

Figure 2.5. Empirical model depicting the effects of temperature on condensable product (oil/wax) 
yield for slow pyrolysis of PP – Data points from; [Williams & Williams, (1997b), Hájeková & Bajus, 
(2005), Takuma et al., (2001), Yan et al., (2015), Zhou et al., (2004), Ciliz et al., (2004),  Miandad 
et al., (2016), Uçar, et al., (2016), Heydariaraghi et al., (2016), Kodera et al., (2006), Miskolczi et 
al., (2009), Ahmad et al., (2015), Lu et al., (2015), Kaminsky & Zorriqueta, (2007) and Demirbas, 
(2004)] 

 

From the literature data presented in Table 2.3, an emprical model was generated to predict 

the effects of temperature on condensable products (oil/wax) yield from the slow pyrolysis 

of PP in batch reactors. The model, represented in Figure 2.5 was generated according to 

results gatherthered from the following authors; Williams & Williams, (1997b), Hájeková & 

Bajus, (2005), Takuma et al., (2001), Yan et al., (2015), Zhou et al., (2004), Ciliz et al., (2004),  

Miandad et al., (2016), Uçar, et al., (2016), Heydariaraghi et al., (2016), Kodera et al., (2006), 

Miskolczi et al., (2009), Ahmad et al., (2015), Lu et al., (2015), Kaminsky & Zorriqueta, (2007) 

and Demirbas, (2004). From the figure, it was observed that correlation between temperature 
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and yields of condensable products was weak and did not follow any specific trend. This was 

blamed on the different reactor configrations and process systems used by the various 

authors. It was however observed that minimum condensable products yield of about 58 - 60 

wt.% was obtained in the temperature region of 250 - 300 ˚C. Peak yields then spanned 

between 88 - 95 wt.%, obtained in the temperature range of 450 - 500 ˚C. Temperatures 

beyond 500 ˚C saw a general decrease in yields. From the trends, maximum condensable 

products yield temperature was deduced to be in the region of around 400 - 500 ˚C. It was 

also inferred that temperatures beyond 500 ˚C promoted secondary cracking reactions which 

lead to the decrease in yields of condensable products.  

 

Figure 2.6. Empirical model depicting the effects of temperature on condensable product (oil/wax) 
yield for fast pyrolysis of PP – Data retrieved from; [Jung et al., (2010), Predel & Kaminsky, (2000) 
Aguado et al., (2002) and Arabiourrutia et al., (2012)] 

 

Another model was generated to establish the effects of temperature on condensable 

products (oil/wax) yield for fast pyrolysis of PP (in fluidised bed reactors). The data for this 

model were retreived from Jung et al., (2010), Predel & Kaminsky, (2000) Aguado et al., (2002) 

and Arabiourrutia et al., (2012) all in Table 2.4 and presented in Figure 2.6. From the figure, 

it was observed that condensable products yield decreased sharply from about 95 to 25 wt.% 

as temperature progressed from around 450 to 750 ˚C. This observation showed that at 

comparatively higher temperatures and faster heating rates, rigorous secondary cracking 
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reactions occur. The cracking reactions then favour the production of permanent gases and 

suppresses condensable products yield. The correlation between temperature and oil yield in 

this instance was very strong as a trend could be observed. The strong correlation is attributed 

to majority of the data coming from same reactor. 

In conclusion, it was observed that condensable products yield for batch pyrolysis of PP under 

atmospheric pressure conditions generally rose as temperature increased to a point in the 

region of 450 - 500 ˚C, after which a further increase of temperature initiates secondary 

reactions which results in the decrease of condensable products yield and production of more 

permanent gases. It was also deduced that higher pyrolysis temperatures (above 500 ˚C) at 

faster heating rates (above 100 ˚C) enhances secondary cracking reactions which supresses 

the production of condensable products. 

 

Heating rate 

Information on heating rate of PP pyrolysis in literature is quite ambiguous. For instance, 

under batch scale pyrolysis, most of the information on heating rate available were reported 

in different reactor configurations which made comparison difficult. It was also observed that 

almost all of these tests were performed under slow heating rates ranging between 5 - 25 

˚C/min. Moreover, those who varied the heating rate in batch reactors investigated narrow 

ranges of heating rates which resulted in insignificant trends. Most fast heating rates reported 

were carried out in fluidised bed reactors which is covered in the previous section under 

temperature. Therefore, to establish a trend on the effects of heating rate on condensable 

products yield for batch reactors, all the heating rates reported were collected and fitted to 

a model. These data points were retrieved from results reported by; Hájeková & Bajus, (2005), 

Yan et al., (2015), Ciliz et al., (2004), Miandad et al., (2016), Uçar, et al., (2016), Heydariaraghi 

et al., (2016), (Fakhrhoseini & Dastanian, 2013), Encinar & González, (2008), Demirbas, (2004) 

and Miranda et al., (2001) all available in Table 2.3. From the model represented in Figure 2.7, 

it was observed that as heating rate progressed from 5 to 25 ˚C, yield of condensable products 

remained virtually constant and did not vary significantly which was corroborated to the 

rather narrow range of heating rate gathered. However, Lu et al., (2015) who performed their 

tests in a pre-heated batch reactor however observed a drastic decrease in oil yield from 
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about 63 to 33 wt.% with the rise of temperature (heating rate in effect). They however did 

not report the value of the heating rate used.  

It was therefore concluded that, narrow ranges of slow heating rate for batch scale pyrolysis 

of PP had no significant effect on condensable products yield. However, pre-heated batch 

scale reactors promoted the rapid degradation of PP with this becoming more pronouced at 

higher temperatures. Similar observations were also made for fluidised bed reactors which 

substantiates the fact that for pre-heated reactor systems, increase of temperature also 

means increase in heating rate. Since the effects of wider range of heating rate for batch scale 

pyrolysis of PP is not entirely addressed in literature, it is worth investigating. 

 

 

Figure 2.7. Empirical model depicting the effects of heating rate on condensable product 

(oil/wax) yield for batch scale pyrolysis of PP – Data retrieved from [Hájeková & Bajus, (2005) 

Yan et al., (2015), (Ciliz et al., 2004), Miandad et al., (2016), Uçar, et al., (2016), Heydariaraghi et 

al., (2016), (Fakhrhoseini & Dastanian, 2013), Encinar & González, (2008) Demirbas, (2004) and 

(Miranda et al., 2001)] 

 

 Vacuum pyrolysis of PP 

As mentioned in section 1.2, plastics pyrolysis under vacuum received very little attention as 

compared to biomass, with virtually nothing reported on how the variation of temperature 
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and heating rate affects products yield and quality from PP pyrolysis under vacuum 

conditions. Following literature survey, only Miranda et al., (2001) was found to investigate 

PP pyrolysis under vacuum. Their test was however conducted at only a single condition of 

temperature and heating rate. Parameters surronding their tests are presented in Table 2.3. 

From the data, they pyrolysed PP at 500 ˚C temperature and a heating rate of 10 ˚C/min in a 

batch reactor under a vacuum pressure of 2 kPa, absolute. Following this, they obtained a 

combined condensable fraction yield of 95 wt.% of which 70 wt.% was recovered as wax and 

the remaining 20 wt.% as free-flowing oil. A permanent gas yield of about 3.5 wt.% was 

recovered with the remaining fraction being char. Comparing the results they obtained to 

similar conditions under atmospheric pyrolysis as observed with Uçar et al., (2016) and 

Fakhrhoseini & Dastanian (2013), it was noticed that vacuum conditions generated higher 

yields of condensable products (oil/wax) with additional yield of up to about 15% observed. 

This was attributed to the short vapour residence time as a result of quick extraction of 

volatiles from the hot reactor zone by the vacuum pump, which minimised secondary cracking 

reactions known to favour the production of permanent gases over condensable products.  

Following the interesting trend observed for vacuum and the fact that investigation of how 

process parameters affect products yield and quality for PP pyrolysis is hardly covered in 

literature, it warrants attention. 
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Table 2.3. Summary on the effects of temperature, heating rate and other key parameters on product distribution in the thermal pyrolysis of PP (batch 
reactors) 

      Yields (wt.%) 

References Reactor type Temperature 
(ᵒC) 

Heating Rate 
(ᵒC/min) 

Vapour 
residence time 

(s) 

Pressure  Gas Oil Wax Residue 

Williams & 
Williams, (1997b) 

Fixed bed, batch 700 N/A 25 Atm. 13.6 84.4 N/A 0.15 

Hájeková & Bajus, 
(2005) 

Stainless steel 
batch 

450 15 N/A 11 87.8 (oil 
+ wax) 

N/A 1.2 

Takuma et al., 
(2001) 

Fixed bed, 
tubular flow 

525 N/A N/A 10.5 29.5 60 0.1 

(Yan et al., 2015) Fixed bed, batch 460 15 16 13.7 84.8 (oil 
+ wax) 

N/A 1.5 

Zhou, et al., (2004) Fixed bed, batch 430 N/A 13 9.3 87.2 N/A 3.5 

Ciliz et al., (2004) Fixed bed, batch 600 5 N/A 11 76 N/A 13 

Miandad et al., 
(2016) 

Fixed bed, batch 450 10 N/A 54.5 42 0 3.5 

Uçar et al., (2016) Fixed bed, batch 500 5 N/A 13 56 30 1 

Heydariaraghi et al., 
(2016) 

Stirred reactor, 
batch 

450 8 N/A 11 88 N/A 1 

Kodera et al., (2006) Screw kiln, 
continuous 

500 N/A N/A 6.1 46.5 N/A 2 

600 N/A N/A 22.5 35.5 N/A 3 

700 N/A N/A 78 22 N/A 1 

Miskolczi et al., 
(2009) 

Horizontal tube, 
continuous  

520 N/A N/A 5 95 (oil + 
wax) 

N/A N/A 

(Fakhrhoseini & 
Dastanian, 2013) 

Batch 500 6 N/A 17.76 82.12 N/A 0.12 

8 18.68 81.32 0.09 

10 19.28 80.65 0.07 

12 20.55 79.41 0.04 

14 21.74 78.26 0.00 

Encinar & González, 
(2008) 

Cylindrical 
Stainless-steel 

800 5 N/A 16.55 83.34 (oil 
+ wax) 

N/A 0.11 

10 17.2  82.67 
(oil + 
wax) 

0.13 

15 17.88 82.02 (oil 
+ wax) 

0.1 

20 31.84 68.06 (oil 
+ wax) 

0.1 

Ahmad et al., 
(2015) 

Batch 250 N/A N/A 29.05 57.27 N/A 13.68 

300 28.04 69.82 1.34 

350 30 67.74 1.56 

400 31.07 63.23 5.7 

Lu et al., (2015) Ceramic batch 300 Pre-heated 
reactor 

N/A 19 63 N/A 18 

320 19 71.4 9.6 

350 52.4 43.6 4 

400 56.1 38.2 5.7 

450  66.7 33.1 0.2 

(Kaminsky & 
Zorriqueta, 2007) 

Batch 500 N/A N/A 20 62 18 1 

 Demirbas, (2004) Batch 740 10 N/A 49.6 48.8 N/A 1.6 

Miranda et al., 
(2001) 

Batch 500 10 N/A Vacuum (2 
kPa, abs.) 

3.5 25 70 0.01 
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N/A – Not reported 

 

 

Table 2.4. Influence of temperature and other key parameters in product distribution of fast PP pyrolysis in Fluidised bed reactors 

      Yields (wt.%) 

References Reactor type Temperature 
(ᵒC) 

Heating 
Rate 

(ᵒC/min) 

Vapour 
residence 
time (s) 

Pressure  Gas Oil Wax Residue 

Jung et al., (2010) Fluidised bed  668 N/A N/A Atm. 54.4 43.1 N/A 2 

703 57 35.9 6.9 

727 61.7 34.7 3.1 

746 65.9 29.6 4 

Predel & 
Kaminsky, (2000) 

Continuous 
fluidised bed 

515 N/A 5.6 6.8 36.7 56.2 0.26 

Aguado et al., 
(2002) 

Conical 
Spouted bed 

450 N/A <1 8 N/A 92 N/A 

500 25 75 

550 33 67 

600 50 50 

Arabiourrutia et 
al., (2012) 

Conical 
Spouted bed 

450 N/A <1 8 N/A 92 N/A 

500 25 75 

600 50 50 

N/A – Not reported 
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2.6.3 Condensable products of PP pyrolysis 

Production of fuels and chemicals via the pyrolysis of polyolefins appears to be a promising 

way of plastics recycling (Wang et al., 2015). The calorific value of polypropylene is around 45 

MJ/kg which is greater than that of fuel oil (41 MJ/kg) and high-quality coal, 29 MJ/kg 

(Miskolczi, et al., 2009). Production of liquid fuels via PP pyrolysis can therefore be seen as 

having a very significant potential.  

Condensable products from PP pyrolysis either come in the form of oil or wax. The oil products 

are chiefly hydrocarbons with carbon number distributions falling in the range, C5-C20 whereas 

waxes are composed with higher amounts of long chain hydrocarbons with carbon number 

distribution greater than C20 (Lopez et al., 2017). The product distribution of these 

condensable fractions however depends on process parameters; reactor design, 

temperature, heating rate, residence time and pressure (vacuum). Oils and waxes obtained 

from PP pyrolysis are essentially made up of aliphatics (paraffins, naphthenes and olefins) and 

aromatics (Pinto et al., 1999; Demirbas, 2004; Miskolczi et al., 2006; Lee & Shin, 2007). Oil 

and waxes are mostly reported in literature as one fraction because liquid hydrocarbons are 

usually dissolved in waxes or the other way around where waxes are dissolved in liquid 

hydrocarbons. This sometimes brings some ambiguity when comparing literature results 

(Lopez et al., 2017). Distribution of aliphatic & aromatic hydrocarbons and boiling points of 

oils obtained from PP pyrolysis have been summarised in Table 2.5 and Table 2.6 respectively. 

Ahmad et al., (2015) characterised the oils generated at optimum oil yield temperature of 300 

˚C of PP pyrolysis. Paraffins, olefins and naphthenic yields observed, were 66, 25 and 7% 

respectively. No aromatic compounds were produced. Also, the oil obtained was enriched in 

diesel range hydrocarbons, forming about 46% of the oil fraction, with gasoline range 

hydrocarbons being 15%. The remaining fractions fell in the wax range. Sakata et al., (1999) 

also analysed the oils generated from the batch pyrolysis of PP at 380 ˚C but did not analyse 

the hydrocarbon types present. They however performed a simulated distillation to group the 

hydrocarbons present into diesel and gasoline. Simulated distillation is a chromatographic 

technique which correlates retention times of hydrocarbons from a GC/MS spectrum with 

boiling points of the same compounds. They concluded that, diesel fractions (56 wt.%) 

dominated the oil products. The remaining 43 wt.% was found to be gasoline range 

compounds. From the simulated distillation conducted, they also concluded that boiling point 
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of oil fell in the range, 36 to 405 ˚C. Demirbas, (2004) studied the composition of products 

obtained from PP pyrolysis at different temperatures. It was observed that with an increase 

in the pyrolysis temperature from 402 to 602 ˚C, naphthenic and aromatic products increased 

from 21.5 to 23.5 wt.% and 1.4 to 10.2 wt.% respectively. The increase in aromatic yield was 

attributed to secondary reactions such as cyclisation and aromatisation of primary products 

(olefins and paraffins). This is evident in the corresponding decrease in paraffinic and olefinic 

yields as temperature increased. Bockhorn et al., (1999), studied the pyrolysis of PP in a 

special type of continuous stirred batch reactor, named the gradient free reactor, at a 

temperature of 460 ˚C and recorded an oil composed of 7.6 wt.% and 92.5 wt.% of paraffins 

and olefins respectively. Furthermore, Pinto et al., (1999), investigated the oil products 

generated from the thermal pyrolysis of PP in an autoclave at 450 ˚C. The liquid products 

comprised of 58 wt.% paraffins, 33 wt.% olefins and 8 wt.% aromatics. Yan et al., (2015) 

neither reported fractions of hydrocarbons present in their oils however, they grouped the 

carbon numbers into diesel and gasoline and reported the fractions to be 36 and 58% 

respectively. Uçar et al., (2016) also reported 50 wt.% paraffins, 45 wt.% olefins and 5 wt.% 

aromatics as the fractions of hydrocarbons present in their oil when they pyrolysed PP at 500 

˚C. Predel & Kaminsky, (2000) reported fractions of paraffins, olefins, naphthenes and 

aromatics in their oil as 12.28, 63.02, 1.95 and 0.06 wt.% respectively when they pyrolysed PP 

at 515 ˚C in a fluidised bed reactor. They further reported the boiling point ranges of the oils 

as 25 to 300 ˚C. Ciliz, et al., (2004) characterised oils recovered from waste PP pyrolysed at 

600 ˚C and reported aliphatics (paraffins, naphthenes and alkenes) present in the oil to be 17 

wt.% with aromatics being 83 wt.%. Miskolczi et al., (2009), pyrolysed PP plastics in a pilot 

scale horizontal tube continuous reactor, at 520 ˚C temperature after which the hydrocarbon 

products obtained where separated via distillation into products, they called gasoline and 

light oils. Paraffin content contained in the light oil was 61.5 wt.%. Olefins detected was 38.1 

wt.% with the remaining 0.4 wt.% being aromatics. The gasoline fraction also contained 59.9, 

39.6 and 0.5 wt.% of paraffins, olefins and aromatics respectively. The concluded that the 

light oils had a boiling point range of 115 to 353 ˚C and gasoline, 23 to 216 ˚C. Finally, Kim & 

Kim, (2004) investigated the effects of heating rate on oil compositions at 500 ˚C in a stirred 

batch autoclave and reported that gasoline range hydrocarbons increased significantly as 

heating rate progressed from 0.5 to 1-2 ˚C/min. Although the heating rate range examined 

was narrow, slight decrease in diesel range compounds was observed for the same trend of 
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heating rate. These trends are evident because increase in heating rate together with 

temperature promotes cracking and hence increases the yields of light molecular weight 

compounds. 

From the trends presented, it is observed that except for results reported by Bockhorn et al., 

(1999) and Predel & Kaminsky, (2000), paraffins and naphthenes (alkanes) mostly dominate 

the oil/wax fractions generated from PP pyrolysis, followed closely by olefins, with aromatics 

being the least. It is also deduced that, very high pyrolysis temperatures of PP, 600 ˚C and 

above promoted the formation of aromatics. Similar conclusions were drawn by Jung et al., 

(2010) and Westerhout et al., 1998) when they examined PP pyrolysis at very high pyrolysis 

temperatures (600 to 800 ˚C). This has been explained as the secondary reactions of paraffins 

and olefins at elevated temperatures, forming aromatics in the process. The dominant olefinic 

fractions reported by Bockhorn et al., (1999) and Predel & Kaminsky, (2000) could be 

corroborated to interaction effects of faster heating rates and fast vapour residence times 

which might have enhanced beta-scission reactions/intramolecular hydrogen transfer and 

the swift removal of the resulting alkenes from the reactor. 

Furthermore, the carbon number distributions and boiling point ranges, presented in Table 

2.6 for almost all the oils reported appear to fall within the ranges defined for both 

commercial diesel (180 - 380 ᵒC) and gasoline (69 - 180 ᵒC) from literature. The ranges 

reported stretch from naphtha to fuel oil which stipulates that oils derived from PP pyrolysis 

might contain compounds belonging to each of these fuels and hence need to be distilled or 

processed further to obtain pure diesel or gasoline. The boiling point ranges presented by 

Miskolczi et al., (2009) is a clear indication that PP derived oils contain both diesel and 

gasoline range compounds, because they obtained two different products similar to diesel 

and gasoline following distillation of the PP oil. The oil they labelled gasoline had its boiling 

point range very similar to commercial gasoline and the oil they named light oil had very 

comparable characteristics in terms of boiling point to commercial diesel. 
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Table 2.5. Distribution of hydrocarbon types obtained from PP pyrolysis oil 

References Reactor type Temperature 
(ᵒC) 

Heating rate 
(ᵒC/min) 

Vapour 
residence time 

(s) 

Pressure  Hydrocarbon fractions (wt.%/% area 
of oil) 

 

Paraffins Naphthenes Olefins Aromatics Others 

Demirbas, (2004) batch 402 10 N/A Atm. 30.40 21.50 44.70 1.40 2 

452 28.20 22.80 42.10 4.50 2.4 

527 24.90 24.40 39.50 2.60 2.6 

602 29.60 23.50 35.50 10.20 1.2 

(Predel & Kaminsky, 
2000) 

Continuous 
fluidized bed 

515 N/A 5.6 12.28 1.95 63.02 0.06 22.70 

(Ahmad et al., 2015)* batch 300 N/A N/A 66.00 7.00 25.00 0.00 2.00 

Pinto et al., (1999) Stirred batch 
autoclave 

450 N/A >20mins 58.00 N/A 33.00 8.00 1.00 

Bockhorn et al., 
(1999) 

Gradient free 
reactor 

460 Pre-heated 
reactor 

N/A 7.60 N/A 92.5 0.00 N/A 

Yan et al., (2015)* batch 460 15 16 N/A N/A N/A N/A N/A 

Heydariaraghi et al., 
(2016) 

Stirred batch 450 5 N/A N/A N/A N/A N/A N/A 

Ciliz, et al., (2004)* Fixed bed batch 600 5 N/A 17 83.0 N/A 

Kodera et al., (2006) Screw kiln, 
continuous 

500 N/A N/A N/A N/A N/A N/A N/A 

Uçar et al., (2016) Fixed bed, batch 500 5 N/A 50.00 N/A 45 5.00 N/A 

Sakata et al., (1999)* batch 380 3 N/A N/A N/A N/A N/A N/A 

Miskolczi et al., 
(2009), light oil * 

Horizontal tube, 
continuous 

520 N/A N/A 61.50 N/A 38.10 0.40 N/A 

Miskolczi et al., 
(2009), gasoline * 

59.90 N/A 39.60 0.50 N/A 

(Kim & Kim, 2004) Stirred batch 
autoclave 

500 0.5 N/A N/A N/A N/A N/A N/A 

1.0 N/A N/A N/A N/A N/A N/A 

2.0 N/A N/A N/A N/A N/A N/A 

N/A – Not reported; * fractions that were reported in %area 

Table 2.6. Carbon number distribution and boiling points of oils recovered from PP pyrolysis 

References Carbon number distribution (wt.%/%area of oil)  

C6-C10 (Gasoline) C11-C23 (Diesel) C23+ (Wax) Boiling point range (ᵒC) 

Ciliz, et al., (2004)* 33.00 48.00 18 N/A 

(Ahmad et al., 2015)* 15.16 46.03 24.97 N/A 

Yan et al., (2015)* 58.00 36.00 N/A N/A 

Pinto et al., (1999) N/A N/A N/A 35 -265 

Heydariaraghi et al., (2016) N/A N/A N/A 50 - 300 

Kodera et al., (2006) N/A N/A N/A 55 - 300 

Predel & Kaminsky, (2000) 65.41 34.59 N/A 25 - 300 

Sakata et al., (1999)* 43.00 56.00 N/A 36 - 405 

Miskolczi et al., (2009), 
light oil * 

N/A 95.50 N/A 115 - 353 

Miskolczi et al., (2009), 
gasoline * 

95.50 5.00 N/A 23 - 216 

Kim & Kim, 
(2004) 

0.5 ᵒC/min 28.00 59.50 N/A N/A 

1.0 ᵒC/min 42.00 54.00 N/A N/A 

2.0 ᵒC/min 42.00 56.50 N/A N/A 

N/A-not reported; *fractions that were reported based on %area
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2.7 Chemical composition and distillation behaviour of 

conventional liquid fuels 

Chemical composition of diesel is not definite because over billions of different chemical 

compounds may be present (Bacha et al., 2007). As a result, it is virtually impossible to 

characterise diesel for individual compounds (Speight, 2015). However, the large number of 

compounds present could be easily categorised into paraffins (alkanes), cycloparaffins 

(cycloalkanes/naphthenes), aromatics and olefins (unsaturated hydrocarbons) (Bacha et al., 

2007; Speight, 2015). A key variable which defines diesel is the boiling point range. Boiling 

point/Distillation range for a mixture of close boiling liquids can be defined as the 

temperature range over which this mixture exists in vapour liquid equilibrium at atmospheric 

pressure. Pure liquids have a single boiling point at a given pressure. For a multicomponent 

liquid mixture, there is no single boiling point to vaporize the complete mixture. Such mixtures 

have boiling points occurring over a range of temperature, which depends on the components 

involved, system pressure as well as affinity among the compounds. For such mixtures, the 

initial boiling point (IBP) at a given pressure is defined as the temperature value when the first 

bubble of vapour is formed from the liquid mixture. It depends on the mixture composition 

and pressure (Meks, 2015). Final boiling point (FBP) is defined as the temperature at which 

the first liquid drop appears in a vaporised mixture (Meks, 2015). 

The boiling point range of diesel could be expressed in terms of its distillation temperature 

range or the corresponding hydrocarbons that get distilled in this temperature range. 

Distillation range is considered an important property for petroleum crude and its resultant 

fuel components, since it determines whether fuels possess suitable volatility (Hsu, 2000). 

Distillation of diesel which defines its boiling point typically falls within but not limited to the 

temperature range 180 - 380 ᵒC. These temperature limits correspond to the boiling point of 

the C10 (Decane) and C23 (Tricosane) hydrocarbons respectively. Similarly, boiling point range 

of gasoline can be defined to be in the range 69 to 180 ºC since the limits of the range 

correspond to C6 (Hexane) and  C10 (Decane) respectively. These ranges are however not 

limited to the figures stated above and may overlap due to the different grades of diesel and 

gasoline fuels available. (Pinto et al., 1999; Miskolczi et al., 2006; Li et al., 2004; Laresgoiti et 

al., 2004; Bacha et al., 2007; Heydariaraghi et al., 2016).  
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2.7.1 Chemical composition of commercial diesel fuels 

Todd et al., (1999), reported the composition of a type of diesel as having mixtures of C10-C19 

hydrocarbons with 64% being paraffinic hydrocarbons (straight chain alkanes and 

cycloalkanes), 1-2% unsaturated hydrocarbons (olefins) and 35% aromatic hydrocarbons. 

Liang et al., (2005), studied the composition of conventional diesel fuel using Gas 

Chromatography/Mass Spectrometer (GC/MS). They concluded that diesel fuel contained 

90% paraffinic hydrocarbons which included n-alkanes, iso-alkanes and cycloalkanes, no 

olefins, with the remaining 10% being aromatic hydrocarbons (alkylbenzenes, polyaromatic 

hydrocarbons and aromatic acids). They also inferred that branched and cyclic alkanes 

contained in the diesel fuel ranged between C10-C25. Pál et al., (1998) analysed the 

hydrocarbon groups in diesel range petroleum fractions and concluded that diesel fuel ranged 

between C11-C23 hydrocarbons with n-alkanes being the prevailing fraction of the 

hydrocarbon groups. Similar range was also defined by Almeida & Marques, (2016), Yan et 

al., (2015) and Syamsiro et al., (2014).  

Table 2.7. Paraffins, Olefins and Aromatic fractions in different grades of diesel fuel (Adapted 
from Sjogren et al., 1995) 

Type of 

hydrocarbon 

Diesel Fuel Grades  

D1 D2 D4 D5 D7 D8 D9 D10 D14 D15 Avg. 

Paraffins  95.9 83.3 75.4 72.4 79.6 80.4 83.3 77.5 n. a n. a 64.8 

Olefins  1.4 2.0 2.2 1.6 0.9 0.2 0.7 1.8 n. a n. a 1.1 

Aromatics  2.7 14.7 22.5 26 19.8 19.4 16.0 20.7 7.7 3.7 15.3 

n. a - not reported; D-diesel grade 

Lastly, Sjörgen et al., (1995) performed principal component analysis using the composition 

of ten different grades of diesel fuel as shown in Table 2.7. It was found that the dominating 

hydrocarbons were paraffins with volume fractions ranging between 72 and 96% (average of 

64.8), followed by aromatic hydrocarbons with volume fractions ranging between 2.5 and 

26% (average being 15.3%). Very little fraction of olefins was present with the maximum 

fraction detected being 2.2% and an average fraction of just about 1.1%. From the trends 

described above, it was evident that paraffins form the majority fraction of diesel fuels 

followed by aromatics with olefins forming the least. In some cases, olefins were completely 

Stellenbosch University  https://scholar.sun.ac.za



31 
 

absent. Again, the varying ranges of the hydrocarbons could be attributed to the different 

grades of diesel available. 

2.7.2 Chemical composition of commercial gasoline fuels 

Demirbas, (2010) highlighted the major chemical compositions in gasoline fuels which are 

presented as follows; total amount of alkanes (that includes straight chain, branched and 

cycloalkanes) amounted to 54.3 wt.%, aromatics had a total fraction of 30.5 wt.% with olefins 

being the least, having fractions of just 1.8 wt.%. 

Squicciarini, (1996) used supercritical fluid chromatography to determine the paraffinic, 

olefinic and aromatic compositions of six different grades of gasoline. These have been 

represented in Table 2.8. From the table, it was observed that aromatic compounds were the 

most dominant fraction of all the gasoline fuels examined, followed closely by paraffins with 

olefinic hydrocarbons being the least. This is evident in the average composition of all the 

compounds examined showing paraffinic, aromatic and olefinic yields of about 40.2, 52.4 and 

7.4% respectively.  

Table 2.8. Paraffinic, Olefinic and Aromatic constituents of different grades of gasoline fuel 
(Modified from Squicciarini, 1996) 

Hydrocarbons 

(%area) 

Gasoline Fuel Grades  

G1 G2 G3 G4 G5 G6 Average 

Paraffins (Alkanes) 32.6 42.9 42.8 48.2 29.7 45.0 40.2 

Olefins 1.6 0.7 0.7 1.2 39.2 0.8 7.4 

Aromatics 65.8 56.4 56.5 50.6 31.0 54.3 52.4 

G- gasoline grade 

Tang et al., (2015) used GC/MS to investigate the fractions of alkanes, aromatics and olefinic 

compounds in five different gasoline fuels collected across five provinces in China. Following 

their analysis, they observed average compositions of 40.6, 38.1 and 12.9% for alkane, 

aromatic and olefinic compounds. 

It is noticed from the trends that, alkanes and aromatics mostly dominate gasoline fuels. 

However, the most dominant depends on the type of gasoline fuel. As observed for diesel 

fuels, olefins in gasoline fuels were also seen to be low. Also, composition of aromatic 
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compounds in gasoline fuels were seen to be significantly higher than aromatic compounds 

present in diesel. 

2.7.3 Fuel properties of commercial liquid fuels 

Based on the mode of application, diesel fuels are usually classified into three main types. 

These include, land diesel fuels, used in trucks, buses, trains or other land transportation 

vehicles; marine diesel, used in ships; and plant diesel fuels, used in electric power generation 

plants, boilers and combustors (Hsu, 2000). The quality of diesel fuels used therefore depends 

on the performance requirements of the system/engine since land transportation vehicles, 

ships and power plants have variations in speed and load (Hsu, 2000). Also, commercial fuels 

and heavy fuel oils, used in compression combustion engines and boilers/combustors 

respectively, are required to meet certain specifications to ensure acceptable performance 

(Syamsiro et al., 2014; Ahmad et al., 2015). Standard fuel specifications have been established 

by Institute of Petroleum (IP) and American Society for Testing and Materials (ASTM) 

(Sharuddin et al., 2016), and these specifications establish the characteristic ranges for 

diverse grades of fuels available for different specialised applications (Ahmad et al., 2015; 

Hsu, 2000). Several ASTM and IP test methods are used to determine fuel properties. The 

major physico-chemical properties considered when testing fuel properties include, the 

density/specific gravity, viscosity, calorific/heating values, ash content, boiling point range, 

octane number (gasoline)/cetane number (diesel), pour point, flashpoint and aniline point 

(Islam et al., 2010; Miskolczi et al., 2009; Ahmad et al., 2015; Hsu, 2000; Blazso, 2006). These 

properties are explained below. 

Density 

Density of a liquid is defined as the mass of liquid per unit of volume at a specific temperature 

(Kandola et al., 1995). Diesel fuels have much higher density compared to gasoline and other 

lighter petroleum derived fuels which is an indication of the presence of high molecular 

weight compounds. Also, it has been established that organic compounds with longer chain 

lengths have higher density compared to branched organic compounds (Gao, 2010). Density 

is also correlated to the heating value such that increase in density results in the decrease in 

heating value. This is because, as the density of a fuel increases, the Carbon to Hydrogen (C/H) 

ratio increases because the olefinic and aromatic contents tend to do dominate which means 

a lesser amount of C-H  will be available per mass of the hydrocarbon hence lower heating 
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value (American Bureau of Shipping, 2001). The standard density of diesel fuel ranges 

between 800 - 860 kg/m3 (Li et al., 2005; Miskolczi et al., 2009; Gao, 2010; Islam et al., 2010; 

Ahmad et al., 2015) whereas that for gasoline ranged between 720 - 780 kg/m3 (Owusu et al., 

2018; Faussone, 2017). 

Viscosity 

Viscosity of a fuel is a degree of its resistance to flow. It is inversely proportional to 

temperature; that is, the viscosity of a fuel will decrease when fuel temperature increases 

hence viscosity values are always reported together with the temperature of fuel at which 

the test was done (American Bureau of Shipping, 2001; Bacha et al., 2007). Also, higher 

viscosity of liquid fuels implies higher density (American Bureau of Shipping, 2001). Viscosity 

of fuels is normally measured by the kinematic viscosity since it has proven to be more 

accurate (American Bureau of Shipping, 2001). Its unit of measurement is mm2/s or 

centiStokes (cSt). The kinematic viscosity for diesel fuel oils used in heavy-duty low-speed 

engines ranges from 2.4 to 24 mm2/s at 40 ˚C (Bacha et al., 2007; Hsu, 2000) whereas that of 

transportation diesel fuels ranges between 1.3 - 4.5 mm2/s at the same temperature (Bacha 

et al., 2007; Islam et al., 2010; Hsu, 2000) that for commercial gasoline at the same 

temperature is around 1.17 mm2/s (Sharuddin et al., 2016; Ahmad et al., 2015). 

Pour point 

Pour point of a liquid fuel is defined as the minimum temperature at which the liquid stops 

flowing. Pour point therefore defines the fluidity of liquid fuels at relatively low temperatures 

(Ahmad et al., 2015). Increase in viscosity and crystallization of waxy compounds are the main 

parameters that enhance the loss of fluidity of liquid fuels (American Bureau of Shipping, 

2001; Ahmad et al., 2015). Although the standard acceptable pour point for fuel oils varies, 

the pour point for diesel fuel occurs around 6 ˚C.  

Heating Value 

Heating value is the amount of energy released on combustion of a fuel. Heating value can be 

classified as gross (high) or net (lower) (Patel et al., 2000; Bacha et al., 2007). Gross or higher 

heating value is the quantity of energy generated by absolute combustion of a unit amount 

of liquid fuel. For higher heating value, the water produced by combustion is condensed to 
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liquid, whereas for net heating value, the water remains in the gaseous form (Bacha et al., 

2007; Kunwar et al., 2016). The standard higher heating value for diesel fuels ranges between 

43 - 50 MJ/kg (Ahmad et al., 2015; Islam et al., 2010; Hsu, 2000). 

Paraffinic hydrocarbons on combustion releases more energy than their corresponding 

naphthenic, olefinic and aromatic hydrocarbons (American Bureau of Shipping, 2001; Ahmad 

et al., 2015). This is because heating value is basically influenced by the carbon/hydrogen ratio 

present in oil; as the carbon/hydrogen ratio decrease, the heating value increases (American 

Bureau of Shipping, 2001). More hydrogen per carbon decreases the oxidation state of a 

hydrocarbon and hence more energy will be released on combustion. 

Ash Content 

Ash is the residue left after carbonaceous material has been combusted. Higher ash content 

reduces the combustion efficiency of fuels (Hsu, 2000). It also damages fuel injection system 

and can cause deposits in combustion chambers. Due to this, ash contents in liquid fuels must 

be kept to traces. The maximum ash content required in commercial diesel and other liquid 

fuels is 0.01 wt.% (Syamsiro et al., 2014; Bacha et al., 2007).  

Cetane number 

Cetane number describes how spontaneously a fuel begins to combust in a diesel engine. High 

cetane number fuels combust, moments after they have been introduced in a combustion 

chamber of an engine. Such fuels can be classified as having a short ignition delay period. 

Contrary, a fuel with low cetane number struggles to auto-ignite resulting in longer ignition 

delay period. 

Two hydrocarbons (n-hexadecane and 1-methylnapthalene) are used to represent the cetane 

number scale (Hsu, 2000; Bacha et al., 2007), with 1-methylnapthalene representing a cetane 

number of 0 and n-hexadecane representing a cetane number of 100 (Bacha et al., 2007). 

Cetane number should be at least 40 according to the ASTM requirement for diesel fuel oils 

(Ahmad et al., 2015; Bacha et al., 2007). Paraffinic hydrocarbons, especially normal paraffins 

present in diesel fuels improve the cetane number and hence the ignition quality of the fuel 

(Gao, 2010).  
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Octane number 

Octane number is the measure of the tendency for gasoline fuels to ignite spontaneously. It 

is used to characterise the anti-knock quality (Sharuddin et al., 2016). High octane number 

indicates that a fuel possesses a better anti-knock quality (Sharuddin et al., 2016). 

Flash Point 

The flash point of a liquid fuel is described as the least temperature at which the vapours 

above the liquid kindle when an external spark is applied (Li et al., 2005; Ahmad et al., 2015). 

It is considered an important factor in fuel handling to avoid risks of fire during storage. Flash 

points of transportation diesel fuels are mostly above 40 ˚C (Ahmad et al., 2015; Hsu, 2000), 

and that of fuel oils used in boilers and low speed engines are 55 ˚C (Islam et al., 2010; Hsu, 

2010).  

Aniline Point 

Aniline point is defined as the temperature at which the aniline compound (C6H5NH2) forms a 

single phase with the liquid fuel oil (Sharuddin et al., 2016). Aniline point is used to gauge the 

content of aromatics present in fuels. Lower aniline point specifies a higher proportion of 

aromatic compounds whereas higher aniline point indicates the higher amounts of paraffinic 

compounds present in the oil. Olefins and naphthenes have aniline points between the two 

extremes of aromatic and paraffin values (Hsu, 2000; Sharuddin et al., 2016). Commercial 

diesel and gasoline have estimated aniline points of  77.5 and 71 ᵒC respectively (Ahmad et 

al., 2015; Sharuddin et al., 2016). 

2.8 Pilot scale and commercial plastic pyrolysis plants 

This section reviews the major components of pilot and commercial pyrolysis plants with 

discussion on the advantages and disadvantages of the different types available. Most 

commercial and pilot scale pyrolysis plants operate under continuous processes. The main 

components of a pyrolysis plant comprise the feeding system, the reactor and the 

condensers. These are discussed in the sections below. This exercise was conducted to assist 

in the design of the semi-continuous, kilogram-scale pyrolysis pilot plant that was installed 

and used in this study. 
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2.8.1 Feeding System 

Feeding of materials into continuous pyrolysis reactors is a common critical challenge. 

Feeding system has two major functions, i.e. preventing air flowing into the reactor and also 

controlling the feed-rate (Gao, 2010). They are very susceptible to blockage which prevents 

smooth flow of feedstock. Smooth and continuous delivery should be the benchmark of an 

ideal feeding system for a continuous reactor, and be suitable for wide range of materials (Dai 

et al., 2012). Therefore, for effective operation of continuous pyrolysis processes, it is vital to 

choose the precise type of feeder. Feeding plays a key role in enhancing continuous, reliable 

and efficient operation of the process. Varieties of feeding systems exist because of different 

feedstock properties and process requirements.  Common setbacks normally faced in feeding 

systems include; bridging or blocking, seal failures, fuel specific feeders, noise, high cost, early 

breakdown service as well as reaction of feedstock occurring in the feeder before entering 

the reactor. For various thermochemical processes, several feeders have been used. These 

include; the hopper and lock hopper systems, screw feeders and piston feeders (Wilen & 

Rautalin, 1993; Dai et al., 2012). Details of these feeders have been discussed below.  

 Screw feeders 

Feedstock Replaceable screw section

Screw shaft

Screw flight

 

Figure 2.8. Screw feeder (Modified from; Wilen & Rautalin, 1993) 

 

Screw feeders are common feeding equipment capable of delivering bulk solids over 

extensive feed rate ranges (Bates, 2000; Dai et al., 2012). The commonly used ones include, 

the single and the twin screw. As shown in Figure 2.8, the screw feeder consists of a shaft on 

which a helicoidal surface is fitted. This arrangement rotates inside a fixed tube to propel feed 

materials across the feeder (Bortolamasi & Fottner, 2001). Frictional interaction between 
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screw flight and adjacent casing, material properties and screw configurations are the factors 

used to estimate the efficiency of a screw feeder (Dai et al., 2012).  

Screw feeders are volumetric devices, which mean they meter a consistent volume of material 

controlled by the speed or revolution of the discharge device (Bates, 2000; Dai et al., 2012). 

The volume of feedstock conveyed in a given period of time is dependent on the following; 

screw flight, diameters of the shaft, pitch and the roundness of the screw (Dai et al., 2012). 

Some advantages and disadvantages of the screw feeder include (Wilen & Rautalin, 1993; 

Bortolamasi & Fottner, 2001; Dai et al., 2012;) 

Advantages 

• Volumetric feeding. That is their ability to feed in a fixed volume of feedstock into the 

reactor 

• It handles both cohesive and adhesive materials 

• It has a flexible arrangement 

• Low energy consumption and  

• cost effective 

 

Disadvantages 

• Limitations in the mass flow rate of feeding for feedstock with low bulk densities 

• Blockage which is caused by overload or difficult feed properties such as dense particles.  

• Lack of flow which is instigated by bridge or ‘rathole’ in the case where the screw feeder 

is preceded by a load hopper 

• Feed rate fluctuations which may be caused by screw flight rotation, sporadic bridging in 

the hopper as well as solid build up in the screw. 

• Pressure seal failure 

• Particle attrition  

• Sticking of materials on flights, shafts and internal casing of the screw. 

Screw feeders can be operated single screw or twin screw (positive displacement feeders). 

Both are equally efficient to use however the single screw is simpler and economical whereas 

the twin screw can better handle sticky materials (Dai et al., 2012; Rospen Industries Limited). 
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 Piston Feeders 

Piston feeders normally compress feedstock into an impermeable plug before being 

transported into the reacting vessel. The plug which usually should be substantially 

compacted averts the backward flow of gases and reacting feedstock back into the feeding 

system (Dai et al., 2012). Piston feeders are very good choices for high pressured reactors 

(Rautalin & Wilen, 1992; Dai et al., 2012). 

The mode of operation of a simple piston feeder includes; the charging of their feeding tank 

with feedstock usually under atmospheric pressure, after which the volume is reduced 

following the forward movement of the piston. As a result, the pressure within the cylinder 

increases and the materials moves forward into the reacting vessel (Rautalin & Wilen, 1992). 

The principle of operation of a simple piston feeder is illustrated in Figure 2.9. 

Compaction begins

Compaction ends and 
extrusion starts

Extrusion ends and 
plug is released into 

reactor

 

Figure 2.9. The principle of operation of a piston feeder (Adapted from Rautalin & Wilen, 1992) 

 

Some advantages and disadvantages of the piston feeder are listed below (Dai et al., 2012; 

Rautalin & Wilen, 1992); 

Advantages 

• They are also positive displacement feeders, i.e. they trap a fixed volume of sample and 

discharge it into the reactor. 

• They can handle sticky and stringy feedstock  
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• They facilitate short cycling operation and hence a continuous operation is possible with 

piston feeders  

• They enhance uniform moisture content in feedstock materials as a result of the 

compression 

• They have very good pressure sealing due to the compact plug formed 

• They handle wide range of materials (plastics, biomass, waste tyres, fibre). 

 

Disadvantages 

• Design and operation are quite complicated as compared to other feeding systems 

• Wear of piston ring and cylinder since they continuously slide against each other which 

leads to severe wear (this effect can be reduced by ring coatings and cylinder liners) 

• Gas leakage (can be minimised by combining with other feeding systems such as the lock 

hopper) 

• Feeding fluctuations due to intermittent delivery. 

 

 Lock Hopper feeding systems 

Lock hopper systems operate on the principle of intermittent feeding across into reactors, 

typically by the stepwise opening and closing of valves on the top and bottom of the feed 

vessel (Swanson et al., 2003). 

Mode of operation 

The upper valve is opened to receive material into the lock hopper while the lower valve is 

closed. After the upper valve is closed, a non-reactive gas is used to raise the pressure within 

the lock-hopper system to or beyond system pressure after which the bottom valve is opened, 

and the feed material is discharged into the reactor. After the lock-hopper is emptied, the 

lower valve is closed, and the vessel is depressurized to permit another cycle (Swanson et al., 

2003; van der Drift, et al., 2004). Dual and parallel lock hoppers may also be employed, which 

allows one lock hopper to discharge pressure to the process, while the other lock hopper 

takes care of filling and pressurizing (Swanson et al., 2003). A lock-hopper feeding system is 

usually coupled with a piston feeder or a screw feeder to improve sealing and also facilitate 

smooth and efficient feeding of feedstock into the reactor (Rautalin & Wilen, 1992; Wilen & 

Stellenbosch University  https://scholar.sun.ac.za



40 
 

Rautalin, 1993). A lock-hopper coupled with a screw feeding system is shown in Figure 2.10. 

A lock-hopper coupled with a piston feeder is also presented in Figure 2.11. Advantages and 

disadvantages of the lock hopper system are listed below (Rautalin & Wilen, 1992; Van der 

Drift et al., 2004); 

Advantages 

• It is a simple design device with few moving parts 

• It handles wide range of feedstock 

• It consumes low amount of energy 

• It is compatible with other feeding systems such as the screw and piston feeder 

 

 

Figure 2.10. Lock-hopper feeding system coupled with a screw feeder (Adapted from Rautalin & 
Wilen, 1992) 

Disadvantages 

• It is a complex control strategy which involves valve cycling, pressurization and 

depressurization.   
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• Does not really facilitate a truly continuous feed rate, although its typical discrete feeding 

pattern can be minimized by coupling it with other feeders such as the screw feeders. 

The lock hopper feed system is compact and integrated as compared to other feedstock hence 

it minimizes the amount of oxygen which would enter any reaction system as much as 

possible (Wilen & Rautalin, 1993). 

 

 Valves 

Piston

Reactor

Feed hopper

 

Figure 2.11. Schematic representation of a lock-hopper coupled with a piston feeder. 

 

2.8.2 Reactors 

Reactors are critical components in the pyrolysis of plastics since their design and operating 

conditions directly affect the product type and quality. It is where the mixing, heat transfer 

and decomposition of plastic materials take place. The reactor type has a significant influence 

on the plastics mixing, solid and vapour residence time, heat transfer and thus efficiency of 

the reaction towards achieving the desired final product (Sharuddin et al., 2016). Depending 

on the heat transfer techniques and flow pattern, reactors may be grouped into fluidised bed, 

rotary kiln and screw kiln (auger reactors) (Gao, 2010).  

Fluidised Bed Reactor 

In the fluidised bed reactor, fed plastic materials are suspended in a heating medium 

composed of gas and a solid material (typically sand when an inert material is needed) in the 

form of fine particles, and subjected to pyrolysis by means of gas-solid convective heat 

transfer (Zadgaonkar, 2006). That is, gaseous products or inert gases flow through an 
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expanded bed of plastic feedstock and other bed materials which is usually sand (Gao, 2010). 

Its advantages include less temperature gradient and effective heat transfer due to the even 

turbulent mixage of gases and bed materials (Gao, 2010). It also has excellent heat and mass 

transfer characteristics hence high thermal conductivity and it is widely accepted and utilised 

especially in commercial processes (Low et al., 2001; Gao, 2010). Extra advantages of the 

fluidized bed reactor include its flexibility with catalysts since they mix up very well with the 

reacting medium (Gao, 2010; Sharuddin et al., 2016). Fast or flash pyrolysis is usually 

performed with this type of reactor (Jung & Fontana, 2006). The main disadvantage of the 

fluidised bed reactor is; it requires uniform particles in terms of size and density to allow 

control of fluidisation, making it suitable for only homogenous feeds and not different kinds 

of plastic mixtures (Gao, 2010). A schematic representation of a fluidised bed reactor is 

depicted in Figure 2.12. 

 

Figure 2.12. Scheme of a fluidised bed reactor (Adapted from Williams & Williams, 1999b) 

 

 

Screw kiln reactors 

The screw kiln reactor is a reaction system that has also been widely used for plastic 

processing (Serrano et al., 2003; Jung & Fontana, 2006; Kodera et al., 2006; Aguado et al., 
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2008; Gao, 2010). It comprises of an externally heated extruder that conveys plastic feedstock 

from the feeding system to the other end of the extruder, and in the process converts 

feedstock materials into volatiles and residues which are separated and collected (Aguado et 

al., 2006; Gao, 2010). The screw kiln reactor is driven by an external motor, therefore plastic 

melts easily flow irrespective of their high viscosity, which is a noteworthy advantage (Aguado 

et al., 2006). Both melted plastics and plastic solid particles are compatible with the screw 

kiln reactor. The radial temperature gradient of the extruder is minimised due to its small 

diameter as well and highly efficient blending of materials (Aguado et al., 2006; Gao, 2010). 

Residence time is controlled by adjusting the rotation speed of the extruder. A screw kiln 

reactor system is shown in Figure 2.13. 

Carrier gas feedFeedstock inlet 

Zone 1 Zone 2

Reactor

Condenser
 

Figure 2.13. Schematic representation of a screw kiln pyrolysis reacting system showing the 
screw kiln reactor (Adapted from Serrano et al., 2003) 

 

Rotary kiln reactors 

The rotary kiln reactor is usually made from steel and normally with an inclination to facilitate 

the movement of feed materials downstream. Its internal surface is usually sheltered with 

refractory material to cushion the metal surfaces from extremely high temperatures (Zajec, 

2009). In special cases, specific dampers are attached to the inlet section to prevent the entry 

of oxygen into the reaction chamber or exit of gaseous product into the feeding system during 

material feeding (Zajec, 2009). Baffles inside the reactor aid with mixing and flow of materials. 

The main advantage of the rotary kiln reactor is that rotation ensures continuous turning and 
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blending of plastic materials as the reaction proceeds, such that the mixture is persistently 

homogenised and mixed with the inert gas, thereby forming uniform pyrolytic products (Li et 

al., 2004; Zadgaonkar, 2006). Also, it has easily adjustable residence time of solids, which 

facilitates the control of pyrolysis reactions, and it can process solid waste of varying shapes 

sizes (Li et al., 2004; Zadgaonkar, 2006). They are relatively cheaper compared to fluidised 

bed and screw kiln reactors. Due to high degree of mixing that allows efficient heat exchange 

and considerable flexibility pertaining to the size and type of materials that the rotary kiln 

reactor can accomodate, it is very much suitable for slow pyrolysis (Zajec, 2009) and possibly, 

intermediate pyrolysis. Various commercial and pilot scale pyrolysis plants for waste tyres and 

plastics have been successfully employed, using rotary kiln reactors in their processes. They 

include the Kobe Steel commercial plant and the Italian ENEA Research Centre Trisaia pilot-

scale plant (Li et al., 2004). A schematic representation of a rotary kiln reacting system is 

shown in Figure 2.14.  

 

Feedstock

Reaction

Volatiles

Char

Rotation

 

Figure 2.14. Schematic representation of a rotary kiln reactor (Adapted from Zajec, 2009) 

 

 

Table 2.9 (Arena & Mastellone, 2006) compares some key parameters, features and 

advantages of the different types of reactors discussed above. These include; operating 

temperature ranges, suitable particle size, process flexibility, costs and scale-up problems. 

From the table, all reactors can all operate at temperatures of up to 800 ᵒC. Also, fluidised 

Baffles 
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bed and screw kiln reactors have more substantial process flexibilities compared to rotary kiln 

reactors. The process flexibilities include easily adjustable vapour residence time, pressure 

and temperature. In terms of scale-up complications, the rotary kiln reactor appears to be the 

best as compared to the other three reactors, giving the least problems when it comes to 

scale-up issues. The fluidised bed reactor is cheaper and easy to maintain as compared to the 

rotary kiln and screw kiln reactors. However, it is more difficult to get it into stable operation, 

especially with heterogeneous waste materials. 

Table 2.9. Comparing different types of reactors (Adapted from Arena & Mastellone, 2006) 

 Bubbling 
fluidized bed 

Rotary kiln Extruder/Screw 

Temperature 
profile 

Temperature is 
almost constant 
in vertical 
direction but 
limited 
variation in 
radial direction 

Longitudinal as 
well as 
transversal 
gradient may 
be large and 
not easy to 
control 

Two zones are 
recommended: 
one at ˂ 150˚C 
to remove 
volatile 
fractions and 
one ˃ 250˚C to 
extract HCl gas 
in case of PVC 
pyrolysis 

Temperature 
range (˚C) 

500 - 850 450 - 800 200 - 520 

Heat exchange 
and transfer 

Very efficient 
exchange. Large 
heat transfer 
activated by 
solids 
circulation 

Relatively poor 
exchange. Then 
there is often 
the necessity of 
long cylinder 
kilns 

Degradation 
occurs by 
exposure to 
thermal and 
mechanical 
work (shear 
forces) 

Particle size Narrow size 
distribution. 
Mean particle 
diameter 
between 0.008 
and 3 mm. bed 
particles 
attrition and 
consequent 
entrainment 
may be severe 

No problem for 
size. Any size 
can be treated 
from fines to 
large lumps 

Plastic 
feedstock needs 
to be shredded 
to the size of 
side-plates 
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 Bubbling 
fluidized bed 

Rotary kiln Extruder/Screw 

Residence time 
of the feed 

Particles spend 
substantial time 
(mins or hours) 
in the bed. Gas 
residence time 
depends on gas 
velocity that is 
below 2 m/s 

Very long (1-2 
h) 

As long as 
required for full 
conversion 

Conversion Mixing of solids 
and gas 
bypassing can 
determine 
performance 
poorer than 
other reactors 

Conversion can 
be high 

Preferably used 
as a pre-
treatment 
before 
feedstock 
recycling 
process  

Process 
flexibility 

Excellent. Can 
be used for 
low- and high-
temperature 
pyrolysis with 
or without 
catalyst. Can 
treat different 
plastic wastes 

Limited. 
Operating 
parameters 
(residence time, 
temperature, 
etc.) can be 
varied in a 
narrow range.  

Permits highly 
diverse mixed-
plastics to be 
effectively and 
efficiently 
converted into a 
liquid form  

Products 
quality and 
value 

Likely to be 
high especially 
in processes for 
monomer 
recovery and 
high 
temperature 
situations 

The difficulty in 
temperature 
control leads to 
a wide range of 
products 

Either 
homogeneous 
liquid or 
granules are 
formed 
depending on 
the conditions. 
In very high 
temperature 
conditions 
however, 
volatiles are 
produced 

Scale-up 
problems 

Must be 
cautiously 
considered. 
Pilot plant is 
usually 
important 

Generally, not 
significant 

Suitable screw 
diameter 
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 Bubbling 
fluidized bed 

Rotary kiln Extruder/Screw 

Costs  Moderate. Low 
maintenance 
cost 

Moderate cost 
of investment. 
Large 
maintenance 
cost because of 
rotating parts 
and the fouling 
and erosion of 
the inner 
surface 

Single screw is 
less expensive, 
Double screw 
are more 
expensive with 
counter rotating 
twin screws 
being an 
intermediate in 
terms of cost  

 

 

Depending on feeding and product withdrawal technique, reactors can be categorised into 

batch, semi-batch and continuous. In batch processes, reactor is charged with feedstock, prior 

to the commencement of the process or after a cycle is complete. In the continuous reactor 

configuration, feedstock continuously enter and exit the system. In the semi-batch reactor 

configuration, the feed materials are added continuously but products accumulate and are 

discharged all at once (Felder & Rousseau, 2005). Batch and semi-batch reactors are used 

purposely for research because they have simple design and their control parameters are 

much easier to regulate whereas continuous processes are much suited for commercial 

operations because feedstock recharging is much cheaper compared to batch processes and 

also, they increase productivity due to their high efficiency (Williams & Williams, 1997 cited 

in Gao, 2010; Sharuddin et al., 2016).  

2.8.3 Condensers  

Pyrolysis hot vapours consist of compounds with different chemical and physical properties. 

The condensation process therefore helps in collection and segregating the various 

compounds in the hot volatiles into several fractions. It involves the process where the 

pyrolysis vapours from the reactor are passed through series of condensers operating at 

different temperatures and this facilitates the collection of condensed fractions based on 

their physical and chemical properties. Different types of condensers are employed in 

pyrolysis processes. These include; the shell and tube heat exchanger and ASTM D86 type 

(comprises of a tube immersed in a water bath), etc. The most commonly used is the shell 
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and tube heat exchangers due to their advantages of efficient heat transfer and ease of 

cleaning/ maintenance (Stonecypher, 2009).  

Shell and tube heat exchanger 

The shell and tube heat exchanger/condenser for pyrolysis vapours is made up of many tubes, 

placed within a steel shell as shown in Figure 2.15, with water flowing in the tubes and hot 

vapours flowing around the tubes. Upon contact with the tube surface, the vapours condense 

and drop down the condenser. The shell and tube heat exchanger have a very large surface 

area for heat transfer although in a relatively small confinement, which makes it portable to 

use (Stonecypher, 2009).  

 

 

Figure 2.15. Schematic representation of the shell and tube heat exchanger (South west thermal 
technology, 2016) 

 

2.8.4 Some Pilot and Commercial Scale Plastic Pyrolysis Plants 

When experiments performed at laboratory scale looks promising, they are subsequently 

scaled up to commercial standards. Nevertheless, scale up directly from bench scale to 

commercial scale is difficult to attain and hence pilot plants are very vital in confirming the 

validity of laboratory-scale tests and also simulating industrial stage processes (Arena and 

Mastellone, 2006). A number of pilot plastics pyrolysis plants have been in operation 

worldwide. Some pilot and commercial plastics pyrolysis plants have been described below. 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



49 
 

Hamburg ABB 

This plant was established by the University of Hamburg, Germany, as a pilot scale plant 

operating at 40 kg/h. Their main feedstock was shredded plastic waste with very minimal PVC 

content (Kaminsky, 2006). They employed a bubbling fluidized bed in converting the plastic 

materials into high yields of olefins, rather than paraffins and naphthenes, as well as oils rich 

in benzene, toluene and xylene (BTX) aromatics (Kaminsky, 2006). The reactor operated in 

the temperature range of 600 to 800 ˚C, as was purged with steam and nitrogen gas (Arena 

& Mastellone, 2006). 

Veba Oel 

Established by Veba Oel AG in Gelsenkirchen, also in Germany, operates at 500 kg/h, using an 

indirectly heated rotary kiln reactor, preceded by a screw feeder. Operating temperatures 

were in the range of 650 - 850 ˚C. The plant converts waste plastic materials and vulcanized 

elastomers into mainly gas, oil and char. Char produced by this process contains close to 80% 

elemental carbon, and it is further treated in gasification and hydrogenation plants (Behzadi 

& Farid, 2006; Ali and Siddiqui, 2006). They also have another plant which operates at 12.5 

tons/h in Ruhr area, Germany (Arena & Mastellone, 2006). 

Fuji 

Fuji Recycle Industries, in collaboration with Mobil Oil, Nippon Steel Corp., and Shinagawa 

Fuel Corp. operate the Fuji pyrolysis plant. Their technology includes an extruder followed by 

a fixed bed reactor. Extrusion of feed materials mixed with recycled liquid stream from the 

reactor takes place at 300 ˚C, followed by the thermal decomposition in the first chamber of 

the reactor and then catalytic cracking in the second part of the fixed bed reactor at 400˚C 

(Walendziewski, 2006). Their main feedstock is polyolefin from industrial waste stream with 

final products being gasoline, kerosene and diesel (Yanik & Karayildirim, 2006). A pilot plant 

operating at 400 tonnes/year was initially established, which was later scaled up to a 

demonstration plant operating at 5000 tonnes/year in Okegawa City and Aioi City respectively 

all in Japan (Arena and Mastellone, 2006). 

From the review, the following segments were considered during the design of the pyrolysis 

pilot plant; 
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1. Lock hopper coupled with a piston feeder. 

2. A rotary kiln reactor and 

3. Glass condenser tubes immersed in water 

A lock hopper coupled with a piston feeder was chosen because from the mode of operation 

of the lock-hopper, minimal amount of oxygen enters the system during feeding which is key 

in every pyrolysis process. Also, the lock-hopper was selected because it can handle a wide 

variety of feedstock that includes biomass, waste tires, fibres just to mention a few. 

Moreover, a piston feeder was preferred as an attachment to the lock-hopper because it 

consumes less amount of energy compared to other feeders such as the screw feeder. It can 

also handle sticky and stringy feedstock materials. Just like the hopper, the piston feeder is 

also compatible with wide range of feedstock materials. Unlike the screw feeder, blockage 

hardly occurs in the piston feeder. 

Furthermore, a rotary kiln reactor was selected because compared to the screw kiln and the 

fluidised bed reactor, it comes with minimal complications resulting from scale-up from bench 

to pilot scale processes. Also, in terms of slow and intermediate pyrolysis mechanisms, the 

rotary kiln reactor is very similar to the bench scale reactor that will be used in the study and 

hence will make results easily comparable. In terms of costs, it is cheaper than screw kiln and 

fluidised bed reactors. Unlike screw kiln and fluidised bed reactors, the rotary kiln reactor can 

accommodate wide range of feedstock sizes from fine materials to larger lumps. 

Glass condenser tubes immersed in water was preferred because of it is cheaper as compared 

to the shell and tube heat exchanger. Also, it is easier to operate and maintain. 

2.9 Key Conclusions drawn from literature 

1. Pyrolysis conversion of polypropylene (PP) begins around 300 ˚C and ends at about 

520 ˚C. However, 450 - 500 ˚C was deduced as the temperature range within which 

optimum condensable products (oil and wax) yield from PP pyrolysis is likely to be 

attained. 

2. For batch processes, secondary cracking reactions tend to dominate PP pyrolysis at 

temperatures beyond 500 ˚C which leads to the production of more permanent gases 

over condensable products. Therefore, to promote yield of condensable products, 

higher temperatures should be avoided.  
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3. For fluidised bed processes, it was inferred that heating rate of the process increases 

with increase of temperature hence compared to batch, secondary cracking reactions 

begin to occur at a much lower temperature (just after 450 ˚C).  

4. The heating rate trend observed for fluidised bed reactors is similar to batch scale pre-

heated reactors where increase in temperature also increases the heating rate, which 

in effect enhances rapid degradation of PP. It was also infered that slow heating rates 

in the range of 5 - 25 ˚C for batch scale pyrolysis of PP have no significant effect on 

condensable products yield.  

5. Vacuum pyrolysis of PP exhibited promising yield of condensable products when 

compared to atmospheric pyrolysis. However, the effects of varying temperature and 

heating rate on condensable products yield and quality under vacuum is barely 

reported in literature. Therefore, it warrants investigation. 

6. At temperatures below 600 ˚C, paraffins and naphthenes dominated condensable 

products recovered from PP pyrolysis followed by olefins with aromatics being the 

least. Nevertheless, at temperatures beyond 600 ˚C, secondary cracking reactions 

convert paraffins and olefins into more aromatic products. 

7. Boiling point range of oils/waxes recovered from PP pyrolysis revealed that they 

contain compounds that fall in both diesel and gasoline range. 
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Materials and methods 

3.1 Introduction 

This chapter entails the stepwise approach employed in performing various experiments 

conducted as part the study, together with a description of all equipment used. Outline 

includes; feedstock preparation and characterisation, pyrolysis conversion processes (which 

also entails the description of pyrolysis setups) and products characterisation.  

3.2 Feedstock supply and preparation 

Industrial waste polypropylene (PP) was obtained from Zibo containers, manufacturers of 

plastic bowls, punnets and other plastic containers located in Blackheath, Kuils River, South 

Africa. These plastics were virtually free of other non-plastic contaminants except for 

additives added during manufacturing. Feedstock was a mixture of chipped black and white 

pigments of PP with particle size ranging between 4 - 6 mm. The feedstock was mixed up 

thoroughly followed by sub-sampling using cone and quarter procedure described by Gerlach 

et al., (2002). In this method, a pile of the thoroughly mixed PP sample was placed on a thin 

film of plastic spread out on the floor. The pile was then flattened after which a thin, flat piece 

of cardboard was driven through the middle of the pile perpendicularly, to separate the pile 

into nearly two equal halves. The cardboard was lifted from the sample and rotated 90 ° from 

the position that was used to divide the pile initially and driven through the sample once more 

in the new position resulting in the pile being divided into four separate, nearly equal 

segments. Piles collected from two diagonal segments were combined (second and fourth 

quadrants, starting from the upper right in this case) and coned and quartered further in the 

same manner described above, each time discarding the piles from the other two diagonals 

and saving them for subsequent quartering. Following sub-sampling, about 10 g of sampled 

PP was fed into a Retsch mill (ZM 200) which generated much smaller particles with sizes 

about 2 mm. The milled products were used for characterisation experiments carried out on 

milligram scale. All samples were kept in air-tight plastic bags to avoid contamination. 
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3.3 Feedstock characterisation 

Proximate analysis of feedstock to determine the moisture, volatiles, fixed carbon and ash, 

was performed using a Mettler Toledo TGA/DSC 1 Star System Thermogravimetric Analyser 

in accordance with ASTM E1131. The thermal degradation behaviour of the feedstock was 

also studied using the Mettler Toledo TGA/DSC 1 Star System where 44 mg of the sample was 

heated from 30 ºC at a ramp rate of 20 ºC/min to a final temperature of 600 ºC under nitrogen 

gas running at a flowrate of 80 mL/min. 

HHV of the feedstock and condensable products were determined based on ASTM standard 

D5865-11a using a bomb calorimeter (Cal2K Eco Calorimeter, model 2013) calibrated using 

benzoic acid. 

Elemental analysis was performed using Vario EL Cube Elemental Analyser based on ASTM D 

4239 and ASTM D5373. In this method, plastic samples were combusted in a column filled 

and enriched with Tungsten Trioxide (WO3) and oxygen at a temperature of 1050 ᵒC. The 

combustion generated CO2, H2O, NOX, SO2 and SO3 from which the amounts of the various 

elements were deduced. 

3.4 Pyrolysis conversion 

3.4.1 Bench scale pyrolysis 

The bench scale setup is a gram scale unit and considered as a scale-up version of milligram 

scale experiments in the TGA. 

 Bench-scale setup description 

Figure 3.1 is a graphical representation of the pyrolysis setup used for all bench-scale 

experiments. The various units of the setup are described below; a nitrogen cylinder from 

which technical grade nitrogen (99.99% purity, Afrox, South Africa) was supplied, a nitrogen 

flow controller which regulates the flow of nitrogen gas into the reactor, a well-insulated 

electric furnace which houses a stainless-steel tubular reactor within which a quartz boat 

where samples are fed, is placed. The tubular reactor is 1 m long with internal diameter of 60 

mm. For fast-insertion tests, the tubular reactor has a feeding chamber attached, where 

samples are kept while reactor is pre-heated, and samples are introduced into the centre of 

the reactor only when the final setpoint temperature has been attained. This feeding chamber 
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is joined to the tubular reactor by a tri-clover fitting. The sample is pushed to the centre of 

the reactor with the help of a sliding handle. Two K-type thermocouples are placed at the 

middle of the reactor to monitor the reactor wall and sample temperature (close to the 

centre). 

Next is a set of condensation train where hot volatiles exiting the reactor were condensed. 

The condensation train consists of an ambient condition condenser made of stainless-steel, 

positioned at the exit of the reactor. Most heavy molecular weight condensable products (oils 

containing some wax) were recovered in this condenser (see Appendix D). Following the 

ambient condenser is a set of four (4) glass condensers connected by thick-walled rubber 

tubing. These condensers were cooled using dry ice (Afrox, South Africa) which facilitated the 

capture of most light fractions of condensable products (wax-free oils) (also presented in 

Appendix D). An auxiliary part of the setup is a vacuum pump which is connected to the exit 

point of the last condenser in case experiments are to be performed under vacuum 

conditions. 
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8. Vacuum pump
9. Electric Furnace
 

 

Figure 3.1. Representation of the bench-scale pyrolysis setup 
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 Bench-scale experimental procedure 

Based on the thermal degradation behaviour of PP studied and described in Section 3.3, four 

different temperatures were examined at each of the four types of pyrolysis conditions 

devised. These are; 450 ºC, 488 o C, 525 ᵒC and 600 o C. For slow pyrolysis experiments, samples 

were placed at the centre of the reactor and heated gradually at a rate of 15 ᵒC/min from 

ambient to the final temperature. For fast-insertion experiments, reactor was pre-heated to 

the final temperature before samples were introduced to the middle of the reactor hence 

sample was heated rapidly at estimated heating rates (based on sample thermocouple) 

ranging between 170 - 180 ᵒC/min. For experiments under ambient conditions, a nitrogen 

flow of 0.5 L/min was used throughout the course of the experiment to remove any oxygen 

from the system during reactor purge and to sweep generated volatiles from the hot part of 

the reactor to condensers. For both heating rates, samples were kept for 60 mins after the 

maximum temperature has been reached to ensure complete conversion. 

For experiments under vacuum, nitrogen supply was disconnected and a two-stage vacuum 

pump (Instruvac) was connected at the exit point of the last condenser to aid in sweeping 

volatiles from the hot part of the reactor and to keep the system inert. Vacuum pressure used 

for all experiments ranged between 90 to 95 kPa below atmospheric.  

Permanent gases generated under both atmospheric and vacuum conditions were collected 

in tedlar bags and analysed using a compact GC described in Section 3.5.2. Char products 

(usually in small quantities) remain in the sample boat after the conversion. Prior to each 

experiment, a leak test was performed with the vacuum pump to ensure that no oxygen was 

present in the system during the tests. For all experiments, 20 g of sample was fed. All 

experiments were conducted in replicates to ensure consistency of the results.  

3.4.2 Pilot conversion 

 Pilot plant setup description 

A 5 kg/h pyrolysis pilot plant was installed in the context of this study with the objective to 

mimic the tests from bench scale experiments at pilot scale. This was necessary because of 

the different reactor configurations of bench and pilot scale reactors.  

With the help of our suppliers, Technotherm Superior Thermal Technologies, the system was 

designed. It was assembled by Technotherm in Johannesburg, South Africa and commissioned 
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at Stellenbosch University. As shown in Figure 3.2, the pilot plant comprises the feeding 

section, the reactor, residue box, a set of condensation train, gas towers, oxygen analyser and 

a PLC where process parameters such as temperature, and retort rotation speed are 

controlled.   

The feeding system consists of a lock hopper where samples are fed and two pneumatic valves 

which open and close in a step-wise fashion after samples have been fed. That is, the first 

valve opens and closes to receive samples after which the second also follows the same 

mechanism so that the sample is introduced in the piston chamber. This is to minimise the 

amount of oxygen entering the unit during feeding. The piston, which is the second part of 

the feeding system, then pushes samples deposited from the hopper into the reactor. This 

design was based on the lock-hopper and piston feeding system presented by Wilen & 

Rautalin, (1993) and Dai et al., (2012) respectively. 

The reactor is where conversion of materials occurs. It is a rotary kiln within which a spiral 

screw (baffle) is fitted. The rotation of the reactor enhances efficient heat transfer. Also, the 

baffle helps in propelling samples across the reactor till the residues are deposited in the 

residue box. Generated hot volatiles then progress to the condensation train.  

The condensers are four glass jars immersed in chilled water. The heaviest oil fractions (oils 

containing some wax) were recovered in the first with the lightest oil fractions (wax-free oils) 

recovered in the last. Incondensable gases were sampled after the 4th condenser in regular 

time intervals using tedlar bags and analysed with the help of the CompactGC 4.0 (Global 

Analyser Solutions) described in section 3.5.2. The gases were also captured in the gas towers 

filled with water, after which their volumes were recorded. The towers operate such that, 

gases displace the water. Volumes of gases together with the concentrations of the main 

compounds measured by GC, aided in the estimation of the mass of gases generated and 

subsequently, the mass balance of the process. A vacuum pump with vacuum suction just 

about 2 kPa, abs (below atmospheric) was connected before the towers to help in the quick 

extraction of volatiles from the reactor and the gas towers. Nitrogen gas flow of 5 L/min was 

used to purge the system for 15 minutes before samples were fed. In addition, an average 

nitrogen gas flow of about 1.5 L/min was used to sweep volatiles from the reactor during 

conversion.  
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Figure 3.2. Schematic representation of the pilot plant 

 

 Pilot experimental procedure 

Five temperatures were examined at the pilot level. These include, 450, 460, 488, 507 and 

525 ºC. Modifications to the temperatures examined on the bench were made on the pilot 

because the pilot’s configuration promoted severe cracking reactions when compared to 

bench scale reactor and hence more permanent gases were likely to be produced at severe 

temperatures. Since the target was condensable products, attention was given to much lower 

temperatures on the pilot and hence the inclusion of temperatures, 460 and 507 ºC and the 

exclusion of 600 ºC. For each experiment, reactor was pre-heated to the selected 

temperatures before samples were fed. A total of about 3.6 kg of sample was fed for each 

run. The pneumatic valves on the lock hopper open every 72 s, and about 50 g of sample is 

fed per cycle after which the piston moves in the forward direction to convey the samples 

into the reactor. Following complete feeding, conversion is allowed to progress until there 

are no more volatiles coming out of the reactor, which is an indication of complete 

conversion. This is determined based on the results from GC analysis of gases, showing 

negligible concentrations of gases characteristic of PP conversion. For temperatures 488 to 

525 ºC, complete conversion took about 2 hours after feeding whereas complete conversion 

could take up to 4 hours for temperatures, 450 and 460 ºC after feeding. The rotation speed 

of the retort was 25 Hz for all tests, which corresponds to 50% of the maximum retort rotation 

speed. 
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Char and solid wax products were recovered in the residue box as two separate layers with 

char collected at the bottom. These solid products fell upon opening the residue box from 

bottom after which the char was gently scrapped off and weighed separately. Oils were 

mostly recovered in the condensers with oils in condenser 1 containing high amounts of wax 

at the pyrolysis temperatures, 488 - 525 ᵒC. However, oils recovered in the same condenser 

at temperatures 450 and 460 ᵒC contained relatively low wax fractions. Detailed description 

of the distribution and appearance of these condensable products have been made at section 

4.5.1. Permanent gases were sampled in tedlar bags only when the piston moves forward. 

This is because, the forward movement of the piston generates some pressure build up that 

enables efficient movement of volatiles into the tedlar bags. Reverse movement of the piston 

creates a negative pressure which inhibited gas sampling. Gas towers were switched from one 

to the other when the gases occupied about three-quarters the total volume of the tower. 

Volume of gases were then recorded before refilling the towers with water. Like bench scale 

tests, all tests at different temperatures were conducted in replicates to confirm reliability. 

3.5 Products characterisation 

The techniques under this section are relevant for oil and gaseous products coming from both 

bench and pilot tests. Except that for pilot tests, Physico-chemical properties of condensable 

products (oil and wax) were performed in addition. 

3.5.1 Gas Chromatography/Mass Spectrometry (GC/MS)  

Simulated distillation (see Appendix C) was used to group the compounds present in oil/wax 

products into diesel and gasoline fractions. Simulated distillation is a chromatographic 

technique which correlates retention times with boiling points of compounds (Das & Tiwari, 

2018). A standard of known composition was injected and used as a benchmark for grouping 

compounds into different fractions (Arabiourrutia et al., 2012). A C7 - C40 mixture of saturated 

alkane standard (Supelco, USA) was used for grouping detected compounds into gasoline and 

diesel fractions. Peaks eluting with retention times between those of C6 and C10 alkanes were 

grouped as gasoline while C11 and C23 alkanes were grouped as diesel. Chloroform (99% purity, 

BDH Analytical Chemicals) was used as solvent for all samples. Samples containing mixtures 

of oil and wax were thoroughly stirred to mix up before analysis to ensure a uniform 
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representative sample was used. For all tests, peak area was assumed to be the mass of 

compound detected. 

An Agilent Technologies 7890A gas chromatograph coupled with an Agilent Technologies 

5975C mass spectrometer (mass-selective detector) was used for the analysis. A Zebron ZB-

1701:002 column (length – 60 m; internal diameter – 0.25 mm and film thickness – 0.25 μm) 

was used for separation. Helium was used as the carrier gas with a steady flowrate of 1.3 

mL/min. The process was started by heating the oven at 45 ºC and held for 10 minutes, then 

increased to 100 ºC at a heating rate of 2 ᵒC/min. It was finally heated from 100 ᵒC to 260 ᵒC 

at a heating rate of 7 ᵒC/min and held there for 20 minutes. Injected volume of samples per 

run was 1 μL and a split ratio of 20:1 was employed. 

3.5.2 Gas Analysis 

Analysis of the permanent gases for both bench and pilot scale tests, followed the same 

method used in previous studies by Mundike et al., (2017) and Brown et al., (2019) where a 

CompactGC (Global Analyser Solutions) was calibrated to quantify concentrations of nitrogen, 

C1 - C5 linear hydrocarbon gases, hydrogen, carbon monoxide and carbon dioxide. Mixtures of 

known concentrations of these gases (Afrox, South Africa) were used for the calibration. N2 

was employed as an internal standard to determine the yield of each gas compound. The 

CompactGC was made up of three channels. The first channel consisted of a Molsieve 5A 

column heated at 65 °C and a TCD detector used for the analysis of N2, H2, CO and CH4. The 

second channel comprised of a PP-Q-bond column at 50 °C and a TCD detector that was used 

for the analysis of CO2, C2H4 and C2H6. The third channel was equipped with a Rtx-1 column 

at 45 °C coupled with an FID detector used for the analysis of C2 - C4 hydrocarbons. 

For pilot and atmospheric experiments at bench scale, permanent gases were collected at the 

end of the 4th condenser in tedlar bags at regular time intervals and fed immediately into the 

CompactGC 4.0 gas chromatograph. For vacuum conditions at bench-scale, gas sampling was 

done at the exit point of the vacuum pump. The maximum volume of the bag (5 L) and the 

time it takes to completely fill the bag (77 sec) were used to estimate the volume of gas that 

was sampled per minute (about 3.9 L). This volume coupled with volume fractions obtained 

from the CompactGC were used to calculate the total mass of gases produced and to 

complete the mass balance of the process.  
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3.5.3 Fuel Tests 

Oil products derived from pilot experiments were subjected to the following fuel tests to 

verify how they compare with commercial diesel and gasoline fuels. 

i. Density @ 20 ᵒC, in accordance with ASTM D4052. For the procedure, a small 

volume of about 1 - 2 mL of condensable product (sample) was introduced into an 

oscillating sample tube and the changes in oscillating frequency (caused by the 

change in the mass of the tube) in conjunction with calibrated data were used to 

determine the density. 

ii. Kinematic Viscosity @ 40 ᵒC, in accordance with ASTM D445. This employed the 

reverse or straight flow viscosity tubes that were immersed in a water bath. About 

10 mL of condensable product (sample) was introduced into the viscosity tubes 

which was clean, dried and already calibrated. The viscosity tube was then 

immersed in a water bath at a stable temperature of 40 ± 0.02 ᵒC after which a 

vacuum pump was used to draw samples until it reached the upper meniscus of 

the viscosity tube. A stopwatch was then used to count the flow time between the 

upper and lower meniscus. This was repeated for each test sample and Equation 

3.1 was used to estimate the kinematic viscosity for each sample.  

 

 

Where, 

𝑣 - kinematic viscosity (mm2/s)  

C - viscosity calibration constant (mm2/s)/s 

t - flow time (s) 

iii. Distillation to determine boiling point range, in accordance with ASTM D86. This 

was performed using atmospheric distillation at ambient pressure. For the 

process, 100 mL of condensable product was transferred into a flat bottom flask 

equipped with a thermocouple used for the distillation. The flask was heated to 

keep a distillation ratio of 4 mL/min and 5 mL/min. The distilled sample was 

condensed and collected in a measuring cylinder at room temperature. The 

distillation volume recovered at 250, 350 and 365 ᵒC together with the initial and 

final boiling point temperatures were recorded. The temperature at which the first 

 𝑣 = 𝐶𝑡 3.1 
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drop of distillate was recovered was identified as the initial boiling point (IBP) 

whereas the temperature at which all samples in the distillation flask evaporated 

was recorded as the final boiling (FBP). The temperatures at which the following 

volumes of condensates were recovered were also recorded. Volumes include 

10%, 50%, 90% and 95%. 

iv. Pour point, in accordance with ASTM D97. This test employed cooling samples in 

a specified glass tube in a bath containing Isopropyl alcohol and Dry ice. The 

sample was cooled at specific rates and examined at intervals of 3 ᵒC for flow 

characteristics. The lowest temperature at which sample stops flowing was then 

recorded to be the pour point. 

v. Aniline point, in accordance with ASTM D611. This was performed by mixing equal 

proportions of aniline with condensable products after the which the resultant 

mixture was heated till a complete mixage was obtained. Thereafter, a 

thermometer was used to check the temperature at which the mixture separated 

or got hazy and was recorded as the aniline point. 

vi. Cetane Index was estimated by calculation using parameters from density of 

samples at 15 °C and temperatures at which 10%, 50% and 90% distillation 

condensates were obtained. Equation 3.2 was used for the estimation and is 

known as the four variable equation in accordance with ASTM D4737 (Drews, 

1998; Owusu et al., 2018). 

 

𝐶1 = 45.2 + 0.0892𝑇10𝑁 + (0.131 + 0.901𝐵)𝑇50𝑁 + (0.0523 − 0.420𝐵)𝑇90𝑁

+ 0.00049(𝑇10𝑁
2 − 𝑇90𝑁

2 ) + 107𝐵 + 60𝐵2 

 

3.2 

 

Where, 

 CI- Calculated Cetane Index 

𝑇10𝑁 = 𝑇10 − 215 

𝑇50𝑁 = 𝑇50 − 260 

𝑇90𝑁 = 𝑇90 − 310 

𝐵 = [𝑒𝑥𝑝−3.5(𝜌−0.85)] − 1 

ρ- Density of sample 
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A set of tests required about 250 ml of oil sample hence only oils from condensers 1 and 2 

have been characterised for fuel. Oils from condensers 3 and 4 were not enough for fuel tests. 

Also, waxy oils obtained at higher pyrolysis temperatures (488 - 525 ᵒC) could not be 

characterised for distillation, flash point, cetane index and aniline point due to their high 

viscosity. All fuel test experiments were performed by Intertek, Cape Town except aniline 

point, which was performed by Intertek, Durban, all in South Africa.   
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Results and discussion 

4.1 Introduction 

This chapter tackles the effects of temperature and heating rate on condensable products (oil 

and wax) yield and quality under atmospheric and vacuum pyrolysis of polypropylene (PP) at 

bench scale. Furthermore, experiments performed at atmospheric conditions at bench level 

were scaled up to a pilot plant and results obtained were compared. The pilot plant was 

designed and commissioned as part of the study. Moreover, condensable products recovered 

from the pilot experiment were subjected to fuel tests that include density, viscosity, flash 

point and pour point to ascertain how these properties vary with the process parameters 

examined and also, how they compare with commercial diesel and gasoline fuels.  

4.2 Thermodegradation behaviour and Compositional 

Characterisation of PP 

4.2.1 Thermal degradation and Proximate analysis of waste PP 

 

Figure 4.1. TGA/DTG curve for PP degradation at 20 °C/min 

 

PP sample was subjected to Thermogravimetric Analysis (TGA) to determine its degradation 

with respect to temperature. As shown in Figure 4.1, it was observed that degradation of PP 

began and was completed at temperatures of about, 400 ᵒC and 500 ᵒC respectively with 

maximum degradation occurring at 475 ᵒC. The single peak detected indicates that 
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degradation of PP is a single-step mechanism. Similar observations were reported by Chan & 

Balke, (1997), Lee & Shin, (2007), Jung et al., (2010) and Yan et al., (2015) which possibly 

suggests that PP used in this study had identical chemical composition to most PP used in 

literature. The degradation temperature range was used as a basis to define temperature 

range for bench-scale experiments.  

Table 4.1. Proximate Analysis of PP  

Compound wt.% (average)  

Moisture 0.05 ± 0.01 
Volatiles 97.49 ± 0.14 
Fixed Carbon  2.00 ± 0.25 
Ash 0.46 ± 0.1 

 

TGA was used to conduct proximate analysis on PP samples. As shown in Table 4.1, it was 

deduced that the volatile matter was the major component of PP with fraction of about 97.5 

wt.% followed by the fixed carbon content with traces of ash and moisture. Volatile matter 

represents the possibility of how much volatiles (condensable and permanent gases) can be 

harnessed when a material is subjected to pyrolysis. The relatively small amount of fixed 

carbon signifies that for conversion under optimal conditions, very little amount of char is 

expected. The figures obtained were pretty consistent with those reported by Uçar et al., 

(2016) and Jung et al., (2010) suggesting that chemical composition of PP examined in this 

study was similar to those reported in literature. The relatively low content of ash of about 

0.5 wt.% obtained as compared to those reported by Uçar et al., (2016) (2.2 wt.%) and Jung 

et al., (2010) (3.55 wt.%) signifies that PP examined in this study contained minimal amounts 

of additives/contaminants. 

4.2.2 Elemental analysis of waste PP 

Elemental analysis of PP in Table 4.2 revealed that PP is mainly composed of carbon and 

hydrogen with traces of nitrogen, sulphur and oxygen. Fraction of Carbon present was 

recorded to be 85.07 wt.% with Hydrogen being 14.16 wt.%. Nitrogen, Sulphur and Oxygen 

were present in trace amounts with fractions of 0.05, 0.10 and 0.16 wt.% respectively present. 

The C/H ratio of PP waste used in this study (6.0) was very close to those reported by 
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Heydariaraghi et al., (2016) and Miranda et al., (2001) who all reported C/H ratios of about 

6.1 and 5.6 respectively. Since these studies employed pure PP, it implies that PP waste used 

in this study is consistent in elemental composition with pure PP. HHV of PP waste used in the 

study was recorded to be 45.3 MJ/kg. Sorum et al., (2001) reported very close figure of HHV 

(46.4 MJ/kg) for pure PP. 

Table 4.2. Elemental Composition of PP  

Element wt.%  
C 85.07 ± 0.41 
H 14.16 ± 0.18 
N 0.05 ± 0.00 
S 0.10 ± 0.00 
O (by difference) 0.16 ± 0.23 

HHV (MJ/kg) 45.30 ± 0.12 

 

4.3 Atmospheric pyrolysis of PP at bench-scale 

Tests under atmospheric pyrolysis of PP at bench scale were performed at four temperatures 

(450, 488, 525 and 600 ºC) at slow and fast heating rates under atmospheric conditions. This 

followed PP characterisation discussed under section 4.2.1. 400 ºC was not included in the 

temperatures to be investigated because initial screening tests showed highly incomplete 

conversion of PP waste at this temperature (see Appendix D). Condensable products derived 

were characterised for Higher Heating Value (HHV) and Gas Chromatography/Mass 

Spectrometry (GC/MS) to determine their energy contents and compositions respectively. 

Finally, analysis of permanent gases using a CompactGC was conducted at all conditions to 

ascertain gaseous composition and also complete the mass balance of the processes. 

4.3.1 Product yield distribution (Atmospheric conditions)  

The condensable products recovered in the first condenser at room temperature were waxier 

than those recovered under dry ice (next set of condensers) (Appendix D). This could possibly 

suggest that condensables recovered in the first condenser, under ambient conditions 

contained heavier molecular weight compounds compared to those recovered under dry ice. 
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Hence condensables recovered under ambient and dry ice were referred to as heavy oil and 

light oil fractions respectively. 

 

 

Figure 4.2. Effects of Temperature and heating rate on product yield distribution (Atmospheric 
conditions) 

 

The yields of products for pyrolysis of PP under atmospheric conditions have been presented 

in Figure 4.2. The mass balances for all the process conditions ranged between 91 - 95 wt.% 

which is typical for pyrolysis processes as observed with Owusu et al., (2018). Standard 

deviation of char, permanent gases, light and heavy condensable products under slow heating 

rates were less than 1.5 wt.%, 1.0 wt.%, 1.1 wt.% and 2.0 wt.% respectively whereas that for 

fast insertion processes were less than 0.9 wt.%, 3.2 wt.%, 0.6 wt.% and 6.4 wt.% in the same 

order (Appendix B). 

For slow pyrolysis processes, it was observed that char yield at all temperatures was rather 

insignificant and was seen to decrease slightly with the rise of temperature. Significantly low 

yields (below 3.2 wt.%) were obtained at temperatures beyond 450 ᵒC. Based on the total 
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content of fixed carbon and ash (2.5 wt.%, Table 4.1), it can be deduced that sample 

conversion was almost complete. Total yield of condensable products (heavy and light) 

increased slightly from about 82 wt.% to a maximum of 86 wt.% as temperature progressed 

from 450 to 488 ᵒC. It however dropped to 80 wt.% when temperature augmented to 525 ᵒC 

and further decreased drastically to 63 wt.% when temperature reached 600 ᵒC. From the 

trends, 488 ᵒC was deduced to be the temperature at which maximum condensable products 

yield of 86 wt.% was recovered, after which further increase of temperature resulted in a 

corresponding decrease in condensable products yield. The decrease in yield of condensables 

observed after the optimum temperature was blamed on the occurrences of secondary 

cracking reactions to produce much lighter products to the detriment of oils. This is evident 

in the corresponding increase in the yields of permanent gases detected. Permanent gas 

yields were observed to increase sharply from about 6 to 27 wt.% as temperature rose from 

450 to 600 ᵒC with the latter temperature producing the highest yield of permanent gases. 

This shows that secondary cracking reactions become more pronounced at the higher 

temperatures. Ahmad et al., (2015) reported similar trends when they pyrolysed PP in a batch 

reactor in the temperature range 250 - 400 ᵒC. They reported maximum condensable 

products yield of about 70 wt.% after which a further rise in temperature resulted in a 

decrease in yield of oil to about 63 wt.% with a corresponding increase in gas yield. 

Mechanism of secondary cracking reactions occur when two or more unstable primary 

volatile products generated from the devolatilization of PP further react to produce much 

more stable compounds. This mechanism is facilitated at severe temperatures and heating 

rates. 

Results for experiments under fast-insertion pyrolysis followed almost the same trend 

observed for slow pyrolysis. Yield of char was also observed to decreased with the increase 

of temperature. Considerable amount of char was however generated at 450 ᵒC. While 

increasing heating rate usually results in reduced char yield, the reverse trend was observed 

in this case. This was blamed on the incomplete conversion of PP due to the relatively shorter 

solid residence time when compared to slow pyrolysis conditions. Trends observed for 

condensable products yield followed similar path as slow pyrolysis with maximum 

condensable products yield of about 85 wt.% attained at 488 ᵒC. A further increase of 

temperature resulted in reduced condensable products yield and promoted the formation of 

Stellenbosch University  https://scholar.sun.ac.za



68 
 

permanent gases which again was attributed to secondary cracking reactions. Similar 

observations to these trends were made by Lu et al., (2015) who also investigated the 

pyrolysis of PP in a pre-heated batch reactor where they recorded a maximum condensable 

products yield of about 72 wt.% after which a further increase of temperature resulted in the 

increase of permanent gas yield at the expense of oil. A permanent gas yield of about 67 wt.% 

was generated as against an oil yield of 33 wt.% at their highest temperature investigated. At 

600 o C, compared to slow pyrolysis, it was seen that yields of light oil fractions and permanent 

gases became more pronounced to the detriment of heavy oil fractions, with light oil fraction 

shooting by about 15 wt.% and permanent gases by close to 5 wt.%. It was then inferred that 

when comparing slow and fast heating rates, significant difference in the distribution of yields 

of volatiles (oil and gas) was only observed at the highest temperature examined, 600 ᵒC. This 

observation was interpreted as consequence of interaction between temperature and 

heating rate. At slow heating rate, most of the volatiles were released before the reactor 

temperature reached 500 ᵒC (with respect to TGA curve in Figure 4.1). At fast heating rate, 

the volatiles were released in a reactor already at 600 ᵒC, which facilitated severe cracking 

reactions to produce lighter compounds.  

In conclusion, for both slow and fast pyrolysis of PP under atmospheric conditions, secondary 

reactions known to suppress oil yield occurred beyond the temperature at which maximum 

condensable products were obtained, 488 ᵒC. However, interaction between temperature 

and heating rate at 600 ᵒC led to significant secondary cracking reactions at this temperature 

which promoted the formation of lighter products. 

4.3.2 Condensable products characterisation (Atmospheric conditions) 

 GC/MS analysis (Atmospheric Conditions) 

Each product recovered under atmospheric pyrolysis of PP was analysed by GC/MS which 

gave the proportions of compounds found in diesel and gasoline fractions based on surface 

area. As a first approach, assuming similar response factors of the compounds as generated 

by the GC/MS, the proportions of diesel (respectively gasoline) was multiplied by the yield 

(wt.%) of the product to estimate the yield of diesel (respectively gasoline) in each product. 

Figure 4.3, illustrates how the process parameters (temperature and heating rate), affected 

the proportions of diesel (C11-C23) and gasoline (C6-C10) range compounds under atmospheric 
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slow and fast insertion processes. For slow pyrolysis, it was observed that, total diesel 

composition (in both heavy and light condensable products) decreased steadily from around 

42 to 34 wt.% as temperature progressed from 450 to 600 ᵒC. The gradual decrease in diesel 

yield observed with the increase of temperature was corroborated to secondary cracking 

effects at higher temperatures that lead to the conversion of heavy molecular weight 

compounds (diesel) into lighter ones (gasoline and permanent gases). Total yield of gasoline 

range compounds correspondingly increased with the rise of temperature and were generally 

predominant as temperature rose except at 600 ᵒC where the yield was observed to decrease. 

This was blamed on the further conversion of gasoline compounds into more permanent 

gases. This is evident in the sharp increase in yield of permanent gases observed as 

temperature progressed from 525 to 600 ᵒC as reported in the previous section, 4.3.1. 

 

 

Figure 4.3. Proportions of Diesel and Gasoline present in oils obtained from atmospheric 
pyrolysis of PP (Diesel and Gasoline proportions in each product was based on GC/MS surface 

area and yields of oil) 
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For fast-insertion pyrolysis, also depicted in Figure 4.3, it was observed that, the total diesel 

fraction (in both heavy and light oil) increased somewhat from about 36 to 41 wt.% when 

temperature rose from 450 to 488 ᵒC. It then decreased to around 33 wt.% at 525 ᵒC and 

further to 25 wt.% when temperature reached 600 ᵒC. Compared to slow pyrolysis, it was 

noticed that yields of diesel compounds were mostly lower especially at the highest 

temperature tested (600 ᵒC), which further ascertains the fact that secondary cracking 

reactions became more severe at higher temperatures and faster heating rates. This is evident 

in the comparatively improved yield of gasoline compounds under fast heating rate 

conditions compared to slow heating rate. It was also observed that gasoline range 

compounds were prevalent over diesel range compounds at all temperatures under fast 

heating rates. 

These observations were enough to conclude that, production of gasoline range compounds 

from PP pyrolysis is favoured mostly under reaction conditions where some secondary 

cracking occurs.  

Surprisingly, physical observation of condensable products revealed that heavy condensable 

product recovered under ambient conditions (condenser 1) tended to become waxier or more 

viscous in nature with the rise of temperature (high temperature is known to decrease the 

number of carbon atoms of the compounds through cracking reactions) (Appendix D). This 

unforeseen phenomenon was explained as; - at relatively lower pyrolysis temperatures, 

although both lower molecular weight (MW)/lower boiling points and heavy MW/higher 

boiling point compounds were produced, the heavier compounds were not released because 

pyrolysis temperature was lower than their boiling points. Heavy MW/Higher boiling point 

compounds were only released at elevated pyrolysis temperatures and hence the formation 

of waxy compounds at these temperatures. This observation was also identified to be novel 

with respect to what has been currently reported in literature. Physical observations for light 

condensable products (recovered from condensers 2-5) however did not change with the 

variation of temperature. These products were clear, free-flowing and did not contain wax. 

They were stable and never solidified even after months of storage. 

 Higher Heating Value (HHV) analysis (Atmospheric conditions) 

The HHV of condensable products (oil and wax) obtained from the atmospheric pyrolysis of 

PP have been presented in Table 4.3. From the table, it was observed that HHV of all heavy 
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condensable products were greater than corresponding HHVs of light condensables which is 

expected because heavy condensable products contained higher number of carbon atoms. 

Moreover, it was noticed that HHV for each type of oil generally decreased with the upsurge 

of temperature which was corroborated to the increased production of aromatic compounds. 

Aromatics were found to be present in higher amounts in gasoline compounds than diesel 

(refer to section 2.7.2) hence increased production of gasoline compounds at higher 

temperatures (from GC/MS results in the previous section) implies higher aromatic contents 

and therefore the lower HHVs recorded at higher temperatures. Lastly, the range of HHV for 

all the condensable products (41 - 46 MJ/kg) were consistent with the HHVs of commercial 

heavy fuel oil, diesel and gasoline having HHVs ranging between 41 - 46 MJ/kg. 

  Table 4.3. HHV of PP derived oils under atmospheric pyrolysis of PP 

Temperature 
(ᵒC) 

HHV(MJ/kg) 

Slow  Fast insertion  

Heavy oil 
fraction 

Light oil fraction Heavy oil 
fraction 

Light oil fraction 

450 45.28  43.79  45.67  45.24  

488 45.46  43.13  45.45  44.46  

525 44.15  42.42  45.82  45.67  

600 41.56  41.60  44.45  42.97  

 

4.3.3 Gas analysis (Atmospheric Conditions) 

The gaseous product yield distributions with reference to the feedstock for atmospheric 

pyrolysis of PP have been presented in Figure 4.4 and Figure 4.5. The description focussed on 

the hydrocarbon gases and hydrogen because of their promising energy potential. CO and 

CO2 detected were attributed to the presence of trace amounts of oxygen gas in the reactor. 

Their yields were seen to increase with the upsurge of temperature since reactivity of oxygen 

gas increased with increasing temperature. As depicted in the figures, it was observed that C3 

gases were the most dominant produced at all process conditions. This is expected because 

polypropylene is made from propylene monomer units and pyrolysis is known to breaking 

down polymer structures back into their monomers hence the dominating amounts of C3 

(polypropylene monomers) in the gas stream. Similar observations were made by Yan et al., 
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(2015) and Das & Tiwari, (2018) who all reported C3 (propane, propadiene and propylene) to 

be the most dominant of all the gases generated with yields representing around 45 and 35 

wt.% of the total gas yield respectively. Hydrogen gas (H2) production largely increased with 

increase of temperature, but its production remained relatively low at all process conditions. 

Under slow heating rates, yields of gases C1-C5, generally increased with the rise of 

temperature, with 600 ᵒC observed to be the temperature at which maximum yield of all 

gases were produced. This showed that increase in temperature under slow heating rates 

generally enhanced some level of cracking reactions that promoted yields of the permanent 

gases with the rise of temperature. 

Under fast-insertion pyrolysis, yields of all the gases, C1 - C4 were seen to increase sharply with 

the upsurge of temperature while for C5, yield increased from 0.70 to 1.27 wt.% when 

temperature rose from 450 to 488 ᵒC after which the yields were seen to decrease at the 

subsequent higher temperatures (525 - 600 ᵒC). The increase in yield of the comparatively 

lighter hydrocarbon gases (C1 - C4) to the detriment of the heavier hydrocarbon C5 gas with 

temperature rise also confirms the higher intensity of cracking reactions at higher 

temperatures under faster heating rates.  

 

Figure 4.4. Effects of temperature on gaseous product distribution (Atmospheric slow condition)
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Figure 4.5. Effects of temperature on gaseous product distribution (Atmospheric fast insertion 
condition) 

 

4.4 Vacuum pyrolysis of PP at bench-scale 

Tests under vacuum pyrolysis of PP followed similar approach as atmospheric conditions. 

Experiments at bench scale were also performed at same temperatures (450, 488, 525 and 

600 ºC) used for atmospheric pyrolysis at slow and fast heating rates. Condensable products 

obtained were also characterised for HHV and GC/MS. Permanent gases were characterised 

using a CompactGC that aided in closing the mass balance. All results obtained under vacuum 

pyrolysis were compared to atmospheric conditions.  

4.4.1 Product yield distribution (Vacuum pyrolysis) 

For tests under vacuum conditions, all condensable fractions recovered in the ambient 

condition condenser were recovered in the form of solid wax (Appendix D). Compared to the 

waxes recovered in the same condenser under atmospheric conditions, these waxes 

appeared relatively dry and sticky. These waxes were also referred to as heavy oil products. 

Condensable products recovered from dry ice condensers, however, were free-flowing liquids 
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and had similar appearances to those retrieved from same condensers under atmospheric 

pyrolysis, hence the name light oil fraction was still maintained in this context. 

Mass balance at all process conditions ranged between 89 - 98 wt.%. Maximum standard 

deviation for char, permanent gases, light and heavy condensable products under slow 

heating rates were 0.6 wt.%, 1.2 wt.%, 3.8 wt.% and 4.6 wt.% respectively whereas that for 

fast insertion heating rates were 0.5 wt.%, 1.2 wt.%, 2.5 wt.% and 2.4 wt.% respectively 

(Appendix B). 

 

 

Figure 4.6. Effects of temperature and heating rate on product yield distribution (Vacuum 
conditions) 

 

Product yield distribution depicted in Figure 4.6 showed that char yields under vacuum slow 

conditions were lower than 5 wt.%, demonstrating that PP conversion was also nearly 

complete. It further substantiates the negligible amount of fixed carbon obtained from the 

proximate analysis of PP. Yield of total condensable products (oil and wax) increased 

progressively from about 89 wt.% and peaked at 93 wt.% when temperature rose from 450 

to 525 ᵒC. It then decreased to 86 wt.% when temperature reached 600 ᵒC, the highest 
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temperature examined. The decrease in yield of total condensable products after the 

temperature where peak amounts of condensables were recovered was blamed on cracking 

reactions. When comparing with experiments under atmospheric conditions, total 

condensable products under vacuum were higher at similar temperature and at optimal 

temperature. This was corroborated to the limited cracking effects under vacuum conditions 

since volatiles generated were quickly removed from the hot part of the reactor. This is 

consistent with the relatively lower yields of permanent gases generated under vacuum. 

Between the temperature range, 450 - 525 ᵒC, permanent gas yields under vacuum were at 

least twice lesser than their corresponding yields under atmospheric conditions. At 600 ᵒC, 

the highest temperature examined, permanent gas yield recovered under vacuum conditions 

was about four times even lesser than corresponding yields under atmospheric pyrolysis. 

For vacuum fast pyrolysis of PP, insignificant yields of char were also observed. Total yield of 

condensable products (oil and wax) remained virtually constant (increasing from 90 - 91 wt.%) 

as temperature progressed from 450 to 525 ᵒC but decreased sharply to about 79 wt.% at 600 

ᵒC. Total condensable products yield under vacuum conditions were again observed to be 

higher than corresponding yields under atmospheric conditions. As observed for atmospheric 

conditions, significant difference in condensable products yield distribution between slow 

and fast heating rates under vacuum pyrolysis was also observed only at 600 ᵒC. These 

differences were however not as pronounced as atmospheric conditions.  

In conclusion, at all the process conditions examined, vacuum pyrolysis of PP generated 

higher yields of condensable products compared to the pyrolysis of PP under atmospheric 

conditions. This ascertains the promising potential of vacuum pyrolysis in harnessing higher 

yields of condensable products. Compared to atmospheric pyrolysis, secondary cracking 

reactions were minimal under vacuum conditions because volatiles were quickly extracted 

from the reactor by the vacuum suction. This led to the production of significantly high yields 

(about 80 wt.% at least) of condensable products even at severe temperature and heating 

rate conditions under vacuum. Only limitation with vacuum pyrolysis of PP is that, majority of 

the condensable fractions were recovered in the form of wax with over 60% of total 

condensable fractions recovered as wax at all process conditions. 
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4.4.2 Condensable products characterisation (vacuum conditions) 

 GC/MS Analysis (Vacuum conditions) 

Figure 4.7 illustrates how temperature and heating rate affected the proportions of diesel and 

gasoline range compounds present in the heavy and light condensable products. Estimation 

of the proportions followed same procedure as used for atmospheric conditions described in 

section 4.3.2.1. 

It was observed that diesel range compounds predominated at all process conditions which 

is corroborated to the majority of condensable products being recovered as wax. 

 

Figure 4.7. Proportions of diesel and gasoline in condensable products (oil and wax) recovered 
under the vacuum pyrolysis of PP (Diesel and gasoline proportions in each product was based on 

GC/MS surface area and yields of oil)  

 

For slow heating rate conditions, it was observed that total diesel composition rose from 

around 69 to 77 wt.% as temperature increased from 450 to 488 ᵒC after which a further 

increase of temperature resulted in decreases in yields of diesel range compounds. It appears 

that production of diesel and gasoline range compounds did not follow any definite trend, 
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but diesel range compounds recovered at much higher temperatures (525 and 600 ᵒC) were 

lower than the first two initial temperatures (450 and 488 ᵒC), with the converse being true 

for gasoline range products. This signifies that cracking reactions at higher temperatures 

somewhat suppressed the production of diesel compounds. 

For fast insertion processes, total yield of diesel compounds increased from about 51 to 70 

wt.% (maximum yield) as temperature progressed from 450 to 488 ᵒC. Further increase of 

temperature then resulted in a sharp decrease in diesel yield to around 63 wt.% at 525 ᵒC and 

44 wt.% at 600 ᵒC. This observation was attributed to the rapid cracking reactions of heavy 

compounds (diesel) into lighter ones (gasoline and permanent gases) which is consistent with 

the corresponding increase in gasoline range compounds observed. 

The relatively higher yield of total diesel range compounds (respectively lower gasoline yield) 

observed at the highest temperature tested (600 ᵒC) under slow heating rates confirms the 

observation made for the occurrences of feeble secondary cracking reactions under slow 

heating rates when compared to fast. This is in accordant with the comparatively lower diesel 

yield (respectively higher gasoline yield) observed at the same temperature under fast 

insertion conditions. 

 HHV Analysis (Vacuum) 

Table 4.4. HHV of PP derived oils (Vacuum conditions)  

Temperature 
(ᵒC) 

HHV(MJ/kg) 

Vacuum Slow  Vacuum Fast insertion  

Heavy oil 
fraction 

Light oil fraction Heavy oil 
fraction 

Light oil fraction 

450 45.24  42.79  46.03 45.84 

488 45.01 42.90  45.58 45.01 

525 45.53 43.01 45.96 44.94 

600 45.22 42.78 45.53 45.60 

 

HHVs of condensable products recovered under vacuum pyrolysis of PP have been presented 

in Table 4.4. Unlike atmospheric conditions where HHVs were observed to decrease with the 

increase of temperature, HHVs of each type of condensable product recovered under vacuum 

stayed high even at higher temperatures under all process conditions. This was attributed to 
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the limited formation of aromatics under vacuum pyrolysis, which is consistent with the 

predominant yield of diesel range compounds observed at all process conditions (from GC/MS 

tests presented in previous section, diesel compounds were identified to contain lower 

amounts of aromatic compounds compared to gasoline). Similar to what was observed under 

atmospheric conditions, it was also noticed that under vacuum conditions, HHVs of heavy 

condensable products were greater than HHVs of corresponding light condensables, which 

was attributed to the higher number of carbon compounds present in the heavy products. 

HHVs of all condensables reported under vacuum were consistent with the HHVs of 

commercial liquid fuels. HHVs obtained ranged between 42 - 46 MJ/kg and were comparable 

with commercial diesel and gasoline fuels. 

4.4.3 Gas Analysis (Vacuum conditions) 

 

Figure 4.8. Effects of temperature on gaseous product distribution (Vacuum slow conditions) 

 

Figure 4.8 and Figure 4.9 illustrate the yields of permanent gases generated from the pyrolysis 

of PP under vacuum conditions. Unlike the spectrum of gases generated under atmospheric 

conditions, total amount of CO and CO2 detected under vacuum pyrolysis were comparatively 

low, demonstrating that, very little amount of oxygen was present in the reactor under 

vacuum. Similar to atmospheric conditions, C3 gases were the most prevalent at all the 
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process conditions showing that significant amounts of depolymerisation of PP back into its 

monomer compounds also occurs in PP conversion under vacuum. Also, a combined C1 yield 

of only 0.02 wt.% was produced under both slow and fast heating rates, confirming that 

minimal cracking reactions occurred under vacuum conditions. Yields of hydrogen gas (H2) 

retrieved under vacuum were also noticed to be comparatively higher than corresponding 

yields recovered under atmospheric conditions. 

 

Figure 4.9. Effects of temperature on gaseous product distribution (Vacuum fast insertion 
conditions) 

 

Under both slow and fast insertion processes, it was observed that the yields of the gases C2-

C5 generally increased with the upsurge of temperature with none of the heavier gases 

cracking further to produce lighter ones at higher temperatures. This ascertains the fact that 

pyrolysis under vacuum conditions (even at severe conditions of temperature and heating 

rate) significantly suppressed cracking reactions. Compared to atmospheric conditions, it was 

observed that total gas yields under vacuum conditions were significantly lower. At all process 

conditions, total gas yields under atmospheric conditions were at least twice that of the 

corresponding yields obtained under vacuum. This further validated the reduced degree of 

cracking reactions under vacuum. 
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4.5  Process Development at Pilot Scale 

This section tackles the pilot scale pyrolysis of PP. As stated in section 3.4.2.1, the objective 

of the pilot scale study was to mimic bench-scale atmospheric pyrolysis tests to ascertain how 

they both compare (since they have different configurations). Pilot study was also performed 

to address any industrial scale prospects. As fast insertion and slow pyrolysis gave similar 

yields, it was decided to mimic fast insertion, due to the similarity of the two processes. 

Indeed, with the pilot, sample is introduced in a pre-heated reactor just like for fast insertion 

processes. While as in the case of fast insertion test at bench scale, the heating rate could not 

be set, the heating rate was influenced by the reactor temperature on the pilot: An increase 

in temperature automatically resulted in an increase in the heating rate of the sample 

particles. 

This section therefore encompasses, the effects of temperature on product yield distribution 

and quality of condensable products. Effects of the process parameters on composition of 

permanent gases were also investigated. Also addressed are the Physico-chemical properties 

(density, viscosity, pour point, boiling point range etc.) of condensable products recovered 

and how they compare with commercial diesel and gasoline fuels.  

4.5.1 Product yield distribution (Pilot scale pyrolysis)  

A 5 kg/h pyrolysis pilot plant was designed and commissioned after which bench-scale 

experiments were projected to the pilot plant. Pilot scale tests were performed at five 

different temperatures (450, 460, 488, 507 and 525 ᵒC). The selection was based on 

temperatures used for bench-scale tests but saw the inclusion of temperatures, 460 and 507 

ᵒC and exclusion of 600 ᵒC. As mentioned at section 3.4.2.2, the latter temperature was 

excluded from pilot tests because, conversion was quite severe as observed with bench scale 

tests and promoted the formation of significant amount of permanent gases which is not of 

interest in this study. The former temperatures were included to increase the chances of 

easily identifying the most suitable temperature at which maximum condensable products 

were attained. The vacuum pump on the pilot had a maximum suction capacity of about 2 

kPa below atmospheric pressure which is relatively close to ambient pressure compared to 

the vacuum pressure on bench (90 - 95 kPa below atmospheric). Standard deviations of char, 

oils, waxes and permanent gases were less than 0.3, 2.6, 2.6 and 2.2 wt.% respectively 

(Appendix B). 
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Table 4.5. Summarised description of oil labels 

Oil label Description 

C1A Top oil fraction of condenser 1 

C1B Bottom oil fraction of condenser 1 

C2 Oil recovered from condenser 2 

C3 Oil recovered from condenser 3 

C4 Oil recovered from condenser 4 

CF Oil collected at reactor and feeder joint 

CW Wax recovered from char collection box 

 

Based on the pilot design, contrary to what was expected, significant amount of wax was 

collected in the char collection box as can be seen in Figure 4.10. As highlighted earlier under 

section 3.4.2.2, the wax was recovered together with char samples as two separate layers 

with the char at the bottom. The char was then carefully scraped off the wax and weighed 

separately. For each temperature, oils were recovered in all four condensers with the first 

condenser recovering the most. Two different types of oil based on physical observations 

were recovered from Condenser 1 at all temperatures. At relatively lower temperatures, 450 

and 460 ºC, a more viscous and opaque oil was recovered at the bottom whereas a clear, less 

viscous oil was recovered on top. At relatively higher temperatures (488 - 525 ºC), oil fractions 

recovered in Condenser 1 were both highly waxy in nature but differed in colour. These are 

depicted in Figure 4.11 & Figure 4.12 respectively. The lighter oil fractions which were always 

recovered on top of condenser 1 were labelled C1A while those recovered at the bottom were 

labelled C1B. Furthermore, at temperatures 450 and 460 ºC, an extra dark coloured oil was 

collected at the joint of the reactor inlet duct and the piston feeding system due to the release 

of volatiles during the back and forth movement of the piston feeder. This oil was labelled as 

CF. Oils from condensers 2, 3 and 4 were labelled as C2, C3 and C4 respectively. Unlike 

condenser 1, these oils were all single-phase in nature. Waxes recovered from char collection 

box were labelled as CW. Devised labels of oil and wax products have been summarised in 

Table 4.5. Waxy oils recovered in condensers 1 were categorised as oil together with all other 
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oils retrieved from the condensers. Waxes recovered from the char collection box were 

tagged as wax. 

 

 

Figure 4.10. Sample of product recovered from char collection box showing layers of char (in 
black) and wax (in gold). (A) View showing both layers of char and wax, (B) View showing mainly 

char, (C) view showing mainly wax 

 

 

 

Figure 4.11. Oil samples obtained in condenser 1 at 460 ᵒC. (A) Top light fraction, (B) Bottom waxy 
fraction. Samples physical appearances are similar to those recovered at 450 ᵒC. 
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Figure 4.12. Oil samples recovered in condenser 1 at 488 ᵒC. (A) Top dark waxy oil fraction, (B) 
Bottom brownish waxy oil fraction. Physical appearance of samples is similar to those obtained 

at temperatures, 507 and 525 ᵒC.  

 

 

Figure 4.13 represents the effects of temperature on products distribution at pilot scale 

pyrolysis of PP. Mass balance at all temperatures ranged between 83 to about 88 wt.% which 

is quite promising considering how challenging it was to completely keep the system air tight. 

For instance, during the continuous closing and opening of pneumatic valves in the feeder, 

some smoke released evidenced the loss of volatiles.  

Product distribution revealed that, char yield was relatively negligible, with the highest and 

lowest yields (1.29 and 0.55 wt.%) obtained at the lowest and highest temperatures 

respectively. Total condensable products (oil and wax) yield of about 77 wt.% was recovered 

at 450 ᵒC which rose gently to about 80 wt.% when temperature reached 460 ᵒC. This 

temperature was observed to be the temperature where maximum yield of condensable 

products were recovered. A further increase of temperature to 488 ᵒC, resulted in a sharp 

decrease in condensable products yield to about 70 wt.%, which is attributed to the incidence 

of secondary cracking reactions. This is consistent with the increase in the yield of permanent 

gases from around 6.8 to 10.6 wt.% for the same temperature rise. This suggests that, 

conversion at 488 ᵒC on the pilot is already high enough temperature for significant 
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occurrence of cracking reactions. Condensable products yield was found to remain virtually 

constant (at about 70 wt.%) as temperature progressed from 488 to 525 ᵒC. The trend infers 

that the degree of secondary cracking reactions remained unchanged for the temperature 

range 488 to 525 ᵒC, which was not expected when compared to bench scale tests. 

The evolution of permanent gas yield was observed to increase steadily from about 5.6 to 

15.5 wt.% as temperature rose from 450 to 525 ᵒC. As observed for bench scale tests, the 

gradual increase in permanent gas yield to the detriment of oil yield observed, could be 

attributed to the occurrence of more cracking reactions of the partially converted plastics and 

volatiles in the hot part of the reactor. It is likely that oil at 488 ᵒC was slightly underestimated 

(consistent with its lowest mass balance), probably due to more volatile loss, which means 

that oil yield at 488 should probably intermediate between yields obtained at 460 ᵒC and 507 

ᵒC. Though oil yield at 488 ᵒC was probably underestimated, the optimum at temperature 

around 460 ᵒC appears reliable based on the lower gas yield, when compared to 488 ᵒC. 

Comparing the optimum yield of oil (about 85 wt.%) attained at 488 ᵒC under atmospheric 

fast insertion at bench scale (similar to the pilot process since reactor is pre-heated in both 

cases) to the pilot’s 80 wt.% obtained at 460 ᵒC, it was detected that maximum yield on the 

pilot decreased by about 6% with optimum temperature decreasing by 28 ᵒC. Part of the 

difference could be due to lower mass balance due to more product loss on the pilot. The fact 

that lower temperature was required for the conversion at pilot scale was probably due to 

more extensive cracking in the pilot reactor. The reason for a lower maximum condensable 

products yield obtained at a lesser temperature on the pilot level is ascribed to the following; 

1. It was assumed that, the much more elongated length of the pilot reactor compared 

to the bench scale reactor increased the residence time of the volatiles in the pilot 

reactor which promoted secondary cracking reactions that reduced the oil yield in 

effect. Conversion of PP on the pilot occurred across the whole length (750 mm) of 

the reactor whereas conversion on bench took place only at a segment of the reactor 

(heated segment) with length of around 475 mm. Also, the volume of the pilot far 

supersedes that of the bench scale reactor hence the higher residence time of the 

volatiles. 
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Figure 4.13. Effects of temperature on product yield distribution (Pilot scale pyrolysis of PP) 

 

4.5.2 Liquid product analysis (Pilot scale process) 

 GC/MS Analysis (Pilot scale process) 

GC/MS characterisation and analysis of condensable products recovered from pilot runs 

followed similar process as described for bench scale, where the proportions of diesel 

(respectively gasoline) was multiplied by the yield (wt.%) of the condensable products to 

estimate the yield of diesel (respectively gasoline) in each product fraction. The yields of 

diesel (C11-C23) and gasoline (C6-C10) are presented in Figure 4.14 and Figure 4.15 respectively. 

From the figures, it was observed that diesel range product dominated in oils recovered in 

the first condenser which is expected because the heavier molecular weight compounds 

(diesel) get condensed ahead of the light compounds (gasoline). That is, the higher boiling 

point molecules will condense at a higher temperature, which is the first condenser 

(beginning of the condensation system). These trends are consistent with those obtained for 

bench scale tests (atmospheric fast insertion) where diesel range compounds dominated oils 

recovered in the first condenser. Diesel range compounds were also the most prevalent at all 
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temperatures examined. This is contrary to what was observed at bench (atmospheric fast 

insertion) where gasoline range compounds were the most prevalent. This differing 

phenomenon was attributed to the presence of slight vacuum conditions on the pilot, which 

might have aided in somewhat extracting volatiles faster from the hot reactor zone, thereby 

limiting cracking which has been established to favouring the production of gasoline. 

 

 

Figure 4.14. Yields of Diesel present in all oil products from pilot scale pyrolysis of PP (Proportions 
in each product was based on GC/MS surface area and yield of oil) 

 

As represented in Figure 4.14, it was observed that total diesel yield increased somewhat 

from about 43 wt.% to 47 wt.% when temperature rose from 450 to 460 ᵒC after which a 

steady decrease in yield (from 38 to 33 wt.%) was observed with the subsequent increase of 

temperature (488 - 525 ᵒC). Maximum yield of diesel was obtained at 460 ᵒC. On the other 

hand, 525 ᵒC was the temperature at which minimum yield of diesel was recovered. Decrease 

in diesel yield at higher temperatures was expected because higher temperatures promoted 

cracking of heavy compounds (diesel) into lighter ones (gasoline and permanent gases). From 

Figure 4.15 total gasoline range compounds rose slightly from about 21 to 23 wt.% as 

temperature progressed from 450 to 460 ᵒC. Yield then dropped to about 17 wt.% at 
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temperatures, 488 and 507 ᵒC and was seen to rise slightly again to 18 wt.% at the final 

temperature tested, 525 ᵒC. Gasoline compounds had comparatively higher yields at the first 

two initial temperatures (450 and 460 ᵒC) when cracking reactions were still minimal. Their 

yields however reduced substantially at the subsequent higher temperatures investigated 

(488 - 525 ᵒC). This was blamed on the further loss of gasoline compounds into more 

permanent gases arising from the much more severe cracking on the pilot. This is in 

agreement with the sudden increase in yields of permanent gases observed for the same 

temperature range. 

 

 

Figure 4.15. Yields of Gasoline present in all oil fractions from pilot scale pyrolysis of PP 
(Proportions in each product was based on GC/MS surface area and oil yield) 

 

 HHV of condensable products oils (pilot study) 

The HHV for all oil samples are presented in Table 4.6. It can be seen that all oil samples had 

HHV ranging between 44 to 46 MJ/kg which is equivalent with commercial diesel and gasoline 

fuels. Unlike bench scale atmospheric fast insertion process where HHVs for each type of oil 

were observed to generally decrease with the upsurge of temperature, HHVs on pilot stayed 

high at higher temperatures and did not change with the rise of temperature. This difference 
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observed is consistent with the diesel and gasoline proportions obtained for each set of tests. 

Pilot scale products had diesel range compounds dominating at all temperatures, which 

means comparatively lower aromatics were present and hence the higher HHVs of 

condensables even at higher temperatures. For bench scale tests, gasoline range compounds 

predominated and that means increased aromatics with temperature rise and hence the 

lower HHVs observed with the upsurge of temperature. 

 Table 4.6. HHV of PP oils recovered from pilot pyrolysis of PP  

Temperature 

(ºC) 

HHV (MJ/kg) 

C1A 

(liquid) 

C1B 

(liquid + 

wax) 

C2 

(liquid) 

C3 

(liquid) 

C4 

(liquid) 

CF 

(liquid) 

CW 

(wax) 

450 45.75 45.37  45.49 45.42 45.36 45.83  46.33  

460 45.94 44.91 45.16 46.24 45.86 45.91 45.55 

488 45.92 45.38 45.56 45.12 45.41 N/A 45.24  

507 44.59 44.45 44.98 45.75 45.79 N/A 46.78  

525 44.25 44.61 45.11 45.00 44.54 N/A 45.79 

N/A- No sample available at that condition; C1A- Top oil fraction from condenser 1; C1B; Bottom oil 

fraction from condenser 1; C2- Oil from condenser 1; C3- Oil from condenser 2; C4- Oil from condenser 

4; CF- Oil from feeder/reactor inlet joint; CW- Wax from char pot 

4.5.3 Gas Analysis (Pilot scale process) 

Distribution of yields of gaseous products generated from the pyrolysis of PP at pilot scale is 

presented in Figure 4.16. Like bench scale processes, the description played emphasis on the 

hydrocarbon gases and hydrogen because of their huge energy potential. As observed from 

the plot, C3 was the predominant fraction at all temperatures which is consistent with what 

was reported from bench scale in section 4.3.3. Also, like bench scale processes, presence of 

CO and CO2 was blamed on traces of oxygen present in the reactor. Reactivity of oxygen 

increases with the increase of temperature which could explain the increasing yield of CO and 

CO2 with the rise of temperature. 
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From the graph, C3 yield rose slightly from 2.07 to 2.59 wt.% when temperature progressed 

from 450 to 460 ᵒC. Yield further increased appreciably at subsequent temperatures (488 - 

525 ᵒC) and peaked at 525 ᵒC, where a yield of 8.30 wt.% was attained for C3. Just as observed 

at bench scale, the domination of C3 in the gas stream, is an indication that cracking of PP 

back to its monomer structure also happens during conversion on the pilot. This trend is 

consistent with what was reported by Das and Tiwari, (2018) and Ciliz et al., (2004) who all 

reported C3 as the predominant product in their gas stream. 

 

 

Figure 4.16. Effects of temperature on gaseous product distribution (Pilot scale pyrolysis of PP) 

 

Moreover, C1 and C2 gases followed similar trend observed for C3 but their yields were 

comparatively lower. They were also seen to increase steadily with the rise of temperature 

with their highest yields (0.83 and 0.73 wt.% respectively) obtained at 525 ᵒC. Also, C4 and C5 

gases increased steadily as temperature progressed from 450 to 507 ᵒC but decreased 

abruptly when temperature reached 525 ᵒC. The increase in yield of the lower molecular 

weight gases (C1 - C3) to the detriment of the heavier molecular ones (C4 and C5) as 
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temperature intensified further validates the occurrences of s cracking reactions at higher 

temperatures. Like bench scale tests, yield of hydrogen gas was relatively negligible and was 

seen to increase with the rise of temperature. 

4.5.4 Comparing fuel properties of PP pyrolysis oils with commercial fuels 

Oil products derived from pilot scale experiments were subjected to the following fuel tests 

and compared to commercial diesel and gasoline fuel specifications; Density @ 20 ᵒC, 

Kinematic Viscosity @ 40 ᵒC, Pour Point, Distillation to determine boiling point range and 

Cetane index. The methods followed to performing these tests have been highlighted in 

section 3.5.3. Flash point was not examined because initial boiling point of all oils were quite 

low which implies that their flash points could be around ambient temperature, 20 ᵒC. Also, 

only oils obtained from condenser 1 (C1A and C1B), C2 and CF were characterised for fuel 

tests. C3 and C4 could not be tested because their volumes were not enough for the tests. A 

set of tests required a minimum of 250 ml of sample. Moreover, waxy oils especially for those 

obtained from 488 to 525 ᵒC could not be characterised for distillation, flash point and cetane 

index because they could not be distilled. All these tests require that samples can be distilled. 

Also, CF oil obtained at 450 ᵒC could not be characterised for these tests for similar reason. 

Fuel tests for the oils characterised have been presented in Table 4.7. with specifications for 

commercial diesel and gasoline fuels also depicted in Table 4.8. 

At 450 ᵒC, Density @ 20 ᵒC for all oils remained virtually constant. Density for oils C1A, C1B 

and C2 ranged between 0.77 to 0.78 kg/L with CF having the highest density of 0.79 kg/L. Also, 

compared to the other oil fractions, CF had the highest viscosity of 2.53 mm2/s with C2 being 

possessing the least, 0.96 mm2/s. These observations ascertain the dominance of heavier 

molecular weight compounds (diesel) in CF and light molecular weight compounds (gasoline) 

in C2 as observed with GC/MS tests. Similar observations were made for oils recovered at 460 

ᵒC. CF had the highest density (0.80 kg/L) and viscosity (1.95 mm2/s) whereas C2 had the 

lowest density and viscosity of 0.76 kg/L and 1.71 mm2/s respectively. Also, at subsequent 

temperatures (488 - 525 ᵒC) it was observed that C1A and C1B had higher densities than C2 

which is also as a result of the presence of different molecular weight compounds. It was 

however noticed that for all the oil fractions, pyrolysis temperature had no substantial effect 

on their density. Moreover, compared to commercial diesel and gasoline fuels, only CF (460 

ᵒC) and C1A (at 488 ᵒC) had density comparable with diesel. All the other oils had density 
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values between diesel and gasoline which is consistent with the fact that compounds 

belonging to both ranges of diesel and gasoline are present in oils. Except for oils CF (at 450 

ᵒC) and C1A (at 488 ᵒC) which have viscosities falling in the diesel range, all other oils had 

viscosities falling between that for diesel and gasoline range. Pour point, the minimum 

temperature at which the oil ceases to flow, for all oils were less than 18 ᵒC which implies that 

all the oils obtained have pour point consistent with the specification required for commercial 

liquid fuels. Furthermore, it was noticed that the initial boiling points for all oil products were 

in the range of the initial boiling point for commercial gasoline fuels whereas their final boiling 

points lied in the region of the final boiling point for commercial diesel. This buttresses the 

fact that all oil products that could be analysed from the pilot pyrolysis of PP contained both 

compounds in the diesel and gasoline range. Also, except for oil C2 (at 450 ᵒC), all oils 

characterized for cetane index, had cetane indices above 40 (which is the minimum 

requirement according to ASTM). This implies that majority of the oils recovered will readily 

combust in a diesel engine (Bacha et al., 2007). Lastly, aniline point is a measure of the 

proportions of aromatic compounds present in the oil. Compared to the commercial 

standards of aniline point, it appears that for the oils tested, CF (at 460 ᵒC) had the highest 

aniline point which implies that the oil contained lower amounts of aromatics and higher 

amounts of paraffinic compounds. C1A (at 450 ᵒC), C2 (at 450 ᵒC) and C1A, C2 (at 460 ᵒC) 

however had comparatively lower aniline points which indicates that they contained higher 

amounts of aromatic compounds.  
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Table 4.7. Fuel properties of PP pyrolysis oils  

Sample 

Fuel Properties 

Density @ 20 ᵒC 

(Kg/L) 

Kinematic 

Viscosity @ 

40 ᵒC (mm2/s) 

Pour point (ᵒC) IBP (ᵒC) FBP (ᵒC) Cetane Index 
Aniline Point 

(ᵒC) 

 

 

450 ᵒC 

C1A 0.77 1.27 <-40 63 349 52 63 

C1B 0.78 1.70 <-40 67 359 50 N/A 

C2 0.77 0.96 <-40 56 340 38 58 

CF 0.79 2.53 -33 N/A N/A N/A N/A 

N/A- Sample not compatible with test 

 

 

460 ᵒC 

C1A 0.78 1.81 <-40 69 357 56 60 

C1B 0.79 1.71 <-40 69 362 57 N/A 

C2 0.76 0.91 <-40 66 342 56 58 

CF 0.80 1.95 -36 92 306 56 71 

N/A- Sample not compatible with test 

 

 

488 ᵒC 

C1A 0.80 2.14 -10 N/A N/A N/A N/A 

C1B 0.79 1.93 -7 N/A N/A N/A N/A 

C2 0.77 1.09 <-40 60 342 41 N/A 

N/A- Sample not compatible with test 

 

 

507 ᵒC 

C1A 0.79 1.88 -5 N/A N/A N/A N/A 

C1B 0.79 1.97 -2 N/A N/A N/A N/A 

C2 0.78 1.58 -6 87 354 55 N/A 

  

525 ᵒC 

C1A 0.79 2.09 -5 N/A N/A N/A N/A 

C1B 0.79 1.76 -6 N/A N/A N/A N/A 

C2 0.78 1.36 -6 N/A N/A N/A N/A 

N/A- Sample not compatible with test 
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Table 4.8. Specifications for commercial diesel and gasoline fuels 

Fuel 

Fuel Properties 

Density @ 20 

ᵒC (Kg/l) 

Kinematic 

Viscosity 

(m2/s) 

Pour point (ᵒC) IBP (ᵒC) FBP (ᵒC) 
Cetane 

Index 

Aniline Point 

(ᵒC) 

Diesel 0.8 [1] 2.2 - 5.3 [1] ≤ 18 [4] 172 - 196 [2] [5] 350 - 362 [1] [2] min, 40 [3] 77.5 [3] 

Gasoline 0.71 - 0.79 [1] [8] 1.17 [1] [9] N/A 27 -40 [2] [6] [7] 215 - 225 [1] [2] [8] N/A 71 [3] 

N/A -Not applicable 

Sources: [1]SANS, 2014a; [2]Owusu et al., (2018); [3]Ahmad et al., (2015); [4]Miandad et al., (2016); [5]Kalargaris et al., (2018); [6]Heydariaraghi et al., (2016); 
[7]Pinto et al., (1999); [8]SANS 2014b; [9]Sharuddin et al., 2016 
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Conclusions and recommendations 

5.1 Conclusions 

This study focused on the bench-scale optimisation of temperature and heating rate which 

appeared to be the key process parameters that affect PP pyrolysis, with the aim of improving 

oil yield and fuel properties. Also, pyrolysis processes at bench-scale were conducted under 

atmospheric and vacuum conditions and compared to ascertain which of the two scenarios 

yielded the most condensable products with most promising fuel characteristics. Finally, 

optimum conditions from bench-scale experiments were scaled up to a 5 kg/h pilot plant (that 

was designed and commissioned as part of the study) to simulate industrial processes and 

also validate the results from bench. 

Following bench scale experimental work, the following conclusions can be drawn: 

1. Under atmospheric pyrolysis of PP (both slow and fast insertion), optimum 

condensable fractions (oil/wax) were attained at 488 ᵒC after which a subsequent 

increase of temperature initiated secondary cracking reactions known to promote the 

yields of permanent gases over condensable products. Therefore, to maximise oil yield 

under atmospheric pyrolysis of PP, higher temperatures above 488 ᵒC need to be 

avoided. 

2. Yields of condensable products under vacuum pyrolysis of PP were higher than their 

corresponding yields recovered under atmospheric conditions. This is due to the short 

residence time of volatiles under vacuum conditions limiting cracking. Limitation of 

vacuum is the recovery of high amounts of wax from the condensable products. 

3. Higher Heating Values (HHVs) of all condensable products (oil/wax) recovered from 

the atmospheric and vacuum pyrolysis of PP ranged between 41 - 46 MJ/kg and were 

comparable with commercial liquid fuels. Severe secondary cracking reactions were 

found to decrease HHVs of condensable products due to the increased production of 

aromatics. 
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4. Production of more gasoline range compounds in condensable products retrieved 

from the pyrolysis of PP was favored mostly under reaction conditions where some 

secondary cracking occur with the converse being true for diesel range compounds. 

From the process development at pilot scale, the following conclusions were drawn: 

1. The 5 kg/h pyrolysis pilot plant was successfully designed and commissioned. The 

plant operated successfully in converting both plastics and non-plastic wastes into 

final pyrolysis products. 

2. Compared to the results obtained from bench scale, optimum oil yield temperature of 

460 ᵒC obtained on the pilot decreased by 28 ᵒC with the optimum yield decreasing by 

6%. This was attributed to the elongated length of the reactor which increased the 

volatile residence time thereby enhancing more secondary cracking reactions. 

3. HHVs of oils retrieved from the pilot scale tests were consistent with those recovered 

from bench scale tests. The HHVs were also similar to commercial diesel and gasoline 

fuels. 

4. Production of more diesel range compounds was preferred at lower pyrolysis 

temperatures whereas that for gasoline range compounds is favored at higher 

pyrolysis temperatures. This conclusion is consistent with what was observed at bench 

scale. 

5. Gases generated from PP pyrolysis are composed primarily of the hydrocarbon gases 

ranging from C1 to C5 with traces of hydrogen which is an indication that gases 

generated from the process have promising energy content that can be used to sustain 

the pyrolysis process or channeled for other energy activities.  

6. Physico-chemical properties showed that compositions of all oil products tested fell in 

both diesel and gasoline range. Cetane indices of the wax-free oils also proved that 

they can readily burn in a diesel engine. 

5.2 Recommendations 

Despite the presence of the vacuum pump, working under pressures significantly lower than 

ambient was not possible without major modifications of the pilot setup. It is therefore 

recommended that modification on the pilot to improve the level of vacuum should be 

considered since vacuum pyrolysis on bench scale provided promising yields of oil.  
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Moreover, most of the condensable products generated under vacuum were recovered as 

wax. Also, some of the products retrieved on the pilot were waxy in nature and could not be 

distilled to help ascertain their boiling point range, meaning a fraction of the wax is possibly 

made up of hydrocarbons with molecular weight greater than diesel. Further cracking of these 

waxes into saleable oils is recommended. 

It was concluded that, oils and waxes recovered under the pyrolysis of PP at both bench and 

pilot scale comprised of compounds that fall in both diesel and gasoline range. To obtain pure 

diesel or gasoline product, it is recommended that the oils should be distilled to obtain pure 

compositions.  

Also, the reaction kinetics behind all the process conditions especially vacuum pyrolysis, 

should be investigated to better understand the mechanisms. 

Finally, a techno-economic study should be considered to help ascertain the economic 

viability of the pyrolysis of PP into liquid fuels at commercial scale.  
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Appendices 

: Uses and flow of plastics  

Table A.1. Some useful applications of commonly used plastic materials 

Material 

Applications 

Packaging Non-packaging 

PET 

Carbonated drink bottles, mineral 
water bottles, clear bottles used 
for dishwashing liquids and edible 
oils, Jars, Biscuit trays, Punnets, 
Salad domes 

Carpeting, fibres for apparel and 
industrial applications. Engineering 
components such as sewing 
machine parts 

HDPE 

Milk bottles, fruit juice bottles, 
drums, packaging films, carrier 
type shopping bags, tubs, closures, 
cosmetic bottles, crates, pallets, 
bins 

Irrigation pipes, water reticulation, 
shade-cloth, netting, shopping 
trolleys, refuse bins, toys, medical 
implants such as hip replacement 
components 

PVC-P 
(Flexible) 

Industrial cling film, pouches 

Cable insulation, gum boots, shoe 
soles, flooring, matting, medical 
cloth and tubing, tarpaulins, hoses, 
safety gloves, soft toys, rain wear, 
erasers, banners, see-through ‘vinyl 
curtains, tents and upholstery etc. 

PVC-U 

(Rigid) 

Clear bottles and jars (limited use) 

Blister packaging, food packaging, 
inserts such as chocolate trays 

Pipes for water reticulation and 
sewage, conduit profiles, cladding, 
stationery foils, plumbing etc. 

LDPE 

Packaging films, domestic cling 
film, stretch wrap, shrink wrap, 
bags, shrouds, dust covers, peel-
able lids, cosmetic tubes, boutique 
shopping bags 

Irrigation pipes, cable insulation, 
agricultural films, rational moulded 
products such as tanks  

PP 
Yoghurt tubs, margarine tubs, ice 
cream containers, wrappers, 
packaging films, bottles, caps and 

Coat hangers, battery cases, reels, 
automotive components such as 
bumpers, furniture, bowls, buckets, 
carpeting, hair extensions, 
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Material 

Applications 

Packaging Non-packaging 

closures, canisters, strapping tape, 
woven bags, crates 

appliances including toasters and 
kettles, toilet seats, ropes, fishing 
nets 

PS-HI 

(High impact) 

Yoghurt and other dairy product 
tubs, display boxes, cake domes, 
punnets 

Coat hangers, take away cutlery, 
take away crockery, toys, cups, 
plates, audio and video cassette 
housings, CD and DVD covers, cell 
phone covers, stationery items 
including pens and rulers, toys, 
watch glasses, shower doors, office 
drawers, stationery trays etc. 

PS-E 

(Expanded) 

Protective packaging, take-away 
food containers, clamshell 
packaging, meat and vegetable 
trays, punnets 

Vending cups, insulation panels, 
suspended ceiling panels 

Others, 
Polycarbonate 

(PC) 

 

Baby bottle, housings for cameras, 
video equipment, light covers, 
traffic light covers, safety glasses, 
visors, crash helmets 
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: Standard Deviation 

Table B.1. Raw data showing standard deviations of products yields (Atmospheric slow) 

Temperature 

(ºC) 

Product yields and standard deviations (wt.%) 

Heavy oil  Light oil gas char 

450 68.6 ± 0.2 13.8 ± 0.5 5.6 ± 0.4 5.7 ± 1.5 

488 70.3 ± 0.2 15.3 ± 0.8 5.8 ± 0.3 3.1 ± 0.4 

525 63.8 ± 1.7 17.1 ± 1.1 8.4 ± 0.2 2.6 ± 0.2 

600 48.0 ± 2.0 15.0 ± 1.0 27.0 ± 1.3 2.5 ± 0.1 

 

 

 

Table B.2. Raw data showing standard deviations of products yields (Atmospheric fast-insertion) 

Temperature 

(ºC) 

Product yields and standard deviations (wt.%) 

Heavy oil  Light oil gas char 

450 62.9 ± 2.0 14.0 ± 0.4 4.0 ± 1.0 14.0 ± 0.9 

488 69.7 ± 0.8 14.8 ± 0.0 7.2 ± 0.5 3.0 ± 0.1 

525 64.6 ± 0.5 16.0 ± 0.2 10.1 ± 1.9 2.6 ± 0.1 

600 31.0 ± 6.4 29.5 ± 0.6 31.8 ± 3.2 2.5 ± 0.1 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



116 
 

Table B.3. Raw data showing standard deviations of products yields (Vacuum slow) 

Temperature 

(ºC) 

Product yields and standard deviations (wt.%) 

Heavy oil  Light oil gas char 

450 62.9 ± 1.9 26.1 ± 3.3 1.7 ± 0.1 4.4 ± 0.6 

488 60.5 ± 4.6 30.3 ± 3.8 2.3 ± 0.6 2.5 ± 0.2 

525 64.5 ± 3.0 28.2 ± 3.6 3.4 ± 0.1 1.9 ± 0.4 

600 61.1 ± 0.8 25.2 ± 1.5 2.9 ± 1.2 2.4 ± 0.0 

 

 

 

Table B.4. Raw data showing standard deviations of products yields (Vacuum fast insertion) 

Temperature 

(ºC) 

Product yields and standard deviations (wt.%) 

Heavy oil  Light oil gas char 

450 64.7 ± 0.9 25.5 ± 1.0 1.8 ± 1.0 4.6 ± 0.2 

488 66.5 ± 1.8 25.3 ± 0.0 2.2 ± 0.5 3.1 ± 0.5 

525 64.5 ± 3.0 28.2 ± 3.6 5.11 ± 1.2 1.9 ± 0.4 

600 61.1 ± 0.8 25.2 ± 1.5 7.36 ± 0.5 2.4 ± 0.0 
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Table B.5. Raw data showing standard deviations of products yields (Pilot tests) 

Temperature 

(ºC) 

Product yields and standard deviations (wt.%) 

Oil from 

condensers  

Wax from char 

box 

gas char 

450 76.90 ± 0.5 11.57 ± 0.9 5.63 ± 0.5 1.29 ± 0.1 

460 80.14 ± 0.2 10.21 ± 2.6 6.83 ± 0.9 1.13 ± 0.3 

488 69.49 ± 0.9 6.80 ± 0.4 10.57 ± 1.4 0.78 ± 0.0 

507 70.81 ± 2.2 8.68 ± 1.0 13.71 ± 0.1 0.96 ± 0.1 

525 70.22 ± 2.6 4.98 ± 1.1 15.52 ± 2.2 0.55 ± 0.1 
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: Simulated distillation used for GC/MS characterisation of 

oils 

 

 

Figure C.1. GC/MS Chromatogram of Alkane standard used in simulated distillation showing the 
retention time ranges for gasoline, diesel and wax range compounds used to characterise oils. 

 

Decane 

Tricosane 

Gasoline range 

(C6-c12) 
Diesel range 

(C11-C23) 

Wax (C23+) 
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: Images of condensable products and char obtained from bench 

 

 

Figure D.1.Heavy condensable products obtained from ambient condition condenser. (A) Oils 

recovered at 600 °C under atmospheric conditions showing its viscous nature (wax-containing), (B) 

Oils recovered at 450 °C under atmospheric conditions showing its less viscous wax nature, (C) 

Condensable product obtained in ambient condition condenser under vacuum showing its completely 

solid wax nature. 

 

 

Figure D.2. Light condensable products obtained under dry ice condensers showing their clear, free-

flowing and wax-free nature. (A) From ambient, (B) From vacuum. 
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Figure D.3. Images of char showing complete and incomplete conversions of PP. (A) Sample boat 

showing char remains after complete conversion of PP at 600 °C under atmospheric condition, (B) 

Char sample obtained from the pyrolysis of PP at 600 °C, (C) Sample boat showing incomplete 

conversion of PP at 400 °C. 
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