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ABSTRACT 

Parkinson’s disease (PD) is a progressive and debilitating neurodegenerative disorder, characterized 

by a distinct motor phenotype and the selective loss of dopaminergic neurons in the substantia nigra. 

While the etiology of PD is not fully understood, it is thought to involve a combination of different 

genetic, cellular and environmental factors that independently or concurrently contribute to 

neurodegeneration. To date, several PD-causing genes have been identified, and investigations of their 

function have provided novel insights into the pathobiology of disease. Particularly interesting among 

the known PD genes is parkin, mutations in which are the most common genetic cause of early onset 

PD. Parkin is an E3 ligase that ubiquitinates protein substrates and targets such substrates for 

degradation via the ubiquitin proteasome system (UPS). Therefore, the loss of parkin may result in the 

deleterious accumulation or dysregulation of parkin substrates and neurotoxicity. Parkin’s enzymatic 

activity has also been implicated in the maintenance of mitochondrial health, and mitochondrial 

dysfunction is commonly reported in cellular and animal models of parkin deficiency.  

This study aimed to investigate parkin and its role in PD on various levels. Initially, genetic screening 

approaches were used to assess the contribution of parkin mutations to PD in a group of 229 South 

African patients. It was concluded that parkin mutations are rare in the South African PD population, 

being present in only seven (3.1%) patients in the study group. Interestingly, this study identified two 

of only three Black African PD patients with mutations in a known PD-causing gene to date. The low 

frequency of known PD genes raises the interesting possibility that the unique South African ethnic 

groups may harbor mutations in novel PD-causing genes.  

Although many parkin-interacting proteins have been identified in the literature, it is anticipated that 

novel, pathologically-relevant parkin substrates remain to be discovered. Hence, this study used a 

yeast two-hybrid (Y2H) approach to identify novel parkin interactions. This yielded 29 putative 

parkin interactors, of which four, namely ATPAF1, SEPT9, actin and 14-3-3η, were prioritized for 

verification by co-localization and co-immunoprecipitation experiments. Interestingly, two of the 

parkin interactors (ATPAF1 and SEPT9) were found to accumulate in the absence of parkin, 

supporting their role as authentic parkin substrates. The identification of these two intriguing proteins 

implicates parkin in the regulation of mitochondrial ATP synthase assembly and septin filament 

dynamics, which may be of significant relevance to our understanding of processes underlying 

neurodegeneration.   

Moreover, it was aimed to assess various markers of mitochondrial function in a parkin-deficient 

cellular model, as previous studies had reported conflicting results regarding mitochondrial 

impairments in patient-derived cells with parkin mutations. Hence, dermal fibroblasts were obtained 
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from PD patients with homozygous parkin mutations, after which cell growth and viability, 

mitochondrial membrane potential, respiratory rates and the integrity of the mitochondrial network 

were assessed. Surprisingly, it was found that cell growth was significantly higher in the parkin-

mutant fibroblasts compared to wild-type controls fibroblasts under basal conditions (p=0.0001), 

while exhibiting a greater inhibition of cell growth in the presence of the mitochondrial toxin CCCP 

(p=0.0013). Furthermore, whereas the mitochondrial networks of patient-derived fibroblasts were 

more fragmented than controls (p=0.0306), it was found that mitochondrial respiratory rates were 

paradoxically higher in the patients (p=0.0355). These unanticipated findings are suggestive of a 

compensatory response to the absence of parkin. 

The parkin-deficient cellular model was also used in a pilot study of the functional effects of vitamin 

K2 treatment, which has recently been identified as a promising PD therapeutic modality. It was found 

that treatment with vitamin K2 resulted in more interconnected mitochondrial networks (p=0.0001) 

and enhanced respiratory rates (p=0.0459) in both parkin-mutant and wild-type control cells. While 

these results need to be studied further, it suggests that vitamin K2 supplementation may be of use as a 

general promoter of mitochondrial integrity and function.  

In conclusion, this dissertation highlights some novel interactions of the parkin protein and some 

interesting phenotypes of parkin deficiency. It is hoped that further investigation of parkin and its role 

in PD will, ultimately, aid in the development of therapeutic strategies to treat this debilitating and 

poorly-understood disorder.  
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OPSOMMING 

 

Parkinson se siekte (PS) is 'n progressiewe en aftakelende neurodegeneratiewe kondisie, wat 

gekarakteriseer word deur 'n kenmerkende bewegingsfenotipe en die selektiewe afsterwing van 

dopaminergiese neurone in die substantia nigra. Terwyl die etiologie van PS nie ten volle verstaan is 

nie, behels dit waarskynlik 'n kombinasie van verskillende genetiese, sellulêre en omgewings-faktore 

wat onafhanklik of gelyktydig lei tot senuwee-afsterwing. Tot op hede is daar al verskeie PS-

veroorsakende gene geïdentifiseer, en die bestudering van hul funksie het nuwe insigte in die 

patobiologie van hierdie siekte verskaf. Onder meer hierdie PS gene is parkin van besondere belang, 

aangesien mutasies in parkin die mees algemene genetiese oorsaak van vroeë-aanvang PS is. Parkin is 

'n E3 ligase-ensiem wat proteïen substrate ubiquitineer en teiken vir degradasie via die ubiquitien 

proteasoomstelsel (UPS). Dus kan die verlies van parkin lei tot die beskadigende opeenhoping of 

wanregulasie van parkin substrate en senuwee-afsterwing. Parkin se ensiematiese aktiwiteit is ook 

betrokke by die instandhouding van mitokondriale gesondheid, en mitokondriale afwykings word 

dikwels gerapporteer in sellulêre en diermodelle van parkin tekort. 

Hierdie studie het gepoog om parkin en sy rol in PS op verskillende vlakke te ondersoek. Aanvanklik 

is genetiese siftingsbenaderinge gebruik om die bydrae van parkin mutasies tot PS in 'n groep van 229 

Suid-Afrikaanse pasiënte te evalueer. Die gevolgtrekking is bereik dat parkin mutasies skaars is in die 

Suid-Afrikaanse PS bevolking, aangesien dit teenwoordig is in net sewe (3.1%) pasiënte in die studie 

groep. Interessant genoeg, hierdie studie het twee van slegs drie gevalle van Swart Afrika-pasiënte 

met mutasies in 'n bekende PS geen to op datum geïdentifiseer. Die lae frekwensie van bekende PS 

gene versterk die stimulerende moontlikheid dat die unieke Suid-Afrikaanse sub-populasies dalk 

mutasies in nuwe PS-veroorsakende gene mag koester. 

Alhoewel baie parkin proteïen-interaksies reeds in die literatuur geïdentifiseer is, word daar verwag 

dat nuwe, patologies-relevante parkin substrate nog wag om ontdek te word. Dus het hierdie studie 'n 

gis twee-hibried (G2H) benadering gebruik om nuwe parkin interaksies te identifiseer. Hierdie het 29 

vermeende parkin interaktors opgelewer, waarvan vier, naamlik ATPAF1, SEPT9, aktien en 14-3-3η, 

geprioritiseer is vir verifikasie deur mede-lokalisering en mede-immunopresipitasie eksperimente. 

Interessant genoeg, daar is gevind dat twee van die parkin interaktors (ATPAF1 en SEPT9) ophoop in 

die afwesigheid van parkin, wat hul rol as werklike parkin substrate ondersteun. Die identifisering van 

hierdie twee interessante proteïene impliseer parkin in die regulering van mitokondriale ATP sintase 

vervaardiging en septienfilament dinamika, wat moontlik van beduidende belang is vir ons begrip van 

die onderliggende prosesse wat senuwee-afsterwing veroorsaak. 
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Verder is daar daarop gemik om verskeie aanwysigings van mitokondriale funksie in 'n parkin-

gebrekkige sellulêre model te evalueer, aangesien vorige studies teenstrydige resultate rapporteer 

rakende mitokondriale afwykings in pasiënt-selle met parkin mutasies. Dus is daar dermale 

fibroblaste verkry van PS pasiënte met homosigotiese parkin mutasies, waarna sel-groei en 

lewensvatbaarheid, mitokondriale membraanpotensiaal, respiratoriese tempo en die integriteit van die 

mitokondriale netwerk geëvalueer is. Daar is verbasend gevind dat sel-groei aansienlik hoër is die 

parkin-mutante fibroblaste in vergelyking met wilde-tipe kontrole fibroblaste onder basale kondisies 

(p=0.0001), terwyl hulle 'n groter inhibisie van sel-groei in die teenwoordigheid van die mitokondriale 

toksien CCCP ondergaan (p=0.0013). Verder, terwyl die mitokondriale netwerke van pasiënt 

fibroblaste meer gefragmenteer is as die van kontroles (p=0.0306), is daar gevind dat mitokondriale 

respiratoriese tempo’s, paradoksaal-gewys, hoër is in die pasiënte (p=0.0355). Hierdie onverwagte 

bevindinge is suggestief van die aanskakeling van 'n vergoedende respons-proses in die afwesigheid 

van parkin. 

Die parkin-gebrekkige sellulêre model is ook gebruik in 'n voorlopige studie van die funksionele 

effekte van vitamiene K2 behandeling, wat onlangs geïdentifiseer is as 'n belowende terapeutiese 

moontlikheid vir PS. Daar is gevind dat sel-behandeling met vitamiene K2 lei tot meer 

geïnterkonnekteerde mitokondriale netwerke (p=0.0001) en verbeterde respiratoriese fuksie 

(p=0.0459) in beide parkin-mutante en wilde-tipe kontrole selle. Terwyl hierdie resultate verder 

bestudeer sal moet word, dui dit daarop dat vitamiene K2-aanvulling moontlik gebruik kan word as 'n 

algehele promotor van mitochondriale integriteit en funksie. 

Ten slotte, hierdie verhandeling beklemtoon ‘n paar nuwe interaksies van die parkin proteïen en 'n 

paar interessante fenotipes van parkin tekort. Daar word gehoop dat verdere ondersoek van parkin en 

parkin se rol in PS sal, uiteindelik, steun in die ontwikkeling van terapeutiese strategieë om hierdie 

aftakelende en swak-verstaande wanorde beter te behandel. 
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OUTLINE OF THE DISSERTATION  

 

This dissertation involves a genetic and functional investigation of parkin and its role in Parkinson’s 

disease (PD). As such, it examines the contribution of parkin mutations to PD in South African 

patients, highlights novel parkin-interacting proteins and evaluates cellular function in a parkin-

deficient cell model. Furthermore, it explores the therapeutic compound vitamin K2 as a possible PD 

treatment modality.  

This dissertation is divided into four chapters: 

Chapter one provides an overview of what is currently known about PD, with a particular emphasis 

on the genetics and pathobiology of this disease. As this dissertation will be specifically focusing on 

the role of parkin in PD, a review of the literature on parkin is provided. Previous studies on the 

therapeutic potential of vitamin K2 for PD will also be highlighted. Lastly, the overall aims and 

objectives of this study will be outlined. 

Chapter two details the methodological approaches used in this dissertation, and is organized into 

three parts. The first part describes a molecular genetic screen of parkin for pathogenic mutations, the 

second part entails experimental procedures used to identify and characterize parkin-interacting 

proteins, and the third part provides methods employed in the functional evaluation of cellular health 

in a model of parkin deficiency.  

Chapter three relays the results obtained from the present study. It includes the findings on the 

frequency of parkin mutations South African PD patients, the identification and verification of four 

parkin interactors, interesting cellular phenotypes observed in a parkin-deficient cell model and 

describes the effect of treatment with vitamin K2 on several parameters of cellular health.  

Chapter four provides a discussion of the important findings of this dissertation, and highlights the 

possible relevance of these findings to PD research. It furthermore advises on proposed future work 

that may expand our current understanding of parkin and its role in PD. 
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CHAPTER ONE: INTRODUCTION 

 

PART ONE: PARKINSON’S DISEASE (PD) 

 

1.1 PD – HISTORICAL CONTEXT 

Almost two centuries ago, the English apothecary James Parkinson provided the first clear medical 

description of the disorder which now bears his name, in “An Essay on the Shaking Palsy” (Parkinson 

1817). In this landmark publication, Parkinson described six patients with “involuntary tremulous 

motion, with lessened muscular power, in parts not in action and even when supported; with a 

propensity to bend the trunk forwards, and to pass from a walking to a running pace: the senses and 

the intellects being uninjured”. The French neurologist Jean-Martin Charcot later expanded on the 

formal clinical description of this disorder and named it Parkinson’s disease (PD), in recognition of 

the work of James Parkinson (Charcot 1880). However, Parkinson himself acknowledged that 

parkinsonism-like symptoms were noticed by several earlier authors, including Galen, Sylvius de la 

Boë, Boissier de Sauvages and Juncker (Parkinson 1817). For example, Galen described a condition 

involving tremors that occurred only at rest, postural instability and paralysis, whereas Sauvages 

described festination, a term for the gait abnormalities characteristic of PD (Raudino 2012). 

Ayurvedic Indian texts dating from the tenth century BC and ancient Chinese sources included 

descriptions highly reminiscent of PD, suggesting that this disorder was known to several ancient 

civilizations (Manyam 1990; Zhang et al. 2006). Nonetheless, the great merit of Parkinson’s essay 

was its focused and careful description of PD’s cardinal symptoms, accurate account of the course of 

the malady as well as in distinguishing PD from similar disorders. The contribution of Parkinson’s 

work is increasingly recognized and his birthday, 11 April, is celebrated as World PD Day.   

Parkinson’s expressed hope that his monograph would spur pathologists to find the anatomical 

substrate of PD had to wait 80 years. After Paul Blocq and Georges Marinesco published their case 

report of a tuberculomatous lesion in the midbrain which resulted in parkinsonism (Blocq and 

Marinesco 1894), Edouard Brissaud speculated that an ischemic lesion of the substantia nigra might 

be principally responsible for PD (Brissaud 1895). Brissaud’s hypothesis was later confirmed by 

Konstantin Tretiakoff, who consistently observed substantia nigral degeneration in autopsied PD 

patients and also found associated “senile lesions” in the affected areas (Tretiakoff 1919). 

Furthermore, a majority of the PD brains also had “corps de Lewy”, neuronal inclusions described 

seven years earlier by Frederic Lewy (Lewy 1912). Despite Tretiakoff’s study, severe damage to the 

substantia nigra was not generally accepted as the critical pathological hallmark of PD until later 

confirmatory work of Rolf Hassler (1938) and then John Greenfield and Frances Bosanquet (1953) 
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was published. Further noteworthy historical advances include elucidation of the biochemical basis of 

PD, centered on the newly discovered role of the neurotransmitter dopamine in PD (Carlsson et al. 

1958), the introduction of dopamine replacement via levodopa therapy for the management of motor 

symptoms, and the discovery of genetic factors that contribute to PD (Polymeropoulos et al. 1997).  

After two centuries since the publication of Parkinson’s seminal monograph, and great leaps and 

bounds in our understanding of the anatomical and molecular pathology of this disorder, many key 

questions concerning PD pathogenesis remain unanswered, and PD remains without a cure. It is 

hoped that a wider and deeper understanding of the genes, proteins and pathways involved in PD will 

aid in the development of neuroprotective or therapeutic interventions that may prevent or treat the 

underlying pathology of this debilitating disorder. 

 

1.2 EPIDEMIOLOGY OF PD 

Published estimates of the prevalence and incidence of PD vary greatly according to the applied 

methodology, which complicates cross-study comparisons. Epidemiological studies are particularly 

sensitive to differences in diagnostic criteria and case-finding strategies; record-based studies and 

studies performed in clinical settings do not include patients who failed to seek medical attention and 

therefore generally underestimate the prevalence or incidence in the general population. Nonetheless, 

the quantity of publications on PD epidemiology, over 80 prevalence and 25 incidence studies, allow 

for confident estimations of PD prevalence and incidence (at least for developed nations) (Wirdefeldt 

et al. 2011).  

 

1.2.1 Prevalence 

The reported prevalence of PD ranges from 100 to 5703 per 100 000, with studies on the elderly 

population (typically over the age of 60) reporting the highest figures (Kuopio et al. 1999; de Rijk et 

al. 2000; Barbosa et al. 2006; Peters et al. 2006; Racette et al. 2009). A meta-analysis of twelve high-

quality North American and European studies estimated the prevalence of PD in the population over 

the age of 65 at 950 per 100 000 (Hirtz et al. 2007). A further study that reviewed data from six 

European prevalence studies and country-specific population structure data estimated the worldwide 

total number of PD patients over the age of 50 at between 4.1 and 4.6 million in 2005; this number 

was projected to double to between 8.7 and 9.3 million by the year 2030 (Dorsey et al. 2007). 

Age is a significant risk factor for PD: it is very rare before the age of 40 and the prevalence increases 

steeply after the age of 60, with up to and above 4000 per 100 000 reported in the highest age groups 

(de Rijk et al. 1995; Clavería et al. 2002; Benito-León et al. 2003). Most cases of PD manifest around 
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the age of 60 years (Jankovic 2008). Some studies report a decline in prevalence rates in the age group 

above 80 years (Wang et al. 1991; Benito-León et al. 2003), but this is probably an artefact resulting 

from PD misdiagnosis due to disease comorbidity, patient loss to follow-up or smaller patient sample 

sizes (de Rijk et al. 2000).     

Geographic and ethnic variation in PD prevalence is interesting from an etiological point of view, as 

such variation might result from differences in environmental exposures or distribution of 

susceptibility alleles (de Lau and Breteler 2006). Several studies have reported lower prevalence 

figures in Africa (Schoenberg et al. 1988), Asia (Wang et al. 1991), and South America (Melcon et al. 

1997) than Europe. This is supported by calculations of age-standardized prevalence proportions 

which found a 13-fold difference in age-standardized prevalence across populations; the study found 

the lowest prevalence in China, Japan and Africa (Zhang and Román 1993). However, more recent 

studies report PD prevalence in China (Zhang et al. 2005) and South America (Barbosa et al. 2006) as 

being similar to European populations. The previously reported differences may result from 

methodological and case-ascertainment concerns, rather than true ethnic differences (Alves et al. 

2008). The low PD prevalence in Africa may be due to a shorter life expectancy in comparison to the 

developed world (McInerney-Leo et al. 2004). Indeed, PD prevalence estimates in Africa are lowest 

in countries of Eastern and Western Africa, where life expectancy is lowest, while Northern African 

countries have reported prevalences comparable to developed countries (Okubadejo et al. 2006). 

Another plausible reason for low prevalence in Africa is the relative underdiagnosis of PD in Africa 

due to socioeconomic and cultural factors (McInerney-Leo et al. 2004). 

 

1.2.2 Incidence  

Comparatively fewer PD incidence than prevalence studies have been published. Overall, these 

studies report annual incidence estimates for all age groups ranging from 2 to 22 per 100 000 

(Mayeux et al. 1995; Bower et al. 1999; de Lau et al. 2004), with studies restricted to the elderly (over 

the age of 65) reporting estimates of 410 to 529 per 100 000 (Benito-León et al. 2004; Driver et al. 

2009). A meta-analysis of eight high-quality incidence studies estimated an age-standardized PD 

incidence of 14 per 100 000 in developed countries (Hirtz et al. 2007); this figure rose to 160 per 

100 000 when the analysis was restricted to studies of elderly patients (Hirtz et al. 2007). 

As with PD prevalence, PD incidence rates are very low under the age of 40 and rise sharply after the 

age of 60, attesting to the importance of age as a PD risk factor (Van Den Eeden et al. 2003). A 

similar drop in PD incidence figures are reported for the old age groups (Morens et al. 1996; Bower et 

al. 1999); however, there is some debate over whether this decline is real or due to underdiagnosis 

(Driver et al. 2009).  
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Comparison of PD incidence across different countries is hampered by differences in study 

methodology in the various publications (e.g. reporting on crude incidence v. population-adjusted 

incidence). Most European studies report overall incidence estimates between 9 and 22 per 100 000 

(Taba and Asser 2003; Linder et al. 2010), whereas the corresponding estimates for Asian populations 

range from 1.5 to 17 per 100 000 (Wang et al. 1991; Morioka et al. 2002). Only a single study report 

on PD incidence in Africa, estimating the incidence in North-East Libya at 4.5 per 100 000 (Ashok et 

al. 1986). Few epidemiological studies consider incidence differences among ethnic populations 

within the same study group. In a study of a multi-ethnic Californian population, PD incidence was 

highest in Hispanic individuals, followed by non-Hispanic White, Asian and Black individuals (Van 

Den Eeden et al. 2003). Given the scarcity of incidence data for non-White populations, conclusive 

ethnic differences in PD incidence are a matter of debate.   

 

1.3 NEUROPATHOLOGY OF PD 

The primary neuropathological hallmark of PD is the loss of neuromelanin-containing dopaminergic 

neurons in the substantia nigra pars compacta (SNpc), which forms an integral part of the basal 

ganglia motor circuit. The neuronal loss characteristic of PD is illustrated in Figure 1.1. Such 

degeneration of neurons of the nigrostriatal pathway depletes the basal ganglia of dopamine, resulting 

in the distinguishing motor features of PD (Hornykiewicz 2008). Neuronal loss in the SNpc is most 

pronounced in the ventrolateral tier of neurons, which project to the striatum. Accompanying this loss 

is an increase in microglial activation and astrocytosis and a decrease in neuromelanin pigmentation 

in the affected area (Teismann and Schulz 2004). The extent of neuron loss in the SNpc has been 

shown to correlate well with the severity of many of the motor features of PD (Vingerhoets et al. 

1997). It is estimated that, by the time of the first appearance of motor symptoms, approximately 40-

60% of dopaminergic neurons of the SNpc have been lost, leading to an 60-80% reduction in 

nigrostriatal dopamine (Fearnley and Lees 1991; Halliday et al. 1996). Extrapolation of such findings 

suggests a preclinical phase of PD with progressively worsening SNpc degeneration of about 5 years 

(Greffard et al. 2006).  

While the biggest emphasis is consistently placed on degeneration of the nigrostriatal pathway, it 

should be noted that PD-associated degeneration is not restricted to the SNpc.  Dopaminergic and 

nondopaminergic neuronal loss can be found in the locus ceruleus, dorsal nuclei of the vagus, raphe 

nuclei, nucleus ambiguus, nucleus basalis of Meynert and several other areas of the brainstem (Braak 

and Braak 2000). The recognition of this extranigral pathology in PD is important for the proper 

management of the non-motor symptoms of PD, which usually do not respond well to treatment with 

the dopamine precursor levodopa or dopamine agonists (Chaudhuri and Odin 2010).   
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Figure 1.1 Neuropathology of Parkinson’s disease. A, brain regions and neuronal pathways 

affected by PD. The principal affected pathway is the dopaminergic neurons of the nigrostriatal 

pathway (red arrows) whose cell bodies are located in the substantia nigra pars compacta (SNpc).  

These neurons project to the basal ganglia and synapse at the striatum (both the caudate nucleus and 

the putamen). Degeneration of the nigrostriatal pathway in PD leads to a dopamine deficit resulting in 

dysregulation of the basal ganglia. B, depigmentation (loss of neuromelanin) in PD-affected SNpc due 

to the loss of dopaminergic neurons. Illustrated are transverse sections through the superior colliculus 

of an unaffected individual (top) and a PD patient (bottom). C, histology of unaffected SNpc showing 

many pigmented neurons. D, histology of PD-affected SNpc showing severe loss of pigmented cells. 

E, immunohistochemical labeling of Lewy bodies (LBs) in a PD-affected SNpc. Immunostaining with 

an α-synuclein antibody reveals dark-staining intraneuronal inclusions. (Figures adapted from 

http://neuropathology-web.org). Abbreviations: LB, Lewy body; PD, Parkinson’s disease; SNpc, 

substantia nigra pars compacta.     

 

 

In addition to the loss of dopaminergic neurons, a defining hallmark of PD is the presence of 

intraneuronal inclusions, or Lewy bodies (LBs), in the surviving neurons of affected brain regions. 

LBs are spherical, eosinophilic, cytoplasmic aggregates which consist of a heterogeneous mixture of 

over a hundred various proteins (Wakabayashi et al. 2013). The main component of LBs is aggregated 

α-synuclein protein; α-synuclein antibodies are routinely used for the immunohistochemical detection 

of LB pathology during post-mortem diagnosis (Figure 1.1E). Considerations of the distribution of LB 
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pathology has led Braak et al. (2003) to propose that LB formation and neurodegeneration is not 

random but spreads along interconnected brain regions in a regular pattern as PD progresses. This six-

stage pathological process begins at induction sites with degeneration of the olfactory bulb and the 

lowest parts of the brainstem, spreads rostrally up the brainstem to the raphe nuclei and locus ceruleus 

and progresses to encompass the SNpc. Later stages of disease involve LB pathology in the 

paralimbic regions and thalamus, spreading to the prefontal motor cortex and finally the entire 

neocortex at the terminal stages. Several studies have confirmed the validity of the Braak staging 

system, although it remains a subject of much debate and roughly 15% of PD patients do not conform 

to the proposed pattern (Kalaitzakis et al. 2008; Parkkinen et al. 2008). It has been suggested that 

many of the non-motor features of PD are related to the earlier Braak stages (Langston 2006).  

 

1.4 CLINICAL FEATURES OF PD 

PD is classically characterized by four cardinal motor features: bradykinesia, tremor at rest, rigidity 

and postural and gait impairment. However, each of these symptoms are not always present in every 

patient diagnosed with PD, as PD symptoms vary considerably with the diverse profiles and lifestyles 

of patients (Jankovic 2008). Motor features have traditionally defined the disorder, possibly because 

they are visually recognizable to even untrained observers. Nonetheless, various non-motor symptoms 

are frequently present in PD patients, including autonomic dysfunction, cognitive and psychiatric 

disturbances, sensory abnormalities and sleep disorders. Recent years have seen an increased interest 

in the non-motor features of PD not only because their presence aid in PD diagnostic purposes, but 

also because of the severe reduction in quality of life that these features bring about in PD patients, 

often necessitating specialized care (Lim et al. 2009; Gallagher et al. 2010).  

 

1.4.1 Motor symptoms 

1.4.1.1 Bradykinesia 

Bradykinesia, or slowness of movement, is the most characteristic and disabling symptom of PD, and 

encompasses problems in planning, initiating and executing movement. It is characterized by the 

progressive loss of speed or amplitude during the execution of a motor action. Bradykinesia initially 

presents as difficulties with fine motor tasks, such as handwriting or tying up shoelaces, as well as 

slow movement and reaction times (Berardelli et al. 2001). Other manifestations of bradykinesia 

include loss of spontaneous movements, reduced arm swinging while walking, loss of facial 

expression (hypomimia) and decreased blinking, speech impairment and drooling resulting from 

swallowing difficulties (Bagheri et al. 1999).  
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1.4.1.2 Rigidity 

Rigidity manifests as increased muscle tone resulting in stiffness and resistance to movement in joints. 

Passive movement of the limbs often results in ratchet-like movements, especially when related to an 

underlying tremor. This rigidity is present throughout the range of movement, and is increased by 

voluntary movements of the contralateral limb (Rodriguez-Oroz et al. 2009). Rigidity is often 

associated with pain, especially of the neck and shoulders; a painful shoulder is a frequent first 

presenting motor symptom of PD, although this often goes undiagnosed (Stamey et al. 2008)   

 

1.4.1.3 Resting tremor 

Tremor at rest is the most recognizable feature of PD, and is the first symptom in approximately 70% 

of PD patients (Hughes et al. 1993). Resting tremor is the rhythmic and involuntary movement of a 

body part that is not associated with any voluntary activity. The hands are most commonly affected, 

but tremor can also affect the lips, chin, legs and trunk; hand tremors are often described as “pill-

rolling”, involving a supination-pronation movement (Deuschl et al. 2000). Resting tremor is usually 

asymmetric at onset and worsens under stress or heightened emotion. Characteristically, resting 

tremor ceases with voluntary action and during sleep. 

 

1.4.1.4 Postural and gait impairment 

Patients with PD usually adopt a stooped posture with neck and trunk flexion due to the loss of 

postural reflexes (Jankovic 2008). The characteristic gait of PD patients is slow with short shuffling 

steps; turning around requires multiple small steps. Parkinsonian gait can also involve gait freezing, a 

sudden gait impediment where patients feel as if their feet are “glued to the floor” (Giladi et al. 1997). 

Postural instability refers to the gradual development of impaired balance, and usually only presents 

late in disease progress. Postural instability and gait abnormalities are the most common causes of 

falls among PD patients and significantly contribute to the risk of hip fractures (Williams et al. 2006).  

 

1.4.2 Non-motor symptoms 

1.4.2.1 Autonomic dysfunction 

Autonomic dysfunction is a common non-motor feature of PD and encompasses orthostatic 

hypotension, urinary dysfunction, erectile dysfunction and constipation. Orthostatic hypotension is 

reported in approximately 35% of PD patients and presents as dizziness, nausea, drowsiness and loss 

of consciousness (Low 2008). As such, orthostatic hypotension significantly increases the risk of falls 

(Matinolli et al. 2009). Urinary dysfunction, in the form of urge incontinence, urinary urgency or high 
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frequency of urination, was found to affect between 50% and 70% of PD patients (Martinez-Martin et 

al. 2007). The same study found that erectile dysfunction affects 42% of patients. Constipation is a 

very common non-motor feature of PD, with a reported prevalence ranging from 40% to 80% of 

patients (Jost 1997; Khoo et al. 2013). Interestingly, constipation predates onset of the first noticeable 

motor symptoms of PD in about half of PD patients, whereas other signs of dysautonomia such as 

orthostatic hypertension and urinary dysfunction are late features of PD (Pellicano et al. 2007). 

 

1.4.2.2 Cognitive and psychiatric disturbances 

Neuropsychiatric abnormalities are common and disabling non-motor features of PD. Cognitive 

decline is a near universal feature of PD, and results in impairment of problem-solving, planning and 

learning abilities (Barone et al. 2011). The prevalence of dementia has been estimated at 30% 

(Aarsland et al. 2005), with PD patients being at a six-fold increased risk of dementia (Aarsland et al. 

2001). Other psychiatric disturbances such as depression, anxiety, apathy, obsessive-compulsive 

behavior and psychosis are also commonly seen in PD patients (Bernal-Pacheco et al. 2012). 

Psychosis, usually in the form of paranoid delusions and hallucinations, has a reported prevalence as 

high as 50% in PD patients (Fénelon 2008) and is a significant factor leading to the need for full-time 

care in a nursing home (Aarsland et al. 2000). Depression affects around 35-50% of PD patients and 

can be present years before the manifestation of motor symptoms (Lieberman 2006).  

 

1.4.2.3 Sensory abnormalities 

Sensory symptoms, including olfactory dysfunction and unexplained painful sensations, are 

frequently present in patients diagnosed with PD. Painful sensations, manifesting as tingling, burning, 

neuralgia or diffuse pain are experienced by approximately 50% of PD patients (Tinazzi et al. 2006). 

A prominent sensory symptom of PD is loss of smell, or hyposmia, which affects up to 90% of PD 

patients (Ponsen et al. 2004) and has been associated with degeneration of the olfactory bulb (Pearce 

et al. 1995). Hyposmia is often present at diagnosis of PD and does not appear to progress over the 

course of disease. Idiopathic hyposmia is correlated with an increased risk of developing PD and may 

therefore be an early preclinical sign of PD (Ross et al. 2008a). 

 

1.4.2.4 Sleep disorders 

Sleep disturbances, such as excessive daytime sleepiness, frequent awakenings, sleep attacks and 

insomnia, were previously ascribed to anti-parkinsonian medications (Ondo et al. 2001), but are now 

recognized as integral features of the disease (Maass and Reichmann 2013). Particularly common is 

rapid eye movement (REM) sleep behavioral disorder (RBD), which is present in approximately 40% 
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of PD patients (Schenck and Mahowald 2002). This disorder is characterized by the loss of motor 

inhibition during REM sleep, leading to the often violent acting-out of dreams which frequently 

results in injury. The occurrence of RBD often predates the onset of motor symptoms by up to a 

decade, and RBD is a significant risk factor for the development of PD (Iranzo et al. 2006). RBD, 

along with hyposmia, constipation and depression, are some of the earliest symptoms of 

neurodegeneration in PD, and are considered to be prodromal non-motor symptoms of a pre-

parkinsonian state (Pellicano et al. 2007).  

 

1.5 DIAGNOSIS OF PD 

Proper diagnosis of PD is important for patient counseling and treatment, and is essential for clinical 

research. A definitive PD diagnosis requires the histological confirmation of LB pathology in the 

substantia nigra, which can only be done post-mortem (Gibb and Lees 1988a).  

Although patient diagnosis can be informed by radiological imaging, including 18F-dopa positron 

emission tomography (PET), diagnosis is most often based on clinical criteria. Diagnostic criteria 

have been developed by the UK Parkinson’s Disease Society Brain Bank which is routinely used for 

the accurate and objective diagnosis of PD; the use of these criteria typically delivers a diagnostic 

accuracy of around 90% (Hughes et al. 2001). A diagnosis of PD is made based on the presence of 

bradykinesia and at least one other motor symptom in the patient, and the absence of symptoms or 

history indicative of an alternative diagnosis (Appendix I).  

 

1.6 PROGNOSIS OF PD 

Life expectancy is significantly reduced in PD patients, with reported mortality ratios of 1.3-2.5 in 

comparison to age-matched controls, regardless of the duration of the disease (Herlofson et al. 2004; 

Driver et al. 2008). The duration from disease onset to death typically ranges from 7-14 years; 

however, this varies widely between patients. There is little evidence that levodopa treatment of PD 

decreases disease mortality (Macleod et al. 2014). Increased mortality of PD patients has been 

associated with an older age at onset, the male sex, and the presence of cognitive decline and 

dementia (de Lau et al. 2014). In contrast to the general population, the leading cause of death of PD 

patients is pneumonia (Beyer et al. 2001) 
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1.7 TREATMENT OF PD 

PD is an incurable and progressive disorder. Nonetheless, various avenues are available for the 

alleviation and management of PD symptoms. Such symptomatic treatment can substantially improve 

functional capacity and quality of life of patients diagnosed with PD.   

 

1.7.1 Pharmacological treatment of PD 

1.7.1.1 Levodopa 

The major pharmacological approach to PD treatment is dopamine replacement therapy, of which 

levodopa remains the most widely used and efficacious treatment (Schapira et al. 2009). Orally 

administered levodopa (L-DOPA; L-3,4-dihydroxyphenylalanine) crosses the blood-brain barrier and 

is metabolized to dopamine in the central nervous system (CNS) by DOPA-decarboxylase. Levodopa 

may also be metabolized in the peripheral nervous system resulting in side effects such as nausea, 

stiffness and dyskinesia (involuntary movements). Hence, levodopa is commonly administered in 

combination with a peripheral DOPA-decarboxylase inhibitor, such as carbidopa or benserazide, to 

prevent metabolism of levodopa outside of the CNS. While levodopa treatment results in marked and 

sustained benefits for PD patients for several years, many patients eventually develop dyskinesias, 

dystonia and debilitating fluctuations in treatment response. Such levodopa-induced effects are more 

frequent with early age of disease onset, prolonged levodopa treatment and higher doses of levodopa 

(Ku and Glass 2010).  

 

1.7.1.2 Dopamine agonists 

Dopamine agonists mimic the effect of levodopa by binding to dopamine receptors in the basal 

ganglia. They are the preferred first-line medication for younger patients, who are at a higher risk of 

levodopa-associated motor complications. However, dopamine agonists are more commonly 

associated with adverse effects such as nausea, dizziness, hallucinations and impulse control 

disorders, which may necessitate a change of treatment strategy (Antonini et al. 2009).  

 

1.7.1.3 MAO-B inhibitors 

Monoamine oxidase-type B (MAO-B) inhibitors such as selegiline or rasagiline increase the 

availability of dopamine in the striatum by limiting dopamine breakdown at the synaptic cleft. They 

offer milder therapeutic effects than levodopa or dopamine agonists, but they are typically better 

tolerated (Riederer and Laux 2011). MAO-B inhibitors used in conjunction with levodopa may reduce 

levodopa-associated motor fluctuations (Rascol et al. 2005; Olanow et al. 2009). Ultimately, the 
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choice of which pharmacological agent to prescribe for PD treatment depends largely on the 

characteristics and needs of the patient, as well as the preferences of the clinician, as each class of 

medication has its strengths and weaknesses.   

 

1.7.2 Deep brain stimulation  

While dopamine replacement therapy can be greatly effective at managing the symptoms of PD at the 

earlier stages of treatment, patient response to such medication almost invariably becomes less 

effective and predictable over time (Schapira et al. 2009). Patients who are responsive to levodopa but 

experience debilitating motor fluctuations or dyskinesias may be surgically treated with deep brain 

stimulation (DBS) (Okun 2012). This technique involves the placement of one or more electrodes in 

the brain which target specific basal ganglial nuclei, most commonly the subthalamic nucleus or the 

globus pallidus. The electrodes are connected to an insulated lead which passes through a burr hole in 

the skull and subcutaneously connects to an impulse generator implanted in the anterior chest wall. 

This delivers electrical stimuli to the brain in order to modulate neural activity in the basal ganglia. 

The effects of DBS can mitigate parkinsonian symptoms, especially tremor, and reduce the adverse 

effects of levodopa therapy. PD patients that undergo DBS may experience sustained clinical 

improvement for over ten years (Castrioto et al. 2011). However, DBS is very costly and has several 

adverse effects, including risk of infection, intracranial hemorrhage, seizures and a wide array of 

neuropsychiatric effects (Parsons et al. 2006).  

 

1.8 PD RISK FACTORS 

The great majority (~90%) of PD cases are sporadic and idiopathic, as they have no identifiable cause.  

Substantial progress has been made over the last two decades in the discovery of several causative 

monogenic mutations that induce familial PD; however, only a small percentage (~10%) of patients 

with sporadic PD has known genetic underpinnings. It is hoped that, ultimately, the genetic or non-

genetic factors that either cause or increase the risk of developing PD will be identified for the 

majority of sporadic PD cases.   

 

1.8.1 Intrinsic risk factors 

1.8.1.1 Age 

Age is the most significant risk factor for PD. As discussed in Section 1.2, the disorder is rare before 

the age of 50 years, after which both the prevalence and incidence of PD increase sharply with 

increasing age. Rare cases of juvenile PD (onset before the age of 20 years) have been reported, with 
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a clinical presentation similar to sporadic PD. Early onset PD (EOPD), with disease onset before the 

age of 50 years, increases the probability that genetic causes are involved (Schrag and Schott 2006).  

While the association of aging with increasing PD incidence might seem self-evident, the underlying 

mechanism by which aging promotes the development of PD remains unclear. In fact, other 

neurodegenerative disorders such as Huntington’s disease and amyotrophic lateral sclerosis (ALS) 

have earlier ages at onset than PD. It is assumed that some intrinsic age-dependent factors, or the 

accumulation of age-related damage, predispose older individuals to develop PD (Reeve et al. 2014).  

 

1.8.1.2 Gender 

The incidence of PD is higher in men than in women, as a meta-analysis of seven incidence studies 

reports an increased relative risk (RR) of 1.49 for men (Wooten et al. 2004). A similar meta-analysis 

of a separate set of studies reports a male to female ratio of 1.46 (Taylor et al. 2007). However, Taylor 

et al. found that this ratio is inconsistent across different study groups, with higher male-female ratios 

being reported in older study populations as well as a weaker association with gender in Asian 

populations (Taylor et al. 2007).  The reasons for this male preponderance are not known, but it may 

be related to different environmental and occupational exposures associated with the “male lifestyle”, 

the neuroprotective effects of estrogen in women (Inestrosa et al. 1998) or recessive susceptibility 

genes on the X chromosome.  

 

1.8.2 Environmental risk factors 

Many reports have implicated environmental factors in the development of PD. It was discovered in 

1983 that the accidental exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a by-

product of illicit heroin production, leads to a levodopa-responsive parkinsonian disorder with 

symptoms largely indistinguishable from PD (Langston et al. 1983). MPTP induces parkinsonism 

when its active metabolite MPP+ is transported into neurons by the dopamine transporter and inhibits 

the mitochondrial electron transport chain (ETC), which ultimately leads to degeneration of 

dopaminergic neurons. This discovery was heralded as proof of principle that exposure to 

environmental toxins may cause PD, or at least increase the risk of developing PD.   

The identification of environmental risk factors for PD is mostly based on epidemiological 

approaches; such studies are prone to several kinds of bias. As such, the multitude of studies of the 

association of various environmental factors with risk of PD are often equivocal and inconclusive (de 

Lau and Breteler 2006; Kieburtz and Wunderle 2013).  
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1.8.2.1 Cigarette smoking  

Many epidemiological studies have demonstrated a reduced risk for developing PD among cigarette 

smokers. A large meta-analysis of 48 studies encompassing 20 countries found a pooled RR of 0.6 for 

smokers compared to non-smokers (Hernán et al. 2002). In addition, most of these studies showed a 

dosage effect of smoking on PD risk, as people who have been smoking for a longer total period of 

time have an even lower risk of developing PD. Several possible mechanisms for the neuroprotective 

effects of smoking have been suggested; it is thought that nicotine may stimulate dopamine release, 

act as an antioxidant, or modulate MAO-B activity in the brain (Quik et al. 2012). On the other hand, 

several non-causal explanations have been proposed for the observed protective relationship between 

smoking and PD. Such explanations include the possibility that the increased mortality of smokers 

lowers their age-related risk of PD, or that early loss of smell and other sensory abnormalities of 

subclinical PD reduce the likelihood of smoking.  

 

1.8.2.2 Caffeine  

Similarly to cigarette smoking, caffeine intake decreases the risk of developing PD.  A meta-analysis 

of thirteen studies found a significantly lowered RR of 0.7 for coffee drinkers (Hernán et al. 2002). 

The protective agent in coffee is thought to be caffeine, as no association had been found for other 

coffee components and risk of PD while non-coffee sources of caffeine did demonstrate such an effect 

(Ross et al. 2000). While both men and women coffee drinkers experience a decreased risk of PD, this 

decrease is less pronounced in women (Palacios et al. 2012); the protective effect of caffeine appears 

to be attenuated by the use of estrogen replacement in postmenopausal women (Ascherio et al. 2003).  

Caffeine binds antagonistically to adenosine A2 receptors, which may protect against dopaminergic 

degeneration. In fact, caffeine administration improves motor deficits in a mouse model of PD (Xu et 

al. 2010). 

 

1.8.2.3 Pesticides and herbicides 

The discovery of the PD-inducing effect of MPTP, described above, spurred extensive research into 

the possible epidemiological effects of exposure to pesticides and other environmental toxins. While 

such studies consistently found a positive association between pesticide exposure and PD 

development, the association was only statistically significant in about half of these studies (Lai et al. 

2002). A recent meta-analysis of retrospective case-control studies calculated a pooled odds ratio 

(OR) of 1.5 for lifetime pesticide exposure, although a significant degree of heterogeneity was seen 

between studies (Allen and Levy 2013). In particular, the herbicide paraquat and insecticide rotenone 

are frequently associated with an increased risk of developing PD (Kamel et al. 2007; Tanner et al. 
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2011). Paraquat and rotenone, like MPTP, are potent mitochondrial ETC inhibitors, and cause 

dopaminergic neurodegeneration in animal models (Betarbet et al. 2000). However, current 

epidemiological evidence is not sufficient to unequivocally establish a causal link between exposure 

to specific pesticides and increased risk for PD.  

 

1.8.3 Genetic risk factors 

Until 1997, the involvement of genes and genetic risk factors in the etiology of PD was contentious; 

indeed, PD used to be considered a classical “nongenetic” disorder (Lincoln et al. 2003). Large cross-

sectional twin studies consistently found a lack of disease concordance in monozygotic twins, which 

argued against heritability (Piccini et al. 1999; Tanner et al. 1999; Wirdefeldt et al. 2004). Even 

though 10-30% of PD patients report a first-degree relative also affected by PD (Sveinbjörnsdottir et 

al. 2000; Rocca et al. 2004), the observed familial aggregation of this disorder was usually attributed 

to shared environmental exposures.   

Nevertheless, the last two decades has seen the successful application of genetic linkage analysis, 

genetic association studies and genomic sequencing to pedigrees of PD-multi-affected families. Such 

approaches have identified the genetic underpinnings of several familial forms of PD. To date, a total 

of six genes (SNCA, LRRK2, VPS35, parkin, PINK1 and DJ-1) have been robustly confirmed to 

harbor causal mutations for monogenic parkinsonism clinically similar to PD, with autosomal 

dominant (AD) or autosomal recessive (AR) modes of inheritance. Another gene (EIF4G1) has been 

associated with AD-PD, but its status as an authentic PD gene is currently unconfirmed. A further 

seven genes (ATP13A2, PLA2G6, FBXO7, DNAJC6, SYNJ1, SCA2 and SCA3) have been associated 

with atypical parkinsonism, demonstrating one or more non-PD features in addition to parkinsonism. 

The genes implicated in monogenic PD or parkinsonism are summarized in Table 1.1. Several genetic 

variants have also been identified as strong risk factors for PD. The genes, mutations and 

polymorphisms implicated in PD will be briefly discussed. 

 

1.8.3.1 Autosomal dominant PD 

1.8.3.1.1 α-Synuclein (SNCA) 

Genetic studies of PD first began with the identification of a pathogenic missense mutation in the 

SNCA gene (OMIM 163890), causing AD-PD (Polymeropoulos et al. 1997). Patients with SNCA 

mutations typically present with EOPD with a good response to levodopa treatment in the initial 

stages of disease; however, progression of the disease is rapid with a high prevalence of 
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Table 1.1 Genes implicated in monogenic PD or parkinsonism 

Gene Map locus Inheritance Phenotype Pathology Mutations Reference(s) 

SNCA 4q21-22 AD EOPD Diffuse LBs 
5 point mutations, whole gene 

duplications/triplications 
Polymeropoulos et al. (1997) 

LRRK2 12q12 AD Classical PD 
Pleomorphic, mostly 

typical LBs 

7 pathogenic mutations from 

~70 missense variants 

Paisán-Ruiz et al. (2004); 

Zimprich et al. (2004) 

VPS35 16q11 AD Classical PD Unknown 1 missense mutation 
Zimprich et al. (2011); 

Vilariño-Güell et al. (2011) 

EIF4G1 3q27 AD Classical PD Unknown 2 missense mutations Chartier-Harlin et al. (2011) 

Parkin 6q25-27 AR EOPD 
Nigral degeneration, 

mostly without LBs 

~170 point mutations, exonic 

rearrangements 
Kitada et al. (1998) 

PINK1 1p35-36 AR EOPD 
Typical LBs (one 

case only) 

~50 point mutations, rare large 

deletions 
Valente et al. (2004) 

DJ-1 1p36 AR EOPD Unknown 
~15 point mutations, large 

deletions 
Bonifati et al. (2003) 

ATP13A2 1p36 AR 
Juvenile onset, 

atypical parkinsonism 

Ceroid lipofuscinosis 

(one case only) 
5 point mutations Ramirez et al. (2006) 

PLA2G6 22q13 AR 
Juvenile onset, 

atypical parkinsonism 
Typical LBs 2 missense mutations Paisán-Ruiz et al. (2009) 

FBXO7 22q12-13 AR 
Juvenile onset, 

atypical parkinsonism 
Unknown 3 point mutations 

Shojaee et al. (2008);  

Di Fonzo et al. (2009) 

DNAJC6 1p31 AR 
Juvenile onset, 

atypical parkinsonism 
Unknown 

1 nonsense mutation, 1 large 

deletion 

Edvardson et al. (2012); 

Köroğlu et al. (2013) 

SYNJ1 21q22 AR 
Juvenile onset, 

atypical parkinsonism 
Unknown  1 missense mutation 

Krebs et al. (2013);  

Quadri et al. (2013) 

SCA2 12q24 AD Atypical parkinsonism Unknown CAG repeat expansion Gwinn-Hardy et al. (2000) 

SCA3 14q32 AD Atypical parkinsonism Nigral degeneration CAG repeat expansion Gwinn-Hardy et al. (2001) 
Abbreviations: AD, autosomal dominant; AR, autosomal recessive; ATP13A2, ATPase type 13A2; DJ-1, Daisuke-Junko 1; EIF4G1, eukaryotic translation initiation factor 

4 gamma 1; EOPD, early-onset Parkinson’s disease; FBXO7, F-box only 7; LBs, Lewy bodies; LRRK2, leucine-rich repeat kinase 2; p, short chromosomal arm; PD, 

Parkinson’s disease; PINK1, phosphatase and tensin homolog (PTEN)-induced kinase 1; PLA2G6, phospholipase A2 group VI; q, long chromosomal arm; SCA2, 

spinocerebellar ataxia type 2; SCA3, spinocerebellar ataxia type 3; SNCA, α-synuclein; SYNJ1, synaptojanin 1; VPS35, vacuolar protein sorting 35. 
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dementia and severe autonomic dysfunction. Atypical features such as cortical myoclonus may also 

be present.  Neuropathologically, SNCA-induced PD results in prominent and extensive LB pathology 

of the substantia nigra, hypothalamus and cerebral cortex, often incorporating limbic and glial 

pathology (Gwinn-Hardy et al. 2000). 

Mutations in SNCA are rare. To date, only five different SNCA point mutations as well as whole gene 

duplications and triplications have been described (Bonifati 2014). SNCA duplications have been 

reported in approximately 1% of families with AD-inherited PD (Ibáñez et al. 2009); whereas 

triplications and point mutations are exceedingly rare and have only been found in a handful of 

families worldwide. Point mutations include the A53T, A30P and E46K missense mutations, and two 

novel missense mutations, H50Q and G51D, have only recently been described (Appel-Cresswell et 

al. 2013; Lesage et al. 2013). Point mutations in SNCA are highly penetrant, whereas a reduced 

penetrance for whole gene duplications of 30-40% has been described for some families (Nishioka et 

al. 2006). SNCA duplications have also been found in sporadic PD cases (Ahn et al. 2008). 

Interestingly, a dosage effect is seen for such gene amplifications, as each additional SNCA copy leads 

to an earlier onset, faster disease progression and a more severe phenotype (Fuchs et al. 2007; Ross et 

al. 2008b). 

SNCA encodes the 140-amino acid (aa) cytosolic protein α-synuclein. This protein is abundantly 

expressed in the brain and forms a major component of LBs in PD neuropathology (Spillantini et al. 

1997). It is thought that α-synuclein plays a role in synaptic plasticity and synaptic vesicular 

trafficking (Lundblad et al. 2012; Scott and Roy 2012). While this protein is predominantly natively 

unfolded, its amino (N)-terminal region adopts an amphipathic, α-helical structure when associated 

with lipid membranes (Ulmer et al. 2005). The identified SNCA missense mutations, all of which 

cluster within the N-terminal region of α-synuclein, reduces its lipid affinity and promotes the 

formation of stable, β-sheet-rich toxic oligomers, protofibrils and fibrils (Bertoncini et al. 2005). 

Hence, it is thought that elevated or mutated α-synuclein contributes to disease via a toxic gain of 

function, whereas LBs may represent a cell-protective mechanism to sequester toxic α-synuclein 

aggregates (Olanow et al. 2004).   

 

1.8.3.1.2 Leucine-rich repeat kinase 2 (LRRK2) 

Mutations in the LRRK2 gene (OMIM 609007) have been associated with both AD familial PD and 

apparently sporadic PD and, to date, constitute the most common genetic cause of PD (Paisán-Ruiz et 

al. 2004; Trinh and Farrer 2013). LRRK2 mutation carriers present with parkinsonism that is largely 

clinically indistinguishable from idiopathic, late onset PD, with homozygous carriers presenting with 

a similar clinical phenotype to heterozygous carriers (Aasly et al. 2005; Lesage et al. 2005). The 

associated range of disease onset age is broad and includes patients with early and late onset. The 
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majority of autopsied PD patients with LRRK2 mutations demonstrate typical LB pathology, but pure 

dopaminergic degeneration without LBs, and degeneration with neurofibrillary tangles, have also 

been described (Wider et al. 2010). 

Seven disease-causing LRRK2 missense mutations (N1437H, R1441H, R1441C, R1441G, Y1699C, 

G2019S, I2020T) have been found to date, whereas the pathogenicity of other sequence variants in 

this gene are currently unclear (Bonifati 2014). LRRK2 mutations are found in approximately 10% of 

families with AD-PD. By far the most common and best studied is the G2019S mutation, occurring in 

approximately 1% of sporadic European cases, 20% of Ashkenazi Jewish patients and up to 40% of 

patients from North African Arab-Berber descent  (Lesage et al. 2006; Healy et al. 2008; Thaler et al. 

2009). The high frequencies of G2019S seen in apparently sporadic PD cases can be attributed to the 

age-related and ethnic-specific incomplete penetrance of this mutation. The penetrance can be as low 

as 30% at the age of 60 years, increasing to 75% penetrance at 80 years, while varying significantly 

between different population groups (Healy et al. 2008). 

It is still unclear how mutations in LRRK2 contribute to PD. The LRRK2 protein is a large, 2527-aa 

cytosolic protein with GTPase and kinase domains and multiple protein-protein interaction domains. 

It has been implicated in cellular signaling cascades, membrane trafficking, autophagy and 

mitochondrial function (Lewis and Alessi 2012). Mutations in the GTPase domain (R1441C, R441G, 

R441H) disrupt GTPase activity, whereas mutations in the kinase domain (G2019S, I2020T) increase 

the kinase activity of LRRK2 (West et al. 2005; Lewis et al. 2007). Hence, it is thought that mutated 

LRRK2 can promote cellular dysfunction via a disruption or exaggeration of normal function, or a 

gain of abnormal function (Dächsel et al. 2010).   

 

1.8.3.1.3 Vacuolar protein sorting 35 (VPS35) 

In 2011, two groups independently reported the same D620N mutation in the VPS35 gene (OMIM 

601501) as a novel cause of AD-PD (Vilariño-Güell et al. 2011; Zimprich et al. 2011). Of note, this 

was the first PD gene to be identified using a next-generation sequencing (NGS)-based exome 

sequencing approach. Patients with mutated VPS35 present with typical PD, albeit with a slightly 

earlier onset age, with a good response to levodopa therapy. The associated neuropathology of 

VPS35-linked PD remains unknown.  

The D620N mutation was originally found to segregate with disease in families of Swiss and Austrian 

origin, respectively, and has now been described in several additional large families of various 

ethnicities (Ando et al. 2012; Lesage et al. 2012a; Sharma et al. 2012). These studies have reported a 

prevalence for this rare mutation of approximately 0.5-1% in AD-PD cases. It has also been described 
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in sporadic cases, suggesting a reduced penetrance for this mutation. Despite intensive screening, 

additional pathogenic mutations in the VPS35 gene have not been found to date.  

VPS35 is a subunit of the retromer cargo-recognition complex, which is involved in the cellular 

recycling of membrane proteins.  It is thought to play a role in the sorting of acid hydrolases to 

lysosomes, retrograde transport between endosomes and the trans-Golgi network, developmental Wnt 

signaling, apoptosis and mitophagy (Chen et al. 2010a; Harterink et al. 2011; McGough and Cullen 

2011). While it is currently unclear how the D620N mutation affects the function of the retromer 

complex or how this contributes to PD, future research on VPS35 in the brain is likely to provide 

valuable insights. 

      

1.8.3.1.4 Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1)  

The EIF4G1 gene (OMIM 600495) has recently been implicated as an AD PD-inducing gene, as the 

R1205H missense mutation has found to segregate within a large French family (Chartier-Harlin et al. 

2011). Further genetic screens identified this mutation, as well the A502V mutation, in a few 

additional families. However, subsequent studies failed to replicate these results convincingly, and the 

two mutations have been found in several unaffected control individuals (Lesage et al. 2012b; Schulte 

et al. 2012; Nishioka et al. 2014). Therefore, the status of EIF4G1 as a PD gene is currently 

contentious and further clarifying studies are warranted.    

 

1.8.3.2 Autosomal recessive PD 

1.8.3.2.1 Parkin 

Parkin (OMIM 602544) was the second PD-causing gene to be identified, and the first gene known to 

cause AR-PD (Kitada et al. 1998). Mutations in parkin are the most common cause EOPD, reported to 

account for up to 50% of familial EOPD cases and 15% of sporadic cases (Lücking et al. 2000). Some 

patients with parkin mutations have a disease onset even in childhood (juvenile PD). In addition to an 

early onset, parkin-induced PD is clinically characterized by a slow disease progression and an 

excellent and prolonged response to levodopa. Prominent dystonia and hyperreflexia are frequently 

observed, whereas cognitive decline and severe autonomic dysfunction are very rare non-motor 

features.  

The neuropathology of parkin-associated cases was initially thought to lack LBs, but recent reports 

have described α-synuclein positive LB pathology in a minority of cases (Pramstaller et al. 2005; 

Miyakawa et al. 2013). In contrast to idiopathic PD, neurodegeneration is largely confined to the 

Stellenbosch University  https://scholar.sun.ac.za



21 

 

substantia nigra and locus ceruleus, which suggests that the pathology of parkin-induced PD does not 

conform to the Braak staging of PD (Ahlskog 2009; Doherty et al. 2013).  

A large number and wide spectrum of parkin mutations have been described, including point 

mutations, small deletions and whole exon rearrangements. As parkin is the focus of the present 

study, the molecular genetics of this gene will be discussed in more detail in Section 1.12.   

The parkin protein functions as an E3 ubiquitin ligase, conjugating ubiquitin to various substrate 

proteins (Shimura et al. 2000). Ubiquitination of such parkin substrates may result in the ubiquitin 

proteasome system (UPS)-mediated degradation of the protein, or alteration of substrate protein 

activity, function, translocation or signaling (Kahle and Haass 2004). As such, parkin is involved in 

many diverse cellular pathways, including protein degradation, mitochondrial health, cellular 

signaling, stress responses, tumor suppression and innate immunity. Pathogenic parkin mutations 

abolish or reduce its ubiquitin ligase activity, supporting a loss-of-function disease mechanism (Dauer 

and Przedborski 2003). The loss of parkin function might result in the accumulation/dysregulation of 

non-ubiquitinated parkin substrates, thereby contributing to cellular stress and neurodegeneration 

(McNaught and Olanow 2003). A detailed review of the parkin protein and the cellular pathways it 

has been implicated in will follow in Sections 1.14-1.16.    

 

1.8.3.2.2 Phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) 

Mutations in PINK1 (OMIM 602544) are associated with AR familial EOPD (Valente 2004). The 

frequency of PINK1 mutations varies considerably across different ethnic groups, and it is estimated 

to account for 1-8% familial EOPD cases (Bonifati et al. 2005; Klein et al. 2005; Kilarski et al. 2012). 

The clinical phenotype of PINK1-induced PD appears to be similar to parkin-PD, although psychiatric 

symptoms may be more prevalent among patients with PINK1 mutations. To date, only one autopsy 

of a patient with PINK1 mutations has been reported; this patient demonstrated nigral degeneration 

with LB-positive pathology comparable to idiopathic PD (Samaranch et al. 2010).       

Over 50 missense mutations, nonsense mutations, frameshifts and, rarely, large deletions have been 

described for PINK1 (Kawajiri et al. 2011). Point mutations are near equally distributed across the 

eight exons. While only approximately 25% of the described PINK1 mutations are nonsense 

mutations, more than 40% of patients carry a mutation that is truncating. Rare whole exon deletions in 

PINK1 have been described in a few families worldwide (Li et al. 2005; Cazeneuve et al. 2009).  

PINK1 mutations are also a rare cause of sporadic EOPD (Tan et al. 2006). 

PINK1 is a 581-aa cytosolic protein kinase that can be localized to the mitochondria. While the 

function of this protein is not fully understood, it has been implicated in mitochondrial homeostasis 

and mitophagy (Koh and Chung 2012). The majority of reported PINK1 mutations are loss-of-
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function mutations which disrupt its kinase domain; this supports the importance of PINK kinase 

activity in the pathogenesis of PD.   

 

1.8.3.2.3 Daisuke-Junko-1 (DJ-1) 

The third gene found to cause AR familial EOPD is the DJ-1 gene (OMIM 602533) (Bonifati et al. 

2003). Mutations in DJ-1 are rare and only account for approximately 1% of familial EOPD cases 

(Pankratz et al. 2006). While the clinical phenotype of DJ-1 mutation carriers has only been studied in 

a limited number of cases, it appears to be clinically indistinguishable from PINK1. The pathology of 

patients with DJ-1 mutations remains unknown, as no autopsies of cases with DJ-1 mutations have 

been reported yet.  

About ten different DJ-1 point mutations and large exonic deletions have been described (Tan and 

Skipper 2007). The best studied point mutation in DJ-1 is L166P, which destabilizes the DJ-1 protein 

resulting in its rapid proteasomal degradation (Miller et al. 2003).  

DJ-1 is a potent cellular sensor of oxidative stress. It is highly expressed in the brain where it adopts a 

dimeric structure (Macedo et al. 2003). In the presence of oxidative stress, DJ-1 is translocated to the 

mitochondrial membrane (Zhang et al. 2005). Although the precise cellular function of this protein is 

unknown, it has been implicated in neuroprotection against oxidative stress, mitochondrial 

dysfunction and dopamine toxicity (Wang et al. 2012a; Lev et al. 2013). Mutated DJ-1 protein is 

typically misfolded, unstable and rapidly degraded, suggesting that DJ-1 mutations contribute to PD 

by depleting the cellular levels of this protein (Malgieri and Eliezer 2008).    

 

1.8.3.3 Atypical parkinsonism 

1.8.3.3.1 ATPase type 13A2 (ATP13A2) 

Mutations in the ATP13A2 gene (OMIM 610513) cause an AR atypical parkinsonism termed Kufor-

Rakeb syndrome (Ramirez et al. 2006). This syndrome is clinically characterized by juvenile-onset, 

levodopa-responsive parkinsonism with rapid disease progression, pyramidal signs, dementia and 

supranuclear gaze palsy. While the pathology of ATP13A2 remains unknown, magnetic resonance 

imaging (MRI) of patients with ATP13A2 mutations suggest accumulation of metals in the brain 

(Santoro et al. 2011).  

Mutations in ATP13A2 are exceedingly rare and, to date, eleven different pathogenic mutations have 

been described in only a handful of families (Crosiers et al. 2011). Intriguingly, ATP13A2 mRNA is 

highly expressed in the substantia nigra of patients with classical late-onset PD (Ramirez et al. 2006). 
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The gene encodes a large transmembrane lysosomal protein of the P-type ATPase family. While the 

exact function of this protein is unclear, it is thought to be involved with the transport of metal cations 

from the cytosol into the lysosome.  

However, a recent study found that a mutation in ATP13A2 caused pathologically-confirmed neuronal 

ceroid-lipofuscinosis (Bras et al. 2012). Similar pathology was reported in a canine model of mutated 

ATP13A2 (Farias et al. 2011). This would suggest that ATP13A2-linked parkinsonism is a disorder 

distinct from atypical PD and cast doubt on the status of ATP13A2 as a de facto PD gene; however, 

additional studies are warranted.  

 

1.8.3.3.2 Phospholipase A2, group VI (PLA2G6) 

Mutations in the PLA2G6 (OMIM 603604) were initially described as the cause of infantile 

neuroaxonal dystrophy and idiopathic neurodegeneration with brain iron accumulation, a severe 

neurodegenerative disorder that bears no resemblance to PD (Morgan et al. 2006). However, PLA2G6 

mutations were later found in families presenting with adult-onset, levodopa-responsive parkinsonism 

with prominent dystonia and pyramidal signs (Paisán-Ruiz et al. 2009; Sina et al. 2009). Other 

pathogenic mutations in PLA2G6 were also found in additional families with a similar atypical PD 

phenotype (Paisán-Ruiz et al. 2010). 

MRI of patients with PLA2G6 mutations demonstrate broad neurodegeneration but generally no 

abnormal iron deposition, which is a defining feature of infantile onset cases of PLA2G6 mutations 

(Paisán-Ruiz et al. 2009; Sina et al. 2009). While evidence of the pathology of PLA2G6 is very 

limited, patients with PLA2G6 mutations demonstrate widespread α-synuclein-positive LB pathology 

in the substantia nigra and the cortex, suggesting a possible mechanistic link with typical PD (Gregory 

et al. 2008; Paisán-Ruiz et al. 2010).  Nevertheless, the role of PLA2G6 in PD remains controversial.  

 

1.8.3.3.3 F-box only protein 7 (FBXO7) 

FBXO7 (OMIM 605648) is implicated in a recessive form of early-onset parkinsonism with pyramidal 

features. Mutations in FBXO7 were initially identified in an Iranian kindred; pathogenic mutations 

were later found in several other unrelated families with a similar clinical phenotype (Shojaee et al. 

2008; Di Fonzo et al. 2009).  

Whereas the neuropathology of FBXO7 mutations is unknown, the FBXO7 protein is a known 

component of LBs of patients with typical PD (Zhao et al. 2013). This protein is implicated in the 

UPS and localizes to the nucleus. Patients with mutations in FBXO7 demonstrate a dramatic depletion 
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of FBXO7 (Zhao et al. 2011b). This suggests that the protein has neuroprotective properties, but the 

extent to which FBXO7 is involved in typical PD is unclear.  

 

1.8.3.3.4 Auxilin (DNAJC6) and synaptojanin 1 (SYNJ1)  

Two newly-identified PD-related genes, DNAJC6 (OMIM 608375) and SYNJ1 (OMIM 604297) have 

recently been discovered as novel causes of AR juvenile parkinsonism. An exome sequencing 

approach combined with genome-wide heterozygosity mapping identified mutations in DNAJC6 in a 

Palestinian family (Edvardson et al. 2012). These findings were later confirmed in a Turkish family 

(Köroğlu et al. 2013). With regards to SYNJ1, the same pathogenic mutation was independently 

reported to cause early-onset parkinsonism in families of Iranian and Italian ancestry, respectively 

(Krebs et al. 2013; Quadri et al. 2013).  

DNAJ1 encodes neuronally-expressed auxilin, and SYNJ1 encodes synaptojanin 1. Both these proteins 

play important and related roles in the recovery and recycling of synaptic vesicles (Montesinos et al. 

2005). This is of significant interest as other PD genes, including SNCA, LRRK2, VPS35 and parkin, 

have been implicated in synaptic vesicle dynamics. Further genetic and functional studies of DNAJ1 

and SYNJ1 and their relation to PD are warranted.  

 

1.8.3.3.5 Spinocerebellar ataxia type 2 (SCA2) and spinocerebellar ataxia type 3 (SCA3) 

Mutations in the SCA2 gene (OMIM 183090) cause an inherited ataxia syndrome with extrapyramidal 

symptoms, including levodopa-responsive parkinsonism (Gwinn-Hardy et al. 2000), whereas SCA3 

(OMIM 109150) mutations result in Machado-Joseph disease with negligible ataxia and parkinsonism 

accompanied by peripheral neuropathy, dystonia and spasticity (Gwinn-Hardy et al. 2001). Mutations 

in both SCA2 and SCA3 are due to CAG trinucleotide repeat expansions in their respective coding 

regions. SCA2 mutations are particularly common in some Asian populations where it accounts for 

approximately 5% of familial parkinsonism (Lu et al. 2004).   

While the physiological function of the SCA2 gene product ataxin-2 is currently unclear, ataxin-3 is a 

well-characterized de-ubiquitinating enzyme acting within the UPS (Burnett et al. 2003). 

Interestingly, ataxin-3 is known to interact with parkin, where ataxin-3-mediated de-ubiquitination 

regulates parkin activity (Durcan et al. 2011). Furthermore, mutant but not wild-type ataxin-3 

promotes the autophagic degradation of parkin (Durcan and Fon 2011). 
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1.8.3.4 Genetic susceptibility factors  

Despite the considerable progress made in the identification of genes responsible for monogenic PD 

and parkinsonism described above, mutations in the known PD genes account for only 5%-10% of PD 

cases. Monogenic models of PD are therefore inadequate to explain common, typical PD, which may 

result from complex gene-gene and/or gene-environment interactions. This stimulated the search for 

genetic susceptibility factors that alters the risk for, instead of causing, PD.  

 

1.8.3.4.1 SNCA 

Much of the earlier work on the identification of susceptibility variants was done using a candidate 

gene approach, which found an association between alleles at the REP1 dinucleotide repeat length 

polymorphism in the SNCA promoter region and sporadic PD (Krüger et al. 1999). Several follow-up 

studies were performed to verify this association, which delivered equivocal results. Nevertheless, a 

large collaborative meta-analysis provided a clear association between the REP1 susceptibility allele 

and a 1.4 fold increased risk of PD (Maraganore et al. 2006). Functional studies suggest that the REP1 

risk allele is associated with an increased expression of SNCA in a transgenic mouse model (Cronin et 

al. 2009).  Other polymorphisms in SNCA besides the REP1 polymorphism have also been implicated 

as susceptibility variants for sporadic PD, particularly at the 3’ end of the gene, but further studies are 

needed to confirm their relevance (Mueller et al. 2005; Mizuta et al. 2006a; Myhre et al. 2008) 

     

1.8.3.4.2 LRRK2 

The G2385R variant in LRRK2 was initially described as a pathogenic mutation in a Taiwanese family 

with PD (Mata et al. 2005).  However, subsequent studies found that this variant is a relatively 

common polymorphism in the Asian population, where it is strongly associated with the risk of PD 

(Di Fonzo et al. 2006; Tan et al. 2007). This finding was confirmed by several studies as well as a 

large meta-analysis, which associated the G2385R allele with a two-fold increased risk of PD in the 

Chinese and Japanese populations (Tan 2007). A similar magnitude of risk effect has been reported 

for another LRRK2 variant, R1628P, also in Asian populations (Ross et al. 2008c). However, this risk 

variant has does not have as much supportive evidence as G2385R (Ross et al. 2011).   

 

1.8.3.4.3 Microtubule-associated protein tau (MAPT) 

Common variability in MAPT (OMIM 157140) has been associated with several neurodegenerative 

diseases of which the pathological hallmark is the deposition of tau protein in neurofibrillary tangles. 

Rare pathogenic mutations in MAPT cause frontotemporal dementia with parkinsonism linked to 
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chromosome 17 (FTDP-17), whereas common MAPT variants have been robustly associated with an 

increased risk of progressive supranuclear palsy (PSP), Alzheimer’s disease and, more recently, PD 

(Spillantini and Goedert 2013). Two common MAPT haplotypes, H1 and H2, are present in European 

populations. The H1 haplotype has been associated with an increased risk of developing PD, with an 

OR of approximately 1.3 (Skipper et al. 2004; Fung et al. 2006; Zabetian et al. 2007). The elevated 

risk promoted by the H1 haplotype can be attributed to an increased MAPT expression (Myers et al. 

2007; Tobin et al. 2008). It is not clear how tau is involved in PD, as tau-positive neurofibrillary 

tangles are rare in PD cases. Nevertheless, the genetic association between MAPT variability and PD 

risk has been robustly confirmed in several studies.    

 

1.8.3.4.4 Glucocerebrosidase (GBA) 

Mutations in the GBA gene (OMIM 606463) cause AR Gaucher’s disease, a lysosomal storage 

disorder. Initial reports found that patients with Gaucher’s disease may present with PD more 

frequently than expected (Neudorfer et al. 1996; Tayebi et al. 2003). This keen observation led to the 

discovery that single heterozygous GBA mutations increases the risk of PD approximately seven-fold 

in the Ashkenazi Jewish population (Aharon-Peretz et al. 2004). This finding has been generalized to 

the worldwide PD population in a large meta-analysis which confirmed that single GBA mutations 

increase the risk of PD five-fold; GBA mutations were present in 15% of Ashkenazi Jewish PD 

patients, 3% of non-Ashkenazi Jewish patients, compared to 3% and <1% in unaffected controls, 

respectively (Sidransky et al. 2009).  

The clinical phenotype of PD associated with a GBA risk allele is similar to sporadic PD, except for a 

slightly younger age at onset and a greater rate of cognitive disturbances, with typical LB pathology 

being present at autopsy. While it is not fully understood how GBA mutations increases the risk of 

PD, it is thought to relate to abnormal lysosomal function (Swan and Saunders-Pullman 2013). 

 

1.8.3.4.5 Genome-wide association studies  

A large number of genome-wide association studies (GWAS) have now been performed in order to 

identify low-penetrance risk alleles that are undetectable through conventional linkage approaches. 

These GWAS have independently verified common variants in SNCA, LRRK2 and MAPT as risk 

factors for PD, in addition to the candidate gene approaches described above (Pankratz et al. 2009a; 

Satake et al. 2009; Simón-Sánchez et al. 2009; Edwards et al. 2010). The largest and best-powered 

GWAS, which included over 12 000 cases and 21 000 controls, provided evidence of association for 

sixteen independent loci (MAPT, SNCA, LRRK2, HLA-DRB5, BST1, GAK, PARK16, FGF20, 

ACMSD, STK39, MCCC1/LAMP3, SYT11, CCDC62/HIP1R, STX1B, STBD1 and GPNMB) 
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(International Parkinson’s Disease Genomics Consortium (IPDGC) and Wellcome Trust Case Control 

Consortium 2 (WTCCC2) 2011). Alleles at each of these loci represent only minor risk or protective 

factors, conferring 1.1 to 1.4 fold increases in risk and 0.97 to 0.7 decreases in risk, respectively. 

When viewing all sixteen risk variants collectively, individuals with the highest burden of risk alleles 

are at a three-fold increased risk of developing PD in comparison to individuals with the lowest 

burden of risk alleles. However, it is important to note that the biological relevance of most of the 

associated variants is unknown, and functional studies will be needed to assess GWAS-identified loci 

as bona fide susceptibility factors.   

 

1.9 PATHWAYS TO NEURODEGENERATION 

It is evident from the above-discussed literature that PD has a complex etiology with various 

contributing genetic and non-genetic factors. The identification of genes that induce familial PD has 

greatly advanced our understanding of the underlying molecular pathology of PD, whereby neuronal 

homeostasis is vulnerable to different genetic, cellular and environmental factors that independently 

or concurrently cause cell death over time (Sulzer 2007). Such factors appear to converge on common 

pathways to neurodegeneration, such as the accumulation of misfolded proteins, impairment of 

protein degradation pathways, and mitochondrial dysfunction (Figure 1.2). 

 

 

 

 

 

 

 

 

 

Figure 1.2 Pathways to neurodegeneration. An intersecting network of pathways, each of which are 

vulnerable to cellular stress from genetic susceptibility, environmental exposures or age-accumulated 

damage, independently or concomitantly impair neuronal homeostasis and contribute to 

neurodegeneration. Figure adapted from Valente et al. (2012). Abbreviations: UPS, ubiquitin 

proteasome system.  
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1.9.1 α-Synuclein accumulation 

α-Synuclein has long been viewed as a key player in the pathology of PD. Not only was SNCA the 

first conclusive demonstration of a genetic defect leading to PD, but misfolded and aggregated α-

synuclein protein is the main constituent of LB inclusions. LBs, the main pathognomonic feature of 

PD, are present in the brain tissue of both rare SNCA mutation carriers and common sporadic PD 

cases. Furthermore, GWAS consistently report SNCA variants as common risk factors for PD (Simón-

Sánchez et al. 2009; Edwards et al. 2010); α-synuclein may therefore provide a unifying link between 

familial and sporadic PD. 

It is generally accepted that enhanced α-synuclein protein levels, beyond a certain threshold, 

contribute to neurodegeneration, as familial SNCA duplications and triplications demonstrate a dose-

dependent relationship of α-synuclein load with PD phenotype (Fuchs et al. 2007; Ross et al. 2008b). 

In fact, transgenic delivery of α-synuclein to the SNpc is sufficient to induce PD-like dopaminergic 

neuronal degeneration and inclusion formation in primates (Eslamboli et al. 2007). Accumulating α-

synuclein levels promote its misfolding and subsequent oligomerization, aggregation and fibrillization 

(Giasson et al. 1999; Wood et al. 1999; Masliah et al. 2000). α-Synuclein oligomerization is also 

promoted by PD-causing SNCA missense mutations (Conway et al. 2000). The pathological 

aggregation propensity of α-synuclein is furthermore increased by various post-translational 

modifications, including nitrosylation and hyper-phosphorylation, as well as by dopamine adducts, 

which may contribute to the selective vulnerability of dopaminergic neurons in PD (Venda et al. 

2010).  

Misfolded and aggregated α-synuclein may have various cytotoxic effects. For example, it was found 

that the overexpression of α-synuclein in animal models induced mitochondrial defects (Song et al. 

2004; Martin et al. 2006), and that α-synuclein oligomers and aggregates disrupt the UPS (Snyder et 

al. 2003; Lindersson et al. 2004). Moreover, α-synuclein oligomers interact with the PD-associated 

protein GBA to disrupt lysosomal function (Mazzulli et al. 2011). Aggregated α-synuclein impairs 

microtubule-based subcellular transport, leading to synaptic dysfunction (Sheng and Cai 2012). 

Hence, α-synuclein accumulation and aggregation may disrupt neuronal homeostasis beyond the cell’s 

ability to recover, thereby inducing apoptotic cell death.  

Interestingly, accumulating evidence suggest that α-synuclein may spread from cell to cell, where the 

transfer of misfolded oligomers and aggregates from affected to unaffected neighboring cells induce 

the toxic conversion of natively-folded proteins. Such an aggregate nucleation or seeding event results 

in the misfolding and recruitment of endogenous α-synuclein that presumably would not have 

misfolded in the absence of such a protein seed. This process is akin to the templated misfolding of 
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prion proteins, and has been called the “prion hypothesis” of aggregation propagation, which may be a 

common feature of many neurodegenerative diseases (Jucker and Walker 2013).  

Several studies have reported the successful in vitro seeding of soluble α-synuclein after the 

internalization of recombinant α-synuclein in cell cultures, resulting in LB-like intracellular inclusions 

(Danzer et al. 2009; Desplats et al. 2009; Luk et al. 2009; Volpicelli-Daley et al. 2011). α-Synuclein 

aggregates have also been seen to propagate between co-cultured cells (Hansen et al. 2011). Perhaps 

the most striking examples of in vivo transfer and seeding of α-synuclein are reports of autopsies 

performed on PD patients who had received striatal grafts of fetal neuronal tissue 11-16 years earlier. 

Remarkably, LB pathology was found not only in the brains of the PD patients, but also in the 

implanted grafts (Kordower et al. 2008; Li et al. 2008, 2010). Such α-synuclein transfer was also seen 

in mouse models, where the intracerebral injection of brain extracts affected by LB pathology into 

young, unaffected transgenic mice resulted in the formation of α-synuclein aggregates and 

neurodegeneration (Luk et al. 2012; Mougenot et al. 2012). Significantly, intracerebral injection of 

mice with pure recombinant α-synuclein fibrils had the same effect as inoculation with brain 

homogenates of aged mice. Indeed, a dose-dependent effect was seen between the amount of 

recombinant α-synuclein and the acceleration of pathology. Synthetic α-synuclein fibrils are therefore 

sufficient to both induce LB pathology and to propagate disease in vivo.  

In a nutshell, the propagation and cell-to-cell transfer of α-synuclein aggregates provides a molecular 

pathway whereby PD pathology spreads within the nervous system from a highly localized initiating 

event to more distal brain regions, following a cascade of protein dysregulation and cellular stress. 

 

1.9.2 Defective protein clearance pathways 

The counterpart toxic mechanism to pathological protein accumulation is defective protein 

degradation. Two important cellular pathways are responsible for the degradation and clearance of 

excess, misfolded or damaged proteins within the cell: the UPS and autophagy-lysosomal pathway 

(ALP). These two pathways mediate proper protein quality control in order to maintain cellular 

homeostasis; impairment of these pathways is implicated in neurodegeneration. 

Early indications of the involvement of the UPS in PD came from the discovery that proteins in LBs 

are highly ubiquitinated (Kuzuhara et al. 1988; Lennox et al. 1989), and that LBs are composed of 

numerous UPS components, including proteasomal subunits, ubiquitinating and de-ubiquitinating 

enzymes and proteasome activators (Lowe et al. 1990; Kwak et al. 1991; Ii et al. 1997). Furthermore, 

the PD-causing gene parkin was found to be an E3 ubiquitin ligase, a component of the UPS (Shimura 

et al. 2000). Biochemical analyses of post-mortem brain tissue revealed reduced proteasomal activity 

in the SNpc of PD patients in comparison to age-matched controls (McNaught and Jenner 2001; 

Stellenbosch University  https://scholar.sun.ac.za



30 

 

McNaught et al. 2003). Such results are similar to gene expression studies of PD brains, which found 

significantly downregulated expression of several proteasomal subunit genes in the SNpc (Grünblatt 

et al. 2004; Bukhatwa et al. 2010).  

Studies using in vitro and in vivo models also support the involvement of the UPS in PD. These 

studies demonstrated that exposure to the parkinsonism-inducing toxin MPTP resulted in a marked 

decrease in proteasomal activity (Fornai et al. 2005; Zeng et al. 2006; Caneda-Ferrón et al. 2008). 

Treatment with proteasomal inhibitors induced reproducible nigral degeneration in rodent models 

(Vernon et al. 2010; Xie et al. 2010). Finally, transgenic mice expressing a conditional deletion of a 

proteasomal regulatory subunit in dopaminergic cells demonstrated severe proteasomal deficits in the 

SNpc, as well as progressive neurodegeneration and LB-like inclusion formation, underscoring the 

importance of the UPS in PD (Bedford et al. 2008). 

The other major protein clearance pathway, the ALP, has also been implicated in PD. Early post-

mortem studies saw accumulation of autophagic vacuoles in the SNpc of PD patients (Anglade et al. 

1997), whereas more recent studies found altered levels of autophagy-related proteins in PD brains 

(Alvarez-Erviti et al. 2010; Li et al. 2011a; Tanji et al. 2011). Important genetic evidence in support of 

the involvement of the ALP in PD are mutations in the PD susceptibility gene GBA, encoding a 

lysosomal enzyme, and parkinsonism-inducing mutations in ATP13A2, a lysosomal transmembrane 

protein. Furthermore, parkin and PINK1 are part of the signaling pathway that controls mitophagy, a 

specialized autophagic pathway that eliminates damaged mitochondria.  

Impairment of the UPS and ALP may contribute to cellular dysfunction. For example, UPS 

dysfunction may result in proteolytic stress due to the accumulation and aggregation of excess and 

misfolded proteins in the cytosol. α-Synuclein in particular has been shown to accumulate and 

aggregate in cells treated with proteasomal inhibitors (Rideout et al. 2001; Rideout and Stefanis 

2002). Similarly, treatment with autophagy inhibitors promoted the toxic oligomerization of α-

synuclein (Klucken et al. 2012), whereas lysosomal dysfunction increased cell-to-cell transfer of α-

synuclein aggregates (Alvarez-Erviti et al. 2011). Many studies have demonstrated impairment of 

both the UPS and ALP by mutant or excessive normal α-synuclein (Petrucelli et al. 2002; Snyder et 

al. 2003; Cuervo et al. 2004). The reciprocal interaction between α-synuclein and protein clearance 

pathways posits an interesting vicious cycle, whereby increasing accumulation of α-synuclein impairs 

UPS and ALP function, which further exacerbates α-synuclein accumulation.  

 

1.9.3 Mitochondrial dysfunction and oxidative stress 

The important role of mitochondrial dysfunction in the pathogenesis of PD is evident from 

observations that exposure to mitochondrial complex I inhibitors, such as MPTP and rotenone, 
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induces parkinsonism (Langston et al. 1983). Furthermore, there are many reports of mitochondrial 

complex I deficits in PD patients, along with high burdens of somatic mitochondrial DNA (mtDNA) 

mutations in SNpc neurons (Schapira et al. 1989; Janetzky et al. 1994; Bender et al. 2006a). The 

mitochondrial involvement in PD is also strongly supported by genetic evidence, as the AR familial 

PD genes parkin, PINK1 and DJ-1 are known to be involved in the maintenance of mitochondrial 

health. Whereas parkin and PINK1 act in concert to promote the autophagic clearance of damaged 

mitochondria (Clark et al. 2006; Exner et al. 2007), DJ-1 is involved in mitochondrial protection 

against reactive oxygen species (ROS) (Canet-Avilés et al. 2004). 

Mitochondrial dysfunction mainly manifests as deficits in ATP production and elevated oxidative 

stress in the form of mitochondria-generated ROS. Such increased ROS production can instigate 

oxidative mtDNA damage, protein oxidation and lipid peroxidation, resulting in further damage of 

cellular organelles and triggering a vicious cycle of mitochondrial dysfunction and oxidative stress 

(Henchcliffe and Beal 2008). Furthermore, the impairment of cellular clearance pathways such as 

mitophagy may result in the deleterious accumulation of oxidatively damaged mitochondria. As 

physiological ROS also plays a part in intracellular signaling, heightened ROS generation may 

moreover disrupt important signaling cascades (Turrens 2003).   

Besides the key function of mitochondria in energy metabolism, mitochondria are also involved in 

Ca2+ homeostasis, cellular signaling, apoptosis and the inflammatory response (Newmeyer and 

Ferguson-Miller 2003). It is likely that these processes are also involved in neurodegeneration to 

various extents, although it is not currently clear whether these mitochondria-associated pathways are 

a cause or consequence of canonical mitochondrial dysfunction. 

While recent years has seen a lot of progress in understanding mitochondrial biology and the many 

cellular functions mitochondria are involved in, it is still unclear why mitochondria play such a 

pivotal role in neurodegeneration and PD (Exner et al. 2012; Corti and Brice 2013). The selective 

vulnerability of SNpc dopaminergic neurons to mitochondrial dysfunction might be due to the 

extremely long, unmyelinated, highly branched axons, multitude of synapses and low mitochondrial 

mass of these neurons (Liang et al. 2007; Matsuda et al. 2009; Bolam and Pissadaki 2012). 

Interestingly, common features between SNpc neurons and non-dopaminergic neurons that also 

undergo degeneration in PD include highly dense axonal arborization, pacemaker activity, high 

bioenergetic demands, elevated oxidative stress and heightened Ca2+ buffering stress (Sulzer and 

Surmeier 2013). It can be speculated that such characteristics collectively make certain neuronal 

populations particularly vulnerable to mitochondrial dysfunction, proteolytic stress, and a loss of 

cellular homeostasis.  
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1.10 THERAPEUTIC IMPLICATIONS OF VITAMIN K2 

The investigation of cellular and molecular pathways that contribute to neurodegeneration in PD has 

opened up new avenues for potential therapeutic approaches. Such neuroprotective approaches might 

prevent or treat neurodegeneration by targeting possible pathological processes such as α-synuclein 

accumulation, impairment of the UPS or ALP, or mitochondrial dysfunction. Potential 

neuroprotective agents would be a welcome addition to currently-available treatment options, based 

on levodopa-replacement strategies, which only provides symptomatic treatment for PD patients 

without addressing the underlying neuropathology. 

As mitochondrial dysfunction is implicated in both sporadic and familial PD, mitochondria are 

attractive targets for potential neuroprotective agents, and several such strategies are currently under 

investigation. Such compounds aimed at enhancing mitochondrial function include coenzyme Q10, a 

mitochondrial ETC enhancer and antioxidant, and creatine, a compound that elevates cellular ATP 

generation (Bender et al. 2006b; Storch et al. 2007; Salama et al. 2013). A particularly interesting 

potential therapeutic compound is vitamin K2, which has emerging roles in brain function and health 

(Beulens et al. 2013). As this dissertation will be investigating vitamin K2 as a potential PD 

therapeutic modality, relevant information and exciting new findings on vitamin K2 will be discussed. 

Vitamin K2 (menaquinone) is a generic term for a number of structurally related compounds that are 

characterized by a methylated naphthoquinone ring and an aliphatic side chain of varying numbers of 

isoprene residues (Shearer and Newman 2008). The best studied and most common form of vitamin 

K2 in the body is menaquinone-4 (MK-4) (Beulens et al. 2013). Whereas most vitamin K2 homologs 

are synthesized by intestinal bacterial flora, MK-4 is of note for being metabolized from dietary 

vitamin K1 (phylloquinone) in tissues such as the brain, pancreas and kidney (Okano et al. 2008). This 

in situ synthesis of MK-4 is catalyzed by the recently-discovered UbiA prenyltransferase domain 

containing protein 1 (UBIAD1) enzyme (Nakagawa et al. 2010). Unless otherwise stated, all mentions 

of vitamin K2 in this dissertation will refer to the MK-4 form of vitamin K2. 

Vitamin K2 has a well-established function in blood coagulation, via its essential role as a cofactor for 

γ-glutamyl carboxylase. This cofactor activity is required for the posttranslational modification and 

activation of numerous proteins, including most blood-clotting factors and proteins involved in bone 

metabolism (Vermeer 1990). Vitamin K2 has more recently been implicated in several other, γ-

glutamyl carboxylase-independent functions; these functions do not appear to extend to non-MK-4 

forms of Vitamin K2. For example, vitamin K2 was found to be involved in the transcriptional 

regulation of the steroid and xenobiotic nuclear receptor (SXR) (Azuma et al. 2009) and in the 

activation of protein kinase A (PKA) signaling (Ichikawa et al. 2007). Vitamin K2 has been shown to 

inhibit vascular calcification (Saito et al. 2007; Beulens et al. 2009) and to reduce the risk of coronary 
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heart disease (Geleijnse et al. 2004). Furthermore, vitamin K2 treatment elevated testosterone 

production in rats in a dose-dependent manner, implicating K2 in steroidogenesis (Ito et al. 2011). 

Several studies have suggested that K2 has anti-tumor properties. Treatment with vitamin K2 reduced 

proliferation and induced apoptosis in myeloid leukemia cell lines (Yaguchi et al. 1997), gastric 

cancer cell lines (Tokita et al. 2006) and colorectal cancer cell lines (Ogawa et al. 2007). These effects 

are also seen in a therapeutic context, as vitamin K2 supplementation has been reported to suppress the 

development of hepatocellular carcinoma in at-risk patients (Habu et al. 2004), and to reduce the 

recurrence of hepatocellular carcinoma after resection (Mizuta et al. 2006b). While the mechanism of 

these anti-cancer properties is not fully understood, it has been suggested that vitamin K2 reduces cell 

proliferation via inhibition of the transcription factor NF-κB, which suppresses the expression of the 

cell-cycle protein cyclin D1 (Ozaki et al. 2007). Moreover, vitamin K2 was shown to induce 

autophagy and apoptosis simultaneously in leukemia cells, via an unknown mechanism (Yokoyama et 

al. 2008). These findings suggest that vitamin K2 may be a promising anti-cancer compound.   

An unexpected and stimulating finding, and of particular relevance to PD, is the demonstration that 

vitamin K2 can act as an electron carrier in the mitochondrial ETC. Vos et al. (2012) used a genetic 

approach to identify the Drosophila homolog of mammalian UBIAD1, the gene responsible for 

vitamin K2 synthesis, as a genetic modifier of PINK1. Heterozygosity for UBIAD1 mutations strongly 

enhanced the mitochondrial defects seen in PINK1 mutant flies, such as reduced ATP production and 

loss of mitochondrial membrane potential, and these defects could be rescued by overexpressing 

UBIAD1. Overexpression of UBIAD1 could similarly rescue the mitochondrial phenotype of parkin 

mutant flies. Interestingly, supplementing the diet of PINK1 and parkin mutant flies with vitamin K2 

improved ETC efficiency and alleviated the mitochondrial defects of these mutants in a dose-

dependent manner. Intriguingly, vitamin K2 is a known electron carrier in bacterial membranes 

(Haddock and Jones 1977). Vos et al. (2012) convincingly demonstrated that vitamin K2 can also 

facilitate electron transport in the mitochondrial ETC in eukaryotic cells, and suggested that this novel 

function of vitamin K2 drives the phenotypic rescue seen in PINK1 and parkin mutant Drosophila. 

While the rescue effect of vitamin K2 on mitochondrial dysfunction has to date only been 

demonstrated in Drosophila, it would be interesting to see whether such pro-mitochondrial effects are 

also seen in human cell models with PINK1 and parkin mutations. As such, vitamin K2 may be a 

promising therapeutic compound in the treatment of PD.    
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PART TWO: PARKIN 

 

Indubitably, the identification of genes and genetic factors that contribute to PD development has 

greatly improved our understanding of the molecular etiology underlying this disease, as exemplified 

by the multitude of studies discussed above. While many important questions remain unanswered, 

such studies often illuminate new avenues of research that may provide valuable insights into PD 

pathology. Particularly interesting amongst the known PD genes is parkin, as parkin mutations are the 

most common cause of familial EOPD (Lücking et al. 2000). Furthermore, parkin is noteworthy for 

been implicated in a wide array of cytoprotective pathways and processes, which often converge to 

promote proper cellular function and health.  

This dissertation aims to further current knowledge on the role of parkin in PD. For that reason, a 

review of the established literature on parkin will follow.  

 

1.11 GENETIC STRUCTURE OF PARKIN 

The parkin gene (OMIM 602544; alternative symbols PARK2, PRKN) was first identified by Kitada 

et al. (1998), who used positional cloning to find the pathogenic locus of AR juvenile PD in a 

consanguineous Japanese family. This landmark publication mapped parkin to chromosomal position 

6q25.2-q27 and described the gene as spanning more than 500 kilobases (kb). A further study 

determined that parkin consists of twelve exons and spans a genomic region of 1380 kb, which makes 

parkin one of the largest genes in the human genome (Asakawa et al. 2001). The considerable size of 

parkin is due to the large parkin intronic regions; the largest intron, intron 1, spans 284 kb alone.  

Parkin lies in a head-to-head orientation with the parkin co-regulated gene (PACRG) (OMIM 

608427) on the opposite DNA strand (Asakawa et al. 2001; West et al. 2003). These two genes share 

a common 5’ flanking promoter region spanning 198 basepairs (bp). The 5’ promoter region has no 

apparent TATA or CAAT box elements, but it does contain transcription factor SP1-binding sites, an 

AP4-binding site, a MYC-binding site and CG- and CpG-rich regions, which allow for the regulation 

of parkin and PACRG (West et al. 2003).         

Interestingly, parkin is one of eight genes that lie within the fragile chromosome site FRA6E, one of 

the most active common fragile sites in the human genome (Cesari et al. 2003). This location of the 

parkin gene, in combination with its very large introns, makes parkin particularly prone to instability 

and deletions. The location of parkin within FRA6E suggests that it may be a candidate tumor 

suppressor gene (Cesari et al. 2003); this interesting association of parkin with cancer will be further 

discussed in Section 1.16.5.  
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1.12 MOLECULAR GENETICS OF PARKIN 

1.12.1 Pathogenic mutations 

Mutations in parkin are the most frequent known cause of EOPD. Initial reports identified parkin 

mutations in approximately 50% of patients of European descent with familial cases of EOPD, as well 

as 15% of sporadic EOPD cases (Lücking et al. 2000; Periquet 2003). Mutations in parkin were also 

reported to be common in EOPD patients from various other ethnic backgrounds (Hedrich et al. 

2004). Later, more comprehensive studies reported frequencies of parkin mutations in EOPD patients 

ranging from 1% to 10% across various populations (Kann et al. 2002; Choi et al. 2008; Sironi et al. 

2008; Mellick et al. 2009; Koziorowski et al. 2010). The frequency of parkin mutations decreases 

significantly with increasing age at onset of disease. This is exemplified by a study of 100 unrelated 

sporadic EOPD patients, which found parkin mutations in 77% of patients with PD onset before the 

age of 20 years, 26% of those between 20 and 30 years and only 3% of patients with onset between 30 

and 45 years (Lücking et al. 2000). Parkin mutations are rare in cases with onset later than 50 years of 

age (Klein et al. 2003). It can therefore be said that the frequency of parkin mutations is a function of 

onset age: the earlier the onset, the higher the frequency.  

Over 170 different mutations in parkin have been reported to date, including missense mutations, 

nonsense mutations, splice site mutations, small insertions/deletions (indels) and large whole exon 

deletions, duplications and triplications, across various ethnic groups (Nuytemans et al. 2010; Corti et 

al. 2011). A comprehensive list of the parkin mutations reported in the literature can be found in the 

PD Mutation Database (PDmutDB, http://www.molgen.ua.ac.be/PDmutDB). The exonic locations of 

a subset of the reported mutations are illustrated in Figure 1.3.  

Approximately 50% of pathogenic parkin mutations are exonic rearrangements which cannot be 

detected by sequencing approaches alone (Hedrich et al. 2001). This speaks to the importance of 

performing exon dosage analysis in addition to exon sequencing when screening for mutations in 

parkin. Rare parkin deletions that extend into the 5’ region of PACRG have also been reported 

(Lesage et al. 2007). The clinical phenotype of patients harboring such composite parkin-PACRG 

deletions is indistinguishable from the typical parkin-associated phenotype.   

Haplotype analyses have been performed in order to determine the origin of certain commonly found 

parkin mutations (Periquet et al. 2001; Hedrich et al. 2004). In general, whole exon rearrangements 

are thought to represent independent and recurrent events, whereas missense mutations, found in 

families of different geographic areas, may result from a common founder. 
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Figure 1.3 Schematic representations of the positions of the various pathogenic sequence 

mutations and copy number variations in parkin. A, the positions of pathogenic nonsense, 

missense, frameshift and splice site mutations in the parkin CDS and parkin protein domains. Only 

mutations reported in the homozygous or compound heterozygous state are shown. Numbers above 

the protein schematic indicate the amino acid boundaries of each domain. B, the positions of exonic 

rearrangements, including deletions, duplications and triplications, in the parkin CDS. A deletion 

affecting both parkin and PACRG is also shown. Figure adapted from Corti et al. (2011). 

Abbreviations: bp, basepairs; CDS, coding sequence; del, deletion; ex, exon; fs, frameshift; IBR, in-

between RING; IVS, intervening sequence; RING, really interesting new gene; PACRG, parkin co-

regulated gene; UBL, ubiquitin-like.    
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In accordance with the recessive inheritance of parkin, both alleles of parkin need to harbor mutations 

in order to cause disease. These biallelic mutations may be in either homozygous or compound 

heterozygous states. Most of the exon dosage mutations, indels and nonsense mutations are loss-of-

function mutations, as they result in significant structural disruption of the protein coding sequence 

(CDS) or premature termination of the transcript. On the other hand, the many missense mutations in 

parkin rely on evidence from functional studies with regards to their pathogenicity.  

 

1.12.2 The role of heterozygous variants 

In some PD patients, only a single heterozygous parkin mutation is present. It has been suggested that 

such heterozygous mutations may act as risk factors for the development of late onset typical PD; 

however, this view is quite controversial. Interest in heterozygous mutation carriers was fuelled by 

early observations of multi-affected families carrying parkin mutations. In such families, EOPD 

patients harbored homozygous or compound heterozygous parkin mutations, whereas some of their 

relatives who developed later-onset PD had single heterozygous parkin mutations (Farrer et al. 2001; 

Foroud et al. 2003). Furthermore, heterozygous parkin mutations identified in PD patients were not 

found in unaffected controls (Hedrich et al. 2002; Schlitter et al. 2006; Sun et al. 2006).   

These observations were criticized for the significant confounding effects of ascertainment bias. 

Moreover, the abovementioned studies only screened control subjects for the variants found in the PD 

patients, and may therefore have missed heterozygous variants present in controls but not patients. 

Later studies reported similar rates of heterozygous mutations among unaffected controls as PD 

patients (Kay et al. 2007). A comprehensive screen for parkin mutations in 1700 control subjects 

found exonic rearrangements in 1% of unaffected controls and heterozygous missense variants in 3% 

of controls (Kay et al. 2010). Interestingly, all of the exonic rearrangements identified in controls 

were found in exons 1-4, and no such rearrangements were seen in exons 5-12 which encode for 

functionally critical domains. Kay et al. (2010) found that heterozygous parkin mutations were not 

associated with an increased risk of PD. Single parkin mutations may therefore be incidental in PD 

patients and unrelated to disease; however, further large-scale studies are necessary. On the other 

hand, it is interesting to note that functional neuroimaging studies, such as 18F-dopa PET imaging, 

have reported presynaptic dysfunction of striatal neurons in asymptomatic heterozygous parkin 

mutation carriers (Scherfler et al. 2004; Pavese and Brooks 2009; Guo et al. 2011). This would add 

support to a role of heterozygous parkin mutations as susceptibility factors for PD. It is hoped that 

future studies can resolve this contentious issue conclusively.        
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1.13 PARKIN EXPRESSION AND LOCALIZATION 

1.13.1 Parkin transcript expression  

Parkin is expressed as a 4,5 kb transcript comprising of a 1395 bp open reading frame (ORF) (Kitada 

et al. 1998). This transcript is expressed in most human tissues with a particularly high expression in 

the heart, skeletal muscle and brain, including the substantia nigra (Figure 1.4).    

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.4 Expression profile of the parkin gene. Northern blot analysis of parkin gene expression 

in various human tissues. Gene expression in various regions of the adult human brain is shown in the 

two rightmost panels. Figure adapted from Kitada et al. (1998). Abbreviations: kb, kilobases.    

 

 
 

Several alternatively spliced isoforms of parkin have been described. For example, isoforms lacking 

exon 4 or exon 5 are expressed in the brain (Kitada et al. 1998; Sunada et al. 1998; Tan et al. 2005). 

The pathogenic relevance of such splice variants is unclear; the ratio of exon 4 splice isoform to full-

length parkin is higher in sporadic PD patients in comparison to unaffected controls (Tan et al. 2005). 

Differential expression of parkin isoforms in various tissues have been described, which may reflect 

regulation of tissue-specific parkin activity. For example, a parkin splice variant lacking exons 3-5 is 

the most abundant parkin transcript in peripheral lymphocytes, whereas full-length parkin is the 

predominant transcript in the brain (Sunada et al. 1998).  

 

1.13.2 Parkin subcellular localization  

Various approaches have been employed to study the subcellular localization of parkin, the 465-aa, 52 

kDa protein product of the parkin gene. When considering fractionation studies, both endogenous and 
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overexpressed tagged parkin is found mainly in the cytosol, although parkin also co-fractionates with 

the outer mitochondrial membrane (OMM), Golgi apparatus, synaptic vesicles and postsynaptic 

membranes (Shimura et al. 1999; Kubo et al. 2001; Fallon et al. 2002; Darios et al. 2003).  

Ultrastructural investigation of overexpressed parkin in adult mouse brain tissue demonstrated that 

parkin associated with the OMM, the endoplasmic reticulum (ER), cytoplasmic vesicles, the outer 

nuclear membrane and the nuclear matrix (Stichel et al. 2000). 

 

Other studies used immunocytochemistry to investigate endogenous parkin localization in various 

cultured cell lines. Such approaches corroborated the mainly cytosolic presence of parkin and also 

found that it co-localizes with actin filaments and the cytoskeleton, the ER, plasma membrane, 

cytoplasmic vesicles, Golgi apparatus (Huynh et al. 2000; Zarate-Lagunes et al. 2001). Furthermore, 

several studies reported the association of endogenous parkin with the mitochondria and OMM under 

native conditions (Kuroda et al. 2006; Rothfuss et al. 2009). This is in contrast to other studies which 

found that parkin is recruited from the cytosol to the OMM only upon chemically-induced 

mitochondrial depolarization (Narendra et al. 2008; Matsuda et al. 2010; Rakovic et al. 2010). 

Nonetheless, the latter studies should not been interpreted as proof of absence of parkin in 

mitochondria under native conditions, as they merely demonstrated the substantial increase in the 

mitochondrial fraction of parkin protein under stress conditions. 

Subcellular localization studies using overexpressed, tagged proteins should be interpreted with 

caution as they are susceptible to artefacts. For example, the transgenic overexpression of parkin 

greatly increases its relative proportion of mitochondrial-bound protein (Narendra et al. 2010a). This 

speaks to the value of using endogenous protein for in vivo studies of parkin localization and function. 

  

1.14 PARKIN IS AN E3 UBIQUITIN LIGASE  

Early studies of parkin demonstrated that the protein has ubiquitin ligase enzymatic activity, and 

hence identified parkin as an E3 ubiquitin ligase (Imai et al. 2000; Shimura et al. 2000; Zhang et al. 

2000). This implicated parkin as a member of the UPS, the major cellular pathway for the degradation 

of soluble intracellular proteins. As an oversimplification, it can be said that the UPS consists of two 

major steps: the ubiquitination of E3-bound protein substrates (Section 1.14.1) followed by the 

proteasome-dependent degradation of ubiquitinated substrates (Section 1.16.2.1). It is E3 enzymes, 

such as parkin, that confer the substrate specificity of the UPS. Parkin-mediated ubiquitination is also 

involved in proteasome-independent processes such as protein trafficking, mitophagy, cell signaling 

and apoptosis.   
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1.14.1 Ubiquitination 

The process of ubiquitin conjugation requires the concerted, sequential action of three enzymes: an E1 

activating enzyme, an E2 conjugating enzyme and an E3 ubiquitin ligase (Hershko and Ciechanover 

1998). In brief, an ubiquitin monomer is activated by an E1 enzyme in an ATP-dependent manner, 

which results in the conjugation of the now adenylated C-terminal glycine (Gly76) of ubiquitin to a 

cysteine residue of E1 via a high-energy thiolester bond. Activated ubiquitin is then transferred from 

E1 to an active-site cysteine residue of an E2 enzyme, forming a similar thiolester linkage. The E1 

enzyme dissociates, and E2 interacts with a substrate-bound E3 enzyme. This results in the transfer of 

adenylated ubiquitin to the ε-amino group of an internal lysine residue of the substrate protein, 

conjugating ubiquitin to the substrate via an isopeptide bond.  

The above-described process results in the conjugation of a single ubiquitin monomer to a substrate 

protein, termed mono-ubiquitination. Mono-ubiquitination of substrates is involved with the 

regulation of endocytosis, histone modification and protein sorting (Osley et al. 2006; Clague et al. 

2012). However, as ubiquitin itself contains seven lysine residues, chains of ubiquitin molecules can 

be formed by the conjugation of the C-terminal glycine of an activated ubiquitin to a lysine residue of 

another ubiquitin, termed poly-ubiquitination. Such poly-ubiquitination, resulting in a chain of at least 

four monomers, is required for protein degradation. The best studied poly-ubiquitin chain is K48 

(conjugation of ubiquitin to lysine 48 of substrate ubiquitin), which targets proteins for degradation 

via the proteasome (Chau et al. 1989; Thrower et al. 2000). K63 poly-ubiquitin chains are involved in 

various proteasome-independent functions such as signal transduction, DNA repair, apoptosis and 

autophagy (Chan and Hill 2001; Chen and Sun 2009). Hence, the fate of an ubiquitinated protein is 

dependent on both the mode of ubiquitination (mono- or poly-ubiquitination) and the type of chain 

linkage. However, the wealth of recent studies suggest that cellular ubiquitin signaling, whether 

degradative or non-degradative, is significantly more complicated than previously appreciated 

(Komander and Rape 2012; Kravtsova-Ivantsiv and Ciechanover 2012).       

Early studies of parkin demonstrated that it associates with the UbcH7 and UbcH8 E2 enzymes to 

mediate K48 poly-ubiquitination, thereby targeting substrates for proteasome-dependent degradation 

(Kahle and Haass 2004; Rankin et al. 2011) (Section 1.16.2.1). Consistent with parkin’s involvement 

in the UPS, parkin’s UBL domain can directly associate with several subunits of the proteasome: 

Rpn1, Rpn10, Rpt5, Rpt6 of the 19S regulatory particle and the α4 subunit of the 20S core particle 

(Sakata et al. 2003; Tsai et al. 2003; Dächsel et al. 2005). Hence, parkin is able to mediate the 

translocation of its substrates to the proteasome and so promote their degradation. 

Surprisingly, parkin is also capable of mediating proteasome-independent ubiquitination of protein 

substrates such as mono-ubiquitination (Fallon et al. 2006; Hampe et al. 2006; Joch et al. 2007) and 

K63 poly-ubiquitination (Doss-Pepe et al. 2005; Lim 2005) via interactions with the E2 complex 
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UbcH13/Uev1a. Parkin furthermore self-regulates its ubiquitin ligase activity via auto-ubiquitination 

(Chaugule et al. 2011). Parkin is therefore a multifunctional ubiquitin ligase (Lim et al. 2006).  

 

1.14.2 The structure of parkin protein 

Until recently, all E3 ubiquitin ligases were divided into three structural classes: RING (Really 

Interesting New Gene) ligases, U-Box ligases and HECT (Homologous to E6 C-Terminus) ligases. 

These differed with respect to the mechanism of ubiquitin transfer to substrates. RING and U-Box 

ligases do not possess catalytic activity, but act as scaffolds to facilitate the direct transfer of ubiquitin 

from E2 to the substrate, whereas HECT ligases accept activated ubiquitin from E2 and subsequently 

catalyze the enzymatic transfer of ubiquitin to the substrate. Parkin belongs to the RING Between 

RING (RBR) set of E3 ligases, originally thought to be a subclass of RING E3s (Eisenhaber et al. 

2007). However, recent studies demonstrated that RBR ligases function like RING/HECT hybrids: 

they associate with E2 via a Zn2+-binding RING domain (like RING E3s), but transfer ubiquitin 

directly to substrates via a catalytic cysteine residue (like HECT E3s) (Wenzel et al. 2011). RBR 

ubiquitin ligases such as parkin consist of three consecutive domains: RING1, in between RING 

(IBR) and RING2. Parkin also contains an ubiquitin-like (UBL) domain at its N-terminal end. 

Recently, a third RING domain unique to parkin was identified N-terminally of RING1 and named 

RING0 (Hristova et al. 2009).  

Remarkably, the natively folded structure of parkin was only elucidated as recently as 2013, when 

four groups independently published the crystal structure of the parkin’s characteristic RBR domains 

(Riley et al. 2013; Spratt et al. 2013; Trempe et al. 2013; Wauer and Komander 2013); one of the 

groups also reported the structure of full-length parkin at a lower resolution (Trempe et al. 2013). 

Despite the different crystallization approaches used, the reported parkin structures are highly similar 

and very insightful (Figure 1.5). 

The studies found that the C-terminal RING1, IBR and RING2 domains are not an isolated structural 

unit, but are intertwined with the UBL and RING0 domains to form a compact structure that is folded 

back onto itself, reminiscent of a coiled snake (Dove and Klevit 2013). Interestingly, two regions that 

are critical for parkin’s ligase activity, the catalytic site in RING2 and the E2 binding site in RING1, 

are occluded. This validates other studies which suggested an inactive, auto-inhibited state for native 

parkin (Chaugule et al. 2011; Chew et al. 2011).  Parkin’s auto-inhibition is due to the hydrophobic 

interfacing of RING0 with RING2, which buries the catalytically vital cysteine residue (Cys431) in 

RING2, and the binding of the newly-discovered repressor element of parkin (REP) to RING1, which 

obstructs the E2 docking site in RING1.     
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Parkin’s crystal structure also confirmed that RING0, RING1, IBR and RING2 each bind two Zn2+-

ions as previously predicted (Hristova et al. 2009); however, the topologies of the folded RING 

domains differed significantly (Dove and Klevit 2013). RING1 is the only bona fide RING domain, as 

it adopts a canonical structure and coordinates its Zn2+-ions in a cross-brace pattern. In opposition to 

RING1, RING2 and IBR adopt similar folding topologies with Zn2+-binding cysteine residues 

arranged sequentially. RING0 coordinates Zn2+ in a hairpin structure, assuming a characteristic fold 

that has been previously called the unique parkin (UP) domain (Hampe et al. 2006).   

 

 

  

  

 

 

 

 

 

 

Figure 1.5 Schematic representation of parkin protein structure. A, the domain architecture of 

parkin. Numbers above the protein schematic indicate the amino acid boundaries of each domain. B, 

representation of the crystal structure of parkin. Parkin forms a compact structure with multiple 

domain interfaces; each domain is colored according to the diagram in A. Parkin is natively inactive 

and auto-inhibited, as two critical sites are inaccessible. The catalytic site in RING2 is obstructed by 

RING0, and the E2 binding site in RING1 is occluded by REP. Adapted from Winklhofer (2014). 

Abbreviations: IBR, in-between RING; RING, really interesting new gene; REP, repression element 

of parkin; UBL, ubiquitin-like.    

 

As stated, the enzymatic active site of parkin is located in RING2 and centered on the Cys431 residue. 

Several authors noted the close proximity of His433 and Glu444 to Cys431, which may form a 

catalytic triad whereby the pKa of Cys431 is lowered and the residue rendered highly reactive (Riley 

et al. 2013; Spratt et al. 2013). It is perhaps this high reactivity which necessitates the auto-inhibition 

of parkin activity.      

A 

B 
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However, several important questions remain unanswered. It is still unclear how posttranslational 

modifications and/or binding of interacting proteins switch parkin from an inactive to an active state, 

or how structurally dynamic the protein is. Indeed, the active sites of E2s and parkin’s Cys431 are 

separated by a distance of approximately 50Å; parkin therefore needs to undergo significant 

conformational rearrangements to permit ubiquitin transfer. The recent advances in the understanding 

of parkin’s structure will greatly inform further research into its regulation and function.  

   

1.14.3 Pathogenic mutations affect parkin’s ubiquitin ligase activity   

The structure of soluble, natively folded parkin (Section 1.14.2) provides valuable insights into how 

pathogenic parkin mutations may result in parkin dysfunction. As such, parkin mutations can 

conceivably impact on parkin function in four major ways: affecting parkin stability and solubility; 

decreasing parkin ligase activity; affecting protein-protein interactions with E2s, adaptor proteins, 

regulatory proteins or substrates, and increasing parkin ligase activity.  Mutations that disrupt Zn2+-

binding or other important structural residues may destabilize the tertiary structure of parkin, which 

would result in the loss of functional parkin. Such destabilized protein may also form aggregates, with 

potentially cytotoxic results. Parkin’s ligase activity can be abrogated by pathogenic mutations in its 

catalytic site (e.g. C431F) or E2 binding site (e.g. T240R). Mutations that disrupt parkin substrate 

recognition or binding would also result in a decrease in parkin ligase activity; however, it is still 

unclear how or through which domain parkin binds its substrates. Lastly, mutations that abolish 

parkin auto-inhibition would result in an increase of ligase activity. This may be mediated by 

pathogenic mutations at the interfaces of RING0 and RING2 (e.g. T183A) or REP and RING1 (e.g. 

A398T) (Riley et al. 2013; Spratt et al. 2013; Trempe et al. 2013; Wauer and Komander 2013). 

Spratt et al. (2013) noted that regulatory auto-ubiquitination of parkin occurs only in cis, not in trans, 

providing an interesting molecular explanation for the recessive nature of parkin mutations. If a 

heterozygous mutation destabilizes or inactivates the protein, only the mutant protein loses its 

function without affecting the wild-type copy. On the other hand, a heterozygous mutation that 

disrupts parkin auto-inhibition and subsequently increases its ligase activity, produces a mutant 

protein that auto-ubiquitinates itself in cis without affecting the wild-type copy. This would result in 

the selective degradation of the mutant protein, leaving the unaffected copy intact. Therefore, either 

homozygous or compound heterozygous mutations are necessary for the complete loss of parkin 

function.    

The complexity and interconnectedness of parkin’s structure make accurate predictions of a particular 

mutation’s effect difficult. This can be appreciated when considering that pathogenic mutations have 

been described in all five domains, rather than clustering in its catalytic domain; hence, mutations in 

any part of parkin can disrupt multiple intertwined domains on several levels.   
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1.15 PARKIN INTERACTORS 

Numerous proteins have been observed to interact with parkin to date, which are listed in Table 1.2. 

Such protein-protein interactions have been detected via established biochemical approaches, 

including yeast two-hybrid (Y2H), co-immunoprecipitation (co-IP) and affinity purification followed 

by mass spectrometry analysis (AP-MS). Interestingly, there are now several examples of previously-

identified parkin interactors that cannot be reconciled with the recent elucidation of parkin structure. 

For example, many studies originally reported the interaction of UbcH8 (an E2 ubiquitin-conjugating 

enzyme) with parkin’s RING2 domain (Imai et al. 2000; Zhang et al. 2000; Olzmann et al. 2007); 

recent findings that RING2 is not a canonical RING domain and lacks the conserved residues required 

for E2 recruitment cast significant doubt on such an interaction (Spratt et al. 2013).  

The identified parkin interactors can be grouped in five non-exclusive categories (Table 1.2): proteins 

that interact with parkin as part of the ubiquitination machinery, parkin substrates which are 

ubiquitinated by parkin, parkin interactors without current evidence of ubiquitination, interactors 

which translocate parkin to various cellular organelles or events, and interactors which regulate parkin 

ligase activity either via direct association or by chemical modifications. Many of the identified parkin 

interactors will be discussed in subsequent sections in relation to the cellular functions of parkin.  

 

Table 1.2 Reported protein-protein interactions with parkin 

Interactor 
Official 

symbol* 

Detection 

method(s) 
Reference(s) 

Components of ubiquitination machinery 

CASK CASK Co-IP Fallon et al. (2002) 

Cullin-1 CUL1 Co-IP Staropoli et al. (2003) 

Ubc7 UBE2G1 Co-IP Imai et al. (2000); Shimura et al. (2000) 

UbcH5c UBE2D3 Co-IP Joch et al. (2007); Shin et al. (2011) 

UbcH6 UBE2E1 Co-IP Shin et al. (2011) 

UbcH7 UBE2L3 Co-IP Imai et al. (2000); Wenzel et al. (2011) 

UbcH13 UBE2N Co-IP Doss-Pepe et al. (2005); Olzmann et al. (2007) 

Ubiquitin UBC Co-IP Shimura et al. (2000); Zhang et al. (2000) 

Uev1a UBE2V1 Co-IP Doss-Pepe et al. (2005) 

Interactors which are ubiquitinated 

Aβ APP 
Co-IP;            

co-localization 
Rosen et al. (2010); Lonskaya et al. (2013) 

Ataxin-2 ATXN2 Co-IP Huynh et al. (2007) 

Bax BAX Co-IP Johnson et al. (2012) 

β-Catenin CTNNB1 AP-MS Rawal et al. (2009) 

CISD1 CISD1 AP-MS Okatsu et al. (2012) 

Cyclin E CCNE1 Co-IP Staropoli et al. (2003) 

DAT SLC6A3 Co-IP Jiang et al. (2004) 

DMT1 SLC11A2 Co-IP Roth et al. (2010) 
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Interactor 
Official 

symbol* 

Detection 

method(s) 
Reference(s) 

Drp1 DNM1L Co-IP Wang et al. (2011a) 

Eps15 EPS15 Co-IP Fallon et al. (2006) 

ERRα ESRRA Co-IP Ren et al. (2011) 

ERRβ ESRRB Co-IP Ren et al. (2011) 

ERRγ ESRRG Co-IP Ren et al. (2011) 

FAF-1 HFAF1 Co-IP Sul et al. (2013) 

FBP1 FBP1 Co-IP Ko et al. (Ko 2006); 

Fbw7β FBXW7B Co-IP Staropoli  et al. (2003); Ekholm-Reed et al. (2013) 

GBA GBA Co-IP Ron et al. (2010) 

Hexokinase 1 HK1 Co-IP; AP-MS Okatsu et al.  (2012); Sarraf et al. (2013) 

IKKγ IKBKG Co-IP Henn et al. (Henn et al. 2007) 

LIM kinase 1 LIMK1 Co-IP Lim et al. (2007) 

Miro RHOT1 Co-IP Wang et al. (2011b) 

Mitofusin 1 MFN1 Co-IP; AP-MS Glauser et al. (2011); Sun et al. (2012) 

p38 AIMP2 Co-IP Corti et al. (2003); Ko et al. (2005) 

Pael-R GPR37 Y2H; Co-IP Imai et al. (2000) 

PARIS ZNF746 Co-IP Shin et al. (2011) 

Parkin PARK2 Co-IP Shimura et al. (2000); Chaugule et al. (2011) 

PDCD2 PDCD2 Co-IP Fukae et al. (2009) 

Phospholipase c-γ1 PLCG1 Co-IP Dehvari et al. (2009) 

PICK1 PICK1 Co-IP Joch et al.  (2007) 

RanBP2 RANBP2 Co-IP Um et al. (Um et al. 2006) 

Septin 4 ARTS Co-IP Choi et al. (2003); Kemeny et al. (2012) 

Septin 5 SEPT5 Y2H; Co-IP Zhang et al. (2000) 

SIM2 SIM2 Co-IP Okui et al. (2005) 

αSp22 SNCA Co-IP Choi et al. (2001); Shimura et al (2001); 

Synaptotagmin XI SYT11 Y2H; Co-IP Huynh et al. (2003) 

Synphilin-1 SNCAIP Y2H; Co-IP Chung et al. (2001); Bandopadhyay et al. (2005) 

TOMM70A TOMM70A 
Co-IP; AP-MS; 

FRET 
Okatsu et al. (2012); Bertolin et al. (2013) 

TRAF2 TRAF2 Co-IP Henn et al. (2007); Chung et al. (2013) 

α-Tubulin TUBA Co-IP Ren et al. (2003) 

β-Tubulin TUBB1 Co-IP Ren et al. (2003) 

γ-Tubulin TUBG1 Co-IP Zhao et al. (2003) 

VDAC1 VDAC1 Co-IP; AP-MS Okatsu et al. (2012); Sun et al. (2012) 

Interactors which are not ubiquitinated 

Actin ACTA1 AP-MS Kim and Son (2000) 

Ambra1 AMBRA1 Co-IP; AP-MS Van Humbeeck et al. (2011) 

Arrestin-1 ARRB1 Co-IP Ahmed et al. (2011) 

Bcl-2 BCL2 Co-IP Chen et al.(2010b) 

CHIP STUB1 Co-IP; AP-MS Imai et al. (2002) 

DJ-1 PARK7 Co-IP Moore et al. (2005); Xiong et al. (2009) 

HHARI ARIH1 Co-IP Parelkar et al. (2012) 

Hsc70 HSPA8 Co-IP Imai et al. (2002); Imai et al. (2003) 

HSJ1a DNAJB2A Co-IP Imai et al. (2002) 
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Interactor 
Official 

symbol* 

Detection 

method(s) 
Reference(s) 

Hsp70 HSPA4 Co-IP; AP-MS Imai et al. (2002); Tsai et al. (2003) 

Hsp90 HSPA1 Co-IP Imai et al. (2003) 

Mitofusin 2 MFN2 Co-IP; AP-MS Glauser et al. (2011); Sun et al. (2012) 

Mortalin HSPA9 Co-IP Yang et al.  (2011) 

NME2 NME2 AP-MS Okatsu et al. (2012) 

p62 SQSTM1 Co-localization Narendra et al. (2010b) 

PACRG PACRG Co-IP Imai et al. (2003) 

PCNA PCNA Co-IP Kao et al. (2009) 

PIK3C3 PIK3C3 Co-IP Choubey et al. (2014) 

PS-α4 PSMA4 Y2H; Co-IP Dächsel et al. (2005) 

Rpn1 PSMD2 Co-IP Um et al. (2010) 

Rpn10 PSMD4 Co-IP Sakata et al. (2003); Uchiki et al. (2009) 

Rpt5 PSMC3 Co-IP Um et al. (2010) 

Rpt6 PSMC5 Co-IP Tsai et al (2003); Um et al. (2010) 

Tau MAPT Co-IP Petrucelli et al. (2004) 

TDP-43 TARDBP Co-IP Hebron et al. (2013) 

TOMM40 TOMM40 FRET Bertolin et al. (2013) 

VDAC2 VDAC2 AP-MS Okatsu et al. (2012); Sun et al. (2012) 

VDAC3 VDAC3 AP-MS Okatsu et al. (2012); Sun et al. (2012) 

Interactors which mediate parkin translocation 

AF-6 MLLT4 Co-IP Haskin et al. (2013) 

Beclin 1 BECN1 Co-IP Choubey et al. (2014) 

HDAC6 HDAC6 Co-IP; AP-MS Jiang et al. (2008); Hebron et al. (2013) 

Klokin 1 CHPF Y2H; Co-IP Kuroda et al. (2012) 

Interactors which regulate parkin activity 

14-3-3η YWHAH Co-IP Sato et al. (2006) 

Ataxin-3 ATXN3 Co-IP Durcan et al. (2011); Bai et al. (2013) 

BAG5 BAG5 Co-IP Kalia et al. (2004) 

C-Abl ABL1 Co-IP Ko et al. (2010); Imam et al. (2011) 

Casein kinase-1 CSNK1A1 Co-IP Yamamoto et al. (2005) 

Cdk5 CDK5 Co-IP Avraham et al. (2007) 

HtrA2 HTRA2 Co-IP Park et al. (2009) 

LRRK2 LRRK2 Co-IP Smith et al. (2005) 

NAC1 NACC1 Co-IP Korutla et al. (2014) 

NEDD8 NEDD8 Co-IP; AP-MS Choo et al. (2012); Um et al. (2012) 

Nrdp1 RNF41 Y2H; Co-IP Zhong et al. (2004) 

p32 C1QBP Co-IP Li et al. (2011c) 

PINK1 PINK1 Co-IP Sha et al (2009); Shiba et al. (2009); 

Protein Kinase A PKA Co-IP Yamamoto et al. (2005) 

Protein kinase C DYT10 Co-IP Yamamoto et al. (2005) 

SUMO-1 SUMO1 Co-IP Um & Chung (2006) 

*Refers to the HGNC approved gene symbol. Adapted from the BioGRID database (http://thebiogrid.org). 

Abbreviations: AP-MS, affinity purification mass spectrometry; Co-IP, co-immunoprecipitation; FRET, Förster 

resonance energy transfer; Y2H, yeast two-hybrid. 
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1.16 CELLULAR FUNCTIONS OF PARKIN 

A wide array of neuroprotective functions of parkin has been described. Such neuroprotection is 

aimed against numerous sources of cellular stress that may result in cell death, including proteotoxic 

stress, mitochondrial stress, excitotoxicity and pro-apoptotic stimulation (Corti et al. 2011; Rankin et 

al. 2011; Exner et al. 2012). In fact, several studies have reported that parkin is transcriptionally 

upregulated during periods of cell stress.  The neuroprotective functions of parkin can be broadly 

grouped into three mechanisms: maintaining proper protein degradation, promoting mitochondrial 

function and health, and modulating proteasome-independent ubiquitin signaling in pro- and anti-

apoptotic pathways. Parkin has also been implicated in non-neuronal functions, such as tumor 

suppression and innate immunity, which will be briefly discussed. 

 

1.16.2 Parkin and protein degradation 

Early studies of parkin demonstrated that it can associate with the UbcH7 and UbcH8 E2 enzymes to 

mediate K48 poly-ubiquitination, thereby targeting substrates for proteasome-dependent degradation 

(Kahle and Haass 2004; Rankin et al. 2011). Loss of function of parkin may therefore result in the 

deleterious accumulation of such substrates, potentially contributing to neurotoxicity. While many 

parkin substrates have been identified to date (Table 1.2), there is little evidence that most of these 

substrates accumulate in the absence of functional parkin or that parkin modulates their levels in a 

proteasome-dependent manner in vivo (Periquet et al. 2005; Davison et al. 2009; Dawson and Dawson 

2010). However, a handful of authentic parkin UPS substrates (cyclin E, AIMP2, FBP-1 and PARIS) 

demonstrate pathological relevance (Corti et al. 2003; Ko 2005, 2006; Shin et al. 2011); these 

interactions will be discussed in Section 1.16.2.2.  

 

1.16.2.1 The proteasomal degradation pathway 

Parkin plays important roles in protein quality control and turnover via the UPS. Therefore, the 

process whereby ubiquitinated substrates are degraded will be briefly discussed. Degradation of 

sufficiently poly-ubiquitinated substrates is mediated by a large multimeric protein complex called the 

26S proteasome (Bedford et al. 2010). This structure consists of a 20S core particle which can be 

capped at one or both ends by the 19S regulatory particle. The 20S core particle is a hollow, barrel-

shaped structure composed of 28 subunits organized into four heptameric rings. Whereas the two 

outer rings, comprised of seven α-subunits, enable docking of the 19S regulatory particles to the core 

particle, the two inner rings of seven β-subunits have potent proteolytic activities. The β1, β2 and β5 

subunits of the 20S core possess peptidylglutamyl-like activity, trypsin-like activity and 

chymotrypsin-like activity, respectively.  
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Access to the 20S core particle is tightly regulated by the 19S regulatory particle, which recognizes, 

de-biquitinates and unfolds poly-ubiquitinated substrates through the concerted action of various 

ubiquitin-binding, de-ubiquitinating and ATPase-like subunits (Bedford et al. 2010). The unfolded, 

untagged protein is subsequently threaded through the catalytic core of the proteasome, where it is 

promptly degraded.  

 

1.16.2.2 Parkin targets substrates for degradation 

Several studies demonstrated that parkin regulates the steady-state levels of many (but not all) of its 

protein substrates via the UPS; the accumulation of such substrates may contribute to cytotoxicity and 

dopaminergic neurodegeneration. Parkin is able to act as a component of a multiprotein SCF (Skp1, 

Cullin-1, Roc1 and F-box protein)-like ubiquitin ligase complex via interactions with cullin-1 and 

fbw7β (Staropoli et al. 2003). As part of such a complex, parkin targets and promotes the degradation 

of the apoptosis-regulator cyclin E. Parkin deficiency in primary neurons potentiates the accumulation 

of cyclin E and resulting apoptosis in primary neurons experiencing kainite-induced excitotoxicity, 

whereas overexpressed parkin attenuated cyclin E accumulation in such a model of neuronal stress.   

Transgenic mice that overexpress the authentic parkin substrate aminoacyl-tRNA synthase complex-

interacting multifunctional protein-2 (AIMP2)/p38 present with age-dependent dopaminergic 

neuronal loss and accompanying motor features (Lee et al. 2013). Such accumulation of AIMP2 

mediated cell death via a nuclear interaction between AIMP2 and poly(ADP-ribose)-polymerase-1 

(PARP1), which resulted in the activation of PARP1 and accumulation of poly(ADP-ribose) 

molecules. Interestingly, the subsequent neurodegeneration was restricted to the ventral midbrain of 

such transgenic mice.         

The accumulation of the parkin-interacting substrate (PARIS, ZNF746) is regulated by parkin  in a 

neuronal cell model: overexpression of parkin results in reduced expression of PARIS, whereas 

downregulation of parkin expression results in PARIS upregulation (Shin et al. 2011). PARIS is a 

specific and key transcriptional repressor of peroxisome proliferator-activated receptor γ coactivator 

1α (PGC-1α), an important mediator of mitochondrial biogenesis (St-Pierre et al. 2006; Ventura-

Clapier et al. 2008). PARIS accumulation in a parkin deficient mouse model resulted in the selective 

degeneration of dopaminergic neurons (Shin et al. 2011).  

During periods of oxidative stress, parkin ubiquitinates and mediates the degradation of F-box protein 

fbw7β (Ekholm-Reed et al. 2013). Fbw7β regulates the degradation of the mitochondrial pro-survival 

factor myeloid cell leukemia-1 (Mcl-1); hence, parkin indirectly promotes neuronal survival by 

maintaining Mcl-1 levels. Mcl-1 is downregulated when parkin is knocked down in primary neuronal 
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cell cultures, resulting in an acute sensitivity to oxidative stress. Pathogenic mutations in parkin may 

therefore result in dopaminergic cell death via unregulated Fbw7β-targeted degradation of Mcl-1.  

Another study found that parkin mediates the degradation of the pro-apoptotic Fas-associated factor 1 

(FAF1) in a neuronal cell line, where pathogenic parkin mutations resulted in the accumulation of 

FAF1 (Sul et al. 2013). Furthermore, FAF1 accumulated selectively in the substantia nigra of a 

MPTP-induced mouse model of PD, and the subsequent dopaminergic degeneration is attenuated in 

transgenic mice with diminished levels of FAF1.   

 

1.16.3 Parkin and mitochondrial health 

Compelling evidence of the mitochondrial involvement of parkin were obtained from Drosophila 

models of parkin deficiency. Such flies demonstrated prominent mitochondrial dysfunction, muscle 

degeneration and dopaminergic degeneration (Greene et al. 2003; Cha et al. 2005; Whitworth et al. 

2005). Flies overexpressing mutated parkin showed similar neural degeneration and mitochondrial 

impairment as flies lacking in parkin (Wang et al. 2007). Interestingly, the abnormalities seen in 

parkin knockout flies closely resembled that of PINK1 knockout Drosophila models; furthermore, 

parkin overexpression rescued the pathological effects of PINK1 deficiency, but not vice versa (Clark 

et al. 2006; Park et al. 2006; Yang et al. 2006). These interesting observations spurred the discovery 

of a common PINK-parkin pathway acting upon mitochondria (Poole et al. 2008).  

Narendra et al. (2008) found that carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-induced 

mitochondrial depolarization of HeLa cells induced the recruitment of parkin at the OMM, where 

parkin promoted the sequestration and autophagic degradation of damaged mitochondria (mitophagy). 

Moreover, the mitochondrial translocation of parkin was found to be depended on PINK1, which 

accumulates at the OMM upon mitochondrial depolarization (Narendra et al. 2010a; Matsuda et al. 

2010).In addition to recruiting parkin to the OMM, PINK1 is also involved in the activation of parkin-

mediated mitophagy by phosphorylating parkin at Ser65 within parkin’s UBL domain (Kondapalli et 

al. 2012; Shiba-Fukushima et al. 2012). The PINK1-mediated parkin recruitment is aided and 

regulated by several recently identified components, including translocase of outer membrane (TOM) 

member 7 (TOMM7) and hexokinase 2 (HK2) (Hasson et al. 2013; McCoy et al. 2014). At the OMM, 

activated parkin ubiquitinates mitofusins 1 and 2 (Mfn1 and Mfn2), voltage-dependent anion-selective 

channel protein 1 (VDAC1), CDGSH iron-sulfur domain-containing protein 1 (CISD1), hexokinase 1 

(HK1) as well as members of the TOM complex (Gegg et al. 2010; Geisler et al. 2010; Yoshii et al. 

2011; Okatsu et al. 2012). However, parkin likely ubiquitinates a wide variety of currently unknown 

proteins on the OMM in response to mitochondrial damage (Sarraf et al. 2013). The widespread 
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ubiquitination of OMM proteins results in the recruitment of the autophagy machinery and the 

autophagic clearance of damaged mitochondria, promoting cell survival (Chan et al. 2011b).  

While the discovery of the important role of parkin in mitophagy in chemically-stressed cell models is 

very insightful, it is not clear to what extent impairment of this function is responsible for in vivo 

dopaminergic neuronal degeneration in cases of pathogenically mutated parkin. It was recently 

reported that the rate of mitochondrial protein turnover is reduced in parkin mutant Drosophila, 

supporting the role of parkin in mitophagy under normal physiological conditions (Vincow et al. 

2013). The role of parkin-induced mitophagy in mouse models has yet to be demonstrated.  

Parkin, together with PINK1, has also recently been implicated in a selective vesicular pathway for 

mitochondrial quality control (McLelland et al. 2014). This subtler pathway, distinct from canonical 

mitophagy, involves the selective sorting and transport of oxidized and damaged mitochondrial 

proteins in mitochondria-derived vesicles (MDVs), which then bypass autophagosomes and are 

delivered directly to lysosomes for degradation. McLelland et al. (2014) found that wild-type, but not 

mutant, parkin co-localized with MDVs in response to mild oxidative stress, and stimulated the 

formation of MDVs in an ubiquitin-dependent manner. It is thought that this vesicular pathway 

provides a mechanism for routine mitochondrial quality control, whereas mitophagy may be reserved 

for more severe mitochondrial damage.    

While the numerous recent studies of parkin’s role in mitophagy have garnered much attention, parkin 

is also implicated in other pathways promoting mitochondrial health. For example, parkin has been 

shown to promote mitochondrial biogenesis.  Parkin associated with the mitochondrial transcription 

factor TFAM, enhancing TFAM-mediated transcription activity; conversely, parkin deficiency 

significantly decreased the level of mitochondrial-encoded mRNA (Kuroda et al. 2006a). Parkin was 

also found to directly bind mtDNA and to preserve mtDNA integrity in response to elevated ROS 

levels  (Rothfuss et al. 2009). Moreover, parkin promotes mitochondrial biogenesis via its UPS-

dependent regulation of the PARIS-PGC-1α pathway (Section 1.16.2.2).  

Parkin is also involved in the regulation of mitochondrial fission and fusion, continuous processes that 

orchestrate a dynamic cellular network of mitochondria. These processes fine-tune the mitochondrial 

network in response to changes in cellular conditions, in order to promote proper mitochondrial 

function and health (Westermann 2010). The core machinery of mitochondrial fusion is composed of 

Mfn1, Mfn2 and optic atrophy protein 1 (OPA1), whereas fission is driven by dynamin-related protein 

1 (Drp1). Parkin, together with PINK1, is thought to regulate mitochondrial fusion and fission via 

ubiquitination of Mfn1, Mfn2 and Drp1 in a common PINK1-parkin pathway (Gegg et al. 2010; Poole 

et al. 2010; Glauser et al. 2011; Wang et al. 2011a). Indeed, Drp1-dependent mitochondrial 

fragmentation is commonly reported in cell- and animal models of parkin deficiency (Deng et al. 

2008; Lutz et al. 2009; Yu et al. 2011).  Hence, parkin plays important roles in the promotion and 
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coordination of many aspects of mitochondrial health, including degradation of damaged 

mitochondria, mitochondrial biogenesis and mitochondrial dynamics. Dysregulation of the careful 

balance between these processes may significantly compromise mitochondrial health and contribute to 

neurodegeneration (Exner et al. 2012). 

 

1.16.4 Parkin and cell death pathways 

Various neuroprotective effects of parkin have been described that relate to apoptotic signaling. 

Parkin is involved in the regulation of the mitochondrial release of cytochrome c; there is an inverse 

relationship between cellular parkin levels and cytochrome c release and apoptosis (Darios et al. 2003; 

Berger et al. 2009). Parkin also physically interacts with the promoter region of p53 and 

downregulates its transcription, which reduces caspase-3 activation (da Costa et al. 2009). 

Interestingly, this anti-apoptotic effect of parkin is not dependent on its ligase activity. In contrast, 

parkin ligase activity is required for its transcriptional attenuation of MAO-A and MAO-B (Jiang et al. 

2006). MAO is a substantial source of ROS in dopaminergic neurons; parkin therefore indirectly 

reduces the generation of ROS.  

Parkin associates with and stabilizes microtubules, where it protects neurons against microtubule-

depolymerizing toxins by diminishing the activation of mitogen-activated protein kinases (MAPK) 

such as extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 (Ren et al. 

2009). The regulation of JNK activity by parkin was also seen in parkin Drosophila models (Cha et al. 

2005). Parkin suppression of JNK and p38 activity was found to protect against tyrosinase-mediated 

neurotoxicity (Hasegawa et al. 2008). Furthermore, JNK signaling induces cyclooxygenase 2, a 

necessary step for neurodegeneration in a MPTP-induced mouse model of PD; suppression of this 

pathway may be another avenue for parkin-mediated neuroprotection (Hunot et al. 2004). 

Parkin suppresses the trafficking of epidermal growth factor (EGF) receptor (EGFR) by ubiquitinating 

the adaptor protein Eps15 (Fallon et al. 2006). As ubiquitination of Eps15 interferes with its ability to 

bind and internalize EGFR, the absence of parkin resulted in accelerated EGFR degradation and 

reduced EGFR signaling via the phosphoinositide 3-kinase (PI(3)K)/Akt signaling cascade. Parkin 

therefore promotes PI(3)K/Akt pro-survival signaling (Fallon et al. 2006). In fact, transgenic delivery 

of constitutively active Akt protected against neurodegeneration in a drug-induced mouse model of 

PD (Ries et al. 2006). Parkin was also found to mediate neuroprotection via the activation of the IκB 

kinase/NF-κB pathway (Henn et al. 2007). Moreover, parkin was observed to ubiquitinate Bax in a 

way that abrogated the mitochondrial translocation of Bax and thus suppressed Bax’s pro-apoptotic 

effects (Johnson et al. 2012). This effect was mediated by cytosolic parkin without the translocation of 

parkin to mitochondria under pro-apoptotic conditions, illustrating that the neuroprotective and 

mitochondrial functions of parkin are mediated through different mechanisms. 
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1.16.5 Parkin and cancer 

As stated previously, the parkin genomic structure spans a large region of FRA6E, one of the most 

active common chromosome fragile sites in the human genome (Cesari et al. 2003). Such fragile sites 

are susceptible to chromosomal breaks and rearrangements and are implicated in oncogenesis. In fact, 

parkin copy number mutations are frequently reported in breast cancer (Shah et al. 2012), renal 

carcinoma (Toma et al. 2008), esophageal carcinoma (Gu et al. 2010), glioma (Yin et al. 2009), non-

small cell lung cancer (Iwakawa et al. 2012), cervical cancer (Mehdi et al. 2011) and gastric cancer 

(Deng et al. 2012). Such genetic observations are supported by functional studies of parkin as a tumor 

suppressor; for example, heterozygous deletion of parkin accelerated the development of intestinal 

adenoma in transgenic mice expressing mutant APC, a regulator of Wnt signaling (Poulogiannis et al. 

2010), whereas parkin knockout mice demonstrated enhanced hepatocyte proliferation and 

development of hepatic tumors (Fujiwara et al. 2008)   

The mechanism of the tumor suppressor activity of parkin is not fully understood. As stated in Section 

1.16.2.2, cyclin E is a substrate for parkin ubiquitination and subsequent proteasomal degradation. It 

is interesting to speculate that dysregulation of this important cell cycle regulator may contribute to 

oncogenesis, and several studies have found increased cyclin E levels in parkin-null cancer cell lines 

(Ikeuchi et al. 2009; Tay et al. 2010; Yeo et al. 2012). Parkin deficiency may also promote cancer via 

metabolic changes resulting from parkin-linked mitochondrial dysfunction. Tumor cells often 

demonstrate the Warburg effect, whereby the cells switch from mitochondrial energy production to 

anaerobic glycolysis, coupled with an increased glucose uptake and utilization (Van der Heiden et al. 

2009). Parkin, a p53 target gene, mediates the role of the tumor suppressor p53 in glucose metabolism 

and the Warburg effect (Zhang et al. 2011); in fact, parkin deficiency was found to promote glycolysis 

and reduced mitochondrial respiration in human lung cancer cells, leading to the Warburg effect 

(Zhang et al. 2011). 

 

1.16.6 Parkin and innate immune defense  

Whereas parkin plays an important and much-studied role in mediating mitophagy (Section 1.16.3), a 

recent report implicated parkin in an additional autophagic pathway: the clearance of intracellular 

pathogens via the process of xenophagy (Manzanillo et al. 2013). This interesting finding supports 

genomic association studies which show that parkin polymorphisms, resulting in decreased parkin 

expression, are associated with increased susceptibility to intracellular bacterial pathogens such as 

Mycobacterium leprae and Salmonella typhi (Mira et al. 2004; Ali et al. 2006). Manzanillo et al. 

(2013) demonstrated that parkin is required for the ubiquitin-mediated xenophagy of Mycobacterium 

tuberculosis in macrophages, where parkin ubiquitinates an unknown membrane protein on 

phagosomal vesicles containing ingested M. tuberculosis, thereby targeting the phagosome for 
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lysosomal degradation. Interestingly, it was found that both mouse and Drosophila models of parkin 

deficiency demonstrate increased susceptibility to various intracellular bacterial pathogens, suggesting 

that parkin may play an evolutionarily conserved role in eukaryotic innate immune responses 

(Manzanillo et al. 2013).   

 

1.17 THE PRESENT STUDY 

It is evident from the above-discussed literature that PD has a complex etiology with various 

contributing genetic and non-genetic factors. The identification of genes that induce familial PD has 

greatly advanced our understanding of PD pathogenesis; however, much of the etiology and 

pathobiology of the disease remain unclear. It is hoped that further investigation of PD-associated 

proteins, and the molecular pathways they form part of, would lead to new insight and direction in PD 

research.  

This dissertation focusses specifically on the role of parkin, and the study is divided into three parts. 

The first part comprises a molecular genetic screen for parkin mutations in South African PD 

patients. While the genetic basis of PD has been extensively characterized in North American, 

European and Asian populations, very little is known of the molecular etiology of PD in sub-Saharan 

Africa (Blanckenberg et al. 2013). Investigation of the genetic contribution to PD in South African 

patients may be particularly insightful given the unique genetic heritage of the Black African, 

Afrikaner and mixed ancestry sub-populations of South Africa. As both parkin point mutations and 

exonic rearrangements are reported to be common causes of EOPD, the present study aimed to assess 

the contribution of parkin mutations to PD in South African populations by determining the frequency 

of both point mutations and exon rearrangements in all 12 parkin exons in a group of unrelated South 

African patients diagnosed with PD. A better understanding of the molecular genetics of parkin in a 

South African context may assist in risk stratification, diagnosis and counseling of South African PD 

patients.   

The second part of the study entails an identification and investigation of novel parkin-interacting 

proteins. Although many substrates of parkin’s E3 ligase activity have been identified in the literature, 

it is anticipated that novel, pathologically-relevant parkin substrates remain to be discovered. The 

benefit of identifying parkin substrates is well illustrated by the recognition of PARIS, AIMP2, 

Fbw7β and other proteins as authentic, pathologically-relevant parkin substrates, as described in 

preceding sections. The current study aimed to identify novel parkin-interacting proteins by using the 

RBR region of parkin as bait in a yeast two-hybrid (Y2H) library screen. This functionally important 

RBR region contains substrate binding sites for a variety of known parkin substrates, including 

PARIS, AIMP2 and Fbw7β; it is therefore appropriate for use in a Y2H library screen for novel 
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interactors. As the identified parkin interactions may constitute UPS-mediated regulation and 

degradation of a parkin substrate, it is hypothesized that the absence of functional parkin would result 

in an accumulation of such substrates, eventually leading to cellular toxicity.  

The third part of this dissertation involves the functional effects of parkin deficiency in a cell model 

and a pilot study of the possible rescue effect of vitamin K2 treatment. Initially, it was aimed to 

employ RNA interference (RNAi) to create a parkin knockdown neuronal cell model, in order to 

determine the effect of the absence of parkin on each parkin interactor’s level of expression. 

Subsequently, dermal fibroblasts obtained from patients with parkin-null mutations were used as a 

parkin deficient cell model. The effect of the absence of parkin on various cellular parameters such as 

cell viability and proliferation, mitochondrial respiration rate, mitochondrial membrane potential and 

mitochondrial network integrity was determined. It was then investigated whether the treatment with 

the recently identified potential therapeutic agent vitamin K2 would ameliorate the effect of absence of 

parkin on such cellular parameters. While it was previously demonstrated that the treatment of parkin-

knockout Drosophila with vitamin K2 rescued the mitochondrial defects seen in this fly model 

(section 1.9.4), it would be worthwhile to investigate whether similar effects would be seen in a 

human neuronal cell model. Such evidence would add weight to the potential use of vitamin K2 as a 

therapeutic agent for PD patients with parkin mutations.  

To summarize, the present study had the following objectives: 

1. Determine the frequencies of both parkin missense mutations and exonic rearrangements in a 

group of 229 unrelated South African patients diagnosed with PD, by means of high 

resolution melt (HRM) analysis and multiplex ligation-dependent probe amplification 

(MLPA) analysis, and verification by DNA sequencing.   

2. Identify potentially novel interactors of the RBR region of parkin using a Y2H approach. 

3. Verify selected putative parkin interactors by means of in vivo 3D co-localization and co-

immunoprecipitation assays. 

4. Assess whether the protein expression levels of the verified parkin interactors are increased in 

a cellular model of parkin deficiency. 

5. Investigate the effect of parkin deficiency on various cellular parameters by means of cell 

growth and viability assays, mitochondrial respiration assays, mitochondrial membrane 

potential assays and mitochondrial network morphology analyses. 

6. Evaluate the effect of treatment with vitamin K2 on aforementioned cellular parameters. 

Hence, results generated by this study would stimulate further discussion about parkin and parkin-

interacting proteins, as well as their potential relevance in cellular stress, neurodegeneration and PD. 
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CHAPTER TWO: MATERIALS AND METHODS 

 

PART ONE: MOLECULAR ANALYSIS OF PARKIN  

 

The first part of this dissertation entails a molecular genetic investigation of the parkin gene in the 

context of PD in South African patients. As such, the genetic contribution of parkin mutations to PD 

pathology was assessed by determining the frequency of mutations in all 12 exons of parkin in a 

group of South African patients diagnosed with PD (Section 2.2). Point mutations and small 

insertions/deletions were detected by performing HRM analysis (Section 2.6) and automated DNA 

sequencing (Section 2.7), whereas whole exon rearrangements were identified by MLPA analysis 

(Section 2.8). Furthermore, reverse-transcription PCR (RT-PCR) was performed on lymphocytes of 

selected study participants (Section 2.5.5). Relevant and detailed information regarding the materials 

and methods used in this part of the study follows below.  

 

2.1 ETHICAL CONSIDERATIONS 

This study gained ethical approval from the Health Research Ethics Committee of Stellenbosch 

University, Cape Town, South Africa (Protocol number 2002/C059). Ethical approval was renewed 

annually during the course of this study. Written informed consent was obtained from all participants. 

 

2.2 STUDY PARTICIPANTS AND BLOOD COLLECTION 

The study group consisted of 229 unrelated PD patients, who were recruited from the Movement 

Disorders clinic at Tygerberg Hospital (Cape Town, South Africa) and the Parkinson’s Association of 

South Africa. All patients recruited at Tygerberg Hospital underwent a standardized examination by a 

movement disorder specialist and were diagnosed with PD based on the UK Parkinson’s Disease 

Society Brain Bank diagnostic criteria (Gibb and Lees 1988b). The majority of recruited patients 

demonstrated early disease onset (age at onset (AAO) <=50 years) and/or positive family history of 

PD. AAO and family history were determined via a questionnaire filled out by a trained research 

nurse, where a positive family history was defined as the self-reported presence of PD in a first- or 

second-degree relative. Patients with late onset PD (AAO > 60 years) were included in the study as 

parkin mutations had been found in both early and late onset PD patients (Sun et al. 2006). 

Over 100 ethnically-matched control samples were recruited from healthy, unrelated individuals of 

each relevant ethnic group; these control individuals had not been examined for PD symptoms by a 
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neurologist. No information regarding the ages of the control individuals was available as control 

samples were de-identified. While the 229 PD patients recruited for the genetic study were unrelated, 

patients that were found to harbor pathogenic parkin mutations following the genetic screen (Section 

3.1.2) were subjected to a thorough family work-up by a research nurse. This included the 

procurement of blood samples from consenting family members, who were then screened for presence 

of the relevant parkin mutation(s). The genetic results of these family members of the 229 unrelated 

probands were not included in the analysis of parkin mutation frequency. 

Blood samples were collected from each study participant by a trained phlebotomist using two 10ml 

Vacutainer® ethylene-diamine-tetra-acetic acid (EDTA) tubes (Becton Dickinson, Franklin Lakes, 

New Jersey, USA) for DNA extraction (Section 2.3). For selected study participants, blood samples 

were collected in two 2.5ml volumes in PAXgene™ Blood RNA tubes (PreAnalytiX, Hombrechtikon, 

Switzerland) for RNA extraction (Section 2.4).  

 

2.3 DNA EXTRACTION FROM BLOOD 

DNA was extracted from whole blood samples using a modification of the method described by 

Corfield et al. (1993). All DNA blood extractions were performed by Mrs. Ina le Roux.  

Briefly, each EDTA-blood sample was transferred to a 50ml polypropylene tube and the sample 

brought to a final volume of 45ml with cold (4°C) cell lysis buffer (Appendix II). Samples were 

incubated on ice for 10min followed by centrifugation at 2800rpm for 10min at 10°C on an Eppendorf 

model 5810R centrifuge (Eppendorf, Hamburg, Germany), and the supernatant discarded. Pellets 

were resuspended in 20ml cell lysis buffer and the incubation and centrifugation steps repeated. The 

supernatant was discarded and volumes of 900µl Na-EDTA solution (Appendix II), 100µl of 10% 

SDS and 100µl proteinase K (Roche, Basel, Switzerland) added to the pellets, which were fully 

resuspended and incubated at 37°C overnight (16h).  

Following the overnight incubation, volumes of 2ml ddH2O, 500µl of 3M Na-Ac (Appendix II) and 

2.5ml phenol-chloroform (Appendix II) were added to each tube. Tubes were incubated at 4˚C for 

10min with shaking on an Orbit 300 shaker (Labnet, Edison, New Jersey, USA). The mixtures were 

transferred to separate 10ml glass tubes and centrifuged at 8000rpm for 12 min at 10°C in a Sorvall™ 

RC5B Plus centrifuge (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Each aqueous 

phase was transferred to fresh glass tubes.  A volume of 2.5ml chloroform-octanol (Appendix II) was 

added to each tube and the tubes centrifuged at 8000rpm for 10 min at 10°C in a Sorvall™ RC5B Plus 

centrifuge. Supernatants were then transferred to 15ml polypropylene tubes and a total of 5ml of ice-

cold (-20°C) 96% ethanol added to facilitate DNA precipitation. The precipitate was transferred to a 
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1.5ml microcentrifuge tube containing 1ml of 70% ethanol. Samples were pelleted by centrifugation 

at 15 000rpm for 3min at room temperature in a Labnet Prism™ microcentrifuge (Labnet, Edison, 

New Jersey, USA). The supernatants were discarded and the 70% ethanol wash repeated. After 

centrifugation, pellets were air-dried at room temperature for approximately 30min.  

Pellets were resuspended in the following manner: A volume of 200µl of 1X TE buffer (Appendix II) 

was added to each tube which were then incubated at 37°C overnight (16h) followed by further 

incubation at 4°C on a model HS100 rotating wheel (Labnet, Edison, New Jersey, USA) for three 

days. Subsequently, DNA concentration and purity was determined using a NanoDrop® ND-1000 

spectrophotometer (Thermo Scientific, Waltham, Massachusetts, USA) and NanoDrop1000® 

software version 3.7.1 (Thermo Scientific, Waltham, Massachusetts, USA). Purified DNA samples 

were stored at -20°C until use. 

   

2.4 BLOOD RNA EXTRACTION AND cDNA CONVERSION 

Total RNA was extracted from whole blood samples collected in PAXgene™ Blood RNA tubes. 

RNA extraction was performed by using a PAXgene™ Blood RNA kit (PreAnalytiX, 

Hombrechtikon, Switzerland) according to manufacturer’s instructions. Isolated RNA concentration 

and quality was subsequently measured with an Experion™ StdSens Analysis kit (Bio-Rad, Hercules, 

California, USA) on an Experion™ automated electrophoresis station (Bio-Rad, Hercules, California, 

USA). Only RNA samples with a RNA quality indicator (RQI) value above 8.0 (out of 10) were used 

in subsequent applications.  

Following RNA isolation, the purified RNA was converted to complementary DNA (cDNA) by using 

a Quantitect® Reverse Transcription Kit (Qiagen, Hilden, Germany) as per manufacturer’s 

instructions. cDNA concentration was determined using a NanoDrop® ND-1000 spectrophotometer 

and NanoDrop1000® software version 3.7.1. The cDNA samples were then stored at -20°C until use. 

 

2.5 POLYMERASE CHAIN REACTION (PCR) 

2.5.1 Oligonucleotide primer design and synthesis 

Oligonucleotide primers were designed using published sequence data obtained from the Ensembl 

Genome Browser database (http://www.ensembl.org) or the NCBI GenBank database 

(http://www.ncbi.nlm.nih.gov). Primers were designed using Primer3 software version 4.0.0 

(http://primer3.ut.ee) (Koressaar and Remm 2007) and were subsequently tested for primer-primer 

complementarity, self-complementarity and melting temperature compatibility using IDT 
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OligoAnalyzer® software version 3.1 (http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer). 

Primer sequences were also submitted to the Basic Local Alignment Search Tool (BLAST) 

(http://www.ncbi.nlm.nih.gov/BLAST) in order to verify the specificity of the primer binding sites. 

All primers were synthesized using standard phosphoramidite chemistry at Integrated DNA 

Technologies (IDT, Coralville, Iowa, USA).  

 

2.5.2 Primers for parkin exon screening 

Primers were designed for the amplification of all twelve parkin exons. Primer design was based on 

parkin genomic DNA (gDNA) sequence data obtained from the NCBI GenBank database (accession 

number NT_007422). These primers were designed to amplify whole exonic sequences by annealing 

to sites in flanking intronic regions; these primer sequences are shown in Table 2.1. 

 

2.5.3 Primers for reverse-transcription PCR (RT-PCR) 

Primers were designed for the amplification of a 555bp fragment of the parkin CDS. These primers 

were designed to recognize cDNA sequences flanking parkin exons 3-4, which facilitated exon 

dosage analysis of exons 3-4 by means of RT-PCR (Section 2.5.5). Primer design was based on 

parkin cDNA sequence data obtained from the Ensembl Genome Browser database (Ensembl ID 

ENST00000366898). The primer sequences for the amplification of the parkin CDS fragment for RT-

PCR are shown in Table 2.2. 

 

2.5.4 PCR amplification  

PCR amplification of all twelve parkin exons was performed in all 229 patients.  This was done in 

order to screen for parkin sequence variants by means of HRM analysis (Section 2.6). In addition, 

PCR amplification was also performed as part of two-step RT-PCR analysis of selected study 

participants (Section 2.5.5).  

In brief, PCR was performed in 25µl reactions in a 2720 Thermal Cycler (Applied Biosystems, 

Forster City, California, USA), with each reaction mixture containing 10ng template DNA, 20pmol of 

each primer (Tables 2.1 and 2.2), 1.5mM MgCl2, 75µM dNTPs (Promega, Madison, Wisconsin, 

USA), 1X NH4 reaction buffer (Bioline, London, UK) and 0.5 U BIOTAQ DNA polymerase (Bioline, 

London, UK). A total of 5% formamide was used for selected reactions (Table 2.1). PCR cycling 

conditions were as follows: an initial denaturation step at 94oC for 5min, 35 cycles consisting of 

denaturation at 94oC for 30sec, annealing at Ta for 30sec and extension at 72oC for 45sec, and a final 

extension at 72oC for 7min. 
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Table 2.1 Primer sequences for parkin exon screening  

parkin exon Primer Sequence (5’-3’) Ta (˚C) Additive 

1 
PARK2 1 F GAACTACGACTCCCAGCAG 

55 Formamide 
PARK2 1 R CCCGTCATTGACAGTTGG 

2 
PARK2 2 F CACCATTTAAGGGCTTCGAG 

55 Formamide 
PARK2 2 R TCAGGCATGAATGTCAGATTG 

3 
PARK2 3 F TCTCGCATTTCATGTTTGACA 

55 n/a 
PARK2 3 R GCAGACTGCACTAAACAAACA 

4 
PARK2 4 F GCTTTTAAAGAGTTTCTTGTC 

55 n/a 
PARK2 4 R TTTCTTTTCAAAGACGGGTGA 

5 
PARK2 5 F GGAAACATGTCTTAAGGAGT 

55 n/a 
PARK2 5 R TTCCTGGCAAACAGTGAAGA 

6 
PARK2 6 F CCAAAGAGATTGTTTACTGTG 

55 n/a 
PARK2 6 R GGGGGAGTGATGCTATTTTT 

7 
PARK2 7 F CCTCCAGGATTACAGAAATTG 

55 n/a 
PARK2 7 R GTTCTTCTGTTCTTCATTAGC 

8 
PARK2 8 F GGCAACACTGGCAGTTGATA 

55 n/a 
PARK2 8 R GGGGAGCCCAAACTGTCT 

9 
PARK2 9 F TCCCATGCACTGTAGCTCCT 

55 n/a 
PARK2 9 R   CCAGCCCATGTGCAAAAGC 

10 
PARK2 10 F CCAGCCAGAGGAATGAATAT 

53 n/a 
PARK2 10 R GGAACTCTCCATGACCTCCA 

11 
PARK2 11 F CCGACGTACAGGGAACATAAA 

55 n/a 
PARK2 11 R GGCACGTACAGGGAACATAAA 

12 
PARK2 12 F TCTAGGCTAGCGTGCTGGTT 

55 Formamide 
PARK2 12 R GCGTGTGTGTGTGTGTTTGA 

Abbreviations: 3’, three-prime end; 5’, five-prime end; A, adenine; C, cytosine; F, forward primer; G, guanine; 

n/a, not applicable; PARK2, parkin gene; R, reverse primer; T, thymine; Ta, annealing temperature. 

 

 

Table 2.2 Primer sequences for RT-PCR 

Gene Primer Sequence (5’-3’) Ta (˚C) 

parkin (CDS) 
PARK2 2i F GGAGCTGAGGAATGACTGGA 

60 
PARK 5i R ATCATCCCAGCAAGATGGAC 

Abbreviations: 3’, three-prime end; 5’, five-prime end; A, adenine; C, cytosine; CDS, coding sequence; F, 

forward primer; G, guanine; PARK2, parkin gene; R, reverse primer; T, thymine; Ta, annealing temperature. 
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2.5.5 RT-PCR and analysis 

RT-PCR was performed on cDNA obtained from lymphocytes of selected study participants found to 

harbor exonic rearrangements following MLPA analysis (Sections 2.4, 2.8 and 3.1.2). This was done 

in order to confirm the presence and determine the phase of the detected exonic rearrangements. 

Amplification was done as described in Section 2.5.4, using 1µl of synthesized cDNA as template and 

primers listed in Table 2.2. An aliquot of the PCR products were subsequently resolved on a 1% 

agarose gel (Section 2.10.1). In addition, PCR products were purified and subjected to automated 

DNA sequencing and sequence analysis (Section 2.7) in order to verify mutation status.   

 

2.6 HIGH-RESOLUTION MELT (HRM) ANALYSIS  

Amplified DNA fragments were screened for variants using HRM analysis. This approach 

quantitatively assessed the melting behavior of double stranded DNA (dsDNA) fragments. As melting 

behavior of dsDNA fragments is highly dependent on sequence length and content, altered melting 

behavior can be used as a proxy for DNA sequence changes (Reed et al. 2007).     

Prior to HRM analysis, all twelve parkin exons were PCR amplified (Section 2.5.4) with the inclusion 

of 2µM of SYTO® 9 green fluorescent intercalating nucleic acid dye (Life Technologies, Carlsbad, 

California, USA) in PCR reaction mixtures. PCR setup employed an Eppendorf epMotion™ 5070 

automated pipetting system (Eppendorf, Hamburg, Germany) for liquid handling. HRM of PCR 

products was performed on a Rotor-Gene 6000 analyzer (Corbett Life Sciences, Mortlake, Australia) 

and Rotor-Gene 6000 software version 1.7.65 (Corbett Life Sciences, Mortlake, Australia). Melting 

profiles were acquired from 75oC to 95oC with a temperature ramp rate of 0.1˚C/sec. The denaturation 

profiles were subsequently normalized and compared to wild type control samples using the Rotor-

Gene 6000 software. Samples demonstrating altered heat denaturation profiles following HRM 

analysis were subjected to automated DNA sequencing and analysis (Section 2.7). 

 

2.7 AUTOMATED DNA SEQUENCING AND ANALYSIS 

Automated DNA sequencing of PCR fragments was performed in order to characterize DNA 

sequence variants identified by HRM analysis (Section 2.6) and to verify the presence of exonic 

rearrangements identified by RT-PCR (Section 2.5.5). Selected PCR products were subjected to post-

PCR clean-up in preparation of DNA sequencing. This was performed as follows: A total 0.5U each 

of Exonuclease I (Exo I) (Promega, Madison, Wisconsin, USA) and shrimp alkaline phosphatase 

(SAP) (Thermo Fisher Scientific, Waltham, Massachusetts, USA) was added to 8μl of PCR product in 
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a 200µl PCR tube. The mixture was incubated at 37˚C for 15min followed by heat-inactivation at 

85˚C for 15min. Cleaned-up PCR products were stored at 4˚C until use.    

Automated DNA sequencing of purified PCR products was performed at the Core Sequencing Unit of 

the Central Analytical Facility (CAF) of Stellenbosch University, Stellenbosch, South Africa using a 

BigDye® Terminator version 3.01 Cycle Sequencing kit (Applied Biosystems, Forster City, 

California, USA) on an ABI Prism™ 3100 automated sequencer (Applied Biosystems, Forster City, 

California, USA). Primers used in these sequencing reactions are listed in Tables 2.1 and 2.2. 

DNA sequencing electropherograms obtained from automated DNA sequencing were analyzed using 

Bioedit Sequence Alignment Editor Software version 7.0.5 (Ibis Bioscience, Carlsbad, California, 

USA) (Hall 1999). PCR fragments were compared to DNA sequences deposited in the Ensembl 

Genome Browser database (http://www.ensembl.org) and the NCBI GenBank database 

(http://www.ncbi.nlm.nih.gov). All sequence variants were characterized according to established 

nomenclature (den Dunnen and Antonarakis 2000). Possible consequences of coding non-

synonymous variants on parkin protein function were bioinformatically predicted with PolyPhen-2 

software version 2.2.2 (http://genetics.bwh.harvard.edu/pph2) (Adzhubei et al. 2010) and 

MutationTaster software version 2.0 (http://www.mutationtaster.org) (Schwarz et al. 2010). 

 

2.8 MULTIPLEX LIGATION-DEPENDENT PROBE AMPLIFICATION (MLPA) ANALYSIS 

Exon rearrangements, resulting in exon dosage mutations, were detected by multiplex ligation-

dependent probe amplification (MLPA) analysis. These assays were done by Dr. Rowena Keyser. 

  

MLPA assays were performed using the P051 and the P052 Salsa® MLPA Parkinson probe sets 

(MRC Holland, Amsterdam, The Netherlands). Both kits included probes for all twelve parkin exons; 

true positive results needed to be detected in both kits. MLPA was performed using 150ng of gDNA 

according to manufacturer’s instructions. MPLA products were analyzed on an ABI 3130x1 Genetic 

Analyzer (Applied Biosystems, Forster City, California, USA) using GeneScan™-500 LIZ® size 

standards (Applied Biosystems, Forster City, California, USA), with MLPA peaks visualized using 

GeneMapper® software version 3.7 (Applied Biosystems, Forster City, California, USA). Thereafter, 

peak height and area values were exported to a Microsoft Excel template. Data normalization and 

dosage calculations were performed according to manufacturer’s instructions (MRC Holland, 

Amsterdam, The Netherlands). Dosage ratio values of 0.7-1.3 were considered to be normal 

(indicating the absence of exon rearrangements); values of 0.3-0.6 were indicative of heterozygous 

deletions, 1.4-1.6 of heterozygous duplications and a dosage ratio value ≥1.7 of triplications. 

Homozygous deletions were detected by the absence of a peak (dosage ratio value = 0.0).   
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PART TWO: PARKIN INTERACTORS 

  

This second part of the dissertation deals with the identification, verification and investigation of 

parkin-interacting proteins. This entailed the identification of putative parkin interactors using Y2H 

methodology (Section 2.19), verification of selected putative interactions using in vivo 3D co-

localization (Section 2.22) and co-immunoprecipitation (Section 2.24), as well the establishment of 

two cell models of parkin deficiency, a RNAi-mediated parkin knockdown neuronal model and a 

parkin-null primary fibroblast model, in order to study the effect of the lack of parkin on each 

interacting protein (Section 2.25). 

 

2.9 POLYMERASE CHAIN REACTION (PCR) 

2.9.1 Primers for generation of yeast two-hybrid (Y2H) construct 

Oligonucleotide primers were designed for the specific amplification of the cDNA fragment encoding 

the C-terminal region of parkin (aa 223-465). Primer design was based on parkin cDNA sequence 

data obtained from the Ensembl Genome Browser database (Ensembl ID ENST00000366898). The 

primers incorporated restriction enzyme (RE) recognition sites at their respective 5’ ends, which 

allowed for subsequent subcloning of PCR amplified inserts into the pGBKT7 vector (Section  2.13). 

The use of these RE sites was dependent on their presence in the multiple cloning site (MCS) of the 

pGBKT7 vector (appendix V) and their absence in the parkin insert sequence. In addition, primers 

incorporated universal “seat” sequences 5’ to their respective RE sites to facilitate proper RE binding 

and digestion (Section 2.12). Primer design and synthesis is described in Section 2.5.1. The primer 

sequences for the amplification of the parkin insert for the generation of Y2H constructs are shown in 

Table 2.3. 

 

 

Table 2.3 Oligonucleotide primer sequences for generation of Y2H construct 

Primer Sequence (5’-3’) Ta (˚C) 

PARK2 RBR F ACTGCAGAA CATATG TCAGTAGCTTTGCACCTGATCG 
57 

PARK2 FL R ACTGCAGAA GAATTC CTACACGTCGAACCAGTGG…… 

Sequences in black font represent gene-specific primer sequences that anneal to cDNA template during PCR 

amplification. Sequences in colored font represent sequences for cloning. Blue, universal enzyme seat; pink, 

NdeI recognition site; green, EcoRI recognition site. Abbreviations: 3’, three-prime end; 5’, five-prime end; A, 

adenine; C, cytosine; F, forward primer; FL, full length; G, guanine; PARK2, parkin gene; R, reverse primer; 

RBR, RING1-between RINGS-RING2; T, thymine; Ta, annealing temperature; Y2H, yeast two hybrid. 
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2.9.2 Primers for Y2H insert screening 

Vector-specific oligonucleotide primers were designed for the amplification of vector inserts from the 

MCS of the Y2H vectors pGBKT7 (BD Biosciences, Clontech, Paulo Alto, California, USA) and 

pGADT7 (BD Biosciences, Clontech, Paulo Alto, California, USA). This was necessary for the DNA 

sequence identification of insert fragments by means of automated DNA sequencing and sequence 

analysis (Section 2.11). The vector sequences used in the design of the primers were obtained from 

the Clontech MATCHMAKER™ vector handbook (http://www.clontech.com). The sequences of 

these primers are shown in Table 2.4. 

 

Table 2.4 Primer sequences for Y2H construct insert screening 

Vector Primer Sequence (5’-3’) Ta (˚C) 

pGBKT7 
pGBKT7 F TCATCGGAAGAGAGTAG 

45 
pGBKT7 R TCACTTTAAAATTTGTATACA 

pGADT7 

pGADT7 outer F CGATGATGAAGATACCCCACCAAA 
57 

pGADT7 outer R TCAAGTGAAGTTGACAGCTAGCAC 

pGADT7 inner F TAATACGACTCACTATAGGGCGAGC 
59 

pGADT7 inner R CGACGTCTACTTAGCATCTATGACTTT 

Abbreviations: 3’, three-prime end; 5’, five-prime end; A, adenine; C, cytosine; F, forward primer; G, guanine; 

R, reverse primer; T, thymine; Ta, annealing temperature; Y2H, yeast two hybrid. 

 

 

 

2.9.3 Primers for construct integrity verification 

Constructs used in establishing a Y2H bait culture (Section 2.19.2) were first subjected to automated 

DNA sequencing and DNA sequence analysis (Section 2.11). This was done in order to verify the 

integrity of the vector inserts. Primers used for these purposes are listed in Table 2.5.  

 

Table 2.5 Primer sequences for construct integrity verification 

Vector Primer Sequence (5’-3’) 

pGBKT7-parkin                  

(C-terminal region) 

pGBKT7 F TCATCGGAAGAGAGTAG 

pGBKT7 R TCACTTTAAAATTTGTATACA 

Abbreviations: 3’, three-prime end; 5’, five-prime end; A, adenine; C, cytosine; C-terminal, carboxy-terminal; F, 

forward primer; G, guanine; R, reverse primer; T, thymine.  
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2.9.4 PCR amplification for generation of Y2H construct  

PCR was used to amplify the C-terminal-encoding region of the parkin CDS from a fetal human brain 

cDNA library. Subsequently the cDNA fragment was cloned into the pGBKT7 Y2H vector (Section 

2.13). 

For amplification of this cDNA fragment, 50ng of a fetal human brain library (BD Bioscience, 

Clontech, Palo Alto, California, USA) was used as template in a 25μl reaction containing 20pmol of 

each primer (Table 2.3), 1.5mM MgCl2, 75µM dNTPs (Promega, Madison, Wisconsin, USA), 1X 

NH4 reaction buffer (Bioline, London, UK) and 0.5U BIOTAQ® DNA polymerase (Bioline, London, 

UK). 

Amplification was performed in a ABI 2720 Thermal Cycler (Applied Biosystems Inc., Foster City, 

California, USA) under the following thermal cycling conditions: an initial denaturing step at 94˚C for 

5min followed by 35 cycles consisting of denaturation at 94˚C for 45sec, annealing at Ta for 45sec 

and elongation at 72˚C for 1min. Cycling was followed by a final extension step at 72˚C for 10min. 

PCR amplification products were subsequently electrophoresed on a 1% agarose gel for verification 

(Section 2.10.1) 

 

2.9.5 Bacterial colony PCR 

Bacterial colony PCR was employed to rapidly identify transformed bacterial colonies containing 

recombinant pGBKT7 with a correctly ligated parkin-CDS insert. This was necessary as the Y2H 

constructs do not allow for blue-white colony screening.  

A small quantity of a single bacterial colony was picked from an agar plate and used a DNA template 

in the PCR amplification.  The same primers used for the generation of the Y2H construct (Table 2.3) 

were utilized for bacterial colony PCR, which followed identical PCR conditions and cycling 

parameters as described above (Section 2.9.4). PCR amplification products were subsequently 

electrophoresed on a 1% agarose gel for verification (Section 2.10.1). Successful bacterial colony 

PCR amplification using primers listed in Table 2.3 indicated correct ligation of the parkin-CDS 

insert into pGBKT7. 
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2.10 GEL ELECTROPHORESIS 

2.10.1 Agarose gel electrophoresis 

Agarose gel electrophoresis was performed in order to visualize successful PCR amplification 

(Section 2.9.4) and to confirm successful plasmid isolation (Section 2.17.2). Electrophoresis was 

performed as follows: a 1-2% agarose gel, depending on the size of the DNA fragment, containing 

1μg/ml ethidium bromide was cast and submerged in 1X sodium tetraborate (SB) buffer (Appendix 

II). A total of 8μl of each PCR product was individually mixed with 2μl bromophenol blue loading 

dye (Appendix II) and loaded into separate wells. A 100bp molecular size marker (Promega, Madison, 

Wisconsin, USA) was co-electrophoresed with the DNA fragments in order to facilitate fragment size 

estimation. Electrophoresis followed at 240V for approximately 20min in 1X SB buffer. 

Subsequently, the samples were visualized and photographed in a SynGene UV gel documentation 

system (Synoptics Ltd., Cambridge, UK) using GeneTools software version 3.0.6 (Synoptics Ltd., 

Cambridge, UK). 

Agarose gel electrophoresis was also employed to separate RE digested PCR fragments (Section 2.12) 

in order to excise the RE digested fragments for subsequent purification (Section 2.17.1). For these 

applications, a total of 24μl digested product was mixed with 6μl bromophenol blue loading dye 

resolved in a similar manner as described above. Samples were visualized by means of a long-wave 

3UV transilluminator (UVP, Upland, California, USA) and the appropriate band was excised from the 

gel using a sterile scalpel blade. The excised band was subsequently purified using a Wizard® SV Gel 

and PCR clean-up kit (Promega, Madison, Wisconsin, USA) (Section 2.17.1).   

 

2.10.2 Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was used for the size-dependent separation of 

proteins either obtained from a whole cell extract (Section 2.23.1) or from immunoprecipitation (IP) 

or co-immunoprecipitation (co-IP) reactions (Section 2.24). SDS-PAGE was performed in 

100x80x1mm 12% polyacrylamide gels containing 0.1% SDS (Appendix II) for selected applications. 

Alternatively, 4-15% Mini-Protean® TGX™ precast gels (Bio-Rad, Hercules, California, USA) were 

used. Samples to be resolved were mixed with an appropriate volume of 2X or 5X SDS loading buffer 

(Appendix II) and incubated at 95˚C for 10min. The samples were then centrifuged at 15 000rpm for 

1min in a Labnet Prism™ microcentrifuge (Labnet, Edison, New Jersey, USA). Subsequently, 

samples were loading into separate gel wells and electrophoresed in 1X SDS running buffer 

(Appendix II) at 100V for 1.5 - 2h. When 4-15% Mini-Protean® TGX™ precast gels were used, 

electrophoresis followed at 150V for 45min. A total of 7μl of Spectra™ Broad Range Multicolor 

protein ladder (Thermo Scientific, Waltham, Massachusetts, USA) was co-electrophoresed with the 
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samples. Protein samples were then transferred to a polyvinylidene difluoride (PVDF) membrane 

(Section 2.10.3) for downstream western blotting (Section. 2.23).   

 

2.10.3 Transfer of proteins from SDS polyacrylamide gels to PVDF membrane 

Proteins separated by SDS-PAGE were electrophoretically transferred to a PVDF membrane, to be 

used during western blotting (Section 2.23). This was done using the iBlot™ Dry Blotting System 

(Life Technologies, Carlsbad, California, USA) along with iBlot™ PVDF Gel Transfer Stacks (Life 

Technologies, Carlsbad, California, USA), according to manufacturer’s instructions.  

Alternatively, proteins were transferred to a PVDF membrane following a wet transfer approach: 

After SDS-PAGE was completed, the gels were retrieved and briefly rinsed in ddH2O by shaking for 

5min on an Stuart® orbital shaker SSL1 (Bibby Scientific Ltd., Stone, Staffordshire, UK) at room 

temperature. The gel was then immersed in ice-cold transfer buffer (Appendix II) and left shaking for 

an additional 20min. During this time, a PDVF membrane (GE Healthcare Ltd., Little Chalfont, 

Buckinghamshire, UK) was prepared by activating the membrane in absolute methanol for 15sec 

followed by rinsing with ddH2O for 5min. The membrane was then also soaked in ice-cold transfer 

buffer for 20min, along with six equal-sized Whatman papers and two sponges per membrane. A 

transfer stack was then assembled consisting of a sponge and three Whatman papers on either side of 

the stack, with the gel (on the anode side) and the activated membrane (on the cathode side) in the 

middle. The transfer stack was placed in a tank filled with transfer buffer and containing an ice pack, 

and electrophoresed at 100V for 1h with constant stirring. The stack was disassembled and the 

membrane briefly rinsed in ddH2O prior to further use (Section 2.23.4). 

 

2.11 AUTOMATED DNA SEQUENCING AND ANALYSIS 

Automated DNA sequencing of construct inserts was performed in order to identify the insert 

sequence or to verify the insert sequence integrity. This was done at the Core Sequencing Unit of 

CAF at Stellenbosch University, Stellenbosch, South Africa using a BigDye® Terminator version 

3.01 Cycle Sequencing kit on an ABI Prism™ 3100 automated sequencer. Vector-specific primers 

(Tables 2.4 and 2.5) were used for these sequencing reactions.       

DNA sequencing electropherograms obtained from automated DNA sequencing were analyzed using 

Bioedit Sequence Alignment Editor Software version 7.0.5. The generated Y2H construct (Section 

2.13) was analyzed to confirm insert integrity; this was done to verify that the correct reading frame 

of the vector, as well as the correct CDS of the insert, were maintained during cloning. Insert 
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sequences were compared to cDNA sequences deposited in the Ensembl Genome Browser database 

(http://www.ensembl.org).  

DNA sequences of Y2H prey construct inserts were entered into BLAST and compared to cDNA and 

messenger RNA (mRNA) sequences in GENBANK using a BLASTn query 

(http://www.ncbi.nlm.nih.gov/BLAST) in order to identify the prey insert. Moreover, each insert 

DNA sequence was translated in the correct reading frame using DNAMAN™ Software version 4.1 

(Lynnon Biosoft, Pointe-Claire, Canada), after which the corresponding protein sequences were 

analyzed using a BLASTp query (http://www.ncbi.nlm.nih.gov/BLAST). A list of the protein 

products of the prey insert was compiled, after which publicly available databases such as ExPASy 

http://www.expasy.org), GeneCards (http://www.genecards.org) and the Human Protein Atlas 

(http://www.proteinatlas.org) were used to obtain relevant information regarding the function and 

subcellular expression of the proteins.          

 

2.12 RESTRICTION ENZYME DIGESTION  

In order to facilitate cloning of the DNA fragment encoding the C-terminal region of parkin into the 

pGBKT7 Y2H shuttle vector,  the PCR amplified fragment harbored restriction enzyme (RE) 

recognition sites on either end (Section 2.9.1; Table 2.3). The PCR fragments as well as the vector 

were separately double-digested with two RE’s: NdeI and EcoRI.  

Double digestion was performed as follows: a first digestion RE (NdeI) cocktail of final volume 20μl 

was prepared containing either 5μl purified vector (Section 2.17.2) or 15μl purified insert fragments 

(Section 2.17.1), 2U NdeI and 1X RE buffer supplied by the manufacturer (Fermentas, Burlington, 

Canada). The cocktail was incubated for 3h at 37˚C in a Scientific 9000 Series incubator (United 

Scientific, Cape Town, South Africa) followed by heat-inactivation for 15min at 65˚C. Digested 

products were then purified using the Wizard SV® Gel and PCR clean-up system (Section 2.17.1) and 

eluted in a volume of 30μl ddH2O. Thereafter, a second RE digestion (EcoRI) cocktail of final volume 

20μl was prepared containing 16μl purified NdeI-digested fragments, 2U EcoRI and 1X RE buffer 

(Fermentas, Burlington, Canada). The cocktail was incubated for 3h at 37˚C in a Scientific 9000 

Series incubator (United Scientific, Cape Town, South Africa) followed by heat-inactivation for 

15min at 65˚C. Digested products were then purified using the Wizard SV® Gel and PCR clean-up 

system (Section 2.17.1) and eluted in a volume of 50μl ddH2O. Double-digested vector and insert 

fragment were subsequently used in the generation of Y2H constructs (Section 2.13). 
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2.13 GENERATION OF Y2H CONSTRUCT 

The C-terminal region of parkin was cloned into the pGBKT7 shuttle vector in order to generate the 

Y2H bait construct. Both the PCR fragments (Section 2.9.4) and the pGBKT7 Y2H bait vector 

(Appendix V) were first double-digested with appropriate RE’s (Section 2.12) in order to facilitate 

cloning of the insert sequence in the correct orientation.  

The digested and purified vector was then subjected to calf intestinal alkaline phosphatase (CIP) 

treatment to dephosphorylate 5’ ends of the linearized vector, which prevented self-ligation of the 

vector. This was not done to digested PCR fragments. CIP treatment was performed as follows: a 

cocktail of volume 50 µl was prepared containing 30μl double-digested and purified vector, 2U CIP 

and 1X CIP buffer supplied by the manufacturer (Promega, Madison, Wisconsin, USA). The cocktail 

was incubated for 30min at 37˚C in a Scientific 9000 Series incubator (United Scientific, Cape Town, 

South Africa) after which an additional 2U SIP was added to the cocktail. This was followed by 

further incubation for 30min at 37˚C and heat-inactivation for 20min at 65˚C. The vector was then 

purified using the Wizard SV® Gel and PCR clean-up system (Section 2.17.1.). 

Thereafter, DNA ligation of double-digested PCR fragments and linearized vector was performed in 

order to generate the pGBKT7-parkin Y2H bait construct.  Briefly, 1μl of CIP-treated vector was 

added to 1μl, 3μl or 5μl digested PCR fragments (Section 2.12). This was added to a cocktail of final 

volume 10μl additionally consisting of 5U T4 DNA ligase and 1X T4 DNA ligase buffer (Promega, 

Madison, Wisconsin, USA). The cocktail was incubated at 4˚C overnight (16h), after which 5μl of the 

ligation reaction was used in a bacterial plasmid transformation (Section 2.16.1).  

Following retrieval of the generated construct by means of bacterial colony PCR (Section 2.9.5) and 

bacterial plasmid purification (Section 2.17.2), the construct was subjected to DNA sequencing and 

analysis to verify insert integrity (Sections 2.11). Only constructs in which the correct reading frame 

and insert CDS were maintained during cloning were used to transform the S. cerevisiae strain AH109 

(Section 2.16.2).  

 

2.14 BACTERIAL AND YEAST STRAINS 

2.14.1 Bacterial strains 

Escherichia coli (E. coli) strain DH5α (Appendix IV) was transformed in order to facilitate selection, 

amplification and purification of constructs. Transformed bacterial colonies were selected for their 

ability to grown on Luria-Bertani (LB) agar plates (Appendix II) containing the appropriate selection 

antibiotic. For selection of pGBKT7 constructs, kanamycin (5μg/ml) was used, while ampicillin 
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(25μg/ml) was used to select for pGADT7 constructs. Bacterial colony PCR was performed to 

identify colonies containing recombinant constructs (Section 2.9.5).    

 

2.14.2 Yeast strains 

The pGBKT7-parkin Y2H bait construct was transformed into Saccharomyces cerevisiae (S. 

cerevisiae) strain AH109 (Appendix IV). S. cerevisiae strain Y187 (Appendix IV) was pre-

transformed with pGADT7 Y2H prey constructs by the manufacturer (BD Biosciences, Clontech, 

Palo Alto, California, USA). Both yeast strains AH109 and Y187 lack the nutritional genes ADE2, 

HIS3, LEU2 and TRP1 and are therefore unable to growth in synthetic defined (SD) media deficient in 

adenine (-Ade), histidine (-His), leucine (-Leu) and tryptophan (-Trp) (Appendix II). AH109 

transformed with the pGKBT7 construct was selected based on the ability to grow in SD-Trp media, 

while Y187 transformed with pGADT7 constructs were selected on the ability to grow in SD-Leu 

media.       

 

2.15 GENERATION OF BACTERIAL COMPETENT CELLS 

In order to generate transformation-competent bacterial cells, the following procedure was performed: 

A 50μl aliquot of an E. coli DH5α frozen (-80˚C) glycerol stock was used to inoculate 10ml of 

antibiotic-free LB media (Appendix II). The culture was then incubated overnight (16h) at 37˚C while 

shaking at 200rpm in a YIH DER model LM-530 shaking incubator (Scilab Technology Co. Ltd., 

Taipei, Taiwan).  

The following day, 1ml of the culture was used to inoculate 200ml antibiotic-free LB media in a 2L 

Erlenmeyer flask, which was incubated for 16-24h at room temperature while shaking at 70rpm on a 

Stuart® orbital shaker SSL1 (Bibby Scientific Ltd., Stone, Staffordshire, UK), until the culture 

reached mid-logarithmic (log) phase (OD600nm= 0.4-0.6). The culture was then transferred to four 

50ml polypropylene tubes and centrifuged at 3000rpm for 15min at 4˚C in a Beckman model TJ-6 

centrifuge (Beckman Coulter, Pasadena, California, USA). The supernatant was discarded and the 

pellets resuspended in 4ml of ice-cold CAP buffer (Appendix II). This suspension was aliquoted in 

200μl volumes into 2ml microcentrifuge tubes, which were left at 4˚C overnight before being 

transferred to -80˚C for long-term storage.     
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2.16 TRANSFORMATION OF PLASMIDS INTO BACTERIAL AND YEAST CELLS 

2.16.1 Bacterial plasmid transformation 

In preparation of a bacterial plasmid transformation, frozen (-80˚C) microcentrifuge tubes containing 

200μl aliquots of competent E. coli DH5α cells (Section 2.15) were thawed on ice for approximately 

30min. To this, 1μl of purified plasmid (Section 2.17.1) or 5μl ligation reaction (Section 2.13) was 

added and the tubes incubated on ice for a further 20min. The tubes were subsequently immersed in a 

Lasec 102 circulating water bath (Lasec Laboratory and Scientific Co. Ltd. Pty, Cape Town, South 

Africa) at 42˚C for 45sec. Tubes were removed from the water bath and left at room temperature for 

2min. Thereafter, 1ml of antibiotic free LB media (Appendix II) was added to each tube and the 

cultures incubated at 37˚C for 1h while shaking at 200rpm in a YIH DER model LM-530 shaking 

incubator.  

A total of 200μl of the culture was plated on LB agar plates containing the appropriate selection 

antibody (Appendix II). The remaining culture was centrifuged at 15 000rpm for 1min in a Labnet 

Prism™ microcentrifuge (Labnet, Edison, New Jersey, USA). The supernatant was discarded and the 

pellet resuspended in 200μl LB media, after which the concentrated culture was plated on LB agar 

plates containing the appropriate selection antibody. All plates were incubated, inverted, overnight 

(16h) at 37˚C in a model 239 CO2 stationary incubator (Forma Scientific, Marietta, Ohio, USA). The 

following day, colonies were picked for bacterial plasmid purification (Section 2.17.2) or colony PCR 

(Section 2.9.5).    

 

2.16.2 Yeast plasmid transformation 

S. cerevisiae strains to be transformed were streaked from frozen (-80˚C) glycerol stocks onto yeast 

peptone dextrose adenine (YPDA) agar plates (Appendix II), which were then incubated at 30˚C for 

3-4 days in a Sanyo MIR262 stationary ventilated incubator (Sanyo Electric, Moriguchi, Osaka, 

Japan).  

Several large yeast colonies were picked with a sterile inoculation loop and suspended in 1ml ddH2O 

in a 2ml microcentrifuge tube. The cells were centrifuged for 30sec at 15 000rpm in an Eppendorf 

model 5417C centrifuge and the supernatant discarded. The pellet was resuspended in 1ml of 100mM 

lithium acetate (LiAc) (Appendix II) and the suspension incubated at 30˚C for 5min in a Sanyo 

MIR262 stationary ventilated incubator. The cells were subsequently repelleted via centrifugation at 

15 000rpm for 30sec in an Eppendorf model 5417C centrifuge and the supernatant discarded. The 

following reagents were added to the pellet in quick succession: 240μl of 50% polyethylene glycol 

(PEG), 36μl of 1M LiAc (Appendix II), 25μl of 2mg/ml heat-denatured and snap-cooled herring 
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sperm DNA (Promega, Madison, Wisconsin, USA), 10-20μl purified plasmid and ddH2O to a final 

volume of 350μl. The sample was then thoroughly mixed by vortexing for at least 1min on a Snijders 

model 34524 press-to-mix vortex (Snijders Scientific, Tilburg, the Netherlands). After the pellet was 

fully resuspended, the sample was incubated at 42˚C for 25min in a Lasec 102 circulating water bath.  

After incubation, the sample was centrifuged at 15 000rpm for 30sec in an Eppendorf model 5417C 

centrifuge and the supernatant discarded. The pellet was resuspended in 200μl ddH2O and the 

suspension plated on appropriate agar selection plates (Appendix II). All plates were inverted and 

incubated at 30˚C in a Sanyo MIR262 stationary ventilated incubator for 3-4 days.  

 

2.17 DNA ISOLATION AND PURIFICATION  

2.17.1 DNA purification from agarose gels  

In order to purify yeast plasmid preparations (Section 2.17.3), PCR amplified DNA products (Section 

2.9.4) and RE digestion products (Section 2.12) a Wizard® SV Gel and PCR Clean-up Kit (Promega, 

Madison, Wisconsin, USA) was used according to manufacturer’s instructions. Purified product was 

used for bacterial plasmid transformation (Section 2.16.1) or cloning experiments (Sections 2.12 and 

2.13), or stored at 4˚C.  

 

2.17.2 Bacterial plasmid purification  

Bacterial plasmid purification was performed to obtain DNA constructs for subsequent yeast 

transformation (Section 2.16.2) and automated DNA sequencing and analysis (Section 2.11). A single 

transformed bacterial colony was picked from appropriate selection plates and used to inoculate 10ml 

of LB media containing the appropriate selection antibody (Appendix II) in a 50ml polypropylene 

tube. The tube was incubated overnight (16h) at 37˚C while shaking at 200rpm in a YIH DER model 

LM-530 shaking incubator. 

The culture was then centrifuged at 3000rpm for 10min a Beckman model TJ-6 centrifuge. The 

supernatant was discarded and plasmid DNA extracted using a TOpure™ Plasmid Miniprep Kit 

(Gene Technologies, Hong Kong, China) according to manufacturer’s instructions. Subsequently, 

DNA concentration and purity was determined using a NanoDrop® ND-1000 spectrophotometer and 

NanoDrop1000® software version 3.7.1. Additionally, an aliquot of the purified construct was 

electrophoresed on a 1% agarose gel (Section 2.10.1) to visually verify plasmid integrity. 
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2.17.3 Yeast plasmid extraction  

Y2H constructs were extracted from diploid yeast colonies to be used in bacterial plasmid 

transformations (Section 2.16.1). A yeast colony was picked with a sterile inoculation loop and used 

to inoculate 1ml of SD media containing the appropriate dropout supplement (BD Biosciences, 

Clontech, Palo Alto, California, USA), which was thereafter incubated overnight (16h) at 30˚C while 

shaking at 150rpm in a Labnet 311DS shaking incubator (Labnet, Edison, New Jersey, USA).  

The following morning, 4ml of YPDA media (Appendix II) was added to the culture, which was then 

incubated for an additional 4h at 30˚C with shaking at 150rpm. The culture was subsequently 

centrifuged at 3000rpm for 5min in a Beckman model TJ-6 centrifuge and the supernatant discarded 

by decanting. The pellet was resuspended in residual supernatant and transferred to a 2ml 

microcentrifuge tube. To this, 200μl of yeast lysis buffer (Appendix II), 200μl of 

phenol:chloroform:isoamyl alcohol 25:24:1 (PCI) (Sigma Aldrich, St. Louis, Missouri, USA) and 

300mg sterile 450μm-600μm glass beads (Sigma Aldrich, St. Louis, Missouri, USA) were added. 

Yeast cells were then triturated by uninterrupted vortexing for 2.5min on a Snijders model 34524 

press-to-mix vortex and centrifuged at 15 000rpm for 10min in an Eppendorf model 5417C centrifuge 

(Eppendorf, Hamburg, Germany) to facilitate phase separation. The upper aqueous phase was 

transferred to a sterile microcentrifuge tube and the plasmids purified as described in Section 2.17.1.  

 

2.18 ASSESSMENT OF Y2H CONSTRUCTS  

2.18.1 Phenotypic assessment of yeast strains 

S. cerevisiae strains AH109 and Y187 were phenotypically assessed prior to being transformed with 

Y2H constructs (Section 2.16.2), in order to verify purity and viability of the strain. This was 

accomplished by streaking selected colonies grown on YPDA plates on selective plates lacking 

specific essential amino acids, i.e. SD-Trp, SD-Leu, SD-His, SD-Ade and SD-Ura agar plates (Appendix II). 

All plates were then inverted and incubated at 30˚C in a Sanyo MIR262 stationary ventilated 

incubator for 3-4 days. Only untransformed colonies that were unable to grow on SD-Trp, SD-Leu, SD-His 

and SD-Ade plates but did grow on SD-Ura plates were used in subsequent yeast transformations 

(Section 2.16.2). 

An additional phenotypic assessment was done on transformed AH109 harboring the pGBKT7-parkin 

Y2H bait construct, in order to test for autonomous activation of Y2H reporter genes by the bait 

construct and to ensure that transformation did not alter the strain phenotype improperly. Only 

transformed AH109 colonies that were unable to grow on SD-Leu, SD-His and SD-Ade plates but did 

grow on SD-Trp and SD-Ura plates were used in subsequent Y2H analysis (Section 2.19).        
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2.18.2 Yeast transformation toxicity test 

An evaluation of yeast transformation toxicity was performed prior to Y2H analysis to determine 

whether the Y2H bait construct detrimentally affected the growth of S. cerevisiae strain AH109. To 

this end, a growth curve of AH109 transformed with the pGBKT7-parkin bait construct was generated 

and compared to a growth curve of AH109 transformed with non-recombinant pGBKT7. The two 

growth curves were set up in tandem under similar experimental conditions.  

The two transformed strains were each inoculated in 1ml of SD-Trp media in 50ml polypropylene tubes 

and growth to stationary phase for 24h at 30˚C while shaking at 200rpm in a Labnet 311DS shaking 

incubator. A 1:10 dilution in SD-Trp media was made of both cultures, which were incubated for a 

further 24h at 30˚C while shaking at 200rpm in a Labnet 311DS shaking incubator. During this 

incubation period, 1ml aliquots of the cultures were taken and the OD600nm measurements recorded at 

time points 0h, 2h, 4h, 6h, 8, and 24h. Linearized growth curves were established by charting the log 

of these measurements against time and the gradients of the two graphs, recombinant and non-

recombinant transformed AH109, were compared. Significant differences in growth of the two 

transformed strains would preclude the use of the pGBKT7-parkin bait construct in Y2H analysis 

(Section 2.19). 

 

2.18.3 Establishment of yeast mating efficiency 

Small scale yeast matings were performed to evaluate the effect of the Y2H bait construct on S. 

cerevisiae strain AH109 mating efficiency. This was done by mating AH109, transformed with the 

pGBKT7-parkin bait construct, with the prey host strain Y187 transformed with non-recombinant 

pGADT7. A positive control mating was also performed between AH109 transformed with control 

construct pGBKT7-53 (containing murine p53) (BD Biosciences, Clontech, Palo Alto, California, 

USA) and Y187 transformed with non-recombinant pGADT7.  

The various strains were plated on appropriate selection plates (AH109 transformed with pGBKT7-

parkin; pGBKT7-53 = SD-Trp plates; Y187 transformed with pGADT7 = SD-Leu plates). All plates 

were inverted and incubated at 30˚C in a Sanyo MIR262 stationary ventilated incubator for 3-4 days. 

Singles colonies of both AH109 strains were separately picked and combined with Y187 colonies in 

1ml YPDA media in a 2ml microcentrifuge tube, which were incubated overnight (16h) at 30˚C in a 

Labnet 311DS shaking incubator, shaking at 200rpm. After this incubation period, serial dilutions 

(1:10, 1:100, 1:1000 and 1:10 000) of the mating culture were plated onto SD-Leu, SD-Leu and SD-Leu-Trp 

plates and incubated inverted for 3-4 days at 30˚C in a Sanyo MIR262 stationary ventilated incubator. 

The colonies on each plate were counted and the yeast mating efficiency calculated (Appendix III). 
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2.19 YEAST TWO-HYBRID (Y2H) ANALYSIS 

Y2H analysis was employed in the present study to identify physical interactions between two 

proteins. This methodology exploits the two functional domains of the S. cerevisiae galactose 

metabolism transcription factor GAL4, namely the GAL4 DNA binding domain (DNA-BD) and the 

GAL4 activation domain (AD). Whereas both domains are necessary for proper activation of the 

galactose metabolism gene GAL promoter, the modular nature of GAL4 allows for the two domains to 

function in proximity to each other without direct binding. Hence, the GAL4 DNA-BD and AD can 

be separately expressed from engineered constructs as fusion proteins and still activate the GAL 

promoter provided that the two domains indirectly reconstitute the GAL4 transcription factor (Keegan 

et al. 1986).  

In Y2H, the protein fused to the DNA-BD is referred to as the bait protein (the C-terminal region of 

parkin in the present study) while the protein fused to the AD is referred to as the prey protein 

(members of a library of brain-expressed proteins in the present study). Co-transformation of bait- and 

prey-expressing Y2H constructs into yeast strains allows for possible physical interactions between 

bait and prey proteins to be evaluated: if binding takes place between the bait and prey fusion 

proteins, the GAL4 DNA-BD and AD is brought into sufficient proximity for the successful activation 

of the GAL promoter. Positive bait-prey interactions are then detected by transcription of downstream 

reporter genes. If no binding takes place between the bait and prey proteins, the reporter genes are not 

expressed; interaction detection is therefore based on observable changes in the yeast phenotype. 

Three reporter genes are utilized in the present study: the HIS3 and ADE2 nutritional reporter genes 

and the MEL1 colorimetric reporter gene.  

 

2.19.1 Adult human brain cDNA library  

A Clontech MATCHMAKER™ adult human brain cDNA library, consisting of brain-expressed 

cDNA sequences cloned into the pGADT7 Y2H prey vector (Appendix V), was pre-transformed into 

S. cerevisiae strain Y187 by the manufacturer (BD Biosciences, Clontech, Palo Alto, USA) and used 

in a Y2H library screen. This library was constructed from mRNA isolated from normal, whole brains 

of eight male Caucasian individuals of ages 43-66 years. Cause of death of all eight individuals was 

sudden death.  The cDNA was normalized prior to library construction to reduce the copy number of 

highly abundant CDNAs. The cDNA library inserts ranged in size from 700bp to 3kb, with an average 

insert size of 1.56kb. 
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2.19.2 Establishment of the bait culture 

Four separate colonies of S. cerevisiae strain Y187 transformed with pGBKT7-parkin (Section 2.16.2) 

were picked using a sterile inoculation loop and used to inoculate four 200ml Erlenmeyer flasks each 

containing 50ml of SD-Trp media, which were incubated overnight (16h) at 30˚C while shaking at 

200rpm in a Labnet 311DS shaking incubator. The cultures were then transferred to four 50ml 

polypropylene tubes, centrifuged at 3000rpm for 10min in a Beckman model TJ-6 centrifuge and the 

supernatant discarded by decanting. The pellets were resuspended in residual supernatant and pooled 

to provide a final bait culture titer greater than 1 x 1010, as confirmed by a hemocytometric cell count 

(Appendix III).  

 

2.19.3 Library mating 

In preparation of library mating, a 1ml aliquot of a frozen (-80˚C) pre-transformed Clontech 

MATCHMAKER™ adult human brain cDNA library (Section 2.19.1) was thawed at room 

temperature and, after brief mixing, a 10μl aliquot was set aside to establish a library titer (Section 

2.19.4). 

The bait (Section 2.19.2) and library cultures were combined in a 2L Erlenmeyer flask containing 

45ml of 2X YPDA media (Appendix II), which was incubated overnight (16h) at 30˚C with gentle 

shaking at 50rpm in a YIH DER model LM510R shaking incubator (Scilab Technology Co. Ltd., 

Taipei, Taiwan).  

The mating culture was then transferred to a 50ml polypropylene tube, centrifuged at 3000rpm for 

10min in a Beckman model TJ-6 centrifuge and the supernatant discarded. The 2L Erlenmeyer flask 

was rinsed with 40ml of 2X YPDA media which was subsequently used to resuspend the pelleted 

culture. The mating culture was repelleted by centrifugation at 3000rpm for 10min in a Beckman 

model TJ-6 centrifuge and the supernatant discarded. This rinsing and centrifuging process was 

repeated once more, with the final pellet resuspended in 10ml of 0.5X YPDA (Appendix II). A 10μl 

aliquot of the mating culture was set aside for a control mating experiment (Section 2.19.5). 

The total remaining volume of the mating culture was then plated on multiple (approximately 60) 

triple dropout (TDO) (SD-Leu-Trp-His) plates (Appendix II) with a volume of 200μl used on each plate. 

All plates were inverted and incubated at 30˚C in a Sanyo MIR262 stationary ventilated incubator for 

3 weeks. 

(Harper et al. 1993; James et al. 1996) 
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2.19.4 Establishment of library titer 

A 10μl aliquot of the adult brain cDNA library culture (Section 2.19.3) was serially diluted (1:10, 

1:100, 1:1000 and 1:10 000), plated onto SD-Leu, SD-Leu and SD-Leu-Trp plates and incubated inverted for 

3-4 days at 30˚C in a Sanyo MIR262 stationary ventilated incubator. The colonies on each plate were 

counted and the library titer calculated (Appendix III). 

 

2.19.5 Control mating 

A 10μl aliquot of the library mating culture (Section 2.19.3) was serially diluted (1:10, 1:100, 1:1000 

and 1:10 000) and plated onto SD-Leu, SD-Leu and SD-Leu-Trp plates. All plates were incubated inverted 

for 3-4 days at 30˚C in a Sanyo MIR262 stationary ventilated incubator. The colonies on each plate 

were counted and used to calculate the yeast mating efficiency as well as the number of diploid clones 

screened (Appendix III). 

 

2.19.6 Selection and screening for reporter gene activation 

2.19.6.1 Selection for nutritional reporter gene activation 

Diploid yeast colonies resulting from the library mating were grown on TDO (SD-Leu-Trp-His) plates for 

three weeks (Section 2.19.3). The plates were monitored every four days and full-grown 

(diameter>2mm) colonies, capable of activating the HIS3 nutritional reporter gene, were re-streaked 

onto TDO and quadruple dropout (QDO) (SD-Leu-Trp-His-Ade) plates (Appendix II), which were incubated 

inverted at 30˚C in a Sanyo MIR262 stationary ventilated incubator for 5 days. Successful colony 

formation on QDO plates indicated the additional activation of the ADE2 nutritional reporter gene.  

Streaked colonies on TDO and QDO plates were phenotypically assessed for colony growth and 

color. Colony growth was visually categorized as very good (+++), good (++), weak (+) or no growth 

(-). Furthermore, only white (healthy) colonies were considered for further analysis, whereas red 

(dying or dead) colonies were excluded. Colonies growing on QDO plates were then transferred onto 

QDO plates containing 5-bromo-4-chloro-3-indolyl α-D-galactopyranoside (X-α-gal) (Section 

2.19.6.2).  

 

2.19.6.2 Screening for colorimetric reporter gene activation  

In order to test for activation of the MEL1 colorimetric reporter gene, in addition to activation of HIS3 

and ADE2 nutritional reporter genes, diploid colonies were transferred from QDO plates to QDO 

plates containing the chromogenic substrate X-α-gal.  
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QDO-X-α-gal plates were prepared by evenly spreading 200μl of a 5mg/ml X-α-gal solution 

(Appendix II) (Sigma Aldrich, St. Louis, Missouri, USA) onto fresh QDO plates. Colonies grown on 

QDO plates (Section 2.19.6.1) were replicated onto Hybond N+ nylon membranes (GE Healthcare 

Ltd., Little Chalfont, Buckinghamshire, UK) which were placed colony-side up onto QDO-X-α-gal 

plates. The plates were incubated at 30˚C in a Sanyo MIR262 stationary ventilated incubator for 24h. 

Activation of the MEL1 reporter gene was subsequently evaluated by blue-white screening. 

 

2.19.7 Prey plasmid isolation and purification from diploid yeast colonies 

Diploid yeast colonies that were able to activate all three reporter genes, i.e. strong growth on QDO 

plates that turned blue on QDO-X-α-gal plates (Section 2.19.6), harbored bait and prey constructs 

expressing putatively interacting fusion peptides. Hence, the pGADT7 prey constructs were retrieved 

for prey insert identification (Section 2.11) and interaction specificity tests (Section 2.19.8). 

Yeast constructs were extracted as described in Section 2.17.3 and subsequently transformed into 

competent E. coli DH5α cells (Section 2.16.1), which were plated on LB plates supplemented with 

ampicillin (25μg/ml). This allowed for selection of colonies harboring pGADT7. All plates were 

incubated inverted overnight (16h) at 37˚C in a model 239 CO2 stationary incubator. The following 

day, colonies were picked for bacterial plasmid purification (Section 2.17.2).  

 

2.19.8 Interaction specificity test 

Direct Y2H tests were performed to determine whether the interactions seen in diploid yeast colonies 

(Section 2.19.6) were specific to the pGBKT7-parkin bait construct. Rescued prey constructs (Section 

2.19.7) were each retransformed into S. cerevisiae strain Y187 (Section 2.16.2). Transformed Y187 

colonies were individually mated with S. cerevisiae strain AH109 colonies transformed with one of 

four heterologous bait constructs: pGBKT7-parkin, non-recombinant pGBKT7, pGBKT7-53 and 

pGBKT-TTN (encoding the 11-repeat superdomain of human cardiac-expressed titin, a kind gift from 

Ms. Carol Todd).  

Mating was performed by individually mixing Y187 prey-expressing colonies with each of the 

AH109 heterologous bait-expressing colonies on YPDA plates. The plates were then inverted and 

incubated overnight (16h) at 30˚C in a Sanyo MIR262 stationary ventilated incubator. The following 

morning, colonies were streaked onto TDO and QDO plates, which were incubated at 30˚C in a Sanyo 

MIR262 stationary ventilated incubator for 2 weeks. Colony growth and appearance was then 

evaluated for each mating pair. Only healthy (white) prey colonies that were able to grow on QDO 

plates when mated to pGBKT7-parkin bait colonies, but did not grow on QDO plates when mated to 

non-recombinant pGBKT7, pGBKT7-53 and pGBKT7-TTN bait colonies, were considered to 
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demonstrate specific bait-prey interactions. Prey constructs resulting in such interaction-specific 

colonies were considered to be putatively true parkin interactors, and the relevant pGADT7 prey 

constructs were subjected to automated DNA sequencing and analysis (Sections 2.9.3 and 2.11) to 

identify the parkin-interacting preys. These putative interactions, identified in a Y2H experimental 

setting, were further investigated in human cell lines in order to better approximate biologically-

relevant cellular conditions (Section 2.20).  

 

2.20 HUMAN CELL LINES 

2.20.1 The SH-SY5Y cell line 

Human derived neuroblastoma SH-SY5Y cell line was purchased from the European Collection of 

Cell Cultures (ECACC, Porton Down, Salisbury, UK). The originator cell line SK-N-SH was isolated 

from a bone marrow biopsy of a four-year old female with neuroblastoma, from which the derived 

cell line SH-SY5 was subcloned. The cell line was subcloned for a third time to produce the SH-

SY5Y cell line (Biedler et al. 1978). SH-SY5Y cells are routinely used as ex vivo models of mature 

dopaminergic neurons, as SH-SY5Y cells exhibit dopamine-β-hydroxylase activity and express 

several dopaminergic markers (Ciccarone et al. 1989). 

In the present study, SH-SY5Y cells were used for co-localization (Section 2.22), western blot 

(Section 2.23) and co-IP (Section 2.24) experiments. In addition, SH-SY5Y cells were transfected 

with small interfering RNA (siRNA) for use in RNA-interference (RNAi) experiments (Section 2.25). 

 

2.20.2 Primary dermal fibroblast cell lines 

Primary cells lines derived from individuals with disease are a useful tool to study disease-related 

cellular phenotypes. In particular, PD patient-derived dermal fibroblasts are widely used as cellular 

models of PD. The use of such explant cell lines is advantageous as it creates a model system with the 

predefined mutations and age-accumulated cellular damage of patients, while being minimally 

invasive to donor individuals (Auburger et al. 2012). 

In the present study, primary dermal fibroblasts were obtained from three patients diagnosed with PD, 

hereafter referred to as patient 1 (P1), patient 2 (P2) and patient 3 (P3). All three patients harbored 

homozygous parkin-null mutations, which were identified as part of this study using MLPA analysis 

and confirmed with cDNA sequencing (Sections 2.5.5 and 2.7; Section 3.1.1). Three wild-type (WT) 

age- and gender-matched control individuals were also used in the present study: WT2, WT3 and 

WT4 (WT1, a male individual recruited for a previous study, was not included in the present study). 
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The three controls had no history of neurological disease, and were confirmed to be wild-type in 

regards to the parkin gene by means of DNA sequencing (Section 2.7). Relevant genotypic and 

phenotypic details of the three PD patients and three controls are summarized in Table 2.6. 

Dermal fibroblasts were obtained from P1, P2, P3 and WT2 by means of skin punch biopsies (Section 

2.21.1), whereas WT3 and WT4 fibroblast cell lines were purchased from Sciencell Laboratories 

(Sciencell, San Diego, California, USA).       

      

2.21 CULTURING OF CELL LINES 

2.21.1 Isolation of dermal fibroblasts from skin punch biopsies 

Primary dermal fibroblast cell lines were established by isolating dermal fibroblasts from skin punch 

biopsies from three PD patients with homozygous parkin-null mutations and one control individual. 

Skin punch biopsies were performed by a trained clinician at Tygerberg Hospital (Cape Town, South 

Africa), after which dermal fibroblast cell lines were established by Unistel Medical Laboratories 

(Pty) Ltd. (Cape Town, South Africa).  

A 2mm x 2mm skin punch biopsy was taken from the inner upper arm and suspended in fibroblast 

culture media (Appendix II) in a 15ml polypropylene tube for transportation purposes. In a sterile 

tissue culture environment, a volume of 300μl per 1ml culture media of collagenase (Sigma Aldrich, 

St. Louis, Missouri, USA) was added to the suspended biopsy. The suspension was incubated for 1h 

at 37˚C, with manual agitation at regular intervals, after which the suspension was centrifuged at 

1200rpm for 10min in a Sorval® GLC-6 general laboratory centrifuge (Separations, Johannesburg, 

Table 2.6 Genotypic and phenotypic characteristics of the five dermal fibroblast donors  

Identifier Parkin mutation Gender Ethnicity 
AAO 

(years) 

AAR* 

(years) 

PD duration 

(years) 

PD patients 

P1 Deletion exon 3-4 hom Female MA 27 39 12 

P2 Deletion exon 4 hom Female AC 27 54 27 

P3 Deletion exon 4 hom Female AC 27 52 25 

   Controls 

WT2 n/a Female AC n/a 62 n/a 

WT3 n/a Female C n/a 56 n/a 

WT4 n/a Female Unknown n/a 44 n/a 

*Refers to the age of the donor at the time of skin punch biopsy. Abbreviations: AAO, age at onset; AAR, age at 

recruitment; AC, Afrikaner Caucasian; C; Caucasian; hom, homozygous; MA, Mixed ancestry; n/a, not 

applicable; P, patient; PD, Parkinson’s disease; WT, wild-type. 
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South Africa). The supernatant was discarded and the pellet resuspended in 5ml fibroblast isolation 

media (Appendix II), and the suspension transferred to a CellBind® T25 tissue culture flask (Corning 

Inc., Corning, New York, USA). Incubation followed at 37˚C in in a Farma thermosteri-cycle 5% CO2 

humidified incubator (Farma International, Miami, Florida, USA).    

After four days of incubation, the culture media was decanted and 5ml fresh fibroblast isolation media 

added. The tissue culture flask was regularly checked for the formation of nest-like fibroblastic 

colonies. After confluency of approximately 70-80% was reached, the cells were subcultured as 

described below (Section 2.21.3).  

 

2.21.2 Culture of cells from frozen stocks 

Frozen (-196˚C, in liquid N2) cell stocks were rapidly thawed by submerging the vial in a 37˚C water 

bath (Memmert, Schwabach, Germany). Immediately upon thawing, the exterior of the vial was 

sterilized with 70% ethanol and the toxic cryoprotectant, dimethyl sulfoxide (DMSO), was removed 

in the following manner: A total of 1ml of the appropriate pre-warmed culture media (Appendix II) 

was directly added to the thawed cell stock and the suspension transferred to a 12ml Greiner tube 

(Greiner Bio-one, Frickenhausen, Germany). An additional 5ml culture media was added to the 

suspension, after which it was centrifuged at 1000rpm for 2min in a Sorval® GLC-6 general 

laboratory centrifuge. The supernatant was discarded and the pellet resuspended in 5ml culture media, 

and the suspension transferred to a CellBind® T25 tissue culture flask. The flask was gently swirled 

to distribute cells evenly over the growth surface. Incubation followed at 37˚C in in a Farma 

thermosteri-cycle 5% CO2 humidified incubator.    

 

2.21.3 Subculturing of cells 

Cell cultures were growth in a Farma thermosteri-cycle 5% CO2 humidified incubator until a 

confluency of approximately 70-80% was reached (3-5 days for SH-SY5Y cells, 7-10 days for dermal 

fibroblasts). Cells were then subcultured: The growth media was removed from the adherent cells and 

the cell monolayer gently rinsed with 3ml sterile phosphate-buffered saline (PBS) (Lonza, Basel, 

Switzerland). A volume of 3ml trypsin (0.5g/L) (Lonza, Basel, Switzerland) was added to the cells, 

which was incubated at room temperature for 5min to facilitate detachment of cells from the growth 

surface. Subsequently 3ml of culture media was added to the cell suspension and mixed by gentle 

pipetting. The suspension was transferred to a 12ml Greiner tube and centrifuged at 1000rpm for 2min 

in a Sorval® GLC-6 general laboratory centrifuge. The supernatant was discarded and the pellet 

resuspended in 4ml culture media. This suspension was transferred either to four T25 CellStar® tissue 

culture flasks (Greiner Bio-one, Frickenhausen, Germany) each containing 5ml complete growth 
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media, or to a T75 or T175 CellStar® tissue culture flask (Greiner Bio-one, Frickenhausen, Germany) 

containing final volumes of 15ml or 25ml complete growth media, respectively.     

 

2.21.4 Seeding cells onto coverslips 

Cells to be labeled for in vivo co-localization analyses (Section 2.22) were grown on glass coverslips. 

This was done by placing sterile glass coverslips in CellStar® six well tissue culture plates (Greiner 

Bio-one, Frickenhausen, Germany) containing 3ml culture media (Appendix II) in each well. An 

aliquot of a cell suspension to be subcultured (Section 2.21.3) was used to perform a hemocytometric 

cell count (Appendix III). Thereafter, a volume of cell suspension containing approximately 50 000 

cells was seeded per well in a drop-wise manner. Plates were incubated in a Farma thermosteri-cycle 

5% CO2 humidified incubator until a confluency of 60-70% was reached (1-2 days). 

 

2.22 IN VIVO CO-LOCALIZATION 

2.22.1 Fluorophores 

Three-dimensional (3D) in vivo co-localization of putatively interacting proteins was performed in 

order to evaluate such interactions of endogenously-expressed proteins in a cellular environment. All 

co-localization experiments were done with SH-SY5Y cells grown on glass coverslips, where 

endogenous proteins were immunocytochemically labeled with fluorophore-conjugated secondary 

antibodies. This procedure is described below (Section 2.22.2), and information regarding the relevant 

fluorophores is detailed in Table 2.7.      

 

Table 2.7 Excitation and emission spectra of fluorophores for co-localization experiments 

Fluorophore Excitation (nm) Emission (nm) Visible color 

Alexa488 494 517 Green 

Cy3 550 570 Red 

Abbreviations: Alexa488, Alexa Fluor® 488; Cy3, cyanine 3; nm, nanometer. 

 

2.22.2 Immunocytochemistry 

SH-SY5Y cells were grown on glass coverslips in a CellStar® six well tissue culture plate until a 

confluency of 60-70% was reached (Section 2.21.4). Thereafter, the growth media was removed and 

the wells briefly rinsed with PBS. A total of 3ml of 4% paraformaldehyde (Appendix II) was added to 
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each well and the cells fixed at room temperature for 10min. Alternatively, cells to be stained with the 

γ-actin antibody were fixed with 3ml of ice-cold (-20˚C) absolute methanol at -20˚C for 10min. Each 

well was washed in PBS for 10min three times, with fresh PBS used for each wash. Coverslips were 

carefully removed from the six well plate and placed in a light-proof humidified chamber, after which 

the coverslips were blocked by incubation with 300μl of 1% bovine serum albumin (BSA)-PBS 

containing 0.1% Triton® X-100 (Sigma Aldrich, St. Louis, Missouri, USA) for 1h at room 

temperature. Cells fixed in absolute methanol were blocked in 1% BSA-PBS without Triton® X-100. 

Subsequently, 150μl of 1% BSA-PBS containing the relevant primary antibody/antibodies (Table 2.8) 

was added to each coverslip. The humidified chamber was sealed and incubated overnight (16h) at 

4˚C.  

 

Table 2.8 Antibody pairs and optimized dilution ratios for co-localization experiments 

Antigen Primary Ab Manufacturer 
Primary Ab 

Dilution Ratio 
Secondary Ab 

Secondary Ab 

Dilution Ratio 

Parkin 

Anti-parkin pAb 
Abcam  

(ab15954) 
1:50 DaR-Cy3 1:500 

Anti-parkin mAb 
Cell Signaling 

(Park8) 
1:100 

DaM-

Alexa488 
1:500 

SEPT5 Anti-sept5 pAb 
Abcam 

(ab109294) 
1:250 DaR-Cy3 1:500 

SEPT9 Anti-MSF mAb 
Abcam 

(ab38314) 
1:100 DaR-Cy3 1:500 

14-3-3η Anti-14-3-3η pAb 
Cell Signaling 

(#9640) 
1:50 DaR-Cy3 1:500 

γ-Actin Anti-γ-actin mAb 
Abcam      

(2A3) 
1:1500 

DaM-

Alexa488 
1:500 

ATPAF1 
Anti-ATPAF1 

pAb 

Abcam  

(AB107202) 
1:500 DaR-Cy3 1:500 

Manufacturer details: Abcam (Abcam, Cambridge, UK); Cell Signaling (Cell Signaling Technology, 

Cambridge, UK); Promega (Promega, Madison, Wisconsin, USA). Abbreviations: Ab, antibody; Alexa488, 

Alexa Fluor® 488; Cy3, cyanine 3; DaM, donkey anti-mouse; DaR, donkey anti-rabbit; mAb, monoclonal 

antibody; pAb, polyclonal antibody. 

 

 

The following morning, the coverslips were washed in PBS for 10min three times. The coverslips 

were then incubated in the dark with 200ul of PBS containing the relevant secondary 
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antibody/antibodies (Table 2.8) for 90min at room temperature. After a series of three PBS washes, 

the coverslips were incubated with 200ul of a 1:5000 dilution Hoechst H-33342 nucleic acid stain 

(Sigma Aldrich, St. Louis, Missouri, USA) in PBS for 10min at room temperature in the dark. The 

coverslips were rinsed a final time with PBS for 10min, after which the coverslips were mounted on 

clean microscope slides with a 15μl aliquot of Mowiol mounting media (Appendix II). Slides were 

left in the dark overnight at room temperature and then stored at 4˚C until viewing (Section 2.22.3).  

For each co-localization experiment, a set of immunocytochemical slides were prepared as described 

above, which included a secondary antibody negative control, a single-stained control for each of the 

two proteins under investigation and a double-stained experiment slide. The negative control was 

incubated with 1% BSA-PBS without any primary antibodies and both secondary antibodies for the 

primary and secondary antibody incubation steps, respectively. Similarly, single-stained controls were 

incubated with one primary antibody and one secondary antibody and double-stained experiments 

were incubated with both primary antibodies and both secondary antibodies. All slides were stained 

with Hoechst H-33342 nucleic acid stain for image orientation purposes. 

 

2.22.3 Confocal microscopy and analysis   

Fixed and stained cells were viewed at the Cell Imaging Unit of CAF at Stellenbosch University, 

Stellenbosch, South Africa. A Carl Zeiss LSM780 confocal microscope system (Carl Zeiss, 

Oberkochen, Germany) was employed to this end.  

This system is equipped with a 488nm argon multiline laser, a 561nm red diode-pumped solid state 

laser and a 633 HeNe laser for excitation of the Alexa488 fluorophore, Cy3 fluorophore and Hoechst 

H-33342 nucleic acid stain, respectively. Fluorescence emission was detected using a 32-channel 

GaAsP PMT detector with quantum efficiency of 45%, a significant improvement on the 25% 

efficiency typically achieved by classic PMT detectors.  Images were acquired an Alpha Plan-

Apochromat 100X/1.4 DIC M27 oil-immersion objective and ZEN 2011 imaging software (Carl 

Zeiss, Oberkochen, Germany).            

Images were acquired of each of the secondary antibody negative control, single-stained controls and 

double-stained co-localization experiments in triplicate, where two to three cells were imaged per 

replicate. The inclusion of a negative control facilitated correcting for background fluorescent 

staining, whereas single-stained controls provided fluorescent signal parameters for setting relevant 

co-localization thresholds. Importantly, image acquisition settings were kept constant for each set of 

experiment and controls. All images were acquired with Z-stacking, which facilitated signal 

acquisition and resolution in all three dimensions. This was done by acquiring images in multiple 

focal planes; Z-stacks consisted of 21 images taken at 0.25μm intervals in the optical plane. Hence, 
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each three-dimensional Z-stacked image was 58.02µm in length, 85.02µm in width and 5.25μm in 

depth. Images were evaluated for signal co-localization using co-localization scatter plots as well as 

visual images of co-localized pixels in each Z-stack plane, as generated by the ZEN 2011 imaging 

software.  

 

2.23 WESTERN BLOTTING 

2.23.1 Mammalian cell lysis 

Cultured SH-SY5Y cells were lysed for subsequent use in western blot, co-IP and RNAi experiments 

(Sections 2.23, 2.24, 2.25.4). Similarly, cultured fibroblasts were lysed for western blot experiments 

(Sections 2.25.4). 

Cell lysis was achieved in the following manner: Growth media was removed and the cell monolayer 

rinsed with PBS, after which an appropriate amount of pre-heated (37˚C) trypsin was added to the 

tissue culture vessel (T25, T75, T175 CellStar® tissue culture flasks or CellStar® six well tissue 

culture plates). The vessel was incubated at room temperature for 5-10min, after which cells were 

further dislodged with a cell scraper. The cell suspension was transferred to a 50ml polypropylene 

tube containing 10ml growth media. In the case of cells cultured in CellStar® six well tissue culture 

plates, similarly treated cells from separate wells were pooled in 50ml polypropylene tubes. The 

suspension was centrifuged at 3000rpm for 3min at 4˚C in an Eppendorf model 5810R centrifuge 

(Eppendorf, Hamburg, Germany) and the supernatant discarded. The pellet was resuspended in 1ml of 

PBS after which the suspension was transferred to a sterile 2ml microcentrifuge tube and repelleted by 

centrifugation at 5000rpm for 1min in a Labnet Prism™ microcentrifuge. The supernatant was 

discarded and the pellet resuspended in 50-300μl ice-cold passive lysis buffer (Appendix II), 

depending on pellet size. Cells were incubated on ice for 30min. Centrifugation at 15 000rpm for 

15min at 4˚C in a UEC 13 microcentrifuge (UniEquip, Munich, Germany) followed, after which the 

supernatant was transferred to a sterile 1.5ml microcentrifuge tube.  

All cell lysates were either used immediately for downstream applications or stored at -80˚C for future 

use. Prior to use, the protein concentration of the whole cell extract was determined via a Bradford 

assay (2.23.2). 
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2.23.2 Bradford protein concentration determination 

Accurate measurements of cell lysate protein concentration were obtained by means of a Bradford 

assay prior to the use of the lysates in western blot, co-IP and RNAi experiments (Sections 2.23, 2.24, 

2.25).  

To generate a standard curve of protein concentrations, 10μl of a dilution range of BSA in PBS 

ranging from 0-1000μg/μl were loaded in duplicate into a luminometer 96 well plate. A volume of 1μl 

of each sample to be assayed was also loaded in duplicate. A total of 200μl Bradford protein reagent 

(Appendix II) was added to each well, and the protein concentration measured via absorbance at 

595nm in a Synergy HT luminometer (BioTek Instruments Inc., Winooski, Vermont, USA) using 

KC4™ software version 3.4 (BioTek Instruments Inc., Winooski, Vermont, USA).     

 

2.23.3 Western blot preparation  

Western blots were performed in order to visualize proteins of interest either in whole cell lysates 

(Section 2.25.4) or pulled down as part of co-IP experiments (Section 2.24). Western blotting 

conditions, including the ratios of primary and secondary antibodies used to immunoblot proteins of 

interest, were first optimized. Optimal western blotting conditions are summarized in Table 2.9.    

Cell lysates to be used were subjected to a Bradford assay to determine protein concentration (Section 

2.23.2). Lysates were resolved using SDS-PAGE (Section 2.10.2) with a total of 50-100μg of protein 

loaded per well. Subsequently the resolved proteins were transferred to a PVDF membrane (Section 

2.10.3). 

 

2.23.4 Membrane blocking 

The PVDF membrane, containing the resolved and transferred proteins, was blocked in order to 

prevent non-specific binding of antibodies to the membrane. This was achieved by submerging the 

membrane in blocking buffer consisting of either 5% fat free powder milk in tris-buffered saline with 

0.1% Tween-20 (TBST) (Appendix II) or 3% BSA in TBST, depending on the protein on interest 

(Table 2.9). The membranes was incubated in blocking buffer for 1h at room temperate while shaking 

on a Stuart® SSL1 orbital shaker. 
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Table 2.9 Optimized western blot conditions   

Antigen 
Membrane 

Blocking  
Primary Ab  Manufacturer 

Primary   

Ab Dilution 

Ratio 

Primary Ab 

Diluent 

Secondary 

Ab 

Secondary 

Ab Dilution 

Ratio 

Secondary 

Ab Diluent 

Expected 

Size (kDa) 

Parkin 
5% milk-

TBST 
Anti-parkin pAb 

Abcam  

(ab15954) 
1:500 

0.5% milk-

TBST 
DaR 1:4000 

5% milk-

TBST 
52 

SEPT5 
5% milk-

TBST 
Anti-sept5 pAb 

Abcam 

(ab109294) 
1:1000 

5% milk-

TBST 
DaR 1:6000 

5% milk-

TBST 
43 

SEPT9 
5% milk-

TBST 
Anti-MSF mAb 

Abcam 

(ab38314) 
1:750 

5% milk-

TBST 
DaR 1:6000 

5% milk-

TBST 
65 

14-3-3η 
5% BSA-

TBST 

Anti-14-3-3η 

pAb 

Cell Signaling 

(#9640) 
1:2000 TBST DaR 1:4000 TBST 28 

γ-Actin 
5% milk-

TBST 

Anti-γ-actin 

mAb 

Abcam       

(2A3) 
1:20 000 

5% milk-

TBST 
DaM 1:40 000 

5% milk-

TBST 
42 

ATPAF1 
5% BSA-

TBST 

Anti-ATPAF1 

pAb 

Abcam  

(AB107202) 
1:500 TBST DaR 1:4000 TBST 36 

GAPDH 
5% milk-

TBST 

Anti-GAPDH 

mAb 

Santa Cruz  

(FL-335) 
1:2500 

5% milk-

TBST 
DaR 1:8000 

5% milk-

TBST 
36 

Manufacturer details: Abcam (Abcam, Cambridge, UK); Cell Signaling (Cell Signaling Technology, Cambridge, UK); Promega (Promega, Madison, Wisconsin, USA), 

Santa Cruz (Santa Cruz Biotechnology, Dallas, Texas, USA). Abbreviations: Ab, antibody; BSA, bovine serum albumin; DaM, donkey anti-mouse; DaR, donkey anti-

rabbit; kDa, kiloDalton; mAb, monoclonal antibody; pAb, polyclonal antibody; TBST, tris-buffered saline with 0.1% Tween-20. 
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2.23.5 Addition of primary antibody 

After the membrane was blocked (Section 2.23.4), it was washed in TBST for 5min on a Stuart® 

SSL1 orbital shaker. A volume of 2-5ml of the appropriate primary antibody dilution (1:500-1:20 

000) was prepared with the relevant antibody diluent (TBST, 0.5% milk in TBST or 5% milk in 

TBST) as listed in Table 2.9. The blocked membrane was immersed in the primary antibody solution 

in a plastic sleeve, which was then sealed and incubated overnight (16h) at 4˚C with shaking on an 

Orbit 300 shaker (Labnet, Edison, New Jersey, USA). 

The following morning, the membrane was vigorously rinsed twice in TBST, followed by a 15 min 

wash in TBST and then three 5min TBST washes. TBST was discarded and fresh TBST added after 

each wash step.  

 

2.23.6 Addition of secondary antibody 

After the membrane has been adequately washed of excess primary antibody (Section 2.23.5), the 

membrane was incubated with a relevant HRP-conjugated secondary antibody (Santa Cruz 

Biotechnology, Dallas, Texas, USA): A volume of 5ml of the appropriate secondary antibody dilution 

(1:4000-1:40 000) was prepared with the relevant antibody diluent (TBST or 5% milk in TBST) as 

summarized in Table 2.9. The membrane was immersed in the secondary antibody solution in a 

plastic sleeve, which was then sealed and incubated for 1h at room temperature with shaking on a 

Stuart® SSL1 orbital shaker. 

Following incubation, the membrane was vigorously rinsed twice in TBST, followed by a 15min 

wash in TBST and then three 5min TBST washes. TBST was discarded and fresh TBST added after 

each wash step.  

 

2.23.7 Chemiluminescent visualization of membrane-bound proteins 

Chemiluminescent detection of the protein of interest followed thorough removal of excess secondary 

antibody from the membrane (Section 2.23.6). In a darkroom, a 1:1 mixture of the two substrate 

components (SuperSignal® West Pico Stable Peroxide solution and the SuperSignal® West Pico 

Luminol/Enhancer solution) of a SuperSignal® West Pico Chemiluminescent Substrate kit (Thermo 

Scientific, Waltham, Massachusetts, USA) was prepared. This was added to the membrane which was 

incubated in the chemiluminescent substrate for 5min at room temperate. The membrane was then 

transferred to an autoradiography cassette and excess substrate removed by gently blotting with paper 

towels, after which the membrane was covered with a transparent plastic sheath. CL-Xposure™ 

autoradiography film (Thermo Scientific, Waltham, Massachusetts, USA) was placed in the cassette 
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and exposed for an appropriate amount of time (10sec-16h), depending to the strength of the 

chemiluminescent signal. The exposed film was developed in a Hyperprocessor™ automatic 

autoradiography film processor (GE Healthcare Ltd., Little Chalfont, Buckinghamshire, UK). 

 

2.23.8 Stripping of membranes 

For applications in which more than one protein of interest needed to be detected in the same lysate 

on a single membrane, such as the protein expression experiments (Section 2.25.4), either cutting or 

stripping of the membrane was employed. If the difference in expected sizes of the proteins to be 

detected was sufficiently large, the membrane was cut in two at the position halfway between the 

expected proteins, and each membrane section incubated with the appropriate primary antibody 

simultaneously (Section 2.23.5). Otherwise, the membrane was stripped and reprobed for each protein 

of interest sequentially, as described below. 

Following the chemiluminescent visualization of the membrane (Section 2.23.7), the membrane was 

rinsed twice in TBST for 10min per rinse. It was then incubated in 10-20ml of stripping buffer 

(Appendix II) for 15min at room temperature with shaking on a Stuart® SSL1 orbital shaker, after 

which the stripping buffer was discarded and the membrane incubated in fresh stripping buffer for a 

further 15min at room temperature with shaking. Following incubation, the membrane was vigorously 

rinsed twice in TBST, followed by a 15min wash in TBST and then three 5min TBST washes. TBST 

was discarded and fresh TBST added after each wash step. The membrane was subsequently blocked 

(Section 2.23.4) and incubated with the appropriate primary antibody (Section 2.23.5).   

 

2.24 CO-IMMUNOPRECIPITATION 

Co-immunoprecipitation (co-IP) of endogenous proteins was performed as follows: Whole cell 

extracts were prepared (Section 2.23.1) and the protein concentration determined (Section 2.23.2). A 

total of 200-1000μg protein was then transferred to a 1.5μl microcentrifuge tube and the volume 

equalized to 200μl with fresh passive lysis buffer (Appendix II). A volume of 20μl Protein G agarose 

bead slurry (KPL, Gaithersburg, Massachusetts, USA) was added to the sample, which was incubated 

on a model HS100 rotating wheel (Labnet, Edison, New Jersey, USA) for 40min at 4˚C to pre-clear 

the lysates. Samples were centrifuged at 7000rpm for 1min at 4˚C in UEC 13 microcentrifuge and the 

supernatant transferred to a clean 1.5μl microcentrifuge tube. A total of 2μg of primary antibody 

directed against the protein to be immunoprecipitated was added to the lysate, which was incubated 

overnight (16h) at 4˚C on model HS100 rotating wheel.  
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The next morning, 60μl of Protein G agarose bead slurry was added to the lysate followed by further 

incubation on a model HS100 rotating wheel at 4˚C for 1h. Beads were collected by centrifugation at 

7000rpm for 30sec at 4˚C in a UEC 13 microcentrifuge, and the supernatant carefully transferred to a 

clean 1.5μl microcentrifuge tube for western blot analysis (Section 2.23).  The beads were then gently 

washed a total of four times in ice-cold passive lysis buffer, recollecting the beads via centrifugation 

after each wash. Finally, 30μl of 2X SDS loading dye (Appendix II) was added to the beads and the 

mixture boiled at 95˚C for 10min. Subsequently the sample was centrifuged at 15000rpm for 5min in 

a Labnet Prism™ microcentrifuge and the supernatant loaded onto a SDS-PAGE gel (Section 2.10.2) 

for use in western blot analysis (Section 2.23).   

 

2.25 CREATION AND ANALYSIS OF PARKIN-DEFICIENT CELL MODELS  

2.25.1 RNA-interference-mediated parkin knockdown 

RNA-interference (RNAi) using siRNA was performed to bring about the targeted knockdown of 

parkin expression in cultured SH-SY5Y cells. This was done to evaluate the functional consequences 

of suppressed/absent parkin expression (Sections 2.25.4). 

Four non-validated human siRNAs were purchased (Qiagen, Hilden, Germany); siRNA sequence 

information is listed in Table 2.10. Each siRNA was optimized and assessed for parkin knockdown 

efficiency and only siRNAs demonstrating sufficient parkin knockdown were used in subsequent 

experiments.  

 

Table 2.10 siRNA sequences for parkin knockdown 

siRNA name Strand siRNA sequence (5’-3’) 

Hs_PARK2_2 
Sense GUUUGUUCACGACCCUCAATT 

Antisense UUGAGGGUCGUGAACAAACTG 

Hs_PARK2_8 
Sense CCAUCUAUAUAAAUCGCAUTT 

Antisense AUGCGAUUUAUAUAGAUGGAA 

Hs_PARK2_9 
Sense GAGGAAAGUCACCUGCGAATT 

Antisense UUCGCAGGUGACUUUCCUCTG 

Hs_PARK2_10 
Sense GGCUCCACUGUAAAUUUAATT 

Antisense UUAAAUUUACAGUGGAGCCAA 

Abbreviations: 3’, three-prime end; 5’, five-prime end; A, adenine; C, cytosine; G, guanine; Hs, Homo sapiens; 

PARK2, parkin gene; siRNA, small interfering RNA; T, thymine. 
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SY-SY5Y cells were cultured as described (Section 2.21). An aliquot of a cell suspension to be 

subcultured (Section 2.21.3) was used to perform a hemocytometric cell count (Appendix III). 

Thereafter, a volume of cell suspension containing approximately 200 000 cells was seeded per well 

in a CellStar® six well tissue culture plate in a drop-wise manner. The plate was incubated in a Farma 

thermosteri-cycle 5% CO2 humidified incubator until a confluency of 70-80% was reached (16h).  

The following day, the culture media in each well was removed and replaced by 2.3ml of fresh 

complete culture media (Appendix II). For each transfection, a total of 0.6µl of 20µM siRNA stock 

was diluted in 98.2µl serum-free media (Appendix II) in a 200µl PCR tube, to which 12µl of 

HiPerFect transfection reagent (Qiagen, Hilden, Germany) was added. The tubes were incubated at 

room temperature for 10min to allow for siRNA complex formation. The transfection mixture was 

subsequently added to the cells in a drop-wise manner, resulting in a final concentration of 5nM 

siRNA per well. Plates were gently rocked to distribute the transfection mixture evenly over the cell 

monolayer and then incubated in a Farma thermosteri-cycle 5% CO2 humidified incubator for 48h.  

Concurrent to targeted siRNA transfections, cells were also transfected with a non-silencing control 

(NSC) siRNA (Qiagen, Hilden, Germany) as well as subjected to a mock transfection, i.e. a 

transfection mixture containing no siRNAs. The efficiency of siRNA-mediated parkin knockdown 

was subsequently evaluated on a mRNA level (Section 2.25.3) as well as a protein level (2.25.4).   

 

2.25.2 Total RNA extraction and cDNA conversion 

Total RNA was extracted from siRNA-transfected SH-SY5Y cells (Section 2.25.1). RNA extraction 

was performed by using a RNeasy Plus Mini Kit (Qiagen, Hilden, Germany) as per manufacturer’s 

instructions. Isolated RNA concentration and quality was subsequently measured with an Experion™ 

StdSens Analysis kit on an Experion™ automated electrophoresis station. Only RNA samples with a 

RQI value above 8.0 were used for subsequent analyses.  

Following RNA isolation, the purified RNA was converted to cDNA by using a Quantitect® Reverse 

Transcription Kit as per manufacturer’s instructions. cDNA concentration was determined using a 

NanoDrop® ND-1000 spectrophotometer and NanoDrop1000® software version 3.7.1. The cDNA 

samples were then stored at -20°C until use. 

 

2.25.3 Two-step quantitative reverse-transcription PCR (q-RT-PCR)  

Real-time quantitation of cDNA obtained from siRNA-transfected SH-SY5Y cells (Section 2.25.1) 

was done using four IDT PrimeTime® Std qPCR assays targeting parkin as well as GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase), B2M (β-2 microglobulin) and RPL13A (ribosomal 
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protein L13a) housekeeping genes (Integrated DNA Technologies, Coralville, Iowa, USA). Briefly, 

100ng of cDNA was used as template in a 5µl reaction containing 1X Primetime® Std qPCR assay 

and 1X QuantiFast™ Multiplex PCR master mix (Qiagen, Hilden, Germany). All quantitation 

reactions were set up in triplicate and included cDNA-free negative control reactions. Reaction setup 

employed an Eppendorf epMotion™ 5070 automated pipetting system (Eppendorf, Hamburg, 

Germany) for liquid handling.  

Q-RT-PCR was performed on an ABI 7900HT Fast Real-Time PCR System (Applied Biosystems 

Inc., Foster City, California, USA) using SDS software version 2.3 (Applied Biosystems Inc., Foster 

City, California, USA) under the following cycling conditions: an initial denaturation step at 95oC for 

10min followed by 40 cycles consisting of denaturation at 95oC for 15sec and annealing/extension at 

60°C for 45sec. 

Relative parkin mRNA expression was quantified with reference to the three housekeeping genes 

using normalization factor calculations based on the geometric mean of multiple housekeeping genes, 

as described by Vandesompele et al. (2002). 

 

2.25.4 Protein expression analysis 

In order to verify successful parkin knockdown on a protein level, siRNAs that demonstrated 

sufficient parkin mRNA knockdown following q-RT-PCR analysis (Section 2.25.3) were used to 

transfect SH-SY5Y cells as described in Section 2.25.2. Whole cell extracts were then prepared of the 

transfected cells and the protein concentrations determined (Sections 2.23.1 and 2.23.2). Equal 

quantities of parkin siRNA-treated and NSC-treated cell lysates were used for western blotting with 

an anti-parkin antibody (Section 2.23). Following the autoradiographical recording of membrane-

bound parkin (Section 2.23.7), the membrane was stripped of antibodies and reprobed with an anti-

GAPDH antibody (Section 2.23.8). Visualization of GAPDH content of each lysate served as a 

loading control to verify equal loading of all lysates.  

The band intensities of parkin and GAPDH bands on the obtained autoradiograph film were 

quantified using ImageJ Software version 1.47 (http://imagej.nih.gov/ij) (Schneider et al. 2012), and 

the band intensities of parkin in siRNA and NSC-transfected cell lysate lanes were normalized to the 

corresponding band intensities of GAPDH in the same lanes. Relative parkin expression in siRNA-

treated cells was quantified in reference to normalized parkin expression in NSC-transfected cells. A 

total of three replicate knockdown experiments were independently performed to evaluate the 

reliability of siRNA-mediated parkin knockdown. All differences in protein expression were 

statistically assessed by means of mixed-effects linear modeling, as described in Section 2.30. 
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Membranes containing lysates in which successful parkin knockdown was verified were stripped and 

reprobed for each of the parkin-interacting proteins (Section 2.23.8), in order to assess the effect of 

the lack of parkin on the protein expression of each parkin interactor. The band intensity of each 

parkin-interacting protein was normalized to GAPDH and the relative expression of each protein was 

quantified in parkin-siRNA-treated cells in reference to their expression in NSC-transfected cells, as 

described above.   

The effect of the lack of parkin on the protein expression of each parkin interactor was also evaluated 

in parkin-null dermal fibroblasts (Section 2.20.2). Equal quantities of whole cell lysates of the patient-

derived parkin-null fibroblast cell lines and wild-type control fibroblast cell lines were used for 

western blotting (Section 2.23). A single membrane was probed for each parkin-interacting protein, 

whereas probing for GAPDH served as a loading control. The relative expression levels of each 

protein of interest in parkin-null fibroblasts were quantified and assessed as described above.  

 

PART THREE: PARKIN DEFICIENCY AND VITAMIN K2 

 

In the third and final part of this dissertation, parkin-null primary fibroblasts were used to assess the 

effect of parkin deficiency on several informative parameters of cellular health. This third part 

furthermore entails an evaluation of the effect of the potential PD therapeutic agent vitamin K2 on 

such cellular parameters in parkin-deficient fibroblasts. It has been reported that vitamin K2 

supplementation alleviated mitochondrial defects in PINK1 and parkin mutant Drosophila (Vos et al. 

2012); the present study therefore investigated mitochondrial health in particular. To this end, four 

parameters of cellular function and health were assayed: cell viability after cytotoxic insult (Section 

2.26), mitochondrial respiration (Section 2.27), mitochondrial membrane potential (Section 2.28) and 

the integrity of mitochondrial networks (Section 2.29). 

 

2.26 CELL VIABILITY AND CELL GROWTH ASSAYS 

Dermal fibroblast cell viability was assessed by means of colorimetric thiazolyl blue tetrazolium 

bromide (MTT) assays. MTT, a water-soluble yellow tetrazole, is reduced to insoluble purple 

formazan by NAD(P)H-dependent oxidoreductases in living cells. Formazan aggregates can then be 

dissolved by the addition of an appropriate solubilization buffer, and the resulting color change can be 

measured via spectrophotometry. As the formation of formazan is dependent on cellular metabolic 

rates, MTT assays can be used as sensitive gauges of viable cell number (Berridge et al 2005). MTT 
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assays are also valuable in the assessment of the cytotoxicity of various compounds (Meerloo et al. 

2011).     

The CyQUANT® assay, on the other hand, is based on the measurement of cellular DNA content via 

fluorescent dye binding. As cellular DNA content is tightly regulated, CyQUANT® assays can be 

used as indirect measurements of cell number. The extent of cell proliferation can then be gauged by 

the comparison of cell counts of cells treated with various compounds to untreated cells (Jones et al. 

2001). As cell proliferation is considered to be one of the most sensitive indicators of overall cellular 

health (Abraham et al. 2008), CyQUANT® assays were performed alongside MTT assays in this 

study as two parallel measurements of viable cell number. These assays were used to investigate the 

effect of treatment with vitamin K2 on cell viability and growth in parkin-null and wild-type 

fibroblasts, in the absence and the presence of cellular stress.   

 

2.26.1 Optimization of vitamin K2 concentration 

In the present study, a MTT assay was initially performed to evaluate potential cytotoxic effects of the 

vitamin K2 analogue menaquinone 4 (MK-4) on wild-type fibroblasts, in order to determine the 

optimal MK-4 concentration for subsequent experiments. Briefly, an aliquot of a cell suspension of 

WT2 fibroblasts to be subcultured (Section 2.21.3) was used to perform a hemocytometric cell count 

(Appendix III). Thereafter, a volume of cell suspension containing approximately 5000 cells was 

seeded per well in a Corning® Costar® 96-well flat-bottom tissue culture plate (Corning Inc., 

Corning, New York, USA). The plate was incubated at 37ºC in a Farma thermosteri-cycle 5% CO2 

humidified incubator overnight (16h). 

The following morning, the culture media was removed and replaced with a dilution series of MK-4 

in 200µl fresh culture media, with MK-4 concentrations ranging from 0-100µM MK-4 (Sigma 

Aldrich, St. Louis, Missouri, USA) (Appendix II). Each concentration was added to the wells in 

quadruplicate. The plate was returned to the Farma thermosteri-cycle 5% CO2 humidified incubator 

and incubated for a further 24h. The next day, a MTT assay was performed as described in Section 

2.26.3. 

 

2.26.2 Preparation of fibroblasts for MTT and CyQUANT® assays 

MTT and CyQUANT® assays were also employed to assess cell viability and proliferation of patient 

and wild-type fibroblasts after cytotoxic insult; this was performed with and without vitamin K2 co-

treatment. Fibroblasts were seeded into 96-well plates at a density of 5000 cells per well as described 

above (Section 2.26.1), with two 96-well plates being prepared in parallel for MTT and CyQUANT® 
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assays, respectively. The following morning, the culture media was removed and a volume of 200µl 

of each of four treatment solutions was added to appropriate wells. The four treatment solutions were: 

0.1% (v/v) ethanol in culture media (for untreated cells; the addition of ethanol serves as a vehicle 

control), 40µM MK-4 solution in culture media (Appendix II), 10µM carbonyl cyanide m-

chlorophenylhydrazone (CCCP) solution in culture media (Appendix II), and culture media 

containing both 40µM MK-4 and 10µM CCCP. Each treatment solution was added to the wells in 

quadruplicate. Incubation followed for 24h at 37ºC in a Farma thermosteri-cycle 5% CO2 humidified 

incubator. In the present study, 10µM CCCP was used to induce cellular stress, as a similar 

concentration is routinely used in the literature to produce mitochondrial impairment and bring about 

parkin-selective mitophagy of damaged mitochondria (Narendra et al. 2008; Matsuda et al. 2010).   

After the fibroblasts had been appropriately treated, the two 96-well plates were separately used for 

MTT and CyQUANT® assays, respectively (Sections 2.26.3 and 2.26.4). Each assay was performed 

in triplicate as three separate experimental runs.  

 

2.26.3 MTT assay 

MTT assays were performed as follows: The culture media was removed and the wells gently rinsed 

once with 200µl pre-warmed sterile PBS. A 1:10 dilution of MTT stock solution (Sigma Aldrich, St. 

Louis, Missouri, USA) (Appendix II) was made in pre-warmed PBS, which was added to the wells in 

volumes of 100µl. The plate was covered in aluminum foil and incubated at 37ºC in a Farma 

thermosteri-cycle 5% CO2 humidified incubator for 4h. Subsequently, the MTT solution was carefully 

aspirated and a volume of 100µl acidified isopropanol (Appendix II) added to each well. Formazan 

aggregates were dissolved by trituration followed by incubation at 37ºC with shaking for 10min in a 

Hybaid Midi Dual 14 incubator (United Scientific, Cape Town, South Africa). The resulting 

coloration was measured via absorbance at 570nm in a Synergy HT luminometer using KC4™ 

software version 3.4. Background absorbance was simultaneously measured at 650nm and subtracted 

from absorbance at 570nm. Statistical significance was measured as described in Section 2.30. 

 

2.26.4 CyQUANT® assay 

CyQUANT® assays were performed using a CyQUANT® NF Cell Proliferation Assay Kit (Life 

Technologies, Carlsbad, California, USA), according to manufacturer’s instructions. Briefly, the 

culture media was removed from the cells in a 96-well plate, and the wells gently rinsed once with 

200µl pre-warmed sterile PBS. A volume of 100μl of 1X dye binding solution was added to each 

well. The plate was then incubated in the dark at 37ºC in a Farma thermosteri-cycle 5% CO2 

humidified incubator for 1h. The subsequent fluorescence intensity was measured in a Synergy HT 
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luminometer using KC4™ software version 3.4, with excitation at 480nm and emission detection at 

530nm. Statistical analysis was performed as described in Section 2.30. 

 

2.27 MITOCHONDRIAL RESPIRATION ANALYSIS 

Measurements of mitochondrial respiration are strong indicators of the functional capacity of 

mitochondria, and of overall cellular health.  While classical respirometric methods largely rely on the 

use of Clark oxygen electrodes, these approaches are not conductive to the simultaneous measurement 

of several samples, and require large quantities of cells. The Seahorse Extracellular Flux Analyzer 

overcomes these challenges by using a plate-based approach and fluorescence detectors to accurately 

measure cellular oxygen consumption (Ferrick et al. 2008). Furthermore, the Seahorse Analyzer 

allows for the sequential addition of pharmacological inhibitors to probe the function of individual 

components of the mitochondrial respiratory chain in a single experiment. This can then be expressed 

as various parameters of mitochondrial function, such as basal respiration, ATP coupling efficiency 

and spare respiratory capacity, which can be insightful gauges of mitochondrial health (Brand and 

Nicholls 2011). 

   

The present study used a Seahorse Analyzer, located in the Mito Laboratory of North West 

University, Potchefstroom, South Africa, to investigate mitochondrial respiratory control in parkin-

null and wild-type fibroblasts. Furthermore, the effect of vitamin K2 treatment on mitochondrial 

respiration was determined. All mitochondrial respiration assays were kindly performed by Dr. 

Chrisna Swart. 

 

2.27.1 Seahorse Analyzer assay 

Mitochondrial respiration assays were done using a Seahorse XF96 Cell Mito Stress Test Kit 

(Seahorse Biosciences, North Ballerica, Massachusetts, USA), in accordance with manufacturer’s 

instructions. Briefly, fibroblasts were seeded at a density of 22 000 cells per well in a 96-well 

Seahorse assay plate: cells that were to be treated with vitamin K2 were seeded into 80μl of 40µM 

MK-4 solution in culture media (Appendix II), whereas cells that were not treated with vitamin K2 

were seeded into 80μl of 0.1% (v/v) ethanol in culture media. The plate was then incubated at 37˚C 

with 5% CO2 for 24h.  

The following day, a Seahorse XF96 Extracellular Flux Analyzer (Seahorse Biosciences, North 

Ballerica, Massachusetts, USA) and XFe Wave software (Seahorse Biosciences, North Ballerica, 

Massachusetts, USA) was used to measure the oxygen consumption rate (OCR) of each well. A 
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period of 1h before the measurements were initiated, the culture media in each well was replaced with 

150μl of Seahorse assay media supplemented with 1mM pyruvate, and the plate was incubated for 1h 

at 37˚C without CO2. Then, a series of successive OCR measurements were performed, which 

consisted of three basal OCR measurements, three OCR measurements after the automated injection 

of 1μM oligomycin into each well, three OCR measurements after the injection of 1μM carbonyl 

cyanide p-trifluoromethoxyphenyl hydrazone (FCCP), and three final OCR measurements after the 

dual injection of 1μM rotenone and 1 μM antimycin A. Oligomycin was used to inhibit the 

mitochondrial F1F0-ATP synthase; FCCP is a protonphore used to depolarize the inner mitochondrial 

membrane, and rotenone and antimycin A were used to inhibit complex I and complex III, 

respectively. All four of these reagents were included in the Seahorse XF96 Kit, and the working 

concentrations of all four were optimized to identify their minimum effective concentration. 

Experimental treatments were performed on six wells of each plate as technical replicates. After all 

twelve OCR measurements were taken, the plate was saved and the relative DNA content in each well 

was measured using a CyQUANT® assay (Section 2.26.4). 

   

2.27.2 Analysis of mitochondrial respiratory control 

The Seahorse assays (Section 2.27.1) were analyzed using XFe Wave software, according to 

manufacturer’s instructions. All OCR measurements were normalized to cell number as determined 

by a CyQUANT® assay. These normalized OCR measurements were used to calculate various 

mitochondrial parameters: The minimum OCR after rotenone and antimycin A injection was 

interpreted as the OCR due to non-mitochondrial respiration, and this rate was subtracted from all 

other responses in order to isolate mitochondrial OCR. The basal mitochondrial OCR was defined as 

the third measurement under basal conditions (the last measurement prior to oligomycin injection, 

after non-mitochondrial OCR subtraction). The oligomycin response, indicative of the OCR due to the 

proton leak across the inner mitochondrial membrane, was defined as the minimum OCR after 

oligomycin injection. The decline in OCR after oligomycin injection is indicative of the OCR due to 

ATP synthesis, and the ratio of this decline to the basal OCR was expressed as the ATP coupling 

efficiency. The FCCP response was defined as the maximum OCR after FCCP injection, and the ratio 

of this response to the basal OCR was used to calculate the spare respiratory capacity. These 

parameters, as well as the overall OCR measurements, were statistically analyzed as described in 

Section 2.30.  
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2.28 MITOCHONDRIAL MEMBRANE POTENTIAL ANALYSIS 

Maintenance of the mitochondrial membrane potential (Δψm) is essential for the proper functioning 

and health of cells, particularly for cells with high energetic demands, and measurements of Δψm can 

be used as an indicator of the energization state and health of cellular mitochondria. In the present 

study, Δψm was assessed with the tetraethyl benzimidazolyl carbocyanine iodide (JC-1) cationic dye 

and flow cytometric methods. JC-1 exhibits potential-dependent accumulation in mitochondria, 

resulting in a fluorescence emission shift from 525nm (green) to 590nm (red). Therefore, loss of Δψm 

is detectable by the decrease in the red:green florescence emission ratio (Reers et al. 1995).  

 

2.28.1 Preparation and staining of fibroblasts with JC-1 

Differences in Δψm were assessed in patient and wild-type fibroblasts with and without vitamin K2 

treatment. This was done as follows: Fibroblasts cells were cultured in T25 CellStar® tissue culture 

flasks until a confluency of 70-80% was reached. Two additional wild-type fibroblast flasks were 

cultured for subsequent use as positive and unstained controls, respectively. The culture media was 

discarded and a volume of 5ml of 40µM MK-4 solution in culture media (Appendix II) was added to 

cells that were to be treated with vitamin K2. Alternatively, cells that were not treated with vitamin K2 

were incubated in 0.1% (v/v) ethanol in culture media. The flasks were left to incubate for 24h at 37ºC 

in a Farma thermosteri-cycle 5% CO2 humidified incubator. 

Thereafter, the culture media was removed and the cell monolayer stained with 3ml pre-warmed 

0.5μg/ml JC-1 solution (Life Technologies, Carlsbad, California, USA) (Appendix II); 3ml clean 

culture media was added to the unstained control. The positive control flask was co-treated with 

CCCP at a final concentration of 50μM. CCCP is a potent electron transport chain uncoupler; in the 

present study CCCP was used to artificially induce the loss of Δψm. The cell monolayers were stained 

in the dark for 1h at 37ºC in a Farma thermosteri-cycle 5% CO2 humidified incubator. Afterwards, the 

staining solution was removed and the stained cells briefly rinsed with pre-warmed sterile PBS. The 

cells were detached by trypsin treatment (Section 2.21.3) and each cell suspension transferred to a 

12ml Greiner tube and centrifuged at 1000rpm for 2min in a Sorval® GLC-6 general laboratory 

centrifuge. The supernatants were discarded and the pellets resuspended in 1ml of pre-warmed PBS to 

give an approximate final concentration of 200 000-300 000 cells/ml.  

 

2.28.2 Flow cytometry and analysis 

JC-1 dye equilibration was allowed for 10min at room temperature, after which the stained cell 

suspensions were immediately analyzed at the Flow Cytometry Unit of CAF at Stellenbosch 
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University, Cape Town, South Africa. A BD FACSCalibur flow cytometer (Becton Dickinson, 

Franklin Lakes, New Jersey, USA) and BD CellQuest PRO software (Becton Dickinson, Franklin 

Lakes, New Jersey, USA) was employed to this end. The JC-1 fluorophore was excited with a 488nm 

argon-ion laser after which red and green emission were separately detected in the FL1 and FL2 

channels, respectively, using standard PMT detectors. Debris and aggregates were gated out by 

establishing a population of interest based on forward scatter/side scatter (FSC/SSC) properties. 

Compensation between FL1 and FL2 was carefully adjusted in reference to the CCCP-treated positive 

control sample, according to the manufacturer’s instructions. A total of 10 000 events were collected 

per sample per run, and each fibroblast culture was assessed by means of JC-1 staining and flow 

cytometry in three separate experiments. Statistical differences were assessed as described in Section 

2.30. 

 

2.29 MITOCHONDRIAL NETWORK ANALYSIS  

Despite the classic depiction of mitochondria as rod-like, individual organelles, mitochondria are in 

fact engaged in a complex cellular network that constantly fuses and divides. The morphology of this 

mitochondrial network is carefully maintained by the dual processes of mitochondrial fission and 

fusion, which act to regulate mitochondrial integrity and function (Detmer and Chan 2007). 

Dysregulation of such mitochondrial dynamics, perceivable as mitochondrial swelling and 

fragmentation of the mitochondrial network, can be used as an informative marker of cellular and 

mitochondrial dysfunction (Burbulla et al. 2010).  In the present study, the mitochondrial morphology 

of fibroblast cells was assessed by means of live-cell fluorescence microscopy, where the 

Mitotracker® Red CMXRos dye was used to visualize the mitochondrial network. 

 

2.29.1 Preparation of fibroblasts for live-cell microscopy 

Mitochondrial morphology was assessed in patient and wild-type fibroblasts with and without vitamin 

K2 treatment. This was done as follows: An aliquot of a cell suspension to be subcultured (Section 

2.21.3) was used to perform a hemocytometric cell count (Appendix III). Thereafter, a volume of cell 

suspension containing approximately 3000 cells was seeded per well in a Nunc® Lab-Tek® 8-well 

chamber slide (Thermo Scientific, Waltham, Massachusetts, USA). The chamber slide was incubated 

at 37ºC in a Farma thermosteri-cycle 5% CO2 humidified incubator overnight (16h). 

The following morning, the culture media was removed and a volume of 200μl of 40µM MK-4 

solution in culture media (Appendix II) was added to wells containing cells that were to be treated 

with vitamin K2. Alternatively, cells that were not treated with vitamin K2 were incubated in 0.1% 
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(v/v) ethanol in culture media. The chamber slide was returned to the Farma thermosteri-cycle 5% 

CO2 humidified incubator and incubated for a further 24h.  

 

2.29.2 Live-cell fluorescence microscopy and analysis 

Fluorescence image acquisition was performed at the Cell Imaging Unit of CAF at Stellenbosch 

University, Stellenbosch, South Africa. An Olympus IX-81 motorized inverted fluorescence 

microscope (Olympus Biosystems GmbH, Tokyo, Japan), equipped with a F-view-II cooled CCD 

camera (Soft Imaging Systems, Berlin, Germany), and Cell^R software (Olympus Biosystems GmbH, 

Tokyo, Japan) was employed to this end. 

Staining and imaging of the cultured cells was performed with each well of the chamber slide 

separately, in order to reduce photobleaching of the dye as well as dye-induced cytotoxicity. Briefly, 

the culture media was removed from the well to be stained, after which 100μl of a 100nM solution of 

Mitotracker® Red CMXRos (Life Technologies, Carlsbad, California, USA) in pre-warmed culture 

media was added to the well. The chamber slide was placed on the viewing deck of the Olympus IX-

81 microscope inside a live-cell environmental chamber, where it was incubated for 5min at 37ºC and 

5% CO2 before viewing. Fluorescence was excited through a 572nm excitation filter, and fluorescence 

emission collected at 599nm using a UBG triple-bypass emission filter cube and an Olympus Plan AP 

N 60X/1.42 oil-immersion objective. All images were acquired as Z-stacks, with 7-12 image frames 

per stack and increments of 0.26-0.3μm between frames. A total of six images were taken per sample 

per experimental run, after which the next sample was separately stained and imaged. Each sample 

was stained and imaged in quadruplicate.  

Following image acquisition, the images were deconvoluted using the Cell^R software in order to 

remove out-of-focus fluorescent signal. The Z-stack was then exported as a maximum intensity 

projection in TIFF file format for further processing and analysis. Clearly visible cells were 

individually analyzed using ImageJ Software version 1.47 (http://imagej.nih.gov/ij) with an average 

of 40 cells analyzed per sample across all experimental runs. Image analysis was performed as 

follows: Raw images were binarized by conversion to 8-bit image format and optimized by manual 

contrast adjustment to reduce non-specific fluorescent signal. The individual morphological 

characteristics of the mitochondria within a given cell, such as area, perimeter, and major and minor 

axes, were measured by the ImageJ software. These parameters were used to calculate and describe 

the morphological characteristics of the mitochondrial network of the cell, including the aspect ratio 

(ratio between the major and minor axes of the ellipse equivalent to the mitochondrion) and the form 

factor (defined as  
perimeter2

4π×area
 ). The aspect ratio is consistent with mitochondrial length, whereas form 
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factor is a quantification of the degree of branching of the mitochondrial network. Statistical analyses 

were performed as detailed below (Section 2.30). 

 

2.30 STATISTICAL ANALYSIS 

All statistical analyses were performed by Prof. Lize van der Merwe. The freely-available program R, 

a language and environment for graphics and statistical computing (http://www.r-project.org), and R 

packages nlme and effects were used for statistical modeling and graphics (Fox 2003; R Core Team 

2012; Pinheiro et al. 2014).  

General linear modeling was used for pairwise comparisons of outcomes between individual 

fibroblast cell lines. When grouped patient-derived and wild-type fibroblasts were compared, a 

mixed-effects linear model was used, with groups as fixed effects. Here, adjustments were made for 

the effect that the observations on a specific cell line will be correlated. Separate experimental runs 

were modeled as random effects. All effect sized, confidence intervals and p-values were derived 

from the results of the specific models. All results corresponding to a p-value of <0.05 were described 

as statistically significant. Results were not adjusted for multiple testing because it has been suggested 

that corrections, such as Bonferroni, are too conservative when several associations are tested in the 

same group of individuals (Perneger 1998). Results may therefore be considered hypothesis-

generating, where functional explanations of observed statistical differences may support the 

plausibility of such results.   

For analysis of the protein expression levels (Section 2.25.4), the relative densitometry measurements 

(for each fibroblast lysate) for a given protein of interest in a given experimental run, were adjusted 

for differences in relative densitometry of the loading control (GAPDH) in the corresponding lysates, 

for the particular experimental run. Differences in protein expression between individual fibroblast 

cell lines were assessed by means of a general linear model, whereas mixed-effects linear modelling 

was used to compare grouped patient vs. grouped wild-type control fibroblasts. Here, effect plots were 

generated for the interaction between protein level and group identity (whether patient or wild-type).  

All assessments of the effects of treatments, whether with CCCP (Section 2. 26) or with MK-4 

(Sections 2.26-2.29) required a statistical interaction term in the general linear models (for 

assessments within individual fibroblast cell lines) or in the mixed-effects linear models (for 

assessments within groups). Where appropriate, a 22 factorial design was used to model effects of 

treatment on various outcomes.  For analysis of mitochondrial network morphology (Section 2.29.2), 

all outcome distributions were transformed (taking the natural logarithm) in order to approach 

normality, as the untransformed distributions of form factor and aspect ratio were positively skewed. 
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CHAPTER THREE: RESULTS 

 

3.1 PARKIN MUTATION SCREENING 

Our research group has previously reported on a molecular analysis of parkin in 91 South African PD 

patients (Bardien et al. 2009), as well as exon dosage analysis of these patients (Keyser et al. 2009). 

The present study expands on that work by the screening of an additional 138 South African PD 

patients. The results reported here are on the combined total of 229 patients. 

 

3.1.1 Characteristics of the study group 

Relevant demographic and clinical data of the study group is summarized in Table 3.1. The mean 

AAO of the PD patients was 54.4 ± 12.1 years, ranging from 17-80 years. The majority (132/229; 

57.6%) of the study participants either had EOPD (defined as an AAO <=50 years) or a positive 

family history of PD. The study group was ethnically heterogeneous, consisting of 71.2% (163/229) 

Caucasian, 19.7% (45/229) Mixed ancestry, 7.4% (17/229) Black and 1.7% (4/229) Indian patients. 

Amongst the Caucasian patients, 41.7% (68/163) were of Afrikaner descent, a uniquely South African 

population known to have undergone a genetic bottleneck during the 19th century (Le Saux et al. 

2002). The Mixed ancestry ethnic group refers to a uniquely admixed population with genetic 

contributions from indigenous African, European, Malagasy, Indian and South-East Asian populations 

(Patterson et al. 2009). The Black patient group consisted of Xhosa-speaking individuals from the 

South African Nguni ethnic group; indigenous Sub-Saharan African populations, such as the Nguni, 

exhibit complex evolutionary histories and remarkable degrees of genetic diversity (Tishkoff et al. 

2009). The South African Indian subpopulation is mostly descended from indentured workers brought 

to South Africa in the 19th century.  

Table 3.1 Demographic and clinical characteristics of 229 South African PD patients 

  Total N = 229 

 AAO, mean ± SD, (range) 54.4 ± 12.1 years (17-80 years) 

 AAO<=50 82 (35.8%) 

 Family history of PD 81 (35.4%) 

 AAO <= 50 years and/or family history of PD 132 (57.6%) 

 Males 145 (63.3%) 

 Families with consanguinity 2 

 Ethnicity  

                 Caucasian 163 (71.2%) 

                 Mixed ancestry 45 (19.7%) 

                 Black 17 (7.4%) 

                 Indian 4 (1.7%) 
Abbreviations: AAO, age at onset; N, sample size; PD, Parkinson's disease; SD, standard deviation.  
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3.1.2 Parkin variants identified in South African PD patients 

The study participants were screened for mutations in parkin, using HRM to detect point mutations 

and small insertions/deletions (Section 2.6) and MLPA to detect exonic rearrangements (Section 2.8). 

In total, this study identified seven patients with homozygous or compound heterozygous mutations in 

parkin in the 229 South African PD patients (Figure 3.1, Table 3.2).  

 

 

 

 

 

 

 

 

 

Figure 3.1 Schematic representation of parkin, with locations of mutations and sequence 

variants identified in this study indicated. The top figure represents the parkin protein sequence, 

with functional domains as indicated. The bottom figure represents the parkin coding sequence, where 

exon rearrangements are indicated by red lines representing their locations and sizes. Abbreviations: 

Del, deletion; dup, duplication; ex, exon; IBR, in-between RING; UBL, ubiquitin-like; UP, unique 

parkin.   

 

The patient labeled ID 1 (henceforth referred to as patient 1), a Black male with an AAO of 45 years, 

was found to harbor compound heterozygous mutations: a duplication of exon 2 and a deletion of 

exon 9. The same mutations were found in an affected female sibling; both siblings had an early AAO 

(<50 years) and presented with typical tremor predominant PD. The exon dosage mutations were 

detected by MLPA analysis; however, the presence of these mutations was not confirmed via RT-PCR 

analysis on the proband’s lymphocytes as the patient was lost to follow-up. Interestingly, patient 1, 

along with patient 107, is one of only three cases of parkin mutations in Black Sub-Saharan African 

patients reported to date, with the third being a Zambian PD patient  (Yonova-Doing et al. 2012; 

Blanckenberg et al. 2013).  
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Table 3.2 Putative and established mutations identified in parkin in 229 South African PD patients 

Patient 

ID  
Ethnicity 

AAO 

(years) 

Family 

History 
Mutation status 

In 

controls  

Protein 

domain 

PolyPhen-2 

prediction 

MutationTaster 

prediction 
Study* 

Compound heterozygous/ homozygous mutations 

1 Black 45 Yes 
Duplication exon 2 het                         

+ Deletion exon 9 het 

ND                     

ND 

UBL              

IBR 

 

 
 Keyser et al. 2009 

16 Caucasian 27 Yes Deletion exon 4 hom ND RING0  
 

 
Bardien et al. 2009 

23 Mixed ancestry 27 No Deletion exon 3-4 hom ND RING0  
 

 
Bardien et al. 2009 

105 Caucasian 25 Yes 
P113fsX163 het 

+ Deletion exon 3 het 

ND                 

ND 

RING0             

RING0 
  Present study 

107 Black 56 No 

G430D (GGC > GAC) het 

(rs191486604)                                      

+ Deletion exon 4 het 

0/106 RING2 Probably damaging 

 

Disease causing 

 
Present study 

ND RING0 

108 Caucasian 27 No 
G430D (GGC > GAC) het                    

+ Deletion exon 4 het 

0/106             

ND 

RING2        

RING0 

Probably damaging 

 

Disease causing 

 
Present study 

121 Caucasian 48 Yes 
Duplication exon 2-6 het                        

+ Duplication exon 5 het 
ND 

UBL; RING0       

RING0 
  Present study 

Heterozygous variants 

11 Caucasian 37 No 
R402C (CGT > TGT) het 

(rs55830907) 
0/100 REP Probably damaging Polymorphism Bardien et al. 2009 

21 Caucasian 42 No 
E310D (GAG > GAC) het 

(rs72480423) 
0/110 IBR Benign Disease causing Bardien et al. 2009 

31 Caucasian 56 No Duplication exon 2 het ND UBL  
 

 
 Keyser et al. 2009 

61 Caucasian 55 Yes 
H200Q (CAC > CAG) het 

(rs72480421) 
0/106 RING0  Possibly damaging Polymorphism Bardien et al. 2009 

91 Mixed ancestry 50 No Duplication exon 2-3 het ND UBL; RING0 
 

 
 Keyser et al. 2009 

126 Mixed ancestry 49 Yes Deletion exon 4 het ND RING0  
 

 
 Present study 

133 Caucasian 54 No 
P437L (CCG > CTG) het           

(rs56092260) 
0/110 RING2 Probably damaging Disease causing Present study 

217 Mixed ancestry 61 No Deletion exon 3-4 het ND RING0   
 

 
Present study 

*Mutation status was reported in various publications: Bardien et al. (2009), Keyser et al. (2009) and the present study (Haylett et al. 2012). Abbreviations: AA0, age at onset; 

het, heterozygote; hom, homozygote; IBR, in between RING domain; ND, not determined; PD, Parkinson's disease; RING, RING-finger motif; UBL, ubiquitin-like domain.  
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A homozygous exon 4 deletion was found in patient 16, a Caucasian female with an early AAO of 27 

years. Her affected sibling has the same homozygous exon 4 deletion. Both the proband and her 

sibling presented with typical PD features as well as dystonia. RNA was obtained from the patient and 

her sibling and RT-PCR used to confirm the presence of these mutations; this is illustrated in Figure 

3.2A and B. Furthermore, dermal fibroblasts were obtained from this patient and her affected sibling 

by means of a skin biopsy (Section 2.21.1) for subsequent studies. The results emanating from such 

functional studies will be described later in this dissertation.   

Patient 23 also has an early AAO (27 years), but was not aware of any family history of PD. The 

homozygous exon 3-4 deletion of patient 23 was confirmed by RT-PCR and sequencing analysis 

(Figure 3.2C). The patient presented with mild dyskinesia, tremor and dystonia of her left leg, and 

responded well to levodopa therapy. Dermal fibroblasts were obtained from this patient for use in 

functional studies of the homozygous parkin exon 3-4 deletion.  

 

A                                                             Deletion of exon 4 

 

   

 

 

B                                 Deletion of exon 4   

 

 

 

 

C                                            Deletion of exons 3-4         

 

 

 

 

Figure 3.2 DNA sequence analysis of RT-PCR products which verify the presence of deletions in 

parkin. Positions of the deletions are indicated. A, patient 16 with homozygous whole exon 4 

deletions. B, the affected sibling of patient 16, also with homozygous whole exon 4 deletions. C, 

patient 23 with homozygous whole exon 3-4 deletions. 
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In one patient (patient 105) a heterozygous 40bp deletion in parkin exon 3 resulting in a frameshift 

mutation (P113fsX163; c.337_376del) was found. The patient’s other allele was found to harbor a 

heterozygous deletion of exon 3, which was confirmed with RT-PCR and sequencing analysis. This 

patient presented with gradual onset of dystonia in the legs, followed by onset of mild features of PD 

nine years later at the age of 25 years. This individual has Irish ancestry on both his maternal and 

paternal side, which is consistent with previous reports of this 40bp parkin exon 3 deletion (Lincoln et 

al. 2003). 

Interestingly, two unrelated patients (patient 107 and 108), of different ethnic backgrounds (Black and 

Caucasian, respectively) each harbored identical compound heterozygote mutations; a heterozygous 

G430D and a whole exon 4 deletion. DNA samples from family members of the patients could not be 

obtained, which precluded haplotype analysis to determine the relatedness of the patients. The two 

patients, patient 107 and 108, have an AAO of 56 and 27 years, respectively. Both patients presented 

with typical tremor predominant PD; prominent left arm dystonia was seen in patient 107. The finding 

of parkin mutations in a patient with an AAO > 50 years justifies the inclusion of patients with older 

AAO’s in our setting. 

Patient 121 was found to harbor a compound heterozygous mutation consisting of an exon 2-6 

duplication on one allele and an exon 5 duplication on the other allele. This female Caucasian patient 

reported family history of PD and has an AAO of 48. The patient presented with typical features of 

PD, with good levodopa responsiveness and occasional hypotension.  

In addition to these seven PD patients with homozygous or compound heterozygous parkin mutations, 

heterozygous missense variants (H200Q, E310D, R402C, P437L), and various exonic deletions and 

duplications were found in a further eight patients but currently the pathogenicity of these single 

heterozygous variants are unclear (Table 3.2). In cases where only a single parkin mutation was 

detected, all twelve parkin exons were subjected to direct sequencing (Section 2.7) in order to verify 

the absence of a second mutation. All of the point mutations were detected only in the patients under 

study, being absent in over 100 control chromosomes. It should however be noted that heterozygosity 

for a deletion or duplication encompassing more than one exon could in fact be due to compound 

heterozygosity for two different exon rearrangements acting in trans. This may be the case for patient 

91 (involving exons 2 and 3) and patient 217 (exons 3 and 4). Further clarifying studies could be 

performed on these individuals in order to determine the phase of the exon rearrangements; this could 

not be done in the present study as neither RNA from the patient nor DNA from family members were 

available for RT-PCR or haplotype analysis, respectively.   
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3.1.3 Parkin polymorphisms identified in South African PD patients 

In addition to mutations, numerous polymorphisms were detected in parkin (Table 3.3). Sequence 

variants were designated as polymorphisms if the variant was located in a non-coding region, resulted 

in a silent substitution (P37P, C238C, L261L, A397A and R402R), had been previously described as a 

polymorphism (A82E) or if the variant was observed in ≥1% of ethnically-matched control 

chromosomes (Q34R, S167N, M192L, R334C, V380L and D394N). All of the polymorphisms 

detected in our study had been previously described. Interestingly, the S167N and M192L 

polymorphisms had been previously described as pathogenic variants (Satoh and Kuroda 1999; 

Hedrich et al. 2002); however, the high frequencies of these sequence variants found in control 

chromosomes from South African individuals (7.9% and 6.7%, respectively; Table 3.3) make it 

unlikely that they are of pathogenic relevance.  

 

Table 3.3 Polymorphisms identified in the parkin gene in 229 South African PD patients 

Sequence variant Ethnicity of patient(s) with variant 
Frequency in controls* 

(%) 

5'UTR -258T > G Caucasian, Mixed ancestry and Black 
14.0 (Caucasian)            

18.0 (Mixed ancestry) 

5'UTR -227A > G Caucasian and Mixed ancestry ND 

5'UTR -89C > T Caucasian ND 

IVS1 +42C > T Mixed ancestry ND 

Q34R (CAG > CGG) Mixed ancestry 3.2 

P37P (CCG > CCA) Mixed ancestry and Black ND 

IVS2 +10C > T Mixed ancestry 0 

IVS2 +20delC Mixed ancestry 4.8 

IVS2 +25T > C Mixed ancestry and Black ND 

IVS2 +35G > A Caucasian and Mixed ancestry ND 

IVS2 +62G > A Mixed ancestry ND 

IVS3 -20T > C Caucasian ND 

A82E  (CGA > GAA) Caucasian 0 

S167N (AGC > AAC) Caucasian and Mixed ancestry 7.9 

M192L (ATG > CTG) Mixed ancestry 6.7 

C238C (TGC > TGT) Black ND 

L261L (TTA > TTG) Black ND 

IVS7 -68C > G Caucasian ND 

IVS7 -35G > A Caucasian and Black ND 

IVS8 +43A > G Mixed ancestry and Black ND 

IVS8 +48C > T Caucasian and Black ND 

IVS8 -21_-17del Mixed ancestry ND 

R334C (CGC > TGC) Mixed ancestry and Indian 2.0 (Mixed ancestry) 

V380L (GTA > CTA) Caucasian, Mixed ancestry and Black 27.2 (Caucasian) 

D394N (GAT > AAT) Caucasian, Mixed ancestry, Black and Indian 6.0 (Caucasian) 

A397A (GCC > GCT) Mixed ancestry ND 

R402R (CGT > CGC) Mixed ancestry and Black ND 

3'UTR *16G > A Mixed ancestry ND 

3'UTR *94A > G Caucasian ND 

3'UTR *103C > T Black ND 

*Frequency was only determined for exonic, non-synonymous variants. Abbreviations: del, deletion; IVS, 

intervening sequence; ND, not determined. 
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Possible heterozygous whole exon 5 deletions of parkin had been detected in two patients; however, 

this putative deletion was only detected by the P051 MLPA probe set and not by the P052 set. Further 

investigation revealed that the two patients with ostensible whole exon 5 deletions were in fact 

heterozygous for the M192L polymorphism.  The presence of this polymorphism disrupts the binding 

site of a probe in the P051 MLPA kit, resulting in a false positive result (Figure 3.3). This exemplifies 

the benefit of using two different MLPA kits to reduce the risk of false positives, and only exon 

dosage mutations in parkin that were independently detected by both MLPA kits were considered as 

true positive results. 

 

A        Probe ligation           Amplification 
   

…TAAGGTTTGGCCTACTCACCACTT… 

560     TAATTCCAAACCGGATGAGTGGTGAATGCCAATCCCCACACTGCCCTGGGACT 612 

187 -L--I--P--N--R--M--S--G--E--C--Q--S--P--H--C--P--G--T- 205 

 

 

 

B                                                        No probe ligation  No amplification 
  

…TAAGGTTTGGCCTACTCACCACTT… 

560     TAATTCCAAACCGGCTGAGTGGTGAATGCCAATCCCCACACTGCCCTGGGACT 612 

187 -L--I--P--N--R--L--S--G--E--C--Q--S--P--H--C--P--G--T- 205 

 

Figure 3.3 The M192L parkin polymorphism disrupts the binding site of a P051 MLPA probe. 

The partial parkin CDS and the encoded amino acid sequence are listed in black font. The position of 

the c.574A>C; M192L polymorphism is illustrated in red font. Partial sequences of the two halves of 

the 366bp P051 MLPA probe (probe 02177-L24889) are indicated in blue and pink. A, parkin 

sequence harboring the major allele (A) of the M192L polymorphism. The two halves of the MLPA 

oligonucleotide probe anneal adjacent DNA sequences. This allows for oligonucleotide probe ligation, 

MPLA primer binding and successful amplification, which would indicate the presence of exon 5. B, 

parkin sequence harboring the minor allele (C) of the M192L polymorphism. The pink half of the 

MLPA probe does not properly anneal at the ligation site (black box); hence, no oligonucleotide probe 

ligation or amplification takes place. This would falsely indicate the absence of exon 5. 

 

3.2 IDENTIFICATION AND VERIFICATION OF PARKIN INTERACTORS 

In order to further current knowledge on the role of parkin in health and disease, a focus of the present 

study was to use a Y2H approach to identify novel parkin-interacting proteins (Section 3.2.1). Such 

putative interactors were verified under biologically-relevant conditions using two in vivo approaches: 

3D co-localization and co-IP (Section 3.2.3). The effect of the lack of parkin on each interacting 

protein was also evaluated in cellular models of parkin deficiency (Section 3.2.4)   
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3.2.1 Parkin Y2H analysis 

3.2.1.1 Generation of parkin Y2H bait construct  

The pGBKT7-parkin Y2H bait construct was successfully cloned as described in Section 2.13. The 

construct was subjected to DNA sequencing and sequence analysis, which confirmed that both the 

correct reading frame and insert sequence integrity had been retained throughout the cloning process.  

 

3.2.1.2 Phenotypic assessment of yeast strains 

The pGBKT7-parkin Y2H bait construct was used to transform S. cerevisiae strain AH109. This 

transformed strain, as well as untransformed AH109 and Y187 host strains, was assessed for their 

ability to grow on various nutritionally-deficient selection plates. Untransformed AH109 and Y187 

were able to grow on SD-Ura plates, but did not grow on SD-Trp, SD-Leu, SD-His and SD-Ade plates. This 

confirmed the viability and purity of the untransformed strains. AH109 transformed with pGBKT7-

parkin was able to grow on SD-Ura and SD-Trp plates, but did not grow on SD-Leu, SD-His and SD-Ade 

plates, which confirmed that the phenotype of AH109 was retained following transformation. 

Additionally, this verified that the HIS3 and ADE2 reporter genes were not autonomously activated by 

expression of the bait protein. Phenotypic assessment of yeast strains is summarized in Table 3.4.  

 

Table 3.4 Phenotypic assessment of S. cerevisiae strains 

Nutritional selection 

plate 
AH109 Y187 

AH109 transformed 

with pGBKT7-parkin 

SD-Ura ++ ++ ++ 

SD-Trp - - ++ 

SD-Leu - - - 

SD-His - - - 

SD-Ade - - - 
Abbreviations: ++, growth; -, no growth; -Ade, lacking adenine; -His, lacking histidine; -Leu, lacking leucine; 

-Trp, lacking tryptophan; -Ura, lacking uracil; SD, synthetic defined. 
 

 
3.2.1.3 Yeast transformation toxicity test 

Prior to Y2H analysis, a toxicity test was performed to determine whether the Y2H bait construct 

detrimentally affected the growth of S. cerevisiae strain AH109 (Section 2.18.2). To this end, a 

growth curve of AH109 transformed with the pGBKT7-parkin bait construct was generated and 

compared to a growth curve of AH109 transformed with non-recombinant pGBKT7 (Figure 3.4). It 

was determined that the bait construct had no significant effect of the growth of AH109, as evidenced 

by the similar gradients of the pGBKT7-parkin growth curve (gradient = 0.0241) and the non-

recombinant pGBKT7 growth curve (gradient = 0.0256).   
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Figure 3.4 Linearized growth curves of S. cerevisiae strain AH109 transformed with pGBKT7-

parkin and non-recombinant pGBKT7. Similar growth rates of AH109 transformed with pGBKT7-

parkin and non-recombinant pGBKT7 demonstrated that pGBKT7-parkin did not adversely affect the 

growth of AH109. Abbreviations: Log, logarithm; nm, nanometer; OD, optical density.  

 

 

3.2.1.4 Mating efficiency determination 

Prior to Y2H analysis, S. cerevisiae strain AH109 transformed with pGBKT7-parkin bait construct 

was mated with Y187 transformed with non-recombinant pGADT7 (Section 2.18.3). An additional 

assessment of AH109 transformed with pGBKT7-53 and mated with Y187 transformed with non-

recombinant pGADT7 served as a positive control mating. It was concluded that the bait construct did 

not adversely affect the mating efficiency of AH109 (Table 3.5). During Y2H analysis a further small-

scale mating assessment was performed. AH109 transformed with pGBKT7-parkin bait construct was 

mated with Y187 transformed with the pGADT7-cDNA library (Section 2.19.5). This delivered an 

actual Y2H mating efficiency of 11.6%, which is well above the minimum mating efficiency of 2% 

recommended by the MATCHMAKER™ Y2H system manufacturer (Clontech, Palo Alto, California, 

USA).   

 

Table 3.5 Effect of Y2H bait construct on S. cerevisiae AH109 mating efficiency  

Mating pairs Mating efficiency (%) 

pGBKT7-parkin::AH109 X pGADT7::Y187  17.9 

pGBKT7-53::AH109 X pGADT7::Y187 10.1 

pGBKT7-parkin::AH109 X pGADT7-cDNA library::Y187 11.6 
Abbreviations: Y2H, yeast two-hybrid. 
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3.2.1.5 Parkin Y2H adult brain cDNA library screen 

The Y2H bait culture, S. cerevisiae strain AH109 transformed with pGBKT7-parkin bait construct, 

passed all of the abovementioned quality control assessments (Sections 3.2.1.1-3.2.1.4). The bait 

culture was therefore deemed adequate for use in a Y2H library screen. This was performed by mating 

the bait culture with the Y2H prey culture, S. cerevisiae strain Y187 transformed with the pGADT7-

cDNA library (Section 2.19.3). It is estimated that approximately 1.8 x 107 cDNA clones were 

screened in this Y2H analysis (Section 2.19.5). 

Diploid yeast colonies were assessed for their ability to activate the Y2H reporter genes (Section 

2.19.6). A total of 505 diploid yeast colonies formed on TDO plates, indicating successful activation 

of the HIS3 nutritional reporter gene by 505 clones. Such colonies were numbered, individually 

picked and plated onto QDO plates. These high-stringency media plates required activation of both 

HIS3 and ADE2 nutritional reporter genes for colony formation. A total of 245 clones formed colonies 

on QDO plates. These clones were selected for X-α-gal assays to evaluate their ability to activate the 

MEL1 colorimetric reporter gene. Clones were subsequently classified into 107 primary clones and 

138 secondary clones according to their color intensity in the X-α-gal assay as well as their robustness 

of growth on QDO plates. A representative subset of scored clones is listed in Table 3.6 to illustrate 

the assessment of HIS3, ADE2 and MEL1 reporter genes activation.  A complete list of scored clones 

is available in Appendix VI. 

 

Table 3.6 Representative subset of clones illustrating scoring of HIS3, ADE2 and MEL1 reporter 

genes activation 

Clone ID 
Growth on TDO    

(HIS3 activation) 

Growth on QDO   

(ADE2 activation) 

X-α-gal assay                    

(MEL1 activation) 

1 ++++ +++ Pale blue 

2 +++ + No blue 

3 +++ - - 

4 ++++ ++++ Pale blue 

5 ++++ ++++ Dark blue 

6 ++++ +++ Pale blue 

7 +++ - - 

8 ++++ ++++ Medium blue 

9 ++ ++ Medium blue 

10 ++++ - - 

11 +++ ++ Pale blue 

12 +++ - - 

13 + - - 

14 ++++ +++ Dark blue 

15 ++ - - 

16 + - - 
Clones in blue font were designated as primary clones. Abbreviations: ++++, excellent growth; +++ fair 

growth; ++ weak growth; +, very weak growth; -, no growth; QDO, quadruple dropout (SD media lacking 

tryptophan, leucine, histidine and adenine); TDO, triple dropout (SD media lacking tryptophan, leucine and 

histidine); X-α-gal, 5-bromo-4-chloro-3-indolyl α-D-galactopyranoside. 
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The 107 primary clones were investigated for the specificity of their interactions with the pGBKT7-

parkin bait construct (Section 2.20.8). Only clones that were able to grow colonies on TDO plates 

when mated to pGBKT7-parkin, but had no or negligent colony growth when mated to either of three 

heterologous bait constructs, were considered to demonstrate specific bait-prey interactions. An 

example of such a TDO plate is shown in Figure 3.5. A representative subset of evaluated primary 

clones indicating their interaction specificity is listed in Table 3.7. A complete list of evaluated clones 

is tabulated in Appendix VII. Of the 107 primary clones subjected to interaction specificity testing, a 

total of 64 clones demonstrated interactions specific to the parkin bait.  

 

 

 

                                                   

 

Figure 3.5 Interaction specificity testing using heterologous bait mating. Shown above are diploid 

yeast colonies resulting from six clones individually mated with four heterologous bait constructs and 

grown on a QDO plate for 7 days. Only clones that formed colonies when mated to pGBKT7-parkin, 

but did not form colonies when mated to non-recombinant pGBKT7, pGBKT7-53 or pGBKT7-TTN 

were considered to demonstrate specific bait-prey interactions (clone 43 above). Abbreviations: QDO, 

quadruple dropout (SD media lacking tryptophan, leucine, histidine and adenine).   
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Table 3.7 Representative subset of clones scored for bait-prey interaction specificity  

Clone ID pGBKT7-parkin pGBKT7 pGBKT7-53 pGBKT7-TTN 

62 ++++ + + - 

64 ++++ + - + 

65 ++++ ++++ ++++ +++ 

66 ++++ + + + 

69 ++++ + + + 

71 ++++ ++++ +++ ++ 

75 ++++ ++++ + + 

90 ++++ +++ + + 

100 ++++ + + + 

101 ++++ - - + 

102 ++++ + - + 

104 ++++ + ++++ - 

113 ++++ + +++ + 

116 ++++ + ++++ - 

123 ++++ ++ +++ +++ 

140 ++++ + ++++ + 

141 ++++ + + - 

142 ++++ + + + 

147 ++++ + - - 

149 ++++ +++ - - 

150 ++++ - +++ + 

161 ++++ + + + 

162 ++++ + +++ + 

164 ++++ + + + 

165 ++++ + + + 

Clones in blue font were considered to demonstrate specific parkin-bait interactions. All colonies were scored 

after 7 days on QDO plates. Abbreviations: ++++, excellent growth; +++ fair growth; ++ weak growth; +, 

very weak growth; -, no growth; QDO, quadruple dropout (SD media lacking tryptophan, leucine, histidine 

and adenine). 
 

3.2.1.6 Identification of putative parkin-interacting clones 

Each of the 64 clones that demonstrated parkin-specific interactions were subjected to automated 

DNA sequencing. The insert sequence as well the in silico translated sequence were then compared to 

known cDNA and protein sequences using the BLASTn and BLASTp queries, respectively 

(http://www.ncbi.nlm.nih.gov/BLAST). This delivered 29 unique clones encoding in-frame proteins, 

16 duplicate clones (with identical insert sequences), and 19 clones with out-of-frame insert 

sequences (as dictated by the reading frame of the upstream GAL4-AD) that had no significant 

protein match when translated. The identities of the 64 investigated clones are listed in Table 3.8.  
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Table 3.8 Identification of putative parkin-interacting clones from the Y2H cDNA library screen 

  Genomic hit: BLASTn Protein hit: BLASTp   

Clone ID Identity Accession nr E-value        Accession nr E-value    
Cellular 

localization 
Domains 

23; 321 
H. sapiens exocyst complex 

component 4 (EXOC4) 
NM_021807.3 0.00         NP_068579.3 2E-95 Cytoplasm 

Sec8 exocyst 

complex component 

specific domain 

43; 101; 161; 

330; 377; 379 
H. sapiens pre-mRNA cleavage 

complex 2 protein (Pcf11) 
NM_015885.3 0.00 NP_056969.2 1E-85 Nucleus  CID domain 

66 H. sapiens dehydrodolichyl 

diphosphate synthase (DHDDS) 
NM_205861.2 6E-133 NP_995583.1 5E-41 

Plasma 

membrane 

Cis-isoprenyl 

diphosphate 

synthases 

142 H. sapiens caldesmon 1 

(CALD1) 
NM_033140.3 0.00 NP_149131.1 2E-21 

Plasma 

membrane; 

cytoskeleton  

Caldesmon 

147 H. sapiens fatty acid elongase 1 

(ELOVL1) 
NM_022821.2 1E-166 NP_073732.1 8E-13 Cytoplasm GNS1/SUR4 family 

165 H. sapiens coiled-coil domain 

containing 56 (CCDC56) 
NM_001040431.1 0.00 NP_001035521.1 1E-56 

Cytoplasm; 

mitochondria 

Coiled-coil-56  

superfamily 

166 H. sapiens myelin basic protein 

(MBP) 
NM_002385.2 0.00 NP_002376.1 2E-77 

Cytoplasm; 

centrosome 

Myelin MBP 

superfamily 

188; 435; 437; 

489; 494; 496 
H. sapiens serine/arginine-rich 

splicing factor 3 (SRSF3) 
NM_003017.4 0.00 NP_003008.1 6E-121 

Nucleus but 

not nucleoli 
RRM superfamily 

204 H. sapiens transketolase (TKT) NM_001064.3 0.00 NP_001055.1 3E-89 Cytoplasm 

TPP enzyme PYR 

superfamily; 

transketolase C-

terminal domain 

208 

H. sapiens protein-L-

isoaspartate (D-aspartate)  

O-methyltransferase (PCMT1) 

NM_005389.2 9E-59 NP_005380.2 5E-65 Cytoplasm 
AdoMet-MTase 

superfamily 
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  Genomic hit: BLASTn Protein hit: BLASTp   

Clone ID Identity Accession nr E-value Accession nr E-value 
Cellular 

localization 
Domains 

218 

H. sapiens non-POU domain 

containing, octamer-binding 

(NONO) 

NM_001145408.1 0.00 NP_001138880.1 4E-12 
Nucleus but 

not nucleoli 

NOPS_p54nrb 

superfamily; 

RRM1_p54nrb 

superfamily; 

RRM2_p54nrb 

superfamily 

 

223 

H. sapiens ArfGAP with 

RhoGAP domain, ankyrin repeat 

and PH domain 2 (ARAP2) 

NM_015230.2 0.00 NP_056045.2 1E-48 

Cytoplasm; 

cytoskeleton; 

focal 

adhesions 

RhoGAP domain;  

5 ankyrin and PH 

domain repeats; 

SAM domain of 

Arap1,2,3; 

 ArfGap superfamily; 

Ras association 

domain; 

 Sterile alpha motif 

225; 277; 333 

439 

H. sapiens transmembrane 

protein 222 (TMEM222) 
NM_032125.2 0.00 NP_115501.2 3E-112 Cytoplasm DUF778 superfamily 

242 

H. sapiens A kinase (PRKA) 

anchor protein (yotiao) 9 

(AKAP9) 

NM_005751.4 0.00 NP_005742.4 8E-55 

Golgi 

apparatus; 

vesicles; 

centrosome 

Centrosomal 

targeting domain;  

DUF515 

superfamily;  

Smc domain;  

SbcC domain 

252 

H. sapiens 

dehydrogenase/reductase (SDR 

family) member 7 (DHRS7) 

NM_016029.2 0.00 NP_057113.1 1E-71 

Nucleus but 

not nucleoli; 

cytoplasm 

NADB-Rossmann 

superfamily;  

DltE domain 

        

257 

H. sapiens ATP synthase 

mitochondrial F1 complex 

assembly factor 1 (ATPAF1) 

NM_022745.4 0.00 NP_073582.3 3E-87 
Cytoplasm; 

mitochondria 
ATP11 superfamily 
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  Genomic hit: BLASTn Protein hit: BLASTp   

Clone ID Identity Accession nr E-value Accession nr E-value 
Cellular 

localization 
Domains 

258; 443 

H. sapiens adaptor-related 

protein complex 3, sigma 1 

subunit (AP3S1) 

 

NM_001284.2 7E-173 NP_001275.1 
1.00E-

130 
Cytoplasm 

Clathrin adaptor S 

superfamily 

259 
H. sapiens calpain 3, (p94) 

(CAPN3) 
NM_000070.2 5E-40 NP_775111.1 1E-67 Cytoplasm 

EFh superfamily;  

EF-hand calcium 

binding motif; 

calpain-III 

superfamily 

274 
H. sapiens carboxypeptidase E 

(CPE) 
NM_001873.2 1E-101 NP_001864.1 9E-20 

Plasma 

membrane; 

cytoplasm; 

nucleus  

Peptidase M14-like 

superfamily 

276; 329 

H. sapiens small nuclear 

ribonucleoprotein polypeptide N 

(SNRPN) 

NM_003097.3 0.00 NP_073719.1 4E-75 Nucleus 
Sm protein B 

superfamily 

278 
H. sapiens guanine nucleotide 

binding protein beta polypeptide 

3 (GNB3) 

NM_002075.2 0.00 NP_002066.1 4E-60 

Plasma 

membrane; 

cytoplasm 

WD40 domain 

317 H. sapiens transformer 2 alpha 

homolog (Drosophila) (TRA2A) 
NM_013293.4 0.00 NP_037425.1 1E-88 

Nucleoli, 

vesicles 
RRM superfamily 

318 H. sapiens septin 9 (SEPT9) NM_001113491.1 0.00 NP_001106963.1 2E-105 
Cytoplasm; 

cytoskeleton 

MCLC superfamily; 

CDC/septin GTPase 

family 

319 

H. sapiens actin, gamma 1 

(ACTG1) 

 

NM_001614.3 0.00 NP_001605.1 6E-23 Cytoskeleton  Actin 

337 
H. sapiens phosphoglucomutase 

1 (PGM1) 
NM_002633.2 0.00 NP_002624.2 1E-50 

Cytoplasm;  

cytoskeleton  

phosphoglucomutase 

superfamily 
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  Genomic hit: BLASTn Protein hit: BLASTp   

Clone ID Identity Accession nr E-value Accession nr E-value 
Cellular 

localization 
Domains 

395 

H. sapiens tyrosine 3-

monooxygenase/tryptophan 5-

monooxygenase activation 

protein, eta polypeptide 

(YWHAH) 

NM_003405.3 0.00 NP_003396.1 8E-128 Cytoplasm 14-3-3 superfamily 

423 
H. sapiens nuclear receptor 

subfamily 1, group H, member 2 

(NR1H2) 

NM_007121.5 6E-39 NP_009052.3 5E-40 
Cytoplasm; 

nucleus 

NR-DBD 

superfamily 

432 

H. sapiens hepatocyte growth 

factor-regulated tyrosine kinase 

substrate (HGS) 

NM_004712.3 0.00 NP_004703.1 2E-67 
Cytoplasm; 

vesicles 

VHS-ENTH-ANTH 

superfamily; 

 ApoLp-III-like 

superfamily; 

Hrs-helical domain; 

FYVE domain  

483 
H. sapiens phosphoglycerate 

mutase 1 (PGAM1) 
NM_002629.2 0.00 NP_002620.1 2E-54 Cytoplasm Histidine phosphatase 

domain 

141 

PREDICTED: H. sapiens 

potassium voltage-gated 

channel, KQT-like subfamily, 

member 2 (KCNQ2) 

XM_006723791 0.00 
no significant 

similarity 
- - - 

198 
H. sapiens postmeiotic 

segregation increased 2 

pseudogene 4 (PMS2P4) 

NR_046297.1 0.00 
no significant 

similarity 
- - - 

48; 69; 100; 

164; 372 

H. sapiens chromosome 3 

genomic contig -      

ubiquitin carboxyl-terminal 

hydrolase 4 (UCHL4) 

NT_022517.18 0.00 
no significant 

similarity 
- - - 
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  Genomic hit: BLASTn Protein hit: BLASTp   

Clone ID Identity Accession nr E-value Accession nr E-value 
Cellular 

localization 
Domains 

62 

H. sapiens chromosome 20 

genomic contig - 

double-stranded RNA-binding 

protein Staufen (STAU) 

 

NT_011362.10 0.00 
no significant 

similarity 
- - - 

64 
H. sapiens chromosome 6 

genomic contig - calcipressin-2 
NT_007592.15 0.00 

no significant 

similarity 
- - - 

102, 8 H. sapiens chromosome 2 

genomic contig 
NW_001838860.1 0.00 

no significant 

similarity 
- - - 

174; 221 
H. sapiens chromosome 1 

genomic contig 
NT_167186.1 0.00 

no significant 

similarity 
- - - 

222 

H. sapiens chromosome 5 

genomic contig - 

BRCA1-A complex subunit 

(RAP80) 

NT_023133.13 0.00 
no significant 

similarity 
- - - 

14; 224 
H. sapiens chromosome 4 

genomic contig 
NW_001838915.1 0.00 

no significant 

similarity 
- - - 

436 

H. sapiens chromosome 16 

genomic contig - 

ADP-ribosylation factor-binding 

protein (GGA2) 

NT_010393.16 0.00 
no significant 

similarity 
- - - 

476 
H. sapiens chromosome 18 

genomic contig  
NT_010859.14 0.00 

no significant 

similarity 
- - - 

495 

H. sapiens chromosome 12 

genomic contig -  

TBC1 domain family member 

30 (TBC1D30) 

NT_029419.12 0.00 
no significant 

similarity 
- - - 

Abbreviations: BLASTn, Basic Local Alignment Search Tool nucleotide; BLASTp, Basic Local Alignment Search Tool protein; Y2H, yeast two-hybrid; all domain 

abbreviations can be found in the conserved domain database (http://www.ncbi.nlm.nih.gov/ccd). 
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3.2.2 Selection of putative parkin interactors  

Each of the 29 putative parkin interactors were investigated in publicly available databases such as 

ExPASy http://www.expasy.org), GeneCards (http://www.genecards.org) and the Human Protein 

Atlas (http://www.proteinatlas.org) in order to obtain relevant information regarding the function, 

tissue expression and subcellular expression of the proteins. Based on such information, four of the 

putative parkin interactors were prioritized for verification and further characterization: 14-3-3η, γ-

actin, ATPAF1 and SEPT9. The selection of these four putative interactors does not exclude the other 

25 as parkin-interacting candidates; however, due to time constraints, it was necessary to focus on 

interactors of plausible functional consequence. Each prioritized putative parkin interactor will be 

briefly discussed to highlight why they were selected for further analysis.     

 

3.2.2.1 14-3-3η 

The 14-3-3 eta (14-3-3η) protein, also referred to as tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, eta polypeptide (YWHAH), is a member of the 14-3-3 protein 

family which mediates signal transduction by binding to phosphoserine-containing proteins. The 14-

3-3 proteins are abundantly expressed in the brain, and are involved in the regulation of neuronal 

development and cell death (Takahashi 2003).  

This protein has been previously shown to interact with parkin (Sato et al. 2006); 14-3-3η acts as a 

negative regulator of parkin activity by reducing parkin substrate affinity. The identification of a 

known parkin interactor by the Y2H library screen in this study supports the validity of this approach. 

Investigating the interaction between 14-3-3η and parkin might deepen our understanding of the 

regulation of parkin, which might be of interest in PD research.    

 

3.2.2.2 ATP synthase mitochondrial F1 complex assembly factor 1 (ATPAF1) 

Very little is known about ATPAF1; it is thought to be a soluble mitochondrial-associated protein that 

is required for the correct assembly of the α and β subunits of the F1-ATP synthase (Wang and 

Ackerman 2000; Wang et al. 2001). This putative interactor was selected for further verification given 

parkin’s important role in mitochondrial health, and ATPAF1 being the only mitochondrial-associated 

protein identified in the Y2H screen. While the nature and consequence of the interaction of parkin 

with ATPAF1 is unclear, disruption of this interaction could conceivably influence mitochondrial 

energetics. This may of relevance to PD and neurodegeneration (Petrozzi et al. 2007).  
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3.2.2.3 γ-Actin 

The association between parkin and the cytoskeleton has been well established. Parkin associates with 

microtubules and promotes the ubiquitination and proteasomal degradation of α-tubulin and β-tubulin 

(Ren et al. 2003). It has also been demonstrated that parkin co-localizes with actin filaments in 

neuronal cells (Huynh et al 2000). Parkin is known to interact with LIM kinase-1, which 

phosphorylates cofilin, an actin depolymeration enzyme (Lim et al. 2007). It has also been shown that 

parkin overexpression reduces LIM kinase-1 induced actin filament accumulation, suggesting that 

parkin contributes to the regulation of actin accumulation. It would therefore be worthwhile to 

characterize this interaction of parkin and gamma-actin (γ-actin) further, particularly as the 

accumulation of actin has been associated with apoptosis and neurodegeneration (Gourlay and 

Ayscough 2005; Fulga et al. 2007).  

 

3.2.2.4 Septin 9 (SEPT9) 

Septins, including SEPT9, are GTPases that interact with the cytoskeleton and contribute to cellular 

processes such as cytokinesis, motility and cell polarity (Field and Kellogg 1999). Two members of 

the septin family, septins 2 (SEPT2) and 4 (SEPT4), were previously identified in neurofibrillary 

tangles and senile plaques in brains affected by Alzheimer’s disease (Kinoshita et al. 1998). This 

supports the involvement of septins in neurodegeneration. 

Parkin is known to interact with, ubiquitinate and promote the degradation of septin 5 (SEPT5; also 

known as CDCrel-1) (Zhang et al. 2000).  A similar study found a further functional interaction 

between parkin and septin 4 (Choi 2003). Both septins 4 and 5 accumulate in the brains of patients 

with EOPD (Choi 2003; Shehadeh et al. 2009), suggesting an important functional relationship 

between parkin and septin proteins.  

While SEPT9 has not been implicated in neurodegeneration to date, the putative parkin-SEPT9 

interaction warrants further study, given the demonstrated role of septin proteins as parkin interactors. 

In addition, the interaction between parkin and SEPT5 will be used as a positive control in subsequent 

analyses, as SEPT5 is known to accumulate within cells in the absence of parkin.   

 

3.2.3 Verification of four parkin interactors 

When identifying putative protein interactions using the Y2H system, it is pivotal to distinguish 

between true interactions and false positive results. Such false positive interactions might arise due to 

several factors: proteins observed to interact in yeast do so as fusion proteins and not as their native 

forms; observed interactions occur in the yeast nucleus, which does not necessarily imitate the 
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subcellular localization of the proteins in neurons, or the observed interactions might be facilitated by 

the intracellular environment of the yeast cell (Serebriiskii et al. 2000; Guo et al. 2008). It is therefore 

important to perform experiments that verify the protein interactions in a setting that mimics the in 

vivo conditions as closely as possible.  

For this reason, two further, independent approaches were used to verify the four putative parkin 

interactions in a human SH-SY5Y neuroblastoma cell line: three-dimensional in vivo co-localization 

(Section 3.2.3.1) and co-IP (Section 3.2.3.2). In addition to the four identified parkin interactions, the 

previously-described interaction of parkin with SEPT5 (Zhang et al. 2000) will be used as a positive 

control in these experiments.   

 

3.2.3.1 In vivo co-localization of parkin and putative parkin interactors 

Immunocytochemistry followed by confocal microscopy imaging of stained SH-SY5Y cells were 

used to investigate the in vivo co-localization of endogenously-expressed parkin and each of the 

putative parkin interactors (Section 2.22). Furthermore, Z-stacking was employed in order to acquire 

and resolve fluorescent signals in all three dimensions, encompassing the entire volume of the imaged 

cell.  

The results of the co-localization analyses of each interacting pair are relayed in Figures 3.6 to 3.10. 

Each co-localization analysis was performed in triplicate (consisting of two to three imaged cells per 

replicate), of which one representative image of each interacting pair is shown in these figures. 

Illustrated in each figure is a single representative frame out of 25 frames collected in Z-stacks.  

Each of Figures 3.6 to 3.10 consists of three fluorescent images: fluorescence acquired in the green 

channel (Panel A of each figure) and fluorescence acquired in the red channel (Panel B), where the 

green and red fluorescence correspond to the localization of each of the two proteins under 

investigation, and an overlay of the fluorescence acquired in the green, red and blue channels (Panel 

C), where Hoechst H-33342 nuclear staining (blue fluorescence) was employed for orientation 

purposes. Panel D of each figure illustrates a software-generated image of the subcellular co-

localization of the protein pair, where yellow pixels indicate sites of co-localization. Co-localization is 

also diagrammatically represented as a scatter plot of the fluorescence acquired for each pixel (Panel 

E); green fluorescent intensity is plotted on the y-axis and red fluorescent intensity on the x-axis. 

Pixels with co-localizing green and red signals are represented in box 3 of the scatter plot (Panel E), 

where the threshold values for inclusion in box 3 were determined by the fluorescent intensity of 

single fluorophore-stained images of each protein of interest. Finally, each figure is accompanied by 

measures of the degree of co-localization as calculated by the imaging software (Panel F). The 

weighted co-localization coefficients of each color channel quantify the relative contribution of that 
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channel to the pixels of interest (ranging from 0 to 1.0); the overlap coefficient signifies the actual 

overlap of signals and represents the true degree of co-localization (ranging from 0 to 1.0), and the 

correlation R denotes the Pearson’s correlation coefficient of intensity distribution between the two 

color channels (ranging from -1.0 to 1.0) (Zinchuk et al. 2007; Dunn et al. 2011).  

 

Parkin and SEPT5 

As can be seen in Figure 3.6A, SEPT5 is highly expressed in nuclei as well as the cytosol of SH-

SY5Y cells. Parkin, on the other hand, is mainly localized to the cytosol, with little to no parkin 

staining observed in nuclei (Figure 3.6B). Parkin also demonstrates small punctuate staining behavior 

(e.g. upper left side of cell), which may represent the association of parkin with cellular organelles 

such as mitochondria (Narendra et al. 2008). Parkin and SEPT5 co-localize in the cytosol (Figure 

3.6D), with the co-localization being particularly prominent in the uppermost neuronal projection of 

  

   

 

 

 

 

  

 

 

 

 

Figure 3.6 Florescent imaging and co-localization analysis of parkin and SEPT5. SH-SY5Y cells 

were immunocytochemically stained with primary antibodies directed against parkin and SEPT5 as 

well as appropriate fluorophore-conjugated secondary antibodies. A, localization of SEPT5 stained 

with Alexa488 (green). B, localization of parkin stained with Cy3 (red). Parkin punctae are indicated 

by a white arrow. C, overlay of red, green and Hoechst nuclear (blue) fluorescent signals. D, Co-

localization of green and red signals. E, scatter plot of signal intensity in green and red channels, 

where pixels in box 3 represent co-localizing signals. F, quantitative measures of co-localization of 

parkin and SEPT5.  
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the imaged cell. The successful co-localization of parkin and SEPT5 is further reflected in the overlap 

coefficient of 0.41 (Figure 3.6F). While low values for the weighted co-localization coefficients of 

parkin (0.236) and SEPT5 (0.149) and the correlation R (0.04) were obtained, this is consistent with a 

model of transiently-interacting proteins, where only a small fraction of parkin is expected to be 

interacting with SEPT5 (and only a small fraction of SEPT5 with parkin) at a given time point.    

 

Parkin and SEPT9 

SEPT9 is observed throughout the cytosol and the nuclei (Figure 3.7A). Interestingly, SEPT9 adopts a 

fibrillar structure in the perinuclear area, which may be related to its function (Surka et al. 2002). The 

successful co-localization of parkin and SEPT9 is visually represented in Figure 3.7D, where the two 

proteins co-localize in the cytosol of SH-SY5Y cells. This co-localization is mainly in the central (but 

not nuclear) parts of the cells.   

 

     

  

 

 

 

 

   

 

 

 

  

 

Figure 3.7 Florescent imaging and co-localization analysis of parkin and SEPT9. SH-SY5Y cells 

were immunocytochemically stained with primary antibodies directed against parkin and SEPT9 as 

well as appropriate fluorophore-conjugated secondary antibodies. A, localization of SEPT9 stained 

with Alexa488 (green). B, localization of parkin stained with Cy3 (red). C, overlay of red, green and 

Hoechst nuclear (blue) fluorescent signals. D, Co-localization of green and red signals. E, scatter plot 

of signal intensity in green and red channels, where pixels in box 3 represent co-localizing signals. F, 

quantitative measures of co-localization of parkin and SEPT9.  
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Parkin and ATPAF1 

ATPAF1-positive staining was observed throughout the cytosol, as well as strong staining in the cell 

nuclei (Figure 3.8A). The regions of intense staining within nuclei are likely due to high expression of 

this protein within nucleoli. While cytosolic ATPAF1 is mostly dispersed in a diffuse fashion, some 

punctuate staining can be seen towards the left side of Figure 3.8A. Parkin “punctae” are clearly 

visible in the cytosol on these cells (Figure 3.8B). ATPAF1 and parkin co-localize somewhat 

irregularly in the cytosol (Figure 3.8D). No co-localization was found in the nuclei. Interestingly, 

some of the observed co-localization correspond to the aforementioned punctae (lower left area of 

Figure 3.8D), which may indicate the dual recruitment of these proteins to the same cellular locations.     

 

 

   

 

 

 

 

 

  

 

 

 

 

 

Figure 3.8 Florescent imaging and co-localization analysis of parkin and ATPAF1. SH-SY5Y 

cells were immunocytochemically stained with primary antibodies directed against parkin and 

ATPAF1 as well as appropriate fluorophore-conjugated secondary antibodies. Punctuate staining is 

indicated by white arrows. A, localization of ATPAF1 stained with Alexa488 (green). B, localization 

of parkin stained with Cy3 (red). C, overlay of red, green and Hoechst nuclear (blue) fluorescent 

signals. D, Co-localization of green and red signals. E, scatter plot of signal intensity in green and red 

channels, where pixels in box 3 represent co-localizing signals. F, quantitative measures of co-

localization of parkin and ATPAF1.  
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Parkin and 14-3-3η 

The 14-3-3η protein is found in the cytosol, nuclei and nucleoli (Figure 3.9A). Some co-localization 

of parkin and 14-3-3η is seen in cytosol, but not the nuclei, of SH-SY5Y cells (Figure 3.9D). The co-

localization of these proteins is supported by the overlap coefficient of 0.41 (Figure 3.9F).    

 

   

 

 

 

 

 

  

 

 

 

 

 

Figure 3.9 Florescent imaging and co-localization analysis of parkin and 14-3-3η. SH-SY5Y cells 

were immunocytochemically stained with primary antibodies directed against parkin and 14-3-3η as 

well as appropriate fluorophore-conjugated secondary antibodies. A, localization of 14-3-3η stained 

with Alexa488 (green). B, localization of parkin stained with Cy3 (red). C, overlay of red, green and 

Hoechst nuclear (blue) fluorescent signals. D, Co-localization of green and red signals. E, scatter plot 

of signal intensity in green and red channels, where pixels in box 3 represent co-localizing signals. F, 

quantitative measures of co-localization of parkin and 14-3-3η.  

 

Parkin and cytoskeletal actin 

It should be noted that the anti-γ-actin antibody used in this study is also likely to recognize the β-

actin isoform (according to the manufacturer). This is due to the very high sequence similarity 

between these two cytoskeletal actin isoforms. Hence, it cannot be assumed that the results obtained 

here is specific to the γ-actin isoform only. This dissertation will therefore refer to cytoskeletal actin 

instead of γ-actin to reflect this distinction. In contrast with the other co-localization analyses, the 

cells that were stained for the co-localization analysis of parkin and γ-actin were fixed with methanol 
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instead of paraformaldehyde (Section 2.22.2). This was done as methanol fixation is better suited to 

preserving cytoskeletal fine-structure than paraformaldehyde, and was therefore appropriate for the 

imaging of actin. Actin demonstrated strong staining along the cytoskeletal filaments and the plasma 

membrane (Figure 3.10B). Interestingly, methanol-fixed parkin showed strand-like staining behavior 

in the cytosol which was not as evident in paraformaldehyde-fixed cells (Figure 3.10A). The 

substantial co-localization of parkin and cytoskeletal actin along actin filaments in the cytosol and 

along the plasma membrane is shown in Figure 3.10D.    

 

                    

 

 

 

 

          F 

 

 

 

 

 

 

Figure 3.10 Florescent imaging and co-localization analysis of parkin and actin. SH-SY5Y cells 

were immunocytochemically stained with primary antibodies directed against parkin and γ-actin as 

well as appropriate fluorophore-conjugated secondary antibodies. A, localization of parkin stained 

with Alexa488 (green). B, localization of γ-actin (and β-actin) stained with Cy3 (red). C, overlay of 

red, green and Hoechst nuclear (blue) fluorescent signals. D, Co-localization of green and red signals. 

E, scatter plot of signal intensity in green and red channels, where pixels in box 3 represent co-

localizing signals. F, quantitative measures of co-localization of parkin and actin.  

 

In summary, all five of the putative parkin interactors (SEPT5, SEPT9, ATPAF1, 14-3-3η and 

cytoskeletal actin) that were investigated, co-localize with parkin to a sufficient degree; i.e. a 

significant fraction of each protein of interest was localized to the same subcellular localization as 

parkin. These co-localization analyses therefore support the plausibility of the putative protein 

interactions.  
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3.2.3.2 Co-IP of parkin and putative parkin interactors 

While in vivo co-localization analyses provided evidence for the physical proximity of parkin and the 

putative parkin interactors in SH-SY5Y cells, further verification was needed to demonstrate physical 

interaction of these proteins. Co-IPs of each protein pair were therefore performed, where each 

endogenous protein was immunoprecipitated out of SH-SY5Y whole cell lysate (along with any 

interacting proteins), after which western blotting was used to test for the presence of the interacting 

partner (Sections 2.22 and 2.23).   

Two control co-IPs were performed concurrent to each experiment: immunoprecipitation with an anti- 

hemagglutinin-tag (HA) antibody, and a protein G agarose control without any antibody. The use of 

these negative controls validated the specificity and authenticity of the obtained results.  

The results of the co-IP experiments are shown in Figure 3.11. All five of the investigated parkin 

interactors (SEPT5, SEPT9, ATPAF1, 14-3-3η and γ-actin) were co-immunoprecipitated with parkin 

(Figure 3.11, left column). Reciprocally, parkin was co-immunoprecipitated with each of the proteins 

of interest (Figure 3.11, right column). No protein bands were visible in either of the two control lanes 

(labeled HA and Prot. G), demonstrating that the observed co-IPs are not spurious but the result of 

true interactions between parkin and the investigated parkin interactors.    

Notably, in initial co-IP experiments involving parkin and SEPT9, it was found that, while parkin was 

present in a SEPT9 precipitate, the reciprocal co-IP of SEPT9 along with parkin could not be achieved 

(results not shown). This one-directional co-IP persisted during several repeat experiments. However, 

it was found that the use of a different anti-parkin antibody (Sigma-Aldrich, PRK8), which recognizes 

a different epitope on the parkin protein, did produce a successful co-IP of parkin and SEPT9 (Figure 

3.11B, left column). This discrepancy could possibly be due to the binding site of SEPT9 on the 

parkin protein: binding of these two proteins may obscure the epitope for one anti-parkin antibody 

(preventing immunoprecipitation) without affecting the epitope of another antibody.   

Initial co-IP of cytoskeletal actin along with parkin revealed binding of the anti-γ-actin antibody to 

proteins in both of the control lanes (results not shown). In order to overcome the non-specific binding 

of this antibody in this immunoprecipitation application, a different antibody raised against β-actin 

(Cell Signaling, #4970) was used to detect both β-actin and γ-actin isoforms in the parkin-

immunoprecipitated lysate. According to the manufacturer, the β-actin antibody is not specific to the 

β-actin isoform only, due to the high homology of these isoforms (similar as to the γ-actin antibody). 

Probing with this β-actin antibody produced a positive and specific co-IP result (Figure 3.11E, left 

column).  
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A 

IP: parkin                         IP: SEPT5 

WB: SEPT5                         WB: parkin 

 

B 

IP: parkin                         IP: SEPT9 

WB: SEPT9                         WB: parkin 

 

C 

IP: parkin                         IP: ATPAF1 

WB: ATPAF1                         WB: parkin 

 

D 

IP: parkin                         IP: 14-3-3η 

WB: 14-3-3η                         WB: parkin 

 

E 

IP: parkin                         IP: γ-actin 

WB: β-actin                         WB: parkin 

 

Figure 3.11 Co-IP of parkin and putative parkin interactors.  Endogenous proteins were 

immunoprecipitated out of SH-SY5Y cell lysates and tested for the presence of the putative interactor 

via western blot. Reciprocal co-IPs were performed for each protein pair. Numbers on the right-hand 

side of western blots denote protein sizes (in kDa) Extra bands in C were removed for cosmetic effect. 

A, co-IP of parkin and SEPT5. B, co-IP of parkin and SEPT9. C, co-IP of parkin and ATPAF1. D, co-

IP of parkin and 14-3-3η. E, co-IP of parkin and β/γ-actin. Abbreviations: co-IP, co-

immunoprecipitation; HA, hemagglutinin-tag antibody control; IP, immunoprecipitation; kDa, 

kiloDalton; Prot. G, protein G agarose control; WB, western blot; WCE, whole cell extract. 
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As stated, the antibodies used could not distinguish whether parkin interacts with the γ-isoform only 

or with both the β- and γ-actin isoforms, but this uncertainty was overlooked given the extremely high 

sequence similarity (99%) and near-complete functional overlap of the two cytoskeletal actin 

isoforms. In fact, while the insert sequence of the Y2H clone used to identify γ-actin as a parkin-

interacting protein (Section 3.2.1.6) had a higher nucleotide match with ACTG1 (100% identity) than 

with ACTB (92% identity), the in silico translated sequence had a 100% identity to both actin isoforms 

(Figure 3.12). This strongly suggests that parkin interacts with the protein region common to both 

isoforms.   

 

 β-Actin      MDDDIAALVVDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEAQS 60 

 γ-Actin      MEEEIAALVIDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEAQS 60 

 ORF          ----------------------------------------------MGQKDSYVGDEAQS 14 

                                                            ************** 

 

 β-Actin      KRGILTLKYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANREKMT 120 

 γ-Actin      KRGILTLKYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANREKMT 120 

 ORF          KRGILTLKYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANREKMT 74 

              ************************************************************ 
 

 β-Actin      QIMFETFNTPAMYVAIQAVLSLYASGRTTGIVMDSGDGVTHTVPIYEGYALPHAILRLDL 180 

 γ-Actin      QIMFETFNTPAMYVAIQAVLSLYASGRTTGIVMDSGDGVTHTVPIYEGYALPHAILRLDL 180 

 ORF          QIMFETFNTPAMYVAIQAVLSLYASGRTTGIVMDSGDGVTHTVPIYEGYALPHAILRLDL 134 

              ************************************************************ 

 

 β-Actin      AGRDLTDYLMKILTERGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSY 240 

 γ-Actin      AGRDLTDYLMKILTERGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSY 240 

 ORF          AGRDLTDYLMKILTERGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSY 194 

              ************************************************************ 

 

 β-Actin      ELPDGQVITIGNERFRCPEALFQPSFLGMESCGIHETTFNSIMKCDVDIRKDLYANTVLS 300 

 γ-Actin      ELPDGQVITIGNERFRCPEALFQPSFLGMESCGIHETTFNSIMKCDVDIRKDLYANTVLS 300 

 ORF          ELPDGQVITIGNERFRCPEALFQPSFLGMESCGIHETTFNSIMKCDVDIRKDLYANTVLS 254 

              ************************************************************ 

 

 β-Actin      GGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQ 360 

 γ-Actin      GGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQ 360 

 ORF          GGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQ 314 

              ************************************************************ 

 

 β-Actin      EYDESGPSIVHRKCF 375 

 γ-Actin      EYDESGPSIVHRKCF 375 

 ORF          EYDESGPSIVHRKCF 329 

              *************** 
 

Figure 3.12 Protein alignment of translated ORF sequence of Y2H clone 319 with actin 

isoforms. Protein sequence of clone 319 had a 100% identity to both the β- and γ-actin isoforms. In 

silico alignment was performed with CLUSTAL O 1.2.1 (http://www.ebi.ac.uk/Tools/msa/clustalo). 

 

In summary, both in vivo co-localization and co-IP experiments demonstrated that the interaction of 

parkin with SEPT9, ATPAF1, 14-3-3η and cytoskeletal actin, originally identified in a Y2H library 

screen, are in fact true interactions. 
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3.2.4 Effect of parkin deficiency on protein levels of parkin interactors 

The functional consequence of the verified interactions of parkin with SEPT9, ATPAF1, 14-3-3η and 

actin were investigated in cellular models of parkin deficiency. Given parkin’s role in targeting many 

of its interactors for proteasomal degradation, the absence of functional parkin might result in the 

accumulation of such UPS-substrates. This loss-of-parkin-dependent accumulation has been 

demonstrated for many parkin substrates, including cyclin E (Staropoli et al. 2003), AIMP2 (Corti et 

al. 2003), PARIS (Shin et al. 2011) and FAF1 (Sul et al. 2013).  Hence, accumulation of a parkin 

interactor in the absence of parkin would support the role of such an interactor as an authentic 

substrate for parkin K48-linked ubiquitination and proteasomal degradation. The previously described 

accumulation of SEPT5 (Zhang et al. 2000) will be used as a positive control in these experiments.    

 

3.2.4.1 In an RNAi-mediated parkin knockdown model 

The present study aimed to create an RNAi-mediated cell model of parkin deficiency, by using siRNA 

transfection to bring about the targeted knockdown of parkin in cultured SH-SY5Y cells. Of the four 

siRNA molecules tested, only two (Hs_PARK2_8 and Hs_PARK2_10) demonstrated an effect on 

parkin mRNA expression as determined by q-RT-PCR. Transfection with either of these siRNA 

molecules (henceforth referred to as siRNA’s 8 and 10, respectively) decreased the expression of 

parkin mRNA by 50-55%, in comparison to cells transfected with a non-silencing control siRNA 

(Figure 3.13). This result was consistent across three separate experimental runs. 

 

 

 

 

 

 

 

Figure 3.13 q-RT-PCR analysis of parkin mRNA expression following siRNA transfection. SH-

SY5Y cells were treated with 5nM of siRNA’s 8, 10 or a non-silencing control for 48h. Parkin 

mRNA expression was normalized to the expression of GAPDH, B2M and RPL13A reference genes. 

Relative mRNA expression is shown as mean ± SD, N=3. Asterisks indicate significance (p<0.05) 

upon unpaired t-testing (8: p=0.0025; 10: p=0.0012). Abbreviations: 8, Hs_PARK2_8 siRNA; 10, 

Hs_PARK2_10 siRNA; N, experimental runs; NSC, non-silencing control; SD, standard deviation.  
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When validating siRNA molecules for RNAi experiments, it is important to determine gene 

knockdown efficiency on both a mRNA and a protein level, as the optimal experimental conditions 

for protein knockdown may differ from that of mRNA knockdown (Shan 2010). Therefore, both 

siRNA’s 8 and 10 were subjected to further knockdown efficiency validation via western blot.    

Initial western blot experiments of siRNA-treated SH-SY5Y cells showed that neither siRNA 

molecule had an observable effect on parkin protein expression (results not shown). Consequently, 

siRNA transfection conditions were modified by increasing siRNA concentration from 5nM to 50nM, 

as well as by increasing siRNA treatment time from 48h to 72h. The siRNA concentration was 

increased in effort to improve siRNA transfection efficiency, whereas a longer incubation period may 

be necessary for parkin protein already expressed at the time of transfection to be degraded. Initial 

experiments showed that transfection of siRNA’s 8 and 10 at these modified conditions resulted in 

90% and 75% parkin knockdown, respectively (Figure 3.14A). However, multiple repeat experiments 

using the same transfection conditions failed to replicate these results consistently. Repeat 

transfections resulted in either only one of the siRNA’s demonstrating sufficient knockdown of parkin 

(Figure 3.14B) or neither having a significant effect (Figure 3.14C).  

 

 

  

 

 

 

 

 

 

 

Figure 3.14 Parkin protein expression following siRNA transfection. SH-SY5Y cells were treated 

with 50nM of siRNA’s 8, 10 or a non-silencing control (NSC) for 72h. Parkin expression (top lanes, 

52 kDa) was normalized to GAPDH expression (bottom lanes, 36 kDa). Relative expression was 

calculated relative to NSC. Parkin knockdown efficiency of 8 and 10 was inconsistent across 

numerous experimental runs, with representative results illustrated here. A, successful knockdown by 

both siRNA’s. B, successful knockdown by only one siRNA. C, unsuccessful knockdown by both 

siRNA’s. Abbreviations: 8, Hs_PARK2_8 siRNA; 10, Hs_PARK2_10 siRNA; kDa, kiloDalton; 

NSC, non-silencing control.  
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Due to the inconsistency in knockdown ability at the protein level, it could not be confidently 

assumed that parkin is sufficiently knocked down following transfections with either of the two tested 

siRNA molecules. It is pivotal in downstream experiments that successful parkin knockdown can be 

implicitly assumed, as many of these downstream applications do not allow for parkin knockdown to 

be directly confirmed. For that reason, it was decided to use an alternative approach to investigate the 

functional effects of parkin deficiency.  

 

3.2.4.2 In fibroblasts from patients with parkin mutations  

Primary fibroblasts obtained from patients with parkin mutations are commonly used as cellular 

models of parkin dysfunction (Auburger et al. 2012). In particular, the use of fibroblasts with 

homozygous parkin mutations that grossly destabilize or truncate the protein, such as whole exonic 

deletions, provide cell models without any functional parkin (Mortiboys et al. 2008; Grunewald et al. 

2010; Pacelli et al. 2011). Such parkin-null cell models are therefore valuable in the investigation of 

the functional effects of parkin deficiency, and will be employed in the present study as an alternative 

to RNAi-mediated parkin knockdown SH-SY5Y cells. While dermal fibroblasts may have several 

drawbacks in comparison to neuronal cells when studying neurodegeneration-related proteins, it is 

advantageous over RNAi-generated cell models in many regards. Of relevance to the current study, 

fibroblasts with predefined parkin mutations do not require repeated and transient genetic 

manipulation to bring about the loss of parkin. Parkin-mutant fibroblasts were therefore used as a 

robust and stable model of parkin deficiency.  

Fibroblasts were obtained from three South African PD patients with parkin-null mutations, as 

identified by parkin mutation screening in this dissertation (Section 3.1.2), and who consented to skin 

punch biopsies. This included patient 23 with a homozygous exon 3-4 deletion (henceforth referred to 

as P1), as well as the affected sibling of patient 16 and the proband (patient 16), both with 

homozygous exon 4 deletions, which will be referred to as P2 and P3, respectively. P2, which was not 

included as a proband in the initial parkin genetic screen, has been examined by a movement disorder 

specialist. Three wild-type parkin fibroblast cell lines, namely WT2, WT3 and WT4, were used as 

age- and gender-matched controls. These samples were not re-labeled for the purposes of this study in 

order to ensure consistency of sample labeling in experiments by other members of our research team. 

All three patients were initially available for the current study. However, due to extensive microbial 

contamination of P1’s fibroblasts, these cells had to be discarded and P1 was therefore not available 

for any of the functional studies in this dissertation.  

The functional effect of parkin deficiency on the protein expression levels of each of the four parkin 

interactors was investigated in patient-derived and wild-type fibroblasts. Here, western blots and 

densitometry was used to assay the relative expression of each parkin interactor (Figure 3.15A-D). 
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Figure 3.15 Protein expression levels of parkin interactors in patient-derived and control 

fibroblasts. Relative protein expression of (A) ATPAF1, (B) SEPT9, (C) γ-actin and (B) 14-3-3η  

was assayed with western blots in fibroblasts from patients with parkin mutations (P2 and P3) and 

wild-type controls (WT2, WT3, WT4). Expression of interactors (top lanes) was normalized to 

GAPDH expression (bottom lanes). Experiment was performed in triplicate (N=3) of which one 

representative western blot is shown for each interactor; all three replicate western blots can be found 

in Appendix VIII. Numbers on the side of western blots denote protein sizes (in kDa). Box-and-

whisker plots depict relative protein densitometric measurements for three experimental runs. 

Abbreviations: AU, arbitrary units; kDa, kiloDalton; P, patient; WT, wild-type. 
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Each interactor was immunoblotted in three separate experimental runs in whole cell lysates from 

each of P2, P3, WT2, WT3 and WT4 cells. New lysates were obtained from three successive passages 

of each cell line for every experimental run. Lysates were simultaneously blotted for GAPDH 

expression, which served as a loading control and allowed for normalization of protein expression 

across different samples. Relative protein expression of each parkin interactor was calculated across 

all three experimental runs, as illustrated in Figure 3.15. As some variation was seen in protein 

expression levels among the three wild-type fibroblasts, relative protein levels were not scaled or 

expressed as a percentage of a given control.  

For each parkin interactor, comparisons of grouped patient fibroblasts vs. grouped wild-type control 

fibroblasts were performed using mixed-effects linear modeling. Modeled effect sizes for each of the 

two groups are depicted in Figure 3.16. 

 

 

 

 

 

 

 

Figure 3.16 Mixed-effects linear modeling of protein expression levels in patients with parkin 

mutations and wild-type controls. Modeled effect sizes (differences between patients and controls) 

are shown with 95% confidence intervals (CI). Effect sizes with non-overlapping CI differ 

significantly (p<0.05) and are indicated by an asterisk. A, ATPAF1; B, SEPT9; C, γ-actin; D, 14-3-

3η. Abbreviations: AU, arbitrary units; CI, confidence intervals; P, patient; WT, wild-type. 

 

As can be seen in Figure 3.16A, ATPAF1 was found to strongly accumulate in patient-derived 

fibroblasts in comparison to wild-type controls (p=0.0004). Similarly, the protein expression levels of 

SEPT9 was marked higher in patients (p=0.0003; Figure 3.16). It should be noted that, for both 

proteins, little or no accumulation was seen in P2 (Figure 3.15). It is unclear why accumulation of 

ATPAF1 and SEPT9 was not seen in this one patient with parkin mutations. It should furthermore be 

noted that P2 and P3 are siblings, and the results obtained from this limited dataset should be 

interpreted with caution.  

In contrast to the accumulation of ATPAF1 and SEPT9 in patients, the protein expression of 

cytoskeletal actin (as probed by a γ-actin antibody) was similar in patient-derived and wild-type 

fibroblasts (p=0.8632, Figure 3.16C). Hence, parkin deficiency had no observable effect on the 

    ATPAF1         SEPT9                             γ-Actin             14-3-3η 

A           B        C                     D 

  *        * 
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steady-state protein level of actin. Similarly, the protein expression of 14-3-3η was comparable 

between patients and wild-type controls (p=0.5099; Figure 3.16D). 

Unfortunately, the previously described accumulation of SEPT5 (Zhang et al. 2000) could not be used 

as a positive control in these fibroblast models, as this protein is not expressed in fibroblasts to a 

detectable degree (Beites et al. 1999). Immunoblotting with an anti-SEPT5 antibody failed to detect 

this protein in fibroblast cell lysates (results not shown). 

In summary, it was found that the parkin-null fibroblasts had substantially higher protein levels of 

both ATPAF1 and SEPT9 than the wild-type fibroblasts. This is consistent with a model wherein 

ATPAF1 and SEPT9 are authentic parkin substrates, which accumulate in the absence of parkin. 

While a marked accumulation of these two proteins was found in P3, their expression levels were 

similar in P2 in comparison to wild-type fibroblasts. It is interesting to consider that some unknown 

compensatory pathway may be suppressing the accumulation of these parkin substrates in the P2 

fibroblast cell line. Importantly, actin and 14-3-3η did not accumulate in the parkin-null fibroblasts, 

which may suggest that the observed accumulation of ATPAF1 and SEPT9 is due to specific parkin-

substrate interactions with these proteins.      

 

3.3 FUNCTIONAL STUDIES IN A PARKIN-DEFICIENT CELLULAR MODEL 

As two of the parkin-interacting proteins (ATPAF1 and SEPT9) were shown to accumulate in patient-

derived fibroblasts, it was aimed to investigate the possible functional effects of such accumulation on 

cellular health. This protein accumulation may contribute to previously-described mitochondrial 

impairments in parkin-mutant fibroblasts (Mortiboys et al. 2008; Grunewald et al. 2010; Pacelli et al. 

2011). Therefore, a range of experiments were undertaken in order to assess various aspects of 

cellular and mitochondrial function in a parkin-deficient cellular model. These included cell growth 

and viability assays (Section 3.3.1), mitochondrial respiration analysis (Section 3.3.2), Δψm analysis 

(Section 2.3.3) and mitochondrial network analysis (Section 2.3.4). Unless stated otherwise, all results 

refer to comparisons of grouped patient-derived vs. grouped wild-type fibroblasts. Graphical 

depictions of results obtained for individual fibroblast cell lines can be found in Appendix IX.   

 

3.3.1 Cell growth and viability assays 

Two complementary assays, a CyQUANT® assay of cell growth and a MTT assay of cell viability, 

were performed to determine whether the overall states of cellular health differed between patient-

derived and wild-type fibroblasts (Section 2.26). These two assays were performed simultaneously in 

parallel plates, the results of which are shown in Figure 3.17.  
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Figure 3.17 Cell growth and viability in patient-derived and wild-type fibroblasts under basal 

and CCCP-stressed conditions. Left panels represent cell growth as assessed by a CyQUANT® 

assay, whereas right panels represent cell viability as assessed by a MTT assay. Box-and-whisker 

plots depict grouped patients (P) and wild-type (WT) measurements for three experimental runs. A, 

cell growth and viability under basal (untreated) conditions. B, cell growth and viability after 

treatment with 10μM CCCP for 24h. C, comparison of cell growth and viability under basal and 

stressed conditions. Abbreviations: AU, arbitrary units; P, patient; WT, wild-type. 
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It was found that cell growth was significantly higher in patient-derived fibroblasts than controls 

under basal conditions (p=0.0001; Figure 3.17A, left panel). In contrast, cell viability was similar in 

all fibroblasts cell lines under basal conditions (p=0.7843; Figure 3.17A, right panel).  

Cell growth and viability of the fibroblasts were also assessed under conditions of cellular stress, as 

any differences between patient-derived and wild-type cells may not be readily apparent under basal 

conditions. Here, the fibroblasts were treated with CCCP to induce mitochondrial impairment, and 

subsequent parkin recruitment to damaged mitochondria. It was found that both cell growth and cell 

viability were similar in all fibroblasts cell lines even after CCCP treatment (p=0.0922 and 0.7815, 

respectively; Figure 3.17B). However, a comparison of the effect of CCCP treatment within each 

fibroblast group (i.e. with and without cellular stress) demonstrated that the growth of patient-derived 

fibroblasts was significantly more suppressed by CCCP than the growth of wild-type fibroblasts 

(p=0.0013; Figure 3.17C, left panel). This is indicative of a heightened sensitivity to CCCP of patient-

derived fibroblasts in comparison to wild-type fibroblasts.  

In contrast, the cell viability was seemingly enhanced in all fibroblasts cell lines after treatment with 

the cytotoxic compound CCCP (p=0.0004; Figure 3.17C, right panel), but this effect was similar in 

patient-derived and wild-type fibroblasts (p=0.7226). This contradictory and perplexing result is best 

explained as an artefact of the MTT assay: it is possible that CCCP-treated cells reduce MTT to 

formazan at a greater rate than untreated cells not because they are more viable, but because CCCP 

artificially alters the rate of MTT reduction. Indeed, this high susceptibility to treatment-induced 

artefacts is a well-known limitation of the MTT assay (Berridge et al. 2005). The alternative scenario, 

i.e. increased cell viability in the presence of CCCP, contradicts the established cytotoxic properties of 

this mitochondrial depolarizing agent (Narendra et al. 2008).        

 

3.3.2 Mitochondrial respiration analysis 

Given the important role of parkin in maintaining mitochondrial health, it was decided to specifically 

compare parkin-mutant and wild-type fibroblasts in regards to various parameters of mitochondrial 

function. Therefore, rates of mitochondrial respiration were evaluated.  

Respiration analyses were performed using a Seahorse Extracellular Flux Analyzer (Section 2.27). 

This allowed for a series of measurements to be taken of the oxygen consumption rate (OCR) of each 

fibroblast population, where pharmacological inhibitors were sequentially added to the cells in order 

to probe the function of individual components of the mitochondrial respiratory chain. All OCR 

readings were normalized to cell number, as determined by a CyQUANT® assay. The overall 

respiratory responses of all patient-derived and wild-type fibroblasts are illustrated in Figure 3.18A, 

from which several important respiratory parameters can be assessed (Figure 3.18B). 
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Figure 3.18 Respiratory flux profile of patient-derived and wild-type fibroblasts. Respiratory flux 

was determined with a Seahorse Extracellular Flux Analyzer by twelve consecutive measurements of 

oxygen consumption rate (OCR). Addition of ATP synthase inhibitor oligomycin, ETC uncoupler 

FCCP and complex I and III inhibitors rotenone and antimycin A are indicated. A, respiratory flux 

profiles of patient-derived and wild-type fibroblasts. Results are expressed as mean ± SEM. B, a 

representative respiratory flux profile indicating various parameters of respiratory control. These 

include: OCR due to non-mitochondrial respiration (rotenone/antimycin A response); basal 

mitochondrial OCR (basal measurement – rotenone/antimycin A response); ATP-linked OCR (basal 

measurement – oligomycin response); OCR due to proton leak (oligomycin response - 

rotenone/antimycin A response); ATP coupling efficiency (basal mitochondrial OCR / ATP-linked 

OCR); maximum OCR (FCCP response - rotenone/antimycin A response) and spare respiratory 

capacity (maximum OCR / basal mitochondrial OCR). Abbreviations: AU, arbitrary units, OCR, 

oxygen consumption rate; P, patient; SEM, standard error of the mea7n; WT, wild-type.   

A           

B           
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A comparison of these parameters in grouped parkin-mutant and wild-type control fibroblasts is given 

in Figure 3.19. As can be seen in Figure 3.19A, patient-derived fibroblasts had a higher mitochondrial 

respiration than wild-type fibroblasts under basal conditions (p=0.0355). This mitochondrial 

respiration is composed of two components: the oxygen consumption devoted to ATP synthesis, and 

the oxygen consumption required to overcome the natural proton leak across the inner mitochondrial 

membrane. The addition of the ATP synthase inhibitor oligomycin allowed for these contributory 

components to be isolated. While patient-derived fibroblasts had higher ATP-linked respiration than 

wild-type fibroblasts (p=0.0481; Figure 3.19B), the difference in proton leak between patient-derived 

and wild-type fibroblasts was more pronounced (p=0.0273; Figure 3.19C). In fact, a comparison of 

the ATP-coupling efficiency demonstrated that the patient-derived fibroblasts had a trend towards a 

lower coupling efficiency (≈80% OCR that is ATP-linked vs. ≈87% OCR that is ATP-linked in wild-

type fibroblasts), but this trend did not reach statistical significance (p=0.0983; Figure 3.19D).  

 

 

 

 

 

 

 

 

 

  

 

 

 
 

Figure 3.19 Parameters of respiratory control in patient-derived and wild-type fibroblasts. Box-

and-whisker plots depict grouped patients (P) and wild-type (WT) values. A, basal mitochondrial 

OCR. B, ATP-linked OCR. C, OCR due to proton leak. D, ATP coupling efficiency (percentage OCR 

due to ATP synthesis). E, maximum OCR. F, percentage spare respiratory capacity. Abbreviations: 

AU, arbitrary units; OCR, oxygen consumption rate; P, patient; WT, wild-type.   
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The addition of the ETC-accelerator FCCP allowed for an estimation of the maximum, uncontrolled 

OCR. FCCP is an ionophore which directly transports protons across the inner mitochondrial 

membrane instead of via the ATP synthase proton channel. Hence, addition of FCCP collapses the 

Δψm, leading to a rapid consumption of oxygen without the generation of ATP. The fold difference 

between this maximal uncontrolled OCR and basal OCR is indicative of the spare respiratory capacity 

of cells. The maintenance of some spare respiratory capacity is a major determinant of cellular health 

and survival, as it allows for increased ATP synthesis in times of high energetic demand (Nicholls 

2009). This spare capacity is determined by several factors, including the functional capacity of the 

ETC. It was found that the patient-derived cells had a markedly higher maximum respiratory rate than 

control fibroblasts (p=0.0081; Figure 3.19E), whereas spare respiratory capacity was comparable 

between these two groups (p=0.2947; Figure 3.19F). However, it is important to note that significant 

differences were observed in these parameters between the two patient-derived fibroblast cell lines 

(Figure 3.20). Comparisons of P2 and P3 reveal that P2 had significantly higher maximum respiration 

(p=0.0016) and spare respiratory capacity (p<0.0001) than P3, whereas P3 was similar to wild-type 

fibroblasts in these regards.     

 

 

 

 

 

 

 

Figure 3.20 Maximum respiration and spare respiratory capacity in individual fibroblasts cell 

lines. Marked differences in the maximum respiration and spare respiratory capacity were observed 

between the two patient-derived fibroblast cell lines (P2 and P3). Abbreviations: AU, arbitrary units; 

OCR, oxygen consumption rate; P, patient; WT, wild-type.   

 

3.3.3 Mitochondrial membrane potential (Δψm) analysis 

As Δψm is a central parameter of mitochondrial integrity, it was decided to assess Δψm in the parkin-

mutant and wild-type fibroblasts. The fibroblasts were stained with the JC-1 potentiometric dye, and 

the green and red fluorescent emissions of each cell population were simultaneously measured by 

means of flow cytometry (Section 2.28). A representative experimental run of WT2 fibroblasts, as 

well as CCCP-treated depolarized WT2 is shown in Figure 3.21.  
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Figure 3.21 Bivariate flow cytometry analysis of JC-1 fluorescent emission in fibroblasts. A-D, 

representative experimental results of untreated WT2 fibroblasts. E-H, representative experimental 

results of CCCP-treated depolarized WT2 fibroblasts. For each JC-stained cell sample, several 

informative plots were generated. A, E, forward scatter/side scatter (FSC/SSC) plots. Debris and 

aggregates were gated out, with only the events enclosed in the black ovals analyzed further. B, F, 

fluorescent intensity histograms for green fluorescence (top panels) and red fluorescence (bottom 

panels). Fluorescent thresholds, as determined by fluorescence of unstained control cells, are 

demarcated by black bars. C, G, bivariate fluorescence depicted as logarithmic scatter plots, with 

fluorescent thresholds demarcated by crossbars. D, H, mean above-threshold green and red 

fluorescent intensities. These value were used to calculate the ratio of green:red fluorescent emission. 

Abbreviations: +, above threshold; -, below threshold; FSC/SSC, forward scatter/side scatter; WT, 

wild-type.  
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Each fibroblasts sample was assayed over three separate experimental runs, with 10 000 events 

collected per run. Differences in Δψm were detected by dissimilarities in red:green florescent emission 

ratios. The obtained red:green florescent emission ratios of the patient-derived and wild-type 

fibroblasts are graphically illustrated in Figure 3.22. No significant differences in Δψm were observed 

for parkin-derived and wild-type fibroblasts (p=0.1533). 

 

  

 

 

 

 

 

 

 

Figure 3.22 Relative Δψm of untreated patient-derived and wild-type fibroblasts. Relative Δψm 

was determined by JC-1 red:green fluorescent emission ratios. Similar Δψm was seen for patient-

derived (P) and wild-type (WT) fibroblasts (p=0.3285). Abbreviations: Δψm, mitochondrial membrane 

potential; P, patient; WT, wild-type.  

 

3.3.4 Mitochondrial network analysis  

As parkin is known to be involved in the regulation of mitochondrial dynamics, various parameters of 

mitochondrial morphology were assessed in the parkin-mutant and wild-type fibroblasts. This was 

done by means of live-cell microscopy and image analysis (Section 2.29). Approximately 40 cells 

were analyzed of each fibroblasts cell line, and representative images of P2 and WT2 fibroblasts are 

shown in Figures 3.23A and B, respectively. Each image was assessed in regards to two 

morphological parameters: the form factor (degree of mitochondrial branching) and the aspect ratio 

(degree of mitochondrial elongation). It was found that the form factor of patient-derived fibroblasts is 

significantly lower than that of wild-type controls (p=0.0306; Figure 3.23C). No significant 

differences were observed between the aspect ratios of patient-derived and wild-type fibroblasts 

(p=0.1654; Figure 3.23D).     
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Figure 3.23 Mitochondrial network analysis of patient-derived and wild-type fibroblasts. 

Mitotracker Red and live-cell microscopy was used to visualize the mitochondrial network. A, B, 

representative images of patient and wild-type cells. All images were assessed in regards to the degree 

of mitochondrial branching (form factor) and degree of mitochondrial elongation (aspect ratio) The 

distribution of these parameters in grouped patient-derived and grouped wild-type fibroblasts are 

represented on logarithmic scale in box-and-whisker-plots, N=40. C, comparison of form factor, 

which was significantly lower in patient cells than wild-type cells (p=0.0306). D, comparison of 

aspect ratio, which was similar in patient and wild-type cells (p=0.1654). Abbreviations: AU, arbitrary 

units; N; cells analyzed; P, patient; WT, wild-type.  
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3.4 VITAMIN K2 AS A POTENTIAL THERAPEUTIC MODALITY 

It was recently reported that supplementing the diets of parkin-mutant Drosophila with vitamin K2 

alleviated the mitochondrial defects of these mutants in a dose-dependent manner (Vos et al. 2012). 

This exciting discovery may be of therapeutic value, as treatment with vitamin K2 may similarly 

alleviate mitochondrial impairments in parkin-mutant human cells. Therefore, it was decided to 

perform a pilot study to investigate whether vitamin K2 treatment can modulate the functional 

differences seen in parkin-null and wild-type fibroblasts.   

 

3.4.1 Optimization of vitamin K2 concentration 

In the study by Vos et al (2012), mutant flies were placed on molasses medium supplemented with 

1mM vitamin K2, in the form of MK-4. It can be difficult to directly translate these supplementation 

conditions to appropriate working concentrations of MK-4 in cell culture. Hence, it was initially 

attempted to determine the effect of a range of MK-4 concentrations on the cell viability of wild-type 

fibroblasts (Section 2.26.1). It was determined that treatment with MK-4 did not significantly affect 

the cell viability of fibroblasts in the tested concentration range (0-100μM) after 24h of treatment 

(Figure 3.24). 

 

 

  

 

 

 

 

 

Figure 3.24 Effect of varying MK-4 concentrations on cell viability. A concentration range (0-

100μM) MK-4 was added to WT2 fibroblasts for 24h, after which cell viability was assessed with a 

MTT assay. Untreated cells (0 μM MK-4) were supplemented with 0.1% ethanol as a vehicle control. 

All values are expressed as % viability in comparison to untreated cells (0 μM MK-4) ± SD, of four 

replicate readings. Abbreviations: MK-4, menaquinone 4 (vitamin K2); SD, standard deviation; WT, 

wild-type.  
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As no apparent cytotoxic effects of MK-4 treatment were observed even at the highest tested 

concentration (100μM), it was decided to consult the established literature on effective working 

concentrations for MK-4 treatment in cell culture. The majority of these studies were investigating the 

anti-cancer properties of MK-4, and reported that significant functional effects of MK-4 treatment can 

been seen at concentrations of 30-50μM after 24h (Otsuka et al. 2004; Cao et al. 2009; Yao et al. 

2012; da Silva et al. 2013). While MK-4 was similarly effective at concentrations higher than ≈40μM, 

the magnitude of the observed effects typically plateaued at higher concentrations. Furthermore, all 

concentrations higher than 10μM had pro-apoptotic effects when treated for longer than 48h (Cao et 

al. 2009). Hence, it was decided to use a MK-4 concentration of 40μM for 24h in this pilot study as an 

informed compromise between concentrations and incubation periods high enough to elicit effective 

cellular responses, but low enough to avoid non-specific effects and cytotoxicity.   

    

3.4.2 Vitamin K2 modulates cellular and mitochondrial parameters 

In order to assess vitamin K2 as a potential therapeutic compound, the parkin-mutant and wild-type 

fibroblasts were treated with MK-4. Various parameters of cellular and mitochondrial health were 

then evaluated by means of the same approaches discussed in Section 3.3, i.e. cell growth and 

viability assays, mitochondrial respiration analysis, Δψm analysis and mitochondrial network analysis. 

Where appropriate, the MK-4 treated cells were compared to “untreated” control cells, which were 

treated with a suitable vehicle control. All results demonstrate comparisons of treatment responses in 

grouped patient-derived vs. grouped wild-type fibroblasts. Graphical depictions of results obtained for 

individual fibroblast cell lines (before and after MK-4 treatment) can be found in Appendix IX.   

It was found that cell growth was higher in patient-derived fibroblasts treated with MK-4 than in 

treated wild-type fibroblasts (p=0.0006; Figure 3.25A, left panel). However, this is likely a reflection 

of the higher cell growth rates of patient cells already seen under basal conditions (Section 3.3.1). In 

contrast, cell viability was similar in patients and controls treated with MK-4 (p=0.915; Figure 3.25A, 

right panel). When cells were simultaneously treated with MK-4 and the cellular stressor CCCP, both 

cell growth and cell viability were comparable between patient-derived and wild-type fibroblasts 

(p=0.1036 and p=0.6933, respectively; Figure 3.25B).  

A comparison of the cellular responses to the different treatments employed in this study (untreated, 

CCCP, MK-4 and MK-4+CCCP) is shown in Figure 3.25C, where the results obtained for untreated 

and CCCP-treated fibroblasts were described in Section 3.3.1. It was found that overall response 

patterns to MK-4 treatment was very similar in patient-derived and wild-type fibroblasts when 

assessing cell growth (p=0.14; Figure 3.25C, top panel) and cell viability (p=0.4963; Figure 3.25C, 

bottom panel). Hence, 22 factorial modeling was used to analyze the global effects of MK-4 treatment  
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Figure 3.25 Cell growth and viability in patient-derived and wild-type fibroblasts after vitamin 

K2 treatment. Left panels represent cell growth as assessed by a CyQUANT® assay, whereas right 

panels represent cell viability as assessed by a MTT assay. Box-and-whisker plots depict grouped 

patients (P) and wild-type (WT) measurements for three experimental runs. A, cell growth and 

viability after treatment with 40μM MK-4 for 24h. B, cell growth and viability after co-treatment with 

40μM MK-4 and 10 μM CCCP for 24h. C, comparison of cell growth (top panel) and cell viability 

(bottom panel) of fibroblasts under various treatment conditions. Graphs depicting cell growth and 

viability of untreated and CCCP-treated fibroblasts can be found in Figure 3.17. Abbreviations: AU, 

arbitrary units; MK-4, menaquinone 4 (vitamin K2); P, patient; WT, wild-type. 

  Cell growth                                                        Cell viability 

A             + MK-4                                                       

B             + MK-4; + CCCP                                                      

C           
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(on combined patient and wild-type cells), adjusting for correlations inside individual cell lines and 

experimental runs. It was found that treatment with MK-4 had no observable effect on cell growth in 

comparison to untreated fibroblasts (p=0.1531) or when co-administered with CCCP and compared to 

CCCP-only treated fibroblasts (p=0.5253). In contrast, MK-4 treatment was found to lower the cell 

viability of all treated cells in comparison to untreated fibroblasts (p=0.0014). Interestingly, MK-4 

and CCCP co-treatment significantly increased measurements of cell viability in all fibroblasts 

(p=0.0001). Hence, MK-4 enhanced the previously mentioned MTT-artefact produced by CCCP 

treatment (Section 3.3.1); this artefact was not seen when MK-4 was used by itself. It is interesting to 

speculate that CCCP and MK-4 interact biochemically to artificially elevate the rate of MTT 

reduction, which does not occur in the absence of CCCP.   

Several interesting effects on mitochondrial respiration were observed when patient-derived and wild-

type fibroblasts were treated with MK-4, which are depicted in Figure 3.26.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26 Parameters of respiratory control in patient-derived and wild-type fibroblasts after 

vitamin K2 treatment. Fibroblasts were either treated with a vehicle control (0.1% ethanol) or 40μM 

MK-4 for 24h. Box-and-whisker plots depict grouped patients (P) and wild-type (WT) values. A, 

basal mitochondrial OCR. B, ATP-linked OCR. C, OCR due to proton leak. D, ATP coupling 

efficiency (percentage OCR due to ATP synthesis). E, Maximal OCR. F, Percentage spare respiratory 

capacity. Abbreviations: AU, arbitrary units; MK-4, menaquinone 4 (vitamin K2); OCR, oxygen 

consumption rate; P, patient; WT, wild-type.    
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It was found that fibroblasts treated with MK-4 had increased basal mitochondrial respiration in 

comparison to untreated cells (p=0.0459; Figure 3.26A). Similarly, treatment with MK-4 increased 

the ATP-linked respiration (p=0.0465; Figure 3.26B), the oxygen consumption due to proton leakage 

(p=0.025; Figure 3.26C) and the maximum respiration (p=0.0331; Figure 3.26E) of all fibroblasts cell 

lines. When correcting for differences in basal mitochondrial respiration, if was found that MK-4 

treatment did not significantly alter either the ATP coupling efficiency (p=0.0707; Figure 3.26D) or 

spare respiratory capacity (p=0.2495; Figure 3.26F).  

Comparisons of patient-derived and wild-type fibroblasts in their responses to MK-4 treatment 

demonstrated that the increase in proton leak was more pronounced in patient-derived cells 

(p=0.0082). Similarly, the increase in maximum respiration was stronger in patient-derived cells 

(p=0.0105). The effect of MK-4 treatment on basal and ATP-linked respiration was found to be 

comparable between patient-derived and wild-type fibroblasts.     

Potential effects on Δψm were similarly assessed after treatment with MK-4. As can be seen in Figure 

3.27, no significant differences were found in the effect of MK-4 treatment on Δψm between patient-

derived fibroblasts and wild-type fibroblasts. When all fibroblasts are viewed collectively, MK-4 

treatment did not significantly alter the Δψm in comparison to untreated fibroblasts (p=0.3285).   

 

 

 

 

 

 

 

 

Figure 3.27 Relative Δψm of patient-derived and wild-type fibroblasts after vitamin K2 

treatment. Fibroblasts were either treated with a vehicle control (0.1% ethanol) or 40μM MK-4 for 

24h. Relative Δψm was determined by JC-1 red:green fluorescent emission ratios. Similar Δψm was 

seen for treated and untreated patient-derived fibroblasts (p=0.3285), as well as for treat and untreated 

wild-type fibroblasts (p=0.3285). Abbreviations: Δψm, mitochondrial membrane potential; MK-4, 

menaquinone 4 (vitamin K2); P, patient; WT, wild-type.  
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Lastly, the mitochondrial networks of parkin-derived and wild-type fibroblasts were evaluated after 

treatment with MK-4. It was found that MK-4 treatment significantly increased the form factor of all 

fibroblast cell lines investigated (p<0.0001; Figure 3.28A). This effect on the form factor was 

observed in parkin-derived and wild-type fibroblasts; however, there was a non-significant statistical 

trend towards a more pronounced increase in the form factor in patients (p=0.0729). Moreover, the 

aspect ratio was increased in MK-4-treated cells (p<0.0001; Figure 3.28B); this was seen to a similar 

extent in parkin-derived and wild-type fibroblasts, irrespective of parkin mutation status (p=0.4091).  

  

 

 

 

 

 

 

 

Figure 3.28 Mitochondrial network analysis of patient-derived and wild-type fibroblasts after 

vitamin K2 treatment. Fibroblasts were either treated with a vehicle control (0.1% ethanol) or 40μM 

MK-4 for 24h. Mitotracker Red and live-cell microscopy was used to visualize the mitochondrial 

network. All images were assessed in regards to the degree of mitochondrial branching (form factor) 

and degree of mitochondrial elongation (aspect ratio) The distribution of these values are represented 

in box-and-whisker-plots, N=40. A, comparison of form factor. B, comparison of aspect ratio. 

Abbreviations: AU, arbitrary units; MK-4, menaquinone 4 (vitamin K2); N; cells analyzed; P, patient; 

WT, wild-type.  

 

In summary, treatment with vitamin K2 (in the form of MK-4) modulated several parameters of 

mitochondrial health in interesting and unexpected ways. These effects were mostly seen to a similar 

extent in parkin-derived and wild-type fibroblasts (increased basal and ATP-linked respiration; 

increased aspect ratio), with some effects being more pronounced in parkin-mutant fibroblasts 

(increased oxygen consumption due to proton leak; increased maximum respiration; increased form 

factor). These interesting observations suggest functional interactions of vitamin K2 with 

mitochondrial pathways, which should be investigated further in future studies.  
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CHAPTER FOUR: DISCUSSION 

 

The present study undertook an investigation of the parkin gene and its protein product on various 

levels. Initially, it was found that mutants in parkin are infrequent in PD in South African PD patients. 

It was therefore sought to identify additional candidate PD genes by screening for protein interactors 

of parkin using a Y2H approach. This yielded a number of putative parkin interactors, of which four 

(ATPAF1, SEPT9, 14-3-3η and actin) were prioritized for verification and further study. Interestingly, 

two novel parkin interactors were found to accumulate in a cellular model of parkin deficiency. 

Additional investigation of cellular and mitochondrial dysfunction in these patient-derived fibroblast 

models demonstrated interesting and unanticipated effects, including possible compensatory increases 

in mitochondrial respiration. Moreover, the parkin-deficient cell model was used to evaluate vitamin 

K2 as a potential therapeutic modality for PD.      

 

4.1 PARKIN MUTATION SCREENING 

The elucidation of genetic factors contributing to PD is of importance as such genetic factors may 

provide valuable insight into the etiology and molecular pathology of this disorder. However, while 

the molecular basis of PD has been extensively studied in numerous population groups over the last 

two decades, very little is known of the etiology of PD in Sub-Saharan African populations. In fact, a 

recent review of the available literature found only nine published studies on the genetics of PD in 

Sub-Saharan Africa (Blanckenberg et al. 2013). The majority (5/9) of these studies emanated from our 

research group focusing on South African PD patients, including results published from the present 

study (Haylett et al. 2012).  

The investigation of the genetic etiology of PD in South African patients is of particular interest, 

given the diverse and distinctive genetic heritage of the population groups in this country. Hence, the 

present study aimed to investigate the contribution of parkin mutations to South African PD patients. 

Our research group had previously reported on a comparable molecular analysis of parkin, which 

concluded that parkin mutations are not a major cause of PD in the South African population (Bardien 

et al. 2009). While the previous study is of note as being the first report on the molecular etiology of 

PD in South African patients, the conclusions of the preliminary study were limited by a small sample 

size of only 91 study participants, and the fact that the contribution of parkin exon deletions and 

insertions was not determined. Therefore, the present study expands upon previous findings from our 

research group by the screening of an additional 138 South African PD patients, as well as by the 

inclusion of MLPA analysis to detect exonic rearrangements.   
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Only seven patients with homozygous or compound heterozygous parkin mutations were found in the 

study group of 229 South African PD patients (Section 3.1). A further eight patients were 

heterozygous carriers of a single parkin missense variant or exonic rearrangement, but the pathogenic 

relevance of such heterozygous variants are currently unclear.    

The frequency of parkin mutations (3.1%; 7/229) in South African PD patients is low in comparison 

to previous reports of parkin mutation frequencies, with reported frequencies as high as 50% of 

EOPD patients with a family history of PD, as well as 15-20% of sporadic EOPD cases (Lücking et 

al. 2000; Periquet 2003; Hedrich et al. 2004). However, the reported parkin mutation frequencies vary 

significantly across different studies and study populations (Kann et al. 2002; Choi et al. 2008; Sironi 

et al. 2008; Mellick et al. 2009; Koziorowski et al. 2010). For example, homozygous or compound 

heterozygous parkin mutations were reported in as high as 25.4% of Mexican-mestizo EOPD patients 

(Camacho et al. 2012), whereas only 1.4% of EOPD patients from Queensland, Australia had parkin 

mutations (Mellick et al. 2009). It can be speculated that the parkin mutation frequency is dependent 

on the ethnicity on the study group, which is supported by the available literature (Djarmati et al. 

2004). The low frequency of parkin mutations found in this study may therefore reflect the unique 

genetic heritage of the Black African, Afrikaner and Mixed ancestry sub-populations of South Africa.     

The range of parkin mutation frequencies reported in the literature may be furthermore due to 

differences in study inclusion criteria. The present study also included PD patients with late onset PD, 

as parkin mutations had been previously reported in both early and late onset PD patients (Sun et al. 

2006). In fact, this study identified a compound heterozygous parkin mutation in a patient with an 

AAO of 56 years (patient 107), which suggests that the conventional cut-off AAO of 50 years for 

parkin mutation screening is not recommended for the South African population. When considering 

only the 82 patients with EOPD, six (7.3%; 6/82) had homozygous or compound heterozygous parkin 

mutations, with a further four patients (4.8%; 4/82) carrying single heterozygous parkin variants. The 

majority of the EOPD patients included in the study (92.7%) therefore did not have parkin mutations. 

Surprisingly, no parkin mutations were found in one patient with juvenile onset PD, with an AAO of 

17 years.   

All five of the parkin missense variants (H200Q, E310D, R402C, G430D, P437L) as well as the 

parkin deletion (P113fsX163) identified in this study had been previously reported in the literature; 

however, the H200Q variant have only been reported by our research group to date (Bardien et al. 

2009). While the pathogenic relevance of H200Q is unclear, this variant was found to be absent in 106 

control chromosomes, and it is located in the functionally important RING0 domain. Functional 

studies of other parkin variants in the RING0 domain, such as K161N and K211N, found that such 

variants result in defective parkin auto-ubiquitination and protein interaction (Sriram et al. 2005; 

Hampe et al. 2006). The pathogenicity of the E310D variant is similarly uncertain; E310D was absent 
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in 110 control chromosomes in the present study. This variant was also absent in 526 control 

chromosomes in a published study of American PD patients (Pankratz et al. 2009b).  

No functional studies of the R402C variant have been reported to date, and the pathogenicity of this 

variant remains equivocal. Functional studies of the P437L variant in RING2 reported that it markedly 

impairs parkin ubiquitination activity (Chen et al. 2010; Glauser et al. 2011); however, heterozygous 

P437L variants have been previously described in unaffected individuals and may therefore be a risk 

factor for, instead of a cause of, PD (Kay et al. 2007). On the other hand, the pathogenicity of the 

G430D mutation is well established in the literature. This mutation, affecting the catalytic site in 

RING2, has been shown to abrogate parkin ligase activity, impair its mitochondrial translocation, and 

reduce its neuroprotective capacity (Henn et al. 2007; Vives-Bauza et al. 2009; Koyano et al. 2013). 

Small deletions, such as P113fsX163, as well as the numerous exonic rearrangements reported in the 

present study, are likely to result in protein truncation due to the introduction of frameshifts; therefore, 

homozygous or compound heterozygous parkin mutations containing such deletions or insertions 

would result in the abolishment of parkin biological activity (Dawson and Dawson 2010).  

In the present study, G430D was the only parkin missense mutation found in a compound 

heterozygous state; no homozygous parkin missense mutations were detected. It is currently unclear 

whether the four missense variants found only in a heterozygous state (H200Q, E310D, E402C, 

P437L) contribute to PD, as they may represent rare non-pathogenic parkin polymorphisms (Kay et 

al. 2007).   

It can be concluded that parkin mutations are not a major cause of PD in South African patients. The 

229 South African PD patients screened in the present study for parkin mutations were concurrently 

screened by our research group for mutations in other PD genes, including SNCA, LRRK2, PINK1 and 

DJ-1, VPS35 and EIF4G1 (Keyser 2011; Blanckenberg et al. 2014; unpublished data). Overall, 

mutations in the known PD genes are rare in the South African PD population: of the 229 study 

participants, one (0.4%; 1/229) was found with a whole gene triplication of SNCA; six (2.6%; 6/229) 

with LRRK2 mutations (five with G2019S and one with R1441C); and one patient with a homozygous 

PINK1 mutation (Y258X) (Keyser 2011). When these results are combined with the results obtained 

in the present study, only fifteen (6.6%; 15/229) of the PD patients have mutations in a known PD 

gene. This is unexpected, given that the majority of the study participants had either EOPD or a 

known family history of PD. If only the 82 EOPD patients are considered, eight (9.8%; 8/82) have 

mutations in known EOPD genes (six patients with parkin mutations, one each with a SNCA 

triplication and PINK1 mutation). Therefore, a total of 90.2% of the patients with a disease onset 

younger than 50 years do not have mutations in any of the known EOPD genes.  
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4.2 PARKIN INTERACTORS 

In addition to a genetic investigation of parkin, the present study aimed to further current 

understanding of the cellular and physiological function of parkin. In this regard, a Y2H cDNA library 

screen was used to identify known and novel parkin-interacting proteins. It is speculated that such 

interactors may partake in the many cellular pathways parkin has been implicated in and, ultimately, 

the dysregulation or dysfunction of parkin interactors may contribute to neurodegeneration.  

It is estimated that the present study screened approximately 1.8 x 107 cDNA clones from an adult 

human brain cDNA library, using the RBR region of parkin as bait (Section 3.2.1). Of these, a total of 

64 clones were selected for their ability to successfully activate all three the Y2H reporter genes; such 

clones were considered to encode peptides that specifically interacted with the parkin bait protein 

under the Y2H experimental conditions.  

 

4.2.1 Putative parkin interactors excluded from the present study 

The clones were each bioinformatically analyzed in order to identify the in-frame cDNA clone and 

encoding peptide. Of the 64 clones, sixteen were discarded as duplicate clones, i.e. clones that 

encoded identical peptides. Such detection of duplicate bait-prey interactions was not unexpected, as 

each clone may be represented numerous times in the cDNA library, providing multiple opportunities 

for interactions with the parkin bait (Gietz 2006). A further nineteen clones had insert sequences that 

were not in-frame according to the reading frame dictated by the upstream GAL4-AD; therefore, 

when translated, these clones had no significant protein match in the NCBI database 

(http://www.ncbi.nlm.nih.gov). These nineteen out-of-frame clones were discarded as they encoded 

short, physiologically-irrelevant peptides. The high prevalence of such clones is a known and 

common limitation of cDNA libraries derived from oligo(dT)-primed cDNA, such as the Clontech 

MATCHMAKER™ cDNA library used in this study, where only one in six of all cDNA inserts are 

cloned in-frame with the GAL4-AD (Van Criekinge and Beyaert 1999). 

The 29 in-frame cDNA clones with significant protein matches were investigated in publicly available 

databases in order to obtain relevant information regarding the subcellular expression and proposed 

function of the proteins. Based on such information, four of the putative parkin interactors were 

prioritized for further study, and will be discussed in Section 4.2.2. The remaining 25 candidate 

parkin-interacting proteins were not prioritized due to several reasons, which will be briefly discussed. 

While parkin has been observed in many subcellular compartments, including the ER, cytoplasmic 

vesicles, mitochondria and the nucleus, endogenous parkin is predominantly localized to the cytosol 

(Section 1.13.2). Therefore, putative parkin interactors that are not likewise localized to the cytosol 
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were de-emphasized in the current study, as they are less likely to reflect physiologically-relevant 

interactions (Patil and Nakamura 2005). On the other hand, mitochondrial or mitochondrial-associated 

proteins were emphasized as being of particular interest, given parkin’s role in the maintenance of 

mitochondrial function and health (Section 1.16.3).    

Five of the 29 putative parkin interactors (representing sixteen of the 45 in-frame cDNA clones) are 

nuclear proteins. These proteins (PCF11, NONO, SNRPN, SRSF3 and TRA2A) were not prioritized 

for the present study as their cellular localization makes in less likely that they would interact with 

predominantly cytosolic parkin outside of the Y2H experimental environment. However, as limited 

parkin expression in the nucleus has been previously described (Shimura et al. 1999; Stichel et al. 

2000), and parkin has been shown to have some nuclear-specific functions (da Costa et al. 2009; 

Duplan et al. 2013), it cannot at present be ruled out that some of these nuclear proteins are, if fact, 

authentic parkin interactors. Interestingly, all five of these proteins are involved in pre-mRNA 

splicing and processing, although parkin does not have a known RNA processing-related function.  It 

is of note that the two putative interactors PCF11 and SRSF3 were repeatedly identified by six 

independent clones each, suggesting that their observed interaction with the parkin bait is less likely 

to be an artefact of the Y2H methodology (Parrish et al. 2006).     

One other protein was identified by multiple (more than two) independent clones in the Y2H screen, 

namely TMEM222. The recurrent detection of such a presumed parkin-TMEM222 interaction via 

Y2H analysis is suggestive of the validity of this interaction. However, the putative parkin interactor 

was discarded as this protein is uncharacterized at present, and its biological function remains 

unknown. The uncharacterized protein DHRS7 was similarly excluded from further study. 

Conversely, another protein that was discarded from the study for being uncharacterized at the time, 

has lately been reported to be of potential relevance in neurodegeneration. This protein, CCDC56, was 

only recently characterized as a mitochondrial transmembrane protein and essential factor in 

cytochrome c oxidase (mitochondrial complex IV) biogenesis (Clemente et al. 2013). Given that 

mitochondrial respiratory dysfunction is a known pathological feature of parkin deficiency (Section 

1.16.3), the identification of a putative interaction between parkin and CCDC56 may be of significant 

relevance to neurodegeneration, and future studies should aim to verify this protein interaction.   

The remaining seventeen putative parkin interactors were not prioritized for verification; their 

biological function(s) are of unclear relevance to the known functions of parkin. These include several 

proteins involved in intracellular signaling (ARAP2, AKAP9, CALD1, GNB3 and NR1H2), various 

metabolic pathways (DHDDS, ELOVL1, PCMT1, PGAM1, PGM1, and TKT), vesicular trafficking 

and sorting (AP3S1, EXOC4, and HGS), prohormone processing (CPE), astrocyte plasticity and 

motility (CAPN3), and maintenance of the myelin sheath (MBP). While the detection of these 

putative parkin interactors with unclear functional relationships may be due to false positive Y2H 
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results (Mahdavi and Lin 2007), it cannot be ruled out that they reflect true, physiologically-relevant 

interactions with parkin. It is interesting to speculate that these candidate parkin interactions may 

illuminate previously unknown pathways to neurodegeneration. For that reason, these interactions 

should be verified in future studies in order to gain a more comprehensive understanding of the role of 

parkin in the cell.  

 

4.2.2 Verified parkin interactors 

Four of the parkin-interacting proteins originally detected in a Y2H screen were demonstrated to be 

authentic parkin interactors. Furthermore, it was shown that two of these interactors (SEPT9 and 

ATPAF1) accumulate in the absence of parkin, whereas parkin does not affect the steady-state protein 

level of the other two interactors (14-3-3η and actin) (Section 3.2.4.2). It should however be noted 

that this protein accumulation was not observed in one of the two parkin-mutant cell models, and that 

these preliminary findings need to be interpreted with caution. The following section will discuss 

what is known about the function of these parkin-interacting proteins, as well as hypothesize as to the 

possible biological significance of such interactions.  

 

4.2.2.1 ATPAF1 

The current study demonstrated a physical interaction of parkin with the ATPAF1 protein. 

Furthermore, it was found that ATPAF1 accumulated in the absence of parkin. Very little is known 

about ATPAF1; a PubMed literature search (http://www.ncbi.nlm.nih.gov/pubmed) using the 

keyword “ATPAF1” delivered just six published articles, while a search for Atp11p, the yeast 

homolog of ATPAF1, returned just thirteen results. Nevertheless, the discovery of a functional 

interaction between parkin and an assembly factor for an essential mitochondrial protein complex 

makes this an interesting protein to investigate further.  

The mitochondrial F1F0-ATP synthase, also referred to as complex V, is located in the inner 

mitochondrial membrane.  This multi-protein assembly consists of two physically and functionally 

coupled sectors: a catalytic F1 enzyme complex and a membrane-imbedded F0 ring-like channel. The 

electrochemical gradient generated by the ETC drives proton translocation from the inter-membrane 

space to the matrix through the F0 channel. This is coupled to the rotation of F0, which in turn induces 

conformational changes in F1 that promotes the synthesis and release of ATP. This interesting 

mechanism has been well-studied (Boyer 1997; Senior et al. 2002).   

The biogenesis of the mitochondrial ATP synthase has received considerably less attention. It is 

generally accepted to be a sophisticated process involving the coordinated activity of a number of 
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assembly factors, which drives the translocation, oligomerization and assembly of individual ATP 

synthase subunits to constitute functional ATP synthases (Ackerman and Tzagoloff 2005). The F1 

complex is comprised of five types of nuclear-encoded oligomeric subunits (α, β, γ, δ and ε), where 

the catalytic activity of F1 is conveyed by the important hexameric assembly of three α- and three β-

subunits (α3:β3). Biogenesis of F1 requires two assembly factors: ATPAF1, which binds selectively to 

unassembled β-subunits of F1, and ATPAF2, which associates with unassembled α-subunits (Wang 

and Ackerman 2000; Wang et al. 2001; Ackerman 2002). These two proteins act as substrate-specific 

molecular chaperones to stabilize unassembled α- and β-subunits by shielding their hydrophobic 

surfaces. This prevents the aggregation of α- and β-subunits prior to their assembly into a functional 

α3:β3 F1 complex (Sheluho and Ackerman 2001). Binding of α- and β-subunits to their assembly 

factors is then appropriately relieved by the γ-subunit of the nascent F1 complex (Ludlam et al. 2009). 

Separate assembly pathways are present for the assembly of the F0-ATP synthase channel, as well as 

for the dimerization and oligomerization of fully assembled F1F0-ATP synthase complexes 

(Jonckheere et al. 2012). This mechanism of assembly factor-dependent biogenesis of mitochondrial 

ATP synthase is conserved in all eukaryotic lineages (Pícková et al. 2005). 

Further studies found that the absence of either ATPAF1 or ATPAF2 not only resulted in their failure 

to assemble the F1-ATP synthase complex, but lead to the accumulation of both α- and β-subunits 

within large aggregates in the mitochondrial matrix (Lefebvre-Legendre et al. 2005). This suggests 

that proper α3:β3 assembly is dependent on a balanced protein stoichiometry. While the functional 

effect of the opposite scenario, i.e. an overabundance of ATPAF1 over ATPAF2 or vice versa, has not 

been investigated, it could be speculated that this may also affect the proper assembly of the F1-ATP 

synthase complex in some way.  

A quantitative analysis of ATPAF1 and ATPAF2 mRNA expression revealed that these genes are 

expressed at very low levels in various tissues (Pı́cková et al. 2003). While this study did not 

investigate the protein expression of either ATPAF1 or ATPAF2, it is noteworthy that very low 

protein levels of ATPAF1 was seen in both SH-SY5Y cells (Section 3.2.3.2; Figure 3.11C) and wild-

type fibroblasts (Section 3.2.4.2; Figure 3.15A) in the present study. Interestingly, Pícková et al. 

found a nearly constant ATPAF1 mRNA level in all tissues investigated. This suggests that ATPAF1 

behaves like an housekeeping gene to provide constitutively low levels of this assembly factor. 

Very few studies of the effect of altered ATPAF1 expression have been published. A genetic 

association study found that sequence variation in ATPAF1 is significantly associated with asthma and 

asthma severity (Schauberger et al. 2011). This study also showed that ATPAF1 mRNA expression 

was markedly (50-fold) higher in bronchial biopsies from patients with asthma than controls, which 

validated the genetic association results. While the functional role of ATPAF1 as a novel asthma risk 
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factor is unclear, the authors speculated that it may involve altered ATP-signaling in 

bronchoconstriction. Another study highlighted ATPAF1 as genetic modifier of prostate cancer 

(Schinke et al. 2014); it was found that ATPAF1 mRNA is overexpressed in prostate cancer tissue. 

The relevance of the parkin-ATPAF1 interaction to neurodegeneration is supported by recent studies 

suggesting that dysfunction of the mitochondrial ATP synthase specifically may contribute to parkin-

linked PD. For example, a study by Kim et al. (2012) investigated the protective role of Drosophila 

glutathione S-transferase omega 1 (GSTO1) in a Drosophila model of PD. They found that 

overexpression of GSTO1 was able to rescue some of the phenotype of parkin mutants, including 

degeneration of dopaminergic neurons and muscle. Further investigation revealed that this rescue 

effect is dependent on the direct catalytic action of GSTO1 on its novel substrate, the β-subunit of F1-

ATP synthase.  

The total protein expression of the β-subunit was unaffected in parkin mutant and wild-type flies; 

however, the level of GSTO1-mediated glutathionylation of the β-subunit was marked decreased in 

the parkin mutant (Kim et al. 2012). Kim et al. found that increased glutathionylation of the β-subunit 

was correlated with an improved mitochondrial F1F0-ATP synthase efficiency and elevated ATP 

levels, both of which were significantly decreased in parkin-mutant flies. Importantly, they also 

investigated the assembly level of F1F0-ATP synthase in parkin mutants. It was found that the level of 

correctly assembled F1F0-ATP synthase was markedly decreased in parkin mutants, and that this could 

be restored by upregulation of GSTO1. It is currently unclear how glutathionylation of the β-subunit 

improves ATP synthase assembly efficiency. While the investigators could not suggest why parkin 

mutants had defects in ATP synthase assembly in the first place, it could be hypothesized that the 

newly-discovered interaction of parkin with ATPAF1 contributes to this. In the absence of parkin, the 

dysregulation of ATPAF1 may lead to an impairment of the ATPAF1-driven β-subunit incorporation 

into the ATP synthase complex, which manifests as the altered ATP synthase assembly seen by Kim 

et al. To our knowledge, no other study specifically looked at impairment of ATP synthase assembly 

in parkin-deficient models, but it can be gathered from the above-described results that such 

impairment would contribute to altered cellular energetics and neurodegeneration. 

Another insightful study investigated OGFOD1 (2-oxoglutarate and Fe2+-dependent oxygenase 

domain containing protein 1), and implicated this protein as a pro-apoptotic factor (Saito et al. 2010). 

OGFOD1 knockout HeLa cells, i.e. cells deficient in OGFOD1, demonstrated a survival advantage 

upon exposure to ischemic stress. Further investigation of the pro-apoptotic mechanism of OGFOD1 

revealed that OGFOD positively regulates ATPAF1 mRNA expression: silencing of OGFOD1 

downregulated ATPAF1 expression, whereas ATPAF1 expression was enhanced by re-introduction of 

OGFOD1. Saito et al. speculated that this transcriptional activation of ATPAF1 by OGFOD1 was 
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required for the promotion of cell death under ischemic conditions. In support of this, the 

overexpression of ATPAF1 in OGFOD1 knockout cells significantly increased ischemia-induced cell 

death compared to OGFOD1 knockout cells with endogenous expression of ATPAF1. This suggests 

that ATPAF1, acting downstream from OGFOD1, may participate in the ischemia-induced cell death 

pathway via an unknown mechanism (Saito et al. 2010).  

To our knowledge, the above-mentioned study represents the only investigation of the functional 

consequences of ATPAF1 overexpression performed to date. The strong suggestion that it is elevated 

ATPAF1 which mediated the pro-apoptotic effects of OGFOD1 during ischemic stress is of special 

relevance to the present study. Parkin, as part of its pro-survival function, may monitor the protein 

expression of ATPAF1 in order to counteract OGFOD1-ATPAF1 pro-apoptotic signaling. It is 

revealing that the study of Saito et al. used HeLa cells as an experimental model; HeLa cells do not 

express any parkin due to a chromosomal deletion (Denison et al. 2003). Hence, their choice of the 

widely-used HeLa cell line may have unwittingly provided an appropriately parkin-free model where 

the effects of ATPAF1 expression would be amplified.     

It is interesting to note that a recent exome sequencing study of 100 PD patients highlighted OGFOD1 

as a novel candidate risk gene for PD (Quadri et al. 2014). It could be speculated that the regulation of 

ATPAF1 protein expression by parkin (as seen in the present study), and ATPAF1 mRNA expression 

by OGFOD1 (as seen by Saito et al.), may represent two alternative routes to a common pathogenic 

pathway in PD. 

To summarize, the present study demonstrated that the mitochondrial F1F0-ATP synthase assembly 

factor ATPAF1 interacts with parkin, and that ATPAF1 accumulates in the absence of parkin. While 

there are very few functional studies on ATPAF1 available, it has been shown that impairment of 

F1F0-ATP synthase assembly is a feature of parkin-mutant Drosophila (Kim et al. 2012). Other 

studies have found that increased ATPAF1 is detrimental to cellular health. For example, upregulation 

of ATPAF1 expression is involved in OGFOD1-ischemic cell death signaling (Saito et al. 2010); 

increased ATPAF1 expression is also associated with asthma (Schauberger et al. 2011) and prostate 

cancer (Schinke et al. 2014). In light of these interesting findings, the interaction of parkin with 

ATPAF1 and its relevance to neurodegeneration should be investigated further.   

 

4.2.2.2 SEPT9 

The septins, a family of thirteen protein paralogs, are GTP-binding proteins with diverse roles in 

health and disease (Dolat et al. 2014). Septins form hetero-oligomeric complexes capable of 

assembling into higher ordered structures, including filaments and rings. As part of such non-polar 

filamentous structures, septins interact with both actin filaments and microtubules, and septins are 

Stellenbosch University  https://scholar.sun.ac.za



163 

 

increasingly being recognized as an important and dynamic component of the cytoskeleton (Mostowy 

and Cossart 2012). A major function of septins is the control of cellular protein localization and 

trafficking, which contributes to the roles of septins in cytokinesis, cytoskeletal reorganization, cell 

motility, signaling cascades, vesicle trafficking and exocytosis (Peterson and Petty 2010).  

Septins are of particular interest to neurodegeneration, as the accumulation of two septins, SEPT4 and 

SEPT5, has been implicated in the cytotoxic process underlying parkin-linked PD. SEPT5 was the 

first parkin substrate to be identified (Zhang et al. 2000), and was found to accumulate in the midbrain 

of PD patients with parkin mutations (Choi 2003). Overexpression of SEPT5 in both Drosophila and 

rats induced dopamine-dependent neurodegeneration (Dong et al. 2003; Muñoz-Soriano et al. 2012), 

suggesting that the accumulation of SEPT5 in the absence of functional parkin contributes to PD. 

SEPT5 interacts with both the exocyst complex and the SNARE protein syntaxin, implicating SEPT5 

in the regulation of vesicle trafficking and exocytosis (Hsu et al. 1998; Beites et al. 1999). Hence, 

accumulation of SEPT5 may contribute to neurodegeneration by dysregulation of synaptic exocytosis. 

SEPT4 is also a substrate of parkin (Choi 2003). Interestingly, the two distinct splice isoforms of 

SEPT4 (SEPT4_v1 and SEPT4_v2, also known as ARTS) have divergent functions in neurons. 

SEPT4_v1 has a neuroprotective role and directly interacts with α-synuclein to prevent its aggregation 

(Ihara et al. 2007). This isoform is abundantly found in LBs of PD patients (Ihara et al. 2003; 

Shehadeh et al. 2009).  ARTS (Apoptosis-Related protein in the TGF-β Signaling pathway), on the 

other hand, is a mitochondrial pro-apoptotic protein (Larisch et al. 2000).  While parkin interacts 

equally with both isoforms, only ARTS is ubiquitinated and targeted for degradation by parkin 

(Kemeny et al. 2012). Hence, only the ARTS isoform of SEPT4 accumulates in the absence of parkin, 

and promotes neurodegeneration by the activation of apoptotic signaling (Kemeny et al. 2012). 

The present study demonstrated a novel interaction between parkin and SEPT9; furthermore, SEPT9 

accumulated in parkin-null fibroblasts. Of all the septins, dysfunction of SEPT9 is the most 

convincingly linked to disease. Heterozygous mutations in SEPT9 cause hereditary neuralgic 

amyotrophy, a rare form of neuropathy (Kuhlenbäumer et al. 2005), whereas SEPT9 overexpression is 

found in diverse cancers, including breast, kidney, liver, lung, ovary, pancreas, etc. (Scott et al. 2005). 

SEPT9 DNA methylation changes have been used as a biomarker in colorectal cancer (Grützmann et 

al. 2008), and MLL-SEPT9 fusion transcripts frequently occur in acute myeloid leukemia (Cerveira et 

al. 2011).     

SEPT9 is near ubiquitously expressed in tissues; however, it has complex transcriptional pattern 

resulting in seven different protein isoforms (Kalikin et al. 2000). These isoforms are differentially 

expressed in body tissues: isoform 1 (SEPT9_v1) is detected in all tissues except the brain and 

thymus, while the other isoforms are expressed to varying degrees in the brain, among other tissues 
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(McIlhatton et al. 2001; Hall et al. 2005). SEPT9 isoforms are structurally very similar, differing only 

at their far N-termini while retaining identical GTPase domains and C-termini. Despite their 

similarity, some of the isoforms have diverging functions, and the altered expression of particular 

isoforms is linked to disease (Connolly et al. 2014).  

It is noteworthy that, in the present study, the Y2H prey clone that demonstrated an interaction with 

the parkin bait (Section 3.2.1.6) did not encode the full SEPT9 peptide, but rather only for the region 

containing the GTPase domain and C-terminus of SEPT9  (Appendix X). This is not unexpected, as 

N-terminal domains are poorly represented in oligo(dT)-primed cDNA libraries such as the cDNA 

library used in this Y2H screen (Van Criekinge and Beyaert 1999). As the parkin bait interacted with 

a protein domain common to all SEPT9 isoforms, it can be concluded that the interaction is not 

isoform-specific, and that parkin can be expected to interact with whichever isoform is expressed in a 

particular cell type.        

While several SEPT9 isoforms are expressed in the CNS, very little is known about the function of 

SEPT9 in the brain. To date, only one study have looked at SEPT9 protein expression and distribution 

in various brain tissues, in the context of SEPT9’s possible role in traumatic brain injury in rats (Mao 

et al. 2013). This study found that SEPT9 is expressed in neurons, but not astrocytes or 

oligodendrocytes. SEPT9 protein expression (but not mRNA expression) was marked increased in 

neurons following traumatic brain injury, and that this increased expression was closely correlated 

with induction of caspase-3-mediated apoptosis. While these observations need to be investigated 

further, it is suggestive of a pro-apoptotic role for SEPT9 in neurons.  

As stated, all septins form hetero-oligomers which polymerize into filaments. Despite this important 

property, the native assembly states and hetero-oligomerization partners of septins have only recently 

been investigated (Sellin et al. 2011). Current knowledge suggests that septins exist predominantly in 

the context of hexamers and octamers (Sellin et al. 2011). Importantly, all septin octamers contain 

SEPT9 at each terminus, which mediates octamer polymerization in a microtubule-dependent manner 

(Kim et al. 2011). Overexpression of SEPT9 alters the ratio of hexamers to octamers, and modulates 

the higher-order arrangement of septin filaments (Sellin et al. 2012). Hence, SEPT9 expression levels 

alter cellular septin assemblies in a stoichiometric manner, suggesting that its overexpression may 

impact on the functioning of most other septins, including septins enriched at the synaptic terminals. 

Septin filaments are particularly important for proper synaptic function at the synaptic terminal 

(Tsang et al. 2011); the important role of SEPT9 in septin filament assembly could conceivably 

disrupt the regulated functioning of these septins. 

The identified interaction between parkin and SEPT9 could also have implications for oncogenesis, as 

both proteins have been implicated in cancer. SEPT9 positively regulates the hypoxic response 
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pathway, by interacting with and stabilizing hypoxia-inducible factor 1α (HIF-1α) (Amir et al. 2006). 

This activation of HIF-1α induces a diverse range of target genes, and plays a key part in the 

promotion of cell proliferation, tumor growth and angiogenesis (Semenza 2010). Cells overexpressing 

SEPT9 had enhanced HIF-1α activity and higher proliferation rates both in vitro and in vivo (Amir et 

al. 2009). Conversely, targeted knockdown of SEPT9 reduced HIF-1α expression, cell proliferation 

and tumorigenesis (Amir et al. 2010). Increased expression of SEPT9, possibly as a result of parkin 

dysfunction, therefore impairs cell cycle regulation and promotes oncogenesis via activation of the 

HIF-1α pathway. This interesting observation is in accordance with the established connection 

between parkin dysfunction and cancer (Section 1.16.5) 

One is then faced with a conundrum: is increased SEPT9-HIF-1α signaling in the absence of parkin 

also relevant in neurodegeneration? After all, increased HIF-1α in the brain has a neuroprotective 

effect: HIF-1α promotes dopamine release (Witten et al. 2009) and protects against MPTP-induced 

neurotoxicity (Lee et al. 2009). Hence, parkin dysfunction in neurons could, paradoxically, have a 

pro-survival effect via the positive effect of SEPT9 accumulation on HIF-1α induction. This puzzle is 

solved by numerous studies showing that the interaction of SEPT9 with HIF-1α is restricted to the 

SEPT9_v1 isoform. In fact, the first 25 amino acids of SEPT9_v1, which are uniquely different from 

the other septin isoforms, were found to be critical for HIF-1α activation (Amir et al. 2009; Golan and 

Mabjeesh 2013). As this isoform is not expressed in the brain (McIlhatton et al. 2001; Hall et al. 

2005), the SEPT9-HIF-1α effect is restricted to non-neuronal, mitotic tissues (Amir et al. 2006).   

In summary, the identified functional interaction of parkin with SEPT9 may be of relevance to PD, 

given that two other members of the septin protein family have been implicated in parkin-associated 

neurodegeneration. Moreover, previous studies have established that dysregulated SEPT9 expression 

can have numerous pathological, tissue- and isoform-specific effects. While the cellular consequences 

of SEPT9 accumulation have not been specifically examined in neurons, previous reports suggest that 

it may have a pro-apoptotic effect. The accumulation of SEPT9 in the absence of parkin could 

conceivably impair neuronal function in several ways, as SEPT9 plays a pivotal role in regulating the 

assembly dynamics of many other septins. Finally, the interaction of parkin with SEPT9 may be of 

particular relevance to cancer research, and provide novel answers as to how parkin mutations 

increase susceptibility to various cancers.      

 

4.2.2.3 14-3-3η 

14-3-3 proteins are a family of highly conserved regulatory proteins ubiquitously expressed in cells; 

they are particularly abundant in the brain (Berg et al. 2003). To date, seven isoforms (β, γ, ε, ζ, η, θ 

and σ) have been identified, where each isoform is different in its cellular distribution, function and 

pathological relevance (Mhawech 2005). 14-3-3 proteins act as chaperones by binding to 
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phosphorylated serine sites of interacting partners. This binding may have several effects, whether 

augmenting or inhibiting the activity of the interactor, acting as an adaptor/scaffold for multi-protein 

assemblies, protecting the interactor from dephosphorylation, or regulation the subcellular localization 

of the interactor. In this manner, 14-3-3 proteins play important roles in the regulation and 

coordination of numerous diverse pathways, including intracellular trafficking, signal transduction, 

cell cycle control, cell survival and apoptosis (Mackintosh 2004).  

14-3-3η, in particular, has been implicated in neuronal function and health. Polymorphisms in the 14-

3-3η gene (YWHAH) are genetic susceptibility factors for both schizophrenia and bipolar disorder 

(Toyooka et al. 1999; Wong et al. 2003; Grover et al. 2009). Furthermore, YWHAH was found to be 

downregulated in a dopaminergic neuronal cell line during oxidative stress, suggesting that the loss of 

the chaperone activity of 14-3-3η contributes to the oxidative signaling underlying oxidative damage 

in dopaminergic neurons (Anantharam et al. 2007). Conversely, YWHAH was shown to be 

upregulated in primary cortical neurons during in vitro development, indicating a role of 14-3-3η in 

neuronal growth and differentiation (Chen et al. 2005). Moreover, transient overexpression of 14-3-3η 

in AF5 neuronal cells protected the cells from N-methyl-D-aspartate (NMDA)-induced excitotoxic 

cell death (Chen et al. 2007).  

Of relevance to this dissertation, 14-3-3η has also been implicated in neurodegeneration and PD.  

Most 14-3-3 proteins are abundantly found in LB’s of PD brains (Kawamoto et al. 2002), while the 

14-3-3γ, -ε and η isoforms in particular are enriched at the synaptic junction and the synaptic 

membrane, similarly to α-synuclein (Berg et al. 2003). Interestingly, 14-3-3 proteins share amino acid 

sequence homology with α-synuclein (Ostrerova et al. 1999). Soluble α-synuclein and 14-3-3 protein 

complexes were observed in neurons of SNCA transgenic mice (Shirakashi et al. 2006), and a direct 

interaction of 14-3-3η with α-synuclein was confirmed by immunoprecipitating this complex from the 

SNpc of PD patients (Sato et al 2006). A recent and insightful study examined the relationship 

between 14-3-3η and α-synuclein, which found that the fibrillization and aggregation process of α-

synuclein is heavily influenced by the presence of 14-3-3η (Plotegher et al. 2014). Their study showed 

that, while 14-3-3η was unable to bind monomeric α-synuclein, it strongly interacted with oligomeric 

α-synuclein aggregation intermediates and diverted the aggregation process. However, when the level 

of α-synuclein was overwhelmingly higher than 14-3-3η, the fibrillization process in effect 

sequestered 14-3-3η. This sequestration of 14-3-3η by excessive α-synuclein may contribute to PD 

pathogenesis via the loss of appropriate 14-3-3η function. Indeed, 14-3-3η overexpression rescued the 

toxic effects of early-stage α-synuclein aggregation in cell models (Plotegher et al. 2014).     

LRRK2 has been shown to bind several 14-3-3 isoforms, especially 14-3-3η, where PD-causing 

mutations in LRRK2 abolished the interaction with 14-3-3η (Nichols et al. 2010; Li et al. 2011b). 

Moreover, disruption of the interaction between 14-3-3η and LRRK2 altered the cytoplasmic 
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localization of LRRK2, resulting in the accumulation of this normally diffusely-spread protein 

(Dzamko et al. 2010). Further evidence suggests that 14-3-3η mediates the extracellular release of 

LRRK2 in exosomes (Fraser et al. 2013). Hence, 14-3-3η regulates LRRK2 localization and sorting, 

while PD-linked mutations impair this regulatory action. This may be of considerable relevance as 

aberrant LRRK2 sorting has been implicated in PD pathogenesis (MacLeod et al. 2013). 

Of note, 14-3-3η has been previously shown to interact with parkin (Sato et al 2006). Sato et al. co-

immunoprecipitated parkin and 14-3-3η from mouse brain homogenates, and found that the 

association with parkin was specific to this isoform. Furthermore, they used parkin deletion constructs 

to demonstrate that the region containing parkin’s RING0 domain was critical for 14-3-3η binding. 

Upon investigation of the effect of 14-3-3η binding on parkin’s activity, it was discovered that 14-3-

3η suppressed parkin’s intrinsic auto-ubiquitination ability; 14-3-3η furthermore inhibited the 

interaction of parkin with its substrate synphilin-1. Surprisingly, Sato et al. found that wild-type α-

synuclein relieved this negative regulation of parkin activity via its interaction with 14-3-3η, while 

PD-causing A30P and A53T SNCA mutants could not rescue parkin activity. 

These insightful findings suggest that 14-3-3η-bound parkin is present in a latent state in the cells, 

where 14-3-3η functionally links parkin and α-synuclein. It could be that an imbalance of the three-

way interactions between parkin, 14-3-3η and α-synuclein may contribute to the neurodegenerative 

process. While this has not been properly explored, the interaction of 14-3-3η with parkin might 

protect parkin from cellular stresses, such as its previously-reported sensitivity to nitrosative stress 

(Yao et al. 2004). Furthermore, while 14-3-3η may negatively regulate parkin activity, it may 

paradoxically play a positive role in maintaining a large pool of parkin in the cell by inhibiting its 

auto-ubiquitination and subsequent degradation. Physiological α-synuclein might fine-tune this 

regulation by binding to 14-3-3η and activating the latent parkin-14-3-3η complex in an appropriate 

manner. In fact, immunoprecipitation of 14-3-3η from midbrain lysates showed that 14-3-3η-bound 

parkin is significantly decreased in PD patients compared to controls, whereas levels of 14-3-3η-

bound α-synuclein is clearly elevated in PD patients (Sato et al 2006). This supports the hypothesis 

that a disruption of the careful balance between the positive and negative regulation of parkin 

contributes to PD. Moreover, the demonstration that 14-3-3η interacts with numerous PD-associated 

proteins, including α-synuclein, LRRK2 and parkin, might suggest that 14-3-3η is involved in the 

regulation of multiple pathogenic processes in PD. 

The present study independently verified the previously-described interaction of parkin with 14-3-3η 

(Sato et al 2006). Furthermore, the protein expression levels of 14-3-3η was found to not differ 

significantly between parkin-null and wild-type parkin fibroblasts, which is consistent with the 

regulation of parkin by 14-3-3η, instead of vice versa. While the curious negative regulation of parkin 

by 14-3-3η was not investigated further, as this was beyond the scope of this study, future 
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investigation of the precise molecular mechanisms and consequences of this regulatory effect may be 

of interest to PD research. Also, modulating the regulation of parkin by 14-3-3η may be a novel target 

for the prevention and therapy of PD, as may be the interactions by 14-3-3η with α-synuclein or 

LRRK2. Recent efforts have discovered many natural and synthetic compounds that modulate the 

binding of 14-3-3 proteins with their targets (Zhao et al. 2011a; Milroy et al. 2013; Ottmann 2013); 

however, such compounds would need to selectively target specific 14-3-3 isoforms and isoform 

interactions before they can be used in vivo.     

   

4.2.2.4 Cytoskeletal actin 

β-Actin and γ-actin  are two ubiquitously-expressed cytoplasmic members of the actin protein family; 

this family includes four other actin paralogs that are predominantly expressed in muscle (Rubenstein 

1990). These two non-muscle cytoskeletal actins share an exceptionally high amino acid sequence 

similarity, differing by only four amino acids clustered at their respective N-terminals 

(Vandekerckhove and Weber 1978). In the present study, a Y2H screen identified an interaction 

between parkin and a cDNA clone encoding a large fragment of γ-actin. However, as the peptide 

sequence encoded by this clone is also found in β-actin, it can be assumed that parkin interacts with 

both actin paralogs. Hence, the relevance of the interaction between parkin and cytoskeletal actin will 

be discussed here.   

The cytoskeleton consists of the three essential components: actin filaments, tubulin-containing 

microtubules and intermediate filaments. Actin participates in many important cellular functions as 

part of the cytoskeleton, including cell signaling, vesicle trafficking, organelle movement, and 

structural organization (Pollard and Cooper 2009). Crucial to these roles is the ability of actins to self-

assemble into filaments (F-actin). The assembly of F-actin is a highly dynamic process which can be 

modulated by numerous actin-associated proteins in the cell, and perturbation of F-actin dynamics can 

impair proper cellular functioning.  

Numerous studies have highlighted a link between actin, vesicle trafficking and PD. For example, α-

synuclein is known to alter actin cytoskeletal structure and dynamics. Wild-type α-synuclein was 

found to interact with actin, slowing its polymerization and promoting its depolymeration (Sousa et al. 

2009). A30P mutant α-synuclein, on the other hand accelerated polymerization (Sousa et al. 2009). 

This interaction of α-synuclein and F-actin is thought to underlie α-synuclein’s role in synaptic vesicle 

trafficking and synaptic function (Bellani et al. 2010). Similarly, accumulating evidence also 

implicate LRRK2 in actin dynamics. It was shown that LRRK2 depolymerized F-actin in vitro, and 

that PD-causing LRRK2 mutations accelerated actin disassembly in SH-SY5Y cells (Chan et al. 

2011a; Meixner et al. 2011) Fibroblasts from PD patients with LRRK2 mutations had decreased F-

Stellenbosch University  https://scholar.sun.ac.za



169 

 

actin stability which were more susceptible to the F-actin depolymerizing agent Latrunculin A (Caesar 

et al. 2014). Moreover, such fibroblasts had a significant increase in F-actin bundles, possibly a 

compensatory mechanism to protect F-actin from the depolymerizing effect of mutant LRRK2 

(Caesar 2014.) LRRK2 also phosphorylates moesin, a protein that anchors F-actin to the plasma 

membrane (Jaleel et al. 2007); phosphorylation of moesin alters the arrangement of the actin 

cytoskeleton and modifies synaptic vesicular function (Parisiadou et al. 2009). This important role of 

LRRK2 in modulating synaptic transmission is increasingly being recognized as a key feature of PD 

(Belluzzi et al. 2012; Lee et al. 2012a). 

Parkin has been previously associated with the cytoskeleton in the literature. Huynh et al. (2000) used 

confocal microscopy to demonstrate that parkin co-localized with actin fibers in COS1 cells. To 

further differentiate whether parkin associated with actin filaments or microtubules, cells were treated 

with cytochalastin D, an actin depolymerizing agent, or nocodazole, which selectively destabilizes 

microtubules. Cytochalastin D treatment disrupted both actin and parkin staining behavior, further 

supporting parkin-actin co-localization. Nocodazole, however, had no effect on parkin staining, 

suggesting that parkin did not co-localize with microtubules. In contrast to this, Ren et al. (2003) 

found that parkin is a microtubule-binding protein. This study demonstrated that parkin co-

immunoprecipitated with both α- and β-tubulin and co-localized to α/β tubulin heterodimers in SH-

SY5Y cells. These contradictory findings by Huynh at al. and Ren et al. may be explained by 

differences in experimental conditions. Ubiquitination assays demonstrated that wild-type parkin 

ubiquitinated both monomeric α- and β-tubulin, and targeted these proteins for proteasomal 

degradation (Ren et al. 2003). The authors speculated that parkin may selectively ubiquitinate 

misfolded monomeric tubulins, which are cytotoxic upon accumulation in the cell. However, parkin 

also interacts with assembled tubulins, albeit in a non-enzymatic manner. It was demonstrated that 

parkin interacted with and stabilized microtubules independently of its E3 ligase activity, supporting 

the association of parkin and the microtubule cytoskeleton (Yang et al. 2005). 

There are other studies which support the functional association of parkin and actin. Parkin interacts 

with and ubiquitinates LIM kinase 1 (LIMK1), which then attenuates LIMK1-dependendent 

phosphorylation and inactivation of cofilin (Lim et al. 2007). Cofilin is known to bind to F-actin and 

promotes actin turnover (Lappalainen and Drubin 1997). Hence, parkin modulates the actin 

cytoskeleton indirectly via its interaction with LIMK1. A further study investigated the functional link 

between PINK1 and parkin, and found that RNAi-mediated PINK1 knockdown dramatically 

increased parkin’s interaction with F-actin (Kim and Son 2010). Further investigation demonstrated 

that loss of PINK1 induced F-actin bundling in neuronal cells via the increased inactivation of cofilin, 

which then promoted the recruitment of parkin to F-actin. Interestingly, induction of oxidative stress 

and treatment with rotenone similarly increased the association of parkin with F-actin (Kim and Son 
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2010). Collectively, these results support a model whereby parkin binds and stabilizes F-actin, and 

this stabilization is increased as a neuroprotective response to cellular stress. This is similar to the 

stabilizing binding of parkin to microtubules (Yang et al. 2005). 

Of note, this study by Kim and Son is the only report of the successful co-IP of parkin and actin prior 

to the present study. However, Kim and Son used overexpressed and FLAG-tagged parkin to perform 

the co-IP assay, whereas the present study demonstrates this interaction with endogenous parkin. 

Hence, the present study confirmed the interaction between parkin and actin in a more biologically 

relevant experimental setting. This is of importance as the presence of N-terminal epitope tags are 

known to alter the biochemical function of parkin by artificially inducing an auto-activated state 

(Burchell et al. 2012). It is strongly suggested that any results obtained using tagged parkin should be 

confirmed with endogenously-expressed parkin, as has been done for the parkin-actin interaction in 

the present study.    

The absence of parkin was found to have no effect on the steady-state level of total γ-actin (and β-

actin) protein. This suggests that the interaction of parkin with actin does not promote the turnover of 

actin, which is consistent with reports that the degradation of actin is instead mediated by the E3 

ligase TRIM23 (Kudryashova et al. 2005). However, it is conceivable that the absence of parkin may 

have an effect on the assembly state of F-actin, which would not have been reflected in denaturing 

western blot analyses as performed in the present study. While the functional relevance of this 

interaction is currently unclear, parkin’s association with actin may promote proper actin dynamics, 

which is supported by studies that suggest a stabilizing role of parkin at F-actin, similar to parkin’s 

role at microtubules. Alternatively, parkin may associate with actin as a general means of “anchoring” 

itself in various subcellular localizations. This would allow for the efficient ubiquitination of parkin 

substrates that are being transported along actin filaments. Further investigation of the interaction of 

parkin with actin may be fruitful, as the relevance of actin dynamics to PD has been highlighted by 

the numerous studies showing that α-synuclein and LRRK2 also interact with actin. The actin 

cytoskeleton may therefore represent a functional link between several PD-causing genes.  

 

4.3 FUNCTIONAL STUDIES IN A PARKIN-DEFICIENT CELLULAR MODEL 

Patient-derived fibroblasts with parkin mutations are valuable models for investigating the functions 

of parkin in an in vivo setting. However, published results of such investigations of parkin-mutant 

fibroblasts have not been wholly consistent (Mortiboys et al. 2008; Grunewald et al. 2010; Pacelli et 

al. 2011). Therefore, the present study aimed to functionally compare parkin-mutant fibroblasts from 

South African PD patients with wild-type control fibroblasts using a variety of assays of cellular 

health and function (Section 3.3). 
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It was shown that patient-derived fibroblasts have comparable cell viabilities (as detected by a MTT 

assay) to wild-type control fibroblasts under basal conditions. Surprisingly, it was also found that the 

cell growth (as measured by a CyQUANT® assay) is significantly higher in the parkin-mutant 

fibroblasts under basal conditions (p=0.0001). This is in contrast to the established literature. For 

example, Mortiboys et al. (2008) reported that both cell viability and growth rates were similar in 

fibroblasts from controls and patients with parkin mutations, whereas Pacelli et al. (2011) reported 

that parkin mutant fibroblasts displayed a significantly lower growth rate than control fibroblasts. 

Both of these studies reported cell viability and growth under basal, unstressed conditions. The 

increased cell growth detected in the present study may reflect methodological differences, as neither 

the study by Mortiboys et al. or Pacelli et al. used a CyQUANT® assay to determine cell growth. It is 

also conceivable that the increased cell proliferation in the absence of parkin is a result of a metabolic 

shift in response to parkin deficiency, which is known to promote cell proliferation in various cancers 

(Xu et al. 2014).   

In contrast to these observations, the cell growth of parkin-mutant fibroblasts is significantly inhibited 

after treatment with CCCP (p=0.0013), while wild-type fibroblasts demonstrate a much smaller 

response. This is indicative of an increased susceptibility to CCCP in the absence of parkin. Treatment 

with CCCP reduces the Δψm and promotes the recruitment of parkin from the cytoplasm to 

depolarized mitochondria (Narendra et al. 2008). Parkin is subsequently involved in the isolation and 

mitophagic clearance of CCCP-damaged mitochondria (Narendra et al. 2008). Hence, parkin 

deficiency in patient-derived fibroblasts may reduce cell growth after CCCP treatment via the failure 

to properly clear damaged mitochondria. The resulting accumulation of depolarized mitochondria in 

the absence of parkin may impair cell growth by being a significant source of oxidative stress 

(Henchcliffe and Beal 2008).  

The present study found interesting differences in the mitochondrial network morphologies of patient 

and wild-type fibroblasts (Section 3.3.4). Whereas the degree of mitochondrial elongation (aspect 

ratio) was comparable between patient-derived and wild-type fibroblasts, the amount of mitochondrial 

branching (form factor) was significantly decreased in patients (p=0.0306). This decrease in form 

factor is consistent with increased fragmentation of the mitochondrial network (Burbulla et al. 2010).  

Other studies which investigated mitochondrial network morphology in fibroblasts from patients with 

parkin mutations found conflicting results. In contrast to the results obtained here, Mortiboys et al. 

(2008) found that fibroblasts with parkin mutations had a marked increase in mitochondrial 

branching, as quantified by the form factor. This was suggestive of an increased mitochondrial fusion 

in the absence of parkin. Two other studies found that parkin mutant and wild-type fibroblasts 

demonstrated comparable form factors under basal conditions (Grunewald et al. 2010; Rakovic et al. 

2011). However, both studies found that treatment with mitochondrial stressors (paraquat and 
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valinomycin, respectively) decreased the form factor and induced mitochondrial network 

fragmentation in parkin mutant and wild-type fibroblasts; these decreases was only statistically 

significant in the fibroblasts with parkin mutations. These findings are supported by the results of 

Pacelli et al. (2011), who observed a noticeably more fragmented mitochondrial network in parkin-

mutant fibroblasts even under basal conditions; however, this difference was not quantified in terms 

of form factor. Hence, the majority of studies reported a decreased mitochondrial form factor, 

indicating increased fragmentation, in the absence of parkin. The results obtained here support these 

established findings, but not the contrasting findings of Mortiboys et al. (2008).  

Of note, all of the above-mentioned studies which quantified the mitochondrial network morphology 

reported that the degree of mitochondrial elongation (as expressed by the aspect ratio) was 

comparable in parkin-mutant and wild-type fibroblasts (Mortiboys et al. 2008; Grunewald et al. 2010; 

Rakovic et al. 2011). Hence, the similar mitochondrial aspect ratios observed in the present study is in 

concordance with the established literature. 

Several other studies have implicated increased mitochondrial fission in the pathogenesis of PD. For 

example, mutations in PINK1 and DJ-1 induce mitochondrial fragmentation in cultured neurons 

(Exner et al. 2007; Krebiehl et al. 2010). Similarly, overexpression of α-synuclein and LRRK2 were 

found to promote mitochondrial fragmentation (Wang et al. 2012b; Xie and Chung 2012). In addition 

to the above-described reports of fragmented mitochondrial networks in parkin mutant fibroblasts, 

RNAi-mediated knockdown of parkin in neuronal cells had a similar pro-fragmentation effect (Lutz et 

al. 2009). This enhanced mitochondrial fragmentation in the absence of parkin can be explained by an 

abrogation of parkin’s interaction with the mitochondrial fission factor Drp1. Parkin ubiquitinates and 

promotes the proteasomal degradation of Drp1 (Wang et al. 2011a); therefore, loss of parkin would 

reduce the level of Drp1 ubiquitination, resulting excessive mitochondrial fission and fragmentation 

of the mitochondrial network. In fact, the fragmented phenotype of parkin mutant cells was found to 

be dependent of Drp1, and Drp1 knockdown could rescue these morphological abnormalities (Lutz et 

al. 2009).  

However, this is contradicted by other studies demonstrating that, in Drosophila, wild-type parkin 

promotes fission, and loss of parkin resulted in increased mitochondrial fusion and branching, which 

can be rescued by Drp1 overexpression (Poole et al. 2008; Ziviani et al. 2010). In support of the 

relevance of these observations is the finding that parkin ubiquitinates Mfn1 and Mfn2 even in 

mammalian cells, promoting the degradation of these pro-fusion factors (Glauser et al. 2011; Sun et 

al. 2012). According to this model, wild-type parkin ubiquitinates Mfn1/2 in response to 

mitochondrial damage in order to inhibit fusion of damaged mitochondria with healthy mitochondria. 

This fission promotes the selective isolation and mitophagy of dysfunctional mitochondria (Rakovic 
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et al. 2011). In the absence of parkin, dysregulation of Mfn1/2 may contribute to increased 

mitochondrial fusion, as seen in some parkin-mutant fibroblasts (Mortiboys et al. 2008).  

It is difficult to reconcile the described pro-fusion (via Drp1 ubiquitination) and pro-fission (via 

Mfn1/2 ubiquitination) functions of parkin. It is likely that these contradictory roles of parkin reflect 

the complex nature of the regulation of mitochondrial dynamics, where a delicate balance between 

fusion and fission promotes optimal mitochondrial functioning. Hence, the enhanced fission and 

fragmentation in the absence of parkin, as seen in the present study, may indicate a disruption of 

mitochondrial dynamics that cannot be easily reduced to one-way interactions between parkin and 

fission/fusion proteins.    

Mitochondrial morphology is thought to be intimately connected to various parameters of 

mitochondrial health, including Δψm. However, the current study found that Δψm is similar in parkin-

mutant and wild-type fibroblasts, irrespective of the degree of mitochondrial branching (Section 

3.3.3). This lack of Δψm impairment is in contrast to the findings by Mortiboys et al. (2008), who 

reported a 30% decrease in Δψm in parkin-mutant fibroblasts relative to wild-type controls. The 

reported decrease in Δψm was even more pronounced when the fibroblast culture media was switched 

to include galactose as an energy source rather than glucose, which saw a 70% decrease in Δψm in 

fibroblasts with parkin mutations under these oxidative conditions (Mortiboys et al. 2008). Cultured 

fibroblasts predominantly use glycolysis to generate ATP, rather than oxidative phosphorylation 

(Benard et al. 2007). Culturing fibroblasts in glucose-deficient media obligates their use of oxidative 

phosphorylation for ATP production, which explains why possible mitochondrial impairments are 

enhanced under these conditions (Rossignol et al. 2004).  

Grunewald et al. (2010) found that Δψm was similar in parkin-mutant and wild-type fibroblasts under 

basal conditions, in concordance to the results of the present study. However, a decrease in Δψm was 

observed in the patient fibroblasts after the induction of oxidative stress by treatment with paraquat. 

While the present study only investigated Δψm under basal conditions, it is conceivable that possible 

impairments in Δψm in parkin-mutant fibroblasts may only be readily observable under highly 

oxidative conditions, where the cells are more reliant on mitochondria for ATP production. Hence, 

culturing the fibroblasts in glucose-free media may have unmasked impairments in Δψm which are not 

apparent under the experimental conditions used in the present study. 

Surprisingly, the present study found that the rate of mitochondrial respiration is increased in parkin-

mutant fibroblasts in comparison to wild-type fibroblasts (Section 3.3.2). Further investigation of 

respiratory activity after the addition of various inhibitory compounds demonstrated that, in addition 

to an increased mitochondrial respiratory rate under basal conditions (p=0.0355), patient fibroblasts 

have an elevated ATP-coupled respiration (p=0.0481), increased respiration due to passive proton 
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leak across the inner mitochondrial membrane (p=0.0273) and an increased maximal respiratory rate 

(p=0.0081).    

The unanticipated overall increase in mitochondrial respiration is in contrast to numerous studies 

which have reported decreased respiratory activity in fibroblasts from PD patients with parkin 

mutations. For example, Mortiboys et al. (2008) described significant impairment of mitochondrial 

complex I activity in parkin-mutant fibroblasts, which was linked to a loss of Δψm and decreased 

cellular ATP content. Similarly, Pacelli et al. (2011) reported that both the basal and maximal 

respiratory rate was significantly decreased in patient fibroblasts with parkin mutations. Further 

investigation of the specific respiratory complexes contributing to the decline in respiratory flux 

demonstrated that complex I, III and IV (but not complex II) activity was significantly reduced in 

patient fibroblasts (Pacelli et al. 2011).  

The paradoxically improved mitochondrial respiration in the absence of parkin seen in the present 

study is difficult to explain, but it likely reflects a compensatory response in these parkin-mutant 

fibroblasts. Indeed, the increase in respiration that is coupled to ATP strongly suggests an 

upregulation of mitochondrial function, which will be discussed in more detail below.  However, it is 

telling that the patient fibroblasts also had an increased passive proton leakage, and the resulting 

oxygen consumption from this leakage (which does not contribute to ATP production) is elevated to a 

higher extent than the ATP-linked oxygen consumption. This is reflected by the trend towards lower 

ATP coupling efficiency of the parkin-mutant fibroblasts, although this difference did not reach 

statistical significance (p=0.0983). It is possible that the increased proton leakage and lower ATP 

coupling efficiency points towards an underlying mitochondrial defect caused by parkin deficiency, 

which is then overcome and masked by a compensatory response.  

Conversely, it is also possible that the higher proton leakage is in itself a compensatory response 

aimed at lowering ETC-linked ROS production. Studies have demonstrated that the elevation of 

proton leakage can be induced by uncoupling proteins (UCPs) in response to oxidative stress (Brand 

2000; Porter 2001). Here, UCPs promote the passive movement of protons across the inner 

mitochondrial membrane which lowers Δψm in a controlled fashion; UCPs therefore decrease further 

ROS production at the expense of decreased ATP production (Toime and Brand 2010).      

As stated, it is speculated that the significant increase in basal and ATP-linked respiration in parkin-

mutant fibroblasts is due to a compensatory effect. In fact, several compensatory responses to parkin 

deficiency have been described in the literature. Pacelli et al. (2011) found that the defective ATP 

production by oxidative phosphorylation in parkin-mutant fibroblasts was compensated by an 

upregulation of the glycolytic pathway. They furthermore reported that the protein expression of 

PGC1-α was significantly higher in parkin-mutant fibroblasts; PGC1-α is a key promoter of the 
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compensatory increase in mitochondrial biogenesis (Kelly and Scarpulla 2004). However, the 

expression of several PGC1-α target genes directly involved in mitochondrial biogenesis (including 

NRF1, TFAM and COX II) were unchanged or even decreased in patient-derived fibroblasts. Pacelli et 

al. postulated that an unknown post-translational modification of PGC1-α modulated its function in 

parkin-mutant fibroblasts, preventing a compensatory increase in mitochondrial biogenesis. It is 

interesting to speculate that the genetic backgrounds of the patient-derived fibroblasts in the current 

study may allow for the PGC1-α-mediated increase in mitochondrial biogenesis, in contrast to 

fibroblasts used by Pacelli et al. This may, in part, explain the conflicting results obtained here and by 

Pacelli et al. Clearly, additional studies will be necessary to support such a mechanism. 

Other studies have also hinted at a compensatory increase in mitochondrial biogenesis in parkin 

deficient fibroblasts. Grunewald et al. (2010) investigated the citrate synthase activity of parkin-

mutant fibroblasts as an index of total mitochondrial mass, and found that such activity was 

significantly higher in parkin-mutant fibroblasts than wild-type controls. Indeed, Grunewald et al. did 

not observe any impairments of mitochondrial complexes I-IV under basal conditions. This in in 

contrast to Pacelli et al. (2011) who reported that citrate synthase activity was significantly decreased 

in parkin-mutant fibroblasts, suggesting a decrease in total mitochondrial content, which was 

associated with marked defects in complexes I, III and IV. Hence, increased citrate synthase activity, 

and elevated mitochondrial biogenesis in general, may explain the milder phenotype of parkin mutant 

fibroblasts observed by Grunewald et al. While markers of mitochondrial biogenesis were not 

specifically assayed in the present study, increased biogenesis may underlie the compensatory 

increase in mitochondrial respiration seen here. 

It is noted that a possible compensatory elevation of mitochondrial biogenesis in the parkin-deficient 

fibroblasts would be paradoxical: parkin is involved in the promotion of mitochondrial biogenesis; 

hence, these processes are expected to be decreased in the absence of parkin (Kuroda et al. 2006a). 

However, future investigation of the exact nature and mechanism of the respiratory compensation 

seen here in parkin-mutant fibroblasts may reveal a more complex and nuanced view of parkin and its 

interaction with mitochondria.  

It is furthermore found that patient fibroblasts have a higher maximal respiration, with this effect 

being particularly pronounced in the fibroblasts of patient P2 (Section 3.3.2). This is reflected in the 

significantly higher spare respiratory capacity of the P2 fibroblasts over the wild-type control 

fibroblasts, whereas the fibroblasts of patient P3 have a spare capacity comparable to the controls. 

These differences between the two patients’ fibroblasts may be explained by genetic differences, 

which results in additional compensatory mechanisms specific to the P2 fibroblasts. It is interesting to 

compare this to the results of the parkin interactor accumulation experiments (Section 3.2.4.2), which 

also suggested a compensatory response in the P2 fibroblasts. While the nature of this patient-specific 
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compensation is unclear, previous studies have found compensatory mitochondrial biogenesis and 

upregulation of lysosomal degradation pathways PINK1 knockout mice (Wood-Kaczmar et al. 2008), 

as well as upregulation of various RING and RBR E3 ubiquitin ligases in parkin knockout mice 

(Bhandari et al. 2014). It is interesting to speculate that P2 fibroblasts may be compensating for the 

loss of parkin by upregulating alternative mitochondrial and/or protein degradation pathways, which 

is not occurring in P3 cells to the same extent. Indeed, a clinical comparison of the PD phenotypes of 

patients P2 and P3 is suggestive of such a possible compensatory effect. P2 and P3 harbor identical 

parkin mutations and, as siblings, share approximately 50% of their genetic makeup; however, P2 has 

a markedly less severe PD phenotype and slower disease progression than her sibling (personal 

communication with research nurse, Sr. Debbie Joubert). The possible compensatory mechanism 

which attenuates PD severity and cellular impairments in P2 should be investigated in future studies.      

Spare respiratory capacity is the extent to which cells can increase oxidative phosphorylation in the 

case of a sudden increase in energy demand, and reflects the cells’ abilities to respond to stressful 

conditions (Nicholls 2009). The marked increase in maximal respiration and spare respiratory 

capacity of the P2 fibroblasts specifically is therefore unexpected, and may represent an “overshoot” 

of the compensatory response to the absence of parkin. However, is should be noted that 

compensatory adaptions due to the upregulation of parallel or alternative pathways are almost 

certainly less efficient, and may only result in a seemingly “improved” phenotype when the cells are 

not exposed to any additional sources of stress. Indeed, the fibroblasts in the present study were 

cultured under optimal growth conditions prior to respiratory rate analysis, and the perturbations with 

pharmacological stressors during analysis were performed in short time spans of minutes – hardly 

enough time for the ablation of compensatory responses under prolonged stress. It would be 

interesting to investigate whether similar respiratory compensation is in effect for cells cultured in 

glucose-free galactose media. 

These compensatory responses are likely dependent on cell- and tissue-specific metabolic capacity 

and adaptations (Akundi et al. 2013). Hence, the observations made here on patient-derived 

fibroblasts should not be extrapolated to possible effects in a neuronal environment, as neurons may 

be more restricted in their compensatory repertoire than dermal fibroblasts. In particular, the inability 

of neurons to upregulate glycolysis may increase their vulnerability to mitochondrial dysfunction 

(Bolaños et al. 2010). Furthermore, many of the described functional roles of parkin are cell-type 

specific which will result in different functional effects of parkin deficiency in fibroblasts and 

neurons. For example, it was found that parkin has anti-apoptotic and anti-oxidative properties in 

neuronal and myogenic cells, but not in COS-1 kidney cells (Kuroda et al. 2006b). Ideally, the 

observations made in this study should be verified in a neuronal model, such as iPSC-derived neurons 

with parkin mutations. 
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 4.4 VITAMIN K2 AS A POTENTIAL THERAPEUTIC MODALITY 

Patient-derived fibroblasts, with pre-defined genotypes, are particularly useful in the evaluation of the 

effects of various compounds on underlying disease mechanisms in human cells (Auburger et al. 

2012). In fact, fibroblasts from PD patients with parkin mutations have been successfully used to 

investigate the rescue effect of glutathione precursor compounds on mitochondrial impairment 

(Mortiboys et al. 2008). Similarly, it has been demonstrated that rapamycin partially rescued 

mitochondrial defects in parkin-mutant fibroblasts (Tain et al. 2009). Here, the effects of treatment 

with the potential therapeutic agent vitamin K2 on mitochondrial function were assessed in a cellular 

model of parkin deficiency.  

It was shown that vitamin K2 (in the form of MK-4) had no overall effect on cell growth when 

comparing vitamin K2-treated fibroblasts with untreated cells, either for patient-derived or wild-type 

control fibroblasts. Similarly, vitamin K2 co-treatment did not significantly alter overall cell growth of 

CCCP-stressed fibroblasts. Furthermore, vitamin K2 did not rescue the increased susceptibility to 

CCCP in parkin-mutant fibroblast discussed in Section 4.3. When considering assays of cell viability, 

it was found that vitamin K2 slightly decreased cell viability in comparison to untreated cells, but this 

effect was not significantly different between patient-derived and wild-type fibroblasts. In other 

words, the observed decrease in cell viability is a global effect not related to parkin mutation status. 

This decline in cell viability after vitamin K2 treatment may be explained by the previously-described 

pro-apoptotic effect of vitamin K2 (Yokoyama et al. 2008). It is unclear why similar effects on cell 

viability were not seen during the initial optimization of vitamin K2 treatment conditions (Section 

3.4.1).  

The effect of vitamin K2 on the morphology of the mitochondrial network had a similarly global, 

parkin-independent effect. Vitamin K2 increased both the mitochondrial length (aspect ratio; 

p<0.0001) and degree of branching (form factor; p<0.0001) of all investigated fibroblast cell lines. 

The observed increases in aspect ratio and form factor following vitamin K2 treatment are indicative 

of an increase in mitochondrial fusion and decrease in fission, respectively; hence, vitamin K2 is 

thought to promote a more interconnected mitochondrial network. Previous studies have shown that 

increased mitochondrial fusion has protective effects.  It was reported that enhanced fusion enabled 

equal distribution of mitochondrial proteins and metabolites, and reduced the accumulation of mtDNA 

mutations, thereby protecting against mitochondrial damage (Nakada et al. 2001; Ono et al. 2001). 

Thus, the elevation of mitochondrial fusion may serve to maintain bioenergetic function by acting as a 

“rescue” pathway (Twig and Shirihai 2011). Increased mitochondrial fusion was also found to be 

protective against ischemia in heart tissue (Ong et al. 2010). Interestingly, Rambold et al (2011) found 

that the fusion-driven elongation of mitochondria increased ATP production; this was ascribed to the 

enhanced cristae density and ATP synthase dimerization of elongated mitochondria.  
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Given these functional links between mitochondrial dynamics and bioenergetics, it can be speculated 

that the higher interconnectedness of mitochondria of vitamin K2-treated fibroblasts seen in the 

present study is associated with altered mitochondrial respiration. In fact, mitochondrial respiration 

analysis revealed that vitamin K2 increased the rates of basal respiration (p=0.0459), ATP-linked 

respiration (p=0.0465), the oxygen consumption due to proton leakage (p=0.025) and the maximum 

respiration (p=0.0331) of all fibroblasts cell lines. While treatment with vitamin K2 increased these 

measures of absolute respiration, it did not significantly affect ATP coupling efficiency or spare 

respiratory capacity. Importantly, the observed increases in basal and ATP-linked respiration were 

global effects of vitamin K2 treatment, irrespective of the parkin mutation status of the fibroblasts. It 

was speculated that the enhanced respiratory rates may be due to increased polarization of Δψm 

following treatment; however, further experiments found that vitamin K2 had no observable effect on 

Δψm .This suggests that vitamin K2 may act as a general promoter of mitochondrial respiration, which 

is in accordance to its previously-described role as a mitochondrial electron carrier in the ETC of 

Drosophila (Vos et al. 2012).  

It is interesting to contrast the results obtained here to those reported by Vos et al: while they found 

that vitamin K2 supplementation rescued mitochondrial dysfunction in PINK1-mutant flies, wild-type 

control flies did not experience any enhancement of mitochondrial function. For example, 

measurements of OCR and ATP synthesis were comparable between wild-type flies fed on vitamin K2 

and control media. Similarly, whereas vitamin K2 rescued the swollen, clumped mitochondrial 

phenotype of PINK1- and parkin-mutant flies, treatment had no effect on the mitochondrial 

morphology of wild-type Drosophila. This is in contrast to the increased interconnectedness of 

mitochondrial networks and elevated respiratory rates seen in even wild-type fibroblasts following 

vitamin K2 treatment. This discrepancy may point toward significant differences in the molecular 

action of vitamin K2 in Drosophila and human cells, which should be followed up in future studies.       

Some interesting disparities between patient and wild-type fibroblasts in their respective vitamin K2 

treatment responses were observed. For instance, the increase in proton leakage following treatment 

was significantly more pronounced in patients than the increase in wild-types (p=0.0082). Also, 

vitamin K2 increased the maximum respiratory rates of parkin-mutant fibroblasts to a greater extent 

than control fibroblasts (p=0.0105). Whereas it was originally anticipated that vitamin K2 may rescue 

defects in mitochondrial respiration in parkin-mutant fibroblasts, this study found a compensatory 

increase of respiratory rates in response to parkin deficiency (Section 4.3), which is enhanced by 

vitamin K2 treatment. The enhancement of this compensatory effect in parkin-mutant fibroblasts by 

vitamin K2 may point towards an interaction of vitamin K2 with the patient-specific compensatory 

response.  
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It is noted that the global effects of vitamin K2 seen in patient and unaffected control fibroblasts, such 

as elevated mitochondrial respiration and enhanced interconnectivity of mitochondrial network, may 

itself be indirect cellular responses to vitamin K2 treatment. This may repudiate the specific action of 

vitamin K2 as an ETC molecule in human fibroblasts, as seen in Drosophila (Vos et al. 2012). 

However, potentially promising therapeutic compounds do not necessarily have to target specific 

cellular pathways to prove beneficial: compounds which induce compensatory mechanisms may 

sufficiently overcome underlying cellular defects to provide a protective effect.  

While this study of parkin-deficient fibroblasts does not support a role for vitamin K2 to treat PD 

pathology specifically, vitamin K2 may have appeal as a general promoter of mitochondrial 

respiratory function. As such, vitamin K2 supplementation could potentially support the function of 

cells and tissues that are particularly reliant on proper mitochondrial function, including neurons. 

Hence, this compound may prove beneficial as a general neuroprotective agent. Other studies have 

described various neuroprotective effects of vitamin K2; for example, vitamin K2 was found to protect 

against oxidative stress-induced cell death in cultured neurons and oligodendrocytes (Li et al. 2003; 

Sakaue et al. 2011). Vitamin K2 is also known to promote neuroprotection via its activation of the 

anti-apoptotic protein Gas6 (Shankar et al. 2003).  Moreover, the vitamin K analog β-lapachone has 

been shown to enhance mitochondrial function in the brain and prevent motor function decline in aged 

mice (Lee et al. 2012b). In fact, low levels of vitamin K2 in the brain, as well as low dietary intake of 

vitamin K2, have been associated with an increased susceptibility to Alzheimer’s disease (Allison 

2001; Presse et al. 2008).  

Vitamin K2 may also be of benefit in PD therapy by targeting other neurodegenerative pathways. A 

recent study demonstrated that vitamin K2 can directly interact with α-synuclein and inhibit its 

fibrillization in vitro (da Silva et al. 2013). In contrast to the non-specific hydrophobic interactions 

exhibited by most other anti-fibrillogenic compounds, vitamin K2 delayed fibrillization via a specific 

interaction with α-synuclein residues, which promoted the formation of short fibrils rather than 

cytotoxic oligomers. These anti-fibrillogenic properties of vitamin K2, in combination with its 

enhancement of mitochondrial function seen in the present study, suggest that vitamin K2 has 

potential as a multi-target PD therapeutic agent.     

However, it should be emphasized that the interesting effects described in this pilot study were 

observed in cultured fibroblasts, and that these results cannot necessarily be extrapolated to neurons. 

Fibroblasts are markedly different from neurons in their bioenergetic requirements (Connolly 1998), 

and the increased mitochondrial respiration of fibroblasts in the presence of vitamin K2 may reflect 

cell-type specific responses. Therefore, the promising mitochondrial effects seen here should be 

verified in an appropriate neuronal environment to support the potential of vitamin K2 as a 

neuroprotective compound.  
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4.5 LIMITATIONS OF THE STUDY  

4.5.1 Limitations of the PD study group 

The major drawback of the study group used for parkin mutation screening is the limited number of 

South African PD patients available for inclusion. Furthermore, out of the 229 recruited PD patients, 

only seventeen were of Black African ancestry. This under-studied population group is therefore not 

adequately represented in the present study, which prohibits informed conclusions being made 

regarding the frequency of parkin mutations in the Black South African population. The limited 

number of Black PD patients may reflect a recruitment bias, as the majority of the study participants 

were recruited at the Movement Disorders clinic at Tygerberg Hospital (Cape Town, South Africa). 

This hospital mainly serves the predominantly Caucasian and mixed ancestry communities of the 

surrounding area, due to the complex socio-economic legacies of the apartheid regime. Black PD 

patients in rural areas may be under-diagnosed, as there are currently very few trained neurologists 

available to such rural communities. It is possible that this bias of ascertainment contributed to the 

low recruitment of Black PD patients in the present study. Despite intensive efforts, no additional 

Black patients could be recruited: this was due to a lack of contact details, loss of patients to follow-

up and a lack of willingness of family members to participate in the research.      

The South African Indian population is also under-represented amongst the study participants, with 

only four PD patients of Indian descent; however, this limitation is of less concern as the contribution 

of parkin mutations to PD in this population group has been well studied on the Indian subcontinent 

(Biswas et al. 2006; Vinish et al. 2010; Padmaja et al. 2012). While separate genetic screening for PD 

genes in the South African Indian population would be of benefit, this is perhaps not as urgent as 

investigations of the population groups that are predominantly found in South Africa. 

 

4.5.2 Limitations of mutation detection techniques  

HRM analysis is a fast, simple and cost-effective method to screen for genetic variants; however, 

HRM is susceptible to both false positive and false negative results. Several studies have established 

the sensitivity and specificity of this technique to be in the range of 90-100% (Dobrowolski et al. 

2007; Montgomery et al. 2007; Taylor 2009). Small insertions and deletions may be more difficult to 

detect than nucleotide substitutions, and homozygous substitutions or A>T substitutions may not 

significantly alter the melting profile (van der Stoep et al. 2009). Hence, all samples demonstrating 

altered melting behavior need to be verified, and their variants identified, by direct sequencing. This 

need for subsequent verification incurs additional costs on the HRM screening method.    
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The MLPA technique allows for the targeted, simultaneous analysis of many genomic regions for 

exonic rearrangements, using standard PCR and capillary electrophoresis equipment (Hömig-Hölzel 

and Savola 2012). However, MLPA is susceptible to false positive results, specifically false exonic 

deletions. Such false positives may arise from DNA sequence polymorphisms in the target sequence 

that are located close to the probe ligation site, which may interfere with proper probe annealing. This 

particular limitation is evident in the present study, as the presence of the M192L parkin 

polymorphism was shown to produce a false positive result (Section 3.1.2). Hence, it is advisable that 

all exonic rearrangements detected via MLPA analysis be verified using a second, independent 

experimental approach. This alternative exonic rearrangement detection method may introduce 

additional reagent and labor costs. Furthermore, probe signal analysis requires the proper binding of 

reference probes to their target sequences. While these reference probes are designed to target 

chromosomal regions that are not expected to harbor structural variants, probe design is mostly based 

on genomic data from Caucasian individuals. It is possible that the great genetic diversity observed in 

African populations may influence the binding of reference probes to target regions, which may yield 

false results. It is therefore important to independently verify MLPA results obtained for samples from 

non-Caucasian origin. 

 

4.5.3 Limitations of Y2H 

The Y2H method is a simple, inexpensive and powerful high-throughput genetic technique to detect 

interactions between bait and prey proteins in an in vivo environment (Fields and Song 1989). This 

makes Y2H a widely-used screening method with broad applications in the study of interactomics. 

However, this approach presents several limitations, particularly in regards to false positive and false 

negative results.  

False positive bait-prey interactions, i.e. detection of spurious interactions in the Y2H setting which 

are biologically meaningless, may arise for a number of reasons. Firstly, proteins observed to interact 

in yeast do so in a very artificial setting:  they are directed to the nucleus (forced co-localization), are 

overexpressed in the same cell (forced co-expression), are expressed as fusion proteins, and they 

interact in a non-native yeast environment, all of which may facilitate their interaction (Gietz 2006; 

Brückner et al. 2009). Hence, protein interactions observed in a Y2H setting need to be independently 

verified in more biologically appropriate environment. Secondly, bait or prey proteins may activate a 

reporter gene independently of an interacting partner: this limitation was mitigated in this study by 

testing for auto-activation of the parkin bait prior to Y2H analysis, the use of multiple reporter genes, 

and by performing rigorous interaction specificity testing of prey proteins after Y2H analysis. 

Nonetheless, false positives remain a serious drawback, with an estimated 25-45% false positive rate 

for the Y2H system (Deane et al. 2002; Huang et al. 2007).     
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While steps can be taken to mitigate the detection of false positive interactions, it is more difficult to 

address the high false negative rate, estimated at 45-96% (Edwards et al. 2004). A major source of 

false negatives, i.e. authentic protein interactions which were not detected in the Y2H setting, is the 

necessity of bait and prey proteins to enter the yeast nucleus. Membrane proteins, mitochondrial 

proteins and other proteins with strong localization signals may not appropriately translocate to the 

yeast nucleus, despite their fusion to a nuclear localization signal (Koegl and Uetz 2007). Moreover, 

bait and preys are expressed as fusion proteins, where the presence of fused domains may interfere 

with proper folding of the proteins or sterically obstruct protein interactions. Furthermore, relevant 

cofactors required for protein interaction, such as post-translation protein modifications or adaptor 

proteins, may not be present in the yeast host organism, leading to a false negative result (Sprinzak et 

al. 2003). Importantly, parkin requires PINK1-mediated phosphorylation to activate the mitophagy 

cascade (Shiba-Fukushima et al. 2012); important mitophagic targets of parkin may therefore have 

been overlooked due to the absence of the proper phosphorylation signal in the Y2H setting.  

False negatives may also arise from proteins that are toxic to the host cell when overexpressed (Suter 

et al. 2008). Although initial testing of the parkin bait showed no toxic effect on the host strain, one 

cannot rule out such an effect for certain prey proteins. Furthermore, the high stringency of the 

interaction specificity tests used to reduce false positives may have excluded authentic protein 

interactions. One of the heterologous bait controls used in the present study encodes murine p53; 

parkin is a known target of p53 (Zhang et al. 2011) Hence, parkin interactors which are likewise 

targets of p53 would have been spuriously excluded as false positives, including the often-reported 

interaction of parkin with itself (Zhang et al. 2000; Imai et al. 2001). 

These false negatives drastically affect the reproducibility of Y2H screens. Per illustration, two 

independent Y2H screens using identical methods showed less than 30% overlap and only 12% of 

known interactions were detected in each screen (Ito et al. 2001). This considerable limitation is the 

likely explanation for why most of the previously-described parkin interactors were not detected here. 

 

4.5.4 Limitations of verification techniques 

The current study used a combination of immunofluorescent and biochemical approaches to verify 

selected protein interactions. Independent verification of such interactions greatly supported their 

authenticity and biological relevance, as the interacting proteins were expressed under the influence of 

their native promoters (endogenous expression), in mammalian cells in their natural cellular 

compartments, and without the presence of artificial fusion domains. However, verification 

techniques are labor-intensive and can only be applied to a small number of interactions detected via 

Y2H. Hence, most of the interactions found in the Y2H screen remain to be verified in a future study.      
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In vivo co-localization was used to demonstrate that parkin and each of its interactors share 

subcellular environments, thereby supporting the biological relevance of these interactions. However, 

as fluorescence microscopy is limited by the optical resolution of the microscope (typically 200nm for 

confocal microscopy), apparent co-localization of proteins cannot be taken as evidence of physical 

interaction per se (Lalonde et al. 2008). The present study used vertical Z-stacking to acquire 

fluorescent signal in all three dimensions, which allowed for the resolution of signals that might have 

deceptively appeared to co-localize in two-dimensional analyses. Common problems when 

performing immunofluorescence experiments include cellular autofluorescence and spectral bleed-

through between different fluorescent signals (Zinchuk et al. 2007; Dunn et al. 2011). However, the 

present study used careful selection of appropriate fluorophores, suitable negative controls, and 

assessment of primary and secondary antibodies for cross-reactivity and specificity of fluorescent 

signals, to minimize such effects.   

Co-IP of endogenous proteins is generally considered to be the “gold standard” technique for the 

demonstration of protein interactions (Berggård et al. 2007). However, co-IP requires careful 

consideration and optimization in order to overcome the limitations of this approach. A commonly 

experienced problem is high background signals resulting from antibody cross-reactivity; here, 

antibodies were selected in such a way as to avoid cross-reactivity. Furthermore, co-

immunoprecipitation is less adept at detecting transient interactions, and detected interactions may 

represent the association of proteins in a common complex, rather than direct interactions. An 

additional consideration when using homogenized cell lysates is that proteins from different cellular 

compartments are likely to come into contact with each other; however, in this study, co-localization 

analyses did illustrate that parkin and each of its interactors share subcellular environments in vivo.   

Co-IP relies on proper antibody binding to isolate protein complexes. Hence, the 3D structure of an 

interacting pair may obstruct an antibody epitope, and prevent immunoprecipitation of that protein 

complex (Zhou and Veenstra 2007). This limitation was encountered in the co-IP of parkin and 

SEPT9 (Section 3.2.3.2), where the use of a different anti-parkin antibody (recognizing a different 

parkin epitope) circumvented this obstacle.    

 

4.5.5 Limitations of parkin-deficient cell models 

Originally, it was attempted to use siRNA-mediated gene knockdown in SH-SY5Y cells to create a 

parkin-deficient neuronal cell model. However, this approach was reconsidered after several technical 

issues were encountered. Firstly, of the four unvalidated parkin-targeted siRNA molecules tested, 

only two had any demonstrable effect on parkin mRNA expression. When considering the two siRNA 

molecules that did suppress parkin mRNA expression, this knockdown was limited to only 50% of 

parkin expression observed in non-silenced control cells. This partial knockdown effect would have 

Stellenbosch University  https://scholar.sun.ac.za



184 

 

been problematic in subsequent experiments, as cells from heterozygous parkin mutation carriers 

(with presumably 50% functional parkin) typically do not demonstrate significant functional 

impairments (Mortiboys et al. 2008; Pacelli et al. 2011). This is in accordance with the recessive 

inheritance pattern of parkin mutations, suggesting that a 50% loss of parkin is mostly insufficient to 

result in PD. Secondly, the two tested siRNA molecules had greatly inconsistent effects on the parkin 

protein expression, despite the fact that similar transfection conditions were used in all replicate 

experiments. Ultimately, the inconsistent knockdown efficiency at the protein level precluded 

downstream siRNA experiments, in which implicitly reliable parkin knockdown would be critical.   

Furthermore, the necessity for recurring transfections in all downstream applications made the 

transient siRNA-mediated gene knockdown approach impractical in the present study, which 

employed a large range of repeated functional assays. It is suggested that alternative approaches to 

transient siRNA-mediated gene knockdown, such as stable knockdown with small hairpin RNA 

(shRNA) or genomic editing with CRISPR (clustered regularly interspaced short palindromic 

repeats)/Cas9, may be more appropriate for future use (Lambeth and Smith 2013; Liu and Fan 2014).    

The current study used PD patient-derived parkin-null fibroblasts as a model of parkin deficiency. 

These patient-derived cell lines have the advantage of harboring predefined parkin mutations, without 

the need for genetic manipulation. Furthermore, such cell models reflect the cumulative cell damage 

at the age of the patients. However, the use of patient-derived fibroblasts has several limitations which 

need to be considered (Auburger et al. 2012). Firstly, the gene expression profile of dermal fibroblasts 

differs significantly from neurons, which limit their use as models of PD. SNCA in particular is 

expressed at a relatively low level in fibroblasts, and in addition fibroblasts are resistant to the 

mitochondrial toxin rotenone (Harper et al. 2007). Fibroblast models therefore do not recapitulate the 

neuronal environment, particularly not the susceptible dopaminergic neuronal environment. This 

limitation may be overcome by reprogramming patient-derived fibroblasts into induced pluripotent 

stem cells (iPSCs), after which they may be differentiated into an appropriate dopaminergic neuronal 

PD model (Beevers et al. 2013). 

Secondly, the use of derived cell models is significantly limited by the inherent genomic variability 

between cell lines from different individuals. It is therefore recommended that several biological 

replicate and control cell lines be investigated in any given study, which may improve the signal-to-

noise ratio caused by this variability. In the current study, fibroblasts could only be obtained from 

three patients with parkin-null mutations, of which one fibroblast culture was lost to microbial 

contamination. The results obtained here are therefore limited by the low number of biological 

replicates (two).  Furthermore, the two patients recruited for this study were siblings. The limited 

sample size is a major drawback of the study, and verification of the findings reporter here in a larger 

group of patients and controls would be necessary.   
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4.5.6 Limitations of functional assays 

MTT assays are widely used to assess cell viability (Berridge et al. 2005). These assessments are 

based on the capacity of cellular dehydrogenases to reduce MTT to insoluble formazan, which is 

limited to viable cells. However, MTT measurements are particularly susceptible to biochemical 

influences of added compounds, which may artificially inflate viability measurements (Ulukaya et al. 

2004; Ahmad et al. 2006; Ganapathy-Kanniappan et al. 2010). In fact, several studies have reported 

conflicting results from MTT-based cell viability assays and cell growth assays due to such MTT 

artefacts (Jabbar et al. 1989; Pagliacci et al. 1993; Belyanskaya et al. 2007). This limitation was also 

seen in the present study, as treatment of fibroblasts with CCCP greatly enhanced the ostensible 

viability measurements (Section 3.3.1). It has been suggested that MTT assays should be 

supplemented with additional assays of cellular health in order to detect such MTT-induced artefacts. 

This was done here, as CyQUANT® assays were performed in parallel with MTT assays. While 

CyQUANT® assays are based on measurements of total DNA content and are therefore not 

susceptible to the same artefacts as MTT assays, CyQUANT® assays are less adept at discriminating 

between viable and apoptotic cells. Hence, the simultaneous use of these two complementary assays 

provides a more reliable estimate of cellular health than either assay by itself. 

Mitochondrial respiration analysis using a Seahorse Extracellular Flux Analyzer provides a simple, 

accurate and high-throughput method to investigate respiratory flux in in intact cells (Ferrick et al. 

2008). However, it should be noted that the respiratory state of isolated dermal fibroblasts are not 

representative of cell respiration in more energetically-demanding cells such as neurons, as fibroblasts 

are known to have a lower metabolic rate than most cells (Connolly 1998). Furthermore, OCR 

measurements are very sensitive to inhibitor compound concentrations; therefore, these parameters 

were extensively optimized for the fibroblast cell lines prior to the experiment. It is particularly 

important that all OCR measurements should be normalized to account for quantitative differences 

between cell samples; in the present study, OCR measurements were normalized to cell number. 

While measurements of cell number or total protein content is generally regarded as a sufficient 

means of normalization (Perron et al. 2013; Wills et al. 2013), it should be noted that this does not 

correct for possible differences in mitochondrial densities between cells. Hence, cells may increase 

mitochondrial biogenesis as a compensatory response to mitochondrial impairment, which would 

greatly affect cellular respiration. This compensation would not be accounted for when only 

considering cell number or total protein concentration. Analyzing isolated mitochondria would allow 

for a respiratory analysis of comparable mitochondrial numbers; however, this approach is susceptible 

to several other limitations and artefacts (Brand and Nicholls 2011).   

Functional assays that employ fluorescent dyes, such as the JC-1 dye in Δψm analysis and the 

Mitotracker Red dye used for mitochondrial network analysis, should be carefully optimized in order 
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to minimize dye-induced cytotoxicity. Such dye-induced cytotoxicity may increase cellular stress and 

apoptosis, which may result in artefacts. In the present study, the JC-1 and Mitotracker Red live-cell 

staining conditions were first optimized in order to minimize dye-induced cytotoxicity in the 

fibroblast cell cultures. Additionally, care was taken to keep all dye incubation periods and 

fluorescence imaging procedures consistent between experimental runs.  

 

4.6 OVERVIEW AND FUTURE DIRECTIONS OF THE STUDY 

It was concluded from the present study that parkin mutations do not significantly contribute to the 

genetic etiology of PD in South African patients. This finding is consistent with parallel studies from 

our research group which found that mutations in the known PD genes are rare in the South African 

PD population. The large percentage of South African PD patients without any detected mutations in 

known PD genes raises the interesting possibility of the South African population harboring novel 

mutations or novel PD-causing genes. Hence, our research group is currently employing various 

approaches to identify new PD candidate genes for screening in the South African population. For 

example, a NGS-based exome sequencing approach is currently underway to identify candidate PD 

genes in an extended Afrikaner family. Alternatively, genes and proteins that contribute to PD may be 

identified by a hypothesis-driven approach, whereby proteins acting in common pathways with known 

PD genes are prioritized for investigation and genetic screening. This approach may identify new 

genetic risk factors of PD. The present study identified and verified four parkin-interacting proteins; 

future studies should be aimed at screening the genes encoding 14-3-3η, ATPAF1, β- and γ-actin and 

SEPT9 for variants in a group of South African PD patients. Ultimately, the identification of the genes 

and mutations underlying PD in the unique Black, Afrikaner and Mixed ancestry sub-populations of 

South Africa may reveal novel disease mechanisms underlying the etiology of PD in South Africa. 

Of the four parkin interactors, two are wholly novel and should be prioritized for future research. It 

was found that ATPAF1 and SEPT9 both accumulate in the absence of parkin, which strongly 

suggests that these proteins are substrates of parkin-mediated ubiquitination. The obvious next step 

would be to confirm that this is indeed the case, using either in vitro or in vivo ubiquitination assays. 

Furthermore, the ubiquitination signals should be analyzed with chain-specific anti-ubiquitin 

antibodies, which would establish the mode of ubiquitination (whether mono-, poly-, K48- or K63-

ubiquitination). This approach would provide further insight into the nature and consequences of these 

protein interactions.  

It is recommended that the functional consequences of parkin’s interaction with both ATPAF1 and 

SEPT9 should be investigated further, as these two proteins are novel and exciting members of the 

parkin interactome. For example, it should be determined whether the accumulation of ATPAF1 alters 
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the assembly of the F1-ATP synthase, as this has not been investigated to date. This may be performed 

by overexpressing ATPAF1 in an appropriate cell line and using non-denaturing PAGE and 

immunoblotting with an antibody directed against the β-subunit of F1-ATP synthase, which would 

indicate the incorporation of the β-subunit into various stages of ATP synthase assembly. This 

investigation should also be performed in parkin-deficient cell models, which accumulate ATPAF1 

without the need for transgenic overexpression. In terms of SEPT9, future studies should investigate 

how accumulating SEPT9, either as a result of overexpression or due to parkin deficiency, impacts on 

the assembly of septin filaments. Cell imaging approaches would be appropriate towards this end. The 

particular role of SEPT9 in neurons should also be investigated, as this is currently unknown. A 

previous study has suggested that SEPT9 accumulation in neurons may have a pro-apoptotic effect 

(Mao et al. 2013); this should be investigated further in the context of its interaction with parkin.    

This study also identified 25 other putative parkin-interacting proteins in a Y2H screen which were 

not prioritized for verification. However, these proteins may be authentic parkin interactors of 

significant relevance to PD, and should be verified in the future. Based on recent findings, three of the 

putative interactors could be prioritized for further verification and study: EXOC4, CCDC56 and 

HGS. EXOC4, also known as Sec8, is a component of the exocyst complex with important roles in 

vesicular trafficking (Heider and Munson 2012). Interestingly, it was recently reported that 

accumulation of EXOC4 activated the JNK pro-apoptosis signaling cascade (Tanaka et al. 2014). 

CCDC56 has only very recently been characterized as a mitochondrial transmembrane protein and 

essential factor in mitochondrial complex IV biogenesis (Clemente et al. 2013). This may be of 

significant relevance to neurodegeneration, and future studies should aim to verify this protein 

interaction. Lastly, the putative parkin interactor HGS is a component of the endosomal sorting 

complex required for transport (ESCRT), and has recently been implicated in xenophagy directed 

against mycobacterial pathogens (Mehra et al. 2013). Hence, parkin and HGS may interact in the 

mediation of xenophagy. While this is perhaps not related to PD, this interesting finding may have 

significant implications for research into cellular defense responses.    

The investigation of the functional effects of parkin deficiency in fibroblasts obtained from South 

African PD patients has delivered some surprising results. Whereas these parkin-mutant fibroblasts 

are more susceptible to CCCP-induced cytotoxicity and have more fragmented mitochondrial 

networks than wild-type control fibroblasts; the respiratory capacity of these fibroblasts are not 

impaired in the absence of parkin. In fact, measurements of respiratory rates were markedly enhanced 

in patient-derived fibroblasts, strongly suggesting a compensatory response in these cells. Future 

studies should aim at investigating the molecular mechanism of such mitochondrial compensation in 

the absence of parkin. In particular, it should be determined whether mitochondrial biogenesis is in 

fact increased in the patient-derived fibroblasts. This may be done by performing q-PCR to quantify 

mtDNA content, or by using western blotting to evaluate the protein expression of key mitochondrial 
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proteins. Alternatively, indirect measures of mitochondrial content (such as citrate synthase activity) 

may be performed, as has been done in previous studies (Grunewald et al. 2010; Pacelli et al. 2011).    

It is also suggested that future studies should confirm that the interesting impairments and 

compensatory effects observed in the patient-derived fibroblasts are due to parkin deficiency itself, 

rather than an unknown secondary mechanisms. For example, Mortiboys et al. (2008) used an RNAi 

approach to demonstrate the parkin-dependent nature of the mitochondrial impairments they initially 

observed in parkin-mutant fibroblasts, and which were recapitulated following parkin knockdown in 

wild-type fibroblasts. Similar RNAi approaches or genomic editing with CRISPR/Cas9 may be 

suitable to this end. Moreover, this study could be expanded to include fibroblasts from patients with 

sporadic PD, which may be more appropriate controls for the parkin-mutant fibroblasts than cells 

obtained from unaffected individuals.   

Importantly, all of the functional effects of parkin deficiency observed in this pilot study were 

performed on fibroblasts cultured under basal, unstressed conditions. Given parkin’s important role in 

the cellular stress response, future studies should aim to compare the results obtained here to 

fibroblasts cultured under more stressed or oxidative conditions. This may be achieved by exposing 

the cells to low concentrations of cytotoxic agents, or by culturing the fibroblasts in glucose-free 

galactose media.    

This study also evaluated the effects of vitamin K2 treatment on mitochondrial health in a parkin-

deficient cell model. It was found that vitamin K2 increased the interconnectedness of the 

mitochondrial network and enhanced respiratory rates of all the fibroblasts investigated, irrespective 

of parkin mutation status. This suggests that vitamin K2 may be a promising pro-mitochondrial 

compound, and its specific molecular action at the mitochondria should be investigated further. 

Particularly, it is still unclear whether vitamin K2 increases mitochondrial function by acting as an 

electron carrier in the fibroblasts (as it does in Drosophila) or whether respiratory rates are increased 

as a secondary cellular response to vitamin K2 treatment. It is therefore suggested that the action of 

vitamin K2 at the ETC should be determined in human cells. This may be done by isolating 

mitochondria and determining the effect of direct application of vitamin K2 on the rate of oxygen 

consumption or ATP production, as was done by Vos et al. (2012).   

Finally, the results obtained here from both the functional investigations of parkin deficiency and the 

evaluation of the effects of vitamin K2 treatment would benefit significantly from a more 

comprehensive analysis of cellular and mitochondrial function, and from using a larger sample size. 

Our results may be substantiated and informed by measurements of total ATP levels, ATP synthesis 

rates, activities of the individual ETC complexes, NADH/NADPH levels, glycolysis, and/or ROS 

generation. Furthermore, whole proteome or transcriptome analyses would provide valuable and 
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unbiased insights into cellular differences between parkin-deficient and wild-type cells, as well as 

between vitamin K2-treated and untreated cells.      

 

4.7 CONCLUSION 

This study has described several interesting findings on the parkin gene, its protein product and parkin 

deficiency, which provided valuable insight into how parkin dysfunction contributes to 

neurodegeneration. However, the reported findings, plausible explanations and proposed mechanisms 

may only be scratching the surface of the biological processes involved. It is almost inevitable that the 

exploratory approaches used in the current study raise more questions than provide answers; however, 

such questions are fertile ground for future research. Ultimately, it is hoped that a more 

comprehensive understanding of parkin and its role in PD would be translated into novel and more 

effective PD therapeutic approaches, in order to better treat patients suffering from this debilitating 

disorder.    
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APPENDIX I 

 

UK Parkinson’s Disease Society Brain Bank criteria for the diagnosis of PD 

Step 1: Diagnosis of parkinsonian syndrome 

Bradykinesia (slowness of initiation of voluntary movement with progressive reduction in speed and 

amplitude or repetitive actions) 

And at least one of the following: 

 Muscular rigidity 

 4–6 Hz rest tremor 

 Postural instability not caused by primary visual, vestibular, cerebellar, or proprioceptive 

dysfunction 

 

Step 2: Exclusion criteria for PD 

History of repeated strokes with stepwise progression of parkinsonian features 

History of repeated head injury 

History of definite encephalitis 

Oculogyric crises 

Neuroleptic treatment at onset of symptoms 

More than one affected relative* 

Sustained remission 

Strictly unilateral features after three years 

Supranuclear gaze palsy 

Cerebellar signs 

Early severe autonomic involvement 

Early severe dementia with disturbances of memory, language, and praxis 

Babinski sign 

Presence of a cerebral tumor or communicating hydrocephalus on CT scan 

Negative response to large doses of levodopa (if malabsorption excluded) 

MPTP exposure 

 

Step 3: Supportive positive criteria of PD 

Three or more required for diagnosis of definite PD: 

 Unilateral onset 

 Rest tremor present 

 Progressive disorder 

 Persistent asymmetry affecting the side of onset most 

 Excellent response (70%–100%) to levodopa 

 Severe levodopa-induced chorea 

 Levodopa response for five years or more 

 Clinical course of ten years or more 

*This criteria is no longer used (Hughes et al. 2001). Adapted from Gibbs & Lees (1988b).  
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APPENDIX II 

 

1. DNA EXTRACTION SOLUTIONS 

 

Cell lysis buffer 

Sucrose      109.54g 

Triton X-100     10ml 

MgCl2      476mg 

1M Tris-HCl stock solution, pH 8  10ml 

Add ddH2O to a final volume of 1 liter.  

 

3M Na-Ac solution 

Sodium acetate     40.81g 

ddH2O       50ml 

Adjust pH to 5.2 with glacial acetic acid. Add ddH2O to a final volume of 100ml.   

 

Na-EDTA solution 

4mM NaCl stock solution   18.75ml 

100mM EDTA stock solution   250ml 

 

Phenol-chloroform 

Phenol      50ml 

Chloroform     48ml 

8-hydroxyquinone    2ml 

Store at 4˚C. 

 

Chloroform-octanol (24:1) 

Chloroform     96ml 

Octanol      4ml 

Store at 4˚C. 

 

10X TE stock solution 

1M Tris-HCl stock, pH 8   10ml 

500mM EDTA stock solution, pH 8  20ml 

Add ddH2O to a final volume of 100ml.  
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1X TE buffer 

10X TE stock solution    10ml 

Add ddH2O to a final volume of 100ml.  

 

2. ELECTROPHORESIS SOLUTIONS 

 

20X SB stock solution 

Sodium tetraborate decahydrate   38.14g 

Add ddH2O to a final volume of 1 liter.  

 

1X SB buffer 

20X SB stock solution    50ml 

Add ddH2O to a final volume of 1 liter. 

 

4X SDS-PAGE resolving gel buffer 

Tris base     109.2g 

ddH2O      330ml 

10% SDS     24ml 

Adjust pH to 8.8 using 1M HCl. Add ddH2O to a final volume of 600ml. 

 

4X SDS-PAGE stacking gel buffer 

Tris base     36.3g 

ddH2O      330ml 

10% SDS     24ml 

Adjust pH to 6.8 using 1M HCl. Add ddH2O to a final volume of 600ml. 

 

10% Sodium dodecyl sulfate (SDS) 

SDS      50g 

Add ddH2O to a final volume of 500ml. 

 

10X SDS-PAGE running buffer 

Tris base     30g 

Glycine      144g 

10% SDS     100ml 

Add ddH2O to a final volume of 1 liter. 
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1X SDS-PAGE running buffer 

10X SDS-PAGE running buffer   100ml 

Add ddH2O to a final volume of 1 liter. 

 

10% Ammonium persulfate (APS) 

Ammonium persulfate    10g 

Add ddH2O to a final volume of 100ml. Mix well and store at 4oC. 

 

Transfer buffer 

Tris base     3.03g 

Glycine      14.4g 

Methanol     200ml 

Add ddH2O to a final volume of 1 liter. 

 

3. GELS 

 

1% Agarose gel 

Agarose      1g 

1X SB buffer     100ml 

Dissolve the mixture by microwaving for 1-2min on maximum power. Allow to cool to approximately 

55oC. Add 5μl ethidium bromide (10mg/ml). 

 

2% Agarose gel 

Agarose      2g 

1X SB buffer     100ml 

Dissolve the mixture by microwaving for 1-2min on maximum power. Allow to cool to approximately 

55oC. Add 5μl ethidium bromide (10mg/ml). 

 

3.75% SDS-PAGE stacking gel 

ddH2O      2.53ml 

10% SDS     40μl 

4X SDS-PAGE stacking buffer   1ml 

40% Acrylamide    390μl 

TEMED     6μl 

10% APS     30μl 

Makes two gels for the Bio-Rad Mini gel apparatus system (Bio-Rad Laboratories, Hercules, 

California, USA) 
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12% SDS-PAGE resolving gel 

ddH2O      5.57ml 

10% SDS     100μl 

4X SDS-PAGE resolving buffer   1.25ml 

40% Acrylamide    3ml 

TEMED     5μl 

10% APS     75μl 

Makes two gels for the Bio-Rad Mini gel apparatus system (Bio-Rad Laboratories, Hercules, 

California, USA) 

 

15% SDS-PAGE resolving gel 

ddH2O      4.82ml 

10% SDS     100μl 

4X SDS-PAGE resolving buffer   1.25ml 

40% Acrylamide    3.75ml 

TEMED     5μl 

10% APS     75μl 

Makes two gels for the Bio-Rad Mini gel apparatus system (Bio-Rad Laboratories, Hercules, 

California, USA) 

 

4. LOADING DYES  

 

Ethidium bromide stock (10mg/ml) 

Ethidium bromide    500mg 

ddH2O      50ml 

Stir well on a magnetic stirrer for 4h and store aliquots in a dark container at 4˚C. 

 

Bromophenol blue loading dye  

1% Bromophenol blue    10ml 

Glycerol     50ml 

Add ddH2O to a final volume of 100ml. Mix well and store aliquots at 4˚C.  
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2X SDS loading buffer 

10% SDS     600μl 

1M Tris-HCl (pH 6.8)    1.5ml 

1% Bromophenol blue    600μl 

DTT      464mg 

Glycerol     3ml 

Add ddH2O to a final volume of 15ml. Mix well and store aliquots at -20˚C.   

 

5X SDS loading buffer 

10% SDS     1.5ml 

1M Tris-HCl (pH 6.8)    3.75ml 

1% Bromophenol blue    1.5ml 

DTT      1.16g 

Glycerol     7.5ml 

Add ddH2O to a final volume of 15ml. Mix well and store aliquots at -20˚C.    

 

5.  BACTERIAL MEDIA 

 

Luria-Bertani (LB) media 

Bacto tryptone     5g 

Yeast extract     2.5g 

NaCl      5g 

Add ddH2O to a final volume of 500ml. Autoclave at 121˚C for 20min and allow cooling to 

approximately 55˚C. Add appropriate antibiotic (Ampicillin 25mg/liter; Kanamycin 5mg/liter). 

 

LB agar plates 

Bacto tryptone     5g 

Yeast extract     2.5g 

NaCl      5g 

Bacto agar     8g 

Add ddH2O to a final volume of 500ml. Autoclave at 121˚C for 20min and allow cooling to 

approximately 55˚C. Add appropriate antibiotic (Ampicillin 25μg/ml; Kanamycin 5μg/ml). Pour into 

plates and allow 2-3h to set. Store at room temperature for up to three weeks.  
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6. YEAST MEDIA 

 

YPDA media 

Difco peptone     10g 

Yeast extract     10g 

Glucose     10g 

0.2% L-adenine hemisulfate   7.5ml 

Add ddH2O to a final volume of 500ml. Autoclave at 121˚C for 20min. 

 

2X YPDA media 

Difco peptone     20g 

Yeast extract     10g 

Glucose     20 

0.2% L-adenine hemisulfate   1.5ml 

Add ddH2O to a final volume of 500ml. Autoclave at 121˚C for 20min. 

 

0.5X YPDA media 

Difco peptone     2g 

Yeast extract     1g 

Glucose     2g 

0.2% L-adenine hemisulfate   1.5ml 

Add ddH2O to a final volume of 200ml. Autoclave at 121˚C for 20min. 

 

YPDA agar plates 

Difco peptone     10g 

Yeast extract     10g 

Glucose     10g 

0.2% L-adenine hemisulfate   7.5ml 

Bacto agar     10g 

Add ddH2O to a final volume of 500ml. Autoclave at 121˚C for 20min and allow cooling to 

approximately 55˚C. Pour into plates and allow 2-3h to set. Store at room temperature for up to three 

weeks.  
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SD-Ade agar plates 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-Ade amino acid supplement   0.4g 

Bacto agar     12g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min and allow cooling to 

approximately 55˚C. Pour into plates and allow 2-3h to set. Store at room temperature for up to three 

weeks.  

 

SD-His agar plates 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-His amino acid supplement   0.4g 

Bacto agar     12g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min and allow cooling to 

approximately 55˚C. Pour into plates and allow 2-3h to set. Store at room temperature for up to three 

weeks.  

 

SD-Ura agar plates 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-Ura amino acid supplement   0.4g 

Bacto agar     12g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min and allow cooling to 

approximately 55˚C. Pour into plates and allow 2-3h to set. Store at room temperature for up to three 

weeks.  

 

SD-Leu media 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-His amino acid supplement   0.4g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min. 
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SD-Leu agar plates 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-Leu amino acid supplement   0.4g 

Bacto agar     12g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min and allow cooling to 

approximately 55˚C. Pour into plates and allow 2-3h to set. Store at room temperature for up to three 

weeks.  

 

SD-Trp media 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-Trp amino acid supplement   0.4g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min. 

 

SD-Trp agar plates 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-Trp amino acid supplement   0.4g 

Bacto agar     12g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min and allow cooling to 

approximately 55˚C. Pour into plates and allow 2-3h to set. Store at room temperature for up to three 

weeks.  

 

SD-Leu-Trp media 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-Leu-Trp amino acid supplement  0.4g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min. 
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SD-Leu-Trp agar plates 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-Leu-Trp amino acid supplement  0.4g 

Bacto agar     12g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min and allow cooling to 

approximately 55˚C. Pour into plates and allow 2-3h to set. Store at room temperature for up to three 

weeks.  

 

TDO media 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-Leu-Trp-His amino acid supplement  0.4g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min. 

 

TDO agar plates 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-Leu-Trp-His amino acid supplement  0.4g 

Bacto agar     12g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min and allow cooling to 

approximately 55˚C. Pour into plates and allow 2-3h to set. Store at room temperature for up to three 

weeks.  

 

QDO media 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-Leu-Trp-His-Ade amino acid supplement  0.4g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min. 
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QDO agar plates 

Glucose     12g 

Yeast nitrogen base without amino acids  4g 

SD-Leu-Trp-His-Ade amino acid supplement  0.4g 

Bacto agar     12g 

Add ddH2O to a final volume of 600ml. Autoclave at 121˚C for 20min and allow cooling to 

approximately 55˚C. Pour into plates and allow 2-3h to set. Store at room temperature for up to three 

weeks.  

 

X-α-galactosidase (X-α-gal) solution (5mg/ml) 

X-α-gal      25mg 

Dimethylformamide    1ml 

Makes a 25mg/ml stock solution. Dilute with dimethylformamide to a 5mg/ml working solution. Store 

in a dark container at -20˚C.  

 

7. MAMMALIAN CELL CULTURE MEDIA 

 

Fibroblast isolation media 

Amniochrome II complete media   95ml 

Chang Medium® D    95ml  

Non-essential amino acids (NEAA)  5ml 

Penicillin-streptomycin     5ml 

Pre-warm to 37˚C before use. Store at 4˚C. 

 

Fibroblast culture media 

DMEM (4.5g/liter glucose, with L-glutamine) 450ml 

Fetal bovine serum     50ml 

Penicillin-streptomycin     5ml 

Pre-warm to 37˚C before use. Store at 4˚C. 

 

SH-SY5Y culture media 

DMEM (4.5g/liter glucose, with L-glutamine) 222.5ml 

Ham’s F12 (with L-glutamine)   222.5ml 

Fetal bovine serum     50ml 

Penicillin-streptomycin     5ml 

Pre-warm to 37˚C before use. Store at 4˚C. 
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SH-SY5Y serum-free media 

DMEM (4.5g/liter glucose, with L-glutamine) 50ml 

Ham’s F12 (with L-glutamine)   50ml 

Pre-warm to 37˚C before use. Store at 4˚C. 

 

8. SOLUTIONS FOR THE GENERATION OF BACTERIAL COMPETENT CELLS 

 

CAP buffer 

CaCl2      2.21g 

Glycerol     37.5ml 

PIPES       0.76g 

Add ddH2O to a final volume of 250ml. Adjust pH to 7.0 and store at 4˚C. 

 

9. YEAST TRANSFORMATION SOLUTIONS 

 

1M Lithium acetate (LiAc) 

LiAc      5.1g 

Add ddH2O to a final volume of 50ml.  

 

100mM LiAc 

1M LiAc     5ml 

Add ddH2O to a final volume of 50ml.  

 

50% Polyethylene glycol (PEG) 

PEG 4000     25g 

Add ddH2O to a final volume of 50ml.  

 

10. YEAST PLASMID PURIFICATION SOLUTIONS 

 

Yeast lysis buffer 

10% SDS     10ml 

Triton X-100     2ml 

5M NaCl stock solution    2ml 

1M Tris-HCl stock solution, pH 8  1ml 

500mM EDTA stock solution, pH 8  200μl 

Add ddH2O to a final volume of 100ml.  
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12. WESTERN BLOT SOLUTIONS 

 

Passive lysis buffer 

1M HEPES stock solution   10ml 

5M NaCl stock solution    4ml 

500mM EDTA stock solution, pH 8  4ml 

Triton X-100     2ml 

10mM Sodium pyrophosphate (NaPPi)  8ml 

1M Na3VO4     400μl 

Add ddH2O to a final volume of 200ml. Aliquot and store at 4˚C. Prior to use, add 100μl of 50mM 

PMSF and one quarter protease inhibitor tablet (Roche) to 5ml passive lysis buffer. 

 

Bradford protein reagent 

Coomassie Brilliant Blue   100mg 

Phosphoric acid     100ml 

96% Ethanol     50ml 

Add ddH2O to a final volume of 1 liter. Filter 2-5 times until solution is light brown in color. Store in 

lightproof container at room temperature.  

 

TBST 

5M NaCl stock solution    30ml 

1M Tris-HCl stock solution (pH 7.6)  20ml 

Tween-20     1ml 

Add ddH2O to a final volume of 1 liter. 

 

Membrane stripping buffer 

Glycine      15g 

10% SDS     10ml 

Tween-20     10ml  

Adjust pH to 2.2. Add ddH2O to a final volume of 1 liter. 
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13. CO-LOCALIZATION SOLUTIONS 

 

Phosphate buffered saline (PBS) 

NaCl      8g 

KCl      200mg 

Na2HPO4·2H2O     1.42g 

KH2PO4     200mg 

Add ddH2O to a final volume of 1 liter. 

 

4% Paraformaldehyde 

Paraformaldehyde    8g 

PBS      200ml 

Dissolve by adding 1ml of 1M NaOH and heating at 50˚C for 30min with constant stirring. Once 

dissolved, adjust final pH to 7.4-7.6.  

 

Mounting media 

Mowiol 4-88     12g 

Glycerol     30g 

ddH2O      30ml 

Add 60ml of a 0.2M Tris stock solution (pH 8.5) and stir overnight at room temperature. Dissolve 

remaining Mowiol by heating to 50˚C with constant stirring. Centrifuge at 5000g for 15 min. Aliquot 

and store supernatant at -20˚C. Prior to use, add a small quantity (<10mg) anti-fading agent (n-

propylgallate) to 1ml mounting media and dissolve by heating to 50˚C for 1h. Centrifuge at 5000g for 

2 min to remove residual sediment. Store in the dark at 4˚C for up to three weeks. 

 

14. SOLUTIONS FOR CELL FUNCTION ASSAYS 

 

5mg/ml MTT stock solution  

Thiazolyl blue tetrazolium bromide  10mg 

PBS      2ml 

Filter through a 0.2μm filter before use. Store in the dark at 4˚C for up to two weeks. 

 

0.1N Acidified isopropanol 

38% HCl     990μl 

Isopropanol     99.1ml 

Store at room temperature. 
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40mM MK-4 (Vitamin K2) stock solution   

MK-4      35.6mg 

Ethanol      2ml 

Vortex well. Aliquot and store in the dark at -20˚C. Stable at 4˚C for up to two weeks. 

 

40µM MK-4 (Vitamin K2) working solution   

MK-4 stock solution    20µl 

Fibroblast culture media    20ml 

Make up fresh before each use. 

 

40mM CCCP stock solution 

Carbonyl cyanide m-chlorophenyl hydrazone 16.2mg 

DMSO      2ml 

Aliquot and store in the dark at -20˚C. Stable at 4˚C for up to two weeks. 

 

10μM CCCP working solution 

40mM CCCP stock solution   5µl 

Fibroblast culture media    20ml 

Make up fresh before each use. 

 

5mg/ml JC-1 stock solution 

Tetraethyl benzimidazolyl carbocyanine iodide  5mg 

DMSO      1ml 

Aliquot in 40µl volumes and store in lightproof container at -20˚C.  

 

0.5μg/ml JC-1 working solution 

5mg/ml JC-1 stock solution    2μl 

Fibroblast culture media    20ml 

Make up fresh before each use. Keep in a lightproof tube. 
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APPENDIX III 

 

1. YEAST CALCULATIONS (obtained from Clontech Manual) 

 

Library titer 

Count number of colonies on all plates with 30-300 colonies after four days 

 #colony forming units (cfu)/ml = 
#cfu x 1000μl/1ml

volume plated (μl) x dilution factor
 

 

Yeast mating efficiency 

Number of cfu/ml on SD-Leu plates indicates viability of prey partner 

Number of cfu/ml on SD-Trp plates indicates viability of bait partner 

Number of cfu/ml on SD-Leu-Trp plates indicates viability of diploids 

The lowest number of cfu/ml on SD-Leu or SD-Trp plates indicates which of the bait or prey partners is 

the limiting partner 

Mating efficiency = 
#cfu/ml of diploids  x 100

#cfu/ml of limiting partner
  

 

Number of clones screened 

#clones screened = #cfu/ml of diploids x resuspension volume (ml) 

 

2. HEMOCYTOMETRIC CELL COUNT  

A hemocytometric yeast cell count was performed in order to obtain a bait culture titer prior to the use 

of the culture in Y2H library mating. Hemocytometric cell counting was also used to obtain the 

correct mammalian cell count for the accurate seeding of SH-SY5Y cells. A glass coverslip was 

placed on the counting surface of a Neubauer hemocytometer (Superior, Berlin, Germany) after both 

the coverslip and the hemocytometer were cleaned with ethanol. Approximately 50μl of a 1 in 10 

dilution of cell suspension was loaded onto the counting surface, which filled the area underneath the 

coverslip through capillary action. The counting chamber was viewed under a microscope (Nikon 

TMS, Nikon Instruments, New York, USA) and the number of cells in the large central quadrant was 

counted. The number of cells per milliliter was calculated as follows: 

#cells/ml = #cells in central quadrant x dilution factor x 104 (a constant used as the volume of the 

central quadrant is 10-4ml) 
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APPENDIX IV 

 

BACTERIAL STRAIN PHENOTYPES 

E. coli strain DH5α 

Φ 80d lacZΔM15 recA1, endA1, Gry A96 thi-1, hsdR17 supE44, relA1, deoR Δ(lacZYA argF)u169 

 

YEAST STRAIN PHENOTYPES  

S. cerevisiae strain AH109 

MATa, trp1-901, leu2-3, ura3-5, his3-200, gal4Δ, gal80Δ, LYS::GAL1UAS-GALTATA-HIS3, GAL2UAS-

GA2TATA-ADE2, URA3:: MEL1UAS-MEL1TATA-lacZ (James et al. 1996) 

S. cerevisiae strain Y187 

MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4Δ, met-, gal80Δ, URA3:: GAL1UAS-

GAL1TATA-lacZ (Harper et al. 1993) 
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APPENDIX V 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pGBKT7 restriction map and multiple cloning site (MCS). This vector expresses proteins fused to 

amino acids 1-47 of the GAL4 DNA binding domain (DNA-BD) as well as a c-Myc epitope tag. 

Expression in yeast is driven by the constitutive ADH1 promoter (PADH1) whereas transcription is 

terminated by the T7 and ADH1 transcription termination sequence (TT7&ADH1). The vector also 

contains a T7 RNA polymerase promoter. Unique restriction sites in the MCS are indicated in bold. 

The vector replicates from pUC ori and 2µ ori in E. coli and S. cerevisiae, respectively. The 

kanamycin resistance gene (Kanr) and the TRP1 nutritional marker respectively facilitate selection in 

E. coli and S. cerevisiae. (Taken from Clontech MATCHMAKER™ vector handbook) 
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pGADT7 AD restriction map and multiple cloning site (MCS). This vector expresses proteins 

fused to amino acids 768-881 of the GAL4 DNA activation domain (DNA-AD), a SV40 nuclear 

localization signal (SV40 NLS) and a haemagglutinin (HA) epitope tag. Expression in yeast is driven 

by the constitutive ADH1 promoter (PADH1) whereas transcription is terminated by the ADH1 

transcription termination sequence (TADH1). The vector also contains a T7 RNA polymerase promoter. 

Unique restriction sites in the MCS are indicated. The vector replicates from pUC ori and 2µ ori in E. 

coli and S. cerevisiae, respectively. The ampicillin resistance gene (Ampr) and the LEU2 nutritional 

marker respectively facilitate selection in E. coli and S. cerevisiae. (Taken from Clontech 

MATCHMAKER™ vector handbook) 
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APPENDIX VI 

 

Complete list of clones illustrating scoring of HIS3, ADE2 and MEL1 reporter genes activation 

during Y2H analysis 

Clone ID 
Growth on TDO    

(HIS3 activation) 

Growth on QDO 

(ADE2 activation) 

X-α-galactosidase assay                    

(MEL1 activation) 

1 ++++ +++ Pale blue 

2 +++ + No blue 

3 +++ - - 

4 ++++ ++++ Pale blue 

5 ++++ ++++ Dark blue 

6 ++++ +++ Pale blue 

7 +++ - - 

8 ++++ ++++ Medium blue 

9 ++ ++ Medium blue 

10 ++++ - - 

11 +++ ++ Pale blue 

12 +++ - - 

13 + - - 

14 ++++ +++ Dark blue 

15 ++ - - 

16 + - - 

17 ++ + Dark blue 

18 + - - 

19 ++++ ++ Pale blue 

20 ++++ +++ Dark blue 

21 ++++ ++++ Dark blue 

22 ++++ ++++ Dark blue 

23 ++++ +++ Dark blue 

24 ++++ +++ Dark blue 

25 ++ - - 

26 +++ + Pale blue 

27 +++ +++ Pale blue 

28 ++++ +++ No blue 

29 +++ ++ Medium blue 

30 +++ + Medium blue 

31 + - - 

32 ++++ ++++ Pale blue 

33 +++ + Pale blue 

34 + - - 

35 +++ ++ No blue 

36 ++++ +++ Pale blue 

37 ++++ ++++ Pale blue 

38 ++++ ++++ Pale blue 

39 ++ - - 

40 ++ ++ Pale blue 

41 ++ - - 

42 + - - 

43 ++++ ++++ Dark blue 

44 + - - 

45 ++++ ++++ Pale blue 
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Clone ID 
Growth on TDO    

(HIS3 activation) 

Growth on QDO 

(ADE2 activation) 

X-α-galactosidase assay                    

(MEL1 activation) 

46 ++++ ++++ Pale blue 

47 ++++ ++++ Pale blue 

48 ++++ ++++ Dark blue 

49 +++ - - 

50 +++ ++ Pale blue 

51 + - - 

52 ++ - - 

53 + - - 

54 +++ +++ Pale blue 

55 ++ - - 

56 ++ ++ Medium blue 

57 + + Pale blue 

58 + - - 

59 ++++ ++ Medium blue 

60 ++ - - 

61 ++ + Pale blue 

62 ++++ ++++ Dark blue 

63 +++ ++ Medium blue 

64 ++++ +++ Dark blue 

65 ++++ +++ Dark blue 

66 +++ +++ Dark blue 

67 ++++ +++ Dark blue 

68 ++ ++ Pale blue 

69 ++++ ++ Dark blue 

70 ++ + Dark blue 

71 ++++ +++ Dark blue 

72 ++++ + Medium blue 

73 ++++ + Dark blue 

74 +++ + Dark blue 

75 ++++ +++ Dark blue 

76 ++ + Medium blue 

77 ++ + Medium blue 

78 +++ + Dark blue 

79 ++ + Dark blue 

80 ++ ++ Medium blue 

81 ++++ + Dark blue 

82 ++ - - 

83 + - - 

84 +++ - - 

85 ++ - - 

86 +++ ++ Medium blue 

87 +++ + Medium blue 

88 + - - 

89 + - - 

90 ++++ ++++ Dark blue 

91 +++ + Pale blue 

92 +++ + Medium blue 

93 ++ - - 

94 + - - 

95 ++ - - 

96 ++ - - 

97 + - - 
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Clone ID 
Growth on TDO    

(HIS3 activation) 

Growth on QDO 

(ADE2 activation) 

X-α-galactosidase assay                    

(MEL1 activation) 

98 +++ - - 

99 +++ +++ Pale blue 

100 ++++ ++++ Dark blue 

101 ++++ ++++ Dark blue 

102 ++++ ++++ Dark blue 

103 ++++ ++ Medium blue 

104 ++++ ++++ Dark blue 

105 ++++ +++ No blue 

106 ++++ ++++ Dark blue 

107 + - - 

108 +++ ++ Medium blue 

109 +++ + Medium blue 

110 ++ + Pale blue 

111 ++ + Pale blue 

112 + - - 

113 ++++ ++++ Dark blue 

114 ++ - - 

115 + - - 

116 ++++ +++ Dark blue 

117 + - - 

118 ++ - - 

119 ++ - - 

120 + - - 

121 +++ +++ Pale blue 

122 +++ ++ Pale blue 

123 ++++ +++ Dark blue 

124 +++ + Medium blue 

125 +++ +++ Pale blue 

126 +++ +++ No blue 

127 +++ +++ Pale blue 

128 ++++ +++ No blue 

129 ++ + Medium blue 

130 +++ +++ Pale blue 

131 ++ ++ Pale blue 

132 ++ ++ No blue 

133 ++ + Medium blue 

134 +++ ++ Pale blue 

135 ++ + Pale blue 

136 +++ +++ Pale blue 

137 + - - 

138 ++++ ++++ Pale blue 

139 ++++ ++ Medium blue 

140 ++++ +++ Dark blue 

141 ++++ ++ Dark blue 

142 ++++ ++++ Medium blue 

143 ++ ++ Medium blue 

144 ++ + Pale blue 

145 + - - 

146 ++ ++ Medium blue 

147 +++ +++ Dark blue 

148 ++ - - 

149 ++++ +++ Dark blue 
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Clone ID 
Growth on TDO    

(HIS3 activation) 

Growth on QDO 

(ADE2 activation) 

X-α-galactosidase assay                    

(MEL1 activation) 

150 +++ +++ Dark blue 

151 ++++ ++++ No blue 

152 ++ - - 

153 ++ ++ No blue 

154 ++++ ++++ No blue 

155 + - - 

156 +++ + Medium blue 

157 ++ - - 

158 ++ + Dark blue 

159 ++++ + Dark blue 

160 ++ ++ Medium blue 

161 ++++ ++++ Dark blue 

162 ++++ +++ Dark blue 

163 ++ - - 

164 ++++ ++++ Dark blue 

165 ++++ ++++ Dark blue 

166 +++ ++ Dark blue 

167 ++++ - - 

168 ++++ ++++ No blue 

169 ++ - - 

170 + - - 

171 ++++ +++ Dark blue 

172 ++++ ++ Pale blue 

173 ++++ + Medium blue 

174 ++++ +++ Dark blue 

175 +++ + Medium blue 

176 +++ + Pale blue 

177 ++ + Pale blue 

178 ++ + Pale blue 

179 ++++ + Pale blue 

180 ++++ + Medium blue 

181 ++ + Pale blue 

182 ++ + Pale blue 

183 +++ +++ Pale blue 

184 +++ +++ Pale blue 

185 +++ + Medium blue 

186 ++++ +++ Pale blue 

187 +++ +++ Pale blue 

188 ++++ +++ Dark blue 

189 +++ + Medium blue 

190 +++ +++ No blue 

191 ++ - - 

192 + - - 

193 + - - 

194 ++ ++ Medium blue 

195 ++++ + Dark blue 

196 +++ - - 

197 +++ ++ Medium blue 

198 ++++ +++ Dark blue 

199 ++++ +++ Dark blue 

200 ++ - - 

201 ++ - - 
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Clone ID 
Growth on TDO    

(HIS3 activation) 

Growth on QDO 

(ADE2 activation) 

X-α-galactosidase assay                    

(MEL1 activation) 

202 ++++ +++ Dark blue 

203 ++++ ++ Medium blue 

204 ++++ +++ Dark blue 

205 ++++ ++ Medium blue 

206 + - - 

207 ++++ ++++ Dark blue 

208 ++++ +++ Dark blue 

209 ++ - - 

210 + - - 

211 + - - 

212 ++ - - 

213 ++ - - 

214 +++ +++ Pale blue 

215 +++ ++ Medium blue 

216 + - - 

217 ++++ + Dark blue 

218 ++++ +++ Dark blue 

219 +++ ++ Medium blue 

220 ++++ ++ Medium blue 

221 ++++ ++++ Dark blue 

222 ++++ ++++ Dark blue 

223 ++++ ++++ Dark blue 

224 ++++ +++ Dark blue 

225 ++++ +++ Dark blue 

226 ++ - - 

227 + - - 

228 + - - 

229 + - - 

230 ++++ ++++ Pale blue 

231 +++ - - 

232 ++++ ++++ Dark blue 

233 ++ + Medium blue 

234 ++ - - 

235 ++ ++ Dark blue 

236 +++ +++ Pale blue 

237 ++ - - 

238 + - - 

239 +++ +++ Pale blue 

240 ++ - - 

241 ++ - - 

242 ++++ ++++ Medium blue 

243 ++ - - 

244 +++ + Pale blue 

245 + - - 

246 +++ +++ Pale blue 

247 ++ + Pale blue 

248 ++ + Pale blue 

249 +++ + Pale blue 

250 + - - 

251 ++++ +++ Pale blue 

252 ++++ ++++ Medium blue 

253 ++ ++ Pale blue 
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Clone ID 
Growth on TDO    

(HIS3 activation) 

Growth on QDO 

(ADE2 activation) 

X-α-galactosidase assay                    

(MEL1 activation) 
254 +++ ++ Pale blue 

255 ++++ ++ Pale blue 

256 ++++ ++++ Dark blue 

257 ++++ ++++ Dark blue 

258 ++++ ++++ Dark blue 

259 ++++ ++++ Medium blue 

260 ++++ ++++ Pale blue 

261 +++ +++ Pale blue 

262 + - - 

263 ++ ++ Pale blue 

264 ++ - - 

265 + - - 

266 + - - 

267 + - - 

268 ++ - - 

269 +++ +++ Pale blue 

270 + - - 

271 ++++ +++ Dark blue 

272 + - - 

273 ++ - - 

274 +++ +++ Dark blue 

275 ++++ ++++ Dark blue 

276 ++++ ++++ Dark blue 

277 ++++ ++++ Dark blue 

278 ++++ ++++ Medium blue 

279 ++++ ++ Medium Blue 

280 ++ ++ Medium blue 

281 ++ - - 

282 ++ ++ Medium blue 

283 ++ - - 

284 +++ ++ Pale blue 

285 ++++ ++ Pale blue 

286 ++ ++ Pale blue 

287 +++ +++ Pale blue 

288 ++ + Medium blue 

289 ++ ++ Pale blue 

290 +++ ++ Pale blue 

291 ++++ ++++ No blue 

292 + - - 

293 +++ +++ Pale blue 

294 +++ +++ Pale blue 

295 +++ +++ Pale blue 

296 ++++ +++ No blue 

297 ++++ ++++ No blue 

298 ++++ +++ No blue 

299 + - - 

300 + + No blue 

301 +++ +++ Pale blue 

302 +++ +++ Pale blue 

303 +++ ++ Pale blue 

304 + - - 

305 ++ ++ Pale blue 
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Clone ID 
Growth on TDO    

(HIS3 activation) 

Growth on QDO 

(ADE2 activation) 

X-α-galactosidase assay                    

(MEL1 activation) 
306 +++ + Medium blue 

307 ++ + Pale blue 

308 ++++ ++++ No blue 

309 +++ +++ Pale blue 

310 ++++ ++++ Pale blue 

311 +++ ++ Medium blue 

312 +++ ++ Medium blue 

313 +++ ++ Pale blue 

314 +++ ++ Pale blue 

315 ++++ ++ Pale blue 

316 ++++ ++++ Pale blue 

317 ++++ ++++ Dark blue 

318 +++ +++ Dark blue 

319 +++ +++ Dark blue 

320 +++ +++ Dark blue 

321 ++++ +++ Dark blue 

322 + - - 

323 ++ - - 

324 ++++ +++ Pale blue 

325 ++ - - 

326 ++ - - 

327 ++ - - 

328 + - - 

329 ++++ ++++ Dark blue 

330 ++++ ++++ Dark blue 

331 ++++ ++ Pale blue 

332 ++++ +++ Dark blue 

333 ++++ +++ Dark blue 

334 ++++ ++++ Dark blue 

335 ++ - - 

336 ++ - - 

337 ++++ +++ Dark blue 

338 + - - 

339 + - - 

340 ++++ +++ Dark blue 

341 ++ - - 

342 +++ ++ Pale blue 

343 ++ + Medium blue 

344 ++++ ++ Medium blue 

345 ++++ +++ Dark blue 

346 + - - 

347 ++++ ++++ Dark blue 

348 ++++ ++++ Dark blue 

349 ++ - - 

350 + - - 

351 + - - 

352 ++ + Pale blue 

353 + - - 

354 + - - 

355 + - - 

356 ++ - - 

357 ++ ++ Pale blue 
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Clone ID 
Growth on TDO    

(HIS3 activation) 

Growth on QDO 

(ADE2 activation) 

X-α-galactosidase assay                    

(MEL1 activation) 
358 +++ ++ Pale blue 

359 + - - 

360 ++++ ++++ No blue 

361 ++++ ++++ Dark blue 

362 ++ + Pale blue 

363 ++++ ++++ Pale blue 

364 ++ - - 

365 ++ - - 

366 + - - 

367 + - - 

368 + - - 

369 + - - 

370 +++ +++ Pale blue 

371 ++++ +++ Pale blue 

372 + - - 

373 + - - 

374 ++ ++ No blue 

375 + - - 

376 + - - 

377 ++++ ++++ Dark blue 

378 ++++ +++ Dark blue 

379 ++++ ++++ Dark blue 

380 ++ - - 

381 ++++ ++++ Dark blue 

382 ++++ ++++ Dark blue 

383 ++ - - 

384 ++ - - 

385 + - - 

386 +++ ++++ Dark blue 

387 ++++ ++++ Dark blue 

388 ++ - - 

389 +++ - - 

390 ++++ ++++ Dark blue 

391 ++ - - 

392 + - - 

393 ++++ + Dark blue 

394 ++ - - 

395 ++ ++++ Dark blue 

396 ++ - - 

397 +++ - - 

398 ++++ ++++ No blue 

399 ++ - - 

400 + - - 

401 +++ +++ No blue 

402 ++++ ++++ Dark blue 

403 ++ - - 

404 ++ - - 

405 +++ - - 

406 + - - 

407 ++ - - 

408 ++ - - 

409 ++ - - 
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Clone ID 
Growth on TDO    

(HIS3 activation) 

Growth on QDO 

(ADE2 activation) 

X-α-galactosidase assay                    

(MEL1 activation) 
410 + - - 

411 + - - 

412 + - - 

413 ++++ + Pale blue 

414 ++ - - 

415 + - - 

416 ++++ ++++ Pale blue 

417 ++ - - 

418 +++ - - 

419 + - - 

420 ++ - - 

421 ++ - - 

422 + - - 

423 ++++ ++++ Dark blue 

424 ++ - - 

425 ++ - - 

426 + - - 

427 + - - 

428 +++ +++ Pale blue 

429 +++ - - 

430 + - - 

431 + - - 

432 ++++ ++++ Dark blue 

433 ++++ +++ Dark blue 

434 ++++ +++ Pale blue 

435 ++++ +++ Dark blue 

436 ++++ +++ Dark blue 

437 ++++ ++++ Dark blue 

438 +++ - - 

439 ++++ ++++ Dark blue 

440 ++ + Pale blue 

441 ++++ +++ Dark blue 

442 ++++ +++ Dark blue 

443 ++++ +++ Dark blue 

444 ++++ + Medium blue 

445 ++ - - 

446 + - - 

447 ++++ ++ Pale blue 

448 ++ - - 

449 ++ - - 

450 + - - 

451 + - - 

452 ++++ +++ Dark blue 

453 + - - 

454 + - - 

455 + - - 

456 + - - 

457 ++ - - 

458 ++ - - 

459 + - - 

460 ++ - - 

461 +++ - - 

Stellenbosch University  https://scholar.sun.ac.za



267 

 

Clone ID 
Growth on TDO    

(HIS3 activation) 

Growth on QDO 

(ADE2 activation) 

X-α-galactosidase assay                    

(MEL1 activation) 

462 ++++ ++++ Dark blue 

463 +++ - - 

464 + - - 

465 ++++ ++++ Dark blue 

466 ++ - - 

467 ++ - - 

468 ++ - - 

469 ++ - - 

470 + - - 

471 + - - 

472 ++++ ++++ Dark blue 

473 + - - 

474 ++ - - 

475 + - - 

476 +++ +++ Dark blue 

477 ++ - - 

478 ++++ ++++ No blue 

479 + + No blue 

480 + + No blue 

481 ++ + Pale blue 

482 + - - 

483 ++++ +++ Dark blue 

484 + - - 

485 + - - 

486 ++ - - 

487 ++ ++ Medium blue 

488 +++ ++ Pale blue 

489 ++++ +++ Dark blue 

490 +++ +++ Dark blue 

491 +++ ++ Medium blue 

492 + - - 

493 ++ - - 

494 ++++ ++++ Dark blue 

495 +++ +++ Dark blue 

496 ++++ ++++ Dark blue 

497 ++++ ++ Pale blue 

498 ++ - - 

499 + - - 

500 + - - 

501 + - - 

502 ++ - - 

503 +++ - - 

504 ++ ++ Medium blue 

505 ++ - - 

Clones in blue font were designated as primary clones. Abbreviations: ++++, excellent growth; +++ fair growth; 

++ weak growth; +, very weak growth; -, no growth; QDO, quadruple dropout (SD media lacking tryptophan, 

leucine, histidine and adenine); TDO, triple dropout (SD media lacking tryptophan, leucine and histidine); Y2H, 

yeast two-hybrid 
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APPENDIX VII 

 

Complete list of clones scored for bait-prey interaction specificity 

Clone ID pGBKT7-parkin pGBKT7 pGBKT7-53 pGBKT7-TTN 
5 ++++ +++ + + 

8 ++++ + - + 

14 ++++ - + - 

20 ++++ ++ - + 

21 ++++ - +++ - 

22 ++++ ++ - ++ 

23 ++++ + - - 

24 ++++ + - + 

43 +++++ + - + 

48 ++++ + + + 

62 ++++ + + - 

64 ++++ + - + 

65 ++++ ++++ + +++ 

66 ++++ + + + 

69 ++++ + + + 

71 +++++ ++++ +++ ++ 

75 +++++ ++++ + + 

90 ++++ +++ + + 

100 ++++ + + + 

101 ++++ - - + 

102 ++++ + - + 

104 ++++ + ++++ - 

113 +++++ + +++ + 

116 ++++ + ++++ - 

123 ++++ ++ +++ +++ 

140 ++++ + ++++ + 

141 ++++ + + - 

142 ++++ + + + 

147 +++++ + - - 

149 ++++ +++ - - 

150 +++++ - +++ + 

161 ++++ + + + 

162 +++++ + +++ + 

164 ++++ + + + 

165 ++++ + + + 

166 ++++ + - + 

171 ++++ - ++++ ++++ 

174 +++++ - + + 

188 ++++ + + + 

198 ++++ + + + 

199 ++++ + - +++ 
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Clone ID pGBKT7-parkin pGBKT7 pGBKT7-53 pGBKT7-TTN 

202 ++++ +++ - - 

204 ++++ + + + 

207 ++++ +++ - + 

208 ++++ + - + 

218 ++++ + - + 

221 +++++ + + - 

222 ++++ - - - 

223 ++++ ++ + + 

224 ++++ + - + 

225 ++++ + + + 

232 ++++ + ++++ + 

242 ++++ + - - 

252 ++++ - + + 

256 ++++ + +++ ++ 

257 ++++ + + + 

258 +++++ + - - 

259 ++++ + + + 

271 +++++ + + ++++ 

274 ++++ + + + 

275 ++++ + ++++ + 

276 ++++ + + + 

277 ++++ + + + 

278 ++++ + + + 

317 ++++ + - + 

318 ++++ + + + 

319 +++++ + + + 

320 ++++ +++ +++ + 

321 ++++ + - + 

329 ++++ + + + 

330 ++++ + + + 

332 ++++ +++ + + 

333 ++++ + +++ ++++ 

334 ++++ ++++ + + 

337 ++++ + + + 

340 ++++ ++ + + 

345 ++++ + +++ + 

361 ++++ ++ ++ ++ 

372 ++++ - + + 

377 ++++ + + + 

378 ++++ ++ +++ - 

379 ++++ + - + 

386 ++++ ++ +++ ++ 

387 ++++ ++ ++ ++ 

390 ++++ ++ ++ ++ 

395 ++++ + + + 
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Clone ID pGBKT7-parkin pGBKT7 pGBKT7-53 pGBKT7-TTN 

423 ++++ - + - 

432 ++++ + + + 

433 +++++ ++++ ++++ ++++ 

435 ++++ - + + 

436 ++++ + - + 

437 +++++ + + + 

439 ++++ + + + 

441 ++++ +++ + ++++ 

442 ++++ ++ ++++ - 

443 ++++ + + + 

452 ++++ + + + 

462 ++++ - ++++ + 

465 ++++ ++ - ++ 

472 ++++ +++ - + 

476 +++++ + + + 

483 ++++ + - + 

489 ++++ - + + 

490 ++++ ++++ ++++ - 

494 ++++ + + + 

495 ++++ - - - 

496 ++++ + + + 

Clones in blue font were considered to demonstrate specific parkin-bait interactions. All colonies were scored 

after 7 days on QDO plates. Abbreviations: ++++, excellent growth; +++ fair growth; ++ weak growth; +, very 

weak growth; -, no growth; QDO, quadruple dropout (SD media lacking tryptophan, leucine, histidine and 

adenine 
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APPENDIX VIII 

 

SEPT9 

 

 

 

 

ATPAF1 

 

 

 

 

 

γ-Actin 

 

 

 

 

14-3-3η 

 

 

 

 

 

Protein expression of parkin interactors in parkin-null and wild-type fibroblasts over three 

experimental runs. Relative protein expression of SEPT9, ATPAF1, γ-actin and 14-3-3η were 

assayed with western blots in fibroblasts from parkin-null patients (P2 and P3) and wild-type controls 

(WT2, WT3, WT4). Expression of interactors (top lanes) was normalized to GAPDH expression 

(bottom lanes). Experiments were performed in triplicate (N=3) and western blots of all three replicate 

runs are shown. Numbers on the side of western blots denote protein sizes (in kiloDalton).  

 

 

 

 

  P2       P3      WT2     WT3   WT4         P2       P3      WT2    WT3    WT4          P2       P3     WT2   WT3    WT4 

 

 

  P2       P3      WT2     WT3   WT4         P2       P3      WT2    WT3    WT4          P2       P3     WT2   WT3    WT4 

 

 

  P2       P3      WT2    WT3    WT4          P2       P3    WT2   WT3    WT4           P2       P3      WT2    WT3   WT4 

 

 

  P2        P3     WT2    WT3   WT4          P2       P3    WT2   WT3    WT4             P2        P3     WT2   WT3    WT4 

 

 

65 -  

36 -  

36 -  

36 -  

36 -  

28 -  

42 -  

36 -  
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APPENDIX IX 

 

GRAPHICAL OUTPUTS OF FUNCTIONAL ASSAYS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell growth in patient-derived and wild-type fibroblasts under basal and CCCP-stressed 

conditions, with and with Vitamin K2 treatment. Cell growth was assessed by a CyQUANT® 

assay. Box-and-whisker plots depict measurements for each fibroblast cell line for three experimental 

runs. A, cell growth in different cell lines under each treatment category. B, comparison of cell 

growth under different treatments within a given cell line.  
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Cell viability in patient-derived and wild-type fibroblasts under basal and CCCP-stressed 

conditions, with and with Vitamin K2 treatment. Cell viability was assessed by a MTT assay. Box-

and-whisker plots depict measurements for each fibroblast cell line for three experimental runs. A, 

cell viability in different cell lines under each treatment category. B, comparison of cell viability 

under different treatments within a given cell line.  
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Parameters of respiratory control in patient-derived and wild-type fibroblasts. Box-and-whisker 

plots depict values for each fibroblast cell line, with 6 replicate measurements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative Δψm of untreated patient-derived and wild-type fibroblasts, with and with Vitamin K2 

treatment. Relative Δψm was determined by JC-1 red:green fluorescent emission ratios, across 3 

experimental runs. Red:green ratios for each fibroblast cell line is shown in the left panel, whereas the 

effect of treatment with vitamin K2 (MK-4) on the red:green ratio of each cell line is shown in the 

right panel.  
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Mitochondrial network analysis of patient-derived and wild-type fibroblasts, with and with 

Vitamin K2 treatment. Mitotracker Red and live-cell microscopy was used to visualize the 

mitochondrial network. All images were assessed in regards to the degree of mitochondrial branching 

(form factor) and degree of mitochondrial elongation (aspect ratio), with approximately 40 cell 

analyzed per fibroblast cell line. The distribution of these parameters in each fibroblast cell line are 

represented on logarithmic scale in box-and-whisker-plots.  

 

Untreated 

MK-4 
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APPENDIX X 

 

SEPT9_v1      MKKSYSGGTRTSSGRLRRLGDSSGPALKRSFEVEEVETPNSTPPRRVQTPLLRATVASST 60 

SEPT9_v2      MSDP------AVNAQLDG-IISDFEALKRSFEVEEVETPNSTPPRRVQTPLLRATVASST 53 

SEPT9_v3      ------------------MERDRISALKRSFEVEEVETPNSTPPRRVQTPLLRATVASST 42 

ORF           ------------------------------------------------------------ 0 

                                                                           

 

SEPT9_v1      QKFQDLGVKNSEPSARHVDSLSQRSPKASLRRVELSGPKAAEPVSRRTELSIDISSKQVE 120 

SEPT9_v2      QKFQDLGVKNSEPSARHVDSLSQRSPKASLRRVELSGPKAAEPVSRRTELSIDISSKQVE 113 

SEPT9_v3      QKFQDLGVKNSEPSARHVDSLSQRSPKASLRRVELSGPKAAEPVSRRTELSIDISSKQVE 102 

ORF           -------------------------------------------------LSIDISSKQVE 11 

                                                               *********** 

 

SEPT9_v1      NAGAIGPSRFGLKRAEVLGHKTPEPAPRRTEITIVKPQESAHRRMEPPASKVPEVPTAPA 180 

SEPT9_v2      NAGAIGPSRFGLKRAEVLGHKTPEPAPRRTEITIVKPQESAHRRMEPPASKVPEVPTAPA 173 

SEPT9_v3      NAGAIGPSRFGLKRAEVLGHKTPEPAPRRTEITIVKPQESAHRRMEPPASKVPEVPTAPA 162 

ORF           NAGAIGPSRFGLKRAEVLGHKTPEPAPRRTEITIVKPQESAHRRMEPPASKVPEVPTAPA 71 

              ************************************************************ 

 

SEPT9_v1      TDAAPKRVEIQMPKPAEAPTAPSPAQTLENSEPAPVSQLQSRLEPKPQPPVAEATPRSQE 240 

SEPT9_v2      TDAAPKRVEIQMPKPAEAPTAPSPAQTLENSEPAPVSQLQSRLEPKPQPPVAEATPRSQE 233 

SEPT9_v3      TDAAPKRVEIQMPKPAEAPTAPSPAQTLENSEPAPVSQLQSRLEPKPQPPVAEATPRSQE 222 

ORF           TDAAPKRVEIQMPKPAEAPTAPSPAQTLENSEPAPVSQLQSRLEPKPQPPVAEATPRSQE 131 

              ************************************************************ 

 

SEPT9_v1      ATEAAPSCVGDMADTPRDAGLKQAPASRNEKAPVDFGYVGIDSILEQMRRKAMKQGFEFN 300 

SEPT9_v2      ATEAAPSCVGDMADTPRDAGLKQAPASRNEKAPVDFGYVGIDSILEQMRRKAMKQGFEFN 293 

SEPT9_v3      ATEAAPSCVGDMADTPRDAGLKQAPASRNEKAPVDFGYVGIDSILEQMRRKAMKQGFEFN 282 

ORF           ATEAAPSCVGDMADTPRDAGLKQAPASRNEKAPVDFGYVGIDSILEQMRRKAMKQGFEFN 191 

              ************************************************************ 

 

SEPT9_v1      IMVVGQSGLGKSTLINTLFKSKISRKSVQPTSEERIPKTIEIKSITHDIEEKGVRMKLTV 360 

SEPT9_v2      IMVVGQSGLGKSTLINTLFKSKISRKSVQPTSEERIPKTIEIKSITHDIEEKGVRMKLTV 353 

SEPT9_v3      IMVVGQSGLGKSTLINTLFKSKISRKSVQPTSEERIPKTIEIKSITHDIEEKGVRMKLTV 342 

ORF           IMVVGQSGLGKSTLINTLFKSKISRKSVQPTSEERIPKTIEIKSITHDIEEKGVRMKLTV 251 

              ************************************************************ 

 

SEPT9_v1      IDTPGFGDHINNENCWQPIMKFINDQYEKYLQEEVNINRKKRIPDTRVHCCLYFIPATGH 420 

SEPT9_v2      IDTPGFGDHINNENCWQPIMKFINDQYEKYLQEEVNINRKKRIPDTRVHCCLYFIPATGH 413 

SEPT9_v3      IDTPGFGDHINNENCWQPIMKFINDQYEKYLQEEVNINRKKRIPDTRVHCCLYFIPATGH 402 

ORF           IDTPGFGDHINNENCWQPIMKFINDQYEKYLQEEVNINRKKRIPDTRVHCCLYFIPATGH 311 

              ************************************************************ 

 

SEPT9_v1      SLRPLDIEFMKRLSKVVNIVPVIAKADTLTLEERVHFKQRITADLLSNGIDVYPQKEFDE 480 

SEPT9_v2      SLRPLDIEFMKRLSKVVNIVPVIAKADTLTLEERVHFKQRITADLLSNGIDVYPQKEFDE 473 

SEPT9_v3      SLRPLDIEFMKRLSKVVNIVPVIAKADTLTLEERVHFKQRITADLLSNGIDVYPQKEFDE 462 

ORF           SLRPLDIEFMKRLSKVVNIVPVIAKADTLTLEERVHFKQRITADLLSNGIDVYPQKEFDE 371 

              ************************************************************ 

 

SEPT9_v1      DSEDRLVNEKFREMIPFAVVGSDHEYQVNGKRILGRKTKWGTIEVENTTHCEFAYLRDLL 540 

SEPT9_v2      DSEDRLVNEKFREMIPFAVVGSDHEYQVNGKRILGRKTKWGTIEVENTTHCEFAYLRDLL 533 

SEPT9_v3      DSEDRLVNEKFREMIPFAVVGSDHEYQVNGKRILGRKTKWGTIEVENTTHCEFAYLRDLL 522 

ORF           DSEDRLVNEKFREMIPFAVVGSDHEYQVNGKRILGRKTKWGTIEVENTTHCEFAYLRDLL 431 

              ************************************************************ 

 

SEPT9_v1      IRTHMQNIKDITSSIHFEAYRVKRLNEGSSAMANGMEEKEPEAPEM   586 

SEPT9_v2      IRTHMQNIKDITSSIHFEAYRVKRLNEGSSAMANGMEEKEPEAPEM   579 

SEPT9_v3      IRTHMQNIKDITSSIHFEAYRVKRLNEGSSAMANGMEEKEPEAPEM   568 

ORF           IRTHMQNIKDITSSIHFEAYRVKRLNEGSSAMANGMEEKEPEAPEM   477 

              ********************************************** 

 

Protein alignment of translated ORF sequence of Y2H clone 318 with SEPT9 isoforms. Three 

representative SEPT9 isoforms (SEPT9_v1, SEPT9_v2 and SEPT9_v3) were selected; clone 318 had 

a 100% identity to all isoforms. Hence, clone 318 encodes a peptide common to all SEPT9 isoforms. 

The isoform-variable region of SEPT9 is shown in red font, whereas the GTPase domain-containing 

region is shown in blue font. In silico alignment was performed with CLUSTAL O 1.2.1 

(http://www.ebi.ac.uk/Tools/msa/clustalo). 

Stellenbosch University  https://scholar.sun.ac.za

http://www.ebi.ac.uk/Tools/msa/clustalo


277 

 

 

Stellenbosch University  https://scholar.sun.ac.za




