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Abstract 
Canola (Brassica napus) is increasing in popularity as a cereal crop in the Western Cape. 

Nitrogen (N) is generally the most limiting nutrient to canola production. Nitrogen fertiliser 

guidelines for canola are currently adopted from international literature or adopted from 

guidelines for wheat, and should be refined for the local environmental conditions. The aim of 

this study is to determine the optimal rate of N fertilisation, and the distribution thereof in the 

Western Cape.  Field experiments were conducted in 2015 at Langgewens and Altona 

(Swartland) and Roodebloem (southern Cape). The trial was laid out as a factorial arranged in a 

randomised block design, with six N rates (0, 20, 60, 90, 120 and 150 kg N ha-1), of which each 

rate was applied in either one, two or three increments after planting, replicated in four blocks. 

Twenty kg N ha-1 was applied at planting. The rest was divided in equal increments either 30 

days after planting (DAP), 30 and 60 DAP or 30, 60 and 90 DAP. Soil mineral N, leaf area index 

(LAI) and biomass was determined at 30, 60 and 90 DAP. Grain yield and thousand kernel mass 

(TKM) was recorded. Using these values obtained, agronomic N use efficiency (ANUE), water 

use efficiency (WUE) and profitability was determined by means of a sensitivity analysis. 

Treatments had no effect (P>0.05) on total soil mineral N content at any locality at any 

physiological stage with the exception of 90 DAP at Langgewens. Neither LAI nor biomass was 

affected by treatments (P>0.05) at any locality, at any physiological stage. Yield at Roodebloem 

was affected (P<0.05) by N fertilisation and treatments which had the highest yield were those 

who received 20 kg ha-1 at planting, and 70 or 100 kg ha-1 at 30 DAP respectively. These 

treatments did not differ (P>0.05) from treatments which received more than 60 kg N ha-1, 

regardless of the distribution. At Langgewens and Altona, N fertilisation had no effect (P>0.05) 

on yield, while TKM was not affected by treatments at any locality. No differences (P>0.05) were 

observed for ANUE at Altona and Langgewens, while treatments had a significant effect on 

ANUE at Roodebloem. The treatment that received 20 kg N ha-1 at planting and 100 kg N ha-1 at 

30 days after planting and no N later, had the highest WUE, but did not differ (P>0.05) from a 

number of treatments that received more than 90 kg N ha-1 at various time intervals. The WUE 

at Altona and Langgewens was not affected by treatments (P>0.05). At both Altona and 

Langgewens the highest gross income was obtained by treatment that received no N at all, while 

at Roodebloem the highest gross income was obtained by applying 90 kg N ha-1 for the entire 

duration of the growing season. Preliminary results indicate optimum N fertiliser rate of 90 to 

120 kg N ha-1, applied as 20 kg N ha-1 at planting and the remainder at 30 DAP at Roodebloem. 

No significant response to N applications was recorded in the Swartland. These results could be 

ascribed to drought conditions during 2015, which may have prohibited efficient uptake of N in 

the Swartland localities of Altona and Langgewens during critical periods.  
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The differences between treatments at Roodebloem in the southern Cape might be due to a 

combination of sufficient rainfall over the growing season, lower temperatures and sufficient N 

being available during early, rapid vegetative growth. This in turn enabled a higher LAI which 

allowed for higher biomass accumulation, and consequently higher translocation to seeds. It is 

recommend that this study be repeated before results could be used to develop fertiliser 

guidelines for canola production in South Africa.  
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Uittreksel 

Kanola (Brassica napus) se gewildheid as graangewas in die Wes-Kaap is aan die toeneem. 

Stikstof (N) is oor die algemeen die mees beperkendste voedingstof vir kanolaproduksie. 

Stikstofriglyne vir kanolaproduksie word huidiglik afgelei vanaf internasionale literatuur of die 

riglyne vir koringproduksie, en moet vir die plaaslike omgewingstoestande verfyn word. Die 

doel van hierdie studie is om die optimale N bemestingspeil, asook die verspreiding daarvan in 

die Wes-Kaap te bepaal. Veldeksperimente is in 2015 op Altona en Langgewens (onderskeidelik 

hoë en matige produksiepotensiaal areas in die Swartland) en Roodebloem (Suid-Kaap) 

uitgevoer. Die eksperiment is uitgelê as ŉ faktoriaal in ŉ ewekansige blokontwerp uitgelê met 

ses N-peile (0, 20, 60, 90, 120 en 150 kg N ha-1) wat in een, twee of drie stadiums na plant 

toegedien is, en in vier blokke herhaal. Twintig kg N ha-1 is toegedien tydens plant. Die res van 

die peil is dan verdeel in gelyke inkremente of óf 30 dae na plant (DNP), 30 en 60 DNP of 30,60 

en 90 DNP. Grondminerale N, blaaroppervlakindeks (BOI) en biomassa is vasgestel op 30, 60 en 

90 DNP. Graanopbrengs en duisend korrel massa (DKM) is na oes vasgestel. Hierdie waardes is 

gebruik om agronomiese N verbruiksdoeltreffendheid (ANVD), waterverbruiksdoeltreffendheid 

(WVD) en winsgewendheid deur middel van n sensitiwiteitsanalise, te bepaal. Behandelings het 

geen effek (P>0.05) op die totale grondminerale N op enige van die lokaliteite tydens enige van 

die fisiologiese stadiums gehad nie, met die uitsondering van 90 DNP op Langgewens. 

Behandelings het geen effek op BOI of biomassa (P>0.05) op enige lokaliteit, teen enige 

fisiologiese stadium gehad nie. Die opbrengs op Roodebloem is deur N behandelings beïnvloed, 

en die behandelings wat die hoogste opbrengs gehad het, het 20 kg N ha-1 tydens plant, en 70 of 

100 kg ha-1 op 30 DNP onderskeidelik ontvang. Hierdie behandelings het nie verskil (P> 0.05) 

van behandelings wat meer as 60 kg N ha-1, ongeag die verspreiding daarvan, ontvang het nie. 

Op Langgewens en Altona het behandelings geen effek (P> 0.05) op die opbrengs gehad nie, 

terwyl DKM nie deur die behandelings  op enige van die lokaliteite beïnvloed was nie. Geen 

verskille (P> 0.05) is waargeneem in ANVD op Altona en Langgewens nie, terwyl behandelings 

'n beduidende effek op ANVD op Roodebloem gehad het. Die behandeling wat 20 kg N ha-1 

tydens plant en 100 kg N ha-1 op 30 dae na plant en geen N later ontvang het nie, het die hoogste 

WVD gehad, maar het nie verskil (P> 0.05) van 'n aantal ander behandelings wat meer as 90 kg 

N ha-1 ontvang op verskillende tydsintervalle nie. Die WVD by Altona en Langgewens is nie deur 

behandelings (P> 0.05) beïnvloed nie. Op beide Altona en Langgewens is die hoogste bruto 

inkomste deur die behandeling wat geen N ontvang verkry, terwyl op Roodebloem die hoogste 

bruto inkomste verkry is deur 90 kg N ha-1 vir die volle duur van die groeiseisoen toe te dien. 

Voorlopige resultate dui optimale N-peile van 90 tot 120 kg N ha-1, toegedien as 20 kg N ha-1 

tydens plant en die res op 30 DNP op Roodebloem. Geen beduidende effek op N bemesting is in 
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die Swartland waargeneem nie. Die resultate in die Swartland kan aan droogtetoestande 

gedurende 2015 toegeskryf word, wat die doeltreffende opname van N tydens kritieke periodes 

kon verhoed het. Die verskille tussen behandelings by Roodebloem in die Suid-Kaap kan 

toegeskryf word aan 'n kombinasie van voldoende reënval oor die groeiseisoen, laer 

temperature en voldoende N wat beskikbaar was vroeg in die seisoen tydens vegetatiewe groei. 

Dit het op sy beurt die plante in staat gestel om 'n hoër BOI te ontwikkel, wat hoër biomassa 

akkumulasie, en gevolglik hoër translokasie na sade tot gevolg gehad het. Dit word aanbeveel 

dat hierdie studie herhaal word voordat dit gebruik word om bemestingsriglyne vir 

kanolaproduksie in Suid-Afrika te ontwikkel.   
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Chapter 1 
Introduction 
 

Canola (Brassica spp.) is a major oilseed crop with increasing importance in the southern Cape 

and Swartland regions of South Africa. The southern Cape is located about 150 km east of Cape 

Town and the major towns are Hermanus, Caledon, Bredasdorp, Swellendam and Heidelberg. 

The landscape is dominated by gently to moderately undulating hills enclosed by mountains to 

the north and the Indian Ocean to the south. The Swartland begins 50 km north of Cape Town 

and consists of the regions between the towns of Malmesbury in the south, Darling in the west, 

Piketberg in the north and Riebeek West and Riebeek-Kasteel in the east. These regions are 

highly suitable for production of canola due to its rainfall distribution and soil properties 

(Hardy and Wallace 2014). These areas generally receive the bulk of their rainfall from May to 

September. Most soils found in the area are characterised with a sandy loam texture and a high 

gravel content. These climate and edaphic characteristics contribute to canola being one of the 

only plant protein sources that can successfully be produced in the region. 

 

Currently, commercial canola production in South Africa is confined to the Western Cape 

Province and has yet to be developed as a commercial crop elsewhere in South Africa. Trials 

evaluating canola production under irrigation is currently being undertaken in the central areas 

of South Africa. During 2015, 78 050 ha of canola was planted in the Western Cape. Canola is 

used to produce cooking oil and margarine in South Africa. In health conscious societies, canola 

oil is gaining popularity because of its high content of oleic and linolenic acids and by its 

favourable linoleate: linolenate ratio (Eskin and MacDonald 1991). After processing, the canola 

oilcake is valuable as a source of protein in animal feed rations (Weglarzy et al. 2013). 

Projections made by the Protein Research Foundations for 2020 using basis years, indicated a 

3.1% increase in oilcake consumption in livestock feed programs. This projection increases to 

3.2% by 2025 (Protein Research Foundation 2013). 

 

Canola is not only regarded as an important oilseed crop locally, but also worldwide. It is second 

only to soybean as the most important source of vegetable oil in the world (Raymer 2002). In 

addition, Brassica spp. is important in crop rotation systems due to its possible long-term effects 

on other cereal crops in subsequent rotations (Hardy and Wallace 2014). Canola cultivated in 

rotation with winter cereals in Alberta, Canada, has shown a significant higher economic return 

in the winter crop cereals. This was primarily due to effective weed control possibilities during 

the canola seedling establishment phase (Blackshaw 1994.) Canola used as a break crop also 
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reduces the disease pressure in wheat production systems (Mason and Brennan 1998; 

Lamprecht et al. 2006). This is one of the most important advantages of using canola in the crop 

rotation systems in the Western Cape (Lamprecht et al. 2006).  

 

Canola has a relatively high requirement for nitrogen (N), and compared to other crops 

produced in the southern Cape and Swartland, has a low N use efficiency (NUE) (Sylvester-

Bradley 2009). Nitrogen is also one of the highest input costs in canola production. The scope to 

enhance canola profitability by improving the NUE, is largely dependent on management 

strategies, based on fertiliser guidelines. Nitrogen fertiliser guidelines should differ between 

regions of dissimilar environmental conditions (Ozer 2003). Currently, appropriateness of N 

fertiliser guidelines for canola in South Africa is questioned. These guidelines are adopted from 

international literature or adopted from guidelines for wheat, and should be refined for the local 

environmental conditions.  

 

Furthermore, increased N application rates and the time of application may play significant 

roles in increasing canola production (Mason and Brennan 1998). Although N is known to 

enhance production in comparison to crops grown with no additional applied N (Allen and 

Morgan 1972), yields obtained for the amount of N applied, are lower than potential yields for 

the rate of N (Cheema et al. 2010), as judged by best farmer yields (Hocking et al. 1997). These 

lower yields are mainly due to imbalanced nutrient supply. As N fertiliser accounts for one of 

the highest input cost refined N management may have a substantial influence on the 

profitability of canola production. Research on the optimal rate of N application has been done 

in the Swartland and southern Cape, while little information is known about distribution of N 

application in these regions. The opportunity to further enhance production of canola by 

refining N topdressing management strategies in the Western Cape exists. Enhanced production 

requires research on management practices in the southern Cape and Swartland which will lead 

to improved production.  

 

With the demand for canola expected to rise, this study aims to improve the management of 

application strategies to enhance the N use efficiency of canola in the Swartland and southern 

Cape by determining the optimal rate and timing of fertiliser N applications in the Swartland 

and southern Cape. 
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The hypothesis is stated as follows:  

H1H0: Increasing rates of N application will lead to increased yields up to an optimum level. 

H1H1: Increasing rates of N application will not lead to increased yields. 

 

H2H0: Split application of N over more than one time of application will increase yield. 

H2H1: Split application of N over more than one time of application will not increase yield. 

 

Following the literature review in Chapter 2, the effect of different N rates and the time of 

application thereof on yield, thousand kernel mass (TKM), total soil mineral N, leaf area index 

(LAI) and biomass is addressed in Chapter 3. In Chapter 4 the effect of the different rates and 

time of application thereof on agronomic nitrogen use efficiency (ANUE), water use efficiency 

(WUE) and the economic feasibility of each treatment are addressed. In Chapter 5, conclusions 

and recommendations for this study is made. 
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Chapter 2 
Literature Review 

2.1. Introduction 
Canola produced in the southern Cape and Swartland is produced under similar climatic 

circumstances as western and southern Australia, due to their location on the same latitude and 

both having a Mediterranean-type climate. As in Australia, only Brassica napus cultivars adopted 

to short day length conditions are grown during the winter growing season. In South Africa, 

nitrogen (N) is often the most limiting nutrient for production of cool- and warm season grain 

crops. According to the Protein Research Foundation (2013), N fertiliser is the highest 

production cost in producing canola. Canola has a relatively high requirement for N (Holmes 

1980; Grant 1993). It removes 40 kg ha-1 N from soil to produce one ton of grain, in comparison 

with wheat, which only removes 21 kg ha-1 N to produce one ton of grain (Protein Research 

Foundation 2013). This review aims to illustrate the need for a better understanding of time 

and rates of N fertilisation to enhance N use efficiency (NUE) and yield, in the Swartland and 

southern Cape production areas, to therefore maximize the profitability and ensure the 

sustainability of canola production in these production areas. 

 

2.2. The nitrogen cycle 
Plants absorb N in the form of nitrate (NO3-) and ammonium (NH4+), with NO3- being the 

preferred form. A large proportion of the N in the soil is naturally found in organic form and is 

not readily available for uptake by plants. The organic nitrogen should be transformed into 

inorganic N forms before it can be used by plants. Soil particles are charged negatively, and 

therefore NO3- is mobile in soils, making it susceptible for leaching. The availability of NO3- and 

NH4+ to plants is subject to mineralisation, nitrification, leaching, volatilization and 

denitrification. Mineralisation is the process of converting bound organic N to inorganic, plant 

available NH4+. Nitrification is the process of converting NH4+ to NO3- through the working of 

Nitrosomonas and Nitrobacter bacteria, after which it becomes available to plants (Yue et al. 

2014). 

A simplified N cycle is illustrated in Figure 2.1 on page 6.  
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Figure 2.1: The soil nitrogen cycle, indicating the transformations of organic N into plant available forms 

of nitrogen (www.yourarticlelibrary, 2016.). 

2.3. Physiological development of canola and nitrogen use  
According to Harper and Berkenkamp (1975), Brassica napus have six growth stages, each stage 

with different requirements towards N uptake (Figure 2.2). Classification of these stages tends 

to be more complicated than conventional winter crops, primarily because of the indeterminate 

growth pattern of canola, causing growth stages to overlap.  

 

Figure 2.2: The six growing stages of Brassica napus as described by Harper and Berkenkamp (1975).  

During pre-emergence, stage 0, N uptake is very low. The N needs for plant growth is partially 

met by reserves in the seed (Protein Research Foundation 2013). Due to the small size of the 

canola seed, it has a limited amount of resources to support the plant during establishment. Pre-

sowing N or N at planting is therefore required to support establishment.  
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The establishment of the seedling, stage 1, requires only a small amount of N, as the seedlings 

growth is still sustained by the pre-sowing N or N at planting. Brandt et al. (2007) found that 

plant density decreased at higher fertiliser levels during planting, due to excessive inorganic N 

from fertiliser salts that may lead to fertiliser-induced burning of the seedling. 

During stage 2, when the leaves are produced, leaf growth showed strong correlation to N 

fertiliser (Rood and Major 1984). Rapid leaf growth is needed to give the canola plant a 

competitive advantage towards weeds. In leaves, N is a component of chlorophyll, which is 

responsible for photosynthesis. Optimal availability is therefore crucial during leaf production, 

to ensure optimal leaf area and sufficient levels of chlorophyll for photosynthesis. Leaf area 

index (LAI) indicates the area of leaves produced. A LAI of 3.11 at start of flowering was found 

to be optimum (Cheema et al. 2001). Relatedly, the leaf area duration (LAD) indicates the area of 

the leave and the duration of the leaf. Scott et al. (1973) reported that LAD of oilseed rape was 

closely related to LAI and that LAI was increased by higher rates of N application. Nitrogen 

improves leaf area duration (LAD) after flowering and increases the amount of assimilates, 

leading to an increased seed yield (Wright et al. 1998). 

Stage 2 and 3 overlaps. During stage 3, the budding stage, stem elongation and flower initiation 

takes place. This stage is also known as a stage of active root growth. Stage 3 shows similar N-

uptake patterns as for stage 2 and is known for its rapid production of dry matter and nutrient 

needs (Cheema et al. 2010). A study done on the comparison of growth response and N uptake 

by Mason and Brennan (1998) indicated that rate of N uptake by canola was the highest 

between 6 and 8 weeks after seeding, the stages of leaf production and stem elongation. 

Similarly, the rate of dry matter production of canola was at its highest during week 8.  

During the end of stage 3, flowers are also initiated. The canola plant undergoes a physiological 

change from vegetative growth to reproductive growth. Most of the plants dry matter has been 

formed by this stage. While N uptake is still increasing during this stage, the rate of uptake is 

slower than in stage 2 (Mason and Brennan 1998). The maintenance of the leaf surface will 

determine pod set, oil content and yield (Scott et al. 1973), thus the importance of sufficient 

levels of N. During anthesis, stage 4, canola plants produce pods from the existing flowers. The 

final number of seeds in the pods is fixed in this stage. During the final stage of the canola plants 

life cycle, ripening, the pods formed during flowering are the main sink of N. N is mobile within 

the plant (Grant 1993), and can therefore be mobilised from bearing branches and translocated 

to the developing pods (Zhang et al. 1991).  

The yield of canola as a result of increasing N application will be influenced by the plants ability 

to mobilise N from senescing leaves and branches during this stage. While N uptake was the 
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highest in stage two of the life cycle, 14% of total dry matter accumulates after the end of 

flowering (Hocking et al. 1997), largely due to the mobilisation of accumulated N.  

2.4. Nitrogen use efficiency 
2.4.1. Rate of nitrogen application 
A study involving the time and rate of N application, conducted in Pakistan, indicated that the 

total dry matter, leaf area index (LAI), leaf area duration (LAD), seed and oil yield, and protein 

content were significantly affected by N application rate (Cheema et al. 2010). 

 

Studies to determine the optimal rate of N to ensure the highest yield in canola has been done 

worldwide (Wright et al. 1998; Rathke et al. 2005; Cheema et al. 2010). Although various trials 

have been conducted to test the optimal rate of N for canola, special attention needs to be paid 

to these rates in the southern Cape and Swartland (Protein Research Foundation 2013). 

Fertiliser recommendations are site specific because crop response to fertiliser is driven by the 

availability of water. The rate of N applied has different impacts on dry matter, seed yield, oil 

concentrations, total N in the plant and N in the shoots (Hocking et al. 1997). Nitrogen increases 

the yield by stimulating more branches per plant, and therefore more flowers per plant (Ozer 

2003). The higher amount of flowers stimulates the development of a higher amount of pods, 

leading to a higher seed yield.  

Hocking et al. (1997) experimented with N applications rates of 0, 10, 25, 50, 75, 100 and 150kg 

N ha-1 in a trial in New South Wales, Australia. Before sowing, 25kg N ha-1 was applied. Dry 

matter yield was found to be lower a fertilization rate of 75 kg ha-1 than at 50 kg ha-1, but higher 

than at 0 and 25 kg ha-1. While a fertilisation rate of 75 kg N ha-1 proved to be effective, 50 kg N 

ha-1 was more efficient. Seed yield improved at higher rates of applied N. The higher number of 

seeds and pods obtained by higher rates of applied N ensured a higher yield than at lower rates 

of applied N.   

Similarly, a study by Mason and Brennan (1998) made use of increasing rates of N application 

(0, 35, 69 and 138 kg N ha-1). Results indicated higher protein concentrations in the grain, but 

lower oil concentrations with increasing rates of N application. This study corresponds with the 

findings of Hocking et al. (1997).  

During 2008 and 2009, the impact of the rate and the timing of N application on the yield were 

tested in Pakistan. While the climatic circumstances differ from the production areas in the 

current study in the Swartland and southern Cape, the study confirmed that the rate of N 

application significantly increased seed yield and protein contents of canola (Cheema et al. 
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2010). Increasing N application led to a decrease in oil percentage, indicating an inverse 

relationship between oil percentage and protein content. This was in line with Ozer (2003). The 

increase in yield due to increasing applied N was due to a higher number of pods per plant, a 

result of a higher amount of flowers per plant.  

2.4.2. Timing of nitrogen application 
Time of N application will vary greatly, depending on environmental conditions. During the 

period of 2001 to 2003, a study involving the rates of N and the times of application were 

conducted (Cheema et al. 2010). It was found that the time of application played a significant 

role in both seasons of the conducted trial. This might be due to nutrients being available at 

optimum times when canola plants required it the most. The optimum time of fertiliser 

application will be dependent on the climate (Grant and Bailey 1993). The optimal 

recommendation found by Cheema et al. (2010) was 60kg ha-1 at sowing and 60 kg ha-1 at 

flowering. Nitrogen is mobile in soils, and, as discussed previously, heavy early winter rains in 

the southern Cape and Swartland on sandy loam soils may lead to N losses in the form of 

leaching. Applying additional N after heavy rains might therefore be more available to uptake 

than before rains, depending on the soil type. Powlson et al. (1992) found a linear relationship 

between fertiliser N and drainage in the rain season, while N applied in the drier season 

resulted in increased amounts of residual N in the soil after harvest. They also found that a loss 

of N fertiliser occurs soon after application, because plants did not have sufficient time to 

absorb it.  

The foregoing review emphasises the need for a better understanding of rates of N application 

and specifically the timing of N application in the southern Cape and Swartland production 

areas, to enhance the NUE of canola. This in return may lead to better management strategies to 

produce canola more cost efficiently.  

To produce more canola cost efficiently, a proper understanding of the NUE is essential. The 

NUE is defined as the final amount of grain produced per unit of the total amount of N available 

for the plant (Sylvester-Bradley and Kindred 2009). The total amount includes N applied and N 

available in the soil. A wide spectrum of additional parameters can be determined by using NUE, 

such as the agronomic use efficiency. Agronomic use efficiency (AUE), by definition, is the 

amount of grain produced per unit of fertiliser applied (Wright et al. 1998). This parameter is 

more practical, as it is difficult to determine the amount in the soil and the amount taken up by 

plants. The Harvest Index (HI) needs to be taken into account when determining NUE. 
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Oilseed rape is highly inefficient in using N, in comparison with other crops. Table 1 illustrates 

the NUE (kg DM kg-1 N) of various crops, along with parameters needed to obtain the NUE value. 

Winter oilseed rape has a lower NUE than winter crops (wheat, barley and oats) commonly 

grown in the Swartland and southern cape. While the NUE of canola are mainly determined by 

the cultivar (Svečnjaka and Rengel 2006), various environmental factors may influence the NUE. 

The response of canola to increasing rates of N varies due to environmental differences, 

including climate, soil moisture-and type, and residual fertility (Ozer 2003). 

Table 2.1: The main arable crops grown in the UK, listed according to their average overall NUE, adapted 

from Sylvester-Bradley and Kindred (2009). NUE = Nitrogen use efficiency 

Crop Harvested 

(t ha-1) 

N applied 

or fixed 

(kg ha-1) 

N capture (kg 

N uptake kg-1 

N available) 

N conversion 

(kg DM kg-1 

N uptake) 

NUE (kg 

kg-1 N 

available) 

Winter oats 

Winter wheat: milling 

Winter barley: malting 

5.1 

6.2 

4.6 

2.9 

109 

209 

143 

0.67 

0.65 

0.45 

40 

33 

46 

27 

22 

21 

Oilseed rape: Winter 207 0.85 12 10 

 

2.4.3. Environmental influence on nitrogen use efficiency 
Mineralisation and nitrification are subject to various environmental factors that influence 

biological activity of these nitrosomonas and nitrobacter bacteria. Nitrification occurs very 

slowly at low temperatures, and the optimal temperature for soil microbial activity was found 

to be 25°C to 35°C (Yue et al. 2014). Higher temperatures lead to a decrease in mineralization 

rate, if soil moisture is insufficient.  Canola prefers cool temperatures and the duration of 

growth stages will therefore be shortened by high temperatures (Protein Research Foundation 

2013). Shorter development stages caused by high temperatures, will lead to lower yields and 

oil contents. Depending on the management system, higher temperatures will have a direct 

effect on the tempo of evaporation (Milly 1984), causing a decrease in available moisture, 

leading to a decrease in NUE.  

The availability of soil water plays a major role in the final yield of canola. Moisture shortages 

during the stem elongation and pod fill stages will impact oil and seed yield. As discussed in the 

physiological stages of canola, active root growth takes place during stage 2 and 3, allowing 
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roots to grow deeper and accessing more soil moisture to sustain growth. Under dry land 

conditions, soil moisture may limit yield (Grant and Bailey 1993). Results by (Tesfamariam et al. 

2010) found that water stress during the vegetative period and flowering stage significantly 

reduced the LAI, and resulted in leaf senescence during the seed fill stage. During all stages of 

the canola plants development, water stress led to a decrease in total above ground biomass in 

comparison to the treatment with no water stress. During the flowering stage, water stress led 

to abscission of the seed pods. Canola was found to be most sensitive to water stress during the 

flowering stage and less sensitive during the vegetative stage (Tesfamariam et al. 2010). 

Additional N applications will only lead to higher yields to the level where soil moisture limits 

yield (Grant and Bailey 1993). The optimal soil moisture as factor affecting mineralization was 

found to be at 60% of soil water holding capacity (WHC). Higher WHC led to an increase in 

denitrification (Yue et al. 2014), due to a lack of oxygen which inhibits soil microbial activity 

(Wang et al. 2004). Denitrification is the process of reducing nitrates to a form unavailable to 

plants.  
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Chapter 3 

The effect of rate and distribution of nitrogen 
fertilisation on productivity of canola in the Western 
Cape 
 

3.1. Abstract 
Canola (Brassica napus) is increasing in popularity as a cereal crop in the Western Cape. 

Nitrogen (N) is generally the most limiting nutrient to canola production. Nitrogen fertiliser 

guidelines for canola are currently adopted from international literature or adopted from 

guidelines for wheat, and should be refined for the local environmental conditions. The aim of 

this study is to determine the optimal rate of N fertilisation, and the distribution thereof in the 

Western Cape.  Field experiments were conducted in 2015 at Langgewens and Altona (moderate 

and high production potential zones in the Swartland) and Roodebloem (southern Cape). The 

trial was laid out as a factorial arranged in a randomised block design, with six N rates (0, 20, 

60, 90, 120 and 150 kg N ha-1), which was applied in one, two or three increments after planting, 

replicated in four blocks. Twenty kg N ha-1 was applied at planting. The rest was divided in 

equal increments either 30 days after planting (DAP), 30 and 60 DAP or 30, 60 and 90 DAP. Soil 

mineral N, leaf area index (LAI) and biomass was determined at 30, 60 and 90 DAP. Yield and 

thousand kernel mass (TKM) was recorded. Treatments had no effect (P>0.05) on total soil 

mineral N content at any locality at any physiological stage with the exception of 90 DAP at 

Langgewens. Neither LAI nor biomass was affected by treatments (P>0.05) at any locality, at 

any physiological stage. Yield at Roodebloem was affected (P<0.05) by N fertilisation and 

treatments which had the highest yield were those who received 20 kg ha-1 at planting, and 70 

or 100 kg ha-1 at 30 DAP respectively. These treatments did not differ (P>0.05) from treatments 

which received more than 60 kg N ha-1, regardless of the distribution. At Langgewens and 

Altona, N fertilisation had no effect (P>0.05) on yield, while TKM was not affected by treatments 

at any locality. The lack of significant differences observed, especially at Langgewens and 

Altona, could be ascribed to drought conditions during 2015, which may have prohibited 

efficient uptake of N during critical periods.  Preliminary results indicate optimum levels of 90-

120 kg N ha-1, applied as 20 kg N ha-1 at planting and the remainder at 30 DAP at Roodebloem. 

No significant response to N applications was recorded in the Swartland. Due to lower N 

mineralisation potential of Swartland soils, higher optimum levels are expected in normal and 

high rainfall years, than in the southern Cape. 
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3.2. Introduction 
Canola has been increasing in popularity as a cereal crop in the southern Cape and Swartland 

regions in South Africa from the 1990s. Canola oil is attractive to health conscious societies 

because of its high content of oleic and linolenic acids and by its favourable linoleate:linolenate 

ratio (Eskin and McDonald 1991). During 2015, 78 050 ha of canola was planted in the Western 

Cape. Projections made by the Protein Research Foundation (2015) and the Bureau for Food 

and Agricultural Policy (2015) indicate that canola consumption will continue to rise, not only 

due to the well-known health benefits, but also as a feeding ration in livestock feeding 

programs.  Although trials are being conducted in the central production areas of South Africa 

under irrigation, canola production is currently limited to the Western Cape due to its unique 

terroir and climate. The rate of canola needed to ensure the demand caused by the increasing 

projected consumption is met, will therefore currently have to be produced in the Western 

Cape. 

One method to enhance productivity of canola in these regions, is to refine nitrogen (N) 

fertiliser management. Nitrogen is generally the most liming nutrient (Grant 1993), and crop 

responses to N fertilisation is common (Ozer 2003). Furthermore, N is one of the most 

expensive inputs for canola production. Canola has a relatively high requirement for N and, 

compared to other crops produced in the southern Cape and Swartland, a low N use efficiency 

(NUE). The opportunity to further enhance production of canola by refining N fertiliser 

management strategies exists. Nitrogen fertiliser guidelines should differ between regions of 

dissimilar environmental conditions (Ozer 2003). Currently, N fertiliser guidelines for canola 

production in the Western Cape is determined from international literature or adopted from 

guidelines for wheat. Due to climatic differences within the canola production area, we expect 

that the optimal rate of N fertiliser and the distribution thereof will differ not only for local 

conditions, but also between different areas within the Western Cape. The aim of this study is to 

determine the optimal rate and the distribution of N fertiliser for optimal canola production. 

3.3. Materials and methods 

3.3.1. Trial preparation  

3.3.1.1. Experimental sites 

Field experiments were conducted at Langgewens Research Farm (33°16’42.33” S; 18°42’11.62” 

E), Altona (33°41'04.9"S; 18°37'09.2"E) and Roodebloem (34°13'11.1"S; 19°31'51.0"E) in the 

2015 growing season. The three sites were strategically identified based on climate and soil 

characteristics, to represent a more extensive production area of the Western Cape. 
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Langgewens and Altona are situated in the Swartland, and Roodebloem in the southern Cape. 

Although both regions are characterised by a Mediterranean-type climate, their rainfall 

distribution differ. The Swartland receives approximately 80% of its total annual rainfall during 

the months of April to October, and the southern Cape cape 60 to 75%. The long-term average 

annual rainfall for Langgewens, Altona and Roodebloem is 397, 527 and 449 mm, respectively. 

The 2015 season was characterised by dry conditions in the Swartland, with rainfall lower than 

the long-term average of most months (Figure 3.1). Although Altona received sufficient rainfall 

from January through March, and higher than expected rainfall during June, rainfall was 

generally lower in the remaining months than the long-term average. Roodebloem received 

higher than average rainfall in June, July and September, while the rainfall during the remainder 

of the year was below the long-term average (Western Cape Department of Agriculture 2015). 

Figure 3.1: Average long-term and monthly rainfall for 2015 for Altona, Roodebloem and Langgewens. 

‘Plant’ indicates when the canola was planted, while 30, 60 and 90 DAP indicates the number of days after 

planting, when N fertiliser was applied. 

The average maximum daily temperatures in summer were generally similar or slightly lower 

than the long-term average daily maximum temperatures (Figures 3.2 and 3.3). The average 

minimum daily temperature was higher during August and September than the long-term 

average (Western Cape Department of Agriculture 2015).  
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Figure 3.2: Average long-term and mean daily maximum temperatures for 2015 for Altona, Roodebloem 

and Langgewens. 

 

Figure 3.3: Average long-term and mean daily minimum temperatures for 2015 for Altona, Roodebloem 

and Langgewens.  

Soil fertility status was determined prior to execution of the trial. Soil fertility indicators were 

satisfactory for canola production, except for sulphur (S) and boron (B). To prevent suboptimal 

production, gypsum was applied prior to planting at 30 kg S ha-1 to alleviate suboptimal S 

content in soil, and a foliar application for B was applied during the leaf production phase. The 

soil carbon (C) content in the 0 – 150 mm soil layer for Langgewens was 0.64%, Altona 1.27% 
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and Roodebloem 0.86%. Soils of all sites were shallow (250 – 300 mm) sandy loams with a high 

gravel content (>40%). Annual medics (Medicago spp.) were planted in the previous season on 

the trial sites at Altona and Langgewens, while wheat (Triticum aestivum) was planted at 

Roodebloem during the previous growing season. 

3.3.1.2. Treatments and layout 

The experiment was laid out as a factorial arranged in a randomised block design, with 14 N 

treatments replicated in four blocks. Treatments comprised of four N rates, which was applied 

in one, two or three increments after planting, and two control treatments. The total rate of N 

applied per season were 60, 90, 120 and 150 kg N ha-1. For each of these, 20 kg N was applied at 

planting. The rest were then divided in equal increments either 30 days after planting (DAP), 30 

and 60 DAP or 30, 60 and 90 DAP (Table 1). An experimental unit therefore comprised two 

factors: N-rate and DAP effect (N distribution). The first control received no N, while the second 

control received only 20 kg N ha-1 during planting. For interpretation, treatments will be 

expressed in the form of the rate of N (kg ha-1) applied at each increment, viz, in order from left 

to right, fertiliser rate at planting (placed with seed), 30 days after planting, 60 DAP and 90 DAP. 

As an example, treatment 20-40-0-0 indicates that 20 kg N ha-1 was applied at planting, 40 kg N 

ha-1 at 30 DAP, 0 kg N ha-1 at 60 DAP and 0 kg N ha-1 at 90 DAP. At earlier stages of sampling, for 

example at 30 DAP, the figures will only be included to up to the specific point in time, for 

instance 20-0 at 30 DAP or 20-0-0 at 60 DAP.  Plots comprised 1.36 m x 5 m. Half of the plot was 

dedicated for destructive sampling of plants, and the other half were kept for determining yield. 

Table 3.1: Summary of nitrogen fertiliser treatments applied at Altona, Langgewens and Roodebloem.  

The N fertiliser rate (kg ha-1) is shown which was applied at different increments, viz, in order from left to 

right, fertiliser rate at planting (placed with seed) 30 days after planting (DAP), 60 DAP and 90 DAP. 

Experimental Unit N-rate (kg ha-1) At planting  30 DAP 60 DAP 90 DAP 

0-0-0-0 0 0 0 0 0 
20-0-0-0 20 20 0 0 0 
20-40-0-0 60 20 40 0 0 
20-20-20-0 60 20 20 20 0 
20-13-13-13 60 20 13.3 13.3 13.3 
20-70-0-0 90 20 70 0 0 
20-35-35-0 90 20 35 35 0 
20-23-23-23 90 20 23.3 23.3 23.3 
20-100-0-0 120 20 100 0 0 
20-50-50-0 120 20 50 50 0 
20-33-33-33 120 20 33.3 33.3 33.3 
20-130-0-0 150 20 130 0 0 
20-65-65-0 
20-43-43-43 

150 
150 

20 
20 

65 
43.3 

65 
43.3 

0 
43.3 
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3.3.1.3. Seedbed preparation and trial management 

Soil was lightly scarified (<150mm deep) using a harrow to prepare a proper seedbed. A 

conventional small-plot planter was used to plant canola (cv Hyola 555 TT) at a seeding rate of 

3 kg ha-1. Roodebloem, Altona and Langgewens were planted on 6, 7 and 12 April 2015, 

respectively. Trifloralin was sprayed as pre-emergent herbicide to control weeds, especially 

ryegrass. Duraspin was used to control insects. Nitrogen was applied in the form of limestone 

ammonium nitrate (28% N).  

3.3.2. Sampling and analyses 

3.3.2.1. Total soil mineral N 

For all three localities, two composited soil samples were taken per plot to a depth of 150 mm, 

prior to planting and at 30, 60 and 90 DAP, prior to application of N fertiliser. Samples were 

kept cool on ice bricks during transportation. Samples were dried at 70°C for three days and 

passed through a 2 mm sieve. Samples were analysed for nitrate and ammonium content, using 

the salicylic acid (Cataldo et al. 1975) and indophenol-blue (Keeney et al. 1982) methods, 

respectively. The ammonium and nitrate content were used to calculate the total mineral N 

content in the soil. Nitrogen mineralisation for all three localities was determined through 

aerobic incubation at 20°C and at 75% of field water capacity for 7, 14, 28 and 42 days.  

3.3.2.2. Plant density, aboveground biomass and leaf area index (LAI) 

Plant density was determined at 30 DAP by counting the number of plants in a 0.5 m2 quadrant 

(Table 2). Langgewens had a lower plant density than Altona and Roodebloem, which may be as 

a result of drier soil conditions. Roodebloem, which had sufficient rainfall prior to planting, had 

the highest plant density of the three localities. Even though the guidelines for South Africa 

recommend a plant density of 50 to 80 plants m-2, Angadi et al. (2003) found that seed yield only 

declined with plant densities lower than 40 plants m-2. Only treatments 20-13-13-13 and 20-70-

0-0 at Langgewens had plant densities lower than this threshold and should therefore be 

interpreted with caution.  
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Table 3.2: Summary of plant densities at Altona, Langgewens and Roodebloem.  The N fertiliser rate (kg 

ha-1) is shown which was applied at different increments, viz, in order from left to right, fertiliser rate at 

planting (placed with seed) 30 days after planting (DAP), 60 DAP and 90 DAP. 

 Plant density (plants m-2) 

Treatment Altona Langgewens Roodebloem 

0-0-0-0 63 43 88 
20-0-0-0 72 43 88 
20-40-0-0 67 43 78 
20-20-20-0 85 42 78 
20-13-13-13 70 37 88 
20-70-0-0 70 37 91 
20-35-35-0 77 42 86 
20-23-23-23 67 47 85 
20-100-0-0 71 49 95 
20-50-50-0 76 40 89 
20-33-33-33 76 43 87 
20-130-0-0 75 43 96 
20-65-65-0 73 44 89 
20-43-43-43 64 40 80 
 

Ten plants were sampled per plot at 30, 60 and 90 DAP to determine aboveground biomass 

production. Plants were dried for 72 h at 70⁰C. Leaf area was measured with a LICOR leaf area 

meter and LAI was subsequently calculated.  

3.3.3. Statistical analysis 
A one-way analysis of variance (ANOVA) was used to test for differences between treatments 

for all parameters. Means were separated using the Fisher’s least significant difference (LSD) 

test at a 5% level. Where applicable, a 10% significance level was used to identify trends. In 

cases where residuals were not normally distributed, the Kruskal-Wallis test was used as a non-

parametric test to confirm the results of the ANOVA. In cases where Levene’s test for 

homogeneity of variances indicated heterogeneous variances, the LSD test was replaced with 

the Games-Howell multiple comparison procedure. The VEPAC package of STATISTICA was 

used for statistical analyses.   

3.4. Results  

3.4.1. Langgewens Research Farm 

3.4.1.1. Total soil mineral N 

Total soil mineral N content prior to planting was 34.1, 60.4 and 32.3 mg N kg-1 at soil depths of 

0-150, 150-300 and 300-450 mm, respectively (results not shown). For the first seven days, 
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approximately 5 to 12 mg N kg-1 soil was released through mineralisation, depending on the soil 

depth (Figure 3.4).  If the first 14 days was taken into account, more N was fixed into organic 

matter (microbial organisms) than what was released. After 28 days of incubation, the most N 

was released in the 0 – 150 and 150 – 300 mm layers. When soil was incubated for 42 days, N 

was released only in the 0 – 150 mm depth layer, and fixed in the deeper layers.    

Figure 3.4: Total soil mineral nitrogen released at soil depths of 0-150, 150-300 and 300-450 mm at 

Langgewens Research Farm after 7, 14, 28 and 42 days of  incubation at 20°C and at 75% of field water 

capacity. 

At 30 DAP the total mineral N in soil was measured to assess the influence of N fertilisation 

during the planting procedure on the total soil mineral N content. Treatment 0-0, where no N 

was applied whatsoever, had a total soil mineral N content of 25.9 mg kg-1. Treatment 20-0 (20 

and zero kg N ha-1 at planting and 30 DAP, respectively) had a total soil mineral N content 43.5 

mg kg-1 (SD = 14.76), and did not differ (P>0.05) from treatment 0-0 (results not shown). 

Therefore, placing 20 kg N ha-1 with seed during planting made no difference (P>0.05) to the 

mineral N content of soil 30 days later.  

Prior to applying fertiliser at 60 DAP, total soil mineral N content did not differ (P>0.05) 

between treatments (Figure 3.5).  
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Figure 3.5: Total soil mineral N content (mg N kg-1 soil) as affected by rate and time of N application on 

Langgewens Research Farm. Figures on x-axes indicate the N fertiliser rate (kg ha-1) at each increment, 

viz, in order from bottom to top, fertiliser rate at planting (placed with seed) and 30 days after planting. 

P= 0.404.  

 

 

Figure 3.6:  Total soil mineral N content as affected by rate and time of N application on 

Langgewens Research Farm. Figures on x-axes indicate the amount of N (kg ha-1) applied at each 

increment, viz, in order from bottom to top, fertiliser rate at planting (placed with seed), 30 and 

60 days after planting. P=0.005  

At 90 DAP, prior to fertilisation, the effect of fertiliser treatments applied up to 60 DAP on total 

soil mineral N content was assessed (Figure 3.6). Treatments 20-20-20 and 20-43-43 had the 
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highest (P<0.05) total soil mineral N content, but only differed from treatments 0-0-0, 20-0-0 

and 20-40-0. Therefore, N applied at a rate higher than 46 kg N ha-1, and at two intervals (30 

and 60 DAP), resulted in a higher (P<0.05) total soil mineral N content. 

 

3.4.1.2. Leaf area index (LAI) and aboveground biomass 

The LAI of the control treatment 0-0 at 30 DAP was 0.60 m2 m-2, and the second control, which 

received 20 kg N at planting, had an LAI of 0.78 m2 m-2 (SD = 0.23), but they were not different 

(P>0.05). At 60 DAP and 90 DAP, no treatment effect (P>0.05) on LAI were detected (Figures 3.7 

and 3.8, respectively). The LAI did not change much from 60 to 90 DAP, as the LAI at 60 DAP 

was as high as 2.9 m2 m-2 and at 90 DAP it was 2.7 m2 m-2.  

Figure 3.7: LAI as affected by rate and time of N fertiliser application on Langgewens Research Farm at 60 

days after planting (DAP). Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz, 

in order from bottom to top, fertiliser rate at planting (placed with seed) and 30 DAP. P=0.691; Soil Water 

Content = 5.86% ± 0.37.  

For biomass production at 30 DAP, the control treatment which received no N at planting, 

produced 8.67 kg ha-1 and control treatment 0-20 (20 kg ha-1) produced 11.27 kg ha-1 (SD = 

2.58) and did not differ from each other (P>0.05) (results not shown). Treatments did not affect 

biomass production at 60 DAP (P>0.05), which ranged from 73 to 105 kg ha-1 (Figure 3.9). The 

results on LAI and biomass might be an indication of sufficient N fixed by the annual medics in 

the previous season, and a lack of moisture, due to low rainfall, to sustain initial growth. At 90 

DAP, biomass ranged between 448 and 783 kg ha-1. It was not affected by the treatments 

(P>0.05), which again were most probably due to the very low rainfall experienced at 

Langgewens during 2015 (Figure 3.10). 
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Figure 3.8: LAI as affected by rate and time of N application on Langgewens Research Farm at 60 days 

after planting. Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz, in order 

from bottom to top, fertiliser rate at planting (placed with seed), 30 and 60 days after planting. P=0.174; 

Soil Water Content = 4.29% ± 0.38. 

 

Figure 3.9: Aboveground biomass production as affected by rate and time of N application on Langgewens 

Research Farm at 60 days after planting (DAP). Figures on x-axes indicate the rate of N (kg ha-1) applied at 

each increment, viz, in order from bottom to top, fertiliser rate at planting (placed with seed) and 30 DAP. 

P=0.662; Soil Water Content = 5.86% ± 0.37. 
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Figure 3.10: Aboveground biomass as affected by rate and of N application at 60 DAP on Langgewens 

research farm measured at 90 days after planting. Figures on x-axes indicate the rate of N (kg ha-1) 

applied at each increment, viz, in order from bottom to top, fertiliser rate at planting (placed with seed) 

30 and 60 days after planting. P=0.480; Soil Water Content = 4.29% ± 0.38. 

3.4.1.3. Yield and thousand kernel mass (TKM) 

Treatments of N fertiliser rate or distribution of N did not affect grain yield or TKM (P>0.05) at 

Langgewens during 2015. No difference (P>0.05) was found between control treatment 0-0-0-0 

and the other treatments (Figures 3.11 and 3.12). The mean yield across all treatments was 1.68 

Mg ha-1 (SD = 0.24) and mean TKM was 2.21 g (SD = 0.06). The low grain yield and TKM clearly 

showed the detrimental effect of the low rainfall on the growth and yield of canola on this 

locality.   
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Figure 3.11: Canola yield (Mg ha-1) as affected by rate and time of N application on Langgwens Research 

Farm. Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz. in order from 

bottom to top, fertiliser rate at planting (placed with seed), 30, 60 and 90 days after planting. P=1.000    

 

Figure 3.12: Thousand kernel mass as affected by rate and time of N application on Langgwens Research 

Farm. Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz. in order from 

bottom to top, fertiliser rate at planting (placed with seed), 30, 60 and 90 days after planting. P=0.390 
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3.4.2. Altona 

3.4.2.1. Total soil mineral N 

The initial soil N content at 0-150 and 150-300 mm soil depth layers were 24.75 and 13.42 mg N 

kg-1, respectively (results not shown). At a soil depth of 300-450 mm the soil N content was 

10.18 mg kg -1. At soil depths of 0-150 and 300-450 mm, the total soil mineral N initially 

declined for 14 days of incubation, after which it increased towards 28 days (Figure 3.13).  That 

was followed by a decline in the total soil mineral content towards 42 days of incubation. 

However, after 14 days of incubation, soil from a depth of 150-300 mm, had an unexpected very 

high total N content. 

  

Figure 3.13: Total soil mineral nitrogen at soil depth layers of 0-150, 150-300 and 300-450 mm at Altona 

after seven, 14, 28 and 42 days of incubation at 20°C and at 75% of field water capacity.  

 

Total soil mineral N content was determined at 30 DAP.  Although the control treatment which 

received no N at planting (0-0-0-0), had a total soil mineral N content of 58.38 mg kg-1 compared 

to 63.87 mg kg-1 (SD= 14.44) for control treatment which received 20 kg N ha-1 at planting (20-

0-0-0), but treatments did not differ (P>0.05). Similarly, the total mineral N content of the soil at 

60 and 90 DAP also showed no differences (P>0.05) (Figures 3.14 and 3.15). The variation 

between treatments at 60 DAP was large (SD=10.37) and total soil mineral N ranged from 22.04 

mg kg-1 for treatment 20-0 to 39.06 mg kg-1 for treatment 20-65.  Standard deviation between 

treatments at 90 DAP were 5.88.  
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Figure 3.14: Total soil mineral N content as affected by rate and time of N application on Altona. Figures 

on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz, in order from bottom to top, 

fertiliser rate at planting (placed with seed) and 30 days after planting. P=0.471; Soil Water 

Content=11.75%±0.46 

 

 

Figure 6: Total soil mineral N content as affected by rate and time of N application on Altona. 

Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz, in order from 

bottom to top, fertiliser rate at planting (placed with seed), 30 and 60 days after planting. 

P=0.106; Soil Water Content=8.36%±0.23 
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3.4.2.2. Leaf area index (LAI) and aboveground biomass 

At 30 DAP, LAI for treatments did not differ (P>0.05). Control treatment one, which did not 

receive any N at all had an LAI of 0.71 m2 m-2, while control treatment two, which received 20  

kg N ha-1 at planting, recorded an LAI of 0.64 m2 m-2 (SD of 0.0.14).  The LAI at 60 DAP ranged 

from 4.44 m2 m-2 for treatment 20-43 to 6.84 m2 m-2 for treatment 20-40, but because of a large 

variation between treatments (SD = 1.61) there were no significant treatment effect (Figure 

3.16). At 90 DAP, the LAI showed a decline when compared to 60 DAP and differences were 

again not observed (P>0.05) (Figure 3.17).  

Aboveground biomass did not differ (P>0.05) between treatments at 30 DAP (results not 

shown), 60 DAP (Figure 3.18) or 90 DAP (Figure 3.19). At 30 DAP control treatment one (0-0-0-

0) had a biomass of 11.35 kg ha-1, and control treatment two (20-0-0-0) a biomass of 9.95 kg ha-

1 (SD= 2.21). This increased to 650 and 726 kg ha-1 for the two respective control treatments 

after 90 DAP. However, no differences (P>0.05) were observed for either 60 or 90 DAP.  

 

Figure 3.16:  LAI as affected by rate and time of N application on Altona at 60 days after planting. Figures 

on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz, in order from bottom to top, 

fertiliser rate at planting (placed with seed) and 30 days after planting. P=0.621; Soil Water 

Content=11.74%±0.45 
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Figure 3.17: LAI as affected by rate and time of N application on Altona at 90 days after planting. Figures 

on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz, in order from bottom to top, 

fertiliser rate at planting (placed with seed), 30 and 60 days after planting. P=0.958; Soil Water 

Content=8.36%±0.23 

 

 

Figure 3.18: Aboveground biomass production as affected by rate and time of N application on Altona at 

60 days after planting. Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz, in 

order from bottom to top, fertiliser rate at planting (placed with seed) and 30 days after planting. 

P=0.647; Soil Water Content= 11.75%±0.46 
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Figure 3.19: Aboveground biomass production as affected by rate and time of N application on Altona at 

60 days after planting. Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz, in 

order from bottom to top, fertiliser rate at planting (placed with seed), 30 and 60 days after planting. 

P=0.910; Soil Water Content=8.36%±0.23. 

3.4.2.3. Yield and thousand kernel mass (TKM) 

Nitrogen fertiliser treatments did not affect (P>0.05) yield or TKM at Altona (Figures 3.20 and 

3.21, respectively). The mean grain yield was 3.29 Mg ha-1 (SD=0.30), while the mean TKM was 

2.69 g (SD=0.09). 

Figure 3.20: Canola yield (Mg ha-1) as affected by rate and time of N application on Altona. Figures on x-

axes indicate the rate of N (kg ha-1) applied at each increment, viz. in order from bottom to top, fertiliser 

rate at planting (placed with seed), 30, 60 and 90 days after planting. P=0.440  

a
a

a

a

a a
a

a a

a

a
a

a
a

0
100
200
300
400
500
600
700
800
900

1000

0-
0-

0

20
-0

-0

20
-1

3-
13

20
-4

0-
0

20
-2

0-
20

20
-2

3-
23

20
-3

3-
33

20
-7

0-
0

20
-3

5-
35

20
-4

3-
43

20
-1

00
-0

20
-5

0-
50

20
-1

30
-0

20
-6

5-
65

Bi
om

as
s 

(k
g 

ha
-1

)

Treatment

a
a

a

a a

a

a

a
a a

a a
a

a

2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

0-
0-

0-
0

20
-0

-0
-0

20
-4

0-
0-

0

20
-2

0-
20

-0

20
-1

3-
13

-1
3

20
-7

0-
0-

0

20
-3

5-
35

-0

20
-2

3-
23

-2
3

20
-1

00
-0

-0

20
-5

0-
50

-0

20
-3

3-
33

-3
3

20
-1

30
-0

-0

20
-6

5-
65

-0

20
-4

3-
43

-4
3

Yi
el

d 
(M

g 
ha

-1
)

Treatment

Stellenbosch University  https://scholar.sun.ac.za



 

32 
 

 

Figure 3.21: Thousand kernel mass as affected by rate and time of N application on Altona. Figures on x-

axes indicate the rate of N (kg ha-1) applied at each increment, viz. in order from bottom to top, fertiliser 

rate at planting (placed with seed), 30, 60 and 90 days after planting. P=0.990 

3.4.3. Roodebloem 

3.4.3.1. Total soil mineral N 

The total mineral N content of soil collected at Roodebloem before planting was 47.43 mg N kg-1 

at a soil depth of 0-150 mm, 47.14 mg kg-1 at 150-300 mm and 30.12 mg kg-1 at 300-450 mm 

(results not shown). The mineralisation rate at Roodebloem (Figure 3.22) was negative up to 14 

days of incubation, even though the mineralisation rate increased over the incubation period.  

 
Figure 3.22: Total soil mineral nitrogen released at soil depths of 0-150, 150-300 and 300-450 mm at 

Roodebloem after 7, 14, 28 and 42 days of incubation at 20°C and at 75% of field water capacity. 
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Total soil mineral N content did not differ (P>0.05) at 30 DAP, although control treatment one, 

which did not receive any N fertiliser, had a total soil mineral N content of 58.33 mg kg-1 

compared to control treatment two, which received 20 kg N at planting, and had a total soil 

mineral N content of 39.76 mg kg-1 (SD=22.80). The total soil mineral N content was high for all 

treatments at 60 DAP. Although differences were not observed (P<0.05), it showed a slight and 

gradual increase with increasing N fertiliser rate (Figure 3.23). No differences (P>0.05) in the 

total soil mineral N content between treatments were found at 90 DAP (Figure 3.24), but 

showed a similar tendency than at 60 DAP. 

Figure 3.23: Total N content at 60 DAP as affected by rate and time of N application on Roodebloem. 

Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz, in order from bottom to 

top, fertiliser rate at planting (placed with seed) and 30 days after planting. P=0.189; Soil Water 

Content=19.44%±0.65 

Figure 3.24: Total N content as affected by rate and time of N application on Roodebloem. Figures on x-

axes indicate the rate of N (kg ha-1) applied at each increment, viz, in order from bottom to top, fertiliser 
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rate at planting (placed with seed), 30 and 60 days after planting. P=0.688; Soil Water 

Content=17.37%±0.39. 

3.4.3.2. Leaf area index (LAI) and aboveground biomass 

LAI did not differ (P>0.05) at 30 DAP. Control treatment one (0-0-0-0) had a LAI of 1.17 m2m-2, 

while control treatment two (20-0-0-0) had a LAI of 1.05 m2 m-2 (SD = 0.23). Although the LAI 

did not differ (P>0.05) between treatments, N fertilisation tended (P<0.1) to increase LAI at 30 

DAP (Figure 3.25). Treatment 20-70 had the highest LAI, followed by treatments 20-100 and 

20-130. The LAI ranged from 2.77 m2 m-2 for treatment 20-0 to 5.92 m2 m-2 for treatment 20-70 

with high variation (SD=1.51) at 60 DAP, but the treatments did not differ (P>0.05) (Figure 

3.25). The LAI between treatments did not differ at 90 DAP and showed no trend (P>0.1) 

related to time and rate of N application (Figure 3.26). 

The biomass production did not differ (P>0.05) between treatments at 30 DAP. Control 

treatment one (0-0-0-0) had a biomass of 15.87 kg ha-1 and control treatment two a biomass of 

13.57 kg ha-1 (SD =3.27). At 60 and 90 DAP, treatments did not affect (P>0.05) biomass 

production (Figures 3.27 and 3.28, respectively). Although treatments had no effect (P>0.05) on 

biomass production at 90 DAP, there was a trend (P<0.1) for higher biomass production at 

higher rates of N. Treatments 20-130 and 20-100 resulted in the highest (P<0.1) biomass 

production. Both treatments received the bulk of their N at 30 DAP.  

 
Figure 3.25: LAI as affected by rate and time of N application on Roodebloem at 60 days after planting. 

Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz, in order from bottom to 

top, fertiliser rate at planting (placed with seed) and 30 days after planting. P=0.074; Soil Water 

Content=19.44%±0.65 
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Figure 3.26: LAI as affected by rate and time of N application on Roodebloem at 60 days after planting. 

Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz, in order from bottom to 

top, fertiliser rate at planting (placed with seed), 30 and 60 days after planting. p=0.145; Soil Water 

Content=17.37%±0.39 

 

 

Figure 3.27: Biomass production as affected by rate and time of N application on Roodebloem at 60 days 

after planting. Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz, in order 

from bottom to top, fertiliser rate at planting (placed with seed) and 30 days after planting. P=0.898; Soil 

Water Content =19.44%±0.65 
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Figure 3.28: Aboveground biomass production as affected by rate and time of N application on 

Roodebloem at 90 days after planting. Figures on x-axes indicate the rate of N (kg ha-1) applied at each 

increment, viz, in order from bottom to top, fertiliser rate at planting (placed with seed) 30 and days after 

planting. P=0.066; Soil Water Content=17.37%±0.39 

 

3.4.3.3. Yield and TKM 

 In 2015, treatment 20-100-0-0 had the highest (P<0.05) yield, but did not differ (P>0.05) from 

treatments 20-70-0-0, 20-23-23-23, 20-50-50-0, 20-130-0-0 and 20-65-65-0 (Figure 3.29). 

Treatment 20-70-0-0 and 20-100-0-0 had a similar application strategy, and yields between 

these two treatments did not differ (P>0.05). Both treatments received 20 kg ha-1 of N during 

planting, with the remainder of the rate applied as a topdressing at 30 DAP.  

Thousand kernel mass was not affected (P>0.05) by N fertilisation at Roodebloem in 2015 

(Figure 3.30). 
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Figure 3.29: Canola yield (Mg ha-1) as affected by rate and time of N application on Roodebloem. Figures 

on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz. in order from bottom to top, 

fertiliser rate at planting (placed with seed), 30, 60 and 90 days after planting. P=0.040  

 

 

Figure 3.30: Thousand kernel mass as affected by rate and time of N fertilizer application on Roodebloem. 

Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz. in order from bottom to 

top, fertiliser rate at planting (placed with seed), 30, 60 and 90 days after planting. P=0.240 
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3.5. Discussion 

3.5.1. Total soil mineral N 
Nitrogen in soils are found inorganic and organic forms. For plant production, the most 

important inorganic forms are nitrate and ammonium. In this study, the sum of nitrate and 

ammonium are discussed as total mineral N.  Organic N is fixed in humic and nonhumic 

substances in soils. It is largely the nonhumic soil organic matter that can be mineralised to 

release inorganic N. Subsequently, N in soil that is available to plants is a function of both 

applied inorganic N (as fertiliser or through symbiotic N fixation) and N released through 

mineralisation from organic matter (Barker and Bryson 2007). The proportion of N released 

through mineralisation can be substantial in the Western Cape, and should be taken into 

account when N guidelines are developed (Maali and Agenbag 2003). The N mineralisation 

potential of soil from at Altona, Langgewens and Roodebloem was determined at 75% of field 

water capacity (FWC) and 20˚C. It is expected that the N mineralised under field conditions will 

be lower than the N mineralised under the controlled conditions of the incubation test, because 

of low rainfall. The soil water content was lower than 75% of FWC for the majority of the 

season. 

At Langgewens, there was a negative N release rate at 14 days after the incubation started, after 

which the N released increased towards 28 days after the incubation started. The release of N 

through mineralisation at Altona declined from 7-14 days after the incubation started, after 

which it increased towards 28 days. It was then followed by a decline as much of the N was 

already released at 28 days after incubation started. The preceding crop and soil type was 

similar at both localities in the Swartland, with rainfall distribution and temperature differing. 

Annual medics, which has the ability to fix atmospheric N symbiotically with Rhizobium, was 

planted at both Langgewens and Altona in the previous growing season, while wheat was 

planted at Roodebloem. Langgewens had less N released than Altona. At Roodebloem the 

negative mineralisation rate initially might be due to soil microbes feeding of available N in the 

soil to decompose the wheat residue with a high C:N ratio from the previous season, which may 

lead to immobilisation of N. Also, the mineralisation potential is partly determined by the soil 

type while the soil type also determines in part the ability of the soil to store soil moisture. Soils 

of all three sites were shallow (250 – 300 mm) sandy loams with a high gravel content (>40%).   

The soil water content (SWC) for the duration of the growing season was below 20% of FWC at 

Langgewens and Altona. The distribution and rate of rainfall at Roodebloem was close to the 

long-term average rainfall for that area, and was only lower than long-term average at around 

90 DAP. Temperatures were also lower than long-term averages.  A study by Li et al. (2014) on 
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the interactive effects of soil temperature and SWC found that net mineralisation was low at a 

SWC of 20% of FWC, because of cellular desiccation of soil microbes. Langgewens may have had 

a low soil microbial activity which may have resulted in low total soil mineral N content which 

could be ascribed to lower than long-term average rainfall, and subsequently low SWC. The N 

mineralisation rate tends to increase with increasing temperatures if the SWC is sufficient (Li et 

al. 2014), and the optimal temperature for soil microbial activity is in the proximity of 25 to 

35°C. Higher temperatures may also lead to higher rates of mineralisation, but only if the SWC is 

sufficient.  

In addition to the reduction in mineralisation rate due to low rainfall conditions (low SWC), N-

transport to the roots is also impaired by these low rainfall conditions (Jensen et al. 1997).  This 

means that uptake of N by canola roots was likely limited by the dry conditions, especially after 

90 DAP. We therefore do not expect differences between treatments after 90 DAP as it would 

have been equally low.  

In Germany, soil samples are taken in spring to determine soil mineral N content to comply with 

legislation which limits excessive N fertilisation, and avoid environmental pollution. Henke et al. 

(2009) found that soil mineral N content analysed in spring for oilseed rape (B. napus) fields, 

did not correlate with the optimum rate of N fertilisation. They recommended to rather take soil 

mineral N samples in autumn, at the beginning of the growing season. A fertiliser programme 

for N (rate and timing) could then be determined accordingly. However, for the current study, 

no differences in total soil mineral N was observed between treatments at 30 or 60 DAP at any 

locality, as well as 90 DAP for Altona and Roodebloem. If fertilisation do not make a difference 

to soil mineral N content, it is questioned whether accurate recommendations would be 

possible from taking soil N content into account. More research is recommended. However, 

differences between treatments in total soil mineral N was detected at Langgewens 90 DAP. The 

highest total soil mineral N was found at treatments 20-20-20 and 20-43-43, but it only differed 

from treatments 0-0-0, 20-0-0 and 20-40-0. This gives an indication that higher rates of N leads 

to higher values of total soil mineral N at this locality. Higher values of total soil mineral N is 

also found either at treatments where high amounts of the total N rate were applied soon after 

planting, or where lower levels of N was applied over the duration of the growing season. This 

might be an indication that the rate of nitrogen that was released through mineralisation was 

slow, but sufficient for growth in the dry conditions of the season, and that the application of 

additional N seemingly had little effect on the total soil mineral N content. 

Maali and Agenbag (2003) concluded that response to different N-rates with regards to total 

soil mineral N varied between seasons, due to total rainfall and distribution of rainfall. Their 
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results varied over a period of four years, with differences in rainfall evident.  During the year 

which received the lowest rainfall, the mineral N content varied between different N rates as is 

expected, and the total soil mineral N content was in line with the values found in the present 

study at Langgewens at 90 DAP. Differences in results between Maali and Agenbag (2003) and 

the current results of this study may therefore be due to poor rainfall distribution.  

3.5.2. LAI and aboveground biomass  
No differences (P>0.05) in either LAI or biomass was observed at Altona and Langgewens. The 

LAI and biomass also did not differ at Roodebloem (P>0.05), but certain trends (P<0.1) were 

found. Treatments 20-130 and 20-100 produced relatively higher (P<0.1) biomass. Both 

treatments received the bulk of their N at 30 DAP. Therefore, there was a trend (P<0.1) for 

treatments that received ≥100 kg N ha-1 at 30 DAP to have a higher LAI and biomass. Similar 

results have been reported by Cheema et al (2010), who found that sufficient N during rapid leaf 

growth enhances LAI and enables the plant to intercept more solar radiation for biomass 

production. Canola is known to remobilise accumulated N from the leaves to the pods and seeds. 

Rathke et al. (2006) found that N allows for a delay in leaf senescence. In the current trial, it is 

therefore expected that the LAI should differ between treatments that received N in three 

increments versus the treatments that received N in either one or two increments, but these 

differences did not occur (P>0.05). Several factors may have influenced these results, such as 

planting date,temperatures and soil moistures. These factors will be discussed below. 

Roodebloem was planted in the first week of April, the earliest of the three sites, followed by 

Altona and Langgewens, respectively. Planting occurred later than planned due to low rainfall 

conditions. Due to the fact that the first rain only came by the end of May, the growing season 

was short. The early part of the growing season at Langgewens and Altona also experienced 

slightly higher temperatures than the long-term average, which may have shortened the 

duration of the vegetative growth stage. Roodebloem experienced sufficient rainfall during the 

months of June, July and September, with daily maximum temperatures lower or equal to the 

long-term average during the months of June to September. Hocking and Stapper (2001) 

emphasised timely sowing to maximise yield potential. Timely sowing allows for a longer 

photoperiod, which in turn affects the duration of the phenophase of rapeseed (Hartel 2012). 

The delay in planting dates at Altona and Langgewens therefore shortened the duration of the 

photoperiod, which in turn affected LAI and biomass production negatively.  

The higher than average mean temperatures at Altona and Langgewens may have influenced 

the duration of the developmental phases of the canola crops. A higher than average mean 

temperature and a shorter photoperiod leads to a shortening in the developmental phases 
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(Chmeilewski et al. 2004). This will consequently also lead to a lower LAI and biomass 

production than what is expected under optimal photoperiod duration. Similar results were 

found by Faraji (2009), who found that lower temperatures during vegetative growth allows for 

better biomass and LAI production. This may be an indication as to why Roodebloem had a 

tendency (P<0.1) to produce more biomass at higher rates of N (Figure 3.28).  

Results by Tesfamariam et al. (2010) found that water stress during the vegetative period and 

flowering stage significantly reduced the LAI. They found that sufficient plant available soil 

water for the duration of the season have led to a higher LAI and that the leaf canopy remained 

functional for a longer period. The water stressed treatments had a lower leaf area duration and 

was therefore less capable to accumulate a high biomass. This is also in agreement with results 

from Ehlers (1996), who reported that sustained drought conditions over the growing season 

also accelerates leaf senescence which in turn may have caused lower biomass production.  

Jensen et al. (1997) stated that drought conditions also leads to impaired N-transport to the 

roots. Plants absorb water from the soil through the root and transport it to the stem, leaves and 

flowers. The root hairs are in close contact with the thin film of water surrounding the soil 

particles. This corresponds with the results in the current study, and indicates that the drought 

conditions therefore may have caused applied N to not be taken up by the plants at Altona and 

Langgewens. This is in contrast with Roodebloem, where sufficient SWC may have led to 

sufficient uptake. With the findings of Tesfamariam et al. (2010) as background, these drought 

conditions may have led to accelerated leaf senescence, which in turn influences biomass 

production, N remobilisation and ultimately yield adversely.   

In a season where water stress led to a delay in the planting date, and higher than long term 

average temperatures occurred, N fertilisation had no meaningful effect on the production of 

biomass and LAI in the present study.   

3.5.3. Yield  
Yield only differed (P>0.05) at Roodebloem, in the southern Cape. Treatments 20-70-0-0 and 

20-100-0-0 led to the highest yield, but did not differ from various other treatments. Taking 

these treatments into consideration, it can be derived that treatments that received more than 

50 kg N ha-1 at 30 DAP resulted in the highest yield at Roodebloem. Yields were generally below 

2 Mg ha-1, with only treatments 20-70-0-0 and 20-100-0-0 higher than 2 Mg ha-1.  

No differences were found between treatments at Altona and Langgewens. Current 

recommended guidelines for canola production in the Swartland dictates that N should be split 

into three increments: at establishment, 30 to 40 days after establishment and again at 60 to 70 
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days after establishment (Protein Research Foundation, 2015). However, during years with 

adverse climate, particularly rainfall, the last top-dressing could be decreased or omitted. When 

these guidelines are then followed, no topdressing would be advised for 2015, as it was a year 

with lower rainfall than average (Figure 3.1), and with a poor distribution during the growth 

season. The results in Figure 3.1 support this guideline, but one can further suggest that no N 

fertiliser is required at 30 days after planting in very dry years. One should, however, also 

consider this when the soil’s potential to release N is in the ranges that was found in this 

situation (Figure 3.4). 

The yield results at Altona and Langgewens are in contrast with results by Cheema et al. (2010) 

and Hocking et al. (1997), but the results at Roodebloem corresponds with their findings. They 

found increasing yields with increasing rates of N, but also found a decrease in yield at the 

higher rates of N applied. However, Cheema et al. (2010) applied three irrigations, at branching, 

flowering and pod formation, which in effect ensured sufficient moisture during the growth 

period of the crop. This would therefore not be directly comparable to the dryland conditions of 

this trial. Hocking et al. (1997) reported above average rainfall conditions. Sieling and Christen 

(1997) also found higher yields at higher rates of N. Sieling and Christensen (1997) found an 

increase in yield from 3.21 Mg ha-1 to 3.84 Mg ha-1 where the N rate was increased from 80 kg N 

ha-1 to 200 kg N ha-1.  

The distribution of N that led to the highest yield at Roodebloem was for treatments 20-70-0-0 

and 20-100-0-0. This indicates that a second and third topdressing seemingly had little or no 

effect on yield. These results at Roodebloem is in correspondence with Barlog and Grzebisz 

(2004), who found the highest yield where N was applied as 80 kg N ha-1 at the start of 

vegetation and 80 kg N ha-1 three weeks later. This allowed for rapid development at the 

beginning of growth and fast growth at flowering. Contrastingly, Rathke et al. (2006), found a 

strong relationship between N-uptake during reproductive growth and yield. We would expect 

treatments that received N at 90 DAP to therefore differ in yield in comparison with treatments 

that did not receive N at 90 DAP, which was not the case. This may be due to a finding by Rathke 

et al. (2006), who found little difference in yield at high rates of N, between split application and 

no split application.  Barlog and Grzebisz (2004), who tested only one high rate of N (160 kg N 

ha-1), found little difference in yield between two or three split applications.   

Yield is determined by the number of pods, seeds per pod and weight per seeds. Robertson et al. 

(2016) emphasised the importance of timely sowing in determining final yield to make most of 

rainfall received during the growing season. Timely planting allows plants a more extend period 

for vegetative growth, leading to a deeper root system to access more soil moisture. This is 
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particularly important in regions with Mediterranean-type climate, where the rainfall is 

restricted to the cooler months. Hocking et al. (1997) found that 14% of total dry matter 

accumulated after flowering, largely due to the mobilisation of accumulated N from leaves and 

branches, which is in accordance with Robertson et al. (2014) who found that yield was 

positively correlated with biomass production where water and temperature stress was absent. 

This might explain why results of Cheema (2010) and Hocking et al. (1997) were contradictory 

to the results at Altona and Langgewens, but in agreement with the results found at 

Roodebloem. 

Gan et al. (2014) and Masaud (2007) found a reduction in yield components when water stress 

occurred during flowering. By planting at the correct time, grain-filling can occur after very cold 

winters, but before high summer temperatures and water shortages towards the end of the 

growing season can limit yield. Roodt et al. (1984) and Olson (1960) also concluded that a 

decrease in available water towards the end of the growing season had a significant impact on 

the dry weights of pods. It may therefore be possible that the delayed planting date due to a lack 

of sufficient soil moisture may have impacted yield adversely at both Langgewens and Altona, 

but not at Roodebloem where soil moisture was sufficient. Currently it is advised that a 

topdressing is only effective if more than 110mm of rainfall was received before application 

(Turner 2014). Roodebloem received above average rainfall during June, just after application. 

SWC was not measured at 30 DAP due to technical difficulties, but it is expected that SWC was 

sufficient.  

Thurling (1978), found that high temperature stress during first anthesis may reduce yield, 

while pod abortion increased when anthesis occurred during the warmer part of the growing 

season (McGregor 1981). These findings are also confirmed by Morrison (2002), who found that 

temperatures higher than 29.5 °C during the period of bolting to the end of flowering reduced 

seed weight per pod and therefore yield. The differences in temperatures between the 

Swartland areas (Altona and Langgewens), and Roodebloem may be therefore be an indication 

as to why differences in treatments was significant at Roodebloem. Due to lower temperatures 

during flowering at Roodebloem, pod development was not negatively affected, whereas the 

higher temperatures in the Swartland may have impacted pod development adversely.  

3.6. Conclusion 
The highest yield at Roodebloem was realised at N-levels of 90-120 kg N ha-1, applied as 20 kg N 

ha-1 at planting and the remainder at 30 DAP. No significant response to N applications was 

recorded in the Swartland. These preliminary results indicate that in a low rainfall year, the 

application of additional N as a topdressing, made no significant difference in yield in the 
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Swartland. Due to lower N mineralisation potential of Swartland soils, higher optimum levels 

are expected in normal and high rainfall years, than in the southern Cape. Taking the 

abovementioned findings into consideration, the effect of treatments might have been 

significant due to combination of lower temperatures, sufficient soil moisture and high levels of 

N available during vegetative growth. It is recommended that this study should be repeated in 

other years, before accurate general guidelines for N fertilisation of canola could be 

constructed.It is further recommended that model simulations be run, where various scenarios 

based on the long-term weather data of the canola growing areas be incorporated. 
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Chapter 4 
The effect of time and rate of nitrogen application on 
agronomic parameters 
 

4.1. Abstract 
Canola is increasing in popularity as a dryland crop in the southern Cape and Swartland grain 

production areas of South Africa. Canola has a high requirement for nitrogen (N), and response 

of canola to N fertiliser application is common. Nitrogen fertilisation is generally the highest 

input cost in canola production. Refined N fertilisation management strategies are necessary to 

enhance profitability of canola production. Field experiments were conducted in 2015 at 

Langgewens and Altona (moderate and high production potential zones in the Swartland) and 

Roodebloem (southern Cape). The trial was laid out as a factorial arranged in a randomised 

block design, with six N rates (0, 20, 60, 90, 120 and 150 kg N ha-1), which was applied in one, 

two or three increments after planting, replicated in four blocks. Twenty kg N ha-1 was applied 

at planting. The rest was divided in equal increments either 30 days after planting (DAP), 30 

and 60 DAP or 30, 60 and 90 DAP. No differences (P>0.05) were observed in agronomic N use 

efficiency (ANUE) at Altona and Langgewens, while treatments had a significant effect on ANUE 

at Roodebloem. The treatment that received 20 kg N ha-1 at planting and 100 kg N ha-1 at 30 days 

after planting and no N later, had the highest water use efficiency (WUE), but did not differ 

(P>0.05) from a number of treatments that received more than 90 kg N ha-1 at various time 

intervals. Water use efficiency at Altona and Langgewens was not affected by treatments 

(P>0.05). Preliminary results indicate that an N fertilisation strategy of applying 20 kg N ha-1 at 

planting and >50 kg N ha-1 30 DAP, leads to the highest ANUE and WUE. At both Altona and 

Langgewens the highest gross income was obtained by treatment that received no N at all, while 

at Roodebloem the highest gross income was obtained by applying 90 kg N ha-1 for the entire 

duration of the growing season.  

4.2. Introduction 
Nitrogen (N) is generally the most liming nutrient (Grant 1993), and crop responses to N 

fertilisation is common (Ozer 2003). This is also true for canola, which is, next to wheat and 

barley the most important field crop in the Western Cape of South Africa. Furthermore, N is one 

of the most expensive inputs for canola production. Canola has a relatively high requirement for 

N and, compared to other crops produced in the southern Cape and Swartland, a low N use 

efficiency (NUE) (Sylvester-Bradley 2009).  Canola removes 40 kg ha-1 N from soil to produce 
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one ton of grain, in comparison with wheat, which only removes 21 kg ha-1 N to produce one ton 

of grain (Protein Research Foundation 2013). The NUE as defined by Moll et al. (1982) is the 

amount of grain yielded per available unit of N. This available amount includes both fertiliser 

applied and residual N in soil. As the determination of the amount of N in the soil, and how 

much N is taken up by the plant proves to be difficult, the agronomic N use efficiency (ANUE) is 

a better parameter. The ANUE indicates the difference in yield as a response to the N applied as 

fertiliser.  While the ANUE of canola is mainly determined by cultivar (Svečnjaka and Rengel 

2006), it is also influenced by environmental conditions, such as temperature and soil moisture 

(Rathke et al. 2006). The water use efficiency (WUE) gives an indication of the grain produced 

for each millimeter of rain received in the growing season. The WUE can be used to determine 

potential restraints to yield other than a lack of rainfall (Cocks et al. 2001). International 

research and adapted fertiliser programmes for wheat are currently used as source for fertiliser 

guidelines for canola production in the Western Cape, but due to climate differences within the 

canola production area, we expect that the optimal rate of N fertiliser and the distribution 

thereof will differ from international guidelines. The aim of this study is to determine the 

optimal N fertiliser rate and the distribution thereof to maximize NUE and WUE for canola. 

Furthermore, this study will refine N application strategies to maximise the profitability of 

canola in the Western Cape.   

4.3. Materials and Methods 
The experimental procedure, treatments, seedbed preparation and trial management, and 

statistical analyses are discussed comprehensively in Chapter 3. In this chapter procedures for 

agronomic parameters is discussed. Grain yield (kg ha-1) was determined after the removal of 

foreign material (chaff). Two agronomic parameters were determined using the following 

formulae: 

4.3.1. Agronomic nitrogen use efficiency (ANUE) 
The ANUE was calculated with the following formula according to Wright et al. (1998): 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑘𝑘𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘 𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−1) =  𝑘𝑘𝑘𝑘 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘 𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
𝑁𝑁 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑘𝑘𝑘𝑘 ℎ𝑎𝑎−1 ) 

     (1) 

4.3.2. Water use efficiency (WUE) 
The WUE was calculated as follows using the formula from Robertson and Kirkegaard (2005):  

𝑊𝑊𝑊𝑊𝑊𝑊(𝑘𝑘𝑘𝑘 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚−1 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 (𝑘𝑘𝑘𝑘 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝑚𝑚𝑚𝑚)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑡𝑡𝑡𝑡 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)−120 𝑚𝑚𝑚𝑚

    (2) 
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4.3.3. Sensitivity analyses 
A sensitivity analyses was conducted for each locality to determine the most profitable 

management strategy based on the yield realised under the climatic conditions experienced.  

The gross income of each treatment and each N fertiliser rate was determined at each locality, 

giving an indication of the profitability of each N fertiliser rate, as well as the profitability of 

dividing these rates in various times of application. Goss income was determined as follows: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡−1))− 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿 (𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡−1))    

(3) 

The income (R ton-1) of canola was set at R5343 ton-1, while the cost of limestone ammonia 

nitrate (LAN) was set at R 5693 ton-1. Since LAN consists of only 28 % N, the price of N was 

calculated as R20.33 kg-1 N. Both these prices were obtained from the grain division at Overberg 

Agri Cooperation and is relevant for the 2015 production year. 

 

4.4. Results 

4.4.1. Agronomic nitrogen use efficiency (ANUE) 
The ANUE between treatments at Langgewens and Altona did not differ (P>0.05) between 

treatments. It ranged from 1.54 to 1.76 kg grain yield kg-1 N at Langgewens (Figure 4.1) and 

between 3.03 and 3.62 kg grain yield kg-1 N applied at Altona (Figure 4.2). Differences (P<0.05) 

between treatments in ANUE was observed at Roodebloem (Figure 4.3). It ranged between 1.58 

and 2.21 kg grain kg-1 N fertiliser applied. Treatment 20-100-0-0 had the highest ANUE, but did 

not differ (P>0.05) from treatments 20-50-50-0, 20-23-23-23, 20-65-65-0, 20-130-0-0 and 20-

70-0-0.  
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Figure 4.1: Agronomical nitrogen use efficiency (ANUE) as affected by rate and distribution of N 

application at Langgewens Research Farm. Figures on x-axes indicate the rate of N (kg ha-1) applied at 

each increment, viz. in order from bottom to top, fertiliser rate at planting (placed with seed), 30, 60 and 

90 days after planting. 

 

 

Figure 4.2: Agronomical nitrogen use efficiency (ANUE) as affected by rate and distribution of N 

application at Altona. Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz. in 

order from bottom to top, fertiliser rate at planting (placed with seed), 30, 60 and 90 days after planting. 
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Figure 4.3: Agronomical nitrogen use efficiency (ANUE) as affected by rate and distribution of N 

application at Roodebloem. Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, 

viz. in order from bottom to top, fertiliser rate at planting (placed with seed), 30, 60 and 90 days after 

planting. 

4.4.2. Water use efficiency (WUE) 
The WUE varied between 29.15 kg grain mm-1 rainfall for treatment 20-40-0-0 to the highest of 

32.34 for treatment 20-23-23-23, but treatments did not differ (P>0.05) at Langgewens 

Research Farm (Figure 4.4).  

 

Figure 4.4: Water use efficiency (WUE) as affected by rate and distribution of N application on 

Langgewens Research Farm. Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, 
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viz. in order from bottom to top, fertiliser rate at planting (placed with seed), 30, 60 and 90 days after 

planting. 

The WUE did not differ (P>0.05) between treatments at Altona (Figure 4.5), with little variation 

in values. 

 

Figure 4.5: Water use efficiency (WUE) as affected by rate and distribution of N application at Altona. 

Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz. in order from bottom to 

top, fertiliser rate at planting (placed with seed), 30, 60 and 90 days after planting. 

Treatments affected (P<0.05) WUE at Roodebloem. Treatment 20-100-0-0 had the highest WUE, 

but did not differ (P>0.05) from treatments 20-70-0-0, 20-23-23-23, 20-50-50-0, 20-130-0-0 

and20-65-65-0 (Figure 4.6). 
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Figure 4.6: Water use efficiency (WUE) as affected by rate and distribution of N application at 

Roodebloem. Figures on x-axes indicate the rate of N (kg ha-1) applied at each increment, viz. in order 

from bottom to top, fertiliser rate at planting (placed with seed), 30, 60 and 90 days after planting. 

4.4.3. Sensitivity analyses 
The sensitivity analyses at Langgewens indicate that the highest economic return was found by 

applying 0 kg N ha-1 (Figure 4.7) during the very low rainfall year where canola was grown after 

a medic pasture. Applying 20 kg ha-1 generated the second highest gross profit, while applying 

150 kg ha-1 generated the least gross income.  

Figure 4.8 indicates the gross income realised by each treatment for Langgwens Research Farm. 

With the exception of treatment 0-0-0-0, treatments 20-0-0 and 20-20-20-0 and realised the 

highest gross income, with treatment 20-43-43-43 returning the lowest gross income.  

Applying 0 kg N ha-1 realised the highest gross income at Altona during the 2015 growing 

season where canola was grown also after a medic pasture. The rate of 20 kg N ha-1 realised the 

second highest gross income, and declining gross income was observed at 60, 90, 120 and 150 

kg N ha-1 (Figure 4.9).  Treatment 20-35-35-0 realised the highest gross income (Figure 4.10), 

with a decline in gross income (R ha-1) for treatments that received higher amounts of N, 

regardless of the time of N application. 
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Figure 4.7: Gross income realised by different nitrogen application rates at Langgewens Research farm. 

Figures on y-axis indicate the gross income [yield (ton ha-1) × income (R ton-1]). Figures on x-axis indicate 

the rate of nitrogen (kg ha-1) applied.  

 

Figure 4.8: Gross income realised by each treatment at Langgewens Research farm. Figures on y-axis 

indicate the gross income [yield (ton ha-1) × income (R ton-1)]. Figures on x-axes indicate the rate of N (kg 

ha-1) applied at each increment, viz. in order from bottom to top, fertiliser rate at planting (placed with 

seed), 30, 60 and 90 days after planting. Data labels the total rate of nitrogen (kg ha-1) received.  
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Figure 4.9: Gross income realised by different nitrogen application rates at Altona. Figures on y-axis 

indicate the gross income [yield (ton ha-1) × income (R ton-1)]. Figures on x-axis indicate the rate of 

nitrogen (kg ha-1) applied. 

 

Figure 4.10: Gross income realised by each treatment at Altona. Figures on y-axis indicate the gross 

income [yield (ton ha-1) × income (R ton-1)]. Figures on x-axes indicate the rate of N (kg ha-1) applied at 

each increment, viz. in order from bottom to top, fertiliser rate at planting (placed with seed), 30, 60 and 

90 days after planting. Data labels the total rate of nitrogen received. 
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observed between 90 kg N ha-1 and 120 kg N ha-1 (Figure 4.11). The treatment that realised the 

highest gross income (R ha-1) was treatment 20-70-0-0 (Figure 4.12). 

 

Figure 4.11: Gross income realised by different nitrogen application rates at Roodebloem. Figures on y-

axis indicate the gross income [yield (ton ha-1) × income (R ton-1)]. Figures on x-axis indicate the rate of 

nitrogen (kg ha-1) applied. 

 

Figure 4.12: Gross income realised by each treatment at Altona. Figures on y-axis indicate the gross 

income [yield (ton ha-1) × income (R ton-1]). Figures on x-axes indicate the rate of N (kg ha-1) applied at 

each increment, viz. in order from bottom to top, fertiliser rate at planting (placed with seed), 30, 60 and 

90 days after planting. Data labels indicate the total rate of nitrogen received. 
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4.5. Discussion 
Due to the low rainfall climatic conditions of the 2015 growing season, planting occurred later 

than originally planned at all three localities. The delay in planting dates lead to a growing 

season that extended the vegetative growing phase into periods of high daily maximum 

temperatures at Altona and Langgewens. Roodebloem experienced lower than average daily 

maximum temperatures during June, July and August. A higher than average mean daily 

temperature leads to a shortening in the developmental phases (Chmeilewski et al. 2004), 

which ultimately affects, ANUE, WUE and yield adversely.  

4.5.1. Agronomic nitrogen use efficiency (ANUE) 
The effect of treatments on the ANUE was not significant at Altona and Langgewens, but 

differences (P>0.05) in ANUE and was observed between treatments at Roodebloem.  

The ANUE results at Roodebloem indicated that applying a topdressing at 30 DAP of rates >50 

kg N ha-1 generally led to a higher ANUE. The results further indicated that applying a 

topdressing at both 60 and 90 DAP have led to a decrease in ANUE, if the amount of N applied at 

30 DAP was higher than 50 kg N ha-1. These results are in line with those reported by 

Ngezimana and Agenbag (2015), who found a decrease in NUE from 30 to 120 kg N ha-1 on 

average in 2009. Gan et al. (2008) and Hamzei (2011) found similar results. These results at 

Roodebloem might be due to a combination of a large amount of N being available early in the 

growing season, and the rainfall distribution during the growing season. Treatments at the 

Swartland localities of Altona and Langgewens may have had no effect on ANUE due to the 

lower than long-term average rainfall and the poor rainfall distribution that was experienced in 

the growing season wheat after medics. Hamzei (2011) found a significant interaction between 

irrigation levels and N fertiliser rate on the ANUE. With decreasing levels of irrigation, yield 

decreased and ANUE as a result as well. Jensen et al. (1997), stated that drought conditions 

leads to impaired N-transport to the roots. Plants absorb water from the soil through the root 

and transport it to the stem, leaves and flowers. The root hairs are in close contact with the thin 

film of water surrounding the soil particles. The drought conditions therefore may have caused 

applied N to not be taken up by the plants at Altona and Langgewens, in contrast with 

Roodebloem.  

4.5.2. Water use efficiency (WUE) 
The effect of treatments on WUE varied between localities. Treatments had a significant effect 

on WUE at Roodebloem (Figure 4.6), but not at the Swartland localities of Altona and 

Langgewens. The highest WUE ± 8 kg grain mm-1 grain received) at Roodebloem was generally 

found at treatments where >50 kg N ha-1 was applied 30 DAP. Treatments 20-100-0-0 and 20-
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70-0-0 and 20-130-0-0 had the highest WUE (although not different from treatments 20-50-50-

0, 20-23-23-23 and 20-65-65-0). The treatments that led to the highest WUE received the bulk 

of their respective rates at 30 DAP, indicating that sufficient N early in the growing season and 

favourable growing conditions led to the highest WUE at Roodebloem in the southern Cape.  

The WUE according to Robertson and Kirkegaard (2005) for canola ranges between 8-14 kg 

grain mm-1 rainfall, with the average WUE at 11 kg grain mm-1 rainfall. The canola at 

Roodebloem generally had low WUE values, possibly due to Leptosphaeria maculans infection. 

The WUE results at both Swartland localities were higher than the WUE at Roodebloem. Canola 

at Altona and Langgewens was not affected by Leptosphaeria maculans, which may be an 

indication as to why the WUE values were sufficient.  

Biscoe and Gallagher (1977) found that the main factors that delayed leaf formation was water 

stress and temperature. As soil moisture was sufficient during the early development stage at 

Roodebloem, and slightly lower than long-term daily maximum temperatures occurred during 

June, July and August, a stronger leaf canopy might have been established to intercept more 

solar radiation. Altona also had a LAI above the optimal 3.11 (Cheema et al. 2010). The 

establishment of a strong leaf canopy will be favoured by the availability of sufficient N to 

sustain early vegetative growth (Cheema et al. 2010; Mason and Brennan 1998; Rood and Major 

1984; Scott et al. 1973). The rapid covering of the soil will lead to a increase in transpiration 

while reducing the unproductive loss of water through evaporation and therefore increase WUE 

(Kirkegaard et al. 2016).  The results for Roodebloem further indicate that applying a 

topdressing at both 60 and 90 DAP, led to a lower WUE, if the amount of N applied at 30 DAP 

was higher than 50 kg N ha-1.  The treatments that led to the highest WUE also led to the highest 

ANUE (Figure 4.3).  

These results also in part correspond with those of Hamzei (2011) and Faraji et al. (2009). 

Hamzei (2011) found that WUE increased with increasing N rates up to 120 kg N ha–1, because 

of an increase in LAI, while Faraji et al. (2009) found WUE were associated with greater LAI and 

aboveground dry matter, and lower temperatures during reproductive stages, due to timely 

sowing.  

The delay in planting at all three localities may have had an effect on the leaf canopy 

establishment. Kirkegaard et al. (2016) and Robertson et al. (2004) emphasised the importance 

of timely sowing to maximise WUE, through rapid soil coverage, a longer vegetative stage and 

cooler early growing conditions. The effect of the delay in planting dates might have had less of 

an influence on Roodebloem than at Altona and Langgewens due to the lower temperatures and 

better rainfall distribution experienced at Roodebloem.  
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4.5.3. Sensitivity analyses 
Various sources have emphasised N as the largest production input cost for grain production 

(ARC 2007; Protein Research Foundation 2013; Sands et al. 2011). A sensitivity analyses 

indicated the gross income, which is a function of yield and cost (partly manageable by the 

producer), and income (a function of the markets).  The sensitivity analyses therefore allowed 

for an indication of the economic feasibility of each rate of N applied. The analyses at each 

locality indicated the optimal N-rate on average, regardless of time of N-application, as well as 

the analyses for every treatment, which takes time of application into account. It is important to 

take into consideration that applying N in three splits will lead to higher operation costs with 

regards to fuel, labour etc., which is not taken into account when calculating gross income. 

At Langgewens, the highest gross income was observed for N fertiliser rate 0 kg N ha-1 

(Figure 4.7). This is because no input costs were involved.  Although a N fertiliser rate of 0 kg N 

ha-1 generated the highest gross income and N-rate of 20 kg N ha-1 the second highest gross 

income, one can speculate that it is not realistic to not apply N during a season with a rainfall of 

about long term average and especially if canola is plant after wheat. Various authors have 

emphasised an increase in yield due to N fertiliser application (Cheema et al. 2010; Grant 1993; 

Holmes 1980; Rathke et al. 2005; Wright et al. 1998). Taking this into consideration, a N 

application rate of 60 kg N ha-1 realised the highest gross income, with the 90, 120 and 150 kg N 

ha-1 rates showing a decrease in gross income in comparison with the 60 kg N ha-1 rate. The 

decline is due to a relatively constant yield but an increase in N input cost.  

The highest gross income (Figure 4.9) at Altona where canola was also grown after medic 

pasture was also found at N fertiliser rate 0 kg N ha-1 as well, with the second highest return at 

20 kg N ha-1. As was the case at the other Swartland locality, Langgewens, this is due to no 

differences (P>0.05) in yield between the treatments and no or low fertiliser input cost. The N-

rate of 60 kg N ha-1 generated in the proximity of R17 500 ha-1, and N fertiliser rates of 90, 120 

and 150 kg N ha-1 showed a decrease in gross income in comparison with 60 kg N ha-1. 

Interestingly enough, if the time of N-application is taken into consideration (Figure 4.10), the 

highest gross income was generated by treatment 20-35-35. This may be an indication that 

applying 90 kg N ha-1 in increments of 20 kg N ha-1, followed by 35 kg N ha-1 at 30 DAP and 35 kg 

N ha-1 at 60 DAP will generate the highest gross income.  

Treatment 20-35-35-0 (Figures 4.2 and 4.5) had the highest ANUE and WUE at Altona. Although 

the differences were not significant, it may an indication of the positive effect of a higher ANUE 

and WUE on the gross income of canola.  
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At Roodebloem which received a rainfall during 2015 not much less than the long term average 

and canola was grown after a wheat crop, the N fertiliser rate of 0 kg N ha-1 generated the 

highest gross income, followed by the rates of 20, 90 and 120 kg N ha-1 generated the second 

highest gross income, although very little difference was found between the fertiliser rates 

(Figure 4.11). The N rates of 60 and 150 kg N ha-1 generated less gross income due to a low yield 

and high input cost respectively. Treatments 20-70-0-0 and 20-100-0-0 generated the highest 

gross income. This is due to differences (P>0.05) in yield (data not shown).   

The abovementioned results indicate that the highest gross income in the Swartland localities 

was generated were 0 kg N ha-1 was applied on canola in a year with poor rainfall distribution, 

in a crop rotation system where canola was produced after medics. In the southern Cape, 

applying N in excess of 70 kg N ha-1 generated the highest gross income in a relatively normal 

rainfall distribution if compared to the long-term average of the area.  

4.6. Conclusion 
The results indicate that N fertilisation rate and timing thereof had no significant effect on the 

ANUE and WUE at the Swartland localities of Altona and Langgewens, which was characterised 

by a below average rainfall, and where canola was grown after medics. Preliminary results at 

Roodebloem indicate that applying 20 kg N ha-1 and a topdressing at 30 DAP of rates >50 kg N 

ha-1 generally led to the highest WUE and ANUE. The sensitivity analyses indicated that at all 

three localities, the highest gross income was generated by applying a N rate of 0 kg N ha-1, 

which one can speculate is not a realistic management practice in normal rainfall years. Further 

research is advised in this regard.  
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Chapter 5 
Conclusion and recommendations 
 
5.1. Conclusion 
Canola is increasingly becoming more popular as a crop in the southern Cape and Swartland 

regions of South Africa due to its health benefits for consumers and various other benefits in 

crop rotation systems for producers. Canola has a relatively low nitrogen use efficiency (NUE), 

and due to the rising input production cost of N fertilisation, refined N fertiliser guidelines is 

needed, not only to enhance the  yield of canola to satisfy the rising demand of consumers, but 

also to maximise profitability for producers. Currently, the appropriateness of N fertiliser 

guidelines for canola in South Africa is questioned. These guidelines are adopted from 

international literature or adopted from guidelines for wheat, and should be refined for the local 

environmental conditions. 

The objective of this research project was to determine to optimal rate (kg N ha-1) and time of N 

application for the Swartland (Altona and Langgewens) and the southern Cape (Roodebloem). 

The effects from rate and distribution of N fertilisation on total soil mineral N, leaf area index 

(LAI), biomass production, agronomic nitrogen use efficiency (ANUE), water use efficiency 

(WUE), thousand kernel mass (TKM), grain yield and profitability was determined. 

The 2015 season was characterised by dry conditions in the Swartland, with rainfall lower than 

the long-term average of most months, while Roodebloem received higher than average rainfall 

during the leaf formation, stem elongation and flowering phases, while the rainfall during the 

remainder of the year was below the long-term average. The average maximum daily 

temperatures in summer were generally similar or slightly lower than the long-term average 

daily maximum temperatures. The average minimum daily temperature was higher during 

August and September than the long-term average. Soils of all sites were shallow (250 – 300 

mm) sandy loams with a high gravel content (>40%). The two Swartland sites was part of a crop 

rotation system where medics preceded the canola the previous growing season, while wheat 

preceded canola at Roodebloem.  

Total soil mineral N did not differ between treatments at Altona at 30, 60 or 90 days after 

planting (DAP), while at Langgewens the only differences in total soil mineral N was observed at 

90 DAP. Nitrogen applied at a rate higher than 46 kg N ha-1, and at two intervals (30 and 60 

DAP), resulted in a higher (P<0.05) total soil mineral N content. No differences (P>0.05) in LAI, 
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biomass, ANUE, WUE, TKM or yield were observed between treatments at Altona and 

Langgewens 

At Roodebloem, no differences in total soil mineral N was found between treatments. Although 

the LAI did not differ (P>0.05) between treatments, N fertilisation tended (P<0.1) to increase 

LAI at 30 DAP at Roodebloem. Treatments that received more than 70 kg N ha-1 tended to have 

the highest LAI.There also was a trend (P<0.1) for higher biomass production at higher rates of 

N at 90 DAP at Roodebloem. Treatments that received more than 100 kg N ha-1 at 30 DAP 

tended to have the highest (P<0.1) biomass production, with both treatments receiving the bulk 

of their total N rate at 30 DAP. Treatments that received more than 90 kg N ha-1, with 

applications of more than 23 kg N ha-1 at 30 DAP had the highest ANUE and WUE. At 

Roodebloem, treatments receiveing 20 kg ha-1 of N during planting, And a topdressing of more 

than 70 kg N ha-1 at 30 DAP led to the highest yield. 

These preliminary results indicated that in a low rainfall year, the application of additional N as 

a topdressing, made no significant difference in yield in the Swartland. Due to lower N 

mineralisation potential of Swartland soils, higher optimum levels of N are expected in normal 

and high rainfall years, than in the southern Cape. The effect of treatments at Roodebloem might 

have been significant due to combination of lower temperatures, sufficient soil moisture and 

high levels of N available during vegetative growth. Nevertheless, these results at Roodebloem 

indicate that treatments that received 20 kg N ha-1 at planting and more than 50 kg N ha-1 at 30 

DAP led to the highest yield.  

It can also be concluded from the results obtained in this study that the highest gross profit was 

realised by applying 0 kg N ha-1 at the Swartland localities of Altona and Langgewens, in a year 

with poor rainfall distribution in a crop rotation system where canola was produced after 

medics. In the southern Cape, applying N in excess of 70kg N ha-1 generated the highest gross 

income in a relatively normal rainfall distribution if compared to the long-term average of the 

area. The hypotheses as stated in chapter 1 was as follows: 

H1H0: Increasing rates of N application will lead to increased yields to an optimum level. 

H1H1: Increasing rates of N application will not lead to increased yields. 

 

H2H0: Split application of N over more than one time of application will increase yield. 

H2H1: Split application of N over more than one time of application will not increase yield. 

 

The H1H0 hypothesis was rejected at Altona andLanggewens as no differences in yield were 

found at Altona and Langgewens, while at Roodebloem higher rates only increased yield up 
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until 120 kg N ha-1, and for this site, the H1H0 was accepted. Split application of N over more 

than one time of application realised no difference in yield at Altona and Langgewens, and the 

H2H0 hypothesis was rejected at these localities. At Roodebloem, the H2H0 hypothesis is 

accepted, as the highest yield was obtained at treatments where N was applied at planting and 

30 days later.  

5.2. Recommendations 
With regards to the current study, it is recommended that this study be repeated in other years, 

before accurate general guidelines for N fertilisation of canola could be constructed.  Lower than 

long-term average rainfall and higher temperatures may have influenced results, which is not 

typical of most other years. Future studies should also determine the total soil mineral N at 

harvest, as well as the N content of the plants at harvest.  

Canola is a good alternative to replace imported protein used in animal feed. Canola as cash 

crop in South Africa, and particularly the southern Cape and Swartland regions is a fairly young 

crop when compared to wheat or barley. Unpredictable establishment success and variable 

yields currently make farmers skeptical about canola cultivation. Various agronomic factors and 

management practices that can lead to improved yield should therefore be researched. During 

the current study only medics and wheat preceded canola. It is therefore advised for further 

studies that the current trial be repeated with different preceding crops than just wheat and 

medics. The influence of the preceding crop on the availability of the residual N should then be 

incorporated in fertiliser guidelines.  

Current N fertiliser guidelines were developed in the 1960s. As can be expected, various 

management practices have since changed, including the adoption of minimum-tillage and other 

conservation agriculture practices. Minimum-tillage supports organic matter accumulation in 

the topsoil, which in turn may lead to more plant available N in the topsoil. This implies that 

different N rates may be needed as additional application, than what is currently prescribed. 

Regardless of these, guidelines are still based on outdated management strategies.  

 

It is further recommended for crop modeling to be implemented to navigate the way forward 

and refine the recommendation rates by running the model for various scenarios and climatic 

conditions, to account for variation in temperatures, rainfall and mineralisation potential of 

soils.  
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