

DAB implementation in SDR

Petro Pesha Ernest

Thesis presented in partial fulfilment of the requirements for the degree of

Master of Science in Electronic Engineering

at the University of Stellenbosch

Supervisor: Prof. J.G. Lourens

December 2005

 i

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own original

work, except where indicated. It has not been previously submitted to any university for a

degree in its entirety or in part.

 SIGNATURE DATE

 ii

Abstract

The aim of this thesis is to implement a Digital Audio Broadcasting (DAB) system in a Software

Defined Radio (SDR). The physical modulation part of the DAB transmitter for one of the

transmission modes as well as its receiver is to be implemented and tested in the SDR. DAB

transmission mode II is implemented.

A simulation is done first, which is followed by a real-time implementation in the SDR

architecture. The simulation is implemented using the Microsoft Windows XP operating system

and MATLAB. The real-time implementation of the system is done under the Linux operating

system, using XML and C++.

In the real-time implementation, one computer is used for both transmission and reception.

Base-band transmission is used. The software implementing the transmitter generates the base-

band signal and passes it to the Data Acquisition card (DAQ) installed in the computer. The

software implementing the receiver, receives the signal from the DAQ and performs

demodulation. The DAQ card performs both digital-to-analogue and analogue-to-digital

conversions.

The results obtained showed that the implemented system works well. The theoretically

predicted performance and practical performance agree remarkably well.

 iii

Opsomming

Die doel van hierdie tesis is om ‘n Digital Audio Brodicasting (DAB)stelsel te implementeer in

‘n Sagteware Gedefinieërde Radio (SGR). Die fisiese modulasie komponent van die DAB

sender, sowel as sy ontvanger is in SGR geïmplementeer en getoets vir een van die transmissie

modusse. DAB transmissie modus II is geïmplementeer.

‘n Simulasie is gedoen, gevolg deur ‘n intydse implementasie in die SGR argitektuur. Die

simulasie het van die Microsoft Windows XP bedryfstelsel asook MATLAB gebruik gemaak.

Die intydse stelsel het gebruik gemaak van die Linux bedryfstelsel en die programmeringstale

XML en C++.

Tydens die intydse implementering word een rekenaar gebruik vir beide transmissie en ontvangs.

Slegs basisband transmissie word gebruik. Die sagteware wat die sender implementeer, genereer

die basisband sein en stuur dit vir die versyferingskaart (DAQ), wat in die rekenaar geinstalleer

is. Die sagteware wat die ontvanger implementeer, ontvang die sein vanaf die DAQ en doen die

nodige demodulasie. Digitaal-na-analoog en analog-na-ditaal omsetting word albei behartig deur

die DAQ kaart.

Die resultate toon dat die geïmplementeerde stelsel goed werk. Die teoreties voorspelde

resultate stem baie goed ooreen met die praktiese gemete resultate.

 iv

Acknowledgements

I would like to express my deepest gratitude to my supervisor Prof. Johan G. Lourens for his

time and effort during the development of this thesis, thank you for your guidance, patience and

encouragement. I also want to thank Dr. G-J van Rooyen for his advice during real time

implementation in SDR.

Special thanks go to the Dar es Salaam Institute of Technology (DIT) for financial support.

Additionally, I would like to thank my fellow SDR research group members and DSP lab

members at the University of Stellenbosch for their friendship. Finally I would like to thank

David Mwakyusa and Elias Mathaniya for their friendship and encouragement.

 v

 Contents

Declaration i
Abstract ii
Opsomming iii
Acknowledgements iv
List of figures ix
List of tables xi
Glossary of abbreviations xii
1 INTRODUCTION 1

1.1 Software defined radio ...1

1.2 Thesis objective ...2

1.3 Thesis layout ..2

2 LITERATURE SURVEY ON DAB 4
2.1 Introduction...4

2.2 What is DAB?..4

2.3 What DAB offers to the Broadcaster and Listeners..6

2.4 The DAB system – How it works ..7

2.5 Source Coding (MUSICAM Audio Coding) ...10

2.6 Multiplexing and Transmission Frame ..11

2.7 COFDM Modulation ...12

2.7.1 OFDM .. 13

2.7.2 The use of FFT in COFDM.. 15

2.7.3 Guard interval and its implementation .. 19

2.7.4 Error correcting code (Convolutional channel coding)..................................... 20

2.8 DAB transmission signal ...21

2.9 DAB transmission modes..23

2.10 Conclusion ...25

3 SIMULATION 26
3.1 Introduction...26

3.2 Simulation system model ...28

3.3 Data generator ...30

 vi

3.4 Data mapper ..31

3.4.1 Block partitioner.. 33

3.4.2 QPSK symbol mapper ... 34

3.4.3 Frequency interleaving.. 36

3.5 Phase reference symbol generator ..41

3.6 Differential modulator..45

3.7 OFDM symbol generator ..48

3.7.1 Zero padding.. 51

3.7.2 IFFT.. 52

3.7.3 Cyclic prefix ... 53

3.8 Null symbol generator ..53

3.8.1 Null symbol generation .. 53

3.8.2 Final frame structure formation.. 54

3.9 Channel...55

3.10 Reception side..55

3.11 Synchronization...55

3.12 Timing synchronization ...57

3.12.1 Symbol timing synchronization .. 57

3.12.2 Frame synchronization.. 64

3.13 Frequency offset estimation and correction..64

3.13.1 Fraction frequency offset estimation ... 65

3.13.2 Integral frequency offset estimation... 67

3.14 OFDM symbol demodulator ..67

3.14.1 Cyclic prefix removal.. 68

3.14.2 FFT ... 68

3.14.3 Zero padding removal .. 68

3.15 Differential demodulator ...69

3.16 Data de-mapper...70

3.16.1 Frequency de-interleaving.. 70

3.16.2 QPSK symbol de-mapper.. 70

3.17 Results and Conclusion ..71

 vii

4 REAL TIME IMPLEMENTATION 75
4.1 Introduction...75

4.2 Introduction to SDR converters...75

4.3 Real time implementation considerations ...77

4.4 Implementation overview ..78

4.5 DAB transmitter implementation in SDR...79

4.5.1 QPSK symbol mapper ... 79

4.5.2 Frequency interleaving.. 81

4.5.3 Differential modulator.. 81

4.5.4 Zero padding.. 83

4.5.5 IFFT.. 83

4.5.6 Cyclic prefix ... 84

4.5.7 Frame construct... 84

4.6 DAB receiver implementation in SDR ..86

4.6.1 Null symbol detector .. 86

4.6.2 Timing synchronization.. 87

4.6.3 Cyclic prefix removal .. 89

4.6.4 FFT.. 89

4.6.5 Zero padding removal .. 90

4.6.6 Differential demodulator ... 90

4.6.7 Frequency deinterleaving ... 91

4.6.8 QPSK symbol demapper ... 91

4.7 Conclusion ...92

5 IMPLEMENTATION EVALUATION AND RESULTS 94
5.1 Introduction...94

5.2 Simulated symbol timing synchronization performance ...94

5.2.1 Experimental setup .. 94

5.2.2 Results of the experiment ... 95

5.3 Bit Error Rate performance analysis ..96

5.3.1 Experimental setup ... 96

5.3.2 Results of the experiment .. 99

5.4 Transmission time and processing time measurements ... 101

 viii

5.4.1 Experimental setup ... 101

5.4.2 Results.. 102

5.5 Conclusion .. 103

6 CONCLUSION 104
6.1 Concluding remarks... 104

6.2 Final conclusion ... 104

6.3 Future work... 104

Bibliography 106
Appendix A 109

A.1 Software specification.. 109

A.2 Hardware specification.. 109

A.3 Code ... 110

Appendix B 111
Phase reference symbol parameter ... 111

Appendix C 114

 ix

List of figures

2.1 Effect of multipath on signal reception in a mobile environment………………………5

2.2 DAB transmission block diagram………………………………………………………9

2.3 DAB transmission frame structure……………………………………………………11

2.4 OFDM spectrum……………………………………………………………………...14

2.5 Basic structure of a multicarrier system………………………………………………..16

2.6 FFT-based OFDM system……………………………………………………………17

2.7 Guard interval and Cyclic Prefix………………………………………………….…...20

3.1 DAB transmission scheme……………………………………………………………27

3.2 Block diagram of the system simulated………………………………………………..29

3.3 Data Mapping process…………………………………………………………….…..31

3.4 Data mapper flow chart……………………………………………………………….32

3.5 Principle of block partitioning………………………………………………………...34

3.6 Bit-pair forming a complex QPSK symbol array………………………………….…...35

3.7 QPSK constellation mapping…………………………………………………………36

3.8 Frequency interleaving flow chart……………………………………………………..38

3.9 QPSK symbol array pre-frequency interleaving……………………………………….41

3.10 QPSK symbol array after frequency interleaving……………………………………...41

3.11 Phase reference symbol generation flow chart………………………………….…….43

3.12 Real part of the phase reference symbol waveform…………………………………...44

3.13 Phase reference symbol constellation…………………………………………….…...45

3.14 Differential modulation flow chart…………………………………………………....47

 x

3.15 π/4 DQPSK modulation……………………………………………………………..48

3.16 Arranged symbol block in transmission frame………………………………………..49

3.17 OFDM symbol generator flow chart…………………………………………….…...50

3.18 DQPSK symbol block after zero padding and rearrangement………………………...52

3.19 Generated complex base-band DAB signal……………………………………….…..54

3.20 Block diagram of the synchronization process………………………………………..56

3.21 Symbol timing synchronization flow chart……………………………………………59

3.22 Start of effective phase reference symbol……………………………………………..61

3.23 Symbol and frame timing synchronization……………………………………….…...62

3.24 Phase reference symbol impulse signal………………………………………………..63

3.25 Point-to-point correlation……………………………………………………….……66

3.26 Zero padding removal and data rearrangement in OFDM symbol demodulator……...69

3.27 Symbol timing performance…………………………………………………………..72

3.28 Error analysis plot……………………………………………………………….…....73

4.1 A basic converter representation………………………………………………….…...76

4.2 Real time implementation block diagram………………………………………….…..78

4.3 The converter used to implement the DAB transmitter in SDR architecture …………79

4.4 The converter used to implement the DAB receiver in SDR architecture……………..86

5.1 The symbol timing synchronization in real world……………………………………..95

5.2 Performance error analysis simulated Vs Real time results…………………………...100

5.3 Real time performance analysis test……………………………………………….…101

 xi

List of tables

2.1 Characteristics of the four DAB transmission modes……………………………….24

3.1 The frequency-interleaving rule for transmission mode II…………………………...39

3.2 Error analysis table………………………………………………………………….73

5.1 Performance error analysis table…………………………………………………….99

5.2 Expected analytical transmission time……………………………………………...102

5.3 Practical transmission time and processing speed measured………………………..103

 xii

Glossary of abbreviations

ADC Analog-to-Digital Converter

AM Amplitude Modulation

BER Bit Error Rate

BPSK Binary Phase Shift Keying

COFDM Coded Orthogonal Frequency Division Multiplex

DAB Digital Audio Broadcasting (Eureka-147)

DAC Digital-to-Analog Converter

DAQ Data Acquisition card

DFT Discrete Fourier Transform

DQPSK Differential Quadrature Phase Shift Keying

EBU European Broadcasting Union

ETS European Telecommunication Standard

ETSI European Telecommunication Standard Institute

FDM Frequency Division Multiplexing

FFT Fast Fourier Transform

FIB Fast Information Block

FIC Fast Information Channel

FM Frequency Modulation

GHz Giga Hertz

IBOC In-Band On-Channel

ICI Inter-Carrier Interference

ISDB-T Terrestrial Integrated Services Digital Broadcasting

ISI Inter-Symbol Interference

kbits/s Kilobits per second

kHz Kilo Hertz

Mbits/s Megabits per second

MPEG Moving Pictures Expert Group

MSC Main Service Channel
OFDM Orthogonal Frequency Division Multiplex

PCM Pulse Coded Modulation

 xiii

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

SFN Single-Frequency Network

SNR Signal-to-Noise Ratio

UHF Ultra High Frequency

VHF Very High Frequency

 1

Chapter 1

INTRODUCTION

1.1 Software defined radio

In recent years there has been an enormous proliferation of standards in broadcast (radio and

television), in mobile, and in personal communications. Examples with high profiles currently

include digital radio (DAB, IBOC), digital television, wireless LAN and mobile communications.

These standards form the basis for an ever-growing number of sophisticated consumer

electronic devices, each with the potential to sell in very high volumes. In typical designs, these

complex standards are implemented using dedicated architectures, which are optimised to

reduce chip costs to the absolute minimum. This approach to chip design leads to long product

development times [31], with a high risk of problems being found late in the development cycle.

Products developed using dedicated architectures are often difficult to upgrade in order to

support changes to the standards, or to add new features [32][33].

Software Defined Radio (SDR) is one way to address these issues [31] [32][33]. By using a

sufficiently powerful programmable architecture, many different transmission standards can be

supported on a common platform. A radio system implemented on a programmable

architecture can be upgraded in the field to fix bugs or to add functionality, and it can support

new standards as they are defined, assuming that there is sufficient flexibility in the architecture.

Software Defined Radio (SDR) refers to the technology wherein software modules running on a

generic hardware platform consisting of DSPs and general purpose microprocessors are used to

implement radio functions such as generation of the transmitted signal (modulation) at the

transmitter and tuning/detection of received radio signal (demodulation) at the receiver. In

SDR, radio functions are performed by software. In this way, the radio functions traditionally

defined by hardware components can in future be defined by software components in SDR.

This feature makes the SDR operate on different frequency bands, standards and applications

and makes it reconfigurable.

 2

SDR technology facilitates implementation of some functional modules in radio system such as

modulation/demodulation, signal generation, coding and link-layer protocols in software. This

helps in building reconfigurable software radio systems where dynamic selection of parameters

for each of the above-mentioned functional modules is possible. A complete hardware based

radio system has limited utility since parameters for each of the functional modules are fixed. A

radio system built using SDR technology extends utility of the system for a wide range of

applications that use different link-layer protocols and modulation/demodulation techniques.

SDR technology can be used to implement military, commercial and civilian radio applications.

1.2 Thesis objective

The objective of this thesis is to implement a Digital Audio Broadcasting (DAB) system in the

SDR, where the physical modulation part of the DAB transmitter for one of the transmission

modes and its receiver is to be implemented in the SDR, tested and included in the SDR library.

1.3 Thesis layout

The layout of the remainder of this thesis is as follows:

Chapter 2: This chapter describes the theoretical background of the DAB system and

practical considerations regarding its implementation (i.e. transmission

standards and transmission modes).

Chapter 3: In this chapter the simulation of the physical modulation part of the DAB

system is implemented. The DAB transmitter for transmission mode II and

one of the receivers are simulated.

Chapter 4: This chapter describes the real time implementation of the simulated model

in chapter 3 into SDR architecture.

Chapter 5: The tests of the implemented model in both real time and simulation are

carried out. The results are discussed in this chapter.

 3

Chapter 6: In this chapter the conclusion is given and suggestions are made for future

work.

This thesis results in software procedures that works efficiently, was tested thoroughly, and was

taken up in the SDR library of the research group. The excellent measured implementation loss

of 0.3dB proves the value of the implementation. The fact that both transmitter and receiver

algorithms run together at 500 times slower than the real time on a 1600 MHz PC, gives an

indication of the execution speed.

The next chapter will now introduce DAB and typical specifications for existing standards.

 4

Chapter 2

LITERATURE SURVEY ON DAB

2.1 Introduction

This chapter provides a theoretical background of the DAB system and practical considerations

regarding its implementation. These include the DAB system layout and its operation,

transmission signal structure and its characteristics, transmission standard and the transmission

modes. The theory on DAB signal modulation and demodulation using COFDM is also covered

in this chapter.

2.2 What is DAB?

DAB, Digital Audio Broadcasting, is a digital method of delivering radio services from the

studio to the receiver. It is the one of the most significant advances in radio broadcasting

technology since the introduction of the Frequency Modulation (FM) stereo radio system. DAB

is a completely new radio broadcasting system intended for delivering high-quality digital audio

programmes and data services to fixed, mobile and portable receivers, which can use simple

antennas.

Broadcast radio has been in widespread use since 1920s, and to this time has remained largely

based on the analogue “ amplitude modulation”(AM) technologies used at the beginning and the

“frequency modulation”(FM) technologies introduced in the mid-20th Century [1]. These

analogue radio broadcasts were thought up and designed to serve household receivers (static

users) [2] using fixed and directional rooftop antennas. But with the development of new, small

and cheaper electronic devices, the majority of radio listening today is carried out with portable

and mobile receivers, which use only simple whip antenna. This has resulted in the analogue

standard failing to provide many listeners with the audio quality they have come to expect in this

age of compact discs, where all audio sources are compared [1] [2]. There is a demand for

 5

something that was not originally part of the broadcast plan: mobile reception. Thus to enable

higher fidelity, greater noise immunity and new services the DAB standard had to be developed.

Analogue radio networks are able, of course, to provide good quality radio services for most of

the mobile and portable users under favourable reception conditions. When conditions are less

favourable, both broadcasts suffer a loss of broadcast quality. Examples of this include [3]: FM

reception is badly affected by shadowing and signal reflection from buildings or hills (multipath

propagation), and AM systems are affected by seasonal propagation variation that causes fading

and occasional loss of signal. These occur because these systems do not provide measures to

combat the effects of multipath propagation and interference, which is difficult to do when we

are talking about mobile communication environments. The multipath effect is illustrated in

Figure 2.1 according to [4].

Based on the point mentioned in the above paragraph, there is little that can be done to rescue

traditional analogue broadcast signals (an FM signal or any other analogue signal) in the

presence of severe fading and interference. To solve these problems and provide audio

broadcasting of compact disc quality [5], the European Eureka project developed a digital audio

broadcasting (DAB) system. For example with just a simple non-directional whip antenna, DAB

eliminates interference and the problem of multipath, together with wide area coverage with no

signal interruption.

Figure 2.1 Effect of multipath on signal in mobile environment.

The DAB system standard that is discussed in the next sections has been developed within the

European Project called Eureka 147 [5]. The standard is commonly referred to as the Eureka

 6

147 digital audio broadcasting standard. It is the European broadcasting standard used for

mobile, portable and fixed receivers, and has been standardized by the European

Telecommunication Standard Institute (ETSI) [5].

The system standard is designed to deliver high-quality digital sound programmes and data

services for both home and portable, but especially for mobile receivers. It includes advanced

digital techniques to provide ruggedness, sufficient to combat the effect of multipath

propagation, Doppler spread and interference. The Eureka 147 DAB standard is designed to

operate in any frequency band in the VHF and UHF range for the terrestrial, satellite, hybrid

(satellite and terrestrial), and cable broadcast networks. The standard is acceptable for use as the

digital radio standard almost worldwide with the exception of USA and Japan [4] [6]. Japan has

developed its own national solution called ISDB-T (Terrestrial Integrated Services Digital

Broadcasting) [7]. In the USA the National Association of broadcasting refused to adopt the

Eureka-147 standard. The USA adopted a digital radio scheme that use an approach known as

In-Band On-Channel (IBOC)[4].

2.3 What DAB offers to the Broadcaster and Listeners

The Eureka 147 DAB system offers both listeners and broadcasters a unique combination of

benefits and opportunities in comparison with conventional analogue radio broadcasting [8] [9]

[10]. These include:

1) Rugged and reliable delivery of radio services to fixed, portable and mobile receivers, free

from interference. This provides a means for a broadcaster to reach listeners with high-

quality digital audio services.

2) Efficient use of the limited radio frequency spectrum available. This provides the possibility

of increasing the number of radio stations and carrying more radio programmes.

3) An added-value system feature that allows enhancements to existing radio services, for

example radiotext, graphics and still-picture.

4) The possibility of constructing Single Frequency Networks (SFNs) [11] [12]. In SFNs, all

transmitters covering a particular area broadcast the same information and operate on the

 7

same frequency with contiguous coverage zones. Although the signals emitted by the

various transmitters are received with different time delays, the receiver automatically selects

the stronger signal without interference from overlapping zones. This eliminates the

problem of having to retune a receiver at frequent intervals such as in car, and allows

efficient use of spectrum.

5) The provision of a wider choice of programmes for the listener and easy tuning of the

receiver.

2.4 The DAB system – How it works

In this section, simplified descriptions of the principles employed in the DAB transmission

system to broadcast sound radio services will be discussed. The descriptions are based on the

DAB transmission system [5] illustrated in Figure 2.2. The processing stage involved in the

generation of the DAB signal together with the signal path through transmitter elements are

briefly presented.

The DAB system is made of a number functional blocks (see Figure 2.2) that work together to

process the input services and output the DAB transmission signal. In the figure each functional

block is labelled according to the function it performs. This enhances a clear understanding of

what is going on inside a block and how the system works in general. The system operation is

described by a chain of events that follow the signal paths through the DAB transmitter blocks

in the left-to-right direction. This chain of events is explained as follows:

a) At the input of the system the analogue signals such as audio and data of the services are

encoded, then error protected and time interleaved.

b) The output services in (a) are then combined to form the Main Service Channel (MSC)

in the Main Service Multiplexer.

c) The output of the multiplexer is then combined with multiplexer control data and

service information in the Fast Information Channel (FIC) to form a transmission frame

in the Transmission frame multiplexer (see figure 2.2).

 8

d) Lastly, Orthogonal Frequency Division Multiplexing is applied at the output of the

multiplexer to shape the DAB signal made up of a large number of carriers.

The above describes the operation of the transmission system in general, the detail of what is

going on in each block is not presented. The reader is referred to [5] for detailed information.

But for a clear understanding of how the system works, the generation DAB signal and how the

system achieves the advantages presented in section 2.3, the main three system elements [8] are

presented in detail. These are:

 Source coding (MUSICAM Audio Coding)

 Multiplexing and Transmission Frame.

 COFDM Modulation.

The first two elements are presented in section 2.5 and 2.6 respectively. Section 2.7 describes

COFDM Modulation that is the main part of the DAB system and the main focus of this thesis.

 9

Figure 2.2 DAB transmitter block diagram [5].

 10

2.5 Source Coding (MUSICAM Audio Coding)

According to [13] the available DAB gross bit is about 2.3Mbits/s and, within certain quanta,

this can be apportioned to sound-programme data and error protection data as required.

However, there is a trade-off between the ruggedness of mobile reception and the programme

capacity. The optimum capacity for the terrestrial radio transmission may be approximately

equal amounts of error protection and programme data, in which case the capacity is around

1.2Mbits/s. However, the studio standard for digital audio signals prescribed by the AES/EBU

interface, uses 16-bit linear PCM with 48kHz sampling rate, so a single full bandwidth (20 Hz to

20kHz stereo audio signal) requires 1.5Mbits/s. A compact disc has a similar requirement.

Therefore, it is essential that the bit rate of the sound programme data must first be reduced,

and this is the function of a source encoder.

The source encoder used in the DAB system can reduce the required bit-rate by a factor of 6 or

more. It employs a digital audio compression technique [14] known as MUSICAM (Masking

Pattern, Universal Sub-band, Integrated Coding And Multiplexing). The technique processes the

input linear Pulse Code Modulation (PCM) audio signal (see Figure 2.2) sampled at 48kHz or

24kHz, and produces the compressed audio bit stream [15] of different bit rates ranging from

8kbit/s to 384kbit/s.

 MUSICAM employs [16] the method of psycho acoustical coding specified for MPEG-2 Audio

Layer II encoding. This exploits the knowledge of the properties of the human auditory system.

The technique codes only audio signal components that the ear will hear, and discards any audio

information that according to the pyschoacoustical model, the ear will not perceive, an example

of these includes very quiet sounds that are masked by the other and louder sounds. So, using

this method the bandwidth is allocated only to the essential information that derives a high

quality signal. This allows DAB system to use a spectrum more efficiently and to deliver high

quality audio signal to the listener.

 11

2.6 Multiplexing and Transmission Frame

In section 2.4, it was presented that data for individual services such as audio, or data are to be

initially encoded at individual level, error protected and time interleaved. The output services are

then combined into a single data stream ready for transmission. The process of combining data

stream is known as multiplexing and the resulting data stream is called the multiplex.

In order to facilitate receiver synchronization, the DAB signal [5] is designed according to the

frame structure with a fixed sequence of symbols illustrated in Figure 2.3.

Fast Information
Channel

FT

Main Service ChannelSynchronization Channel

 Figure 2.3 DAB transmission frame structure

 Each DAB transmission frame has duration of TF, and comprises of the three distinct channels

explained below:

1) The Main Service Channel (MSC) is the logical channel where the information of the

programmes is carried (audio and data service components). It is a time-interleaved data

channel divided into a number of sub-channels, which are individually convolutionally

coded with equal or unequal error protection. Each sub-channel may carry one or more

 12

service components. The organization of the sub-channel and service components is called

the multiplex configuration.

2) Fast Information Channel (FIC) is used for rapid access information by a receiver. In

particular it is used to send the multiplex configuration information and optional service

information and data service. The multiplex configuration information enables the receiver

to decode the signal correctly. The FIC is a non-time-interleaved data channel that is highly

protected to ensure its ruggedness. The FIC is made up of a number of Fast Information

Blocks (FIB’s). Depending on the transmission mode used, different numbers of FIB’s are

multiplexed in one transmission frame to form the FIC. The FIC forms three consecutive

blocks of the DAB transmission frame.

3) A synchronization channel comprises two symbols. One is the null symbol, which is the

duration of no RF signal transmitted, and the other symbol is a phase reference symbol,

which has a predetermined modulation. The channel is used internally within the

transmission system for basic demodulator functions, such as transmission frame

synchronization, automatic frequency control, and channel state estimation and transmitter

identification. This allows effective receiver synchronization and decoding of the received

DAB signals.

In Figure 2.3 it is important to note that each transmission frame begins with a null symbol for a

coarse synchronization when no RF signal is transmitted, followed by a phase reference symbol.

The next three symbols are reserved for the FIC and the remaining symbols provide MSC. The

total frame duration, TF is 96ms, 48ms or 24ms depending on the transmission mode (see

Section 2.9). The multiplex data is distributed amongst the entire carriers, occupying 1.54MHz

spectrum.

2.7 COFDM Modulation

Digital audio broadcasting has the potential to give every radio the sound quality of a compact

disc. To accomplish this, it requires a rugged method of transmission. The Coded Orthogonal

Frequency Division Multiplexing (COFDM) modulation system was developed to meet this

need. This is the heart of the Digital audio broadcasting. The modulation scheme uses many

 13

carriers, up to 1536, spaced at 1kHz, where each carrier is independently modulated using

Differential Quadrature Phase Shift Keying (D-QPSK).

The COFDM combines a multi-carrier modulation technique OFDM (Orthogonal Frequency

Division Multiplexing) together with an error-correcting code (Convolutional channel coding).

The detail of each is described in the next subsections with OFDM described in section 2.7.1

and the used error correction code described in sections 2.7.4.

2.7.1 OFDM

OFDM is a multi-channel modulation scheme employing Frequency Division Multiplexing

(FDM) of orthogonal carriers, which makes the ‘Orthogonal’ part of COFDM. It spreads the

data to be transmitted over a large number of closely spaced carriers. Only a small amount of

the data is carried on each carrier. So the data rate to be conveyed by each carrier is

correspondingly reduced.

In OFDM signal, the carriers have a common frequency spacing that is precisely chosen. This is

an inverse of the duration called the active symbol period (T), over which the receiver will

examine the signal and perform demodulation. The choice of the carrier spacing (1/T) ensures

that all carriers are mathematically orthogonal to each other. Thus the spectrum of each carrier

is null at the centre frequency of the other carriers in the system [17], this is illustrated in Figure

2.4.

 14

1
T

 Frequency

Figure 2.4 OFDM spectrum

To understand the concept of orthogonality presented in the above paragraphs, let us consider a

set of signals Ψ , where pΨ is the p th element in the set. The signals are mathematically

orthogonal if:

*() ()

 0

b

p q
a

t t d t K fo r p q

fo r p q

Ψ Ψ = =

= ≠

∫ (2.1)

where the * indicates the complex conjugate.

The orthogonality enables each carrier in the OFDM system to be extracted from the set with

no interference from the other carriers, since each one of the carriers is positioned in one of the

zero energy frequency points of all of the other carriers (see Figure 2.4). This means carriers can

be generated and recovered without carrier specific filtering.

 15

Fortunately the apparently very complex processes of modulating (and demodulating) large

numbers of carriers simultaneously are equivalent to Discrete Fourier Transform (DFT)

operations, for which efficient Fast Fourier Transform (FFT) algorithms exist. The Fast Fourier

Transform (FFT) can be implemented very efficiency in electronic hardware or software. This

makes OFDM implementation feasible.

2.7.2 The use of FFT in COFDM

In section 2.7.1 the concept of orthogonality of an OFDM has been discussed. The application

of this makes it possible to split bits into two orthogonal components, called the In-phase (I)

and Quardature components (Q). The bits can be handled like a complex number, where the

real part would be I-component and imaginary part the Q-component. The whole signal could

be transmitted in a parallel way with a two-shifted version of the same carrier (sine and cosine),

using complex modulation.

The COFDM technique has taken so long to come into prominence because of the practical

reasons [18] such as the need of the large number of sub-channels and the array of sinusoidal

generators and coherent demodulation required in a parallel system (see Figure 2.5). It has been

very difficult to generate a signal, and even harder to receive and demodulate the signal. The

hardware solution, which makes use of multiple modulators and demodulators in parallel, was

somewhat costly, complex and impractical for use in a domestic system. Figure 2.5 shows an

example of array of sinusoidal generators used in a multicarrier system.

 16

Figure 2.5 Basic structure of a multicarrier system.

In 1971 Weinstein and Elbert [19] suggested the application of the Discrete Fourier transform

(DFT) to parallel data transmission systems as the part of the modulation and demodulation

process. This eliminated the bank of sub-carrier oscillator and coherent demodulators required.

Thus the signal is defined in the frequency domain and is generated using inverse DFT. At the

receiver the reverse process is used. Both DFT and IDFT are implemented using Fast Fourier

Transform (FFT) algorithms.

The Fast Fourier Transform is merely a rapid mathematical method for calculating the DFT. It

is the availability of this technique and technology that allow it to be implemented in integrated

circuits at a reasonable price, that has permitted COFDM to be developed as far as it has. Using

very large scale integration (VLSI) and digital signal processing (DSP) technologies have reduced

the implementation cost of OFDM systems drastically. The inverse FFT provides a series of

digital samples, which are the time domain representation of the signal. Figure 2.6 shows a block

diagram of OFDM system according to [20].

 17

S e ria l- to -
P a ra lle l

C o n ve rte r

S ig n a l
M a p p e r IF F T P a ra lle l-

to -S e ria l

G u a rd
In te rva l

In s e rtio n

D /A
L P F

U p
C o n ve rte r

C h a n n e l

D o w n
C o n ve rte r

L P F
A /D

G u a rd
In te rva l

R e m o va l

S e ria l- to -
P a ra lle lF F TS ig n a l

M a p p e r

P a ra lle l- to -
S e ria l

C o n ve rte r

0b
1b

1Nb −

0d
1d

1Nd −

 S e ria l D a ta
In p u t

S e ria l D a ta
O u tp u t

.
 .

.

.

F re q u e n cy d o m a in T im e d o m a in

 Figure 2.6 FFT-based OFDM system

Figure 2.6 illustrates the process of a typical FFT-based OFDM system. The incoming high-

speed serial data is first converted from serial to parallel (N low speed data stream). Each of

these low data streams is grouped into x bits to form a complex number (mapping output). The

number x determines the signal constellation of the corresponding sub-carrier, such as PSK,

QPSK, 16 QAM or 32 QAM. The complex numbers are modulated in baseband fashion by

inverse FFT and concatenated to serial data for D/A conversion. A guard interval is inserted

between symbols to avoid Inter-Symbol Interference (ISI). The discrete symbols are

concatenated, converted to analogue and low pass filtered for RF up conversion. The receiver

performs the inverse of the transmitter.

After the qualitative description of the OFDM system it is valuable to discuss the mathematical

definition of the system. [19] [21] shows how this can be done mathematically (see below).

Consider a data sequence do, d1…dN-1, where each dn is a complex symbol. The data sequence

could be the output of a digital modulator, such as QAM, PSK QPSK etc.

The complex symbol dn can be expressed as:

n n nd a jb= + (2.2)

where cos , sin .n n n na b and is the phaseφ φ φ= =

The waveform of an individual sub-carrier at frequency nf0 can be defined as:

 18

2 2

0 0

() cos(2 ())

 = cos(2 ()) sin(2 ())

n n n c o n

n c n c

x t a b f nf t

a f nf t b f nf t

π φ

π π

= + + +

+ − +
 (2.3)

where

-1
0 1 tan n

n
n

bf T and
a

φ= = (2.4)

cf is the central frequency of the signal.

When this is summed over all N sub-carriers, the generated OFDM signal is:

{ } { }
1

0 0
0

() cos 2 () sin 2 ()
N

n c n c
n

x t a f nf t b f nf tπ π
−

=

= ⎡ + − + ⎤⎣ ⎦∑ (2.5)

In (2.5), it seems as if the N of digital modulators and the N of sub-carriers generator are

required. This is too much to implement.

But (2.5) can be written as:

1

0
0

1

0

() Re exp(2 ()

2 =Re exp() exp(2)

N

n c
n

N

n c
n

IDFT

y t d j f nf t

j knd j f t
N

π

π π

−

=

−

=

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑

∑
144424443

 (2.6)

 where

0

kt
Nf

= (2.7)

The terms enclosed in the square bracket (2.6) define an IDFT and represent the base-band

version of the OFDM signal. In the receiver the inverse of the transmitter process is applied.

 19

 The transformation of (2.6) requires N2 complex products. In order to work with real time

systems, it would be useful to handle the complex signals as quickly as possible. The method to

work faster with the DFT [22] [23] [24] is the FFT/IFFT algorithm, which is the main part of

the DAB transmission system. The FFT reduces the number of computations to the order of

N/2*log2 (N). To enable the signal to be generated using inverse FFT, it is preferable that the

number of carriers considered in the calculation is an integer power of two. In practice, it is not

always desirable to have the number of the real carriers restricted in this way. However, it is

convenient to make up the actual number of those to a power of two by setting the amplitude

of those not wanted to zero.

In this subsection it has been shown that an OFDM scheme uses minimum frequency spacing

between sub-carriers, its use in DAB makes the system use the precious spectrum more

efficient. Also the use of N parallel channels in OFDM has the effect of increasing symbol

duration and so reduce the effect of Inter Symbol Interference (ISI). To further mitigate the

effect of ISI, DAB system uses guard intervals between consecutive OFDM symbols. The use

of the guard interval and its implementation is described in following subsection.

2.7.3 Guard interval and its implementation

In order to overcome the problem of multipath propagation especially in mobile receivers, DAB

adds a guard interval between OFDM symbols. The guard interval is formed by a cyclic

continuation of the signal [5], so that the information in the guard interval is actually present in

the OFDM symbol. The added interval extends the total length of the transmitted symbol by

approximately one quarter of the symbol length. The guard interval is added by taking a copy of

the last portion of the OFDM symbol and putting it at the start of the symbol. This effectively

extends the symbol, while maintaining orthogonality of the waveform, which essentially

prevents one sub-carrier from interfering with another (called inter-carrier interference, or ICI).

Figure 2.7 illustrates the use of guard interval and its implementation.

 20

Data nCP

TCP TU

TS

Guard interval formed by inserting samples from end of
the symbol.

 Figure 2.7: Guard interval and Cyclic Prefix

Where TU is the OFDM symbol time without guard interval, TCP is the duration of the copied

information in the guard interval using cyclic prefix and TS is the total OFDM symbol duration.

Using cyclic extension and given the fact that phase difference carries the information, the

samples required for performing the FFT (decoding the symbol) can be taken anywhere over

the length of the symbol. This provides multipath immunity as well as symbol time

synchronization tolerance.

The DAB system sizes the cyclic prefix appropriately to serve as a guard time to eliminate ISI.

This is accomplished because the duration of the cyclic prefix used in the system is greater than

the amount of time dispersion from the channel [25]. The values of the guard period for each

transmission mode are given in Table 2.1.

2.7.4 Error correcting code (Convolutional channel coding)

The use of OFDM in the DAB system provides a very good basis for rugged receptions under

multipath conditions but further measures are necessary to realise the full system benefits. On

its own, OFDM with a guard interval can be used to minimise the effect of ISI. However, ISI is

a time domain effect [26], and multipath propagation has effect in the frequency domain, which

may result in the partial or total cancellation of some frequencies at the receiver. The DAB

system attempts to eliminate this effect with the use of error correction code (convolutional

channel coding). This accounts for the ‘Coded’ part of the name COFDM. The punctured

 21

convolutional coding is used [5]. This adds redundancy to the data in order to help the receiver

detect and better eliminate transmission errors.

The error correction process works best if the errors in the incoming data are random. To

ensure this the transmitted data in the Eureka 147 DAB system is interleaved over all the

carriers and over a range of time. These are used together to combat the effect of frequency

selective fading.

The interleaving is a process involving the re-ordering of the bits-stream in the transmitter

before using it to modulate the carriers. The idea is to distribute the signal over all the carriers

and so to spread the information symbols. As the result, if the specific carrier fades away, it will

cause some error bits in several blocks’ symbols and not many error bits in only one symbol. So

the channel coding will be able to correct the wrong data by using the correct information that is

present in the rest of the symbols, thanks to the rest of the frequency carriers that were not

fading.

2.8 DAB transmission signal

After discussions on how the DAB system works as presented in the above sections, it is

convenient to define the DAB transmission signal according to [5]. The DAB main transmission

signal is made up of a numbers of transmission frames as discussed in section 2.6. Each

transmission frame is divided into a sequence of OFDM symbols, each made up of a fixed

number of carriers. The number of OFDM symbols in a transmission frame depends on the

transmission mode, as will be defined in the section 2.9. The carriers in each OFDM symbol are

equally spaced with the carriers’ frequency spacing equal to the inverse of the useful symbol

duration (TU).

According to the system standard, the first two OFDM symbols of any transmission frame are

made up of a synchronization channel regardless of the transmission mode (see Figure 2.3).

The standard defines the first OFDM symbol for each transmission frame to be a Null symbol

of duration TNULL and the remaining part of the frame to be made of OFDM symbols of the

duration TS. The symbol duration TS comprises of the useful symbol duration TU and a guard

 22

interval with a duration Δ (see Figure 2.7). The DAB signal occupies a bandwidth of 1.536MHz

and uses a large number of discrete carriers, each independently modulated, using π/4 D-QPSK.

The defined main DAB transmission signal s (t) [5] is given in the formula below:

/ 2
2

, , ,
0 / 2

() Re ((1)c

L K
j f t

m l k k l F NULL S
m l k K

s t e z g t mT T l Tπ
∞

=−∞ = =−

⎧ ⎫
= × − − − −⎨ ⎬

⎩ ⎭
∑ ∑ ∑ (2.8)

With,

, 2 (-) /

0 0
()

.Re (/) 1,2,...,Uk l j k t T
S

for l
g t

e ct t T for l Lπ Δ

=⎧⎪= ⎨
=⎪⎩

 (2.9)

and TS = TU + Δ.

where,

L is the number of OFDM symbols per transmission frame (the Null symbol

being excluded);

K is the number of transmitted carriers;

TF is the transmission frame duration;

TNULL is the Null symbol duration;

TS is the duration of OFDM symbol of indices l=1,2,3,…, L;

TU is the inverse of the carrier spacing;

Δ is the duration of the time interval called guard interval;

zm, l, k is the complex D_QPSK symbol associated with carrier k of OFDM symbol l

during transmission frame m. For k=0, zm, l, k=0, so that the central carrier is

not transmitted;

fc is the central frequency of the signal.

These parameters are specified in Table 2.1 for each transmission mode [5], which is in the next

section.

 23

If we consider equation 2.8 for the period from t=0 to t=TS, we obtain:

2 2 '(-) /
,1,

0
() .Re (/)c U

K
j f t j k t T

S o k
k

s t e ct t T z eπ π Δ

=

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

∑ (2.10)

with k’=k-K/2.

There is a clear resemblance between (2.10) and the Inverse Discrete Fourier Transform

(IDFT)(2.6). Thus the DAB transmitted signal in the time domain is generated using an inverse

FFT algorithm that is the heart of the DAB transmission system. Its convenient implementation

is by generating N samples X(n) corresponding to the useful part TU long, of each OFDM

symbol and adding the guard interval by taking copies of the last NΔ/ TU of these samples and

appending them in front of the symbol. A subsequent up-conversion then gives the real signal

s(t) centred on the frequency cf .

2.9 DAB transmission modes

In order to ensure that the DAB system is applicable in different transmission network

configurations and over wide range of frequencies, four different transmission modes have been

defined, each having its particular set of parameters. These take into account the spectrum

availability in the intended frequency range from 30MHz to 3GHz and the practical

implementation factors (e.g. the size of the antenna), that a single mode couldn’t do.

The system modes defined have the same system capacity of 1.536MHz signal bandwidth [25],

but the symbol period (and guard interval) and carrier frequency spacing are varied to suit the

situation. In addition, all modes retain the reciprocal relationship between the symbol duration

and the carrier frequency separation in order to maintain orthogonality and spectral efficiency.

The features of all four modes [5] are summarised below in Table 2.1. All the durations in Table

2.1 are time-related in whole multiples of the elementary period T=1/2 048 000 seconds.

 24

Transmission mode I II III IV

Number of carriers (K) 1536 384 192 768

Number of OFDM

symbols/frame (L)

76 76 153 76

Transmission frame

duration (TF)

196 608 T

96 ms

49 152 T

24 ms

49 152 T

24 ms

98 304 T

48 ms

Null symbol duration

(TNULL)

2656 T

~1,297 ms

664 T

~324 µs

345 T

~168 µs

1328 T

~648 µs

Total symbol duration (TS) 2552 T

~1,246 ms

638 T

~312 µs

319 T

~156 µs

1276 T

~623 µs

Useful symbol duration (TU) 2048 T

1 ms

512 T

250 µs

256 T

125 µs

1024 T

500 µs

Guard interval duration (Δ) 504 T

~246 µs

126 T

~62 µs

63 T

~31 µs

252 T

~123µs

Carrier frequency

separation

1kHz 4kHz 8kHz 2kHz

Table 2.1 Characteristics of the four DAB transmission modes

Mode I is intended for terrestrial transmission, particularly using Single Frequency Networks

(SFNs) operating at frequencies below 300MHz.

Mode II is intended principally for terrestrial transmission using an individual transmitter

(local and regional radio services) at frequencies below 1.5 GHz. Also SFN

implementation is possible.

Mode III is intended for cable delivering and satellite-and-complementary terrestrial

transmission at frequencies below 3GHz.

Mode IV is used in L-band and allows greater transmitter spacing in SFNs.

 25

2.10 Conclusion

The chapter discusses the background theory that is used in the practical implementation of the

DAB in Software Defined Radio. The DAB signal modulation and demodulation using the

OFDM scheme together with the required transmission signal structure was discussed. The

equation used in the generation of the DAB transmission signal is given in equation 2.8. The

standard parameters defining the transmission signal for each transmission mode are given in

Table 2.1.

The physical modulation part of the DAB transmitter for the transmission Mode II as well as

its’ receiver will be implemented. The DAB transmission signal described in section 2.8 and the

standard parameter for Mode II discussed in section 2.9 will be used in the implementation. The

next chapter describes the simulation details of the implemented DAB system model. The

simulation result shows a negligible implementation loss.

 26

Chapter 3

SIMULATION

3.1 Introduction

This chapter describes the simulated model of the physical modulation part of the Digital Audio

Broadcasting (DAB) system before its real time implementation in SDR. In the simulation the

physical modulation part of the DAB transmitter and one of the receiver models were

simulated. The simulation follows the standard parameter specified in the second chapter.

 The DAB transmission mode used in the simulation is mode II. This mode has been chosen for

the simulation because of its suitability in the local area terrestrial broadcasting to be a model

that presents other transmission mode implementation. All the work developed in the

simulation model follows this mode standard parameter. The specific numeric values of the

parameters that develop the DAB transmission signal are according to section 2.9 in the second

chapter.

The complete DAB transmission system comprises of many blocks (see Figure 2.2 and Figure

3.1). The work of this thesis starts in the last part of the transmission system, from the end of

the transmission frame multiplexer (see Figure 2.2). The simulation starts from the block

partitioner (see Figure 3.1) followed by the modulation, thus the channel coding and time

interleaving are not included in the simulation.

 The simulation has been developed in base-band transmission. The RF section for both

transmitter and receiver was not studied in this thesis. So on the transmitter side neither digital-

to-analogue conversion nor quadrature modulation (RF section) were simulated. Similarly on the

receiver side neither analogue-to-digital conversion nor quadrature demodulation (RF section)

were simulated.

 27

The simulation was done to provide a proper direction before real time implementation and

development of working real time software.

M U X M U X

M U X

TR
A

N
S

M
IS

S
IO

N
M

O
D

ES
 I

&
 IV

O
N

LY
(n

ot
e)

23
04

-b
it

en
co

de
d

FI
B

s

C
om

m
on

In
te

rle
av

ed
Fr

am
es

(C
IF

s)

B
LO

C
K

PA
R

TI
TI

O
N

E
R

Q
P

S
K

S
Y

M
B

O
L

M
A

P
P

ER

FR
E

Q
U

E
N

C
Y

IN
TE

R
LE

AV
ER

P
H

AS
E

R
EF

ER
EN

C
E

S
Y

M
B

O
L

G
EN

E
R

A
TO

R

N
U

LL
S

YM
B

O
L

G
EN

E
R

A
TO

R

D
IF

FE
R

E
N

TI
A

L
M

O
D

U
LA

TO
R

M U X

O
FD

M
S

YM
BO

L
G

E
N

E
R

AT
O

R

O
FD

M
 S

IG
N

A
L

G
E

N
ER

A
TO

R s(
t)

p l,n
q l,n

FI
C

 A
N

D
 M

SC
S

Y
M

B
O

L
G

EN
E

R
AT

O
R

FI
C

 in
pu

ts
 fo

r
Tr

an
sm

is
si

on
m

od
es

 I,
 II

, I
II

an
d

IV

S
Y

N
C

H
R

. C
H

A
N

N
EL

S
Y

M
BO

L
G

E
N

ER
A

TO
R

TR
AN

S
M

IS
S

IO
N

FR
AM

E
M

U
LT

IP
LE

X
E

R

M
S

C
 in

pu
ts

 fo
r T

ra
ns

m
is

si
on

m
od

e
I,

II,
 II

I
an

d
IV

z 1,
k

Z l,k
 l

 >
 2

Z (m
),l

,k
 l

 >
1

y l,k
 l

 >
 2

S
IM

U
LA

TE
D

Figure 3.1 DAB Transmission scheme [5]

 28

3.2 Simulation system model

For performing the simulations, the chain shown in Figure 3.2 was developed under MATLAB

6.5 environment. Each block in the figure has its own functionality, which will be discussed in

details in the next sections. The MATLAB code implementing each block is shown in Appendix

A.

The following is the general overview of the operation of the system:

1. Generate a binary message of random bit sequence with a length equal to one frame size.

2. Partition the generated random bits into data blocks, perform the QPSK symbol

mapping to each data block and apply frequency interleaving to the QPSK symbols on

each data block. Note a data block constitutes an OFDM symbol.

3. Generate the phase reference symbol and perform the differential modulation on each

data block.

4. Add a phase reference symbol at the beginning of the frame, apply zero padding on each

data block and perform an inverse FFT operation to each data block.

5. Add cyclic extension to each OFDM symbol.

6. Generate a null symbol and add it at the beginning of the frame from (5) to make a

complete frame ready for transmission.

7. Pass it through the channel with additive white Gausian noise.

8. Perform the receiver synchronization.

9. Remove the cyclic prefix from each OFDM symbol of the synchronized received signal,

and perform FFT on each OFDM symbol to recover the data signal.

10. Perform zero padding removal from each OFDM symbol.

11. Perform the differential demodulation.

12. Perform the frequency de-interleaving followed by QPSK symbol de-mapping.

13. Calculate the bit error rate of the system.

 29

CH
A

N
N

EL

D
at

a
ge

ne
ra

to
r

Bl
oc

k
pa

rti
tio

ne
r

Q
PS

K
 sy

m
bo

l m
ap

pe
r

Fr
eq

ue
nc

y
in

te
rle

av
in

g

Ph
as

e
re

fe
re

nc
e

sy
m

bo
l g

en
er

at
or

D
iff

er
en

tia
l m

od
ul

at
or

Ze
ro

 p
ad

di
ng

IF
FT

Cy
cl

ic
 p

re
fix

N
ul

l s
ym

bo
l g

en
er

at
or

O
rig

in
al

 d
at

a

Fr
eq

ue
nc

y
de

-in
te

rle
av

in
g

Q
PS

K
 sy

m
bo

l
de

-m
ap

pe
r

D
iff

er
en

tia
l

de
-m

od
ul

at
or

Cy
cl

ic
 p

re
fix

re
m

ov
al

FF
T

Ze
ro

 p
ad

di
ng

re
m

ov
al

Sy
nc

hr
on

iz
at

io
n

Bi
t s

tre
am

D
at

a
M

ap
pe

r

Q
PS

K
 sy

m
bo

ls
D

Q
PS

K
 sy

m
bo

ls O
FD

M
 S

ym
bo

l G
en

er
at

orO
FD

M
sy

m
bo

ls

Tr
an

sm
is

si
on

sig
na

l

Sy
nc

hr
on

iz
ed

 d
at

a

O
FD

M
 S

ym
bo

l d
em

od
ul

at
or

D
Q

PS
K

 sy
m

bo
ls

Q
PS

K
 sy

m
bo

ls

z

z

D
at

a D
e-

M
ap

pe
r

Bi
t s

tre
am

A
dd

 n
ul

l s
ym

bo
l

Figure 3.2 Block diagram of the system simulated

 30

3.3 Data generator

The data generator block is the first block in the transmission side. It generates a binary data

message that will be transmitted over the system. The random bit sequence generated

constitutes a transmission frame data for FIC and MSC in a similar way to that described in

section 2.6. This provides inputs to the data mapper block.

The data size for FIC and MSC is known, so the total random bits generated for one

transmission frame is given by the following expression:

total_bit = fic_bit + msc_bit (3.1)

Where fic_bit denotes the total random bits for FIC equal to 2304 sample bits and msc_bit

denotes the total random bits for MSC equal to 55296 sample bits. This has been calculated

from the parameters given in Table 2.1. The number of carriers for mode II is 384 and there is

2-bit per carrier with QPSK modulation. This makes a total bits per OFDM symbol equal to

768. In each transmission frame there are 3-OFDM symbols for FIC and 72-OFDM symbols

for MSC. This provides the numeric value for each channel as given above.

The MATLAB function “randint” has been used to generate a stream of random data bits. The

function generates random integers that are either 0 or 1 with equal probability. The MATLAB

code used to generate a sequence of random bits is shown in next expression:

 inf_data=randint(1,total_bit) (3.2)

where inf_data presents an array of random bits generated.

Following the transmission mode II, the data generator should generate 57600 bits for each

transmission frame.

 31

3.4 Data mapper

The DAB transmission signal described in section 2.8 is made of numbers of OFDM symbols,

which are generated using an inverse FFT that works with complex numbers. The data mapper

block is responsible for dividing the generated bit array into data blocks, mapping bits in each

data block into QPSK symbol constellation and performing frequency interleaving on the

QPSK symbols for every QPSK symbol block. Each data block has bit that constitute

information for a particular OFDM symbol.

The block performs its task in a sequential order, starting with partitioning the bits array into

data blocks, followed by mapping bit in each data block into QPSK symbols and ending with

interleaving the symbols in the data block after QPSK mapping (see Figure 3.3). The output of

the block is the sequence of symbols (i.e. complex numbers) that describes the input bits being

converted into phase.

bit stream
Block

Partitioner
QPSK
symbol
mapper

Frequency
interleavingSingle transmission

frame bits from data
generator.

Partitioned transmission
frame

QPSK
symbols

QPSK
symbols

data blocks

Figure 3.3 Data mapping process

The data mapping consists of a five-processing chain:

 Get array of bit

 Partition array of bits into data blocks

 Perform QPSK symbol mapping

 Perform frequency interleaving

 Store QPSK symbol in the array

The three main processes of the data mapper are block partitioning, QPSK symbol mapping

and frequency interleaving. These three main processes form three sub-blocks of the data

 32

mapper. The details of these sub-blocks will be discussed in sections 3.4.1, 3.4.2 and 3.4.2

respectively. Figure 3.4 shows a flowchart that implements the simulated data mapper.

START

get array of bit

take a block of data
bit from the array

perform QPSK
symbol mapping

perform frequency
interleaving

store symbol block in
the array

are all data blocks taken
from the bit array ?

return array of
QPSK symbols

STOP

NO

 YES

Figure 3.4 Data mapper flow chart

 33

3.4.1 Block partitioner

The generated bit array at a given time constitutes the data bits for a single transmission frame.

From equation 2.8 a transmission frame is made of a number of the OFDM symbols and each

OFDM symbol is made of a number of carriers. This means that the generated bits in the array

should be associated with the OFDM symbols and information (phase) must be assigned to

each carrier. In order to achieve this, the generated bit array has to be divided into groups of bit

sequences, where bit in each group will constitute an OFDM symbol. To accomplish this task a

block partitioner is required. This block divides the bit arrays into data blocks that contain a

certain sequence of bit from the generated bit array as described in the next paragraphs.

An OFDM symbol is made of 384 carriers (mode II) and each carrier is assigned a QPSK

symbol made of two bits. Each data block will contain 768 bits. The block partitioner divides

the input’s bit array into data blocks each with 768 sample bits and passes each data block to the

QPSK symbol mapper block at a different time interval (see Figure 3.3 and 3.4). So the array of

57600 bits generated is logically divided into 75 data blocks that form 75 consecutive OFDM

symbols of index l=2,3…76 in the transmission frame (see section 2.8 and 2.9).

Figure 3.5 illustrates how the array of generated bits is logically divided into data blocks. In the

figure each data block is associated with an OFDM symbol. The index l of an OFDM symbol

starts at l = 2, because the first OFDM symbol (index l=1) in the transmission frame is reserved

for the Phase Reference symbol.

 34

b1 b57600

b1 . . . b768 b5683 ... b57600
b769 . . . b1536

OFDM symbol
of index l = 2 OFDM symbol

of index l = 3
OFDM symbol
of index l = 76

bit stream in the array

Figure 3.5 Principle of block partitioning

3.4.2 QPSK symbol mapper

The QPSK symbol mapper block is responsible for mapping serial bit streams in each data

block into QPSK symbol constellation. So zeros and ones are converted into phase (see Figure

3.7).

A series of 768 bits in each data block is mapped in parallel into a digital constellation according

to the QPSK modulation scheme, where two bits in the data block are grouped together and

mapped to one of the four symbols in the constellation (see Figure 3.7). This results in

generating two data streams, called In-phase and Quadrature (I and Q). The symbol mapping is

according to the DAB mapping standard [5] defined next:

1 [(1 - 2.) (1 - 2.)]
2n n n Kq b j b += + (3.3)

for n=1,2,…,K

where nq is the complex QPSK symbols generated with two bits nb and n Kb + , (the value of b

can be either 1 or 0) and K is the total number of carriers used.

 35

The data bits in each data block are mapped into 384 (K) complex QPSK symbols. The first

QPSK symbol (1q) is formed with bit-pair bit 1b and bit 385b from data block, the second QPSK

symbol (2q) is formed with bit-pair bit 2b and bit 386b from data block, and so on. The first bit

in each bit-pair (nb) is used to generate I-component and the second bit (n Kb +) is used to

generate the Q-component of the generated symbol stream. Each bit-pair is referred to as a

symbol (S) and each symbol forms one complex QPSK symbol (nq) defined in (3.3). Figure

3.6 illustrates how bits in each data block are combined to form complex QPSK symbol nq .

b1 b2 b767 b768

b1b385 b2b386 b383b767 b384b768

S1 S2 S383 S384

Data block

Figure 3.6 Bit-pair forming a complex QPSK symbol array.

 According to the mapping, symbol (01) has a positive real part and a negative imaginary part,

symbol (10) has a negative real part and a positive imaginary part, symbol (00) has both positive

real part and an imaginary part and symbol (11) has both negative real part and an imaginary

part. These mapping features are illustrated in Figure 3.7 and bit-pair mapping is shown below:

Bits Phase

00 450

01 -450

10 1350

11 -1350

The differential part of the QPSK will be discussed in section 3.6.

 36

Figure 3.7 shows the simulated QPSK constellation mapping

Figure 3.7 QPSK constellation mapping

3.4.3 Frequency interleaving

This section describes the implementation of the interleaving introduced in section 2.7. The

frequency interleaving for mode II is described in detail (how it works and how it has been

implemented).

The frequency interleaving defines the correspondence relation between the QPSK symbol

index n of the QPSK symbols obtained in section 3.4.2 and the carrier index k (-K/2 ≤ k< 0

and 0 <k ≤ K/2) defined in section 2.8. Each of the 384-QPSK symbols to be transmitted is

given an index n, 1 to 384 and each of 384 carriers is given an index k, -192 to 192, omitting 0,

which corresponds to the un-modulated center carrier (because phase of DC can not be

modulated). The relation between the QPSK symbol index n and the carrier index k, is

established by re-ordering the QPSK symbols in the array according to the relation described

next. This help to ensure that successive source samples are not affected by selective fade.

 37

 To explain how the frequency interleaving works in DAB system [5], let’s consider the example

of the transmission mode II used in the simulation. The relationship between the input and the

output of the frequency interleaver is described by the following expression:

 ()
k ny q

with k F n
=

= (3.4)

where y denotes the outputs of the interleaver and nq denotes an input QPSK symbol array to

the interleaver (see Figures 3.4 and 3.6). Note the input QPSK symbol array to the interleaver is

made of 384 QPSK symbols.

The carrier index k in equation 3.4 is obtained from the index n using mathematical expression

()F n defined in the following paragraphs.

Let ()i∏ be a permutation in the set of integers i = 0,1,2…511, obtained from the next relation:

[]() 13 (-1) 127 (mod512) (0) 0;

 1,2,...,511.

i i and

for i

∏ = ∏ + ∏ =

=
 (3.5)

Let D be the set D={d0, d1, d2,…, d383}, containing 384 elements in the same order as ()i∏ , but

excluding the elements of ∏ which are not in the range [64 448] and excluding 256.

So ()nd i= ∏ in the range [64 448] excluding 256.

The correspondence between the index n Є {0,1,2,…, 383} of the QPSK symbol nq and the

frequency index k Є {-192, -191, -190 ,…,192}\ {0} is given by :

() 256nk F n d= = − (3.6)

Thus the function F defines one-to-one mapping between the sets {0,1,2, …, 383} and {-192,

-191, -190,…,192} \ {0}. The equation 3.6 provides the values of carrier index k associated to

index n that describes the relationships between inputs and the output of the frequency

interleaver given in equation 3.4. The flow chart in Figure 3.8 illustrates the implemented

frequency interleaving.

 38

START

get QPSK symbol
array (q)

generate carrier index k

convert carrier index into
range [1 384]

perform interleaving
process

return interleaved
QPSK symbol array

(y)

STOP

 Figure 3.8 Frequency interleaving flow chart

The interleaving process starts with the generation of the carrier indexes k and ending with re-

ordering of the QPSK symbols of the input array. The carrier indexes k are generated as shown

in the following MATLAB code fragment:

 TT(1)=0; %initialise a permutation set of integers with TT(1)=0
 F=[]; % define array for carrier index (k=F(n) function).
 for i=2:512
 TT(i)= mod((13*TT(i-1) +127),512);

 % compute the carrier index using elements
 % in the range[64 448] and excludes 256
 if ((TT(i)>=64) && (TT(i)~=256) &&(TT(i)<=448))
 F=[F (TT(i)-256)];
 end
 end

 39

The values of ∏ that lie in the range [64 448], omitting all others and 256 (the centre carrier),

are selected. This yields 384 different values and 256 is subtracted from each value giving k

values illustrated in Table 3.1

i Π(i)=TT(i) dn n k
1 0
2 127 127 1 -129
3 242 242 2 -14
4 201 201 3 -55
5 180 180 4 -76
6 419 419 5 163
7 454
8 397 397 6 141
9 168 168 7 -88
10 263 263 8 7
11 474
12 145 145 9 -111
13 476
14 171 171 10 -85
15 302 302 11 46
16 469
17 80 80 12 -176
18 143 143 13 -113
19 450
.
.

.

.
.
.

509 140 140 381 -116
510 411 411 382 155
511 350 350 383 94
512 69 69 384 -187

Table 3.1 The frequency-interleaving rule for the transmission mode II

MATLAB does not work with zero or negative indexes in the matrices. So we cannot work with

the standard format of the values illustrated in Table 3.1. The solution is converting the carrier

index in the range [-192 192] excluding zero, into positive carrier index range [1 384] where the

central carrier is not used. The transformation is done with the addition of 193 to the negative

carrier index and 192 to the positive carrier index. Thus for a carrier index k=-129, its

 40

corresponding positive value is k=64, for k=-14, its corresponding positive value is k=179 and

so on.

The frequency interleaving process operates according to the relationship defined in equation

3.4, where indexes k and n are obtained as illustrated in Table 3.1. The position of each value

in series given in Table 3.1 provides the QPSK symbol index 1,2…384 and these values

provides their correspondent carriers index k. Note, from Table 3.1 the generated carrier

indexes (k) are in random order and the QPSK symbol indexes (n) are in a sequential order.

According to the values in the table, when the QPSK symbol index n=1, the corresponding

carrier index k= 64(-129), so when the interleaving process is applied a QPSK symbol of index

n=1 in the array q, will map into index k=64 in array y, similarly the QPSK symbol of index n=2

in array q, will map into index k=179(-14) in array y, and so on. This changes the original order

of the input QPSK symbols and results in a new random order in array y. That is frequency

interleaving which combat the effect of frequency selective fading. The code fragment below

shows how the interleaving process is carried out:

Y=zeros(1,(length(F))); % initialise an array Y with zeros equal to the
 %carrier index

 % Y holds the re-order qpsk symbol
 for v=1:length(F)
 if F(v)<0
 post_ind(v)=F(v) + 193; % if the carrier index is negative add 193
 Y(post_ind(v))=q(v); %map qpsk symbol in q into Y
 else
 post_ind(v)=F(v) + 192; %if carrier index is positve shift it by adding 192

 Y(post_ind(v))=q(v); %map qpsk symbol in q into Y
 end
 end

 mapqpsk=Y; % return the interleaved qpsk symbol

Figure 3.9 and Figure 3.10 illustrate the order of the QPSK symbols in the array before and after

frequency interleaving respectively. In both figures S denotes the QPSK symbols.

 41

1S 2S 3S
383S382S 384S

index n

 Figure 3.9 QPSK symbol array pre-frequency interleaving

245S 50S 113S
286S347S 6S

index n

Figure 3.10 QPSK symbol array after frequency interleaving

3.5 Phase reference symbol generator

The DAB transmission frame described in section 2.6 follows a fixed format that allows receiver

synchronization and extraction of data. The frame comprises of three channels namely the

synchronization channel, FIC and MSC. The synchronization channel is made of the Null

symbol and the Phase Reference symbol that provides receiver lock. This section describes the

characteristics and the generation of the phase reference symbol.

According to [5] the first symbol of the transmission frame should be the Phase Reference

symbol if a null symbol is not taken into account. The Phase Reference symbol appears only

once in a frame. The receiver knows what the incoming Phase Reference symbol is supposed to

be. The receiver gets the information about the behaviours of the channel in every single

transmission frame by comparing the known pattern of the phase reference symbol with the

received Phase Reference symbol.

 42

The Phase Reference symbol provides the reference for the differential modulation of its

neighbour OFDM symbol in the transmission frame. Its block has the capacity of 384 symbols

(mode II), and the whole of this capacity is used for synchronization function. The pattern

defining the phase reference symbol [5] is given next:

- 0 0
2 2

0 0

kj

k

K Ke f o r k a n d k
z

f o r k

ϕ⎧ ≤ < < ≤⎪= ⎨
⎪ =⎩

 (3.7)

The value of φk will be obtained from the next expression:

 , '.()
2k i k kh nπϕ −= + (3.8)

where the indices i, k’ and the parameter n are specified as the function of carrier index k (see

Appendix B). The values of the parameter hi,j as a function of i and j are obtained from the table

given in the Appendix B. The implemented flow chart that generates a phase reference symbol

block is illustrated in Figure 3.11.

 43

START

load time-frequency
parameter h-values

load the indices i,k’ and n

arrange carrier index k in
relation to the indices i,k’ and n

compute angle kϕ

compute phase reference
symbol values ()kz

return array of
phase reference

symbol

STOP

 Figure 3.11 Phase Reference Symbol generation flow chart

The generation of the phase reference symbol follows a specific pattern described in the above

paragraphs. The values of the parameter and indices for the transmission mode II are loaded

according to the values given in Appendix B. The carrier index k is arranged in relation to the

indices i, k’ following the relation described in Appendix B. The Phase Reference symbol block

is calculated according to equation 3.7. The expression (3.7) defines the value of zk to be equal

to zero at k = 0 in the carrier index range [-192 192], so that the central carrier is not used and

the number of carrier elements in z is 384, for mode II. The carrier indexes k are set to positive

values by adding 193 to the negative carrier indexes and 192 to the positive carrier indexes. This

is done to ensure positive indexes when working with MATLAB.

 44

 The generated array of the phase reference symbol samples is used in differential modulation,

as will be discussed in the next section. Figure 3.12 shows the generated phase reference symbol

waveforms and Figure 3.13 shows its constellation. Its waveforms appear as the noise-like

signal because the phases of the carriers are modulated in accordance with a predetermined rule.

.

 Figure 3.12 Real part of the phase reference symbol waveform.

 45

Figure 3.13 Phase reference symbol constellation.

3.6 Differential modulator

Up to this moment the information in the system is carried by the phase of the individual

carriers (see Figure 3.7). The disadvantage of this transmission-reception is that the receiver has

to be able to recognize the phase of the incoming carrier (coherent system). In mobile

communications, the multipath spread of the signal can degrade or cause an offset in the phase

of the carriers, so the solution is sending the information not through the absolute phase, but

through the difference between the phases of two successive symbols. This simplifies

synchronization and timing recovery, hence reduces receiver implementation and design

complexity.

The differential modulator block is responsible for differentially modulating the QPSK carriers.

The outputs of the block are the complex differential QPSK symbols that are used in the

generation of the OFDM symbol for DAB signal as discussed in the second chapter. The π/4-

shift D-QPSK modulation scheme is used. Recall the differential modulation works with a well-

known phase reference. In this case the phase reference symbol generated in section 3.5

 46

provides the initial phase reference (and a timing synchronization symbol) to the system as

discussed in the second chapter.

The differential modulation standard [5] is defined by the following expression:

, 1, ,l k l k l kz z y−= × (3.8)

2 2

 2,3...,
 - K K

for l L
and k

=
≤ ≤

where z represents the complex differential symbol block, that is the output of the differential

modulator, y represents the input QPSK symbol block, l represents the OFDM symbol index

(see Figure 3.5) and k represents carrier index.

Expression 3.8 presents the complex differential multiplication of two arrays used in the

simulation. The first array named “z” contains differential symbols and is also used to provide

the phase reference information. The second array “y” has the QPSK symbols to be transmitted

on each carrier. The two arrays have a similar capacity of 384 carriers (mode II). The elements

of the array “y” are the output QPSK data stream from the data mapper presented in section

3.4. This output array is made of 75-QPSK-symbol blocks, each block with 384 QPSK carriers

that constitute OFDM symbols of index l=2,3…76. In order to be able to transform the output

“z” into input (zl-1) according to equation 3.8, a feedback loop was necessary. Figure 3.14

illustrates the implemented detail for a differential modulator:

 47

START

set an initial phase
reference to phase

reference symbol block

perform differential
modulation on QPSK

symbol block

store the results,
D-QPSK symbol block in

the array

set a new phase reference
to current D-QPSK

symbol block

are all QPSK symbol
blocks used in the input

array?

return
D-QPSK

symbol array

STOP

get array of
interleaved

QPSK symbol

get a QPSK symbol block
from the array

No

 Yes

z

1lz −

y

Figure 3.14 Differential modulator flow chart

From the input array a sequence of 384 QPSK symbols that form a QPSK symbol block are

taken one at a time. The differential modulation is performed according to equation 3.8 on each

QPSK symbol block. To get first DQPSK symbol block (z2,k) of index l=2, the first incoming

QPSK symbol block (y1,k) from input array has to be multiplied by the phase reference symbol

block. This first DQPSK symbol block obtained is then used to provide the phase reference for

the second differential modulation. That is to get the second DQPSK symbol block (z3,k) the

first DQPSK symbol block has to be multiplied by the second QPSK symbol block (y2,k) and

 48

so on. The index l, of the DQPSK symbol block starts with l=2, since the first index is reserved

for the phase reference symbol in the transmission frame.

When differential modulation is applied, the phase of each carrier is rotated by multiples of 450

from the previous OFDM symbol to the next. The four QPSK modulation states are signalled

by ± 45 0 and ± 135 0 changes of the carrier phase at the start of each new OFDM symbol. The

angle of the result of each carrier is the sum of the angles presented by the previous modulation

and current QPSK carrier angle, and this defines the new DQPSK symbol. Thus the value of

the new symbol determines the change of phase; hence the information on each carrier is

carried by the phase difference. These features are illustrated in Figure 3.15 where the phase of

one carrier is shown during three consecutive symbols; the actual phase shown is an example of

many possible combinations.

symbol n-1 symbol n symbol n+1

key : = possible phase
= previous phase

= present phase
Figure 3.15 π/4-DQPSK modulation

3.7 OFDM symbol generator

As it was presented in chapter two, the OFDM symbol generator is the main block in the DAB

transmission chain. It generates the OFDM symbols that make up the DAB main signal. This

block transforms the frequency domain samples on every DQPSK symbol block into a time

domain sample that presents the DAB main signal (see equation 2.8). The OFDM scheme has

 49

already been presented in chapter 2, this section discusses how the OFDM symbols are

generated in the simulation.

The output DQPSK data streams from the differential modulator block provide inputs to this

block (see Figure 3.2). This input array is made of 75-DQPSK-symbol block each with 384-

differential modulated carriers (mode II). In order to achieve the total number of the OFDM

symbols desired for a transmission frame as described in chapter two, this block adds a phase

reference symbol at the beginning of the input array, which results in the 76-symbol blocks array

present in the block. This constitutes one transmission frame as illustrated in Figure 3.16.

1 2 3 …. … 75 76

Figure 3.16 Arranged symbol block in transmission fame

Note: The first index in Figure 3.16 presents the Phase Reference Symbol block and the rest are

for FIC and MSC.

In order to ensure working with one DQPSK symbol block from the input DQPSK data stream

at a time, the loop illustrated in Figure 3.17 was implemented. This is done because the

generation of an OFDM symbol uses a single DQPSK symbol block, and the complete

transmission frame is made of numbers of OFDM symbols that are generated with different

DQPSK symbol blocks according to equation 2.8 presented in the second chapter.

 50

START

get DQPSK
symbol array

add phase reference symbol block at
the beginning of the array

take a stream of symbols equal to
DQPSK symbol block size from the

array

apply zero padding and rearrange
symbol

perform an inverse FFT

add guard sample

store sample in the array

are all symbol blocks taken
from the input array?

return time
domain

sample array

STOP

No

Yes

Figure 3.17 OFDM symbol generator flow chart.

 The incoming DQPSK data streams forms 75 DQPSK symbol blocks that are added to the

phase reference symbol block to form an array made of 76 symbol blocks. Each block consists

of 384 symbols. As presented in the above paragraph one symbol block is used at a time starting

with the phase reference symbol block that is at the beginning of the array. To generate a time

 51

domain OFDM symbol from each symbol block, the following are to be performed on each

symbol block:

 Zero padding

 Inverse FFT

 Guard sample insertion

In order for the OFDM symbol generator to accomplish the above task, the block has to be

divided into three sub-blocks. These sub-blocks are zero padding, IFFT and cyclic prefix, where

each block performs its own function presented in sub-section 3.7.1, 3.7.2 and 3.7.3 respectively.

In the following subsections a stream of 384 symbols will be denoted as D-QPSK symbol block.

But it should be clear as presented in the above paragraph; the incoming DQPSK symbol array

has concatenated to the phase reference symbol made of 384 symbol samples at the beginning

of the array (see Figure 3.16 and 3.17).

3.7.1 Zero padding

The heart of the OFDM Symbol Generator is an inverse FFT algorithm. As was presented in

chapter two, the FFT/IFFT algorithms have a good performance if the number of carriers is an

integer power of 2 (see section 2.7). Since the length of the D-QPDK symbol block applied to

the algorithm is not equal to a power of 2, zero padding is needed to fit this length equal to a

power of two (i.e. from 384 to 512). This is one of the functions of this sub-block.

According to [5], the IFFT in DAB uses 512 samples for Mode II to produce a 384-carrier DAB

symbol signal. To work with a 512-sample block, this sub-block has to add 128-zeros to every

D-QPSK symbol block as illustrated in Figure 3.18

The mathematical representation of the DAB main signal in equation 2.8 uses both positive and

negative frequencies. To ensure working with the same representations, the lower frequency on

the first part of each OFDM symbol and the upper frequency in the last part of the OFDM, the

samples from each D-QPSK symbol block are to be rearranged as illustrated in Figure 3.18

before an inverse FFT is performed. This has to be done because the FFT/IFFT algorithm

changes the position of the carriers.

 52

DQPSK symbols

Lower frequencies Upper frequencies

1 192 384

DQPSK symbol block before zero padding and rearrangement

Upper frequencies Lower frequencies

193 384 1921

128 zeros

Figure 3.18 DQPSK symbol block after zero padding and rearrangement.

The samples presenting negative frequencies (-4kHz to -768 kHz) in the base-band signals are

named as Lower frequencies and the samples presenting the positive frequencies (4kHz to 768

kHz) are named as Upper frequencies.

3.7.2 IFFT

This is the main sub-block of the OFDM Symbol Generator and the heart of the simulation. At

this moment the system generates the OFDM symbols that present DAB main signal (see

equation 2.8 in chapter 2). The frequency domain samples in each D-QPSK symbol block are

transformed into time domain samples. To accomplish this, the sub-block performs an inverse

IFFT on every D-QPSK symbol block with the desired shape obtained from sub-section 3.7.1.

The carriers in the symbol block are modulated into orthogonal carriers that form OFDM

symbols. The output of the block is the OFDM symbols. No MATLAB code has been written

for this sub-block; the built in IFFT algorithm has been used with 512-IFFT points (mode II).

 53

3.7.3 Cyclic prefix

This sub-block creates cyclic prefix as presented in section 2.7 in the second chapter. It takes a

copy of 126 (mode II) samples corresponding to the guard interval period (see Table 2.1) from

the end of every OFDM symbol and then copies them at the beginning of the symbol. This

extends the length of the OFDM symbol to 638 samples length (see Table 2.1).

3.8 Null symbol generator

This is the last block in the transmission side. The block restructures the output of the OFDM

symbol generator into a form desired for transmission. It performs the two functions described

next:

 Null symbol generation

 Final frame structure formation.

The output of this block is the complex base-band signal presenting the DAB main signal s(t)

described in the second chapter. Figure 3.19 illustrates a complex base-band signal generated in

the simulation made of one transmission frame. The complex base-band signal generated

comprises of 384 orthogonal carriers generated in section 3.7 with equal carrier spacing.

3.8.1 Null symbol generation

The first OFDM symbol of transmission frame is the Null Symbol with the duration TNULL (see

section 2.8). The TNULL is equivalent to 664 samples in Mode II (see Table 2.1). To ensure that

no main signal is transmitted during this period, 664-zeros are generated to present the null

symbol. The MATLAB code generating the null symbol is shown below:

null_symb=zeros (1,664) (generating a Null Symbol).

 54

3.8.2 Final frame structure formation

A complete transmission frame must have a Null Symbol at the beginning of the frame. The

time domain sample array obtained from the OFDM Symbol generator constitutes samples for

one transmission frame without a null symbol. To have a complete transmission frame a null

symbol has to be added at the beginning of this time domain sample array.

Figure 3.19 Generated complex base-band DAB signal.

 55

3.9 Channel

A fixed receiver communication has been simulated and the channel used is an additive white

Gaussian noise channel. The complex white Gaussian noise was generated and added to the

complex base-band signal in the simulation. The MATLAB function ‘randn’ was used to

generate this noise where the real and imaginary components were uncorrelated and both

treated with equal noise amplitude level.

3.10 Reception side

The DAB standard [5] provides only the transmission system standard. Nothing is said in the

standard about how to design the DAB receiver. This is because the reception system should be

open to promote the competition among receiver designers and manufacturers, but should

ensure that all the receivers are able to work with DAB signal.

The simulation model for the DAB system has been completed with the basic design of a DAB

receiver. A basic receiver design follows the inverse of the transmission process. Its design

approach is illustrated in Figure 3.2 and the detail of each block is provided in next sections.

3.11 Synchronization

Synchronization in different layers is a challenging but very important issue in a digital

communication system. Frame synchronization, carrier synchronization, and symbol timing

synchronization in the physical layer are usually the most important. Frequency offset and

symbol timing error in a receiver are the most often encountered problems in a digital

communication system.

The receiver simulation does not include the RF section neither analogue to digital conversions.

The simulation has been done in a base-band format. The received data signals are stored in the

array. From the array the synchronization is acquired to provide symbol timing and frame timing

before demodulation.

 56

The symbol timing synchronization and the frame synchronization has been implemented fully

in the receiver simulation model. Unfortunately the complete implementation for compensating

the frequency offset (i.e. controlling the RF local oscillator) in the receiver simulation was not

implemented since the ADC and the down converter part were not studied in this thesis. It was

assumed to be a perfect working hardware. But explanations on how it should be done if a

complete system simulation is considered, will be introduced in section 3.13.

The frame synchronization is used for rough estimates of the frame timing. It exploits the

presence of the null symbol in the transmission frame. The symbol timing synchronization is

used to reduce the residual symbol timing error of the frame synchronization. The details for

symbol timing synchronization and frame synchronization are given in section 3.12.1 and 3.12.2

respectively. Figure 3.20 illustrates the receiver synchronization process for a complete system.

FFT

Phase reference symbol
complex conjugate

IFFT Peak search Sync.
decision

Power
estimation

correlation Arg[] Divide by
2piTu

Fractional
freq. offset

correlation Search
peak

Integral
freq. offset

Null symbol
detection

Incoming
signal

AFC

RF local Osc.Freq.
control

Symbol & frame
timing

Symbol and frame synchronizatiom

Frequency offset estimation

Figure 3.20 Block diagram of synchronization process

 57

Below is the synchronization procedure when data signal is received:

 Determine symbol timing, simultaneously detect the occurrence of null symbol (Frame

timing).

 Estimate and compensate for the fractional frequency offset

 Estimate and compensate for the integral frequency offset

3.12 Timing synchronization

The timing synchronization estimates the start of the frame and provides the correct symbol

timing. To ensure these are achieved, symbol timing synchronization and frame synchronization

are implemented. The next two sections discuss the details of their implementations.

 3.12.1 Symbol timing synchronization

The symbol timing synchronization estimates and finds the start of the phase reference symbol

in the received data. This provides the correct timing within the symbol period to take the

received data samples. It uses the received phase reference symbol to measure the impulse

response of the transmission channel, which provides accurate symbol timing and frame timing.

 For clear understanding of how the received phase reference is used to measure the channel

impulse response (CIR) and to provide accurate timing, let’s consider the information provided

in the following paragraphs:

Consider a timing error within guard interval. This results into a linear phase shift of each sub-

carrier in frequency domains as illustrated in equation 3.9.

0- 2 /() () j kn N
rZ k Z k e π= (3.9)

Where Z (k) is the k-th sub-carrier of the phase reference symbol in frequency domain, Zr (k) is

the k-th sub-carrier of received phase reference symbol with a time delay of n0 (i.e. demodulated

by an FFT with n0 offset) and N is the number of sub-carriers.

 58

The phase reference symbol is the dedicated pilot symbol in DAB transmission frame [5]. When

a received phase reference symbol is multiplied by the complex conjugate of the phase reference

symbol spectrum at the receiver, this results in a modulated phase of each carrier being

eliminated. The resultant product is the phase-demodulated received phase reference symbol,

which contains the time delay (no) information.

The CIR, h(n) is estimated by performing an inverse FFT of the resultant product as shown in

the next expression:

*
0() { () • ()} (-)rh n IF FT Z k Z k n nδ= = (3.10)

where Z*(k) is the complex conjugate of Z (k), and •denotes the element-by-element product of

vectors and n is the sample index in time domain. The peak of CIR indicates start of the phase

reference signal.

The above paragraphs have illustrated how the CIR is measured, Figure 3.21 illustrates the

implemented symbol timing synchronization loop.

 59

START

take a block of data samples from the array
equal to FFT length

add zeros at the end of array

get a receive data
signal array

perform FFT to the data sample block

perform de-zero padding

perform phase reference symbol
demodulation

perform an inverse FFT

search for the peak (p)

is p >= threshold
level ?

determine peak location in the received data
array

return synchronized
received data array

STOP

No

 Yes

Figure 3.21 Symbol timing synchronization flow chart

As was explained earlier, the received data signal is stored in the array. The array size is not

necessarily a multiple of FFT length, where a sample-block with size equal to FFT length is

taken. To facilitate working with the array in MATLAB, extra zeros have to be added at the end

of the received data signal. This results in an array multiple of FFT length.

 60

The symbol timing synchronization is accomplished through two stages, the first stage measures

the CIR using the phase reference symbol from the received data array, and the second stage

determines the start of the phase reference symbol. The detail of each stage is explained next.

 1) Determining of CIR using phase reference symbol from the received data signal

From the received data array, a data sample block equal to the FFT length is taken. The samples

in the block are transformed into frequency domain by performing the FFT operation. The

output frequency domain samples contain frequency response information about the channel.

The FFT output array has a size equal to FFT window length, but the size of phase reference

symbol block at the receiver is 384 (mode II). So zero padding removal and data rearrangement

has to be done to reverse the process done at the transmitter side. The obtained array after zero

padding removal has the same size as the known phase reference symbol block at the receiver.

When this array is multiplied by the complex conjugate of the receiver phase reference symbol

block, this results in the array with information about the frequency response of the channel,

which is then related to the (time) impulse by performing an inverse FFT operation to the

product. The IFFT output array provides a measure for channel impulse response (CIR).

2) Determining of the start of the phase reference symbol in the received data array

The impulse signal is determined by calculating the magnitude of each element in the IFFT

output array and searching for the desired highest peak. It does not mean that for every sample

block taken from the received data array, the desired peak that determines the start of the phase

reference symbol will be found. To ensure a desired peak is determined a threshold level has to

be set, as it will be explained later.

For every output array of an inverse FFT corresponding to the sample block taken from the

received data array (see Figure 3.21), the highest peak has to be determined and compared to the

set threshold level. When the determined highest peak is less than the threshold level, then the

peak found does not indicate the start of the phase reference symbol, so the loop process

continues by taking the next sample block (see Figure 3.21).

 61

The determined peak is only greater than the threshold level provided the used data sample

block has a phase reference symbol sample in it, since the phase reference symbol has a high

correlation with itself. So when a peak found is greater than the threshold level, this peak

indicates that the samples from the useful part of the phase reference symbol were present in

the used sample block. To determine the start of the phase reference symbol in the received data

array, the location of the peak has to be determined.

The numbers of loop trials (lN) before determining the desired peak has to be recorded. When

the desired highest peak is found, the start of the phase reference symbol in the received data

array is given by expression below:

start l locationprs fftlength N peak= × + (3.11)

where

startprs denotes the start of the phase reference symbol in the received data array.

fftlength is the size of FFT window used.

locationpeak is the location of the peak in IFFT output array.

The start of the phase reference symbol in equation 3.11 indicates the starting point of the

useful symbol duration for the phase reference symbol. To determine where to start

demodulating the received OFDM symbol in the array, the FFT length has to be added in

equation 3.11. This is because the received phase reference symbol was added to zeros in order

to fit to the FFT length at the transmitter. The start of the useful symbol part of the phase

reference symbol in the received data array is illustrated in Figure 3.22.

Null symbol CP PR-symbol OFDM symbols

peak position

Figure 3.22 Start of effective phase reference symbol

 62

The simulated highest peak location is illustrated in Figure 3.23. The plot in the figure has been

obtained with one transmission frame made of three OFDM symbols.

Figure 3.23 Symbol and Frame timing synchronization.

From Figure 3.23 the peak is at sample index 791. The plot includes the entire received data

sample before and during desired peak detection. It is well known from chapter 2 that the first

symbol in the transmission frame is the null symbol of sample length 664 and each OFDM

symbol has the cyclic prefix sample of 126 (transmission Mode II) at the beginning of the

symbol. The useful symbol duration does not include the cyclic prefix (i.e. guard interval

sample).

Adding the null symbol samples and the cyclic prefix samples we obtain 790, thus the peak in

the figure appears precisely at the starting point of the useful OFDM symbol duration (Tu) of

the phase reference symbol as expected. The timed received data is also shown in the same

figure, with a real part of the received data signal plot.

To set the threshold, the magnitude of the highest peak when the phase reference symbol is

multiplied by its complex conjugate and an inverse FFT is applied to the products in the

absence of the noise and in the presence of the noise has to be observed. Also a similar

 63

observation has to be done using the incoming signal. The incoming signal in the presence and

absence of noise is multiplied by the complex conjugate of the phase reference symbol and an

inverse FFT is applied to the product. The magnitude of the highest peak from IFFT output

array in both cases has to be observed. These are done to ensure that during timing process the

noise peak will not be considered as the desired peak as well as the incoming signal peak

excluding the phase reference symbol signal. It was concluded that the threshold level is to be

greater than half the magnitude of the peak in the absence of the noise (see Figure 3.24). This

provided a better result under either case; the performance results will be discussed in details in

section 3.17.

The Figure 3.24 shows the peak when the phase reference symbol is correlated by itself and then

performs the IFFT operation.

Figure 3.24 Phase reference symbol impulse signal

 64

3.12.2 Frame synchronization

The Null Symbol is the first symbol in the DAB transmission frame and no signal is transmitted

during the null symbol period. The frame timing is roughly estimated using null symbol

detection by measuring the signal average power during the null symbol period. From the

incoming signal, the samples equivalent to the size of the null symbol period are used to

measure the average signal power. When average signal power is less than half of the average

transmitted signal power the null symbol has been detected, hence the start of a new frame. But

this does not guarantee accurate frame timing because it does not work well in low SNR

environment; instead the symbol timing synchronization described in above section is to be

used to provide correct timing. The detection of the phase reference symbol also indicates a new

frame since the phase reference symbol occurs once in each transmission frame.

3.13 Frequency offset estimation and correction

In OFDM systems the sub-carriers are exactly orthogonal only if the transmitter and the

receiver use exactly the same frequencies. Thus the receiver has to estimate and correct the

carrier frequency offset of the received signal. In the DAB system, the correction for the carrier

frequency offset is done through use of an automatic frequency control (AFC) signal [34]. This

signal is used to digitally adjust the IF Oscillator (RF Local Oscillator frequency) (see Figure

3.20). The AFC constitutes of two components:

 Estimated Fractional Frequency offset

 Estimated Integral frequency offset

The operation starts with determining the fractional frequency offset and compensates for it. It

is then followed by estimating the integral frequency offset. The estimated values are converted

into a voltage that is used to control the local oscillator frequency and clock [13]. The detail of

the estimates for each component follows in sub-section 3.13.1 and 3.13.2 respectively.

 65

3.13.1 Fraction frequency offset estimation

An OFDM symbol is preceded by a cyclic extension that is the copy of the last portion of the

symbol. The first Tg seconds of the OFDM symbol is identical to the last part. This property

can be exploited to estimate frequency offset less than one of the carriers’ spacing (a fraction of

frequency offset Δffr) using the scheme as depicted in Figure 3.25.

Consider when a received signal r(t) reaches the last Tg (guard interval) period of a symbol(see

Figure 3.25) and assumes a frequency offset given in equation 3.12 exists.

fr inf f fΔ = Δ + Δ (3.12)

where Δffr is the real number with absolute value less than one and Δfin is an integer.

Let’s denote the output of the correlator as z(t). When the received signal r(t) is correlated with

a version time shifted by the useful part of symbol duration Tu, the output of the correlator is

given by :

*

*

() () (-)
 ()exp{ 2 () }

 (-)exp{- 2 ()()}

 ()exp{ 2 }

fr in

fr in

fr

z t r t r t Tu
a t j f f t

a t Tu j f f t Tu

C t j f Tu

π

π

π

=
= Δ + Δ

Δ + Δ −

= Δ

 (3.13)

Where ()a t is received symbol when frequency offset is zero and

* * 2() () () () () | () | 0C t a t a t Tu a t a t a t≡ − ≈ = >

The fractional frequency offset can be estimated from:

[]

2fr
Arg zf

Tuπ
Δ = (3.14)

 66

Figure 3.25 shows the point-to-point correlation summed over guard interval.

Tg Tu

OFDM Symbol

CP

r* (j -Tu)

r(j)

∑

R(j)

Tg

Figure 3:25 Point-to-point correlation

This scheme correlates Tg second of the OFDM symbol with a part that is Tu seconds delayed

(Tu being the useful symbol duration). The output of the correlator is written as:

1

() () * ()
T g

n
R j r j n r j n T u

=

= − − −∑ (3.15)

The cross correlation is performed as shown in equation 3.15 and given in Figure 3.25 for each

symbol and summed over guard interval sample. The output of the correlation for each symbol

is stored in the array R. After OFDM symbol correlation, the absolute value of the elements in

the array R is computed. Then the maximum correlation peak is searched and its location is

determined. The location of the highest peak provides the sample index (j) that provides the

value of R used in the computation of the correlation phase.

The fraction frequency offset is estimated from the maximum correlation peak at the output of

the correlator. The phase of the correlator output is equal to the phase drift between samples

 67

that are Tu seconds apart. The fractional frequency offset is estimated from the correlation

phase divided by 2 Tuπ (see equation 3.14).

3.13.2 Integral frequency offset estimation

The integral frequency offset (inΔ f) is estimated using the phase reference symbol. A received

phase reference symbol with frequency offset in the frequency domain (after FFT operation) is

cross-correlated to a series of known receiver phase reference symbol at the receiver. The

location of the highest output peak giving a maximum correlation has to be determined and

from this location the integral frequency offset is determined. The highest peak is basically

expected to occur at the origin if there is no frequency offset, thus the amount of points that the

highest peak shifts provides the integral frequency offset.

3.14 OFDM symbol demodulator

After symbol timing synchronization has been accomplished at the receiver, the output array of

the synchronization block contains a data signal made of OFDM symbol samples that exclude

the null symbol and the phase reference symbol guard interval samples. The OFDM

demodulator block is responsible for the demodulating of the OFDM symbols from

synchronized data array. It is the main block in the receiver side. The output of the block is the

DQPSK symbol blocks made of DQPSK symbols placed in the same order as the output signal

of the differential modulator.

The block consists of three sub-blocks shown below that works together to accomplish the

block responsibility. The details of these sub-blocks are given in the sections 3.14.1, 3.14.2, and

3.14.3 respectively. The three sub-blocks are:

 Cyclic prefix removal

 FFT

 Zero padding removal

 68

3.14.1 Cyclic prefix removal

This is the first sub-block of the OFDM symbol modulator block. The block removes the

guard interval samples added to each OFDM symbol at the transmitter. Its output is the OFDM

symbol blocks of the useful part of the OFDM symbol period. This provides inputs to the FFT

block. Remember the guard interval samples for the phase reference symbol have been removed

in the synchronization block. The first 512 samples from the input array are fed directly to the

FFT block since they belong to the phase reference symbol.

3.14.2 FFT

Every OFDM symbol block after cyclic prefix removal has a size equal to FFT length, which is

a power of two. The FFT block performs the FFT operation to every OFDM symbol block.

This transforms the OFDM symbols back to the frequency domain. There is no MATLAB code

written for this block, only the built “fft’ function in MATLAB has been used.

3.14.3 Zero padding removal

This is the last sub-block of the OFDM symbol demodulator. The block removes the zero

padding and rearranges the data in a suitable form to feed the differential demodulator. This

ensures the output of the OFDM symbol demodulator with the differential QPSK symbols

placed in the same order as the output signal of the differential modulator. So the lower indices

are replaced at the beginning of the DQPSK symbol block and the upper indices at the last part

of the DQPSK symbol block. The process involved in the zero padding removal and data

rearrangement is illustrated in Figure 3.26.

 69

FFT output data before zero padding removal and data rearrangement

Upper frequencies Lower frequencies

193 384 1921

128 zeros

After zero padding removal and data rearrangement

DQPSK symbols

Lower frequencies Upper frequencies

1 192 384

Figure 3.26 Zero padding removal and data rearrangement in OFDM symbol

 demodulator.

3.15 Differential demodulator

After OFDM symbol demodulation has been performed as explained in the above section, the

desired DQPSK symbol blocks are obtained. The differential demodulator performs the

DQPSK demodulation to every DQPSK symbol block using a complex differential

multiplication defined in the next expression:

*
, , 1 ,*l k l k l ky z z −= (3.16)

Where “y” represents output of the differential demodulation operation, “z” presents the input

DQPSK symbol block, “z*” presents the complex conjugate of the differential phase reference,

where the initial phase reference is provided by the received phase reference symbol block and

the rest is obtained from the previous DQPSK symbol block. l and k are the OFDM symbol

 70

index and carrier index respectively. The output of the block is the QPSK symbols that provide

input to the data de-mapper block.

3.16 Data de-mapper

This is the last block in the receiver side. It transforms the QPSK symbol into bits, so its output

is the original information as the input of the transmitter. This block is made of the two main

sub-blocks given below and their details follow in the next subsections.

 Frequency de-interleaving

 QPSK symbol de-mapping

3.16.1 Frequency de-interleaving

This block performs the inverse of the frequency interleaving presented in section 3.4.3. The

carrier indexes are rearranged again over the QPSK symbol index using the inverse of the

rearrangements done in the frequency interleaving. The outputs are QPSK symbols arranged in

a similar way as the output of the QPSK symbol mapper at the transmitter side. Its output

provides input to the QPSK symbol de-mapper block.

3.16.2 QPSK symbol de-mapper

This is the last sub-block of the data de-mapper. It is responsible for the transforming of the

complex QPSK symbols at the output of the frequency de-interleaving again into the bits

stream. Thus the original information is recovered. Its operation is the reverse of the QPSK

mapper presented in section 3.4.2.

From the QPSK mapping constellation in Figure 3.6, a symbol (01) has positive real part and a

negative imaginary part. So when a sign of the real part of the complex QPSK symbol is

positive, the decoded bit is “0’ and when it is negative the decoded bit is “1”. This applies

similarly to the imaginary part of the complex QPSK symbol.

 71

The bits from each QPSK symbol block are rearranged in order according to how the bit pairs

was used in the formation of the QPSK symbol in the QPSK symbol mapper block. For

example when a first symbol in the QPSK symbol block is decoded, the decoded I-phase

component bit will be directed to the first index in the bit stream block and its counter part

Quadrature components will be directed to the 385 index and so on. This has to be done to

ensure the de-mapped bit streams are in the correct order.

3.17 Results and Conclusion

The aim of the simulation of the DAB model system has been achieved, since the transmitted

data has been correctly recovered at the receiver. Three OFDM symbol messages of 2304 bits

length have been generated at the transmitter input and regenerated at the receiver output. But

in order to realise the performance of the simulated system model and how the model works,

the system symbol timing synchronization and bit error rate performance were analysed. The

results of the performance are presented next.

a) Symbol timing synchronization

The system symbol timing synchronization has been investigated in better and worse signal to

noise ratio environments. The plot in Figure 3.27 shows the system symbol timing

synchronization performance with SNR of –9.85dB.

 72

Figure 3.27 Symbol timing performance

From the Figure the symbol timing synchronization peak is at sample index 791 of the received

data array. The plot has only included the received data samples before synchronization peak

detection and samples from where a peak has detected. It was shown in chapter two that the

first symbol in the transmission frame is the null symbol of sample length 664 and each OFDM

symbol has the cyclic prefix sample of 126 (mode II) at the beginning of the symbol. The useful

symbol duration does not include the cyclic prefix. Adding the null symbol samples and the

cyclic prefix samples we obtain 790, thus the synchronisation peak is at exactly at starting point

of the effective symbol duration of the phase reference symbol as expected.

b) Error analysis test

The error analysis test was carried out by analysing the bit error rate performance of the system

in the presence of the AWGN channel, where a different noise level (variance) was used. For

each noise level test an experiment was executed forty times in order to get enough statistical

data. The analytical BER was calculated according to [28], which is also shown in the derivation

 73

given in appendix section C. From [28] it was shown that π/4DQPSK performs 2.3dB worse

than basic QPSK and BPSK. The BER and the SNR obtained are shown in Table 3.2.

SNR (dB) Expected BER Simulated BER
-7.6633 0.3270956 0.3962131
-5.9614 0.2929097 0.3564128
-2.8691 0.2183082 0.2648220
1.1343 0.1087137 0.1284722
2.3112 0.0789196 0.0888889
4.0324 0.0425430 0.046807
7.1122 0.0070499 0.0080838
11.0856 0.0000525 0.0000543

Table 3.2 Error analysis table

Both simulated and the expected results BER performance plots are shown in Figure 3.28.

 Figure 3.28 Error analysis plot

 74

From the figure, we can see good agreement between the results of the simulated BER and the

theoretical BER. The plots included the theoretical BER for BPSK because the BER

performance for π/4-DQPSK was derived from the theoretical analysis for BPSK according to

[28].

It is evident that the simulated and analytical BER are in good agreement. This proves that the

simulated model is correctly implemented. Hence the simulated software worked correctly and

real time implementation can be done accordingly. The next chapter will now describe the real

time implementation in SDR.

 75

Chapter 4

REAL TIME IMPLEMENTATION

4.1 Introduction

In this chapter, the SDR architecture developed at the university of Stellenbosch [27] is used to

implement the DAB transmitter and receiver in real time. The DAB transmission mode II is

implemented. Only the DAB system blocks used in the simulation for both transmitter and

receiver are implemented in the SDR architecture. The chapter also covers an introduction to

the SDR converters used to implement the transmitter and receiver, as well as the

implementation problems and their solutions.

4.2 Introduction to SDR converters

The DAB system simulated in chapter 3 is made up of a number of functional blocks. To ensure

the real time implementation in SDR a number of component blocks called converters [27] have

to be constructed on the SDR architecture layer called the converter layer. This layer is

responsible for all information signal processing functionality on the SDR system and is made

up of a collection of converters.

A converter [30] is an atomic unit that performs a well-defined signal processing function. Thus,

a converter receives data from source, processes data according to the defined algorithm and

outputs a result. The converters have some input and output ports (see Figure 4.1). When a

converter has finished processing its samples, it transfers the samples to the input port of the

next converter.

 76

In
pu

t P
or

ts

O
ut

pu
t

Po
rts

Figure 4.1 A basic converter representation

To write the processed data samples to the input port of the next converter, a

write_output_port method should be used. Similarly to read data from the input port buffer, a

read_input_port method should be used. To achieve reading and writing operations between

converters, a well-defined interface method called “ link “ is used that connects an output to an

input port. The details of these methods are clearly defined in [27], the following lines of code

illustrates how the methods are used:

a) Writing sample to the next converter

 write_output_port(port_name, sample)

 port_name is the output block’s port name

 sample is the sample that is passed on to the next block.

b) Reading data sample at the input port

 read_input_port(port_name)

port_name is the input block’s port name

c) Connecting the output port to the input port

source module->link (output_port_number, destination_module, destination_portnumber)

output_port_number is the port the samples are coming from

destination_module is a RCPtr to the module to be linked to this one

 destination_portnumber is the port number of the module linked to this one.

 77

4.3 Real time implementation considerations

In real time the processing in the transmitter and receiver needs to be carried out at great speed.

Thus the converter must be processed as fast as possible. Remember both transmitter and

receiver are implemented using a number of converters and each converter needs time to

process its samples. To make the data processing as fast as possible in either transmitter or

receiver a limited number of converters have to be constructed with each converter being

implemented with a simple algorithm. Here the word “simple algorithm” means not a complex

algorithm that takes a lot of time to execute but a simple algorithm that takes a little time to

execute while yielding good results for the intended task. This can be achieved by combining

some blocks’ functionality used in the simulation to a single converter and implementing the

functionality with as simple algorithms as possible. This will ensure that as little time as possible

is spent on data transfer between converters, and moderate memory will be allocated to the

system.

The operation of the system is based on transmitting a sequence of frames one at a time. Each

frame has a structure as described in chapter 2. The data processing and manipulation depends

on the order of the data samples in a frame. Thus we need to be sure of the content and the

order of the data samples in a given transmission frame. When working with this structure it is

better to create some vectors (buffers) with a transmission frame size within converters that will

handle temporarily the input samples before being processed and resize them after their samples

have been processed. This provides room and confidence for handling and manipulating the

data samples of a given frame more efficiently and correctly, rather than depending on the

converter input port buffer. Also by resizing the vectors to zero size after their samples have

been processed, releases the memory that ensures proper memory usage.

We are generating and transmitting a complex base-band signal. The real and the imaginary part

of the signal cannot be handled and transferred between converters using single port (i.e. one

input port and one output port). The solution is to construct converters with two input ports

and two output ports. One of the ports used to handle the transfer of the real part (in-phase) of

the signal and the second used to handle the transfer of the imaginary part (quadrature) of the

complex base-band signal.

 78

4.4 Implementation overview

Both the transmitter and receiver were constructed using a number of converters that will be

presented in the next sections. The converters making up both transmitter and receiver have

two input ports and two output ports except the QPSK symbol mapper and QPSK symbol

demapper. The QPSK symbol mapper in a transmitter has one input port to input serial data

bits and two output ports. The QPSK symbol demapper in a receiver has two input ports and

one output port to output serial data bits. The usage of two input ports and two output ports in

the converters enable working with the complex signal in real time as described in the above

sections and illustrated in Figure 4.2.

The block diagram shown in Figure 4.2 shows the real time implementation approach. The data

generator in the figure is a converter that is responsible for generating binary data information

and passing it to the transmitter input. At the transmitter, the converters that build up the

transmitter modulate the input’s binary data and produce two output streams namely in-phase

(I) and quadrature (Q) (see Figure 4.2). The modulated data signal in both streams are passed to

the data acquisition card (DAQ) comprises of an analogue to digital converter (ADC) and a

Digital to analogue converter (DAC). The DAQ converts the inputs’ digital samples from the

transmitter to the analogue representation samples and then converts these analogue

representations back to the digital samples. The digital samples from the DAQ are demodulated

by the receiver’s converters, which regenerate the original data.

Note: The DAQ was used for the real time testing purposes.

Data generator Transmitter Receiver Regenerated dataD/A A/D

I I
I

Q
Q

Q

DAQ

Figure 4.2 Real time implementation block diagram

 79

4.5 DAB transmitter implementation in SDR

In order to implement the DAB transmitter in the SDR architecture a number of converters

shown in Figure 4.3 were constructed. Each converter in the figure performs an independent

function, that is reading samples from its input ports (port), processing them and transferring

the processed samples to the input ports of the next converters (converter). The

communications and links between converters are provided by the code given in section 4.2.

The algorithms implementing the transmitter’s converters are similar to the algorithms used to

implement a similar function block in the simulation, except that there are some additional

features that will be discussed in the next subsections. The details of these algorithms have

already been presented in chapter 3. In this section the added converters’ functionalities,

implementation problems and solutions, together with the converters operations, will be

described.

QPSK symbol
mapper

Frequency
interleaving

Differential
modulator Zero padding IFFT Cyclic prefix Frame construct

I I I I I I I

Q Q Q Q Q Q Q

 Figure 4.3 The converter used to implement the DAB transmitter in SDR architecture.

4.5.1 QPSK symbol mapper

As described in the above sections, this converter combines two functionalities. These

functionalities are:

 Data partitioning into blocks

 QPSK symbol mapping

The converter reads data from its input port buffer provided there are enough data samples to

constitute a transmission frame (remember we are working on frame basis). The samples

 80

equivalent to a transmission frame size are read from the input port buffer one at a time,

temporarily stored in the converter vector, processed and written to the input ports of the

frequency interleaving. The processing performed is described next.

Data partitioning into blocks:

From a converter vector, blocks of 768-bit samples (mode II) are taken one at a time as

described in chapter 3 section 3.4, based on first in, first out (FIFO) protocol. Each time a block

of bits is taken, it is applied to the QPSK symbol mapping as described next.

QPSK symbol mapping:

QPSK maps bits into a complex symbol that can take one of the four possible values in the

constellation plane. In real time we cannot work with a complex symbol represented by its real

and imaginary part in one equation line. The solution is to treat the complex symbol by

separating its real part and imaginary part and treat them separately both as the real component.

The real part value corresponds to the in-phase component (I) of the complex symbol and the

imaginary part corresponds to the quadrature (Q) component. These two components form the

two output streams, namely in-phase (I) and quadrature l (Q) (see Figure 4.3).

From equation 3.3 in chapter 3, the in-phase (nI) and quadrature (nQ) components representing

the complex symbol can be generated independently as follows:

1 (1 2.) 1,2,...,
2n nI b for n K= − = (4.1)

1 (1 2.) 1,...,768
2n K nQ b for n K− = − = + (4.2)

where nb represents a bit from a block of 768 bits samples that will constitute information for

OFDM symbol and K is the total number of carriers used in the transmission (384 in mode II).

Here a block of 768 bits is mapped into K in-phase components and K quadrature

components. The first half of the 768 bits in a block is used to generate K in-phase

components and the last half used to generate K quadrature components. These form two

 81

output streams of the converter described above. Note: the K symbol components from (4.1)

and (4.2) form two separate QPSK symbol component blocks (I and Q).

After a bit in a block has been mapped, the resultant symbol component is written to the

respective input port of the frequency interleaving. The in-phase components are transferred to

the frequency interleaver through the in-phase output port and the quadrature components

through the quadrature output port.

4.5.2 Frequency interleaving

After the symbol mapping has been carried out as explained in sub-section 4.5.1, the QPSK

symbol component streams that are equivalent to transmission frame size become available at

each input port of the frequency interleaver. All these symbol components are read from the

two input ports and stored in two vectors, each having one transmission frame size. The first

vector stores the in-phase components and the second vector stores the quadrature

components. From each vector K (384) symbol components are taken one at a time and re-

ordered according to the algorithm described in chapter 3. A similar interleaving is applied on

each stream (I and Q) of components to ensure that the symbol components are interleaved

equally. This assigns the symbol components to the respective sub-carriers. The result of the

interleaving is written to the two respective input ports of the differential modulator.

4.5.3 Differential modulator

 At this stage the information in the system belongs to the QPSK constellation that is,

information is carried in absolute phase. But the information is supposed to be carried in phase

difference [5]. It is the task of this converter to differentially modulate the inputs’ QPSK sub-

carriers that ensure that the information is carried in phase difference as presented in chapter 3.

The converter is fed with two input streams (I and Q) of the interleaved QPSK symbol

components. The symbol components from the two input streams are only read provided there

are enough samples to constitute a transmission frame. One transmission frame sample size is

 82

read at a time from each input port and temporarily stored in two respective vectors before

differential modulation is applied.

The converter combines two functionalities that are performing the differential modulation and

generating the phase reference symbol. Recall, as described in chapter 3, the differential

modulation requires a phase reference. The phase reference symbol is generated as described in

chapter 3, to serve this purpose. The generated phase reference symbol components are written

to the two input ports of the zero padding converter and their copies (I and Q) are stored in two

vectors for later use in the differential modulation. Remember the phase reference symbol

appears first in the transmission frame that is why it is generated and written at the output ports

before other information samples are written. Now the number of symbol blocks generated that

form OFDM symbols, becomes 76 in total. Thus the output of this converter is a complete

transmission frame without a null symbol.

The generation of the differential symbol is according to the π/4-DQPSK signal mapping

presented in equation 3.8, chapter 3. The in-phase differential components (Iz) and quadrature

differential components (Qz) are generated as illustrated in equation 4.3. We can see from

equation 4.3 how the two differential symbol components are handled separately.

, , 1, , 1,

, , 1, , 1,

 2,3,...,
 1,2,...,

l k l k l k l k l k

l k l k l k l k l k

Iz I Iz Q Qz
Qz Q Iz I Qz
for l L
and k K

− −

− −

= −

= +

=
=

 (4.3)

where I is the QPSK symbol block from the input samples with K in-phase components, Q is

the QPSK symbol block from the input samples with K quadrature components, l is the block

index of K symbol components each of which represents samples for an OFDM symbol (L

=76), and K is the total number of carriers.

The phase reference symbol is used to provide the initial phase reference (i.e. provides the initial

1lIz − and 1lQz −). From the two vectors storing the inputs’ QPSK symbol components (I and Q),

K symbol components from each vector are taken one at a time and applied to the differential

modulation as illustrated in equation 4.3. This results in two differential QPSK symbol

component blocks (Iz and Qz) each with K components. The result of the modulation (Iz

 83

and Qz) for each QPSK symbol block is written to the two respective input ports of the zero

padding and a copy of their components is stored in phase reference vectors (1lIz − and 1lQz −)

for usage in the differential modulation of the next K QPSK symbol components. All the

vectors are resized to zero after the modulation ready for receiving the next frame components.

4.5.4 Zero padding

The two input streams from the differential modulator are made of 76-differential QPSK

symbol blocks each with K (384, mode II) components where the first K components in each

stream belong to the phase reference symbol. As described in chapter 2, the IFFT/FFT

algorithms work more efficiently if the number of input samples is a power of 2. It is the task of

this converter to add zeros to each differential QPSK symbol block so that it fits 512-point

IFFT (mode II). Also the converter has to rearrange the carrier samples in a manner similar to

what was discussed in chapter 3. The zero padding and rearrangements are applied in a similar

way to both streams (I and Q) but are applied independently to each stream. Each of the two

outputs (I and Q) of this converter is made of 76-sample blocks each with 512 samples, which

feeds the IFFT converter.

4.5.5 IFFT

This is the main converter of the transmitter. The equation for generating the OFDM symbols

described in chapter 2 is implemented in this converter. In short the converter generates the real

time DAB main signal. The orthogonal carriers for an OFDM symbol are automatically

generated here. The converter was implemented with a suitable IFFT algorithm from [24] that

uses the two inputs (I and Q) to generate the two output streams that form the real and

imaginary part of the DAB complex base-band signal.

The converter reads the zero-padded samples from each of the two input ports (I and Q) when

there are enough samples equivalent to a transmission frame size (76 x 512). These samples are

read and stored in two vectors each with a transmission frame size. One of the vectors stores I-

phase components and the second vector stores quadrature components. From each vector 512

 84

sample components are taken one at a time and simultaneously applied to the IFFT algorithm

that generates an OFDM symbol from these samples. This result in two outputs (I and Q), one

forms the real part of the base-band DAB signal and the second forms the imaginary part of the

base-band DAB signal. The results are written to the respective two input ports of the cyclic

prefix converter.

4.5.6 Cyclic prefix

This is the last converter of the transmitter. Each of the two input streams (I and Q) from the

IFFT converter is made of 76-sample blocks each with 512 samples. The converter reads

samples, equivalent to one transmission frame size, one at a time from each input port and

stores them in two respective vectors. From each vector 512 samples forming an OFDM

symbol are taken separately and guard samples are added as described in chapter 3. Remember,

until this stage the transmission frame is correctly packed and with required structure but yet not

ready for transmission. The transmission frame is missing the first symbol that is a null symbol.

The converter generates and writes a number of zeros equivalent to the null symbol period to

the output ports before other samples in the received transmission frame. The zeros generated

serve as the null symbol. Writing these zeros to the outputs before other samples ensures that

the null symbol takes a first position in the transmission frame. An equal amount of zeros

representing the null symbol samples are written to the two output ports.

4.5.7 Frame construct

The work of this thesis was developed in base-band signal. As presented in chapter 3, the

DAC/ADC and the RF section were not studied. But for the system testing purpose in real time

the DAQ card comprising of the DAC and ADC was used. When using this two problems were

encountered:

 The generated signal has higher dynamic range and some of the signal peak amplitudes are

greater than the input range for the DAQ (at DAC inputs) used. This problem has to be

solved because it results in signal clipping, hence signal distortions.

 85

 The DAQ card used has internal buffers that need to be emptied at the end of the

transmission frame. Otherwise, it retains some information data in its buffers that leads

to the output signal being different from the input signal.

This is the hardware problem that was not studied. To solve the first problem for the testing

purposes, the transmitted signal amplitude was scaled down by a certain factor that was obtained

practically. It was assumed that the receiver knows this scaling factor, thus at the receiver the

received signal was expanded by the same factor. But this did not solve all the problems of the

input range at the DAC. This is because scaling down the signal has a limit in order to get a

good output signal, so it is the matter of compromise between scaling down the signal and the

DAC input range. The solution is to scale down the signal amplitude peaks to a certain limit

obtained practically and that yields good results and to clip some of the signal amplitude peaks

(set them to the maximum DAC input range) that exceed the DAC input range.

In generating a real DAB signal this problem is handled by the use of the Programme

Associated Data (PAD), which is used in each transmitted audio frame. One of the functions

for the PAD is dynamic range control. Unfortunately all the processes involved in the

generation of the real DAB signal (i.e. coding process) were not studied in this thesis. Thus the

above solution was used.

The second problem was solved by transmitting zeros equal to the size of the DAQ buffers at

the end of the transmission frame. This ensures that all the transmission frame data have been

sent out the DAQ buffers and the buffers are full of zeros.

To solve these two problems the frame construct converter was constructed. The implemented

converter algorithm takes care of these two problems and writes the sample signal from the

cyclic prefix to the two inputs (I and Q) of the DAQ.

 86

4.6 DAB receiver implementation in SDR

The implementation of the DAB receiver in real time was accomplished by constructing a

number of converters in the SDR architecture described in section 4.2. Figure 4.4 illustrates the

converter implementing the receiver. The complex base-band signal is received at the receiver

from the DAQ in two paths. One path for the real part and the second path for the imaginary

part.

The converters details have already presented in the above section 4.2. The algorithms

implementing the receiver converters are basically an inverse of the algorithms implementing the

transmitter converter. The algorithm’s details have already been explained in chapter 3, in this

section additional features and some changes in the algorithms are discussed.

Null symbol
detector

Timing
synchronization

Cyclic prefix
removal FFT Dezeropadding

Diff.
demodulator

Frequency
deinterleaving

QPSK
symbol

demapper

Q QQ Q Q Q Q Q

I I I I I I I I

Figure 4.4 The converter used to implement the DAB receiver in SDR.

4.6.1 Null symbol detector

The null symbol detector is the first converter of the transmitter. It estimates the start of the

transmission frame in the received data signal. The estimate is achieved by measuring the

average power for the null symbol in the incoming data signal. The data samples equivalent to

the null symbol sample size are used in the average power measurement. The measurement is

done as illustrated in the following expression:

()2 2

1

1. () ()
N

i q
n

avg power X n X n
N =

= +∑ (4.4)

 87

 where .avg power is the measured average power, iX and qX are the real and imaginary part of

the received data signal and N is the total number of samples used in the measurement that is

equivalent to the null symbol sample size (N=664 mode II).

In the implementation, this converter keeps listening to the incoming data signal. When there

are incoming signal samples at the input ports, the converter passes these samples to the input

port of the timing synchronization converter and uses a copy of these samples to compute the

average signal power as illustrated in equation 4.4. The measured average power is always

compared to the threshold level in order to determine the start of the frame. The threshold level

used in this implementation is half of the transmitted signal power. If the measured power is less

than the threshold level, a null symbol is detected, hence the start of the frame.

It is very interesting to understand why the converter estimates the start of the frame and passes

the entire received data sample to the next converter. The answer is that the estimates do not

work well in a low SNR environment. This is because when an amount of noise added to the

signal (null symbol part) lead to estimated average noise power that is greater than the threshold

level the detection fails. We need our synchronization to be SNR independent. The solution to

this is to get a rough estimate of the start of the frame using the null symbol detector but not

relying on this estimate, instead we use the symbol timing synchronization to provide accurate

frame timing and symbol timing synchronization simultaneously. Thus the null symbol’s

detector is used to provide rough estimates of the start of the frame and passes the entire

received data signal samples to the timing synchronization converter for accurate timing

estimation as presented in the next subsection.

4.6.2 Timing synchronization

The timing synchronization converter is responsible for symbol timing synchronization and

frame timing. The timing information is obtained from the accurate measurement of the start of

the phase reference symbol in the incoming data signal. The implemented timing

synchronization loop follows the following steps:

 88

1. Read 512-samples of the incoming data from each of the two input ports (I and Q) and

store them in two respective vectors.

2. Use the data samples from the two vectors in 1 to determine the channel impulse

response (CIR).

3. Search for the desired synchronization peak from the result obtained in 2.

4. Determine the start of the phase reference symbol if the desired synchronization peak is

found. Otherwise, go back to 1.

5. If the timing synchronization is established, read the desired data samples from the two

input ports (I and Q) and pass them to the cyclic prefix removal through the two

respective output ports (I and Q), including samples of the useful part of the phase

reference symbol.

6. If the received data samples equivalent to one transmission frame size have been

transferred to the cyclic prefix removal after synchronization, go back to 1.

The timing synchronization loop in this implementation always keeps on searching if there are

enough samples at the two input ports for determining the channel impulse response (CIR). The

512-samples are used because the implementation uses 512-point FFT. When there are enough

samples the CIR is determined as described in chapter 3 and impulse signal is compared to the

set threshold level. This determines the start of the phase reference symbol. All the samples read

from the received data before the phase reference symbol found are discarded.

As described in chapter 3, the synchronization peak is always at the start of the useful part of

the phase reference symbol period. When synchronization is achieved the useful parts samples

for phase reference symbol are written to the cyclic prefix removal followed by the desired

received data information samples. The phase reference symbol samples are passed to the next

converter because they carry the initial phase reference information required for the differential

demodulation.

During transfer of the desired received data samples to the cyclic prefix removal, the

synchronization loop is switched off and a counter is set on to count the desired samples (one

transmission frame samples excluding the null symbol samples and guard interval samples of the

phase reference symbol). As soon as the desired samples have been transferred the loop is again

switched on. This is done to ensure that the data transfer is done as fast as possible since the

 89

synchronization calculations consume some time. The amounts of the desired samples in a

transmission frame after synchronization are known according to the frame structure. Thus the

setting of the counter becomes practicable.

4.6.3 Cyclic prefix removal

The timing synchronization converter passes only the received data signal samples equivalent to

one-transmission frame size excluding the null symbol samples and the guard interval samples

for the phase reference symbol. These become available at the two input ports of this converter

after timing synchronization has been achieved. The converter removes the guard interval

samples added at the transmitter.

The procedure implementing this converter is as follows:

1. Read samples from each input port that are equivalent to one transmission frame size at

a time as described in the above paragraph and store them in two respective vectors each

with the size of one transmission frame size excluding the null symbol samples and

phase reference symbol guard interval samples.

2. Write the first 512-sample from each vector to the two respective output ports (these

samples belong to the phase reference symbol from which its guard samples have been

removed in the previous converter).

3. Take a sample block of 638-samples from each vector and write the last 512-samples to

the corresponding output port since the first 126 samples of this block belong to the

guard interval samples.

4. If all the sample blocks from each vector have been used, go back to 1. Otherwise, go

back to 3.

4.6.4 FFT

After cyclic prefix removal, 76-sample blocks each with 512 samples will be available at each

input port of this converter. The converter reads these samples from the two input ports and

stores them temporarily in the two vector one for the real part and the second for the imaginary

 90

part of the received data signal. From each vector 512 samples are taken one at a time and

applied simultaneously to the implemented FFT algorithm. The results of the FFT computation

are written to the zero padding removal. This converts back the samples in each sample block to

the frequency domain representation.

4.6.5 Zero padding removal

The real and the imaginary parts of the samples from the FFT converter are fed to the two

respective input ports of this converter. Each input sample stream to the converter is made of

76-sample blocks each with 512 samples. The converter reads all of these samples and stores

them temporarily in two vector one for the real samples and the second for the imaginary

samples. From each vector 512 samples are taken one at a time (remember how zero padding

was carried out), the added zeros at the transmitter are removed and the carrier’s samples are

rearranged as described in chapter 3. The output results are the carrier’s samples as presented at

the input of the zero padding and these are written to the next converter through the two

respective output ports (I and Q).

4.6.6 Differential demodulator

The input samples at each of the two input ports of this converter are made of 76-sample blocks

each with 384-differential carrier samples. The converter reads these input samples from each

input port and temporarily stores them separately in two vectors each with one transmission

frame size (76 x 384). From each vector 384-samples are taken one at a time and applied to the

differential demodulation according to equation 3.16, chapter 3, and illustrated in equation 4.5.

The first 384-samples in each input stream belongs to the phase reference symbol that provides

the initial phase reference (1lIz − and 1lQz −). The rest of the phase reference is provided by the

previous sample block for the current sample block differential demodulation (see equation 4.5).

The output results are in-phase and quadrature components of the QPSK symbols that are

written to the next converter through the two separate output ports.

 91

, , 1, 1,

, , 1, , 1,

 2,3,...,
 1,2,...,

l k l k l k l l k

l k l k l k l k l k

I Iz Iz Qz Qz
Q Qz Iz Iz Qz
for l L
and k K

− −

− −

= +

= −

=
=

 (4.5)

where I is the QPSK symbol block with K (384) in-phase components, Q is the QPSK symbol

block with K quadrature components, Iz is the differential QPSK symbol block with K real

samples of the differential QPSK symbols, Qz is the differential QPSK symbol block with K

imaginary samples of the differential QPSK symbols, K is the total number of carriers (384

mode II) used in the transmission and L is the total number of sample blocks (76 mode II).

4.6.7 Frequency deinterleaving

Each of the two input streams to this converter is made of 75-QPSK symbol blocks each with

384 QPSK symbols. This convert reverses the process of the frequency interleaving at the

transmitter. It rearranges the QPSK symbol components in each QPSK symbol block to the

original order as before frequency interleaving, as described in chapter 3. The algorithm

implementing this converter is an inverse of the algorithm implementing the frequency

interleaving.

4.6.8 QPSK symbol demapper

This is the last converter of the receiver. The output of this converter should be the original data

as at the input of the transmitter. The converter receives the QPSK symbol streams at its two

respective input ports. One of the inputs receives the in-phase components and the second

input receives the quadrature components. At each input port there are 75-QPSK symbol

blocks each with 384-QPSK symbol components at a time. The de-mapping steps implementing

the converter are as follows:

1. Read the in-phase and quadrature components from the two input ports when the

available components at each port are equivalent to one transmission frame size and

 92

store them in two vectors one for in-phase components and the second for quadrature

components.

2. From each vector take a block of 384-sample components.

3. De-map the in-phase component samples from one of the blocks obtained in 2 and

write the decoded bit to the output port

4. De-map the quadrature component samples from one of the blocks obtained in 2 and

write the decoded bit to the output port used in 3.

5. If all the sample components of the vectors in 1 have been decoded go back to 1.

Otherwise, go back to 2.

The sample components of the blocks in 2 above have the corresponding real and imaginary

parts of the complex QPSK symbols. Remember from section 4.5.1, these two-sample blocks

decode in a block of 768 bits, the first half of the block being contributed by the decoded in-

phase component and the second half contributed by the decode quadrature components. That

is why the in-phase components are decoded first and written to output port, followed by the

quadrature components. This ensures that the decoded bits will be in the same order as the

input of the transmitter.

According to the mapping used in section 4.5.1, when a received symbol component (either in-

phase or quadrature) has a negative value the component is decoded as bit ‘1’ and when a

symbol components has a positive value the components is decoded as bit ‘0’. In this

implementation the decoded bits were stored in a vector and their copies were written to the

next converter block for error checking.

4.7 Conclusion

The implementation for both transmitter and receiver in SDR is described in this chapter. The

transmitter generated the complex base-band DAB signal at its two output ports, one of the

ports for the real and the second port for the imaginary part of the complex base-band signal.

These were fed into two corresponding inputs of the DAQ. The two outputs from the DAQ

provided the inputs to the receiver. The receiver demodulated the signal. The output of the

receiver was equivalent to the input at the transmitter. The symbol timing synchronization

 93

worked very well. The real time test results showed a negligible implementation loss of about

0.3dB. Thus implementation was successful. The results are described in chapter 5. The serious

problem encountered was the distortion introduced due to the signal clipping in DAQ. This was

solved as described in this chapter, but another solution can be the use of the DAC/ADC with

large dynamic range, although if the whole signal generation process is considered, the dynamic

range controls method and forward error correction used in the system will give promising

results.

 94

Chapter 5

 IMPLEMENTATION EVALUATION AND RESULTS

5.1 Introduction

This chapter shows tests performed to evaluate the performance of the implemented system and

the results obtained in both simulation and real time implementation. The results for each test

are discussed.

5.2 Simulated symbol timing synchronization performance

In this section the symbol timing synchronization performance of the implemented system is

evaluated. The relationship between symbol timing synchronization and the receiver tuning is

investigated and discussed.

The objective of the experiment is to investigate the performance of the implemented timing

synchronization on the incoming signal at the receiver. This verifies the performance of the

timing synchronization at any stage of the incoming signal. In real life the receiver

synchronization does not follow whether the receiver is tuned when the incoming signal is either

at the start of the transmission frame or at any part of the frame. The receiver synchronization

should look for the synchronization information in the incoming signal and establish

synchronization. Hence the symbol timing synchronization should synchronize perfectly in

either case.

5.2.1 Experimental setup

The simulated system model presented in Figure 3.2 was used for symbol timing

synchronization performance test. The random binary numbers constituting three OFDM

symbols were generated. Two transmission frames were used in the test, each made of three

 95

OFDM symbols having similar binary numbers generated. The simulated DAB signal was

generated as described in chapter 3. The symbol timing synchronization at the receiver was

acquired according to the description provided in chapter 3.

5.2.2 Results of the experiment

The real part of the simulated DAB base-band signal and the symbol timing synchronization

plots are shown in Figure 5.1. In the figure the first transmission frame was transmitted without

including the synchronization part (null symbol and the phase reference symbol). The second

transmission frame included the synchronization part. The synchronization part of the first

transmission frame was chopped off to reflect what can happen in the real world when a

receiver is tuned. The receiver synchronization should be independent of at what stage of the

incoming signal a receiver is tuned but it should look for the synchronization information on the

incoming signal. When the synchronization information is found, the synchronization should be

established.

 Figure 5.1 The symbol timing synchronization performance in real world

 96

From the figure we see the desired symbol timing synchronization peak. The peak is exactly at

the starting point of the useful symbol period for the phase reference of the second

transmission frame. This can be verified by considering the structure of the two transmission

frames, which have arrived at the receiver. The first transmission frame is made of three OFDM

symbols each consisting of 638 samples (useful symbol samples (512) plus guard interval

samples (126)). Between the two frames before the start of the useful part of the phase reference

symbol of the second transmission frame, we expect the null symbol samples (664) and the

guard interval samples (126) added to phase reference symbol. From the figure it can be seen

that the symbol timing synchronization peak is at 2705 sample index, which is the starting point

of the useful symbol part for the phase reference symbol from the transmitted data, as expected.

 This is the real world situation, when a receiver is tuned. The receiver is expected to start

decoding the received data when synchronization has been established. The incoming data

arrived at the receiver before the synchronization has established are not decoded. In this case

the decoded received data belongs to the second transmission frame because the

synchronization has been established at its arrival.

5.3 Bit Error Rate performance analysis

The performance analysis test of the implemented DAB system in SDR is conducted in real

time. The relationships between the theoretical BER and the practical BER are investigated and

discussed.

The objective of this experiment is to investigate the performance of the implemented system in

real time in the presence of AWGN.

5.3.1 Experimental setup

The real time implemented system shown in Figure 4.2 is used to perform the performance test.

Random binary numbers equivalent to a transmission frame size are generated and modulate in

the transmitter. The output base-band signal (I and Q) from the transmitter is converted into

 97

analogue domain using a DAQ card. The analogue base-band signal (I and Q) from the DAQ

card is added to the noise. The noisy base-band signal (I and Q) is converted back to the digital

domain using the same DAQ card. The digital base-band signal from the DAQ card is

demodulated in the receiver. The process is repeated, and each time the noise voltage added to

the signal is increased. Both the transmitter and receiver program are implemented in one

computer (PC) with 1600MHz CPU, 256kB cache memory and 256 MB RAM.

The digital-to-analogue conversion and analogue-to-digital conversion is done using the DAQ

card as explained in the above paragraph. The DAQ card used comprises both DAC and ADC.

The base-band signal is sampled in the DAQ at 4096Hz for both I and Q signal. Two random

noise generators are used to add noise to the signal from the two output streams (I and Q) of

the DAC. The noise is added to the signal using a summer made of non-inverting OP AMP. A

True RMS voltmeter is used to ensure that an equal amount of noise voltage is added to the two

channels.

In order to accomplish the objective of the experiment, the transmitted signal average power

and the noise average power added to each experiment have to be determined. These will be

used in the calculation of the SNR. The calculation of both average powers are as illustrated

below:

1) Transmitted signal average power

We calculate the transmitted signal average power from [23]:

2

1

1. () 1,2,...,
N

n

Avg signal power x n for n N
N =

= =∑ (5.1)

where N is the total number of samples belonging to the useful symbol period.

The transmitted base-band signal is made of two streams named in-phase (I) and quadrature

(Q). The average signal power is given by:

()2 2

1

1. () () 1,2,...,
N

i q
n

Avg signal power x n x n for n N
N =

= + =∑ (5.2)

where subscripts i and q indicates the in-phase and quadrature sample components respectively.

 98

From (5.2) we obtained the transmitted signal average power of 384 watts.

2) Average noise power measurement

The average noise power is calculated using equation 5.2 where 664 samples are used. The

measurement is done in the null symbol part of the received frame. There is no data transmitted

in this part, zero average power is expected at the receiver when there is no noise added to the

signal. Each time the noise voltages are varied, the average noise power is calculated.

 99

5.3.2 Results of the experiment

Table 5.1 shows the results obtained for the BER for both real time and simulation tests. The

noise levels used in the simulation are equivalent to the noise voltages used in the real time test.

Table 5.1 Performance error analysis table.

Figures 5.2 and 5.3 show both the expected and practical bit error rate (BER) curves of the

implemented DAB system. In both cases the theoretical BER is calculated according to [28],

which is also shown in the derivation given in appendix section C. From [28] it was shown that

π/4DQPSK performs 2.3dB worse than basic QPSK and BPSK.

Noise

Power

(Watts)

SNR (dB) Theoretical Bit

Error Rate (BER)

Real Time Bit Error

Rate (BER)

Simulated Bit

Error Rate (BER)

0.969 24.217 1.37x10-69 0 0

4.841 17.234 1.76x10-15 0 0

8.582 14.748 1.69x10-9 0 0

20.314 11.004 6.09x10-5 6.91x10-5 6.51x10-5

30.790 9.198 90.10x10-5 115.64x10-5 108.51x10-5

41.685 7.883 365.52x10-5 446.2x10-5 434.03x10-5

53.999 6.759 921.73x10-5 1081.60x10-5 983.07x10-5

67.435 5.794 1747.50x10-5 2140.63x10-5 1924.91x10-5

79.599 5.073 2612.12x10-5 3237.85x10-5 2957.90x10-5

98.525 4.147 4051.34x10-5 5239.58x10-5 4513.89x10-5

122.866 3.188 5909.60x10-5 6677.08x10-5 6903.21x10-5

139.956 2.622 7160.91x10-5 8723.96x10-5 8355.03x10-5

157.042 2.102 8399.31x10-5 10028.12x10-5 9461.81x10-5

191.042 1.271 10511.03x10-5 12293.10x10-5 12261.28x10-5

308.600 -0.812 16210.01x10-5 21100.00x10-5 19385.85x10-5

 100

In Figure 5.2 both simulated and real time BER are shown. Figure 5.2 includes the theoretical

BER for BPSK showing its relation to the modulation scheme (π/4DQPSK) used in the

implementation according to [28]. The simulated and real time curves lie almost on top of each

other. In both figures the implementation loss is roughly 0.3dB. It is evident from these figures

that the theoretical and the practical BER are in good agreement. Hence the real time software

worked correctly.

 Figure 5.2 Performance error analysis simulated Vs Real time results.

 101

 Figure 5.3 Real time performance error analysis plot.

5.4 Transmission time and processing time measurements

In this section the transmission frame time and the processing time are measured and the results

are discussed.

The objective is to investigate the processing power required in real time and to compare the

practical transmission frame time with the analytical estimation.

5.4.1 Experimental setup

The real time system implemented shown in Figure 4.2 was used to perform this test in real

time. Binary numbers constituting one transmission frame were generated. A complete

transmission frame was modulated at the transmitter. Both the digital-to-analogue and analogue-

to-digital conversions were done using the DAQ card as explained in the above sections at the

sampling rate of 4096Hz. The base-band signal (I and Q) is demodulated at the receiver. A

 102

digital oscilloscope was used to measure the transmission frame time the signal spent on the

channel. The Linux time command function was used determine the processing speed (time).

Both the transmitter and receiver program were implemented in one PC with 1600MHz CPU

speed, 256kB cache memory and 256MB RAM.

5.4.2 Results

Table 5.2 shows the expected transmission frame time according to the specification used in the

implementation test. Table 5.3 shows the practical measurement results of the frame

transmission time and the processing time used.

In the results, the analytical and practical transmission frame time measured shows a good

agreement. The only small difference is because of the practical measurement error. The

processing time measured shows how much time was taken to generate, modulate, transmit and

decode a transmission frame. This is over all processing time of the code for both transmitter

and receiver, plus the transmission frame time.

Expected analytical results

Particular Formulae

Total transmitted samples

(excluding null symbol)

638 x 76 48488

Transmission frame time (FT)

total transmitted samples
sampling frequency

11.84 sec

Total symbol duration (ST)
. /

FT
No symbol frame

 155.79ms

Useful symbol duration (uT) 125.02ms

Carrier separation 1

uT
 8Hz

Transmitted signal bandwidth 384 x 8Hz 3.072kHz

 Table 5.2 Expected analytical transmission time.

 103

The processing time measured provides a rough indication of the processing power required

when we are thinking of increasing the processing speed. For example in these tests the over-all

processing time is about 16.07 seconds with 1600MHz CPU. In real implementation the

sampling rate of 4096Hz cannot be used. The sampling rate used is 2.048MHz [5][25]. It can be

seen from these two sampling rates that the data needs to be sampled 500 times faster than the

present sampling rate used. We cannot use PCs for the real implementation because PCs are

not fast enough to handle the real implementation. We need a faster and dedicated processor

such as a DSP processor to achieve the real implementation. The fact that both transmitter and

receiver algorithms run together at 500 times slower than the real time on a 1600MHz PC, gives

an indication of the execution speed that provides a base of the processing power required when

thinking of increasing the processing speed.

 Practical measurements:

Measurement Value

Transmission frame time on the channel 11.9 seconds

Total time used to generate, transmit

and recover a transmission frame

16.07 seconds

 Table 5.3 Practical transmission time and processing speed measured.

5.5 Conclusion

In this chapter the performance of the implemented system was evaluated. The test results for

both real time and simulation were discussed in this chapter. The timing synchronization of the

system worked well and enabled the correct recovery of the desired data at the receiver. The bit

error rate of the system proved that the implemented system worked well in real time. A rough

indication of the processing power required to provide a base for what processing power is

required when thinking of increasing the processing speed, was discussed.

 104

Chapter 6

CONCLUSION

This chapter gives the conclusion of the work done and offers some suggestions for future work

that can be carried out.

6.1 Concluding remarks

In the DAB system, a good BER for audio is considered to be 10-4 [25]. From the results

obtained during tests, a SNR of about 10.77dB provided the considered BER. This gives an

indication of how much data error control protection should be included in the channel coding.

At a SNR less than 10.77dB, the error control protection is crucial for the better performance of

the system. At a SNR greater than 10.77dB and considering the test environment used, the

implemented system is expected to provide good audio quality even when no error protection

control is used.

6.2 Final conclusion

The DAB system was successfully implemented in SDR. The symbol timing synchronization

worked well. A 0.3dB implementation loss was obtained. These facts prove the thesis goal was

achieved. The perfect DAB modulator and demodulator for transmission mode II were added

to the SDR library.

6.3 Future work

Future work can be done in the following areas:

1. In the system performance analysis, AWGN channel was used. The analysis can be

expanded to Rayleigh fading channel, where the system performance can be analysed

with the mobile receivers.

 105

2. In all the implementation work, a perfect working hardware was assumed. A further

study on the hardware should be done in order to investigate their effect on the DAB

signal. For example a study on the automatic frequency control (AFC), RF section and

ADC will facilitate the implementation for the carrier synchronization in the

synchronization block.

3. A complete DAB signal generation should be implemented. The system should include

the channel coding part and be able to generate a real DAB signal and demodulate.

4. The DAB transmission mode II was implemented. In order to be able to work with all

DAB frequency ranges other transmission modes should be implemented.

 106

Bibliography

[1] F. Kozamernik, “Digital Audio Broadcasting – radio now and for the future,” EBU

Technical Review no. 265, Autumn 1995.

[2] T. O’Leary, “Terrestrial Digital Audio Broadcasting in Europe,” EBU Technical

Review, Spring 1993.

[3] Stephen Baily, “A Technical Overview of Digital Radio,” BBC Research and

Development, Kingswood Warren, Tadworth, KT20 6NP, United Kingdom.

[4] Pohlmann Ken, “Principles of Digital Audio,” McGraw-Hill, New York, chapter

2.3,2000.

[5] ETS 300 401,“Radio broadcasting systems; Digital Audio Broadcasting (DAB) to

mobile, portable and fixed receivers,” ETSI, second edition, May 1997.

[6] “EUREKA – 147 – Digital Audio Broadcasting,”

http://www.worlddab.org

[7] “Digital audio broadcasting,” http://en.wikipedia.org/wiki/Digital_Audio_Broadcast

[8] A.J. Bower, “DIGITAL RADIO --The Eureka 147 DAB system,” Electronic

Engineering BBC, pp.55-56, April 1998.

[9] ETS 300 797, “ Radio broadcasting systems; Distribution interfaces; Services Transport

Interface (STI),” ETSI, February 1999.

[10] ETS 300 799, “ Radio broadcasting systems; Distribution interfaces; Ensemble

Transport Interface (ETI),” ETSI, September 1997.

[11] C. Liu, “DAB systems,” Introduction to Broadcast Technology, pp. 23-28, 1998.

[12] D. Li, “Discussion on several technologies in DAB,” Radio & TV Broadcasting

Engineering, pp.78-88, June 1997.

[13] C. Gandy “DAB: an introduction to the Eureka DAB systems and a guide to how it

works,” Research & Development British Broadcasting Corporation, June 2003.

[14] G. Stoll, “Source coding for DAB and the evaluation of its performance: A major

application of the new ISO audio coding standard,” Proceeding of First International

Symposium on Digital Audio Broadcasting, Montreux, Geneva, 8-9 June 1992.

 107

[15] F. van de Laar, N. Philips and R. Olde Dubbelink, “General-purpose and application-

specific design of a DAB channel decoder,” EBU Technical Review no.258, Winter

1993.

[16] Pommier, R.D., RATLIFF, P.A., and MEIER-ENGELENE, E.,

“The convergence of satellite and terrestrial system approaches to digital audio

broadcasting with mobile and portable receivers,” EBU Technical Review, 241/242,

pp.82-94, June/August 1990.

[17] David R. Smith, “Digital Transmission Systems,” Kluwer Academic, New York, third

edition, 2004.

[18] Michael Speth,“ OFDM Receivers for Broadband-Transmission,” May 1999.

http://www.ert.rwth-aachen.de/index_e.htm

[19] Weinstein, S.B. and Ebert, P.M., “Data transmission by frequency division multiplexing

using the discrete Fourier transform,” IEEE Transaction on Communications, vol.

COM-19, no.15, pp.628-634, October 1971.

[20] Zou, W. Y. and Wu Y., “ COFDM: An Overview,” IEEE Transaction on

Broadcasting, vol.41, no. 1, March 1995.

[21] Tamaki, Sho and Wada, Tomohisa, “OFDM”, Copyright (C) 2001-2005 Magna Design

Net, Inc. All Rights Reserved. http://www.magnadesignnet.com/eng/index.html

[22] A. Bruce Carlson, “Communication Systems: An introduction to signals and Noise in

Electrical communication,” McGraw Hill, Singapore, 1986.

[23] Samuel D. Stearns, “Digital Signal Processing with Examples in MATLAB®,” CRC Press

LLC, Boca Raton, Florida, 2003.

[24] E. Oran Brigham, “The fast Fourier transforms and its applications,” Prentice-Hall,

Englewood Cliffs, New Jersey, 1988.

[25] ETSI TR 101 496-3,“ Digital Audio Broadcasting (DAB); Guidelines and rules for

implementation and operation; Part 3: Broadcast network”, EBU Technical Report,

V1.1.2 (2001-05), 2001.

[26] J.H. Stott,“ Explaining some of the magic of COFDM,” Proceedings of 20th

International Television Symposium, Montreux, Switzerland, June 1997.

[27] “Software Defined Radio (SDR)”

 http://dsp.sun.ac.za/wiki/index.php/SDR

 108

[28] Leonard E. Miller and Jhong S. Lee, “ BER Expression for Differentially Detected π/4

DQPSK Modulation,” IEEE Transactions on Communications, vol.46, no.1, pp.71-81,

January 1998.

[29] Theodore S. Rappaport, “ Wireless Communications: Principal and Practice”, Prentice

Hall PTR, Upper Saddle River, News Jersey, 1996.

[30] Johannes J. Cronj’e, ”Software Design of a Software Defined Radio System,” Master

thesis, University of Stellenbosch, October 2004.

[31] Les Sabel and Dave Hawkins, “ Next Generation Developments in Digital Audio

Broadcasting,”

 www.broadcasting.com/radio/BCA03RadioscapeNextGenDAB.pdf

[32] Jeffrey H. Reed, “Software Radio: A Modern Approach to Radio Engineering,” Prentice

Hall PTR, Upper Saddle River, New Jersey, 2002.

[33] Alok Shah, “An Introduction to Software Radio,” Vanu, Inc., 2002.

 http://www.vanu.com/resources/intro/SWRprimer.pdf

[34] K. Taura et al., “A digital audio broadcasting (DAB) receiver,” IEEE

Transactions on Consumer Electronics, vol.42, no.3, pp.322-326, August 1996.

 109

 Appendix A

This appendix discusses the tools used in the thesis. The specifications for both hardware and

software used are given.

A.1 Software specification

Linux distribution SuSE Linux 9.0

Kernel version 2.4.20-4GB-athlon

C++ compiler gcc version 3.3.1

XML version 1.0

Windows Microsoft Windows XP

MATLAB version 6.5

A.2 Hardware specification

One computer (PC) with DAQ card is used in real time implementation. A computer performs

both transmission and reception. Software implementing a transmitter and a receiver are linked

by the DAQ card. The DAQ card performs both digital-to-analog and analog-to-digital

conversions. The analogue output (I and Q) from the DAC is connected to ADC via two wires.

The simulation is carried out in a laptop computer with the specification given in table below.

 110

Hardware Specifications

CPU AMD Athlon™ XP 1900+ (1600MHz)

PC RAM 256 MB

Resolution 14 bits, no missing

code

Max sampling rate 2MS/s

A/D converter LTC1414

Analog input

Number of channels 4 differential

Resolution 12 bits

Max update rate 1MS/s

D/A converter LTC 7545

DAQ

DAQ-2010

Analog

output Number of channels 2 channels voltage

output

Laptop CPU Intel® Pentium® M710 processor (1.4GHz)

 RAM 512 MB

Table A.2 Hardware specification

 A.3 Code

MATLAB, C++ and XML code. A CD attached contains the source code

developed.

 111

 Appendix B

Phase reference symbol parameter

This appendix discusses the relation between the indices i, k' and n and the carrier index k for

the four DAB transmission modes [5]. These provide the parameters that are used in the

generation of the phase reference symbol for the respective transmission mode.

Relation between the indices i, k' and n and the carrier index k for transmission mode I

 112

Relation between the indices i, k' and n and the carrier index k for transmission

mode II

Relation between the indices i, k' and n and the carrier index k for transmission

mode III

Relation between the indices i, k' and n and the carrier index k for transmission

mode IV

 113

 Time-Frequency-Phase parameter h values

 114

Appendix C

Theoretical BER

This appendix describes the mathematical expression used to determine the theoretical BER for

π/4 DQPSK in additive white Gaussian noise (AWGN) based on [28].

Theoretical Derivation:

The theoretical BER for π/4 DQPSK is obtained from the theoretical BER for BPSK. The

derivation is according to [28] and illustrated in the following paragraphs:

(a) Transmitted signal:

Consider an OFDM signal generated in frequency domain using the BPSK modulation scheme.

The generated signal components have a common magnitude, let’s call it A.

Lets’ consider a particular component at a specific carrier frequency as illustrated in Figure C1.

 ()oA f fδ + A ()oA f fδ +

 -k k

Figure C1 Signal component spectrum.

When an IFFT is applied to signal component, the output time domain signal is presented as

shown below:

 115

x(t) = IFFT(X (ω)) (0.1)

1
2 /

0

2 / 2 /

1() ()

A =
N

N
j kn N

k

j kn N j kn N

x n X k e
N

e e

π

π π

−

=

−

=

⎡ ⎤+⎣ ⎦

∑
 (0.2)

2() cos(2 /)Ax n kn N
N

π= (0.3)

The IFFT algorithm’s output is scaled by a factor N, (i.e. (0.3) is multiplied by N before

transmission, see 2.6). The transmitted one BPSK signal is given by:

() 2 cos(2 /) 0,1,..., -1x n A kn N n Nπ= = (0.4)

where N is the number of samples in one symbol period.

(b) Estimating the transmitted signal power using power density spectrum (PDS):

The average signal power in one BPSK signal can be calculated according to [23] as follow:

Average signal power = []
21 1

2
2

0 0

1 1() | () |
n N m N

n m
x n X m

N N

= − = −

= =

=∑ ∑ (0.5)

2

-1
2 /

0

1 | () |

() () 0,1... -1
N

j mn N

n

PDS X m
N

where

X m x n e n Nπ−

=

=

= =∑

 (0.6)

Substituting (0.4) into (0.6)

 116

1

0
-1

2

0

() [2 cos(2 /)[cos(2 /) sin(2 /)]]

 2 cos (2 /) -

 2 .
2

N

n
N

n

X m A kn N mn N j mn N

A mn N for m k and m N k

NA AN

π π π

π

−

=

=

= −

= = =

= =

∑

∑ (0.7)

Hence

2 21 ()PDS AN A N
N

= = (0.8)

Then the average signal power in one BPSK signal in terms of PDS is:

1
2 2

0 ,

1 1. 2
m N

m m k N k

Avg power PDS A N A
N N

= −

= = −

= = =∑ ∑ (0.9)

(c) Estimating Noise Power at the receiver:

Noise power is equivalent to its variance (zero mean assumed):

Lets’ denote the noise output from DFT as nout and the input noise as nin

1
2 /

0

-1

0

()

 ()cos(2 /)

N
j nk N

out in
n

N

in
n

n n n e

n n nk N

π

π

−
−

=

=

=

=

∑

∑
 (0.10)

The real part of (0.10) was considered.

Lets’ define the variance of the noise at the output of DFT varout and from (0.10)

 117

2

2-1

0

1
2 2

0

2

var []

 ()cos(2 /)

 ()cos (2 /)

 var / 2

 / 2

out out

N

in
n

N

in
n

in

in

E n

E n n nk N

E n n nk N

N

N

π

π

σ

=

−

=

=

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣ ⎦

=

=

∑

∑ (0.11)

(d) Determining the probability of error (BPSK)

The probability density function is defined as:

2 2(() / 2)

2

1()
2

x mf x e σ

πσ
− −= (0.12)

From (0.7) and (0.11), the theoretical probability of error can be calculated as:

2
2

2

2

2

1(())

, 2
0

2

2

22

2
, 2

2

2

1

 0

1 .

 0.5

in

in

x NA
N

e BPSK

in

in

inin

z
e BPSK in

in A N

in

P e dx
N

x NAlet z
N

when x

NA A Nz
N

P N e dz
N

A Nerfc

σ

σ

π σ

σ

σσ

σ
π σ

σ

∞ − +

∞
−

=

+
=

=

= =

=

⎛ ⎞
= ⎜⎜

⎝ ⎠

∫

∫

⎟⎟
 (0.13)

 Equation (0.13) gives the theoretical expression for determining probability of Bit Error for the

BPSK.

 118

[28] shows that π/4 DQPSK is 2.3dB inferior to BPSK. But the OFDM is made of K BPSK

carriers. The OFDM signal power with K carriers in one OFDM symbol period can be

calculated as follows:

The average signal power is derived from:

1
2

0

1. r ()

where

N

comp
n

Avg OFDM signal powe s n
N

−

=

= ∑
 (0.14)

 is an OFDM signal with K carriers in one OFDM symbol period.comps

Thus one carrier signal average power (BPSK signal) can be given by dividing (0.14) by the

number of carrier used in the transmission. From (0.9) average signal power in one BPSK signal

is determined.

Relating (0.9) and (0.14) we obtain:

1
2

.
2 0

1
2

.
0

2

1 ()
2

1 ()

2

N

comp
n

N

comp
n

s n
NA

K
Hence

s n
N

KA

−

=

−

=

=

=

∑

∑

 (0.15)

Substituting (0.15) into (0.13)

1
2

.
0

, 2

1 ()

0.5 .
2

N

comp
n

e BPSK
in

s n
N

KP erfc N
σ

−

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
 (0.16)

Where

 119

1
2

.
0

2

1. ()

.

N

comp
n

in

Avg OFDM signal power s n
N

Avg noise power σ

−

=

=

=

∑

K is the total number of carrier used (384 mode II)

Then (0.16) can be re-written as:

,
. 0.5 .
2. . e BPSK

N Avg OFDM signal powerP erfc
K Avg noise power

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (0.17)

In comparison with Pe for BPSK according to [29],

,
0

0

2

1
2

b
e BPSK

b

EP Q
N

Eerfc
N

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (0.18)

Then SNR for BPSK can be calculated from:

0

. .
2. .

bEN Avg OFDM signal powerSNR
K Avg noise power N

= = (0.19)

[28] describes the relationship between probability of error for BPSK and π/4DQPSK by the

following equation:

, / 4
0

0

1.1716.

1 1.1716 .
2 2

b
e DQPSK

b

EP Q
N

Eerfc
N

π

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (0.20)

From [28] and using (0.18) and (0.19), then (0.20) can be re-written as:

, / 4
1 1.1716 . . .
2 2 2. . e DQPSK

N Avg OFDM signal powerP erfc
K Avg noise powerπ

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 (0.21)

 120

	Declaration
	Abstract
	Opsomming
	Acknowledgements
	
	List of figures
	List of tables
	Glossary of abbreviations
	
	Chapter 1
	INTRODUCTION
	1.1 Software defined radio
	1.2 Thesis objective
	1.3 Thesis layout

	Chapter 2
	LITERATURE SURVEY ON DAB
	2.1 Introduction
	2.2 What is DAB?
	2.3 What DAB offers to the Broadcaster and Listeners
	2.4 The DAB system – How it works
	2.5 Source Coding (MUSICAM Audio Coding)
	2.6 Multiplexing and Transmission Frame
	2.7 COFDM Modulation
	2.7.1 OFDM
	2.7.2 The use of FFT in COFDM
	2.7.3 Guard interval and its implementation
	2.7.4 Error correcting code (Convolutional channel coding)

	2.8 DAB transmission signal
	2.9 DAB transmission modes
	2.10 Conclusion

	Chapter 3
	SIMULATION
	3.1 Introduction
	3.2 Simulation system model
	3.3 Data generator
	3.4 Data mapper
	3.4.1 Block partitioner
	3.4.2 QPSK symbol mapper
	3.4.3 Frequency interleaving

	3.5 Phase reference symbol generator
	3.6 Differential modulator
	3.7 OFDM symbol generator
	3.7.1 Zero padding
	3.7.2 IFFT
	3.7.3 Cyclic prefix

	3.8 Null symbol generator
	3.8.1 Null symbol generation
	3.8.2 Final frame structure formation

	3.9 Channel
	3.10 Reception side
	3.11 Synchronization
	3.12 Timing synchronization
	 3.12.1 Symbol timing synchronization
	3.12.2 Frame synchronization

	3.13 Frequency offset estimation and correction
	3.13.1 Fraction frequency offset estimation
	3.13.2 Integral frequency offset estimation

	3.14 OFDM symbol demodulator
	3.14.1 Cyclic prefix removal
	3.14.2 FFT
	3.14.3 Zero padding removal

	3.15 Differential demodulator
	3.16 Data de-mapper
	3.16.1 Frequency de-interleaving
	3.16.2 QPSK symbol de-mapper

	3.17 Results and Conclusion

	Chapter 4
	REAL TIME IMPLEMENTATION
	4.1 Introduction
	4.2 Introduction to SDR converters
	4.3 Real time implementation considerations
	4.4 Implementation overview
	4.5 DAB transmitter implementation in SDR
	4.5.1 QPSK symbol mapper
	4.5.2 Frequency interleaving
	4.5.3 Differential modulator
	4.5.4 Zero padding
	4.5.5 IFFT
	4.5.6 Cyclic prefix
	4.5.7 Frame construct

	4.6 DAB receiver implementation in SDR
	4.6.1 Null symbol detector
	4.6.2 Timing synchronization
	4.6.3 Cyclic prefix removal
	4.6.4 FFT
	4.6.5 Zero padding removal
	4.6.6 Differential demodulator
	4.6.7 Frequency deinterleaving
	4.6.8 QPSK symbol demapper

	4.7 Conclusion

	Chapter 5
	 IMPLEMENTATION EVALUATION AND RESULTS
	5.1 Introduction
	5.2 Simulated symbol timing synchronization performance
	5.2.1 Experimental setup
	5.2.2 Results of the experiment

	5.3 Bit Error Rate performance analysis
	5.3.1 Experimental setup
	5.3.2 Results of the experiment

	5.4 Transmission time and processing time measurements
	5.4.1 Experimental setup
	5.4.2 Results

	5.5 Conclusion

	Chapter 6
	CONCLUSION
	6.1 Concluding remarks
	6.2 Final conclusion
	6.3 Future work

	Bibliography
	 Appendix A
	A.1 Software specification
	A.2 Hardware specification
	 A.3 Code

	 Appendix B
	Phase reference symbol parameter

	Appendix C

