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Abstract

Large Deviations of Reflected Diffusions
J.P du Buisson

Department of Physics,
University of Stellenbosch,
Stellenbosch, South Africa.

Thesis: MSc (Theoretical Physics)
March 2020

We study the fluctuations o f t ime-integrated f unctionals o f M arkov diffusions 
evolving in a bounded domain. These fluctuations can be described in large de-
viation theory by the so-called rate function, which encodes information about 
the probability distribution of such functionals in the long-time limit. In practice, 
the rate function is obtained by performing a spectral calculation. Furthermore, 
solving the spectral problem allows us to construct an effective process which 
realizes a given fluctuation away f rom the mean and explains how that fluctua-
tion is created dynamically in time. Most works in large deviation theory have 
considered Markov diffusions evolving in an unbounded domain (e.g. R or Rd). 
In this thesis we consider diffusions in bounded domains with perfect reflection at 
the boundaries. Considering the one-dimensional case, we derive the appropri-
ate boundary conditions on the spectral problem and explore the implications for 
the effective process. We apply this knowledge to obtain the rate function of the 
area of the reflected Ornstein-Uhlenbeck process and reflected Brownian motion 
with drift, and to obtain their effective process. A variational representation of 
the rate function is used to construct accurate approximations of the effective 
process for both of the systems considered.
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Uittreksel

Groot Afwykings van Gereflekteerde Diffusies
(“Large Deviations of Reflected Diffusions”)

J.P du Buisson
Departement Fisika,

Universiteit van Stellenbosch,
Stellenbosch, Suid-Afrika.

Tesis: MSc (Theoretical Physics)
Maart 2020

Ons bestudeer die fluktuasies van tyd-geïntegreerde funksionale van Markov dif-
fusies wat in ‘n begrensde domein ewolueer. Hierdie fluktuasies kan in die teorie 
van groot afwykings deur die so-genoemde koers funksie, wat informasie rakende 
die waarskynlikheidsverspreiding van sulke funksionale in die lang-tyd limiet be-
vat, beskryf word. In die praktyk kan die koers funksie bepaal word deur ‘n 
spektrale berekening uit te voer. Verder, die oplossing van die spektrale pro-
bleem stel ons daartoe in staat om ‘n effektiewe proses te konstrueer, wat ‘n 
gegewe fluksuasie weg van die gemiddeld realiseer en wat verduidelik hoe hierdie 
fluksuasie dinamies in tyd geskep word. Meeste navorsing in die teorie van groot 
afwykings handel met Markov diffusies wat in ‘n onbegrensde domein (bv. R of 
Rd) ewolueer. In hierdie tesis oorweeg ons diffusies in begrensde domeine met 
perfekte refleksie by d ie g rense. Met b etrekking tot d ie een-dimensionele geval, 
lei ons die gepaste grens toestande op die spektrale probleem af en ondersoek ons 
die implikasies vir die effektiewe proses. Ons pas hierdie kennis toe om die koers 
funksie vir die area van die gereflekteerde O rnstein-Uhlenbeck p roses e n gere-
flekteerde Browniese b eweging met drif t e b ereken, en om hul effektiewe proses 
te bepaal. ‘n Variationele verteenwoordiging van die koers funksie word gebruik 
om akkurate benaderings van die effektiewe proses vir beide van die stelses wat 
oorweeg is te konstrueer.
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Chapter 1

Introduction

In this thesis we study the fluctuations of certain time-integrated functionals
of Markov diffusions evolving in bounded domains. In particular, we will be
concerned with understanding the fluctuations of such functionals away from
their expected value in the long-time limit. In this chapter we describe the
background relating to this topic as well as our motivation for studying it. We
also provide an overview of our goals and contributions compared to the previous
research done on the topics relating to the thesis, and give an outline of the
structure of the thesis.

1.1 Brownian Motion
The phenomenon underlying the physical systems encountered in this thesis is
Brownian motion, named after Robert Brown who, in 1827, studied the irregular
motion of grains of pollen suspended in water. Brownian motion is illustrated in
Fig. 1.1 (see [1] for information regarding the numerical simulation of Brownian
motion). A probabilistic treatment of this form of motion as a Markov process
in order to understand diffusion processes in physics, specifically the diffusion
of suspended particles in a fluid, was initiated by Einstein [2]. Einstein’s work
was an important piece of evidence in support of the reality of atoms in that it
allowed Avogadro’s number NA to be related to the mean square displacement of
suspended particles, and thereby made the determination of Avogadro’s number
possible via experimental methods [3]. Such an experiment was conducted by
Perrin and led to his being awarded the Nobel Prize in physics in 1926 [3]. The
study of Brownian motion as a Markov process was also undertaken, independent
of Einstein, by Smoluchowski [4].

Langevin [5] provided an alternative method of describing Brownian mo-
tion through the addition of a random force in Newton’s equation of motion.
Langevin’s method forms the basis for the modern theory of stochastic differ-
ential equations, which was formalized and made rigorous by Itô, and is known
as the Itô calculus [6]. A stochastic differential equation can be written in an

1
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Sample path of Brownian motion in two dimensions.

informal manner as
Ẋt = F (Xt) + ξt, (1.1)

where the noise term ξt is taken to be the derivative of Brownian motion. In this
manner, Brownian motion serves as a fundamental model of noise for continuous-
time processes, called Gaussian white noise, accounting for external perturba-
tions or uncertainty in the evolution of a system. As such, Brownian motion
finds application in a large variety of instances, including:

• Non-equilibrium systems such as biomolecular motors and nano-machines
in biophysics [7, 8]. The energetics of such machines are studied within the
so-called theory of stochastic energetics [9].

• The manipulation of microscopic or mesoscopic systems immersed in a
fluid such as the manipulation of a Brownian particle suspended in water
via laser tweezers [10].

• The thermal current or voltage noise in electrical circuits. This type of
noise is is known as Johnson-Nyquist noise.

• The measured intensity of a laser field in quantum optics [1].

• Dynamical systems perturbed by external noise sources, e.g., controlled
systems with noisy inputs.

• Continuous limits of discrete-space systems, such as queues and biological
populations [11].

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

Figure 1.2: 2 Dimensional reflected Brownian motion shown for different bound-
ary geometries. Left: Square domain. Right: Circular domain.

• In finance, where the evolution of stock prices is commonly modelled by
the so-called geometric Brownian motion [12].

• Stochastic cell biology, a branch of biomathematics seeking to understand
how biological systems function in and exploit the presence of noise, uses
Brownian motion extensively as a model of noise [13, 14].

In most of the applications listed here, Brownian motion is considered as
taking place inside an unbounded region (in R or Rd). Clearly, it is also important
to consider processes undergoing Brownian motion in some bounded region. A
simple example of such a process is a diffusion process inside a biological cell,
undergoing a chemical reaction at the cell wall [15]. For such processes, both the
geometry of the boundary and the behavior of the process at the boundary are
important in determining the trajectories of the process. In the case where the
process evolves in a bounded region it is therefore necessary that a prescription
of the process’ behavior upon reaching the boundary be provided in order to
complete the description of the system. As an illustration, we show in 1.2 a two-
dimensional Brownian motion inside a container with reflecting walls for different
geometries of the container. The theory of Brownian motion in a bounded domain
is discussed in Schuss [15].

The study of Brownian motion in bounded domains is very active currently,
with much of the theory tracing back to Feller, who provided a complete classi-
fication of all possible types of boundary behavior in 1 dimension [16, 17, 18]. In
particular, this led Feller to discovering a new type of boundary behavior, known
as sticky boundary behavior, in which a process spends a finite amount of time at
the boundary upon reaching it [18, 19]. While Feller provided a classification of
boundaries, and an understanding of these boundaries on the level of the Fokker-
Planck equation (and its adjoint) describing a stochastic process, he provided no

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 4
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Figure 1.3: Sample paths of Brownian motion and reflected Brownian motion in
one dimension.

explicit stochastic construction on the level of a stochastic differential equation of
these processes. Skorokhod provided such a construction for reflected diffusions,
through the inclusion of so-called local time terms in the stochastic differential
equation governing the process [20, 21]. In this thesis we will be particularly
interested in processes with reflecting boundary conditions. A survey of results
relating to reflected Brownian motion is given in [22]. For illustration, Brownian
motion and reflected Brownian motion reflected at the origin are contrasted in
Fig. 1.3.

1.2 Large Deviations
The statistical properties of a process Xt are described by the time-dependent
probability density p(x, t) = p(Xt = x). In this thesis our goal will not be to
study Xt directly, but rather to study the statistical properties of time-integrated
functionals or dynamical observables AT having the form

AT =
1

T

∫ T

0

f(Xt) dt. (1.2)

In particular, our goal is to describe the probability density p(AT = a) associated
with such a dynamical observable. Examples of such observables include:

• The fraction ρT (y) of time (out of a total time T ) that the process spends
at y. This observable corresponds to the case where f(x) = δ(x − y) and
is called the empirical density at y.

• The mechanical work performed by a laser tweezer on a Brownian particle
suspended in water. This observable corresponds to the case where f(x) =

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 5

x, if the reference frame is chosen to be the co-moving frame of the particle
[10].

The probability density p(AT = a) associated with an observable gives in-
formation about both the typical value of the observable and the likelihood of
fluctuations away from this typical value. In practice, calculating this density ex-
actly is difficult, even for simple one-dimensional diffusions. For this reason, we
appeal to the theory of large deviations, developed by Varadhan [23], which pro-
vides a framework within which the long-time behavior of the density p(AT = a)
can be studied. Following this theory, we will see that the density p(AT = a)
often has the asymptotic form

p(AT = a) ≈ e−TI(a) (1.3)

in the large T limit. An observable AT whose distribution satisfies this asymp-
totic form is said to obey a large deviation principle, with the so-called rate
function I(a) characterizing the typical value and fluctuations away from this
value for the observable in the long-time limit. Large deviation theory has ap-
plications in finance, queueing theory and statistical mechanics [24, 25]. It will
be our goal in this thesis to obtain the rate function I(a) for reflected diffusions
and thereby, to understand the fluctuations of dynamical observables for these
types of processes in the long-time limit.

1.3 Goals
The problem of determining the rate function I(a) associated with an observable
of a Markov diffusion reduces, as we will see in the next chapter, to finding
the dominant eigenvalue of a linear operator [26]. While this problem has been
studied extensively and is well understood for diffusions in unbounded domains,
the same cannot be said for diffusions in a bounded domain. Here, we will study
this problem for bounded diffusions, focusing on one-dimensional diffusions with
reflecting boundaries.

The main goal of the thesis, in this context, is to derive the appropriate
boundary conditions for the spectral problem associated with finding the rate
function. Furthermore, we also wish to understand how the fluctuations of such
processes are created dynamically in time. This information is obtained through
the study of an ‘effective process’ introduced by Chetrite and Touchette [27, 28].
We will show that the presence of a reflecting boundary constrains the behavior
of this effective process at the boundary.

To illustrate these results, we will obtain the large deviations of the area
functional for two reflected processes:

• The reflected Ornstein-Uhlenbeck process [29, 30], which has applications
in finance and neuroscience [31] and in queueing theory, where it arises as
an approximating process in the high load limit [30].
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CHAPTER 1. INTRODUCTION 6

• Reflected Brownian motion with drift, which represents the motion of a
Brownian particle under the influence of gravity in a container.

For each of the cases above we also obtain the effective process associated
with the fluctuations of the area observable. In order to obtain a richer under-
standing of these effective processes, we seek to model them with an appropriate
approximation. This is done by using a variational representation of the rate
function which is introduced in [32].

1.4 Previous Works
Large deviations of Markov processes have been studied since the works of
Donsker and Varadhan in the 1970s [33]. Since then, many studies have looked
at large deviations for compact processes [34] (e.g. on the torus) and unbounded
diffusions, with few studies, by comparison, on bounded diffusions with explicit
boundary behavior specified (e.g. reflection).

The study closest to the work done in this thesis is that of Fatalov [35], where
the large deviations of a specific class of observables (which includes, as a special
case, the area observable) is obtained by solving a spectral problem. However,
this study makes no reference to the origin of the boundary conditions used in
this calculation and, furthermore, does not study the effective process which
describes how fluctuations are created in time.

The same applies for a paper of Grebenkov [36], in which large deviations
are obtained for observables related to the residence time for reflected diffusions.
Forde, in [37], also studies large deviations for the time spent at the boundaries
of a doubly-reflected Brownian motion, and derives the necessary boundary con-
ditions needed for this calculation, although the specific techniques used differ
substantially from ours.

In a more general way, Pinsky [38, 39] and Budhiraja and Dupuis [40] study
the large deviations of bounded diffusions, but does so in terms of the so-called
level 2 large deviations, a framework which is not used in this thesis.

Finally, studies of large deviations of bounded diffusions in the low-noise limit
include Ignatyuk [41], Sheu [42], Dupuis [43], Bo and Zhang [44] and Sheu [42]. In
this thesis we do not study the low-noise limit, instead obtaining large deviations
in the large-time limit.

1.5 Outline
The thesis is structured as follows. In Chapter 2 we introduce, in the context of
stochastic differential equations, the elements of large deviation theory that will
be relevant for the discussions and calculations in this thesis. In Chapter 3 we
first discuss some general considerations relating to diffusions with boundaries
before turning to the specifics of the mathematical implementation of reflecting
boundary conditions in one dimension. Finally we discuss how large deviations
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CHAPTER 1. INTRODUCTION 7

are obtained for this class of diffusions. In Chapter 4 the mathematical tools
developed in Chapters 2 and 3 are applied in obtaining the large deviations of a
dynamical observable for two examples: the reflected Ornstein-Uhlenbeck process
in one dimension and reflected Brownian motion with drift in one dimension. We
present our conclusions and discuss open problems and possible extensions of our
work in Chapter 5.
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Chapter 2

Large Deviations of Markov
Diffusions

In this chapter we introduce those aspects of the mathematical theory of stochas-
tic differential equations (SDEs) and the theory of large deviations, as applied to
Markov diffusions governed by an SDE, that will be needed for the subsequent
calculations and discussions of Chapters 3 and 4. Our introduction to the theory
of large deviations is based on [45] and especially [26]. Applications of large
deviation theory in statistical mechanics are discussed in [24]. For a comprehen-
sive introduction to large deviation theory, see Dembo and Zeitouni [25]. For an
introduction to probability theory and stochastic processes the reader is referred
to [46]. A good reference for stochastic methods in physics is Gardiner [8].

2.1 Stochastic Differential Equations
We consider a continuous-time Markov diffusion Xt satisfying a stochastic dif-
ferential equation (SDE) of the form

dXt = F (Xt) dt+ ε(Xt) dWt, (2.1)

where

• Xt ∈ Rd is the state of the system at t ∈ R+

• F : Rd → Rd is the force or drift that describes the deterministic part of
the evolution of Xt in the absence of any noise (ε = 0).

• Wt ∈ Rm is a vector of independently distributed Wiener motions, whose
increments dWt are Gaussian distributed with mean 0 and variance dt. In
general, Wt can have dimension m different from d. The presence of this
term is responsible for stochasticity in the evolution of Xt.

• ε : Rd → Rd ×Rm is the noise matrix controlling the strength and type of
noise present in the system, and has dimensions to match that of Wt and
Xt.

8
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CHAPTER 2. LARGE DEVIATIONS OF MARKOV DIFFUSIONS 9

While it is possible for F and ε to depend explicitly on the time t, we do not
consider this case. We also consider Wt with dimensions the same as that of Xt.
The process Xt is Markovian because at every point in time the evolution of Xt

depends only on the current state of Xt via F , to which the noise ε(Xt) dWt is
added. The process therefore has no ‘memory’ of the past.

The SDE (2.1) has the formal solution

XT = X0 +

∫ T

0

F (Xt) dt+

∫ T

0

ε(Xt) dWt, (2.2)

and so we must associate a meaning to the stochastic integral
∫ T

0
ε(Xt)dWt. The

stochastic integral differs from the Riemann integral in that the value of the
stochastic integral will depend on the integration convention used, that is, in the
manner in which values of the integrand are chosen in each discretisation interval
in the sum. An SDE is therefore only completely defined once we also specify
the integration convention used in calculating stochastic integrals [1].

The two most commonly used conventions are:

• Itô: The left-most point in each discretization interval is chosen.

• Stratonovich: The midpoint of each discretization interval is chosen.

While an Itô SDE can be transformed into a Stratonovich SDE with a mod-
ified drift (and vice versa) [1] we will not discuss these transformations since we
will only consider SDEs with a noise ε that is independent of Xt. For this case,
the stochastic integral does not depend on the convention used. In other words,
we will restrict our attention to the case where Xt satisfies the SDE

dXt = F (Xt) dt+ ε dWt. (2.3)

For an introduction to the theory of stochastic differential equations that is
appropriate for physicists, the reader is referred to Jacobs [1].

2.2 The Fokker-Planck Operator
The state Xt described by the SDE (2.3) is a random variable whose density
p(x, t) = p(Xt = x) as a function of time is known to satisfy the Fokker-Planck
equation

∂tp(x, t) = −∇ · (F (x)p(x, t)) +
1

2
∇ ·D∇p(x, t) (2.4)

with initial probability density p(x, 0), where D = εεT [47]. For more information
regarding the Fokker-Planck equation the reader is referred to Risken [47]. We
can rewrite the Fokker-Planck equation in the form

∂tp(x, t) = L†p(x, t), (2.5)
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where we have introduced the Fokker-Planck operator L† given by

L† = −∇ · F +
1

2
∇ ·D∇. (2.6)

The Fokker-Planck operator is a linear operator acting on an appropriate
class of probability densities satisfying the relevant boundary conditions of the
problem at hand. It is important to note that the form of L† as a differential
operator is only one part of its definition; to completely define the operator, we
must also specify the domain of functions D(L†) on which it acts.

The linearity of the operator L† implies that the probability density p(x, t)
satisfies

p(x, t) = T (t) p(x, 0) (2.7)

with T (t) = etL
† . The family of operators {T (t) : t ≥ 0} form a semi-group

since they satisfy the semi-group property T (t+ t′) = T (t)T (t′) and T (0) = I is
satisfied. The semi-group property is the mathematical statement of the Markov
property.

The Fokker-Planck equation can also be recast in the form of a conservative
equation

∂tp(x, t) +∇ · Jp(x, t) = 0 (2.8)

with Jp(x, t) representing the time-dependent probability current given by

Jp(x, t) = F (x)p(x, t)− 1

2
D∇p(x, t). (2.9)

The probability current is a vector field describing the spatial flow of probability
in time.

If the process is ergodic, it has a unique stationary distribution p∗(x) satis-
fying

L†p∗(x) = 0. (2.10)

Ergodic processes have the useful property that long-time averages can be re-
placed by averages with respect to the stationary density p∗. Mathematically
stated, an ergodic process Xt satisfies the relation

lim
T→∞

1

T

∫ T

0

f(Xt) dt =

∫
S
f(x) p∗(x) dx (2.11)

in probability, where S is the state space of the process Xt.
An important class of SDEs are the so-called gradient SDEs for which the drift

satisfies F = −∇U for some potential U and the noise matrix σ is proportional
to the identity matrix, that is σ = εI for some ε > 0. In this case the SDE
governing Xt is given by

dXt = −∇U(Xt) dt+ ε dWt. (2.12)
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Gradient processes are ergodic if the potential is concave and sufficiently steep
and have a stationary density p∗ given by

p∗(x) = N exp

[
−2U(x)

ε2

]
(2.13)

known as a Gibbs density, with N a normalization constant. A density of this
form has zero current everywhere, as can be checked from (2.9). A particular
case of gradient diffusions which we will focus on are SDEs on R for which the
drift can always be written as the derivative of a potential.

2.3 Markov Generator
Having discussed the time evolution of the density p(x, t) we now turn our at-
tention to the time evolution of expectation values, given by

E [f(Xt)] =

∫
S
p(x, t)f(x) dx (2.14)

where E[·] denotes the expectation on the state space S of Xt and f is any ‘test’
function of Xt. Expectation values can be written in a natural way as an inner
product

〈p, f〉 =

∫
S
p(x)f(x) dx (2.15)

with p a density and f a test function of the process. Thus, the expectation
value (2.14) now takes the form

E [f(Xt)] = 〈p, f〉, (2.16)

where it should be understood that p here refers to the time-dependent density
p(x, t) at the relevant time t.

The time evolution of this expectation value is given by

∂tE [f(Xt)] =

∫
S
∂tp(x, t)f(x) dx =

∫
S

[
L†p(x, t)

]
f(x) dx = 〈L†p, f〉. (2.17)

Based on this, it is natural to define the adjoint of the Fokker-Planck operator
L† with respect to the inner product (2.15) as that operator L which satisfies

〈L†p, f〉 = 〈p,Lf〉. (2.18)

Using this relation, we are able to write the time evolution of the expectation
value (2.14) in the form

∂tE [f(Xt)] = 〈p,Lf〉 = E [(Lf)(Xt)] . (2.19)

Given the presence of the Lebesgue measure dx in (2.15), we say that L
and L† are adjoint with respect to the Lebesgue measure. The operator L is
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simply called the generator of the process Xt and governs the time evolution of
expectation values, as seen in (2.19).

It remains to find the form of the generator L as a differential operator. We
have for a density p and a test function f that

〈L†p, f〉 =

∫
S

[
−∇(F (x)p(x)) +

1

2
∇ ·D∇p(x)

]
f(x) dx

=

∫
S
p(x)

[
F (x) · ∇f(x) +

1

2
∇ ·D∇f(x)

]
dx+ boundary term,

(2.20)

where we have simply used integration by parts and the boundary term is the
one that arises in this procedure. In order for the adjoint L to exist and to be
defined independently of p and f , we must have that the boundary term vanishes
and therefore, from (2.20) and the definition (2.18), L has the form

L = F · ∇+
1

2
∇ ·D∇. (2.21)

We note that with respect to the inner product (2.15) we have that (F · ∇)† =
−∇ · F (skew-symmetric) and (∇ ·D∇)† = ∇ ·D∇ (Hermitian), so that L is in
general not Hermitian. Moreover, for ergodic processes, the stationary condition
L†p∗ = 0 leads, with (2.17) and (2.18), to

L1 = 0, (2.22)

where 1 is the constant function on S.
The requirement that the boundary term arising from the integration by parts

which relates L† and L vanish will require us to restrict the domain of functions
on which L is defined and give us the boundary conditions for this operator. We
will discuss this in more detail in Chapter 3. For more information regarding the
generator and its adjoint, see [48].

2.4 Large Deviation Principle
Our goal in this thesis is to study the fluctuations of additive functionals AT of
the process Xt having the form

AT =
1

T

∫ T

0

f(Xt) dt. (2.23)

Such an additive functional is also known as a time-integrated functional or, in
physics, as a dynamical observable.

We note the normalization factor of 1/T which ensures, according to the
ergodic theorem, that AT converges in probability to its mean value in the limit
T →∞. Mathematically this means that

lim
T→∞

P (AT ∈ [a∗ − ε, a∗ + ε]) = 1 (2.24)
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for all ε > 0, where

a∗ = lim
T→∞

E [AT ] =

∫
S
p∗(x)f(x) dx (2.25)

is the stationary expected value of AT . Equivalently, we can state (2.24) in the
form

lim
T→∞

p(AT = a) = δ(a− a∗), (2.26)

where p(AT = a) is the probability density of AT .
In the context of this result, we are interested to study the long-time asymp-

totics of p(AT = a) around a∗ as T →∞. Following the theory of large deviations
[24, 26, 45], we expect the density p(AT = a) to have the asymptotic form

p(AT = a) = e−TI(a)+o(T ) (2.27)

for time T large. If this is the case, we say that the observable AT satisfies a
large deviation principle with rate function I(a). The meaning of this asymptotic
form is that the dominant contribution to the density p(AT = a) is a decaying
exponential in T , with the rate of this decay controlled by the function I(a).
Other contributions to the density are sub-exponential in T and are included in
the o(T ) term. Equivalently, we say that AT satisfies a large deviation principle
if the limit

I(a) = lim
T→∞

− 1

T
ln p(AT = a) (2.28)

exists and has a non-trivial value, by which we mean that the rate function is
not 0 or ∞ everywhere.

The rate function I(a) satisfies the inequality I(a) ≥ 0. For those values
a for which I(a) > 0 the probability density decays exponentially in T , while
concentrating on those values a for which I(a) = 0. In the case where there
is a unique a∗ such that I(a∗) = 0, this value a∗ corresponds to the mean of
AT and gives rise to a law of large numbers: the probability density p(AT = a)
concentrates ever more sharply on a∗ as T increases and becomes a Dirac delta
centered on a∗ in the limit T →∞. This corresponds to (2.26). For those cases
considered in this thesis the rate function will always possess a unique zero.

The rate function I(a) is useful as it provides information regarding the small
fluctuations of AT close to its typical value a∗ and the large fluctuations far
away from a∗. Generally, the rate function I(a) is not a parabola and so the
fluctuations around the mean are not Gaussian. This means that large deviation
theory describes fluctuations outside the applicability of the central limit theorem
and so serves as a more general theory of fluctuations.

2.5 Scaled Cumulant Generating Function
We now introduce the scaled cumulant generating function (SCGF), which will
play a central role in the large deviation calculations throughout the thesis. Given
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an additive functional AT having the form (2.23), we define the SCGF as

λ(k) = lim
T→∞

1

T
lnE

[
eTkAT

]
, k ∈ R. (2.29)

The central role of this function in large deviation calculations is due to the
Gärtner-Ellis theorem, which states that if λ(k) exists and is differentiable in k,
then the following holds:

• AT satisfies a large deviation principle.

• The rate function I(a) associated with AT is given by the Legendre-Fenchel
transform of λ(k):

I(a) = sup
k∈R
{ka− λ(k)}. (2.30)

In other words, if λ(k) satisfies the conditions stated in the Gärtner-Ellis theo-
rem, the existence of a large deviation principle is immediately established and,
moreover, we have a means by which to calculate the rate function I(a) asso-
ciated with this large deviation principle and thus to determine the probability
density p(AT = a) up to leading order.

The Legendre-Fenchel transform of a function reduces to the Legendre trans-
form if the function is both differentiable and strictly convex (so that there are
no linear parts). In that case, the derivative of the function is monotonically
increasing and therefore can be inverted, yielding

I(a) = k(a)a− λ(k(a)) (2.31)

where k(a) is the unique solution of

λ′(k) = a. (2.32)

Note from the definition (2.29) that we have λ(0) = 0 and λ′(0) = a∗. These
properties of the SCGF will prove useful later.

2.6 Large Deviations of Diffusions and the
Spectral Problem

Given a Markov diffusion Xt and an additive functional AT of the form (2.23),
we now turn to the question of how the SCGF λ(k) is to be found. The relevant
mathematical result here is the Feynman-Kac formula, which can be used to
show that λ(k), if it exists as a SCGF, is the dominant eigenvalue of the linear
differential operator Lk, given as

Lk = L+ kf, (2.33)

with L the generator of the process Xt and f the function appearing as the
integrand in (2.23). The operator Lk is known as the tilted generator. For the
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adjoint operator L†k we have from the definition of the inner product (2.15) and
the definition of the adjoint (2.18) that

L†k = L† + kf (2.34)

with L† the Fokker-Planck operator of Xt. Notice that kf is a scalar term that is
Hermitian. For more information on the link between the Feynman-Kac formula
and the SCGF, see [26].

Since L is not, in general, Hermitian, neither is Lk. This complicates the
calculation involved in obtaining the spectrum and therefore the dominant eigen-
value λ(k), since we now have to consider not only the direct or ‘right’ eigenvalue
problem

Lkrk = λ(k)rk (2.35)

but also the dual or ‘left’ eigenvalue problem

L†klk = λ(k)lk. (2.36)

These eigenvalue problems have to be considered in conjunction because the
boundary conditions that characterize the spectral problem involve simultane-
ously the right and left eigenfunctions. The issue of boundary conditions will be
discussed in more depth in Chapter 3. For now, we note that the normalization
condition ∫

S
rk(x)lk(x) dx = 1 (2.37)

is applied, with S ⊂ Rd denoting the state space for the process Xt. In addition,
since L†k is related to the Fokker-Planck operator which acts on some appro-
priate space of probability densities, we have the normalization or integrability
condition ∫

S
lk dx = 1 (2.38)

for the eigenfunctions of L†k. We note that, for k = 0, we have L†k=0 = L†, so
that lk=0 = p∗, while for Lk=0 = L, we have rk=0 = 1 in agreement with (2.22)
so that ∫

S
rk=0(x) lk=0(x) dx =

∫
S
p∗(x) dx = 1. (2.39)

2.7 Symmetrization Method
We have seen that the spectral problem associated with finding the SCGF is
complicated by the fact that the tilted generator Lk is, in general, not Hermi-
tian. A significant simplification is, however, possible in the case where Lk has
a real spectrum. In this case, we can unitarily transform Lk to a Hermitian
operator Hk which has the same spectrum as Lk, owing to the fact that unitary
transformations preserve the spectrum of an operator. We can then find the
SCGF as the dominant eigenvalue of the Hermitian operator Hk for which the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LARGE DEVIATIONS OF MARKOV DIFFUSIONS 16

‘right’ and ‘left’ eigenvalue problems are identical, meaning that we only have
one class of eigenfunctions to consider instead of two, so that standard methods
from quantum mechanics can be applied.

For the case where the SDE under consideration is gradient and ergodic, the
spectrum of Lk is indeed real and the unitary transformation that ‘symmetrizes’
Lk to a Hermitian operator Hk is given explicitly by

Lk → (p∗)1/2Lk (p∗)−1/2 = Hk (2.40)

where p∗ is the Gibbs stationary density associated with the process Xt given by
(2.13). The operator Hk acts on a function φ in the manner

Hkφ = (p∗)1/2
(
Lk
(
(p∗)−1/2φ

))
. (2.41)

From this it can be verified that the explicit form of the operator Hk is

Hk =
ε2

2
∇2 − Vk (2.42)

where Vk is the quantum-like potential

Vk(x) =
|∇U(x)|2

2ε2
− ∇

2U(x)

2
− kf(x), (2.43)

with U the potential for the SDE under consideration. The spectral problem
thus becomes

Hkψk = λ(k)ψk (2.44)

with the eigenfunction ψk related to rk and lk by

ψk(x) = p∗(x)1/2 rk(x) and ψk(x) = p∗(x)−1/2 lk(x) (2.45)

with the normalization condition (2.37) reducing to∫
S
ψk(x)2 dx = 1. (2.46)

We can therefore regard Hk as a quantum-like Hermitian operator acting on the
space of square-integrable functions satisfying the appropriate boundary con-
ditions for the problem at hand. This is exactly the situation encountered in
solving the spectral problem for the Schrödinger operator.

2.7.1 Example: Ornstein-Uhlenbeck Process with Linear
Observable

As an illustration of the ideas developed up to this point, we consider the
Ornstein-Uhlenbeck process in one dimension, satisfying the SDE

dXt = −γXt dt+ ε dWt, (2.47)
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withXt taking values in R and γ, ε > 0, where γ is regarded as a friction constant.
We are interested in the large deviations of the additive functional AT given by

AT =
1

T

∫ T

0

Xt dt. (2.48)

The SDE (2.47) is gradient with the associated potential given by U(x) = γx2/2,
such that F (x) = −γx = − d

dx
U(x), and with the normalized Gibbs density given

by

p∗(x) =

√
γ

πε2
exp

[
−γx

2

ε2

]
. (2.49)

For the SDE (2.47), the generator L is given from (2.21) by

L = −γx d
dx

+
ε2

2

d2

dx2
(2.50)

so that the tilted generator associated with this process and observable is given
as

Lk = −γx d
dx

+
ε2

2

d2

dx2
+ kx. (2.51)

This operator is not Hermitian and thus obtaining its spectrum directly will
prove to be difficult. The SDE under consideration is gradient and so Lk has a
real spectrum and symmetrization is possible. The symmetrized operatorHk can
be found from (2.42) by substituting U(x) = γx2/2 into the expression (2.43) to
obtain

Hk =
ε2

2

d2

dx2
− γ2x2

2ε2
+
γ

2
+ kx. (2.52)

The SCGF λ(k) is therefore found as the dominant eigenvalue of the spectral
problem [

ε2

2

d2

dx2
− γ2x2

2ε2
+
γ

2
+ kx

]
ψ

(n)
k (x) = λn(k)ψ

(n)
k (x) (2.53)

with the eigenfunctions ψ(n)
k (x) satisfying the natural quantum boundary condi-

tions
lim
|x|→∞

ψ
(n)
k (x)2 = 0. (2.54)

This boundary condition for the eigenfunctions ψ(n)
k follow from the normaliza-

tion condition (2.46) which requires that the square of ψ(n)
k decays sufficiently

fast to 0 as |x| → ∞.
Introducing the variable z = x − ε2k/γ2, we find that (2.53) can be written

in terms of z as[
−ε2

2

d2

dz2
+
γ2z2

2ε2

]
φ

(n)
k (z) =

[
ε2k2

2γ2
+
γ

2
− λn(k)

]
φ

(n)
k (z) (2.55)

where we have multiplied throughout by −1 and introduced

φ
(n)
k (z) = ψ

(n)
k

(
z +

kε2

γ2

)
. (2.56)
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Upon identifying γ = ~ω and ε = ~/
√
m, we observe that (2.55) is simply the

time-independent Schrödinger equation for the quantum harmonic oscillator. We
therefore have that the spectrum λn(k) of the operator Hk satisfies

ε2k2

2γ2
+
γ

2
− λn(k) = γ

(
n+

1

2

)
, n = 0, 1, 2, . . . (2.57)

so that λn(k) = ε2k2/2γ2 − γn, with the dominant eigenvalue and SCGF conse-
quently given by

λ(k) =
ε2k2

2γ2
. (2.58)

The dominant eigenfunction φk corresponds to the ground state eigenfunction of
the quantum harmonic oscillator and is given by

φk(z) =
( γ

πε2

)1/4

exp

[
−γz

2

2ε2

]
(2.59)

so that the dominant eigenfunction ψk of Hk is found from (2.56) as

ψk(x) = φk

(
x− kε2

γ2

)
=
( γ

πε2

)1/4

exp

[
−γ (x− ε2k/γ2)

2

2ε2

]
. (2.60)

The SCGF λ(k) is clearly differentiable in k and thus satisfies the conditions
of the Gärtner-Ellis theorem. We can therefore find the rate function I(a) as-
sociated with AT as the Legendre-Fenchel transform of λ(k). Given that λ(k)
is strictly convex in k, the Legendre-Fenchel transform reduces to a Legendre
transform with I(a) given from (2.31) by

I(a) =
γ2a2

2ε2
. (2.61)

The rate function I(a), shown in Fig. 2.1, possesses a single zero at a∗ = 0 which
represents the mean and typical value of AT . Given the parabolic form of I(a)
the system possesses Gaussian fluctuations for values of a around a∗ = 0.

We can find the right and left eigenfunctions rk and lk associated with the
dominant eigenvalue λ(k) by substituting (2.60) and (2.49) into the relations
(2.45) and apply the normalization conditions (2.37) and (2.38) to obtain

rk(x) = exp

[
kx

γ
− 3ε2k2

4γ3

]
(2.62)

and

lk(x) =

√
γ

πε2
exp

[
−γ(x− ε2k/2γ2)2

ε2

]
. (2.63)

We note that, while the product rk(x)lk(x) is normalized, the eigenfunction rk(x)
by itself is not normalizeable and blows up as x→∞ for k > 0 and as x→ −∞
for k < 0.
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Figure 2.1: Rate function I(a) for the linear observable of the Ornstein-Uhlenbeck
process with parameters ε = 1 and γ = 1.

2.7.2 Example: Ornstein-Uhlenbeck Process with
Quadratic Observable

As another example, we consider once again the Ornstein-Uhlenbeck process,
where we are now interested in the additive functional VT given by

VT =
1

T

∫ T

0

X2
t dt. (2.64)

The stationary distribution and generator of the process Xt remain the same as
before, given respectively by (2.49) and (2.50). For the functional VT the tilted
generator Lk is given by

Lk = −γx d
dx

+
ε2

2

d2

dx2
+ kx2. (2.65)

The tilted generator is still not Hermitian and therefore we will solve the spectral
problem associated with the symmetrized operator Hk, which has the form

Hk =
ε2

2

d2

dx2
− γ2x2

2ε2
+
γ

2
+ kx2. (2.66)

The SCGF λ(k) associated with VT is therefore determined by solving the spectral
problem [

ε2

2

d2

dx2
− γ2x2

2ε2
+
γ

2
+ kx2

]
ψ

(n)
k (x) = λn(k)ψ

(n)
k (x), (2.67)

where the eigenfunctions ψ(n)
k again satisfy the natural quantum boundary con-

dition
lim
|x|→∞

ψ
(n)
k (x)2 = 0 (2.68)
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due to the normalization condition (2.46). Multiplying (2.67) throughout by −1
and rearranging terms we arrive at[

−ε2

2

d2

dx2
+
x2(γ2 − 2ε2k)

2ε2

]
ψ

(n)
k (x) =

[γ
2
− λn(k)

]
ψ

(n)
k (x). (2.69)

For k ≤ γ2/2ε2, the potential is confining and corresponds to the Schrödinger
equation for the quantum harmonic oscillator with ε = ~/

√
m and

√
γ2 − 2ε2k =

~ω. For k > γ2/2ε2, on the other hand, the potential is not confining and no
eigenfunctions exist. We therefore have that for k ≤ γ2/2ε2, the spectrum λn(k)
satisfies

λn(k)− γ

2
= −

√
γ2 − 2ε2k

(
n+

1

2

)
, n = 0, 1, 2, . . . (2.70)

so that the dominant eigenvalue λ(k) is

λ(k) =
γ

2
− 1

2

√
γ2 − 2ε2k, k ≤ γ2

2ε2
. (2.71)

The SCGF satisfies the conditions of the Gärtner-Ellis theorem, so that the
rate function I(v) is found as the Legendre transform of λ(k). We find for I(v)
that

I(v) =
γ2v

2ε2
+
ε2

8v
− γ

2
(2.72)

for v > 0 since VT ≥ 0 by definition and I(v) is not defined for v = 0. The
rate function I(v) is shown in Fig. 2.2. We note that the zero v∗ of the rate
function, and therefore the mean of the functional VT , can be found from (2.72)
to be v∗ = ε2/(2γ). For the parameters used in Fig 2.2 this becomes v∗ = 1/2.

The normalized dominant eigenfunction ψk associated with the dominant
eigenvalue λ(k) is given by

ψk(x) =

(√
γ2 − 2ε2k

πε2

)1/4

exp

[
− x

2

2ε2

√
γ2 − 2ε2k

]
, (2.73)

with rk and lk found, as before, by substituting our expressions for ψk and p∗

into the relations (2.45), yielding

rk(x) =

(
2
√
γ2 − 2ε2k√

γ2 − 2ε2k + γ

)1/2

exp

[
− x

2

2ε2

(√
γ2 − 2ε2k − γ

)]
(2.74)

and

lk(x) =

(√
γ2 − 2ε2k + γ

2πε2

)1/2

exp

[
− x

2

2ε2

(√
γ2 − 2ε2k + γ

)]
, (2.75)

where we have applied the normalization conditions (2.37) and (2.38).
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Figure 2.2: Rate function I(v) for the quadratic observable of the Ornstein-
Uhlenbeck process with parameters ε = 1 and γ = 1.

2.8 Driven Process
Up to this point we have discussed how to obtain the large deviation functions
(the SCGF and the rate function) associated with a time-integrated observable
AT of a Markov diffusion Xt. While these functions are of central importance
in understanding the fluctuations of AT , they provide no information as to how
these fluctuations are created dynamically in time.

Recently, Chetrite and Touchette [27, 28] have shown that this information
is provided by a modified Markov process, called the effective or driven process,
which essentially corresponds to the long-time limit of the process Xt conditioned
on obtaining a given fluctuation AT = a and which thus realizes trajectories
giving rise to the fluctuation AT = a.

In the case where the rate function I(a) is convex the effective process is
labelled by the parameter k of the SCGF λ(k). It is shown in [27] that for a
process having an SDE of the form (2.3), the driven process X(k)

t realizing the
fluctuation A = a(k) = λ′(k) satisfies the SDE

dX
(k)
t = Fk(Xt) dt+ ε dWt (2.76)

with the driven force Fk given in terms of the eigenfunction rk, corresponding to
the dominant eigenvalue λ(k) of the tilted generator, as

Fk(x) = F (x) +D∇ ln rk(x). (2.77)

The driven process can be regarded as a process which has the atypical trajec-
tories of Xt for which AT = a as typical trajectories. We therefore have for the
driven process that

lim
T→∞

1

T

∫ ∞
0

f
(
X

(k)
t

)
dt = a(k) (2.78)
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in probability.
For a gradient process Xt having an SDE (2.12) and a Gibbs density (2.13),

symmetrization is possible and the driven force can be written with (2.45) in
terms of the eigenfunction ψk associated with the Hermitian operator Hk. We
have from (2.45) that

Fk(x) = F +D∇ ln
(
p∗(x)−1/2ψk(x)

)
(2.79)

which becomes, noting that D = ε2I,

Fk(x) = F − ε2

2
∇ ln p∗(x) + ε2∇ lnψk. (2.80)

From the definition of the Gibbs density (2.13), and the fact that F = −∇U ,
this reduces to

Fk(x) = ε2∇ lnψk = ε2
∇ψk(x)

ψk(x)
. (2.81)

Equivalently we can describe the driven process in terms of an effective or
driven potential Uk associated with the force Fk and satisfying ∇Uk = −Fk as

Uk(x) = −ε2 lnψk(x). (2.82)

We note that this last relation implies that we can write

ψk(x)2 = rk(x)lk(x) = N exp

[
−2Uk(x)

ε2

]
, (2.83)

withN being a normalization constant, and so we can interpret the product ψ2
k or

rklk as being the stationary Gibbs density associated with the drift Fk. That is,
ψ2
k is the stationary density of the effective process that realizes the fluctuation

associated with the parameter k. We will denote this stationary density with
potential Uk as pk in the following, so that

pk(x) = ψk(x)2 = rk(x)lk(x). (2.84)

2.8.1 Example: Ornstein-Uhlenbeck Process with Linear
Observable

To illustrate the notion of the driven process, we return now to the Ornstein-
Uhlenbeck process on the real line that was studied in Section 2.5.1. We are
interested in obtaining the driven process associated with the linear functional
AT studied there. This process is gradient and so we can obtain the driven
force Fk from the relation (2.81). Substituting the expression (2.60) for the
eigenfunction ψk into (2.81) yields

Fk(x) = −γ
(
x− ε2k

γ2

)
, (2.85)
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Figure 2.3: Sample paths for the normal Ornstein-Uhlenbeck process Xt (k = 0)
and the driven processes X(k)

t for k = −5 and k = 5 are shown for the parameters
ε = 1 and γ = 1.

while the effective potential Uk found by substituting (2.60) into (2.82) is

Uk(x) = γ

(
x− ε2k

γ2

)2

. (2.86)

The driven process X(k)
t associated with the fluctuation AT = a(k) is therefore

given by

dX
(k)
t = −γ

(
x− ε2k

γ2

)
dt+ ε dWt, (2.87)

where we note that a(k) = λ′(k) = ε2k/γ2 from (2.58). These expressions can all
be parameterized by the fluctuation value AT = a instead of k simply by using
the relation a = λ′(k) = ε2k/γ2.

Sample paths of the process X(k)
t are shown in Fig. 2.3. We observe that the

trajectory of the process X(k)
t spends the majority of the time close to the value

a(k) = ε2k/γ2. This can be understood from the expression of Fk which has
a zero at x = a(k) = ε2k/γ2 and therefore shifts the stable equilibrium of the
process from x = 0 to a(k), implying in the long-time limit that AT → a(k) or,
equivalently, AT → a if we parameterize X(k)

t in terms of a instead of k. The
zero of Fk corresponds in the potential Uk to a position of minimum ‘energy’ for
the system, with the potential Uk having a minimum at a(k) = ε2k/γ2.

2.8.2 Example: Orsntein-Uhlenbeck process with
Quadratic Functional

We now obtain the driven process associated with the quadratic functional Vt of
the Ornstein-Uhlenbeck process. Following the procedure just used, the driven
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force Fk is obtained by substituting the eigenfunction (2.73) into (2.81), yielding

Fk(x) = −x
√
γ2 − 2ε2k, k ≤ γ2

2ε2
. (2.88)

The driven potential Uk associated with the force Fk is thus found from (2.82)
to be

Uk(x) =
x2

2

√
γ2 − 2ε2k, k ≤ γ2

2ε2
. (2.89)

Both Fk and Uk are associated with the fluctuation v(k) depending on k in the
manner

v(k) = λ′(k) = ε2/2
√
γ2 − 2ε2k, k ≤ γ2

2ε2
(2.90)

where we have used the expression (2.71) for the SCGF λ(k). The driven pro-
cess X(k)

t which realizes a fluctuation v(k) = ε2/2
√
γ2 − 2ε2k as a typical value

therefore satisfies the SDE

dX
(k)
t = −X(k)

t

√
γ2 − 2ε2k dt+ ε dWt for k ≤ γ2

2ε2
. (2.91)

As before, we can also parameterizeX(k)
t in terms of v using the relation v(k) = v.

We note that while the driven force (2.85) for the linear functional AT involved
a constant shift and that this manifested itself in the trajectories of X(k)

t as being
shifted to spending the majority of the time T close to the fluctuation ak, the
driven force for the functional VT scales the friction of X(k)

t by a factor depending
on k.

Sample paths of the driven process (2.91) are shown in Fig. 2.4. We observe
for k < 0 that the size of the excursions away from x = 0 are, on average, smaller
than those for k = 0, because of the larger friction, thus forcing X(k)

t to realize
smaller values of VT . For k > 0, on the other hand, the average excursions away
from x = 0 are larger than for k = 0, because of a smaller friction, leading
to larger values of VT . In the limit where k → γ2/(2ε2), Fk → 0 so that the
very large fluctuations of VT are effectively realized by Brownian motion which
undergoes arbitrarily large excursions away from x = 0.
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Figure 2.4: Sample paths for the normal Ornstein-Uhlenbeck process Xt (k = 0)
and the driven processes X(k)

t for k = 0.5 and k = −10 are shown for the
parameters ε = 1 and γ = 1.
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Chapter 3

Large Deviations of Reflected
Diffusions

In this chapter we study the physical and mathematical role played by bound-
ary conditions on the behavior of Markov diffusions. We discuss various types of
boundaries commonly used in practice and discuss a classification of such bound-
aries, focusing on one dimensional diffusions. With this background we then turn
our attention to the large deviations of time-integrated functionals of reflected
diffusions and determine the manner in which reflecting boundary conditions
influence the spectral problem associated with obtaining the SCGF.

3.1 Diffusions with Boundaries
We consider a d-dimensional Markov diffusion Xt evolving in some region E ⊂ Rd

with a boundary ∂E assumed to be a smooth (d− 1)-dimensional surface in Rd.
While the behavior of the process in the interior of E is determined by its SDE,
a separate prescription is needed for the behavior of the process at the boundary
∂E in the event that this boundary is reached.

Many such prescriptions are used in practice. Following what we have dis-
cussed in Chapter 1, we list some commonly used prescriptions:

• Absorbing boundaries: The process Xt is terminated upon reaching
the boundary or, equivalently, remains indefinitely on the boundary upon
reaching it. Consider as an example a process Xt ∈ [0,∞) representing
the concentration of a biological population occupying some region. In
the event where immigration into this region is not possible, a population
that reaches 0 will remain at 0 indefinitely. The boundary {0} is therefore
considered an absorbing boundary for this process.

• Reflecting boundaries: Upon reaching such a boundary, the process is
reflected instantaneously in a specular manner similar to light reflecting
off a mirror or the elastic reflection of a particle upon striking a wall. A

26
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particle undergoing Brownian motion inside a container with hard walls is
an example of a process with reflecting boundaries.

• Elastic or partially reflecting boundaries: A boundary is said to be
elastic or partially reflecting if the process is reflected with some proba-
bility p and absorbed with probability 1− p upon reaching this boundary.
Partially reflecting boundaries are encountered in biology and chemistry in
the study of processes with reactive boundaries [15].

• Sticky boundaries: A boundary is sticky if a process, upon reaching it,
is required to remain there for some fixed or random amount of time before
being allowed to re-enter the interior of the state space [19, 18].

• Instantaneous return process: For such a process we have that, upon
reaching the boundary, Xt is placed in the interior of E according to some
probability distribution. The process then continues to evolve according to
the SDE which governs its evolution.

Discussions of the types of boundaries listed here can be found in [15] and [49].
At this point it must be noted that the question of whether a boundary

can be reached (with non-zero probability) or not is of importance. Clearly the
behavior of the process Xt need only be defined at a boundary if that boundary
can be reached from the interior E◦ of E . In probability theory, a boundary
is called accessible if, starting from an initial point inside the interior E◦, the
process reaches the boundary in finite expected time. If this is not the case, the
boundary is called inaccessible [49]. Accessible boundaries are further subdivided
as

• Regular: A boundary is regular if the boundary can be attained from the
interior E◦ and also if the process can re-enter the interior E◦ from the
boundary.

• Exit: An exit boundary can be reached from E◦, but once the process
has reached this boundary it can never re-enter the interior (e.g. if the
boundary is absorbing).

On the other hand, inaccessible boundaries are classified as

• Entrance: A process can reach the interior from such a boundary, although
the boundary itself can never be reached from the interior. In other words
a process can start on such a boundary but once entering the interior E◦
will never reach this boundary again.

• Natural: A process can neither be started at such a boundary nor reach it
from the interior in finite time. This boundary can be regarded as outside
the state space of the process Xt. We have encountered natural boundaries
before, for example at −∞ and ∞ in our consideration of the Ornstein-
Uhlenbeck process on R.
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This classification of boundaries was proposed by Feller [16] and is known as the
Feller classification. In one dimension, conditions on the drift F and noise ε for
a boundary being of a given type are well-known and discussed in, for example,
[49].

In this thesis we consider diffusions in one dimension with reflecting bound-
aries that are accessible and regular. This type of boundary behavior was first
studied on the level of the SDE for Brownian motion in 1961 by Skorokhod
[20, 21], who showed that this type of boundary can be implemented mathemat-
ically through the addition of a new term, corresponding to the so-called local
time, in an SDE.

This result, now known as the Skorokhod construction, is too technical for
our needs and will not be considered here. Instead, we take a more practical
approach in which we solve the SDE in the interior of E in the usual manner and
reflect mechanically the system’s state if it attempts to cross the boundary, as
is done in ordinary differential equations. As will be shown, this procedure im-
plies a boundary condition for the Fokker-Planck equation, which is usually how
reflections are treated mathematically in physics. This manner of implementing
the boundary condition is mathematically simpler and intuitively more appeal-
ing, given the physical nature of the Fokker-Planck operator as the generator of
time evolution of the probability density describing the system’s state.

In this thesis we will restrict ourselves to one dimensional diffusions. The
treatment of boundaries in dimensions higher than one is mathematically much
more complex and it is, in fact, still a research problem to understand the effect
of complicated boundaries in two or three dimensions [15].

3.2 Reflected Diffusions in One Dimension
We consider from now on the case where Xt is a Markov diffusion in one dimen-
sion satisfying an SDE of the form

dXt = F (Xt) dt+ ε dWt, (3.1)

on the interval [a, b], with a < b and with reflecting boundary conditions at
x = a and x = b. The reflection is implemented in simulations as in ordinary
differential equations by reflecting the state when it “crosses” the boundary. To
be more precise, consider the evolution of Xt, representing the position of a
Brownian particle, over a small time interval ∆t as determined [50, 15] by the
Euler-Maruyama (or simply Euler) scheme

Xt+∆t = Xt + F (Xt) ∆t+ ε∆Wt, (3.2)

where ∆Wt is a Gaussian random variable with mean 0 and variance ∆t. The
particle can move closer to the boundary without crossing it if it is initially
far enough from it, as shown in Fig. 3.1a. However, as it gets close enough to
the boundary, it is possible that the state Xt updated to Xt+∆t can cross the
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Figure 3.1: (a): Illustration of zero current conditions at a reflecting boundary.
(b): Discretization of a reflection at a boundary where xref

t+∆t is the final position
of the particle after reflection has been applied. (c) Boundary layer introduced
by the discretization becoming infinitesimal as ∆t→ 0.

boundary, as shown in Fig. 3.1b. In this case, the state Xt+∆t is reflected to
−Xt+∆t to account for the reflection.

The typical distance ∆x from the boundary within which Xt can cross the
boundary within a single time step is known as the boundary layer. In gen-
eral, the thickness of this layer, which represents an error or artefact of the
Euler-Maruyama scheme, decreases to 0 as ∆t → 0, with Fig. 3.1c representing
this limit, where the boundary layer now has infinitesimal size. In this limit,
it should be clear that a particle entering the infinitesimal layer will leave it
instantaneously, so that the net number of crossings at the layer is zero. This
is illustrated in Fig. 3.1c. Accordingly, if we view the evolution of the Fokker-
Planck equation as describing the behavior of an ensemble of particles, then the
flux of particles across the boundary must be zero. Since this flux of particles
is described by the current Jp, as defined in (2.9), it follows that Jp = 0 at the
boundary.

This result can be obtained in other ways, e.g., by using the Skorokhod
construction [20, 21] or by imposing a hard-wall potential force at the boundary,
and implies mathematically that the relevant set of densities p on which the
Fokker-Planck operator L† acts is the set of densities that satisfy

Jp(a
+) = Jp(b

−) = 0, (3.3)

with the probability current Jp(x) given from (2.9) as

Jp(x) = F (x) p(x)− ε2

2
p′(x). (3.4)

This defines the domain, D(L†), of the Fokker-Planck operator L†. In addition,
we require a density p ∈ D(L†) to be at least twice-differentiable given the nature
of L† as a second-order differential operator. Furthermore p ∈ D(L†) being a
density requires that p is normalizeable and satisfies∫ b

a

p(x) dx <∞. (3.5)
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Having determined what the boundary conditions are for the Fokker-Planck
operator, we now derive the appropriate boundary conditions for the generator L.
Recall that the Fokker-Planck operator and the generator are adjoint operators
with respect to the Lebesgue measure and are related via the natural inner
product (2.15) for p ∈ D(L†). Given that the operator L† is defined on normalized
densities on [a, b], the adjoint operator L is defined on those functions f on [a, b]
for which the inner product 〈p, f〉 is well-defined, meaning that

〈p, f〉 <∞. (3.6)

For the SDE (3.1) the Fokker-Planck operator L† is given from (2.6) as

L† = − d

dx
F +

ε2

2

d2

dx2
(3.7)

so that, similarly to our discussion in Chapter 2, we have

〈L†p, f〉 =

∫ b

a

[
−(Fp)′(x) +

ε2

2
p′′(x)

]
f(x) dx

=

[
−F (x)p(x)f(x) +

ε2

2
p′(x)f(x)

]b
a

+

∫ b

a

[
p(x)F (x)− ε2

2
p′(x)

]
f ′(x) dx

= −f(x)Jp(x)

∣∣∣∣b
a

− ε2

2
p(x)f ′(x)

∣∣∣∣b
a

+

+

∫ b

a

p(x)

[
F (x)

d

dx
f(x) +

ε2

2

d2

dx2
f(x)

]
dx.

(3.8)

Given that p satisfies the zero current condition (3.3), we therefore have

〈L†p, f〉 = −ε
2

2
p(x)f ′(x)

∣∣∣∣b
a

+

∫ b

a

p(x)

[
F (x)

d

dx
f(x) +

ε2

2

d2

dx2
f(x)

]
dx. (3.9)

From the definition (2.15), we thus see that L is only defined independently of
any specific p if the condition

f ′(a) = f ′(b) = 0 (3.10)

is satisfied for all f . In this case the generator L is given by

L = F
d

dx
+
ε2

2

d2

dx2
(3.11)

which is the one-dimensional version of the expression given in (2.21). Condition
(3.10) defines mathematically the domain, D(L), of L. Clearly the functions in
D(L) must also be at least twice-differentiable, given that L is a second-order
differential operator.
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In the next chapter, we will consider applications for which b = ∞. In this
case, the normalization condition∫ ∞

a

p(x) dx <∞ (3.12)

for p ∈ D(L†) contrains p to decay to 0 as x→∞, while a zero-current condition
at ∞ is required to ensure that there is no ‘flow’ of probability at ∞, so that
probability is conserved. From the expression (3.4) for the current, along with
the fact that p decays to 0 as x→∞, we must therefore also have that p′ tends
to 0 as x→∞. For

ε2

2
p(x)f ′(x)

∣∣∣∣∞
a

= 0 (3.13)

to hold, which is necessary for L to be defined unambiguously (refer to (3.9)),
we need only require f ′(a) = 0 since p decays to 0 as x → ∞. The case where
a = −∞ and b is finite is treated in a similar fashion.

3.2.1 Example: Reflected Brownian Motion with Drift

As an illustration of the boundary conditions just obtained, we consider the
process Xt satisfying the SDE

dXt = −µ dt+ ε dWt (3.14)

with µ > 0 and Xt ∈ [0,∞) with reflection at x = 0. This process is known
as reflected Brownian motion with drift. The Fokker-Planck operator associated
with this process is given by

L† = µ
d

dx
+
ε2

2

d2

dx2
, (3.15)

and acts on densities p satisfying the zero-current condition Jp(0
+) = 0 which

for the force F (x) = −µ becomes[
−µp(x)− ε2

2
p′(x)

]
x=0+

= 0, (3.16)

or more explicitly

p′(0+) = −2µ

ε2
p(0+) (3.17)

This type of boundary condition, involving both the function p and its derivative
p′, is known as a Robin or mixed boundary condition.

The stationary density p∗ is found as the density which satisfies L†p∗ = 0
along with the boundary condition (3.17). The solution is found to be a Gibbs
density and is given from (2.13) as

p∗(x) =
2µ

ε2
exp

[
−2µx

ε2

]
, x ≥ 0, (3.18)
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Figure 3.2: Stationary density p∗ for reflected Brownian motion with drift. Pa-
rameters: µ = 1 and ε = 1.

where we have properly normalized p∗. The stationary density is shown in
Fig. 3.2. Note that Brownian motion on R (with or without drift) has no sta-
tionary distribution. The fact that reflected Brownian motion with drift has one
is due to the presence of the reflecting wall and the negative drift which serves
to confine the motion close to the origin. Note also that because Xt is one-
dimensional, and J = 0 at x = 0, then we must have that J = 0 everywhere for
the density p∗ to be stationary. If the current was non-zero anywhere there would
be a net flow of probability and the density would not be time-independent.

For future use, note that the generator L is given from (3.11) by

L = −µ d

dx
+
ε2

2

d2

dx2
(3.19)

and acts on test functions f satisfying f ′(0+) = 0 according to (3.10).

3.2.2 Example: Positive Ornstein-Uhlenbeck Process
with Reflection

We now consider the Ornstein-Uhlenbeck process satisfying the SDE (2.47) with
Xt constrained to take values in [0,∞) and x = 0 considered to be a reflecting
boundary. As before for the normal Ornstein-Uhlenbeck process, x = ∞ is a
natural boundary in the sense of the Feller classification.

The Fokker-Planck operator associated with this process is given by

L† = γ
d

dx
x+

ε2

2

d2

dx2
(3.20)

and acts on densities p satisfying the zero current condition Jp(0+) = 0, yielding[
−γxp(x)− ε2

2
p′(x)

]
x=0+

= 0 (3.21)
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Figure 3.3: Stationary density p∗ for the reflected Ornstein-Uhlenbeck process
with parameters γ = 1 and ε = 1.

and therefore p′(0+) = 0. The stationary density p∗ that satisfies L†p∗ = 0 while
being subject to the condition p′(0+) = 0 is given by

p∗(x) = 2

√
γ

πε2
exp

[
−γx

2

ε2

]
, x ≥ 0. (3.22)

This Gibbs density associated with the process is simply the density found for
the normal Ornstein-Uhlenbeck process in (2.49) truncated on x ≥ 0 and there-
fore having a different normalization factor. The stationary density is shown in
Fig. 3.3.

The generator L of the process is given from (3.11) by

L = −γx d
dx

+
ε2

2

d2

dx2
(3.23)

and, as before, acts on test functions f for which f ′(0+) = 0.

3.3 Large Deviations
We come now to the main problem of the thesis which is to explain how large
deviations of reflected diffusions are obtained. Following the paper by Fatalov
[35] mentioned in the introduction, which considers the large deviations of the
area of reflected Brownian motion with negative drift, we extend that paper by
considering more general diffusions, by explaining in detail how to implement
reflecting boundary conditions in the spectral problem defining the SCGF, and
by applying these results to the driven process.

We consider, as before, a diffusion Xt satisfying an SDE of the form (3.1)
and a time-integrated observable AT of the form considered in Chapter 2. We
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are interested in obtaining the SCGF λ(k) associated with the observable AT .
We recall that λ(k) is found as the dominant eigenvalue of the spectral problem
given by

Lkr(n)
k (x) = λn(k)r

(n)
k (x) (3.24)

and the adjoint equation

L†kl
(n)
k (x) = λn(k)l

(n)
k (x), (3.25)

where Lk is the tilted generator having the form

Lk = L+ kf (3.26)

with L the generator of the process Xt. The index n labels the different eigenval-
ues and eigenfunctions for the spectral problem at hand. As before, the operators
Lk and L†k are viewed as adjoints with respect to the inner product (2.15). The
eigenfunctions r(n)

k and l(n)
k are thus required to satisfy

〈l(n)
k , r

(n)
k 〉 <∞ (3.27)

Here, we choose the eigenfunctions in such a manner that the normalization
condition

〈l(n)
k , r

(n)
k 〉 = 1 (3.28)

holds. This normalization condition only fixes the normalization of the product
l
(n)
k r

(n)
k , not the eigenfunctions individually. We therefore also require that∫ b

a

l
(n)
k dx = 1, (3.29)

which fixes the normalization for both l(n)
k and r(n)

k . This integrability condition
is natural given the relation of the operator L†k to the Fokker-Planck operator,
to which it must correspond in the case k = 0.

Proceeding, we note that since

〈L†kl
(i)
k , r

(j)
k 〉 = 〈l(i)k ,Lkr

(j)
k 〉 (3.30)

from the definition of the adjoint and

λi(k) 〈l(i)k , r
(j)
k 〉 = 〈L†kl

(i)
k , r

(j)
k 〉 = 〈l(i)k ,Lkr

(j)
k 〉 = λj(k) 〈l(i)k , r

(j)
k 〉 (3.31)

we must have that
〈l(i)k , r

(j)
k 〉 = 0 for i 6= j. (3.32)

Combining this with the normalization condition (3.28) we obtain

〈l(i)k , r
(j)
k 〉 = δi,j (3.33)

for the eigenfunctions.
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We now need to determine the appropriate boundary conditions applied to the
eigenfunctions of the operator Lk and its adjoint L†k in order to fully determine
the spectrum of these operators. The central observation in determining these
boundary conditions is that the operators Lk and L†k are parameter extensions
(involving the parameter k) of the operators L and L†, respectively, satisfying
Lk=0 = L and L†k=0 = L†, so that the boundary conditions placed on these
operators must be independent of k. Consequently, the operators L†k and Lk must
inherit the boundary conditions of L† and L, respectively. For L†k this means
explicitly that the set of eigenfunctions l(n)

k satisfy the zero current condition

J
l
(n)
k

(x)

∣∣∣∣
x=a+

= J
l
(n)
k

(x)

∣∣∣∣
x=b−

= 0, (3.34)

which can be stated explicitly as

F (a+) l
(n)
k (a+) =

ε2

2

dl
(n)
k (x)

dx

∣∣∣∣
x=a+

and F (b−) l
(n)
k (b−) =

ε2

2

dl
(n)
k (x)

dx

∣∣∣∣
x=b−

.

(3.35)
As for the set of eigenfunctions r(n)

k associated with Lk, they inherit the boundary
condition (3.10) and therefore satisfy

dr
(n)
k (x)

dx

∣∣∣∣
x=a+

=
dr

(n)
k (x)

dx

∣∣∣∣
x=b−

= 0. (3.36)

The boundary conditions for Lk can also be found, as before, by considering
the definition of the adjoint (3.30) and taking into account the boundary condi-
tions for the eigenfunctions l(n)

k . The calculations involved are identical to the
procedure followed in (3.8). A similar argument can be made for obtaining the
boundary conditions for l(n)

k using (3.36) as a starting point.

3.4 Driven Process and Reflecting Boundaries

We now look at the consequences of the boundary conditions for r(n)
k and l

(n)
k

for the driven process. First we note from the boundary conditions (3.34) and
(3.36) that

r
(n)
k (x)J

l
(n)
k

(x)

∣∣∣∣
x=a+

= r
(n)
k (x)J

l
(n)
k

(x)

∣∣∣∣
x=b−

= 0 (3.37)

and
ε2

2
l
(n)
k (x)

dr
(n)
k (x)

dx

∣∣∣∣
x=a+

=
ε2

2
l
(n)
k (x)

dr
(n)
k (x)

dx

∣∣∣∣
x=b−

= 0. (3.38)

We recognize these as the boundary terms arising in (3.8) due to integration by
parts where l(n)

k and r(n)
k here play the parts of p and f (respectively) in (3.8).
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In particular, we note that upon combining (3.37) and (3.38) we have[
r

(n)
k (x)J

l
(n)
k

(x)− ε2

2
l
(n)
k (x)

dr
(n)
k (x)

dx

]
x=a+

= 0 (3.39)

with an identical equation holding for x = b−. Expanding the expression for the
current associated with l(n)

k yields[
F (x)r

(n)
k (x)l

(n)
k (x)− ε2

2
r

(n)
k (x)

dl
(n)
k (x)

dx
− ε2

2
l
(n)
k (x)

dr
(n)
k (x)

dx

]
x=a+

= 0 (3.40)

which reduces to[
F (x)

(
r

(n)
k (x)l

(n)
k (x)

)
− ε2

2

d

dx

(
r

(n)
k (x)l

(n)
k (x)

)]
x=a+

= J
r
(n)
k l

(n)
k

(x)

∣∣∣∣
x=a+

= 0

(3.41)
with an identical expression holding for x = b−. This shows interestingly that
the combination r(n)

k l
(n)
k also satisfies a zero current condition at the boundaries.

This makes sense given that pk = rk lk is the stationary distribution associated
with the driven process X(k)

t . The driven process corresponds asymptotically to
the process Xt conditioned on obtaining a given a fluctuation and so still retains
the zero current condition at the boundaries.

From these results, we can draw a few more interesting conclusions for be-
havior of the driven force Fk. As we have seen, the eigenfunctions r(n)

k satisfy
the boundary condition (3.36). In particular we have r′k(a+) = r′k(b

−) = 0 for
the dominant eigenfunction rk. We recall from the definition of the driven force
Fk given in (2.77) that it differs from the force F (x) only by a term depending
on r′k(x). We find that since this term is zero at the boundaries, by (2.77), the
driven force therefore satisfies

Fk(a
+) = F (a+) and Fk(b

−) = F (b−). (3.42)

In other words, the driven force is the same as the original force at the reflecting
boundaries. For the driven current J (k)

p associated with the effective process X(k)
t

having drift Fk, defined in the usual manner as

J (k)
p (x) = Fk(x)p(x)− ε2

2

d

dx
p(x) (3.43)

this implies that at the boundaries, where the driven force is the same as the
original force, we obtain

J (k)
p (a+) = Jp(a

+) = 0 and J (k)
p (b−) = Jp(b

−) = 0 (3.44)

for any function p that satisfies a zero current condition for the current J associ-
ated with the original process. This includes, as we have seen, the eigenfunctions
l
(n)
k as well as combinations of the form r

(n)
k l

(n)
k . In particular we have that J (k)

pk is
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zero at the boundaries. This means that the current associated with the driven
force Fk and the stationary distribution of the driven process also satisfies a zero
current condition at the boundaries, as one would expect for a system having
reflecting boundary conditions.

In conclusion, the driven force at the boundaries is the same as the original
force F and the driven current J (k)

pk satisfies a zero current condition at the
boundaries as for k = 0.

3.5 Boundary Conditions for the Symmetrized
Problem

In Chapter 2 we saw that, while the tilted generator Lk is typically not Hermi-
tian, we could symmetrize the spectral problem in the case where Lk has a real
spectrum. In this case, the spectral problem reduces to the study of a Hermi-
tian operator Hk. We now discuss the boundary conditions for this Hermitian
(symmetrized) operator Hk given by

Hk = (p∗)1/2Lk(p∗)−1/2, (3.45)

which has the same spectrum λn(k) as Lk and has eigenfunctions ψ(n)
k which

satisfy the relations (2.45) and therefore

ψ
(n)
k (x)2 = r

(n)
k (x)l

(n)
k (x). (3.46)

From (3.41) we have that the eigenfunctions ψ(n)
k thus satisfy the boundary con-

dition
J(

ψ
(n)
k

)2(x)

∣∣∣∣
x=a+

= J(
ψ
(n)
k

)2(x)

∣∣∣∣
x=b−

= 0. (3.47)

This means explicitly that we have

J(
ψ
(n)
k

)2(x) =

[
F (x)

(
ψ

(n)
k (x)

)2

− ε2

2

d

dx

(
ψ

(n)
k (x)

)2
]

(3.48)

and so we have

ψ
(n)
k
′(a+) =

F (a+)

ε2
ψ

(n)
k (a+) and ψ

(n)
k
′(b−) =

F (b−)

ε2
ψ

(n)
k (b−) (3.49)

for the eigenfunctions ψ(n)
k . Finally, given that the eigenfunctions l(n)

k and r
(n)
k

form an orthonormal basis, following eq. 3.33, we also find that

〈l(i)k , r
(j)
k 〉 =

∫ b

a

ψ
(i)
k (x)ψ

(j)
k (x) dx = δi,j. (3.50)

We can therefore regard the eigenfunctions ψ(n)
k as square-integrable, orthonor-

mal eigenfunctions satisfying the Robin (mixed) boundary conditions (3.49) in a
quantum problem. As before we can generalize all results here very easily to the
case where only one of a, b is finite.

Stellenbosch University https://scholar.sun.ac.za



Chapter 4

Applications

We illustrate in this chapter the results obtained in Chapter 3 by applying them
to two examples already seen in Chapter 3, namely, the reflected Ornstein-
Uhlenbeck process and reflected Brownian motion with dirft. Each of these
two systems can be solved exactly and give rise to interesting properties for the
driven process in the presence of a reflecting boundary.

4.1 Reflected Ornstein-Uhlenbeck Process with
Linear Observable

The first system that we study is the reflected Ornstein-Uhlenbeck process in
one dimension, introduced in Section 3.2.2. As discussed previously, reflecting
boundary conditions will be implemented at the level of the Fokker-Planck oper-
ator L† by requiring that the current Jp(x) associated with this process satisfies

Jp(x)

∣∣∣∣
x=0+

= 0 (4.1)

for all p in the domain of L†. As discussed in Section 3.2.2, for the process under
consideration, this condition on the current reduces to the Neumann boundary
condition p′(0+) = 0. The SDE (2.47) is gradient with the stationary Gibbs
density (3.22) satisfying this boundary condition at x = 0.

4.1.1 Spectral Problem for Linear Observable

The observable AT that we consider here is the same as that considered in Section
2.7.1, namely,

AT =
1

T

∫ T

0

Xt dt (4.2)

and leads to the tilted generator Lk given before in (2.51). As before, in the treat-
ment of the Ornstein-Uhlenbeck process with linear observable, we will obtain

38
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the SCGF by solving the spectral problem associated with the symmetrized op-
erator Hk, where we note that this operator is now only symmetrized for x > 0.
Since the stationary distribution p∗ given in (3.22) for the reflected Ornstein-
Uhlenbeck process has the same form as that of the normal Ornstein-Uhlenbeck
process, we have that the symmetrized operator Hk has the same form as in
(2.52) on x ≥ 0. The eigenfunctions ψ(n)

k must therefore satisfy the differential
equation (2.53) with the difference here being that these eigenfunctions are now
restricted to x ≥ 0 and required to satisfy the boundary condition (3.49) at
x = 0+, which, for the force F (x) = −γx, reduces to

ψ
(n)
k
′(0) = 0 (4.3)

along with the usual normalization condition∫ ∞
0

ψ
(n)
k (x)2 dx = 1 (4.4)

which requires that
lim
x→∞

ψ
(n)
k (x)2 = 0. (4.5)

The solutions ψ(n)
k to the differential equation (2.53) belong to the class of

functions known as parabolic cylinder functions. A special class of the parabolic
cylinder functions are related to the Hermite polynomials that we are familiar
with from quantum mechanics. More precisely, we have that ψ(n)

k has the form

ψ
(n)
k (x) = Dξn

(√
2γx

ε
−
√

2kε

γ3/2

)
, (4.6)

where we have defined
ξn =

k2ε2 − 2γ2λn(k)

2γ3
(4.7)

and where Dν(z) indicates a parabolic cylinder function. Valid solutions to the
spectral problem under consideration must further satisfy the boundary condition
(4.3) which constrains possible values of λn(k). Upon substituting the form
(4.6) for the eigenfunctions into the boundary condition (4.3), we obtain the
transcendental equation

kε√
2γ3/2

Dξn

(
−
√

2kε

γ3/2

)
+Dξn+1

(√
2kε

γ3/2

)
= 0 (4.8)

which is only satisfied for valid eigenvalues λn. In deriving this equation, we have
used the identities

D′ν(z) +
1

2
zDν(z)− νDν−1(z) = 0 (4.9)

and
Dν+1(z)− zDν(z) + νDν−1(z) = 0 (4.10)
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Figure 4.1: Function h(λ) defined in (4.11) for the values ε = 1, γ = 1 and k = 1.
The red dot indicates the maximal zero of h(λ) corresponding to the maximal
eigenvalue (SCGF) of the spectral problem for this set of parameters.

for the parabolic cylinder functions Dν(z). Thus we see that the eigenvalues
λn(k) for our spectral problem are found as the zeroes of the function h(λ) given
by

h(λ) =
kε√
2γ3/2

Dξ

(
−
√

2kε

γ3/2

)
+Dξ+1

(√
2kε

γ3/2

)
, (4.11)

with ξ = (k2ε2 − 2γ2λ)/2γ3.
A plot of the function h(λ) for a specific set of the parameters ε, γ and k

is shown in Fig. 4.1. Each zero corresponds to a different eigenvalue, with the
largest (shown with a dot) corresponding to the SCGF.

We can now obtain the roots of h(λ) for a given set of parameters ε and γ
while varying the value of k to obtain the eigenvalues λn(k) as functions of k via
interpolation. This allows us to find the SCGF λ(k), the maximal eigenvalue,
as a function of k for a given set of paramaters. The result of this procedure is
shown in Fig. 4.2. We note from this that we have λ(0) = 0, which is a general
property of the SCGF. Furthermore, using the relation λ′(k) = a(k), we have
λ′(−∞) = 0, as a result of the fact that the lower bound of AT is 0, so that the
SCGF becomes asymptotically linear as k → −∞. In the same manner, we have
λ′(∞) =∞ since AT is unbounded from above. These properties can be seen in
Fig. 4.2.

Since the SCGF is differentiable and strictly convex we obtain the rate func-
tion I(a) as the Legendre transform of λ(k), according to the Gärtner-Ellis the-
orem. The result is shown in Fig. 4.3. We see that I(a) is defined only for
a ≥ 0, since AT is now non-negative due to the reflection. Moreover I(a) is con-
vex, tends asymptotically to ∞ as a → 0, and has a unique minimum and zero
a∗ corresponding, as we know, to the large time expectation and typical value
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Figure 4.2: SCGF λ(k) for the linear observable of the reflected Ornstein-
Uhlenbeck process with parameters ε = 1 and γ = 1.

of AT . Given that the process under consideration is ergodic, the value a∗ is
found by calculating the expectation of f(x) = x with respect to the stationary
distribution p∗, given by (3.22), of the process. We therefore obtain

a∗ =

∫ ∞
0

x p∗(x) dx = 2

√
γ

πε2

∫ ∞
0

x exp

[
−γx

2

ε2

]
dx. (4.12)

By performing the Gaussian integral in (4.12) the value of a∗ is found to be

a∗ =

√
ε2

πγ
. (4.13)

For the values ε, γ = 1 we have a∗ = 1/
√
π ≈ 0.564, which is corroborated in

Fig. 4.3.
We now consider the driven process X(k)

t with driven force Fk that manifests
the fluctuation a(k) = λ′(k) corresponding to k. The driven force Fk and its
corresponding driven potential Uk can be obtained by substituting our expression
for ψk = ψ

(0)
k given from (4.6) into the relations (2.81) and (2.82). We use a non-

normalized ψk, since the normalization constant cancels out in the expression for
Fk and it is sufficient to define Uk up to a constant. This leads to

Fk(x) = ε2
ψ′k(x)

ψk(x)
=
√

2γε
D′ξ(k)

(√
2γx
ε
−
√

2kε
γ3/2

)
Dξ(k)

(√
2γx
ε
−
√

2kε
γ3/2

) , (4.14)

which becomes

Fk(x) =
√

2γε

1
2

(√
2γx
ε
−
√

2kε
γ3/2

)
Dξ(k)

(√
2γx
ε
−
√

2kε
γ3/2

)
−Dξ(k)+1

(√
2γx
ε
−
√

2kε
γ3/2

)
Dξ(k)

(√
2γx
ε
−
√

2kε
γ3/2

)
(4.15)
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Figure 4.3: Rate function I(a) for the linear observable of the reflected Ornstein-
Uhlenbeck process with parameters ε = 1 and γ = 1.

upon using the relations (4.9) and (4.10) for the parabolic cylinder functions.
For Uk we have

Uk(x) = −ε2 ln (ψk(x)) = −ε2 ln

[
Dξ(k)

(√
2γx

ε
−
√

2kε

γ3/2

)]
, (4.16)

where as before,

ξ(k) =
k2ε2 − 2γ2λ(k)

2γ3
. (4.17)

We observe from Fig. 4.4 that we have Fk(0) = F (0) = 0 in accordance
with our discussion in Section 3.4. Furthermore, we note that there are two
qualitatively distinct cases for the behavior of the driven force Fk – the case
with k < 0 and the case with k > 0. For k < 0 we observe that Fk has a
single zero at x = 0, while for k > 0 there is an additional zero, around which
Fk is approximately linear with slope −γ. As can be seen from Fig. 4.4 this
implies that, for k < 0, we have that the effective potential Uk has a minimum
at x = 0, while for k > 0, the location of the minimum of Uk shifts to the right
as k increases. This in turn implies that the Gibbs density pk has a maximum
at x = 0 for k < 0, with its maximum shifted away from x = 0 for increasing
k > 0. This can be seen in Fig. 4.6. Further, in plotting λ′(k) in Fig. 4.5, which
represents the fluctuation a(k) corresponding to a given value of k, we observe
that these two cases are responsible for two different branches of the rate function
I. We have that the k < 0 branch creates fluctuations a < a∗, while the k > 0
branch is responsible for fluctuations a > a∗, with a∗ being the zero of the rate
function I(a∗) = 0.
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Figure 4.4: Left: Driven force Fk(x) for various values of k. Right: Driven
potential Uk(x) for those same values of k. In both cases, we have used the
parameters ε = 1 and γ = 1.
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Figure 4.5: Left: Values for the fluctuation a(k) = λ′(k) for the case where
k < 0. Right: Values for the fluctuation a(k) = λ′(k) for the case where k > 0.
Parameter values of ε = 1 and γ = 1 are used.

4.1.2 Approximation of the Driven Process

We now wish to provide an approximation of the driven force Fk to gain some
insight into the essential features of this driven force. An approximate force F̃k
will accomplish this if it is simpler than the true driven force yet nevertheless
models important features of the problem at hand with sufficient accuracy.

It is shown in [51] that the rate function I(a) can be regarded as the solution
to the constrained optimization problem

I(a) = inf
u:Ã(u)=a

1

2ε2

∫ ∞
0

(
F (x)− u(x)

)2
p∗u(x) dx (4.18)

where F is the drift for the process Xt under consideration, p∗u is the invariant
(stationary) distribution associated with the drift u and for a functional AT we
have

Ã(u) =

∫ ∞
0

f(x)p∗u(x) dx, (4.19)
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which represents the long-time value of the functional AT for a process with u
as its drift. In our current case, we have F (x) = −γx and f(x) = x since we
are considering a linear observable. It is shown in [51] that the function u that
serves as the true minimizer in (4.18) is the actual driven force Fk.

Based on this result we can construct an approximate force F̃b(x) parametrized
by some variable b to which there corresponds an approximation Ĩ of the rate
function I given by

Ĩ(ãb) =
1

2ε2

∫ ∞
0

(
F (x)− F̃b(x)

)2

p̃b(x) dx (4.20)

where p̃b is the invariant (stationary) density associated with the drift F̃b and ãb
is the long-time value of the functional AT for a process having F̃b as its drift:

ãb =

∫ ∞
0

x p̃b(x) dx. (4.21)

The validity of the approximation is determined by the extent to which the
approximate force F̃b resembles the true driven force Fk for the same value of the
observable.

From the definition (4.18), we see that for any a we must have Ĩ(a) ≥ I(a)
given that I can be viewed as the infimum over all possible Ĩ. It is also clear from
the expressions (4.18) and (4.20) that we must simultaneously consider the form
of both the approximate force and the invariant distribution associated with it.
The invariant distribution acts as a weight in the integrals (4.18) and (4.20) and
therefore values of x for which the invariant distribution is negligible will not
contribute to these integrals in a significant manner. It is therefore important
that the F̃ we choose as an approximation should model the true driven force
Fk closely for those values of x that maximize the true invariant distribution pk,
since these values will contribute the most to the integral (4.18). In order to
construct a good approximation we must therefore understand the structure of
the invariant distribution pk = ψ2

k associated with the driven force Fk.
As noted previously, the driven force Fk shown in Fig. 4.4 has qualitatively

different behavior for the cases k < 0 and k > 0. We will therefore treat these
cases separately, starting with k < 0. From Fig. 4.6 we observe that for k < 0
the invariant distribution pk attains its maximum at x = 0 and decays rapidly to
0 as x increases. The approximate force F̃ that we choose must therefore model
Fk accurately close to x = 0. The simplest such approximation, suggested from
the form of Fk shown in Fig. 4.4, is a linear force F̃b depending on the parameter
b as

F̃b(x) = −bx, b > γ. (4.22)

Only b > −γ need be considered since it is clear from Fig. 4.4 that F ′k(0) < γ
for k < 0. Essentially, the approximation (4.22) is a first-order Taylor expansion
around x = 0 of the driven force Fk which establishes a one-to-one relationship
between b and k in the sense that to each k there corresponds a b(k) such that
F ′k(0) = −b(k), and vice versa.
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Figure 4.6: Invariant densities pk for the reflected Ornstein-Uhlenbeck process.
Left: pk shown for different values k < 0. Right: pk shown for different values
k > 0. Parameter values of ε = 1 and γ = 1 are used.

In order to obtain the quantities ãb and Ĩ(ãb) as in (4.21) and (4.20) we
must calculate the invariant distribution p̃b associated with our force F̃b. This
is found in the usual manner as the Gibbs density associated with the drift F̃b.
Corresponding to the force F̃b we have the potential Ũb which satisfies Ũ ′b(x) =
−F̃b(x), so that

Ũb(x) =
bx2

2
. (4.23)

The Gibbs density associated with this potential is therefore

p̃b(x) = N exp

[
−2Ũb(x)

ε2

]
= 2

√
b

πε2
exp

[
−bx

2

ε2

]
(4.24)

for x ≥ 0, where we have properly normalized the density p̃b. To find ãb we now
have from (4.21) that

ãb =

∫ ∞
0

x p̃b(x) dx = 2

√
b

πε2

∫ ∞
0

x exp

[
−bx

2

ε2

]
dx =

√
ε2

πb
. (4.25)

Thus, the approximate rate function Ĩ obtained from (4.20) is

Ĩ(ãb) =
1

2ε2

∫ ∞
0

(
F (x)− F̃b(x)

)2

p̃b(x) dx (4.26)

=
1

ε2

√
b

πε2

∫ ∞
0

(bx− γx)2 exp

[
−bx

2

ε2

]
dx, (4.27)

which yields

Ĩ(ãb) =
(b− γ)2

4b
(4.28)

in terms of the parameter b. To obtain the approximation for that rate function
in terms of a we use (4.25) to obtain

Ĩ(a) =
π

4

( ε

πa
− γa

ε

)2

, 0 < a <
√
ε2/πγ (4.29)
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Figure 4.7: Comparison of the exact and approximate rate functions for k < 0
for the reflected Ornstein-Uhlenbeck process for the parameters ε = 1 and γ = 1.
Left: Plot of the exact and approximate rate functions. Right: Plot of the
difference |I(a)− Ĩ(a)|.

and noting that b > γ was assumed in our approximation.
This approximation is compared to the exact rate function in Fig. 4.7. We

see that the approximation matches the zero a∗, as desired, since b = γ recovers
the force F (x) = −γx. For a < a∗, the approximation is relatively good, with
the approximation becoming worse as a → 0. This can be understood from the
behavior of Fk shown in Fig. 4.4. The driven force Fk has an increasingly negative
value of F ′k(0) as k decreases, and as x becomes large, we note that the driven
force becomes linear with gradient −γ, the gradient of the original force F (x).
The greater the discrepancy between F ′k(0) and F ′(0), the greater the curvature
of the driven force has to be in order to have a linear gradient of −γ for large
x. This curvature is found mostly within a region close to x = 0, where pk is
concentrated. As k decreases, the greater the discrepancy between Fk and F̃b(k)

will become in this region, given that the approximatate force has no curvature
and is linear with gradient −b(k) = F ′k(0). Given that this discrepancy between
driven and approximate force occurs in a region where pk is concentrated, the
quality of the approximation will be affected negatively, and will decrease as k
decreases, or equivalently as a→ 0.

We turn now to the approximation of the driven force for k > 0. Here the
essence of the approximation will rely on the fact that the maximum value of
pk(x) is no longer at x = 0 as for k < 0. In fact, as k increases so does the value
x∗(k) for which pk is maximized, as can be seen from Fig. 4.6. This means that
we want our approximate force F̃ to be a good fit of Fk close to x∗(k). A simple
approximate force that accomplishes this is

F̃b(x) = −γx+ b, b > 0. (4.30)

This approximation relies on the fact that x∗(k) lies in the region where Fk is
essentially linear with slope −γ with the parameter b controlling the value of the
y-intercept of this linear function.
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The potential Ũb corresponding to the force F̃b is given by

Ũb(x) =
γ

2

(
x− b

γ

)2

. (4.31)

As Ũb(x) is still quadratic, the stationary distribution p̃b is given by the shifted
Gaussian

p̃b(x) = N exp

[
−2Ũb(x)

ε2

]
= N exp

[
− γ
ε2

(
x− b

γ

)2
]

(4.32)

with normalization constant N given by

1

N
=

∫ ∞
0

exp

[
− γ
ε2

(
x− b

γ

)2
]
dx =

1 + erf
[

b
ε
√
γ

]
2

√
πε2

γ
, (4.33)

where we have introduced the error function erf(x) defined as

erf(x) =
2√
π

∫ x

0

e−z
2

dz, (4.34)

so that p̃b is given by

p̃b(x) = 2

√
γ

πε2

exp

[
− γ
ε2

(
x− b

γ

)2
]

1 + erf
[

b
ε
√
γ

] . (4.35)

The approximate ãb is now obtained from (4.21) as

ãb =

∫ ∞
0

x p̃b(x) dx = 2

√
γ

πε2
1

1 + erf
[

b
ε
√
γ

] ∫ ∞
0

x exp

[
− γ
ε2

(
x− b

γ

)2
]
dx.

(4.36)
Performing a change of variables y = x− b/γ in the above integral yields

ãb = 2

√
γ

πε2
1

1 + erf
[

b
ε
√
γ

] ∫ ∞
− b
γ

(
y +

b

γ

)
exp

[
− γ
ε2
y2
]
dy. (4.37)

We know from the calculation of the normalization constant appearing in p̃b that∫ ∞
− b
γ

exp
[
− γ
ε2
y2
]
dx =

1

2

√
πε2

γ

(
1 + erf

[
b

ε
√
γ

])
(4.38)

since this is just the integral appearing in (4.33) with a change of variables.
Finally, we have the antiderivative∫

ze−az
2

dz = − 1

2a
e−az

2

+ C (4.39)
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Figure 4.8: Comparison of the exact and approximate rate functions for k > 0
for the reflected Ornstein-Uhlenbeck process for the parameters ε = 1 and γ = 1.
Left: Plot of the exact and approximate rate functions. Right: Plot of the
difference |I(a)− Ĩ(a)|.

so that ∫ ∞
− b
γ

y exp
[
− γ
ε2
y2
]
dy =

ε2

2γ
exp

[
− b2

γε2

]
. (4.40)

Putting this all together yields

ãb =

√
ε2

πγ

exp
[
− b2

γε2

]
1 + erf

[
b

ε
√
γ

] +
b

γ
. (4.41)

From this result the approximate rate function Ĩ is now obtained from (4.20) as

Ĩ(ãb) =
1

2ε2

∫ ∞
0

(
F (x)− F̃b(x)

)2

p̃b(x) dx =
1

2ε2

∫ ∞
0

b2 p̃b(x) dx =
b2

2ε2
(4.42)

as a function of the parameter b. Contrary to the k < 0 case, we cannot write
the approximate rate function Ĩ(ãb) as a function Ĩ(a) of a only, since we cannot
here write b explicitly in terms of ãb, as can be seen from the expression (4.41).
We can still however plot the approximate rate function Ĩ(ãb) parametrically.

The approximate and exact rate functions are compared in Fig. 4.8. The
correspondence between these two functions is seen to be essentially exact, with
a small range of values of a > a∗ for which the correspondence between the
two functions breaks down, after which the correspondence becomes virtually
exact. This breakdown in the approximation can be explained with reference
to Fig. 4.6. We see that there is a small range of values of k for which the
invariant distribution pk is not of a Gaussian form, with the wave packet still
attached to the boundary. For these values of k the linear approximation is not
as appropriate as for those values of k for which the wave packet is (virtually)
entirely free from the boundary and for which we observe from Fig. 4.8 that the
linear approximation for Fk becomes almost exact.
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While the expression (4.41) for ãb seems complicated, we see that for increas-
ing b (which corresponds to increasing k) ãb becomes increasingly linear due to
the decay of the exponential exp[−b2/γε2]. This, along with the quadratic form
(in b) for Ĩ obtained in (4.42) and the high degree of correspondence between
the exact and approximate rate functions, implies that the fluctuations for k > 0
are essentially Gaussian. In other words, the rate function I(a) is essentially
parabolic for a > a∗.

4.2 Reflected Brownian Motion with Drift
We now turn our attention to the second application involving the reflected
Brownian motion process with drift considered in Section 3.2.1. As noted there,
the reflecting boundary condition is implemented by demanding that the densities
p on which the Fokker-Planck operator L act satisfy p′(0+) = −2µ p(0+)/ε2. The
SDE under consideration is gradient with the associated potential U(x) = µx
and with the properly normalized Gibbs stationary density given by (3.18).

4.2.1 Spectral Problem for Linear Observable

As in Section 2.7.1 we are interested in studying the linear observable AT given
in (2.48). The tilted generator Lk associated with AT is given by

Lk = −µ d

dx
+
ε2

2

d2

dx2
+ kf (4.43)

and is non-Hermitian.
Given that U(x) = µx for this SDE, the symmetrized (Hermitian) operator

Hk is given from (2.42) and (2.43) by

Hk =
ε2

2

d2

dx2
− µ2

2ε2
+ kx (4.44)

with the SCGF λ(k) for the functional AT now found as the dominant eigenvalue
in the spectral problem[

ε2

2

d2

dx2
− µ2

2ε2
+ kx

]
ψ

(n)
k (x) = λn(k)ψ

(n)
k (x), (4.45)

where the reflecting boundary condition (3.49) at x = 0 for the eigenfunctions
ψ

(n)
k becomes

ψ
(n)
k
′(0) = − µ

ε2
ψ

(n)
k (0) (4.46)

given that the force is F (x) = −µ. This is a Robin (mixed) boundary condition
on the eigenfunction ψ(n)

k . Furthermore the eigenfunctions ψ(n)
k must be square-

integrable and therefore must satisfy the decay condition

lim
x→∞

ψ
(n)
k (x)2 = 0. (4.47)
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Note that bound state solutions to the spectral problem (4.45) exist only for
k < 0 since the potential

Vk(x) = µ2/2ε2 − kx (4.48)

is confining only for k < 0.
The solutions to the differential equation (4.45) come from the class of Airy

functions, with the Airy functions of the first kind Ai(x) and the Airy functions of
the second kind Bi(x) being linearly independent solutions to (4.45). The Airy
functions of the second kind are excluded since they do not satisfy the decay
condition (4.47) and therefore are not square-integrable. The relevant class of
solutions are therefore the Airy functions of the first kind, with solutions to (4.45)
having the form

ψ
(n)
k (x) = Ai

[(
− ε

2

2k

)2/3(
−2kx

ε2
+

2ε2λn(k) + µ2

ε4

)]
, k < 0. (4.49)

While the solutions (4.49) come from the correct class of functions, we have
yet to apply the boundary condition (4.46) which selects only those solutions
which constitute appropriate solutions to our spectral problem and allows us to
find the eigenvalues λn(k). Upon substituting (4.49) into the boundary condition
(4.46) we obtain the transcendental equation(
−2k

ε2

)1/3

Ai′
[(
− ε

2

2k

)2/3
2ε2λn(k) + µ2

ε4

]
+
µ

ε2
Ai

[(
− ε

2

2k

)2/3
2ε2λn(k) + µ2

ε4

]
= 0

(4.50)
which is satisfied by the eigenvalues λn(k). As in the previous application, this
means that the eigenvalues λn(k) correspond to the zeroes of the function h(λ)
given by

h(λ) =

(
−2k

ε2

)1/3

Ai′
[(
− ε

2

2k

)2/3
2ε2λ+ µ2

ε4

]
+
µ

ε2
Ai

[(
− ε

2

2k

)2/3
2ε2λ+ µ2

ε4

]
(4.51)

with the SCGF λ(k), the dominant eigenvalue of Hk, corresponding to the max-
imal zero of h(λ). A plot of h(λ) is shown in Fig. 4.9.

The procedure now is the same as for the reflected Ornstein-Uhlenbeck pro-
cess: for a given choice of the parameters ε and µ, the value of the maximal
zero of h(λ) is obtained for various k which allows us to obtain λ(k) via inter-
polation. The result of this procedure is shown in Fig. 4.10. We observe again
that λ(0) = 0, as required from the definition of λ(k). As stated previously,
λ(k) is defined only for k < 0, given that these are the only values of k for which
bound state solutions to our spectral problem exist. As for the reflected Ornstein-
Uhlenbeck process, we have that λ′(−∞) = 0 given that the lower bound of AT
is 0 and so λ(k) becomes asymptotically linear as k → −∞.

The rate function I(a) is obtained as before from the Legendre transform of
the SCGF. The result is shown in Fig. 4.11. We note that I(a) is defined for
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Figure 4.9: Function h(λ) given by (4.51) for the parameter values ε = 1, µ =
1 and k = −1. Each zero represents an eigenvalue of the spectral problem
(4.45). The red dot indicates the maximal eigenvalue for this set of parameters
and therefore represents the SCGF for a specific value of k and a given set of
parameters ε, µ.
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Figure 4.10: SCGF λ(k) for the linear observable of reflected Brownian motion
with drift for the parameter values ε = 1 and µ = 1.

a ≥ 0, given that AT is non-negative, and with I(a) in principle also defined
only up to a∗ = λ′(0), since λ(k) is defined only for k ≤ 0. The process under
consideration is ergodic and so, as before, the zero a∗ is found as the stationary
expectation

a∗ =

∫ ∞
0

x p∗(x) dx, (4.52)
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Figure 4.11: Rate function I(a) for the linear observable of reflected Brownian
motion with drift for the parameter values ε = 1 and µ = 1.

which, upon substituting (3.18) for p∗ into the above equation, yields

a∗ =
2µ

ε2

∫ ∞
0

x exp

[
−2µx

ε2

]
dx =

ε2

2µ
. (4.53)

We note that the zero a∗ is 1/2 for the set of parameters ε = 1 and µ = 1, which
is corroborated in Fig 4.11.

It is important to note at this point that AT has fluctuations greater than
a∗, but that these are not covered by the spectral calculation since λ(k) is not
defined for k > 0. For a > a∗, it is possible that I(a) = 0, indicating that the
scaling of p(AT = a) for a > a∗ is weaker than exponential in T . Such a scaling
was discussed recently by Nickelsen and Touchette [52] and is beyond the scope
of this thesis.

To conclude this section, we derive the driven force Fk that realizes the fluctu-
ation ak = λ′(k). Upon inserting the expression (4.49) for ψk into the expression
(2.81) for the driven force Fk we obtain

Fk(x) = ε2
(
−2k

ε2

)1/3
Ai′
[(
− ε

2

2k

)2/3{
−2kx

ε2
+

2ε2λ(k) + µ2

ε4

}]

Ai

[(
− ε

2

2k

)2/3{
−2kx

ε2
+

2ε2λ(k) + µ2

ε4

}] , k < 0.

(4.54)
The driven force Fk is shown for different values of k in Fig. 4.12. We note that
Fk(0) = F (0) = −µ for all k, as is expected following our discussion in Chapter
3. We also note that x = 0 is the only zero of the driven force Fk so that the
maximum of the stationary density pk will always be found at x = 0.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. APPLICATIONS 53

k = -5

k = -4

k = -3

k = -2

k = -1

k = 0

0 2 4 6 8 10

-10

-8

-6

-4

-2

x

F
k
(x
)

Figure 4.12: Driven force Fk for reflected Brownian motion with drift and with
linear observable shown for various values of k for the choice of parameters ε = 1,
and µ = 1.

4.2.2 Approximation of the Driven Process

As we did for the reflected Ornstein-Uhlenbeck process, we are now interested in
modelling the driven force with a suitable approximation F̃b and in determining
the accuracy of this approximation. The calculation here is simplified by the fact
that we only have one case (k < 0) to consider, with the driven force Fk having
qualitatively similar behavior for this range of values. In proceeding, we must
choose an approximation F̃b that resembles the actual driven force Fk for those
values of x for which the stationary density pk = ψ2

k is maximized. We observe
in Fig. 4.13 that the density pk attains its maximum value at x = 0 after which
it decays rapidly. This is the same as for the k < 0 case we encountered for the
reflected Ornstein-Uhlenbeck process. We therefore use a linear approximation

F̃b(x) = −bx− µ, b > 0 (4.55)

as was done for the reflected Ornstein-Uhlenbeck process, with b > 0 since
F ′k(0) < 0 for all values k under consideration, as is evident from Fig. 4.12.
This linear approximation can be viewed as the first-order Taylor expansion of
the true driven force, establishing a one-to-one relationship between k and b in
the sense that, for every k, there exists a b(k) such that F ′b(k)(0) = F ′k(0). Fur-
thermore, the −µ factor is included to ensure that F̃b(0) = −µ, as is the case for
the true driven force.

The potential Ũb corresponding to the force F̃b is given by

Ũb(x) =
b

2

(
x+

µ

b

)2

(4.56)

and satisfies Ũ ′b(x) = −F̃b(x) as such a potential must. The invariant distribution
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Figure 4.13: Invariant distribution pk for reflected Brownian motion with drift
and with linear observable shown for various values of k for the choice of param-
eters ε = 1 and µ = 1.

p̃b is found to be

p̃b(x) = N exp

[
−2Ũb(x)

ε2

]
= N exp

[
− b

ε2

(
x+

µ

b

)2
]

(4.57)

with the normalization constant N satisfying

1

N
=

∫ ∞
0

exp

[
− b

ε2

(
x+

µ

b

)2
]
dx =

ε√
b

(√
π

2
−
√
π

2
erf
[
µ

ε
√
b

])
, (4.58)

where we have used the definition of the error function (4.34). We therefore have
that the properly normalized density p̃b is given by

p̃b(x) = 2

√
b

πε2

exp
[
− b
ε2

(
x+ µ

b

)2
]

1− erf
[

µ

ε
√
b

] . (4.59)

We can now calculate the approximations ãb and Ĩ associated with the drift
F̃b. As before, we obtain ãb from the relation (4.21) and Ĩ from the relation
(4.20). We have

ãb =

∫ ∞
0

x p̃b(x) dx = 2

√
b

πε2
1

1− erf
[

µ

ε
√
b

] ∫ ∞
0

x exp

[
− b

ε2

(
x+

µ

b

)2
]
dx,

(4.60)
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with the calculation proceeding in an identical manner as in (4.36) to (4.41),
yielding the result

ãb =

√
ε2

πb

exp
[
− µ2

ε2b

]
1− erf

[
µ

ε
√
b

] − µ

b
. (4.61)

For the approximate rate function Ĩ we have

Ĩ(ãb) =
1

2ε2

∫ ∞
0

(
F (x)− F̃b(x)

)2

p̃b(x) dx

=
b2

ε2

√
b

πε2
1

1− erf
[

µ

ε
√
b

] ∫ ∞
0

x2 exp

[
− b

ε2

(
x+

µ

b

)2
]
dx. (4.62)

The integral is essentially the second moment of a shifted Gaussian that we
evaluate as follows. Changing variables to z =

√
b
ε

(x+ µ/b) in the integral yields

Ĩ(ãb) =
b2

ε2

√
b

πε2
1

1− erf
[

µ

ε
√
b

] ε√
b

∫ ∞
µ

ε
√
b

(
εz√
b
− µ

b

)2

e−z
2

dz. (4.63)

Now, we have∫ ∞
µ

ε
√
b

(
εz√
b
− µ

b

)2

e−z
2

dz =
ε2

b

∫ ∞
µ

ε
√
b

z2 e−z
2

dz − 2εµ

b3/2

∫ ∞
µ

ε
√
b

z e−z
2

dz

+
µ2

b2

∫ ∞
µ

ε
√
b

e−z
2

dz (4.64)

where from previous calculations we know that∫ ∞
µ

ε
√
b

z e−z
2

dz =
1

2
exp

[
− µ

2

ε2b

]
(4.65)

and ∫ ∞
µ

ε
√
b

e−z
2

dz =

√
π

2

(
1− erf

[
µ

ε
√
b

])
. (4.66)

As for the integral with integrand z2e−z
2 , we note the relationship∫ ∞

c

z2 e−z
2

dz = −
[
d

da

∫ ∞
c

e−az
2

dz

]
a=1

. (4.67)
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Figure 4.14: Comparison of the exact and approximate rate functions for k < 0
for reflected Brownian Motion with drift and linear observable for the parameters
ε = 1 and µ = 1. Left: Plot of the exact and approximate rate functions. Right:
Plot of the difference |I(a)− Ĩ(a)|.

We have
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(
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(4.68)

where we have used
d

dx
erf(x) =

2√
π
e−x

2

. (4.69)

Upon substituting (4.68) into (4.67) we obtain∫ ∞
c

z2 e−z
2

dz =

√
π

4

[
1− erf

(√
ac
) ]

+
c

2
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, (4.70)

such that∫ ∞
µ

ε
√
b

z2 e−z
2
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√
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(
1− erf

[
µ

ε
√
b

])
+

µ

2ε
√
b

exp

[
− µ

2

ε2b

]
. (4.71)

Substituting (4.65), (4.66) and (4.71) into (4.64) and simplifying the resulting
expression finally yields for the approximate rate function (4.63) the expression

Ĩ(ãb) =

(
b

4
+
µ2

2ε2

)
− µ

2

√
b

π

exp
[
− µ2

ε2b

]
1− erf

[
µ

ε
√
b

] (4.72)
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as a function of the parameter b. As before, we cannot eliminate the parameter
b from the expression since the relation (4.60) cannot be inverted. However, we
can plot the approximate rate function parametrically as (ãb, Ĩ(ãb)) by varying
b. We note that

lim
b→0

ãb =
ε2

2µ
= a∗, (4.73)

and
lim
b→0

Ĩ(ãb) = 0, (4.74)

such that the approximation matches the exact rate function for b = 0 or, equiv-
alently, k = 0, as it must.

The exact and approximate rate functions are compared in Fig. 4.14. As can
be seen, the correspondence between the functions are good, with the correspon-
dence between the functions becoming increasingly exact as k → 0 or b→ 0. The
discrepancy between exact and approximate rate functions can be understood in
much the same way as for the k < 0 case for the reflected Ornstein-Uhlenbeck
process. As k decreases, the driven force has increasing curvature in a region
where pk is concentrated, while obtaining a linear gradient of 0 for large x. This
means that as k decreases, the discrepancy between Fk and the linear F̃b(k) will
increase in the region where pk is concentrated. This accounts for the decreased
fidelity of the approximation as a→ 0.
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Chapter 5

Conclusions and Open Problems

We considered in this thesis the problem of determining the large deviations of
a certain class of observables of Markov diffusions evolving in bounded domains.
As a particular case, we considered one-dimensional (gradient) diffusions with
reflecting boundary conditions to understand the manner in which the reflecting
boundary condition is implemented in the spectral calculation associated with
calculating the SCGF of a given observable.

In Chapter 2 we introduced the basic mathematical notions relating to stochas-
tic differential equations and large deviations required for the calculations in the
thesis. In particular, we introduced the SCGF and the spectral problem associ-
ated with it, as well as the notion of the driven process, which realizes, in the
large time limit, given fluctuations of the observable.

Chapter 3 dealt with diffusions evolving in bounded domains, containing a
general discussion of such diffusions before turning to one-dimensional diffusions
with reflecting boundary conditions. Upon considering the large deviations of
such diffusions, we obtained two important results.

Firstly, we defined the proper boundary condition for the spectral problem
defining the SCGF when a perfectly reflecting boundary is present. This con-
dition, as we have seen, is based on the fact that the large deviation operators
Lk and L†k are parameter extensions of the Markov generator L and its adjoint,
the Fokker-Planck operator L†, respectively. The operators Lk and L†k there-
fore inherit the boundary conditions of L and L†, respectively. Specifically, the
tilted generator Lk inherits a Neumann boundary condition while its adjoint L†k
inherits the zero-current condition of the Fokker-Planck operator.

Secondly, the behavior of the driven process at a reflecting boundary is con-
strained by the boundary condition on the eigenfunctions of the operator Lk,
given that the driven force depends on the dominant eigenfunction rk. In par-
ticular we found that the driven force and original force are equal at a reflecting
boundary. This yields a zero current condition for the driven process at a re-
flecting boundary, which is natural considering that the driven process can be
viewed as corresponding to the original process conditioned on realizing a given
fluctuation in the long-time limit, so that the trajectories of the driven process
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constitute a subset of the trajectories of the original process.
These results were illustrated in Chapter 4, where we obtained the large

deviations of the area of the reflected Ornstein-Uhlenbeck process and reflected
Brownian motion with negative drift and derived the driven processes associated
with these large deviation problems. These applications allowed us to understand
how reflecting boundaries change the large deviations compared to the case where
no reflection is present. For Brownian motion with drift, no large deviations exist
for the case where a reflecting boundary is not present, since this process has no
stationary distribution. In this case the presence of a reflecting boundary has an
important consequence for the existence of large deviations.

Furthermore, we found that for the systems considered, the driven process
could be approximated in a very simple manner by using a linear approximation
of the driven force near values of x for which the stationary distribution pk of
the driven process is maximized. This approximation allowed us to understand
otherwise complicated driven processes through simple physical mechanisms.

We now indicate directions for further research. The first and most obvious
direction is to consider which assumptions or restrictions were made in obtaining
both our main conclusions and in the applications considered, and to weaken
or modify these assumptions so as to consider applications from a more general
class of processes. Specifically, we assumed that:

• The processes under consideration were one-dimensional, gradient and er-
godic, with any boundaries being of the perfectly reflecting type.

• The observables under consideration were asumed to be of the form

AT =
1

T

∫ T

0

f(Xt) dt. (5.1)

We conjecture that the framework developed in this thesis, which incorporates
boundaries by viewing Lk and L†k as parameter extensions, should hold true for
processes taken from the more general classes of processes obtained by weakening
the assumptions stated above to include, for example:

• Higher dimensional processes. In this case both the type and geometry of
the boundary considered will be important. Additionally, stationary distri-
butions in higher dimensions need not be of the Gibbs type. For reflecting
boundaries in higher dimensions, with the boundary being smooth, the
boundary condition on the Fokker-Plank operator becomes a zero-current
condition in the direction normal to the boundary. It is an open problem
to define or implement the reflecting boundary condition for non-smooth
boundaries [15].

• Observables of the form

AT =
1

T

∫ T

0

f(Xt) dt+
1

T

∫ T

0

g(Xt) ◦ dXt, (5.2)
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where g is not gradient. Such observables arise in the context of nonequi-
librium processes [26]. In this case symmetrization might not be possible
and the calculation of λ(k) will be much more complicated, given that we
now have to solve both the direct and adjoint spectral problems.

• Processes with multiplicative noise. A particularly interesting class of such
processes is

dXt = Xt(1−Xt) dt+ εXα
t dWt, 0 < α ≤ 1 (5.3)

with Xt ≥ 0 and absorbing boundary conditions at 0. The deterministic
part of this SDE is known as a logistic growth model and has applications
in biology in studies of population growth [53]. The effect of noise on
the growth of a population is incorporated through the addition of the
multiplicative noise term.

• Different types of boundaries. In particular, seeing what the implications
for the driven force are in the case of sticky, elastic and absorbing boundary
conditions (see definitions in Chapter 3).

To close, we note two open problems arising in the thesis. Typically, the
operators L† and L are dual in the L1/L∞ sense. In Chapter 2, we saw that,
even for a process as simple as the Ornstein-Uhlenbeck process, the eigenfunc-
tions of L†k belong to L1, while the eigenfunctions of Lk are not bounded and
therefore do not belong to L∞. A more in-depth understanding of the domains
D(Lk) and D(L†k) is therefore required. Can we characterize the space that these
eigenfunctions belong to?

Lastly, in considering the large deviations of the area of reflected Brownian
motion with drift in Chapter 4, we were only able to obtain the large deviations
for fluctuations a smaller than the typical value a∗, with the fluctuations a > a∗

not covered by the spectral calculation. Determining the large deviations for
a > a∗ would complete our understanding of the fluctuations of this system and
observable. This falls into the recent work done by Nickelsen and Touchette [52]
on anomalous scaling of large deviations, for which no complete theory currently
exists.
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