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Abstract 

Approximately 25% of the world’s population is infected with Mycobacterium tuberculosis 

(M.tuberculosis). Progression to active tuberculosis (TB) is influenced by the infecting strain of 

M.tuberculosis, the environment and the genetic makeup of the host. Globally, the incidence rate for 

TB in males is nearly twice as high compared to females, indicating that biological sex of an individual 

also contributes to TB susceptibility. While environmental factors and sex hormones influence the 

immune system and affect the male bias, they do not fully account for it. This suggests that the X 

chromosome and the unique biology regulating X-linked gene expression in females could 

significantly influence progression to active TB. 

The X chromosome contains nearly 200 genes that are involved in the immune system. This clearly 

links the X chromosome to both the innate and humoral immune response and could explain why 

females have a more robust immune response against infections. X-linked genes have also been 

implicated in TB susceptibility, but these have not been conclusively linked to disease. Population 

specific effects could further contribute to the impact of the X chromosome on disease progression 

especially for populations that experienced sex-biased admixture.  

Here we investigated the five way admixed South African Coloured (SAC) population that has sex-

specific genetic contributions from Bantu-speaking African, European, KhoeSan and South and East 

Asian populations. We showed that global ancestry inference could be used to detect the presence 

of sex-biased admixture and that this correlates with previous results indicating a KhoeSan female 

bias and a European and Bantu-speaking African male bias. 

We used SAC genome-wide association (GWAS) data and analysed the autosomes and X 

chromosome in a sex-stratified and combined manner, revealing sex-specific effects on both the 

autosome and X chromosome. A genome-wide interaction analysis also revealed significant 

interactions highlighting the need for epistatic and sex-stratified analysis in complex diseases. 

X chromosome data from the International Tuberculosis Host Genetic Consortium (ITHGC) was 

available to conduct a large trans-ethnic X-linked meta-analysis of TB susceptibility. The meta-

analysis included imputed GWAS data from two Chinese, one Russian, a Ghanaian and Gambian 

and two SAC cohorts (23229 samples). We optimised imputation in our SAC data and showed that 

even diverse African populations can be imputed with great accuracy. The meta-analysis revealed 

novel X-linked genes associated with TB susceptibility. These genes were located in genomic regions 

on the X chromosome previously associated with TB susceptibility. Results from the meta-analysis 

also further confirmed the presence of both sex-specific and population specific effects.  

Our work highlights the importance of not only conducting sex-stratified analysis to elucidate sex-

specific effects, but also to plan the study accordingly. Due to the strong impact of population specific 
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effects, extremely large meta-analysis will be needed to fully elucidate global and population specific 

susceptibility variants. While the X chromosome has been mostly neglected in the past, tools for its 

analysis are now readily available. Our findings support the mandatory inclusion of the X chromosome 

in large-scale genetic studies. 
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Opsomming 

Ongeveer 25% van die wêreld se bevolking is geïnfekteer met Mikobacterium tuberculosis. Die 

ontwikkeling van aktiewe tuberkulose (TB) word beïnvloed deur die bakterium, die omgewing en die 

genetiese komponent van die gasheer. Die siekte tas twee keer soveel mans as vroue aan, wat 

aandui dat biologiese geslag ook bydra tot TB vatbaarheid. Alhoewel beide omgewingsfaktore en 

geslagshormone die immuunstelsel sowel as die TB geslagsvooroordeel beïnvloed, is dit nie ten volle 

daarvoor verantwoordelik nie. Dit dui daarop dat die X-chromosoom en die unieke biologie wat X-

gekoppelde geenuitdrukking in vroue reguleer aansienlik kan bydra tot die ontwikkeling van aktiewe 

TB. 

Die X-chromosoom bevat byna 200 gene wat by die immuunstelsel betrokke is. Hierdie gene verbind 

die X-chromosoom aan beide die aangebore en humorale immuunrespons en kan verduidelik 

waarom vroue 'n sterker immuunrespons teen infeksies het. X-gekoppelde gene is ook betrek by TB 

vatbaarheid, maar dit is nie voldoende verbind aan die siekte nie. Bevolkingspesifieke effekte kan 

verder bydra tot die impak van die X-chromosoom op die ontwikkeling van die siekte, veral vir 

bevolkings waar genetiese vermenging met geslagsvooroordeel plaas gevind het. 

Hierdie tesis ondersoek Suid-Afrikaanse individue (SAC) wat geslags-spesifieke genetiese 

vermenging het van Bantoe-sprekende Afrikane-, Europese, KhoeSan- en Suid- en Oos-Asiatiese 

bevolkings. Ons wys dat globale vermenging inferensie gebruik kan word om die teenwoordigheid 

van geslagsvooroordeel te bepaal en dat dit korreleer met vorige resultate wat dui op 'n vroulike 

KhoeSan vooroordeel en 'n manlike Europese en Bantoe-sprekende Afrika vooroordeel. 

Ons gebruik SAC genoom-wye assosiasie (GWAS) data en ontleed die outosoom- en X-chromosoom 

op 'n geslags-gestratifiseerde en gekombineerde wyse, wat geslags-spesifieke effekte op beide die 

autosome en X-chromosoom openbaar. 'n Genoom-wye interaksie-analise het ook betekenisvolle 

interaksies aangedui wat die nut van epistatiese en geslags-gestratifiseerde analise in komplekse 

siektes beklemtoon. 

X chromosoom data van die Internasionale Tuberkulose gasheer genetiese konsortium (ITHGC) was 

beskikbaar om 'n groot transetniese X-gekoppelde meta-analise van TB-vatbaarheid uit te voer. Die 

meta-analise het toegepaste GWAS data van twee Chinese, een Russiese, 'n Ghanese en Gambiese 

en twee SAC versamelings (23229 monsters) ingesluit. Ons het toerekening in ons SAC-data 

optimiseer en toon dat selfs diverse Afrika-bevolkings met groot akkuraatheid toegereken kan word. 

Die meta-analise onthul nuwe X-gekoppelde gene wat verband hou met TB-vatbaarheid. Hierdie gene 

word gevind in genomiese streke op die X-chromosoom wat voorheen geassosieer is met TB-

vatbaarheid. Resultate van die meta-analise bevestig verder die teenwoordigheid van beide 

gespesifiseerde en populasie spesifieke effekte. 
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Ons werk beklemtoon die belangrikheid van nie net geslags-gestratifiseerde analise om geslags-

spesifieke effekte te verduidelik nie, maar ook om die studie dienooreenkomstig te beplan. As gevolg 

van die sterk impak van bevolkingspesifieke effekte sal uiters groot meta-analise nodig wees om 

globale en populasie spesifieke vatbaarheidsvariante ten volle te verklaar. Alhoewel die X-

chromosoom in die verlede meestal verwaarloos tydens genetiese analise, is die gereedskap 

daarvoor nou beskikbaar. Ons bevindinge ondersteun die verpligte insluiting van die X-chromosoom 

in grootskaalse genetiese studies. 
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1 General Introduction 

1.1 Brief history of Tuberculosis  
Mycobacterium tuberculosis (M.tuberculosis), the causative agent of tuberculosis (TB), interacted with 

the human host for most of human history, during which M. tuberculosis has perfectly adapted to its 

environment (1). Early evidence of M. tuberculosis infection was found in skeletal remains from the 

Iron Age (400-230 BC) and exhumed mummies from Egypt (2–5). At first, TB was thought to be a 

hereditary disease as it seemed to cluster within families, but in 1699 Gaspart Laurant Bale 

discovered that tubercles were the cause of TB and for the first time the infectious nature of TB was 

proposed (6,7). Soon after this discovery Europe was hit by the “Great White Plague”, the biggest TB 

epidemic in history which lasted over 200 years from the early 18th century to the late 19th century (8). 

During this time advances were made in understanding the disease. In 1720 Benjamin Marten 

expanded on the discovery by Gaspart Laurant and proposed that TB is caused by minute living 

creatures residing in the tubercles, which can be transmitted through close contact (9). In 1839 Johan 

Lucas Schönlein termed the disease Tuberculosis, after the tubercles that caused it (8). In 1882, 

Robert Koch identified M. tuberculosis as the TB-causing agent. (10–12). Koch also identified the 

tuberculin compound, which led to the development of the Tuberculin Skin Test (TST) that is used as 

a proxy for M. tuberculosis infection, but not active disease (13–16). The discovery of X-ray 

technology by Wilhelm Conrad von Röntgen in 1895 allowed for an alternative detection tool for 

detecting active TB, a tool still in use (17).  

Following the discovery of these detection methods, further progress was made against the disease 

in the 20th century. In 1908 Albert Calmette and Camille Guérin created the Bacille Calmette-Guerin 

(BCG) strain from an attenuated strain of M. tuberculosis (10,18). The BCG vaccine against M. 

tuberculosis was first administered to humans in 1921 and administered on a large scale to children 

in Europe after the second world war (1945-1948) (19). Meta-analysis on the efficacy of BCG 

vaccination revealed a protective efficacy of 19% against infection and 58% protection against 

developing active TB, but only in children (20). During the second world war (1943) the first antibiotic, 

streptomycin, was developed which was soon followed by the development of the second anti-TB 

drug, para-aminosalicylic acid (PAS) in 1947 (21–23). Then in 1960, following the discovery of 

isoniazid (INH) in 1952, TB was considered a 100% curable disease, a thought that persisted until 

the first outbreak of drug resistant TB in the United States of America (USA) in the 1970’s (8,22,24). 

Drug resistant M. tuberculosis, remains to this day the biggest hurdle to eradicating the disease (25). 

A genetic nomenclature of scientific terms and concepts used in this thesis is given in Table 1.1 below.  
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Table 1.1: Genetic nomenclature 

Term Definition 

95% Confidence 
interval 

Range of values so defined that there is a specified probability that the 
value of a parameter lies within it. (95%CI) 

Allele Refers to a particular form occurring at a locus. In humans, each individual 
will have a maximum of two forms, since it is possible that their parents 
differed from each other at this locus and that the individual inherited a 
different form from each parent. 

Allelic association Statistical analysis to determine whether disease is associated with 
particular allelic variants at one or more loci, usually by comparing marker 
allele frequencies between a disease group and a control group. 

Association by LD Association with a marker in strong LD with the causal locus. Also known 
as indirect association. 

Bias Inclination or prejudice for or against one person or group. 

Candidate gene Genetic association studies that focus on associations between genetic 
variation within pre-specified genes of interest and phenotypes or disease 
states. 

Effective population 
size 

The number of individuals in a population who contribute offspring to the 
next generation. 

False positive 
associations 

Association due to confounding by stratification between cases and 
controls. Also known as confounded association. 

Fine-mapping Determine the genetic variant (or variants) responsible for complex traits, 
given evidence of an association of a genomic region with a trait.  

Genotype A description of the two alleles at a given locus. 

Genome-wide 
association study 

Observational study of a genome-wide set of genetic variants in different 
individuals to see if any variant is associated with a trait. (GWAS) 

Haplotype A section of DNA on a single chromosome where certain alleles of different 
markers tend to be inherited as a unit. 

Heterogeneous  There are two types of genetic heterogeneity: allelic heterogeneity, which 
occurs when a similar phenotype is produced by different alleles within the 
same gene; and locus heterogeneity, which occurs when a similar 
phenotype is produced by mutations at different loci. 

Heterozygosity A measure of genetic diversity within a population. 

Hardy-Weinberg 
equilibrium 

The Hardy–Weinberg principle, also known as the Hardy–Weinberg 
equilibrium, model, theorem, or law, states that allele and genotype 
frequencies in a population will remain constant from generation to 
generation in the absence of other evolutionary influences. (HWE) 

Imputation Statistical inference of unobserved genotypes. 

Lineage Direct descent from an ancestor; ancestry or pedigree. 

Linkage analysis Statistical analysis to localise genes and markers with respect to each 
other in the genome, based on recombination frequency. Linkage analysis 
can also be used to map a disease phenotype in relation to polymorphic 
markers. 

Linkage 
disequilibrium 

The non-random association of alleles at different loci. (LD) 
 

Locus A specific position in DNA. 

Minor allele 
frequency 

Frequency at which the second most common allele occurs in a given 
population. (MAF) 

Missingness Degree of missing data from a set. 

Odds ratio How strongly the presence or absence of an allele associated with the 
presence or absence of disease in a given population. (OR) 

Pseudo autosomal 
region 

Regions of the X and Y chromosome that pair and recombine during 
meiosis. (PAR)  
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Term Definition 

Phasing Phasing, or haplotype estimation, refers to the statistical estimation of 
haplotypes from genotype data. 

Polymorphism Variations in DNA that originated during evolution as a result of mutations. 
Indicates that a locus has more than one form in the population. Should 
occur with a frequency of greater than 1% in the population to be classified 
as such. 

Population 
admixture  

The recent combination of two or more previously distinct populations. 
Unknown admixture may result in spurious genetic associations in a case-
control study design. 

Recombination  The rearrangement of genetic material, especially by crossing over in 
chromosomes or by the artificial joining of segments of DNA from different 
organisms. 

Sex The anatomy of an individual's reproductive system, and secondary sex 
characteristics. 

Sex-specific An effect that is localised to only one sex. 

Sex-stratified Splitting by sex and separating males and females. 

Single Nucleotide 
Polymorphism 

A variation type in DNA where a single nucleotide has more than one allele 
in a population. Coding SNPs are found in genes and non-coding SNPs 
are present in promoters, introns, or intergenic regions. Synonymous 
SNPs will not result in an amino acid change in the protein, while non-
synonymous SNPs will lead to a change of the amino acid at that position. 
(SNPs) 

SNP/Genotyping 
microarray 

Array technology that allows large numbers (up to a million) of SNPs to be 
genotyped on a single array typically the size of a microscope slide. 

True association Association with the true causal variant. Also known as direct association. 

X chromosome 
inactivation 

The process through which one X chromosome is inactivated in females. 
(XCI) 

X inactivation centre  Locus on the X chromosome responsible for regulating XCI. (XIC) 

X chromosome wide 
association study 

Similar to GWAS except that XWAS specifically targets the X chromosome 
genetic variants within GWAS data. (XWAS) 

 

1.2 Epidemiology of tuberculosis 
In 1993 the World Health Organisation (WHO) estimated that approximately 25% of the world’s 

population was latently infected with M. tuberculosis and declared TB a global health problem (26). 

While TB is the leading cause of death by a single infectious agent worldwide, the TB incidence has 

declined globally by approximately 1.4% between 2000 and 2016 (27). TB deaths have decreased by 

37% since the year 2000 and notification rates are slowly decreasing. While these are inspiring 

statistics, the incidence rate will need to reduce by a further 3-4% a year if the WHO goals for 

combating TB and reducing the number of deaths by 75% (compared to the 2015 death rate) are to 

be met by 2025 (27). While TB is mostly under control in developed countries it is still a serious 

problem for developing countries (28–30).  
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.  

Figure 1.1: Global TB incidence rates for 2016 (27). 

South Africa has an extremely high TB burden at an incidence rate of 781 per 100 000 individuals 

(Figure 1.1) (27). The high TB prevalence in South Africa is further compounded by the high HIV 

prevalence (12.6%), since M. tuberculosis takes advantage of the compromised immune system of 

HIV positive individuals (31,32). Drug resistant TB, often the result of poor adherence to treatment, 

further exacerbates the disease burden. 

1.3 M. tuberculosis, transmission, infection and symptoms 
M. tuberculosis is a rod shaped, aerobic, non-spore forming, acid-fast bacilli, with a thick lipid cell wall 

(33). This thick lipid wall, consisting of mycolic acid (fatty acid) and arabinogalactan (peptidoglycan 

bound polysaccharide), acts as a barrier and a key component of M. tuberculosis success as it 

increases virulence and aids in developing drug resistance, evading the host immune response and 

surviving in macrophages (34).  

Spread of M. tuberculosis and transmission of the disease is due to small airborne droplet nuclei that 

contain viable bacteria (35). Sneezing, coughing or talking in close proximity can disperse these 

droplet nuclei from an infected individual to the surroundings (Figure 1.2) (36,37). Upon inhalation of 

these droplets the hosts cell mediated (innate) immune response is triggered to fend of the invading 

M. tuberculosis bacilli (38). Infection begins when the M. tuberculosis bacilli are phagocytosed by 

alveolar macrophages or dendritic cells, where they will either be destroyed or survive depending on 

the virulence of the infecting strain and the efficacy of the host immune response (Figure 1.2) (38,39). 
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Figure 1.2: Mechanisms by which TB is transmitted between individuals (40).  

Failure to kill the bacilli results in the formation of granulomas, a collection of macrophages, T and B 

lymphocytes and fibroblasts, forming a structure designed to stop the spread of the M. tuberculosis 

(Figure 1.2). Following formation of the granuloma the T-lymphocytes secrete cytokines to promote 

the killing of M. tuberculosis. Here the bacilli can be cleared, or if the immune system is unable to 

clear it the bacilli can enter a seemingly dormant state (latent infection) (38). However, if the immune 

system cannot control the infection, due to a compromised immune system as a result of HIV 

coinfection for example, then the bacteria will multiply and cause active disease.  

If the M. tuberculosis infection is contained in the lungs it is referred to as pulmonary TB (PTB), but 

the granulomas can also rupture (Figure 1.2), and the bacteria can spread to and infect other parts of 

the body resulting in extra pulmonary TB (EPTB). Symptoms of specifically PTB include chronic and 

persistent coughing, loss of appetite and weight, fever, night sweats and haemoptysis (41), while 

EPTB presents with a great variety of symptoms and is difficult to diagnose (42).  

1.4 Diagnosis and treatment 
Once an individual presents with TB symptoms quick and accurate diagnosis is vital for ensuring the 

best treatment outcome. Several techniques to diagnose active TB are available with varying degrees 

of sensitivity and accuracy (41). Sputum microscopy, liquid or solid media culturing, chest X-ray, 

histopathological biopsy, and nucleic acid amplification test are some examples. There are also more 
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rapid tests such as the GeneXpert assay that can detect M. tuberculosis in a sample and the updated 

version of the GeneXpert can even detect Rifampicin (RIF) resistant M. tuberculosis strains (43).  

Once diagnosed, an appropriate treatment regimen must be set in place which can last at least six 

months and can have serious side effects (44,45). The first line treatment against drug susceptible 

M. tuberculosis consists of a four-drug regime including INH, RIF, pyrazinamide and ethambutol and 

can have high cure rates (45,46). However, due to the long treatment time and side effects of the 

drugs, treatment adherence and completion is a serious problem which has led to the development 

of drug resistant M. tuberculosis (47).  

1.5 Tuberculosis is a complex disease  
Upon infection, progression to active TB depends on several factors including the strain of infecting 

M. tuberculosis, the host’s environment and behaviour and finally the genetic makeup of the host (48). 

An individual’s socio-economic standing can influence TB susceptibility, as individuals living in 

overcrowded conditions are more likely to contract TB (48). Nutrition is also important as inadequate 

nutrition can alter the immune response and increase risk of developing TB (49–51). Finally, multiple 

meta-analysis and systematic reviews show that smoking and alcohol consumption considerably 

increase TB susceptibility (52–57).  

While these behavioural and environmental factors do influence TB susceptibility there is also very 

clear evidence that host genetics play a significant role in TB susceptibility. The first piece of evidence 

is that only 5-10% of infected individuals globally develop active TB. An example supporting the 

genetic contribution is the 1926 Lϋbeck incident in Germany, where 251 new-borns were vaccinated 

with live M. tuberculosis instead of BCG. Of the new-borns seventy-seven died, 47 developed latent 

TB and 127 got sick but recovered (58). This event demonstrates how individual immune responses 

differ in efficacy, demonstrating the importance of host genetics which underlies the immune system.  

Several twin studies have also shown that monozygotic twins have higher concordance for the 

disease than dizygotic twins (59–61). Moreover, studies showed of adopted children showed that they 

were more likely to die from TB disease if their biological parents had died from it, clearly indicating a 

genetic component to TB susceptibility and that environmental factors are not the only influential 

factors (62–65). Population specific effects have been observed for disease susceptibility and are 

also indicators of the role of host genetics. Europeans have been challenged by TB since before the 

18th century and thus, through a process of natural selection, host genetic markers may have been 

selected that made the European population less susceptible to TB (64,66). Subsequently, when the 

Europeans brought TB to Africa through colonialization the bacteria were spread to African 

populations who had not been challenged by European TB strains before and thus had not built up 

any genetic resistance, making them more susceptible to TB (1,64,67,68).  
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Since the discovery that host genetics influences TB susceptibility several methods have been used 

to determine which genes or genetic loci are associated with disease susceptibility. These approaches 

included family and linkage studies to find areas of the genome that segregate more often in affected 

individuals compared to control individuals (69,70). Heritability analysis to determine if TB 

susceptibility is a heritable trait and which genetic loci are responsible for this have been conducted 

and suggest a clear heritable component in TB susceptibility (71–73). Animal studies have also been 

used to prove the genetic contribution to TB susceptibility and homologous susceptibility genes have 

been mapped in humans (6,74). Finally, a number of single nucleotide polymorphism (SNP)- based 

association studies have been conducted in the form of candidate gene association studies as well 

as genome wide association studies (GWAS) to identify SNPs and genes associated with TB 

susceptibility (1). 

1.6 Association studies 
The human genome consists of approximately 3.2 billion base pairs. Adenine (A), thymine (T), 

guanine (G) and cytosine (C) nucleotides are linked in a specific sequence, creating the blueprint for 

life. The vast majority of these genomic sites (99%) are identical with all humans carrying the same 

base residue at both chromosomal homologs (75). The remainder of the nucleotides can vary within 

the population and explain much of the diversity observed in humans. Approximately 10 to 15 million 

of these variable base residues or single SNPs have been identified in humans. SNPs are used as 

biological markers to detect genes that are associated with disease.(76,77).  

Initially, candidate gene association studies were done to correlate SNPs with a particular phenotype 

or disease (77). Based on prior knowledge of biology and pathogenicity of a disease, candidate genes 

were identified and SNPs within these genes were tested to determine their association with a specific 

trait or disease. While this is an attractive study design, candidate gene associations studies have 

had limited success, with results often not being replicated in independent studies and associations 

being generally weak (77). The biggest limitation of candidate studies is that they require prior 

knowledge of disease pathogenesis to identify genes of interest and thus require a hypothesis. 

However, this hypothesis is limited to one gene and does not consider the rest of the genome and its 

potential interaction with the gene of interest.  

Genome-wide association studies (GWAS) managed to bypass this limitation as advances in 

technology allowed for simultaneous genotyping of thousands of SNPs across the entire genome. 

This advantage of SNP microarrays meant that prior knowledge of gene or pathogen function was no 

longer required. Studies are thus not limited to the effect of just one gene and could analyse genome 

wide genetic contributions to a single trait or phenotype without a hypothesis, i.e. hypothesis free 

testing. This shift towards a hypothesis free data driven science allows for an unbiased analysis of 

the variation across the genome at a fraction of the time or cost of candidate gene studies (78).  
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The goal of GWAS is to detect associations between variants and traits in samples from the 

population, with the aim of understanding which genes are involved in a disease or will lead to 

improved treatment or preventative strategies (79). The potential for GWAS to succeed depends on 

various factors including how many loci affecting a certain trait segregate in the population, the sample 

size and power required to detect associations, the joint distribution of effect sizes and minor allele 

frequencies (MAF) of the SNPs and the panel of SNPs used to genotype the population (79). Correct 

phenotyping is also of vital importance as variations in the phenotype can introduce heterogeneity, 

which will reduce the power to detect informative associations and could lead to spurious results. 

In order to conduct informative GWAS studies SNP microarrays have been developed that can 

genotype between 100 000 and 2.5 million variants simultaneously. Furthermore, as even the densest 

genotyping array captures only a fraction of the variation in the human genome, SNP arrays were 

designed in such a way that SNPs not directly genotyped can be inferred based on the pattern of 

available genotypes (79). This process, called imputation, exploits the phenomenon of linkage 

disequilibrium (LD) and is based on the correlation between SNPs in the current human genome (79). 

This correlation is a result of historical evolutionary forces and when alleles at two or more loci appear 

together more often than would be expected by chance then these variants are said the be in LD (75). 

Two SNPs in high LD can thus serve as proxies for one another and due to the correlation, genotyping 

one can give almost complete info on the other SNPs genotype. 

LD patterns need to be elucidated by mathematically, quantifying them in fully sequenced or densely 

genotyped reference populations (75). By comparing regions of LD between an appropriate reference 

population and the study population missing genotypes can be inferred into the study data (80). This 

increases the number of variants available for testing in GWAS, which in turn increases the likelihood 

of detecting significant associations. Datasets for imputation are now widely available and represent 

a diverse set of populations with dense genotyping, perfectly suited for imputation.  

These reference datasets include amongst others, the 1000 Genomes phase 3 data (1000G) (81), 

the Human Genome Diversity Project (82), Haplotype Reference Consortium (HRC) (83) and the 

HapMap consortium (84). These reference datasets at first, as with the SNP arrays, were tailored for 

European populations making them less than ideal for studying or imputing more diverse or admixed 

populations like Africans, Hispanics, or in our case the 5-way admixed South African Coloured (SAC) 

population (85–87). More recently however increased number of individuals from more diverse 

populations were added to current reference datasets and additional databases were also initiated 

that focused more specifically on African populations, which were greatly underrepresented. The 

Consortium on Asthma among African ancestry populations in the Americas (CAAPA) (88), the 

African Genome variation project (AGVP) (89) and the African Genome Resource1 (AGR, not publicly 

                                                
1 https://imputation.sanger.ac.uk/ 
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available) are three resources which have recently become a viable option for accurate imputation of 

African populations.  

Another advantage of LD and imputation is that it allows us to conduct meta-analysis by maximising 

the SNP overlap between different GWAS datasets (90). Many of the available SNP arrays genotype 

for different markers and at varying density across the genome and thus overlap between different 

genotyping platforms can vary significantly (91). Meta-analysis increases the power to detect 

associations by increasing the sample size through the combination of different studies on the same 

trait or disease (77). By increasing the number of samples and overlapping variants, the power of 

meta-analysis is further amplified and can allow for identification of population specific and globally 

associated variants.  

However, LD and imputation does have its drawbacks. Increasing the number of variants increases 

the multiple test correction burden. By adjusting the significance threshold based on the number of 

independent tests performed, the number of false positive associations can be controlled (92). This 

multiple testing burden can be further compounded by small sample sizes and low power, making it 

impossible to detect small effects or link rare variants with a trait or disease. Furthermore, due to LD, 

spurious associations can survive multiple test correction if the associated variant is not actually the 

causal one, but merely linked to the causal variant (75). This is especially true for rare variants, which 

are often in LD with other non-causal rare variants and a single causative rare locus could be linked 

with multiple false positive associations (93). Teasing out which of the two variants in LD is the actual 

causal variant is a process called fine mapping and can be very difficult to determine through GWAS 

alone (93). To resolve this, further investigation is required in a population with lower LD, in which the 

causal variant might be identified, or functional studies can be conducted on the effect of the variant 

in vitro or in vivo (94). 

The effects of LD and sample size are two of the limitations of GWAS. Other limitations include 

statistical and computational issues e.g. analysing and storing large amounts of data (75,76). As the 

number of markers on the array increased so did the statistical challenge of analysing them. Also, 

many traits or phenotypes are polygenic and associated with many alleles of small effects that 

collectively contribute to the phenotype (93). Furthermore, there are also interactions between 

different loci in the genome (epistasis) and between genes and the environment, both of which can 

influence the power of a GWAS (77).  

The design of SNP arrays also requires prior knowledge of the genome in order to choose the most 

informative markers for genotyping (95). Knowledge of these markers was limited when GWAS were 

introduced and could have, at least initially, limited the applicability of chosen markers. While these 

limitations were daunting, instead of limiting SNP microarray technologies they instead spurred 

advances in other areas of research. New computational and statistical methods were developed to 
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clean and analyse these large datasets. For example, the concept of determining false discovery rate 

(FDR) was introduced in order to lower the impact of conventional multiple test correction and 

methods to determine how accurate statistical testing was were also introduced in the form of quantile-

quantile (QQ) plots and Manhattan plots (93).  

Improved analysis techniques also led to an increased number of SNPs associated with a certain trait 

or disease, which in turn led to research to understand the link between these variants and the 

phenotypic effect. Elucidating biological functions allowed for more relevant markers to be added to 

SNP arrays resulting in a cycle of progress where progress in one field (SNP arrays) fuelled progress 

in the other two (computational methods and biological understanding), resulting in advances that 

would not have been possible independently (75). By dealing with these limitations instead of 

succumbing to them, GWAS has found many applications in many research areas and contexts and 

experienced great success over the past decade. GWAS has mapped causal variants (96), LD 

patterns (97), introduced phasing (98) and inferred demography, ancestry and evolution (85,99–103). 

Despite these successes there is one area of research where GWAS has made a significant impact 

but has not yet delivered what was expected of it and that is the analysis of complex diseases. 

Complex diseases are acquired diseases where susceptibility depends on both the environment, 

behaviour and hereditary factors and does not follow a classic pattern of inheritance (77). Instead 

complex disease susceptibility is more likely a result of a combined effect of many common variants 

with small effects sizes (polygenic) as well as environmental factors and gene-gene interactions 

(77,93). Omnigenic effects could also influence susceptibility to complex diseases, but the omnigenic 

model has not been fully explored and there are some concerns regarding its validity and thus it will 

not be considered here (104,105). While the environment and behaviour play a large role, there is a 

proven genetic component in many complex diseases and by choosing samples carefully (in the case 

of a case control association study) the environmental and behavioural impact can be controlled for, 

allowing us to focus on the genetic factor.  

Sample size and multiple test correction is perhaps the largest stumbling block for GWAS in complex 

diseases as multiple genes with small effects will require tremendous power to identify and could be 

lost due to multiple test correction. Increasing the sample size through conducting meta-analysis 

would thus greatly benefit the analysis of complex diseases by increasing the power. Furthermore, 

many genes identified in GWAS for complex diseases have no known biological effect, due to 

incomplete knowledge of gene function and thus their role in disease susceptibility cannot be 

elucidated (77). Despite these limitations GWAS in complex diseases, such as inflammatory bowel 

disease, diabetes and Alzheimers, have successfully identified novel pathogenic mechanisms and 

therapeutic targets (106,107). 
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Another area of success of GWAS in complex disorders and traits is its relationship to the concept of 

missing heritability. Heritability is the proportion of phenotypic variance that can be explained by 

genetic variance and missing heritability is thus observed heritability that is not, or not yet explained 

by genetic variance (108). GWAS for height and susceptibility to schizophrenia for example elucidated 

a great portion of the missing heritability. In 2009, 40 SNPs were significantly associated with height 

explaining 5% of heritability, by 2014 the number of significant associations increased to roughly 700 

SNPs, explaining about 20% of heritability (109,110). Similarly, the number of variants significantly 

associated with schizophrenia increased from one SNP in 2009 to 108 SNPs in 2014 (111,112). 

Elucidating the missing heritability and identifying all loci that contribute towards it, is both a function 

of genome coverage (how much genetic diversity can be captured) and sample size. As the sample 

size and genomic coverage of arrays increases more and more variants will be identified explaining 

an ever-increasing amount of the missing heritability, but as the effects of these variants are likely to 

get smaller the sample sizes will constantly need to increase in order to capture all variation in the 

genome (79). Here imputation and meta-analysis can be of great benefit to increase the genomic 

coverage and sample size and power to detect associations in order to fully elucidate complex 

diseases.  

1.7 GWAS and the X chromosome 
Since the introduction of GWAS, the sample sizes have been steadily increasing and so is the amount 

of data available for imputation and meta-analysis. The computational methods and statistics to deal 

with this ever-increasing amount of data has also improved over time allowing for better quality and 

more informative analysis. However, one aspect of GWAS and its influence on traits, phenotypes and 

diseases has until very recently been ignored: the analysis of the X chromosome and the impact of 

X-linked genes on a trait or disease and its potential contribution to the missing heritability (113).  

Most genotyping array contain probes for X-linked variants, making this data readily available, yet it 

has been consistently excluded from most GWAS for several reasons. Firstly, compared to the 

autosome the X chromosome has fewer markers and suffers from lower genotyping accuracy. 

Secondly, X-linked variants are unique as they are diploid for females and haploid for males, which 

pose a statistical challenge. Comparing or combining diploid and haploid markers for association 

analysis is challenging and certain statistical techniques, such as the Hardy–Weinberg equilibrium 

testing (HWE), cannot be calculated for haploid loci (113). This means that analysing X chromosome 

genotyping data cannot be done in the same way that autosomal genotyping data is analysed.  

The X chromosome requires separate quality control and analysing in a sex-stratified manner 

(114,115). Stratifying the data by sex pose a problem as it reduces the sample size and thus power 

to detect associations. This, combined with the fact that male haploid genotypes further lower the 

power and the number of X-linked markers is low, means that many studies are not powerful enough 
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to detect X-linked loci (113). Also, the special analysis techniques required might be too daunting for 

researches with limited specialised knowledge in bioinformatics and statistics, requiring someone with 

expertise in these fields. This statistical complexity is further compounded by the fact that in females 

one X chromosome is randomly inactivated in each cell of the body to equalise dosage of gene 

expression between males and females. This process of X chromosome inactivation (XCI) and 

associated processes such as genes that escape inactivation and skewed inactivation will further 

influence phenotype and complexity of X-linked analysis, especially as the processes of XCI are not 

yet fully understood (113,116,117). 

Although the X chromosome has been ignored in the past due to its statistical and biological 

complexity it is clearly involved in diseases susceptibility. The Online Mendelian inheritance in man 

(OMIM) catalogue of human genes and genetic disorders suggests that about 7% of phenotypes with 

known molecular basis (autoimmune disorders, cognitive and behavioural conditions) are caused by 

X-linked genes (113). Furthermore, the X chromosome contains approximately 5% of the genes in 

human genome, and many of these have been shown to be involved in the immune function 

(118,119). The X chromosome also contains the highest density of regulatory miRNA molecules, 

providing further evidence for the involvement of the X chromosome in biological functions and 

possibly disease susceptibility (118).  

Even though evidence for the involvement of the X chromosome in immune functions is strong and 

tools to impute and analyse X-linked variants have improved it is still being ignored in most GWAS 

studies (114,115,120,121). This is evident when looking at the records of published GWAS. To date 

there are 3420 publications, in which 62652 unique SNP-trait associations have been identified are 

recorded in the online GWAS catalogue2. Of these associations only 385 SNPs (0.6%) were X-linked 

and only 157 (0.25%) of them reached genome wide significance ( p-value < 5e−8) (122). This 

highlights the extent to which the X chromosome has been ignored in the past and it is vital for this to 

change.  

If most of the GWAS published to date had X chromosome data but excluded it from analysis, then 

there is a tremendous amount of unexplored data that is already available for analysis. As tools to 

analyse the X chromosome are now available there is no reason not to explore it. Only by starting to 

include the X chromosome in GWAS analysis will its impact on immune functions and sex-bias be 

elucidated. Identifying novel X-linked variants will spur research and advances in functional 

annotation of X-linked genes, increasing understanding of biological function and thus enable us to 

increase coverage of X chromosomal markers on SNP arrays. As use of X-linked analysis tools 

increase they too will improve resulting in improved data which could elucidate sex specific immune 

responses and explain a portion of missing heritability (113). Analysis of the involvement of the X 

                                                
2 https://www.ebi.ac.uk/gwas/  
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chromosome is especially important for complex diseases that present with a strong sex-bias, such 

as TB, discussed below.  

1.8 Tuberculosis and the X chromosome 
Tuberculosis presents with a strong male sex-bias and globally the incidence rate is nearly twice as 

high in males compared to females (Figure 1.3) (27). Yet, while multiple candidate gene association 

studies and GWAS have been done for TB susceptibility in diverse populations, none specifically 

investigated the X chromosome or any alternative cause for the sex-bias (72,85,123–131). Some 

candidate gene studies have identified X-linked genes associated with TB susceptibility such as Toll-

like receptor 8 (TLR8) and some GWAS studies analysed X-linked variants (96,123,126,132–138). 

The fact that females have a more robust immune response towards infections indicates that X-linked 

variants could easily influence this male bias (139–141). 

 

Figure 1.3: Worldwide male to female ratios of TB incidence for children under the age of 14 (A) 

and children and adults over the age of 14 (B). World map image obtained from the R packages 

‘rworldmap’ and ‘rworldxtra’ and the data was obtained from the 2017 WHO TB report (27,142).  
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Figure 1.3A shows TB incidences in children under the age of 14 (pre-pubertal) for 29 high burden 

countries as well as the European Union and the United States of America. While incidence rates in 

some countries were the same between males and females, most have a slight male bias and no 

country had a female bias for incidence rates in young children (Figure 1.3A). Comparing these 

incidence rates to those from individuals over the age of 14 (Figure 1.3B) results in a clear increase 

in the male sex-bias across all countries, even those that initially had equal incidence rates between 

the sexes (Figure 1.3B).  

Since the male bias is present before puberty, but then significantly increases with age (Figure 1.3), 

indicates that sex hormones are likely to have a definite impact on this sex-bias. Furthermore, the fact 

that this male sex-bias presents globally (Figure 1.3) suggests that the bias can also not be fully 

explained by environmental, behavioural and socioeconomic factors or the strain of M. tuberculosis, 

although they do influence the sex-bias (140,143,144).  

Another influential factor in TB susceptibility is the influence of population specific effects (99,145). 

The effect of ethnicity is especially important when considering admixed populations as not correcting 

for ancestral components in statistical analysis can confound results (99,138). Furthermore, 

admixture events can be sex-biased with respect to the male to female ratio of founder contributions 

and this sex-bias in admixture leads to different ancestral distribution on the autosome compared to 

the X chromosome (146,147). These differences in ancestral distribution could further influence the 

sex-bias of TB disease through population specific effects amplified by certain ancestral components 

on the X chromosome of admixed individuals.  

Based on the evidence that the X chromosome and X-linked genes are involved in TB susceptibility 

and potentially influence the male bias it presents with, which could be further amplified by sex-bias 

admixture events, leads us to hypothesise that: 

• X-linked genes and their genetic interactions and functional mechanisms will elucidate the sex-

bias of TB disease, which could be further compounded by sex-biased admixture events.  

- Aims and Objectives: 

1. Test for the presence of sex-biased admixture in the SAC population. 

i. Infer global ancestry on the autosome and X chromosome separately and 

test for significant differences in their distribution. 

ii. Compare to previous results to confirm the viability of using global 

admixture components to infer sex-biased admixture.  

2. To identify TB susceptibility loci responsible for the sex-bias observed in TB 

susceptibility by conducting a TB GWAS and meta-analysis including data from 

multiple ethnic backgrounds.  
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i. Do association testing of the X chromosome in all the individual TB 

GWAS datasets 

ii. Determine the accuracy and optimise imputation in the admixed SAC 

population. 

iii. Impute X chromosome genotypes in all available TB GWAS data. 

iv. Perform a trans-ethnic X chromosome, TB meta-analysis to determine 

sex specific and/or combined effects 

3. Investigate gene-gene interaction to determine how X-linked genes interact with 

each other and the rest of the genome.  

i. Carry out a genome-wide epistatic analysis (gene-gene interactions) on 

the SAC data 

1.9 Structure of thesis  
Each chapter for this thesis is structured for potential publication. All chapters are in the format of a 

journal article, but whether submitted for publication or not, they have been edited to have the same 

format and referencing style (Vancouver) for the sake of consistency throughout this thesis. 

Supplementary material was inserted at the end of the respective chapters and one overall 

bibliography is given at the end of the thesis.  

Chapter 2: The X chromosome and sex-specific effects in infectious disease susceptibility. 

This review sets the tone for the thesis and highlights the involvement and importance of the X 

chromosome in immune functions and potential impact on sex-bias of infectious diseases, specifically 

TB. This review has been submitted to the journal of Human Genomics and is currently under review.  

Chapter 3: Autosomal and X chromosome markers confirm strong sex-biased admixture in the 

South African Coloured population. 

This paper proves that global ancestry inference on the autosome and X chromosome can be 

accurately determined and used to infer presence of sex-bias in the SAC population. 

Chapter 4: A sex-stratified genome-wide association study of tuberculosis using a multi-ethnic 

genotyping array. 

This TB GWAS in the SAC population is the first GWAS to conduct not only X chromosome specific 

analysis, but also sex stratified tests on the autosome. This chapter also reports on the first genome 

wide epistatic analysis performed for a TB susceptibility study. Results for this chapter indicate strong 

sex specific effects, highlighting the need for sex stratified and X-linked analysis. This chapter has 

been submitted to the journal Frontiers in Genetics and is currently under review 
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Chapter 5: Evaluating the accuracy of imputation in the 5-way admixed South African Coloured 

population. 

This methodological paper assesses the accuracy and aims to maximise the quality of imputation in 

the 5-way admixed SAC population on both the autosome and X chromosome.  

Chapter 6: X-linked trans-ethnic meta-analysis reveals Tuberculosis susceptibility variants 

This chapter reports on the first ever X chromosome specific trans-ethnic meta-analysis for TB to 

identify global and population specific X-linked susceptibility loci.  

.
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2.1 Abstract 
The X chromosome and X-linked variants have largely been ignored in genome-wide and candidate 

association studies of infectious diseases due to the complexity of statistical analysis of the X 

chromosome. This exclusion is significant, since the X chromosome contains a high density of 

immune-related genes and regulatory elements that are extensively involved in both the innate and 

adaptive immune responses. Many diseases present with a clear sex bias and, apart from the 

influence of sex hormones and socioeconomic and behavioural factors, the X chromosome, X-linked 

genes and X chromosome inactivation mechanisms contribute to this difference. Females are 

functional mosaics for X-linked genes due to X chromosome inactivation and this, combined with other 

X chromosome inactivation mechanisms such as genes that escape silencing and skewed 

inactivation, could contribute to an immunological advantage for females in many infections. In this 

review we discuss the involvement of the X chromosome and X-inactivation in immunity and address 

its role in sexual dimorphism of infectious diseases using tuberculosis susceptibility as an example, 

in which male sex bias is clear, yet not fully explored.  

2.2 Key words 
Tuberculosis, Sex-bias, X chromosome, Host genetics, Susceptibility  

2.3 Introduction 
The human sex chromosomes are genomic structures that distinguish males and females on the 

chromosomal level. The XY sex-determination system is present in humans and females have two X 

chromosomes, while males have one Y and one X chromosome (148). These chromosomes evolved 

approximately 180 million years ago from ordinary autosomes (149). Recombination during male 

meiosis was suppressed and over time, resulting in vast levels of divergence between the human sex 

chromosomes, with the exception of the pseudoautosomal regions (PAR1 and PAR2) located at the 

termini of the X and Y chromosomes (150). Over 800 protein coding and 600 non-coding genes are 

distributed over the nearly 155 million base pairs of the X chromosome (151). Until recently the X 

chromosome has largely been excluded from candidate gene and genome-wide association studies 

(GWAS) due to the statistical complexity of analysing and comparing the haploid male to diploid 

female data, but analysis tools have now been developed to incorporate this chromosome.  

Gao et al. (115) developed a toolset for X chromosome data analysis and association studies that 

can be used for quality control and analysis of X chromosome GWAS data. Other software using 

genotyping data, but not specifically focused on the X chromosome, have also included the option to 

analyse X-linked genotypes. PLINK version 1.9, a software to conduct association testing using 

genotyping data incorporated different models to analyse the X chromosome (120). Impute2 and 

shapeit2 are programs designed to impute and phase genotyping data respectively and until recently 

imputation and phasing was not possible for the X chromosome thus excluding this chromosome from 
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downstream analyses(152,153). The ability to increase the amount of genotyping data through 

imputation and including the X chromosome in statistical analysis allows for X-linked meta-analysis 

and could help elucidate sexual dimorphism. Admixture analysis uses an individual’s genomic data 

to determine ancestry by comparing allele frequencies to those of reference populations. Until recently 

this analysis was inaccurate for haploid genotypes and thus overestimated X-linked ancestral 

components in males. However, inclusion of haploid specific ancestry inference in the ADMIXTURE 

v1.3.0 software now allows for X-linked global ancestry inference (154). These ancestral components 

can now be included as covariates in X-linked association testing to improve the quality of the results. 

The software RFMIX also incorporated the option of assigning local ancestry on the X chromosome 

(155), allowing the comparison of autosomal and X-linked ancestral distributions, which could be 

indicate sex-biased admixture (156–158). 

The development of these tools is especially significant for diseases in which a sex bias is present.  

Human males are more susceptible to many diseases, including bacterial infections, while females 

are more likely to develop autoimmunity (140). This sex bias is not only due to socioeconomic and 

behavioural factors, such as the underreporting of female cases and/or access to healthcare, but may 

also in part be due to biological sex differences as determined by the X chromosome and X 

chromosome inactivation (XCI) (159). XCI is the process through which one X chromosome is 

inactivated to balance dosage of gene expression between XX females and XY males. XCI is 

established early during embryonic development and is maintained almost indefinitely. As males are 

haploid for the X chromosome it has been suggested that any damaging genetic variants on the X 

chromosome will have a more pronounced immunological consequence in males than in females, 

thereby introducing sex-based differences and influencing the sex bias of a disease. In contrast, 

females, who are functional mosaics for X-linked genes, may have less severe consequences, further 

compounded by the process of skewed XCI and genes escaping silencing (160). This review will 

focus on the involvement of the X chromosome and XCI in immunity and will address sexual 

dimorphism in infectious diseases using tuberculosis (TB) susceptibility as an example, in which sex 

bias is clear, yet not fully explored. 

2.4 X-chromosome, the immune system and sex hormones 
Many X-linked genes are involved in the innate and adaptive immune system (161). This includes 

pattern recognition receptors (PRRs) such as toll-like receptor (TLR7) and TLR8 as well as IRAK1, a 

key regulatory molecule in the TLR dependent signalling pathway (162). A number of transcriptional 

and translational control effectors functioning downstream of activated cytokine receptors are also 

located on the X chromosome (144). For example, NF-kB essential modulator (NEMO) modulates 

NF-kB expression, a transcription regulator that is involved in multiple immune pathways (163). 

Furthermore, it is not only X-linked genes that could influence the sex bias, but also X-linked control 

mechanisms like non-coding micro RNA (miRNA). The X chromosome contains approximately 10% 
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of the total genomic miRNA (164), which is involved in the regulation of gene expression by 

supressing mRNA translation or triggering mRNA degradation. Locations of immune related genes 

and key miRNA regions are indicated in Figure 2.1.   

 

Figure 2.1: Illustration of the X chromosome indicating the five different strata and chances of genes 

escaping inactivation within each stratum. Regions lined in red contains the highest densities of 

immune associated genes while genes discussed in this review are indicated in green. Genes that 

contain intragenic miRNA are indicated in black followed by the miRNA number. XIC: X chromosome 

inactivation centre containing XIST, XACT genes; PAR: pseudoautosomal region; TLR8: Toll-like 

receptor 8; TLR7: Toll-like receptor 7; CYBB: cytochrome b-245, beta polypeptide; AR: Androgen 

receptor; CXCR3: C-X-C motif chemokine receptor 3; TNFS5: encodes CD40 ligand; NEMO: NF-kB 

essential modulator; IRAK1: Interleukin-1 receptor associated kinase 1; HUWE1: HECT, UBA & WWE 

domain containing 1; GABRA3: Gamma-aminobutyric acid A receptor subunit alpha 3. 

The androgen receptor, a sex hormone receptor that inhibits antibody production is also coded on the 

X chromosome, showing that even the effect of sex hormones can be amplified by the X-linked sex 

hormone receptor genes (144). Sex hormones are involved in the immune response, and multiple 

immune related cells, including T-cells, B-cells, natural killer cells, macrophages and dendritic cells 

express estrogen receptors (ER-alpha and ER-beta), indicating that immune related cells are partly 

controlled by the female sex steroid hormone estrogen (144,165,166). In humans it is evident that 

females have increased resistance against microbial infections, which suggests that females have a 

more vigorous immune defence against most invading pathogens (167–170). Females also have 

higher antibody responses and more adverse reactions in response to a number of vaccines (144).  

Estrogen acts as an immune activator while testosterone acts as an immune suppressor (144,171). 
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Testosterone has been shown to have an inhibitory effect on the immune system through upregulation 

of anti-inflammatory cytokines (IL-10), while estrogen enhances the immune system by upregulating 

pro-inflammatory cytokines (TNFα) (172). In line with these hormone functions, it has been observed 

that for some diseases the male bias becomes apparent only after sexual maturation (ages 15-16 

years) and female progression to disease and mortality rates are altered during their reproductive 

years (173). However, sex-based differences in immune responses exist between pre-pubertal girls 

and boys as well as post-menopausal women and elderly men, indicating that sex bias is present 

without the involvement of hormones (144). These differences could be attributed to the complexity 

of studying the impact of hormones on disease susceptibility while using different experimental 

designs between studies (140).  Sex hormones also vary with age and physiological state of the 

individual and can regulate transcription of many genes involved in the development and maturation 

of immune cells. They also influence the regulation and modulation of the immune response and 

immune signalling pathways (174). Although both sex-hormones and the X chromosome affect the 

immune system, the effects of these two factors are likely independent of each other (140).  

2.5 X chromosome inactivation 
Females carry both a maternal and paternal X chromosome, while males carry only a maternal copy. 

In order to regulate dosage expression of X-linked genes, one X chromosome is inactivated in 

females, resulting in them being functional mosaics for X-linked genes (164). XCI is initiated in early 

fetal development and either the maternal or paternal X chromosome is randomly silenced in XX cells. 

This is maintained through epigenetic mechanisms in subsequent cellular divisions to ensure 

balanced expression X-linked genes in females (175).  

XCI developed as a response to gene loss in the Y chromosome during the evolutionary development 

of the human sex chromosomes (150). Mammalian sex chromosomes developed from a pair of 

autosomes approximately 300 myr ago (176). Several large-scale chromosomal inversions on the Y 

chromosome led to disruption of homology between the sex chromosomes, suppressing 

recombination and resulting in Y chromosomal gene loss in the inverted chromosomal region (150). 

These inversions on the Y chromosome are referred to as strata as indicated in figure 1. Following 

gene loss on the Y chromosome X-linked gene expression needed to be increased in males to control 

the dosage of gene expression from the single X chromosome. In female’s upregulation of X-linked 

genes would disrupt dosage compensation as they have two X chromosomes and as a result one X 

chromosome is inactivated. However gene expression is upregulated on the active X chromosome in 

order to regulate dosage (177,178). XCI is a vital mechanism in females as many X-linked genes are 

extremely dosage sensitive and any disruption of the dosage compensation mechanism could have 

severe developmental and health consequences (177).  

Mary Lyon first proposed the XCI hypothesis based on her observations in mice (179) and since then 

significant progress has been made in elucidating the XCI mechanism in mice. The XCI mechanism 
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in humans is still unclear and beyond the scope of this review but discussed elsewhere 

(177,180,181,181–186). Briefly human XCI is thought to be controlled by the X inactivation centre 

(XIC), an X-linked locus located at Xq13 (Figure 2.1) and containing multiple protein and RNA coding 

genes potentially involved in the XCI mechanism (187). The two main long noncoding RNAs identified 

thus far are the X-inactivation specific transcript (XIST), responsible for silencing and the X active 

specific transcript (XACT) which keeps the X chromosome active (188–191). The exact mechanisms 

of how these lncRNAs determine the state of a X chromosome is still unclear and it has also been 

proposed that a third regulatory element, potentially coded by a gene on chromosome 19 is also 

involved in the XCI process (177). Hypotheses about the lncRNAs as well as an autosomal regulatory 

element are discussed in detail elsewhere (177,187,192–195). While the exact mechanisms are 

unclear, the importance of these lncRNAs have been validated as SNPs or mutations in the XIC can 

have severe effects on XCI, by disrupting dosage compensation, which could impact on female 

development and health (177,196). In fact, evidence of the effect of XCI can be seen in tumorigenesis 

and noncongenital diseases, where loss of XCI control has led to tissue instability and decreased 

defence against diseases (139,197,198), including autoimmune diseases (199). 

While disruption of XCI could be detrimental to females as it disrupts dosage compensation, the 

mosaic nature as a result of XCI could give them a distinct advantage over males (140,181). 

Deleterious X-linked mutations have large effects and could lead to death or disease in males due to 

them being haploid for X-linked genes. In females however, random inactivation leads to a mosaic 

makeup where about half of the cell population expresses the mutant allele while the other half 

expresses the wild type allele. This heterozygous expression means the wild type allele can 

compensate for the mutant allele and lessen the impact or penetrance of this allele in females 

compared to males (177). This mosaic advantage in heterozygous females can be further 

compounded by non-random or skewed inactivation and genes that escape silencing.   

2.6 Escaping X inactivation and skewed or non-random inactivation 
While the XCI process in humans is not yet fully understood, studies of human aneuploidy indicate 

that in a diploid human cell there is always just one active X chromosome in either sex (177,181). In 

Turner syndrome individuals have only one sex chromosome (one X chromosome, X0) which is kept 

active, while in males with Klinefelter syndrome (XXY) one X chromosome is silenced (177). This 

suggests that the human XCI mechanisms protects one X chromosome while inactivating all others.  

However, some X-linked genes have Y homologs (most of them situated on the distal end of Xp and 

PAR regions) and thus two copies are present in males and females. To maintain dosage balance 

between the sexes these XY genes escape silencing. Most genes that escape silencing are located 

in the Xp region and are often depleted in repressive marks associated with XCI and enriched for 

markers associated with active gene transcription (200). These regions that escape inactivation carry 

features associated with active chromatin (201). This suggests that genes that escape silencing are 
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subjected to a regional bias, which correlates with the theory that distal genes in younger strata 

(regions on the X chromosome that differentiated from the Y chromosome last and contain more XY 

genes than older strata) have a higher chance of escaping inactivation.  

More recent evidence extrapolated on the idea of regional bias in escape from inactivation and 

showed that the chance of genes escaping silencing is also dependent on a gene to gene specific 

bias (176). This is supported by the fact that approximately 15-20 % of X-linked genes outside of PAR 

also escape silencing even though they are subject to less regional bias. Naqvi et al. (176) classified 

X-linked genes into 3 classes, namely X-linked genes with a surviving homolog (class 1) and X-linked 

genes without a surviving homolog that are either subject to XCI (class 2) or escape silencing (class 

3) (176). These three classes of X-linked genes differ based on dosage sensitivities. Class 1 genes 

were most dosage sensitive and expression required strict regulation, while class 2 genes had 

intermediate dosage sensitivity while class 3 genes that escaped silencing had the lowest dosage 

sensitivity (176). This suggests that genes that escape silencing are subjected to regional bias and 

the chance of escape depends on the sensitivity of that gene to changes in dosage. While defects in 

the XCI mechanism could disrupt the XCI pattern of dosage sensitive genes and be detrimental to the 

health and development of females, genes that are less sensitive to dosage could escape resulting 

in altered gene expression between the sexes and potentially contribute towards a sex-specific 

phenotype, which could contribute to sex biases in disease susceptibility (140,161,202).  

Random inactivation ideally leads to a balanced mosaic of X-linked genes in females. However, this 

balance can be disrupted, especially in heterozygous females carrying deleterious mutations on one 

or both X chromosomes, or if the XCI mechanism is defective, leading to a skewed inactivation 

pattern. Skewed inactivation is the process by which one X chromosome is preferentially silenced in 

over 75% of cells. If a cell has a deleterious mutation on the active X chromosome it could alter the 

viability of the cell and even lead to cell death, suggesting that these mutations could lead to positive 

or negative selection of a specific active X chromosome (203,204). The extent of this selection 

pressure is correlated with three factors. Firstly, the viability of the cell which will be determined by 

the active X chromosome. If cells with an active X chromosome with a detrimental gene die, then only 

cells with the viable gene will propagate. This depends on the type of mutation (synonymous or non-

synonymous) and its effect on gene function. Second, the gene function can influence the skewing if 

it is tissue-specific while a constitutively expressed gene could affect the skewing on a global scale. 

Finally, genes escaping inactivation can also influence selection as they will influence the penetrance 

of the mutated gene (205). While cell viability combined with XCI can skew inactivation patterns, other 

aspects can also lead to non-random inactivation. Defects in the XCI mechanism can also lead to 

skewed inactivation and SNPs in the XIST gene correlates with skewing. Plenge et al. (196) showed 

that skewed inactivation profiles in multiple females occurred due to a C to G transversion in the 

promoter region of the XIST gene (196). However, some females with this transversion still had nearly 
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random inactivation suggesting that the transversion alone is not enough to skew inactivation and 

some other defect compounding the effects is likely present as well.  

Other factors that can result in skewed inactivation is reduced number of embryonic cells at the onset 

of XCI and age. The lower the number of cells at the onset of XCI the higher the chance of observing 

non-random inactivation and any bottleneck during development that limits the number of cells can 

lead to skewed inactivation (205). Age has also been correlated with degree of skewing which seems 

to increase in older women (206–209). The exact reason why skewing increases with age is unclear, 

but it could be as a result of stochastic loss and genetic selection of subtle SNPs, gradually increasing 

their penetrance over time due to increased skewing in the XCI pattern (206,207,210,211). The 

causes of skewed XCI discussed here suggest that this process is genetically determined (203) and 

can give females an advantage by protecting them from deleterious mutations and their effects. 

However, skewed inactivation patterns have also been observed in numerous tumours and cancer 

types (200,212). This suggests that the combined impact of XCI, genes that escape silencing and 

skewing can lead to sex-specific phenotypes and potentially affect disease and developmental bias 

between the sexes.  

2.7 X chromosome and infectious disease susceptibility 
It is well documented that females have a stronger innate and humoral immune response than males 

and are thus less susceptible to many bacterial, fungal, parasitic and viral infections, while being more 

prone to developing an autoimmune disease or malignancies (Table 2.1, (168)). However as not every 

microorganism elicits a sex-differentiated response it has been proposed that the invading organisms 

and how they interact with the host are important contributing factors to whether or not the host 

immune response will differ between the sexes (213).  

Table 2.1: Sex bias of selected bacterial, fungal, parasitic and viral infections. 

Infection Organism Disease Bias Reference 

Bacterial Treponema pallidum syphilis male (214–216) 

Borrelia burgdorferi Lyme disease Male (age) (217,218) 

Vibrio vulnificus Infection Male (219) 

Staphylococcus aureus Infection Male (220,221) 

Pseudomonas 

aeruginosa 

Infection Male (220,221) 

Escherichia coli Bacteraemias Female (220,221) 

Fungal Cryptococcus 

neoformans 

fungal meningitis Male (222–224) 

Candida albicans onychomycosis Female (225–230) 
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Infection Organism Disease Bias Reference 

Paracoccidioidal 

brasiliensis 

Infect mucosal 

membranes 

Male (231) 

Parasitic Schistosoma Schistosomiasis Male (232–234) 

Leishmania Leishmaniasis Male (232–234) 

Taenia Tapeworm Female (232–234) 

Viral Influenza A Influenza Male (141,235–

237) 

Hepatitis C Hepatitis Male (238,239) 

 

Many infections exhibit sex biased incidence rates and many of them present with a male bias (Table 

2.1). While age and sex hormones contribute, as in the case of Lyme disease and Hepatitis, these 

factors do not fully account for this (217,218,238,239). This suggests that the X chromosome and XCI 

may contribute to this bias. Supporting evidence from this can be taken from the mouse four core 

genotype (FCG) model. In this model the sex chromosome complement of the mice (XX or XY) does 

not relate to the gonadal sex, allowing for both XX males and females as well as XY males and 

females (240). This allows the study of the phenotypic effect based on sex complement, with and 

without the influence of sex hormones. Studies using the FCG model have identified differences in 

behaviour, gene expression, disease susceptibility that were solely due to sex chromosome 

complement and independent of sex hormones (240).  

While the FCG is only a model it can still provide useful information and shows that sex chromosome 

complements, X-linked genes and XCI can severely impact sex-differences in phenotype. Recent 

studies in female T and B cells could explain the enhanced female immune response to infection. XCI 

in female lymphocytes is predisposed to become partially reactivated, allowing genes to escape 

silencing leading to overexpression of immune related genes (193,241). Female T-cells had biallelic 

expression of CD40LG, CXCR3 and TLR7. The same was observed for B-cells where biallelic 

expression and increased transcription of X-linked immune-related genes was observed (241). 

Furthermore, in both T and B-cells the XIST RNA pattern was dispersed and the inactivated X 

chromosome lacked typical heterochromatic modifications usually associated with the inactive X 

chromosome (241).  

These studies in female lymphocytes provide mechanistic evidence for enhanced female immunity to 

infectious diseases and the involvement of X-linked genes and XCI. The enhanced immune response 

and increased expression of immune related genes could also explain why females are more prone 

to developing autoimmune disorders (140,168,241,242).    
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2.8 X chromosome and tuberculosis 
TB, caused by the bacterium Mycobacterium tuberculosis, is the leading cause of death due to a 

single infectious agent worldwide. Approximately one quarter of the world’s population is infected with 

the bacterium, but only 5-15% will develop active TB (Houben and Dodd, 2016). The severity of this 

pandemic is exacerbated by the emergence of multidrug-resistant and extensively drug-resistant 

(MDR and XDR) M. tuberculosis strains. Although vital to the affected individual, it is clear that 

antimycobacterial treatment alone will not eradicate this disease. Host-directed therapy is emerging 

as a complementary approach to reduce the global TB burden, but will require an improved 

understanding of the host immune response and the genetic mechanisms that underlie it (244). To 

date, variants of genes involved in both the innate and adaptive immune responses have been 

associated with TB (reviewed by (245)). However, these investigations have been largely aimed at 

the autosome, while excluding the X chromosome. Given the high density of immune related genes 

on the X chromosome (144) and the fact that TB presents with a clear sex bias across populations, 

this is a serious oversight (246).  

In most countries the TB notification rate is twice as high in HIV negative males than in HIV negative 

females  (246). This ratio ranged from 1.56 to 2.73 and while it differs between countries, it was clear 

that more men than women are affected regardless of ethnicity or geographical location. 

Epidemiological data has shown that males and females differ in infection prevalence, varying rates 

of progression, differences in incidence of clinical disease and mortality rates due to TB (247). The 

cause of this male sex bias is not fully understood, but may include socioeconomic and behavioural 

factors, such as the underreporting of female cases and/or access to healthcare (166,248–250). 

However, these differences in case reporting may influence the bias but cannot explain the consistent 

global trend for male bias in TB (165). In a large meta-analysis including 29 surveys from 14 countries, 

a strong male bias was found in both TB notifications and prevalence and it was concluded that access 

to healthcare is not a confounding factor (251). This was replicated by Salim et al. (248)  who 

conducted a survey of 223 936 individuals in Bangladesh and identified 7 001 TB suspects at a female 

to male ratio of 0.52:1. Sputum was obtained from these individuals and 64 positive TB cases were 

identified at a female to male ratio of 0.33:1. These observed ratios did not differ much and were in 

fact lower than the female to male ratio observed through diagnosis in clinics which stood at 0.42:1. 

The authors concluded that reduced access of women to health care facilities does not significantly 

influence the bias seen (248). In a study conducted in Syria, men and women did not have different 

knowledge or attitudes towards TB, but women reported more barriers to seeking health care. They 

were more likely to comply with treatment and had higher treatment success rates compared to men 

which could influence the bias when it comes to TB mortality (252). Furthermore, men seem to engage 

in more “high risk” TB activities, including traveling, smoking, going to bars, and hazardous careers 

(e.g. mining) (165). In high burden countries more men than women engage in smoking and it has 
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been suggested that smoking may explain up to one third of the gender bias observed in TB (253). 

Alcohol consumption could have a similar effect. However other risk factors, specifically HIV infection 

and proximity to household contacts appear to have a female bias, which suggests that although 

behaviour may influence the bias it is not sufficient to fully explain the existing sex bias in TB (165). 

Another contributing factor may be the influence of sex hormones on the immune system (discussed 

in section 2).  

Females have been shown to have a more robust immune system (as described in section 5) and 

this is in part mediated by sex hormones that control development and maturation of immune cells 

(T-cells, macrophages, neutrophils) involved in combating TB. Type 1 T helper cells (Th1) are affected 

differently by male and female sex hormones. Testosterone upregulates IL-10 while down regulating 

IFN-γ (254), and estrogen increases IFN-γ, TNFα and IL-12 production while supressing production 

of IL-10 (255). Macrophages, which play a central role in controlling TB through active killing of 

mycobacteria, are also influenced by sex hormones. The female hormone estradiol has been shown 

to enhance macrophage activation (173), while testosterone down regulates macrophage activation 

by decreasing expression of TLR4, a vital receptor for detecting M. tuberculosis and initiating the 

innate immune response (167). Neutrophils have recently garnered interest with regards to their role 

in protection against TB and have been proposed to be the predominantly infected phagocytic cell 

type in pulmonary tuberculosis (pTB) (256). Neutrophil recruitment to areas of infection needs to be 

balanced as under and over recruitment of neutrophils can have a detrimental effect on tissue 

pathology (257). In response to trauma, testosterone decreases neutrophil activation while estrogen 

increases it, but the effect of this on TB is unknown and requires further investigation (258). As 

neutrophil recruitment needs to be balanced to avoid under or over recruitment to sites of infection it 

stands to reason that the regulation of this recruiting mechanism is of vital importance. In fact, miRNA-

223 (Xq12, figure 1), previously identified to be involved in the immune response by Pinheiro et al. 

(259) can limit recruitment of neutrophils by down regulating chemokine (C-X-C motif) ligand 2 

(CXCL2) and chemokine (C-C motif) ligand 3 (CCL3). Mice with a miRNA-223 knockout were more 

susceptible to M. tuberculosis,  due to excessive neutrophil accumulation in the lungs which 

subsequently led to tissue damage (260). Given that miRNA-233 is X-linked, is subject to the effects 

of skewed inactivation or may escape silencing, it could be differentially expressed between males 

and females. Up regulation due to escape from silencing or preferential expression of one gene copy 

due to skewed inactivation could down regulate recruitment and thus the pathological accumulation 

of neutrophils leading to a sex bias in TB susceptibility. Clearly these factors do not fully explain the 

male bias associated with TB disease development, suggesting that the host genotype, specifically 

the X chromosome, may also contribute.  

The third possible reason for the sex bias in TB susceptibility is linked to the X chromosome where 

skewed inactivation or genes escaping silencing could give females an enhanced immune response 
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against M. tuberculosis. Some of the earliest evidence of this X-linked genetic contribution to sex bias 

in TB susceptibility came from the “Lübeck Disaster” in 1929. Bacillus Calmette–Guérin (BCG) 

vaccine accidentally contaminated with M. tuberculosis was administered to 251 neonates. 173 of 

these children developed signs of active TB but recovered, while 72 died and during follow-up male 

children were more likely to have poor outcomes than females (261). Evidence from studies of 

Mendelian susceptibility to mycobacterial disease (MSMD) also supports the influence of the X 

chromosome to disease susceptibility. MSMD is a rare congenital syndrome that results in the 

predisposition to diseases caused by non-virulent mycobacteria, BCG vaccines and environmental 

mycobacteria known not to be disease causing in humans (262). MSMD is classified into two types, 

where autosomal MSMD is linked to defects in 5 autosomal genes (IFNGR1, IFNGR2, STAT1, 

IL12RB1 and IL12B) involved in the interleukin 12/23 dependant interferon γ (IFN-γ) mediated 

immune response (263). On the other hand X-linked recessive (XR)-MSMD is less well understood 

(163). Several genetic defects have been proposed to cause XR-MSMD, and based on the genes 

involved, XR-MSMD can be further subdivided into two types, XR-MSMD type 1 and XR-MSMD type 

2. Type 1 XR-MSMD is caused by mutations in the leucine zipper domain of the NF-kB essential 

modulator (NEMO) gene, which selectively impairs the CD40 and NF-kB/c-Rel-mediated induction of 

IL-12 production by monocytes and monocyte derived dendritic cells (262). Predisposition of type 2 

XR-MSMD is increased by mutations in two regions on the X chromosome, Xp11.4-Xp21.2 (129 

known genes) and Xq25-Xq26.3 (70 known genes). These regions may cause XR-MSMD 

independent of NEMO and Bustamante et al. (264) proposed that variants in the cytochrome b-245 

beta polypeptide (CYBB) gene could predispose to XR-MSMD-2 due to their selective effect on 

macrophages. CYBB encodes the gp91 protein, which is an essential component of the NADPH 

oxidase complex and severely affects respiratory burst in macrophages, thereby impeding their 

function and predisposing to XR-MSMD-2. NEMO and CYBB are both X-linked genes that affect 

immune related cells and as such can alter susceptibility to TB. XR-MSMD, like TB, shows a sex bias 

and affects more males than females which can be attributed to females carrying two X chromosomes. 

If one of the X chromosomes carries a defective NEMO or CYBB gene random XCI can result in the 

functional gene product still being expressed and reducing the risk of disease. Skewed inactivation or 

escape from silencing could further increase the observed sex bias as NEMO and CYBB have a low 

(stratum S1) and high (stratum S4) chance of escaping inactivation (figure 1). However, TB in 

immunocompetent individuals is a multigenic disease linked to variants in multiple genes that have a 

cumulative effect on disease susceptibility and is even further complicated by gene-gene interactions.  

The first genome-wide linkage analysis of TB susceptibility identified the chromosome Xq26 region 

as containing susceptibility genes, but did not specifically investigate sex bias (265). Although no 

specific genes could be identified, the CD40 ligand encoded by the TNFSF5 gene at Xq26.3 showed 

promise (figure 1), but requires further investigation (265). A study by Campbell et al. (266) on 121 
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TB cases and their parents identified a TNFSF5 (a CD40 ligand) variant (-726) to be associated with 

TB susceptibility in males. However, they failed to replicate this association in a West African cohort 

of 1200 individuals. 

More recently, sex-specific associations with genetic variants in the X-linked toll-like receptor (TLR) 8 

gene (Table 2), which encodes a pattern recognition receptor, were identified (132,134–138). Davila 

et al. (135) identified four variants in TLR8 (rs3764879, rs3788935, rs3761624 and rs3764880) that 

were significantly associated with TB susceptibility in Indonesian males, but not females. These 

findings were validated in a male only cohort from Russia and all four variants were again significantly 

associated with TB susceptibility in males (267). A second study conducted in a paediatric Turkish 

cohort showed a significant association between rs3764880 and TB susceptibility in males but not 

females and rs3764879 showed no significant association in this cohort (268). Hashemi-Shahri et al. 

(136) also investigated the influence of rs3764880 on TB susceptibility in a cohort from Iran but found 

no association in either males or females. Significant associations were found for both males and 

females in a Pakistani cohort for rs3764880, but males were more strongly associated (p=0.0013 for 

females and p<0.0001 for males) (269). Salie et al. (138) was the first to identify an association 

between rs3761624 and TB disease in females only (p<0.001 for females and p=0.164 for males). 

Two SNPs, namely rs3764879 and rs3764880, were also investigated in this South African Coloured 

(SAC) population and were significantly associated in both males and females, but with opposite 

effects. Finally, Lai et al. (137) showed that rs3764879 was significantly associated with TB in males 

but not females. The conflicting results of these studies investigating TLR8 may be explained by 

cohort size, ethnicity, M. tuberculosis strain and environmental factors.  

It is clear that the X chromosome and XCI (section 5) is significantly involved in TB susceptibility and 

the male sex-bias and future studies will need to focus on elucidating these effects. Fully 

understanding the sex-biased nature of TB will allow for medication tailored to a specific sex, which 

could improve treatment outcome, decrease the global TB burden and stem the tide of emerging drug 

resistant M. tuberculosis strains.   

Table 2.2: TLR8 association studies from different populations. 

Study Cohort Case Control SNP Allele Gender OR* 95% CI* P-value 

Davila 

et al. 

(135) 

Indonesia 

 

77 49 rs3764879 C Male 1.9 1.2-2.7 0.012 

76 74 rs3764879 C Female 1.1 0.8-1.7 0.44 

76 51 rs3761624 A Male 1.8 1.2-2.8 0.007 

76 74 rs3761624 A Female 1.1 0.8-1.7 0.44 

76 50 rs3788935 A Male 1.8 1.2-2.7 0.017 

76 74 rs3788935 A Female 1.1 0.8-1.7 0.44 
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Study Cohort Case Control SNP Allele Gender OR* 95% CI* P-value 

76 51 rs3764880 A Male 1.8 1.2-2.9 0.007 

76 74 rs3764880 A Female 1.1 0.8-1.7 0.44 

Russia 

 

1067 994 rs3764879 C Male 1.2 1.02-1.48 0.03 

1069 997 rs3788935 A Male 1.2 1.02-1.48 0.03 

1070 1000 rs3761624 A Male 1.2 1.01-1.46 0.04 

1069 997 rs3764880 A Male 1.2 1.02-1.48 0.03 

Dalgic 

et al. 

(134) 

Turkish 

children 

72 62 rs3764880 A Male 0.43 0.16-0.72 0.007 

156 124 rs3764880 A Female NS NS NS 

72 62 rs3764879 C Male NS NS NS 

156 124 rs3764879 C Female NS NS NS 

Hashem

i-Shahri 

et al. 

(136) 

Iran 

77 62 rs3764880 G Male 1.15 0.84-1.59 0.80 

196 166 rs3764880 G Female 1.15 0.75-1.75 0.51 

Bukhari 

et al. 

(132) 

Pakistan 

45 22 rs3764880 A Male / / <0.0001 

58 65 rs3764880 A Female 0.363 0.199-

0.660 

0.0013 

Salie et 

al. (138) 
SAC 

204 99 rs3761624 A Male / / 0.164 

217 336 rs3761624 A Female 1.54 1.19-1.99 <0.001 

205 99 rs3764879 C Male 0.72 0.55-0.93 0.013 

220 334 rs3764879 C Female 1.41 1.08-1.83 0.011 

1887 81 rs3764880 A Male 0.75 0.57-0.98 0.036 

199 306 rs3764880 A Female 1.42 1.09-1.87 0.011 

Lai et al. 

(137) 
Chinese 

96 146 rs3764879 C Male 4.04 1.82-8.99 <0.001 

40 97 rs3764879 C Female 5.05 0.44-57.38 0.191 

*OR: Odds ratio; 95% CI: 95% confidence interval 

2.9 Discussion and concluding remarks 
It is clear that sex-specific effects contribute to infectious disease susceptibility and females have a 

major immunological advantage over males. Understanding the origin of sex bias could guide 

treatment by allowing sex-specific diagnostic and treatment regimes, thereby decreasing time to 

initiation of treatment as well as increasing treatment success of diseases with sex differences. The 

X chromosome may contribute to the missing heritability or contain biomarkers that could be used as 

diagnostic tools. As analytical tools are now available to fully include the X chromosome in genetic 

analyses, it is clear that the X chromosome should not be ignored. Importantly, due to the haploid 
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nature of males the power to detect a significant association will be halved when compared to a female 

cohort of similar size and this could have an effect on the results of sex-stratified analysis. Thus, care 

must be taken when analysing results, and a non-significant association in one sex does not imply 

that that specific sex is not affected by the variant but could simply be as a result of insufficient power 

to detect a sex specific association. 

While socioeconomic and behavioural factors as well as sex hormones do influence sex bias, these 

factors do not fully account for it, which leads to the conclusion that the X chromosome itself is likely 

to greatly influence the immune response and sex bias in disease susceptibility. The X chromosome 

contains multiple immune-related genes and immune regulatory elements as well as the XIC that 

regulates X chromosome inactivation. It is therefore clear that the X chromosome is involved in the 

immune response and genes that escape inactivation or are preferentially inactivated could influence 

the dosage of X-linked gene expression between the sexes and as such could further influence the 

sex bias in disease. It is thus of vital importance that the XCI mechanisms be further investigated to 

understand all the regulatory elements involved and the contribution to sex bias. Furthermore, the 

role of the X chromosome in the innate and adaptive immune response should be extensively 

investigated to determine how it contributes and differs between the sexes. Elucidating the function 

of the X chromosome and including it in biological studies and analyses could improve the 

understanding of complex diseases such as TB.  
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3.1 Abstract  
Recently admixed populations provide us with a unique opportunity to study population history and 

fine-map disease loci. The South African Coloured population is a complex admixed group with at 

least 5 ancestral populations (Bantu-speaking African, KhoeSan, European, South and East Asian). 

Previous studies suggested the presence of sex-biased admixture within this population, as well as 

others in South Africa, however, the evidence for sex-biased admixture is limited and under-

investigated. Determining sex-biased admixture can inform recent population dynamics and it is vital 

to include this as a confounder during X-linked association studies of diseases that present with a 

sex-bias.  

Significant sex-biased admixture for Bantu-speaking African, KhoeSan and European ancestry was 

identified using global admixture inference. The results presented here correlate with previous results 

based on mtDNA and Y chromosome markers, revealing a female bias for the KhoeSan and a male 

bias for the European and Bantu-speaking African ancestral components. The Asian components did 

not present a strong bias in this admixed population.  

Here we show that global ancestry inference on the autosome and X chromosome can successfully 

be used to quickly and accurately identify the presence of sex-biased admixture in a highly admixed 

population, without the need for mtDNA and Y chromosome data.  

3.2 Introduction 
Genetic admixture is the process by which new genetic lineages are introduced into a population 

through the interbreeding of two or more previously isolated populations (270). Analysing the 

distribution of ancestral components in recently admixed individuals allows the study of population 

history and natural selection and can even be used to fine-map disease-causing variants (94,99). 

Previous investigations into sex-bias were done by comparing admixed and ancestral lineages using 

genetic material inherited from only one sex such as mitochondrial DNA (mtDNA) in females and the 

Y chromosome in males. By identifying the source populations of lineages present in the mtDNA and 

Y chromosomes of an admixed group, sex-biased admixture can be elucidated. A female bias is 

present when lineages from a specific ancestral population are increased in the mtDNA compared to 

the Y chromosome (271). This type of analysis has been used to identify sex-biased admixture in 

Icelanders (272), Tibeto-Burman (273), Native Americans (274,275), African Americans (276,277) 

and the SAC population (278).  

An alternative method of investigating sex-biased admixture is to analyse the ancestral distribution 

on the X chromosome compared to the autosome. This method is dependent on the X chromosome 

spending 2/3 of its time in females while undergoing recombination and 1/3 of its time in males without 

recombination. In contrast, autosomes always experiences recombination and as a result the X 

chromosome retains longer linkage disequilibrium blocks than the autosome, which can be used to 
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investigate sex-bias (146,147). In a 2-way admixed population, if the mean ancestral component of 

population 1 is higher on the X chromosome than the autosome then this is an indication of female 

sex-bias from ancestral population 1 and male bias from ancestral population 2. It could however also 

indicate a female bias from both population 1 and 2, but a higher contribution from population 1. 

Alternatively it could indicate a male bias from both population 1 and 2 with more influx from population 

2 (279). As a result of these alternative interpretations, historical evidence should always be used to 

corroborate the findings. This method quickly and effectively indicates sex-biased admixture and was 

previously implemented successfully in a three-way admixed African-American and Hispanic 

population (156–158). Computer simulations indicate that the method has high accuracy in 

populations that experienced a single admixture event, but it is less accurate if the population 

experienced continuous admixture (14). The SAC population is characterised by recent, continuous 

admixture (85,278), so it is unclear how well this method will perform. Furthermore, this method has 

not been tested on a complex admixed population such as the SAC.  

The SAC population arose from relatively recent admixture resulting from the early encounters of 

European and Bantu-speaking African males with KhoeSan females at the Cape of Good Hope (South 

Africa) approximately 350 years ago (278,280). Ancestral contributions from the KhoeSan, Bantu-

speaking African, European and South and East Asian populations are present in this group(278,280). 

Previous work using mtDNA and Y chromosome markers has shown that the ancestral distribution 

among SAC individuals is characterised by sex-biased admixture (278). The KhoeSan and South and 

East Asian ancestral components were female biased, while the European and Bantu-speaking 

African components were male biased (278).  

We performed sex-biased admixture analysis in the SAC by investigating the distribution of ancestral 

components between the autosome and X chromosome. The results were compared to previous 

mtDNA and Y chromosome data to assess how accurately the admixture method calculates sex-bias 

in a 5-way admixed population.  

3.3 Methods 

3.3.1 Genotyping data 

DNA was extracted from blood samples of SAC individual’s as reported previously (281). Ethics 

approval was obtained from the Health Research Ethics Committee of Stellenbosch University 

(project registration number S17/01/013, 95/072 and NO6/07/132) before participant recruitment. 

Written informed consent was obtained from all study participants prior to blood collection. In total 800 

samples from the SAC were genotyped on the Illumina Multi ethnic genotyping array (MEGA, Illumina, 

Miami, USA). The reference populations used to infer ancestry were Europeans (Utah Residents with 

Northern and Western European Ancestry) and South Asian (Gujarati Indians in Houston, Texas and 

Pathan of Punjab) obtained from the 1000 Genomes Phase 3 data (81) and East Asian (Han Chinese 
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in Beijing, China and Japanese, Tokyo, Japan), African (Luhya in Webuye, Kenya, Bantu-speaking 

African, Yoruba from Nigeria) and KhoeSan (Nama/Khomani) (103,282). The Zcall software was used 

to recall rare genotypes (MAF < 5%) for all datasets before aligning them to the 1000 Genomes Phase 

3 reference panel and removing all ambiguous variants (81,283). PLINK v 1.07 (284) was used to 

check for sex concordance prior to merging all datasets. The merged data was filtered for Hardy 

Weinberg Equilibrium (<0.05), minor allele frequency (<0.03) and individual and SNP missingness 

(>10%) using PLINK (v1.07). Finally, all variants on the X chromosome that were heterozygous in 

males were removed and the merged dataset was checked for ambiguous variants using PLINK 

(v1.07) and snpflip3 version v0.0.6 respectively.  

3.3.2 Admixture analysis 

For the admixture analysis the software ADMIXTURE 1.3 was used (154). Due to the level of 

relatedness in the SAC and the limited number of individuals per reference population, the SAC 

individuals were split into 20 running groups. A running group is a set of unrelated individuals for 

which admixture is to be inferred. Due to the limited number of reference individuals not all SAC data 

can be run simultaneously and thus needs to be split up. Each running group contains on average 42 

unrelated SAC individuals, matching the number of individuals per reference population. Relatedness 

for the SAC was determined from the genotyping data using the software KING (version 2.1.4) (285). 

For each running group, Admixture was inferred five times at random seed values for both the 

autosome and X chromosome separately. For the X chromosome the ADMIXTURE software was run 

in haploid mode for males (--haploid=”male:23”) in order to ensure accurate admixture inference for 

haploid genotypes (286). The values for the five runs were then averaged for each individual before 

the results were analysed. ADMIXTURE was run at K=5 as we were interested in the 5 main SAC 

ancestral components. Pong (version 1.4.7) was used to visualise the admixture results across all 

runs (287). 

3.3.3 Sex-bias analysis 

Sex-bias was analysed by comparing the distribution of each ancestral component between the 

autosome and X chromosome. The data was assessed for normality (Figure S3.1) upon which a 

Wilcoxon signed rank test (a paired test for skewed data) was implemented, using the R programming 

environment (version 3.2.4 (142)), to determine significant differences in ancestral distribution. Since 

5 ancestral populations were investigated, the Bonferroni correction for multiple tests was applied for 

the 5 tests performed, at a family-wise alpha threshold of 0.05. The results were also compared to 

previous results on sex-biased admixture in the SAC using mtDNA and Y chromosome markers in 

order to determine how the X chromosome-based sex-bias analysis compares.  

                                                
3 https://github.com/biocore-ntnu/snpflip 
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3.4 Results 
Following quality control and merging of the data, a total of 558,213 autosomal and 13,399 X 

chromosome variants overlapped between all the datasets. The results for the global ancestry 

inference are shown in Figure 3.1 and 3.2 and the mean and standard deviations of each ancestral 

component are shown in Table 3.1 for both the autosome and X chromosome. On average the SAC 

individuals possess 28% Bantu-speaking African, 20.5% European, 27.1% KhoeSan, 14.7% South 

Asian and 9.6% East Asian ancestry on the autosome. These mean autosomal ancestral components 

reflect previous results of admixture analysis in the SAC population (85,99) ensuring accuracy of the 

inference. As shown in Table 3.1 and Figure 3.2 the mean for the Bantu-speaking African (p-value = 

7.16e-5) and European (p-value = 1.47e-31) component is significantly larger on the autosome, 

following multiple test correction, suggesting a male bias. Contributions from the KhoeSan population 

(p-value = 1.78e-20) present with a significantly higher mean on the X chromosome compared to the 

autosome, indicating a female bias. The East Asian component passed the significance threshold (p-

value = 0.038) following multiple testing correction (female bias), while the South Asian component 

did not reach statistical significance (p-value = 0.32), but the mean values for the South Asian 

components were slightly higher in females compared to males. 
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Figure 3.1: Admixture plot for all SAC and reference individuals for the autosome (A) and X chromosome (B). Each column represents one 
individual and all individuals are aligned between (A) and (B). 
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Table 3.1: Sex-biased distribution of each ancestral component. 

Population 

Median Mean 

Bias 
p-value 

adjusted Autosome X chromosome Autosome X chromosome 

African 0.236 0.203 0.280 0.267 Male 7.16e-5 

European 0.153 0.051 0.205 0.162 Male 1.47e-31 

KhoeSan 0.261 0.294 0.271 0.328 Female 1.78e-20 

South Asian 0.112 0.061 0.147 0.148 Female 3.20e-1 

East Asian 0.055 0.028 0.096 0.099 Female 3.80e-2 

 

 

Figure 3.2: Boxplot of Autosomal (grey) and X chromosome (green) ancestral components 
indicating median values (thick black line), first and third quartile (box) and range (whiskers). 

3.5 Discussion  
We used global ancestry inference on the autosome and X chromosome to detect sex-biased 

admixture in the 5-way admixed SAC population. Previous sex-bias analysis of this population using 

mtDNA and Y chromosome markers indicated that the SAC population has a strong female KhoeSan 

bias with 60% of mtDNA and between 5.3% - 20% Y chromosome lineages originating from the 

KhoeSan population. The Bantu-speaking African and the European lineages indicated a male bias 

with a 19% mtDNA and at least 24% Y chromosome lineages from Bantu-speaking African 

populations and a 4.6% mtDNA and 32.5% Y chromosome lineages from European populations. 

Finally, for the South and South East Asian components previous results indicate only slight 
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differences between maternal and paternal contributions (278). For the South Asian component 8.7% 

mtDNA and 9.6% Y chromosome lineages were identified, while the South East Asian component 

had 7.6% mtDNA and 7.4% Y chromosome lineages, suggesting no sex-bias for the Asian 

components (278).  

Our results show concordance with previous findings, which indicate a significant male bias from 

Bantu-speaking African and European ancestral populations and a significant female bias for the 

KhoeSan component (Table 3.1). For the South and East Asian component, the differences between 

maternal and paternal contributions were not significant in previous studies, whereas here we 

identified a significant East Asian female bias in the SAC population. The South Asian component 

was not significantly different between the autosome and X chromosome and indicated a marginal 

female bias in our data while Quintana-Murci et al. (2010) showed a marginal male bias (based on 

mean values, but no statistical significance). The discrepancy in the Asian component between the 

two studies can be explained. It could simply be a result of the variation in ancestral distribution 

observed when ancestry is inferred for different individuals of the same population. As the differences 

for the Asian ancestral component between the studies is small, it could be explained by this variation 

in ancestral distribution. Furthermore, Quintana-Murci et al. (278) analysed only 20 SAC individuals 

using 64 mtDNA markers, 46 Y chromosome repeats and 14 Y chromosome tandem repeats. This 

could result in an inaccurate presentation of population-wide ancestral components which could affect 

the accuracy of the results. This accuracy could be further affected by the limited number of mtDNA 

and Y chromosome markers used to detect ancestral lineages. For this study the SNP density, 

number of individuals per reference population and SAC sample size was considerably larger, leading 

to more precise admixture inference. The increased precision could explain why a significant 

difference for the East Asian component and a marginal female bias for the South Asian component 

is identified in our study. However, increased precision in admixture inference does not imply 

increased accuracy for determining sex-biased admixture. In order to fully quantify the accuracy of 

the admixture method further studies using mtDNA and Y chromosome data from more individuals 

and with more typed markers are required, especially to fully elucidate the contributions from Asian 

populations.  

Despite the slight discrepancy in the results for the Asian components this analysis reveals that global 

ancestry inference can be used to accurately infer sex-bias in a 5-way admixed population. However, 

the accuracy of the results will depend on the precision of admixture inference and it is thus vital to 

ensure that appropriate reference populations are used (85,288). One potential limitation in this 

analysis was the fact that the SAC population experienced continuous admixture. Simulations that 

compared autosomal and X chromosome ancestral distributions lacked accuracy in populations that 

experienced continuous admixture (279). However, this was not the case for this study as it was 

possible to precisely determine sex-biased contributions from Bantu-speaking African, KhoeSan and 
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European populations, but not for Asians. This could be due to the smaller Asian genetic contribution 

to the SAC population and not necessarily due to continuous admixture events.  

Determining sex-biased admixture can inform on recent population dynamics and socio-cultural 

factors associated with the founding of emerging populations. Global admixture inference can be used 

to accurately infer sex-biased admixture in a 5-way admixed population and significant bias for Bantu-

speaking African, KhoeSan and European ancestry were identified in this study.  
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3.7 Supplementary material  

 

Figure S3.1: Histograms of the five ancestral components indicating data that is not normally 
distributed.

Stellenbosch University  https://scholar.sun.ac.za



42 
 

4 A sex-stratified genome-wide association study of 

tuberculosis using a multi-ethnic genotyping array 

Haiko Schurz 1,2*, Craig J Kinnear 1, Chris Gignoux 3, Genevieve Wojcik 4, Paul D van Helden 1, Gerard 

Tromp 1,2,5, Brenna Henn 6, Eileen G Hoal 1, Marlo Möller 1 

1 DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical 

Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human 

Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South 

Africa.  

2 South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health 

Sciences, Stellenbosch University, Cape Town, South Africa. 

3 Colorado Center for Personalized Medicine and Department of Biostatistics and Informatics, 

University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045. 

4 Department of Genetics, Stanford University, Stanford, CA, 94305. 

5 Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South 

Africa. 

6 Department of Anthropology, and the UC Davis Genome Center, University of California, Davis, CA, 

95616. 

* Corresponding author: haiko@sun.ac.za 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za

mailto:haiko@sun.ac.za


43 
 

4.1 Abstract 
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a complex disease with a known human 

genetic component. Males seem to be more affected than females and in most countries the TB 

notification rate is twice as high in males as in females. While socio-economic status, behaviour and 

sex hormones influence the male bias they do not fully account for it. Males have only one copy of 

the X chromosome, while diploid females are subject to X chromosome inactivation. In addition, the 

X chromosome codes for many immune-related genes, supporting the hypothesis that X-linked genes 

could contribute to TB susceptibility in a sex-biased manner. We report the first TB susceptibility 

genome-wide association study (GWAS) with a specific focus on sex-stratified autosomal analysis 

and the X chromosome. A total of 810 individuals (410 cases and 405 controls) from an admixed 

South African population were genotyped using the Illumina Multi Ethnic Genotyping Array, 

specifically designed as a suitable platform for diverse and admixed populations. Association testing 

was done on the autosome (827386 variants) and X chromosome (20939 variants) in a sex stratified 

and combined manner. SNP association testing was not statistically significant using a stringent cut-

off for significance but revealed likely candidate genes that warrant further investigation. A genome 

wide interaction analysis detected 16 significant interactions. Finally, the results highlight the 

importance of sex-stratified analysis as strong sex-specific effects were identified on both the 

autosome and X chromosome.  

4.2 Key words 
Tuberculosis, GWAS, Sex-bias, Host genetics, X chromosome, sex-stratified, susceptibility  

4.3 Introduction  
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) is a global health epidemic 

and the leading cause of death due to a single infectious agent (246). In 2016 1.3 million TB deaths 

were reported in HIV negative individuals and an additional 374000 deaths related to TB/HIV co-

infection were recorded. The majority of these deaths occurred in southeast Asian and African 

countries (246). TB is a complex disease, influenced by environmental and behavioural factors such 

as socio-economic status and smoking, as well as definite human genetic components. The 

contribution of the host genes to disease has been highlighted by numerous investigations, including 

animal (74), twin (59,289,290), linkage (70,265) and candidate gene association studies (291). More 

recently genome-wide association studies (GWAS) in diverse populations have been done (123–

131,133).  

Interestingly another influential factor in TB disease development is an individual’s biological sex, 

which has been largely ignored in past TB studies and was usually only used as a covariate for 

adjusting association testing statistics. In 2016, males comprised 65% of the 10.4 million recorded TB 

cases, indicating that the TB notification rate is nearly twice as high in males as in females (WHO, 
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2017). While socio-economic and behavioural factors do influence this ratio, it does not fully explain 

the observed sex-bias (140). Another factor that influences sex-bias is the effect that sex hormones 

(estrogen and testosterone) have on the immune system. Estrogen is an immune activator, 

upregulating pro-inflammatory cytokines (TNFα), while testosterone is an immune suppressor, 

upregulating anti-inflammatory cytokines (IL-10) (171). This could explain why men are more 

susceptible to infectious diseases compared to females (140). However, as sex-based differences in 

immune responses differ even between pre-pubertal boys and girls, as well as between post-

menopausal women and elderly men, it shows that sex hormones do not fully explain the sex-bias 

(144). Thus, it has been proposed that the X chromosome and X-linked genes directly contribute to 

the observed sex-bias.  

There are approximately 1500 genes on the X chromosome, many of which are involved in the 

adaptive or innate immune system (161). Since females have two X chromosomes, one requires 

silencing in order to equalise dosage of gene expression to that of men who only have one X 

chromosome. This silencing occurs randomly in each cell, making females functional mosaics for X 

linked genes and giving them a major immunological advantage over males (140). As males are 

haploid for X-linked genes any damaging polymorphisms or mutations on the X chromosome will have 

a more pronounced immunological effect in males than in mosaic females, thereby influencing the 

sex-bias (160). 

To date, eleven GWAS investigating susceptibility to clinical TB have been published (123–

131,133,292). There has not been significant overlap between the 11 published TB GWAS, but it 

seems that replication is more likely when populations with similar genetic backgrounds are 

compared: the WT1 locus was associated with disease in populations from West and South Africa 

(130,133). Critically, genotyping microarrays that did not fully accommodate African genetic diversity 

were used in these studies (123,124,130,131,133). It is therefore possible that unique African-specific 

susceptibility variants were not tagged by these initial arrays, since linkage disequilibrium (LD) blocks 

are shorter in African populations (293). Moreover, none of the GWAS included or examined the X 

chromosome or sex-stratified analysis of the autosomes as was done in an asthma cohort (294). 

Genetic differences between asthmatic males and females were identified on the autosome, with 

certain alleles having opposite effects between the sexes. Candidate gene association studies 

provide independent confirmation of the involvement of the X chromosome in TB susceptibility, 

through the association of X-linked TLR8 susceptibility variants with active TB. Davila et al. (295) 

investigated 4 TLR8 variants (rs3761624, rs3788935, rs3674879, rs3764880) in an Indonesian cohort 

and showed that all variants conferred susceptibility to TB in males but not females. The results for 

males were validated in male Russian individuals (295). These results were validated for rs3764880 

in Turkish children, but no significant association was found for rs3764879 (296). Hashemi-Shahri et 
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al. (136) found no significant TLR8 associations in an Iranian population, while rs3764880 was 

significantly associated with TB susceptibility in both males and females in a Pakistani cohort (132). 

In admixed South African Coloured (SAC) individuals rs3764879 and rs3764880 were significantly 

associated in both males and females, while rs3761624 was only significantly associated in females 

(138). Interestingly, in this cohort opposite effects were consistently found between the sexes for the 

same allele in all investigated TLR8 variants (138), echoing the asthma findings of Mersha et al (294). 

Finally, in a Chinese cohort rs3764879 was significantly associated with TB disease in males but not 

females. While many of these variants did not reach genome wide significance they still provide 

evidence of the involvement of X-linked genes in TB susceptibility. 

We report the first TB susceptibility GWAS with a specific focus on sex-stratified autosomal analysis 

and the X chromosome to elucidate the male sex-bias. Individuals from the unique five-way admixed 

South African Coloured (SAC) population, with ancestral contributions from Bantu-speaking African, 

KhoeSan, European, South and East Asian groups were genotyped in this study (86,297). These 

genetic contributions are due to both the complex colonisation history of South Africa and the 

country’s importance as a refreshment station on major trade routes during the fifteenth to nineteenth 

century (103,298). This is therefore the first GWAS in the SAC that uses an array (Illumina Multi Ethnic 

Genotyping Array, see Section 2.2) specifically designed to detect variants in the 4 most commonly 

studied populations, making it the most suitable platform for diverse and admixed populations at the 

time of genotyping.  

4.4 Materials and methods 

4.4.1 Study population 

Study participants were recruited from two suburbs in the Cape Town metropole of the Western Cape. 

These suburbs were chosen for its high TB incidence and low HIV prevalence (2%) at the time of 

sampling (1995-2005) (299). Approximately 98% of the residents in these suburbs self-identify as 

SAC and have similar socio-economic status, which reduces confounding bias in the association 

testing (133). The cohort consists of 420 pulmonary TB (pTB) cases, bacteriologically confirmed to 

be culture and/or smear positive and 419 healthy controls from the same suburbs. Approximately 80% 

of individuals over the age of 15 years from these suburbs have a positive tuberculin skin test (TST) 

, indicating exposure to M. tuberculosis (300). All study participants were over 18 years of age and 

HIV negative. 

Approval was obtained from the Health Research Ethics Committee of Stellenbosch University 

(project registration number S17/01/013 and 95/072) before participant recruitment. Written informed 

consent was obtained from all study participants prior to blood collection. DNA was extracted from 

the blood samples using the Nucleon BACC Genomic DNA extraction kit (Illumina, Buckinghamshire, 

UK). DNA concentration and purity were checked using the NanoDrop® ND-1000 Spectrophotometer 
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and NanoDrop® v3.0.1 software (Inqaba Biotechnology, Pretoria, SA). The study adhered to the 

ethical guidelines as set out in the “Declaration of Helsinki, 2013 (301).  

4.4.2 Genotyping 

Genotyping was done using the Illumina Multi-ethnic genotyping array (MEGA) (Illumina, Miami, USA) 

which contains 1.7 million markers from various ethnicities making it highly suitable for diverse and 

admixed populations. The array is based on novel variants identified by the Consortium on Asthma 

among African ancestry populations in the Americas (CAAPA), the Illumina human core content for 

European and Asian populations as well as multi-ethnic exome content from African, Asian and 

European populations. The array also contains ancestry informative markers specific to the SAC 

population. While the KhoeSan population is not highly represented on the array, which could lead to 

a certain level of ascertainment bias, at the time of genotyping it was the most suitable platform for 

this diverse and admixed populations. Genome studio v2.04 (Illumina, Miami, USA) was used for SNP 

calling to calculate intensity scores and to call common variants (MAF >= 5%), followed by analysis 

with zCall to recall rare genotypes (MAF <5%) (283).  

4.4.3 Genotyping quality control 

Quality control (QC) of the genotyping data was done using the XWAS version 2.0 software and QC 

pipeline to filter out low quality samples and SNPs (115,302). Data were screened for sex 

concordance, relatedness (up to third degree of relatedness) and population stratification (as 

determined by principal component analysis). Genotypes for males and females were filtered 

separately in order to maintain inherent differences between the sexes. SNPs were removed from the 

analysis if missingness correlated with phenotype (threshold = 0.01) as well as individual and SNP 

missingness (greater than 10%), minor allele frequency (less than 1%) and Hardy–Weinberg 

equilibrium (HWE) in controls (threshold = 0.01). Filtering continued iteratively until no additional 

variants or individuals were removed. Overlapping markers between the sexes were merged into a 

single dataset. X chromosome genotypes were extracted and variants were removed if the MAF or 

missingness was significantly different between the sexes (threshold = 0.01). A flow diagram 

explaining quality control steps and association testing of the data is shown in Figure S4.1. 

4.4.4 Admixture  

The SAC population is a 5-way admixed population with ancestral contributions from Bantu-speaking 

African populations, KhoeSan, Europeans and South and East Asians. To avoid confounding during 

association testing the ancestral components are included as covariates (99). Admixture was 

estimated for the autosome (chromosome 1-22) and the X chromosome separately using the software 

ADMIXTURE (v1.3) (303) and reference genotyping data for 5 ancestral populations. The reference 

populations used to infer ancestry were European (CEU) and South Asian (Gujarati Indians in 

Houston, Texas and Pathan of Punjab) extracted from the 1000 Genomes Phase 3 data (81), East 
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Asian (Han Chinese in Beijing, China), African (Luhya in Webuye, Kenya, Bantu-speaking African, 

Yoruba from Nigeria) and San (Nama/Khomani) (103,282). Due to the limited number of individuals 

availablefor each reference population the SAC data had to be divided into 21 groups to equal the 

number of individuals per reference population. The number of individuals per reference population 

and admixed population has to be kept consistent in order to maximise the accuracy of the admixture 

results by not over-representing one particular population in the analysis. Therefore, admixture 

inference was done separately for each of the 21 SAC groups, referred to as running groups. Each 

running group was analysed five times at different random seed values. The results for each individual 

were averaged across the five runs in order to obtain the most accurate ancestry estimations (286). 

Four ancestral components (African, San, European and South Asian(297)) were included as 

covariates in the logistic regression association testing with the smallest component (East Asian) 

excluded in order to avoid complete separation of the data.  

4.5 Association analysis 

4.5.1 SNP based association analysis  

Autosomal TB association testing was done with sex-stratified and combined datasets using the 

additive model in PLINK (version 1.74) (304) in order to detect sex-based differences.  TB association 

testing for the X chromosome were done separately in males and females using XWAS (version 2) 

and the results were combined using Stouffers method in order to obtain a combined association 

statistic (115,302). A sex-differentiated test was conducted for the X chromosome using the XWAS 

software to test for significant differences in genetic effects between males and females. SNP based 

association testing (sex-stratified or not) compares the frequency of alleles between cases and 

controls to determine if a specific allele co-occurs with a phenotype (TB) more often than would be 

expected by chance. The sex-differentiation test on the other hand compares the effect size (OR) of 

a variant between the sexes to determine if a variant has a different effect on risk between the sexes. 

The sex-differentiation test is explained in more detail by Chang et al. (302). X chromosome 

inactivation states were also included in the association testing as covariates using a method 

developed by Wang et al. (305). To include inactivation states in the association analysis the most 

likely state was determined for each SNP. A variant can either be inactivated, or it can be skewed 

towards the deleterious or normal allele or the variant can escape inactivation. To determine which of 

the four states is most probable the likelihood ratio for each one was calculated and the inactivation 

state that maximised the likelihood ratio was applied to the SNP in question. This was done for each 

variant as inactivation states vary along the X chromosome (for a detailed description see Wang et 

al. (305)). Ancestry, sex and age were included in the analyses as covariates where applicable. 

Information on other risk factors known to influence TB susceptibility such as smoking, and alcohol 

                                                
4http://pngu.mgh.harvard.edu/purcell/plink/ 
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consumption was not available for this study cohort and could not be included as covariates. Multiple 

testing correction was done using the SimpleM method (306), which adjusts the significance threshold 

based on the number of SNPs that explains 95% of the variance in the study cohort. This method is 

less conservative than Bonferroni correction and is a close approximation of permutation results in a 

fraction of the time. For the autosome the genome-wide significance threshold was set to 5.0e-8 (307). 

4.5.2 Gene based association analysis 

Gene-based association testing groups SNPs together and thus decreases the multiple testing 

burden and increase power to detect an association. Gene-based association testing was done using 

the XWAS v2 scripts, which were implemented using the Python5 (version 2.7.10) and R programming 

environment (version 3.2.4, (142)) and R packages corpcor and mvtnorm. Reference files for the 

known canonical genes on the X chromosome for human genome build 37 were included in the XWAS 

v2 software package and used to group variants and p-values by gene (115,302). Bonferroni 

correction was used to adjust for multiple testing instead of SimpleM, as all genes, unlike SNPs, are 

independent of each other in the context of association testing and as such the multiple test correction 

cannot be less than the number of genes tested. 

4.5.3 Interaction analysis 

Genome-wide SNP interaction analysis was done using CASSI6 (v2.51). A joint effects model was 

implemented for a rapid overview of interactions of all variants across the genome (autosome and X 

chromosome). Variants from significant interactions were reanalysed using a logistic regression 

approach with covariate correction, which would not be feasible for a genome-wide interaction 

analysis as it would be too computationally intensive. As there is no consensus on the significance 

threshold for genome wide interaction analysis Bonferroni correction was used in order to avoid 

potential inflation of false positive results. 

4.6 Results 

4.6.1 Cohort summary 

In total 410 TB cases and 405 healthy controls passed the sex-stratified QC procedure. General 

summary statistics for the cohort, including mean and standard deviation of age and global ancestry 

as well as the ratio of males to females in both cases and controls are shown in Table 4.1. Clear 

differences were observed between TB cases and controls for both age and ancestry, justifying the 

inclusion as covariates. Ancestral distributions were compared using the Wilcoxon signed-rank test 

and were shown to significantly differ (unpublished results) between the autosome and X 

chromosome (Figure 4.1). Y chromosome and mitochondrial haplogroup analysis also revealed 

strong sex biased admixture in the SAC population, with a strong female KhoeSan and male Bantu-

                                                
5 http://www.python.org  
6 https://www.staff.ncl.ac.uk/richard.howey/cassi/using.html  
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speaking African and European bias (278). As sex biased ancestry has been shown to reflect in strong 

differences between the autosomal and X chromosome ancestral components they were included as 

covariates in the respective analyses (156–158). 

Table 4.1: SAC sample characteristics showing case/control and sex distribution, mean and 
standard deviation of age and global ancestral components 

Group Number 
Female 

(%) Age San African European 
South 
Asian 

East 
Asian 

TB 
cases 

410 
242 
(59) 

36.32 ± 
11.04 

33.89  ± 
18.83 

29.11 ± 
19.80 

17.10 ± 
16.81 

12.95 ± 
10.82 

7.08 ± 
7.22 

Controls 405 
223 
(55)  

30.55 ± 
12.91 

33.75 ± 
19.59 

29.92 ± 
20.46 

16.12± 
15.81 

13.26 ± 
12.38 

7.04 ± 
7.44 

 

Stellenbosch University  https://scholar.sun.ac.za



50 
 

 

Figure 4.1: Ancestral distribution on the X chromosome and autosome for males and females. 

4.6.2 Association testing results 

4.6.2.1 SNP based  

The top results for the autosomal association testing are shown in Table 4.2 and Figure S4.2, with 

the QQ-plot indicating no constraints on the analysis or inflation of the results (Figure S4.2). Following 

multiple test correction, no significant associations were identified for the combined or sex-stratified 

analysis, but it is important to note that the top associations differed between the sex-stratified and 

combined analyses as well as for males and females (Table 4.2). The top hit for the combined 
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autosomal association test was rs17410035 (OR= 0.4, p-value = 1.5e-6, Table 4.2), located in the 3’-

UTR of the DROSHA gene, which encodes a type 3 RNase. This RNase is involved in miRNA 

processing and miRNA biogenesis (308). Although little evidence exists that rs17410035 has an 

impact on DROSHA gene expression or miRNA biogenesis (which could affect gene expression) it 

has been associated with increased colon cancer (OR= 1.22, p-value = 0.014) (308) and cancer of 

the head and neck (OR= 2.28, p-value = 0.016) (309). When the rs17410035 SNP interacts with other 

variants (rs3792830, rs3732360) it can further increase the risk for cancer of the head and neck (309), 

which illustrates the importance of doing interaction analysis. For the autosomal sex-stratified analysis 

the variant with the lowest p-value in males was rs11960504 (OR = 2.8, p-value = 7.21e-6, Table 4.2) 

located downstream of the GRAMD2B gene, a gene for which no information is available. The top hit 

in the females was rs2894967 (OR = 2.17, p-value = 4.77e-6) located upstream of the TENT4A gene, 

a gene coding for a DNA polymerase shown to be involved in DNA repair (310). Closer inspection of 

the data revealed that the effects between the sexes were in the same direction for all top hits in the 

combined analysis, whereas all variants identified in the sex-stratified analysis had effects in opposite 

directions between the sexes, or one sex had no effect, indicating that even on the autosome strong 

sex specific effects are prominent.  

Table 4.2: Top associations for the combined and sex-stratified autosomal association testing. 

Chr SNP A1 Location Gene Group OR* 95CI* P-value 

5 rs17410035 T 5’UTR DROSHA Combined 0.404 0.28-0.58 1.50e-6 

5 rs1501847 G 5’UTR C5orf64 Combined 1.708 1.37-2.14 2.64e-6 

7 rs2665441 C 3’UTR ASNS Combined 1.681 1.34-2.10 5.51e-6 

9 rs1662230 G 5’UTR RN7SKP120 Combined 2.278 1.58-3.27 8.91e-6 

12 rs199911028 G Intronic CFAP54 Combined 2.966 1.89-4.67 2.58e-6 

15 rs142644068 C Intronic PCSK6 Combined 0.132 0.06-0.30 1.56e-6 

5 rs11960504 T 3’UTR GRAMD2B Male 2.801 1.79-4.39 7.21e-6 

13 rs9315991 A Intronic LINC00400 Male 0.394 0.27-0.58 2.03e-5 

14 rs8016621 A Intronic SALL2 Male 0.252 0.14-0.46 5.91e-6 

5 rs2894967 C 5’UTR TENT4A Female 2.173 1.56-2.90 4.77e-6 

9 rs10819610 T Intronic NCS1 Female 0.514 0.39-0.67 1.55e-6 

14 rs7152005 T Intronic DPF3 Female 2.13 1.66-2.90 1.52e-6 

21 rs2150367 T Intronic LINC02246 Female 0.502 0.38-0.67 1.56e-6 

*OR: Odds ratio; 95% CI: 95% confidence interval 

For the X chromosome specific association testing a sex-stratified test was conducted and the results 

were then combined using Stouffers method, which provided a good fit between expected and 

observed p-values (QQ-plot Figure 4.3) (115,302). The simpleM method indicated that of the 20939 
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X-linked variants 17600 explained 95% of the variance in the data resulting in a significance threshold 

of 2.8e-6 (0.05/17600). No statistically significant associations with TB susceptibility were identified in 

either sex-stratified or the combined analysis (Table 4.3 and Figure 4.3). The lowest p-value 

association for the X-linked combined (p-value = 2.62e-5) and females (OR = 1.83, p-value = 1.06e-4) 

only analysis was the same variant, rs768568, located in the TBL1X gene. For the males the top hit 

was rs12011358 (OR = 0.37, p-value = 1.25e-4) located in the MTND6P12 gene. Both of these genes 

have not been previously associated with TB susceptibility and MTND6P12 is a pseudogene with 

unknown expression patterns or function. Variants in TBL1X have been shown to influence prostate 

cancer (311) and central hypothyroidism (312) susceptibility. TBL1X is a regulator of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-kB) and is thus involved in the immune system 

which could impact TB susceptibility.  

The method of modelling X chromosome inactivation states, developed by Wang et al. (305), was 

also incorporated into the X-linked association testing, but no significant observations were observed. 

Although the p-values were generally lower than for the Stouffer method, the QQ-plot revealed that 

including estimations of X chromosome inactivation states inflated the p-values and increased the 

chance of type 1 errors and these results were therefore discounted (Table S4.1 and Figure S4.3). 

Table 4.3: Most significant X-linked associations, using Stouffers method to combine p-values. 

Chr 
SNP 

(Location) A1 Gene 

Male Female P 
combined OR* 95CI* P OR* 95CI* P 

X rs768568 
(Intron) 

C TBL1X 1.69 1.0-
2.86 

5.07 e-2 1.83 1.35-
2.49 

1.06 e-4 2.62e-5 

X rs12011358 
(5’UTR) 

T MTND6P12 0.37 0.22-
0.62 

1.25 e-4 0.72 0.53-
0.96 

2.72 e-2 2.82e-5 

X rs930631 
(3’UTR) 

T MIR514A1 0.48 0.29-
0.79 

3.66 e-3 0.67 0.49-
0.90 

7.74 e-3 8.94e-5 

*OR: Odds ratio; 95% CI: 95% confidence interval 
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Figure 4.2: Manhattan plot (above) for X-linked associations with significance threshold indicated 

(red line). QQ-plot (below) shows good correlation between expected and observed p-values.  

The sex differentiation test did not result in any significant associations (Table 4.4), with the 

association with the lowest p-value was located in a pseudogene, RNU6-974P (p-value = 8.33e-5). 

The second lowest p-value was for a variant upstream of the SRPX (p-value = 2.18e-4) gene which 

has previously been shown to have a tumour suppressor function in prostate carcinomas (313). 

Whether these variants are associated with TB susceptibility or influence sex-bias is unclear, but the 

vastly opposite effects between the sexes are noteworthy. When comparing the OR for the sex 

differentiation test it is clear that variants can have major sex specific effects again highlighting the 

need for sex-stratified analysis (Table 4.4).  
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Table 4.4: Sex-differentiation analysis results.  

Chr SNP A1 Location Gene 

Male Female 

P-Diff OR* 95CI* P OR* 95CI* P 

X rs145407087 C 3’UTR 
RNU6-
974P 

0.427 0.12-
1.54 

0.193 7.147 1.95-
26.19 

0.003 8.33e-5 

X rs5917743 C 5’UTR SRPX 
0.300 0.05-

1.89 
0.203 15.04 1.81-

124.7 
0.012 2.18e-4 

X rs1337567 C 5’UTR DIAPH2 
1.45 0.88-

2.39 
0.146 0.571 0.42-

0.78 
3.49e-4 6.73e-4 

*OR: Odds ratio; 95% CI: 95% confidence interval 

4.6.2.2 Gene based 

The X chromosome gene-based analysis, in which 1105 X-linked genes were analysed did not show 

any significant associations using a Bonferroni-adjusted significance threshold of 4.5e-5 (Table 4.5). 

The top hit for the combined analysis was in the chromosome X open reading frame 51B (CXorf51B) 

(p-value = =1.28e-4) coding for an uncharacterised protein (LOC100133053). The top hit for males 

was in an RNA coding region that interacts with Piwi proteins (DQ590189.1, p-value = 1.7e-3), a 

subfamily of Argonaute proteins. While Piwi proteins are involved in germline stem cell maintenance 

and meiosis the function of the Piwi interacting RNA molecules are unknown (314). For females the 

top hit was the ARMCX1 gene (p-value = 6.07e-4) a tumour suppressor gene involved in cell 

proliferation and apoptosis of breast cancer cells. While this gene has not been previously implicated 

in TB susceptibility, M. tuberculosis has been shown to affect apoptosis pathways in order to evade 

the host immune response, suggesting that ARMCX1 could affect TB susceptibility (315). While not 

significant the analysis again reveals strong sex specific effects and the sex-stratified and combined 

analysis gave three different results (Table 4.5). 

Table 4.5: X chromosome gene-based association results. 

Chr Gene Group P-value 

X CXorf51B Combined 1.28e-4 

X DQ580189.1 Male 1.7e-3 

X ARMCX1 Female 6.07e-4 

 

4.6.2.3 Interaction analysis 

A genome-wide interaction analysis was performed using the software Cassie. In total 1893973105 

interactions were analysed and following a Bonferroni correction for the number of interactions 

performed the significance threshold was set to 2.6e-11. For the joint effects model, 18 interactions 

passed the significance threshold (Table S4.2). The interaction with lowest p-value was between 

rs1823897 upstream of the ARSF gene and rs7064174 in the FRMPD4 gene (p-value = 7.23e-14), two 
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genes for which not much information is available, and it is unclear how they could be involved in TB 

susceptibility. The top 450 associations from the joint effects model were then retested using logistic 

regression and the same covariates as the SNP based association testing. No significant interactions 

(threshold of 2.6e-11) were observed in the logistic regression model (Table 4.6), but as Bonferroni 

correction is very conservative the top interactions should still be considered as they reach the 

significance level for SNP based GWAS.  

Among the top hits in the logistic regression analysis (Table 4.6) some could impact TB susceptibility 

as they are involved in immune functions. The top hit interaction was between rs2631914 

(LINCO2153), which is upregulated in people with major depressive disorder (316) and rs8067702 

(RTN4RL1), previously associated with congenital heart disease, microcephaly and mild intellectual 

disability (317). While this interaction is not very informative in the context of TB three other 

interactions were identified that could impact TB susceptibility (Table 4.6).  

The first interaction of interest is between RNF125 gene (rs35996537) and URI1 (rs1118924), 

involved in downregulation of CD4+/CD38− T-cells and PBMCs in HIV-1 positive individuals and NF-

kB/CSN2/Snail pathway, activated by TNFα respectively (318,319). Second the interaction between 

rs386560079 (ATP2C1), which is involved in regulation of intracellular Ca2+/Mn2+ concentrations 

through the Golgi apparatus (320) and rs6498130 (CIITA). Variants in the CIITA gene reduce the 

expression of MHC class II proteins and receptors resulting in an immune privilege phenotype (321). 

The final interaction of interest is between rs12286374 (NTM), which is mainly expressed in the brain 

and promotes neurite outgrowth and adhesion (322) and rs2040739 (RNF126) a ring type E3 ligase 

involved in the Protein B kinase pathway which has been previously implicated in glucose metabolism, 

apoptosis, cell proliferation and transcription (323). While none of these genes have previously been 

implicated in TB susceptibility the fact that some of them are involved in immune functions suggests 

a role in TB susceptibility 

Table 4.6: Logistic regression interaction analysis with covariate adjustment.  

Chr1 SNP1 Location Gene1 Chr2 SNP2 Location Gene2 P 

8 rs2631914 5’UTR LINC02153 17 rs8067702 3’UTR RTN4RL1 1.73e-9 

2 rs6756958 Intronic GALNT5 4 rs201376793 5’UTR RNU6ATAC

13P 

1.92e-9 

4 rs882773 5’UTR HMX1 18 rs9303903 3’UTR METTL4 5.76e-9 

12 rs1798087 5’UTR TSPAN1 13 rs2091337 3’UTR LOC105370
290 

5.8e-9 

1 rs7517749 Intronic RGS7 23 rs5907910 3’UTR SPANXA2-

OT1 

1.14e-8 

7 rs757808 5’UTR KIAA0087 8 rs12676973 3’UTR  FUT10 1.77e-8 
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Chr1 SNP1 Location Gene1 Chr2 SNP2 Location Gene2 P 

4 rs1919904 5’UTR TMPRSS11

E 

11 rs10769029 Intronic ALX4 1.95e-8 

5 rs10040477 5’UTR LINC02148 12 rs1918193 intronic SYT1 2.82e-8 

1 rs6694239 5’UTR TNR 2 rs985256 intronic SPATS2L 3.22e-8 

12 rs7975477 Intronic MGAT4C 20 rs6123951 intronic PHACTR3 3.29e-8 

18 rs35996537 3’UTR RNF125 19 rs1118924 Intronic URI1 3.82e-8 

5 rs10040477 5’UTR LINC02148 12 rs1918195 Intronic SYT1 3.87e-8 

3 rs386560079 Intron ATP2C1 16 rs6498130 Intronic CIITA 3.94e-8 

11 rs4237591 3’UTR CNTN5 14 rs11850085 Intronic SLC8A3 4.54e-8 

1 rs1411276 Intronic TGFBR3 4 rs1972127 Intronic PRKG2 4.86e-8 

12 rs7962106 5’UTR AVPR1A 18 rs200219001 Intronic LDLRAD4 4.94e-8 

14 rs242402 Intronic PELI2 19 rs2459744 5’UTR SBK3 5.22e-8 

11 rs12286374 5’UTR NTM 19 rs2040739 Intronic RNF126 5.49e-8 

 

4.7 Discussion 
In this GWAS we investigated TB susceptibility in the admixed SAC population, with a specific focus 

on sex-bias and the X chromosome. A sex-stratified QC protocol was applied to the data in order to 

conserve inherent differences between the sexes and all statistical analysis were conducted in a sex-

stratified and combined dataset in order to fully assess the impact of sex on TB susceptibility and the 

male sex-bias it presents with. We found no significant associations on the autosome or X 

chromosome for both the sex-stratified and combined SNP and gene-based association testing. A 

few significant interactions were identified, but the impact of these on TB susceptibility is unclear and 

will require further investigation to validate and functionally verify. 

For the combined autosomal SNP based association testing the only potential variant of interest is 

rs17410035 located in the DROSHA gene (Table 4.2) which is potentially involved in miRNA 

biogenesis and could impact TB susceptibility if immune related regulatory miRNA is affected. For the 

X-linked association testing the association with the lowest p-value in males was in an uninformative 

pseudogene, while the female and combined analysis revealed the same variant, rs768568 located 

in the TBL1X gene (Table 4.3). The TBL1X protein has been shown to be a co-activator of NF-kB 

mediated transcription of cytokine coding genes, but the mechanism of activation is unclear (311). 

NF-kB is a vital component of the proinflammatory signalling pathway and is involved in multiple 

immune pathways including TLRs (324), which have previously been shown to influence TB 

susceptibility (291). Based on this one could extrapolate that variants in the TBL1X gene could affect 

activation and proinflammatory signalling of NF-kB, which could have a direct effect on the immune 
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system and thus TB susceptibility. The direction of effect for this variant was the same in males and 

females (Table 4.3), but was less significant in males probably due to loss of power when analysing 

haploid genotypes. For the variants identified in the sex differentiated analysis it is unclear how they 

could influence TB susceptibility as the top hit is located in a pseudogene. However, the sex 

differentiated test did reveal just how big the difference in effects can be between the sexes for a 

specific variant (Table 4.4). If these variants with opposite effects are not analysed in a sex-stratified 

way then the effects would cancel each other out and any information on sex specific effects would 

be lost. The X-linked gene-based association test revealed no significant associations despite having 

more power than the SNP based association testing. A possible reason for this could be that 

Bonferroni correction was used and as this is very conservative possible associations could have 

been missed. When looking at the associations with the lowest p-value (Table 4.5) however it is 

unclear how the identified genes could be implicated in TB susceptibility.  

The joint effects interaction analysis revealed several significant interactions, but as association 

results have been previously shown to be severely influenced by admixture (325) only the results for 

the logistic regression analysis will be discussed here. A few variants were identified in the logistic 

interaction analysis that could impact TB susceptibility (Table 4.6). URI1 (rs1118924) is activated by 

TNFα and is involved in the NF-kB/CSN2/Snail pathway, CIITA (rs6498130) impacts expression of 

MHC class II proteins and receptors and rs35996537 (RNF125) and rs2040739 (RNF126) are both 

E3 ubiquitin ligase proteins which affect a multitude of cellular functions, such as apoptosis (323) and 

protein degradation (326). NF-kB, TNFα, MHC class II, E3 ligases, apoptosis and T-cells have all 

been implicated in TB susceptibility and could collectively contribute by influencing the immune 

response (315,326–332). As TB is a complex disease all potential influential factors need to be 

considered and as such the interaction analysis cannot be ignored. Shortcomings of the interaction 

analysis are that they are very computationally intensive and suffer from a massive multiple test 

correction burden. Future research should thus focus on ways to prioritise variants for interaction 

analysis to decrease computation time as well as have sufficient sample size to minimise multiple test 

correction burden.  

A previous GWAS in the SAC population found a significant association with TB susceptibility in the 

WT1 gene (rs2057178, OR = 0.62, p-value = 2.71e-6) (333). This association did not reach genome-

wide significance in our study (OR = 0.75, p-value = 0.049). At the time of the GWAS by Chimusa et 

al. (333) there were few African and KhoeSan (only 6 KhoeSan) individuals in the reference data used 

for imputation and the accuracy of imputation in this population was not known. As the identified 

variant (rs2057178) was imputed into the data it should have been validated in the SAC population 

using an appropriate genotyping approach. Secondly although the variant reached a significance 

threshold for the number of variants tested it did not reach genome wide significance threshold of 

5.0e-8 (307). Finally, the GWAS performed by Chimusa et al. (333) only contained 91 control 
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individuals compared to 642 cases, which could affect the power of the study. Chimusa et al. (333) 

were unable to replicate previous associations identified in the X-linked TLR8 gene (295). The two 

TLR8 variants in our data, rs3764880 (OR = 1.73, p-value = 3.1e-4) and rs3761624 (OR = 1.70, p-

value = 3.94e-4) also did not show significant associations. While the haploid genotypes in males 

contributes to this, a second influential factor could be admixture. Chimusa et al. (333) did not perform 

X chromosome specific admixture analysis, which could affect association testing of X-linked genes. 

Furthermore, only six KhoeSan reference individuals were available, which could affect the accuracy 

of admixture inference and severely affect the results. For our study 307 KhoeSan individuals were 

available, improving the admixture inference and could explain why stronger effects (higher OR) were 

detected for the TLR8 variants when compared to Chimusa et al. (333). It is also important to note 

that using global ancestry components as covariates does not correct for ancestry at any specific 

locus and as a result each locus in this population could have up to five different ancestries. This 

could greatly reduce power and contribute to the lack of replication between studies. In order to 

address this, future studies could incorporate local ancestry inference into the analysis in order to 

determine the number of ancestries at a locus of interest. Other candidate genes identified in previous 

GWAS studies were also separately analysed here, but associations did not replicate (Online 

supplementary material).  

We did not find any significant associations with TB susceptibility but highlight the need for sex-

stratified analysis. Closer inspection of the data revealed that a large number of SNPs with opposite 

direction of effects for not only the X chromosome, but the autosome too. Sex specific effects has 

previously been reported for autosomal variants associated with pulmonary function in asthma (334). 

In the SAC population these opposite effects have previously been observed for X-linked variants in 

the TLR8 gene (138) and the same is observed in this study. Sex-stratified analysis should therefore 

be included in association studies and incorporated in the study design. This can be done by keeping 

the male to female ratio balanced in the cases and controls. It would also be prudent to do the power 

calculation for the males and females separately. This will ensure sufficient power for sex-stratified 

analysis and could elucidate informative sex specific effects. This study was done in a 5-way admixed 

population. As was observed for the interaction analysis including admixture components significantly 

changes the association results. Furthermore it was observed (unpublished results) that the ancestral 

distribution between the X chromosome and autosome are different (Figure 4.1), which is an indication 

of sex-biased admixture (279,286) and highlights the importance of including X chromosome 

admixture components for X-linked and sex-bias analysis. It is important to note here that the 

ancestral components in the SAC present with a very wide range (Figure 4.2) and all this variability 

could affect the power of association studies. It is therefore desirable to increase the sample size 

when analysing admixed individuals. Alternatively, a meta-analysis can be conducted, including data 

from all 5 ancestral populations, or local ancestry inference could be included in the analysis. 
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In conclusion, while no significant associations were identified this study shows the importance of 

conducting sex-stratified analysis. This analysis should be incorporated during the study design phase 

to ensure sufficient power and allow the inclusion of covariates with sex specific effects (in this case 

admixture components). The sex-stratified analysis revealed that the effect of certain variants can 

differ between males and females, not only for the X chromosome but also for the autosome. TB is a 

complex disease with most genetic associations that do not replicate across different populations, 

which complicates the elucidation of the genetic impact on disease susceptibility. By including sex-

stratified analysis and identifying sex specific effects and the cause for the male bias we can adjust 

treatment according to sex and potentially improve treatment outcome and survival.  
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4.11 Supplementary material 

 

Figure S4.1: Flow diagram of data QC and association testing. 
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Figure S4.2: Manhattan plot and QQ plot for sex-stratified and combined analysis on the Autosome. 
Red line indicates significance threshold (5e-8). 
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Figure S4.3: Manhattan and QQ-plot for X-linked SNP association testing including modelling for 
inactivation states, the red line indicates significance threshold of 2.8e-6. QQ-plot indicates inflated 
p-values and potential increase in type 1 errors. 
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Table S4.1: Most significant results for X-linked SNP association testing including modelling of X 
chromosome inactivation states. 

SNP Gene Location Model OR 95CI-
L 

95CI-
H 

p 

rs768568 TBL1X Intron Escape_of_XCI 0.56 0.43 0.72 1.17e-5 

rs6631824 DMD 5'UTR Random_XCI 0.69 0.59 0.82 2.07e-5 

rs12011358 NLGN4X 3'UTR Skewed_XCI_to_risk_allele 1.51 1.25 1.82 2.14e-5 

rs930631 MIR506 3'UTR Random_XCI 1.41 1.20 1.65 3.19e-5 

rs176024 MAGEC3 5'UTR Escape_of_XCI 0.56 0.43 0.74 5.45e-5 

23:9959944 SHROOM2 5'UTR Skewed_XCI_to_risk_allele 0.21 0.07 0.49 1.32e-3 

rs386827412 GRIA3 Intron Skewed_XCI_to_risk_allele 0.64 0.51 0.80 8.35e-5 

rs17340554 DMD Intron Skewed_XCI_to_risk_allele 0.35 0.19 0.61 3.67e-4 

rs5933749 TBL1X Intron Escape_of_XCI 1.72 1.31 2.27 1.03e-4 

 

Table S4.2: Results for genome wide interaction analysis using the joint effects model and no 
adjustment for covariates. 

Chr1 SNP1 Gene1 Chr2 SNP2 Gene2 P-value 

23 rs1823897 ↑* ARSF 23 rs7064174 FRMPD4 7.23e-14  

23 rs426247 ↑ ARSE 23 rs68046754 PCDH11X 1.96e-12 

5 rs2112508 LOC107986418 10 rs1194709 ↑ RPL31P44 2.81e-12 

7 rs1347075 LOC107986770 8 rs958374 ↑ LOC157273 3.49e-12 

23 rs5991619 ↓* MAOA 23 rs73535318 RNU6-555P 5.87e-12 

13 rs7991005 GPC6 16 rs2287072 LPCAT2 5.95e-12 

23 Rs11094800 ↓ NLGN4X 23 rs68046754 PCDH11X 7.20e-12 

5 rs7341174 LINC02147 12 rs1918191 SYT1 7.63e-12 

23 rs68046754 PCDH11X 23 rs6528958 ↓ MAGEC2 8.37e-12 

1 rs6694239 ↓ PAPPA2 2 rs985256 SPATS2L 1.12e-11 

23 rs4824843 ↑ FUNDC1 23 rs58762927 LOC107986770 1.29e-11 

23 rs2170314 ↑ DIAPH2 23 rs4633188 ↑ DIAPH2 1.32e-11 

5 rs2112508 LOC107986418 10 rs1194716 ↑ RPL31P44 1.33e-11 

23 rs5972637 DMD 23 rs73535318 RNY6-555P 1.65e-11 

23 rs1352015 EDA2R 23 rs68046754 PCDH11X 1.75e-11 

23 rs5916341 NLGN4X 23 rs68046754 PCDH11X 2.50e-11 

23 rs3072699 NLGN4X 23 rs68046754 PCDH11X 2.50e-11 

23 rs1823897 ↑ ARSE 23 rs7053176 ↑ CXCR3 2.59e-11 

↑*: Upstream 5’UTR; ↓*: Downstream 3’UTR
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5.1 Abstract 
Genotype imputation is a powerful tool for increasing statistical power in an association analysis. 

Meta-analysis of multiple study datasets also requires a substantial overlap of SNPs for a successful 

association analysis, which can be achieved by imputation. Quality of imputed datasets is largely 

dependent on the software used, as well as the reference populations chosen. The accuracy of 

imputation of available reference populations has not been tested for the five-way admixed South 

African Coloured (SAC) population. In this study, five methods were tested for imputation accuracy 

and quality, comprising three imputation software packages and three reference panels. We show 

that the African Genome Resource is the best reference panel for the SAC population, with 

implementation via the freely accessible Sanger Imputation Server.  

5.2 Introduction 
Over the past decade, genotyping technologies for genome-wide association studies (GWAS) have 

allowed for extensive and rapid genotyping of common variants (335–337). Commercial single 

nucleotide polymorphism (SNP) genotyping arrays contain between 300 000 and 2.5 million markers, 

but none have complete coverage of the human genome. Genotype imputation can be used to 

improve both coverage and power of a GWAS by inferring the alleles of un-genotyped SNPs based 

on the linkage disequilibrium (LD) patterns derived from directly genotyped markers and comparing 

them to a suitable reference population (338–340). These imputed variants can then be used for 

association testing, to improve fine-mapping of a target region, or to conduct a meta-analysis.  

Meta-analysis is a powerful and commonly used technique, but if the study data were generated using 

different platforms, there may be a reduction in statistical power due to minimal overlap between the 

genotyped markers. To overcome this reduction in power, imputation may be used to increase the 

marker overlap between datasets, thereby improving the power of a meta-analysis (90,338,341,342).  

Imputation is dependent on the adequate matching of haplotypes based on LD and thus it is essential 

that the reference population is genetically similar to the population being imputed. Numerous 

reference datasets are freely available online and can be used for imputation via suitable imputation 

software. These include amongst others, the 1000 Genomes phase 3 data (1000G, 10), the Human 

Genome Diversity Project (82), Haplotype Reference Consortium (HRC, 12) and the HapMap 

consortium (84). Most of the above-mentioned reference panels focus mainly on the European 

population and representation of African populations and admixed populations containing African 

ancestry is limited.  

African and admixed populations are more heterogeneous in their haplotype block structure and, as 

such, would benefit from a larger reference dataset incorporating more genetic diversity (337). 

Reference datasets of this nature would increase the chances that an observed haplotype is present 

in the reference data, thereby greatly improving the imputation accuracy for African and admixed 

Stellenbosch University  https://scholar.sun.ac.za



65 
 

individuals with African ancestry. Fortunately, recent years have seen a substantial increase in the 

representation of African populations in the 1000G data (81) and additional databases focusing on 

representing African populations have been established. The Consortium on Asthma among African 

ancestry populations in the Americas (CAAPA, Mathias et al., 2016) is available for download from 

dbGap with Accession ID:phs001123.v1.p1 and the African Genome variation project (AGVP) (89) as 

well as the African Genome Resource (AGR) (not publicly available7) are three resources which have 

recently become a viable option for accurate imputation of African populations. 

Apart from choice of reference panel, the software used also affects the imputation accuracy (341). 

Many imputation software packages are freely available and have been previously tested and 

validated for accuracy, including Impute2 (80), Beagle (343), MaCH, MaCH-Minimac and MaCH-

Admix (344). These imputation software packages were evaluated in African and African-American 

populations using different reference panels and produced varying degrees of imputation quality and 

accuracy (341,344).  

Huang et al. (345) tested imputation accuracy in 29 populations using the HapMap reference and 

showed that the highest imputation accuracy was achieved for European populations, followed by 

East-Asian, Central- and South-Asian, American, Oceanian, Middle-Eastern and African populations. 

An additional finding from this study was that combining multiple reference populations resulted in 

improved imputation accuracy for any population analysed (345). While more appropriate reference 

panels are now available, which would increase the accuracy of imputation in African individuals, 

these results indicate that there are difficulties when imputing populations for which there is a limited 

number of reference individuals.  

Imputation accuracy has previously been assessed for African populations (341,344,345) and for 

populations with two- or three-way admixture, with results reaching over 75% accuracy (346). In the 

present study, we assessed the accuracy of imputation in the five-way admixed South African 

Coloured (SAC) population. The SAC population contains genetic contributions from Bantu-speaking 

Africans, KhoeSan, Europeans, and South- and East-Asians (86,87). While imputation in this 

population has been conducted previously and the resulting data used for association analyses (333), 

the accuracy of imputation in this highly admixed population is yet to be evaluated.  

Here we tested the quality and accuracy of imputation in the SAC population using different imputation 

software and reference panels and show that the Sanger Imputation Server using the AGR reference 

panel produced the highest quality and accuracy in imputed data. An in-house method using 

IMPUTE2 and 1000G reference panel imputed more variants than Sanger (AGR) but at a slightly 

reduced quality and accuracy.  

                                                
7 https://imputation.sanger.ac.uk/ 
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5.3 Methods 

5.3.1 SAC data 

Two sources of data for the SAC cohort were available, namely genotypes obtained using the 

Affymetrix 500k array containing 500 000 SNP markers (Affymetrix, California, USA) and the Illumina 

(Illumina, California, USA) multi-ethnic genotyping array (MEGA) with 1.7 million markers. Approval 

was obtained from the Health Research Ethics Committee of Stellenbosch University (project 

registration number S17/01/013, S17/02/037 and 95/072) before participant recruitment and written 

informed consent was obtained from all study participants prior to blood collection. 

Genotype datum obtained using the MEGA array was subjected to iterative quality control (QC) using 

PLINK v1.9 (120,304) as previously described (281), with the exception of related individuals not 

being removed. Individuals with more than 10% missing information and SNPs with more than 2% 

missingness were removed, as well as any variants with a minor allele frequency (MAF) below 5% as 

well as loci with excessive heterozygosity.  

These QC steps were iterated until no additional variants or individuals were removed, and concluded 

with a sex-concordance check to remove individuals with incorrect sex information. Genotype 

Harmoniser version 1.4.15 (347) was used to strand align the two datasets to the 1000 Genomes 

Phase 3 reference panel (human genome build 37, (81)), update SNP IDs and remove any variants 

not in the reference panel. For the strand alignment a minimum LD value of 0.3 with at least three 

flanking variants was required for alignment. A secondary MAF alignment was also used at a 

threshold of 5%. Finally, the minimum posterior probability was set to 0.4.  

5.3.2 Phasing and imputation 

Three different methods were used for phasing and imputation to assess which performed best for 

our admixed population. The first was an in-house method where the Affymetrix data (PLINK files) 

were phased with SHAPEIT v2 (348), using the default effective population size of 15 000. Imputation 

was then done using IMPUTE2 v2.3.2 (80) and the 1000G Phase 3 reference panel (81), with default 

parameters except for the effective population size, which again was set to 15 000.  

The second method made use of the Sanger Imputation server (SIS8). Genotypes from the Affymetrix 

500k array in PLINK file format were converted to Variant Call Format (VCF) using PLINK v1.9 and 

then uploaded to the server where phasing was performed using SHAPEITv2.r790 (348) followed by 

imputation using the Positional Burrows-Wheeler Transformation (PBWT) algorithm (349). Imputation 

was done in two separate runs: the first run used the 1000G Phase 3 reference panel for imputation, 

and the second run made use of the African Genome Resource panel.  

                                                
8 https://imputation.sanger.ac.uk/ 
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The third method made use of the Michigan Imputation server (MIS, (350)). PLINK files were 

converted to VCF using PLINK v1.9 and uploaded to the server for two imputation runs, both of which 

were run on the QC and imputation mode. SHAPEITv2.r790 was used for haplotype phasing in both 

runs followed by imputation using the Minimac3 algorithm (350). For the first run the mixed population 

option was used for the QC and haplotype phasing was done followed by imputation with the 1000G 

Phase 3 reference panel. For the second imputation run, it was mandatory for the African-American 

population to be selected for QC when imputing with the CAAPA reference panel. 

Although haplotype pre-phasing has been shown to decrease imputation accuracy slightly it was used 

in this study for consistency between the methods (the Michigan server did not have an option to not 

phase data) and to increase the speed of imputation (80).  

For all imputation runs, the reference panels included all available populations since using an all-

inclusive reference panel is known to improve imputation accuracy (345). Of the five variations of 

imputation performed, only the MIS (CAAPA) run was incapable of performing imputation on the X 

chromosome. Results for the X chromosome have however been included for the other four 

imputation runs since the accuracy of X-linked imputation has not been evaluated previously. 

5.3.3 QC of imputed data 

Imputed data were returned from the imputation software in one of two formats: either in the form of 

a VCF file, or in Impute2 (gen/sample) format and based on the format, one of two QC procedures 

was employed to convert the imputed data from genotype probabilities to actual genotypes. Data 

output from the two procedures were compared and showed complete overlap and can thus be used 

interchangeably. 

Procedure 1: For the in-house imputation done using Impute2, a gen/sample output file was obtained 

and converted to a PLINK file using GTOOL9 version 0.7.5. R version 3.2.4 was used to identify 

INDELS, which were then removed using GTOOL (142). This was performed in order to more 

accurately assign SNP IDs and allele information when genotypes were called using GTOOL. The 

genotype calling threshold was set to 0.7, which was determined to have the best ratio of imputation 

accuracy and number of imputed variants (Figure S5.1). Once genotypes were called, the resulting 

ped/map PLINK files were converted to bed/bim/fam PLINK files and all variants with no-call alleles 

were removed.  

Procedure 2: For the imputation done using the two online servers, VCF files were returned. The VCF 

files were converted to PLINK ped/map files using a genotype calling threshold of 0.7 (PLINK 

command: --vcf-min-gp command) and coding all no-call alleles as N (PLINK command: --output-

                                                
9 http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html 
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missing-genotype N). INDELS and SNPs with no-call alleles were removed and the files were 

converted to PLINK bed format (bed/bim/fam).  

5.3.4 Imputation quality and accuracy 

To assess imputation quality, the INFO score (in the case of IMPUTE2) and the comparable r-squared 

value (for PBWT and Minimac3) were used. These values range from 0 to 1, where a higher value 

indicates increased quality of an imputed SNP. Mean INFO score and r-squared values were plotted 

against MAF in order to determine how quality was affected by MAF and to assess which imputation 

method had the best quality at a given MAF. 

Imputation accuracy was assessed by extracting the overlapping individuals from the MEGA and 

imputed Affymetrix data and using PLINK to remove any variants that overlapped between the two 

platforms prior to imputation. The analysis was performed per chromosome and for each SNP the 

alleles were compared between the imputed Affymetrix data and the MEGA data. If both alleles of a 

SNP matched it would be considered a complete match (or a flip match if alleles were correct but 

strand swopped). If only one allele matched it was considered a half match and if no alleles matched 

it was considered a no-match. For each chromosome the total number of imputed variants was 

recorded and their distribution by MAF was plotted to determine how the number of variants correlated 

with MAF between the different imputation methods.  

To determine the imputation accuracy, the SNP overlap between the MEGA and imputed Affymetrix 

data was assessed. Within this overlap the number of SNPs that were complete-, flip-, half- or 

non-matched were recorded along with their average INFO score or r-squared value. Since SNPs 

that are flipped can be flipped to align a reference, or a different dataset if a meta-analysis is planned, 

the flipped SNPs were considered matches for the purposes of calculating imputation accuracy. 

Accuracy was calculated by comparing the proportion of SNPs in the overlap that were complete (or 

flipped) matches to the number of overlapping SNPs. This gave an indication of accuracy and error 

rate within the overlapping region and should be a good indication of overall imputation accuracy. 

These calculations were performed for the autosomes and the X chromosome separately in order to 

determine how accurately and with what quality the imputation software imputed X-linked variants 

compared to autosomal variants.  

5.4 Results 

5.4.1 Genotyping data 

After QC and strand alignment there were 919 individuals and 239 612 variants with a genotyping 

rate of 99.39% in the Affymetrix 500k dataset, and 771 Individuals with 1 491 347 variants in the 

MEGA data with a genotyping rate of 99.43%. A total of 325 individuals were genotyped on both the 

Affymetrix and MEGA array and 43 140 SNP markers overlapped between the two platforms. 
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Overlapping individuals were extracted and overlapping variants (prior to imputation) were removed 

from both datasets. 

5.4.2 Imputation 

The two imputation methods that performed best were the in-house IMPUTE2 with 1000G reference 

panel and the Sanger imputation server with the AGR reference panel. The in-house method had the 

most imputed variants across both the autosomes (60 438 387) and X chromosome (2 574 793), 

followed by SIS (AGR) (52 088 766 autosomal and 1 638 163 X-linked variants), while the SIS with 

1000G reference panel had slightly fewer imputed variants than with the AGR panel (50418390 

autosomal and 1679254 X-linked variants). The Michigan imputation server had only about half as 

many imputed variants as the other methods, for either reference panel (Table 5.1). The number of 

imputed variants that did not reach the genotype calling threshold (0.7) was lowest in the in-house 

method followed by the Michigan server results, and SIS (1000G) and SIS (AGR) had the highest 

percentage of variants not reaching genotype calling threshold (Table 5.1). When imputed Affymetrix 

variants were compared to the MEGA genotypes, the SIS (AGR) data had the highest accuracy (within 

the overlapping region) on both the autosomes (89.29%) and X chromosome (90.18%). The 

imputation accuracy for the in-house and SIS (1000G) method was very similar, with the in-house 

method having a slightly lower genome wide error rate. The accuracy of the Michigan server was 

good on the autosomes (~83%) but lacking for the X chromosome (~70%) (Table 5.2). The SIS (AGR) 

imputed the least X-linked variants, but at the highest accuracy, whereas the in-house method had 

twice as many X-linked variants as Sanger with only a 2.48% drop in accuracy (Table 5.2 and 5.3).  

Table 5.1: Number of imputed variants and variants overlapping with MEGA as well as the 
percentage of calls that did not reach the genotype calling threshold (0.7). Imputed number of SNPs 
is given in millions and Overlapping number is given per ten thousand. 

Method Reference 

Autosomes X chromosome % No 

calls Imputed1 Overlap2 Imputed1 Overlap2 

In-house 1000G 57.8 72.1 2.5 1.6 25.46 

SIS 
1000G 48.7 46.7 1.7 1.0 35.89 

AGR 50.5 60.5 1.6 1.5 44.18 

MIS 
1000G 28.6 47.7 1.3 1.1 35.22 

CAAPA 16.9 34.3 NA NA 43.40 

1Number of SNPs in millions 
2Number of SNPs per ten thousand 
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Table 5.2: Genome wide error rate and accuracy of imputation on the autosomes and X 

chromosome.  

Method Reference 

Accuracy in overlap (%) GW Error rate 

in overlap (%) Autosomes 
X 

chromosome 

In-house 1000G 88.00 87.70 12.00 

SIS 1000G 87.15 88.23 12.85 

SIS AGR 89.29 90.18 10.70 

MIS 1000G 83.26 69.87 16.74 

MIS CAAPA 62.45 NA 37.55 

 

Table 5.3: Number of SNPs and accompanying average info score for the three categories, within 
the MEGA overlapping region. 

Method Reference 

Autosomes X chromosome 

Total Half No Total Half No 

In-
house 

1000G 6321 0.78 381 0.36 481 0.89 351 0.73 2.71 0.37 2.11 0.83 

SIS 

1000G 407 0.79 25 0.46 35 0.87 8.9 0.8 0.5 0.56 0.7 0.88 

AGR 541 0.79 23 0.5 42 0.89 12.9 0.83 0.6 0.6 0.8 0.89 

MIS 

1000G 400 0.69 45 0.11 33 0.83 19.5 0.57 7.1 0.08 1.3 0.70 

CAAPA 214 0.68 105 0.03 24 0.76 NA 

1Number of SNPs in thousands  

For the autosomes and X chromosome, the SIS (AGR) had the best imputation quality across all MAF 

ranges, closely followed by the in-house method where quality was second to SIS (1000G) only for 

low MAF (0-1%) variants on the X chromosome (Figure 5.1). The Michigan server produced the lowest 

quality imputation (Figure 5.1 and Table 5.3). The mean quality score was comparable across all 

autosomal chromosomes and thus only chromosome 1 is shown to represent the autosome and for 

comparison to the X chromosome (Figure 5.1). Figure 5.2 confirms that SIS (AGR) and the in-house 

method had the best imputation quality since more SNPs were imputed at high quality for both 

autosome and X chromosome. Since SIS (AGR) has the largest number of imputed genotypes not 

reaching the calling threshold a trade-off between quality and number of variants exists between SIS 

(AGR) and the in-house method.  
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Figure 5.1: Mean quality score for all variants in a certain MAF range for all imputed datasets. In-
house (IH), Sanger Imputation server (SIS) and Michigan Imputation Server (MIS).  
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Figure 5.2: Distribution of the number of imputed SNPs by quality score for A) chromosome 1 and 

B) the X chromosome. 
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5.5 Discussion 
Imputation accuracy was previously evaluated in African and three-way admixed populations, but we 

have performed the first evaluation in a five-way admixed population. The imputation accuracy in 

African-American individuals (considered to be three-way admixed) ranges from 78% (340) to 89% 

(80). Bantu-speaking Southern African individuals have been imputed with an accuracy of about 95% 

and even African San individuals had an imputation accuracy of 89% (345). In the present study, the 

SIS (AGR) and the in-house imputation method had similar accuracies (89% and 88% respectively, 

Table 5.2) compared to previous results from African and admixed populations. It should however be 

noted, that the clear majority of non-matching variants were ambiguous (Imputed genotype A/T and 

MEGA genotype G/C, or vice versa) and the majority of half-matched variants were imputed as 

monomorphic (data not shown). These ambiguous variants were imputed at high quality (Table 5.3) 

and were not removed when filtering on quality score but could be removed or aligned to a reference 

allele using appropriate software (such as Genotype Harmonizer). However, removal of these 

ambiguous variants is not mandatory. When analysing a single dataset, the ambiguous variants of 

interest can be compared to a relevant reference genome and then flipped. This is especially useful 

when conducting a meta-analysis since these variants will then be comparable even though they 

originate from different data sets. If these ambiguous variants are considered to be correctly imputed, 

then the accuracy of imputation with the SIS (AGR) increases to 96% while the accuracy of the 

in-house imputation method increases to 94%. Accuracy and quality can be further improved by 

removing half-matching variants by applying a quality score and MAF filter.  

Since four of the five methods were capable of imputing X-linked variants, and since the quality and 

accuracy of X chromosome imputation has not been previously tested, we included it for this analysis. 

The X chromosome had only slightly lower or higher imputation quality for all imputation runs when 

compared to the autosomes, indicating that X chromosome imputation can be performed with 

confidence (Table 5.2 and 5.3). Although not specifically analysed here, the quality of imputation at 

low MAF should also be noted: the imputation quality for rare variants was unexpected as large 

reference panels with the correct populations are required to accurately impute rare variants (351,352) 

(Figure 5.1). 

The biggest limitation for imputation in the five-way admixed population is the lack of a suitable 

reference panel. Imputation in the San population has been shown to have the lowest imputation 

accuracy (89%) compared to other African populations (345), which could be due to a lack of 

applicable reference individuals. Since the main ancestral component in the SAC population is 

KhoeSan (86) this could affect the accuracy and quality of imputation in this population. However, this 

has improved due to the addition of KhoeSan individuals to the reference panel. 

In conclusion, we have shown that imputation of the SAC population is feasible and produces quality 

data on both the autosomes and X chromosome. While the SIS (AGR) imputation had the best quality 
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and accuracy, the in-house method using Impute2 and 1000G Phase 3 also produced imputed data 

of a high standard and had the highest number of imputed variants. This method may prove especially 

useful in the case of a meta-analysis where one wishes to maximise SNP overlap between datasets. 

As the number of applicable reference populations and individuals grows, imputation accuracy will 

improve for African and admixed populations, but it remains the gold-standard to Sanger sequence a 

variant of interest to confirm that the imputed variant is present in the population prior to conducting 

further research.  
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5.7 Supplementary material 

 

Figure S5.1: Percentage of overlapping variants that match between the imputed and MEGA data 
for different genotype calling thresholds.
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6.1 Abstract 
Globally Tuberculosis (TB) presents with a clear male bias that cannot be completely accounted for 

by environment, behaviour, socioeconomic factors or the impact of sex-hormones on the immune 

system. This suggests that genetic and biological differences, specifically relating to the X 

chromosome, further influence the male sex bias. The X chromosome has been shown to be heavily 

implicated in immune function and yet has largely been ignored in previous association studies. Here 

we report the first X chromosome specific association study on TB susceptibility. We identified X-

linked TB susceptibility variants using seven genotyping datasets and 23229 individuals from different 

ethnic backgrounds. A sex-stratified and combined meta-analysis was conducted using the XWAS 

software and genomic regions previously associated with TB susceptibility were reproduced in this 

study. While significant associations were identified, the genes that they are located in have not 

previously been implicated in TB susceptibility.  

6.2 Introduction 
The X chromosome has been estimated to encode approximately 1500 of the 20000 protein coding 

genes in the human genome (119) and has the highest density of regulatory miRNA (118). This means 

that the X chromosome codes for over 5% of proteins and 10% of miRNA respectively and even 

though many of these are involved in immune functions the X chromosome has generally been 

ignored in previous association studies (353). According to the GWAS catalogue, 62652 unique SNP-

trait associations have been identified by 3420 publications and of these associations only 385 SNPs 

were located on the X chromosome with 157 reaching genome wide significance (p-value < 5e−8) 

(122). This indicates the extent to which the X chromosome has been ignored in GWAS even though 

it represents a significant portion of the genome. In the past this was due to the analysis complexities 

introduced to GWAS by the X chromosome due to the haploid nature of males, but recently tools have 

been developed to analyse this chromosome specifically (114,115). Females have a more robust 

immune response against infections, which is partially attributable to the X chromosome and further 

influenced by the processes of X chromosome inactivation (XCI) and genes that escape silencing 

(139,140,197,235). Given the role of the X chromosome in sex biased immune responses it should 

not be excluded from statistical analysis, especially for infectious diseases, which often presents with 

a male bias, and autoimmune diseases, which often presents with a female bias (168). 

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), presents with a strong 

male bias with the global reported incidence rate being nearly twice as high in males compared to 

females (27). This male bias has been shown to be influenced, but not fully explained, by 

socioeconomic and behavioural factors, access to healthcare and the impact of sex hormones 

(estrogen and testosterone) on the immune system (140,143,144). As these factors do not fully 

explain the sex bias we hypothesise that X-linked genes and the process of XCI could further clarify 

the phenomenon. Thirteen published GWAS have investigated TB susceptibility (72,123–127,129–
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131,133,281,292), but only six of these included the X chromosome in their analysis 

(72,96,123,126,133,281) and only one of the studies focused specifically on the X chromosome (281). 

Our previous study revealed strong sex specific effects on both the autosome and X chromosome, 

suggesting that sex-stratified QC and association testing should be done when analysing the X 

chromosome and autosomes (281). These sex-stratified analyses are of vital importance as sex 

specific effects of variants will be lost in a combined analysis which will negate the opposite directions 

of effects between the sexes. As a result of this, vital information concerning TB susceptibility and sex 

bias is lost, highlighting the need for sex-stratified analysis.  

Apart from ignoring the X chromosome, previous studies have also validated poorly across 

populations. This is because ancestry has a major impact on TB susceptibility which has been shown 

in meta-analysis and admixture studies (291,354). Here we report the first X chromosome specific 

sex-stratified meta-analysis to identify TB susceptibility loci and elucidate its male sex bias, using 

GWAS data from European, Asian and African cohorts. Trans-ethnic meta-analyses have the 

advantage of giving us an overview of both population specific and global susceptibility variants and 

helping us to understand how ethnicity and sex influence TB susceptibility. 

6.3 Methods 

6.3.1 Study cohorts  

Data for this meta-analysis was obtained from the International Tuberculosis Host Genetics 

Consortium (ITHGC) (96,123,128,131,355) and published TB GWAS (133,281). The ITHGC consists 

of 14 datasets, but eight cohorts had no X chromosome data or too few X-linked variants for imputation 

and were excluded from the analysis. In total two Asian, one European, two African and two South 

African Coloured (SAC) cohorts were included in this meta-analysis (Table 6.1), with a total of 11632 

cases, 11597 controls and a 1.85:1 male to female ratio. Approval for the study was obtained from 

the Health Research Ethics Committee of Stellenbosch University (project registration number 

S17/01/013 and 95/072).  

Table 6.1: Genotyping platform and number of samples for each cohort prior to quality control and 
imputation. 

Country Ethnicity Cases Controls Females 
(%) 

Platform Source 

China (1) Asian 483 587 28.19 Affymetrix SNP 
Array 6.0 

(128) 

China (2) Asian 1290 1145 48.74 Human 
OmniZhonghua-
8 chips. 

(128) 

Russia European 5914 6022 29.32 Affymetrix 
Genome-Wide 
Human SNP 
Array 6.0  

(123) 
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Country Ethnicity Cases Controls Females 
(%) 

Platform Source 

Gambia African 1316 1382 39.53 Affymetrix 
GeneChip 500K 

(96) 

Ghana African 1359 1952 36.97 Affymetrix SNP 
Array 6.0 

(131) 

SACA SAC 850 90 44.66 Affymetrix 500k (133) 

SACM SAC 420 419 55.78 Illumina MEGA (281) 

 

6.3.2 Quality control and Imputation 

Quality control (QC) prior to imputation was performed as described previously (281), in order to 

obtain high quality genotypes for imputation. Briefly, the XWAS software (v3.0) and pipeline was used 

to implement a sex-stratified QC on all data, removing individuals without sex information and 

relatedness (up to 3rd degree) (114,115). As the datasets had varying coverage of the X chromosome 

due to the different genotyping platforms used (Table 6.1), imputation was done to increase the 

number of overlapping variants for the meta-analysis. An in-house method employing Impute2 (356) 

and the full 1000 Genomes Phase 3 reference panel (81) was used for imputation as previously 

described (Chapter 5), however data was not phased prior to imputation. Phasing was avoided in 

order to increase imputation accuracy (356). Imputed variants were filtered at an info score of 0.45 

and all non-binary variants were removed before converting the data to plink format using GTOOL 

version 0.7.5 (350) at a genotype calling threshold of 0.7. Finally, the data underwent another sex-

stratified QC procedure, using the same parameters as prior to imputation except that sex 

concordance and relatedness was not checked again. Overlapping variants between all datasets 

were extracted for the meta-analysis and aligned to the same reference allele where possible using 

the Plink v1.9 reference-allele command (357).  

6.3.3 Meta-analysis 

The meta-analysis was conducted by combining the association test results for each individual 

dataset using the XWAS (v3.0) software (114,115). A sex-stratified logistic regression test was 

performed for each dataset using the first five principle components as covariates for the ITHGC data 

and the four main ancestral components (Bantu-speaking African, KhoeSan, European and South 

Asian) for the SAC. The SAC was subject to sex biased admixture events and as a result there are 

significant differences between the ancestral components of the autosome and X chromosome. 

Therefore, the Admixture software (version 1.3) was used to determine X chromosome specific 

ancestral components (using the –haploid flag), as described previously (Chapter 3). Association 

statistics for males and females were combined for the sex-stratified meta-analysis to determine sex 

specific effects. In addition, all male and female results were also combined into one meta-analysis 

to determine effects that are independent of sex. This was done in an overall and population stratified 
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manner by testing all seven datasets together, or by grouping the two Asian or African cohorts (SAC, 

Ghana and Gambia). The Chi-squared based Q statistic was used to assess the heterogeneity 

between included studies and for a heterogeneity p-value > 0.1 the fixed effects (FE) model was 

implemented and for p-values ≤ 0.1 the random effects (RE) model was used to calculate pooled odds 

ratio (OR) and p-values (358). Genome wide significance threshold for the meta-analysis was set to 

5e−8 (307).  

6.4 Results 

6.4.1 Cohort summary 

Summary statistics of all the datasets following imputation and QC are shown in Table 6.2. In total 

20255 individuals passed QC (10026 cases and 10229 controls) of which 35% were female. Between 

the different datasets 69983 variants overlapped and aligned to the same reference allele. 

Table 6.2: Cohort summary and number of overlapping variants post Imputation and QC. 

Cohort 

Sample 

size Females Cases 

Cases 

Female Control 

Control 

Female 

SNPs 

before 

imputation 

SNPs after 

imputation 

China1 990 275 434 138 556 137 23907 180228 

China2 2264 1103 1203 551 1061 552 16995 190719 

Gambia 2541 1026 1229 353 1312 673 9305 339775 

Ghana 3002 1112 1269 400 1733 712 32870 514299 

SACA 596 256 577 242 19 14 9419 250838 

SACM 815 465 410 242 405 223 24974 352167 

Russia 10047 2861 4904 1293 5143 1568 28147 231499 

 

6.4.2 Individual association results 

Five genome wide significant variants were identified for the individual datasets (Table 6.3). 

Manhattan and QQ-plot for these results are given in supplementary Figures S6.1 and S6.2. One 

SNP (rs4465088) is located downstream of the actin related protein T1 gene (ACTRT1) in the 

Ghanaian females (OR = 4.73, p-value = 4.53e−18) and in the combined analysis (p-value = 1.60e−16) 

(fishers’ method for combining p-values). ACTRT1 encodes for a protein related to cytoskeletal beta-

actin and while it is also involved in spermatid formation this gene has been shown to have tumour 

suppressive properties. The tumour suppressive properties were identified in basal cell carcinomas 

which result from the aberrant activation of the Hedgehog signalling pathway (359). While these genes 

have not been previously implicated in TB susceptibility the sonic hedgehog pathway (homolog of the 

hedgehog pathway) is implicated in mycobacterial immune evasion mediated through exploitation of 

regulatory T-cells (360).  
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 Four significant variants were identified in the Russian cohort, three of which were significant in males 

(rs6610096, rs7888114, rs2563800), one in females (rs6610096) and two for the combined test 

statistic (rs6610096, rs5975736). The rs6610096 variant, located in the prostate associated gene 4 

(PAGE4) was significant in male, females and the combined analysis. PAGE4 is a member of the 

cancer/testis X antigens and while its function is poorly understood it is a DNA binding protein and 

silencing of PAGE4 in vitro caused cell death by apoptosis, indicating that PAGE4 has an anti-

apoptotic function (361). Expression of PAGE4 is also inversely correlated with cancer progression 

and dysregulation of PAGE4 modulates androgen receptor signalling and promotes progression to 

advanced prostate cancer (362). The rs2563800 variant, significantly associated in males and the 

combined analysis, is located in a non-coding RNA (ncRNA) LOC105373293, with no known function. 

FRMPD4, a gene previously implicated in schizophrenia, was only significantly associated in males 

(rs7888114), while rs5975736, located in the Bombesin Receptor Subtype 3 (BRS3) gene was 

associated in the combined dataset and had the same direction of effect between the sexes (363). 

BRS3 is involved in energy homeostasis and upregulates glucose-stimulated insulin secretion in 

human pancreatic islet cells and could have a potential role in treatment of obesity and diabetes 

mellitus (364,365).  
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Table 6.3: Results for X chromosome association testing of individual datasets. 

SNP Gene (locus) Position A1 

Male Female 

P comb Cohort OR* P-value 95% CI* OR P-value 95%CI 

rs4465088 ACTRT1 (Xq25) 3’UTR G 0.94 8.58e−1 0.46-1.91 4.73 4.53e−18 3.42-6.55 1.60e−16 Ghanaian 

rs6610096 PAGE4 (Xp11.23) 5’UTR A 1.53 9.95e−14 1.37-1.72 1.70 8.95e−16 1.49-1.94 5.84 e−27 Russia 

rs7888114 FRMPD4 (Xp22.2) Intron C 19.29 9.72e−9 7.05-52.8 3.14 1.18e−3 1.57-6.31 3.00 e−10 Russia 

rs2563800 
LOC105373293 

(Xq21.31) 
Intron A 

1.57 1.08e−8 1.35-1.83 1.04 0.659 0.87-1.25 1.41 e−7 Russia 

rs5975736 BRS3 (Xq26.3) 3’UTR A 2.49 6.1e−7 1.74-3.56 2.29 3.43e−5 3.52-49.2 5.36 e−10 Russia 

*OR: Odds ratio; 95% CI: 95% confidence interval 
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6.4.3 Meta-analysis results 

Both a genome wide significance threshold (5e−8) and a Bonferroni threshold (7.14e−7) were 

implemented to correct for the number of variants tested in the meta-analysis (0.05/69983). As TB is 

a complex disease and variants are unlikely to have large effect sizes, lowering the significance 

threshold can help to reduce the loss of valuable information in the form of false negative results. In 

total four variants reached significance in the sex-stratified population specific analysis, while no 

significant associations were identified in the combined (male and female) and sex-stratified analysis 

including all datasets (Table 6.4 and 6.5). The quantile-quantile (QQ) and Manhattan plots for these 

association tests are given in supplementary Figures S6.3-S6.5. The most significantly associated 

variant for the non-sex-stratified analysis including all datasets was rs79720685 (OR = 0.83, p-value 

= 3.06e−5) located in the interleukin 1 receptor accessory protein like 1 (IL1RAPL1) gene (Table 6.4). 

Variants in this gene have been associated with cardiovascular disease (366), autism (367) and 

presented with a male sex bias in a previous XWAS of asthma susceptibility in children (353). Variants 

in IL1RAPL1 downregulate interleukin (IL) 13 which has a negative impact on the IL-1R pathway, a 

potential regulator of inflammation and a critical component of the host innate immune response 

against infections (368). The impact of this gene on TB susceptibility is unclear but given its role in 

the immune response it may contribute to the disease. The top hit for the combined meta-analysis in 

the Chinese cohorts was related to spermatogenesis and thus not informative in the context of TB 

susceptibility (369). For the African cohorts the combined analysis revealed the variant with the lowest 

p-valur to be in the actin remodelling regulator NHS gene, previously associated with Nanca-Horan 

Syndrome (a congenital cataract disease), dental abnormalities, brachymetacarpia (an abnormal 

shortness of the metacarpal bones) and mental retardation (370–373).  

Table 6.4: Meta-analysis results for the combined analysis. 

SNP 
Gene 

(locus) Position A1 N 
P-

value OR* Q Model cohort 

rs79720685 IL1RAPL1 
(Xp21.3-

21.2) 

Intron T 14 3.06e−5 0.83 0.37 Fixed All 

rs58085560 SPANXN2 
(Xq27.3) 

3'UTR C 4 2.85e−5 1.32 0.86 Fixed China 

rs5909376 NHS 
(Xp22.2-
22.13) 

Intron T 8 4.11e−5 1.22 0.63 Fixed African 
SAC 

*OR: Odds ratio 

For the sex-stratified meta-analysis the variants with the lowest p-values in the analysis including all 

cohorts for males was rs753468 (OR_M = 0.84, p-value = 3.21e−5), located in the ATRX gene and 

for females rs7053675 (OR_F = 0.83, p-value = 5.56e−6) located in the PTCHD1-AS gene (Table 

6.5). The chromatin remodeller ATRX plays a role in supressing deleterious DNA secondary 
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structures that form a transcribed telomeric repeat, and loss of function of the ATRX gene can 

increase DNA damage and stall replication and homology-directed repair (374). This suggests that 

ATRX is involved in essential biological processes and it has been previously implicated in intellectual 

disability and osteosarcoma (375). Disruptions of the PTCHD1-AS gene are prevalent in ~1% of 

Autism spectrum disorders and intellectual disabilities (376). For the Chinese cohorts the sex-stratified 

analysis revealed 3 genome wide significant associations (rs1726176, rs5939510, rs1726203) in the 

long intergenic non-protein coding RNA 1546 (LINCO1546) in males, while no significant associations 

were identified in females. The close proximity of these variants in LINC01546 suggest LD between 

the variants and it is unclear if any of the variants influence TB susceptibility as no functional 

information is available for the LINC01546 locus. Finally, in the African cohorts one variant, in the 

UPF3B gene, reached significance in females after Bonferroni correction (rs2428212, OR_F = 2.03, 

p-value = 4.72e−7) but not in males. UPF3B is a regulator of nonsense mediated mRNA decay (NMD) 

and rapidly breaks down aberrant mRNA with a premature termination codon (PTC). UPF3B is 

involved in a central step in RNA surveillance by regulating crosstalk between the NMD pathway and 

the PTC-bound ribosome complex (377). Mutations in the UPF3B gene disrupt the NMD pathway, 

which is critical for neuronal development and can cause various forms of intellectual disability (378–

380). While this gene has not previously been implicated in TB susceptibility, it could influence disease 

by altering RNA regulation linked to host defence against TB.   

Table 6.5: Meta-analysis results for the sex-stratified analysis. 

SNP 
Gene 

(locus) Position A1 N 

Male Female 

Q (M/F) Model Cohort OR* P OR P 

rs753468 ATRX 
(Xq21.1) 

Intron C 7 0.84 3.21e−5 1.06 1.62e−1 0.42/0.66 Fixed All 

rs7053675 PTCHD1-
AS 

(Xp22.11) 

Intron A 7 1.05 2.11e−1 0.83 5.56e−6 0.15/0.01 Fixed All 

rs1726176 LINC01546 
(Xp22.33) 

3'UTR A 7 1.82 4.20e−8 0.97 7.19e−1 0.80/0.75 Fixed China 

rs5939510 LINC01546 
(Xp22.33) 

3'UTR A 7 1.82 4.89e−8 0.98 7.50e−1 0.79/0.74 Fixed China 

rs1726203 LINC01546 
(Xp22.33) 

3'UTR G 7 1.81 6.37e−8 0.97 6.92e−1 0.86/0.69 Fixed China 

rs2428212 UPF3B 
(Xq24) 

Intron C 7 0.76 2.28e−1 2.03 4.72e−7 0.95/0.15 Fixed African 
SAC 

*OR: Odds ratio 

6.5 Discussion 
Here we report the first X chromosome specific meta-analysis to investigate human genetic 

susceptibility to TB and the observed male bias. While no susceptibility variants reached significance 

in the meta-analysis including all cohorts, four sex-stratified variants were identified in the population 

stratified analysis, three variants for males in the Chinese cohorts and one variant in females in the 
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African cohorts (Table 6.5). Analysis of the individual data also revealed five significant associations 

in the Ghanaian and Russian datasets (Table 6.3). While most of the genes identified in this study 

have not been previously implicated in TB susceptibility a few could potentially be involved in 

mechanisms associated with the disease. ACTR1, IL1RAPL1, ATRX and UPF3B are involved in 

cellular functions that could be linked to host defence against TB. ACTR1 and IL1RAPL1 are involved 

in immune pathways via the sonic hedgehog signalling pathway and IL-1R pathway respectively, and 

mutations can affect T-cell regulation (360) and host immune response to infection (368), both of 

which are involved in host defence against TB. ATRX and UPF3B are involved in essential biological 

processes by monitoring and controlling aberrant RNA that could negatively impact transcription and 

RNA regulation (374,377). The role of these genes in immune function and RNA regulation suggests 

that they could impact TB susceptibility, but further investigation is required to elucidate the functional 

mechanisms underlying our statistical findings. Previous TB susceptibility studies investigating X-

linked genes have identified several TLR8 variants, but these associations were not replicated in this 

study (132,134–138). Possible reasons for this could be the impact of population specific effects and 

more stringent significance thresholds. However, while the exact variants and genes previously 

identified with TB susceptibility on the X chromosome were not replicated the genomic regions where 

these genes are located did replicate. In a linkage study the genomic region Xq, specifically Xq26, 

was associated with TB susceptibility in an African cohort (69). Indirect evidence of TB susceptibility 

loci on the X chromosome has also been provided from studies in Mendelian susceptibility to 

mycobacterial diseases (MSMD) where two X-linked regions, Xp11.4-Xp21.2 and Xq25-26.3 have 

been associated with MSMD (381,382). All these genomic regions were validated in this study, as 

well as the genomic locus where TLR8 is situated (Xp22). We identified significant associations at 

Xp11.23, Xp21-Xp22.33, Xq21 and Xq24-Xq27.3, which overlap with previously associated genomic 

regions. This suggests that these genomic regions are implicated in TB susceptibility, but further 

research and fine-mapping is required to elucidate which genes and variants in this region contribute 

to the phenotype. Many X-linked genes have not been fully characterised, and their functions are still 

unclear; a recurring theme in our study. As a result, the impact on TB susceptibility cannot be 

elucidated using bioinformatic analysis alone and functional analysis of the genes is required. This is 

a major limitation in XWAS as many significant associations cannot be fully elucidated without 

functional verification, due to the lack of information about X-linked genes and their involvement in 

biological mechanisms. The impact of a variant on gene function can be tested by introducing the 

variant into an appropriate cell line (in vitro) or animal model (in vivo) using genomic editing methods 

such as CRISPR (383,384). Infection studies using these edited cell lines or animals can be done to 

determine the function of the variant.  

A second conclusion that can be drawn from these results is that there are strong population specific 

effects influencing TB susceptibility. The fact that no significant associations were identified, even 
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though the study has more power when all data is included, supports this hypothesis. Previous studies 

in admixed populations have also shown increased susceptibility for some ancestral components over 

others (354). While larger studies may identify global susceptibility variants the impact of ethnicity on 

TB susceptibility cannot be ignored and population stratified analysis must be performed to elucidate 

the full complexity of TB disease. In the era of personalised medicine this will also be of vital 

importance as medication can be tailored and targeted for specific population groups and sexes (385). 

We have shown in a previous XWAS in the SAC population (281) that strong sex specific effects exist, 

and this is mirrored in this study. When comparing the OR of males and females (Table 6.3 and 6.5) 

it is clear that many sex-specific variants have opposite directions of effect or a negligible effect in 

one of the sexes. We found 6 significant associations in males but only 3 in females and none in the 

combined analysis, making a strong case for sex specific effects.  

We suggest that during the planning of TB susceptibility studies, power should be determined based 

on the sample size of one sex, to maintain enough statistical power for sex-stratified analysis. 

Furthermore, care should be taken during sample selection to minimise population specific effects 

and subsequent larger and more powerful trans-ethnic meta-analysis will need to be performed to 

identify global susceptibility variants. Identifying population specific, sex-specific and global 

susceptibility variants can elucidate some of the complexity of TB pathogenesis and eventually allow 

for tailored or even preventative treatment. 
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6.7 Supplementary material 

 

Figure S6.1: Manhattan and QQ-plot for X-linked SNP association testing of the Ghanaian cohort. 
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Figure S6.2: Manhattan and QQ-plot for X-linked SNP association testing of the Russian cohort. 
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Figure S6.3: Manhattan and QQ-plot for the X-linked meta-analysis of the Chinese cohorts. 
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Figure S6.4: Manhattan and QQ-plot for the X-linked meta-analysis of the African cohorts, including 
the Gambian, Ghanaian and SAC data. 
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Figure S6.5: Manhattan and QQ-plot for the X-linked meta-analysis including all cohorts. 
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7 General discussion and conclusion 

7.1 Summary 
Sex-bias in diseases is present from infancy and persists across age groups, suggesting that it is 

independent of sex hormones, behaviour and environment and thus must have a host genetic 

contributing factor. Incidence rates for many infectious diseases (bacterial, fungal, viral and parasitic) 

persistently presents with a male sex-bias regardless of age, while auto-immune diseases present 

with a female bias (140,212,386,387). Significant sex differences in pharmacokinetics and 

pharmacodynamics of drugs have also been reported for men, women and pregnant females (388). 

It is thus important to understand the interplay of disease susceptibility factors and the genes on the 

sex chromosomes to discover novel pathways that will inform the understanding of disease, its sex-

bias and the search for solutions.    

The work presented in this thesis investigates the genetic contribution to the observed male sex-bias 

of TB. Globally the TB notification rate is nearly twice as high in males compared to females (27). We 

hypothesise that this bias is in part caused by X-linked genes and the unique biology of the X 

chromosome. Females are diploid for X-linked genes and males are haploid, which leads to the 

random inactivation of one X chromosome in females (148). This random inactivation makes females 

functional mosaics for X-linked genes and could give them an immunological advantage, driving the 

sex-bias. Flaws in the inactivation process such as genes that escape silencing and skewed 

inactivation could further influence the observed sex-bias.  

Based on the possible involvement of the X chromosome, we reviewed (Chapter 2) past literature to 

determine the involvement of the X chromosome and X-linked genes in the immune system. The X 

chromosome contains a wealth of genomic information and a large number of X-linked genes have 

immune-related functions (118,119). The process of X chromosome inactivation (XCI) was also 

discussed along with the mechanisms and causes for genes escaping silencing and skewed 

inactivation and how this could influence disease susceptibility. As behaviour, socioeconomic factors 

and sex hormones also influence the male sex-bias in TB these factors were considered and it was 

concluded that while they influence the sex-bias they do not fully explain it, further supporting the role 

of the X chromosome (140,143,144). As females have been shown to have a more robust immune 

response against infection, the role of the X chromosome and sex-bias in infectious diseases, caused 

by bacteria, fungi, parasites and viruses is discussed (144). The role of the X chromosome was also 

discussed in the context of TB and evidence strongly suggestive of the role of the X chromosome in 

TB susceptibility and the observed male bias was presented.  

Admixed populations, such as the South African Coloured population, add another level of complexity 

to X-linked analysis. Admixture can be sex-biased and result in significantly different ancestral 

distributions on the autosome compared to the X chromosome. Thus, the presence of sex-biased 
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admixture and its influence on TB susceptibility needs to be investigated (Chapter 3). A previous 

study has elucidated the presence of sex-biased admixture events in the history of the SAC using 

mtDNA and Y chromosomal markers (389). In this chapter an alternative method for determining sex-

bias using global ancestry proportions inferred separately for the X chromosome and autosome was 

implemented (146,147). We show that there are significant differences in global admixture proportions 

between the autosome and X chromosome in the SAC population. The Bantu-speaking African and 

the European ancestral component present with a male bias, while the KhoeSan and Asian ancestral 

components present with a female bias. These results correlate perfectly with previous results (389) 

and highlight the importance of using X chromosome and autosomal ancestral components as 

covariates for association testing of the X chromosome and autosome respectively. The results also 

validate the global ancestry approach for determining the presence of sex-bias in this admixed 

population.  

Using the ancestral components inferred in Chapter 3, a sex-stratified GWAS was performed in the 

SAC population using the Illumina MEGA array, a genotyping array specifically tailored for diverse 

populations (Chapter 4). A sex-stratified autosomal and X chromosome specific QC procedure was 

implemented followed by sex-stratified and combined association testing on the autosome and X 

chromosome (114,115). A gene-based association test as well as a sex differentiation test was also 

performed for X-linked genes. We also conducted the first genome wide interaction analysis using a 

joint effects model, followed by interaction analysis of the top 450 associations using a logistic 

regression model, correcting for age and ancestry. While the SNP based association analysis did not 

reveal any significant results, the interaction analysis identified genes that showed promise as 

potential future candidate genes. Finally, this GWAS showed that strong sex specific effects are 

evident for both autosomal and X-linked genes, highlighting the importance of conducting sex-

stratified analysis.  

Due to the lack of power in the GWAS study (Chapter 4) and the availability of additional GWAS data 

through our collaboration with the International Tuberculosis Host Genetics Consortium (ITHGC) an 

X-linked multi-ethnic meta-analysis was done to investigate TB susceptibility and its sex-bias 

(Chapter 6). In order to ensure maximal SNP overlap between all the datasets and increase power, 

we needed to impute the data. While multiple methods for imputation are readily available, none have 

been tested or optimised for our 5-way admixed SAC population. To address this an analysis was 

performed to assess the quality and accuracy of imputation in the SAC using various software and 

reference datasets (Chapter 5). Results from this analysis indicated that the SAC population can be 

imputed on both the X chromosome and autosome with adequate quality and accuracy. Determining 

imputation performance in this population is an important step as the SA population presents with a 

much more complex admixture pattern than previously investigated admixed populations such as 

African Americans and Hispanics. Furthermore, the KhoeSan and African founder populations of the 
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SA are under-investigated, and less data is available for imputation in these populations compared to 

European and Asian populations. Thus, knowing that we can accurately impute the SA population 

allows us to include these datasets in meta-analysis and increase power to detect associations by 

increasing the number of variants to be tested (Chapter 6).  

In total seven datasets were included for this first ever meta-analysis investigating X-linked variants 

in TB susceptibility. Two Chinese, one Russian, a Gambian and Ghanaian and two SAC cohorts were 

included with 69983 overlapping variants left for analysis following imputation. All datasets went 

through a sex-stratified QC procedure (as discussed in Chapter 4) and again a sex-stratified and 

combined X-linked SNP based association test was done. Firstly, association testing was done on all 

individual datasets, revealing five novel associations in the Ghanaian and Russian cohorts. While no 

significant associations were identified in the combined and sex-stratified meta-analysis including all 

datasets, two significant associations were discovered in Chinese males when the meta-analysis was 

stratified by population. The genes identified in this meta-analysis have not been previously 

associated with TB and while some have limited functional information available a few potential 

candidate genes (ACTR1, IL1RAPL1, ATRX and UPF3B) that could influence TB susceptibility were 

identified but require further investigation. While these genes have not been previously associated 

with disease progression, the genomic regions in which they are located are known TB susceptibility 

loci (Xp11.23, Xp21-Xp22.33, Xq21 and Xq24-Xq27.3) (132,138,265,381,382,390). The meta-

analysis also indicated the strength of population specific effects in TB susceptibility and this could 

explain why no significant associations were identified in the analysis including all cohorts. 

Furthermore, as for the GWAS (Chapter 4), the meta-analysis revealed sex-specific effects that could 

potentially influence the male sex-bias in TB susceptibility.  

Overall these studies highlight the importance of conducting sex-stratified analysis and including 

appropriate covariates for X-linked association testing, due to the presence of sex-biased admixture. 

Furthermore, imputation in diverse populations was shown to have good quality and accuracy allowing 

for their inclusion in meta-analysis. Results from the association testing highlight the strong impact of 

population specific and sex-specific effects and a few potential candidate genes were identified, which 

warrant further investigation to elucidate their impact on TB susceptibility and the male sex-bias it 

presents with.  

7.2 Limitations and future work 
While the work conducted in this thesis revealed novel insights some clear limitations are evident and 

need to be addressed in future studies.  

The first limitation is the power to detect significant associations, which is based on the sample size 

of the study. The complexity of TB, population specific effects and the sample size reduction due to 

splitting the data for sex-stratified analysis also negatively impacts on the results. TB is a complex 
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disease and as with most complex diseases effects of individual variants are likely to be small (77,79). 

Furthermore, there is unlikely to be a single causative variant and it is more likely that multiple variants 

with small effect collectively influence TB susceptibility. This polygenic nature means that each 

individual is likely to carry a number of variants that increase susceptibility and a number of variants 

that decrease susceptibility (79). This means that each individual could potentially carry a unique set 

of alleles that collectively influence susceptibility and while software has been developed to detect 

these interactions (gene-gene interaction analysis) they require immensely powerful studies in order 

to overcome the multiple testing burden (79,93) (as in Chapter 4). Furthermore, as GWAS are 

designed based on the analysis of common variants the impact of rare variants on disease 

susceptibility cannot be elucidated (79).  

The second factor influencing power is the reduction of sample size due to the sex-stratified analysis. 

Due to the genetic nature of the X chromosome males and females need to be analysed separately, 

which reduces sample size and power. Furthermore, the fact that males are haploid for X-linked genes 

further reduces power compared to their female counterparts. As this thesis has shown, strong sex 

specific effects are present on not only the X chromosome but autosome as well (Chapter 4 and 6), 

suggesting that sex-stratified analyses are vital to fully elucidate TB susceptibility. This issue of 

reduced power in sex-stratified analysis can be rectified by doubling the sample size and ensuring 

that sufficient power to detect associations is available in one sex of the study. However, sample 

collection is difficult and expensive and thus not always feasible. Alternative methods to increase 

sample size, such as meta-analysis, need to be explored.  

The third factor influencing power, especially in a meta-analysis, is population specific effects. 

Ancestry has been shown to influence TB susceptibility and genetic associations have replicated 

poorly across different populations (1,99,333,391). Africans are more susceptible to TB, while 

Europeans are more resistant as a result of longer historic pressure by the disease (64). These 

population specific effects can affect the meta-analysis if specific ethnic groups have different 

directions of effect for a particular SNP, which would reduce the effect of that variant in a multi-ethnic 

meta-analysis. The same variant could be significantly associated with disease in a population 

stratified analysis or GWAS, which is what we observed for our meta-analysis (Chapter 6). Despite 

this, meta-analyses are valuable for the study of TB susceptibility as they could identify associated 

variants across all populations but will likely require more power than currently available.  

When analysing the results of the GWAS and meta-analysis (Chapter 4 and 6) another limitation 

comes to light and that is the lack of functional characterisation and annotation of X-linked genes. 

Many of the associations identified in this study are in uncharacterised genes or genes with very 

limited functional information. It is thus difficult to decipher how an associated gene could impact TB 

susceptibility without functional verification. This lack of information for X-linked genes is a direct result 
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of the X chromosome being ignored in past association studies, a practice that needs to change if the 

function and impact of X-linked variants are to be deciphered.   

Other limiting factors, not specific to this thesis, but rather to GWAS in general, could also have 

affected the outcome of the analysis. SNP arrays require prior knowledge of the genome to design 

probes and incomplete annotation can influence array effectiveness (95). This is particularly true for 

the long-ignored X chromosome. SNP arrays are also limited to non-repetitive sequences in the 

genome which complicates analysis of related genes and alternatively spliced transcripts and copy 

number variations (CNVs) (95). The PCR based amplification methods for microarray genotyping can 

also introduce biases that influence the results. The specific strain of M. tuberculosis and its virulence 

also influences TB susceptibility, but strain information was not available for this thesis and as such 

could not be taken into account.  

Future work should thus focus on reducing the impact of the limitations mentioned above. Larger 

sample sizes will reduce the power loss in sex-stratified analysis and allow for detection of small effect 

sizes. Also, as the number of TB GWAS studies increases, more data will be available to conduct 

powerful meta-analyses to identify both general and population specific associations. While these 

steps can improve the outcome of GWAS and GWAS-based meta-analysis they will not negate the 

limitations of the SNP microarrays in general. One way to overcome these limitations is by conducting 

next generation sequencing (NGS) instead. NGS requires no prior knowledge of the genome and can 

capture more genetic variation than GWAS. NGS is also not limited to non-repetitive sequences and 

can easily annotate related genes, alternative splicing and CNVs. PCR amplification is also reduced 

or eliminated in NGS and thus no amplification-based biases can be introduced. Finally, sequencing 

data is a powerful detection tool for rare variants which cannot be detected by GWAS but could 

influence disease susceptibility.  

While NGS could address many of the problems facing GWAS there are limitations to conducting 

large NGS studies. Sequencing is still expensive compared to GWAS and a definite limiting factor 

especially in a resource constrained setting. Furthermore, NGS data is extremely large and requires 

a massive amount of storage space and computational power to analyse, further increasing the cost 

associated with NGS analysis. As a result, GWAS is still an invaluable analytic tool especially when 

large sample sizes are to be analysed, which is the case when conducting a pTB GWAS study. More 

severe phenotypes of TB are likely caused by rare variants and thus large sample sizes will be needed 

when doing GWAS, or NGS must be done to capture these rare variants in smaller sample sizes. 

GWAS can also serve as a screening tool to collect a priori evidence before conducting an expensive 

NGS analysis. While the price of NGS will continue to decrease, SNP arrays are still more robust than 

sequencing and will continue to bring valuable insight to disease aetiology (79). Furthermore, some 

analysis tools originally developed for GWAS have already been adapted and used in NGS data 
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analysis. Analytical tools and computational methodologies developed for GWAS represent a 

significant scientific advancement that will ultimately aid in the analysis of NGS data, which is 

generally more difficult to analyse (75).  

The fact that NGS analysis adapted tools from GWAS brings to light another detrimental factor caused 

by excluding the X chromosome. If analytical tools for the X chromosome are not developed and 

improved then they will not be adopted for general use by the scientific community, thus hindering 

advancement of X-linked analysis. This will also translate to a lack of analytical tools and knowledge 

of how to analyse X-linked NGS data and could cause the X chromosome to be excluded from NGS 

studies as it was for GWAS. X chromosomal analysis should be encouraged and become an 

indispensable part of data analysis. This alone will lead to methodological advances and allow full 

utilisation of both GWAS and NGS data.  

7.3 Conclusion 
Since the advent of GWAS, SNP arrays have improved, as did computational methodologies and the 

amount of publicly available data, allowing for analyses such as ancestry inference, imputation and 

meta-analysis. The fact that the X chromosome was mostly excluded in GWAS caused the number 

of X chromosomal analysis tools and functional X-linked gene annotation to be far lower compared to 

the autosome. In future, focus will need to shift from data analysis to functional annotation to link 

GWAS results to biological function and fully understand disease aetiology. Furthermore, X 

chromosome analysis tools must be incorporated in GWAS pipelines as this is the only way to get the 

methods generally accepted and used by the scientific community. 

In conclusion, this thesis highlights the need for sex-stratified and X-linked analysis and the methods 

presented here should encourage other researchers to include the X chromosome in any future 

analysis. Only by including the X chromosome in GWAS analysis will we improve the X-linked analysis 

tools and elucidate the role of the X chromosome in disease susceptibility. This study revealed strong 

sex and population specific effects that need to be accounted for in the study design to retain sufficient 

power for sex-stratified analysis. Future, more powerful meta-analysis will also need to be done to 

identify general and population specific susceptibility loci. This thesis thus presents clear evidence for 

the involvement of the X chromosome in TB susceptibility and the male sex-bias and future studies 

will need to focus on elucidating these effects. Fully understanding the sex-biased nature of TB will 

allow for medication tailored to a specific sex, which could improve treatment outcome. Furthermore, 

identifying population specific and globally associated variants could also lead to population specific 

and general treatment regimes and ultimately improve the global health status.  
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