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Abstract

Forecasts indicate that video will make up 82% of all Internet traffic by 2022. Advancing

video compression efficiency will play a crucial role in curbing high bitrates and mitigating

excessive bandwidth consumption. To this end, recent deep learning models are emerging as

likely successors to hand-tuned standard video codecs.

Our goal is to further refine the compression quality of existing video codecs by improving

their ability to predict video content. We subdivide video compression into two focus areas:

1. Still image compression of video frames, for which we propose the Binary Inpainting

Network (BINet).

2. Motion compression in video, for which we learn binary motion codes (P-FrameNet and

B-FrameNet).

With BINet we learn to inpaint an image patch from the binary codes of its nearest neighbours

to better compress a still image or single video frame (intra-frame compression). We adapt

BINet to perform inter-frame prediction with P-FrameNet and B-FrameNet by learning binary

motion codes that compensate for the relative displacement undergone by objects in a video

sequence across time. Within the context of video compression our prediction methods are, to the

best of our knowledge, the first fully parallelisable means of video intra-frame and inter-frame

prediction.

We show how inclusion of the BINet framework improves the intra-frame compression of a

competitive deep image codec across a range of bitrates such that it outperforms the standard

image codec JPEG. Experiments also highlight that its full-context patch inpaitings are of a

higher quality than those sequentially predicted by the standard image codec WebP. In terms

of inter-frame video prediction, we show that our learned binary motion codes describe more

complex motion than the block-based optical flow algorithms employed by the standard video

codecs: H.264 and H.265. This indicates that the BINet and our learned binary motion codes

could be valuable extensions to existing video codecs, specifically in improving their intra-frame

and inter-frame compression capabilities.

iii
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Opsomming

Voorspellings dui daarop dat video teen 2022, 82% van alle internetverkeer sal uitmaak. Die

bevordering van videokompressie doeltreffenheid sal ’n belangrike rol speel in die bekamping

van hoë bitrates en die vermindering van buitensporige bandwydte verbruik. Met die oog hierop

verskyn die onlangse diepleermodelle as waarskynlike opvolgers vir die standaard handgestemde

videokodekse.

Ons doel is om die kompressiekwaliteit van bestaande videokodekse verder te verfyn deur

hul vermoë om video-inhoud te voorspel, te verbeter. Ons verdeel videokompressie in twee

fokusareas:

1. Stilbeeldkompressie van videorame, waarvoor ons die ‘Binary Inpainting Network’ (BINet)

voorstel.

2. Bewegingskompressie in video, waarvoor ons binêre bewegingskodes leer (P-FrameNet

and B-FrameNet).

Deur die gebruik van BINet, leer ons om ’n beeldpatroon uit die binêre kodes van sy naaste

bure te ‘inpaint’ om ’n enkele videoraam (kompressie binne raam) beter saam te druk. Ons pas

BINet aan om interraamvoorspellings uit te voer met P-FrameNet en B-FrameNet deur binêre

bewegings kodes te leer wat kompenseer vir die relatiewe verplasing wat deur voorwerpe in ’n

videosekwensie oor tyd heen ondergaan word. BINet is binne die konteks van videokompressie,

na die beste van ons wete, die eerste volledige parallelle middle van voorspelling van videorame.

Ons bewys hoe die insluiting van die BINet-raamwerk die kompressie binne die raam van ’n

mededingende diepbeeldkodek oor ’n reeks bitrates verbeter sodat dit die standaard-beeldkodek

JPEG oortref. Eksperimente beklemtoon ook dat die volledige konteks van kol ‘inpaintings’

van hoër gehalte is as dié wat opeenvolgend voorspel word deur die standaard-beeldkodek

WebP. In terme van voorspelling tussen raamwerke, toon ons aan dat ons aangeleerde binêre

bewegingskodes meer ingewikkelde beweging beskryf as die blokgebaseerde optiese vloei-

algoritmes wat gebruik word deur die standaard-videokodekse: H.264 en H.265. Dit dui daarop

dat die BINet en ons aangeleerde binêre bewegingskodes waardevolle uitbreidings vir bestaande

videokodekse kan wees, veral om hul binne-raam en interraam kompressievermoë te verbeter.
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x⊤ Transpose of matrix x.

dy

dx
The derivative of y with respect to x.

∂y

∂x
The partial derivative of y with respect to x.

∇x Multivariate derivative of x.

~V Directional or optical flow vector.

E(·) Encoder function.

D(·) Decoder function.

Auto(·) Autoencoder function with encoding and decoding steps.

∆t Difference in t.
∑

Summation.

µ Statistical mean.

E[x] Expectation of the random variable x.

σ Statistical variance.

σ(·) Sigmoid activation function.

tanh(·) Hyperbolic tangent activation function.

⊗ Deep learning convolution operator.

⋆ Cross correlation operator.

∞ Infinity.

≃ Approximately equal to.

∼ Approximated by.

|x| Absolute value of x.

x · y Dot product of vectors x and y.

||x|| Magnitude of vector x.

⌊·⌋ Floor operator.

⌈·⌉ Ceiling operator.

xii
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Nomenclature xiii

L1 Sum of all the absolute differences between the target and predicted values.

L2 Sum of all the squared differences between the target and predicted values.

x̂ An approximate reconstruction of x.
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Nomenclature xiv

Acronyms and abbreviations

AC Alternating Current

Adam Adaptive Moment

AI Artificial Intelligence

a.k.a also known as

ANN Artificial Neural Network

AR Additive Reconstruction

ARPS Adaptive Rood Pattern Search

AVC Advanced Video Coding a.k.a H.264

AUC Area Under Curve

bits binary units

B-Frame Bi-directional Frame

BINet Binary Inpainting Network

bpp bits-per-pixel

CLIC Challenge on Learned Image Compression

CNN Convolutional Neural Network

conv-layer convolution-layer

CODEC enCOder DECoder

CPU Central Processing Unit

CRF Constant Rate Factor

CUDA Compute Unified Device Architecture

DBA Dynamic Bit Assignment

DC Direct Current

DCG Dynamic Computation Graph

DCT Discrete Cosine Transform

DLM Detail Loss Metric

DNN Deep Neural Network

docs. Documentation

DS Diamond Search

DWT Discrete Wavelet Transform

EPE End Point Error

ES Exhaustive Search
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Nomenclature xv

ESPCN Efficient Sub-Pixel Convolutional Network

FFmpeg Fast Forward MPEG

FSS Four Step Search

GB Gigabyte

GCP Google Cloud Platform

GAN Generative Adversarial Network

GOP Group Of Pictures

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HD High Definition

HEVC High Efficiency Video Coding a.k.a H.265

HR High Resolution

HSV Hue Saturation Value

HVS Human Visual System

IDCT Inverse Discrete Cosine Transform

I-Frame Intra-Frame

I/O Input/Output

JPEG Joint Photographic Experts Group

LR Low Resolution

LSTM Long Short Term Memory

MJPEG Motion JPEG

MPEG Motion Picture Experts Group

MSE Mean Square Error

MV Motion Vector

MVD Motion Vector Difference

MVP Motion Vector Predictor

NTSS New Three Step Search

NVVL NVIDIA Video Loader

OSR One-Shot Reconstruction

PCA Principal Component Analysis

P-Frame Predicted Frame

PIL Python Imaging Library
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Nomenclature xvi

PNG Portable Network Graphics

PSNR Peak Signal to Noise Ratio

PSNR-HVS Peak Signal to Noise Ratio - Human Visual System

ReLU Rectified Linear Unit

RAM Random Access Memory

RGB Red Green Blue

RLE Run Length Encoding

RNN Recurrent Neural Network

SES Simple and Efficient Search

SGD Stochastic Gradient Descent

SIFT Scale Invariant Feature Transform

SR Super Resolution

SSIM Structural SIMilarity

STE Straight Through Estimation

SVD Singular Value Decomposition

SVM Support Vector Matrix

TanH Hyperbolic Tangent

TSS Three Step Search

VCS Version Control System

VIF Visual Information Fidelity

VLC Variable Length Coding

VMAF Video Mutli-method Assessment Fusion

VTL Video Trace Library

YCrCb Luminance Chroma-red Chroma-blue a.k.a YUV

2D Two Dimensional

3D Three Dimensional
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Chapter 1

Introduction

Video compression attempts to reduce the number of bits needed to represent a video file without

compromising its perceived quality. Without compression, HD video files can easily run over 300

GB, making scalable streaming and storage next to impossible. Tweaking the tradeoff between

bitrate and video quality is an ever present problem in video codec design.

1.1. Related Work

Standard video codecs, that have dominated compression for the past decade, are meticulously

hand-engineered and lack end-to-end optimisation [1, 2]. Lately, deep learning has spearheaded

the development of state-of-the-art video compression systems [3–5]. These systems typically

consist of an image codec for compressing reference frames and an inter-frame prediction model

that predicts a set of target frames from the reference frame content [6].

Deep neural networks trained through loss-driven end-to-end optimisation have been shown

to outperform standard image codecs such as JPEG and WebP [7–18]. These deep image codecs

are trained to compress full-sized images and applying them on a patch-by-patch basis requires

that each image patch be encoded and decoded independently. The structural influence imposed

by pixels from adjacent patches is therefore lost, which can cause block artefacts at low bitrates.

Patch-based encoding schemes are, however, preferred to their full-resolution counterparts, as

they are more memory efficient [6]. Intra-frame prediction improves patch-based compression

by reinstating the structural ties between independently encoded patch regions. Currently, intra-

frame prediction is dominated by sequential inpainting techniques [19,20], where previous patch

decodings within an image (single video frame) are used to predict a basis for a target patch

region.

Up to now optical flow has enabled inter-frame prediction in standard video codecs such

as H.264 [1] and H.265 [2] as well as deep video compression systems [3–5]. Optical flow

vectors describe how pixels in a video frame should be translated spatially over time to best

estimate true object and camera motion [21]. After the transmission of a reference video frame,

which has been compressed independently by an image codec, only highly compressible optical

flow vectors need be transmitted to motion-compensate pixels in the reference frame to form

predictions of the subsequent frames within a video sequence.

1
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1.2. Problem Statement 2

1.2. Problem Statement

Despite these recent advances in deep image and video compression, we recognise shortcomings

in the way prediction is carried out to aid compression. In intra-frame prediction, image patches

are sequentially inpainted from previous patch decodings. This ignores context from future

patches and prevents parallelised prediction. Existing video codecs rely on optical flow based

inter-frame prediction, where motion vectors spatially shift pixels in past frames to predict

future frames. Although effective at capturing translational motion, optical flow fails to express

complex motion transforms such as warping, occlusion, rotation and colour shift. Optical flow

based prediction also requires sequential motion estimation and compensation steps, which slows

down the compression process.

1.3. Research Objectives

• Research both standard and deep learning based techniques that enable image and video

compression in modern codecs, while noting common trends, strengths and weaknesses.

• Implement and experiment with existing deep image codecs to gain experience in the field

of deep learning based compression and establish best practices.

• Design and implement innovative intra-frame and inter-frame prediction strategies for

fully parallelised video prediction using deep neural networks.

• Demonstrate how these learned intra-frame and inter-frame prediction strategies can be

included into existing image and video compression systems to improve their compression

efficiency.

1.4. Contributions

• For intra-frame prediction we propose the Binary Inpainting Network (BINet) in Chapter 4.

BINet is an autoencoder framework which learns to inpaint a still image patch from the

binary encodings of its nearest neighbours. As opposed to sequential inpainting methods

where patches are decoded sequentially and previous reconstructions are used to predict

subsequent patches, BINet operates directly on the binary codes of surrounding patches

without access to the original or reconstructed image data. Both encoding and decoding

can therefore be performed in parallel. We show that binary inpainting improves the

compression quality of a competitive deep image codec across a range of compression

levels, outperforming JPEG. BINet’s intra-frame predictions are also shown experimentally

to be of a higher quality than the sequential intra-frame inpainting performed by the

standard image codec WebP.
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1.5. Thesis Outline 3

• Inspired by BINet, in Chapter 5 we propose P-FrameNet and B-FrameNet to learn binary

motion codes for video inter-frame prediction instead of relying on block-based optical

flow vectors. Our learned binary motion codes are shown to model more complex motion

than flow-based methods and enable our decoder module to perform parallel video frame

prediction. Replacing the optical flow based block-motion algorithms in existing video

codecs with our learned inter-frame prediction model, we are able to outperform the

standard video codecs H.264 and H.265 at low-bitrates.

• Building on recent work in deep image compression we propose learning 3D dynamic

bit assignment in Chapter 5 as a way of adapting our deep video codec’s binary motion

codes across both space and time. This improves compression by allocating more bits to

complicated video regions with moving objects and less bits to still video scenes, resulting

in a lower bitrate on average.

Our work “BINet: a binary inpainting network for deep patch-based image compression” in

Chapter 4 and “Deep motion estimation for parallel inter-frame prediction in video compression”

in Chapter 5 is submitted as two separate articles to the Journal of Visual Communication and

Image Representation, and is currently under review.

1.5. Thesis Outline

This thesis proceeds as follows: First, in Chapter 2 we define various video compression and

deep learning concepts that are key to one’s comprehension of this work. We then implement and

experiment with existing deep image codecs in Chapter 3, to gain insights into the world of deep

video compression. The BINet, a novel means of deep image inpainting, is then introduced in

Chapter 4 for improved intra-frame video prediction. Building on BINet, in Chapter 5 we learn

binary motion encodings with P-FrameNet and B-FrameNet that enhance H.264 and H.265’s

ability to predict consecutive video frames. Finally, we conclude with notes on future research

applications.
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Chapter 2

Key Concepts

In this chapter we touch upon various video coding and deep learning concepts to assist with

the reader’s understanding of this thesis. First off, we introduce the key components found in

a typical lossy video codec and explain the associated video coding terminology and concepts.

Next, we detail the inner workings of the deep neural network layers that are at the heart of our

deep compression systems. Finally, we discuss our software development process, highlighting

tools that may prove useful for continued research in this field.

2.1. Video Compression

Digital video is the discrete representation of a ‘natural visual scene’ that has been sampled both

spatially and temporally [22]. Capturing a grid of discrete colour intensity values (pixels) at a

specific point in time produces a still image or video frame. A video consists of several images

sampled at a time interval known as frame rate. Videos vary spatially in terms of texture, colour

and brightness; and temporally due to object or camera motion and changes in lighting [6]. Video

quality is proportional to the number of pixels and frame rate used during sampling. A higher

number of pixels or resolution improves video frame quality and a higher frame rate depicts

smoother motion. As such, High Definition (HD) video contains a large amount of information.

Compression attempts to reduce the number of bits needed to represent a video without severely

compromising its perceived quality. Compression allows videos to be transmitted without

exceeding bandwidth and storage requirements [22]. Typical compression systems make use of

an enCOder and DECoder pair termed a CODEC.

Compression can either be lossless or lossy. Lossless compression involves the removal of

statistical redundancy from video or image data [6]. This allows for perfect reconstruction at

the cost of shallow compression ratios. Lossy compression is irreversible as codecs reconstruct

an approximation of the input data based on a low-dimensional encoding [23]. Lossy codec

development works towards reducing the tradeoff between the degree of compression afforded

by a codec and the quality of its reconstruction. We focus on lossy compression, without which

the level of compression required for modern video transmission would be impossible.1

1 This work focusses on video compression for digital storage and transmission; research into sub-sampling

techniques used for compressed sensing [24] during video capture is left to future work.

4
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2.1. Video Compression 5

Figure 2.1: The key components that make-up a typical video compression system. Here

we show the interplay between transform coding (a), prediction (b) and entropy coding (c)

sub-systems that together form a video codec.

2.1.1. Video Codec

A lossy video codec typically consists of prediction, transform and entropy coding sub-systems

as depicted in Figure 2.1 [6].

Transform Coding

Transform coding, indicated by (a) in the figure, involves transforming image or image residual

data into a transform space that separates the signal into its uncorrelated base frequencies.

The transform must ensure that the bulk of the signal’s energy is concentrated over as few

fundamental components as possible, so that higher frequencies can be quantised or removed

without significantly affecting the image signal’s quality [25]. Prominent block-based transforms

include the Discrete Cosine Transform (DCT) and Singular Value Decomposition (SVD) [25].

The Discrete Wavelet Transform (DWT), which takes a whole image as input, has been shown to

outperform the DCT as it is less prone to block artefacts. However, it requires significantly more

memory for processing and does not allow for block-based motion estimation/compensation

apparent in most standard video codecs [6]. We implement existing deep image codecs for

transform coding in Chapter 3.

Prediction

The prediction system shown at (b) is used to infer the pixel values of specific patch regions called

macroblocks based on that of their surroundings. The error between the predicted macroblock

and the original is termed a residual. Only this residual error need be transmitted to the decoder.

It is important to note that in most compression systems the decoder is used during the encoding

process to assist with the prediction and formation of residuals.
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2.1. Video Compression 6

Video codecs employ two forms of block-based prediction: intra-frame (spatial prediction)

and inter-frame (temporal prediction) [22]. Intra-frame prediction aims to predict each mac-

roblock’s content from neighbouring patches that have already been decoded within a single

video frame. In inter-frame prediction motion vectors guide the movement of macroblocks

across time to predict future frames from those that have previously been decoded [1]. Improved

prediction quality results in the transmission of lower energy residuals that are more easily com-

pressible. In Chapter 4 we submit learned binary inpainting: a novel means of deep intra-frame

prediction. We then build on this to perform motion guided inter-frame prediction in Chapter 5.

Entropy Coding

Entropy coding at (c) involves the lossless conversion of the compression values that need to be

transmitted to the decoder (transform coefficients, motion vectors, etc.) into a serial bitstream.

This conversion is accomplished using Variable Length Coding (VLC) strategies, like Huffman

Encoding [26], to exploit the statistical redundancy that exists between the compressed values.

The basic premise of VLC is to assign longer bit codes to values that occur less often and shorter

codewords to the most prominent compression values [6]. Optimising the entropy of our models’

codes is left to future research.

2.1.2. Optical Flow

Optical flow estimates true object and camera motion by describing the displacement of pixels

in video frames over time [21]. Brightness constancy is assumed [21], i.e. the pixel intensity

I(x, y, t) at the point (x, y) in a video frame sampled at time t does not change when it moves,

I(x, y, t) = I(x+∆x, y +∆y, t+∆t). (2.1)

Taylor expansion of the r.h.s of equation (2.1) yields the optical flow equation,

∂I

∂x
~Vx +

∂I

∂y
~Vy +

∂I

∂t
= 0, (2.2)

where ~Vx = dx
dt

and ~Vy =
dy

dt
are the x and y motion vector components of I(x, y, t) that indicate

the movement of the pixel between two video frames sampled ∆t seconds apart.

We can calculate the image gradients, ∂I
∂x

, ∂I
∂y

and ∂I
∂t

, as the entire video surface is assumed

smooth and differentiable [21]. This assumption ignores occlusion, where overlapping object

edges introduce discontinuity. To solve for the two unknowns, ~Vx and ~Vy, we require additional

constraints.

Block-based optical flow methods assume that neighbouring pixels undergo similar mo-

tion [27, 28]. Applying this assumption, on say a 2 × 2 pixel region, we get four variants of

equation (2.2) that can be solved iteratively for ~Vx and ~Vy [27].
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2.1. Video Compression 7

Farneback approximates a group of adjacent pixels, ft(x), as a quadratic polynomial [28],

ft(x) ≈ x⊤Atx+ b⊤t x+ ct. (2.3)

The symmetric matrix At, vector bt and scalar ct are obtained via a least squares fit to the input

pixel data [29]. The ideal translation or displacement, d, of this pixel region after ∆t seconds is

ft+∆t = ft(x− d)

= (x− d)⊤At(x− d) + b⊤t (x− d) + c1

= x⊤At+∆tx+ b⊤t+∆tx+ c2. (2.4)

By equating the coefficients in equations (2.3) and (2.4) (brightness constancy assumption [21]),

we can solve for the displacement vector:

d = −1

2
A−1

t (bt+∆t − bt), (2.5)

assuming At is non-singular [28].

In Chapter 5 we compute the dense (per-pixel) optical flow between our compressed video

frames with OpenCV’s default implementation of Farneback’s polynomial expansion method [28]

and LiteFlowNet—a pre-trained deep flow estimator [30].

2.1.3. Colour Spaces

A colour space is a mathematical model that represents ‘true colour’ with a range of numerical

values [22]. Monochrome (black and white) images require a single value to express the

brightness of each sampled pixel, while colour images require at least three per pixel position [6].

Colour spaces used in the field of video compression include RGB and YCrCb. The RGB colour

space uses three integer values in the range of 0-255 to indicate the relative strengths of Red,

Green and Blue (RGB) light that constitute a colour sample. Digital displays illuminate each

RGB component separately, with an intensity proportional to its given RGB value to create the

impression of ‘true colour’. RGB values can be linearly transformed to fall within the YCbCr

colour space by separating each pixel’s luminescence (Y) and colour components (CbCr):

Y = KRR
′ +KGG

′ +KBB
′

Cb =
B′ − Y

2(1−KB)

Cr =
R′ − Y

2(1−KR)
, (2.6)

where R′, G′, B′ are RGB values normalised to fall in the range [0, 1] and KR, KG and KB are

constants tuned for different video applications [31, 32].
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The Human Visual System (HVS) is more sensitive to changes in luminescence than it is to

changes in colour. Subsampling the YCrCb colour space’s chroma components can be used as a

simple means to store images more efficiently without noticeable loss in perceptual quality (4:2:2

and 4:2:0 subsampling strategies are typical) [22]. The deep compression algorithms presented

in this thesis are trained to operate in the RGB colour space. This design choice is arbitrary as

output images can easily be converted between colour spaces.

As is common practice [30, 33], optical flow fields are displayed in the Hue Saturation Value

(HSV) colour space [34], according to

H = cos−1

(
~V x · ~V y

‖~V x‖ ‖~V y‖

)

S = norm(~V x · ~V y)

V = 100%, (2.7)

where ~V x and ~V y are the x and y components of the optical flow vector field ~V . The angular

direction of the optical flow vectors is indicated by Hue (H), so vectors pointing in the same

direction are coloured the same. The magnitude of the vectors is normalised to fall in the

range [0, 100], and is indicated by the Saturation (S) or colour intensity, so vectors with lower

magnitudes are more transparent and vice versa. Value (V) is set to 100%, so vectors with zero

magnitude are white (zero colour intensity).

2.1.4. Video Containers and Formats

It is important at this point to clarify the distinction between video codecs and video file

containers. A codec refers to the type of encoder and decoder used to compress a video file,

whereas a container specifies the file format in which the compressed bits are stored. Certain

formats are synonymous with specific codecs, e.g. MPEG4 (‘.mp4’) files typically use, but

are not limited to, the H.264 codec [6]. RAW (‘.raw’) or YUV (‘.yuv’) files are used

for uncompressed video storage. PNG (‘.png’) files store images losslessly. The image

compression models in Chapters 3 and 4 are trained on lossless PNG images. As video datasets

are typically encoded with lossy codecs and not in uncompressed format, we resize video frames

prior to training to avoid learning unwanted compression artefacts in Chapter 5.

2.1.5. Standards

Video and image compression standards are a set of guidelines that govern the interoperability

between encoders and decoders from different developers. These guidelines define I/O (In-

put/Output) formats as well as settings and features that need to be implemented in order to

make a codec valid under the standard. Adherence to standards is crucial as it allows for ease

of integration between different applications, and guarantees a certain level of performance.
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Currently, the most widely adopted image codecs are JPEG [25, 35] and WebP [19]. Eminent

video codecs include the Advanced Video Codec (AVC or H.264) [1] and the High Efficiency

Video Coding standard (HEVC or H.265) [2]. We use these codecs to gauge the effectiveness of

our deep compression models.

2.2. Evaluation Metrics

Quantifying video quality is non-trivial due to the inherently subjective nature of the Human

Visual System (HVS) [6]. Video quality can be assessed subjectively through the survey-like

procedures outlined in [36]. These procedures are unfortunately painstakingly slow, susceptible

to viewer bias and garner results that are not easily reproducible or directly comparable. Objective

algorithms have therefore become the norm in video codec performance assessment.

2.2.1. PSNR and SSIM

This thesis adopts two objective image evaluation metrics, namely Peak Signal-to-Noise Ratio

(PSNR) and Structural SIMilarity index (SSIM), to guide model development. More sophisticated

measures, like PSNR-HVS [37], that better model the HVS do exist but the aforementioned

metrics are used due to their prominence in related research [4, 7, 9]. Both algorithms are termed

full-reference as they are used to measure the degree of semblance between an m × n image,

X , and its distorted reconstruction, Y , having undergone lossy compression. The power of the

distortion noise introduced by compression is given by the mean squared error (MSE) between

the original image and its compression,

MSE =
1

mn

∑

m

∑

n

(Xmn − Y mn)
2. (2.8)

PSNR can then be expressed as:

PSNR = 10 log10

(
X2

max

MSE

)

, (2.9)

where Xmax is the maximum pixel value in the original image X .

The HVS is highly sensitive to changes in structural information [38]. As such structural

equivalence is an important factor when determining the quality of a compressed image. Unlike

PSNR, the SSIM algorithm models changes in the interdependencies that exist amongst adjacent

pixels. This allows it to penalise structural and edge distortions caused by blurring [38]. The

SSIM between a reference, x, and compressed, y, pixel region is given by:

SSIM(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (2.10)
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Following the procedure recommended in [38], the final SSIM score of a compressed image

is obtained by applying the SSIM index in equation (2.10) over 11 × 11 pixel regions in

a convolutional manner on a per channel basis and averaging the result. Equation 2.10 is

parameterised as stipulated in [38] with K1 = 0.01, K2 = 0.03 and means and variances scaled

by application of a Gaussian weighting process (σ = 1.5). The SSIM and PSNR image metrics

are applied to video sequences by averaging scores across multiple video frames.

2.2.2. EPE

End-Point-Error (EPE) is used in Chapter 5 to score the quality of translational motion in

reconstructed video frames. EPE is given as:

EPE =

√

(~V g − ~V p)2. (2.11)

We use EPE to measure the Euclidean distance between the optical flow vectors of the predicted,

~V p, and ground-truth, ~V g, video frames.

2.2.3. VMAF

Video compression models are also assessed using the Video Multi-method Assessment Fusion

(VMAF) framework developed and deployed by Netflix [39]. VMAF is a machine-learning

based video quality metric trained to combine the results of various perceptual models such that

its scores are more closely aligned with the human visual system than stand-alone objective

algorithms such as PSNR-HVS and SSIM [39].

More specifically, the scores obtained through application of Visual Information Fidelity

(VIF), Detail Loss Metric (DLM) and mean optical flow measures are weighted using a learnt

Support Vector Machine (SVM) regressor to produce a final VMAF score that falls within the

range of 0-100 [40]. A higher score is again indicative of greater reconstruction quality.

The FFmpeg commands used to calculate the quality between reference and compressed

video frames are listed in Appendix B.

2.3. Deep Learning Techniques

Machine learning algorithms give computers the ability to model patterns in data, and apply these

observations to process unseen data accordingly, without being explicitly programmed to do

so [41]. Deep learning is the branch of machine learning algorithms implemented with Artificial

Neural Network (ANN) architectures, inspired by the hierarchical structure of the biological

nervous system [42].

Applying Deep Neural Networks (DNNs) to video compression requires unsupervised

learning, i.e. the model must learn to only extract perceptually relevant features and these
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features have to be determined by the model from the input video itself. Here we give an

overview of the deep learning techniques at the foundation of our deep compression networks.

2.3.1. Architectural Building Blocks

Neurons

Neurons (also called perceptrons) form the most basic structural and functional elements of deep

neural networks. Figure 2.2 illustrates the structure of a neuron. Its output y in terms of i input

values x0,...,i−1 can be expressed as:

y = a(θ0x0 + . . .+ θi−1xi−1 + b), (2.12)

where θ0,...,i−1 denotes multiplicative weight values, b a biasing term and a(·) a non-linear

activation function that is either differentiable or assumed differentiable via approximation [43].

Activation functions allow Deep Neural Networks (DNNs) to model complex non-linear functions

and restrict neuron outputs. We adopt the commonly used ReLU [43], a(x) = max(0, x),

activation on most hidden layers and TanH, a(x) = tanh(x), whenever we want to squash values

into the range (−1, 1).

Figure 2.2: Structure of a neuron, the functional element of deep neural networks.

Feed-Forward Neural Networks

A feed-forward layer (multi-layer perceptron) consists of several neurons arranged such that its

output can be described as,

y = a(xθ⊤ + b), (2.13)

where θ is the layer’s weight vector matrix and x, y, and b denote the input, output and bias term

vectors, respectively [44]. Given that the input vector x consists of i values (equation (2.12)),

θ contains a vector of i weights per perceptron in the feed-forward layer. Cascading multiple
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feed-forward layers by connecting each layer’s output to the next layer’s input gives rise to a

feed-forward network.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are the go-to architectural components in modern

deep computer vision applications, having pioneered breakthroughs in image classification [45],

semantic segmentation [46], real-time object detection [47].

Present state-of-the-art deep image and video codecs are all CNN based [4, 15, 18]. The

connectivity of neurons in CNNs resembles the structure of the animal visual cortex [48]. A 2D

convolutional layer consists of several learnable filters where each filter is made up of neurons

arranged along three dimensions, namely width, height and channel depth [49, 50]. Each filter

has a small spatial extent (receptive field), but reaches through the full channel depth C of the

input tensor. Filters move across the input’s width and height calculating dot products between

their weights and the pixels that fall within their respective receptive fields [50]. The convolution

of an input, x, by f filters whose weights are grouped in θ can be written as [51],

y = b+ θ ⊗ x

= b[f ] +
C∑

c=0

θ[f ][c] ⋆ x[c],
(2.14)

where ⋆ represents the channel-wise valid cross correlation between two 2D signals, defined

as [23]:

(h ⋆ g)[i][j] =
∞∑

m=−∞

∞∑

n=−∞

h[m− i][n− j]g[i][j]. (2.15)

The output, y, is a set of 2D feature maps—one per filter, f . Intuitively, each filter learns to detect

a distinct aspect of the input image (e.g edges, shapes, colour patterns) whose presence or absence

at different spatial locations is noted in the outputted feature map. Adding consecutive conv-

layers therefore allows for more complex feature extraction. Equation (2.14) can be extended to

perform 3D convolutions by shifting four dimensional filters across a video’s width, height and

time axes.

So what makes conv-nets so popular?

• Weight-sharing: using the same filter weights at all spatial pixel locations allows CNN’s

to scale more efficiently to high-resolution image content than fully-connected layers [50].

• Local connectivity: makes CNN’s translation invariant, i.e. a filter’s ability to correctly

identify a feature is impervious to shifts in its spatial position [48].

Certain hyperparameters have to be hand-chosen for each conv-layer prior to training. These

include kernel-size, stride, dilation and padding [50]. Our parameter selections are always

included in detailed network diagrams, and result from informal grid-search tuning or are based
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on best-practices from previous works [9, 20, 52]. As an aside, we found that zero-padding

is necessary to preserve edge features and including bias terms significantly improved model

performance.

Contemporary work argues for fully convolutional networks, devoid of pooling and fully-

connected layers that hinder performance [53] . Following suit, we strive towards developing

fully convolutional codecs as it would allow us to compress a diverse range of input image or

video sizes.

Multi-Scale Convolutions

Video compression often demands that we encode motion occurring at different scales (see

Chapter 5). Regrettably, standard convolutional layers are confined to capturing relationships

between pixels that fall within their allocated kernel-size [54]. This prevents the learning of large

scale movements.

Multi-scale convolutions address this issue by combining filters with different dilation

factors [55]. Figure 2.3 shows how dilation, changing the spacing between filter elements, allows

for richer sampling at different scales. This approach is more lightweight than using normal

convolutional filters with different kernel-sizes as dilations do not introduce any new weights.

The context derived from different scales is aggregated by a post-processing convolutional layer,

ergo the entire multi-scale convolutional unit implements a type of deep Scale Invariant Feature

Transform (SIFT) [56].

Figure 2.3: Structure of a multi-scale convolution layer.

Skip Connections

Adding links or ‘skip connections’ between convolutional layers makes the training of very

deep neural networks less prone to vanishing gradients, when gradients become so small that

learning stagnates [57, 58]. Figure 2.4 shows how the network’s output can be back-propagated
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to earlier network stages directly via the link without being attenuated by intermediate layers.

Linking convolutional layers involves either a summation or concatenation of the output from

previous layers to the input of the current layer. Later layers can then learn to incorporate features

extracted by past layers for improved image reconstruction [59].

We tend to incorporate a U-Net [60] inspired linkage structure into our compression networks.

U-Net concatenates the outputs of multiple down-sampling layers and links these features

to downstream upsampling layers. We use 1 × 1 convolutions [61] to reduce the channel

dimensionality of the concatenated features whilst maintaining their original resolution. We do

not show 1× 1 convolutions on our compression model diagrams for brevity.

Figure 2.4: Skip connections for deeper Convolutional Neural Networks (CNNs).

Convolutional Gated Recurrent Units

Recurrent Neural Networks (RNNs) are particularly well suited towards modelling sequential

data [62]. This is because they have persistence, i.e. they maintain state memory that is passed to

subsequent model iterations. Non-gated RNNs struggle to model long term dependencies and are

prone to vanishing gradients during training [63]. Gated Recurrent Units (GRUs) [64] and Long

Short Term Memory (LSTM) cells [63] introduce memory gates to address these shortcomings.
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In particular use cases GRUs lead to faster parameter updates and computation times than LSTM

cells [62]. Convolutional GRUs are also shown in [9] to be better suited towards progressive

image compression.

Consequently, we use convolutional GRUs to implement the recurrent structures presented in

Chapters 3 and 4. In connection to Figure 2.5, Convolutional GRU logic at an arbitrary time-step

t can be expressed as [64]:

rt = σ(θir ⊗ xt + bir + θhr ⊗ h(t−1) + bhr),

zt = σ(θiz ⊗ xt + biz + θhz ⊗ h(t−1) + bhz),

nt = tanh(θin ⊗ xt + bin + rt(θhn ⊗ h(t−1) + bhn)),

ht = (1− zt)nt + ztht−1. (2.16)

Where ⊗ denotes the convolution operation detailed earlier in this section. Intuitively, the ‘update

gate’ zt selects information from the previous state h(t−1) that is pertinent and needs to be passed

on to the next model iteration, whereas rt, the ‘reset gate’, decides what is to be forgotten. The

‘new gate’ nt ensures only relevant information from ht−1 is combined with the current input xt

to produce new state information. The current state ht is then updated with new state, nt, and

previous state information in accordance with zt. Weights and bias terms in Equation (2.16) are

labeled such that θir and θhr denote the weights applied to the input and hidden state by the

‘reset gate’ r.

Figure 2.5: Structure of a convolutional Gated Recurrent Unit (GRU) layer.
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Autoencoder Networks

Autoencoders provide a means of learned dimensionality reduction that has been shown to out-

perform previously popular statistical methods, e.g. Principal Component Analysis (PCA) [65].

An autoencoder consists of a multi-layer encoder and decoder network linked by a low dimen-

sional layer or bottleneck. Equation (2.17) summarises the autoencoding process [65]. The

encoder network E(·) reduces high dimensional input data x to a lower-dimensional space. The

decoder D(·) then aims to create a faithful reconstruction of the input, x̂, from this compact

representation.

x̂ = D(E(x)) (2.17)

Take note that E(·) and D(·) are not limited to any specific neural network architecture. Autoen-

coders are ever-present in related deep compression research [5, 18], and form the architectural

basis of all the deep image and video codecs presented in this work.

Pixel Shuffling

The decoders in our compression networks are tasked with upsampling low-resolution feature

(LR) encodings to re-synthesize high-resolution (HR) images and videos. This process is

analogous to image super resolution (SR) (increasing the size of small-scale images) [66].

Upscaling an image by a factor r can be achieved through the use of nearest-neighbour [67] or

bi-cubic pixel interpolation algorithms [68]. Deep deconvolutional methods such as transposed

convolutions [69] and sub-pixel convolutions [70], stride = 1
r
, are able to learn more complex

pixel interpolations for improved SR quality.

Upsampling at a decoder layer increases the computational cost at subsequent layers by

a factor of r2. The Efficient Sub-Pixel Convolutional Network (ESPCN) [71] sidesteps this

issue by learning pixel interpolations in LR space. Put differently, it learns to use LR feature

extractions to represent HR content. The ESPCN consists of normal convolutional layers that

operate on LR features followed by a Pixel-Shuffling layer that trades depth for space,

(C,H,W )
︸ ︷︷ ︸

LR

Pixel-Shuffle−−−−−−→
(
C

r2
, H × r,W × r

)

︸ ︷︷ ︸

HR

. (2.18)

Where (C,H,W ) denotes the channel depth, height and width of the LR image features. Equa-

tion (2.19) can readily be extended to include a time dimension, T , for video SR,

(C, T,H,W )
︸ ︷︷ ︸

LR

Pixel-Shuffle−−−−−−→
(
C

r3
, T × r,H × r,W × r

)

︸ ︷︷ ︸

HR

. (2.19)

Networks incorporating ESPCN outperform deconvolution based SR systems both qualita-

tively and in terms of computational efficiency [71, 72]. This prompts us to use Pixel-Shuffling

for upsampling in all our decoder architectures.
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2.3.2. Learning and Optimisation

In deep learning we endeavour to find a set of network weights, θ, that minimises some objective

function, F (θ). If F (θ) is defined and differentiable around an initial parameterisation θ0, it will

decrease most rapidly in the direction of its negative gradient, −∇F (θ) [73]. Most deep learning

algorithms are trained using some form of Stochastic Gradient Descent (SGD). SGD updates

network weights iteratively per batch of N training examples according to equation (2.20) [74].

θt+1 = θt − γ∇F (θt)

= θt −
γ

N

N−1∑

n=0

∇Fn(θt)
(2.20)

In equation (2.20) t is used to denote the current training iteration and γ the learning rate.

For a neural network with L-layers, the derivative of F (θ) with respect to an arbitrary layer’s

weights, θl, is calculated via chain rule or back-propagation of gradients [73]:

dF (θl)

dθl
=

∂F (θl)

∂yL

∂yL

∂yL−1
· · · ∂y

l

∂θl
, (2.21)

where yl is used to denote the output of layer l.

To train our compression networks we adopt a more advanced flavour of SGD called Adam

(Adaptive Moment) Optimisation [75]:

θt+1 = θt − γ
m̃t√
ṽt + ǫ

, (2.22)

where ǫ is a very small scalar introduced to prevent division by zero. Adam actively adapts its

learning rate to the magnitudes of past gradients by introducing first, mt+1, and second order

moments, vt+1, that are approximated as:

m̃t =
mt+1

1− βt+1
1

,

ṽt =
vt+1

1− βt+1
2

,

mt+1 = β1mt−1 + (1− β1)∇F (θt),

vt+1 = β2vt−1 + (1− β2)∇F (θt)
2.

The variables β1 and β2 are hyperparamters with default values of 0.9 and 0.999, respectively.

Unlike SGD, Adam introduces momentum which prevents oscillations in the training loss,

quickening its convergence [75].
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2.4. Software Development

The code for our deep video codecs is publicly available on GitHub, a remote code repository

that promotes open source development. Links to the provided interactive IP[y] notebooks are

provided at the beginning of each chapter.

We use git, a distributed Version Control System (VCS), to keep track of changes to our

source code. Git also provides efficient branching, allowing us to try and test new ideas without

breaking the main line of development. All code is written in Python 3.

Each of our repositories contain a Docker image that emulates our development environment.

2.4.1. Deep Neural Networks

We adopt the Pytorch deep learning framework to build our deep compression networks. Pytorch

is appealing as it includes TorchVision, a tool specially geared towards manipulating images for

learning computer vision applications. Moreover, it enables CUDA Graphics Processing Unit

(GPU) support and the creation of Dynamic Computation Graphs (DCG). DCGs are defined

at run-time and can be actively adapted to different image or video inputs [76]. This proves

particularly useful when coding the iterative image compression architectures in Chapters 3

and 4.

All our DNN models are developed from scratch using the network layers available in Pytorch

in addition to our own custom layers: Convolutional GRUs, multi-scale convolutions and 3D

pixel shuffling, which are detailed in Section 2.3.1 and extend Pytorch’s nn.Module base class.

Pytorch’s Autograd package automatically computes network gradients for back-propagation

during execution. Compression requires a non-differentiable discretisation step, so we extend

Autograd to compute custom gradients for the discretisation layers in Sections 3.1.3 and 5.2.3.

Loading random video segments as Pytorch tensors requires that one first decode the entire

video and store its uncompressed frames in Random Access Memory (RAM). This is CPU

intensive and computationally intractable for large video files. We resort to NVIDIA Video

Loader (NVVL): a library that speeds up data-loading by placing video packets onto a Graphics

Processing Unit (GPU) in compressed form [77]. Video packets are then decoded into tensors

directly in GPU device memory as they are fetched by the DNN model. We found that setting

Pytorch’s data loading thread count too high resulted in Central Processing Unit (CPU) deadlocks.

To avoid this Pytorch forums suggest that the number of ‘workers’ or dataloader threads should

be set to no more than four times the GPU count.

We trained our models on a single GeForce GTX 1060 GPU sponsored by the NVIDIA GPU

Grant Program. Some of the recurrent deep image codecs in Chapter 4 were trained on parallel

GPU’s in Google Cloud Platform’s (GCP) AI and Machine Learning environment.
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2.4.2. Video and Image Code Libraries

We compare our deep compression codecs to the popular JPEG [25] and WebP [19] image codecs

as well as the universal H.264 [1] and H.265 [2] video coding standards, which are listed below

alongside their open source implementations:

• JPEG: Independent JPEG Group (libjpeg)

• WebP: Google Developers (libwebp)

• H.264: VideoLAN (libx264)

• H.265: x265 HEVC (libx265)

Post installation, these libraries can be used by FFmpeg, OpenCV and the Python Imaging

Library (PIL) to process image and video files. Apart from being able to transcode (convert

between coding standards) and compress image and video files, these libraries also offer a

host of helpful tools such as evaluation metrics, image transformations, optical flow estimation,

block-motion prediction, etc. We encourage anyone interested by this field to read through the

available online documentation.

As mentioned in Section 2.2.3 we asses the quality of our reconstructed video frames using

Netflix’s VMAF model. LiteFlowNet is deployed in Chapter 5 for deep optical flow estimation.

OpenCV’s default Farneback algorithm (see Section 2.1.2) is also used as a secondary means of

dense optical flow calculation for the experiments in Chapter 5.

2.4.3. FFmpeg Commands

#!/bin/bash

ffmpeg -i "INPUT VIDEO FILE" \\

-codec:v "VIDEO CODEC" \\

-g "GOP SIZE" \\

-crf "TARGET QUALITY" "OUTPUT VIDEO FILE"

Listing 2.1: Simplified FFmpeg bash command used to compress video files with standard video

codecs. Actual full commands are available in Apendix A

FFmpeg offers a wide range of coding options for video, each suited towards different video ap-

plications (e.g. streaming, storage, etc). For reference, the FFmpeg commands used to compress

video files and generate the compression curves in Chapter 5 are included in Appendix A.

Our deep image and video codecs are all single-pass systems, which means that the same

encoder weights are applied irrespective of the input video file. Two-pass encoding improves

compression quality by first analysing a video file and determining optimal coding options for
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that file specifically. To make our comparison against H.264 and H.265 fair, we limit them to

perform single-pass encoding.

Listing 2.1 is a shorthand bash script example of the video compression commands in

Appendix A. The key-frame interval (how often to place intra-coded frames) is set with the

Group Of Pictures (GOP) -g flag. We vary bitrate by targeting different output qualities with the

-crf flag. Constant Rate Factor (CRF) encoding aims to achieve a constant quality across all

video frames with as few bits as possible According to the documentation, CRF mode produces

the best quality at the lowest possible bitrate using a single encoding pass [78]. CRF mode allows

H.264/5 to adapt its bitrate to the content of the video being compressed, similar to the learned

3D dynamic bit assignment strategy in Chapter 5. Prescribed CRF values range from 0 to 51,

with higher values resulting in lower video quality and bitrate.

2.5. Chapter Summary

In this chapter we explored various video compression concepts and deep learning techniques.

We found that the three main components that enable lossy compression in standard video

codecs (coders/decoders) are transform, prediction and entropy coding [6]. Transform coding

converts image data to a low-dimensional latent representation that only preserves perceptually

relevant information [25]. Video compression relies on two prediction modes: intra-frame and

inter-frame [22]. Intra-frame prediction mode predicts patches in a video frame from previously

decoded patches within the same frame, whereas in inter-frame prediction mode optical flow

vectors approximate true object motion to predict a set of unseen video frames from past reference

frames [1]. Entropy coding then removes statistical redundancy from the binarised transform

and prediction codes [26]. In Section 2.1.2 we observe that the derivation of optical flow used

in video inter-frame prediction assumes brightness constancy, which makes it unable to model

complex motion such as occlusion, warping and colour shift [21].

The deep compression networks presented in this thesis are all based on the autoencoder

architecture, which consists of an encoder and a decoder network used to compress and recon-

struct an input, respectively [65]. All our models are developed with Pytorch, a deep learning

framework specifically geared towards computer vision. Following [53], we strive to develop

fully-convolutional autoencoders that can compress a wide range of input image/video sizes.

We use pixel-shuffling in place of transposed convolutions in our decoders as it provides more

efficient upsampling [71]. In our video encoders we sample motion at different scales by com-

bining convolutional filters with different dilation factors [55]. Skip-connections and GRU cells

are used to propagate information to later network layers and avoid vanishing gradients during

training [57, 63]. Network optimisation is performed by Adam, an advanced version of SGD that

introduces momentum to speed-up the training process [75]. The PSNR, SSIM, EPE and VMAF

objective quality metrics discussed in Section 2.2 are chosen to judge the visual quality of the

image and video reconstructions produced by our trained deep compression codecs. VMAF is
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the most decisive video metric as its scores align best with the HVS [39].

Having dealt with the background information, we proceed with the development and

implementation of deep image and video compression models for transform and prediction

coding. Lossless entropy coding is left to future work.
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Deep Image Compression

An integral component of all modern video codecs is a still image transform coding system,

which handles the compression of reference frame and residual content [6]. Transform coding

entails encoding a raw image signal into a low dimensional representation that only retains

perceptually relevant information (see Section 2.1.1). In this chapter we investigate various

approaches to still image transform coding. We start off by exploring the inner workings of

JPEG, one of the world’s most popular image codecs [35]. We contrast it to approaches in deep

learning and motivate our selection of the progressive architectures in [7, 9] for implementation.

Several experiments are undertaken to help steer our design choices and gain further insights

into deep image compression. Finally we evaluate our system’s performance against JPEG. Our

code for this chapter is made available on GitHub: DeepImage.1

3.1. Related Work

3.1.1. The JPEG Standard

The JPEG image compression standard was released in 1992 by the Joint Photographic Experts

Group (JPEG) [35]. It is designed to provide lossy compression for still images and intra-frame

compression for video codecs such as Motion JPEG (MJPEG) and H.264/5 [6]. JPEG images

carry the ‘.jpeg’ file extension and can be opened by most image processing applications due

to the universal popularity of the codec. The standard supports progressive enhancement as well

as a wide range of image sizes and formats. Lossy JPEG compression, as outlined in [25], can

be summarised by the following key stages:

• Discrete Cosine Transform (DCT): Each image channel is partitioned into 8 × 8

pixel grids termed macroblocks. Each macroblock is decomposed by the DCT into

64 constituent cosine basis functions. The DCT concentrates spectral energy at a few

fundamental frequencies. This aids compression as low energy components can be negated

without causing drastic degradation to the original image signal. The zero or DC-coefficient

contains the average pixel value of the macroblock. Other coefficients are termed AC.

1https://github.com/adnortje/deepimage

22
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• Quantisation: The DCT coefficients are then quantised according to a prescribed quan-

tisation table. Quantisation aims to discard basis signals that are visually insignificant.

Coefficients that are quantised to zero are discarded, reducing the number of coefficients

transmitted to the decoder. Quantisation tables are hand-tuned using extensive psycho-

visual analysis studies in order to determine optimal normalisation parameters [6].

• Encoding: DC-coefficients are high-valued as they tend to contain a significant portion

of the image signal’s energy. JPEG exploits the strong correlation that tends to exist

between successive DC-coefficients by only encoding the difference between these terms.

DC and AC-coefficients are binarised and ordered using a Run Length Encoding (RLE)

pattern. This aids the Huffman entropy coding of the bitstream by grouping homogeneous

low-frequency components together.

• Decoding: The Huffman encoded bitstream is converted back into 8× 8 macroblocks

containing the quantised DCT coefficients. Each macroblock undergoes inverse normalisa-

tion based on the quantisation table used during the encoding process. The quantisation

tables are transmitted to the decoder as header information. The Inverse Discrete Cosine

Transform (IDCT) reconstructs an approximation of the originally compressed macroblock.

Apart from lacking end-to-end optimisation and relying on arduous hand-tuned parameterisation,

JPEG’s patch-based encoding method makes it prone to block-artefacts at low bitrates. JPEG2000

mitigates block-artefacts by one-shot encoding full-sized images and replacing the DCT with a

Discrete Wavelet Transform (DWT). The high computational cost incurred by one-shot encoding

has, however, prevented its widespread adoption [6].

3.1.2. Deep Image Compression

Deep neural networks have been shown to outperform standard image codecs, achieving state-of-

the-art image compression in terms of bit depth and quality [7, 9, 11–18]. In [79] models are

trained to assist in the parameterisation of standard image codecs by learning more effective

frequency transforms, quantisation tables and predictive coding schemes.

Currently, the most effective deep image compression models adopt an end-to-end au-

toencoder type architecture [15]. Discriminative approaches are usually trained to minimise

reconstruction loss. This does not necessarily align well with the Human Visual System (HVS)

due to the attenuation of high frequency components during quantisation. Adversarial loss is used

by [14] to generate crisper images as the decoder must learn to fool an increasingly frequency

sensitive discriminator. Instabilities in the adversarial training process causes this approach to

‘fail’ at compressing high-resolution images [14]. A textural loss term based on feature maps

generated by a pre-trained object recognition network (e.g. ImageNet [52]) is included by [10].

Reconstruction quality is improved as ImageNet’s feature maps contain textural information

significant to human perception.
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Image complexity varies spatially and consequently compression schemes benefit from

dynamic bit assignment, i.e. allocating different bitrates to different image regions. Semantic

segmentation maps are used by [12] to selectively generate unimportant image regions. Pyramidal

decomposition is used by [11] for multi-scale feature extraction and aggregation. In [16] an

entropy term is estimated from the latent representation to penalise high bitrates. Content-

weighting by means of a learned image importance map guides bit allocation in [17]. A

complex hyperprior modeling the distribution of the input image’s content is transmitted as side

information by [15, 18] to exploit spatial dependencies in the latent representation for improved

arithmetic coding.

The recurrent autoencoders proposed in [7, 9, 13] propagate decoded information to support

progressive image encoding. Progressive compression entails encoding an image such that it can

be reconstructed at various quality levels based on the number of bits transmitted to the decoder.

This capability is essential in streaming applications prone to bandwidth fluctuations [23].

Progressive systems also facilitate manual dynamic bit assignment governed by a predetermined

quality threshold such as PSNR. Manual bit allocation [7] is more suitable than its learned

counterparts [15, 17, 18] in situations where the bitrate is governed by external factors such as

channel capacity [23]. Due to the present surge in online streaming applications and image

traffic, the progressive image frameworks proposed in [7, 9] are selected as an architectural basis

for image compression in this research.

3.1.3. Deep Discretisation

The discretisation and subsequent binarisation of compressed image features is necessary for

digital storage and transmission [23]. However, this process requires a non-differentiable

quantisation step making standard backpropogation impossible [8]. Both [8] and [10] suggest

substituting quantisation with additive uniform noise. A differentiable proxy distribution is then

used to approximate and fine-tune the entropy of the quantised coefficients. We use the direct

binarisation method put forward in [80] as it enables fine-tuned control over the number of bits

used and effortless conversion of continuous encoder outputs to a serialised bitstream.

Following from [7] the binarisation procedure occurs in two stages:

1. The dimensionality of the output data from the encoder is reduced to reflect the number of

bits required for a preselected compression ratio using a feed-forward or convolutional

neural network layer. Encoder output values are forced to fall in the continuous range

[−1, 1] by means of a subsequent TanH non-linearity.

2. Each encoder value is then binarised to take on one of two distinct values in the set

{−1, 1}.

Although simple thresholding is suitable for inference, training requires the addition of uniform
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quantisation noise in order implement the stochastic binarisation function [7]:

btrain(x) = x+ ǫ ∈ {−1, 1} (3.1)

with ǫ ≃







1− x, with probability 1+x
2
,

−x− 1, with probability 1−x
2

.

The gradient of btrain(x) can then be estimated from its expectation [80]. Noting that ǫ is

zero-mean, the gradient of btrain(x) with respect to x is

d

dx
E[btrain(x)] =

d

dx
x = 1. (3.2)

Equation (3.2) indicates that during training gradients are passed unchanged through the bina-

risation layer. This Straight Through Estimation (STE) of gradients is biased as ǫ is assumed

independent of the input values, x. However the consequences of this assumption are shown to

be negligible [80]. In fact the addition of random binarisation noise to the output of a networks

hidden layers improves regularisation [81], which helps prevent overfitting.

3.2. Progressive Image Compression Architectures

Deep progressive image compression systems are constructed in [7,9,13] by sequentially linking

several autoencoder networks. Each autoencoder stage, Auto(·), consists of three components,

namely:

• Encoder (E): used to reduce image data dimensionality.

• Binariser (B): discretises the continuous encoder features by means of the STE binarisation

approach outlined in Section 3.1.3.

• Decoder (D): tries to reconstruct the original image from its compressed binary represen-

tation.

Given these network modules the reconstruction, r̂0, of an image, r0, can be formulated as:

r̂0 = Auto(r0) = D(B(E(r0))). (3.3)

Successive autoencoder stages are joined using either an additive reconstruction (AR) or one-shot

reconstruction (OSR) framework. Both frameworks compress and reconstruct the input image

at the first iteration. Subsequent stages are then used to encode the difference or residual error

between this initial reconstruction and the input image.
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Figure 3.1: Two-iteration implementation of the Feed-Forward Additive Reconstruction network

(FeedForwardAR).

Figure 3.2: Two-iteration implementation of the Convolutional Additive Reconstruction network

(ConvAR).

3.2.1. Additive Reconstruction (AR)

Additive reconstruction (AR) is widely used in traditional image codecs for variable bitrate

encoding and progressive image enhancement [25]. Variable bitrate encoding entails assigning

fewer bits to simpler image regions and vice versa, thereby reducing the overall bitrate on average.

Progressive image compression involves encoding an image such that it can be reconstructed

at various quality levels as bits are received by the decoder. Using AR, this is achieved by

transmitting the difference (residual) between successive compression iterations and the original

image so that the decoder can enhance its reconstruction by adding subsequently received

residuals [25]. The AR process can be expressed mathematically as

ri = ri−1 − Autoi(ri−1). (3.4)

Each autoencoder stage, Autoi, attempts to reconstruct the residual error ri−1 from the previous

stage, with r0 representing the original image [7]. The reconstruction error ri is then passed

to the following network iteration, which attempts to reconstruct it. The final output image is

progressively refined by summing over all the residuals produced across multiple network stages.

Our implementation of the feed-forward (FeedForwardAR) and convolutional (ConvAR) AR

models proposed in [7] are shown in Figures 3.1 and 3.2, respectively.
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Figure 3.3: Two-iteration implementation of the Convolutional GRU One-Shot Reconstruction

network (ConvGRU-OSR).

3.2.2. One-Shot Reconstruction (OSR)

One-shot reconstruction (OSR) is defined mathematically as follows: [9]:

ri = r0 − Autoi(ri−1). (3.5)

Each iteration, i, accepts the previously incurred residual error, ri−1, as input and uses it to

reconstruct an improved quality approximation of the original image. OSR differs from AR in

that the original image is reconstructed at each network stage as opposed to the previous stage’s

residual. This is achieved by recurrent links that propagate encoder and decoder state information.

The compression quality of the current iteration is thus influenced by relevant information from

previous encodings and decodings that persist in the network’s memory. Figure 3.3 illustrates

the Convolutional Gated Recurrent Unit (GRU) OSR system [9], denoted as ConvGRU-OSR.

3.2.3. Iterative Optimisation

Both ConvAR and ConvGRU-OSR are optimised according to the following L1 loss function [7]:

L =
1

I

I∑

i=1

|ri|. (3.6)

The loss in equation (3.6) is calculated by summation of the residuals, ri, incurred at each

compression stage. It is normalised by the total number of stages, I , as well as the input image’s

width and height to obtain a mean pixel-wise loss per iteration. Each encoding stage’s loss is

incorporated into equation (3.6) to ensure that quality image reconstructions are produced at

every iteration and not just at the terminal stage.

3.3. Experimental Setup

3.3.1. Data and Training Procedure

The networks depicted in Figures 3.1, 3.2 and 3.3 are trained on the CLIC Compression Challenge

Professional Dataset [82]. The dataset is already subdivided into train, validation and test sets
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3.4. Experiments

3.4.1. Bitrate vs. Reconstruction Quality

We train 4-bit and 512-bit implementations of FeedForwardAR (I = 1) to determine the effect

of bitrate on image reconstruction quality. The colour-mappings acquired by feeding all possible

binary combinations to the 4-bit decoder are presented in Figure 3.5(a) . Each binary sequence

can be seen to correspond to a unique colour pattern. The compression system essentially learns

to categorise complex pixel content into one of 2b colour combinations, where b is the number of

bits used. One can assume that the model chooses which colour patterns to assign to the bits it

has available based on the relative frequency with which specific colour patterns occur in the

training data. Figure 3.5(b) demonstrates the trade-off between bitrate (colour range) and how

closely the system’s thresholded colour-mappings resemble the original image (reconstruction

quality).2 Increasing FeedForwardAR’s bit allocation allows it to learn more complex colour

patterns. This in turn allows the network to form a closer approximation of the ground truth

image patch at the cost of a higher bitrate.

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

(a) 4-bit colour mappings

Ground Truth 4-Bit 512-Bit

(b) 4-bit vs 512-bit

Figure 3.5: 32× 32 patch reconstructions produced by FeedForwardAR (I = 1).

3.4.2. Progressive vs. Non-Progressive Encoding

Image residuals generally carry less energy and are consequently more easily compressible than

raw image signals [6]. Deep image compression via progressively encoding residuals should

therefore outperform compressing an image non-progressively. To substantiate this statement we

implement progressive I = 16 and non-progressive I = 1 versions of FeedForwardAR where

each network uses a total of 2.0 bpp. Table 3.1 indicates that the progressive approach enhances

2 Binarisation outputs that equal -1 are flipped to 0 in this figure to improve clarity.
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SSIM quality by 57% relative to the non-progressive implementation. Progressive encoding also

outperforms the non-progressive approach by 36% in terms of PSNR. The scores put forward in

the table are averaged across 32× 32 image patches centre-cropped from the validation set.

Model PSNR SSIM

Non-Progressive 21.90 0.552
Progressive 29.89 0.868

Table 3.1: Averaged SSIM and PSNR scores for progressive and non-progressive implementa-

tions of FeedForwardAR (2.0 bpp).

3.4.3. Patch-Based vs. One-Shot Encoding

We deploy a one-iteration ConvGRU-OSR network to compare patch-based and one-shot encod-

ing. One-shot encoding involves compressing a full-scale image all at once, whereas patch-based

encoding subdivides an image into non-overlapping tiles that are compressed independently

and reassembled. Table 3.2 indicates that patch-based encoding is more adaptive to changes in

input image dimensions than its one-shot counterpart. One-shot encoding results in a mismatch

between the image size selected for training and the vast array of image sizes encountered during

inference, leading to suboptimal performance. Patch-based models always compress a fixed

patch-size regardless of the input image’s dimensions. In fact, increasing the input image size

effectively lowers the complexity of the pixel content in a fixed-sized patch region. This allows

the patch-based model to produce substantialy higher PSNR scores for larger input image sizes.

Figure 3.6 exposes that patch-based encoding produces block-artefacts at shallow bit depths.

Although the patch-based model is able to produce a less noisy rendition of the input image

(higher PSNR), the smooth reconstruction produced by one-shot encoding is more structurally

coherent (higher SSIM). This experiment highlights the importance of using multiple quality

metrics to assess a codecs performance. Patch-based encoding is adopted for all further evalua-

tions due to its computational efficiency and superior PSNR. We provide a means of suppressing

the block-artefacts incurred by this approach in Chapter 4.

Encoding Process
PSNR

128× 128 512× 512 1280× 1280

One-Shot 21.32 22.09 22.60
Patch-Based 22.61 25.38 26.89

Table 3.2: PSNR scores achieved across different input image dimensions by patch-based and

one-shot encoding implementations of ConvGRU-OSR (I = 1; 0.125 bpp).
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(a) FeedForward AR

(b) ConvAR

(c) ConvGRU-OSR

(d) JPEG

(e) Progressive JPEG

Figure 3.9: Deep image codecs vs. JPEG 224× 320 image reconstructions.
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Chapter 4

BINet: a binary inpainting network for

deep patch-based image compression

Standard video codecs further compress reference frame content through intra-frame prediction.

The decoder predicts a premise for each patch based on prior patch decodings within the same

frame. Compression is improved as only the residual between the decoder’s prediction and the

original patch need then be transmitted.

Recent deep learning models outperform standard lossy image codecs for full-resolution

image compression. Applying these models on a patch-by-patch basis, however, requires that

each image patch be encoded and decoded independently. The structural influence imposed by

pixels from adjacent patches is therefore lost, often leading to block artefacts at low bitrates.

In this chapter we propose the Binary Inpainting Network (BINet), an autoencoder framework

which incorporates learned binary inpainting to reinstate interdependencies between adjacent

patches, for improved patch-based compression of still images. When decoding a specific

patch, BINet additionally uses the binarised encodings from surrounding patches to guide

its reconstruction. This is inspired by work on inpainting, where blocked-out image regions

are reconstructed. In contrast to sequential inpainting methods where patches are decoded

sequentially and previous reconstructions are used to predict subsequent patches, BINet operates

directly on the binary codes of surrounding patches without access to the original or reconstructed

image data. Both encoding and decoding can therefore be performed in parallel.

We demonstrate that binary inpainting improves the compression quality of a competitive

deep image codec across a range of compression levels. Qualitatively, the inpainting learned by

BINet is shown to produce smoother image reconstructions at low bitrates.

Our work on BINet is submitted for publication in the Journal of Visual Communication and

Image Representation and is currently undergoing review.

4.1. Related Work

Previous approaches to deep image compression, although effective, are not optimised for patch-

based encoding since they use the full image content to steer compression. Full image context

is, unfortunately, not available for patch-based systems as each patch is encoded independently.

34
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Patch-based encoding is therefore avoided in deep compression models [7, 13], as it may result

in block artefacts at shallow bitrates. To remedy this, we propose the Binary Inpainting Network

(BINet) framework, which is inspired by research in image inpainting.

Image inpainting involves reconstructing a masked-out image region by using the surrounding

pixels as context. It is often used as an error-correction strategy to restore patches lost during

transmission. Traditional inpainting models, such as PixelCNN [84], assume access to original

pixel content; in Figure 4.1(a), the model would be asked to predict the shaded region in the

middle, given the surrounding context as input. We extend this idea in order to perform patch-

based image compression. When decoding a particular patch, BINet incorporates the compressed

binary codes from adjacent image patches as well as the current patch to reinstate relationships

between separately encoded regions. As depicted in Figure 4.1(c), BINet therefore exploits

encoded binary information from a full-context region as well as the patch being inpainted in

order to formulate its prediction of the inpainted region. The overall approach is illustrated in

Figure 4.3: BINet encodes patches as discrete binary codes using a single encoder. The decoder

then reconstructs a particular centre patch by incorporating the binary codes of surrounding

patches. It therefore allows for parallel encoding and decoding of image patches aided by learned

inpainting from a full binary context region.

In sequential compression techniques such as WebP [19], linear combinations of previously

reconstructed outputs are used when decoding a particular patch. WebP’s four main prediction

modes either average (DC PRED), directly copy (H PRED, V PRED), or linearily combine

(TM PRED) pixels from previously decoded patches, as shown Figure 4.2 [19]. This is similar to

sequential patch-based inpainting [20], as illustrated in Figure 4.1(b), where previously decoded

output from the model is treated as the context region and used to perform inpainting on the next

patch. In contrast to these approaches, BINet decodes a particular patch, not based on previous

patch reconstructions, but based directly on the binary encodings of the surrounding patches.

Since it does not need to wait for surrounding patches to be decoded, BINet can decode all

patches in parallel while still taking the full surrounding context into account.

BINet’s encoder and decoder are trained jointly through end-to-end optimisation. In contrast

to [20], where separate compression and inpainting networks are trained, BINet builds inpainting

directly into its decoder architecture and does not require training an additional inpainting

network. Our aim is to show that this approach allows spatial dependencies between patches to

be re-instated from independently encoded patches, thereby advancing patch-based encoding in

a neural compression model.

We proceed with a description of the BINet framework and the formulation of a loss function

for learning binary encodings that exploit spatial redundancy between neighbouring image

patches. BINet can be used with different types of encoder and decoder architectures, and in

this chapter we specifically employ two competitive iterative decoding methods [7, 9], namely

additive reconstruction (AR) and one-shot reconstruction (OSR). We describe these specific

instantiations of BINet in Section 4.2. To show the benefit of incorporating inpainting, the BINet
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models are compared to convolutional AR and OSR models without inpainting. Compression

efficiency is evaluated quantitatively using the SSIM and PSNR image quality metrics. We show

that BINet performs better than the conventional AR and OSR approaches over the complete

range of compression levels considered (Section 4.4). On the standard Kodak dataset [85], we

show that the OSR variant of BINet consistently outperforms JPEG. Although it falls short of

outperforming WebP, we show qualitatively that BINet produces smoother image reconstructions

and is capable of more complex inpainting than the sequential decoding methods used by WebP.

We released a full implementation of BINet online1.

(a) Traditional (b) Sequential (c) BINet

Figure 4.1: Context regions available to various inpainting models.

Figure 4.2: WebP’s four main prediction modes (H PRED, V PRED, DC PRED and TM PRED)

used for sequential patch prediction.

1 https://github.com/adnortje/binet
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Figure 4.3: The Binary Inpainting Network (BINet) framework. For illustration, the compressed

binary codes here consist of two bits per patch and each bit is indicated with a −1 or 1.

4.2. Binary Inpainting Network (BINet)

4.2.1. Architectural Overview

BINet is a variation of a basic autoencoder [65]. Figure 4.3 shows BINet’s encoding and decoding

process. It accepts as input a set of image patches, indicated by (a) in the figure, that are reduced

to low dimensional representations and binarised, as shown at (b). Binarisation is required

for digitally storing and/or transmitting a compressed version of an image [6]. As in [7, 80] a

stochastic binarisation function is used during training by adding uniform quantisation noise.

This allows us to backpropagate gradients through the binarisation layer in the encoder by

copying the gradients from the first decoder operation to the penultimate encoder layer. The

decoder network at (c) is applied as a sliding window across the generated binary codes such

that each image patch at (d) is decoded using both its own binary code and the codes of adjacent

patches that fall within a specific grid region. Intuitively, because the encoder and decoder

networks are trained jointly, the decoder learns to inpaint from binary codes within its context

region whilst the encoder learns to produce more compact codes that promote the inpainting

performed by the decoder. The same encoder network is applied to each individual image patch,

meaning that encoding on multiple patches can be performed in parallel. In principle any model

can be used as the encoder and decoder in Figure 4.3, which is why we refer to BINet as a

framework.

As depicted in Figure 4.3, the reconstruction of a patch P c from its compressed representation

can be formulated as

P̂ c = D(E(P 1,P 2, . . . ,P c, . . . ,P n)), (4.1)

where E(·) and D(·) represent the encoder and decoder mappings shown at (b) and (c), respec-

tively. The n patches used as context for predicting the centre patch P c are P 1,P 2, . . . ,P n.

The sliding window at the decoder can be implemented using unfold operations to maintain

parallelisation, and takes the bits produced for P 1,P 2, . . . ,P n at (b) as context to make the

prediction P̂ c. Note that the same encoder network is applied to each of the input image patches
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individually and in parallel. Edge regions of the binary codes are appropriately padded so that

the spatial resolution of the input image is maintained. To learn how to inpaint, we use the L1

loss:

Linpaint = |P c − P̂ c| = |P c − Auto(P 1,P 2, . . . ,P c, . . . ,P n)|, (4.2)

where Auto(·) is equivalent to D(E(·)).

Figure 4.4: Two-iteration implementation of BINet with additive reconstruction (AR).

Figure 4.5: Two-iteration implementation of BINet with one-shot reconstruction (OSR).

4.2.2. BINet with AR and OSR

Both AR and OSR can be used naturally with BINet. As baselines, we use the progressive

ConvAR [7, 20] and ConvGRU-OSR [9] networks shown in Figures 3.2 and 3.3, respectively.

The reconstruction of an image patch P for a single iteration of these models can be written as:

P̂ = Auto1(P ) = D1(E1(P )). (4.3)

Their patch reconstruction are therefore based on the encoding of a single input patch P . In

other words, they do not incorporate inpainting to aid compression. The training loss for both

the ConvAR and ConvGRU-OSR baselines is expressed in equation (3.6).

The BINet framework is incorporated into ConvAR and ConvGRU-OSR by including learned

binary inpainting at the first iteration, as shown in Figures 4.4 and 4.5. Later iterations encode

the residual error incurred by this initial inpainting prediction. We only include inpainting at the

first iteration, as intuitively this stage encodes details that contain the most spatial redundancy

compared to later stages whose purpose is to encode finer and less correlated patch details.2 Our

2 Future work may focus on ways of including binary inpainting at later network stages.
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goal is to show the benefit of this binary inpainting strategy.

The encoding process of BINetAR (Figure 4.4) and BINetOSR (Figure 4.5) can be expressed

as in equations (3.4) and (3.5), where r0 again represents the original input image patch while

r1 is the initial iteration’s inpainting loss given in equation (4.2). An I-iteration implementation

of BINet with either AR or OSR is trained to optimise the loss:

LBINet = Linpaint +
I∑

i=2

|ri|. (4.4)

4.3. Experimental Setup

4.3.1. Data and Training Procedure

The models discussed in Section 4.2 are trained on the CLIC Compression Challenge Professional

Dataset [82], which is pre-partitioned into training, validation and test sets. Each set contains a

variety of professionally captured high resolution natural images, saved in lossless PNG format

to prevent the learning of compression artefacts introduced by lossy codecs.

The loss functions in equations (3.6) and (4.4) are used to train I = 16 iteration implementa-

tions of the baseline (ConvAR, ConvGRU-OSR) and BINet (BINetAR, BINetOSR) systems,

respectively. All models are trained to encode and reconstruct randomly cropped 32× 32 image

patches. Following the approach in [7], the networks are constrained such that each autoencoder

stage contributes 0.125 bits per pixel (bpp) to the overall compression of an input image patch.

During training, BINet encodes nine directly adjacent image patches independently and recon-

structs the central patch region based on the binary codes produced for the nine patches. Training

patches are randomly cropped from the images in the training set at every epoch while centre

cropping is used on images in the validation set to ensure that the validation losses for the BINet

and baseline models are directly comparable across epochs. Image patches used during training

are batched into groups of 32 and normalised such that pixel values fall in the range [−1, 1].

Models are trained for 15 000 epochs and early stopping is employed based on the validation

loss.3 We use Adam optimisation [75] with an initial learning rate of 0.0001. The learning rate is

decayed by a factor of 2 at epochs 3 000, 10 000 and 14 000.

4.3.2. Evaluation Procedure

For evaluation, each image is resized to 320× 224 pixels such that evaluation image dimensions

are cleanly divisible by the chosen 32 × 32 patch size.4 Images are then partitioned into

32× 32 pixel patches and encoded, and quality scores are calculated on and averaged across the

3 For the preliminary analyses in Section 4.4.1 we stop training at 5 000 epochs.
4We also ran tests on full unscaled images, and found that trends were exactly the same as when images are

resized in this way, due to the models always compressing a fixed patch size irrespective of input image dimensions.
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reassembled images. The performance of BINet is contrasted to that of the baseline systems

at various bit depths in order to gauge the effectiveness of incorporating the proposed binary

inpainting framework across different operating points. Additionally, we perform various

preliminary analyses on validation data to further illustrate BINet’s capabilities.

4.4. Experiments

We first perform a preliminary analysis on development data to better understand the properties

of BINet and the benefit of binary inpainting as opposed to conventional sequential inpainting

techniques. We then turn to quantitative analyses on test data where BINet is compared to the

baseline neural compression models as well as standard image compression codecs.

4.4.1. Preliminary Analysis

Is Inpainting from Binary Codes Possible?

In order to assess qualitatively whether inpainting of image patches from compressed binary

codes is possible, a 1-iteration implementation of BINetAR (0.125 bpp) is trained to explicitly

predict the pixel content of an unknown 32× 32 patch region located at the centre of a 96× 96

pixel grid. This version of BINet is purposefully altered such that it masks bits pertaining to the

central patch region, i.e. the context region available to the decoder matches that of Figure 4.1(a).

This forces the network to become fully reliant on the binary encodings of surrounding patches

when predicting the central patch’s pixel content.

Figure 4.6 demonstrates the inpainting capabilities of this masked BINet, and indicates that it

is able to predict a basis for an unknown patch using the compressed binary codes of its nearest

neighbours. Figure 4.7 compares inpaintings from BINet (green border) and WebP (red border).

The four main modes used by WebP to sequentially predict a patch region are included in the

diagram and abbreviated as in Figure 4.2 [19]. The figure shows that the inpaintings produced by

BINet resemble the ground truth patches (black border) more closely than those of WebP.

Figure 4.6: Inpaintings performed by masked BINet.
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Figure 4.7: A comparison of the inpainting performed by masked BINet and WebP.

Figure 4.8: The Sequential Inpainting Network (SINet).

Is Full-Context Binary Inpainting Superior to Sequential Inpainting?

In this experiment we compare full-context binary inpainting to the sequential inpainting scheme

proposed by [20]. A masked 1-iteration realisation of BINetAR is pitted against the Sequential

Inpainting Network (SINet) in Figure 4.8. SINet consists of a pre-trained image compression

model (ConvAR with I = 1, bpp = 0.125) coupled to an inpainting network (ConvAR decoder).

SINet’s inpainting network is trained to sequentially predict the central patch P c from previously

decoded patches such that its context region is like that of Figure 4.1(b). Table 4.1 compares

the average SSIM and PSNR scores achieved by BINet and SINet on the validation set. BINet’s

full-context binary inpainting mechanism leads to a 6% improvement in SSIM and a 11%

increase in PSNR relative to the partial-context sequential inpainting performed by SINet.

Figure 4.9 illustrates how BINet’s ability to harness pixel content from a full context region aids

its inpainting ability. BINet (green border) correctly identifies that the lower right-hand corner of

its inpainting should be white, whereas SINet (red border) is oblivious to this due to its limited

context region. Importantly, BINet has a major additional benefit in that it can be parallelised,

since reconstruction of a particular patch is not performed based on previously decoded patches

but rather directly on the binary codes of all surrounding patches.
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Model PSNR SSIM

SINet 19.85 0.47
BINet 22.08 0.50

Table 4.1: Averaged masked BINet and SINet SSIM and PSNR scores for 32× 32 image patch

inpaintings

Figure 4.9: Comparison of inpainting performed by masked BINet and SINet given an artificial

32× 32 image patch.

Does Inpainting Improve Compression using a Single Iteration?

To determine if teaching a model to inpaint from binary codes aids its compression capabilities,

1-iteration (0.125 bpp) implementations of BINetAR and the baseline ConvAR are pitted against

each other. Figure 4.10 demonstrates how BINetAR outperforms ConvAR quantitatively in

terms of training and validation loss. Losses represent the mean error between the ground truth

and predicted patches and are indicative of the quality of the model’s patch reconstructions.

Figure 4.11 shows an assortment of images encoded by BINetAR and ConvAR. Note that in each

case BINetAR produces images with a higher perceptual fidelity than ConvAR, according to the

SSIM and PSNR scores achieved by its reconstructions. The images produced by BINetAR are

qualitatively smoother than those of ConvAR at equally low bitrates, making BINetAR better

suited for patch-based compression. The improved smoothness can be attributed to BINetAR’s

decoder which learns to constrain a patch to match its surroundings. All the images used here

are from the CLIC validation set [82].
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in a 3% relative improvement in PSNR. This comparison between the first iteration of the models

is important as binary inpainting is only incorporated at the first stage of the BINetAR model.

Model
SSIM PSNR

0.125 bpp 0.25 bpp 0.5 bpp 0.125 bpp 0.25 bpp 0.5 bpp

ConvAR 0.591 0.712 0.805 22.486 25.288 27.488
BINetAR 0.639 0.732 0.813 23.222 25.643 27.623

Table 4.2: BINetAR vs. ConvAR: SSIM and PSNR scores at various bit-per-pixel (bpp) alloca-

tions for 224× 320 images.

4.4.3. Quantitative Analysis: BINetOSR vs. ConvGRU-OSR

Sixteen-iteration implementations of BINetOSR and ConvGRU-OSR are trained to assess the

effect of incorporating a single inpainting stage on the performance of an OSR model. Models

are again evaluated on the CLIC test set [82].

Patch Reconstruction

We first asses BINetOSR’s and ConvGRU-OSR’s intrinsic capacity to reconstruct 32×32 patches

center-cropped from the test data. The resulting areas under the PSNR and SSIM rate-distortion

curves are given in Table 4.3. Note that a greater area is indicative of increased perceptual quality

across all sixteen allocated bitrates. Table 4.3 shows that incorporating learned inpainting into

just one iteration of the ConvGRU-OSR model effectively increases its area under the PSNR and

SSIM rate-distortion curves.

Model
Area under the curve

PSNR SSIM

ConvGRU-OSR 1.661 64.352
BINetOSR 1.668 65.10

Table 4.3: BINetOSR vs. ConvGRU-OSR: area under the curve for SSIM and PSNR rate-

distortion, calculated on 32× 32 image patches.

Full Image Reconstruction

The PSNR and SSIM curves achieved by BINetOSR and ConvGRU-OSR on 224 × 320 test

images are shown in Figures 4.13(a) and 4.13(b). Unlike the AR model, inpainting gains are

more pronounced at stages further from the inpainting layer, as recurrence allows BINetOSR to

better propagate inpainting information to later decoding stages. This forces the first stage to
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4.5. Chapter Summary

We introduced the Binary Inpainting Network (BINet), a novel framework that can be used to

improve an existing system for patch-based image compression. Building on ideas from image

inpainting as well as deep image compression, BINet is novel in two particular ways. Firstly, in

contrast to work on inpainting, BINet incorporates explicit binarisation in an encoder module,

which allows it to be used for compression. Secondly, in contrast to most deep compression

models, BINet incorporates information from adjacent patches when decoding a particular patch.

The result is a patch-based compression method which allows for parallelised inpainting from

a full-context region without access to original image data. In quantitative evaluations, we

showed that BINet yields small but consistent improvements over baselines without inpainting.

Qualitatively we showed that BINet results in fewer block artefacts at shallow bitrates compared

to standard image codecs, resulting in smoother image reconstructions.

Apart from incorporating BINet into more advanced neural architectures in future work, we

aim to also explore alternative applications for binary inpainting such as binary error correction

and patch-based video-frame interpolation.

In this chapter we have shown that it is possible to predict image content from binary codes.

Building on this, our goal in the following chapter is to learn binary motion codes for video

inter-frame prediction.
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(a) BINetAR

(b) ConvAR

(c) JPEG

Figure 4.16: BINetAR vs. ConvAR vs. JPEG 224× 320 image reconstructions.
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(a) BINetOSR

(b) ConvGRU-OSR

(c) WebP

Figure 4.17: BINetOSR vs. ConvGRU (OSR) vs. WebP 224× 320 image reconstructions.
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Deep motion estimation for parallel

inter-frame prediction in video

compression

Earlier we showed how binary inpainting improves compression of reference frames through

deep intra-frame prediction. Here we tackle inter-frame compression: predicting a set of target

video frames from past or future reference frames.

Standard video codecs and recent developments in deep video compression rely on optical

flow to guide inter-frame prediction: pixels from past or future reference frames are moved

via motion vectors to predict a set of target video frames. A video can then be encoded by

compressing and transmitting only the motion vectors and reference frames.

In this chapter, we propose to learn binary motion codes that are encoded directly based on

an input video sequence, instead of using explicitly encoded optical flow vectors. This allows

us to model complex motion (e.g. warping, rotation and occlusion) that is not limited to the

2D translations rendered by standard optical flow vectors. Our binary motion codes are learned

as part of a single neural network which also learns to directly compress and decode them. As

an added benefit, the resulting binary motion codes support parallel video frame decoding; in

contrast, flow-based methods require that both motion estimation and compensation be performed

sequentially on a frame-by-frame basis.

Building on recent advances in deep image compression, we also introduce 3D dynamic bit

assignment as a means of shifting spatially varying bit allocations through time to adapt to object

displacements caused by motion. This results in significant bit savings without degrading video

prediction quality.

By replacing the optical flow based block-motion algorithms found in an existing video

codec with our learned inter-frame prediction model, we are able to outperform the standard

H.264 and H.265 video codecs across a range of low bitrate operating points.

The work in this chapter is currently submitted for publication in the Journal of Visual

Communication and Image Representation. A full implementation of the code developed as part

of this chapter is made available online: DeepVideo.1

1 https://github.com/adnortje/deepvideo
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Figure 5.1: Video prediction network architectural overview. A learned binary motion encoding

either guides the extrapolation of P-frames (Predicted-frames) from past I-frames (Intra-frame)

or the interpolation of B-frames (Bi-directional-frame) from bounding past and future I-frames.

Reference I-frames are coded and decoded independently with an existing image codec.

5.1. Related Work

5.1.1. Standard Video Codecs

Standard video codecs, such as H.264 [1] and H.265 [2], take advantage of the spatial and

temporal redundancies in videos to aid compression. They assign video frames into one of three

groups [86]:

• I-frames, or ‘intra-frames’, are compressed independently from surrounding frames by

means of an image codec.

• P-frames are ‘predicted-frames’ extrapolated from past frames.

• B-frames are ‘bi-directionally’ interpolated from bounding past and future frames.

The compressed I-frames are transmitted directly, while the extrapolation and interpolation of

P-frames and B-frames are achieved via the transmission of highly compressible optical flow

vectors [6]. These motion vectors (MVs) convey motion by specifying the movement of pixels

from one frame to another.

Dense optical flow [28] produces too many MVs for efficient compression (one per pixel

location). Consequently, standard video codecs resort to block-based motion estimation and

compensation techniques [1, 2, 87]. This entails partitioning video frames into patches called

macroblocks. In the motion estimation step, each macroblock in the current frame is related

to the location of the most similar macroblock in a past or future reference frame by means of

an MV which contains its displacement in the x and y directions. Searching for representative
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macroblocks in the reference frame is computationally expensive and numerous search algorithms

have been proposed to help speed up this process [88–92]. After the transmission of a reference

I-frame, only MVs need be transmitted to motion-compensate macroblocks in the I-frame and

form predictions of the subsequent frames within a video sequence. Standard image compression

is used to encode the residuals (differences) between the vector-based motion predictions and

the original video frames to improve reconstruction quality.

Block-based motion prediction, although effective, is prone to block artefacts and only

allows for sequential decoding [22]. Furthermore, these algorithms suffer from hand-tuned

parameterisation and lack the ability to undergo joint optimisation with the rest of a video

compression system. We present a deep learning approach to video frame prediction that can be

optimised end-to-end as part of a larger video compression system. Given I-frame context, our

model is also able to decode P-frames or B-frames in parallel without the additional overhead of

motion-estimation search.

Our approach is illustrated at a high level in Figure 5.1. Video interpolation aims to predict a

set of unseen intermediate frames from a pair of bordering reference frames. Video extrapolation,

on the other hand, forecasts unobserved video frames based on those that have occurred in the

past. In our approach, an encoder E learns how to produce a binary motion encoding, shown in

the middle of the figure, with binarisation performed directly within the neural network. The

resulting learned binary motion code is subsequently used to guide the extrapolation of P-frames

conditioned on a past I-frame, or the interpolation of B-frames conditioned on bounding past

and future I-frames. Interpolation or extrapolation is performed by the decoder D and the

conditioning is indicated through the ‘Cond’ block in the figure, which extracts features from

I-frames that have been compressed and decompressed independently by an existing image

codec. We therefore view the decoding of P-frames or B-frames in video compression as motion

guided interpolation or extrapolation, where a low dimensional learned binary motion code helps

direct prediction from I-frames.

5.1.2. Deep Learning

In work interested purely in prediction (without compressing), deep learning has been shown

to produce high quality video frame interpolations [93–100] and extrapolations [54, 101–103]

for small time-steps. Typically, unseen video frames are predicted solely based on the reference

frame [94, 97, 98]. For predicting unseen frames over longer time-spans (as would be the case if

we were interested in video compression), additional information is required.

In video compression, we do not need to rely solely on the reference frame content: we can

estimate the motion from the actual unseen video frames, compress these motion encodings,

and then transmit this together with the compressed versions of the reference frames. This extra

motion information can enable video frame prediction over extended timespans [3]. Based on this

idea, deep learning has recently been applied to video compression, producing models capable
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of outperforming standard video codecs (H.264, H.265) at certain bit allocations [3–5, 104–106].

These models combine state-of-the-art image compression, flow prediction and entropy coding

networks to produce end-to-end optimisable video compression systems. Despite their success,

whole systems are evaluated as a single unit, making it difficult to discern to what extent each

individual component outperforms its more conventional standard implementation. In this

chapter, we focus specifically on motion compression for video prediction—we consider P- and

B-frame prediction in isolation, decoupled from all other compression components.

In [3] video frames are hierarchically interpolated by warping input reference frame features

with standard block-MVs, while discrete representations of motion are learned by encoding

optical flow patterns in [4,5]. Optical flow vectors describe how pixels in a video frame should be

moved over time to best estimate true object and camera motion [21]. It is effective at modelling

translational motion, but fails to capture more complex transformations such as rotation, warping,

occlusion and changes in lighting [6]. In [3–5] this is addressed by jointly compressing the

residuals produced after flow compensation. In this thesis, rather than using optical flow, we

show that it is possible to learn compact encodings that are representative of complex motion

directly from a video sequence. More specifically, we train an encoder network to produce

learned binary motion codes which guide the prediction of P-frames and B-frames from I-frame

context at the decoder. Experiments show that the complex motion contained in our binary

motion codes outperforms that of conventional optical flow. The codes produced by our network

could, therefore, provide an alternate means of motion conditioning for applications that are

currently reliant on optical flow-based methods [3–5, 107].

Different spatial and temporal locations in a video sequence are not necessarily equally

complex. In image compression, it has been shown that compression rates can be improved by

varying bitrates such that less complex image regions are assigned fewer bits [13, 15, 17, 18, 108].

Varying the bitrate temporally in accordance to complexity of motion is equally important in

video compression [1, 2, 87]. Most videos contain still segments interspersed with sequences

depicting rapid motion. A model with access to reference frame context at its decoder should

learn to encode very little information for still video segments and allocate the bulk of its bits

to intervals containing a high degree of motion. In [4, 109] recurrence is used to sequentially

maintain state information across time such that previously decoded information need not be re-

encoded. We, on the other hand, extend the 2D content-weighted image compression technique

in [17] to three dimensions and present parallelised P-frame and B-frame video compression

models that learn to vary bitrate both spatially and temporally. Experiments show how our

approach to 3D dynamic bit assignment substantially reduces the bitrate of a motion encoding

model without adversely affecting its reconstruction quality.
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5.1.3. Contributions

We proceed as follows. First we give a detailed description of our P-frame and B-frame

compression architectures. We then formulate our approach to 3D content-aware bit weighting

and demonstrate its applicability to bitrate optimisation. Finally, compression efficiency is

evaluated in terms of various video quality metrics (PSNR, SSIM, VMAF and EPE). We

demonstrate that our models’ P-frame and B-frame predictions outperform those of the block-

motion prediction algorithms employed by standard video codecs such as H.264 and H.265.

Additional experiments are carried out to determine the impact of an optical flow-based loss term

and if multi-scale convolutions result in richer motion sampling. We find that including multi-

scale convolutions in our encoder architecture slightly improves the quality of our model’s video

frame predictions. On the other hand, limiting our model to learning pixel-wise translational

motion with a flow loss term worsens its prediction quality. This indicates that we are able to

learn more representative motion than conventional optical flow.

Figure 5.2: The P-frame prediction network (P-FrameNet) used to extrapolate video frames

from a past I-frame.

5.2. Video Frame Prediction Architecture

5.2.1. Architectural Overview

Figure 5.1 illustrates our approach to P-frame and B-frame prediction. The neural network

encoder E compresses and binarises the motion occurring in a Group Of Pictures (GOP): a video

segment containing designated reference (I) and referencing (P or B) frames. Binarisation via

thresholding is non-differentiable. To perform this operation directly within a neural network,

we therefore resort to the stochastic binarisation function presented in Section 3.1.3 [7]: during

training, each encoder output, which lies within (−1, 1), is made to take one of two distinct

values in the set {−1, 1} by adding uniform quantisation noise. This allows for a straight through

estimate [80] of gradients, i.e. gradients flow through the binarisation layer unchanged. At the
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decoder D, I-frame features extracted by the conditioning network ‘Cond’ are transformed based

on the information held in the binarised motion encoding to predict the P or B referencing frames.

Note that ‘Cond’ is not responsible for I-frame compression: this is done by an existing image

codec.

Figure 5.3: The B-frame prediction network (B-FrameNet) used to bi-directionally interpolate

video frames from bounding past and future I-frames.

5.2.2. P-frame and B-frame Prediction Networks

Figures 5.2 and 5.3 illustrate our P-frame and B-frame prediction networks in greater detail.

Equations (5.1) and (5.2) summarise the P-frame and B-frame prediction processes depicted in

Figures 5.2 and 5.3, respectively.

P̂ 1,...,t = D (E(I0,P 1,...,t),Cond(I0)) (5.1)

B̂1,...,t = D (E(I0,B1,...,t, I t+1),Cond0(I0),Condt(I t+1)) (5.2)

The decoder D(·) uses context derived from reference frames I by the conditioning network

Cond(·) to predict a sequence of t − 1 frames, P 1,...,t or B1,...,t. The prediction process is

supervised by a binarised motion encoding, E(·), of the original GOP sequence. Because the

encoder always compresses the input GOP’s width, height and time axes by a factor of 8, P-

FrameNet and B-FrameNet’s bitrate is determined by the number of output channels we set in

the final encoder layer, Cbnd. We denote predicted video-frames as either P or B, depending

on whether the decoder performs motion guided extrapolation or interpolation. The decoder

performs extrapolation, Figure 5.2, when conditioned on a single I-frame, I0, and interpolation,

Figure 5.3, when conditioned on a pair of bounding I-frames, I0 and I t+1. During training we
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use a L2 reconstruction loss:

LR = ||B − B̂||2 or ||P − P̂ ||2. (5.3)

Throughout training we give D(·) access to the original I-frame content, but at test time I0 and

I t+1 are encoded and decoded independently by an existing image codec.

Motion in video often occurs at different scales. To account for this, we implement the 3D

multi-scale convolutional layers [20, 55] discussed in Section 2.3.1 in our encoder network as a

lightweight substitute for deep pyramidal decomposition [11, 54]. Each multi-scale convolution

combines filters with different dilation factors for more diverse motion sampling across a range of

spatial and temporal scales, and can be seen as a type of learned scale invariant feature transform

(SIFT) [56]. In Section 5.4.2 we demonstrate how the inclusion of multi-scale convolutions

consistently improves video frame prediction quality. As shown in Figures 5.2 and 5.3, manifold

layers from the conditioning network ‘Cond’ are joined to the decoder D in a fashion reminiscent

of the U-Net [60] architecture, prevalent in previous video interpolation work [94, 97]. I-frame

conditioning at the decoder enables P-FrameNet and B-FrameNet to learn motion compensation

(how to transform I-frame content) instead of just compressing input P- and B-frames directly.

The experiment in Section 5.4.1 shows that the binary motion codes learnt through I-frame

conditioning are more easily compressible than raw video frames. Upscaling at the decoder is

accomplished via pixel-shuffling [71], an efficient alternative to transposed convolutions. Scene

changes and motion complexity often dictate GOP length selection in standard codecs [6]. Our

designs are, therefore, fully convolutional to ensure that they are able to accommodate a diverse

range of input frame-sizes and dynamic GOP lengths.

5.2.3. 3D Dynamic Bit Assignment

In order to vary the bitrate of our binary motion codes, we leverage [17]’s approach to content-

weighted image compression and learn to vary bitrate across an extra dimension: time. Video

regions that are smooth and predominantly stationary are easier to compress than those containing

rich texture and rapid motion. An ideal motion compression model should, therefore, actively

adapt its bitrate according to fluctuations in video complexity by assigning fewer bits to simplistic

video regions and vice versa. As it stands, our encoder architecture allocates a fixed number of

bits to each spatio-temporal location in its code-space, specified by Cbnd, the number of channels

in its binarisation layer. Based on [17], we learn a 3D bit-distribution-map, Bmap, that determines

how many bit channels are allocated to our binary motion encoding per point in space-time.

Figure 5.4 illustrates the key stages in our approach to 3D dynamic bit assignment. First we

learn Bmap, shown at (i) in the figure, from the input GOP by passing features extracted by the

penultimate encoder layer through a 3D convolutional network. The 3D bit-distribution-map

Bmap is a single-channel feature map whose values fall in the range (0, 1) and whose spatial

and temporal size is the same as the binary motion code produced by the encoder, represented
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by the blue cubes at (ii). While in the figures thus far we have indicated the serialised motion

encoding with a box of −1 and 1s, the cubes at (ii) in this figure indicate the individual learned

MVs for each video frame over its width and height (these are serialised later, as explained

below). The lighter regions in Bmap are higher valued and identify video regions that should be

allocated more bits (channels). Following [17], we portion the available Cbnd bits produced for

each video frame by the encoder into L groups each containing Cbnd

L
bits. With ⌊·⌋ denoting the

mathematical floor operator, each element, bt,h,w, in Bmap is quantised to one of L integer levels,

QL(bt,h,w) = ⌊Lbt,h,w⌋, (5.4)

to decide how many bit levels need to be retained per point in space-time. To avoid allocating

non-integer bit numbers we require that Cbnd be cleanly divisible by L and L ≤ Cbnd. Guided by

QL(Bmap) at (iii), we populate a mask M , shown at (iv), that zeros-out unnecessary bit channels

produced by the encoder at (ii):

mc,t,h,w =







1, if c ≤ Cbnd

L
QL(bt,h,w),

0, otherwise
. (5.5)

The cubes at (v) shows how masked bits (zeros) are cropped-out prior to the transmission of the

serialised motion bitstream. Zeros are reinstated at the decoder by zero-padding each channel

to Cbnd (the maximum bit-length). After multiplication by M and zero-cropping, the number

of bits transmitted per point in space-time is reduced from Cbnd to Cbnd

L
QL(bt,h,w). In order for

the decoder to reshape the serial bitstream correctly, a binarised version of QL(Bmap) is sent

separately as additional overhead at (vi). The integer values in QL(Bmap) are binarised using

base-2 expansion [23] for transmission.

Realising that our serial bit-count is proportional to the summation over Bmap, we can use an

additional loss term,

LB =
∑

t,h,w

bt,h,w, (5.6)

to drive down our model’s bitrate during training [17]. LB penalises bitrates above zero. This

prevents assigning bits to stationary video regions that can be deduced from I-frame context

alone.

Both the mask formation, (iv), and quantisation functions, (iii), in equations (5.4) and (5.5)

are non-differentiable. Luckily, using straight through estimation [17, 80] again, the gradient of

M with respect to bt,h,w can be approximated by,

∂mc,t,h,w

∂bt,h,w
=







L, if Lbt,h,w − 1 ≤ ⌈ cL
Cbnd

⌉ ≤ Lbt,h,w + 2,

0, otherwise
. (5.7)

We show the benefit of this 3D dynamic bit assignment approach experimentally in Section 5.4.5.
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Figure 5.4: 3D dynamic bit assignment incorporated into a video frame prediction model to vary

its bit allocations across space-time. In this figure the motion encoding bit-space is represented in

its true multi-dimensional form by blue blocks. Bmap, indicated by (i) in the figure, is used to

generate a mask M at (iv) that crops out unnecessary bits at (v).

5.2.4. Optical Flow Loss

We deploy the setup shown in Figure 5.5 to determine if including an explicit additional optical

flow based loss term leads to improved motion compression. The optical flow between two video

frames is defined in Section 2.1.2 as a 2D vector field that relates the movement of pixels from

the one frame to the other [6]. We denote the dense (per-pixel) optical flow for each consecutive

pair of frames in the input GOP as ~V g: the ground truth flow, indicated at (i) in the figure. As

shown at (ii), ~V p represents the flow vectors derived from the frames predicted by our motion

compression network. A host of techniques can be used to calculate ~V g and ~V p, including

differential [28], phase [110] and energy [21] based methods, or more recent deep learning

approaches [30,33,111–113]. In this work, we use LiteFlowNet [30], a state-of-the-art deep flow

estimation model. LiteFlowNet’s weights are pre-trained on the MPI Sintel dataset [114] and

frozen when training our video compression models. We experiment with the optical flow losses

defined by the Euclidean distance between the ground truth and predicted flow vectors called the

end-point-error (EPE),

LEPE =

√

||~V g − ~V p||2, (5.8)

and cosine similarity,

Lcosine = 1−
~V g · ~V p

‖~V g‖ ‖~V p‖
. (5.9)
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Lcosine differs from LEPE in that it only penalises directional deviations between the ground-truth

and predicted flow vectors as disregarding differences in magnitude may provide beneficial

regularisation. We normalise the x and y components of the flow vectors in ~V g and ~V p by

the width and height of the input video frames to avoid directional biasing. We investigate the

consequences of adding these optical flow loss terms in Section 5.4.3.

Figure 5.5: Setup used to train a video frame prediction network with an optical flow based

loss term. We use LiteFlowNet [30] to calculate and compare the optical flow of the input

and predicted video frames. LiteFlowNet’s weights are fixed when optimising our video frame

prediction models.

5.3. Experimental Setup

5.3.1. Data and Training Procedure

The P-frame and B-frame prediction networks in Figures 5.2 and 5.3 are trained on the Hollywood

dataset [115]. This dataset contains 475 AVI movie clips from a wide range of classic films. The

average clip length in our training corpus is around 5 seconds. Prior to training we transcode

each clip with the H.264 [1] codec to ensure NVIDIA Video Loader (NVVL) data loader

compatibility [77, 116]. We split this dataset into training and validation sets containing 435

and 40 clips, respectively. To avoid learning compression artefacts introduced by H.264, we

train our models on resized 64 × 64 pixel video frames. During training we randomly crop a

GOP from each clip, so although our dataset only contains 435 videos, our models are exposed

to substantially more data. The GOPs used for validation are cropped from the start of each

video in the validation set to ensure that the validation losses used for early stopping are directly

comparable across epochs. GOP length is set to 18 for B-FrameNet and 17 for P-FrameNet.

In both cases our models are trained to predict 16 video frames using the reconstruction loss
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where LF is one of the the optical flow losses in equations (5.8) or (5.9) and LR is the distortion

loss in equation (5.3). A weighting term α is used to normalise LF by the total number of flow

vectors during training.

5.3.2. Evaluation

To quantify the quality of our predicted video frames we use three objective evaluation metrics:

PSNR, SSIM [38] and VMAF [39]. Higher scores signify greater prediction quality.

To understand and probe different aspects of our approach, the experiments in Section 5.4 are

carried out on videos from our validation set: the 40 videos from the Hollywood dataset [115].

In Section 5.5 final versions of P-FrameNet and B-FrameNet are pitted against the block-motion

algorithms used in standard video codecs. This evaluation is carried out on 235 raw (‘.yuv’)

video clips sampled from the Video Trace Library (VTL) [117].2 Each clip is partitioned into

17-frame or 18-frame sequences depending on whether we are predicting P-frames or B-frames,

such that our models always predict 16-frames. VMAF, SSIM, PSNR and EPE scores are then

calculated and averaged across the reconstructed video-frames. We denote EPE as EPE (FlowNet)

or EPE (Farneback) depending on whether we calculate optical flow using LiteFlowNet [30] or

Farneback’s polynomial method [28]; in contrast to the other metrics, lower EPE is better.

5.4. Results: Ablation Experiments and Analysis

In order to probe and better understand our approach through ablation studies and developmental

experiments, we guide our analysis using the following questions.

5.4.1. P-frame vs. B-frame Decoder Conditioning?

We explore the benefits of conditioning our video decoder on learned features extracted from

reference I-frames (Section 5.2.2). Table 5.1 compares a video autoencoder (P-FrameNet without

I-frame conditioning) to P-FrameNet (single reference frame conditioning) and B-FrameNet

(dual reference frame conditioning) in Figures 5.2 and 5.3, respectively. In Table 5.1 conditioning

is shown to consistently improve the quality of the predicted frames as it allows the encoder to

focus primarily on motion extraction—we learn to transform available pixel-content rather than

compressing it directly.

Table 5.1 reaffirms that motion transforms are easier to compress than raw video content [6].

B-frame conditioning is shown to outperform its P-frame counterpart, as context from bounding

reference frames allows it to learn both forward and reverse motion transformations. Unlike

standard video codecs, B-FrameNet is able to predict B-frames in parallel without the extra

overhead of having to transmit the order in which frames are to be decoded [2].

2 Additionally, we provide YouTube links to videos compressed by P-FrameNet/B-FrameNet that have been

taken from the wild.
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Conditioning PSNR SSIM VMAF

None 23.71 0.64 41.21
P-frame 28.25 0.80 62.31
B-frame 29.83 0.84 70.45

Table 5.1: Quality scores for various decoder conditioning schemes.

5.4.2. Do Multiscale Convolutions Learn More Representative

Motion?

We experiment with incorporating the multi-scale convolutions [55] discussed in Section 5.2.2

in our motion encoder architecture. This provides us with a lightweight means of sampling

motion at a variety of spatial and temporal scales. Table 5.2 compares two implementations of

P-FrameNet, one with multi-scale convolutions and the other with normal convolutions in its

motion encoder. Using multi-scale convolutions leads to modest but consistent improvements in

the quality of the predicted frames, as indicated by higher PSNR, SSIM and VMAF scores. It also

allows P-FrameNet to perform more representative motion encoding (lower EPE). Multi-scale

convolutional layers are, therefore, used in our motion encoders throughout the rest of this work.

Convolution PSNR SSIM VMAF
EPE

FlowNet Farneback

Standard 28.25 0.80 62.31 0.477 9.28 · 10−7

Multiscale 28.48 0.81 63.90 0.471 9.24 · 10−7

Table 5.2: Multis-scale vs. standard convolutional implementations of P-FrameNet.

5.4.3. Is an Optical Flow Based Loss Beneficial?

We experiment with the EPE and cosine similarity flow losses in equations (5.8) and (5.9) in

Section 5.2.4 to discover if an optical flow based penalty helps B-FrameNet to learn improved

motion. As stated in equation (5.11) in Section 5.3.1, we add our chosen flow loss, LF , to the

reconstruction loss, LR, during training. The hyperparameter α in equation (5.11) is used to

weight LF such that the mean loss per flow vector is added to LR.

Table 5.3 reveals that an additional optical flow loss term worsens the quality of B-FrameNet’s

reconstructions (lower PSNR, SSIM and VMAF scores). The added loss term does, however,

cause the optical flow of the predicted frames to match that of the input more closely (lower

EPE). At first glance, this result seems contradictory. How can learning better motion lead to a

depreciation in quality? Realising that optical flow is essentially only 2D pixel shuffling, the

results in Table 5.3 imply that B-FrameNet is able to learn more advanced motion transforms
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5.4.6. Do Spatial Bit Allocations Change Over Time?

Figure 5.10 plots B-FrameNet’s bit-distribution map Bmap for the given 26-frame input GOP.

Because B-FrameNet compresses both space and time by a factor of around 8, Bmap consists

of three distinct bit distributions—one per 8 frame interval. Higher valued regions in Bmap are

brighter and correspond to areas encoded with more bits.

The optical flow charts in Figure 5.10 are plotted in the hue saturation value (HSV) colour

space. As discussed in Section 2.1.3 the angular direction of the optical flow vectors is indicated

by hue, so that vectors pointing in the same direction are coloured the same. Saturation indicates

the magnitude of the vectors, so vectors with higher magnitudes (moving objects) are less

transparent and are represented with more intense colours. Comparing Bmap to the optical flow

charts in Figure 5.10, we notice qualitatively that more bits are assigned to regions containing

moving objects (brightly coloured regions in the optical flow chart).

Bmap’s spatial bit distribution also changes across time to compensate for object displace-

ments caused by motion. As an aside, for video scenes containing rapid motion or multiple scene

changes it may help to lessen B-FrameNet’s compression factor across time as this would yield

more frequent updates to Bmap.

Figure 5.10: B-FrameNet’s bit-distribution map, Bmap, compared to optical flow (FlowNet)

and input video frames. Brighter regions in Bmap are allocated higher bitrates and correspond to

moving objects.
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Figure 5.11: P-frames overlayed with the block-MVs that guided their prediction. MVs are

estimated using the Diamond Search (DS) algorithm [91].

5.5. Results: Comparing to Conventional Video

Compression

We next compare our learned video compression approach to standard codecs.

5.5.1. Deep Motion Estimation vs. Standard Block Motion

Algorithms

Block-based motion estimation involves finding motion vectors (MVs) that model the movement

of macroblocks between consecutive video frames. We compare P-FrameNet and B-FrameNet,

Cbnd = 8, optimised for 3D dynamic bit assignment to several block-based motion estimation

algorithms employed by standard video codecs, namely:

• Exhaustive Search (ES) [6]

• Three Step Search (TSS) [118]

• New Three Step Search (NTSS) [88]

• Simple and Efficient Search (SES) [90]

• Four Step Search (FSS) [89]

• Diamond Search (DS) [91]

• Adaptive Rood Pattern Search (ARPS) [92]

This evaluation is carried out on videos from the VTL dataset [117]. Our models are intended

for video prediction only, so here we strip down the standard video codecs so that only the

mechanisms used for inter-frame prediction are compared. As shown in Figure 5.11, we apply

the standard block-motion algorithms to IPPP GOP sequences, so that each macroblock in

the currently decoded P-frame is linked to the closest matching macroblock region from the

preceding frame by way of a MV that indicates its relative spatial displacement.
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For transmission, we binarise each MV’s x and y components as well as the centre coordinates

of the reference macroblock to which it points. Zero-vectors and overhead bits needed for

reshaping are discounted; here we only consider bits that effect motion transformation. Searching

all possible pixel locations in the reference frame for each predicted macroblock’s closest match

is computationally expensive, especially for high resolution videos. Hence, the search area is

typically limited to p = 7 pixels around the predicted macroblock’s location [86]. We experiment

with mb = 8×8 and mb = 16×16 macroblock size parameterisations of the different algorithms

in Tables 5.4 and 5.5, respectively. Smaller macroblocks produce denser MVs resulting in finer

motion prediction at the cost of a higher bitrate and longer execution time. In this evaluation all

models and algorithms are used to predict sixteen 224 × 320 video frames. Note that for this

evaluation we assume uncompressed I-frame context is available at the decoder.

Model bpp PSNR SSIM VMAF Time (sec)

ES 0.0108 16.35 0.850 44.64 11.35
TSS 0.0108 16.37 0.851 44.81 1.53
NTSS 0.0107 16.34 0.851 44.76 1.18
SES 0.0068 15.80 0.846 40.94 0.96
FSS 0.0077 16.29 0.852 44.77 1.01
DS 0.0100 15.70 0.816 37.90 0.77
ARPS 0.0097 15.66 0.816 37.89 0.63
P-FrameNet 0.0052 28.89 0.829 65.66 0.28
B-FrameNet 0.0038 30.36 0.859 71.19 0.28

Table 5.4: Motion compensation scores for 16 frame video prediction (mb = 16× 16, p = 7).

Model bpp PSNR SSIM VMAF Time (sec)

ES 0.0582 19.45 0.901 62.97 46.32
TSS 0.0578 19.47 0.901 63.15 5.67
NTSS 0.0568 19.44 0.902 63.17 4.29
SES 0.0396 18.80 0.893 57.18 3.71
FSS 0.0437 19.38 0.901 62.19 3.86
DS 0.0552 18.58 0.860 53.09 2.82
ARPS 0.0539 18.54 0.861 53.16 2.15
P-FrameNet 0.0052 28.89 0.829 65.66 0.28
B-FrameNet 0.0038 30.36 0.859 71.19 0.28

Table 5.5: Motion compensation scores for 16 frame video prediction (mb = 8× 8, p = 7).

Tables 5.4 and 5.5 show that for fewer bits-per-pixel (bpp), P-FrameNet and B-FrameNet’s

predictions score higher in terms of PSNR and VMAF than those produced by the block-matching

algorithms. SSIM scores are comparable, but our models use at least 23% and 88% fewer bits-per-

pixel (bpp) than the block-matching algorithms in Tables 5.4 and 5.5, respectively. P-FrameNet
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and B-FrameNet’s encoding and decoding time is faster than than that of all the block-based

motion estimation algorithms. This speedup stems from their ability to predict frames in parallel

without the need for a search-step during encoding.

5.5.2. Deep Motion Compression vs. Standard Video Codecs

In Section 5.5.1 we demonstrated that with fewer bits our learned binary motion codes are able

to express richer motion than several block-based motion estimation algorithms. Standard video

codecs improve MV compression via techniques not included in the standalone implementation

of the algorithms used above. To reduce bitrate, similar MVs are grouped together and only the

Motion Vector Difference (MVD) between each vector and a Motion Vector Predictor (MVP) is

transmitted [119]. MVD values are normally lower than those of the original MVs, especially

for a good choice in MVP,3 and can be represented with fewer bits. Standard video codecs also

actively adapt their block-motion algorithm’s macroblock-size and search distance to better suit

the content of different video regions.

For these reasons, we now compare P-FrameNet and B-FrameNet to the standard video

codecs H.264 [1] and H.265 [2]. FFmpeg is used to compress videos with H.264/5. We varied

each codec’s constant rate factor (CRF); this aims to achieve a constant quality across all

video frames using as few bits as possible. The full FFmpeg commands used are included in

Appendix A and explained in greater detail in Section 2.4.3.

Both P-FrameNet and B-FrameNet are intended to provide inter-frame prediction of P/B-

frames as part of a larger video compression system. To compress I-frames we adopt H.264’s

intra-frame codec, which is similar to that of H.265 [1, 2]. Any image codec can be used for

I-frame compression, and more powerful deep image codecs do exist [13, 15, 18], but to keep

this evaluation fair we include P-FrameNet and B-FrameNet into an existing video codec in

order to investigate the effects of including learned motion prediction in isolation. Since all

of the video codecs being evaluated share H.264’s I-frame codec, any compressive gains stem

mainly from improved inter-frame coding. We vary the quality (bit allocation) of the I-frames to

gauge P-FrameNet and B-FrameNet’s performance across different operating points. For this

evaluation, we train Cbnd = 8 versions of P-FrameNet and B-FrameNet that have been optimised

for 3D dynamic bit assignment. Bear in mind that unlike H.264 and H.265 our learned binary

motion codes and overhead bits do not undergo any form of entropy coding.

P-FrameNet vs. Standard Video Codecs

We plot rate-distortion curves for P-FrameNet, H.264, and H.265, based on their respective

compression of 17-frame 64× 64 videos clips sampled from the VTL dataset [117]. Each clip

consists of a single I-frame followed by sixteen referencing frames. We allow the standard

codecs to decide on their own whether to assign referencing frames as P or B (or a mixture of

3 In H.264, a MVP is selected as the mean of a MV group [1].
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5.6. Chapter Summary

We introduced P-FrameNet and B-FrameNet, deep motion estimation and compensation networks

that can replace block-motion algorithms in existing video codecs for improved inter-frame

prediction. In contrast to previously developed video codecs, we do not transmit optical flow

vectors to guide our video frame predictions. Instead, our encoder network learns to identify

and compress the motion present in a video sequence directly. The ensuing binary motion

code is used to direct P-FrameNet and B-FrameNet’s decoder in transforming reference frame

content. This allows for parallel motion compensation that predicts more complex motion than

flow-based methods. Leveraging recent work in deep image compression, we also train P-

FrameNet and B-FrameNet to perform 3D dynamic bit assignment, i.e. vary their bit allocations

through space-time. We show that this improves compression by focusing bits on complicated

video regions. Experiments show that at a lower bitrate, both P-FrameNet and B-FrameNet’s

inter-frame predictions are of a higher quality than those of the standard video codecs, H.264

and H.265.

Apart from porting our inter-frame prediction networks into existing deep video codecs,

future work will explore replacing flow-based motion estimation in alternative video applications

(e.g. slow-motion) with conditioning on our learned binary motion encodings.
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(a) Ground Truth

(b) P-FrameNet

(c) H.264

(d) H.265

Figure 5.14: P-FrameNet vs. standard video codecs inter-frame predictions. We only show the

last five predicted frames furthest from the I-Frame.
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(a) Ground Truth

(b) B-FrameNet

(c) H.264

(d) H.265

Figure 5.15: B-FrameNet vs. standard video codecs inter-frame predictions. We only show the

five predicted frames midway between the bounding I-Frames.
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Chapter 6

Summary and Conclusion

Our main contribution is the Binary Inpainting Network (BINet), a framework that allows deep

neural networks to predict video frame content directly from learned binary codes.

When compressing a single video frame BINet allows for parallelised inpainting of its patches

from a full-context region without access to the original pixel data. Experiments in Chapter 4

showed that BINet’s intra-frame predictions are of a higher quality than the sequential inpainting

performed by the existing intra-frame codecs: WebP [19] and the deep inpainting in [20]. In

quantitative evaluations BINet produces small but consistent compressive gains when integrated

into a progressive image codec without inpainting. Qualitatively BINet’s reconstructions suppress

block-artefacts at low bitrates making it better suited towards memory efficient patch-based

compression.

Inspired by BINet we developed P-FrameNet and B-FrameNet: inter-frame video prediction

models that transform reference frame content according to a learned binary motion code that

moves objects through time to compensate for relative motion in a video sequence. In Chapter 5

we demonstrate that ground truth motion is better modelled by P-FrameNet and B-FrameNet

than the optical flow techniques prevalent in current video codecs [1, 2, 4]. Moreover, at a lower

bitrate our parallel video frame predictions surpass the sequential reconstructions produced by

the popular video codecs H.264 and H.265.

This research warrants the future inclusion of binary inpainting for improved parallel predic-

tion in modern video codecs.

Recommendations for Future Work

BINet only includes binary inpainting at the first iteration of its progressive image coding process

(see Chapter 4) . Recall that the inpainting stage predicts a centre 32 × 32 patch from a nine

patch 96× 96 pixel input. Inpainting at all sixteen iterations would require a 1056× 1056 input

size, which does not fit onto a single GPU’s memory. We tried learning multi-stage inpainting by

reflection or zero padding the encoded bits during training, but informal experiments showed that

this hack turned out negligible improvements. Given the necessary GPU memory, we suggest

training BINet with larger inputs for multi-stage inpainting.

We encourage replacing the optical flow based motion prediction in existing deep video

76
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codecs [4, 5] with our inter-frame prediction models (P-FrameNet and B-FrameNet), which are

shown capable of learning higher quality motion transforms in Chapter 5. Apart from training

P-FrameNet and B-FrameNet on HD video, learning to shuffle video frames so that similar video

scenes are clustered and encoded together, in a way that aids compression, is also a potential

area of interest.
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[108] D. Minnen, J. Ballé, and G. Toderici, “Joint autoregressive and hierarchical priors for

learned image compression,” Conference on Neural Information Processing Systems

(NIPS), 2018.

[109] J. Han, S. Lombardo, C. Schroers, and S. Mandt, “Deep probabilistic video compression,”

arXiv preprint arXiv:1810.02845, 2018.

[110] T. Gautama and M. M. Van Hulle, “A phase-based approach to the estimation of the

optical flow field using spatial filtering,” IEEE Transactions on Neural Networks (TNN),

2002.

[111] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “FlowNet 2.0: evolu-

tion of optical flow estimation with deep networks,” IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR), 2016.

[112] S. Zweig and L. Wolf, “InterpoNet, A brain inspired neural network for optical flow

dense interpolation,” IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[113] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial pyramid network.”

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),

2017.

[114] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open source movie

for optical flow evaluation,” European Conference on Computer Vision (ECCV), 2012.

[115] M. ”Marszałek, I. Laptev, and C. Schmid, “Actions in context,” IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

[116] NVIDIA, “NVVL,” available at https://github.com/NVIDIA/nvvl, 2018.

[117] A. S. University, “Video Trace Library YUV video sequences,” available at http://trace.

kom.aau.dk/yuv/index.html, 2000.

Stellenbosch University https://scholar.sun.ac.za



Bibliography 87

[118] S. D. Kamble, N. V. Thakur, and P. R. Bajaj, “Modified three-step search block match-

ing motion estimation and weighted finite automata based fractal video compression,”

International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2017.

[119] W. Yang, O. C. Au, C. Pang, J. Dai, and F. Zou, “An efficient motion vector coding

algorithm based on adaptive motion vector prediction,” IEEE International Symposium on

Circuits and Systems (ISCAS), 2010.

Stellenbosch University https://scholar.sun.ac.za



Appendix A

FFmpeg Compression Commands

#!/bin/bash

ffmpeg -y \\

-i "input.mp4" \\

-codec:v "libx264" \\

-g "17" \\

-keyint_min "17" \\

-crf "51" \\

-frames:v "18" \\

-an \\

-f "mp4" \\

"output.mp4"

Listing A.1: FFmpeg bash command to compress a video file with the H.264 video codec. Output

video file has two bounding intra-coded I-Frames with 16 interpolated P/B-Frames in-between.

#!/bin/bash

ffmpeg -y \\

-i "input.mp4" \\

-codec:v "libx265" \\

"-x265-params" "’keyint=17:min-keyint=17’" \\

-crf "51" \\

-frames:v "17" \\

-an \\

-f "mp4" \\

"output.mp4"

Listing A.2: FFmpeg bash command to compress a video file with the H.265 video codec.

Output video file has one intra-coded I-Frame followed by 16 extrapolated P/B-Frames.
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Appendix B

FFmpeg Quality Metric Commands

#!/bin/bash

ffmpeg -i "ref.mp4" \\

-i "comp.mp4" \\

-lavfi "libvmaf" \\

-f "null" \\

"-"

Listing B.1: FFmpeg bash command to assess the VMAF quality between a reference and

compressed video file.

#!/bin/bash

ffmpeg -i "ref.mp4" \\

-i "comp.mp4" \\

-lavfi "[0:v][1:v]psnr" \\

-f "null" \\

"-"

Listing B.2: FFmpeg bash command to assess the PSNR quality between a reference and

compressed video file.

#!/bin/bash

ffmpeg -i "ref.mp4" \\

-i "comp.mp4" \\

-lavfi "[0:v][1:v]ssim" \\

-f "null" \\

"-"

Listing B.3: FFmpeg bash command to assess the SSIM quality between a reference and

compressed video file.
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