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Abstract

Propylene oligomers with unsaturated chain endgroups were synthesized

using metallocene catalysts activated with methylalumoxane (MAO). The

complexes rac-et(lnd)2ZrCI2/MAO (1) and Me2Si[2-Me-Benzo(lnd)]zZrCI2/MAO

(2) produced propylene oligomers containing a large amount of vinylidene

terminated endgroups. From 1H NMR the presence of vinyl and butenyl

endgroups could be see, although in very low amounts. The metallocene (1)

produced lower molecular weight oligomers than the metallocene (2) under

similar conditions.

Regio-irregular 2,1-misinsertions were observed by using 13CNMR

spectroscopy in both catalyst systems (1 and 2).

The synthesized oligomers generally had low tacticity, especially those

produced from complex (1).

The stereoerrors found in these propylene oligomers decreased with an

increase on the molecular weight of the material. As reaction temperatures

were increased, tacticities decreased. Polydispersties and molecular weight

could be altered by varying parameters, such as catalyst and co-catalyst

concentrations, temperature and time of reactions.

Selected propylene oligomers were used in copolymerization reactions with

ethylene as the second monomer using metallocene catalysts: i-pr(9-

Flu)CpZrC12 (syndiotactic) and Me2Si[(Cp*][(tert-Bu)N]TiMe2 (constrained

geometry) activated with MAO. From 13CNMR evidence of small fraction of

propylene oligomer in the copolymer could be found. This means the only

reactive endgroup towards the selected metallocene was the vinyl endgroups.

The copolymers showed broad molecular weight distribution and in some

instances, were there was notable incorporation of the propylene oligomers, a

bimodal molecular weight distribution was observed.

Further studies involved the hydration of propylene oligomers via their

unsaturated chain end-groups, using oxymercuration-dermecuration

reactions. This resulted in a tertiary hydroxyl group at the end of the polymer
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chain. The hydroxyls were converted to acrylate esters by reactions with

acryloyl chloride to form oligopropenylacrylates.

The oligopropenylacrylates were then homopolymerized, and copolymerized

with methyl methacrylate (MMA), using a free radical initiator (AIBN).

Mechanical studies on the copolymers were done using OMA. For the

oligopropenylacrylate copolymer with MMA, there was an additional

transitional peak at -50°C., indicating that phase separation occurred at

molecular level in these copolymers.
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Opsomming

Propileen oligomere met onversadigde endgroepe is gesintetiseer deur

gebruik te maak van metalloseen-kataliste wat met metiel-alumoksaan (MAO)

geaktiveer is. Die verbindings rac-et(lnd)2ZrCb/MAO (1) en Me2Si[2-Me-

Benzo(lnd)]2ZrCb/MAO (2) het propileen oligomere gelewer wat 'n groot

hoeveelheid vinilideen-endgroepe bevat het. Deur die gebruik van 1H KMR

spektroskopie is die teenwoordigheid van viniel en buteniel endgroepe oof

waargeneem, alhowel in baie klein hoeveelhede. Die metalloseen (1) het oor

die algemeen laer molekulêre massa oligomere gelewer as die metailoseen

(2) onder soortgelyke reaksietoestande.

Regio-onsimmetriese 2,1-mis-invoegings is deur 13C KMR spektroskopie

waargeneem vir beide katalissisteme (1 en 2).

Die oligomere het oor die algemeen lae taktisiteit gehad, veral die deur

verbinding (1) vervaardig

Die stereo-foute wat in die propileen oligomere gevind is, het oor die

algemeen afgeneem met 'n toename in die molekulêre massa van die

materiaal. Taktisiteit het oor die algemeen ook afgeneem met toenemede

reaksietemperatuur. Molekulêre massa sowel as molekulêre massa

verspredingswaardes kon beheer word deurdie manipulasie van

reaksieparameters soos katalis en ko-katalis konsentrasies,

reaksietemperatuur en reaksietye.

Geselekteerde propileen oligomere is gebruik in kopolimerisasie-reaksies met

etileen as tweede monomeer. Metalloseen kataliste, nl. i-pr(9-Flu)CpZrCI2

(syndiotactic) en Me2Si[(Cp*][(tert-Bu)N]TiMe2 is gebruik vir die reaksies. 13C

KMR het aangedui dat klein hoeveelhede van die oligomere in die kopolimere

ingevoeg is. Slegs die klein persentasie viniel endgroepe teenwoordig kon

aan hierdie reaksies deelneem.

Die kopolimere het breë molekulêre massa verspreiding geopenbaar, met

selfs bimodale verspreidings in gevalle waar opmerkbare hoeveelhede van

die oligomeer in die kopolimeer ingevoeg is.
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Verdere studies het die hidrasie van die oligomere via hulee onversadigde

endgroepe deur gebruik te maak van oksiemerkurasie-demerkurasie reaksies.

Sulke reaksies het gelei tot die vorming van 'n tersiêre hidroksie-groep op die

ketting-endpunt. Hierdie hidroksie-groep is chemies omgesit in akrilaat-esters

deur reaksie met akriloïel chloride om oligopropenielakrilate te vorm.

Die oligopropenielakrilate is deur 'n vrye radikaal meganime gepolimeriseer,

beidie as homopolimeer en as kopolimeer met metielmetakrilaat.

Meganistiese studies is op die kopolimere gedoen deur OMA. Die kopolimere

het 'n addisionele oorgang by -50oe getoon, wat aandui dat fase-skeiding op

molekulêre vlak in die kopolimere plaasvind.
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Chapter 1

Introduction and Objectives

1. 1 Introduction
The advent and development of metallocene catalysts for olefin polymerization

has been extensively reviewed in recent years 1-3. Metallocene catalysts and

related soluble transition metal catalysts are finding increasing use in commercial

applications, even though the amounts remain low w.r.t. world production of

polyolefins. Some of the earliest commercial applications of metallocene catalysts

were in the production of polyethylenes, for example the range of plastomers and

linear low density polyethylene (LLDPE) produced by Dow and Du Pont4.

The commercialization of these catalysts has been slow due in part to the lack of

processability of these polymers compared to LLDPE prepared by Ziegler-Natta

catalysts. Amongst the possible solutions to the processing problems of

metallocene LLDPE is the inclusion of long-chain branching in the polymer chain,

a broader or bimodal molecular weight distribution, and postproduction blending".

Metalleeene catalysts are also capable of synthesizing oligomers from the

a-olefins, at conditions that differ from those used during polymerization.

The a-olefin oligomers (and polymers) prepared by metallocene catalysts usually

have vinyl or vinylidene end-groups. These functional groups allow further

polymerization, or functionalization reactions (for example the formation of

functional groups such as esters and amines). Furthermore the oligomers or

higher a-olefins can be converted to plasticizer alcohols, additives for lubricants,

amine oxides and amines, detergent alcohols and nonionics, lubrication oil

additives and surfactants, or oil field chemicals and wax replacements".

Oligomerization of the ethylene to yield higher, linear a-olefins have traditionally

been achieved by the use of late transition metal compounds (for example the

Shell Higher Olefin Process (SHOP)6). The chain lengths of these a-olefins vary

from four carbons (1-butene) to more than thirty (C30+). 1-Butene is a gas at room

temperature and C6-C18 are clear colorless liquids, whereas C20+are waxy solids.
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Propylene oligomers with vinyl and vinylidene end groups have been synthesized

using the metallocene catalysts activated with methyl alumoxane (MAO) at higher

temperature':".

The copolymerization of ethylene with various higher a-olefins such as 1-pentene,

1-hexene, and 1-octene, using metallocene catalysts, have been reported in

numerous studies to give polymers with even short chain distributions5,6,9-12. The

presence of these other olefins in the polymer chain results in decreased

crystallinity, melting temperature and (in some cases) a reduction in molecular

weight of the pOlymers6,12-15.

Several metallocene catalysts are capable of incorporating long chain oligomers

that resulted from chain termination, back into the growing polymer chain thus

yielding polyolefins with long chain-branching 16-18.

Although the metallocene catalysts are effective in the polymerizations of a-

olefins, they suffer from poor activity in the polymerization of functional monomers.

There has been limited effort in the synthesis of block copolymers of olefins with

other functional group monomers such as methyl methacrylate 19,20.

1.2. Objectives

1.2.1. Synthesis of propene oligomers
It is with the understanding of the above applications that the project was focussed

on synthesizing propylene oligomers of varying molecular weight, with vinylidene

(Figure 1) or vinyl end groups, using metallocene catalysts activated with MAO.

The oligomers will be synthesized at high temperatures, while varying the

conditions such as oligomerization time and the ratios of cocatalysts to the

catalysts.

2
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Figure 1: Propylene oligomer with vinylidene end-group.

Analysis of the oligomers will be made with regards to their molecular weight,

presence of vinyl and vinylidene group and microstructure using Size Exclusion

Chromatography and 1Hand 13CNMR spectroscopy respectively.

1.2.2. Copolymerization of the propene oligomers
Copolymerization of the synthesized oligomers or macromers with ethylene will be

attempted. Selected metalleeene catalysts activated with MAO will be used while

varying polymerization conditions such as temperature and monomer

concentration. It is expected that the presence of the oligomers will offer long-

chain branching in the polymer chain, or result in a decrease in molecular weight

and broaden molecular weight distribution. This is based on the premise that

some vinyl-terminated oligomers (rather than just the vinylidene-terminated

species shown in Figure 1 above) will also be synthesized.

Proposed structure of ethylene and propylene oligomer

copolymer.

The synthesized polymers will be analyzed with 13CNMR to confirm the presence

Figure 2:

of the comonomer (macromer), and the effect of the maeromer on the thermal

3
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characteristics will be checked using thermal analysis, and their crystallization

pattern will be studied using Crystallization Analysis by Fractionation (CRYSTAF).

The molecular weights and polymer polydispersities will be investigated using Size

Exclusion Chromatography.

1.2.3 Investigation of microstructure of the oligomers
The synthesis of a variety of low molecular weight poly(propylene)s and propylene

oligomers will allow us to evaluate the effect of catalystlcocatalyst ratios and

reaction temperature on the stereochemistry imparted by the metallocene

catalysts used during the oligomerization reactions.

1.2.4 Functionalization and copolymerization of the functionalized
oligomers
The reactive alkene group of the propene oligomers (Section 2.1) will be converted

to a hydroxyl group via an oxymercuration-demercuration process. The available

hydroxyl end group will then be converted into an acryloyl ester via esterification

reactions. 1H and 13CNMR and FTIR will be employed to check the conversion of

the functional groups in the oligomers.

J o

Figure 3: Proposed structure of oligopropenylacrylate formed by

esterification of vinyilidene-terminated oligopropene.

The reactivity of these functionalized oligomers towards the free radical

polymerization processes will be investigated by attempting homo- and

copolymerization reactions using free radical initiators. The extent of

polymerization will be checked using 13C NMR whereas the degree of

polymerization including the molecular weight distribution will be analyzed by size

exclusion chromatography.
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Chapter 2

Background and Theory

2.1 Metallocenes in General

2.1.1 Introduction

Metallocene catalysts activated with methylalumoxane have been used to synthesize

highly stereoregular polyolefins. The ability of these catalysts to display high catalytic

activity, producing polymers with narrow molecular weight distribution and high

molecular weight, has over the past decade attracted great interest both industrially

and acadernlcally':". These metallocene catalysts were initially thought to function in

a "living" fashion, owing to their high activity and ability to resume polymerization

again after monomer withdrawal".

Metallocenes derive their name from Ferrocene with which they share a structural

similarity':". Nominally, the metallocenes comprise a central transition metal atom

(normally Group IV) n-bonded to 2 cyclopentadienyl ligands and a-bonded to 2 other

ligands, normally halogen or hydrocarbyl. Thus a simple metallocene would be

(1l5-Cp )2ZrCI2:

~ ,,
\

ZrC12
I

Due to the fact that all the catalytic sites have the same electronic and steric

structure, metallocene catalysts are commonly considered to be single site catalysts,

although single-centre might be a better description". These catalysts can have

bridges between the Cp ligands or not; the bridged catalysts are commonly used for

the polymerization of propylene and other higher a-olefins whereas the non-bridged

catalysts are used mostly for ethylene polymerization". The mechanism of

polymerization with the metallocene catalysts will be discussed under propylene

polymerization section below.
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The ligands around the transition metal creates a symmetry which plays a pivotal role

in determining the stereocontrol in olefin polymerization.

2.1.2 Tacticity and catalyst symmetry

Propylene can be polymerized with varying degrees of stereocontrol (see Figure 1).

Atactic polypropylene (aPP) has a random orientantion of methyl groups along the

chain, it lacks crystallinity and is usually an oil or wax. In isotactic polypropylene

(iPP) all methyl groups show the same orientation so that the polymer strands can

align themselves to give crystalline domains. In hemiisotactic PP the orientation of

every second methyl group is random, while in syndiotactic PP (sPP) the methyl

orientations alternate.

atactic

isotactic

syndiotactic

Figure 1: Different configurations of polypropylene.

The symmetry of the metallocene catalysts was described by Ewen and can be

depicted as in Figure 2.
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Symmetry Sites Polymer

C2v' achiral A,A, homotopic Atactic

C2, chiral E,E, homotopic Isotactic

Cs, achiral A,A diastereotopic Atactic

Cs' prochiral E,-E, Enantiotopic Syndiotactic

E,A, Diastereotopic Hemi-isotactic

Figure 2: The symmetry arrangements of metallocene catalysts, with

description of the coordination sites and tacticities of the polymers formed by

these symmetries.

These metallocenes for stereospecific polymerization of propylene can be

generalized into three main categories according to their symmetries: the Cr

symmetric metallocenes give isotactic polypropylene, the Cs-symmetric

metallocenes for syndiotactic polypropylene and the C1-symmetric metallocenes

give hemiisotactic to isotactic polypropylene.
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The isospecific catalysts can be further divided into three classes, the ansa-

Crsymmetric (class I), the nonbridged, fluxional but chiral (class II), and the ansa-

Ct-symmetric (class 111)6. Chiral, Crsymmetric ansa-zirconocenes can produce

polypropylenes with a variety of different microstructures. These range from

practically atactic to almost perfectly isotactic. These polymers will in most cases

also contain regioirregularities due to 2,1- and 3,1-insertions6. The symmetry of an

ansa-metallocene is maintained by the bridge linking the two cyclopentadienyl

ligands, thus preventing rotation of the ligands. Thus Crsymmetric zirconocene

catalysts produce isotactic polypropylene as a result of a site controlled mechanism

(discussed in Section 2.2). This group of Crsymmetric catalysts can be further

subdivided into three subdivisions based on ligands, being cyclopentadienyl, indenyls

and fluorenyls.

The subdivision comprising the catalysts with cyclopentadienyl (Cp) ligands usually

show low catalytic activity and poor enantioselectivity, which, however, is improved

by the presence of the substituents on the Cp ring. The bisindenyl ligands (second

subdivision) (Figure 3) show improved enantioselectivity (over the catalysts with Cp

ligands). Resconi et af report that substituents in 2-position (which is a to the

bridge), the 3-position (p to the bridge) and the 4-position (on the condensed

benzene ring) are the most important with respect to the effects on stereoselectivity

and molecular weight variation. The presence of substituents in the 3-position of the

ligand improves enantionface selectivity. The stereoselectivity of these catalysts is

affected by the nature of the bridge and increase in the order H2C< Me2C < C2H4 <

Me2Si.
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rac-C2H4( l-Ind)zZrCI2
isospecific C2 -symmetric catalyst

bis( l-methyl-Flu)ZrCI2
unbridged Crsymmetric catalyst

Figure 3: Examples of C2-symmetric metallocenes.

The introduction of an alkyl substituent in the 2-position of ansa-bisindenyl zirconium

complexes increases both stereoregularity and molecular weight of the polypropylene

produced and reduces the amount of regioirregularities in comparison to the

unsubstituted analogue. The stereoselectivity is increased further by a combination

of substituents on 2- and 4-positions on the indenyl Iiqands".

The final subdivision of these C2 ansa metallocenes is the one based on bisfluorenyl

ligands. The unbridged, substituted bis(fluorenyl) complex shown in Figure 3

produces polypropylene with low tacticity, while similar, but unsubstituted catalysts

produce polymers which are atactic. The substituted, unbridged bisfluorenyl

catalysts show more stereoselectivity than the unbridged bisindenyl and

biscylopentadienyl complexes.

The Cs-symmetric catalysts which are represented by a catalyst of the formula

Me2C(Cp)(9-Flu)-ZrCb (Figure 4) produces highly syndiotactic polypropylene. With

these catalysts the available coordination sites are enantiotopic (see Figure 2). The

stereospecificity of the polypropylenes produced by this class of catalysts is affected

by the bridging group and it decreases in the order Me2C > Ph2C > PhP > CH2CH2 >

Ph2Si > Me2Si
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Me2C(Cp)(9-Flu)-ZrCI2
Cs-symmetric catalyst

Me2Si(9-Flu)(2',7'-t"Bur9'-Flu)ZrCI2

Cs-symmetric catalyst

Figure 4: Examples of Cs-symmetric catalysts.

The final group of symmetric catalysts in the polymerization of propylene that are of

interest are the C1-symmetric metallocenes. Generally these catalysts lack a

symmetry element. The coordination sites for these catalysts are diastereotopic (that

is the coordination sites are nonequivalent).

Me2C(Cp )(1-Ind)ZrCI2
Crsyrnmetric catalyst

Figure 5:

Me2Si(Cp )(2',4'-Mez-Cp )ZrCI2
Crsymmetric catalyst

Examples of C1-symmetric catalysts.
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2.2 Polypropylene by metallocene catalyzed polymerization

2.2.1 Mechanism of polymerization

2.2.1.1 Formation of the active species

The active species in the olefin polymerization by metallocene catalysts is thought to

be a cation-like, alkyl zirconocene which is created through the alkylation of transition

metallocene by the cocatalyst MAO? This is followed by further abstraction of

chloride or another leaving group in the transition metal complex by the cocatalyst

leaving a vacant coordination site. The types of cocatalysts are discussed later,

suffice to say that the most common cocatalyst used is an oligomeric compound

derived by the partial hydration of trimethyl aluminium (TMA), called

methylalumoxane (or methylaluminooxane) (MAO). Some perfluorinated phenyl

boranes and borates can also be used.

MAO

MAO

MAO

The formation of monomeric [Cp2ZrC3CH3)t[Me.MAOr and dimeric

[(Cp2ZrMe)2(~-Me)nMeMAO] species has been evidenced through NMR studies".
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Reactivity of (C5Me5)(1l5-C28gHn)TiCH3 with ethylene has been probed". Ethylene

insertion of ~-agostic Ti-Et species (Cp*)(1l5-C28gHn)Ti(CH2CH3) is much slower

than for Ti-Me species (Cp*)(1l5-C28gHn)TiCH3. Metallocene catalysts form

methyl-bridged binuclear complexes such as [(Cp2Zr(CH3)2)(J.!Me)t[Me8(C6F5hr and

[(Cp2Zr(J.!-Me)2AIMe2t[Me8(C6F5hr. These ion pairs are possible dormant states for

active sites for olefin polymerization and are also possibly responsible for catalyst

deactivation reactions as outlined in Scheme 1:

~/ + [~l+[]-[ CP2Zr- MeI [MeMAo j- _____. CP2Zr MeMAO[ CP2Zr-Me 1+ [MeMAO j-

C",aM" 1~<-Cp,ZeM"

[ CP2Zr- Me- ZrCp2 r[ MeMAO r
\ /
Me Me

Scheme 1: Reactivation of the dormant siteS

2.2.1.2 Olefin coordination

Olefins can coordinate on the available sites on the central metal atom in one of 4

ways6. The olefin can coordinate in such a way that insertion will occur in a 1,2-

fashion with respect to the last inserted monomer unit (head-to-tail) or in a 2,1-

fashion (head-to-head). In addition, the arrangement of the pendant group of the

coordinating olefin can be arranged in one of two ways with respect to the

arrangement of the polymer chain attached to the central metal atom, designated re

or si. The choice of method of coordination (1,2 re, 1,2 si, 2,1 re or 2,1 SI) will be

guided by energy considerations, which in turn will be determined by the ligand

structure and chain conformation. A detailed description of these factors can be

found in a comprehensive review by Resconi et af. The deviation from the

energetically preferred method of coordination could, amongst other factors, lead to

the formation of stereoerrors.
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Stereoerrors are caused, inter alia, by monomers coordinating on the "wrong"

enantioface. The control of monomer coordination can be either by control of the

catalyst or by control of the last inserted monomer unit (Scheme 2):

Site control:
chiral induction from a
chiral coordination site

Polymer

Chain end control:
chiral induction from the last
formed stereo genic carbon

Scheme 2: Control of monomer coordination.

The type of stereoerror is determined by the type of stereocontrol (Scheme 3):

lsospecific I I I I I I I [mr]=2[rr]
m m m r I r m m [mmmr]=[mmrr]=2[mrrm]

Syndiospecific I I I
I r r I r I [mr]=2[mm]

r r m m [rrrm]=[mmrr]=2[rmmr]

Prim
Insertion

lsospecific I I I I [mr] only
[mmmr]=[mmrm]

Syndiospecific I I [mr] only

[rrrm]=[rrmr]

Scheme 3: Types of stereoerrors determined by stereocontrol mechanism.
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In isospecific site control a misinsertion leads to an isolated mrrm sequence, while

chain end control shows no rr sequences (mr diads only, no rr). Similarly, the

stereoerrors in syndiospecific polymerization are different for chain end control and

site control mechanisms. Stereoerrors are not due only to enantioface selections, but

cold be due to other factors, like chain epimerization (isospecific polymerization) and

skipped insertions (syndiospecific polymerization).

2.2.1.3 Olefin insertion

There are two leading mechanisms of olefin insertion in dO-metaliocene

polymerization catalysts, which are (1) direct insertion of the coordinated olefin

[Cossee-Arlman mechanism] and (2) the a-agostic assisted olefin insertion

[Green-Rooney, hydride mechanism]. The a-agostic interaction is of particular

interest, since such an interaction might lower the activation barrier to olefin insertion

and influence the stereochemical outcome of the olefin insertion step. Using isotope

labeling to probe the nature of the olefin insertion, a-isotope effects were in some

instances observed, which is strong evidence that a-C-H bonds are involved in the

transition state of the insertion step. However, in other related systems, no isotope-

effect were found". Specifically, the a-agostic interaction firmly orients the polymer

chain into the open sector of the catalyst structure to minimize interactions between

the alkyl substituent of the monomer and the ligand/ polymer array during olefin

insertion.
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[M]~P

~

[M]~P

\
D
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Scheme 4: Cossee-Alrman mechanism for olefin insertion".

T H[Ml===<
p

H
I H[Mb(.-,

"""~p

1
D
/

[M] p

HXH,.
[M~

D

Scheme 5: Green-Rooney mechanism for olefin polymerization 18.
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2.2.1.4 Stereocontrol

Isotactic polymer is produced when the monomer molecules in successive insertion

steps, bind to the metal via the same enantioface (either re, re or si, SI), while

coordination to the opposite enantioface in every second insertion step leads to the

syndiotactic polymer". When the propene monomer binds to the metal in a random

fashion, then atactic polypropylene is produced. Two mechanisms are used in the

stereocontrol chemistry by metallocene catalysts. The first one is the chain-end

stereochemical control process where the configuration of the inserting monomer is

determined by the configuration of the chain ends, whereas in second one, the

enantiomorphic site control process the configuration of the inserting monomer is

influenced by the configuration at the catalyst site 15.

In the mid 80's Ewen'" reported on the use of Cp2Ti(Ph)z activated by MAO at low

polymerization temperatures (-45°C) to synthesize isotactic pp having novel

stereoblock microstructure which was consistent with a chain-end stereochemical

control mechanism. This leads to a polymer in which a stereoerror is perpetuated

and not corrected. The isoctactic content of the polymers produced with this catalyst

was dependent on polymerization temperatures, with the polymer becoming more

atactic at 25°C. C2-symmetric catalysts rac-Et(lnd)z TiCI2 and rac-Et(lnd)zZrCh

produced isotactic pp using an enantiomorphic site controll model.

K 1

+ M-- P

\
~

8+ Kj Ir
M -1-CH2 -P----I ...~M - -I-P

~ (S) (R)(S)

M-p

Scheme 6: Mechanism of stereoregulation for both syndiotactic and isotactic

chain-end controlled propylene polmerization 14.

Scheme 6 shows the mode of monomer coordination (2,1- or 1,2-insertions) which

results in production of either syndiotactic or isotactic polypropylenes in

Cp2TiPh2/MAO system.
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During isospecific polymerization of propylene, the growing chain isomerizes

resulting in formation of stereoerrors in the polymer chain. There are two

mechanisms to explain these isomerization processes. The first one is a direct

transfer of a hydrogen atom of the y-methyl group to the a-carbon, with simultaneous

Zr-C, bond formation and Zr-C, bond cleavage. The H-transfer suffers from strain

energy due to the presence of a small ring in the transition state. Another

mechanism is via ~-elimination, reorientation, and reinsertion that leads to the same

product, but a scrambling of the stereogenic centre".

At low monomer concentration the olefin insertion rates are decreased with the

consequence of increased isomerization reactions causing more instrinsic

stereoerrors 19,20. The isotactic content of polypropylenes produced by C2-symmetric

catalysts rac-C2H4 (H4-lnd)2ZrCb, rac-C2H4(lnd)2ZrCb, rac-Me2Si(lnd)2ZrCI2, and rac-

Me2Si(1-Benz-lnd)2ZrCb was reported to be dependent on monomer

concentrationê". This observed decrease in stereoregularity is a result of the slow

reaction of epimerization of the last-inserted monomeric unit which competes with

that of chain polymerization. This effect was found to be of less importance in

substituted rac-Me2Si(2-Me-4-Ph-1-lnd)2ZrCb/MAO compared to its homologue rac-

Me2Si(1nd)2ZrCI2/MAO.

The isomerization processes were intially reported by Busico and Cipullo" using rac-

C2H4(H4-lnd)2ZrCb. They observed that widening the gap aperture angle of the

metallocene tends to release the steric constraints to chain propagation after a

regioirregular (2,1 )-inserted propene unit; this makes the isomerization of the latter

into a 3,1 unit a less convenient alternative. For C2-symmetric zirconocenes the

decrease in propylene insertion rate after regioirregularity is lower the higher the

value of the aperture angle; consequently, the ratio of 2,1 to 3,1 units in propylene

polymers produced at a given temperature and monomer concentration increases in

the same direction. The chain isomerizations misinsertion in propylene

polymerization has been found to be more prominent when the aperture angle is

greater.

Addition of substituents especially on 3,3'-positions of the C2-symmetric catalyst

increases the enantioselectivity, and the effect is further enhanced in the presence of

the bigger substituents". This effect becomes stronger on the indenyl systems than
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in the cyclopentadienyl systems. In a review by Busico and Cupillo, they stressed

that substitution on the Cp rings, which results in a chiral C2-symmetric coordination

environment of the transition metal, as the most successful strategy towards

obtaining isotactic-selective catalysts. Furthermore, introduction of a bridge in a

ligand helps prevent the rotation of Cp ligands, thus locking them in a chiral

configuration.

The stereoerrors observed in the synthesis of iPP using C1-symmetric catalyst, can

be explained by the chain backskipping method as shown in Scheme 7. It can be

stated that this is due to catalysts switching between stereoselective and

nonstereoselective coordination sites.

~R'

isopecific

"backskip"

aspecific

~
R

Scheme 7: Enantiomorphic site control mechanism 17.
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Syndiotactic polypropylene is produced by metallocene catalysts with Cs-symmetry,

which implies site enantiotopicity (i.e. the preference for opposite propene

enantiofacesr". The first highly syndiotactic polypropylene was reported in 1988 by

Ewen using the catalyst Me2C(Cp)(9-Flu)ZrCb/MA016. Like in cases of C2-symmetric

catalysts, the stereocontrol of these catalysts is also dependent on propylene

concentratlorr". Asanuma et al., proposed the following mechanism for

syndiospecific polymerization 11:

S kj ,. R
M-R- + re M-S-R-

S si
k2 ,. RM-R:- + M-R-R-

S +
kj ,. SM-R- re M-R-R-

MS-R- + k4 ,. S
Sl M-S-S-

wherein M represents the catalyst with catalyst site S in superscript, and chain ends

R, and the monomer chirality are denoted by italics re and si. It is proposed that

when the chain-end catalyst site does not migrate, the chain end changes to the site

and adds to the monomer coordinated to the opposite site. For propylene

polymerization, the 1,2 - re insertion is most favourable with a low activation barrier

(7.5 kcal/mol) compared to the 1,2 - si and 2,1-re which have similar activation

barriers (12.1 and 12.3 kcal/mol repectivelyj".

The origins of stereoerrors in the production of sPP using Cs-symmetric catalyst

[Me2C(Cp)(9-Flu)ZrCb/MAO] were investigated by Busico et a123. The site

epimerizations accounted for much of the stereoerrors observed, and it is a result of

the loosening of ion couple in the catalyst! cocatalyst pair. It is highlighted that the

proximity of the counterion to the active cation is mandatory for a regular chain

migratory insertion mechanism.

The influence of the bridge in Cs-symmetric catalysts is different from the one

observed in C2-symmetric catalysts. The syndiotacticity increases in the order Me2C

> Ph2C > PhP - Me2> Ph2Si6.
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2.3 Effect of cocatalysts: The alumoxanes

Methylalumoxane is the mostly used alumoxane cocatalyst with metallocene

catalysts. Other alumoxanes such as ethyl and butyl alumoxanes have also been

used in the polymerization processes. Methylalumoxane is a compound in which

aluminum and oxygen atoms are arranged alternatively and free valences are

saturated by methyl substituents. It is gained by partial hydrolysis of

trimethylaluminium 10,24,25. The resulting product is a complex structure, and the

structure of MAO and nature of its reaction centers and unique ability to activate

metallocene catalysts still remain unclear.

Panchenko and co workers modeled the three dimensional structure of MAO using

density functional theory quantum-chemical method26 (Figure 6).

Figure 6: Inner layer of triple-layer cage structure of MA022•

MAO has the following roles during olefin polymerization 10,24,25,27:

1. Fast ligand exchange reaction with metallocene dichloride, abstracting the

halogen from the metallocene by AI center in MAO thus rendering the

metallocene methyl and dimethyl compounds.

2. Formation of a metallocene cation and MAO anion, creating a vacant

coordination site.

3. Provides counteranions, acting as a stabilizer of the active species.

4. Acts as a Lewis acid.

5. Scavenges impurities such as O2 and H20 in the polymerization medium.
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The alkylated metallocene cation represents the active center.

The concentration of MAO in metallocene catalyzed polymerizations influences the

catalytic activity. However it was established that the microstructure of the pp

produced by Me2Si(Benz[e]lnd)2ZrCI2 was not influenced by the MAO concentration

while the microstructure of the polymer produced by Me2Si(2-Me-Benz[e]lnd)2ZrCI2

was influenced by the MAO concentratiorr".

The zirconocene-trialkylaluminium systems have been reported to be inactive (or

having low activity) towards ethylene polvrnerizatiorr". The TMA which is freely

available in MAO solution, acts as chain transfer agent in olefin polymerization which

results in formation of AI-C bond which cleaves to generate polymers with saturated

end groups. It has been shown that removal of the TMA leaves a solid MA026, which

gives polymers with unsaturated end groups when activated with metallocene

catalysts'". This TMA, when added to MAO, decreases the catalyst activity in olefin

polymerlzatlons'":". TMA, when used alone or in excess with MAO, can be

considered as an inhibiting agent. On the other hand, when used in combination with

MAO, its presence is essential to obtain MAO with an active oligomeric structure.

Wang et af32. reported on low activity of CP2ZrCI2 when activated with

ethylalumoxane, butylalumoxane and ethyl-butylalumoxane (EBAD) for ethylene

polymerization. The polymers produced by these alumoxanes had low Mw and

broader MWO, suggesting that these alumoxanes activate catalysts with multiple

reactive sites. In a separate study, catalytic activity decreased when

isobutylalumoxane was used as cocatalyst or when added to MAO solution, this

however does not affect the Mw and the polydispersities of the polymers produced":

Tetra-iso-octylalumoxane (TIOAO) and poly-iso-octylalumoxanes (TAO) were

synthesized from the hydrolysis of tri-iso-octyl aluminum (TIOA)33. Attempts to

copolymerize ethylene and propylene using the rac-Et(lndH4)2ZrCb activated by TAO

and TIOA were ineffective while TIOAO was much more active in comparison. It is

assumed that the TIOAO contains both TAO and TIOA in its composition. The failure

of TAO and TIOA to show activity could be explained in the following way: TIOA can

act as an alkylating agent generating the cationic metallocene alkyl species but it

lacks the species which generates the ionic pair function whereas TAO could
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generate the ionic pair alkyl metallocene/ alumoxane but lacks the alkylating agent.

This was supported when TAO showed activity when combined with

rac-Et(lndH4)2ZrMe2, which already has the alkyl group as a ligand.

Methylalumoxanes have been synthesized in situ on heteropoly acids,

(phosphotungstic, silicotungstic, and phosphomolybdic acid) to form alumoxo-

heteropoly compounds for use as weakly coordinating anions for metallocenes in the

oligomerization of alkenes34.35. When Et(lnd)2ZrCI2 was activated using alumoxo-

phosphotungstate it formed a thermally more stable compound than its

phosophomolybdate analog. However, for this catalyst system the activity loss was

more pronounced than for (CH3)2Si(lnd)2ZrCb at higher temperatures. The

metallocene Cp2Zr(CH3)2, when activated with alumoxo-silicotungstate had higher

activity in oligomerization of propene as compared to the one activated with pure

MAO. Branched oligomers could also be prepared using the latter heteropoly acid.

The effect of various alkyl aluminiums on distribution of comonomer (1-hexene) short

chains in PE resin has been investigated using CRYSTAF. It was observed that

copolymers produced with catalyst activated with TMA and TEA had distinctive

bimodal crystallinity distributions'".

2.3.1 Other cocatalysts

Highly electrophilic borane compounds, such as B(C6F5h are also used as

cocatalysts in the absence or in conjuction with MAO. These borane containing

compounds can ionize the neutral metallocene to generate an active species'".

Complexes such as Cp*TiMe3 can be activated by counteranions such as B(C6F5hto

form the active species Cp*TiMe2(Il-Me)B(C6F5h This system has been used to

polymerize monomers such as isobutylene and isoprene to give polymer of low to

high molecular weight depending on the catalyst concentration. However it was

pointed out that these systems need high amount of catalyst as compared to those

ones activated by MAO. The borates cocatalysts [Ph3]+[B(C6F5)4] on the other hand

had proved to be more successful in activating metallocenes in conjuction with alkyl

aluminiums. The draw back with these cocatalysts is that they suffer from poor

solubility in hydrocarbons and poor thermal stability resulting in short catalytic life

time. These problems are alleviated when the fluoroarylborate salt is functionalized

by groups such as tBuMe2Si38.
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2.4 Chain transfer reactions

During polymerization, there is a double catalytic cycle:

• Multiple insertion of monomer at a given metal center.

• Production of multiple chains at the same catalytic center. These two cycles

are connected by a set of reactions that liberate a polymer chain from the

catalytic center and form an active metal-hydride complex.

1'.Me,~..,'"
, ,, ,, ,, ,, ,

cp28------H~
1\\\\"'" "''''II/Pol

H
H Me

p-hydrogen

! H H
~/ diss /

Cp,,,,,, \ Cp,!;)

~POI

J~
Pol

~POI

Scheme 8: Depiction of f3-hydride transfer reactions.

In the above cycle (Scheme 8), a number of f3-hydride transfer reactions are shown,

which essentially all lead to vinylidene-terminated polymer chains and the reformation

of the catalytically active metal hydride species. During propylene polymerization

using Cp*2ZrCI2/MAO, f3-methyl abstraction is the dominant form of chain termination

while CP2ZrCI2/MAO has f3-H abstraction as most important form of chain terminatios

reaction". The formation of vinyl-terminated polypropylenes as a result of f3-methyl

transfer reactions when using isospecific C2-symmetric catalyst is illustrated in

Scheme 10.

During the polymerization stages, the growing polymer chains undergo different chain

transfer reactions, which in some instances result in chain termination. Molecular

hydrogen is usually introduced during the polymerization with heterogeneous

catalysts to lower the polymer molecular weight and increase the catalyst activity by
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regeneration of an active species from the dormant sites formed after a regioirregular

olefin insertion39
,41 (see Scheme 9). This is not the case with the metallocenes, as

these catalysts make polymers of lower molecular mass compared to Ziegler-Natta

catalysts, hence introduction of hydrogen will result in more reduced molecular

weight.

2,1 insertion
M M-H

p

fast propagating species slow propagating species fast propagating species

Scheme 9: Regeneration of the dormant sites by H2
41

•

Lately a new mechanism for primary-growing-chain-end epimerization in propylene

polymerization with C2-symmetric zirconocenes was proposed". This mechanism

outlines the formation of an internal vinylidene group, which becomes more

predominant at lower propylene concentrations.

Zr

+~P

p

ZrH + p

Scheme 10: Chain-end formation by j3-CH3 transfer and H transfer reactlons'".
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Scheme 11: Formation of internal vinylidene42.

On the other hand introduction of hydrogen in the polymerization process minimizes

the occurrence of this internal vinylidene group. Scheme 11 outlines the formation of

the internal vinylidene bond in the presence of hydrogen.

2.5 Effect of the transition metal on catalyst productivity

The transition metal in metallocenes for olefin polymerization plays a significant role

in determining the activity of the catalyst, and the resultant molecular weight,

polydispersity and microstructure of the synthesized polymers. The commonly used

transition metals are zirconium, titanium and hafnium, with zirconium being the most

commonly used metaI2,43,44. Rieger et a1.45, used the Hf metal in the presence of

borates as cocatalyst in the catalysts systems rac-[1-(9-115-Flu)-2-(5,6-cyclopentyl-2-

methyl-lnd)EtMX2, (with M being Hf or Zr and X being chloride or methyl groups),

ultra high molecular weight iPP was produced when Hf is used as the transition metal

than when Zr is used as the transition metal in the catalyst complex. Polymerizations

in liquid propene resulted in increased molecular weight which was inversely

proprtional to polymerization temperature.

Elastomeric polypropylenes (elpp) synthesized using (2-Ph-lnd)2lrCb and

(2-Ph-lnd)2HfCb, catalysts had similar molecular weight although the Hf based

catalyst produced elpp with low polydispersities and lower tacticity in comparison with
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the Zr based catalyst (28-36%). The product produced by the Hf-based system was

tacky with no melting temperature". Amongst possible explanations for the

discreparancies observed between these two metals is the slow rate of propagation

at the isospecific site for Hf.

However, for Cs symmetric metallocenes, highly syndiotactic polymers are produced

by Zr or Hf based catalysts, in contrast to stereoirregular polymers obtained when

using Ti as the transition metal'". Furthermore, under these conditions isotactic pp

was obtained using a C2-symmetric catalyst with Ti, which could be explained by

small metal radii and co-operative non-bonded repulsion of the methyl of the

incoming monomer.

Low activity was observed when [M(r{111-C5Me5SiMe2NCH2CH20CH3)R2, M= Zr, Hf,

R= Me, "Bu] where used for the polymerization of ethylene'". The Hf metal had very

low activity in comparison to the Zr metal at various polymerization temperatures.

However, it has been demonstrated that the insertion barriers in these types of

catalysts increase in the order of Ti < Zr >::0 Hf. The Ti catalysts easily suffer

decomposition at temperatures above SO°C, compared to the lr-based catalysts".

2.6 Effect of the ligand

The stereoregularity of the polyolefins, in particular polypropylene, synthesized using

metallocene catalysts depends largely on the ligands around the transition metal

complex. Highly isotactic (91%) polypropylene has been synthesized using

Et(lndH4)2lrCb activated with MAO 1. Although the synthesis of the ligand 2-Me-

Benz(lnd) (See Figure 7) appeared as if it was the end of the ligand development'',

Brintzinger et al.5o in 1994 found that (CH3)2Si(Benz[e](lnd)2lrCI2 and (CH3)2Si(2-Me-

Benz[e]lnd)2lrCI2 when activated with MAO are much more active than their bis

indenyl analogues in the polymerization of propylene. The benzindenyl catalyst

produce polymers of low molecular weight, which results from chain transfer to

monomer following 2, 1-insertion.

Metallocene catalysts rely on a high AI:lr ratio to obtain polymers of high molecular

weight, as at low concentrations bimetallic reactions result in low molecular weight

polymers. The introduction of substituents on cyclopentadienyl or indenyl ligands can

decrease these bimetallic reactions, which, as a consequence could result in high
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molecular weight polymers42,51. When the isopropyl substituent on the 4,4'-positions

of the indenyl ligands were substituted for benzannelated and phenyl groups, high

Mw iPP was produced. The high molecular weight was affordable by replacing the

hydrogen in 2-position of the indenyl for methyl to create the synergistic effect51. High

molecular weight iPP was synthesized using rac-Me2Si-(2-Me-lnd)2ZrCI2 and its

tetrahydroindenyl derivative'". This is possibly due to electronic effects created by

introduction of the methyl group next to the silyl bridge, resulting in a decrease of the

local Lewis acidity at the cationic Zr atom of the active species which lowers its

tendency to abstract a ~-H atom. On further investigation of these silyl bridged

complexes, Spaleck53 and co-workers in 1995 reported higher activity for the racemic

stereoisomer of Me2Si(lnd)2ZrCb as compared to its meso stereoisomer.

Regioirregular insertions were observed for ethylene and silyl bridged zirconocenes

in propene polymerizations'". It was observed that for Et(lnd)2ZrCb and

Me2Si(lnd)2ZrCI2, 2,1-misinsertions were observed but there were no

1,3-misinsertions observed at temperatures of 0-60°C, whereas for their

tetrahydroindenyl analogues the misinsertions increase with the temperature. The

2,1-misinsertion leaves the catalyst site in a deactivated state for further olefin

insertion and is a preferred mode for chain termination by ~-H elimination.

In comparison to the bulkiness of the ligand, it was found that the silyl briged indenyl

ligand showed more enantioselectivity than its benzannelated indenyl and methyl

benzannelated ligand in the polymerization of 3-methyl-1-pentene54.
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Figure 7: Structure of silyl bridged metallocene with benzindenyl ligands.

The silyl bridged methyl benzannelated zirconocene produced polymers with

molecular weights of about 4 times higher than the former one. It is thought that the

a-methyl substituents of the methyl-benzannelated indenyl blocks the chain

terminations which arise from p-H transfer directly to a coordinated monomer

molecule. The a-methyl substituents on the metallocene catalyst reduces the

amount of 2, 1-misinsertions compared to the unsubstituted ones.

A C2-symmetric catalyst rac-[CH2(3-t-Bu-1-lnd)2]ZrMe2 was found to produce isotactic

pp which has a higher molecular weight56, tacticity as compared to the rac-[Me2C(3-t-

Bu-1-lnd)2ZrMe2. The former complex was found to be more regiospecific with no

2,1- or 3,1-misinsertions.

Polo and co-workers " found that replacing the chloride ligands of rac-Et(lnd)2ZrCI2,

with binaphtholate (BNP) resulted in reduced catalyst activity. The bulky naphtholate

ligands hinder formation of the active species and the nature of the Zr-Q bond (for the

naphtholate) was more difficult to cleave in comparison with Zr-CI bond. This

problem could be alleviated by ageing the catalystlalumoxane solution for 2 hrs,

resulting in improved activity.
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Formation of polyolefin stereoblocks arises due to occurrence of stereoerrors in the

catalyst active site during the polymerization process. Lieber and Brintzinqer'"

observed that the polymeryl exchange of polymer chain from the crowded Zr active

center to the free AI is predominantly observed in the highly substituted isospecific

metallocene and it occurs less in the less substituted isospecific, and syndiospecific

metallocenes.

Cj-syrnmetric zirconocenes with an isopropylidene bridge and substituted

cyclopentadienyl and fluorenyl ligands are of large interest as catalysts for the

polymerization of propylene, leading to syndiotactic and hemiisotactic polymers25,58.

Fan and Waymouth 17synthesized alternating ethylene/propylene copolymers using

Me2Si(lnd)(Flu)lrCI2 and Me2C(lnd)(Flu)lrCI2. The activity of the latter was poor,

producing oligomeric products (Mw - 1 500) compared to those of the silyl bridged

catalyst (Mw - 20 000). The highly alternating sequence distribution for the

copolymers can be ascribed to an alternating-site mechanism where propylene

inserts at the stereoselective site and ethylene inserts at the nonstereoselective site.

In another investigation, Bercaw et al.59 reported that for Me2C(Me-

Cp)(Flu)lrCI2/MAO, the tacticity of the pp is largely influenced by the ligand

substituents.

Hydrogenation of the fluorenyl ligands in Cj-symmetric metallocene catalysts does

not influence the catalytic activity, but the tacticities of the pp produced are

negatively affected'". The Mw of the polymers produced by these complexes were

lower than those of the non-hydrogenated catalysts. The less stereorigid geometry of

the partially and fully hydrogenated fluorenylligand allows for easier p-H elimination.

It was observed that in C1-bridged flourenylidene cyclopentadienylidene

zirconocenes, a t-Bu in position 3 of the cyclopentadienyl leads to highly isotactic

polypropylene61,62. The t-Bu group sterically blocks one side of the catalysts,

restricting the movement of the growing chain, thus allowing insertion of propylene

monomers at one side only. Substituting the methyl for t-Bu showed the same effect.

However, the tacticities decreased when allyldimethyl and trimethylsilyl groups were

placed on the 3-position of the Cp.
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Figure 8: Substituted ligands for C1 briged catalysts'",

In comparison of the bridging group in constrained geometry (CG) catalysts, van

Leusen et al.63 reported high activity of the catalyst [CsMe4(CH2)2N-t-BuTiCI2] as

compared to its silyl bridged analogue in ethylene homopolymerization. However,

this ethylene bridged catalyst, was found to be inactive in propylene polymerization

which is different to what is observed in [CsMe4(SiMe2)N-t-Bu]TiCI2. The activity was

restored when the terl-butyl was replaced by a methyl group. The silyl bridged CG

metallocenes have been found to be active in the polymerization of propylene. The

only ethylene bridged catalyst capable of polymerizing propylene was

[CsMe4(CH2)2NCH3]TiCb.

Metallocenes with double bridges in their ligand have been synthesized for ethylene

polymerization. The activity of [j.l,j.l-(Me2SiOSiMe2)2(CsH3)2]ZrMe2was found to be

similar to those complexes having single bridqe'". These catalysts were observed to

control chain configuration by enantiomorphic site control in the polymerization of

propylene'", At lower Tp and higher propylene concentration, highly syndiotactic pp

with less stereoerrors was obtained. This implies that as stereoselectivity increases

with propylene concentration, enantiofacial misinsertion is not the major stereoerror

mechanism, but site epimerization and olefin insertion occur at competitive rates,

resulting in epimerization being the major cause for stereoerrors.

Half-sandwich titanocenes and zirconocenes produce olefin polymers when activated

with MAO or with B(C6Fs)3. The effect of the pendant phenyl group in half-sandwich
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complexes of (CsH4CMe2CH2Ph)TiMe has been investigated in propylene

polyrnerization'". When this complex is activated with B(C6Fsh atactic low Mw

propylene polymers were produced, with broader MWD (5 - 14). The broad

polydispersities could be the result of either catalyst decomposition or of slow

equilibrium between dormant and active states.

2.5.1 Ligands for elastomeric pp

Elastomeric polypropylene forms an integral part of the thermoplastic rubber industry

owing to its excellence in elastic recovery which is insensitive to elongation up to

500%66. The first homogeneous catalyst that generated elastomeric polypropylene

(elpp) was a C1-symmetric bridged tltanocene". Investigations were carried out to

produce elpp using titanium based nonsymmetric ansa-metallocene catalysts. The

presence of two isomeric propagating stages was highlighted using these catalysts'".

Later Waymouth69
-
71 and his group reported synthesis of the catalyst (2-Phlnd)2ZrCI2

which is able to isomerize between achiral and chiral coordination geometries in

order to produce atactic-isotactic stereoblock poly-a-olefins. With this catalyst, it was

thought that the distribution of isotactic and atactic stereosequences could be

controlled by varying polymerization conditions to produce polymers with a range of

elastomeric properties. This rotation of the ligands can be explained by using the

effect of the solvent, in particular polar solvents such as dichlorobenzene and

cocatalyst tetrakis(perfluorophenyl)borate/AI(isobutyl)3. In polar solvent, there is less

interlocking of cation/anion which results in the ligand being locked in one position for

a shorter period before it rotates to the other position resulting in overall

non-crystallizable polymer".

Introduction of phenyl substituents on the indenyl ligand is supposed to inhibit the

rotation of the ligand such that it would be slower than that of monomer insertion yet

faster than the time required to construct one polymer chain in order to produce the

atactic-isotactic stereoblocks'":". Studies have shown that rac-isomer is favoured in

the isomerization equilibium for these (2-Phlnd)2ZrCb catalyst during elpp synthesis.

The larger fraction of atactic polymer in the elpp is a consequence of higher rate of

polymerization of the meso- isomer".
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R=H, Me, Et

Figure 9: The Waymouth compounds and their rotation to synthesize

elastomeric pp73.

The complex rac-(1-Me-2-Phlnd)2ZrCb was used in the polymerization of propylene

and showed low activity; producing polymer with low isotactic pentads as compared

to the (2-Phlnd)2ZrCI2. The Mw of the polymers were low and they had low MW073.

To investigate effect of fluxional metallocene on production of elastomeric PP, Cp*(2-

Phlnd)lndZrCI2, Cp*(1-Me-2-Phlnd)lndZrCI2 and Cp(2-Phlnd)ZrCI2 were compared

against bis(2-Phlnd)ZrCI/5. Although the activity of Cp(2-Phlnd)ZrCI2 was slightly

higher it suffered from low tacticity (% mmmm = 8) compared to Cp*(2-Phlnd)ZrCI2

which had tacticity of 30%, similar to that of bis(2-Phlnd)ZrCb.

To evaluate the effect of the chirality of metallocene complexes,

bis(neomenthylindenyl)zirconium dichloride and bis(neoisomenthylindenyl)zirconium

dichloride and their tetrahydroindenyl derivatives, have been investigated in

propylene polymerization". Enantiomorphic site control was dominant in both

catalysts, although the bis(neoisomenthylindenyl) zirconocene had higher stereo

control. This led to polymers with high amounts of isotactic pentads.

Metallocene with indenyl ligands having methyl, i-pr, benzyl and cyciohexyl

substituents were activated with MAO to produce thermoplastic PP77
. The isotactic
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pentads increased in the order i-Pr < Me < Cy < n-Bu < Benz. The metallocenes with

methyl and n-Bu substituted indenyls had high catalytic activity in both polymerization

of ethylene and propylene, and they produced polymers with high Mw and broader

MWO. Surprisingly the benzyl substituent had lower activity in both situations, which

can chiefly be explained by its electron withdrawing power. The catalysts having

alkenyl substituted cyclopentadienyl ligands with more linear substituents had lesser

activity than the branched ones in the polymerization of ethylene" (Figure 10). The

complexation of the alkene group of the ligand at the vacant polymerization site and

the blocking of the inserting monomer caused by rotation of the long chain in the

ligand probably influenced the catalyst activity.

~R

CI--Zr-CI

R-O
with R being:

Figure 10: Cyclopentadienyl zirconcene with alkenyl substituents ",

Biscyclopentadienyl zirconocenes with phenyl rings as substituents on the Cp rings

were investigated for ethylene and propylene polymerization/". The activities of

(Ph3Cp)2ZrCb and (CyPh2-Cp )2ZrCI2 (Figure 11) in ethylene polymerization were

found to decrease slightly with a decrease in AI:Zr ratio as compared to that of

Cp2ZrCb. These compounds when activated with MAO were only able to produce

oily propylene oligomers, which lacked stereospecifity suggesting that the presence

of the bulky ligands was not good enough to restrict the rotation of the Cp ligand

about the Zr atom. These oily propylene oligomers had vinylidene end-groups

indicating p-H elimination as the main chain termination process. Replacing one of
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the Ph substituents by a cyclohexyl only lowered the catalytic activity, which was

probably due to steric hindrance in the front side of the Zr atom which is larger and

the coordination gap aperture for the monomer is smaller.

Ph

CHex = Cyclohexyl

(i) (ii)

Figure 11: Phenyl substituted biscyclopentadienyl zirconocenes'".

Brintzinger et al.8o found that the 2-methyl substituted cyciopenta(l) phenanthracene

zirconocene was more active than the (Ph-lnd)2ZrCb when activated with MAO.

However the tacticity of the polymers procuced using the methyl substituted complex

was very poor.

2.5.2 Halogenated ligands

Several reports have highlighted how the activity of the metallocene catalysts

decreases when halogens are placed in the ligand around the transition metaI7o,81,82.

In the mid 90's Waymouth et alo. compared the activity of the arylindenyl

zirconocenes (2-Phlnd)2ZrCb, [2-(3,5-Me2Ph)lnd]2ZrCb and [2-(3,5-CF3-Phlnd)2ZrCb

in the presence of MAO in the polymerization of propylene. The microstructure of PP

produced by the methyl substituted aryl was found to be much less (15% isotactic) in

comparison to those of the unsubtituted and trifluoromethyl substituted aryl. The CF3

substituted arylindene zirconocene produced the polymers having the highest
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isotactic pentads (45-73%). A similar trend is observed in Hf catalyst, though the Zr

metal has a larger effect on stereospecifity'".

R

R

R = CF3,Cl, SiMe3, H, t-Bu

Figure 12: Zirconocene with substituted ligands.

It was observed that the activity of the methyl substituted arylindene was much lower

than that of the other two complexes which had no substituent or had CF3 as

substituent on the arylindene, and the molecular weight of the polymers was also

lower in comparison.

The effect of steric and electronic substituents on the p-position of the aryl in

[2-(4-R-Ph)lnd]2ZrCI2 for propylene polymerizaton was studied by Lin et al.81. The

%mmm pentads were slightly influenced by electron withdrawing groups, but when Cl

and CF3 were used, the activity of the catalyst decreased. Substituting the chlorine

atoms by bromine did not affect the microstructure of the polymers produced by (2-

Arlnd)2ZrCl2 and (2-Arlnd)2ZrBr2 in the presence of MA082. However the

polydispersities of the polymers produced by the dichloride analogues were broader

than that of the dibromide catalysts. For catalysts having mixed ligand systems the

microstructure of the pp ranged from 21% for [2-(3,5-Me2-Ph)lnd](2-Phlnd)ZrBr2 to

54% for the [2-(3,5-Me2-Ph)lnd]2ZrBr2.
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2.5.3 Other functional ligands

A series of unbridged bis(2-R-lnd) zirconocenes were activated with MAO to

polymerize propylene, with R being phenyl, 3,5-dimethoxyphenyl, 4-methylamino,

3,5-ditert-butyl-4-methoxyphenyl and adamantanyl substituents. The complexes with

dimethoxy substituents and tert-Bu-methoxy had polymers with much more isotactic

pentads'". All of these metallocenes had electron donating substituents with varying

steric demands. The catalysts with dimethoxy substituents had lower activity as

compared to the p-methoxy-substituent, which can be explained by the shielding

effect of the adjacent telt-butyl groups.

Ansa-metallocenes containing amide ligands displayed lower activities in propylene

polymerization in comparison to their chlorine and methyl counterparts'f'".

Pretreatment of these catalysts with AIR3 before activation with MAO resulted in high

catalytic activity. The isotacticity does not increase in these systems, instead atactic

material is produced. This could be the result of propylene being more sensitive to

the amine substituents, or that the substituent blocks the monomer from reaching the

coordination center.

For ethylene polymerization, Janiak et al.86 observed a decrease in catalytic activity

in the following order: Cp2ZrCb > (CH3)4CpCp*ZrCI2 > (CP*)2ZrCb >

(CH3)4C4P(Cp*)ZrCI2 > [(CH3)4Cp]2ZrCb » (Cp*)2ZrCb > [(CH3)4C4P]2ZrCI2. The

lower activities of the phosphoryl as compared to the tetra- and

penta-methylcyclopentadienyl could be the result of the electron withdrawing effect of

the phosphorus substituent.

2.7 Copolymerization of higher a-o/efins

The polymerization of higher a-olefins has been done using silyl bridged

Benz(e)indenyl complexes activated with MA050,87-9o. Addition of a comonomer in

the polymerization system generally resulted in increased catalytic activity. The

molecular weight of the copolymers tend to be higher than that of the corresponding

homopolymers.

The incorporation of 1-hexene comonomer decreased with increase in the 1-hexene

in the feed for ethylene copolymerizations with the aspecific metallocenes (n-

BuCp)2ZrCb while the opposite was true for (Ind)2ZrCb91. The former catalyst is
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weaker in activity towards 1-hexene insertion. Propylene and hexadecene

comonomers showed an increase in comonomer incorporation with increase in the

feed under similar conditions using both catalysts. These catalysts behaved as

single site species at low comonomer concentrations. The melting temperatures of

the copolymers decreased as large percentages of the comonomers was

incorporated in the polymer chainsB9,91.

Cs-symmetric catalysts have been used to produce poly-1-hexene, which increase in

molecular weight with a decrease in the reaction pressure'".

Ethylene-propylene copolymers are of industrial importance, in particular in the

production of elastorners'". It has been found that the reactivity ratio for ethylene in

propylene copolymerization decreased in the order (2-Phlnd)2ZrCI2 >

[(CF3)2Phlnd]2ZrCb > Et(lnd)2ZrCl2 whereas the reactivity for the propylene was in

the order Et(lnd)2ZrCl2 < (2-Phlnd)2ZrCI2 < [(CF3)2Phlnd]ZrCI2. The molecular weight

of the polymers produced using arylindenyl and fluorinated arylindenyl catalysts

increased with the increase of ethylene in the reaction feed.

When 1-octene was used as a comonomer in ethylene copolymerization using

[CsMe4(SiMe2N-tert-Bu)]TiMe2fTPFPB/MMAO, the activity of the catalyst decreased

with increasing 1-octene mole feed. As the amount of the comonomer increased, the

molecular weight distribution increased whereas the molecular weight decreased.

The crystallinity of the copolymers was also reduced with increased 1-octene

content".

Van Reenen et al.B9 reported the copolymerization of propylene with higher a-olefins

such as 1-octene, 1-decene, tetradecene, and octadecene, using Me2Si(2-Me-

Benz[e]lnd)2ZrCI2/MAO. Copolymerization of propylene with other higher a-olefins

results in increased catalytic activity, with little change to the molecular weight of the

copolymers produced". Graef et al.96 reported a decrease in the rrrr % when

copolymerizing propylene with higher a-olefins using the syndiospecific catalysts.

The effect of the bridge in Me2C(Cp)(Flu)ZrMe2 and Et(Cp)(Flu)ZrMe2 has been

studied for ethylene/1-hexene copolymerization activated with the non-coordinating

cocatalyst [Ph3C][B(C6Fs)4]. It was found that the syndiospecific catalysts bridged

with ethylene had a smaller dihedral angle which limits the amount of 1-hexene to be

incorporated into the polymer chaln'" The catalysts with only one carbon in the
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bridge easily insert 1-hexene in the polymer chain compared to the ethylene bridged

catalyst. The ethylene bridged catalysts showed higher activity in ethylene homo-

and copolymerization. Syndiotactic homopolyolefins (1-butene, 4-methyl-1-pentene,

1-pentene, 1-hexene and 1-octene) were synthesized using 1-Me-

1-ethylidene-(Cp-1'-Flu)ZrCI2, activated with MA099. Of these polymers, crystalline

products were obtained from 1-butene and 4-methyl-1-pentene.

Harrison et al.98 synthesized polyethylene with long-chain branching using

Et(lnd)2ZrCI2 supported on alumina at elevated temperatures, with the long-chain

branching confirmed by 13CNMR. The above polymerization system afforded more

long-chain branching using slurry phase polymerization than in gas phase. These

supported systems produced copolymers with less comonomer (1-hexene and

1-octene) content compared to their soluble counterparts. Although the activity of

these catalysts increased in the presence of the comonomer, the molecular weight

decreased due to facile chain transfer to the metal or to comonorner'".

2.8 Long-chain branching in polyolefins

Long-chain branching in polyethylenes were earlier reported by Malpass 100(Exxon)

using the Ziegler-Natta catalysts. In a-olefin polymerization, long chain branches are

observed as a result of ~-CH3 or ~-H transfer reactions, which result in

macromonomers capable of being incorporated into the polymer chain. The

concentration of macromonomer in the reaction and its rate of insertion relative to

olefin (propylene in this case) determines the branching level in the polyolefin 101.

Preferably the metallocenes which are capable of making vinyl terminated

end-groups are used in the making of in-situ long-chain branching in polyolefins.

Long-chain branched polypropylenes were prepared using Me2Si(2-Me,4-Ph-

Ind)2ZrCI2/MAO.

Incorporation of ethylene-propylene macromonomer in ethylene polymerization

depends on the polymerization temperature and ethylene pressure. The

macromonomer content in the polymer increases with temperature, but it decreases

with ethylene pressure102,103.Long-chain branching in ethylene polymerization using

Cp2ZrCI2/MAO in slurry phase was observed after copolymerization of ethylene

macromonomer formed as a result of ~-H elimination 103. This catalyst produced only

short-branching in a continuous stirred reactor, owing to chain isomerization. The
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macromonomer has easier diffusion to the catalyst active site at higher temperatures

than at lower temperatures. The molecular weight of the polymers produced

increased with a reduction in polymerization temperature, due to increased monomer

solubility. The density of the long chain branching increased with decreasing the

AI/lr ratio. However at higher AI/lr ratio, chain transfer to MAO is supposed to be

high resulting in reduced numbers of macromers with terminal double bonds.

Homogeneous incorporation of the propylene macromonomer in propylene

polymerizations has been reported by Shiono et a/104. The presence of the

macromonomer in the reaction resulted in decreased catalyst productivity, which is a

contrast to the enhanced productivity observed when the macromonomer was

copolymerized with ethylene using CG catalysts combined with MA01os.

Using a combination of metallocene catalysts, polyolefins with long-chain branching

have been syntneslzed'?". Hence using a borato complex, (CsHsB-OEt)2lrCI2, and a

constrained geometry catalyst, [(lls-CsMe4)SiMe2(1l1-NCMe3)TiCb, activated with

MAO, branched polyolefins with reduced melting temperatures (91°C) have been

synthesized. The former catalyst is capable of producing ethylene oligomers with

unsaturated chain ends, and the latter catalyst incorporates the oligomers into the

ethylene polymer chain resulting in a polymer with long side chain branches.

Beigzadeh et al.107 showed that, the frequency of long-chain branching in

polyethylenes can be increased by combining an ethylene bridged catalysts capable

of producing macromonomers via p-H elimination and a CG catalyst capable of

incorporating higher olefins or macromonomers into the polymer chain. Et(lnd)2lrCI2

could not produce long-chain branches by itself. The CG catalyst produced high

molecular weight polymers with broader or bimodal distribution as a results of

inclusion of the macromonomers.

It has been stated that the presence of comonomers in olefin copolymerization

results in chain disorder and irregular crystal structure. This causes a decrease in

melting temperatures of the copolymers synthesized. Chu and Park 108observed that

copolymerizing ethylene with comonomers (1-butene, 1-hexene and 1-octene) using

the symmetric catalyst Cp2lrCI2 resulted in copolymers with longer side chains with

much decreased melting temperatures.
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2.9 Temperature

The problem facing metallocene catalysts by increasing polymerization temperature

is the possibility of catalyst decomposition8,39,59,87,88,109. Metallocene catalysts show

increased catalytic activity at high polymerization temperatures (Tp > 50°C), while the

molecular weights of the synthesized polyolefins decrease.

For the unbridged mono-substituted indenyl metallocenes Schmidt and Alt110 found a

decrease in catalysts activity with increasing polymerization temperature. This

decrease in polymerization activity resulted in a lower Mn and Mw which could have

been caused by accelerated ~-H elimination.

The polymers synthesized at high Tp using homogeneous catalysts tend to have

lower melting temperature, which is not surprising as crystallinity and stereoregularity

of these polymers decrease at elevated temperatures. On a contrary note, when

these catalysts are supported (e.g. on silica) the stereoselectivity and regioselectivity

increase with temperature yielding polymers of high Tm87
.

Thomas et al.6o found that in the octahydro and tetrahydro-fluoroenyl Ct symmetric

zirconocenes, the stereoregularity of the pp decreased with increase in Tp in

contrast to the fluorenyl analogue which showed similar tacticities at low and high

temperatures. This could be due to the hydrogenated rings of the fluorenyl moieties

that can "ring flip" and are therefore less stereorigid than the fluorenyl itself. The ring

flip can occur more rapidly, therefore reducing the steric directing effect on both the

polymer configuration and the incoming monomer leading to more random chain

propagation.

Grisi et al.47 demonstrated that highly syndiotactic pp with Tm of 170°C is produced

by metallocene catalysts with Cs-symmetry at temperatures as low as -60°C.

Furthermore under identical conditions, C2-symmetric catalysts produced isotactic

polymers.

2.10 Dimerization and oligomerization of olefins

In the dimerization and oligomerization of olefins, one of the crucial factors, which

determine the success of the process, is the rate of chain transfer versus chain

propagation. For effective oligomerization, the rate of chain transfer has to be faster

than the chain propagation rate 111.
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Earlier on, propylene oligomers were synthesized using the catalyst (Cp*)2MCb (with

M being Zr or Hf) activated with MAO at 50°C4o,112. These catalysts were able to

produce oligomers with vinyl and vinylidene end-groups, with ~-Me abstraction being

the main form of chain termination. Analysis of the oligomers using GC showed one

carbon decrement confirming the involvement of ~-Me abstraction. The interaction of

the ~-Me with the transition metal appeared to be more favourable than that of ~-H

since mutual repulsion between the ~-Me group on growing carbon chain and methyl

substituents on Cp ring becomes enormous. When Cp2ZrCI2 was used, oligomers

with vinylidene end-groups were exclusively produced.

Michelotti et al.113 found that raising the temperature from 20-80°C during the

oligomerization of ethylene resulted in a decrease of Mw from 50 000 to 6 000 when

using Cp2ZrMe2 catalyst. However when using Et(lnd)2ZrCI2 for propylene

oligomerization, highly isotactic polypropylene was obtained and limited amount of

oligomers were formed. Cp2ZrMe2 produced low molecular weight propylene

oligomers which could be separated using the GC-MS. The cooligomerization of

ethylene and propylene promoted chain transfer to the propylene monomer, which

resulted in the vinylidenic and vinyl end-group in the oligomer formed from Cp2ZrMe2

and Cp2*ZrCI2 respectively. The latter type of chain end-group results from ~-CH3

elimination.

In a patented report, chiral silyl bridged metallocenes supported on alumina or silica

were activated with MAO or other alkyl aluminiums and non-coordinating anion

precursors such as dimethylanilinium tetrakis(perfluoroaryl)borate [DMAHr

[(C6F5)4Br at high temperatures (90-120°) to obtain stereospecific polypropylene

macromonomers with vinyl end-qroups'". The obtained macromonomers had low

molecular weight, ranging from 2 000 - 50 000. The preferred AI:Zr ratio ranged

between 20 and 175, with 40 being the most preferred one.

Ethylene/propylene oligomers have been synthesized using the metallocenes

Me2Si(lnd)(9-Flu)ZrCb and Me2C(lnd)(9-Flu)ZrCI2 activated with MAO at low

temperatures (DOC)17. The silyl bridged metallocene produced highly alternating

oligomers in comparison to the carbyl bridged catalysts. Highly active catalysts for

propylene oligomerization were obtained by anchoring MAO on a molecular sieve
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support via in situ hydrolysis of TMA114. The catalyst Cp2ZrCI2 produced mainly

dimers and trimers.

Van Lookeren et al.3s used Et(lnd)2ZrCI2, Me2Si(lnd)2ZrCb and Cp2ZrMe2 in the

presence of alumoxo-heteropoly compounds to synthesize propylene oligomers. It

was observed by Bazan and Rogers11S that Cp*CrMe2(PMe3)/MAO produce low

molecular weight straight chain alkane oligomers from reactions with ethylene.

Propene and 1-hexene oligomers with vinylidene and vinyl end-groups have been

synthesized using a series of symmetrical and unsymmetrical zirconocenes 116.

Catalysts of the type (C4Me4P)(CsHs)ZrCb and (C4Me4P)2ZrCb showed low activities

compared to non-phosphoryl catalysts, which is partially due to the steric hindrance

of the ligand.

Higher a-olefins such as 1-butene, 1-pentene, 1-hexene, and 1-heptene, were

dimerized using different metallocenes at various AI/Zr ratios117,118. However

branched olefins such as 3-methyl-1-butene and 4-methyl-1-pentene tend to

isomerize giving low yield of dimeric products.

2. 11 Polymerization of functionalized monomers

The metallocene catalyst systems are poor in polymerization of functionalized

monomers due to lack of activity arising from the complexation of the transition metal

with electron donating groups such as oxygen and nitrogen 119. The polymerization

activity of functionalized monomers is dependent on a number of factors such as the

functionality itself, the steric nature of the functional group, metallocene, and

cocatalyst, and the length of the methylene spacer between the double bond and the

functional group.

In the early 90's Waymouth and his group 120 reported the polymerization of 1-

pentene containing silyl-protected alcohols and tertiary amines using catalysts such

as Cp*2ZrMe2 activated with B(C6FSh or [N,N-dimethylanilinium][B(C6Fs)4]. The

catalyst activity was higher for 1-hexene than for the functionalized 1-pentenes. On

this account amino-olefins were polymerized using Cp*2ZrMe2 activated with

[HNMe2PhnB(C6Fs)4r to generate the active species [Cp*2ZrMenB(C6Fs)4r. The

activity of the catalyst system was very low yielding oily oligomers from these

aminooiefins 119. High molecular weight polymers were obtained in the polymerization

of [5-(N,N-(i-Pr)2N-1-CsH9)] using the Ziegler-Natta as compared to the
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homogeneous systems. The decrease in activity in aminopentene could arise from

either intermolecular inhibitive interaction or an intramolecular inhibition of the last

inserted monomer in a "back-biting" manner. On the contrary MAO activated

catalysts displayed poor activity in the polymerization of these functionalized

monomers. This can be explained by the fact that the anionic borate is unlikely to

coordinate to the Lewis basic functional monomers.

Helaja et al.121 demonstrated the decomposition of alkoxide compounds formed from

the reactions of alcohols, MAO and CP2ZrCI2. u- and ~- positioned hydroxyl groups

were more likely to decompose than the tertiary ones which are sterically hindered.

Attempts to copolymerize monomers with carbonyl groups (methyl decenoate)

resulted in complete deactivation of the catalyst system due to the interaction of the

C02R or C=O group with the catalyst system.

Galimberti et al.122 using the Ziegler-Natta catalyst [V(acac)3/AIEt21] prepared

copolymers of ethylene/propylene and 1-iodo-3-butene. The presence of the

halogenated monomer decreased the activity of the catalysts, which resulted in

gradual decrease with increasing halogenated monomer concentration.

2.11.1 Functionalized polyolefins

Functional polyolefins are a class of polymers which have new properties due to the

presence of functional polar groups attached to the backbone but also maintain, to a

large extent, the original properties of the polyolefins 123. The synthesis of polyolefins

with functional groups using the metallocene catalysts has not attracted much

attention owing to the poisoning of the catalysts by the polar monomers. Polyolefins

with blocks containing functional groups have been synthesized using methods such

as grafting polar monomers to polyolefin chains 124. While synthesis of graft

copolymers can be relatively simple, the preparation of block copolymers requires

special polymerization techniques.

In 1997 Chung and Lu125 copolymerized ethylene and 5-hexenyl-9-BBN (9-

borabicyclo[3.3.1] nonane) using Et(lnd)2ZrCb and Cp2ZrCb both activated with MAO

to obtain borane containing polyethylene. The available borane functional groups

were easily converted to hydroxyl groups through the ionic process of NaOH/H202.

Propylene was also polymerized with Et(lnd)2ZrCI2/MAO to obtain polymers with

vinylidene end groups which were converted to the borane end groups by reacting
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with 9-borabicyclononane. These 9-BBN terminated polyolefins were subjected to

oxidation reactions by molecular oxygen in the presence of methyl methacrylate and

other free radical polymerizable acrylates to obtain PP-b-PMMA, PP-b-PVA, and

PP-b-PS diblock copolymers.

In the olefin polymerization using the metallocene catalysts, the boranes act as chain

transfer agents. The effects of the boranes in olefin polymerization were later

investigated with regard to their reactivity toward amido ligands of the metallocene

catalysts. Thus 9-BBN, dimesitylborane [HB(Mes)2], and

bis(2,4,6-triisopropylphenyl)borane [HB(Trip)2] were used as chain transfer agents in

the polymerization of ethylene using [Cp*2ZrMet[MeB(C6F5hr. The catalytic activity

was found to be dependent on the borane concentration. However for the HB(Trip)2

no polymer was observed suggesting a formation of a monomeric species by this

monomer and ethylene. The hydroboration reaction which takes place between the

ethylene and borane has a significant negative effect on the polymerization of

ethylene 126.The effect of chain transfer was clearly observed with a decrease in Mw,

and the narrow MWD shows single site polymerization with a single chain transfer

reaction. When the constrained geometry catalyst

[C5Me4(SiMe2NtBu)TiMet[MeB(C6F5hr was used for ethylene polymerization in the

presence of these chain transfer agents, there was no evidence of interaction

between the borane and the amido group.

Later on an alkene substituted with an alkoxyamine group was copolymerized with

propene and 4-methyl-1-pentene using the rac-Et(THlnd)2ZrMe2 and

N,N-[HNMe2(C6H5)nB(C6F5)4r. The presence of the alkoxyamine initiating groups

allowed grafting of vinyl polymer chains to be grown from the polyolefin backbone!".

2. 12 Mechanical properties

Unbridged metallocene catalysts (2-Phlnd)2ZrCb produce polypropylenes with

stereobloeks of atactic and isotactic fractions. The melting temperatures of the

polymers produced by these catalysts, increase with increasing the mmmm %, and

for fractions of polymers which are ether soluble, no melting peaks are observedl'".

The polymers where hydrogen was introduced to control the molecular weight, they

showed higher crystallinity than the polymers with higher molecular weight as

revealed by X-ray diffraction and DSC measurements. The ether soluble fraction of
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these polymers suggested smectic phase. The degree of crystallinity in these

polymers decreases with increasing the polymerizaton temperature. The crystallinity

values estimated by XRD at room temperature was similar to those estimated from

the DSC.

Ethylene/1-hexene copolymers showed bimodal crystallinity distributions, which

increased to lower crystallization temperature with increasing amount of 1-hexene in

the copolymer". These copolymers showed similar Mw with different

polydispersitites due to tailing at high molecular weight region, which arises because

of a drift in comonomer concentration during polymerization. Furthermore, with this

varying comonomer incorporation the crystallinity of the resins as observed via the

DSC was found to be low in comparison to that of perfectly crystalline PE, which also

concurs with the results from the CRYSTAF. The melting temperatures of these

copolymers decreased with the amount of 1-hexene incorporated into the copolymer.

The longer side chain in ethylene copolymers could cause disordered and irregular

crystal structure 108.

Owing to low side chain branching, narrow polydispersities and higher molecular

weight, high-density polyolefins synthesized using metallocene catalysts have higher

melt viscosities than the polyolefins from the Ziegler-Natta catalysts 129. The effect of

the long branching on rheological properties of polyethylene has been studied. It

was observed that the melt flow index decreases with the increase of long chain

branching in the polymer chain, (0.44 branch per 1000 carbons) 126. However for

those polymer chains with less long chain branching content there was hardly a

change in the melt flow index. The storage modulus increases with increasing long

chain branching content in the polymer chain.
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Chapter 3

Experimental

All manipulations involving air sensitive materials were performed in a

nitrogen environment, using Schlenk techniques or a glove box.

3. 1 Oligomerization

3.1.1 Chemicals
Toluene (AR, Sigma Aldrich) was distilled over sodium metal before use, as

was diethyl ether (AR, Merck) 1. Sodium metal (SaarChem) was used as

received. Methanol (Merck) was used as received, as was benzophenone

(Sigma Aldrich).

Nitrogen, (99%, Afrox) was passed over self-indicating silica gel (packed

column) and 4 A molecular sieves prior to use. Propylene (Messer Fedgas),

was passed over molecular sieves 4 A to remove moisture and a copper

catalyst to remove air, before use.

Methylalumoxane (10% solution in toluene) (Sigma Aldrich) was used as

received. The catalysts rae-ethylene bisindenyl zirconium dichloride (Strem

Chemicals) and dimethylsilyl bis[2-methyl-4,5-benzoindenyl] zirconium

dichloride (Boulder Scientific) was used as received.

3.1.2 Preparation of catalyst solutions (typical).
The procedure was carried out in a nitrogen filled glovebox. Schlenk tubes

were dried overnight at 120°C in the oven and cooled under nitrogen gas flow.

Into these Schlenk tubes were weighed, respectively, 1.248 mmol (0.522 g)

rae-ethylene bisindenyl zirconium dichloride and 1.246 mmol (0.720 g)

dimethylsilyl bis[2-methyl-4,5-benzoindenyl] zirconium dichloride. The

Schlenk tubes were stoppered with rubber septa and removed from the

glovebox. 10 ml of freshly distilled toluene was injected into each of the

Schlenk tubes. Syringes were thoroughly flushed with nitrogen gas before

injection. The catalyst solutions were aged for 6 hours before use.

55

Stellenbosch University http://scholar.sun.ac.za



3.2.3 Oligomerization procedure (typical).
The oligomerization reactions were carried out in a 450 ml Parr Autoclave

equipped with ball-valve and needle-valve inlets, pressure gauge, a glass

insert and a magnetic follower. The reactor, magnetic follower, and glass

insert were washed and dried in the oven (120°C) for 18 hours prior to use.

The reactor was assembled while hot and was allowed to cool under nitrogen

atmosphere.

The reactor was subjected to three purging cycles comprising pressurization

with nitrogen and subsequent removal of the gas under vacuum, and then

filled with nitrogen. The reactor was then sequentially charged with 24.95

mmol catalyst (as toluene solution) (either Et[lnd]2ZrCb or SiMe2[2-Me-

4,5,Benzlnd]2ZrCI2), 12.47 mmol (8.27 ml of a 10% toluene solution)

methylalumoxane, and 30 ml toluene using glass Luer-Iock syringes with

stainless steel needles. The reactor was weighed and placed in a preheated

oil bath. Temperature was controlled by a heater-stirrer unit. Temperature

was set at the required reaction temperature (varied between 80 - 100°C),

and the reactor allowed to equilibrate for 5 minutes before being charged with

propylene gas for a period of 10 minutes.

After 10 minutes of oligomerization, the reactor was removed from the oil bath

and weighed. The excess propylene was slowly discharged in a fume hood.

The reactor was cooled before opening. The oligomers were isolated by

adding methanol to the reaction medium. The resultant mixture was then

stirred for 12 hours. The mixture was then extracted with diethyl ether and

filtered under reduced pressure. The diethyl ether extract was isolated and

the solvent mixture (ether/methanol) was removed in a rotary evaporator and

the product was dried overnight in vacuum oven at 60°C, weighed to obtain

the yield, and placed in sample holders for analysis and further use.

3.2 Copolymerization of oligomers with ethylene

3.2.1 Materials
The catalysts i-propylidene(cyclopentadienyl)(9-fluorenyl) zirconium dichloride

and tetramethyl-cyclopentadienyl dimethyl silyl f-butylamido titanium dimethyl,

both purchased from Strem chemicals, were used as received.
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Ethylene (polymerization grade) was obtained from Afrox and used as

received.

All the other chemicals used were described in Section 3.1.1.

3.2.2 Preparation of catalyst solutions
The procedure used here is similar to the one described in Section 3.1.2. The

required amount of the catalysts used here were, 5.45 mmol (0.018 g) of

tetramethylcyclopentadienyl dimethyl silyl t-butylamido titanium dimethyl and

4.20 mmol (0.018 g) of i-propylidene(cyclopentadienyl)(9-fluorenyl) zirconium

dichloride, which were then dissolved in 10 ml toluene. The catalyst solutions

were aged for 3 hours before use.

3.2.3 Copolymerization reactions
The reactor used for copolymerization reactions was the same as the one

used in the synthesis of the oligomers. The reactor, glass insert and magnetic

follower were washed and dried in the oven prior to use. The glass insert was

removed from the oven and the required amount (3-7 g) of propylene oligomer

was weighed into the glass insert, and then placed in a vacuum oven at 50°C

for 3 hours prior to the copolymerization reaction.

Nitrogen gas was used to break vacuum in the oven and the glass insert was

swiftly transferred into the reactor which had been dried in the oven. The

reactor was immediately assembled, and then cooled under nitrogen.

The reactor was subjected to three purging cycles comprising pressurization

with nitrogen and subsequent removal of gas under vacuum, and then filled

with nitrogen. The reactor was sequentially charged with 5.6 umol catalyst

(as toluene solution) (either Me2C(Cp*)Nt-SuTiMe2 or i-Pr(Cp)(9-Flu)ZrCI2),

0.016 mol methylalumoxane (10% solution in toluene), and 80 ml toluene.

The reactor was weighed and placed in a preheated oil bath which was set at

the required reaction temperature, followed by charging with the required

amount of ethylene. The polymerization was allowed to continue for 6 hours.

The reactor was removed from the oil bath, excess gaseous monomers was

slowly vented in a fume hood, and the reactor allowed to cool to room

temperature.
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The reactor was opened and the dissolved polymer was precipitated by

addition of methanol, and the mixture was allowed to stir overnight. The

polymers were filtered under reduced pressure. The resultant polymers were

dried in overnight in vacuum oven at 60°C.

To remove the unreacted oligomers from the polymers, the polymers were

subjected to Soxhlet extraction using diethyl ether as the solvent for 6 hours

or until no more oligomers could be separated from the polymers. The

polymers were once again dried in the vacuum oven for 6 hours at 60°C. The

isolated polymers sealed in sample holders and stored in a dark area.

3.3 Functionalization and block copolymerization reactions
of propylene oligomers

3.3.1 Materials
Mercuric acetate (AR), sodium borohydride (AR) and sodium hydroxide

(Merck) were used as received. Diethyl ether (AR) and tetrahydrofuran (AR)

(Merck) were stored in darkness and distilled over sodium prior to use 1.

Acrylol chloride 99%, methacryloyl chloride 99%, methacrylic anhydride and

triethylamine (Sigma Aldrich) were used as received.

3.3.1 Hydration reactions
A typical hydration reaction was as follows: Into a 2-litre Ehrlenmeyer flask

was added 22.8 mmol (7.29 g) mercuric acetate, 700 ml water and 800 ml

THF while stirring. This resulted in a yellow solution. Previously prepared

oligomer, (8.00 g) dissolved in dry THF was added. The solution was allowed

to continue stirring for 6 hrs. The reaction mixture was quenched by cooling in

ice and 3.00 M aqueous NaOH was slowly added, followed by addition of 11.4

mmol (0.42g) NaBH4 in 3.00 M NaOH and was allowed to stir for an additional

2 hours. Metallic mercury formed as a coagulate on in the bottom of the flask.

The aqueous and organic phases were separated in a separation funnel, and

the organic layer was retained for further work-up/.

THF is hydrophilic in its nature, hence after separation it contained small

fractions of water. This remaining water was removed by adding 30% (by

volume) of diethyl ether. The remaining mercury was removed by filtration.
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The solvent was removed under reduced pressure in a rotary evaporator, the

product thus isolated was placed in a sample holder and stored for later use.

3.3.2 Synthesis of acryloyl esters of the propylene oligomers.
A typical acryloyl ester synthesis was as follows: Into a three neck 500 ml

round bottom flask equipped with a magnetic follower was added 8.00 g of the

hydrated oligomer, 300 ml freshly distilled diethyl ether, and 0.060 mol (7.26

g) triethylamine. The reaction mixture was chilled in an ice bath while stirring

and 0.10 mol (11.0 g) acryloyl chloride was added dropwise using an addition

funnel". The reaction was allowed to proceed for 6 hrs, and was quenched by

washing with water to remove the quaternary ammonium salt formed. A 5%

solution of sodium hydroxide (100 ml) was used to wash the solution, which

was later dried with anhydrous sodium sulphate and the acryloyl ester of the

oligomer was recovered by removing the ether in a rotary evaporator. The

product was weighed and placed in a sample holder and stored at 4°G.

3.3.3 Synthesis of methacrylol esters of the propylene oligomers.
Typically, to a 500 ml three neck round bottom flask equipped with a magnetic

follower and dropping funnel, was added 8.00 g of the hydrated oligomer

followed by the addition of 200 ml of anhydrous distilled THF, 0.010 mol (1.16

g) of triethylamine, and 8.00 mmol (0.80 g) DMAP (4-dimethylaminopyridine)

under nitrogen. The flask was chilled in an ice bath. Freshly distilled

methacryloyl chloride, 0.050 mol (5.23 g) was added slowly by means of an

addition funnel. The reaction mixture was stirred throuqhout.". The solution

was allowed to warm slowly to room temperature over a period of 2 hrs and

then stirred for 18 hours.

The reaction mixture was diluted with 100 ml THF and insoluble salts were

filtered off. The solvent was removed on a rotary evaporator. Diethyl ether

was added to the remaining viscous solution, which was extracted, in

succession, with 0.1 M HGI, 0.1 M NaOH, water and saturated NaGI solution.

The organic phase was dried over anhydrous Na2G03 and filtered, the ether

was removed on a rotary evaporator to obtain the a viscous liquid. The

product was weighed and placed in a sample holder and stored 4°G.
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3.3.4 Polymerization of oligomer acrylol esters by free radical
initiators.

To a 50 ml Schlenk tube with a magnetic follower was added 1.5 g of a

propylene oligomer ester of acrylic acid, followed by addition of 20 ml freshly

distilled toluene. Initiator a-azo-iso-butyronitrile (AIBN) was added to the

reaction mixture and the Schlenk tube was placed in a temperature controlled

oil bath and the temperature was raised to 80°C. The reaction was allowed to

proceed for 6 hours, and it was stopped by addition of methanol. The polymer

solution precipitated out and was stirred for 3 hours, followed by several

washings with methanol. The product was dried in a vacuum oven overnight

at 50°C.

3.4 Characterization techniques

3.4.1 NMR spectroscopy

Nuclear magnetic spectra were recorded on either a 300 MHz Varian VXR

spectrometer equipped with a Varian magnet (7.0 T) and a 5 mm switchable

probe, or a 600 MHz Varian Unity Inova spectrometer equipped with an

Oxford magnet (14.09 T) and a 5 mm inverse detection PFG probe. Standard

pulse sequences were used for obtaining 1H, 13C and APT spectra.

3.4.1.1 Spectroscopy for room temperature samples

Approximately 70 mg of the oligomer or polymer was weighed into an NMR

tube, followed by addition 0.7 ml of deuterated chloroform which contained

TMS as internal reference standard. The spectra were measured in a 300

MHz Varian VXR NMR spectrometer at room temperature.

By using a pulse angle of 45 degrees and a relatively short repetition time of

0.82 seconds, good sensitivity could be obtained by accumulating 4 000

transients for each sample. Resolution and accuracy were improved by

performing apodization and zero filling before the spectra were transformed.

3.4.1.2 Spectroscopy for high temperature samples

This procedure was used for polyolefin polymers owing to their insolubility at

room temperature to most solvents. Approximately 90 mg of the polymer was

weighed into an NMR tube, followed by addition of 0.08 ml deuterated
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benzene and 0.9 ml of trichlorobenzene. The solution was heated in a

temperature controlled oil bath to 120°C and was kept at that temperature for

90 minutes. The solution was then gradually cooled to room temperature.

If during the heating period, there were air bubbles present in the sample, the

heating and cooling process was repeated until the bubbles disappeared. The

spectra were recorded in 300 MHz Varian NMR spectrometer at 100°C.

To obtain better resolution in the spectra, baseline and phase correction were

performed in the spectra.

Due to differences in the relaxation times as well as different Nuclear

Overhausser Effect (NOE) being experienced by carbons in different chemical

environments, the integrals obtained in the conditions above have to be

corrected. A gated proton decoupling experiment (decoupier gated off for 4.2

seconds to allow the build-up in NOE to vanish as much as possible) and a

longer repetition time 5.02 seconds (instead of 0.8 seconds) was performed.

The integrals and integral ratios obtained under these conditions were used to

correct the values obtained by means of normal (fast) conditions.

3.4.2 Infrared spectroscopy
Infrared spectroscopic analyses of the oligomer and polymer samples were

performed on a Perkin-Elmer Paragon 1000 Fourier Transform Infrared

Spectrometer. The samples were dissolved in dichloromethane (usually 1%

v/v for liquid samples) and small droplets were placed on a NaBr disk. After

evaporation of the solvent, spectra were recorded. The absorption of the

sample was then subtracted from the NaBr background.

The number of scans taken ranged from 40 - 100, depending on the

molecular weight of the sample. For samples which had high molecular

weight, a higher number of scans was performed for better resolution.

3.4.3 DSC
Differential scanning calorimetric analyses of samples were carried out.

Typically, approximately 4 mg of a polymer sample was weighed in an

aluminium DSC pan, and the pan was then capped and crimped. The thermal

analyses were done on a Mettler TA 4000, in a Mettler DSC 25, with a TC 11
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TA processor, by heating the samples from room temperature to 180°C at a

heating rate of 10°C/min under nitrogen at a flow rate of 100 ml/minute. The

sample was then cooled to room temperature and a second heating scan was

performed. The melting temperature taken was that obtained in the second

heating scan.

3.4.4 Size exclusion chromatography

3.4.4.1 Size exclusion chromatography for room temperature

samples

Into a 5 ml sample holder was added 40 mg of the sample and 4 ml of distilled

THF (AR). The sample solutions were allowed to stand for 12 hours before

being filtered into size exclusion sample vials. The measurements were

performed in Waters 717plus Autosampler with a Waters 410 Differential

Refractometer at 30°C, a Waters 600E System controller with 4 columns of

Phenogel, length 300 mm by 7.80 mm internal diameter, and a pore sizes of

100 A, 103A , 104 A, and 105 A, using HPlC-grade THF sparged with IR-grade

Helium as eluent at a flow of 1 ml/minute.

3.4.4.2 High temperature size exclusion chromatography

Into a sample vial, 4 mg of the polymer was weighed; a small magnetic

follower was placed into the sample vial, followed by addition of 2 ml distilled

trichrobenzene. The sample was then crimped and placed in a magnetically

stirring heating block and heated to obtain a homogenous mixture. The

measurements were performed in Polymer laboratories GPC 220 High

Temperature chromatograph, with 3 columns packed with a polystyrene /

divinylbenzene copolymer (Pl gel mixed B), length 300 mm and internal

diameter of 7.5 mm, particle size 10 urn, using trichlorobenzene as the solvent

at oven temperature of 160°C and flow rate of 1 ml/minute.

3.4.5 Crystallization analysis by fractionation

The samples for crystallization fraction were done on a Crystaf Model 200 with

liquid nitrogen cooling unit obtained from Polymer Char (Valencia, Spain).

The sample consisting of about 20 mg dissolved in 30 ml of trichlorobenzene,

was placed in a reactor equipped with a magnetic follower and was heated to
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160°C in a heating block with magnetic stirrer to obtain a homogeneous

mixture.

The samples were placed in the reactor, heated again to 160° and kept at this

temperature for 10 minutes before being cooled to room temperature at a

cooling rate of 0.1°C/minute while sampling at each interval until 30°C.
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Chapter 4

Oligomerization

4. 1 Solution Oligomerization

4.1.1 Oligomer Synthesis

The propylene oligomers were synthesized using catalysts Et(lnd)2ZrCI2 (1) (EBI)

and (CH3)2Si(2-Me-4,5-Benzolnd)2ZrCb (2) (MBI), activated with MAO. These

catalysts produced propylene oligomers of varying chain length at different catalyst

concentrations and oligomerization temperatures.

1 2

Figure 1: Metallocenes used for oligomerizations

The lower molecular weight (Mw ~ 500 - 900) oligomers appeared as viscous

liquids which are soluble in most organic solvents, whereas the higher molecular

weight oligomers appeared as sticky solids. The produced oligomers in some

instances contained some crystalline material which was removed by dissolving

the product in diethyl ether followed by filtration under reduced vacuum.
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Mt + MAO
Toluene

70°-105°C

t = 10 - 15 min

Mt = Complex 1 or 2 n = 12 - 20

Scheme 1: Oligomerization of propylene.

Table 1: Oligomerization of propylene: Representative results

Run Catalyst T (OC) Yield Mn Mw/Mn Mp mmmm%"L

(mmol) (g)

1 1.1950 100 15 785 1.572 438 24.9

2 0.4780 100 14 794 1.600 460 26.8

3 0.2495 80 12 1278 1.989 1 601 17.8

4 0.2495 70 9.8 1358 1.914 1 615 35.2

5 0.2495 90 20 1043 1.600 1 033 23.6

6 0.2495 100 16 1234 1.921 1 461 29.7

7 0.0623 100 14 1697 2.471 2 554 36.9

8* 0.2495 100 9 1514 2.142 2 173 43.1

9* 0.3742 100 12 1159 2.236 1 010 40.2

10* 0.2495 90 11 1353 3.004 1 258 38.9

11* 0.2495 80 8 1756 3.014 3 444 41.8

Et(Ind)2ZrCI2 was used as the catalyst except for * where (CH3)2Si(2-Me-4,5-

benzolndt-Zrtll, was used. The AI:Zr ratio was kept at 60, and the oligomerization time

was kept at 10 minutes. Mp represents the peak molecular weight calculated by the

instrument.

If we look at the EBI catalyst's products (runs 1 - 7) it can be seen that lowering

the catalyst concentration resulted in increased oligomer molecular weight as well

as their molecular weight distribution. In general, the temperature influenced the

yields of the oligomers as well, thus oligomerizing at lower temperature resulted in

low yields of THF or diethyl ether soluble oligomer.
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The benzoindenyl (MBI) catalyst produced slightly lower yields, compared to the

EBI catalyst, but at the same time yielded higher molecular weight materials when

comparing runs done with similar catalyst concentrations and at the same

temperature. In most cases the PDI was higher for the oligomers produced with

this catalyst.

The molecular weight of the oligomers dropped to an extent; when the reaction

was stopped and vented off immediately without cooling the reactor. This is due to

the fact that at lower temperatures high molecular weight polymer will be formed

during the cooling of the polymerizing system. The tacticities of the oligomers, as

measured in the mmmm% using NMR spectroscopy, seemed to be independent of

the reaction temperature, or catalyst concentration. It is clear, however, that the

isotacticity of the oligomers produced by the MBI catalysts are generally higher

than that of the oligomers produced by the EBI catalyst. This aspect will be

discussed in greater detail later on.

The yields given in Table 1 are approximate as the oligomer yields cannot be

quantified to experimental conditions as only the recovered amount of oligomers

which were soluble in diethyl ether, THF or pentane were given.
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4.1.2. NMR Spectroscopy

4.1.2.1 1HNMR

d

a b c
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Figure 2: 1H NMR of propene oligomer synthesized using et(lnd)2ZrCI2 at

100°C.

The proton spectrum was obtained by dissolving the oligomers in deuterated

chloroform, and measurements were taken at room temperature. The solvent

peak can be identified at 8 7.26, and it was used as reference for other peaks.

From the 1H NMR two peaks of equal intensity at 4.75 ppm and 4.85 ppm are a

characteristic of vinylidene end-group". These two peaks represent the end group

protons which was a result of p-H elimination. The 1H NMR spectra hardly show

the presence of vinyl end-groups, suggesting that these two catalysts don't really

have p-methyl abstraction as way of chain termination. The oligomer backbone

peaks can be observed at 80.7- 1.0 for the methyl protons and at 8 1.1-1.3 for the

methine protons, and at 8 1.5-1.6 for the methylene protons.
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4.1.2.2
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Figure 3: 13C spectrum of propene oligomers: (I) synthesized using catalyst

(1) and (II) synthesized using catalyst (2).

The oligomer was dissolved in deuterated chloroform and the spectrum was

recorded at room temperature. From the above figure the peaks representing the

vinylidene end-groups is observed at 110.9 ppm and 142 ppm. These peaks are

characteristic of ~-H elimination, which results in chain termination. The main

chain oligomer backbone peaks can be identified at 45-46 ppm for the methylene

carbons, 28-29 ppm for the methine carbons and at 19-21 ppm for the methyl

carbons.

4.2 Microstructure of the Oligomers

The microstructure of the formed oligomers can quite clearly be deduced from the

NMR spectra. Of particular interest are the stereoerrors evidenced, and the

regioerrors and, of course, the endgroups. The following table lists the 13C NMR

shifts for the more common endgroups that we deal with here4
:
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Table 2: Common endgroups and 13C NMR shifts for propylene polymers

CNo 5 5 8 3 6

~ ~ ~
3,( 5

I 3 6 I 3 6 I 4 7

1 14.47 115.57 111.38 12.91
2 20.12 137.67 142.87 124.48
3 39.68 41.38 22.60 129.66
4 30.50 30.80 34.37
5 20.81 20.64 31.37
6 45.98 45.33
7 45.54
8 21.43

What we would expect are the peaks for the n-propyl endgroups (one end of the

chain following the normal insertion of propylene unit into a Zr-H bond). Two of

the peaks (20.12 and 20.81) will show up in the region where we would normally

see evidence of stereoerrors; something which needs to be borne in mind.

Concerning the unsaturated endgroups; we wanted to see if we could find

evidence of endgroups other than the expected vinylidene type which would arise

from P-hydrogen abstraction. Shown below are three spectra which are typical of

those which were obtained for 3 different catalysts.

100 50
ppm (11)
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Figure 4: 13C NMR spectra of oligomers prepared with 3 different catalysts.

In Figure 4, products from reactions using the C2-symmetric EBI and MBI catalysts

as well as the C2v symmetric catalyst; Cp2ZrCb are shown. What is clear here is

that the products that were produced have only vinylidene endgroups (one end of

the chain). There appears to be no evidence of vinyl endgroups, based on the

evidence of the 13C NMR spectra. In isolated spectra we see evidence of 2-

butenyl endgroups, which is normally concomitant with an increase of

2,1-misinsertions.

If we look at the small peak at 22.6 ppm (which is due to the methyl on the

vinylidene carbon 3 (Table 2)) and we compare this to the methyl endgroup arising

from the n-propyl chain endgroup moiety, we see that in most cases these peaks

are equivalent (1:1 ratio upon integration). This indicates that ~-hydrogen

abstraction is the primary mechanism of chain transfer during these

oligomerization reactions. This is illustrated in Figure 5 below:
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Figure 5: 13C NMR spectrum of the region 14 - 23 ppm for a propylene

oligomer prepared with the EBI catalyst. The arrows indicate the

"vinylidene" and "n-propyl" methyls associated with the chain ends (refer to

Table 5).

The commercial MAO being used in the polymerization process usually contains

traces of TMA which helps to keep the MAO in solution5,6,7. From end-group

analysis, the intensity of the propyl end-groups was quantitative to that of the

vinylidene end group, which could mean that the transfer of the polymer chain to

the AI center, as shown in the scheme below is minimal or nonexistent". Usually

this transfer of the polymer chain is caused by the excess trimethyl aluminium

(TMA) which is usually present in commercial MAO solutions.
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+ "A-
[ZrF_ + polymer-CH2-[Al]

"CH3

Scheme 2: The schematic representation of polymeryl transfer to the AI

centers.

4.2.1 Regiochemistry.

If we study the regiochemistry or 2, 1-misinsertion reactions that occur with each of

the catalysts used we see that the levels of regioerrors differ from catalyst to

catalyst.

It is important to note that the regioerrors are evidenced by the peaks appearing in

the 13C NMR spectrum as assigned by Grassi et al. and Mizuno et a/.11,12. Take

the following structure as example, assuming that the 2,1 misinsertion will be threo

w.r.t the next propene insertion:

8 2

10 9 3

-
6

Scheme 3: Threo 2,1-insertion during propylene polymerization.

Of particular interest here are the carbons numbered 1, 3, 4, 5, 7 and 9. These

main-chain carbons all fall between the peaks assigned to carbons 10 and 11 on

the 13C NMR spectrum. As such this should allow us to calculate the level of

2,1-misinsertion, if we bear in mind that some carbons that are due to termination

following a 2,1-misinsertion (2-butenyl endgroups) also fall in this region (Table 2).

A Spectrum reproduced from a review article by Resoni et af. indicates the peaks

assigned to the threo-2,1-misinsertions.
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Figure 6: 13C NMR spectrum illustrating the position of peaks arising from

threo-2,1-misinsertions in polypropylene 10. Refer to Scheme 3 for carbon

numbering.

We can see, if we look at the "aliphatic" region of two 13C NMR spectra of products

produced by the EBI catalyst and the MBI catalyst that there are distinct

differences in the levels of 2, 1-misinsertions between the catalysts. (4.9% vs 4%).

1,1,

45.0 40.0 35.0 30.0 25.0 20.0 15.0
ppm (11)

Figure 7: 13C NMR spectra of the "aliphatic" region of two oligomers

prepared by EBI catalyst (bottom trace) and MBI catalyst (top trace).
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Figure 8: Oligomer prepared with a C2v-symmetric metallocene catalyst.

In Figure 8 we see the 13C NMR spectrum of an oligomer produced by the C2v-

symmetric catalyst CP2ZrCI2. The level of 2, 1-misinsertions here are around 3%.

The effect of temperature on the microstructure of the oligomers produced by the

EBI catalyst is particularly well illustrated by comparing the 13CNMR spectra of 3

polymers made at 80, 90 and 100°C respectively.
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Figure 9: Microstructures of propylene oligomers prepared at different

temperatures 80°C, 90°C and 100°C.

The above spectra show clearly that there are differences in the oligomers

prepared at the different temperatures. The differences in the levels of

2, 1-misinsertions can be quantified after integration of the relevant peaks. For the

80°C sample the level of 2, 1-misinsertions is 4.9%, while it is 9.2% and 9.8% for

the 90°C and 100°C samples, respectively. Similarly the tacticity seems to be

dependent on temperature as well, although the dependency is not as clear-cut.

The 80°C sample has a mmmm% of 35.3%, while the mmmm% for the 90°C and

100°C samples are 23 and 27.4 %, respectively. Careful perusal of the spectra

indicates 2 small peaks at around 17.8 ppm, which could be attributed to the

carbons numbered 6 and 8 in Scheme 3.

The fact that significant levels of 2,1-insertion are observed, and that very little

evidence of p-hydrogen abstraction after 2,1-insertion is visible seems to indicate

that even though 2,1-misinsertion reactions occur readily, the preferred

mechanism of chain transfer reaction is p-hydrogen abstraction after 1,2-insertion.
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4.2.2 The Development of stereoerrors.

One of the most interesting developments of the oligomerization study is the

apparent change in the level of stereoerrors with the change in average molecular

weight. If we take as example an oligomer produced with the MBI catalyst, with a

molecular weight (Mn) of around 1 500 g/mol and a POI of 2 (which would then

give a Mw value of around 3000 g/mole), we can calculate that we have chain

lengths varying between 36 and 72 propylene units.

According to molecular modeling studies by Corradini et af. the growing polymer

chain is longer than one propylene unit (the first insertion is deemed to be non-

stereospecific) in a Crsymmetric catalyst then subsequent insertion reactions

should be stereospecific. In the Figure below, we show an oligomer as well as

isotactic PP prepared by the same catalyst.

45.0 40.0 35.0 30.0 25.0 20.0 15.0
ppm (t1)

Figure 10: Spectra of polypropylene (top trace) and propylene oligomer

(bottom trace) both prepared using C2-symmetric catalyst.

As there are some peaks in the region of the methyl carbon which are due to the

presence of the n-propyl endgroups (20.81 and 20.64 according to Table 2), it is

difficult to accurately calculate the tacticity of the oligomer, but it is obviously less

than that of the polymer prepared by the same catalyst. The obvious reason

76

Stellenbosch University http://scholar.sun.ac.za



would be the elevated temperature of the reaction. In order to test this theory we

carried out a polymerization reaction at 1DDoe as well and compared the 13e NMR

spectrum. This is shown in the Figure 11.

pp Prepared byM3l, 100°C
PP Prepared byM3l, 100°C

I

II

II

II

Ii I]
, I
',~,,,-',,~' ,_"\-_~ -_·_-"-'~-r II

21-0 20.0 19.0 II

i \

Ii

II

II

i,

Il
_~_. d \__._._~_"_;'-'_" __ "A_~~. __ -"~ __ ,_~_~, __ ~~_,,iI~l_~"-, ~_--,,../

22.0
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45.0
I

40.0
I

35.0 30.0 25.0 20.0 15.0
ppm (H)

Figure 11: 13CNMR of polypropylene prepared at 100°C using MBI catalyst.

The expansion shows the microstructure.

It is clear that even at 1DDoe the polymer still has a high tacticity. It seems clear

that tacticity development is dependent on molecular weight. It seems that

considerably more than just a few propylene units in the growing polymer chain is

needed to direct the stereochemistry of propylene coordination and insertion into

the catalytic centre.

This is further borne out by the fact that in the case of all the oligomers

synthesized by C2-symmetric catalysts the stereoerrors that are present are

representative of the whole range of possible stereoerrors. The 13e NMR shifts of

the whole range of possible stereoerrors as described by Busico et ar. is shown in

Table 3.
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Table 3: Chemical shifts of different stereoerrors in polypropylene"

Region Chemical Shift (ppm) Stereoerrors

I 22.0 - 21.7 mmmm

II 21.7-21.4 mmmr

III 21.4-21.2 rmmr

IV 21.2-21.0 mmrr

V 21.0 - 20.7 mmrm + rmrr

VI 20.7 - 20.5 rmrm

VII 20.5 - 20.3 rrrr

VIII 20.3 - 20.0 rrrm

IX 20.0 -19.7 mrrm

C2-symmetric catalysts are known to function by enantiomorphic site control, and

thus allowing only mmmr, mmrr and mrrm errors. Isolated r errors arising from

chain end control should not be present. Yet it is clear that all three major regions

of stereoerrors (mm, mr and rr) are all present in the microstructure of all of the

oligomers that were synthesized". Selected examples are shown in Figure 12.
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Figure 12: Stereoerrors present in two oligomers: refer to Table 3 for

assignments.

It seems therefore, that enantiomorphic site control only really becomes effective

when polymer chains become much longer than 20 or 30 units. The specimens of

isotactic pp illustrated above have molecular weights in excess of 400 000 g/mol,

which relates to 9 500 or more units per chain. In order to illustrate this further, we

analyzed a product of an attempted oligomerization reaction which turned out to

have a molecular weight of around 90 000 g/mole.

The microstructure of the low molecular weight polymer is shown in Figure 13.
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Figure 13: 13C NMR of polypropylene with Mw of 90 000 prepared at 90°C

using MBI as catalyst.

In this case, the majority of the stereoerrors that are shown are the "expected"

errors (based on the theory of enantiomorphic site control), although there still

appears to be some evidence of other errors (in the region between 19.50 and

20.70 ppm). The tacticity of this polymer (based on the mmmm%) is 77%.

From the above we can see that the tacticity of the same product prepared at the

same temperature with the same catalyst is strongly dependant on the molecular

weight of the product, increasing from around 30 - 35% for 60 - 80 repeat units, to

77% for 2 250 repeat units, to 92% for around 9 500 repeat units. A simplistic

deduction from this would seem to be that a large proportion of stereoerrors in

polypropylenes prepared by Crsymmetric catalysts are situated close to one of

the chain ends.
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4.2.3 Tacticity

Some results of tacticity measurements are shown in Table 4.

Table 4: Tacticity as measured by mmmm% of oligomers prepared with

three different catalysts.

RunlD Catalyst mmmm%

LS229 MBI 43
LS230 MBI 58*
LS 231 MBI 42
LS232 MBI 37***
LS256 MBI 23
LS257 MBI 38**
LS258 MBI 23
LS266 MBI 27
LS268 MBI 39
LS277 MBI 40
LS292 MBI 26
LS293 MBI 23
LS 325 EBI 12
LS 326 EBI 14
LS 327 EBI 15
LS 331 EBI 11
LS 334 EBI 19
LS 337 EBI 10
LS 338 EBI 15
LS 339 EBI 21
LS356 MBI 27
LS 362 Cp 6
LS 363 Cp 5
LS364 MBI 26
LS368 MBI 22
LS 386 EBI 7
LS 403 EBI 17
LS 406 EBI 7
*Hexane extract of LS 229
**Pentane extract of LS 229
***Residue after ether extract ofLS 229.

The oligomers that we had discussed until recently were all materials that had

identifiable unsaturated endgroups, however if we look at all the oligomers made

by the three catalysts (Table 4) we clearly see that the tacticity of the materials, as

measured by 13C NMR, is clearly influenced by the catalyst type. The C2v

symmetric catalyst produces, as expected, essentially amorphous

oligo(propylene). The tacticity of the oligomers produced by the MBI catalyst
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varies between mmmm% = 22 and mmmm% = 58. Typically the EBI catalyst

produces materials that has an isotacticity varying between mmmm% = 7 to

mmmm% = 21. This was, once again, not unexpected. Some thought was given

to the possibility of getting crystallizable oligomers, which would be exteremely

useful materials for further reactions (see Chapter 6). From the Table above it is

clear that the amount of tacticity attained with these oligomers precludes any

crystallization of these materials. The reasons behind this were discussed in

Section 4.2.2.

4.3 Attempted oligomerization reactions in bulk

Propylene was also reacted in bulk, using (CH3)2Si[2-CH3-4,5-benzolnd]2ZrCb at

temperatures ranging from 90° - 100°C. In this situation the only solvent which as

present was the toluene which is present in MAO. The polymers produced had

higher crystallinity in comparison to other propene oligomers synthesized at high

temperatures and low AI:Zr ratio"

The molecular weights of the obtained materials which were in the range 80 000 -

90 000, were analyzed by high temperature GPC and these were lower than the

usual high molecular weights of polypropylenes produced by this catalyst. This

can be the result of low AI:Zr ratio, and higher polymerization temperatures. Of

interest is the attainment of polymer rather than oligomer. A 13CNMR spectrum of

one of these materials was shown in Figure 13.

The materials obtained in the absence of solvent showed broad melting ranges, as

evidenced by the DSC thermogram in Figure 14. These broad melting

temperatures may be due to the low molecular weight of the materials, although

the samples were crystalline. However these low melting temperatures are typical

for all the materials synthesized at low AI:Zr ratios in the absence of solvent. The

solution crystallization (Crystaf) peaks of these materials are represented in Figure

15.
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Figure 14: DSC thermogram of the oligomer,

The melting temperatures of the oligomers ranged in values from 138 - 144°C.
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Figure 15: Crystallization curves of the materials synthesized in bulk,

These materials showed broad and low crystallization temperatures, 60° - 70°C

which is unusual for isotactic PP. The concentration of the soluble noncrystalline
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material was very low indicating the high crystallinity of the oligomers synthesized

at these temperatures.

4.4 Conclusions

Successful oligomerization reactions were carried out at a range of temperatures.

The use of the catalyst Et(lnd)2ZrCb in conjunction with MAO lead to lower

molecular weight oligomers than in the case of the the Me2Si(2-Me-4,5-

Benzolnd)2ZrCb catalyst under similar conditions. Molecular weight could be

controlled to be anywhere in the region of 500 to 1 500 g/mole. A high proportion

of the endgroups were of the vinylidene type, and little evidence of transfer

reactions to the cocatalyst was found.

Evidence of 2,1-misinsertions were found for all 3 catalysts that were tried, but

very little evidence could be seen, in the 13C NMR spectra, of 2-butenyl

endgroups, which would result from ~-hydride transfer after a 2,1-misinsertion.

This indicates that the preferred method of termination was ~-hydrogen abstraction

after a normal 1,2-insertion.

Both catalysts yielded essentially oligomers with low isotacticity, although a slightly

higher mmmm% (25 - 50%) was found for the oliogmers prepared with the

Me2Si(2-Me-4,5-Benzolnd)2ZrCI2 catalyst, than for the EBI catalyst (12 - 25%).

Solvent-free oligomerization was attempted with the Me2Si(2-Me,4,5-

MeBenzolnd)2ZrCI2 catalyst, but this yielded essentially isotactic polypropylene.

Most significantly, the stereoerrors present in the oligomers were an indication that

the method of stereoregulation by the C2-symmetric metallocene catalysts is

dependent on molecular weight. For the low molecular weight oligomers, the

whole range of stereoerrors were found, while the same catalysts, when used to

polymerize propylene, yield materials with (a) higher tacticity and (b) only the

stereoerrors associated with enantiomorphic site control. Simplistic interpretation

of this phenomenon indicates that most stereoerrors in polypropylenes

synthesized by C2-symmetric catalysts are situated near the one chain end, and

that stereoerrors arising from enantiomorphic site control only arises with the

advent of significant molecular weight.
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Chapter 5

Reactions of the propene oligomers.

5. 1 Copolymerization

From the results that were obtained during the oligomerization of propylene (see

Chapter 4), it seemed that virtually no endgroups other than vinylidene groups

were found. In some of the oligomers there seemed to be evidence of 2-butenyl

endgroups (based on 13CNMR). Careful study of the 1H NMR spectra of some of

the oligomers produced seemed to indicate a very low concentration of possible

vinyl endgroups, which are evidenced by a "bump" at around 5 ppm on the 1H

NMR spectra. In particular, those materials which did not exhibit a clear-cut 1:1

ratio of the "vinylidene" methyl group to the n-propyl methyl group (see Scheme 1)

as evidenced by the 13CNMR spectra (peaks at 22.6 ppm and 14.3 ppm) may

possibly have some vinyl endgroups.

\.

Vinylidene endgroup n-propyl end group

Scheme 1: A schematic representation of a propylene oligomer with

vinylidene and n-propyl endgroups. The methyls discussed in the text are

circled.

An example is shown in Figure 1 below. Also visible in some of the 1H NMR

spectra is the presence of 2-butenyl endgroups at around 5.5 ppm.
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Figure 1. 1H NMR of an oligomer prepared with the MBI catalyst; vinylidene,

vinyl and 2-butenyl endgroups are indicated.

In the case of the above oligomer, there originally appeared to be a discrepancy

between the "vinylidene" methyls and the "n-propyl" methyls (0.6: 1), which

indicated that some of the chain transfer reactions were not only due to ~-

hydrogen transfer after 1,2-insertion of propylene (see Chapter 4).

The evidence of small amounts of vinyl endgroups could be found in a number of

oligomers, but were completely absent in others; there appears to be little or no

trend in the appearance of these endgroups; it seems to be independent of

catalyst or reaction temperature.

It would be extremely difficult to separate the vinyl-terminated materials from the

rest of the oligomers, so it was decided to attempt some polymerization reactions

with the oligomers, both by themselves and with ethylene as comonomer. The

idea behind this strategy was that it would be possible for those vinyl-terminated

oligomers (if they were present) to either (a) homopolymerize or (b) copolymerize

with ethylene, leaving the rest of the material unreacted.

87

Stellenbosch University http://scholar.sun.ac.za



Copolymerization reactions were attempted using selected propylene oligomers

(described in the previous chapter) and using the metallocene catalysts ;-

propylidene(cyclopentadienyl)(9-fluorenyl) zirconium dichloride (1) and

(tetramethylcyclopentadienyl)(dimethyl silyl f-butylamido) titanium dimethyl (2)

activated with methyl alumoxane. These catalysts were selected as they are

known to be able to incorporate large comonomers more readily than the C2-

symmetric ansa-metallocenes. The copolymerization reactions were carried out

while varying conditions such as amount and molecular weight of oligomers,

polymerization temperatures and time, as well as the partial pressure of ethylene.

1 2

Figure 2: Catalysts used for the copolymerization reactions.
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Toluene
60 - 80°C, 6hrs

~+Mt + MAO

Mt = complex 1 or 2

soxhlet extraction
ether

Scheme 2: Copolymerization of ethylene with propylene oligomers.

Table 1: Attempted copolymerization of propylene oligomers with ethylene

using catalyst 1.

Run Oligomer Amount Ethylene Tp Tm t Mw Mw/Mn Yield

Mw oligomer (g) (Mpa) (0C) (0C) (h) (g)

173 2560 5 2.5 70 134.4 14 8

272 4400 5 3 80/60 135.8 12 487349 3.08 6.3

274 4500 5 3 70/80 135.2 12 433678 6.9

281 4500 7.5 3 70 133.7 12 468949 3.223 7.8

282 3400 3 3 70 131.8 6 455673 13.78 5.6

289 3400 5 3 80 135.6 6 36911 5.669 3.8

295 3400 7.5 3 60 132.2 6 310 726 11.37 4.5

296 2800 7.5 3 70 134.6 6 396658 8.57 5.0

297 2800 7.55 3 80 133.2 6 293303 9.07 5.6

4 0 0 3 70 134.2 3 800 000 5.503

Polymerization was done usmq [Zr]=4.4 umol and AI:Zr = 3 000: 1
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Table 2: Attempted copolymerization of oligomers with ethylene using

catalyst 2.

Run Oligomer Amount Ethylene Tp Tm Mw/Mn Mw Yield

mw olig (g) (Mpa) (0C) (0C) (g)

302a 3109 5 1.5 RIt 130.1 5.138 209268 1.3

306 3420 3 3 60 130.6 3.59 118442 3.4

307 2700 5 3 25 131.6 5.3 573304 1.4

308 3200 5 2 RI t 130.8 3.96 2.3

346 325 5 2 60 131.5 2.832 426 132 3.5

347 1 615 5 2 60 125.7 2.74 336240 1.8

348 1 615 3 3 60 132.6 2.154 333449 4.9

357 1 461 5 2.5 70 133.1 2.401 440585 3.2

358 1 461 5 2 70 130.8 3.338 641 750 2.4

359* 1 461 4.5 2 70 129.9 3.414 643244 1.9

360 1033 10 0 60 80.3 3.952 10000 0.8

3 0 0 2.5 RIt 131.6 3.655 241 951 4.0

Polymerization was done using [Ti] = 5.6 urnol, and AI:Zr ratio of 3 000: 1, and reaction time was 6
hrs. * After charging the reactor with oligomer, catalyst and cocatalyst solutions, the polymerization
was delayed for 1 hour before charging with ethylene monomer.

5.2 Products and yields

From the reactions done with catalyst 1, it would seem, on the evidence of the

melting temperatures, that very little co-oligomer was introduced during the

copolymerization reactions. The polyethylene produced (run 4), had a crystalline

melting temperature of 134.2°C, and there was practically no difference in any of

the other materials produced. The only visible difference was in the molecular

weights (as measured by GPC), with the polymer produced in the absence of

oligomer having a molecular weight of 800 000 q.mole'. The other materials had

noticeable lower values of Mwand generally higher values of polydispersity. This

prompted the closer inspection of the materials. It needs to be emphasized that all

products were extracted initially with diethyl ether, as the original oligomers were

found to be soluble in diethyl ether. It was thought that these extractions would

get rid of all unreacted oligomeric materials.

The 13C NMR spectra of some of the materials are shown below.
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I! '\ I , Is274 copol @80

~_j,~_~ ~_~ ~/ l~\~~_~~I~_~~_. ~_
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ppm (11)

Figure 3: 13C NMR spectra of reaction products 272 and 274 (Table 1); no

extraction.

Figure 3 shows the products for runs 272 and 274, in this case the oligomer used

was the same, only the reaction temperature varied from 60 to 80°C. From the 13C

NMR spectra it would appear as though some of the oligomer has been

incorporated into the copolymer, yet the thermal analyses seem to suggest

otherwise.

Similarly, for runs 282 and 295:

Is282, 256 copol @70

Is295, copol @60, 7.59 II
II

45.0 40.0 35.0 30.0 25.0 20.0 15.0
ppm (11)

Figure 4: 13C NMR spectra of reaction products 282 and 295 (Table 1).
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In this case, the spectrum suggests some oligomer present, yet the peak melting

temperatures are the same as for the PE homopolymer. Another clue here was

the extremely broad polydispersity values, around 14 to 11. This would indicate

Mn values of around 30 000 for both the materials. Closer investigation of the

GPC traces seems to suggest a bimodal molecular weight distribution. This

prompted us to attempt an extraction by hexane, to see if there was, in fact, two

polymeric species present.

Taking another attempted copolymer as example, below are shown the polymer

(run 174) before and after hexane extraction:

II

I

J

Before heoane extraction l / I, ~ •
~~~~~_~_.-) '---- ~_~_~_._~__~~~/ "J l~~~. /v~~_~~~ __ -_~~~

60
I

50 40
,

30
I

20 10
ppm (11)

Figure 5: 13C NMR spectra of reaction product 174 before and after

extraction with hexane.

In this 13CNMR spectrum it can clearly be seen that after extraction there appears

to be only polyethylene left. The extractant, however, yielded some interesting

results:

92

Stellenbosch University http://scholar.sun.ac.za



I III
Iil [I

II II Il

jl d I

IJlj 1\
I \ I 114

lj",,r_~-~r

a

1\

I I

I \

I
b

! 'i: I c,

45,0 40,0 35,0 30,0 25,0 20,0 15,0
ppm (t1)

Figure 6: 13C NMR spectra of hexane extract (top) and remaining material

(bottom) of product 174.

From this spectrum, two things are clear; the extracted material still has some

evidence of ethylene incorporation (peak d), and if we expand the spectrum of the

extracted polymer greatly, we see a that there still appears to be some oligomer

present in the spectrum (peaks a, b and c).

Similarly, if we examine the results for the CGC catalyst, we see that, apart from

some larger values for the polydispersity, there seems little evidence of

copolymerization reactions having taken place. After extraction with ether and

hexane, some spectra were recorded of the resultant material. For run 302, the

spectrum is shown below:
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Figure 7: 13C NMR spectrum of reaction product 302 (Table 2).

We can see evidence of a very small amount of oligomer present. This is

obviously not enough to affect the bulk properties of the material very much. The

same applies to run 306:
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Figure 8: 13C NMR spectrum of reaction product 306 (Table 2)

Minimal inclusion of oligomer is evident. To further illustrate this point, the 13C

NMR spectra of the product of run 307 both before and after hexane extraction is

shown:
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Figure 9: 13C NMR spectra of reaction product 307 (Table 2) before and after

hexane extraction.

There seems to be an indication that a broad molecular weight distribution is an

indication of some oligomer copolymerization. If we examine the polymer

produced in run 347:
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Figure 10: 13C NMR spetrum of reaction product 347 (Table 2).

In this case the polymer produced is essentially polyethylene. The same applies

to runs 348 and 357. For runs 358 and 359 (see Table 2) the POI values are

above 3, and if we study the spectra of the extracted materials we see some

evidence of oligomer inclusion:
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Figure 11: 13C NMR spectra of reaction products 358 and 359 (Table 2) after

hexane extraction.

What is of the most interest in this section is the attempted homopolymerization of

an oligomer. This experiment proves that some vinyl endgroups must be present

in the oligomers, otherwise no polymerization would be possible.

An attempt was made to homopolymerize the propylene oligomer using the

constrained geometry catalyst. This reaction had very low yield and produced an

essentially atactic product. Crystaf analysis could, for instance, not be done for

this homopolymer

The 13CNMR spectrum of the homopolymer showed broader peaks than the ones

observed in the spectra of the oligomers. The broadening of the peaks could have

been caused by growing of polymer by the oligomers which lack stereoregularity

hence resulting in an oligo-oligomer (Mw = 10 000) with little or no stereoregularity.

Shown in Figure 6, the disappearance of the end-group methyl carbon in the

spectrum of the homopolymer, which was previously observed in the spectrum of

the oligomer indicates the formation of a polymeric compound.
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Figure 12: 13C NMR spectra of the oligomer (ii) in deuterated chloroform,

and its homopolymer (i) in trichlorobenzene synthesized using catalyst (2).

5.3 Copolymer Molecular weight

The molecular weights shown in Table 1 (catalyst 1) are, with one exception, all

very high, albeit lower than the homopolymer with ethylene. There does not

appear to be any relationship between amount of oligomer used, Tp, oligomer

molecular weight and the molecular weight of the copolymer. The same applies to

the MWO, although some very broad molecular weight distributions are recorded,

mostly because of bimodal distributions. The molecular weights of the copolymers

were analyzed using high temperature size exclusion chromatography (GPC).

The GPC curves showed that all the high molecular weight polymers have

substantial low molecular weight content. The polydispersities of some

copolymers produced by both the syndiospecific catalyst (1) and constrained

geometry catalyst (2) were bimodal. A representative GPC trace is shown in

Figure 13.
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The observed molecular weight curves, were usually broad for the copolymers

synthesized using catalyst (1) and the resultant molecular weight distribution was

very high. However, in some bimodal curves, the polydispersities were analyzed

for each individual curve, and it revealed narrow polydispersity. The copolymers

synthesized by the constrained geometry catalyst (2), generally had narrower

MWD's compared to the ones of copolymers synthesized by the syndiospecific

catalyst (1).

The polydispersities of the polymers probably varied as a result of the inclusion of

co-oligomers in the material or not. It is thought that inclusion of the vinyl-

terminated oligomers into copolymers resulted in two different species being

synthesized, those in which early inclusion of oligomer resulted in chain transfer

and termination leading to low molecular weight materials, and those where the

inclusion occurred at a later stage, whereupon much higher molecular weight

materials were obtained. It is assumed that inclusion of the long-chain

oligo(propylene) macromonomers would likely lead to dormant species and chain

termination due to ~-hydrogen transfer".
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Figure 13: GPC curve of ethylene copolymer with propylene oligomer (Mw

== 4 200) synthesized using catalyst (1) at 70°C.
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The above is particularly true in the situations where a large amount of the

oligomer has been used in the polymerization process.

Some of the copolymers which showed large bimodal curves, were dissolved in

boiling xylene. The solution was allowed to cool down, and filtered. The NMR

study of the xylene soluble polymer revealed a copolymer of ethylene with

propylene oligomers. This further indicates that the second molecular weight peak

was not only oligomers, but a copolymer of oligomers with ethylene.

0.5

0.4

:2 0.3Cl
0

~
"0 0.2

0.1

0.0
1 3 5 7 9

109M
lufuno-0036-Repeal (02).r51 (Pk1)

Figure 14: GPC curve of ethylene copolymer with propylene oligomer (Mw

3: 1 800) using catalyst (2) at SO°C.

The appearance of second molecular weight peaks shown in Figures 12 and 13,

implied the presence of two polymer species of different molecular weights. In

Figure 12 which shows a copolymer synthesized using catalyst (1) there is a small

peak at low molecular weight region, which is in contrast to the one shown in

Figure 13, showing a small peak at high molecular weight region for the copolymer

which was synthesized using catalyst (2).

5.4. Crystallization analysis by fractionation (CRYSTAF)

The polymers were, after simple ether extraction, dissolved in trichlorobenzene

and were heated to above their melting temperatures and then allowed to cool

down.

The CRYSTAF traces show peak crystallization temperatures for the copolymers

(Figure 14). In addition, it can be seen that the crystallization temperatures vary
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with some of the polymers synthesized by catalyst 2, having lower peak

crystallization temperatures than the polymers made by catalyst 1. In addition, the

copolymers seem to have more than 1 crystallization peak, with significant soluble

residues (material not crystallizing at 30°C)

crystallization of polymers from cgc and syndiospecific catalysts

160000 ,

14.0000 1
12.0000 j

100000 i
I

8.0000 -

~ I
'C

6.0000 1

4.0000 J
I

2.0000 1
I

0.0000 I

0.00

-2.0000 J

1.297 ipr 80 Derivative

1:1( 295 ipr 60 Derivative

+ 306 ege 60 Derivative

- 302 ege rt Derivative

I X 347 ege 60 Derivative

1.346 ege 60 delay Derivative I

100.00 120.00

temperature oe

Figure 15: Crystallization curves of the copolymers, A and * were

synthesized using catalyst 1 at polymerization temperatures of 60 and SO°C,

and +, 0, and x were synthesized using catalyst 2 at 60°C, while -was

synthesized using catalyst 1, at room temperature ..

It is interesting to note that with all the samples being semi-crystalline, while there

is only one large crystallization curve, some shoulders appear either above the

crystallization peak (higher T, for example run 302) or below (around 60°C) and

the rest of the material appear as a soluble fraction at low temperature. The

significance of the soluble fractions is that metallocene catalysts should produce

uniform, chemically similar molecules with similar crystallization characteristics.

This has been demonstrated by Soares et a/12. Yet these polymers obviously

have a wide molecular weight and chemical distribution. This indicates that the

presence of the oligomers during polymerization leads to a hetereogeneous

product, possibly due to more facile termination after incorporation of one or more

oligomer molecules into the polymer chain.
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The amount of the soluble fraction was observed to be higher for the copolymers

synthesized at lower temperatures, and these fractions decreased as the

copolymerization temperatures was increased. This behavior was observed for

both catalysts systems. The explanation for this behavior can be based on the

inclusion of the propylene oligomers. The copolymers formed at lower

temperatures with catalyst 2 have wider MWO than those synthesized at 60 - 80°C

which accounts for a larger low-molecular weight non-crystallizable fraction.

Comparison of selected polymers made by catalyst 1 is shown in Figure 15.

influence of Tp on crystallization

25.0000

5.0000

ft..••••:.'.•~"., r~- jj
. 0 20.00 40.00 60.00 80.00 - 100.00 12
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1

.297 ipr 80 Derivative 1

X 295 ipr 60 Derivative

20,0000

15,0000

~ 10.0000
-e
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o 00

·5.0000

temperature °C

Figure 16: Influence of polymerization temperatures on the crystallinity of

the copolymers synthesized using catalyst 1, *, 0, !1at polymerization

temperatures of 60, 70 and 80°C respectively.

The temperature at which the copolymers were synthesized had an influence on

the crystallization curves of the copolymers and their amount of soluble material.

At lower polymerization temperatures, there was a higher amount of soluble

material, which can indicate formation of low molecular weight copolymers. This is

similar to the results obtained with the catalyst 2, but the reason is not clear, as the

molecular weight distributions for the materials made by this catalyst is broad for

all the materials, although it is broader (MWO = 11.4) for the lower temperature

product than for the other two (MWO = 8.6 - 9.1). All of these three materials
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showed a slight bump in the crystallization curves around 60°C, indicating a

second, slightly crystallizable fraction.

On the other hand the copolymers synthesized at high temperature had broader

crystallization curves than the polymer synthesized at lower temperature and

smaller soluble fractions. At higher temperature it is expected that there will be

higher incorporation of oligomers in the copolymers. The narrower crystallization

curve observed for copolymer synthesized at lower temperature may be explained

by incorporation of fewer oligomers in this fraction. Without fractionation of the

copolymers this cannot be proven, although the NMR spectrum of a xylene soluble

fraction of one of these copolymers does show incorporation of oligomers in this

fraction (see Figure 16). The decrease of molecular weight of polymer should be

another factor of increasing polymer solubility".

The spectrum in Figure 16 shows a high concentration of oligomer in the

copolymer, simply by comparing the intensities of the methylene carbons of the

ethylene (around 32ppm) with that of the propylene oligomer (around 46 ppm).

Also, the appearance of peaks at 23 and 27 ppm are interesting, as these might

be due to long-chain branching.

'~

I
50 40 1030 20

104

Stellenbosch University http://scholar.sun.ac.za



Figure 17: 13C NMR spectrum of xylene soluble fraction of copolymer in

toluene-cfl. The large peak at 20 ppm is due to solvent.

5.5 Thermal characterization

Thermal analysis of the copolymers was done on a Mettler DSC by heating the

polymers from room temperature to 180°C, and taking the reading from the

second heating scan.

1\
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Figure 12: DSC thermogram of the ethylene copolymer with propylene

oligomer (Mw ~ 4 500) synthesized using catalyst 1 at 70°C.

These copolymers produced broader melting temperatures than the polyethylene

homopolymers under similar conditions. The melting temperatures of these

copolymers ranged from 126°C - 136°C. The corresponding enthalpy values

(Table 3) started from as low as 39.8 Jig to high values of 135 Jig. For

copolymers synthesized with the syndiospecific catalyst this low melting

temperatures and enthalpy values represent a decrease in crystallinity of the

polymers compared to the polyethylene homopolyrners". It may be attributed to
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longer side chain branches in ethylene copolymer causing disorder and irregular

crystal structure 10.

Table 4: Enthalpy values of copoymers from CSC and their melting

temperatures.

Run Oligomer Mw Polymerization Melting L\H (JIg)
temperature temperature (0C)

3* 0 60 131.4 129.2

4+ 0 60 134.8 170.4

274 4200 80 135.2 74.9

282 4800 70 131.8,141.5 39.7,3.6

295 4800 60 132.2 65.9

297 4300 80 133.2 118.7

302'" 1 800 60 131.1 124.3

308'" 1 800 25 130.8 46.1

346'" 500 60 131.5 60.2

347'" 600 60 126.9 23.6

348'" 600 60 132.6 92.2

357'" 1 600 70 133.1 108.0

358'" 900 70 130.4 70.1

359'" 900 70 129.9 57.2

* and + were polymers synthesized without ohgomers uSing catalyst 1 and 2 respectively. L\ were
copolymers synthesized using catalyst 1, and the other copolymers were synthesized using
catalyst 2.

In overall the copolymers produced by the constrained geometry catalysts

displayed lower heats of fusion than the copolymers synthesized using the

syndiospecific catalyst. The low melting temperatures and their corresponding

heat of fusion were lower than for polyethylene homopolymers with long chain

branching prepared using the constrained geometry catalyst (135°C and 180

JIg) 11.

In both catalyst systems the melting temperatures increased with decreasing the

amount of the oligomer in the polymerization feed. Copolymerization with

oligomers of very low molecular weight resulted in copolymers with a lower melting

temperature, and the baseline was decreased during the measurement of the

melting temperature.
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5.6 Conclusions

1H NMR spectra appear to show some signs of endgroups other than the

predominant vinylidene type. Selected copolymerization reaction with ethylene

seems to indicate that the vinyl-terminated oligomers could selectively

copolymerize with ethylene using two different metallocene catalysts, while leaving

the vinylidene-terminated oligomers unreacted. This appears to be the case

where copolymers with very wide PDI are found. Crystallization studies (Crystaf)

and DSC, in conjuction with 13CNMR analyses of materials extracted with hexane

indicate that there appears to be different molecular species present in the

copolymers. This is borne out by the GPC results. It is possible that, where vinyl-

terminated oligomers are included in the polymer chain, the inclusion is followed

immediately by p-H abstraction and chain termination, leading to low-molecular

weight materials with low crystallizability. The latter is borne out by the presence

of a considerable amount of soluble material evidenced by the Crystaf analyses.

In addition it is noticeable that the molecular weight of the products obtained

during the polymerization of ethylene in the absence and presence of oligomer

were distinctly different. This indicates some reaction of the oligomers during the

polymerization reaction.

Limited amounts of low-molecular weight homopolymer were also obtained when

the oligomers were reacted with catalyst in the absence of ethylene as a

comonomer. This also indicates the presence of some vinyl endgroups in some of

the materials, as the vinylidene endgroups are not polymerizable with transition

metal catalysts.
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Chapter 6

Functionalization and block copolymerization reactions

of propylene oligomers

6. 1 Introduction

In this chapter, the introduction of functional groups into the oligomer via the

reactive chain-ends is discussed. The first step was the conversion of vinylidene

end-groups of the propylene oligomers to hydroxyl groups. The second step was

the reaction of the resultant hydroxyl groups on the propylene oligomers with

acrylic and methacrylic acid chlorides to form acrylate and methacrylate esters.

The (meth)acrylate esters of propylene oligomers were homopolymerized and

copolymerized with methyl methacrylate using free radical initiators. These

reactions should result in poly(meth)acrylates with oligopropylene blocks

incorporated.

In the early 90's, Mulhaupt et al.' reported the on the functionalization of vinylidene

terminated propylene oligomers with various functional groups such as maleic

anhydride, silane, epoxy, thiols and borane. The presence of borane functional

groups afforded further conventions to other functional groups such hydroxy

group. These oligomers were copolymerized with MMA to give propylene-b-MMA

polymers.

6.2 Hydration of oligomers

The propylene oligomers, which were described in Chapter 4, were reacted with

mercuric acetate to yield oligomers with hydroxyl end-groups. The resultant

product was obtained via the conversion of vinylidene end-groups in the propylene

oligomers to hydroxyl groups by oxymercuration-demercuration reaction

process/:". This method brings about the hydration of the alkenes with

regioselectivity that obeys Markovnikov's rule. This results in the introduction of a

tertiary hydroxyl group in the oligomer.

6.2.1 NMR Studies

6.2.1.1 1HNMR
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The hydrated oligomers were dissolved in deuterated chloroform and TMS was

used as an internal reference. The 1H NMR spectra of an oligomer before and

after hydration are shown in Figure 1.

(i) propylene oligomer after hydration
,

I I, Vi ,I

1'1 I'

I Il

(ii) propylene oligomer before hydration

, I

, IV
I I!I i

i I)

a

7.5 7.0 6.5 6,0 5.5 5.0 4.5 4.0 3.5
ppm

3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure 1: 1H NMR spectra of propylene oligomers (Mw == 500) : (i) after

hydration and (ii) before hydration.

From the above figure it can be observed that the hydration process was not

completely effective. The peaks in the spectrum representing the vinylidene chain

end-groups, (depicted by the letter a, at 4.75 and 4.85 ppm) of the oligomer have

almost, but not completely, disappeared after the hydration reaction. The

presence of signals from the protons adjacent to the hydroxyl group cannot easily

be detected as their resonances are in the same region as the peaks associated

with the backbone of the oligomers.

A range of propylene oligomers with varying molecular weights were hydrated

using this process (see Table 6.1). The product yield during the hydration process

depends on the molecular weight of the propylene oligomer. For low molecular
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weight oligomers (Mw :::;1 000) the conversion was greater than 85%, but the

conversion decreased with increased molecular weight of the oligomer. With

oligomers having Mw:::: 2 500, the hydration process was difficult to complete, and

this resulted in products which were extremely difficult to isolate. For low

molecular weight material separation of the product was much easier than it was

for high molecular weight material. The 1H NMR of the high molecular weight

oligomer showed very little evidence of successful hydration reactions.

Table 1: The molecular weights of the oligomers which were hydrated.

Oligomer molecular weight Success of hydration

350 Very good

500 Very good

700 Very good

1 000 Good

1 500 Good

2000 Poor

2500 Very poor

6.2.1.2 13C NMR

The samples were dissolved in deuterated chloroform with TMS as internal

reference. 13C NMR spectra of an oligomer before and after hydration are shown

in Figure 2.
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OH

(ii) propylene oligomer before hydration

150 140 130 120 110 100 90 80 70
ppm

60 50 40 30 20 10

Figure 2: 13C NMR spectra of propylene oligomers (Mw ~ 500): (i) shows the

spectrum of the oligomer after it was hydrated and (ii) before it was

hydrated.

The spectra shown in Figure 2 confirms the evidence of the 1H NMR spectrum for

the same oligomer (Figure 1). The vinylidene carbon peaks are at 111 and 144

ppm. The spectrum of the hydrated oligomer (i) shows a decreased intensity of

the peak at 111 ppm quite clearly. A peak appears at 71 ppm in spectrum (i)

(labeled d). This represents the formation of a tertiary carbon containing a

hydroxyl group. There are also new peaks (marked as c) which appear at 52 - 51

ppm, and these peaks represent the carbon adjacent to the hydroxyl group. The

prominent appearance of these peaks as doublets can be the result of the

stereochemistry of the hydroxyl group.
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6.2.2 Infrared spectra

110.0

100

90

80

70

60

Egy 50

a
40

30

20

10

3.1

3800.0

Figure 3:

A

3000 2000 1500 1000 700.0
cm-I

Infrared spectra of propylene oligomers (Mw == 700), (A) before

hydration and (8) after hydration process.

Figure 3 shows the FTIR of hydrated (8) and non-hydrated (A) propylene

oligomers. The emergence of the OH stretch between 3 300 ern" and 3 500 ern"

marked as (a) confirms the conversion of the vinylidene group in the oligomer to

hydroxyl group. The bending vibrations of the protons attached to the terminal

vinylidene groups at 840 crn' and 980 ern" marked as (b) became strongly

suppressed/:" However owing to the bulky size of the oligomer chain, it is difficult

to have complete hydration of the vinylidene group, and this can be observed in

the spectra of the hydrated product, traces of the alkene groups can still be

observed. This can also be seen in the 1H and 13CNMR spectra of the hydrated

oligomers.
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6.2.3 Mechanism of hydration

Scheme 1 shows a schematic of the hydration process. The reaction starts with

the formation of a mercury-carbon bond".

~HgOOCCH3
+ -OOCCH3

~HgOOCCH3

I
H

~HgOOCCH3

(0+
~j\

-OOCCH3

Scheme 1: Hydration of oligomers using mercuric acetate 1.

The carbocation formed in this step is of special kind, stabilized by the presence of

the mercury substituent on the carbon adjacent to the positively charged one.

These carbocations are readily formed, are relatively stable and do not rearrange.

Because these reactions were carried out in the presence of water, the resulting

compounds are known as hydroxyalkylmercuric acetates. This reaction is known

as oxymercuration.

The solvent mixture in this reaction is water and tetrahydrofuran. The choice of

the solvent mixture is based on the ability of water to mix with tetrahydrofuran in all

proportions, and THF is a good solvent for organic compounds. Water acts as a

nucleophile toward the mercury-substituted carbocation intermediate. The water

molecule attacks the carbocation formed in the earlier step.
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HgOOCCH3

hydroxyakylmercuric acetate alcohol mercury acetate ion

Scheme 2: Removal of mercury from the oligomers.

The hydroxyalkylmercuric acetate formed in the oxymercuration step is not

normally isolated but is instead treated directly with sodium borohydride (NaBH4)

as shown in Scheme 2. Sodium borohyride converts the hydroxylmercuric acetate

to an alcohol. This step is called demercuration. The carbon-mercury bond of the

hydroxyalkylmercuric is replaced by a carbon-hydrogen bond.

6.3 Esterification of the hydrated oligomers

The presence of the hydroxyl group in the oligomer allows modification of the

oligomer endgroup to other functional groups. In this section two methods based

on the modification of Schotten-Baumann reactions that were used to obtain the

(meth)acrylate esters of the oligomers (oligopropenyl(meth)acryates) are

described. The first attempt was to use THF as solvent under low temperatures

and the second method was based on the use of ether as the solvent under even

lower temperatures.

6.3.1. Reactions of methacryloyl chloride in THF

The hydrated propylene oligomer was reacted with methacrylol chloride in THF as

the solvent medium.

This method was found to be only partially effective in the sense that, although the

conversion of the hydroxyl groups to the corresponding acrylate ester was evident

from both the NMR and IR spectra, there was a large amount of the unreacted

hydroxylated oligomer present, which remained in the product. Owing to the

nature of the oligomers used, separation of the product from the unreacted

hydroxyl-containing oligomer was not possible.

115

Stellenbosch University http://scholar.sun.ac.za



I
II

II

:\
I
I

i'
II
II

I

I

I:
I

II

7.5

,
6.5 6.0

I
5.5

I

1.5
I

1.0
I" i

05 0.0
,

4.0 ppmJ5 2.5
I

2.07.0 5.0 4.5 3.0

Figure 4: 1H NMR of the methacrylate ester of a propylene oligomer (Mw ~

800).

Figure 4 shows the 1H spectrum of a hydrated propylene oligomer after reaction

with methacrylol chloride. Appearance of peaks (a) and (b) at 6.3 ppm and 5.8

ppm respectively is the result of inclusion of the vinyl protons of the methacryloyl

ester. Several attempts to purify the product were not successful. This is evident

by the presence of other peaks in the upfield region.

~o
Cl dry THF

TEA/DMAP

+

Scheme 3: Esterification of oligomers using methacryloyl chloride",
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Figure 5: 13C NMR spectrum of the methacrylate ester of a propylene

oligomer (Mw ~ 800).

Figure 5 shows a 13e NMR spectrum of propylene oligomer after being converted

to the methacrylate ester. In the above spectrum the presence of the methacrylate

ester group is confirmed by presence of chemical shift at 83 ppm, which arises

from the carbon designated a in Scheme 3. Further downfield, peaks which show

chemical shifts 172 ppm and 176 ppm arises due to the presence of the carbonyl

group.

The appearance of multiple peaks at 172 and 176 ppm region can be assigned to

the stereochemistry of the product. The peaks, which show chemical shifts at 128

ppm and 137 ppm, are associated with the vinylic carbons of the methacryloyl

ester (b and c in Scheme 3). As it can be clearly seen in this spectrum, the

presence of the characteristic peak at 71 ppm (d in Scheme 3) indicates that this

method was not effective and a substantial amount of the propylene oligomer did

not react with the methacryloyl chloride
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Figure 6: Infrared spectrum of the methacrylate ester of the propylene

oligomer (Mw == 800).

In Figure 6, the FTIR spectrum of the hydrated propylene oligomer after it has

been converted to a methacrylate ester via a reaction with methacrylol chloride is

shown. This reveals further evidence that this method was not very successful,

the presence of the hydroxyl group peak is clearly observed in the spectrum. The

carbonyl stretching peaks are observed at 1 732 ern" and they show weak

absorptions. Evidence from both NMR and IR thus confirms the lack of success

with this type of reaction.

6.3.2 The reaction of acryloyl chloride with oligomer in ether as a

solvent

After the reaction in THF proved to be unsuccessful (Section 6.3.1), a different

approach was tried. This method involved reaction of the (meth)acrylic acid

chloride with the hydrated oligomer using ether as a solvent". Acryloyl chloride

reacted much more readily with the hydrated oligomer and showed fewer

byproducts than during the reactions of the hydrated oligomer with methacryloyl

chloride.

Furthermore it can be stated that the esterification of acid chlorides is strongly

affected by the steric hindrance. Bulky groups on either reaction partner slow

down the rate of reaction considerably, resulting in a reactivity order among

118

Stellenbosch University http://scholar.sun.ac.za



alcohols of primary> secondary> tertiary. Taking the above into account it can be

understood why the reactivity of the high molecular weight oligomers are low.

It is clear that two factors will lead to a decrease in the reactivity of the oligomers:

the fact that the hydroxyl group is tertiary and the size of the oligomer. The latter

will affect mobility and accessibility of the hydroxyl groups.

=rO
Cl

OH 0Y'~
o-e

0
(CH3CH2)O

(CH3CH2)3N

Scheme 4: Reaction of hydrated oligomer with acryloyl chlorides.

b
H

o H
a

Scheme 5: Assignment of vinyl protons of the acrylate ester of propylene

oligomer.

Scheme 5 shows the assignment of vinyl protons in the acrylate ester of the

propylene oligomer, which results from the reactions of the hydrated oligomer with

acryloyl chloride.
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Figure 7: 1H NMR spectra comparing the unreacted acryloyl chloride (ii)

and acrylate ester of a propylene oligomer (i) (Mw == 350).

In Figure 7 the 1H NMR spectra of acryloyl chloride (ii) and a propylene oligomer (i)

after esterification with acryloyl chloride in ether, are shown. The presence of the

acrylate group can be observed by the presence of the vinyl peaks from acryloyl

chloride (see Scheme 5) at 5.7,6.1, 6.3 ppm for protons a, band c respectively.
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Figure 8: 13CNMR spectra of acryloyl chloride (2) in toluene-e, and the

acrylate ester of propylene oligomer (1) (Mw ~ 350) in CDCb.

In Figure 7 it is clear that the peaks of the acryloyl chloride have shifted downfield

after reaction. The peaks associated with the acryloyl chloride before the reaction,

were at 5.4, 5.85, and 6.18 ppm respectively. The stereochemistry around the

vinyl protons of this acrylate group results in the split of chemical shift of these

protons. This is also observed in the spectrum of the unreacted acryloyl chloride.

Figure 8 shows a comparison of the 13C NMR spectra of acryloyl chloride (2) and

that of the acrylate ester of propylene oligomer (1), after reaction with acryloyl

chloride. The conversion of the hydroxyl group to an acrylate ester is observed by

complete disappearance of the hydroxyl carbon and a new peak is observed at 83

ppm, which is the tertiary carbon bonding the propylene oligomer to the acrylate

group. Downfield at 168 ppm is a sharp carbonyl peak, which is confirming the

incorporation of the acrylate ester. Another interesting feature in the above

spectra is the shift of the vinyl carbons f and g; in the acryloyl chloride they

appeared downfield at 133.2 ppm and 136.5 ppm and they shifted upfield to 129.3

and 130.8 ppm respectively, shown by peaks d and e respectively.
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In this study, attempts were made to carry out the esterification of methacryloyl

chloride with oligomers of Mw == 1 500. With oligomers of such high molecular

weight, the esterification does take place, however the rate of converting the

alcohol to the ester is much slower. After 48 hours of reaction time, there is still a

large amount of the unreacted hydroxylated oligomer present. Evidence of that

could be clearly observed from the IR spectrum showing hydroxyl absorption peak,

and the NMR showing the C- bonded to the OH and a smaller peak of the C

bonded to the COO.

119.1
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40 115130
145926 1202.07

1378.5430
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cm-I

Figure 9: Infrared spectrum of the acrylate ester of a propylene oligomer

(Mw == 350).

The above figure shows an FTIR spectrum of a hydrated oligomer (Mw = 350)

after esterification with acryloyl chloride. The esterification process appears to

have occurred to 100% conversion as there is no hydroxyl group absorption peak

observed. From the above spectrum the presence of the ester carbonyl group can

be easily observed with a sharp absorption at the wavelnumber of 1 724 ern". The

terminal alkene groups are also observed from stretching of the protons bonding to

the C=C group at the wavelength of 809 and 980 ern". The C-O stretching is also

observed at 1 202 and 1 150 ern".

Overall the reactivity of the methacryloyl chloride in comparison to the acryloyl

chloride was very poor, and it is suspected that the methacryloyl chloride could
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have converted to the free acid upon contact with the atmospheric oxygen. The

other most likely reason could be the purity of the methacryloyl chloride. The

product was not obtained in its pure state and this could have resulted in the lack

of reactivity and increased side reactions.

Another method, which was explored to incorporate the acrylate group to the

oligomer, has been the use of phase transfer reactions of the hydrated oligomer

with methacrylic anhydride. This method yielded no encouraging results and was

discontinued.

6.4 Polymerization of the acrylate ester oligomer

The oligomers were polymerized using a free radical initiator at 80°C. For the

homopolymerization (Scheme 6), the degree of polymerization was low, ranging

from 5 to 15 repeat units. The polymer was a thick sticky non-crystalline material.

However, when these oligomers were copolymerized with methyl methacrylate

(Sheme 7), higher molecular weight polymers were obtained. The copolymers

were a solid material. The molecular weight of the poly(methyl methacrylate) was

found to be reduced by introduction of the acrylate propylene oligomer in

comparison to the homopolymers of poly(methyl methacrylate).

o AIBN

o

o

Toluene

Scheme 6: Homopolymerization of acrylate ester of oligomer with AIBN.
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Scheme 7: Copolymerization of acrylate ester of oligomer with methyl

methacrylate.

6.4.1 13C NMR of the polymer

Figure 10 shows the 13C NMR spectra of oligopropenylacrylate before (i) and after

(ii) polymerization using free radical initiators. It can be seen that the oligomer has

undergone some degree of polymerization noting the carbonyl peak, which is

downfield at 176 and the peak of the carbon at 81 ppm, has broadened. These

peak show broad resonances which are typical of polymer molecules.
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Figure 10: 13e NMR spectra of the oligopropenylacrylate (i) and its

homopolymer (ii).

6.4.2. Molecular weight of polymers

The homopolymer and copolymer of oligopropenylacrylate with methyl

methacrylate show interesting GPC curves. From Figure 11, it can be seen that in

the GPC of the homopolymer of the acrylate ester of the propylene oligomer, one

single curve could be observed indicating that the polymerization occurred in one

stage.
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molecular weights of acrylates
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Figure 11: GPC curves of the acrylates synthesized using AIBN at SO°C, 0

is the homopolymer of the acrylate ester of propylene oligomer, /). is the

copolymer of acrylate ester of propylene oligomer and >K is the homopolymer

ofMMA.

The copolymer of the acrylate ester and methyl methacrylate gave a bimodal

molecular weight distribution. This bimodal curve is either due to formation of two

hompolymers or due to two different species of copolymer. As the

poly(oligopropenyl acrylate) has a low molecular weight and obviously

chain-terminates easily, it is possible that during the copolymerization of the

acrylate with the methacrylate addition of the oligopropenylacrylate could be

shortly followed by chain termination.

The molecular weight of the higher molecular weight fraction of the copolymer is

higher than that of the homopolymer of MMA prepared under similar conditions.

The low molecular weight peak is probably due to polymer formed when the

oligopropenylacrylate was incorporated early in the reaction.

The peaks at the lower end of the graph (longer times) are the residual monomer

which remained after polymer work-up.
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6.4.3 Dynamic mechanical properties

The copolymer of oligopropenylacylate with methyl methacrylate was analyzed by

a dynamic mechanical analyzer, and results compared to that of the poly(methyl

methacrylate) homopolymer. Figure 12 shows two overlaid curves of the

polymers.

OMA of PMMA and its copolymer with acrylate propylene oligomer

~ ~+- a ~'."7

;I~--------------~-~~~--~.- I.pmma copolymer with ollgome I

&pmma

I
-200 -150 -100 -50 50 100 150 200 250

temerature °C

Figure 12: OMA curves of the PMMA (~) and a copolymer of PMMA with

oligopropenylacrylate (0).

In the above figure, subtle changes in the mechanical properties of the oligomers

can be observed at low temperatures. While the tan 8 peak for both the homo-

and copolymer is around 1aaoe (Tg of PMMA fractions), there is a slight decrease

in the Tg for the copolymer. Interestingly at around -5aoe in the curve of the

copolymer a second transition becomes visible, which is likely due to a transition

of the oligopropenyl phase. There can be little doubt that these two phases of the

polymer would phase-separate, leading to two separate, observable Tg's. In

addition a shoulder appears on the main chain tan 8 peak of the copolymer that

was not there in the homopolymer.
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Chapter 7

Conclusions and recommendations

7. 1 Introduction
This chapter will serve as summary of the work which has been discussed in

Chapters 4, 5 and 6 and recommendations for future work will be made.

7.2 Oligomerization
Successful oligomerization of propylene with three different catalysts in

combination with MAO as a cocatalyst were demonstrated. Oligomerization was

controlled by catalyst concentration, temperature of reaction, catalystlcocatalyst

ratio and reaction time.

The appearance of the oligomers ranged from fully liquid materials with molecular

weights of less than 1 200 g/mol, to viscous gel-like materials with molecular

weights between 1 500 to 3400 g/mol.

The use of the catalyst Et(lnd)2ZrCb (EBI) in conjunction with MAO lead to lower

molecular weight oligomers than in the case of the Me2Si(2-Me-4,5-

Benzolnd)2ZrCb (MBI) catalyst under similar conditions. Molecular weight could

be controlled to anywhere in the region of 500 to 1 500 g/mole.

The microstructure of the oligomers were investigated using 13Cand 1H NMR.

Three aspects were of importance: the tacticity of the oligomers, the type of

endgroups produced, the amount of 2, 1-misinsertions and the type of stereoerrors

found.

• The tacticity (expressed as mmmm%1) was very low for the C2v-symmetric

catalyst (as expected) and varied between 12 and 25% for the EBI catalyst

systems and between 25 and 50% for the MBI catalyst (the latter being C2-

symmetric metallocenes).

• With all the catalysts there were predominantly vinylidene endgroups

produced, although some evidences of 2-butenyl endgroups and vinyl

endgroups were found. This indicates that the predominant method of

chain transfer was p-H transfer to catalyst.
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• The level of 2,1-misinsertions were dependent on the type of the catalyst

used (MBI > EBI > Cp2ZrCb). Similarly the temperature of reaction also

played a role, with higher temperatures resulting in levels of up to 9.5% of

2,1-misinsertions. Despite this, very little evidence of 2-butenyl endgroups

were found (which would be due to ~-methyl abstraction after 2,1-

misinsertion), indicating ~-H abstraction after a "normal" or 1,2-insertion.

• Stereoerrors over the whole spectrum of possible errors were found. This

indicates enantiomorphic site control only becomes effective with an

increase in molecular weight. This was also indicated by comparing a

series of propylene reaction products made by the same catalyst at

elevated temperatures with molecular weight varying between 800 and 400

000 g/mole.

Some propylene oligomerization reactions were conducted in the absence of

solvent. These reactions resulted in polymers which were semi-crystalline and

only soluble in chlorinated aromatic solvent at high temperatures. These polymers

showed broad melting temperatures (DSC), and their crystallization curves were

broad (Crystaf).

7.3 Copolymerization of oligomers with ethylene using
metallocene catalysts

Copolymerization reactions of the oligomers with ethylene was attempted using

two different metallocene catalysts; the Cs-symmetric catalyst (i-propylidene-

(cyclopentadienyl)(9-fluorenyl)zirconium dichloride) the "constrained geometry"

catalyst tetramethylcyclopentadienyl(dimethylsilyl-f-butylamido)titanium dimethyl.

The reaction products varied in composition. In general the following could be

concluded:

• The reaction products had significantly lower molecular weights than

poly(ethylene) produced by the same catalysts under similar conditions.

• In many cases the polydispersities of the materials were very broad.

• In all cases the melting temperatures of the formed materials varied very

little from the ethylene homopolymers, but the melting endotherms as
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observed by DSC were broader and the melting enthalpies lower than for

the ethylene homopolymers.

• Extraction of the formed products with hexane was used to extract

unreacted oligomer, indicating that the only oligomer to react was the vinyl

terminated materials.

• The polymers with broad polydispersities could be shown to be essentially

two materials; (i) an ethylene rich copolymer with very limited inclusion of

oligomer, and (ii) an amorphous, low molecular weight material comprising

essentialy oligomer with a limited amount of ethylene included.

• Materials with broad polydispersities also had significant amounts of soluble

(non-crystallizable) material, as evidenced by the Crystaf results.

• GPC results indicated bimodality in all of the materials where inclusions of

the oligomers were observed after hexane extraction. This indicates the

presence of two different types of copolymers.

In the homopolymerization of the oligomer, a low molecular weight solid material

was obtained. This material had a very low degree of polymerization of about 10

repeat units. This homopolymer (or oligo-oligomer) did not exhibit any thermal

transitions, but degraded when heated during thermal analysis.

7.4 Functionalizaion and block copolymerization

7.4.1 Hydration of propylene oligomers
The reactions of the propylene oligomers with mercuric acetate afforded hydrated

products that obeyed Markovnikov's rule. The hydration of the oligomers was

much easier for the oligomers which had low molecular weight, affording more

than 90% conversion of the vinylidene endgroups to the hydroxyl group. Hydration

of oligomers which had molecular weight of over 1 500 afforded less than 55%

conversion whereas for those oligomers which had molecular weights of above

2 500 yielded less than 20% conversion of alkenes to hydroxyl groups. In general

the oligomers which were synthesized using the EBI catalyst were easily hydrated

wheras the oligomers synthesized using the MBI catalyst were not easily hydrated.
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7.4.2 Synthesis of oligomer acrylate esters
The hydrated oligomers were converted to acrylate esters by reactions with

acryloyl chloride or methacryloyl chloride. The conversion of the hydrated

propylene oligomers from an alcohol to an acrylate ester was easily carried out

using acryloyl chloride than when using methacryloyl chloride. Low molecular

weight oligomers afforded an almost complete conversion of the hydroxyl group to

an acrylate ester. NMR and IR spectroscopy were used to identify the

corresponding acrylol ester groups in the products.

7.4.3 Polymerization of acrylate esters
The derived oligomer acrylate esters were successfully polymerized using a free

radical process. In the homopolymerization process the degree of polymerization

was low but it increased when a comonomer was included. The presence of the

oligomer acrylate ester in the copolymerization of methyl methacrylate was

significant in the way that the copolymers had lower molecular weight than the

methyl methacrylate homopolymers.

The resultant low molecular weight of the copolymers can be associated with the

bulkiness of the oligomer which in turn block the incoming monomers to the

growing polymer chain.

The presence of the oligomer acrylate ester in methyl methacrylate copolymers

resulted in the appearance of a small peak in the OMA scan at lower

temperatures. This implies that with proper control of the polymerization process;

the mechanical properties of the copolymers of MMA with these functionalized

oligomers can be changed. It is assumed that if a higher amount of the oligomer

was used in the copolymerization reaction; it would have resulted in a shift of the

Tg peak of the copolymer. Hence it is recommended that further studies be made

on the copolymerizing MMA with these oligomers and attention be paid to the

resultant mechanical property characteristics of these copolymers.

7.5 Recommendations
The following areas should be further investigated:

• The mechanical testing of copolymers of ethylene with low amounts of

propylene oligomer present, to see if the apparent disruption of crystallinity

affects polymer material properties.
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• Preparative fractionation (like TREF) could be utilized to separate the

.ethylene copolymers into crystallizable fractions and non-crystallizable

materials, and in so doing gain full picture of the molecular make-up of

these polydisperse materials.

• The work on the acrylate macromonomers should be expanded. These

materials have the potential to be useful in changing the properties of the

traditionally glassy, brittle like PMMA and polystyrene.

• The preparation of primary alcohol terminated oligopropylene by borane

chemistry on the vinylidene terminated endgroup would produce an

oligomeric alcohol that will more readily react with MMA in order to prepare

an MMA terminated polypropylene.

7.6 References
1. L. Resconi, L. Cavallo, A. Fait, F. Piemontesi; Chern. Rev., 100, 2000,

1253.

133

Stellenbosch University http://scholar.sun.ac.za




