
COMPARATIVE EVALUATION OF THE
MODEL-CENTRED AND THE

APPLICATION-CENTRED DESIGN
APPROACH IN CIVIL ENGINEERING

SOFTWARE

By
Alexander Sinske

DISSERTATION PRESENTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY (CIVIL ENGINEERING)

AT THE UNIVERSITY OF STELLENBOSCH

PROMOTORS: PROF. P.E. DUNAISKI, UNIVERSITY OF STELLENBOSCH,

O.PROF.DR.DR.H.C.MULT. P. J. PAHL, TECHNICAL UNIVERSITY OF BERLIN

December 2002

Declaration

I, the undersigned, hereby declare that the work con-
tained in this dissertation is my own original work and
that I have not previously in its entirety or in part sub-
mitted it at any university for a degree.

ii

Stellenbosch University http://scholar.sun.ac.za

Abstract

In this dissertation the traditional model-centred (MC)design approach for
the development of software in the civil engineering field is compared to a
newly developed application-centred (AC)design approach.

In the MC design software models play the central role. A software model
maps part of the world, for example its visualization or analysis onto the
memory space of the computer. Characteristic of the MC design is that the
identifiers of objects are unique and persistent only within the name scope
of a model, and that classes which define the objects are components of the
model.

In the AC design all objects of the engineering task are collected in an applica-
tion. The identifiers of the objects are unique and persistent within the name
scope of the application and classes are no longer components of a model,
but components of the software platform. This means that an object can be a
part of several models.

It is investigated whether the demands on the information and communi-
cation in modern civil engineering processes can be satisfied using the MC
design approach. The investigation is based on the evaluation of existing soft-
ware for the analysis and design of a sewer reticulation system of realistic
dimensions and complexity. Structural, quantitative, as well as engineering
complexity criteria are used to evaluate the design. For the evaluation of the
quantitative criteria, in addition to the actual Duration ofExecution, a User In-
teraction Count, the Persistent Data Size, and a Basic Instruction Count based
on a source code complexity analysis, are introduced.

The analysis of the MC design shows that the solution of an engineering task
requires several models. The interaction between the models proves to be
complicated and inflexible due to the limitation of object identifier scope: The
engineer is restricted to the concepts of the software developer, who must
provide static bridges between models in the form of data files or software

iii

Stellenbosch University http://scholar.sun.ac.za

transformers.

The concept of the ACdesign approach is then presented and implemented in
a new software application written in Java. This application is also extended
for the distributed computing scenario. Newbasic classes are defined to man-
age the static and dynamic behaviour of objects, and to ensure the consistent
and persistent state of objects in the application. The same structural and
quantitative analyses are performed using the same test data sets as for the
MC application.

It is shown that the AC design approach is superior to the MC design ap-
proach with respect to structural, quantitative and engineering complexity
.criteria. With respect to the design structure the limitation of object identi-
fier scope, and thus the requirement for bridges between models, falls away,
which is in particular of value for the distributed computing scenario. Al-
though the new object management routines introduce an overhead in the
duration of execution for the AC design compared to a hypothetical MC de-
sign with only one model and no software bridges, the advantages of the de-
sign structure outweigh this potential disadvantage.

iv

Stellenbosch University http://scholar.sun.ac.za

Opsomming

In hierdie proefskrif word die tradisionele modelgesentreerde (MC)ontwerp-
benadering vir die ontwikkeling van sagteware vir die siviele ingenieursveld
vergelyk met 'n nuut ontwikkelde applikasiegesentreerde (AC) ontwerpbe-
nadering.

In die MC ontwerp speel sagtewaremodelle 'n sentrale rol. 'n Sagtewaremodel
beeld 'n deel van die wêreld, byvoorbeeld die visualisering of analise op die
geheueruimte van die rekenaar af. Eienskappe van die MC ontwerp is dat die
identifiseerders van objekte slegs binne die naamruimte van 'n model uniek
en persistent is, en dat klasse wat die objekte definieer komponente van die
model is.

In die AC ontwerp is alle objekte van die ingenieurstaak saamgevat in 'n ap-
plikasie. Die identifisieerders van die objekte is uniek en persistent binne
die naamruimte van die applikasie en klasse is nie meer komponente van die
model nie, maar komponente van die sagtewareplatform. Dit beteken dat 'n
objek deel van 'n aantal modelle kan vorm.

Dit word ondersoek of daar by die MC ontwerpbenadering aan die vereistes
wat by moderne siviele ingenieursprosesse ten opsigte van inligting en kom-
munikasie gestel word, voldoen kan word. Die ondersoek is gebaseer op
die evaluering van bestaande sagteware vir die analise en ontwerp van 'n
rioolversamelingstelsel met realistiese dimensies en kompleksiteit. Struk-
turele, kwantitatiewe, sowel as ingenieurskompleksiteitskriteria word gebruik
om die ontwerp te evalueer. Vir die evaluering van die kwantitatiewe kriteria
word addisioneel tot die uitvoerduurte 'n gebruikersinteraksie-telling, die per-
sistente datagrootte, en 'n basiese instruksietelling gebaseer op 'n bronkode
kompleksiteitsanalise , ingevoer.

Die analise van die MC ontwerp toon dat die oplossing van ingenieurstake
'n aantal modelle benodig. Die interaksie tussen die modelle bewys dat

v

Stellenbosch University http://scholar.sun.ac.za

dit kompleks en onbuigsaam is, as gevolg van die beperking op objek-
identifiseerderruimte: Die ingenieur is beperk tot die konsepte van die sagte-
ware ontwikkelaar wat statiese brue tussen modelle in die vorm van lêers of
sagteware transformators moet verskaf.

Die AC ontwerpbenadering word dan voorgestel en geïmplementeer in 'n nuwe
sagteware-applikasie, geskryf in Java. Die applikasie word ook uitgebrei vir
die verdeelde bewerking in die rekenaarnetwerk. Nuwe basisklasse word
gedefinieer om die statiese en dinamiese gedrag van objekte te bestuur, en om
die konsistente en persistente status van objekte in die applikasie te verseker.
Dieselfde strukturele en kwantitatiewe analises word uitgevoer met dieselfde
toetsdatastelle soos vir die MC ontwerp.

Daar word getoon dat die AC ontwerpbenadering die MC ontwerpbenadering
oortref met betrekking tot die strukturele, kwantitatiewe en ingenieurskom-
pleksiteitskriteria. Met betrekking tot die ontwerpstruktuur val die beperking
van die objek-identfiseerderruimte en dus die vereiste van brue tussen mo-
delle weg, wat besonder voordelig is vir die verdeelde bewerking in die reke-
naarnetwerk. Alhoewel die nuwe objekbestuurroetines in die AC ontwerp in
vergelyking met 'n hipotetiese MC ontwerp, wat slegs een model en geen sagte-
ware brue bevat, langer uitvoerduurtes tot gevolg het, is die voordele van die
ontwerpstruktuur groter as die potensiële nadele.

vi

Stellenbosch University http://scholar.sun.ac.za

Zusammenfassung

In dieser Dissertation wird die traditionell Modell-zentrierte (Me) Methode fur
den Entwurf von Software im Bauingenieurwesen verglichen mit einer neu
entwickelten Applikation-zentrierten (Ae) Methode.

Bei Software, die mit der Me-Methode entworfen ist, spieien Modelle die zen-
trale Rolle. Ein Softwaremodell bildet einen Teil der Welt, zum Beispiel die
Visualisierung oder Analyse, auf den Speicher eines Computers ab. Charak-
teristisch fur den Me-Entwurf ist, dass die Identifikatoren der Objekte nur
innerhalb des Namenraums des ModeIls eindeutig und persistent sind, und
dass Klassen, die Objekte definieren, Komponente des Modells sind.

Beim Ae-Entwurf werden alle Objekte einer Ingenieursaufgabe in einer Ap-
plikation zusammengefasst. Die Identifikatoren der Objekte sind eindeutig
und persistent innerhalb des Namenraums der Applikation, und Klassen sind
nicht mehr Komponente eines Modells, sondern Komponente der Software-
platform. Das bedeutet, dass ein Objekt ein Teil von mehreren Modellen sein
kann.

Es wird untersucht, ob den Anforderungen, die bei modernen Prozessen
im Bauingenieurwesen an Information und Kommunikation gestellt wer-
den, bei der Me-Methode Geniige geleistet wird. Die Untersuchung stutzt
sich auf eine Bewertung vorhandener Software fur Analyse und Entwurf
von Abwasser-Kanalnetzen mit realistischem Umfang und Komplexitat.
Strukturelle, quantitative, und Komplexitátskriterien werden zur Bewertung
herangezogen. Zur Bewertung der quantitativen Kriterien werden zusátzlich
zur tatsachlichen Ausfiihrungsdauer, ein Benutzer-Interektionszëhler, die per-
sistente Detengrëlse. und ein Crund-Anweisungszëhler, der sich auf eine Kom-
plexttatsanalyse des Quellcodes stutzt, eingefuhrt,

vii

Stellenbosch University http://scholar.sun.ac.za

Die Analyse des MC-Entwurfs zeigt, dass fur die Lësung einer Ingenieurs-
aufgabe mehrere Modelle benëtigt werden und dass die Wechselwirkung zwis-
chen den Modellen wegen der Beschrankung des Identifikatorenraums kom-
pliziert und starr ist. Die Bewegungsfreiheit des Ingenieurs ist eingeschrankt
auf die Konzepte des Softwareentwicklers, der statische Brucken zwischen
den Modellen in Form von Dateien oder Softwaretransformatoren anbringen
muss.

Die Grundlagen der AC-Methode werden dann dargestellt und in eine neue
Applikation, geschrieben in Java, umgesetzt. Diese Applikation ist auch fur
das verteilte Rechnen im Computernetzwerk erweitert. Neue Grundklassen
sind definiert, urn das statische und dynamische Verhalten der Objekte zu
verwalten und den konsistenten und persistenten Status in der Applika-
tion zu sichern. Dieselben strukturellen und quantitativen Analysen wur-
den durchgefuhrt, wobei dieselben vier Datensatze, wie bei der MC-Methode,
gebraucht wurden.

Es wird gezeigt, dass die AC-Methode der MC-Methode hinsichtlich der struk-
turellen, quantitativen und Komplexitátskriterien uberlegen ist. Bei der Ent-
wurfstruktur entfallt die Beschrankung auf den Identifikatorenraum und
dam it die Forderung nach Brucken, was besonders fur das verteilte Rechnen
im Computernetzwerk von Vorteil ist. Obwohl durch die neuen Objektverwal-
tungsroutinen beim AC-Entwurf, verglichen mit einem hypothetischen MC-
Entwurf mit nur einem Modell und keinen Softwarebrucken, sich eine langere
Ausfuhrungsdauer ergibt, uberwiegen die Vorteile der Entwurfstruktur diesen
potenziellen Nachteil.

viii

Stellenbosch University http://scholar.sun.ac.za

Contents

Declaration ii

Abstract iii

Opsomming v

Zusammenfassung vii

Acknowledgements xvi

1 Introduction 1

1.1 Purpose of the research 1
1.2 Computer-oriented concepts for civil engineering tasks 2
1.3 The 00 paradigm . 8
1.4 Definition of Quantitative Comparison Criteria and Test Projects. 16

1.4. 1 Definition of Quantitative Criteria 16
1.4.2 Definition of test projects 18

1.5 Conclusion . 18

2 Analysis of the Me design approach
2.1 Introduction .
2.2 Characteristics of the Me approach.

2.2. 1 Definition of general concepts
2.2.2 The concept of software bridges
2.2.3 Evaluation of the Me approach

2.3 Description of the investigated engineering process.
2.4 Functionality of the existing Me software system ..
2.5 Algorithmic background .
2.6 Decomposition of existing software system into models

2.6.1 Hydraulic model

26
26
27
27
29

32
33
36
38
39
40

ix

Stellenbosch University http://scholar.sun.ac.za

2.6.2 Visualization model
2.6.3 Topologymodel ..
2.6.4 Elevation model
2.6.5 Topography model
2.6.6 Geographical model

42
42
46
47
47
48
48
53
54
55
59
60
60
61
61
62
63
64
66
72

2.7 Bridges between models in the existing software system.
2.7.1 Use of data files .
2.7.2 Use of memory as a bridge
2.7.3 Transformer module

2.8 Analysis of the MC design structure
2.8.1 Limitation of object identifier scope
2.8.2 A priori implementation by software developer.
2.8.3 Object duplication ..
2.8.4 Program maintenance
2.8.5 Program extensibility
2.8.6 Suitability for distributed computing

2.9 Quantitative analysis of the MC approach
2.9.1 Evaluation of the BIC and UIC ...
2.9.2 Result of the quantitative analysis .

2.10 Conclusion .

3 Concept of the ACdesign approach
3.1 Introduction .
3.2 Concept of an object identifier management
3.3 Concept of an object set management ...
3.4 Concept of an object relation management.
3.5 The model-object.
3.6 Extending the design to a distributed environment
3.7 Conclusion

73

73
75
80
83
86
88
89

4 Implementation of the ACdesign approach
4.1 Introduction .
4.2 Basic engineering objects
4.3 Implementation of object identifier management
4.4 Implementation of object set management
4.5 Implementation of the object relation management.
4.6 Implementation of the engineering process.

90
90
90
93
98
99
112

x

Stellenbosch University http://scholar.sun.ac.za

4.7 Functionality of the AC software system
4.8 Algorithmic background .
4.9 Classes of the Product-data model
4.10 Implementation of the engineering models .
4.11 Extending the design for a distributed environment
4. 12 Conclusion .

5 Analysis of the ACdesign approach
5.1 Introduction .
5.2 Analysis of the AC design structure .

5.2.1 Limitation of object name scope
5.2.2 Apriori implementation by the software developer
5.2.3 Object duplication and reduction
5.2.4 Program maintenance
5.2.5 Program extensibility .
5.2.6 Suitability for distributed computing

5.3 Quantitative analysis .
5.3.1 Evaluation of BIC and UIC .

5.3.2 Result of the quantitative analysis.
5.4 Conclusion

6 Comparison of designs and conclusions
6.1 Introduction .
6.2 Comparison of the design structure.
6.3 Quantitative comparison .

6.3.1 Duration of Execution (DoE) comparison
6.3.2 User Instruction Count (UIC)comparison
6.3.3 Persistent data size (POS)

6.3.4 Modified BIC

6.4 Comparison of complexity
6.5 Summary and Conclusions.
6.6 Recommendations

Bibliography

A Abbreviations and trademarks
A.1 Abbreviations.
A.2 Trademarks ..

xi

· 115
· 115
· 117
· 122
· 129
.130

132
· 132
· 132
· 136
· 137
· 137
· 138
· 138
· 138
· 139
· 140
· 141
.150

151
· 151
· 151
· 153
· 153
· 155
· 156
· 157
· 159
· 161
.162

163

168
· 168
· 169

Stellenbosch University http://scholar.sun.ac.za

B Evaluation of Basic Instruction Count 170

C Source code for typical MCApplication
C.1 Implementation of a typical Hydraulic model
C.2 Implementation of a typical Visualization model.
C.3 Transformer module .
C.4 Implementation of the traversal algorithm

176

· 176
· 182
· 186
· 189

D MCInstruction Count Evaluation 190

E MCAnalysis Results 199

F Source code samples from ACsystem
F.1 TopoClasses.POTreeTraversal Class.
F.2 TopoClasses.DFTreeTraversal Class.
F.3 TopoClasses.BFTreeTraversal Class.
F.4 TopoClasses.AgeComparator Class
F.5 TopoClasses.Util Class

201
.201
.204
.206
.208
.209

G ACInstruction Count Evaluation 211

H ACAnalysis Results 223

I Tutorial for Sewsan AC
1.1 Introduction
1.2 Installing the program.

1.2.1 Stand-alone scenario
1.2.2 Single PC client-server scenario - Java client
1.2.3 Single PC client-server scenario - Applet client

1.3 Description of user interface
1.4 Loading the CADDrawing
1.5 Building the Data Model
1.6 Using the Data Model ..

225
.225
.225
.225
.225
.226
.227
.228
.229
.231

xii

Stellenbosch University http://scholar.sun.ac.za

List of Tables

1.1 Size of test projects .
1.2 Basic Instruction Count Summary

18
23

2.1 Typical rows of the .YXZstructured text file 49

50
51
52
53
67
70

71

2.2 Abstract data type for the .ELVstructured binary file
2.3 Structure of the database files. . .
2.4 Typical lines of the .TRIunstructured text file.
2.5 Typical rows of the .SOF unstructured text file
2.6 Comparison of key MC operations for DoE and BIC

2.7 Key MC operations for UIC

2.8 PDS requirement in Mbyte

4. 1 Traversal algorithm · 124

5.1 Comparison of key AC operations for DoE and BIC

5.2 Key AC operations for UIC .

5.3 Analysis of BIC for internal vs external relationships

· 142
· 144
· 145

5.4 Analysis of PDS for internal vs external relationships. . 147
5.5 Comparison of key AC operations for DoE in distributed scenario 148

6.1 Comparison of key AC and MC operations for DoE 153
6.2 Comparison of total AC and MC operations for UIC 155
6.3 Comparison of total persistent data size for MC and AC systems 156
6.4 Comparison of key AC and MC operations for modified BIC . 157

E.1 Spreadsheet of MC performance evaluation .200

H.1 Spreadsheet of AC performance evaluation .224

xiii

Stellenbosch University http://scholar.sun.ac.za

List of Figures

1.1 Topology model for sewer network of Test Project 1 . 19
1.2 Topology model for sewer network of Test Project 2 . 20
1.3 Topology model for sewer network of Test Project 3 . 21
1.4 Topology model for sewer network of Test Project 4 . 22

2.1 Relationship between model (M), partial models (A,B)and sub-
model (Si) . 28

2.2 Relationship between two models and a software bridge 29
2.3 Five models connected via ten bridges 31
2.4 Collaboration diagram showing the engineering process in

SEWSAN Me . 34

2.5 Applications comprising the SEWSAN Me package 36
2.6 Components of the SEWSAN Me software package 40

2.7 Diagram showing the Hydraulic and Visualization models . 41

2.8 Visualization of Test Project 2 43

2.9 Topology of sewer network stored in a CADdrawing 44

2.10 Topography for Test Project 1 48
2.11 Class Diagram of typical MC system 56
2.12 Collaboration diagram of typical MC System 57
2.13 Graph of key MC operations for DoE and BIC 69
2.14 Graph of UIC performance 70
2.15 Graph of POS performance 71

3.1 Definition of AC approach 74

3.2 Mapping of persistent identifier to temporary reference 78

3.3 Inheritance vs interface design for implementing application
identifiers

3.4 Definition of uniqueness in a relation . .
3.5 Definition of completeness in a relation.

79
84
84

xiv

Stellenbosch University http://scholar.sun.ac.za

3.6 Definition of model-objects in an application ... 87

4.1 The basic engineering objects in a sewer network.
4.2 The classes of the Application package .
4.3 Class diagram of AppObject and App .

91

94

95

4.4 Class diagram of AppSetObject and AppSet . 98

4.5 Class and overview diagrams to illustrate relation complexity. . 101
4.6 Edge class for reference-identifier design. . 104
4.7 Edge class for relation-object design 105
4.8 Vertex class for reference-identifier design . 106
4.9 Vertex class for relation-object design .. . 107
4.10 Class diagram of ReiObject. Relation and Rei . 108
4.11 Collaboration diagram showing the process flow in the AC ap-

proach 112

4.12 Class-diagram showing models and structure of the AC approach 113

4.13 Hierarchy of classes for the AC approach. . 119
4. 14 The DataModel class 120
4.15 The HydraulicModel class
4.16 The Visualization model and associated classes .
4.17 The Elevation model and associated classes
4.18 Classes of the CAD model.
4.19 The user -interface of the CAD model with Project 2 loaded.

· 123

· 125

· 126

· 128

· 131

5.1 Class Diagram of typical AC system.
5.2 Graph of key AC operations for DoE and BIC.

5.3 Graph of UIC performance .
5.4 BIC for Internal vs External relationships ..
5.5 Comparison of internal vs external relationships of PDS
5.6 Graph of distributed AC performance .

· 134

· 143

· 144

· 146

· 147
.149

6.1 Comparison of key operations for MC and AC systems . 154
6.2 Comparison of total UIC between MC and AC systems. . 155
6.3 Variation of file size with the number of pipes for MC and AC

systems . 156
6.4 Comparison of modified BIC for the MC and AC system 158

xv

Stellenbosch University http://scholar.sun.ac.za

Acknowledgements

This work was completed with the support of a DAADScholarship. The author
was also supported by the Charl van der Merwe Foundation.

xvi

Stellenbosch University http://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Purpose of the research

Engineering models: The use of a computer in civil engineering is tradition-
ally based on the concept of a software model. Such a model is a mapping of a
part of the world to the memory and the processors of a computer. The model
is used to simulate a part of the world in various ways, such as by its visual-
ization, analysis of behaviour and optimization of properties. A model, if de-
signed by the Object-Oriented paradigm (00 paradigm) (see Hartmann [16]),
is composed of objects, which in turn possess attributes and methods. Infor-
mation processing and communication for engineering tasks are supported
by classes of objects, which are treated as referenced data types of the pro-
gramming language. Engineers are particularly interested in the prediction
of the performance of planned constructed facilities, designed products and
natural systems using models.

State of the art: Information and communication in the civil engineering
process are at present based on models which implement the 00 paradigm.
This state of the art is called model-centred design approach. The advantages
and limitations of the state of the art will be investigated. Examples will be
drawn from the field of hydraulic engineering, where the state of the art is
implemented with existing software.

Model-centred design approach: The traditional model-centred design ap-
proach (Me design approach) is analysed in this dissertation. The design is

1

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 2

characterized by the following key properties: Objects are uniquely identifi-
able only within the scope of a model and classes of objects are regarded as
components of a model. The analysis of the MC design shows that the solu-
tion of an engineering task requires several models. The interaction between
the models in the engineering process proves to be complicated and inflexible:
The engineer is restricted to the concepts of the software developer.

Application-centred design approach: A new concept, the application-
centred design approach (ACdesign approach) for computer-aided engineer-
ing, is investigated in this dissertation. Allobjects of the engineering task are
collected in an application. Their identifiers are unique and persistent within
the scope of the application. The classes are no longer treated as compo-
nents of a model. but as components of the software platform. Each object is
unique in the application, but may be a component of several models. Fur-
thermore, special data structures are introduced at an abstract level. to model
the relationship between objects and the collection of objects independent of
complexity of the engineering problem.

Objective: The objective of this dissertation is the investigation of the AC
design approach for information processing and communication in civil engi-
neering tasks. In particular, the complexity of the structure of an application
based on the AC design and the consequences of the assignment of the same
object to more than one model will be investigated. The complexity is strongly
dependent on the number and the diversity of the objects and models in the
application. The AC design approach will be studied for the same task, for
which the MC design approach was analysed, namely a computer applica-
tion for the analysis and design of a sewer reticulation system of realistic
dimension and complexity. The design will also be extended for a distributed
computing scenario. Finally an objective comparison can be drawn between
the MC and AC designs based on quantitative and qualitative criteria.

1.2 Computer-oriented concepts for civil engineering
tasks

In this section, a sequence of concepts are introduced which describe meth-
ods of computer-aided civil engineering which preceded the 00 paradigm.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 3

The concepts are listed in the sequence in which they were introduced his-
torically. The shortcomings of these concepts justified the introduction of the
00 paradigm, and thus the MCdesign and the AC design, which are studied
in this dissertation.

Procedural approach: Computers were used initially in civil engineering to
solve numerical tasks. The theoretical background of the engineering task
was used to formulate an algorithm, for example for the computation of the
forces in a structural frame or of the flows in a network of pipes. The al-
gorithms were implemented in a series of statements of a programming lan-
guage. The data of the engineering task was stored in such a way that it could
only be used in conjunction with the program in which the algorithm was
implemented. The significant improvement of computer-supported analysis
over hand calculation was the speed of calculation (Pennington [36]). Later
the top-down design was introduced using subroutines or procedures, which
collected sets of statements together into small functional units.

Modules: The software component for the collection of common algorithms
is called a module, a unit or a package, depending on the programming lan-
guage which is used. Amodule is a sequence of statements and data storage
areas, which are treated as a whole when they are converted to machine op-
erations, or when they are loaded from a file to core storage. Due to the severe
limitations of memory space in older computing systems, often only a kernel
module and one optional module could be loaded into core memory at the
same time. Usually, the kernel module for data storage and retrieval of files
was retained in system storage for the full runtime, whereas separate modules
for model definition, analysis and data presentation were loaded sequentially
for pre-processing, main task and post processing.

Abstract data types: In the course of the application of modules to engi-
neering practice it became apparent that the procedural approach suffered
from serious drawbacks. Information was generated by one module, stored
in a file or common global memory block and then reused by other modules,
which read the data. This chain-concept requires that each of the modules
knows the complete structure of each data file or memory block. The storage
format of the data is therefore dependent on the algorithms in the modules.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 4

The dependence of program code on file structure led to such a high complex-
ity of software systems that their adaptability to new hardware environments
and their extensibility for new areas of application proved inadequate. This
deficiency was counteracted by the concept of self-describing data, whose
syntax and semantics are independent of the algorithms in which they are
needed and of the particular medium on which they are stored.

This concept was implemented with the creation of abstract data types: each
type consists of structural data and attribute values. This is also known as
record structures in Pascal [40] or struct components in the C program-
ming language. The language processor registers the structural data when
the abstract data type is defined; it exists only once for each module. The
attribute values vary for every use of the data type as program variables.

Bridges: In order to structure the communication between models, the con-
cept of a software bridge was introduced. A bridge functions as a gateway be-
tween models. It can transfer data between models passively via a file format
(for example based on an abstract data type), or provide an active program
logic to map data from one model to the other. The latter requires the bridge
to have either direct access to the memory spaces of the models, in order to
map the data types and structures, or to channel data types via a declared
interface using standardized inter-process application calls. This is the case
when partial models are packaged as Dynamic Link Libraries, for example as
commonly introduced in the large C applications under Microsoft Windows
(Petzold [37]). This also allows for the interaction between models which have
been written in different programming languages and for which the source
code is not available.

Partial models and files: If a model represents only part of an engineering
product or system, it is defined as a partial model. The separation of proce-
dures and data into independent components led to an information technol-
ogy whose primary components were partial models (implemented as mod-
ules) and software bridges (implemented as data files). For example, the
software package which is analysed in Chapter 2 is decomposed into par-
tial models for data capturing, hydraulic analysis, graphical visualization and
geographical presentation. The links between the partial models are imple-
mented using data files, which are based on abstract data types or active
software bridges.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 5

Complexity of engineering process: The structure of civil engineering soft-
ware must reflect the complexity of the engineering process if it is to be useful
in practice. This complexity has several characteristics (Pahl [32]):

• Dynamics: Civil engineering projects are designed in stages. As a con-
sequence, the information base is established in steps over a period of
time. The data structure must therefore be flexible and adaptable. The
user must be able to query the current state of the project information
base with reasonable effort and in a manner which is consistent with
his work style. This demands that the information must remain well
structured and consistent at all stages of the project, even though it is
modified and extended continuously.

• Specialization: Civil engineering projects are handled by specialists
belonging to several professions. For each professional, the skills that
are required to use the computer efficiently, should be restricted to his
or her field. At the same time, each professional must be able to obtain
the information which he or she requires from partners working on other
parts of the project. This demands appropriate tools of communication.

• Volume: The volume of information which is associated with an engi-
neering project is large. This leads to a problem of scaling. Methods
and techniques which are adequate for small amounts of information
prove inadequate for larger information bases. In spite of the high ca-
pacity of today's computers, significant effort is required to find efficient
algorithms, data structures and user interfaces.

• Teamwork : Engineering projects are typically designed and executed
by a large number of persons working in different organizations and at
different locations. Traditionally documents such as contracts, specifi-
cations, calculations, drawings, bills, reports, etc. are ordered by orga-
nization in the first place, and by project in the second place. Although
a significant portion of the information is passed on orally, for example
by persons working in the same office or on the same construction site,
there are established formats for documentation and communication.
The software platform must support this teamwork.

• Documentation: The traditional documentation for teamwork OrIgI-
nated before computers became widely used. In many aspects, it is not
suited for computer-aided engineering in the distributed environment of
modern computer networks. For example, many drawings are too large

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 6

and part of their information is not required by the recipient. Since engi-
neering practice is an ongoing process, modifications of the documenta-
tion and the modes of communication can only be made gradually. The
software platform must support this gradual transition.

• Modification : The design and the construction of civil engineering
projects are characterized by frequent modifications, which tend to be
small in volume. This must be reflected in the communication strat-
egy of the software platform. It must be possible to form adequately
small information packages for data transfer in the computer network,
in order to avoid unnecessary transfer and review of unchanged data.
The coherence and the consistency of the distributed database must be
preserved.

• Technological advances : The capacity of computers and of networks
has grown at a fast rate over several decades and is continuing to grow.
The doubling of the capacity every 18 months leads to an increase by
a factor of 100 every 10 years. As a result, the software platform is
in a constant state of change and adaptation. The reusability of the
software components and the databases in this growth process must be
very high to guarantee the stability of the work processes and to protect
the documentation in the projects and in the organizations.

Additional modifications in the computer environment are required due
to technological change in civil engineering itself. Codes and standards
are in a constant state of review and modification. New techniques and
products influence engineering practice. The interaction between civil
engineering and other parts of society changes. The computer environ-
ment must be adapted to this change.

Computer-aided engineering with partial models and files is not suited to
handle the complexity of the engineering process, as discussed above: This
can be quantified in terms of the complexity criteria:

• Dynamics: The rigid file structure is not suited for a flexible and adapt-
able information base. The resulting system proves to be inflexible, since
modification of an abstract data type in one module results in a change
in the data file structure. This makes an old data file incompatible with
the new abstract data type. All other modules must be recompiled to be
able to use the new abstract data. At worst, large parts of the source
code must be updated to account for the new data format.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 7

• Specialization : The rigid file structure does not provide flexibility in
the exchange of data between the professionals working on the project.
The exchange format is defined by the developer of the software and
does not allow for customization by the specialists, for example for the
addition of new types of relevant data. Models and software bridges
between models should be extensible to handle changes and additions
introduced by connected models.

• Volume : The transfer of data between models using files is adequate for
small to medium amounts of data. However, as soon as large volumes
of data are involved the time required to export data from a model to
secondary storage (hard drive) and subsequent input of data to a differ-
ent model by using a file, grows proportionally with file size. Especially
if data is to be transferred between models located on remotely located
platforms the simple data file structure does not present an efficient
means of transport in a distributed computing system.

• Teamwork: The exchange of data between models using files is suit-
able when one person is working on the project, since this person knows
the data structure for the different models and the execution order of
the different models. However, as soon as more than one person works
with a specific model, e.g. several people who enter the network topol-
ogy, the rigid file structure does not support concurrent management. A
management system based on the concepts of distributed computing is
required. The ordering of documents should not be rigid, for example by
organization and project as is the case with a data file system in an oper-
ating system directory. A flexible management system is required which
allows for indexing of documents on various keywords. The documents
should be stored without redundancy using unique identifiers.

• Documentation: The exchange of drawing data between models via files
has been the primary mode of transfer for graphical information. The
structured drawing interchange file does not support the management
and tracking of changes. However, the CAD files are mostly just com-
puterized versions of paper plans and are not optimized for transferring
model information. Furthermore, the structured drawing interchange
file normally does not support the management and tracking of changes.
A solution could be that the documentation is always extractable from
the model. The model should also contain all documentation relevant to
the design process accessible to all parties in the design process.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 8

• Modification : Traditionally CADor database files are used to exchange
data between models. Normally only the complete data set or file is
transferred. However,whenever a change is made in one model, the new
updated data must be passed to all other models. It is very inefficient
for large data sets to be transferred in distributed systems. Each mo-
dification requires an update of the file structure and triggers a chain of
changes. If ti models are linked to each other, each change triggers up to
(n - 1) changes to connected models. Because of indirect independence
up to O(n2) connections may need to be updated.

• Technological advances : The data file structure to interface with spe-
cific models is set out at the time it is designed by the developer. Using
the same structure in a new and different scenario is not simple, as
enhancements to the models that implement the file structure for data
exchange will require changes to the file structure itself and thus pro-
gramming of the affected models and interface routines. New standards
in engineering are not easy to implement as they also lead to changes in
the data file structure.

1.3 The 00 paradigm

Both the MCdesign and the AC design, which are studied in this dissertation,
are based on the 00 paradigm, which has found extensive usage in civil
engineering and software development during the past decade. The Deutsche
Forschungsgemeinschaft, DFG (German Research Council) [11]has supported
research by 16 universities with a substantial financial investment over a
period of six years ending 1998. Hartmann [16] and the research teams have
summarized the results of the research in the documentation Objektorientierte
Modellierung in Planung und Konstruktion. In this section, the general aspects
of their findings, which are relevant to this dissertation, are summarized and
commented. All references are to the team leader(s) as well as the chapter
number.

Focus points of research: In the application to the DFG it was made clear
that the benefit of object-orientation was to be introduced to civil engineering
without inhibiting the problem solving and thought processes of the engineer.
For the purpose of the research the following key points were investigated

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 9

in the fields of computer science, architecture and building planning, finite
element modelling in civil engineering, construction engineering, construction
management and geotechnical engineering:

• 00 modelling of building infrastructure, facility management and envi-
ronmental interaction.

• 00 modelling of norms and codes used in civil engineering.

• 00 modelling of the planning and construction process with emphasis
on the formal transfer of information between parties.

• Design of a functional user interface for software in design, planning and
construction.

Comments by Hartmann: In the introduction Hartmann introduces the
development of the 00 paradigm and details the principles, concepts and
methods of object-orientation. Then the three classical steps of 00 software
technology are outlined: 00 analysis, 00 design and 00 programming. The
different modelling techniques developed over the years are discussed in de-
tail and compared. The different diagramming tools available for the mod-
elling techniques are shown by example. The construction of models with the
00 paradigm was the focus of the DFG research together with the software
implementation using 00 programming. The principles of object-orientation
which have made it so successful as design and programming paradigm are
then detailed:

Principles of object-orientation: The following principles of the object-
orientation are identified in the introduction by Hartmann:

• Principle of secrecy: Objects provide a public interface to the outside
world (to the user of the object) yet the inner source code is hidden and
available only to the developer.

• Encapsulation of data : Object attributes, methods and relations be-
tween objects are contained in one inseparable structure, which models
the real-world scenario much better than conventional paradigms.

• Communication between objects : Objects can communicate with
each other and transfer relevant information, similar to the human com-
munication process.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 10

• Sets and classes: Objects which have common properties, can be
collected in sets so that the mathematical set theory can be applied.
Classes group objects with common attributes and methods and pro-
vide a template for the construction (instantiation) of objects. The use
of inheritance allows methods and attributes to be passed on to other
objects in a tree structure .

• Variations of the standard approach: Most projects of the DFG as de-
scribed in the report were based on the standard 00 modelling concepts.
Some researchers have introduced special techniques and derivations of
the standard technique. Pahl and Damrath [35] introduced an object-
centred design where objects in the application are defined on system
level and not on model level. A different object-centred design, similar
to the work of Garret [14], was used in the work of Scherer [39], where
objects are no longer class-bound: conditions are embedded in a class
definition which determine if an object is to be classified as an instance
of the class. In this design, an object can therefore be an instance of
several independent classes.

Finding an 00 solution: The process of finding an 00 solution can be
divided into the followingsteps:

• 00 analysis: From a detailed description of the real-world problem, an
adequate abstraction of the objects required to model the system can be
created. It is very important that the mapping of the real-world system
leads directly to the objects. Generally this step requires more effort
than the classical analysis concepts. It can however save time during
the implementation phase, as a full understanding of the problem has
already been reached.

• 00 design: In this step the software architecture is determined. Parti-
tioning into partial systems as well as the formation of classes and sets
are considered during this phase. Other issues such as choice of storage
system, use of parallel processing and the user interface design are also
treated.

• 00 programming: This is a direct extension of the preceding two steps.
Ideally, the generation of source code should now followautomatically. It
is important to have an 00 programming language which supports most
or all of the features and functionalities introduced during the design

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 11

phase. However, as the reports show, none of the 00 programming
languages today fully supports all of the 00 modelling concepts.

• Modelling methods : Since 1990 many modelling methods have been
developed for the 00 paradigm. For the study period of the DFG
projects, three modelling methods were recommended: 00 analysis
(OOA)by Coad and Yourdon [5],00 modelling technique (OMT)by Rum-
baugh e.a. [38], and Unified Modelling Language (UML) [3].

• UML : Of these methods, today only the UML method is still widely used,
since it has become the basis for standard modelling methods. How-
ever, in the civil engineering community, the implementation has not
been that successful. The dynamic behaviour of the complex civil en-
gineering problems can generally not be adequately defined using the
diagramming tools and techniques available in UML. The structured dia-
gramming tools of UML are used selectively, when appropriate:

The class diagrams have found common use to show the static class
structure ofmodels. UML highlights the interaction between the user and
the application, with special use case diagrams, showing this interac-
tion for different scenarios. Sequence diagrams try to show the dynamic
behaviour of a system by detailing the exchange of messages between
objects. In order to show the interaction between objects within their
class framework, the collaboration diagram can be used. Another useful
diagram is the component diagram, which is used to show the interac-
tion between program modules or packages. Hartmann [15] used many
of these diagrams successfully in a sample system. In another work of
Hartmann [17], the state diagram was found inadequate to model paral-
lel threads and had to be improved.

Fundamental research in 00 modelling and programming: It has been
found that the modelling concepts which are available in the 00 analysis
as well as the 00 design phases of a project can not all be implemented by
the software technologies during the 00 programming phase. Researchers
have therefore introduced several new concepts to existing programming lan-
guages, such as C, C++, and database systems. Some of these features en-
countered in the report include:

• Views : Cremers [7] introduces the extension of 00 databases with the
concept of perspectives. This allows the customization of global database

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 12

schemas in such a way that views, which map the individual partial
models into the global database, can be created.

• Relations : The connection of objects with each other is defined using
a concept of relations. However in a standard 00 programming lan-
guage, such as Java, no implementation for this is found. A new family
of types, similar to classes, have been developed by Cremers [7] to man-
age relationships between objects. Similar research has also been done
by Pahl and Damrath [35]where relations are modelled as stand-alone
objects which manage the connection between linked objects. Indepen-
dently, Kolender [22] compared the modelling of relationships between
objects internally within the classes versus modelling the relationships
as independent classes. He concluded that the external implementation
of relationships using classes decisively increases the quality of an ap-
plication. Olbrich [30] makes use of set, relation and graph theory to
model the relationships between objects external to the class definition,
in tables within special relationship-objects with their own properties
and behaviour.

• Sets: Basing object collections on mathematical set theory,
Pahl and Damrath [35] provided a new way of managing groups of ob-
jects independently of their class structure. Sets are introduced as a
stand-alone generic object type. Operations on sets such as the execu-
tion of a method on all elements of the set have been developed.

• Listeners : Newways of ensuring consistency of the state of objects in
different models as well as the propagation of changes led to the design
of systems which model the real-world much closer. (Pahl and Dam-
rath [35]). A listener concept based on user interaction has been intro-
duced. It was found that automatic treatment of inconsistencies would
require too many calculations and iterations. By flagging the inconsis-
tent state, the user can detect the inconsistency and trigger an update
when required, e.g. click the refresh button in a graphical visualization.

• Programming language choice: In most reports the C++ language
was used. The Java programming language has been available only
for a few years and few researchers have commented on its usability.
Pahl and Damrath [35] recommended the research of the Java Interface
technology to manage relations and the use of the Java Reflection API to
create dynamically adaptable software systems.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 13

Choice of modelling strategy: Me or ACdesign: Another interesting as-
pect is the choice of the modelling strategy. Though detailed reasons as to
why the strategy was chosen are not always stated, the following could be
observed:

• Wassermann [45] considered both alternatives when designing a plan-
ning system for buildings. For the Me design a system of transformers
between the partial models is considered. However it was decided to
extract the shared functionality from both models and add to a com-
mon model to the system. This is still basically a Me design, yet with a
practical solution to integrate the models in a closer way.

• Pahl and Damrath [35] argued that it is better to separate objects from
models, and manage them as elements on a system level. AMe design
is inappropriate when models are to be altered often, as the functional
interfaces (ports) between models would have to be changed every time.

• Hartmann [17]. MeiBner and Moller [27] created separate object models
for the partial models and then consider the integration into a holistic
object model.

• Hartmann [15] presented a Me solution. A concept of variable trans-
formers between partial models is introduced. On top of the partial
models, a super-ordinate interface component manages the control of
the software system.

Interaction between partial models: In many cases, existing software
modules were used to implement partial models. A common topic then was
to find the best way to transfer data and commands between these partial
models.

• Wassermann [45] solved the problem by storing the topology and ge-
ometry of the elements using mathematical graph theory and common
administrative data in a central model. The two partial models both have
access to the central model and present different views of the data. Com-
plex transformations between partial models can therefore be avoided.

• Hartmann [17] used a persistent 00 database as medium to transfer
data between partial models.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 14

• Hartmann [15] used transformers (software bridges) for communication
between partial models. For the interaction with program-external com-
ponents, wrapper components are created which then interface with the
program-internal components. An advantage of this solution is that all
partial models can function on their own as stand-alone applications. A
similar approach to integrate separate models is presented by Diaz [10]
for the geotechnical engineering field.

• For every partial process, Meifiner and Moller [27] designed a partial
model whose creation, storage and management is sub-ordinate to a
central 00 model management system, which uses an 00 database as
persistent storage medium.

• Worner [47] argued that the scope of data plays a critical role in model-
ling of partial models. Global data, which is used by more than one
partial model, such as topology and geometry data should be stored in
a central 00 database. Local model data is characterized by direct cou-
pling with a single partial model. It is only used in special cases within
other partial product models. This data is also stored in the central
00 database, but accessed via interface functions of the owning par-
tial model. Specific partial model data is not stored persistently in the
central database, as other models do not use it. Furthermore he argues
that the use of STEP2DBS or other standards for the exchange of civil
engineering data should be considered in the future.

• Werner [46] argued that component software is seen as the solution to
the integration question. Component wrappers can easily provide wrap-
pers for legacy systems and then bind them into existing models.

Distributed computing concepts: Some of the reports consider the poten-
tial of 00 modelling in a distributed computing environment. The following
presents a summary of what has been researched:

• Hubler [19] introduced the concept of a distributed object server in the
environment of civil engineering. Using standardized interfaces for the
CORBAObject server, clients are ensured of the functionality available
on the server, even if the server software is exchanged.

• Hartmann [17] also considered the use of CORBAas medium for com-
munication between models in order to allow parallel co-operative work.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 15

This involves the creation of a Product, Project, Schedule and Team
Server using COOPERATE, a CORBAbased solution.

• Werner [46] used Microsoft ActiveX as Object Request Broker and used
the DCOM system to embed components from remote locations into the
geotechnical application.

Unique object identification: Many reports have focussed on this impor-
tant topic.

• Hubler [19] recommends the unique differentiation of an object from all
other objects, regardless of its storage place, time and object state.

• Pahl and Damrath [35] recommend a system where objects are uniquely
identifiable on a level outside of models.

Concept of views: Many researchers have addressed the issue of views on
a model.

• Cremers [7] developed a new way of mapping views of models onto ob-
jects. A discussion on why existing techniques from 00 programming
(such as using single inheritance, interfaces or multiple inheritance) do
not provide an adequate solution is presented. However the solution
requires the use of his proprietary compiler preprocessor.

• Pahl and Damrath [35] investigated two options of mapping a real-world
object to a software object: A real-world object is mapped exactly to one
single system object. Then the partial models each have a view on the
object and only "see" the attributes which are relevant to the view. Al-
ternatively and recommended, a real-world object is mapped onto a set
of objects, which are connected to each other via structural relations.
One object is typically the static core object located on the system level,
while the other objects present the role objects which belong to the par-
tial models. A system is extended by the addition of new role objects for
an existing core object. This should allow for a flexible extension of the
system with more views.

• Hartmann [17] stored all the attributes of all models in a common 00
database and then ignored the attributes which are not relevant to a
specific model, as 00 databases do not yet provide a view concept.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 16

Conclusion: The foundation for the research has now been formulated. The
next section proceeds with a discussion of the quantitative comparison crite-
ria to be used for the analysis of the two design approaches and a definition
of the test projects used in all evaluations.

1.4 Definition of Quantitative Comparison Criteria
and Test Projects

Four quantitative measures are introduced to capture the performance of a
software application: the duration of execution, the basic instruction count,
a user interaction count and the persistent data size. The criteria are now
defined in detail followed by a definition of the test projects used in all com-
parisons.

1.4.1 Definition of Quantitative Criteria

Duration of Execution (DoE): The duration of execution is an absolute
measurement of the time elapsed during the execution of program code. It
is only of interest where the execution time on the test bench computer re-
sults in noticeable delays for test projects of typical size. As many computer
hardware and software related factors influence the numerical values for this
criterion, it is vital that a static test bench computer system is chosen for all
evaluations for both the MC design and the AC design.

Of particular interest is the ratio between the time required to execute the
test projects of different size. This can be plotted and evaluated to compare
results for the MC design and the AC design.

Basic Instruction Count (BIC): The basic instruction count is used to eval-
uate the time complexity of source code in particular for the interaction be-
tween models.

Complexity analysis attempts to eliminate the platform dependence of DoE
measurements. The number of basic processor instructions is counted for
each common high-level operation. An alternative approach suggested by
Li [24] for Java code, is to assume that an operation in Java takes one unit
of time if the operation is implemented with a simple Java Virtual Machine

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 17

instruction. This approach cannot be used to evaluate the complexity of non-
Java applications, and requires understanding ofthe Java byte-code.

The BIC can be used to compare the time complexity of source code written for
different software programming environments. This allows for example a com-
parison of execution duration of source code written for a compiler language
(such as Object Pascal or C++)and source code written for an interpreter lan-
guage (such as Basic or Java), if it is assumed that the same software and
hardware environments are available.

The BIC can give an indication of how efficiently algorithms, written in differ-
ent programming languages, are designed. The BIC can also be compared to
the DoEand should follow the same trend provided that the execution takes
place on the same hardware processor.

The BIC is based on using a set of codes for each type of basic operations
in the source code. For each unique category code the equivalent number of
Intel Pentium processor instructions is evaluated. This is done by debugging
typical programming code instructions to the assembly language level (see
Intel [21]), and counting the number of instructions. In order to count the
number of instructions during the interactive debugging process, a keystroke
recorder application was used to count the number of times the step-into
debugger command was activated. Appendix B shows a screen-shot of the
test application written for this purpose and the evaluation of the BIC in a
spreadsheet.

The basic operations are grouped into categories, which are designated by the
first letter of the category code: Initialization (1), Assignment (A), Comparison
(C), Flowof execution (F) and Operation (0). The codes for the basic operations,
their descriptions and the BIC are listed in Table 1.2 at the end of the chapter.

As an alternative, the number of basic operations rather than the actual BIC

can also be used as a measure. This measure is similar to the Java byte-code
evaluation by Li [24].

User Interaction Count (Uie): Some steps of the interaction between the
user and the software application require considerable user interaction time.
This is especially the case during the topology model construction and ve-
rification phase. Since an absolute measure is not useful in comparing the
interaction times between differently skilled users and between differently
fast computers, a user interaction count is proposed. This measure counts
the number of keystrokes or input-device clicks required for a typical cycle of

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 18

operations.

Persistent Data size (POS): Although storage complexity can be evaluated
for all basic operations during program execution, it has been found that this
factor is generally of secondary importance in modern computer systems with
large and inexpensive storage capacities. Of primary importance however is
the size of data to be transferred between networked computer systems. This
size is best characterized by the total size of the persistent data required by
the application, defined as the persistent data size.

1.4.2 Definition of test projects

In order to obtain a range of typical situations, four different scenarios are
investigated. Alldata define real-world problems to be analysed and designed
in a consulting bureau. In all cases the complete engineering process of
analysing and designing a sewer network from captured plans to final reports
is investigated.

The projects represent data sets of increasing size and are used to illustrate
and evaluate the performance of the software system for a typical civil en-
gineering bureau environment. The sizes of the data sets are illustrated in
Table 1.1. Graphical views of the test projects are presented in Figures 1.1 to
1.4.

Table 1.1: Size of test projects

Description Number of pipes
Test Project 1 (TP1) 104
Test Project 2 (TP2) 682
Test Project 3 (TP3) 2934
Test Project 4 (TP4) 6713

1.5 Conclusion

The aim and scope of the research have now been formulated. The next
chapter will proceed with the analysis of the Me design approach of a typical
civil engineering application.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 19

Figure 1.1: Topology model for sewer network of Test Project 1

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction

Figure 1.2: Topology model for sewer network of Test Project 2

20

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction

Figure 1.3: Topology model for sewer network of Test Project 3

21

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 22

Figure 1.4: Topology model for sewer network of Test Project 4

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 23

Table 1.2: Basic Instruction Count Summary

Code Description Count

(I) Ini tialization
(IC) Create and initialize local
(ICLI) integer 1
(ICLD) double 3
(ICLO) object reference 2
(ICLS) string 5
(A) Assignment
(ACL) Assign constant to local x
(ACLI) integer 1
(ACLD) double 2
(ACLS) string 222
(ALL) Assign local x to local x
(ALLI) integer 2
(ALLD) double 4
(ALLO) object reference 22
(ALLS) string 12
(ACF) Assign constant to far x
(ACFD integer 14
(ACFD) double 535
(ACFS) string 418
(ALF) Assign local x to far x; far x to local x
(ALFI) integer 19
(ALFD) double 354
(ALFO) object reference 300
(ALFS) string 665
(C) Comparison
(C2C) Compare local x to constant
(C2CI) integer 2
(C2CD) double 4
(C2CO) object reference (zero) 2
(C2CS) string 50
(C2L) Compare local x to local x
(C2L1) integer 3
(C2LD) double 5
(C2LO) object reference 3
(C2LS) string 15
(CFC) Compare far x to constant
(CFCl) integer 29
(CFCD) double 240
(CFCO object reference (zero) 2
(CFCS) string 94
(C2F) Compare local x to far x; far x to local x
(C2FI) integer 174
(C2FD) double 356
(C2FO) object reference 256
(C2FS) string 389

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction

Basic Instruction Count Summary (Continued)

Code Description Count

(F) Flow of execution
(FN) Passing flow to near location
(FNG) goto location 1
(FNLF) loop: for statement 1
(FNLN) loop: next statement 2
(FNPI) passing integer value parameter 2
(FNPD) passing double value parameter 3
(FNPR) passing parameter by reference 2
(FNPF) function return by reference 2
(FNC) make call to function 7
(FF) Passing flow to far location
(FFPI) passing integer value parameter 2
(FFPD) passing double value parameter 3
(FFPR) passing parameter by reference 2
(FFPF) function return by reference 6
(FFC) Make call to function 212
(0) Operation
(OA) Local Addition of
(OAIC) integer with constant 1
(OAII) integer with integer 2
(OADC) double with constant 4
(OADD) double with double 4
(OS) Local Subtraction of
(OSIC) constant from integer 1
(OSII) integer from integer 2
(OSDC) constant from double 4
(OSDD) double from double 4
(OM) Local Multiplication of
(OMIC) integer with constant 3
(OMII) integer with integer 3
(OMDC) double with constant 4
(OMDD) double with double 4
(OD) Local Division of
(ODIC) integer by constant 4
(ODII) integer by integer 4
(ODDC) double by constant 4
(ODDD) double by double 4
(OC) Local Casting of
(OCIS) integer to string 613
(OCDS) double to string 719
(OCSI) string to integer 69
(OCSD) string to double 118

24

Stellenbosch University http://scholar.sun.ac.za

Chapter 1. Introduction 25

Basic Instruction Count Summary (Continued)

Code Description Count

(0) Operation (continued)
(OS) String handling functions
(OSA) add string to string 524
(OSM) middle substring 310
(OSI) search for in string 44
(OSL) get length of string 7
(OST) Text File handling functions
(OTWI) write integer 106
(OTWD) write double 294
(OTWS) write string 54
(OTWL) write line end 30
(OTRI) read integer 120
(OTRD) read double 840
(OTRS) read string 370
(OTRL) read line end 24
(OB) Binary Record File handling functions
(OBW) write record 27
(OBR) read record 27
(OR) Referencing functions
(ORDA) de-referencing local array 1
(ORDL) de-referencing local object 2
(ORDE) de-referencing external object 200
(ORDI) de-referencing var index objects 380
(OM) Mathematical functions
(OMS) square root of double 4
(0) Other functions
(OCAD) external CAD function from VB 2000
(OJH) external Hash table function from Java 50
(OCO) create Java Object overhead 10

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

Analysis of the Me design
approach

2.1 Introduction

In this section the features of the model-centred design approach (Me design
approach) are structured on the basis of a software package, SEWSAN [251
(defined as SEWSAN Me in the dissertation). The software is used in the
engineering practice in South Africa for the analysis and design of sewer
reticulation systems, and is typical for packages of the Me design type. The
chapter starts with a discussion of the characteristics of a Me approach to
form the basis for the analysis. A description of the engineering process for
the analysis and design of a sewer system follows. Then the functionality of
the applications in the engineering process is discussed. It includes a brief
review of the theoretical background and identifies the corresponding algo-
rithms which have been implemented in the package. The decomposition of
the existing system into partial models and the implementation in modules
are investigated. Then an analysis of the Me approach is presented. The
suitability of the package for the engineering process is investigated for both
a local environment and a distributed computing environment. The structure
of the connections between the models in the form of data files and active
software bridges is presented in detail. Detailed quantitative analyses follow
for the interaction between models. The main properties, the efficiency and
the flexibility of the data transfer methods are investigated. Typical volumes
of data files for four test projects, which have been handled with the software
package, are considered. Finally, an overall evaluation of the model-centred

26

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 27

software system (MC system) is presented. The results are summarized in
such a way that the features of the MC approach can be compared with the
features of the application-centred design approach (ACdesign approach) in
Chapter 5 of the dissertation.

2.2 Characteristics of the Me approach

In this section, the general characteristics of the MC approach are presented.
First some terms relevant to modelling software systems in engineering and
especially the MC design are defined in a logical order. Then the name scope
limitation of object identification is illustrated. This is followed by a descrip-
tion of communication structures between models, such as data files and
active software bridges. The flexibility and efficiency of the MC approach is
then discussed. Finally, the potential usage of a software system based on
the MC design in a distributed computing environment is presented.

2.2.1 Definition of general concepts

Engineering process: This is the application of activities from engineering
technology to a real-world system which is of interest. An example is the
process of analysing and designing a sewer reticulation system.

Engineering software model: An engineering software model is the map-
ping of an engineering process to the memory and the processors of a com-
puter. This model is used to simulate part of the real-world in various ways,
such as by its visualization, analysis of behaviour, optimization of properties,
etc. The model consists of components and describes state. The generic term
model, refers to the engineering software model in this dissertation.

Partial engineering model: If an engineering software model represents
only part of an engineering process, it is defined as a partial engineering
software model (or short partial model). Such a partial engineering software
model could be the visualization partial model or the analysis partial model.
Partial models are uniquely identifiable within the scope of the engineering
software model. The term partial engineering software model is often reduced
to the term model if the partial property is not emphasized.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 28

Module: The software component for the implementation of a partial model
is called a module. A module is a sequence of statements and data storage
areas, which are treated as a whole when they are converted to machine
operations or when they are loaded from a file to core storage.

Engineering software sub-model: In this dissertation the additional term
sub-model is introduced. Whenever partial models are implemented as mod-
ules in such a way that the modules share objects and classes in common
memory structures, they are referred to as sub-models. Sub-models do not
followthe classical MCapproach of scope limitation on objects and classes of
objects. Sub-models are uniquely identifiable within the scope of the contain-
ing partial model. Figure 2.1 shows this relationship.

IMODELMI

Figure 2.1: Relationship between model (M), partial models (A,B)and sub-
model (Si)

Scope of objects: In the MC approach, objects are uniquely identifiable
only within the scope of a partial model. The same object identifier can there-
fore be used to reference different objects in separate partial models.

Scope of classes of objects: The scope of classes should be clarified. From
a classical modelling standpoint, classes are seen as the blueprints for ob-
jects. It follows that a model is considered as consisting of classes, which,
when instantiated, provide the objects which are bound by the scope of the
model. One could therefore argue that classes must also be bound by the
scope of models. However, modern programming languages followa different
approach. Classes which contain abstract data type definitions are consid-
ered to be independent of any model. Rather they are part of the software and

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 29

hardware platform on which the application is executing.

2.2.2 The concept of software bridges

Since the scope of the name of an object is restricted to the partial model
which contains the object, a communication structure is required to connect
objects which interact with one another across the model boundaries. This
communication structure is called a software bridge. Figure 2.2 shows a
software bridge. The bridge transfers data and commands across the bound-
aries of models. The software bridge is a special software which provides a
one-to-one relationship between models. The bridge is defined by specify-
ing which information can be transferred (syntactically and semantically) and
which commands can be accepted for execution.

Figure 2.2: Relationship between two models and a software bridge

Fundamentally, three different types of software bridge are used in the MC
design. It is shown how data tiles of different type, shared memory access
and software transformers are implemented in the SEWSAN MCpackage. All
of these are typical of a MC system. Regardless of the technique used, ports
are required on both ends of a bridge and are to be considered as part of the
bridge structure.

Requirements of a port on the model boundary: The port provides an
interface from the model to the bridge. It is located within the model and has
full access to the data structure of the model. It prepares the data for the
bridge, i.e. writes or reads it to disk or shared memory structure. It can also
route commands over the bridge.

A good bridge should be simple, transparent, understandable to users and
powerful. A bridge is powerful if few instructions are required to issue com-
mands or to obtain information from the connected model.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 30

Use of a data file as a bridge: This is the most common way of exchanging
data between models. The structure of the data file is based on a schema set
out in the two connecting ports. This schema can be defined by an abstract
data type which maps the data between the computer memory and the data
file. However, an unstructured data file can also be used, where the structure
of the file is not a direct image of the abstract data type. An example of this is
a free format alphanumeric data file. Extensive parsing is typically required to
read this file into the computer memory. Often the format allows for human
readability. This property compensates an inefficient storage format.

Other structured data formats include binary files with record structure,
where each record is an image of the abstract data type. Another technique
is to use a database format. Database systems are optimized for random
multi-user access of large volumes of data. Databases provide a structured
and compact file format which can be viewed by many standard software pro-
grams.

The latest development in using a common data structure is the use of
markup languages. The extensible markup language (XML)allows both the
description of the data and the data itself to be stored in a human readable
alphanumeric format.

In the evaluation of typical Me systems, alphanumeric text, binary data and
database files are considered.

Use of memory as a bridge: The bridge can be implemented via the direct
access of common (shared) memory resources or a communication system
(such as piping or inter-application data communication). Examples of using
memory as a bridge are evaluated in the Me system.

The use of common blocks was popular in older programming languages,
such as FORTRAN,where it was the fastest way of transferring data between
modules of implemented models. This was especially important as access to
secondary storage during file transfer was generally an order of magnitude
slower than the in-core operations. This technique is however only applicable
where small volumes of data are required to be transferred via the bridge, as
in-core memory is limited and therefore expensive.

Modern techniques allow for sophisticated software communication systems
to be used to marshal the transfer of data between different models located on
the same computer. These communication systems are very much dependent
on the operating system and its underlying functionality. Communication

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 31

systems for the in-core transfer of data on the Microsoft platforms include the
Dynamic Link Library (DLL),Dynamic Data Exchange (DDE), Object linking
and embedding (OLE), Component Object Model (COM) and the enhanced
version COM+technologies.

Many of the modern standards also provide for the transfer of data between
objects or applications located on different computing systems and running
on different operating systems. This includes the Distributed Component Ob-
ject Model (DCOM)and the Common Object Request Broker (CORBA)design.
Data streams based on a communication protocol such as TCPlIP are used
as bridges in the distributed scenario.

Use of a bridge as a transformer: The bridge can function as a transformer.
Programming code in part of the bridge converts data from the input port to
the output port. The conversion can be complex. An example of such a
transformer is investigated for the Me approach.

Bridge complexity: Let there be n models and let every pair of models be
connected with a bridge. Then the number of bridges to construct and main-
tain is n(n - 1)/2. The number of bridges required to interconnect models is
thus of the order O(n2

). This is illustrated for a system with five models in
Figure 2.3. Since the bridge manages all object communication between the
connected models, a fairly complex communication system must be main-
tained. As soon as many models are involved, the overall complexity becomes
a large problem for maintenance, extensibility and performance of the appli-
cation. This should be avoided in a modern and complex software application.

Figure 2.3: Five models connected via ten bridges

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 32

2.2.3 Evaluation of the Me approach

Inflexibility of design: Models as well as bridges are implemented by the
software developer during the development phase. This is called an a pri-
ori implementation. Normally the user has no influence on processes which
build connections between models. A few modern applications in the Civil
Engineering field, e.g. AutoDesk World and AutoCAD Map, which can be re-
garded as host applications for graphical models of an engineering problem,
provide some means of customizing the structure of the bridges. The user can
develop a custom driver which is linked into the application to import data
from a model, such as an external engineering analysis model. However, the
complexity limits this functionality only to specialist users. The Me approach
does not expose the object structure of the model to the user, and therefore
limits the flexibility of design. This is also observed in the investigated Me
system.

Stand-alone bridges of the transformer type transport data from one model
to another via a transformer. This approach can be followed as long as the
data file formats for both models are available. An example of such a bridge
is investigated in the Me system.

Inefficiency of design: Object duplication due to the limitation of object
name scope to models leads to inefficient systems in the Me approach. This
has a negative influence on program maintainability, program extensibility,
source code size and program execution time. Often objects of similar type
(i.e. with similar class structure) are required in more than one model. As the
communication between models most often does not directly permit transfer
of objects, or the invocation ofmethods over model boundaries, duplication of
objects and class structures occurs frequently in a Me system.

Existing models from diverse sources are frequently connected with bridges.
Especially if the source code or the object structure of the model is not avail-
able, duplication of functionality cannot be avoided.

The investigated example of a Me system is analysed for an inefficient design
due to object duplication.

Support for distributed computing: The Me approach provides only lim-
ited support for distributed computing. A distributed design is characterized
by more than one process executing on at least two platforms. Often more

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 33

than one user is involved and concurrent usage can be required. When mod-
els are hosted on separate platforms, the system of communication between
the models becomes a critical issue. The concept of the bridge must be ex-
tended to connect two platforms. It is clear that the exchange of data files
alone is not sufficient. A transformer or special conveyor is required to facili-
tate and manage the communication between the models. The ports are now
required to function as gateways between the platforms.

Inherently bridges are designed to transfer large volumes of data, such as
the entire geographical or hydraulic model of an engineering system. The geo-
graphical and hydraulic model can be located on different platforms. An inter-
active system which permits small and continuous changes in the hydraulic
model to propagate to the geographical model over the platform boundaries
cannot be easily implemented.

The management of change propagation in a MC system over platform bound-
aries is very difficult if only data files are used. The inherent complexity of
relationships between models in a MC system is drastically increased when
platform boundaries have to be crossed.

2.3 Description of the investigated engineering pro-
cess

The engineering process for the analysis and design of a sewer system using
the SEWSAN MCsoftware package as observed in a civil engineering consult-
ing bureau is discussed in this section. It consists of the construction of the
Topology model from the CADmodel, the incorporation of the Elevation model,
the construction of the Topography model, the construction of the Hydraulic
model, the use of the Visualization model and the construction of the Geo-
graphical model. Figure 2.4 shows this model structure. The numbers are
referenced in the discussion.

Construction of Topology model: The engineering process starts with the
collection, evaluation and processing of data defining the topology of the ex-
isting sewer system as contained on paper or in digital plans of a CAD model
hosted in a Computer Aided Design (CAD)system. The topology model con-
tains a collection of connecting lines representing the sewer pipes and a circle
representing the outfall manhole. It can be extended with text attributes

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach

Figure 2.4: Collaboration diagram showing the engineering process in
SEWSANMC

such as manhole numbers as well as other key hydraulic information, e.g
pipe diameters and the number of connected land parcels. This leads to the
construction of the extended Topology model of the sewer network (1). The
addition of new hydraulic structures to the Topology model can be specified
graphically with the software package. After a cycle of topology building, the
resulting Topology model can be exported to the CAD model (2).

Incorporation of the Elevation model: The Topology model must be aug-
mented with an elevation model of the sewer system (3). The ground elevation
at the nodes (manholes) of the sewer network can be obtained from an eleva-
tion model hosted by an external Digital Terrain Modelling (DTM)application.
The elevations are required for the verification of captured lid levels, for cal-
culating invert levels of new manholes and to calculate the pipe slope between
connecting manholes. The calculated slopes can be edited interactively by the
user.

Construction of the Topography model: From the Elevation model a 3D
visualization of the terrain can be generated within the software package (4).

34

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 35

The Topography model can also be updated with the topology model, resulting
in the 3D visualization of the sewer system (5). The model can be exported to
external CADSystems as 3D CADdrawing files (6).

Alternatively, a 3D CADdrawing file representing a topography model can be
loaded into the Topography model (7). From this model an Elevation model can
be exported (8), which can again be used to update the Topology model (3).

Construction of Hydraulic model: Alphanumeric input data, such as flow
measurement data for the calibration of frictional coefficients of pipes and
municipal water sales records, which are used to verify the domestic sewer
production, can be collected and evaluated parallel to the construction of the
Topology model. Then the Hydraulic model is constructed and the initial hy-
draulic analysis performed (9). Should errors in the topology or attribute data
be found during the analysis, a correction is required. Small errors can be
corrected directly in the Hydraulic model since it extends data contained in
the Topology model. Larger corrections such as the addition of new suburbs
initially not captured require that the Topology model be updated by the CAD
model (1), which in turn provides an update to the Hydraulic model (9). An
interaction between the Hydraulic model and the Topology model is therefore
required. It is also possible to extract the Topology model from an existing
Hydraulic model (lO). Similarly an interaction between the Topology model
and the Elevation model is required to update new elevations. For a new
system with unknown pipe diameters, the design algorithm in the hydraulic
software allows for the optimum diameter to be calculated from the pipe slope
information. As a final step, the engineering results are shown in tables and
XY-graphs, such as outflow hydrographs, as a function of time, or longitudi-
nal sections and elevations as a function of pipe distance.

Use of the Visualization model: The Hydraulic model is visualized graph-
ically in the Visualization model. At any stage after the topology of the sewer
system has been entered, a 2D graphical visualization of the system can be
obtained (11). Specific input or result variables are visualized by colouring
pipes and manholes (nodes) according to colour legends. A zoom functional-
ity permits the interactive enlargement of areas of interest. The Visualization
model must be updated as soon as any changes are made to the Topology
model, to the Elevation model and the possibly affected Topography model or
to the Hydraulic model. The Visualization model does not allow the user to
make any changes which influence other models.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach

Construction of the Geographical model: The presentation of results is
also extended to a Geographical Information System (GIS)with the construc-
tion of the Geographical model (12). Here the final topology is exported to-
gether with associated databases containing all the input variables of the
sewer system as well as results. Should any changes be made to the Topol-
ogy model, Elevation model (and Topographic model) or Hydraulic model, the
Geographical model must be updated to reflect the current state.

2.4 Functionality of the existing Me software system

This section describes the functionality of the SEWSAN MC package and ex-
plains the choice of programming languages. Figure 2.5 shows how the dif-
ferent applications are connected in the software package.

~.

SEWDTM

~
SEW2SHAPE

Figure 2.5: Applications comprising the SEWSAN MCpackage

Choice of existing Me software system: In order to show the shortcom-
ings of the MC approach it was decided to analyse the functionality of a soft-
ware package from the civil engineering field which is well known to the au-
thor. This package clearly exhibits the MC design, and the software itself

36

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 37

is not too complex, so that it does not distract the reader from the software
technology issues.

It was decided to analyse an existing software package for the analysis and
simplified design of urban sewer reticulation systems. As there is an interest
to develop a modern sewer system analysis and design program based on the
AC approach, the software example falls in the same engineering field as the
pilot application-centred software system (ACsystem).

The original software package contained only the Hydraulic model and the
Visualization model hosted in the SEWSAN SA program. The other models
were implemented ad hoc using various third-party software products. For
the purpose of this research and in order to be able later to compare results
from the MC approach with the AC approach, it was decided to rewrite several
of the interfacing applications and provide a common framework for the MC
system, collectively known as the SEWSAN MC package.

The TurboCAD [20] 3D-CADsystem was chosen to provide the common frame-
work within which the CADmodel, Topology model and Topography model are
hosted. This is a modern low-cost CADsystem which provides a similar pro-
gramming interface as other high-end CADsystems. The port structures to
the CAD model, the Topography model, the Hydraulic model, and the Eleva-
tion model are implemented within the programming environment of the CAD
system. Control can be passed between the Hydraulic model and the Geo-
graphical model.

The Elevation model is hosted in an external software application dedicated to
the construction and management of digital elevation models. The third-party
product used in the bureau environment was the Modelmaker [26] program.

For the Geographical model any product capable of reading the GIS Shape
File format from ESRI can be used. The freeware Java viewer ArcExplorer [13]
was chosen.

Programming language used for model hosting: The core application,
SEWSAN SA, which hosts the Hydraulic model and the Visualization model
is a Microsoft Windows based program, written in Visual Basic for Windows
[28], a programming language typically used by many engineering bureaus
developing their own software. The visual programming environment sim-
plifies the task of creating a functional and professional application. As all
visual components in the programming language are based on 00 technol-
ogy, the program logic contained in the Visual Basic forms of the application

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 38

follows the 00 principle. However, the program modules in the application
also allow the use of traditional procedural code. Most algorithms of SEWSAN
MC are implemented in the procedural style, as they have been inherited di-
rectly from code previously written for non-Ot) BASIC compilers. A sensible
mixture of the styles results in an effective hybrid programming paradigm.
The programming language used within the CAD system is Visual Basic for
Applications. This is used by many applications which require integration on
the Microsoft Windows platform.

Programming language used for transformer bridges: The stand-alone
bridges with transformer functionality have been implemented in Object Pas-
cal (Delphi). This includes the bridge between the Topology model and the
Elevation model which interpolates elevations and the transformer between
the Hydraulic model and the Geographical model.

2.5 Algorithmic background

This section describes the algorithms used for the hydraulic analysis and
design in the SEWSAN MC program.

Contributor hydrograph method : The hydraulic simulation in the
SEWSAN MC Hydraulic model is based on the contributor hydrograph method
for sewer systems originally developed by Shaw [42]. A 24-hour contribu-
tor hydrograph for each pipe is generated by the number of stands (or unit
parcels) served by the pipe and the type of area (e.g. higher income residential)
which they represent. Other flow components of the contributor hydrographs
are storm water ingress (rain water that enters the system illegally through
manhole covers and at house connections), ground water infiltration (which
enters the system through joints and connections at manholes) and leakage
(due to leakage of the domestic plumbing systems). The hydrograph generated
at each pipe is routed and accumulated downstream towards the outfall (most
downstream) manhole using a time lag routing. Flow peaks in the system are
attenuated due to the out-of-phase arrival of hydrograph peaks at a specific
point. Bottlenecks in the system are identified at manholes where overflow oc-
curs. Overflow occurs when accumulated flow at a specific manhole becomes
larger than the capacity of the immediate downstream pipe.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 39

Design option: The hydraulic software also has a design option to estimate
the required pipe diameter so that no bottlenecks occur in the system. Bot-
tlenecks in the system occur due to pipes of inadequate size. The required
diameters of all inadequate pipes in the system are computed iteratively. The
diameters of all inadequate pipes are increased stepwise until there are no
more bottlenecks in the system. The minimum diameter is governed by three
factors:

• Pipe capacity: The diameter must be such that the peak flow can be
accommodated.

• Minimum velocity: The diameter must be such that full bore velocity is
more than a user-defined minimum (typically 0,5 mis).

• Upstream pipes: The diameter must be equal to or larger than the largest
upstream pipe.

Interpolation algorithm: This algorithm is a software bridge located be-
tween the Topology model and the Elevation model. It interpolates the un-
known elevation at a manhole from known elevations in a grid pattern around
the manhole.

First a file is read which contains the known coordinates and elevations of
a set of points. The coordinates of a set of points are specified where the
elevation is to be calculated. For each point in this set, the algorithm finds
the three closest points from the set of points with known elevations which
form 3D triangle containing the unknown point.

2.6 Decomposition of existing software system into
models

This section describes the components of the SEWSAN MC software package
and their aggregation in models, partial models, sub-models and ports. The
components are illustrated graphically in Figure 2.6. The functionality of the
software bridges is discussed in the next section.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach

LoadTriangleFlle,

<, S.veTr1angleFlle

40

The Hydraulic model can function as a stand-alone application and is respon-
sible for the input, analysis, design and output of the hydraulic model. In

€ID
\ \
Load3DOrawing(),

Save3DOrawingO
\

I
I

/ Retr1eveTopology LO~SpotShOtFlle, r"""""'~:;::::===::::;)
I Save$potShotFlle/,-----,..-----.... "-

load3DOrawlng, / t
Save300rawln~() I Topoology Shared Memory I

/ I I
/

/ f
r-"~---_\LOIIdTr1angleFlle(l,

SaveTriangleFile(}

f--'-----j\
L-_---.-___J \I

StoreTopotogyO

I \
load2DDrawing(),
Sav.200r.wlngO

Sav.20Dr.wlngO,

f-----r- ~.d200r~lniln
Topology Model

/
-,
LoadXVZOata(),

SaveXYO~ta()/

~~::~::;:~i~::::::'/
/
/

XYZData File I
I

ISpot Shot Fil'2J
I I

/
LOadXYOataFilen,

SaveXYZDataFII~()
I

LoadSpotShotFIIe{)

/
/

II Hydraulic File I
I I

I

\
[,nterpolator)

I I
SEW2DTM
BRIDGE

,
LoadHydraullcModel(),

SaveHydraullcModel(1
I

StoreHydraullcModel()

I
SEW2SHAPE
BRIDGE

I
I

RetrteveHydraulicModel()

/
/

SaveGISFlle()

,
LoadGlsFlles()

\

Figure 2.6: Components of the SEWSAN MC software package

2.6.1 Hydraulic model

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 41

most cases where engineering problems of significant size are involved, the
additional models, such as the Topology model and the Elevation model, are
also required.

The Hydraulic model forms the core of the SEWSAN MCprogram. Figure 2.7
shows an overview of the classes. The Hydraulic model is sub-divided into
several sub-models:

Transformer

Visualization
Model

Figure 2.7: Diagram showing the Hydraulic and Visualization models

Input sub-model: The input sub-model permits the import of sewer net-
works from an external model (such as the Topology model via the SOF data
file port) or the manual alphanumeric definition of a new model in data edi-
tors. It also presents time dependent input data in the form of XY-Graphs.
The input sub-model allows the visual verification of the sewer system. As
the graphical presentation is reused for the result presentation, it has been
developed as a separate model, the Visualization model.

Verification sub-model: Another sub-model in the logical process of the
Sewer Analysis and Design System is the verification sub-model. In this model
the input is checked for errors before analysis or design. This model allows

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 42

interaction with the input model so that errors can be corrected after they
have been identified in the verification sub-model.

Analysis sub-model: This sub-model executes the sewer analysis for a
given input model after the model has been verified.

Results sub-model: This model represents the results of the analysis in the
form of tables on the computer screen and on printer output devices, as well
as in the form of XY-Graphs.

Design sub-model : This model manages the input of design criteria,
presents XY-graphs of time-dependent design input data (for example cali-
bration data) and executes the design algorithm.

Common sub-model: This model provides common functionality such as
the persistent storage of the sewer system. It also contains the simulation
system for routing flow through the sewer system, which is used by both the
analysis and design models and the main menu, which controls the program
execution of the application.

2.6.2 Visualization model

The graphical presentation for input verification of the sewer system as well as
the display of analysis and design results, are implemented in a stand-alone
visualization model. This model maintains its own name scope for classes
and object variables which are independent of all other models. Figure 2.8
shows the visualization of Test Project 2.

2.6.3 Topologymodel

The Topology model contains topology data of the sewer network as captured
from existing paper or digital plans. The topology model is stored persistently
as CAD-based data contained in an industry standard 2D CADdrawing. The
graphical data structure of this model, as well as the functionality available
within the model is discussed in this section. Although this storage format is
not very efficient, it does provide compatibility between most CADsystems.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach

Gmd level m
~

229.

271.
!I'

313_

355_

Query II

43

Data structure: The topology model is stored in the form of CADentities
on specific layers in an industry standard 2D CADdrawing. The basic CAD
entities representing topological data are lines, text and circle entities. Figure
2.9 shows the data associated with the topology model as stored in a CAD
drawing. The followingstructure details the entity structure:

175_

275_

375_

475_

Figure 2.8: Visualization of Test Project 2

• Lines: Lines are used to represent pipes of the sewer network. A con-
nectivity between two pipes is implied when the endpoints of the two
lines representing the two pipes have the same coordinates. Only lines
which exist on a specific layer are considered to be part of the sewer
model. This allows other lines to be used to describe parcel information
or street layout. The definition of the pipe direction is of importance: a
pipe is represented by a line whose first endpoint is the upstream man-
hole, and whose second endpoint is the downstream manhole. In order

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 44

MH001
120.

MH002
9.52

#5
#3

200.
117.5 15.45

TFMH

114.35

Figure 2.9: Topologyof sewer network stored in a CADdrawing

to reduce the complexity of the drawing, no specific manhole or nodal
entities such as circles are stored in the drawing. All manhole related
information can be stored as text entities associated with the endpoints
of the lines representing pipes .

• Text : Text entities are used extensively to provide additional informa-
tion to the topology model. None of the text entities are required initially
to build a topologymodel from a CADmodel, since default and automatic
settings are defined. For example if manholes (nodal points or end points
of line entities) are not identified by a text entity, default identifiers are
generated. Normally the user prefers to provide unique identifiers to
manholes in the sewer network. These identifiers are strings contained
in text entities. A system of layering and proximity is used. For example
manhole text will only be captured from a specific layer, and the entity
closest to a line endpoint (nodal point) defines the manhole identifier.

Other information which is considered part of the extended topology
model, such as the specification of the diameter of the pipes or the eleva-
tion at nodes is also stored or captured on separate layers in proximity
of the referenced entity, either close to the endpoint of a line, or near the
centre of the line.

Special attention should be paid to the storage of invert levels. Every pipe
in the sewer system has an upstream and a downstream invert level, i.e.
the level at which the pipe connects to the manhole. Initially it was
considered to store this information in close proximity to the manhole,
i.e. at the end points of lines. A confusion could arise as to whether
a specific text entity refers to the upstream or the downstream side of

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 45

a manhole, it was decided to write both the upstream and downstream
invert levels at the centre of the referenced pipe, using a hyphen ("-")to
separate the numeric values. The convention has been introduced that
the text entity on the left side then always refers to the upstream invert
level; the text entity on the right side, to the downstream invert level.

Finally the allocation of the number of standard land parcels producing
sewage which should be allocated to a specific pipe can also be repre-
sented by adding a text entity on the correct layer, near the centre of the
referenced pipe. The text is prefixed with a hash symbol.

• Circle : The circle is used exclusively to represent the outfall manhole.
Normally only one circle can exist in the representation of the topology of
the sewer system, as only one outfall manhole is allowed during analysis.

Functionality: Several functions are available to update or verify the con-
sistency of the topology model. New pipes are specified in the sewer system
with the draw line command on the correct CADlayer. The bottom manhole
can be defined by drawing a CAD circle at the location of the manhole. By
using the CADAdd Text command, additional information can be added to
the topology model, as detailed in the preceding paragraphs.

In addition to the CADcommands, five functions are available. One of them
provides a customized dialog box for the input of invert levels or slopes of a
pipe. The option of transferring invert levels to a downstream pipe facilitates
the construction of the extended topology model. Another function swaps the
pipe direction, i.e. the definition of the first and the second point of a line
representing a pipe. The third function allows the display of invert level error.
An asterisk is drawn on the line where the pipe has an upstream invert level
which is lower than the downstream invert level. It is also possible to draw
arrows on the lines to show the direction of definition of the pipe. Finally, a
dialog box permits editing of the number of parcels associated with a pipe.

These functions have been written as subroutines in the embedded Visual
Basic for Applications (VBA)programming language. The additional functions
are triggered with a menu bar, which appears on top of the CADenvironment.

Construction procedure: The topology model of the sewer system within
the Topology model is constructed as follows:

• Load existing drawing : An industry standard drawing file can be

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 46

loaded via the bridge to the CAD model by using the file input port. This
drawing generally requires editing to correct errors in the topology.

• Edit the drawing : The editor is used to move drawing entities to the
correct layers, and correct general drawing errors. Additional text or line
entities can be added, such as known invert levels or manhole top ele-
vations. Manholes can be moved by selecting the end point of a line and
dragging it to a new position. Allconnected pipes must be moved accord-
ingly. Incorrect pipes can be deleted. Elevations can be updated using
the port to the elevation interpolation bridge. This port is accessible from
the custom menu bar.

• Verify the topology model : The pipe orientation definition can be
checked against the invert levels. Corrections to the pipe orientation can
be made. Further verification of the model will take place once it has
been exported via the port to the bridge connection with the Hydraulic
model. The Hydraulic model will check for errors in the sewer system,
such as duplicate identifiers, invalid invert levels etc. Once these er-
rors are reported in the Hydraulic model they can be corrected in the
Topology model.

• Export the topology model: When the model has been verified, it can
be exported (using the file output port to the industry standard drawing
file) via the bridge to the CAD model. The final model is exported to
the Hydraulic model via the dedicated port and bridge for analysis and
design operations.

Connectivity with other models: The CADenvironment hosting the Topol-
ogy model provides the custom menu bar from which many other models can
be accessed. The Topology model is directly connected via ports and bridges
to the Topographical model, the Elevation model the CAD model and the Hy-
draulic model. The ports to all these models and the bridge to the Topographi-
cal model are written in the VBAprogramming language and contained within
the CADenvironment.

2.6.4 Elevation model

The Elevation model contains the elevation (z ordinate levels) of the terrain
within which the sewer system is located. Typically, the professional surveyor
includes data from survey books, total stations, stereograph photos, aerial

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 47

photography and data obtained from satellite measurements [6]. A regular
grid of elevation points is created and then exported using the surveyor appli-
cation via a port to an ASCIItext file. This file contains a list of XYZelevation
points. The SEW2DTMbridge has a port to this file to read it and then in-
terpolate the elevations at the manholes obtained from a port to the Topology
model.

A triangular mesh representing a surface model of the terrain can also be
exported via a port to an ASCIItext file bridge. The Topography model provides
a port to read the data again, and present it in the CADenvironment.

2.6.5 Topographymodel

This model contains the 3D visualization of the terrain containing the sewer
system, as well as the sewer system itself. The 3D rendering is done by the
CAD environment. Standard options include specifying parameters for the
texture, colour and thickness of elements to be rendered. Additionally draft
and final quality is available. After completion, the direction and magnifica-
tion for the window to the 3D view can be set interactively by the user.

Export via a bridge from the Topology model provides the data of the sewer
system. An import function via a port to the Elevation model or via a port to
the CAD model allows the input of data defining the 3D terrain model to this
model. The Topography model can also function as an intermediary model for
the extraction of elevation points from a topography model ported from the
CAD model to the Elevation model.

Figure 2.10 shows the topography for Test Project 1.

2.6.6 Geographical model

The Geographical model is used to present results from the sewer system
analysis with spatial queries. Third-party applications based on GIS stan-
dards can host the Geographical model. The model has its own port which
connects with the SEW2SHAPEbridge, situated between the Hydraulic model
and the Geographical model.

The port must be able to write standard GIS files based on the ESRI Shape
file standard and dBase IV database format. This format is commonly used
by GIS applications. As the GIS application is a third-party product, the
structure of the application is not relevant to this research. In the current

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 48

Figure 2.10: Topography for Test Project 1

implementation of this model, it is not possible to make changes to the Geo-
graphical model as the bridge structure responsible for migrating the changes
back to the hydraulic model would be too complex. Support for remote con-
nections (for example via the Internet to the GIS data source) is not provided
in this implementation.

2.7 Bridges between models in the existing software
system

The interaction between models within the scope of the SEWSAN MCapplica-
tion environment through the use of different types of data files or the use of
active software bridges is detailed in this section. The structure of the inter-
facing systems (files, shared memory and software transformers) is presented.

2.7.1 Use of data files

The files in which data are transferred between the model of a Me application
can be structured or unstructured. All records of a structured file consist

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the Me design approach 49

of the same sequence of data types: only the values of the variables differ
between records. Text files, which are composed of readable characters, are
distinguished from binary files, which contain the values of the variables in
internal computer format. A special variant of the binary data file is the
database file. The database file has a fixed record structure, i.e. each record
is based on a data type and is designed for fast random access through the
use of additional index files. Furthermore the database file is compatible with
many industry standard applications. The following examples are taken from
the SEWSAN Me application environment.

Structured text files: The. YXZ file is an example of a structured text file in
the SEWSAN Me application environment. This file is used by the SEW2DTM
transformer bridge (located between the Topology model and the Elevation
model) to obtain data from the Elevation model. The file contains a textual
representation of the coordinates and the elevation at the points located on a
regular grid containing the sewer system.

Typical rows of the file are shown in Table 2.1. The first row is ignored during
input.

Table 2.1: Typical rows of the .YXZstructured text file

y

43600
X
3755400

Z

303.1
43600 3755600 295.2
43600 3755800 282.5
43600 3756000 276.3
Size: 25 bytes per line
with up to 2 000 000 lines

The size of the file is not directly related to the size of the sewer system. It
is a function of the mesh density and the size of the terrain described in the
Elevation model. The SEW2DTM transformer supports the storage of up to
2 000 000 rows.

Structured binary files: The .EL V file is used between the Topology model
and the SEW2DTM transformer bridge (located between the Topology model
and the Elevation model). The file is exported from the Topology model which
contains only the X and Y coordinates of the manholes in the sewer model.
Then data is read by the transformer, updated with the elevation (Zvalue) and
written to the same file. The Topology model then imports the updated file.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 50

Since the file is binary, it is not human readable. The file is based on an
abstract data type, which is presented in Table 2.2 as it appears in the Topol-
ogy model (Visual Basic) and as it is defined in the SEW2DTM transformer
(Object Pascal). Different programming languages can be used to access the
structured binary file if they have the same underlying data types.

Table 2.2: Abstract data type for the .ELVstructured binary file

Visual Basic:
Type CoordType

X As Double
Y As Double
Z As Double

End Type
Object Pascal:
CoordType=packed record

X,Y,Z:Double;
end;
Size: 24 bytes per record
x total number of manholes

Structured database files: The .DBF files are used for data transfer be-
tween the SEW2SHAPE transformer bridge (located between the Hydraulic
model and the Geographical model) and the Geographical model. Three files
are exported from the transformer bridge. They contain the pipe related input
data, manhole related input data and pipe result related data of the Hydraulic
model. The database files have key fields which are referenced by correspond-
ing Shapes files (.SHP) with the same name.

The structure of the three files is outlined in Table 2.3.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach

Field Name
Table 2.3: Structure of the database files.

51

Type Size Decimals
Manhole input table:
MH NAME
Y COORD
X COORD
GR LEVEL
S INVERT

Char 16
Num
Num
Num
Num

20
20
20
20

4
4
4
4

TOTAL:m Manholes x 96 bytes
Pipe input table:
S MANHOLE
Y COORD
X COORD
GR LEVEL
S INVERT
E MANHOLE
E INVERT
SLOPE
I S
DIAM
LENGTH
C L
MANNING
E N
INFIL
ADD LENGTH
S TYPE
UH1 .. UH10 lOx:

Char 16
Num 20
Num 20
Num 20
Num 20
Char 16
Num 20
Num 20
Char 4
Num 20
Num 20
Char 4
Num 20
Char 4
Num 20
Num 20
Char 6
Num 20

4
4
4
4

4
4

4
4

4

4
4

4
TOTAL:n Pipes x 470 bytes
Pipe results table:
S MANHOLE
E MANHOLE
DIAM
LENGTH
SLOPE
MANNING
LAG
FULL FLOW
FULL VEL
MAX FLOW
MAX VEL
SPARE CAP
OVER FLOW
E N

Char 16
Char 16
Num
Num
Num
Num
Num
Num
Num
Num
Num
Num
Num
Char

20
20
20
20
20
20
20
20
20
20
20
4

4
4
4
4
4
4
4
4
4
4
4

TOTAL:n Pipes x 256 bytes

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 52

Unstructured text files: Several unstructured text (ASCII)files are used
for the exchange of data in the SEWSAN MC application environment. The
ASCII equivalent of the .DWG drawing file, the .DXF file, can be used as an
alternative for the import and export to the CAD model. The .DXF file is an
example of an unstructured text file. The .DXF file is less economical and
file sizes as well as loading/saving times are longer than for the binary .DWG
format. However, because of its text structure the .DXF file is accessible to
third-party developers. The structure of the .DXF file is complex, and falls
outside of the scope of this research.

Another unstructured text file, which will not be considered further, is the
.RES file. This file is exported from the Hydraulic model for import by the
SEW2SHAPE transformer bridge. It contains the results of a hydraulic anal-
ysis.

The unstructured text based .TRI file is used to exchange data between the
Elevation model and the Topography model. Its structure originates in the
application hosting the Elevation model and can vary. One variation of the
file contains only the definition of triangles forming the topographical model
without additional data. Typical lines of the file are shown in Table 2.4. Note
that the structure requires that the first node of a triangle is to be repeated.

Table 2.4: Typical lines of the .TRIunstructured text file

9413.79371416861,56269.7822844367,157.38455114057
9447.82584306483,56290.6728766598,165.46806374323
9391.90152009054,56269.8044848554,157.03309407088
9413.79371416861,56269.7822844367,157.38455114057

No Topo
10039.8763551521,56072.7202846054,195.48929988888
10060.7607640921,56078.8253992284,193.30119619699
10058.1715315063,56105.5103002358,203.77688433845
10039.8763551521,56072.7202846054,195.48929988888

Size: typical 200 bytes per triangle
x unlimited triangles

The unstructured text base .SDF file forms the core bridge between the Hy-
draulic model and the Topology model as well as between the Hydraulic model
and the SEW2SHAPE bridge to the Geographical model. It is also used for the
persistent storage of data from the Hydraulic model.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 53

The file is a free format text space delimited (ASCII)file. Except for the pro-
logue and epilog, the structure is mostly based on a fixed data type. A typical
line of the file is shown in Table 2.5. One line from the prologue is also
shown. The lines wrap over four rows (indicated by ..). The files contains
approximately 180 bytes per pipe in the sewer model.

Table 2.5: Typical rows of the .SDF unstructured text file

Type Code Y-Coord X-Coord Gr.Lev Invert
· . Code Invert Diam Length C/L Man E/N Infil S.Typ
· . UH1 UH2 UH3 UH4 UH5 UH6 UH7 UH8 UH9 UH10
· . Slope S/I Addl
PIPE USMHO 45289.808 3757087.012 239.590 0.000
· . DSMHO 0.000 200 17.137 C 0.012 E 0.050 1
· . 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
· . 0.500 S 0.000
Size: typical 180 bytes per row
x total pipes in sewer system

Unstructured binary files: An example of an unstructured binary file in
the SEWSAN MC application environment is the industry standard .DWG file.
This file is generally used to transfer data from the CAD model to the Topogra-
phy model as well as the Topology model. The format is propriety to AutoDesk,
but the OpenDWG alliance is actively involved to publicize (reverse engineer)
this format. It can be considered as the de facto standard for exchanging 2D
and 3D drawings. However, as it is not regulated by a standard committee,
incompatibilities exist between the different vendors and between the differ-
ent versions of the drawing file format. The details of this file structure will
not be investigated further as part of this research.

The .SHP format is used together with the database file to transport the input
and output data of the Hydraulic model from the SEW2SHAPE transformer
bridge to the Geographical model. This unstructured binary file format is pro-
priety to ESRI. The file format is documented by ESRI [12], and can therefore
be used to write input and output ports.

2.7.2 Use of memory as a bridge

If two application are developed by the same company and the source files for
both applications are available, the transfer of data via data files is frequently
avoided. The advantage of using in-core memory for frequent transfer of data

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 54

between models is apparent. In-core memory is several orders of magnitude
faster than out-af-care memory (hard disk etc). However, the shared memory
access is not as open to future development. Any changes made to the data
structure of the one model normally require that changes must be made to the
other models connected via the shared memory system. Usually this requires
changes at source code level and thus the recompilation of executable code.
Two examples of the use of memory as a bridge exist in the SEWSAN Me
application environment. Such a bridge exists between the Topology model
and the Topography model. Here the Topology model can directly access the
data structures of the Topography model and use the data to draw the sewer
network in 3D space. The interaction between the Hydraulic model and the
Visualization model located in a special Transformer module between the two
models, is investigated next.

2.7.3 Transformermodule

The transformer module in SEWSAN Me supplies the following functionality:
In the Hydraulic model classes and objects are available which define the
sewer topology and pipe attribute data. In the Visualization model, several
of these classes and objects are also required, but in a different format. For
example in the Hydraulic model, the data is stored in a format suitable for the
hydraulic analysis, whereas in the Visualization model, the vector format is
favoured.

Functionality: The Transformer module in the SEWSAN Me application
functions as a one-way adapter in the direction from the Hydraulic model
to the Visualization model. It propagates changes over the model boundary
and overcomes name scope limitation (for class names and object identifiers)
by mapping the classes and object identifiers between the models. Another
function of the bridge is the transfer of commands between the models.

Synchronization: Objects located in different models, which represent the
same real-world object, must be synchronized in order to ensure that con-
sistency is maintained. In the SEWSAN Me application a simple approach is
followed: Since the Visualization model only presents results (i.e. no changes
can be made in the Visualization model, which would influence the other mod-
els) the Visualization model is only updated whenever changes are made to the
Hydraulic model.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 55

The transformer will be analysed in depth in the next section.

2.8 Analysis of the Me design structure

In this section an analysis of the Me approach will show the deficits in the
design. The previous section described different types of bridges in a Me
design. However, the Transformer module as implemented between the Hy-
draulic model and the Visualization model is chosen since it exhibits the most
complex design.

The analysis does not focus on the actual implementation in SEWSAN MCbut
evaluates the general aspects of the MC design, which is also applicable to
Me software systems for other hydraulic engineering problems. In a typical
Me system, a Hydraulic model for the hydraulic analysis and a Visualization
model for the graphical presentation is connected via a Transformer module.
The models have independent name scopes, characteristic of a Me approach.
The communication of data and commands between the models takes place
via a Transformer module.

The two engineering models are implemented in separate modules (or pack-
ages), namely the HydraulicModel and VisualizationModel. The trans-
former is contained in the TransformerModule package. Figure 2.11 shows
the class diagram for the typical Me system. The Java implementation for the
system is found in Appendix C.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 56

Hydraulic App

ShowGraphicsClickO

I ~"
hydraulicModel

1
Network Data
numberPipes: int

buildTopoO
loadData(String)
printAgesO
printFlowsO
printPipesO
updateAgesO ~
updateFlowsO
updatelengthsO
updateSIopesO

•
pipes[]

Pipe
age: double
fiow: double
idBeginMH: String
idEndMH: String
indexDsPipe: int
invertLevelBeginMH: double
invertLevelEndMH: double
length: double
slope: double
xBeginMH: double
yBeginMH: double
zBeginMH: double

printAgeO
printFlowO
printlengthO
printPipeO
printSlopeO
updateAge(int)
updateFlow(int)
updatelengthO
updateSlopeO

""
Command Map

showGraphicsO

I
I
I
I,

Data Map

initTransformerO
transferNetworkDataO

Transformer
Module

Visualization App

showGraphicsO

./'r I
/' I/' I

/' I
/' Visualization Model

-: I
I
I

I
I
I
I

Graphics Data
numberlinks: int
numberNodes: int

drawLinksO

/'_. drawNodesO
updateLinkDistancesO

/'

\
/'

/

links[

"Y
Link Node

distance: double id: String
id: String index: int
indexBeginNode: int value: double
indexEndNode: int xCoord: double
value: double yCoord: double
drawArrowO drawCircleO
drawLineO
drawTextO
updateDistanceO

Visualization
Model

Hydraulic
Model

Figure 2.11: Class Diagram of typical Me system

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 57

Dynamics of bridge design: In order to analyse the dynamics of the trans-
former bridge, a UMLbased Collaboration diagram shown in Figure 2. 12 is
used in the following discussion. The flow of process is sequentially num-
bered and objects are identified with their class names.

Create Network Data

Network Data

~"EL
Get Network Data

Update Pipe Data

I
I

I Pi~e I

4 /

Transform Network Data ¥ ;
P/~! Graphics Data ~

/ L:J
Draw Link

/

~

o
Show Graphics

Hydraulic
Model

Transformer
Module

0/
Show Graphics

\o
Draw Node

\
I N:de I

8

Draw Graphics

Visualization
Model

Figure 2.12: Collaboration diagram of typical Me System

Execution starts at the HydraulicApp object in the HydraulicModel pack-
age. During initialization it creates the NetworkData object (1) as well as
subordinate Pipe objects (2). The NetworkData object contains an array
pipes [J of all instantiated pipe objects, as well as methods which operate on
the array of Pipe objects such as updateLengths () to calculate the lengths
of all pipes in the model and printFlow () to print the resulting flow in all
pipes. The showGraphicsClick () method in HydraulicApp (3) is executed
when the user requests a graphical visualization. This method transfers exe-
cution to the CommandMapobject in the TransformerModule package, which
firstly calls ini t Trans former () to initialize the transformer, and then calls

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 58

transferNetworkData () (4) in the DataMap object. This method maps the
relevant data from the NetworkData object in the HydraulicModel package
(5) to the GraphicsData object in the visualizationModel package (6).

In order to achieve this, the DataMap object is dependent on the
NetworkData object in the HydraulicModel and on the GraphicsData ob-
ject in the visualizationModel. Then the showGraphics () method in the
VisualizationApp object of the VisualizationModel (7) is called, which
in turn calls updateLinkDistances () (to update the lengths of the links
in the VisualizationModel) and then drawLinks () and drawNodes () in
the GraphicsData object (8). These methods in turn call the drawLine () ,
drawArrow () and drawText () methods (9) for the links and drawCircle ()

for the nodes in the visualizationModel. From the class diagram it can
be seen that the links [] and the nodes [] arrays are contained in the
GraphicsData class.

Topological structure: From the two figures it can be seen that the Hy-
draulic model and the Visualization model use different techniques to store
the topology and geometry. This is typical where models are developed for
different purposes.

In the Hydraulic model the topology and geometry data are stored in Pipe
objects. Each Pipe object has a reference to the index of its downstream pipe
in the pipes [] array. This linked-list data structure is adequate to model a
tree data structure and only the geometric data (coordinates) of each begin-
ning node is stored in the pipe object. The last pipe in the tree (terminating
pipe) defines the end of the pipe system. This pipe has a null idEndMHand no
associated length.

In the Visualization model the topology and geometry data are stored in Link
and Nodes objects. This allows the generic display of a network of links to
include for example loops of links. The Link object contains an id and
the index to the begin node object (indexBeginNode) and end node object
(indexEndNode) of the link. The Node object then contains an id, its index

in the array of nodes [] , and the X and Ycoordinates of the node.

Tree traversals: The updateAge () method performs a typical pre-order
tree traversal and calculates the age of all pipes (represented by their length)
from the terminating node upstream in the pipe system. The updateFlow ()
effectively performs a post-order tree traversal, i.e. downstream towards the

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 59

terminating pipe. The two operations are performed using nested loop opera-
tions as shown in Java source code traversal algorithm in Appendix C.4. The
two typical operations for data trees will also be analysed for the Ae design.

With the structure of the typical Me approach now set out, the next part
discusses the limitation of the design based on the above discussion of the
typical Me system and the fully implemented SEWSAN MCsystem.

2.8.1 Limitation of object identifier scope

An object is an instance of a class. Objects require an identifier which distin-
guishes one instance from another within a specified name scope. The name
scope in the Me design is limited to the scope of the model. Therefore objects
can only be identified and accessed uniquely within this name scope.

Objects can be identified uniquely within a name scope using different
techniques. A single object can be assigned to a unique string, such as
outFallManhole. A set of objects is typically identified by an identifier for
the collection (such as pipes []) and an index to the specific element. This
identifier can be a positive integer (such as in the case of an array data struc-
ture) or another string identifier in the case of a hash table (dictionary) data
structure. Ahash table data structure maps string identifiers to object refer-
ences in an effectiveway.

The typical Me system makes use of arrays as storage structure for sets of
objects, namely pipes [] in the Hydraulic model and links [] and nodes []
in the Visualization model. This is common in older programming languages
where extended data structures are not available.

The pipe [] array is bound by the name scope of the Hydraulic model package
and can therefore not be accessed directly outside its name scope. The same
applies to the link [] and node [] arrays in the Visualization model package.

The access of objects over the model boundaries functions only in the typical
Me system if marshalling via a bridge structure takes place. The Trans-
former module provides the functionality to map commands via methods in
the CommandMapclass and data via the DataMap class between the two mod-
els.

In an alternative design using ports and data files, such as between the Hy-
draulic model and the Topology model in SEWSAN MC, the transformer is
moved to the port methods in each of the models, and the data file represents

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 60

a neutral format for exchanging data via secondary storage.

Regardless of the techniques used to interconnect models, the data structures
must be maintained throughout the lifetime of the application.

2.8.2 A priori implementation by software developer

The Me approach does not allow the user of the application to influence the
composition or connection of models. As the application is designed a pri-
ori and coded by the software developer using rigid bridges to interconnect
models, it is for example not possible in the SEWSAN MCapplication environ-
ment to exchange the existing Visualization model with either an alternative
model (say a 3D visualization system) written by the original software devel-
oper at a later stage, or even by a third-party developer, without access to the
full source code. The transformer bridge as implemented by the Transformer
module cannot be designed transparent enough as it is too tightly interwoven
with the global data structures of the two models.

Other forms of bridges, such as data files, offer greater flexibility. If an exist-
ing bridge data structure provides all the information required for the alter-
native model, it would be possible to develop an isolated model which uses
an existing data bridge. However, should the data provided by the existing
bridge not be sufficient, there is no way for the developer of the new model
to implement a new bridge to the existing model. The existing models do not
allow the customization of their ports in order to provide new bridges to new
models.

2.8.3 Object duplication

Each model and sub-model in the Me approach focuses on the engineer-
ing task at hand and implements a solution for that task. For example, the
Hydraulic model accesses data in its name scope and operates analysis and
design algorithms on the data. The Visualization model uses data available
only in its names scope and presents it graphically.

As the models contain data of the same engineering problem it is evident that
a duplication of classes and objects will take place. This can be seen in the
duplication of attributes between the objects representing the basic hydraulic
elements (pipes and manholes) between the Hydraulic model and Visualization
model. For example in the typical Me system, the endpoint coordinates of

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 61

pipes (or the coinciding manhole coordinates) are effectively duplicated in the
xBeginMH and yBeginMH attributes of the Pipe class in the Hydraulic model
and the xCoord and yCoord attributes of the Node class in the Visualization
model.

The duplication of classes also results in a duplication of functionality. For
example the method to compute the length of pipe from the coordinates of its
endpoints should only be implemented once in a class Pipe. In the typical MC
system it is implemented once with the name updateLength () in the Pipe

class of the Hydraulic model for the hydraulic calculations and once with the
name updateDistance () in the Link class of the Visualization model for the
placement of text and symbols.

The resulting redundancy influences the performance and maintainability of
the application.

2.8.4 Programmaintenance

The periodic elimination of programming errors is called program mainte-
nance. If objects are duplicated, i.e. the same real-world object is contained
in more than one model, it is likely that a part of the object functionality is
replicated. The length calculation routine in the Hydraulic model and the Vi-
sualization model are an example. Should an error be found in the calculation
logic of this routine in one model the same error may exist in the other model.
The other models must be verified. This duplication of object functionality
leads to additional program maintenance.

Debugging (i.e. the process of using special software to trace the flow of exe-
cution) is limited in a MC approach. As the debugging is limited to the exe-
cutable application, only one model can be debugged at a time. This means
data flow between models cannot be followed interactively. For example, in
SEWSAN MCthe flowof execution from the Topology model contained within
the CADEnvironment cannot be traced from the CADEnvironment to the Hy-
draulic model contained in the SEWSAN SA application, since the .SDF data
file bridge prohibits this.

2.8.5 Programextensibility

Should the topological definition of sewer pipes be changed to include inter-
mediary points between manholes, a new algorithm is required to calculate

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 62

the pipe length. This change in the attribute data structure of a pipe object
requires a change in the method which calculates the length of pipes, now
including the intermediary points.

Should this functionality also be required in other models, the equivalent
methods in pipe or topology classes need to be re-implemented. In the case
of the SEWSAN Me application environment this means that the Hydraulic
model, Visualization model and the Topology model must be updated at source
code level.

2.8.6 Suitability for distributed computing

As the SEWSAN MC application is not designed to be used in a distributed
computing scenario, the following discussion is based on a hypothetical sit-
uation. The ability to spread an application environment over several plat-
forms located at different physical locations has become a very important
design consideration, especially in light of the fast-paced development of the
Internet. Several factors make a MC approach not suited for a distributed
scenario:

Name scope limitation: As discussed previously, the MC approach limits
the name scope of objects to the containing model. In a distributed computing
scenario this means that models are located on different remote platforms.
Objects cannot be transferred directly from one model to the other as the
name scope of the object is limited to its model and platform. However the
use of bridges, such as data files which must now be transferred between
platforms, can be used.

Requirement for bridges: The functionality of software bridges must be ex-
tended so that they also interconnect models located on different platforms.
Issues such as the marshalling of remote procedure calls over the network
and security aspects must be handled in the extended bridge. If several mod-
els are to be connected over the distributed network, the complexity rises
quickly. It is again of the order O(n2), where n is the number of models. The
classical use of bulky data files as bridges cannot be a recommended for the
distributed design, as the communication channel is still a premium resource
and bandwidth is expensive and limited. Only a new design, where small vol-
umes of data (and possibly code) encapsuled in objects which are exchanged

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the Me design approach 63

between remote models can be considered. This is not possible in the MC
approach.

Object duplication: In a distributed computing scenario, the name scope
of an object identifier is limited to the model in which the object is defined.
This leads to duplication of objects and to issues involving program mainte-
nance, extensibility, source code size and execution time, as discussed in the
previous section. The negative effects are, however, compounded by the fact
that models are located remotely relative to each other, and that the bridge
system is now much more complex.

2.9 Quantitative analysis of the Me approach

The construction of the Hydraulic model by making use of the Topology model
and Elevation model has been identified as a suitable benchmark operation
which would be ideal for the quantitative analysis. This operation includes
time-intensive user interaction as well as numerous data file operations.
Wherever a data operation is perceived as taking noticeably long, the Duration
of Execution (DoE) is quantified. Wherever user input requires considerable
time, the User Interaction Count (UIC) is used to quantify the total time. For
specific key operations, the Basic Instruction Count (BIC) and the Persistent
Data Size (POS) is used as additional measure. By using the same suite of
operations for the AC approach, a comparison can be made. The different
quantitative measures are defined in the Introduction (see Section 1.4). The
spreadsheet summarizing all quantitative results is found in Appendix B.

Duration of Execution: The execution duration is measured in seconds
and depends on the benchmark computer. The computer has an Intel Pen-
tium II 333 MHz processor, with 160 Mb RAMrunning Microsoft Windows
98.

Basic Instruction Count (BIC): The BIC has been evaluated for the port
operations on both sides of the bridge, between the Topology model and the
Hydraulic model as well as between the Topology model and the SEW2DTM
bridge. Thus the two most common time consuming data file operations (for
the unstructured text file and the structured binary file) are evaluated with

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 64

the DoE and the BIC. Only operations which are performed during each iter-
ation of a loop are evaluated as they determine the perceived execution time.
The BIC is then multiplied by the number of passes of the execution loop.
Appendix D shows a spreadsheet where the BIC is calculated.

User Interaction Count (Uie): The number of operations for a single basic
operation is counted and multiplied by the number of entities, e.g. pipes in
the sewer system. This represents the ideal situation, where a user does not
make input mistakes.

Persistent data file size (POS): The size of data files plays an important
role in the performance of an application in a distributed computing scenario.
Although the MCapproach is not designed to directly support the distributed
scenario, it is possible to execute the different applications comprising the
external models independently at remote locations. For example, the elevation
interpolation can be separated from the main entry of data and the analysis.
The data files which are used in the bridge structures must be transferred to
the remote locations via e-mail or file transfer protocol (FTP).Only the size of
the persistent data is evaluated.

The basic operations are briefly described and categorized in the next section.
Then the results of the quantitative analysis for the test projects are reported
for each category of operations.

2.9.1 Evaluation of the BICand UIC

This section describes the basic operations which are considered in the BIC
and UIC for a sewer model. It is assumed that a layout drawing file of the
sewer system has been imported from the CAD model to the Topology model.
This layout drawing file contains lines representing the sewer pipes as well
as a circle indicating the outfall manhole. The entities in the drawing are
already located geographically. No additional information such as manhole
names or pipe attributes such as diameter are given. On a separate layer, the
layout of the area is available. This typically consists of the street layout as
well as parcel (plot)boundaries. A topography model may already exist in the
CADenvironment. If an Elevation model is available, the elevations can be
interpolated.

• Topology flow direction (TFO): In the first step the orientation of the

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 65

pipes in the sewer system is verified. As only single tree structured sewer
networks are evaluated, the following procedure is followed: A function
Show Direction Deiinitlon (referenced here as TFD1) draws arrows in the
direction from start node to end node on all lines representing pipes.
Corrections are then made interactively, using the Swap Direction Deiuit-
tion command. The procedure for correcting flow direction is referenced
here as TFD2. For the purpose of the quantitative analysis, it is defined
that 20% of the pipes in the sewer network require correction.

• Topology model export (TME) : During this step, unique names are
automatically generated for manholes. Manholes are defined at the end-
points of lines representing sewer pipes. This is an automatic process.
This is the first export of the Topology model to file. During this export,
default values are assigned for pipe diameter, number of parcels per
pipe, manhole elevation and invert levels. The quantitative evaluation is
performed at a later stage when the fully populated model is exported
from CAD(see TME2).

• Topology model import (TMI) : During this stage the topology model
is re-imported. The model now contains standard sized text for all at-
tributes as well as default values. Any errors in the topology become
visible, most notably by lines running across the system to the outfall
manhole. These errors in topology now require correction. The quantita-
tive evaluation is postponed until the fully populated system is imported
(see TMI2).

• Topology model correction (TMC) : In this interactive phase errors in
the topology are corrected which were missed during the first iteration.
Only the most common error is evaluated here, namely the drawing con-
nection error. This occurs during the construction of the CAD model if
connecting pipes do not meet at one point. A typical value of 10% of all
pipes in the sewer system is regarded as modelled incorrectly.

• Topology model coordinate export (TCE) : During this process, the
coordinates of the manholes of the sewer system are exported to a binary
structured file. All operations are quantified using the DoE and the BIC.

• Elevation model coordinate import (ECI) : During this process, the
coordinates of the manholes of the sewer system are imported to the
SEW2DTM bridge. In the bridge the elevations are updated using the
interpolation algorithm.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 66

• Elevation model elevation export (EEl) : In this process, the updated
elevations are exported back to the structured binary file.

• Topology model elevation import (TEl) : The updated elevations are im-
ported from the structured binary file, and the elevations are generated
in Topology model as part of the CADenvironment.

• Topology slope update (TSU) : The initial slope of the pipes is updated
from the elevations at the endpoint manholes. This is an automatic
process.

• Topology parcel update (TPU) : This is an interactive operation whereby
the number ofparcels (plots) associated with each pipe is counted. Using
the elevation update dialog box, the text located at the centre of each
pipe can be quickly updated. A typical scenario where 20% of the parcel
count is different from the default (1) is assumed. The interaction index
for this operation is determined. The model should is now ready for
export to the Hydraulic model.

• Second topology model export (TME2) : The topology model is exported
to the .SDF data file. In this stage the DoE and the BIC is determined.

• Hydraulic model import (HMI) : The duration for importing the topology
model is determined using DoE and BIC. If errors are found, another
iteration of TMC, and TME2 is required. It is however assumed that the
system no longer contains topology errors at this stage. The optimum
diameters are calculated given the slopes now available for each pipe.
The system is then analysed.

• Hydraulic model export (HME) : The analysed hydraulic model is ex-
ported to the .SDF file. This export is quantified.

• Second topology model import (TMI2) : The updated .SDF data file
containing the optimum diameters is re-imported to the Topology model.
Both the DoE and the BIC are determined.

2.9.2 Result of the quantitative analysis

Three key operation categories are defined to group the basic operations. They
are again used for the comparison with the AC approach, and are defined as
follows:

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 67

• Total Update Elevation (UE) : This is the sum of the TCE, ECI, EEl and TEl
operations and represents the total duration for the update of elevations.

• Total Build Model (BM) : This is the sum of the TME2 and HMI opera-
tions and represents the total duration for the construction and export
of a populated model from the Topology model and the import into the
Hydraulic model.

• Total Draw Model (OM) : This is the sum of the HME and TMI2 operations
and represents the total duration for the export of a populated model
from the Hydraulic model and the import into the Topology model and
the display thereof.

Duration of Execution and Basic Instruction Count: The performance
for the key operations (UE, BM and OM) is shown in Table 2.6 and shown in
graphical form in Figure 2.13.

Table 2.6: Comparison of key MC operations for DoE and BIC

Project TPI TP2 TP3 TP4
Number of pipes 104 682 2934 6721
Update Elevations (UE)

(1) 2.0 47.0 350.4 2608.4
(2) 2.0 27.5 353.0 1715.0
(3) 2.0 27.5 353.0 1715.0

Build Hydraulic Model (BM)
(1) 9.8 191.8 1717.9 10290.8
(2) 16.3 191.3 2233.0 10552.0
(3) 16.3 191.3 2233.0 10552.0

Draw Hydraulic Model (DM)
(1) 9.0 63.3 222.8 951.0
(2) 8.9 62.2 327.0 978.2
(3) 8.9 62.2 327.0 978.2

Note: (1)Duration of Execution (DoE)in s
(2)Basic Instruction Count (BIC)in million operations
(3)Equivalent duration for Basic Instruction Count (BIC)in s

The following quantitative results are observed in the table: One second of
equivalent BIC is approximately equal to 1.0E6 BIC operations.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 68

DoE and BICcomparison: The BICof the Update Elevations (UE) operation
does not accurately represent the DoE for large sewer systems where a value
of 2608 s is measured for the DoE but only a value of 1715 s (or 1715xE6
instructions) is expected. This is most likely a scenario where external factors
such as insufficient system memory (which results in hard disk spooling to
secondary storage) can influence the performance. However, it is the purpose
of the complexity analysis used for the BICto eliminate the platform depen-
dence of DoE measurements.

It can be seen that the BICis an absolute measure of execution performance
since it correlates well with measured DoE values, especially for the Build
Hydraulic Model (BM)evaluation. It will again be used in Chapter 5 for the
analysis of the AC design and in Chapter 6 for the comparison between the
MC approach and the AC approach.

The Build Hydraulic Model (BM) collective operation is a very time intensive op-
eration. It takes up to 2.75 hours (over 10000 s) to build the hydraulic model
for the largest network. Generally this operation is only required once to con-
vert a complex CAD model to a Topology model. Factors which contribute to
the poor performance are the interpreted programming langauge, the slow
interprocess communication (COM)between the embedded Visual Basic envi-
ronment and the CADengine, as well as the getClosestTextGraphic () al-
gorithm which must evaluate all text entities within the vicinity of each point
of interest to find the closest text string. Although an improved algorithm
could be implemented for the AC design, the same algorithm will be used in
order not to influence the general comparison between the MC approach and
the AC approach.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 69

Update Elevations (UE)

3000
2500-.!? 2000

I:
0 1500..
nl... 1000:::I
C

500
0

0 6000 8000

I=-=BICl
~

2000 4000
Number of pipes

Build Hydraulic Model (BM)

12000
10000

~ 8000
I:
0 6000..
I!
:::I 4000c

2000
0

0 4000 6000 8000

I=-=BICl
~

2000
Number of pipes

I=-=BICl
~

Draw Hydraulic Model (OM)

1200
1000

~ 800
I:
0 600..
I!
:::I 400c

200
0

0 6000 80002000 4000
Number of pipes

Figure 2.13: Graph of key MC operations for DoE and BIC

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 70

User Interaction Count: The performance for the operations (TFD2, TMC
and TPU) with respect to the UIC is summarized in Table 2.7. Figure 2. 14
plots the UIC against the number of pipes. It shows the interaction count for
the three measured cases cumulatively, namely from bottom to top for Swap
Direction Definition (TFD2), Topology Manhole Correction (TMC) and Topology
Parcel Update (TPU). This graph is of use only when compared later to the AC
design scenario.

Table 2.7: Key MC operations for UIC

Project TPI TP2 TP3 TP4
Number of pipes 104 682 2934 6721
User Interaction Count (UIC)

Swap Direction Definition (TFD2) 104 682 2934 6721
Topology Model Correction (TMC) 125 818 3521 8065
Topology Parcel Update (TPU) 63 409 1760 4031

Total 292 1909 8215 18817

Total User Interaction Count

25000

20000

- 15000e
::::J
0o 10000

5000

0
0

8TPU

ISITMC

IZITFD2

2000 4000 6000 8000
Number of pipes

Figure 2.14: Graph of UIC performance

Size of persistent data: The size of all files which contribute to the per-
sistent data state is totalled and presented in Table 2.8 for the different test
projects. The first column describes the data file followed by the size in Mbyte
for each test project. It can be seen that a total file size of over 10 Mbyte is
required to store the persistent data for the largest test project.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach

Table 2.8: POS requirement in Mbyte

Project TPI TP2 TP3 TP4
Number of pipes 104 682 2934 6721
File description

OXF CADfile 0.091 0.722 2.295 5.054
SOF Model file 0.023 0.123 0.524 0.751
ELV DTMfile 0.004 0.017 0.069 0.158
SHP GIS PIPE file 0.010 0.059 0.253 0.578
SHP GIS NODE file 0.003 0.019 0.081 0.187
OBF GIS PIPE file 0.051 0.326 1.397 3.198
OBF GIS NODE file 0.011 0.065 0.279 0.637

Total 0.193 1.331 4.898 10.563

71

A graph for the POS is presented in Figure 2.15. It shows a near-linear rela-
tionship between persistent file size and number of pipes. This relation can be
explained as the data files generally contain one row or record with constant
length per pipe.

12
10

:ê
::ai: 8-Cl) 6.~en
~ 4
LL 2

0

Total Persistent Data Storage

........
»>

»>
~

.>
»>
o 4000

Number of pipes

800060002000

Figure 2.15: Graph of POS performance

Stellenbosch University http://scholar.sun.ac.za

Chapter 2. Analysis of the MC design approach 72

2.10 Conclusion

This chapter presented the characteristics of the MC approach, followed by
an in depth evaluation of a typical MC system taken from the hydraulic engi-
neering field. Great effort is taken to detail the typical engineering process as
well as the design of the MC system with special emphasis on the transformer
bridge. Many of the concepts introduced, such as management of the topol-
ogy and geometry, are typical for other applications from the field, such as for
Water Distribution Analysis Software [43] or Storm Water Analysis Software.

The key result from the analysis of the design structure is that the limitation
of the name scope of object identifiers in the MC approach severely limits
the flexibility of the design to allow for program maintenance and extension.
The complex design and management of software bridges inhibits the natural
development of the software design.

The quantitative analysis is primarily of use later for the comparison of results
with the AC approach. However, the BICcriterion has been calibrated against
the measured DoE times and allows the limited extrapolation of results for
larger test projects for a platform independent state.

The analysis of the MC design approach has now been concluded. The next
chapter will deal with the concept of the AC design approach, followed by its
implementation.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3

Concept of the AC design
approach

3.1 Introduction

The analysis of the MC design approach in the preceding chapter shows that
the data flowin the software package is hindered by the basic structure of the
system. Especially the number and complexity of the ports between models,
the effort for software maintenance and the detailed model documentation,
which is required when adding new ports, have initiated the following study
of an alternative design.

In order to overcome as many of the shortcomings as possible, the AC design
approach was developed. The concepts of this design are presented in this
chapter. The implementation of the design will then be presented in Chap-
ter 4.

Definition: In the AC design the concept of separate models for different
applications interconnected via ports is replaced with a concept where the
application as a whole contains all the objects. Models are now formed by
the collection of objects according to semantic views within the application.
Furthermore, a model in the AC approach can contain sets of objects as
well as data structures to define the relationship between objects. Figure 3.1
shows a diagram representing models, sets, relation-sets and objects in an
AC approach and indicates that objects, sets and relations can be shared
between models.

73

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 74

Typical models in a civil engineering application are treated in this chapter.
These models include a data model and a visualization model as well as other
engineering models.

Figure 3.1: Definition of AC approach

Outline: Several characteristics, which define the AC design, are discussed
in depth in this chapter. The concept of application-wide unique object iden-
tifiers is introduced, which forms the backbone for the software design. This
is followed by a discussion of the concept of object set management, which
controls the aggregation of objects into sets. The formation of relationships
between objects and the management of state consistency are then presented.
The structure of the model-object is described. Finally the adaptation of an
AC approach for a distributed computing scenario is investigated.

Definition of classes: Contrary to work done by Laabs [23] for an object-
centred design, the class structure, which defines the blueprints for the cre-
ation of objects, is not considered part of the model or application structure
in the AC design. The classes are stored as files and are components of the
software platform. It will however be shown in the implementation (Chap-
ter 4) that classes for basic engineering objects (such as pipes and manholes),
which exist in typical engineering models, can be designed effectively in a
hierarchal manner.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 75

3.2 Concept of an object identifier management

Every instantiated object in an application occupies a unique space in the
computer memory. The state address of this space is referred to as the data
pointer to the object (in C++) in the memory space of the computer, or as a
reference to a memory location in a virtual machine (in Java). However, the
memory address or reference is not persistent and can be different each time
the application is executed and the object is instantiated.

Furthermore, an object must be instantiated before it has a unique memory
reference. This presents a problem where relationships are to be implemented
between objects which have not yet been created. For example let an object
reside in an object database but not in application memory. By using iden-
tifiers (such as strings) which are defined uniquely within the application for
all objects of the application, it is possible to identify and reference an object
persistently over its lifetime, even if the object is not instantiated.

Type of identifier: The early computer programs used consecutive natural
numbers (0, 1,2, .. , n) as identifiers for objects due to memory space limita-
tions. As larger integer data types and memory space became available, the
requirement of consecutive numbers was lifted, which allowed the user to use
any natural number within a given range. Then identifiers with a fixed char-
acter length were introduced. Today character sequences (strings) of dynamic
length are used as identifiers.

The consecutive numbering of the objects may not be suitable for a given
problem. In particular, the modification of lists of objects by the insertion
of new objects is difficult. The identification with character sequences of dy-
namic length provides the user with the largest flexibility in the choice of
mnemonics. The mapping of the persistent identifiers to object references
requires special attention if this method is used.

Assignment of identifiers: The assignment of unique identifiers by the
user is frequently useful in an engineering environment, for instance if the
software objects represent real-world engineering objects to which the engi-
neer can relate, such as manholes in a sewer network. The user can add
meaning to the identifier which relates it to other parts of the engineering
problem. However, the assignment of identifiers by the user should be op-
tional throughout the application. It must be possible to create internal

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 76

identifiers for objects whose identifiers do not interest the user. This then
necessitates a method for the automatic generation of object identifiers.

Scope of identifiers: Usually an engineering problem contains objects from
several classes. Choosing the class as the identifier space for its objects can
result in objects from different classes with equal names. Since an object can
be contained in more than one set, sets are also not suitable as unique object
identifier spaces. Therefore the object identifier must be unique at least within
the scope of the application. This is the lowest level of uniqueness imposed
by the AC approach.

The concept of the application can be limited to a single processor computer
with one memory address space or it can be extended to multiple processors
in a distributed network scenario. Even a passive object, that is an object
which is not instantiated in the memory space of a processor but which re-
sides in storage, can be part of the object name scope of the application.

Compelling reasons may frequently dictate a higher level of uniqueness. If a
persistent object may be accessed at a later stage outside the context of the
current application, then a uniqueness based on a project or geographical
level can be introduced. For example the merging of the data models of two
sewer systems, each originally created in its own object identifier space, can
result in objects with colliding identifiers. This may be avoided by assign-
ing object identifiers which are unique over all sewer system projects. For
example all the identifiers can be prefixed with the relevant unique project
name.

Ensuring uniqueness: When providing the flexibility of user-defined iden-
tifiers for objects, care must be taken to ensure that every new identifier is
unique within the name scope of the application. This does not present a
problem as long as the application has full control over the issuing of identi-
fiers. This control can be achieved by querying an indexed list of all identifiers
issued in local memory, or by requesting a unique identifier from a remote
name server or database.

As an alternative, universally unique identifiers can be used. These identifiers
can be generated by special algorithms which typically use the system time
and other unique properties of the computer environment, such as processor
id, network adapter address and lP address to generate a unique identifier.
Java [44]. for example, provides a function to return a unique identifier (UID)

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 77

which uses a random number, the system time in milliseconds, an integer
counter and the network lP address for the generation. An example of the
] ava generated identifier is

62eec8:e9886ge9b3:-7cfl: 192.168.0.1.

In CORBA [31] two formats for specifying global repository IDs are defined.
The one combines strings to construct a multi-scoped name consisting of a
unique prefix, a list of identifers (separated by "I" characters) in a tree struc-
ture and a version number. The uniqueness for this string is not guaranteed.
An example of this CORBAidentifier is

wadiso.com/Water/Models/CapeTown/2005/:2.0.

The second format is known as a DCE (Distributed Computing Environment)
Universal Unique Identifier (UUID).This identifier is generated using the cur-
rent date and time, a network card ID and a high-frequency counter. Mi-
crosoft DCOM (Distributed Component Object Model) uses a similar concept
to generate GUID (Global unique identifiers) for objects. An example of such
a CORBAidentifier is

700dc500-0111-22ce-aa9f.

Automatic generation of identifiers: If the user does not provide an iden-
tifier, a unique identifier must be generated automatically. This may be the
case where no meaningful relation to a real-world engineering object exists,
or where the generation of the identifier is automatically enforced when a
user-defined identifier collides with an existing identifier. For example, the
identifiers of pipes, which are typically not provided by the user, may be gen-
erated automatically.

Design of identified objects: Two alternatives will be considered for the
introduction of objects with persistent identifiers, one using inheritance and
the other using interfaces.

Using inheritance in a single inheritance programming language permits the
introduction of the identifier logic at the top of the class hierarchy, so that
all derived classes are provided with the functionality to support identifiers
in instantiated objects. The logic that must be supported is the mapping of
persistent object identifiers to valid references within the address space of the
virtual machine or processor. In Figure 3.2, if object x references an object
a using the persistent identifier s, then object x cannot address object a in

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 78

the system memory until the persistent identifier has been mapped onto the
temporary reference to object a, denoted as <Object a>.

Ob'ect x Ob'ect a

Figure 3.2: Mapping of persistent identifier to temporary reference

1String s

This mapping in the application id-manager causes an overhead in the execu-
tion of the application. It can be expected that for time sensitive operations,
the object references must be cached for performance reasons, as objects can
only be accessed directly with an object reference. Alternatively, the program
logic to determine the object reference from the identifier should be optimized
for speed using for example efficient hashing algorithms. Hashing is a method
for the management of object pairs, which will be discussed in the implemen-
tation (Chapter 4).

<Object a> 2

One disadvantage of the inheritance design, especially in single inheritance
programming languages, is that the developer is forced to derive custom
classes from the top-level identifier management classes and therefore cannot
derive new classes from existing classes in a graphical class library.

An alternative is to make use of interfaces to assign unique identifiers for
the basic engineering objects. The interface defines a contract with methods
implemented typically in classes common to all engineering objects, to assign,
generate and maintain identifiers. This results in an associative relationship
between the basic engineering objects and the common objects. This has the
disadvantage that for every object in the application such a relation must be
maintained throughout the lifetime of the application.

Figure 3.3 shows the two design options as UMLclass diagrams.

Interaction between objects: The AC design approach does not require
ports between models. Since all objects contained in the application are

1 Reference with persistent identifier
2 Reference with temporary identifier

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 79

Constructor of App-object calls addObject in App Class to add itself to the "
objectMap.

I

/

/

/

App-object / App
{abstract} ... _L_ -$objectMap: HashMap

#id: String $addObject(App-object)
App-object(String) $getObject(String): App-object

1 I
Pipe Node

Inheritance Design

I Constructor in Pipe2 calls addPipe in App2 Class defined in App21nterface

I

I
Pipe2 I App21nterface

#id: String 'W_
I 9Plpe2() - -- ~(_ ~ ~ App2~-

Node2 -$objectMap: HashMap-

#id: String r-- ---'\--
addNode(String, Node2)

Node2()
'\ addPipe(Strlng, Pipe2)

-,

'\

I Constructor in Node2 calls addNode in App2 Class defined in App21nterface I
Interface Design

Figure 3.3: Inheritance vs interface design for implementing application iden-
tifiers

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 80

persistently identified, and since a central identifier manager exists to map
persistent object identifiers to object references, any object can now directly
access any other object in its model, as well as in other models in the appli-
cation, for which an identifier has been stored.

By passing messages between objects using structured method calls, the state
of the called object can be changed by updating its attributes. The synchro-
nization of state and version management between objects is important to
ensure that the creation, deletion and update of objects located in different
models are handled in a consistent manner over the application. This topic
will not be investigated in depth in this dissertation.

Updating of objects: In order to evaluate the use of identifiers in the soft-
ware system, the following three basic operations are considered and evalu-
ated: The addition of an identifier (as part of the object constructor operation
and in object factory methods), the deletion of an identifier from the list of is-
sued identifiers (required when an object is to be deleted from the application),
and the change of an identifier (should an object identifier be renamed). The
option to rename objects is important as soon as user-defined identifiers are
allowed, as the user may make errors during input. Furthermore, if objects
from models with distinct identifier spaces are combined in a common iden-
tifier space, their identifiers must be checked for uniqueness and modified if
necessary.

3.3 Concept of an object set management

Objects of the real-world, which are separate identifiable elements, are col-
lected in sets. An example is the set of all pipe objects in a sewer model. A set
by itself is unstructured. The set is structured by specifying relations on the
set.

A set-object is the simplest form of a set implemented in the AC design. Here
a collection of similar objects is treated as a set, and operations can be per-
formed on all elements of the set. A relation-object contains a set of objects
which describes a relation: each element of the set is an n-tupel. The largest
identifiable unit in the AC approach is a model-object, which can consist of
objects, set-objects and relation-objects.

In the AC design all objects representing the engineering task are collected

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 81

and managed in one application. The persistent identifiers of objects and not
their temporary memory references are collected in the sets.

In contrast to a Me design approach, the same object can be part of more
than one model in the application. This is achieved by storing the same per-
sistent identifier in one or more set-objects which may be contained in more
than one model-object. An object representing a pipe, for example, can be
part of the Hydraulic model and of the Visualization model. In the Hydraulic
model, only the methods and attributes required for the hydraulic analysis are
stored. In the Visualization model, the methods and attributes for a graphical
presentation are implemented.

Mathematical background: A set is a collection of separate objects which
have some common property which is used to identify the objects. These
objects are called the elements of the set. Elements are considered to be
identical if they have equal identifiers. If an element e is contained in a set S,
this is expressed as e ES. An empty set which does not contain elements is
denoted by 0. Sets are equal if they have exactly the same elements. A subset
A of S is denoted by AcS. Sets can also be elements of other sets. This leads
to a system of sets. Furthermore, algebra can be performed on sets to create
new sets (see Pahl, Damrath [34]).

Operations on sets and models: Operations which are common to all ob-
jects of a set are executed by issuing a message to the set-object, which in
turn passes the message to all elements of the set. This concept can be ex-
tended to allow the issuing of a message to a model (a collection of sets), which
in turn forwards the message to all sets of the model.

An example is the aggregation of the identifiers of all erven (parcel) objects
related to a pipe in a set. A command such as calcArea can be executed on
the set-object which is passed to the individual objects referenced by the set.
Another example is the command drawModel for the Geometry model-object,
which will be passed to the sets containing the model-object, and then to the
objects referenced in the sets.

Design of object set management: The objects in a set can be instantiated
from the same class, but this is not a requirement. Sets can be formed of
objects from different classes. Standard methods are available to add objects
to the set, to delete objects from the set and to maintain a count of the number

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 82

of objects contained in the set.

Set membership: The membership of an object in a set can be defined in
two different ways: (a)An object can define its relation to a set by an identifier
attribute in its class structure, or (b) the object references can be listed in a
dedicated set object.

However, using (a) as the only mechanism to define set containment does
not provide a practical solution. The collection of object references using (b)
in set -objects provides the flexibility that operations can be performed on all
elements of the set by issuing one operation. To determine whether an object
is a member of a set requires a sequential search over the set and demands
considerable processing time in large sets.

The combination of the two techniques can be considered where it is required
to have fast access to the set to which an object belongs, but still have the
flexibility of set operations.

Use of identifiers: Either unique object identifiers or object references can
be used as elements in the set-objects. However, in order to create a per-
sistent software system it is recommended that only unique object identifiers
be used. This allows set-objects to be stored persistently, for example all the
pipe identifiers can be stored in a set.

The validity of objects in the set is not influenced by the lifetime of the objects.
Also, the debugging of program code containing sets during development is
simplified, as most integrated development environments or error-trapping
code can present the list of user-readable identifiers in the set to the pro-
grammer.

The set-object like all other objects should be uniquely identifiable within the
application. This allows for set-objects to be referenced in the same way as
application-objects in a relation.

Updating of sets: Sets can form part of a relation and should therefore be
treated in the same way as a single object in a binary relation. The addition,
removal and change of elements in sets can have far-reaching effects on the
contained objects. A dedicated management structure must therefore be pro-
vided for every set -object. Methods in the set -class must exist to notify all
contained objects of changes or pending deletion. The implementation will be

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 83

shown in Chapter 4.

Dynamic sets: Aset can be created and maintained dynamically. The ele-
ments in the set are only added when required. In Java this can be done by
implementing the Iterator interface. In the pilot implementation, all network
tree traversals are done using these dynamic sets.

3.4 Concept of an object relation management

Objects are not independent in a software application. Objects of the real-
world usually stand in some relationship with other objects. For example a
sewer pipe must always have an upstream and a downstream manhole. This
dependency of the pipe on the two manholes can be expressed in an engineer-
ing model, for example a sewer network topology model, by the relationship
between the sewer pipe object and the two manhole objects.

Mathematical background: Arelation is a subset of the cartesian product
of two sets A and B. Elements a E A and b E B are related by a connective
rule R. The value o.Rb of the connective rule for a pair (a, b) of the cartesian
product A x B is either true or false. If the value of aRb is true, then the pair
(a, b) is contained in the relation. Ifthe value of aRb is false, then the pair (a, b)
is not contained in the relation. The order of the elements a and b can be of
importance for the connective rule. The relation R is therefore a set of ordered
pairs (a.b) for which the connective rule yields the value true. The relation is
formally defined as follows:

R:= {(a, b) E A x B I aRb} (3.1)

In software applications a relation is often not specified in the form of a con-
nective rule and a cartesian product set. Instead the ordered pairs of the re-
lation are given explicitly. If the elements of the relation are object references
then the term relation-set is introduced to describe the set of ordered pairs.
An object pair in the relation-set which defines the relationship between two
objects is subsequently referred to as a relation-object.

Types of relations: Different types of relations can be formed. The type can
be expressed in terms of multiplicity or uniqueness. For example al: 1 object

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 84

relation expresses a unique relation, whereas a l:n object relation represents
a left-unique and a m: 1 object relation a right-unique relation. This concept
is shown in Figure 3.4. Also, optionality or completeness can be attributes of
the relation. Relations can be left-total, right-total and bi-total relations. This
is shown in Figure 3.5.

A left-total, right-unique relation is called a mapping. A bijective mapping is
a special case of a mapping where the relation is right-total and left-unique.

SetA

I Left-unique relatlonl

Seta

SetA Seta

SetA Seta

IUnique relatlonl

IRight-unique relationl

Figure 3.4: Definition of uniqueness in a relation

SetA Seta Seta

I Left-totall

SetA Seta SetA

SetA Seta

Figure 3.5: Definition of completeness in a relation

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 85

Implementation of relations: Most 00 programming platforms do not
provide separate data structures to define relationships between objects. One
way to implement relations is to incorporate the reference to the destination
object as an attribute within the class structure of the source object. This
results in an a priori design, as the relationship between instantiated objects
is defined in the class structure and cannot be changed at run-time.

Alternative design: An alternative design is presented in this dissertation.
Relation-objects are collected in one or more relation-sets. A relation-object
is instantiated from the relation-class. This class defines the structure and
operations so that an ordered pair of object references and additional data on
the multiplicity of the relation can be maintained.

The relation-objects as well as relation-sets are uniquely identified by
application-wide persistent identifiers. An object pair is uniquely identified
within the application if the identifier of the containing relation-set and the
identifiers of the two objects, which stand in relation, are combined. Usually,
however only the left-paired object (frequently called the key) is known a pri-
ori, so that the identifier cannot be formed in this manner and passed to the
application id-manager to obtain the reference. A different semantic rule for
the formation of the identifier is therefore used.

A solution to this problem, which is presented in Chapter 4, makes use of
the class name of the right-paired object, which is known a priori. However,
the prerequisite for this design is that only mappings are allowed between the
left-paired and the right-paired objects, which implies a right-uniqueness as
well as left-totality in the relation. This ensures that only one right-paired
object can exist. Multiple right-paired objects can exist only in the relation if
they are first collected in a set-object, and then the set-object is referenced as
the only right-paired object.

Alternatively, if no semantic is assigned to the identifier of the relation-object,
then the attributes of the relation-objects must be searched for the left-paired
object identifier and for the matching right-paired identifier. Spacial data
structures can be used to control the search effort, for instance trees.

Operations on relations: Several basic set operations can be performed on
the relation-set. This includes the addition and removal of relation-objects.
The addition of a relation-object to a relation-set is typically performed during
the construction of the relation-object. The relation-set can also be searched

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 86

for a specific relation-object. Furthermore operations to navigate between the
related objects are provided.

Dynamic nature of relations: The definition of relationships between ob-
jects in relation-objects, which are aggregated in relation-sets, is advanta-
geous if the relations vary with time. Creating, modifying and deleting re-
lationships between objects is greatly simplified because the management is
centralized outside of the objects involved.

The difference in structure between the two designs as implemented for re-
lations is shown in the Chapter 4. It will be seen that several complexities
in the application, such as ensuring a consistent system state between ob-
jects which stand in relation, can be incorporated generically into the external
relation-set and set-object design.

Issues such as the prevention of cycles in state notification are also ad-
dressed. Updating of state can either occur automatically when the program
logic requires action from the user, or manually when the user triggers an
update chain. Both scenarios are considered in the implementation.

3.5 The model-object

A model is implemented as a complex object in the AC design. The model-
object contains objects, set-objects and relation-sets as attributes.

Figure 3.6 shows a diagram combining model-objects (Mi), set-objects (Si),
relation-objects (Rij), relation-sets (~) and objects (Oi) in an application. The
diagram shows that different objects can be contained in more than one
model.

Operations which are applicable only to a model are defined in the model-
class. These operations are executed by operating on the sets and relations
in the model-object.

Some of the typical models in a civil engineering application, other than the
engineering models, are:

Data model: This model contains all the sets and objects defining the en-
gineering data. It is the purpose of this model to ensure persistent storage
to and retrieval from permanent media for all the persistent objects. Data

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 87

Figure 3.6: Definition of model-objects in an application

models are frequently called product models.

Visualization model: The visualization model typically makes use of ex-
tensive graphical resources and is frequently based on an external graphics
library. A typical scenario is therefore investigated in this dissertation, where
a visualization model is dependent on external source code. As the program-
mer cannot change the third-party code, a problem might arise where external
non-engineering objects contained in the visualization model must interact
with objects which are application-objects, thus derived from the application-
object or vice versa.

This problem can be overcome be using well defined interfaces for both appli-
cation and non-application parts. This will then allow object communication
in both ways. It is, however, important to note that the engineering objects
are to be directly referenced in the data model via the interface, and duplica-
tion of engineering related objects does not take place in the non-application
parts.

An example of this interaction using interfaces and a modified relation man-
ager is shown in Chapter 4.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 88

3.6 Extending the design to a distributed environ-
ment

Modern software systems must be functional in a distributed computing envi-
ronment. As discussed in the introduction of the dissertation, several reasons
prevail for the introduction of distributed computing to a software project.
This includes the centralized storage of project object data, the flexibility to
share project information with co-workers and the definition of different levels
of user access to the same project.

In this dissertation the implementation of the centralized data model and en-
gineering model on the server side is considered. On the client side, different
visualization user-interfaces are considered. The effort required to implement
an application for the distributed computing environment for the key compo-
nents of the AC approach will be considered.

Persistent identifiers: In principle persistent identifiers are also applica-
ble in a distributed scenario, as long as the software platform provides the
infrastructure to extend the name scope over the network. The mapping of
identifiers to references in the virtual memory space of the distributed appli-
cation is simplified if a distributed software platform (such as Java Remote
Method Invocation, RMl or CORBA)is used.

Sets and relations: As long as references in sets remain valid over the
name scope of the distributed application, sets also function in this scenario.
The use of unique identifiers instead of object references is recommended for
this scenario as well, as references are particulary difficult to maintain in a
distributed scenario.

Model-objects: A practical scenario is considered where all engineering
models are located on the server side. This ensures that the overhead in
communication between objects located in different models is limited. The
visualization model is located on the client-side. The interaction between the
visualization model and the engineering models will be evaluated.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3. Concept of the AC design approach 89

3.7 Conclusion

The concepts of the AC design approach have been outlined. Several options
have been discussed for each concept, ofwhich only a fewwill be selected and
implemented in the next chapter. The choices can be summarized as follows:

• The application has been chosen as the space for the object identifiers.

• User-definable identifiers are proposed.

• An inheritance design has been chosen to implement the application
identifiers.

• The mapping between persistent identifiers and object references is to
be optimized in the application id-manager.

• The containment of an object in a set is defined by aggregating the object
identifier in an external set-object.

• Set-objects provide logic to distribute addition, removal and update no-
tifications to member objects.

• Dynamic sets are used.

• If relations between objects vary over time their definitions are stored in
external relation-objects and not internally as attributes in the objects.

• Relation-set objects provide a logic to distribute addition, removal and
update notification to member relation-objects and in turn to the refer-
enced objects.

• Both manual and automatic consistency updating are evaluated.

• Models are implemented as complex objects, containing sets and objects.

• The integration of library code or other non-application objects with
application-objects will be shown in the implementation of the visual-
ization model.

• A simple extension for the distributed environment will be implemented.

Chapter 4 now deals with the implementation of these concepts in a practi-
cal software application, capable of handling typically sized civil engineering
problems.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4

Implementation of the AC
design approach

4.1 Introduction

A prototype of the application following the concepts of the AC design ap-
proach described in the preceding chapter is implemented and studied in this
chapter. The basic engineering objects are described first. Then the gener-
alized implementation of object identifier management, the object set man-
agement and the object relations management are discussed. The revised
engineering process is then presented as well as a description of the function-
ality and algorithmic background required for the AC software system. The
classes for the Product-data model are detailed, followed by the implementa-
tion of the engineering models as model objects. The chapter is concluded
with a section on the implementation changes required for a distributed com-
puting environment.

4.2 Basic engineering objects

The real-world objects which are modelled as software objects are defined in
this section. These real-world objects are called the basic engineering objects
in the software application. In order to define the objects, the primary data
and functionality associated with each object is outlined below. Figure 4.1
shows the basic engineering objects in a sewer network.

90

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach

Upstream
Manhole PLAN VIEW

Outfall
Manhole

Ground Elevation

Downstream
Invert Level

SECTION VIEW

Figure 4.1: The basic engineering objects in a sewer network.

Manhole: A manhole-object represents a physical junction or node in a
sewer network. The manhole-object contains property data structured in sev-
eral classes for its persistent user-definable identifier, its topology ("visited"
state for graph traversals), its geometry (x.y.z coordinates), its topography
(elevation interpolated state) and its hydraulic properties (calculated inflow
and outflow). Operations include the hydraulic calculation of outflow, given
inflow, as well as the interpolation of elevations.

Pipe: A pipe-object represents a sewer conduit. Typically the identifier of
a pipe is not specified by the user but generated automatically. A pipe is a
directional element which is defined from a from-manhole to a to-manhole,
which is defined by the topological input data. For example, pipe P703 is
defined from manhole N653 to manhole N234.

The direction can be defined automatically using the direction of slope of a
sewer pipe (the drop in height over its length). This is because all sewer
pipes modelled are gravity flow elements. However, the direction might ini-
tially be undefined if only the slope value has been entered by the user. The

91

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 92

from-manhole therefore implicitly defines the upstream manhole, and the to-
manhole the downstream-manhole. Then the slope property can be verified
against the defined direction, and a warning can be shown for mismatches.

The topology data defines the relationship between the pipe-objects and node-
objects. This topology data can either be stored in the pipe-object (upstream
manhole ID and downstream manhole ID) and optionally also in the manhole
objects (list of upstream pipes IDs and list of downstream pipes IDs), or it can
be stored externally in relation-objects. Both scenarios are evaluated for the
sewer system topology.

The pipe object also stores the hydraulic pipe characteristics (length and
slope, upstream and downstream pipe invert levels, diameter and roughness)
and hydraulic result variables (flowmagnitude, flow velocity, and flow depth
for different scenarios). design result variables and presentation result vari-
ables. The reference to the erven-objects (land parcels) associated with each
pipe can be stored either within the pipe object, or externally in a relation-
object. The reference is required to calculate the total sewage production
contributed to a pipe by its associated erven.

Several operations are performed on the pipe object, such as calculating the
outflow hydrographs given the inflow hydrographs, calculating the flowveloc-
ity and flowdepth, as well as checking results against analysis criteria.

Erf: An erf is defined as a surface defining a parcel of land. Its persistent
identifier can be user-defined (for example unique Surveyor General Number)
or auto-generated. Typically erven are collected in an erven-set, which is then
associated with a pipe. Therefore an individual erf is not directly linked to a
pipe-object. Again the storage of the relations can either be in the respective
objects or externally in relation objects.

Additionally, the four coordinates defining the simplified geometry of the erf
can be stored. Also the population of the erf, as well as the land usage cate-
gory associated with the erf are stored as attributes. This information is used
to calculate sewage production values for different scenarios.

Point-source: Apoint-source is defined as a node with persistent identifier
where a sewage production hydrograph, for example as it is the case for a large
factory or a hotel, is present. Apoint source stores its coordinates (x,y,z)and
is associated with a manhole.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 93

Bottom manhole: This is the manhole identifier which defines the only
outfall or bottom manhole in the sewer system.

Graphs and trees: The pipes in the sewer network normally form a special
graph, called a tree, since every pipe can only have one downstream pipe.
Although the topological structure used in the implementation does not pre-
vent the formation of more complex graphs in the pipe network, for example
a pipe with more than one downstream pipe or loops in the pipe system, the
hydraulic model currently does not support diversion structures at the nodes,
which would be required if more than one downstream pipe is introduced.

As the tree of pipe-objects must be traversed, special tree-traversal algorithms
have been implemented to support post-order, depth-first and breadth-first
tree traversal with a generic age comparator, which compares either the ac-
cumulated pipe length at any pipe from the outfall manhole, to start with the
longest water course for example, or the number of pipes upstream from the
outfall manhole.

The next three sections discuss the abstract classes which define the core of
the AC design approach. These classes are located in the Application pack-
age. Figure 4.2 shows the relationship between these classes and highlights
the important methods.

4.3 Implementation of object identifier management

Two different concepts for the implementation of an object identifier manage-
ment have been introduced in Chapter 3, namely using inheritance or inter-
faces/ association. It will be argued that only the inheritance design permits
the use of reflection technology. Using reflection, an object can be queried
during run-time to determine if it is instantiated from a specific class.

In the inheritance design, the operator instanceof can be used to determine
if an object is instantiated from the Application Object (AppObject) class.
Such objects will be called application-objects. Only application-objects are
regarded as persistent and are stored to secondary storage.

A design based on association or the use of interfaces does not permit the
natural classification of persistent and non-persistent objects. An additional
attribute must be stored in each Application Object, which indicates whether
it should be stored persistently.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 94

BaddObject(AppObject),
deleteObject(String),
getObject(String)

App Object

createReIObject(String, String, String, String)

App String App Set Object

appSets
appRelations

constructRelation(String, String, String, String)

RelApp Set Relation

Figure 4.2: The classes of the Application package.

In the next paragraphs, the inheritance based object identifier management
as implemented will be discussed. However, two concepts from the Java
programming language, which are used extensively, will be explained first,
namely the HashCode and the HashMap:

HashCode: The HashCode is a unique integer generated by Java for each
of its objects. Whenever it is invoked on the same object during the execution
of a Java application, the HashCode method returns the same integer. The
HashCode is not persistent and has different values for different executions
of the application. Typically the HashCode is implemented by converting the
internal address of an object into an integer. Furthermore Java HashTables
and HashMaps make use of the HashCode to index their objects.

HashMapas data structure: The HashMap provides an ideal storage sys-
tem for application-identifier/application-object pairs in civil engineering soft-
ware applications (Schutte [41]). The HashMap implements the Map interface.
In this interface, a mapping consists of ordered object pairs (key object, value
object). The key object is mapped to the value object. A key object can be
contained in a Map only once, whereas a value object can be contained more

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 95

than once with different keys. Noguarantee regarding the order of the map is
given.

The HashMap implementation provides constant-time performance for ba-
sic operations (get () and put ()) assuming the hash function disperses the
elements properly among so-called buckets. Iteration over collection views re-
quires time proportional to the number of buckets or capacity of the HashMap
instance plus its size, the number of key-value mappings. The use of basic
operations is therefore favoured over the use of sequential iterators.

The HashMap can grow automatically. Whenever its capacity reaches the
product of load factor (which is typically set at 0.75) and the current capac-
ity, the capacity is roughly doubled automatically by calling the rehash ()
method. If many mappings are to be stored it is advisable to create the
HashMap with a sufficiently large initial capacity, as this will reduce the num-
ber of automatic rehash operations.

AppObject: This class is located at the root of all applications in the AC
approach and is defined in the Application package. Its primary function is to
store the unique and persistent object identifiers, as well as provide the basic
functions to access the object identifier. Figure 4.3 shows a class diagram
with the key properties and methods of the AppObject and the associated
App class.

App

-$objectMap: HashMap = new HashMapO
App Object

$addObject(AppObject): AppObject
$containsObject(String): boolean #id: String
$deleteObject(String): AppObject
$deleteObjects(String, boolean)

AppObject(String)

$getAutoldO: String
getldO: String

$getObject(String): AppObject
notifyObject(int)

$readObjects(ObjectinputStream)
printO

$renameObjects(String, String): String
$saveObjects(ObjectOutputStream)

Figure 4.3: Class diagram of AppObject and App

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 96

App: This class is defined as a utility class for all application objects. Its
primary function is to store the obj eetMap, a cross-reference table of all the
application-object identifiers with their object reference. This table is imple-
mented as a Java HashMap.

The class itself only contains static methods and attributes. This means that
only one instance of the class is created at runtime at the system level auto-
matically, and no further instances are created. This allows optimization in
the Java runtime system.

Typical functions included in this class are addObj eet () to add a new ob-
ject to the application HashMap and eontainsObj eet () to check if an object
identifier is contained in the application HashMap. Another primary func-
tion is the getObj eet () method, which finds an object in the application
HashMap, given the string identifier.

In order to automatically generate identifiers, the getAutold () method cre-
ates unique identifiers with 8 characters in length and effectively maps a
number system with base 62, as it cycles through the digits 0..9, then
the characters A..Z and finally the characters a ..z. The total number of
unique identifiers that can therefore be represented by this simple system
is 628 = 2.183E14. An error will result should this number ever be exceeded.

Consistency: To ensure the consistency of the application object, the re-
naming and the deletion of application-objects must be handled specially to
avoid compromising the integrity of data. Twodesigns are supported.

In the first design, an application-object can only safely be renamed if no other
objects (relation-objects or set-objects) are referencing it. Then the old object
is removed from the HashMap, given a new proposed identifier, and then
again added to the HashMap. Should the identifier be in use, another iden-
tifier will be generated automatically, similarly for the deletion of application-
objects. With the deleteObj eet () method, the object is only removed from
the HashMap after a check has confirmed that the object is not contained in a
set-object or relation-object. These checks run deeply: The search is started
at the topmost application object and is performed recursively deeper into
sub-sets.

In the second design, an application-object is renamed using the
renameObj eets () method. This is in effect a deep rename function. After
a new unique identifier is obtained and added to the HashMap, all relation-
objects in the application are searched for the old identifier and renamed to

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the ACdesign approach 97

the cached new identifier. Then all set-objects are searched deeply for refer-
ence to the old identifier, and renamed accordingly. Finally the old object-pair
is removed from the HashMap. The method deleteObj eets () functions in
a similar manner. First all relation-objects are searched for the object to be
deleted. For so-called requiredRelations, not only are the relations, but
also the associated object itself, deleted. All set-objects are searched recur-
sively, starting from the topmost set -object. Then the entries are deleted in the
set-tables. Finally the application-object is also removed from the application.
This approach ensures an automatic consistent state after the operation, but
can result in substantial processing time.

Persistent storage: The persistent storage of the static HashMap cannot
be implemented through the Java serialization of the App class, as a static
class cannot be serialized with the standard methods. However, the custom
method saveObj eets () is used to serialize the HashMap, and the method
readObj eet () to de-serialize it. What makes the Java serialization so power-
ful is that, by exporting the HashMap to the serialization stream, not only are
the object-identifiers and the associated application-objects exported, but also
the whole graph of other objects which are associated with the application-
object. Java manages this graph automatically, and ensures that an object
is not recursively written to the stream. This ensures that the resulting data
stream (or file when transferred to file)does not grow larger than required.

As all the other objects for the AC approach, such as set-object, relation-
sets and relation-objects, are derived from the application-object, they too are
serialized automatically. However by using relation-objects, as will be seen
later, which define the association between objects using only string iden-
tifiers, the serialization process cannot take place over the relation-objects.
For application-objects this is not a problem, since application objects are
serialized via the serialization of the application HashMap.

In order to accommodate non-application objects in relations, the Java Hash-
Code can be used as identifier for non-application objects. This object can
then take part in the relation, but it will not be found during Java's automatic
search for the graph of objects to serialize. This means that only application
objects are serialized, and for example external graphical objects not derived
from the application-object will not be stored persistently to secondary stor-
age.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 98

4.4 Implementation of object set management

As seen in Chapter 3, sets play an important role in the AC approach. Sets
are used to group application-identifiers together, which are associated with
application-objects. It will be seen later that models are formed primarily
by the formation of sets of object identifiers. Sets are also used to group
application-objects of the same class, for example the identifiers of erf objects
are grouped in an erven-set.

Set-objects themselves can be referenced in relations, as to-objects, for ex-
ample the pipa/erven-set association. Sets-objects are also used for the def-
inition of relation-sets. Sets can be nested, so that one topmost set can be
provided, from which recursive (deep) operations can start.

A special set class known as AppSetObj eet is introduced as part of the Ap-
plication package.

AppSetObject: This class defines the application set-object. It is derived
from AppObject, so that it shares the object identifer management functions.
It implements the Java Set interface, so that the familiar set operations known
to Java programmers are fully available (Pahl [33]). This class stores an in-
stance of the Java HashSet as variable set. Figure 4.4 shows a class diagram
with the key properties and methods of the AppSetObject and the associated
AppSet class.

Set

App Object

1
App Set

App Set Object

$appSets AppSetObject = new AppSetObject(''#AIISets'',true)
#set: HashSet
-visited: Boolean

$deepClearAppSets()
deepClearSet()

$deepContainsAppSets(String): boolean deepContains(String): boolean
$deepDeleteAppSets()

deepDelete(String)
$deepDeleteAppSets(String)

deepDeleteSet()
$deepRenameAppSets(String, String)

deepRename(String, String)
$readObjects(ObjectlnputStream) delete(String): boolean
$resetVisited()

rename(String, String)
$saveObjects(ObjectOutputStream)

resetVisited()

Figure 4.4: Class diagram of AppSetObject and AppSet

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 99

The constructors of the Java HashSet class are extended to support the pass-
ing of the proposed identifier, as well as add the identifier of the constructed
set to the AppSet. appSets object. In addition to the the standard methods
implemented in the HashSet class (which are replicated), several deep (recur-
sive functions) are implemented.

Recursive functions: To ensure the consistency of the set-object, the re-
naming and the deletion of an application-object must be handled specially to
avoid compromising the data integrity of the application. For the implemen-
tation of both designs, recursive functions are provided which operate on the
current set.

Method deepContains () searches this set and all subsets contained in this
set by means of their set identifier, until the object identifier is found. The
rename () method renames an identifier in a set, whereas the deepRename ()
recursively searches through subsets.

Method delete () deletes the object-identifer from the set, and also deletes
the associated object from the application, if it is unreferenced, whereas
deepDelete () searches sets deeply. Method deepClearSet () does the same,
except that it attempts to delete all objects in the set from the application.

Recursive functions must guard against loops in sets. This occurs when a
sequence of set identifiers form a closed chain. The AppSetObj eet objects
contain a private attribute visited which is set to true whenever a set has
been visited. Should execution pass the set again, it is not entered again. The
method resetVisi ted () in the AppSet class is called before every recursive
operation to set the visited state of all sets in the application to false.

AppSet: This class is defined as a utility class for all application set-objects.
Its primary function is to store and maintain the appSets variable. This is
a static instance of the appSetObject, used as parent set for all sets in the
application. Useful recursive functions are provided as static functions.

4.5 Implementation of the object relation manage-
ment

Two concepts for the implementation of object relations are considered,
namely the storage of the relation data within the object, or externally within

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 100

special relation-objects.

Object relations stored in objects: The object references are stored within
the objects. Most programming languages directly support only this con-
cept. For example, let a gravity sewer pipe be defined from its upstream
from-manhole to its downstream to-manhole. In a more abstract view where
only the topology is considered, the pipe is represented by an object edge,

which is an instance of the class Edge. The manholes are represented by two
object instances of the Vertex class.

In this concept, as implemented in Java, the edge object contains two at-
tributes, namely fromVertex and toVertex which are of the type Vertex.
However, the use of object references alone is not recommended in the AC
approach. This is because object references are temporary and remain only
valid during the lifetime of the application. In order to ensure a persistent
storage of objects as well as their relations to other objects, the use of persis-
tent object identifiers, which are unique within the scope of the application,
has been introduced in Chapter 3.

The two object reference attributes are therefore replaced by two string iden-
tifiers, namely fromld and told. The edge object can then be stored persis-
tently. In order to access or operate on the object. the application identifier
manager is called to resolve the actual object reference.

However, the major drawback of this design is that it is static. Especially in
the example of the topology definition, new edge objects may be added during
the life-time of the topology model, old objects deleted, renamed or redefined
to reference different vertex objects. The logic for these operations must be
contained in the topology objects. This makes class structures, from which
the objects are instantiated, large and difficult to maintain.

Object relations stored in external relation-objects: An alternative im-
plementation stores all information regarding relationships between objects
not as attributes of the object but in special relation-objects. Relation-objects
are contained in different relation-sets, which represent the mathematical re-
lation which defines the connection between sets of objects. This permits the
consistent management of relations and allows for easy class maintenance.
Another relation can be defined by a single method.

In order to illustrate the difference between the two concepts, as well as the
complexity involved in the simple example, the Edge and Vertex classes are

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 101

now presented and briefly discussed for the reference-identifier and relation-
object designs. Figure 4.5 shows a class diagram for the objects involved in
the design. as well an overview diagram. Only the relevant methods have been
detailed.

Edge
{abstract}

#fromid: String
#told: String

#addFromVertex(String): boolean
#addToVertex(String): boolean
delete()
Edge(String, String, Siring)
getFromld()' String
getTold() String
#newFromVertex(String)
#newToVertex(String)
removeVertex(String)
#removeVertices()
renameEdge(String): boolean
renameFromVertex(String): boolean
renameToVertex(String): boolean
swapVertices(): boolean

Vertex
{abstract}

-in Edges: HashSet
-outEdges: HashSet

#addlnEdge(String): boolean
#addoutEdge(String): boolean
delete()
inDegree(): int
inEdges(): Iterator
outDegree(): int
outEdges(): Iterator
remove()
#removeEdge(String): boolean
#removelnEdge(String): boolean
removelnEdges()
#removeOutEdge(String): boolean
#removeOutEdges()
renameVertex(String): boolean
Vertex(String)

Reference-identifier design

Edge
{abstract}

delete()
Edge(String, String, String)
getFromld(): String
getTold(): Siring
renameEdge(String): boolean
renameFromVertex(String): boolean
renameToVertex(String): boolean
swapVertices()

Vertex
{abstract}

delete()
inDegree(): int
inEdges(): Iterator
outDegree(): int
outEdges(): lterator
remove()
renameVertex(String): boolean
Vertex_(String)

Relation-object design

fromVertex Edge toVertex

inEdge outEdge outEdge

in Edge

in Edge

Overview diagram

Figure 4.5: Class and overview diagrams to illustrate relation complexity

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 102

Figures 4.6 and 4.7 show the Java source code of the Edge class, for the
reference-identifier and relation-object designs respectively. Figures 4.8 and
4.9 show the Java source code of the Vertex class, for the reference-identifier
and relation-object designs respectively. The line numbers match between the
two designs, and are used to reference the source code. The source code for
the central relation-manager is not presented here, but will be discussed in
the next paragraph.

The basic functionality supported by theses classes is:

• create new topology elements via the constructor

• provide direct access to the referenced objects using accessors

• provide data consistent functions to swap vertices for links and rename
edge or vertices

• delete edges or vertices in a consistent way

Discussion of the relation complexity example: In the reference-
identifier design (Figure 4.6) the object references appear as String attributes
in lines 15 and 16. This is clearly absent in the relation-object design, where
the data are stored centrally in relation objects. Similarly two private HashSet
variables inEdges and outEdges are used in Figure 4.8, lines 18 and 19 to
store the String references to the incoming and outgoing edges of a vertex.

The constructor of the reference-identifier (lines 21 to 25) calls utility methods
(lines 122 and 132) which assign the fromld and told if they are unassigned
and also call the addOutEdge () (add outgoing edge) and addlnEdge () (add
incoming edge) methods of the newly connected vertex objects (lines 101 and
107 of Figure 4.8).

It can already be seen that the Edge class is tightly interwoven with the
Vertex class and vice versa.

Other examples are the renameEdge () or renameVertex () methods (lines
62 and 51 in the respective files), where methods in the related objects are
called to remove and add identifiers. In line 71 and 68 respectively, it can
be seen that objects in external models must be updated, for example in the
DataModel. Therefore the object contains a graph of relations with other
objects, which can be very difficult to maintain.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 103

Another problem is the final removal of an object from the application. Line
71 (Figures 4.6 and 4.8) assumes that no other object in the application has a
reference to the renamed object (and thus the deleted application identifier).
The more objects there are which stand in relation to each other, the bigger
the chance that the programmer oversees a relation to be renamed or deleted.
The same applies to the delete () method.

The equivalent methods in the relation-object design are uncluttered, as
all relation operations are managed centrally from the Rel class, whereas
application-object rename and delete operations are managed from the App

class.

The next paragraphs describe the relation-manager functionality in detail.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 104

90 return (Ialse I;
package Topor.Las se a }else

Import j ava.art i L." i

Import App l Lce t Lon T;

Import Co r er'La sse s.Dat alfode ls

jH

.. Abs t r acc class for Edges in the Topology
- j

10 public abstract class Edge extends Appobj ectf

jH

.;. Instance var l ab.l es·/
15 protected St r Lnq fromId;

protected String told;

;..
• Constructor

20 * /
public Edqet St r i nq f romId, String toTd, String id) {

super (id) ;

newr r omve r t ezï f r om Id) ;
new'I'ove r t ext t o Id) ;

25

30

jH

... Accessors

35
- j

public String getFromld(I {return fromId; I
public String qe t Totdt I {return told;}

public boolean reneme'l'ove r t.ex St rlnq newId) {
if (.n.pp.containsObject(ne\dd)} {

95 lItil.vertex(told) .removelnEdge{id);
toro-ne'Id;

Util. ver-t ext t o Id) .addTnEdge(id) i

return (true) i

100
lelse

return (false);

40

45

;..
.. Utility functions
• j
public boolean swapve r t Ice st) {
String trnp Id.

105 r-»
* Removal function

If ((fromld!=null) && (t o.ï dl enull)} {
UtI 1.ve r t exj f rom ï d) . r-emoveout.Edqe thls . id) ;

Ut Lli ve r t.ext t c Id) .removeInEdge(thls .id) i

50
Uti 1.ve r t ext t oIdl .addOutEdge(this . id) i

Ut.il. ve r t ext f r omï d) .eodr nroqerthis . id) ;

ss
tmpld=f romtes
r romro-r or o.
told=tmpld;
return (true) ;

lelse
return (false) ;

,;

110 public void deletel I I
r emcveve rt ice a) ;
Dat at-tode L remove Sdqet i dl :
App , r emoveob j ectj .id l i

60

public boolean renameEdge(String newï d) {
If (!App.containsObject.(newId}) {

65 Ut.Ll .ve rt.ext framId) . removeout adoe id) i

Uti 1.ve r t ext f ramId) .eddout.Edqetnewfd) i

115

120

;..
* Package level utility functions
'j

Ut i Lve r t exf t o ï d) .removeInEdge(id) i

Ut i L. ve r t exf t o Id) .add ï nl.dqetnewï d) ;
70

Da t af-tode L renarneEdge(id, nI2"-'Id) ;

is

App. r-emoveob j ect(id) ;
id=neHId;
Appveddobj ec ttthla) i

void newï r cmve r t exrSt r inq ve r t ex Idl {
if (addftr-omve r t eoave rt ex Idl)

Uti 1.ve r t ext framId) .adduut Edqetthls . id) ;
125

boolean addj r omve r t.ezï St ring ve r t e x Irf {
boolean b = t r romro-s-nujt);
if (bl LromIc=ve r t ex Id,
return bi

130

void nev'ï'ove r t ext St r i nq ve r t.ex tcs {
If (add'ï'ove r t extve r t ex Ics)

util.verte:·:(toldl,addlnEdge(this .id);
135

boolean add'Tove r t extê t r Lnq ve r t e :Id) {
boolean b = (told==null);
if (b) t o ï o-ve r t.ex Ics

return b;
140

145

void remove Vert j ce a) {
Ut i Lve r t ext f rom Idl .removeOutEdge(id} i

Util. ve r t ext t ot dl . removelnEdge(id) ;
f romï d-null
t c Id=null i

return (true 1 i

lelse
return lIaise I;

80

public boolean r enamer r omve r t ex St r Lnq neHId) {
If (App.cofitainsObject(newld)) {

85 rjt i Lve r t ext f romï dl .removeOutEdge{id);
f r omId-newï d,

Ut Ll i ve r t ext fromId) .addou t.Edqet id) ;
return (true);

150 public void r emoveve r t exï St r i nq exc ludeve r t e» {
If {exc l udeve r t ex=f r om ï d)

U't i Lve r t ext t o Iol .removeEdge(id};
else

lJt.il. ve r t ext framId) .z erncveSdqet id) ;
155

r romto-nujl
toTd=null i

160
DataModel. removeEdge(id) ;
App. removeObject(id) ;
l

Figure 4.6: Edge class for reference-identifier design

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 105

package 'ï'opoc las se e

import lava.util." i

import App Lica t icn ",
import CoreClasses. TopologyHodeJ;

/"
.. Abs t r ac t class fo r Edges j n the Topology

10 public abstract class Edge extends Appobj ec t!

/"
.. No Instance variables
'/

15

/"
• Constructor

20 * /
public Edqef St r Lnq fromId, String told, String edqe Ic)

super (edgeld) i

25

ReI. canst ruct Reve rseke Lat ion$thls . j c. E roml d,
Rel._RejSuffi;;:e~Re] ,_OUT_EDGES],

Rel._RelSuffb:es(Rel._FROM_VERTE)1) i

Rel. cons t r uct.Reve r sene Lat l onsthla . id, told,
ReI. _P'21Su f f ixe sl ReI. _ IN_ EDGES] ,
Rel._HelSuffi:-:es(Rel._TO_VERTEXJ) ;

90

95

public boolean r eneme'rove r t ezï St r inq newï dj {

St ring newket Id-App, renameObjects(getToTd() .new Idl ;
if tnevner ro-e-null

return false i

else
return true j

100

1 O~) 1**
., RemovaJ function
'/

110 publiC void delete(1 (
App.rie Le t eob'j eot st id, true l;

30

/H
.. Accessors
'/

35 public String getFromTd() {return Pe l vqe t To Idj Ld,
Rel. _ReISuffize~r~.el. _FROM_VERTEiQ) i }

public String qe t.To Idt) {return neLoet ror otLd,
Rel._ReISuffi:..::e~Rel._'TO_VER'TEX] li)

40
/H
• Utility functions
'/

public void svepve r-t iees() {
45 Rel. swapke l a t i cnst id,

Rel. _ RelSu f [i:,:es[Rel. _FROM_VERTEI1 ,
Pel._RelSuffixesiRel._TO_VERTEX]) i

50

55

60

public boolean r enamegdqetSt r i nq nev ï d) f
St r ing nev...Ret ï d-App. renameObj eet st i.d, newï dl i
If (newrce t j o-enull

65 return false i

else
return true;

7Q

/.5

80

public boolean rename F'romve r t.ex Sr r Lnq newt dj {
St r ing newpe t Id-App. r enameobj ect stqe t Er omï dt) ,ne\Vld) i

85 If (newRetld==null
return false i

else
return true i

115

120

/ ..
., No Pack aqe level utility functions
=r

Figure 4.7: Edge class for relation-object design

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 106

package 'roooc Las ses

import j ave.ut t Lv ,
import UtilClasses." ;
import App Licat Lon " j

Import corec i as sea oar aaooc n

10
;"
'" Abs t r act; class for Vertices in the Topology

90
remcvcr ï ;

DataModel. removever t ext id) i

App, removeObject(id) i

1

95
;..
* Packaqe level utility functions
';

100
boolean addoutEdge(String edqeTd) (
boolean b= Iout.Edqe s.cont aLnstedqc Idl j

if (b) out Edqeë.eddledqe Idl •
return bi

105

110

boolean aodrntoceesr ring edqe ï dl (
boolean b= !inEdges.contain.'3(edgeldl;
If (b) inEdges.add(edgeTdl i

return bi

1

.;

publiC abstract class ve r t ex extends Appóbj ec tt

15
;"
* I ns t ance va r Lab l es

115
boolean remove Inêdqcï St; t: Ing edqe ï dï
return inEdges. removetedqe Idl j

.;

private HasbSet inEdges;
private Ha sbSe t out Edqe sr

20
;"
• Cons t ruc t o r
';

25 public ve r text St r Lnq id) f
super (id) i

i nêdqe s = new Has nêe tt) i

out Edqe s > new ne shscctï •

boolean r emoveout Edqsï St r i nq edqe Ldj
return out.Edqe svr ernovej edqe Ic) i

120

boolean removeEdge(St:rinq edqeTd) I
return (outEdges. r emovetedqe Id) &&

rntooes. r emovetedqe Id)) ;
125

void removeTnEdges() (
Lt e r at or I = Lngdqe stl ,
while (i.hasNext()) (

130 Util.edge(i.ne:<:t() .remcveve r t ext Ldj r

inEdges.clear() ;
1

135 void rernoveout.Edqe a l (
Lt e r e t o r I = outEdges{) i

while (i .ha stcex tt j) r
Uti 1. edge (i. next: ()) . r emoveve r t.ext id) ;

30

;" +:

• Acce s s or s
.;

35
public t ce r ar or inEdges{) (return inEdges.iterator();)

public IteratoroutEdges() (return ou r.Edqe s. Lt.e r a t o rtl r)

40
public int inDegrec() (return inEdges.size{);)

public int out Deq reet) {return out Edqe s.e l z.et j r }

45

;..
• Uti 1ity functions
-;

50
public boolean renameve r t e.s s r ring newId) {

If (!.n.pp.containsObject{ne1dd)) (

55 Lt e r ar o r i '" inEdges();
while (i.hasNe:..;t(}) I

Edge e = titi Ledqet I next{)};

e. coro-oevro.

60
i = ou t.Edqe stl ,

while ti. he strext.t l) (
Edge e = Ut:il.edge(i. nex t t j I ;
e. f rom Id=ne'Id;

65

DataModel. r enameve r t eoa id, nevr o: ;

70
App. r emoveob j e ctt id) i

this .1d=ne1..'Id;
xpp.eooobjectrthis);

i5
return true;

lelse
return false i

80

public void r emovet I
removelnEdgeSl) ;

85 r emoveout Edqe a) ;
1

public void delete! I {

140 out:Edges.clear() ;

1

Figure 4.8: Vertex class for reference-identifier design

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 107

package 'Iopoï.Las se e

Import java.util.;';
Import Ut i Lc.l asse s. v r

Import App l Lce t Lon r r
Import CoreClasses. TopologyHodeJ;

10 JH
.. Abstract class for Vertices in the Topology
'/

public abstract class ve r t ex extends Appobj ectf

15 r«:
.. No Instance va r Lab l e s
'/

20
/"
.. Constructor
'/

25 public ve r text St r inq verte :Idl {
super (ve r t ez Icê i

30

I*'
T .A.CCessOI."S

'/
35

public 'I t e r at o.r lnEdges() (return Re Lv qe t T'ol d s Lt e r a t órt Ld ,
Rel._RelSuffi:{esfRel,_IN_EDGES)); 1

public Lt e rat o.r out Edqe st) (return Rel,gctToTdslterator(id0:;9

Rel._RelSuffixesfHel._OUT_EDGES)); }
40

public Int Lnpeq reet) (return Rel. cet rotocount: id,
Rel._RelSuffixe;iRel._JN_EDGES]); }

public int outDegree{) {return Rel. getToTdCount(id,
Rel._ReJSuffixe.;iRel._OUT_EDGES]); }

45

/"
... Utility functions
'/

50
public boolean r enemeve r t ext St r i nq ne ...:Id) (

String neRet Id-App, renameobj ect st id, ne"'Id) i

If {ne·Ret.ld==nuli
return false i

~}5 else
return true i

60

iD

i5

80

public void removet) {
xpo.oe Ie t eobject s t d.fatse };

85

public void de Ie t et) (
?pp.delel:.eObject.s(id,true);

90

95

Figure 4.9: Vertex class for relation-object design

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach

RelObject : This class defines the relation-objects in the AC approach and
is located in the Application package. It is derived from the AppObjeet class,
so that it shares the object identifier management functions and id field. It
contains four private fields which are used to store the from- and to-identifiers
as well as the group-code of the from-object and the to-object. The group code
is used to structure relation-objects into groups for the search operations.
These groups correspond to mathematical relations and are therefore also
implemented as relation-set objects. Figure 4.10 shows a class diagram with
the key properties and methods of the ReiObject and the associated Relation
and Rei classes.

App Set Object

(
Rei Object

-tromid: String
-tromSet: String
-tolds: Arraylist
-to Set: String

$createReIObject(String, String, String, String): ReiObject
ReIObject(int, String, String)
ReIObJect(String, String, String, String)

Rel
Relation

$appRelations: AppSetObJect = new AppSetObject(''#AIIRelations'')
-requiredRelation: boolean $constructRelation(String, String, String, String): ReiObject
deepFromContains(String): boolean $deepFromContains(String): boolean
deepToContains(String): boolean $deep ToContains(String): boolean
deleteFromRelation(String, boolean, String) $deleteFromRelation(String, String, boolean)
deleteToRelation(String, boolean) $deleteToRelation(String, String, boolean)
renameFromRelation(String, String, boolean) $renameFromRelations(String, String, boolean)
renameToRelation(String, String, boolean) $renameToRelations(String, String, boolean)

$swapRelations(String, String. String)

Figure 4.10: Class diagram of ReiObject, Relation and Rei

For example, let the topological association between an edge (pipe) with iden-
tifier say EDGE701 and its from vertex (upstream manhole), say VERTEX234 be
stored as a relation. A Relobj eet object is created from a factory method in
the ReI class, with the combined application id @EDGE701.FVERTEX, and the
field data:

• fromId: EDGE701

• fromSet :.OEDGES (outgoing edges)

• tolds VERTEX234 (set of identifiers)

• toSet ,FVERTEX (from vertex)

108

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 109

The '@'-sign is used as a prefix to identify a relation-object in the applica-
tion and the '.'-sign is used as a prefix to identify a set-object. The toIds
field can contain more than one identifier in a Java ArrayList. This accom-
modates one-to-many associations. The object is created preferably via the
ereateRelObj eet () factory method, which checks and verifies if the relation-
object already exists in the application. If so, the new to-identifier is added to
the toIds field, otherwise the normal constructor is called to create the new
relation-object.

Non-application objects, such as Java objects, can also be accommodated
in directed mappings from the foreign object to an application-object. The
fromId field thus contains the HashCode of the object as String, and the
fromSet field is null.

Furthermore utility functions are included in the class to access and change
the four fields, as well as the objects associated with the identifiers.

Relation-set: The identifier of relation-objects is added to an instance of the
Relation relation-set class, which has the identifier .FVERTEX in the above
example. This relation-set contains all the relation-objects which adhere
to the to-From-vertex relation, for example the above EDGE701 to-From-vertex
relation-object.

The Relation class extends the AppSetObj eet class discussed previously.
Therefore methods of the application-set class are inherited. It defines the
field requiredRelation which is a flag for the entire relation-set, and thus
applies to all relation-objects in the relation-set. This flag signals that the
from-object in the relation cannot remain alive after the relation-object has
been removed, and that the application-object must be completely removed
from the application, together with any relation-objects that originate from it.
For example, if a Vertex object is removed, then the connected Edge object
must also be removed, as otherwise an inconsistent system would result.
However, if an Edge object is removed, the linked Vertex objects are not
removed automatically, as they can still define the topology of other Edge
objects or could be used to define new Edge objects in future.

Search functions: Several search functions are provided in the Relation

class to ensure that a consistent application-wide management of relations
is guaranteed. The deepFromContains () method searches all objects in
the relation-set if they contain fromId as from-object in the relation. In

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 110

this method, the from-object identifier is combined with the to-relation set-
identifier (group) to check against the key of the relation-objects. This pro-
vides a fast constant time HashMap based search which makes use of the
Java HashSet contains operator. On the other hand the deepToContains ()
method searches all the objects in the relation-set if they contain told as
to-object in the relation. Normally this function should not be used, as it
is substantially slower than deepFromContains (). This is because the to-
object identifier is not stored in the key of relations, and therefore a sequential
search over all relations must be performed using the Java lterator class.
As soon as an object has been found, the search is terminated. This results
in a search time which is proportional to the total number of elements in the
set and the backing HashMap.

Relation consistency - deletion: Twomethods have been implemented for
this purpose: the method deleteFromRelation () which searches on from-
objects in the relation set, and deleteToRelation () which searches on to-
objects in the relations set. Again as discussed for the search functions, the
first method can result in a constant time order 0(0) for the initial search
operation and should be preferred over the second method which requires a
time of O(n).

The program logic behind the deleteFromRelation () method is of in-
terest and discussed in more detail: Firstly it removes the unique re-
lation from this relation-set with fromld as from-object. Then it at-
tempts to remove the relation-object from the application with the inherited
AppSetObj ect .delete () method. By specifying an additional told parame-
ter it can be directed to delete only one specific relationship in the case of a
one-to-many relation. This is done by only removing one to-object identifier
from the toSet of the relation-object.

Optionally the reverse relationship (the relation-object which is defined from
told to fromld and contained in the fromSet relation-set), can be deleted,
without the requirement of another search, as the identifiers of the reverse
object and relation-set are stored in the fields of this relation-object.

Finally if the requiredRelation property is set in the parent relation of a
relation-object, then the from-object is removed completely from the applica-
tion, using the App.deleteObj ects () method.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 111

Relation consistency - renaming: Twomethods are implemented for this
purpose: the renameFromRelation () method searches over the from-objects
in the relation-set, and the renameToRelation () method searches over to-
objects in the relation-set. The method is similar to the delete method, except
that a new relation-object is created using the RelObj eet () constructor with
the proposed new identifier for the from-object. This ensures that if the sys-
tem allocates an alternative identifier, the correct new identifier is used. The
inherited rename () method then renames the unique old identifier to the
unique new identifier. Finally the old relation-object is completely removed
from the application.

The renaming of reverse relations is handled in a similar way for the deletion
of relation-objects.

Utility class - Rel: This class is defined as a utility class for all relation-
set objects. Its primary function is to store and maintain the appRelations

variable. This variable is a static instance of the AppSetObj eet and is the
parent set of all relation-sets in the application. By grouping all relation-sets
in the application together in one set, common operations can be performed
over all sets, using methods from the AppSetObj eet class and this class.

This class provides two factory methods. The one constructs a directed map,
the other an invertible map relationship. Should the relation or relation-
objects not exist, new objects are created automatically.

The other methods discussed for the relation-set object are now extended to it-
erate over the appRelations variable, and then into each contained relation-
set.

The method swapRelations () exchanges the from-objects in two binary
relations. For example for edge EDGE203, the from-vertex VERTEX12 is
exchanged with the to-vertex VERTEX17. This means that the two relation-
objects, EDGE203.TVERTEX(VERTEX17) and EDGE203.FVERTEX(VERTEX12) must
be changed to EDGE203.FVERTEX(VERTEX17) and EDGE203.TVERTEX(VERTEX12).
The reverse relations, VERTEX17.INEDGE(EDGE203)) and VER-
TEX12.0UTEDGE(EDGE203) must also be exchanged. The normal relations
are easy to change, as the parent relation-set does not change. However the
reverse relations have to be deleted from the application as well as from their
parent relation-sets respectively. Two new relation-objects are then created
using the eonstruetRelation () method.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach

4.6 Implementation of the engineering process

The engineering process as discussed in paragraph 2.3 is adapted slightly for
the AC approach. Although the models are now no longer stand-alone ap-
plications, the models are still instances of model-objects. The engineering
process now consists of the construction and population of the Product-data
model, from the CAD drawing contained in the CAD model, the incorpora-
tion of elevation data using the Elevation model, the execution of hydraulic
analyses and design operations from the Hydraulic model, the use of the Vi-
sualization model to visualize the engineering model in the CADenvironment
and the use of the Presentation model to display analysis and design results.
Figure 4.11 shows this relation. The numbers are referenced in the discus-
sion. Figure 4. 12 shows the class diagram.

Access & Update Data

/L",------.-.,--+--.___ Access Data

Update MH Elevations, Access Dala ~~....................,'-

//// Access Data8--'___"

[j
BU

1

ild & Edit Topology "4 ~'_'--'___--'___,'<,
Access Data<,o Visualization Model r-p-r-es-en-ta-tio-n-M-od-e'l

all ~~_/
~ Show Model .>

Generate 3D View / ~10 i'-----'---"iV Present Results

U Cad Model ~

Figure 4.11: Collaboration diagram showing the process flow in the AC ap-
proach

Construction of the Product-data model: The engineering process starts
with the collection, evaluation and processing of data defining the topology
of the existing sewer system such as contained on paper or digital plans in
a CADdrawing. As the implementation of a fully functional CADsystem lies

112

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach

Present Model

IElevation Model
IVisualization Model IPresent Model

Figure 4. 12: Class-diagram showing models and structure of the AC ap-
proach

outside the scope of this research, only the input of DXF file format into the
CAD model is supported. This drawing contains a collection of connecting
lines representing the sewer pipes and a circle representing the outfall man-
hole. It can then be extended externally with text attributes such as manhole
numbers as well as other key hydraulic information, e.g pipe diameters and
the number of connected land parcels. During the automatic construction of
the topology, the relevant CADentities are extracted from the CADdrawing
and added one by one to the persistent data structure in the Product-data
model method (1). The engineering data is then stored in the Product-data
model as application-objects. Within the CAD model the topology of hydraulic
structures can be added, removed and changed graphically and interactively.

Incorporation of the Elevation model: The Product-data model must be
updated with an elevation model of the sewer system (2). The ground eleva-
tion at the nodes (manholes) of the sewer network can be interpolated from
data in a surveyor data-point measurement file (xyz-point file)using the meth-
ods available in the Elevation model. The elevations are required to calculate
the ground slope between connecting manhole ground elevations along which

113

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 114

sewer pipes are to be designed, as well as for the verification of captured ex-
isting manhole lid levels and invert levels. The calculated slopes can be edited
interactively by the user.

The xyz-points from the Elevation model file can be visualized as a 3D sur-
face model in the CAD model (3). The need for a separate Topography model
therefore falls away. The export of data for an Elevation model from a 3D CAD
drawing falls outside the scope of this research.

Analysis and design using the Hydraulic model: The sewer system is
presented by the Visualization model which accesses the data in the Product-
data model (4) and draws a visualization into the CAD model (5). Then the
hydraulic analysis and design operations can be performed.

The implemented hydraulic model is a modified version of the one imple-
mented for the Me design approach. The method accumulates all flows in
the sewer system and then performs a hydraulic analysis. Should errors in
the topology or attribute data be found during the analysis, a correction is
required. All errors can be corrected directly from the user-interface pro-
vided in the CAD model. It might be necessary to update the elevations again
using functions from the Elevation model. For a new system with unknown
pipe diameters, the design algorithm in the Hydraulic model allows for the
optimum diameter to be calculated given the pipe slope information. At this
stage, the extensive production of XY-graphs and tables for the presentation
of hydraulic results has not been implemented in the pilot application.

Use of the Visualization model: During the interactive use of the Hy-
draulic model the model must be viewed graphically. This is accomplished in
the Visualization model. At any stage after the topology of the sewer system
has been entered in the Product-data model (4), a 2D graphical visualization
of the system can be generated into the CAD model (5). The graphical inter-
active environment of the CAD model allows the user to query any hydraulic
structure for data from the Product-data model (7).

Use of the Presentation model: Results of hydraulic calculations can be
shown by drawing pipes and manholes (nodes) onto separate layers in the
CAD model (9) using colour legends for a specific input or result variable. In
this process methods in the Presentation model must first access data from
the Product-data model (8).

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 115

The view generated by the Presentation model can be updated manually at
any time should changes be made to the Product-data model.

The functionality to query interactively any hydraulic element, which was
supplied by the Geographical model in the MC design, has been incorporated
into the Presentation model and CAD model.

4.7 Functionality of the ACsoftware system

In order to illustrate all aspects of the AC approach for a civil engineering
software application, it was decided to write a completely new application,
SEWSAN AC. This section describes the choice of the programming language
selected for the implementation.

Programming language used: As this application is written coherently in
one programming language, a modern object-oriented programming language
was selected. Although Object Pascal as implemented in Borland Delphi [4] is
used in many engineering offices as rapid application development language,
the choice fell on Java as implemented by Sun Microsystems. Not only is the
language available freely; it also earns a growing world-wide acceptance and
supports distributed computing concepts. As alternative the C++ program-
ming language could have been used.

The implementation of the AC approach has therefore been completed in the
Java Platform, Standard Edition, version 1.3. [44].

4.8 Algorithmic background

This section describes the algorithms used for the hydraulic analysis and de-
sign in the SEWSAN AC Java application. A different approach to the contrib-
utor hydrograph method was chosen for the AC application. The approach
adopted is based on the European practice of designing the sanitary sewer
network of the separate sewer system.

Method: See ATV [2]. Hosang/Bischof [18]. Novotny [29]. Department of
Housing [8] and [9]. Sanitary sewers carry a mixture of sewage, industrial
wastewater and clean water (extraneous flow). Clean water inputs into san-
itary sewers are mainly inputs from cross connections between stormwater

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 116

drainage (broken manhole covers, illegal yard and roof drainage connections)
and to a lesser degree inputs from ground water infiltration, and from leaking
taps and valves. Excessive clean water inputs into sanitary sewers should be
avoided wherever possible, as they result in treatment plant overloads.

Clean water inputs into sanitary sewers may be of the same magnitude or even
greater than the sewage and industrial inputs. Therefore two design flows are
generated in the network, a dry weather peak flow and a wet weather peak
flow. The dry weather peak flow is used to check whether minimum flow
velocities (0,5 mis) for self-cleaning are maintained. The wet weather peak
flow is used to check weather the pipe capacities (depending on pipe diameter
and slope) are sufficient.

Dry weather peak flow for each pipe is computed by determining the average
daily sewage production from all stands served by the pipe and multiplying it
with a peak factor. The average daily sewage production follows from informa-
tion regarding the type of residential zone (housing category, density, income
class). The peak factor takes into account the variation in sewage production
during the 24 hours of a day. Typical values are between 1,5 and 3,0 depend-
ing on the type of residential zone. Industrial wastewater flow follows from
information regarding the type of industry (factory, hospital, hotel. etc.) and
is added to the network as a point source inflow at a specific manhole.

Wet weather peak flow at each pipe is computed by multiplying the dry
weather peak flowwith an extraneous flow factor. The extraneous flow factor
takes into account the inputs of clean water. Typical values are between 1,5
and 2,0 depending on the condition (oldl new, maintenance) of the network.

Dry weather and wet weather peak flows are routed and accumulated down-
stream towards the outfall. (In this connection it must be noted that the effect
of time lag attenuation is ignored, as this is sufficiently accurate for sanitary
sewers: Whereas for stormwater sewers and combined sewers the runoff hy-
drograph of a short duration rainstorm is used as input into the network, the
wet weather peak flowin a sanitary sewer is approximately constant for one or
more hours. Assuming a typical flowvelocity of 1,0 mis, the sewage flowwill
travel 3 to 4 km within one hour. Therefore it is not necessary at junctions to
lag the peaks of combining flows.)

Bottlenecks in the system are identified where the wet weather peak flow
exceeds the flow capacity of a pipe. Pipes where the dry weather peak flow
velocity falls short of the minimum velocity (0,5 mis) are flagged.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 117

Point sources: Provision is made to include user point sources in the analy-
sis. It may be required to input a fixed flow rate at a specific manhole in the
network. This may happen where industrial flow is discharged into the net-
work (as discussed above), where pumps discharge into the network, where
other networks join the network being analysed, or where a large network has
to be fragmentized because of computer memory or computer time limitations.

Design option: The similar algorithm as for the Me design approach is
implemented, but adapted for the new analysis method.

Interpolation algorithm: The same algorithm as for the Me design ap-
proach is used, but now fully implemented in Java.

4.9 Classes of the Product-data model

The Product-data model consists of the DataModel object as well as objects
instantiated from several packages.

Use of packages: The following packages are defined for the Product-data
model:

• Application : The application manager classes are located here. This
defines an abstract top level for all the engineering classes.

• TopoCiasses : The topology of the interconnected basic engineering ob-
jects are defined in this package.

• GeomCiasses: The coordinate related information for the basic engi-
neering objects is defined in this package.

• DTMClasses: The classes required for the update of elevations and the
visualization of the topography are defined in this package.

• Hydroelasses : This package contains the hydraulic data for the basic
engineering objects.

• Analelasses : The hydraulic analysis algorithms are defined in this pack-
age.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 118

• DesignClasses : The design (optimization) algorithms are defined in this
package.

• PresentClasses : The results are presented by classes in this package.

• FinalClasses : This package contains classes which are defined as final
as well factory classes which create objects.

These classes are structured in a hierarchical way to ensure optimal shar-
ing of common properties and methods. Figure 4.13 shows the hierarchical
structure of classes and packages for the AC approach.

The detail of the classes is discussed in connection with the implementation
of the engineering models in Section 4. 10.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 119

Application _I App Object I
I

App I
Package I -I {abstract}

/\

Topology I Vertex I I Edge I I Surrace I
{abstract} {abstract} {abstract}

Package 4~

Geometry I Node I I Link I I Area I
Package {abstract} {abstract} {abstract}

L

DTM I Node I
Package {abstract}

,:,

Hydraulic I Manhole Hydraulic I I Pipe Hydraulic I Err Hydraulic I
Package {abstract} {abstract} {abstract}

u ~

Analysis I Manhole Analysis I I Pipe Analysis I Err Analysis J
{abstract} {abstract}

Package {abstract}
~

L
L

Design I Pipe Design I
Package {abstract}

~

Presen ta tion I Pipe Present I
Package {abstract}

Final-
Classes I Manhole I I

Pipe
I I

Err
IPackage <, /'/

<, //

Data '~ rf//

Model I Data Model I

Figure 4.13: Hierarchy of classes for the AC approach.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 120

The DataModel object: The class DataModel is located in the CoreClasses
package. It extends the class UnicastRemoteObject to inherit functionality
required for distributed computing scenario. The common operations which
affect the central storage and management of the engineering data are col-
lected in this class. It implements the IDataModel interface, which is ac-
cessed from the CADmode1. Figure 4.14 shows this class.

Unicast Remote Object

Data Model

$bottomMH: AppString
$elevationModel: ElevationModel
$erven: AppSetObject
$hydraulicModel: HydraulicModel
$manholes: AppSetObject
$model: AppSetObject
$modeIViewer: ICadModel
$pipes: AppSetObject
$pointSources: AppSetObject
$presentModel: PresentModel
$visualizationModel: VisualizationModel

addfiecordf): String
delModelO
getModeIEntitylnfo(String): String
loadModel(String)
$main(StringO)
saveModel(String)
updateModeIEntitylnfo(String, String): boolean

IData Model

Figure 4.14: The DataModel class

The model-object contains instances of the set-objects which reference the
basic engineering objects. As the AC approach currently only supports one
active model in memory space, all instance variables are declared static. This
improves the run-time performance, as the Java virtual machine can optimize
the access to the data structure.

The followingAppSetObj ects are collected:

• model: This set contains the identifiers of the sets defined below. It
provides direct access to the objects in the engineering model.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 121

• manholes: This is the collection of the manhole identifiers in the appli-
cation.

• pipes: This is the collection of the pipe identifiers in the application.

• erven: This is the collection of the erven (stands) in the application.

• pointSources : This is the collection of the point sources in the applica-
tion.

• bottomMH : This AppString object defines the identifier of the bottom
(outfall) manhole.

Furthermore instances of the visualization, elevation, hydraulic and present
model-objects are stored in the Data model, as well as a reference to the
CAD model. These variables provide direct access from the Data model to the
model-objects.

The constructor of the CAD model object calls its inherited constructor to
create an object which is compatible with the JAVARMl system. It creates the
model-objects.

Other primary functions are to provide iterators to the application sets and
to implement methods which operate on the data of the application. This
includes the delModel () method. In order to delete all objects in the appli-
cation, the deepClearSet () method of the appSets object (which collects all
set-objects defined in the application) is called. This method does a recur-
sive (deep) operation to remove the object from all sets, but does not remove
the object from the application. The App. clearObj ects () method removes
all application-objects from the application. As this is the only direct Java
reference which refers to the application-objects, the Java Garbage Collection
system, which removes unreferenced objects, can now remove these object
from the memory space of the computer.

The addRecord () method is used by the CAD model during the
buildModelfromCAD () operation or by the local readFile () method to add a
data record to the Data model. A"record" contains the information required to
define one pipe object, its upstream and downstream manhole objects as well
as associated point sources and erven objects. This method is the primary
way to construct the basic engineering objects, together with the required
relation and set-objects.

The methods getModelEntitylnfo () and updateModelEntitylnfo () allow
the retrieval and update of data for a specific pipe or manhole.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 122

Persistent storage of data: The Data model is made persistent by storing
it to disk with the saveModel () method. This methods makes use of the
standard Java serialization technology to convert the application-objects to
a data stream. This data stream is then written to disk. The method first
stores the application-object HashMap, the application-set HashSet and then
the relation-set HashSet. As static variables cannot be found automatically
during the Java serialization process, they have to be written explicitly to the
stream. This includes the set-objects defined in the Data model.

The application objects are automatically written to the stream because the
application-object HashMap contains object references to all objects of the
application in its value field. The corresponding loadModel () loads the data
model into memory space.

For the distributed computing scenario, the main () method is performed
when the Data model is executed as a stand-alone application on the server-
side. This method then creates a RMISeeurityManager object, and binds the
name DMto an instance of sewerModel. This is a requirement for the JAVA
RMl to function.

4.10 Implementation of the engineering models

This section briefly describes the functionality of the model-objects. The
model-objects are analogous to the traditional engineering models in the
Me approach. However, each model-class implements a model-interface,
which defines the methods which must be implemented. A model-object
does not contain any product data. All product data are located centrally
in the Product-data model. However, the model-objects have full access to the
Product-data model and its classes.

Hydraulic model The HydraulicModel class extends the class
UnieastRemoteObj eet of the rmi. server package of Java so that this
class can be accessed using RMl from the User Interface located in the
CAD model in the distributed computing scenario. Furthermore, this class
implements the IHydraulie interface, which defines the public methods to
be exported by this class. The use of an interface is not required for the
stand-alone execution, but defines which methods are to be exposed publicly.
The Java RMl distributed system, however, requires that all objects which
are to be accessed remotely must implement an Interface. Figure 4.15 shows

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 123

this class.

IData Mo

Unicast Remote Object

IHydraulic Model

del I
I

I
Hydraulic Model

Data Model

1<'--
analyseModelO
calcModelO
updatelnvertLevelsO

/ ~~
Manhole

Pipe

{abstract}
{abstract}

calcFlowO
calcFlowO doAnalysisO

Figure 4.15: The HydraulicModel class

The Hydraulic model exposes three methods for the analysis and design of the
sewer system, namely:

The method updateInvertLevels () calculates the invert levels of all pipes
at the manholes from the elevations at the manholes by following a post -order
tree traversal (from leaves to root) over the manholes and pipes. This methods
ensures that the minimum slope requirement is adhered to.

Method calcModel () accumulates the flow in the sewer system by traversing
the tree of pipes and manholes in post-order and accounts for the contribution
from erven and point sources. Two flow conditions are calculated, namely a
dry-weather flow condition and a wet-weather flow condition.

Method analyseModel () then performs the velocity calculation and the anal-
ysis by iterating sequentially over all pipes. The Pipe. doAnalysis () method
for each pipe object is called. This is followed by the execution of the design
algorithm.

Traversals: Tree traversals form a central part of the Hydraulic model
and can be applied more generally to other applications. Firstly an in-
order traversal (from root to leaves) is performed using the calcTreeAge ()
method (located in the TopoClasses.Util class), which assigns an "age" to

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 124

each pipe in the model, based on the number of pipes or distance from the
root outfall manhole. Post-order tree traversals are carried out by creating a
POTreeTraversal () object and using it as an iterator. An extract from the
source code of the updateInvertLevels () method is shown in Table 4.1.
The full source code for the traversal algorithms can be found in Appendix F.

Table 4.1: Traversal algorithm

public void updatelnvertLevels()
Manhole usManhole;
Pipe pipe;

throws RemoteException{
Ilreference to us manhole
Ilreference to pipe

lido in-order traversal
TopoClasses.Util.calcTreeAge(DataModel.bottomMH.getAppString(),this.dm);

Ilget post-order iterator,
listarting at bottom manhole

Iterator nodeIds = new POTreeTraversal(DataModel.bottomMH.getAppString(),dm);
Iinow iterate over nodes

while (nodelds.hasNext()) {
usManhole =Util.manhole(nodelds.next()); Ilget reference to manhole

Ilskip bottom manhole
if (!usManhole.getld() .equals(DataModel.bottomMH.getAppString())) {

usManhole.calcOutlnvert(); Ilcalculate the us invert for
Iiall pipes on ds side of usManhole
Iinow transfer level to ds
II manhole. Get iterator over all
Iioutgoing edges
Ilget reference to pipe object
Ilcalc the new ds invert level
Iinow update the slope

Iterator pipelds = usManhole.outEdges();
while (pipelds.hasNext()) {

pipe = util.pipe(pipelds.next());
pipe.calcDslnvert() ;
pipe.getSlope() .update(pipe);

}
}

Visualization model: This class contains the operations for the visualiza-
tion of the model. It implements the IVisualizationModel interface. Figure
4.16 shows the classes used for the visualization.

The model draws pipes and manholes given their identifiers. First an object
reference must be obtained from the application id manager and then the
pipe. draw () and manhole. draw () methods in the GeomClasses package
are called.

The draw () method accesses the model Viewer object (an instance variable
to the viewerExtension class in the CAD model) via the ICadModel interface
and executes the drawLine () method. The return value of this method is
the Java HashCode of the created CADentity. This HashCode is used in the
ReI. constructRelation () method to construct a directed mapping between
a non-application object (the CAD entity) and an application-object. This

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 125

IData Model

Node
(abstract)

-x: double
-y: double
-z: double

annotate(ICadModel)
draw(ICadModel)
getxO: double
getYO: double
getZO: double
setx(double)
setY(double)
setZ(double)

Unicast Remote Object

IVisualization Model

I

Data Model Visualization Model

relation-object is used for example to obtain a reference to the application-
object (pipe or manhole) which is visualized when the user clicks on a CAD
entity.

drawModelO

/
!

Link
(abstract)/

/
annotate(ICadModel)
draw(ICadModel)
drawRes(ICadModel, int)

/L_____ ~ __ _j

/
/

/
/

/
//

/ /
/

getLength(): double
update(ILink)

ICadModel Length

-length: double

Viewer Extension

-$dataModel: IDataModel

-buildModelFromCadO
drawCircle(double, double, double): int
drawLine(double, double, double, double): int
drawText(String, double, double, int, double)
showLinkNodelnfo(int, int, Matrix4D)
showProgress(Real)
updateViewO

Figure 4.16: The Visualization model and associated classes

The drawModel () method redraws the entire Product-data model.
method deletes all existing relation-objects between CAD entities and

This

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 126

application-objects using Rel. deleteRelations (). Then all pipes are tra-
versed to call pipe. draw () and pipe. annotate () for each pipe.

The same procedure is repeated for the manholes. Finally the
model viewer. updateView () method is called to refresh the CADdisplay.

Presentation model: This model extends the class UnieastRemoteObj eet

for the distributed computing scenario. This class contains the operations for
the presentation of results. It implements the IPresentModel interface.

The drawResModel () method iterates over all pipes and calls the
pipe. drawResult () in the PresentClasses package and draws pipe objects
as colour-coded vectors and annotates result variables. Communication to
the CAD model takes place via the defined ICADModelinterface.

Elevation model: This model also supports the distributed computing sce-
nario. This class contains all the operations which affect the elevation and
topography models. It implements the IElevationModel interface. Figure
4.17 shows the classes used for the visualization.

Unicast Remote Object

Node
{abstract}

Link
-x: double f) {abstract}
-y: double
-z: double

annotate(ICadModel)
---~-'?

annotate(ICadModel)
draw(ICadModel) draw(ICadModel)
getXO: double Elevation Model ~/- drawRes(ICadModel, int)
getYO: double
gellO: double .>
setX(double)

drawDTMGridO
setY(double)

drawDTMPointsO
sell(double)

updateElevationsO
updateModelO

I
I
I
I Length Slope
I
I

-length: double -slope: double
Node getlengthO: double getSlopeO: double

{abstract} ,
update(ILink) update(ILink)

ICadModel

updateElevationO

Figure 4.17: The Elevation model and associated classes

The method drawDTMGrid() visualizes the xyz-points of the elevation model

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 127

as 3D-mesh, provided the points are stored in a rectangular array. The
drawDTMPoints () method is used to annotate the xyz-points with elevation
labels. These methods call functions from the DTMClasses package. None
of these classes operate on the application objects, as the points are only
temporarily stored in memory.

The method updateElevations () interpolates the elevation for each
manhole-object in the sewer system. Information regarding the quality of
the interpolation (for example whether the elevation was interpolated or ex-
trapolated) is stored in the manhole-object.

The method updateModel () is used to update the lengths and slopes of
all pipe-objects in the Product-data model, given the new elevation. It tra-
verses the pipe and calls the methods pipe. getLength () .update () and
pipe. getSlope () .update () in the Geometry package.

CADmodel: The ViewerClasses packages define a CADvisualization sys-
tem in Java, which can read an industry standard 3D DXF file and visualize
the geometry by projecting it on a plane. A full description of the CAD model
falls outside the scope of this dissertation but it is written fully using the
Java AWTAPI [1]. The interaction with the Product-data model is however
outlined below. Figure 4.18 shows the classes used for the CAD model.

The CADvisualization system has its own object data structure for managing
and visualizing its drawing space. It has therefore been decided to detach
it from the engineering application. This ensures that the visualization sys-
tem can be used for other applications as well and that it can be replaced
easily with another product. In order to illustrate this concept, the inter-
faces between the engineering classes and the CADvisualization classes are
described.

When detaching the CAD classes from the engineering classes, the MC ap-
proach where engineering objects are replicated in the CAD model is avoided.
This is achieved by exposing only primitive methods for drawing, annotating
and querying in the interface of the CAD model. However, as the CAD model
requires information on user interaction (such as clicking on pipes) from the
Product-data model, it must be able to access the engineering objects directly.
This is accomplished by an interface to the Product-data model.

The user-interface in the CAD model is extended with a custom class,
SewMenu.This is typical of commercial CADsystems. The CAD model provides
the complete user-interface for the SEWSAN AC application.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 128

ICad Model .._ - - - - - - IData Model

\ /Viewer Classes

\ /
Viewer Extension

I DrnwS& r --_._-- -buildModeIFromCad()
drawCircle(double, double, double): int
drawLine(double, double, double, double): int
drawText(String, double, double, int, double)
showLinkNodelnfo(int, int, Matrix4D)
showProgress(Real)
updateViewO

The implementation of the ICadModel is of interest, as it is accessed from
the engineering classes. The CAD model is independent of the engineering
models. This allows the implementation of a distributed computing scenario,
where the CAD model with user-interface is available at the client side, and
the engineering models are located at a central server location.

The ViewerExtension class is located in the CAD model and implements the
primitives line, circle, symbol and text drawing functions, a progress bar and
a status window. It exposes an updateView () method to force a refresh of the
CADsystem. The buildModelfromCAD () function interacts extensively with
the CAD drawing to extract entities. It calls the dataModel. addRecord ()

method via the IDataModel interface to pass the extracted raw topology to
the Product-data model.

{...} .:»

Ox, Viewer v~-------

The showLinkNodeInfo () method is called from the CAD model whenever
the user clicks on a cad entity. It calls the dataModel. getRelationToID ()
method in the Product-data model to determine if an application-identifier
is related to the CAD-object and then presents a formatted string using the
getModelEntityInfo () method. This is an example where the relationship

L__________jr-----______
r-------------~

Sew Menu

SewMenu(DxfViewer, ViewerExtension)

Figure 4.18: Classes of the CAD model

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 129

between a non-application object (CADentity) and an application-object (for
example the pipe object) is queried.

This kind of interaction is typical for the communication between a CAD model
and a Product-data model.

Figure 4.19 shows the user-interface of the CAD model

4.11 Extending the design for a distributed environ-
ment

In order to illustrate the conversion of the AC design pilot project for dis-
tributed computing, a scenario is considered where the CAD model is located
locally and the Product-data model is located remotely at a server.

This concept follows the traditional two-tiered client-server application de-
sign. As the user-interface is graphically intensive, it is placed on the client
side. A user-interface, which only requires textual input like an input form
hosted by a web-server and accessed through a web-client, can also be con-
sidered as a three-tier alternative. However, the development of a web-server
falls outside of the scope of this research.

The Product-data model does not require a user-interface but high processing
power. The central off-site storage of persistent model data is advantageous.

Java RMl: Several client-server communication standards have been devel-
oped. Three choices are available to the Java programmer (Orfali [31]).

• Sockets: The developer can use low-level socket communication. The
programmer must implement own methods to transfer object data over
the wire and to manage the communication.

• CORBA: This is a standard for inter-operability between systems written
in different programming languages. It requires software which is not
included in Java.

• JAVA RMl: This technique provides a Java-native communication system
which can be used for powerful client-server applications. The software
subsystem is included in the Java distribution.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 130

Web-browser integration: An alternative to convert the client code from
a Java application to an Applet (which runs within a web-browser) is also
evaluated for the SEWSAN AC application. This option provides an interesting
alternative in the client -server scenario as the client software can now be
loaded on the web-server. When the user accesses the web-page, the client-
applet is downloaded onto the local machine, and then executed.

The advantage of this design is that the user can always use the most updated
version of the client software. Furthermore, the graphical-interactive client
interfaces still execute locally. The product-model as well as all data are
however stored persistently on the server.

Java applets are limited by the security restriction of the web-browser con-
tainer. For example an applet-application cannot normally write to the local
hard drive or display a menu. In SEWSAN AC the DXF file is for example
only accessible from the remote server location (i.e. the base directory on the
web-server) .

4.12 Conclusion

This chapter covered the implementation of the AC design approach. Key as-
pects of the implementation included the design and implementation of the
object identifier management, the object set management and the object rela-
tion management. These subsystems support the AC design and are required
when a software system must manage a large number of objects across several
models in one application. Special attention was given to object relation man-
agement. A practical comparison between the standard practice to include
object references as attributes using a relation manager has shown that the
new design can substantially reduce the complexity of source code. Model
objects are introduced which replace the concept of isolated applications in
the MC design. A special Data model object manages the product data of the
application and ensures that application objects can be stored persistently.
Non-application objects can also be included in the application-wide relation
management. This is illustrated with the relationship between non-persistent
CADentities and basic engineering objects.

The engineering process as adapted for the AC design, as well as the func-
tionality and background of algorithms are discussed in this chapter. It is
important to show that the pilot implementation can represent a typical soft-
ware system for civil engineers with its associated complexity. Generalized

Stellenbosch University http://scholar.sun.ac.za

Chapter 4. Implementation of the AC design approach 131

topology functions such as data-tree traversals algorithms and typical geo-
metric methods such as the calculation and updating of the length and slope
of link elements are discussed. These functions are also applicable to other
civil engineering software applications.

The pilot application has been extended to support a basic client/server sce-
nario. It has been shown that a stand-alone application can be converted to a
client/ server application with a modern programming language such as Java.
A system is presented where the application is delivered via the internet as
Java applet and server-side processing and persistent object management is
supported. This allows the user to always use the latest version of the appli-
cation and offload numeric processing to a fast server. An implementation of
multi-user access to the server and threaded processing on the server should
form part of a design for distributed computing. However this would have
exceeded the scope of this research.

The interaction between a Hydraulic model and a Visualization model in the
AC design is substantially different from the AC design. The next chapter will
focus on analysing the new structure, as well as quantifying the performance
of the AC design.

Figure 4.19: The user -interface of the CAD model with Project 2 loaded.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5

Analysis of the AC design
approach

5.1 Introduction

The pilot implementation as introduced in the previous chapter is applied to
projects of realistic practical size. The performance of the pilot implementa-
tion is studied from two points of view: Analysis of structure and quantitative
evaluation.

5.2 Analysis of the ACdesign structure

In this section an analysis of the structure of the AC design approach will
show the characteristics of the design. In order to compare the structure of
the design with the MCapproach the interaction between the Hydraulic model
and the Visualization model will again be chosen as typical example. A subset
of the full implementation of the AC software system will be used to highlight
the structural aspects.

The analysis evaluates the general aspects of the AC design which are also ap-
plicable to other hydraulic engineering software systems. A Hydraulic model
for the hydraulic analysis and a Visualization model for the graphical presen-
tation share the common identifier scope of the application.

The two engineering models are implemented in objects, namely the
HydraulicModel and visualizationModel object. Figure 5.1 shows the
class diagram for the typical AC system. The full system is implemented

132

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 133

in Java and was discussed in Chapter 4.

Introduction of basic engineering objects: The AC design allows basic
engineering objects to have an application-wide identifier scope. Different de-
signs for the implementation of the objects can be considered. For example,
the functionality associated with different models, such as the topology, ge-
ometryand hydraulic analysis can either be incorporated directly into the
basic object, or included in several smaller view objects and then collected
into one larger parent object.

The first approach was chosen in SEWSAN AC in order to reduce the total
number of objects which must be maintained in the application. By introduc-
ing additional relations between a TopoLink, a GeomLink and a HydroPipe

object, the formation of relationships between these objects at program run-
time is supported. However, static design-time relations were chosen for
the SEWSAN AC. Class inheritance is used to reduce the total number of
attributes and methods in the objects and results in the FinalPipe and
FinalNode classes to be instantiated only once.

Collection of object identifiers: In the AC design objects are identified
by their unique application-wide identifier. Furthermore, any collection of
objects does not store object references, but consistently only stores object
identifiers. An example are the nodes and pipes attributes in the DataModel.
Object references can be resolved at any time using methods from the App
class. The creation of new application objects automatically manages the
storage of identifier/reference pairs in the obj ectMap in the App class.

Function of the Data model: The Data model functions as central repos-
itory for sets of basic engineering objects, as well as for methods such as
saveModel () and loadModel () which manage the persistent state. Com-
mon methods which are related to the topology or geometry and need to
operate over sets of objects can be located in this model. An example is
updateLengths () which is of use for both the Hydraulic model and the Visu-
alization model.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach

App App Object

$objectMap: HashMap <>-ld/Reference id: String

AppObjectO

/\

I
Topo Link Topo Node

age: int
visited: boolean

deleteO
deletet)idBeginVertexO: String

idEndVertexO: String
getDepthFirstTreeTraversal()

idFromEdgesO: Iterator
getPostOrderTreeTraversalO

idToEdgesO Iterator
inEdgesO: Iterator

printO
outEdges(): Iterator

rename(String) print()
rename()

Topo_LinkO
updateAge()

~ f
Geom Link

ICadModel GeomNode
length: double

, ~-- -~ ~ ~ ~ ~ ~ x: doubleslope: double ~ ~ -. ~ -- /
draw(ICadModel) / -, y: double

drawRes(ICadModel, int) / -, z: double

printlengthO / -, draw(ICadModel)

printSlope() / -, print()

updatelengthO / <,
~updateSlope() / -,

f
/ -.

/ -,
/ -,

Hydro Pipe Hydro Node

drawResult(ICadModel) drawResult(ICadModel)
print() printO
updateFlow() updateFlow()

I
Final Pipe Final Node

Data Model
Pipe(String, String, String, double, double) Node(double, double, double)

~I~
nodes: AppSetObject VSpipes: AppSetObject

buildTopo()
loadModel(String)
printAges()

.--lI' printPipes() ~ '<,-- -- saveModel(String) ---Hydraulic Model ---~ Visualization Model___ -- updateAgesO
updateLengths()

printFlowsO
updateSIopesO

drawLinks()
updateFlows()

~
r ?!

drawNodesO

.>Application Menu

analyseModelClickO
loadModelClick()
saveModelClick()
showGraphicsClickO

Figure 5.1: Class Diagram of typical AC system

134

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 136

5.2.1 Limitation of object name scope

The AC design approach includes the new application identifier manager
(paragraph 3.2). This identifier manager ensures that for each object which
is created under its management, a unique string identifier is used or created
and stored together with the object reference in the central HashMap.

This identifier manager can be used from any point in the application to query
or retrieve the object reference for a valid identifier. All application objects
(objects which extend the AppObjeet directly or indirectly) are not bound
to a specific model object. This allows the developer the freedom to access
any object in the application from any point in the source code. Objects are
therefore no longer bound to the name scope of a model-object.

A software model of the real-world is mapped to a model-object which con-
tains or references sets of class AppSetObj eet. These sets collect the object-
identifiers of the object to be related to this model. For example, the appli-
cation set-object DataModel. pipes is used in the drawModel () method of
the Visualization model to obtain an iterator over all the pipe identifiers, and
then obtain an object reference from the identifier manager for each object
identifier. The method draw () of the pipe objects is called with this reference.

A problem for the central management of object identifiers arises where ob-
jects are to be accessed which are not instantiated from an AppObjeet. These
objects are not stored in the central HashMap, and their references can there-
fore not be located. It is the responsibility of the developer to ensure that all
objects which are to be accessible throughout the application are instanti-
ated from the AppObjeet or a descendant. However, objects which are not
product-data can still be instantiated from other classes. For example, all
objects in the CADmodel are temporary and do not require persistent storage
as part of the product-data. By using a special version of the relation-object
these external objects can be used in directed mappings.

As discussed in Chapter 3, the application has been chosen as the object
name scope which only supports one project at a time. The name scope can
be extended to include more than one project. The identifier manager can
then manage objects with the same identifier located in different projects.

A direct consequence of new application-wide name scope of objects is that
software bridges are no longer required for a communication between models.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 135

Modelobjects: Model objects now contain operations which are performed
over all basic engineering objects in sets. For example the updateFlows ()

method can loop over the pipes object obtained from the DataModel in or-
der to execute a method such as Pipe. updateFlow () on each object. Simi-
larly the drawLinks () method in the Visualization model executes over all
pipes and calls the Pipe. draw (ICadModel) method. Only the functionality
which is relevant for the model is extracted from the object.

Interface to CAD model: In the AC design, the visualization model per-
forms only high level commands on the basic objects. Within the basic object,
the draw () method is then executed and requires interaction to a low level
graphics system. By using well defined interfaces for communication in both
directions, it can be ensured that the CADsubsystem is totally generic and
independent, and does not form a stand-alone model as in the case of the MC
design.

Topology and tree traversals: A separate topology model is often not
required. The topology logic is stored in a layer of the basic engineer-
ing objects. This includes the creation of traversal iterators, such as the
getDepthFirstTreeTraversal () method and associated methods such as
updateAge () . Traversals are used extensively in SEWSAN AC.

Flow of command: In the ACdesign the flowof execution can typically start
with the user action from a user interface, such as in an ApplicationMenu
class. For example loadModelClick () is selected, which delegates action
to the DataModel, to loadModel () and updateLength (). The last method
is performed sequentially over all pipe objects, but updateAges () involves
an in-order tree traversal. Execution then returns to the main menu, from
where updateFlows () in the HydraulicModel can be called. This performs
a post-order traversal over nodes and links to accumulate flows (in a sewer
network).

Then showGraphicsClick () is selected, which performs drawLinks () and
drawNodes () . The corresponding methods in the objects are called, and the
interface to the CAD-model is used to display the information graphically.

The followingissues found in the MC design are now addressed with reference
to the typical AC example.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 137

5.2.2 A priori implementation by the software developer

The use of interfaces in Java permits the development of isolated software
components, which can be replaced by other implementations which adhere
to the same interface specifications. This is illustrated by decoupling of the
CAD model from the Product-data model with interfaces. It is possible to
replace all classes of the CAD model with a commercial product which imple-
ments the interface ICadModel.

The design of the Product-data model and especially the hierarchical class
structure introduced as an extension to the AC approach permits the ad-
dition of packages with new functionality directly above the FinalClasses
package. An example could be the extension of the Product-data model to
present results in tabular form. This change can be implemented even if the
source code for the existing Product-data model is not available to the devel-
oper. Anew model-object class, for example TablePresentModel, is added to
the application. This class uses the Product-data model to traverse the set of
model-objects which are to be presented in a table.

5.2.3 Object duplication and reduction

The traditional MC design approach includes classes (i.e. the definition of
object functionality) as part of a model. Objects must therefore be duplicated
when the same functionality is required in two models, since the two objects
belong to separate classes.

Classes for an AC application are part of the computing platform. As one
common platform is used for all classes (the Java platform), common func-
tionality between the models is factored and stored in common classes on the
platform.

The AC design consolidates all product-data in one centrally managed loca-
tion, the Product-data model. This model manages the product-data defined
by objects from the basic engineering objects classes as well as additional util-
ity classes. The functionality for the Product data is defined in a hierarchical
class structure, as common functionality is factored in the higher hierarchy.
To reduce the number of objects to be managed in the application by the
application manager, each basic engineering object is only instantiated once
in the Product-data model, instead of once for each engineering model. This
results in objects which are instances of the classes from the FinalClasses
package. These objects contain the functionality required for all engineering

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 138

models in their class structure.

5.2.4 Programmaintenance

The effort for program maintenance is defined by the size and complexity of
the source code, and thus the number and size of the classes in the appli-
cation. As class duplication can be reduced in the AC approach and classes
can be consolidated, an AC application requires less maintenance than the
equivalent MC application. The updateLength () method can now be located
in one place, namely in the topology layer of the application, and is accessible
from all models.

Debugging an AC application is simplified as all source code is located in one
application.

5.2.5 Programextensibility

The introduction of the hierarchical class structure as well as the use of in-
terfaces as discussed in Section 5.2.2 on an a priori implementation enhance
the extensibility of the AC application.

As class duplication is reduced and classes are consolidated, an AC design
can be extended more easily than the equivalent MC application.

5.2.6 Suitability for distributed computing

Name scope limitation: The name scope of an AC design can be extended
to a computer network as the distributed computing environment manages
remote object references and the marshalling of data over the network. This
is the case with the implemented JAVARML

Requirement for bridges: Software bridges are not required in the AC de-
sign approach. The transfer of large volumes of data between models located
at different locations on the network is therefore avoided. Only the object ref-
erences (either the persistent identifiers or if necessary, special remote object
references) must be passed.

Object duplication: In a distributed computing scenario, classes must be
installed on the platform at all locations where the object is instantiated. This

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 139

leads to duplication which can be avoided in a non-distributed scenario. Of
more importance is the time and cost required to distribute classes to remote
locations. However the distribution of classes takes place infrequently relative
to normal data transfer, since classes are cached on the local computer and
are updated only when out of date.

5.3 Quantitative analysis

The construction of the Product-data model from the CAD drawing data and
the Digital elevation data is a typical benchmark operation and is suitable for
the quantitative analysis as in the case of the MC design approach. Wher-
ever the duration of an operation is noticeable long, Duration of Execution
(DoE) was measured. Wherever user input requires considerable time, the
User Interaction Count (UIC) is used to quantify the effort. For specific key
operations, the Basic Instruction Count (BIC) is used as additional measure.
The spreadsheet summarizing all quantitative results is found in Appendix H.

Duration of Execution (DoE): All DoE measurements are measured in sec-
onds, and are on the benchmark computer. The same computer is used as for
the MC design approach, a Pentium II, 333 MHzmachine with 160 Mb RAM
running Microsoft Windows 98.

Basic Instruction Count (BIC): The BIC has been evaluated for operations
equivalent to the port operations required in the MC design approach: the
process of building a Product-data model from the CAD drawing data and
the update of the Product-data model with the Digital elevation data. These
are the two most common time consuming data operations. Additionally, the
visualization of the Product-data model is evaluated since it automatically is
part of the MC evaluation. Only operations which are performed during each
iteration of a loop are counted, as they contribute primarily to the execution
time. Appendix G shows a spreadsheet where the instructions are counted
for the AC design approach.

User Interaction Count (UIC) and Persistent Data Size (POS): The same
assumptions as for the MC design are made. See Section 2.9.

Next the basic operations are described and categorized. Then the results

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 140

for the quantitative analysis are reported for each category over the four test
projects.

5.3.1 Evaluation of BICand UIC

This section describes the basic operations used for the evaluation of the BIC
in the AC design. As for the MC design, it is assumed that a layout drawing
file of the sewer system exists which contains lines representing the sewer
pipes, as well as a circle indicating the outfall manhole. The entities in the
drawing are located geographically correct. The Digital elevation data of the
area is also available. The steps of the evaluation procedure are outlined
below, with differences to the MC design (Section 2.9.1) outlined:

• Topology flow direction (TFO) : The same assumptions as for the MC
design are made and a similar evaluation of Show direction definition
TFD1 and Swap direction definition TFD2 is performed.

• Build Model (BM) : This step combines the steps for the building of the
hydraulic model, which where considered individually for the MC design.
Unique names are automatically generated for manholes. Manholes are
defined at the endpoints of lines representing sewer pipes. Default val-
ues are assigned for pipe diameter, number of parcels per pipe, manhole
elevation and invert levels. This step combines the MC codes TME2 and
HMI.

• Draw Model (OM) : During this stage the Product-data model is visual-
ized. The model display contains standard sized text for all attributes as
well as default values. This step combines the MC codes HME and TMI2.

• Topology model correction (TMC) : Errors in the topology which were
missed during the first iteration, are corrected interactively. See Section
2.9.1.

• Update Elevations (UE) : The coordinates of the manholes of the sewer
system are passed to the interpolation algorithm and the elevations are
updated in the Product-data model. Only the transfer of data is evaluated
as in the MC evaluation. Alloperations are also quantified using the BIC.
This step combines the MC codes TCE, ECI, EEl and TEI.

• Topology slope update (TSU) : The initial slope of the pipes is automati-
cally updated from the elevations at the endpoint manholes.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 141

• Topology parcel update (TPU): During this interactive operation the
number of parcels associated with each pipe are counted and the oper-
ation is evaluated with the UIC. As for the MC design, it is assumed that
20% of the parcel count is different from the default (1) .

• Hydraulic Analysis and Design (HAD) : The flow is accumulated, fol-
lowed by an initial analysis. The optimum diameters are designed using
the slopes now available for each pipe. These operations do not form
part of the comparison between the MC design and the AC design since
different algorithms are implemented. They are evaluated in order to
compare the performance of AC implementation for stand-alone, single
PC client! server and dual PC client! server operation.

5.3.2 Result of the quantitative analysis

In order to compare results against the three key operations from the MC
system. the Update Elevations (UE). Build Model (BM) and Draw Model (OM)
operations have been evaluated.

Duration of Execution and Basic Instruction Count: The performance
for the key operations (UE, BM and OM) for execution on the stand-alone PC
is shown in Table 5.1 and shown in graphical form in Figure 5.2.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 142

Table 5.1: Comparison of key AC operations for DoE and BIC

Project TPI TP2 TP3 TP41
Number of pipes 104 682 2934 6721
Update Elevations (UE)

(1) 0.10 0.15 0.4 1.0
(2) 0.04 0.26 1.1 2.5
(3) 0.01 0.05 0.2 0.5

Build Hydraulic Model (BM)
(1) 0.8 18.7 156.3 1267
(2) 3.1 75.8 1253.0 6442
(3) 0.6 15.2 250.6 1288

Draw Hydraulic Model (DM)
(1) 0.8 2.5 5.2 10.3
(2) 1.0 6.4 27.5 62.9
(3) 0.2 1.3 5.5 12.6

Note: (1)Duration of Execution (DoE)in s
(2)Basic Instruction Count (BIC)in million instructions
(3)Equivalent duration for Basic Instruction Count (BIC)in s

The following quantitative results are observed in the table: One second of
equivalent BIC is approximately equal to 5.0E6 BIC operations.

DoE and BIC comparison: The equivalent BIC for the Update Elevations (UE)
operation does not correlate with the single PC DoE. This is partly due to the
difficulty in measuring the short DoE duration of the UE operation which is
under 1 s in duration. It seems that a near constant overhead duration is not
accounted for in the BIC.

The equivalent BIC for the Build Hydraulic Model (BM) correlates closely with
the DoE. The BIC for the Draw Hydraulic Model (DM) also accurately represents
the DoE values.

The BIC has again been verified as an absolute measure of execution per-
formance since it correlates well with measured DoE values. It will be used
later in this section for the comparison between internal and external rela-
tionships, and in Chapter 6 to compare results from the MC design with the
AC design.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 143

Update Elevations (UE)

1.2-,-------------------,
1.0+--------------~-----l

~ 0.8+------------~-=----------j
c:::8 0.6+------------::;~------------j
I.'!
::l 0.4 +------------,;;AF---------c:~"""'------------jc
0.2+-----:--="""=-------=----------------1
0.0 -.==-=---.,---___,_-----,--------1

o 2000 4000
Number of pipes

6000 8000

~
~

Build Hydraulic Model (BM)

1400,-----------------,
1200+-------------~~-~

~ 1000+------------7'.~---__J
e 800+----------7'7t'::_______----~o:;I.'! 600+------------7"</'-------__J
~ 400+-------7"S;"'-----------~

200+----~~~---------~
O~--~-~---~----.,---~
o 2000 4000

Number of pipes

6000 8000

~
~

Draw Hydraulic Model (OM)

14,------------------,
12+-------------~~-----I

Ii) 10 +-----------~---='"'-------I-5 8 +-------------c~~"""-------____I

:;I.'! 6 +------_____.-s,...-=-----------____I

::lC 4+---~~~--------------I
2 +-~~~----------------I
O~---~---_,._---___,_---____I

~
~

2000 4000 6000 8000o
Number of pipes

Figure 5.2: Graph of key AC operations for DoE and BIC

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 144

User Instruction Count: The performance for the operations (TFD2, TMC
and TPU) with respect to the UIC is summarized in Table 5.2. Figure 5.3
plots the UIC against the number of pipes. It shows the interaction count for
the three measured cases cumulatively, namely from bottom to top for Swap
Direction Definition (TFD2), Topology Manhole Correction (TMC) and Topology
Parcel Update (TPU). This data is used in the comparison between the AC and
DC design in Chapter 6.

Table 5.2: Key AC operations for UIC

Project TPI TP2 TP3 TP4
Number of pipes 104 682 2934 6721
User Interaction Count (UIC)

Swap Direction Definition (TFD2) 104 682 2934 6721
Topology Model Correction (TMC) 94 614 2641 6049
Topology Parcel Update (TPU) 83 546 2347 5376

Total 281 1842 7922 18146

Total User Interaction Count

25000
20000- 15000c

::l
0
0 10000

5000
0

0

8TPU

ISITMC

I2ITFD2

6000 80002000 4000
Number of pipes

Figure 5.3: Graph of UIC performance

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 145

Internal vs External relationships: Two different implementations of the
AC design are evaluated using the BIC. Relationships between objects are
stored as persistent identifiers within the objects or an external relation man-
ager system is used. Table 5.3 compares the BIC for the time-consuming Build
Hydraulic Model operation and the Draw Hydraulic Model operation. Figure
5.4 shows the comparison in graphical form. As the Update Elevations oper-
ation does not make use of relationships between pipes, manholes or erven
objects, it is not included in the comparison.

Table 5.3: Analysis of BIC for internal vs external relationships

Project TPI TP2 TP3 TP4
Number of pipes 104 682 2934 6721
Build Hydraulic Model (BM)

External (count x1E6) 3.12 75.8 1253 6442
Internal (count xlE6) 2.47 71.5 1235 6400

Ratio: External/Internal 1.26 1.06 1.01 1.01
Draw Hydraulic Model (DM)

External (count x1E6) 0.97 6.39 27.5 63.0
Internal (count x1E6) 0.83 5.45 23.5 53.7

Ratio: External/Internal 1.17 1.17 1.17 1.17

It can be seen that the external relation manager system results in almost
no performance overhead for the Build Hydraulic Model operation. The Draw
Hydraulic Model exhibits only a 17% performance overhead when storing re-
lationships external to objects. The marginal cost for using the relation man-
ager must be weighed against the improved design structure as discussed in
Section 5.2.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 146

7000
6000

m 5000
[. 4000
ë 3000
::;,
<3 2000

1000
o

Build Hydraulic Model (BM)

....-:
/'-:-:

./-----o 2000 4000
Number of pipes

6000 8000

__ BIC (External)

-6- BIC (Internal)

Draw Hydraulic Model (OM)

70
60

Ui 50wt 40- 30c
:::I
0 200

10
0

0 2000 4000
Number of pipes

6000 8000

-- BIC (External)
-6- BIC (Internal)

Figure 5.4: BIC for Internal vs External relationships

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 147

Size of persistent data: The file size of the SDPJ file, which contains all
persistent objects of the AC system, is presented in Table 5.4 for the different
test projects. File sizes are presented in Mbyte for the internal and external
storage of relationships.

Table 5.4: Analysis of PDS for internal vs external relationships

Project TPI TP2 TP3 TP4
Number of pipes 104 682 2934 6721
Key file:
SOFJ File

External (size in Mb) 0.16 0.96 4.06 9.73
Internal (size in Mb) 0.11 0.61 2.51 6.19

Ratio: External/Internal 1.48 1.58 1.62 1.57

The graph presented in Figure 5.5 shows a near-linear relationship between
file size and number of pipes, since a fixed number of basic engineering ob-
jects can be associated with each pipe in the system.

The external storage of relationships requires 50 to 60% more persistent disk
space than the internal storage. This is due to overhead required to store the
relation objects.

Total Persistent Data Storage

12
10

Ji'
:E 8-Cl) 6N
ëi)
.!!! 4
ii: 2

0
0

__ POS (External)

-.- POS (Internal)

4000 6000 80002000
Number of pipes

Figure 5.5: Comparison of internal vs external relationships of PDS

Distributed scenario: Two distributed scenario cases, namely a single PC
client/server setup, as well as a two PC client/server configuration are in-
vestigated. The server PC has an Intel Pentium II 633 MHz processor, and

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 148

is thus roughly twice as fast as the client PC (the Intel Pentium II 333 MHz
based computer) used for all previous analyses.

Three operations (TopologySlope Update (TSU), Draw Hydraulic Model (DM)
and Hydraulic Analysis and Design (HAD) are selected to illustrate the effect
of distributed computing on the performance.

The results are presented in Table 5.5 and shown in graphical form in Figure
5.6.

Table 5.5: Comparison of key AC operations for DoE in distributed scenario

Project TPI TP2 TP3 TP4
Number of pipes 104 682 2934 6721
Topology Slope Update (TSU)

(1) 0.1 0.9 2.7 5.7
(2) 0.2 1.7 3.5 7.2
(3) 0.3 0.3 2.0 5.0

Draw Hydraulic Model (DM)
(1) 0.8 2.5 5.2 10.3
(2) 2.3 8.4 30.0 70.0
(3) 2.3 9.0 36.0 80.0

Hydraulic Analysis and Design (HAD)
(1) 1.3 6.1 22.9 47.5
(2) 1.8 7.6 27.1 48.7
(3) 1.0 3.8 12.8 26.6

Note: (1)Duration for 1 PC in s
(2)Duration for CIS (1 PC) in s
(3)Duration for CIS (2 PCs) in s

In all cases the single PC client/server setup performs worse than the stand-
alone PC scenario. This is due to the overhead of the Java RMl networking
subsystem. For the two PC client/server configuration the performance de-
pends on the operation: For the TSU operation, the distributed operation is
marginally better than a stand-alone operation. For the DM operation, both
distributed scenarios result in a significant overhead. This is due to the indi-
vidual handling of line entity data for each pipe object by the communication
system. On the other hand, when operations can be performed primarily on
the server side (and especially if the server PC is faster than the client PC),
significant time savings can be achieved. This is illustrated for the HAD oper-
ation. The halving in execution time correlates with the ratio of server to the
client CPU speeds.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 149

8
7

-6
III';5
.2 4-ca 3..
::::s
C 2

1
0

0

DoE for Topology Slope Update (TSU)

2000 4000
Number of pipes

6000

-+-1 PC Only
___ CIS (1PC)

-'-C/S (2PC)

8000

90
80

_ 70
.!. 60
5 50
;: 40e
::::s 30
c 20

10
o

DoE for Draw Hydraulic Model (OM)

/:
»<>:

.r>:
.r>:-c-:

.e-:
~ ...

~

o 4000
Number of pipes

8000

-+-1 PC Only
___ CIS (1PC)

-.- CIS (2PC)

60002000

-.!. 40+-~~~~~~~~~~~~~~~~
c
o;:30+-~~~~~~~~~------------~
!!
::::s 20 +-~~--~~_:___-----:::::;;;oo~=---------~~c

DoE for Hydraulic Analysis and Design (HAD)

60~------------------------------~
50+-------~----~~----------~--~

10+-~~~=-~=-------------------~
O~------~------~------~------~
o 2000 8000

-+-1 PC Only
---CIS (1PC)
-.- CIS (2PC)

4000
Number of pipes

6000

Figure 5.6: Graph of distributed AC performance

Stellenbosch University http://scholar.sun.ac.za

Chapter 5. Analysis of the AC design approach 150

5.4 Conclusion

In this chapter an analysis of the design structure and a quantitative analysis
of the AC design have been conducted.

The structure of the AC design has been analysed using a part of the fully
implemented AC pilot system. This allows elements of a typical AC to be
highlighted in the analysis such as the management of object identifiers and
the storage of topology. Only two models, a Hydraulic model and a Visualiza-
tion model, together with a Data model were selected to clarify the discussion.

The analysis of structure has shown that the AC design is superior to the MC
design. This will be emphasized in Chapter 6.

The quantitative analysis confirmed that the BIC is also validated for the AC
design. The results for the key operations are summarized for later compar-
ison with the MC design for the four different quantitative criteria, namely
BIC, DoE,UIC and pos.
Acomparison between the use of internal and external relationships between
objects has shown that up to 17%more time is spend to execute code using
the external relation manager, and an increase in persistent data size of up
to 60% is recorded. The cost for using the relation manager must be weighed
against the improved design structure.

The distributed scenario was also analysed quantitatively. The performance
of operations varies with the type of operation. The performance increase due
to the additional (and faster) processor is weighed against the time cost of
transferring data across the network.

The analysis of the AC design approach has now been concluded. In the next
chapter the final comparison between the MC design and the AC design will
be presented.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6

Comparison of designs and
conclusions

6.1 Introduction

A comparison of the MC design with the AC design shows the impact of the
two approaches on a practical engineering problem. It highlights the struc-
tural and quantitative shortcomings in the MC design and shows that the
AC design approach resolves or reduces the problems. The criteria for the
comparison of complexity follow from the previous introductory discussion
for civil engineering software: dynamics of engineering data, involvement of
different professionals, volume of data, support for teamwork, documentation
requirements, allowance for modification and technical advances.

6.2 Comparison of the design structure

The same qualitative criteria have been used to evaluate the MC design and
the AC design in Chapters 2 and 4. The following conclusions can be drawn
with respect to the structure of the AC approach, which demonstrates the
advantages of the design. A detailed analysis was performed in Section 5.2.

Limitation of object name scope: This primary limitation of the MC de-
sign is removed in the AC design. All application-objects are readily accessi-
ble using the identifier manager for the application. Software models of the

151

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. Comparison of designs and conclusions 152

real-world are created as special model-objects which contain application set-
objects. Non-application objects can also be handled using special relation-
object classes. Software bridges between models are no longer required.

A priori implementation by the software developer: The use of inter-
face technology as well as class inheritance introduces flexibility to the de-
sign of the AC system. The AC implementation shows that model-objects
are readily formed by the collection of basic objects into application-sets and
that relations of objects can be formed dynamically using relation-objects and
relation-sets.

Using these new concepts, an application can be developed which allows easy
user-interaction to the manipulation of the basic objects of the application.
For example the addition, renaming and deletion of topology objects of typ-
ical engineering software systems can now be managed in a consistent and
simplified way.

Object duplication, program maintenance and extensibility: The tradi-
tional MCdesign treats classes as part of a model. This results in duplication
tl)f functionality. Classes for an AC application are part of the computing plat-
form so that class duplication is reduced, as common functionality of models
can be factored and stored in common classes on the platform.

Using hierarchical class structures, engineering functionality can be struc-
tured efficiently into classes to ensure optimum storage and minimum pro-
gram maintenance. The extensibility of the design can further be improved
by using interfaces.

Suitability for distributed computing: The name scope of an AC design
approach is not limited to a model. Applications can be extended to computer
networks provided a distributed computing environment is available. As data
can be located centrally, and in most cases only the references need to be
transferred, the AC approach is well suited for the distributed scenario.

The pilot implementation also shows performance advantage of a distributed
civil engineering application when numeric processing can be uploaded to a
fast server.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. Comparison of designs and conclusions 153

6.3 Quantitative comparison

6.3.1 Duration of Execution (DoE) comparison

Figure 6.1 shows a quantitative comparison of three key operations (Update
Elevations (UE),Build Hydraulic Model (BM) and Draw Hydraulic Model (OM))
for the MC approach and the AC approach.

Table 6.1: Comparison of key AC and MC operations for DoE

Project TPI TP2 TP3 TP4
Number of pipes 104 682 2934 6721
Update Elevations (UE)

(1) 2.0 47.0 350.4 2608.4
(2) 0.1 0.2 0.4 1.0

Build Hydraulic Model (BM)
(1) 9.8 191.8 1717.9 10290.8
(2) 0.8 18.7 156.3 1267.1

Draw Hydraulic Model (DM)
(1) 9.0 63.3 222.8 951.0
(2) 0.8 2.5 5.2 10.3

Note: (1)MC duration of execution (DoE) in s
(2)ACduration of execution (DoE) in s

Evaluation: The duration of execution for the AC design is significantly
less than the duration for the MC design. The DoE for the MC design and
especially the BM operation has been explained in Section 2.9.2.

The large difference in the performance of the U E and 0 M operations can be
explained by the requirement of the MC system to export and import data
files. The two operations each require to traverse two ports and a data file
bridge. This involves a total of four porting operations for each basic opera-
tion. In the AC system the requirement for the ports as well as the bridges
falls away. For the BM operation in the MC design, the port on the CAD model
is responsible for the poor performance.

In Section 6.3.4 the effect of this port will be excluded from the comparison.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. Comparison of designs and conclusions 154

Update Elevations (UE)

3000
2500

~ 2000
c
g 1500
E5 1000

500
o
o

..
/'

/
/'

/--~- - - -
6000 8000

-MCDoE
-+-AC DoE

2000 4000
Number of pipes

Build Hydraulic Model (BM)

12000
10000

~ 8000
c
0 6000..
III...
:::::I 4000c

2000

•
/'-:

/'
/'--------=: ~

- -

_MCDoE
-+-AC DoE

o
o 6000 80002000 4000

Number of pipes

-MCDoE
-+-AC DoE

Draw Hydraulic Model (OM)

1000
800

~
c 600
0..
III 400...
:::::I
C 200

0
0 2000 4000

Number of pipes

6000 8000

Figure 6.1: Comparison of key operations for MC and AC systems

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. Comparison of designs and conclusions 155

6.3.2 User Instruction Count (UIC)comparison

The total effort due to UIC is compared for the MC system and for the AC
system with different number of pipes in Table 6.2 and Figure 6.2.

Table 6.2: Comparison of total AC and MC operations for UIC

I Project 1 TP1 I TP2 I TP3 TP4
Number of pipes 104 682 2934 6721

I Total count for MC I 292 I 1909 I 8215 18817
I Total count for AC I 281 I 1842 I 7922 18146

Evaluation: The effort associated with user-interaction as measured with
the UIC in the AC system is practically the same as for the MC system.
This indicates that the new AC system can provide the same degree of user-
friendliness as the well established MC system.

Total User Interaction Count

20000

15000
"2~- 10000r:::
:::s
0
0

5000

0
0

~

~

6000 80002000 4000
Number of pipes

Figure 6.2: Comparison of total UICbetween MC and AC systems

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. Comparison of designs and conclusions 156

6.3.3 Persistent data size (POS)

The file size of persistent data of the MC system and the AC system are com-
pared as function of the number of pipes in Table 6.3 and in Figure 6.3.

Table 6.3: Comparison of total persistent data size for MC and AC systems

Project
Number of pipes
Total file size for MC (Mbyte)
Total file size for AC (Mbyte)

Evaluation: The files size of the AC system is less than the file size for the
MC system. Through the use of file compression techniques, the size can be
reduced further. This indicates that the additional requirement for storing
relation objects and set objects in the AC design does not necessarily lead to
a larger overall persistent data size requirement.

Total Persistent Data Storage

12
10

:ê
:E 8-Cl) 6N
U)
.9! 4
ii: 2

0
0

---- MC System
"""'_AC System

6000 80002000 4000
Number of pipes

Figure 6.3: Variation of file size with the number of pipes for MC and AC
systems

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. Comparison of designs and conclusions 157

6.3.4 Modified BIC

Several factors contribute to the difference in performance between the MC
system and the AC system. One key factor is the slow communication be-
tween models over bridges, for instance between the CAD model and the Vi-
sualization model in the MC design.

The BIC technique is used to evaluate the hypothetical scenario of a MC design
where no time is lost in the communication over software bridges or where
an MC design consists only of one model with no software bridges. This
is achieved by replacing all far calls with near calls for the evaluated key
methods. Equal platforms and environments are assumed.

Table 6.4 shows the results for key operations for the test projects, and Figure
6.4 show a graphical presentation of the variation in BIC with the number of
pipes for the MC system and the AC system.

Table 6.4: Comparison of key AC and MC operations for modified BIC

Project TPI TP2 TP3 TP4
Number of pipes 104 682 2934 6721
Update Elevations (UE)

(1) 1.2 14.3 171.6 818.1
(2) 0.0 0.3 1.1 2.5

Build Hydraulic Model (BM)
(1) 11.1 112.6 1146.0 5175.5
(2) 3.1 75.6 1252.0 6440.4

Draw Hydraulic Model (DM)
(1) 7.8 54.6 294.4 903.5
(2) 1.0 6.4 27.3 62.6

Note: (1) MC Modified Basic Instruction Count (BIC) (xlE6)
(2) AC Modified Basic Instruction Count (BIC) (xlE6)

Evaluation: For the UE and the OM operation the modified BIC evaluation
shows the clear advantage of the AC design. The requirement to traverse
the data bridge (and its two ports) for each of the two directions of the basic
operations falls away, and results in a significant time saving.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. Comparison of designs and conclusions 158

900
800

u;- 700
IL! 600
z, 500
ë 400
5 300
CJ 200

100
o

Update Elevations (UE) (Modified)

•/'
/'

/
/'

/'
/'---------o 2000 8000

----MC BIC
___""_AC BIC

4000
Number of pipes

6000

7000
6000

~ 5000
z, 4000- 3000I:~
0 2000CJ

1000
0

0

Build Hydraulic Model (BM) (Modified)

2000 8000

----MC BIC
___""_AC BIC

4000
Number of pipes

6000

1000

u;- 800
w..... 600t....-I: 400~
0o 200

0
0

Draw Hydraulic Model (OM) (Modified)

2000 4000
Number of pipes

8000

----MC BIC
___""_AC BIC

6000

Figure 6.4: Comparison of modified BICfor the MC and AC system

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. Comparison of designs and conclusions 159

However, the BMoperation performs a maximum of 25% poorer for the AC im-
plementation than for the MC implementation, with respect to the modified
BIC. Here in the hypothetical case where no time is lost due to the communi-
cation with the CADsystem, the MC system performs better because the ex-
ecution overhead contributed by the application-, set- and relation-managers
are not present.

It is thus clear that there is room for improvement in the implementation of
the AC design. However, the potential loss in execution performance must
be set against the improvement in the design structure introduced by the AC
approach.

6.4 Comparison of complexity

An AC system is compared with a MC system with respect to civil engineering
complexity criteria.

Dynamics: The AC design is suitable for applications with dynamic be-
haviour. The data structures defined by classes are flexible so that they can
be extended by later developers. The graphical and dynamic formation of
relations and the construction of sets of basic objects are supported by the
structure of the AC system.

The AC design ensures that the software for an application remains dynamic.

Specialization: Specialist professionals influence the design of an engi-
neering package during its development. The incorporation of captured data
from professional CAD technicians and digital terrain data from surveying
specialists is evaluated for both designs as part of the input to the system.
On the output side, the town-planning specialist requires information on the
updated sewer model in the form of a geographical information system. The
access of this system via the Internet is evaluated for both designs.

The knowledge of professionals is incorporated into the AC design with a
consistent and persistent object management system.

Volume: The efficient management of large data sets, the reduction in du-
plication, the transfer of data only when required to reflect changes, as well
as the assurance of consistency between different data sets are evaluated.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. Comparison of designs and conclusions 160

The management of data between the Topology / Data model, the Elevation
model, the Hydraulic model, the Visualization model and the Geographical /
Presentation model is evaluated for both designs.

By evaluating the AC system also for large data sets, the effect of data volume
on the suitability of the design is taken into account. It is shown that the AC
system can handle large data sets successfully.

Teamwork: The modern software platform must support teamwork. In the
MC design team work is hampered by the limitation of object name scope.
An object is only uniquely identifiable within a model in the application of
one team member and is not valid in the name scope of the application of
another team member. Complex software bridges must therefore exchange
data between applications of team members.

In the AC design the name scope of objects can be extended beyond the model
space to be valid in the applications of all team members. This facilitates
teamwork.

Documentation: The transfer of large CAD files is the standard form of
data exchange for the MC system. For AC systems a central data storage
is introduced: The data model is stored persistently in object form. This
classical documentation (a CAD drawing or paper plan) can be derived from
this model at any time. This is illustrated in the AC system where a drawing
of the hydraulic model or a geographical report can be generated at any time.

Modification: Frequent small modifications in the engineering design must
be managed within the application. The degree to which data can be con-
sistently updated between the Topology / Data model, the Elevation model,
the Hydraulic model, the Visualization model and the Geographical/Present
model was investigated for both designs. The AC design permits consistent
and persistent management of the propagation of changes, for example in the
topology using the application, relation and set-managers.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. Comparison of designs and conclusions 161

6.5 Summary and Conclusions

In this dissertation the concept of a model as implemented in engineering
software is considered in depth. It is shown that traditional models have been
implemented in the model-centred (MC) design approach as stand-alone soft-
ware components, and have resulted in complex unmanageable applications.

One such MC application is considered in depth and evaluated according to
structural and quantitative criteria. Aspecial quantitative criterion, the Basic
Instruction Count (BIC) is introduced in addition to the Duration of Execution
(DoE) in order to perform measurements which are independent of the com-
puting platform. The disadvantages of the MC design are discussed in detail,
especially the limitation of object name scope and resulting requirement for
ports between models. The limitations are aggravated in a distributed com-
puting scenario.

An alternative design, the application-centred (AC)design approach is intro-
duced in which not the engineering model, but the basic engineering objects
play the central role. Models are now formed by the collection of special
application-objects which are created by an application-manager. Mecha-
nisms such as set- and relation-managers are developed to support the static
and dynamic structure between objects and to ensure the consistent state
of objects in the application. The persistent storage of application-objects is
considered, as well as the handling of non-application objects.

This AC design is then implemented as a fully functional pilot implementa-
tion written in the Java programming language. The system is also extended
to a two-tier distributed computing scenario. The application is tested and
evaluated with respect to structural and quantitative criteria with real-world
examples of typical dimension. The same structural and quantitative criteria
as used for the MC system are applied to measure the performance of the AC
system. In addition a comparison between two different implementations for
the management of object relationships are evaluated quantitatively. It can be
seen that almost no performance penalty is paid for the external management
of object relations.

A comparison between the two designs shows that the AC design is superior
to the MC design with respect to structural, quantitative and engineering
complexity criteria. The BIC has proven to be a good measure to evaluate
the performance of implemented algorithms in an application and platform
independent scenario and allows the comparison of source code written in

Stellenbosch University http://scholar.sun.ac.za

Chapter 6. Comparison of designs and conclusions 162

different programming languages between the MC application and the AC
application. The criterion shows that in a hypothetical scenario, where the
negative effect of port operations in the MC design is ignored, for example
when only one model and no software bridges exist, the execution overhead
as a result of the application-, set- and relation-managers in the AC design
can result in a marginal poorer relative quantitative performance. However
the advantages of the design structure outweighs this potential disadvantage.

6.6 Recommendations

Additional work can be done to improve the AC approach. The introduction
of the concepts of application, set and relation management at a lower level
of programming can be considered. This would make these functions almost
an extension of the Java programming language.

The AC system can also be optimized for speed. Although consideration was
given to the optimal use of data structures, more efficient algorithms for tree
traversal and topological searches can improve the performance of the appli-
cation. Identifiers have been used throughout the application. This requires
lookup of object references in a hash table. Although the performance penalty
for the DoEcriterion is acceptable compared to the MC design, an optimiza-
tion of source code using advanced caching algorithms could improve overall
performance.

The distributed scenario has only been implemented using the Java RMl
methods for a basic pilot application. The extension of the AC design to a
full distributed environment, which includes user access management for
multiple users and threaded execution of multiple server processes, could
be considered.

Stellenbosch University http://scholar.sun.ac.za

Bibliography

[1] D. Adair, J. Ball, and M. Pawlan. The Java Tutorial Continued, chap-
ter Trial: 2D Graphics. Sun Microsystems, http://www.java.sun.com/-
docs/books/tutorial/2d/index.html, 2000.

[2] ATV. Planung der Kanalisation Abwassertechnische Vereinigung. Ernst
und Sohn, 4th edition, 1994.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

[4] Borland. Borland Delphi 5.0. http://www.borland.com. 1999.

[5] P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hall, Prentice
Hall, Englewood, New Jersey, 1990.

[6] Durban Corporation. Survey Handbook. Institute of topographical and
engineering surveyors of South Africa, P.O. Box 699, Durban, 4000,
South Africa, 5th edition, 1987.

[7] A. Cremers. Definition und Implementierung eines Bauwerkmodelkerns.
In Deutsche Forschungsgemeinschaft Abschlussbericht: Objektorientierte
Modellierung in Planung und Konstruktion, chapter 1. Wiley, 2000.

[8] CSIR. Guidelines for the provision of engineering services and amenities in
residential township development, Chapter 9: Sanitation. CSIR, Depart-
ment of Housing, Pretoria, 1994.

[9] CSIR. Guidelines for human settlement planning and design, Chapter 6:
Stormwater Management, and Chapter 9: Water supply. CSIR, Depart-
ment of Housing, Pretoria, 2000.

[10] J. Diaz. Objektorientierte Modellierung geotechnischer Systeme. PhD the-
sis, Technical University of Darmstadt, 1998.

163

Stellenbosch University http://scholar.sun.ac.za

http://www.borland.com.

Bibliography 164

[11] DFG. Deutsche Forschungsgemeinschaft, http://www.dfg.de.

[12] ESRI. ShapeFile format. Environmental Systems Research Institute
(ESRI), http://www.esri.com. 2000.

[13] ESRI. ArcExplorer. Environmental Systems Research Institute (ESRI).
http://www.esri.com/arcexplorer. 2002.

[14] J. Garret and M. Hakim. Modeling engineering design information: An
object-centered approach. Computing in Civil Engineering: proceedings,
1994.

[15] D. Hartmann. Einsatz objektorientierter Paradigmen fur den interaktiven
Entwurf optimal ausgelegter Tragwerke. In Deutsche Forschungsgemein-
schaft Abschlussbericht: Objektorientierte Modellierung in Planung und
Konstruktion, chapter 4.2. Wiley, 2000.

[16] D. Hartmann. Grundlegende Betrachtungen zur Anwendung der Ob-
jektorientierung in der Planung und Konstruktion des Bauwesens.
In Deutsche Forschungsgemeinschaft Abschlussbericht: Objektorientierte
Modellierung in Planung und Konstruktion. Wiley, 2000.

[17] D. Hartmann. Objekorientierte Strukturanalyse, Bemessung und kon-
struktive Durchbildung von Industriebauten unter besonderer Bertrek-
sichtigung parallel ablaufender Prozesse. In Deutsche Forschungsgemein-
schaft Abschlussbericht: Objektorientierte Modellierung in Planung und
Konstruktion, chapter 4.1. Wiley, 2000.

[18] Hosang and Bischof. Abwassertechnik. B.G. Teubner, 10th edition,
1993.

[19] R. Huebler. Intelligente CAAD-Systeme in objektorientierte Umgebung
(iCAAD). In Deutsche Forschungsgemeinschaft Abschlussbericht: Objek-
torientierte Modellierung in Planung und Konstruktion, chapter 2.1. Wiley,
2000.

[20] IMSI. TurboCAD Professional. IMSI, http://www.imsi.com/turbocad.
2002.

[21] Intel. IA-32 Intel Architecture Software Developer's Manual, Volume 2:
Instruction Set Reference. Intel Corporation, http://www.intel.com/-
design/pentium4/manuals/, 2002.

Stellenbosch University http://scholar.sun.ac.za

http://www.dfg.de.
http://www.esri.com.
http://www.esri.com/arcexplorer.
http://www.imsi.com/turbocad.

Bibliography 165

[22] U. Kolender. Ouelitëtsteigemde MaBnahmen bei der Entwicklung von
Software-Systemen im Bauwesen durch Objektrelationen. PhD the-
sis, Lehrstuhl fur Ingenieurinformatik in Bauwesen, Ruhr-University
Bochum. 1997.

[23] A. Laabs. Methoden fur die Modellierung mit Objekten im Beuingenieur-
swesen. PhD thesis, Technical University of Berlin, 1998.

[24] L. Li. Java: data structures and programming. Springer, 1998.

[25] B. Loubser and S. Sinske. SEWSAN 2.3 User's Guide for Sewer System
Analysis. http://www.sewsan.com. 2000.

[26] Model Maker. Model Maker.
http://www.modelmaker.co.za. 2002.

Model Maker Systems,

[27] U. Meil3ner. Objektorientierte Tragwerksmodelle fur die Systerninte-
gration von Planungs- und Konstruktionsvorgangen im Bauwesen. In
Deutsche Forschungsgemeinschaft Abschlussbericht: Objektorientierte
Modellierung in Planung und Konstruktion, chapter 4.3. Wiley, 2000.

[28] Microsoft. Visual Basic 3.0 for Windows. http://www.microsoft.com.
1993.

[29] V. Novotny, K. Imhoff, M. Olthof, and P. Krenkel. Karl Imhoff's Handbook
of Urban Drainage and Wastewater Disposal. J. Wiley and Sons, 1989.

[30] M. Olbrich. Relationsorientiertes Modellieren mit Objekten in der Bauin-
formatik. PhD thesis, Institut fur Bauinforrnatik, University of Hannover,
1998.

[31] R. Orfali and D. Harkey. Client/Server Programming with Java and Corba.
Wiley, 1998.

[32] P.J. Pahl. Complexity of civil engineering software. Personal comm., Dec
1999.

[33] P.J. Pahl. Data Structures, Lecture Notes. http://www.ifb.bv.tu-berlin.de.
2000.

[34] P.J. Pahl and R. Damrath. Mathematische Grundlagen der Ingenieutin-
formatik. Springer, 2000.

Stellenbosch University http://scholar.sun.ac.za

http://www.sewsan.com.
http://www.modelmaker.co.za.
http://www.microsoft.com.
http://www.ifb.bv.tu-berlin.de.

Bibliography 166

[35] P.l. Pahl and R. Damrath. Objektorientierte Analyse und Visual-
isierung zertabhangiger physikalischer Zustande dreidimensionaler Kar-
per. In Deutsche Forschungsgemeinschaft Abschlussbericht: Objektorien-
tierte Modellierung in Planung und Konstruktion, chapter 3.1. Wiley, 2000.

[36] R. Pennington. Introductory Computer Methods and Numerical Analysis.
Collier-Macmillan, 1965.

[37] C. Petzold. Windows Programming. Osborne McGraw-Hill, 1986.

[38] .I. Rumbaugh et al. Objektorientiertes Modellieren und Entwerfen. Hanser
Verlag, Munchen, 1994.

[39] U. Scherer. Produktinformationssysteme unterstutzt durch dynamische
Klassifikation und ahnlichkeitsbasierte Suche. In Deutsche Forschungs-
gemeinschaft Abschlussbericht: Objektorientierte Modellierung in Planung
und Konstruktion, chapter 4.4. Wiley, 2000.

[40] H. Schildt. Advanced Turbo Pascal Programming and Techniques. Os-
borne McGraw-Hill, 1986.

[41] G. Schutte. Eine Erweiterung des Prinzips der virtu ellen Verschiebungen
zur Ermittlung von Spannungen. PhD thesis, Institut fuer Bauingenier-
swesen, Technical University of Berlin, 2000.

[42] V. Shaw. The development of contributory hydrographs for sanitary sew-
ers and their use in sewer design. South African Civil Engineer, sep 1963.

[43] A. Sinske. Development of a modern Water Distribution Analysis Pro-
gram for the Windows Environment. In Twenty-first Annual Symposium
on Information Technology in Engineering, chapter 2. South African Insti-
tution of Civil Engineering, Sep 1999.

[44] Sun. Java, version 1.3. http://www.java.sun.com. 2001.

[45] K. Wassermann. Integration raum- und bauteilorientierter Daten in
der Cebaudeplanung in einem zentralen Objektmodell. In Deutsche
Forschungsgemeinschaft Abschlussbericht: Objektorientierte Modellierung
in Planung und Konstruktion, chapter 2.2. Wiley, 2000.

[46] H. Werner. Objektorientierte Modelle und Methoden in der Geotechnik.
In Deutsche Forschungsgemeinschaft Abschlussbericht: Objektorientierte
Modellierung in Planung und Konstruktion, chapter 6.2. Wiley, 2000.

Stellenbosch University http://scholar.sun.ac.za

http://www.java.sun.com.

Bibliography 167

[47J J. Worner. Objektorientierte Integration von Teilprozessen im Bauwesen
mit Hilfe einer objektorientierten Datenbank fur den Bereich der Bemes-
sung und Konstruktion von Hochbauteilen im Massivbau. In Deutsche
Forschungsgemeinschaft Abschlussbericht: Objektorientierte Modellierung
in Planung und Konstruktion. chapter 4.6. Wiley. 2000.

Stellenbosch University http://scholar.sun.ac.za

Appendix A

Abbreviations and rrademarks

A.I Abbreviations

The following abbreviations are used throughout the text.

General:

00: object-oriented

UML: Unified Modeling Language

RMl: Remote Method Invocation

Models:

AC design: Application-Centred design

AC approach: Application-Centred approach

AC system: Application-Centred software system

MC design: Model-Centred design

MC approach: Model-Centred approach

MC system: Model-Centred system

Evaluation criteria:

BIC: basic instruction count

DoE:duration of execution

POS:persistent data size

UIC: user interaction count

168

Stellenbosch University http://scholar.sun.ac.za

Appendix A: Abbreviations and trademarks 169

A.2 Trademarks

The following trademarks are used throughout the text.

AutoDesk, AutoCADand AutoDesk World are registered trademarks or trade-
marks of AutoDesk, Inc in the USAand/or other countries.

Borland, Delphi and dBASE IV are registered trademarks or trademarks of
Borland Software

dBASE is a registered trademark of dBase, Inc in the U.S. and other countries

ESRI and ArcExplorer are registered trademarks or trademarks of Environ-
mental Systems Research Institute (ESRI), in the USAand/or other countries.

IMSI and TurboCAD are registered trademarks or trademarks of IMSI, in the
USA and/or other countries.

Intel and Pentium are are registered trademarks or trademarks of Intel Cor-
poration in the U.S. and other countries

Java and all Java-based marks are registered trademarks or trademarks of
Sun Microsystems, Inc. in the U.S. and other countries

Modelmaker Systems, and Modelmaker are registered trademark or trade-
marks of Modelmaker Systems, in South Africa and/or other countries.

OpenDWG is a trademark of OpenDWG Alliance in the United States and/or
other countries. Corporation, in the USAand/or other countries.

OMGand CORBAare registered trademarks or trademarks of Object Manage-
ment Group, Inc

SEWSAN, SEW2SHAPE and SEW2DTM are registered trademarks or trade-
marks of GLS Engineering Software (Pty) Ltd, in South Africa and/or other
countries.

Microsoft, ActiveX, Visual Basic, Visual C++, Visual C# and Microsoft Win-
dows are registered trademarks or trademarks of Microsoft Corporation, in
the USA and/or other countries.

All other brand and product names may be trademarks or registered trade-
marks of their respective holders.

Stellenbosch University http://scholar.sun.ac.za

Appendix B

Evaluation of Basic Instruction
Count

FLOT8YTE PTR (TFORM1.8U
F~9t'1iP a....,OROPTR (O()~8l
FSTS~
:SAHF
}N~ TFORM 8un0/'J4~LlCK ;

Screen shot from test bench computer

Spreadsheet evaluation

170

Stellenbosch University http://scholar.sun.ac.za

Appendix B: Evaluation of Basic Instruction Count 171

llloeal

intt=n:

=1 INSTR.

LocalTest:=nil:

=2INSTR.

double1:=O.O:

=3INSTR.

+182 INSTR

=186 INSTR.

LocaITest.Free;

+180INSTR.
=182INSTR.

string1:="

= 5 INSTR.

MOV [INT1).EAX

XOR EAX.EAX
MOV [LOCAL TEST],EAX

XOR EAX.EAX
MOV [DOUBLE1).EAX
MOV [DOUBLE1+$4).EAX

IIpasslng flow to near location
ror i:=1 to 10 do
begin

end

=3INSTR

resx:=testcall(i,x1,x2)

=7INSTR

MOV WORD PTR [EBP-$06).$0001

INC WORD PTR [EBP-$06),$OB
JNl TFORM1.BUTTON5CUCK + $2E

PUSH DWORD PTR (EBP·S14] . x-low push val on stack
PUSH DWORD PTR [EBP-$18) x-high

LEA EDX,[EBP-$20) ; x2
MOVZX EAX.[EBP-$06) : i
CALL TESTCALL
FSTP QWORD PTR [EBP-$10): resx=RESULT
WAIT

MOV [LocaITesl).EAX

netion testcall(i:integer:x:double:var x2:dauble):double;
begin

MOV EAX.[LOCAL TEST]
CALL TOBJECT.FREE

CALL @LSTRCLR
Istrdr:
MOV EDX,[EAX)
TEST EDX.EDX
Jl @LSTRCLR + $22
RET

IIconstant
int2:=5:

end;

=5INSTR

PUSH EBP
MOVEBP.ESP
ADD ESP,-$10

.pretlx

MOV (EBP-$OB].EDX :x2 copy onto stack
MOV (EBP-S04].EAX :i copy onto stack

FILL DWORD PTR IEBP-S041 ; work with stack values
MQV EAX.[EBP-$08] ; update var parameter

= 2 INSTR PER PARAM

LocaITest:=TLocaITest.Create: (not used)
MOV DL.$01
MOV EAX.I$0044e460)
CALL TOBJECT.CREATE

= 1 INSTR.

double2:=54.34;

= 2 INSTR.

N/A

string2:='AABBCC':

+177 INSTR.

+22INSTR.

MOV [INT2).$OOOOO05

= 2 INSTR PER RESULT

=3INSTR

IJpasslng flow to far location

FLD QWORD PTR IEBP-$10) .update resuil

MQV ESP.EBP ;suffix
POP EBP
RET $0008

Cirde:=TheDrawing.Graphics.AddCircle(1 Q.Q, 10.0,0.0);

PUSH $00
PUSH $00 , 2 PER DOUBLE

MOV IDOUBLE2).$1EB851 EC
MOV [DOUBLE2 + $4).$404B2B85

MOV EAX.$004528C8
CALL @LSTRASG
TEST EDX.EDX
Jl @LSTRASG + $28
MOV ECX,IEDX-$08)
INC ECX
JNLE @LSTRASG + $24
PUSH EAX
PUSH EDX
MOV EAX.[EDX-$04)
CALL @NEWANSISTRING

MOVEDX,EAX
POP EAX
PUSH EDX

MOV ECX,[EAX-$04)
CALL MOVE

POP EDX
POP EAX
JMP @LSTRASG + $28
XCHG [EAX).EDX
TEST EDX.EDX
Jl @LSTRASG + $42
RET

= 21NSTR

= 4 INSTR

= 6971NSTR

= >5000 INSTR

:derefence and call
PUSH EAX
MOV EAX,[THEDRAWING[
PUSH EAX
MOV EAX,[EAX)

CALL DWORD PTR [EAX+$3C) ;Graphics

:setting new far object
MOV EAX,[EBP-$34)
PUSH EAX
MOV EAX,IEAX)
CALL DWORD PTR [EAX+S000000011 0] ;AddCircle

IJAddition
Int4:=lnt4+1 ;

= 11NSTR
int3:=int3+int4;

= 21NSTR

INC DWORD PTR IINT4)

MOV EAX,IINT4)
ADD IINT3).EAX

Stellenbosch University http://scholar.sun.ac.za

Appendix B: Evaluation of Basic Instruction Count 172

=222INSTR.

1110calto local

int3:=int2;

=2INSTR

double3:=double2:

=4INSTR.

object3:=object2:

+19INSTR
=22INSTR.

string3:=Slring2;

+10INSTR
=12INSTR

IIConstant to far

TheView.AutoRedraw:=true

+10INSTR.
=14INSTR.

TheVertex.X:=5.7;

+530INSTR
=535INSTR

TheView.Name:='TESr;

+414INSTR
=418INSTR.

IlIacai to far

b:=TheView.AutoRedraw;

+17INSTR

=19INSTR.

ccubics.ettevetex.x.

+345INSTR

=354INSTR.

MOV EAX.[INT2J
MOV {INT3[.EAX

MOV EAX.[DOUBLE2J
MOV [DOUBLE3}.EAX
MOV EAX.[DOUBLE2 + $4J
MOV [DOUBLE3 + $4].EAX

MOV EAX.$0045289C
MOV EDX.[OBJECT2J
CALL @INTFCOPY

MOV EAX.$004528CC
MOVE EDX.{STRING2J
CALL @LSTRASG

PUSH $FF
MOV EAX.[THEVIEW]
PUSH EAX
MOV EAX.[EAXJ
CALL DWORD PTR {EAX+$00000110]

PUSH $4016CCCC
PUSH $CCCCCCCD
MOV EAX.[THEVERTEX]
PUSH EAX
MOV EAX.[EAX]
CALL DWORD PTR [EAX+$5C]

PUSH $0044F948
MOV EAX.[THEVIEW]
PUSH EAX
MOV EAX. [EAX]
CALL DWORD PTR {EAX+$64]

LEA EAX.[EBP-$10]
PUSH EAX
MOV EAX.[THEVIEW]
PUSH EAX
MOV EAX. [EAX]
CALL DWORD PTR [EAX+$000001 OC]

MOV EAX.[EBP-$OCJ
MOV [INT4].EAX

LEA EAX.[EBP-$1C]
PUSH EAX
MOV EAX.[THEVIEW]
PUSH EAX
MOV EAX. [EAX]
CALL DWORD PTR [EAX+$58]

FLD aWORD PTR [EBP-$1C]
FSTP aWORD PTR {DOUBLE4]
WAIT

object4:=TheApplication.ActiveDrawing;
LEA EDX,[EBP-$10]
MOV EAX.[THEAPPLICATION]
CALL THXAPPLICATION.GET_ACTIVEDRAWING

+274INSTR.

double4:=double4+1.25:

= 41NSTR
double3:=double3+double3:

= 41NSTR

IISubtraction
inI4:=inI4-1 ;

= 1 INSTR
int4:=int4-int3;

= 21NSTR
double4:=double4-1.25;

:::4 INSTR
doublea.edoubtee-coubleá:

= 41NSTR

IIMultlpllcatlon
int4:=int4·4;

= 31NSTR
int4:=int3*int4;

= 31NSTR
double4: =ooubtea "1.25;

= 4 INSTR
double4: =double4 *double3:

= 41NSTR

lIDivision
int4:=int4 div 2;

= 4 INSTR
int3:=int3 ofv int4;

= 41NSTR
double4:=double4 11.25;

= 41NSTR
double4:=double4 Idouble3:

= 41NSTR
IICasting

string1: =inttostr(int1);

+417 INSTR

+190INSTR

FLD aWORD PTR [DOUBLE4J
FADD DWORD PTR [TFORM1.BUTTON6CLlCK + $3M
FSTP aWORD PTR [DOUBLE4}
WAIT

FLD aWORD PTR [DOUBLE3J
FADD DWORD PTR [DOUBLE3]
FSTP aWORD PTR [DOUBLE3J
WAIT

DEC DWORD PTR [INT4]

MOV EAX,[INT3]
SUB {INT4].EAX

FLD aWORD PTR [DOUBLE4]
FSUB aWORD PTR [DOUBLE3]
FSTP aWORD PTR [DOUBLE4J
WAIT

FLD aWORD PTR [DOUBLE4]
FSUB aWORD PTR [DOUBLE3J
FSTP aWORD PTR [DOUBLE4]
WAIT

MOV EAX,[INT4]
SHL EAX.$02
MOV [INT4],EAX

MOV EAX,[INT3]
IMUL DWORD PTR [INT4]
MOV [INT4],EAX

FLD aWORD PTR [DOUBLE4J
FMUL DWORD PTR [TFORM1.BUTTON6CLlCK + $364J
FSTP aWORD PTR [DOUBLE4]
WAIT

FLD aWORD PTR {DOUBLE4J
FMUL aWORD PTR [DOUBLE3]
FSTP aWORD PTR [DOUBLE4]
WAIT

MOV EAX,[INT4J
SAR EAX.1
JNS TFORM1.BUTTON6CLlCK + $18d
MOV [INT4],EAX

MOV EAX,[INT3]
CDa
IDIV DWORD PTR {INT4]
MOV {INT3].EAX

FLO aWORD PTR [DOUBLE4]
FDIV DWORD PTR [TFORM1.BUTTON6CLlCK + $364]
FSTP aWORD PTR [DOUBLE4]
WAIT

FLD aWORD PTR [DOUBLE4]
FDIV aWORD PTR [DOUBLE3]
FSTP aWORD PTR [DOUBLE4]
WAIT

LEA EDX.[EBP-$1C]
MOV EAX,[INT1J
CALL INTTOSTR

MOV EDX.[EBP-$1 CJ
MOV EAX,$004528CC
CALL @LSTRASG

Stellenbosch University http://scholar.sun.ac.za

Appendix B: Evaluation of Basic Instruction Count 173

+20INSTR.
=300INSTR.

string4:=TheApplication.Name

+383INSTR.

+276INSTR.
=665INSTR

MOV EDX,[EBP·$10]
MOV EAX,$00452BAB
CALL @INTFCOPY

LEA EDX,[EBP·$20]
MOV EAX.[THEAPPLICATION]
CALL TXAPPLICATION.GET _NAME

MOV EDX,[EBp·$20]
MOV EAX.$0052BDB
CALL @LSTRFROMWSTR

/fIoeal to constant
if int2 = 5 then

=2INSTR

if double2 = 54.34 then

=5INSTR

if object2 = nil then

=2INSTR

if string2 = 'MBBCe' then

+46INSTR.

=50INSTR.

llloeal to local
if int3 = int2 then

=3INSTR

if double3 ::: double2 then

=5INSTR

if object3 = object2 then

=3INSTR

if string3 = string2 then

+11INSTR

=15INSTR

CMP DWORD PTR]INT2],$05
JNZ TFORM1.BUTTON4CLlCK + $35

FLO TBYTE PTR [TFORM1.BUTTON4CLlCK + $22]
FCOMP aWORD PTR [DOUBLE2]
FSTSAX
SAHF
JNZ TFORM.BUTTON4CLlCK + $5B

CMP DWORD PTR [OBJECT2].$00
JNZ TFORM1.BUTTON4CLlCK + $57

MOV EAX.[STRING2]
MQV EDX,$0044FC60
CALL @LSTRCMP

JNZ TFORM1.BUTTON4CLlCK + $70

MOV EAX.[INT3]
MOV EAX,[INT2[
JNZ TFORM1.BUTTON4CLlCK + $B1

FLO aWORD PTR [DOUBLE3]
FCOMP aWORD PTR [DOUBLE2]
FSTSWAX
SAHF
JNZ TFORM1.BUTTON4CLlCK + $BD

MOV EAX.]OBJECT3]
CMP EAX.[OBJECT2]
JNZ TFORM1.BUTTON4L1CK + $92

MOV EAX.[STRING3]
MOV EDX,[STRING2]
CALL @LSTRCMP

JNZ TFORM1.BUTTON4CLlCK + $BD

l/far to constant
if TheView.AutoRedraw=true then

LEA EAX.[EBP·$10
PUSH EAX
MOV EAX.[THEVIEW]
PUSH EAX
MOV EAX.[EAX]
CALL DWORD PTR [EAX+$0000010C]

+17INSTR
MOV AX,[EBP·$10]
NEGAX
SBB EAX,EAX
NEG EAX
CMPAL,$01

·1

=613INSTR
string2:=fIoatlostr(double3):

+526INSTR

+184INSTR
=719INSTR

int4:=strtoint(string1);

+ 66 INSTR

= 69 INSTR
double4:=strtof1oat(string3);

+114INSTR

=1181NSTR

IlDereferencing

FLO aWORD PTR [DOUBLE3]
ADD ESP, ·$OC
FSTP TBYTE PRE [ESP]
WAIT
LEA EAX,[EBP·$20]
CALL FLOATTOSTR

MOV EDX,PEBO·$20]
MOV EAX.$004528DO
CALL @LSTRASG

MOV EAX,(STRING1]
CALL STRTOINT

MOV [INT4],EAX

MOV EAX,(STRING3]
CALL STRTOFLOAT

FSTP aWORD PTR [DOUBLE4]
WAIT

string1 :=Theapplication.ActiveDrawing.Views[ind].Name:
LEA EAX,[EBP·$24] ;ACTIVEDRAWING
CALL @WSTRCLR

+4INSTR

+4INSTR

+4INSTR

+253INSTR

+44INSTR

+375INSTR

-+99INSTR

-+284INSTR
=10961NSTR

PUSH EAX
LEA EAX.(EBP·$2B] ;VIEWS
CALL @INTFCLEAR

PUSH EAX
LEA EAX,[EBP·$1B] ,IND
PUSH EAX
LEA EAX,(EBP·$2C] ;NAME
CALL @INTFCLEAR

PUSH EAX
LEA EDX.(EBp·$30]
MOV EAX,[THEAPPLICATION]
CALL TXAPPLICTION.GET_ACTIVEDRAWING ;IN TLB

MOV EAX.[EBP·$30]
PUSH EAX
MOV EAX,(EAX]
CALL DWORD PTR [EAX+$00000094] VIEWS

MOV EAX,[EBP·$2C]
PUSH EAX
MOV EAX.(EAX]
CALL DWORD PTR [EAX+$24] IND

MOV EAX,[EBP·$2B]
PUSH EAX
MOV EAX,[EAX]
CALL DWORD PTR [EAX+$60] ; NAME

MOV EDX.[EBP·$24]
MOV EAX,$004528CC STRING1 =RES
CALL @LSTRFROMWSTR

string2:=TheView.Name;
LEA EAX,[EBP-$34]
CALL @WSTRCLR

-+4INSTR

-+119INSTR

-+304INSTR
=437INSTR

PUSH EAX
MOV EAX,[THEVIEW]
PUSH EAX
MOV EAX,[EAX]
CALL DWORD PTR [EAX+$60]

MOV EDX,[EBP·$34]
MOV EAX,$004528DO
CALL @LSTRFROMWSTR

Stellenbosch University http://scholar.sun.ac.za

Appendix B: Evaluation of Basic Instruction Count 174

=29INSTR.

if Thevertex.x=ë.? then

+228INSTR.

=240INSTR.

if TheVertex=nil then

=2INSTR

if TheView.Name='TEST' then

+83INSTR

=94 INSTR.

J/local to far

if int4=TheDrawing.lndex then

+165INSTR

=174INSTR.

if double4=TheVertex.X then

+345INSTR.

=356INSTR.

JNZ TFORM1.BUTTON4CLlCK. $E7

LEA EAX.[EBP-$18[
PUSH EAX
MOV EAX.[THEVERTEX
PUSH EAX
MOV EAX.[EAX[
CALL DWORD PTR [EAX.$58[

FLD aWORD PTR [EBP-$18[
FLD TBYTE PTR [TFORM1.BUTTON4CLlCK. $248[
FCOMPP
FSTSWAX
SAHF
JNZ TFORM1.BUTTON4CLlCK. $10F

CMP DWORD [PTR) [THEVERTEX).$OO
JNZ TFORM1.BUTTON4CLlCK + $118

LEA EAX.[EBP-S1C)
CALL @WSTRCLR
PUSH EAX
MOV EAX.[THEVIEW
PUSH EAX
MOV EAX.[EAX)
CALL DWORD PTR [EAX.$60)

MOV EAX.[EBP-$1 XC
MOV EDX,$0044FC78
CALL @WSTRCMP
JNZ TFORM1.BUTTON4CLlCK. $13B

LEA EAX.[EBP-S20)
PUSH EAX
MOV EAX.[THEDRAWING)
PUSH EAX
MOV EAX.[EAX)
CALL DWORD PTR [EAX .$4C)

MOV EAX.[EBP-$20)
MOV EAX.[INT4)
JNZ TFORM1 .BUTTON4CLlCK • $15E

LEA EAX.[EBP-$1 8)
PUSH EAX
MOV EAX.[THEVERTEX)
PUSH EAX
MOV EAX. [EAX)
CALL DWORD PTR [EAX.SS8)

FLD aWORD PTR [EBP-$18)
FCOMP aWORD PTR [DOUBLE4)
FSTSWAX
SAHF
JNZ TFORM1.BUTTON4CLlCK • S1AO

if object4=TheApplication.ActiveDrawing then
LEA EDX,[EBP-S24)
MOV EAX.[THEAPPLICATlON)
CALL TXAPPLICATION.GET_ACTIVEDRAWING

+250INSTR.

=256 INSTR.

if string4=TheView.Name then

+235INSTR.

+5INSTR

MOV EAX.[EBP-S24)
CMP EAX.[OBJECT4)
JNZ TFORM.BUTTON4CLlCK. S17A

LEA EAX.[EBP-S28)
MOV EDX,[STRING4)
CALL @WSTRFROMLSTR

MOV EAX[EBP-S28)
PUSH EAX
LEA EAX.[EBP-S2C)
CALL @WSTRCLR

PUSH EAX
MOV EAX.[THEVIEW)
PUSH EAX

lIString Handling
string2:=copy(String1.1,5):

... 310 INSTR
= 3151NSTR

lntt :=pos('D',Slring1)

+ 40 INSTR

= 441NSTR

int4:=length(string1);

... 41NSTR

= 71NSTR

/I Text File handling
write(fiJllar,int4);

+ 941NSTR

+ 81NSTR

=106INSTR

write(filvar,double4)

+280INSTR

... BINSTR
=294INSTR

write(fi lvar. stri n94):

+42INSTR

+ 81NSTR
=54INSTR

writeln(filvar):

=30INSTR

read(filvar.int4):

+117INSTR

=+120INSTR

read(filvar,double4):

+836 INSTR

=840INSTR

read(filvar ,string4);

+367INSTR

=370INSTR

readln(filvar)

=24INSTR

PUSH $004528d4
MOV ECX.$00000005
MOV EDX.SOO000001
MOV EAX,[STRING1)
CALL @LSTRCOPY

MOV EDX.[STRING1)
MOV EAX,$004507FC
CALL @LSTRPOS

MOV [INT1),EAX

MOV EAX,[STRING1)
CALL @LSTRLEN

MOV [INT4),EAX

MOV EDX.[INT4)
LEA EAX,[EBP-S0000001 E4)
CALL @WRITEOLONG

CALL@FLUSH

FLD aWORD PTR [DOUBLE4)
ADD ESP,-SOC
FSTP TBYTE PRE [ESP)
WAIT
LEA EAX,[EBP-$000001 E4)
CALL @WRITEOEXT

CALL@FLUSH

MOV EDK[STRING11
LEA EAX,[EBP-$00000E4)
CALL @WRITEOLSTRING

CALL@FLUSH

CALL @WRITELN

LEA EAX,[EBP-S000001 E4)
CALL @READLONG

MOV [INT4).EAX

LEA,[EBP-SOOOOO1E4)
CALL @READEXT

FSTP aWORD PTR [DOUBLE4)
WAIT

MOV EDKS004528DO
LEA EAX,[EBP-$000001 E4)
CALL @READLSTRING

LEA EAX,[EBP-S0000001 E4)

CALL @READLN

IIBlnary file handling: testrec.x,testrec.y,testrec.z

write(binfile,testrec):

Stellenbosch University http://scholar.sun.ac.za

Appendix B: Evaluation of Basic Instruction Count 175

+101INSTR.

+32INSTR.

=389INSTR.

MDV EAX,[EAX[
CALL DWORD PTR [EAX+$60[

MDV EDX,[EBP-$2C[
POPEAX
CALL @WSTRCMP

JNZ TFROM1.BUTTON4CLlCK + $1DA

+24INSTR
=27INSTR

read(binfile,lestrec)

+24INSTR
=27INSTR

I/Mathematical
double4:=sqr1(double3);

=4INSTR

LEA EDX,[EBP-$OOOOO348j
LEA EDX,[EBP-$OOOOO330j
CALL @WRITEREC

LEA EDX,[EBP-$OOOOO348j
LEA EAX,[EBP-$OOOOO330j
CALL @READREC

FLD aWORD PTR [OOUBLE3j

FsaRT
FSTP QORD PTR [OOUBLE4j
WAIT

typical TCAD function call
=20001NSTR

typical external JAVA hash function
= 500 INSTR

typical JAVA create object
= 10lNSTR

Stellenbosch University http://scholar.sun.ac.za

Appendix C

Source code for typical Me
Application

C.I Implementation of a typical Hydraulic model

package HydraulicModel;

import TransformerModule.CommandMap;

public class HydraulicApp {

/**
* Static package level storage of hydraulic model ~ network data
*/
statie NetworkData hydraulicModel new NetworkData();

/**
* The event handler responding to the user action to see a visualiza-

tion of the model;
* Shows graphics for result variable 2 by call the CommandMap and pass-

ing a reference
* of the hydraulic model.
*/
public static void showGraphicsClick() {

CommandMap.showGraphics(hydraulicModel, 2);
System.out.println("Graphics clicked");

/**
* The main method; loads the data, calculates ages and flows, show graphics.
*/
public static void main(String args[]) {

System.out.println("Welcome to Sewsan MC");

//load the model
hydraulicModel.loadSDFFile("dummy.sdf") ;

176

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application 177

Ilbuild topo and update lengths
hydraulicModel.buildTopo(); hydraulicModel.printPipes();
hydraulicModel.updateLengths(); hydraulicModel.printLengths();

Ilupdate elevations and slopes
hydraulicModel.updateSlopes(); hydraulicModel.printSlopes();

Ilupdate ages and flows
hydraulicModel.calcAges(); hydraulicModel.printAges();
hydraulicModel.calcFlows(); hydraulicModel.printFlows();

Ilshow results graphically
showGraphicsClick() ;
System.out.println("End of program");

package HydraulicModel;

1**
* Implementation of the Hydraulic Mode; Collects all Pipe objects;
* must access CommandMap Class in the TransformerModule to issue commands to the
* GraphicsModel; Cannot access GraphicsModel directly
*1

public class NetworkData

liThe pipes in the hydraulic model. No nodes are used.
public int numberPipes;
public Pipe pipes[l;

IIConstructor
public NetworkData()

numberPipes;O;

1**
* Builds the topology, i.e. populate the dsPipeIndex attribute by nested looping
*1
public void buildTopo() {

for (int i;O;i<numberPipes;i++)
if (pipes[il.idBeginMH.equals("OUTFALL"))

pipes [il.indexDsPipe;-l;
else
for (int j;O;j<numberPipes;j++)
if (pipes [il.idEndMH. equals (pipes [j1 .idBeginMH))

pipes[il.indexDsPipe;j;

System. out. println ("Topology build") ;

1**
* Update the lengths of all pipes
*1
public void updateLengths(){

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application 178

for (int i=O;i<numberPipes;i++)
pipes [il.updateLength ();

System.out.println("Lengths updated");

/**
* Update the slopes of all pipes
*/
public void updateSlopes() {

for (int i=O;i<numberPipes;i++)
pipes [il.updateSlope ();

System.out.println("Slopes updated");

/**
* Update the age of all pipes
*/
public void calcAges(){

for (int i=O;i<numberPipes;i++)
pipes[il.updateAge(i) ;

System. out. println ("Ages calculated");

/**
* Update the flows of all pipes
*/
public void calcFlows() {

for (int i=O;i<numberPipes;i++)
pipes [il.updateFlow(i);

System.out.println("Flows calculated");

/**
* Print the ids of all pipes
*/
public void printPipes() {

for (int i=O;i<numberPipes;i++)
pipes[il .printPipe();

System.out.println("Pipes printed");

/**
* Print the lengths of all pipes
*/
public void printLengths() {

for (int i=O;i<numberPipes;i++)
pipes[il .printLength();

System.out.println("Lengths printed");

/**
* Print the slopes of all pipes
*/

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application 179

public void printSlopes() {
for (int i=O;i<numberPipes;i++)

pipes [i] .printSlope ();
System. out. println ("Slopes printed") ;

/**
* Print the ages of all pipes
*/
public void printAges() {

for (int i=O;i<numberPipes;i++)
pipes [i] .printAge ();

System.out.println("Ages printed");

/**
* Print the flows of all pipes
*/
public void printFlows() {

for (int i=O;i<numberPipes;i++)
pipes[i] .printFlow();

System.out.println("Flows printed");

/**
* Resembles the loading of an SDF file by populating the model; also
* builds the topology, update lengths and slopes and prints results
*/
public void loadSDFFile(String filename) {

numberPipes=5;
pipes = new Pipe [numberPipes] ;
for (int i=O;i<numberPipes;i++){

pipes[i]=new Pipe(this);

pipes [0] .idBeginMH="Al";
pipes [0] .idEndMH="B";
pipes[O] .xBeginMH=lOO.O;
pipes [0] .yBeginMH=150. 0;
pipes [0].zBeginMH=150. 0;

pipes[l] .idBeginMH="A2";
pipes [1] .idEndMH="B";
pipes[l] .xBeginMH=lOO.O;
pipes [1] .yBeginMH=50. 0;
pipes [1] .zBeginMH=14 5.0 ;

pipes [2] .idBeginMH="B";
pipes [2] .idEndMH="C";
pipes[2] .xBeginMH=lOO.O;
pipes[2] .yBeginMH=lOO.O;
pipes [2] .zBeginMH=143. 0;

pipes [3] .idBeginMH="C";

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application

pipes [3] .idEndMH;"OUTFALL";
pipes [3] .xBeginMH;200. 0;
pipes [3] .yBeginMH;100. 0;
pipes[3].zBeginMH;141.0;

pipes [4] .idBeginMH;"OUTFALL";
pipes [4] .idEndMH;" ";
pipes [4] .xBeginMH;300. 0;
pipes[4] .yBeginMH;100.0;
pipes [4] .zBeginMH;14 0 .0 ;

System.out.println("Model loaded");

package HydraulicModel;
1**
* Basic Pipe Class containing Topology, Geometry and Hydraulic attributes.
*1

public class Pipe (
NetworkData nwdata;

IIConstants for hydraulics
public static final double
public static final double
public static final double

_beginMHlnvertDrop;1.5;
endMHlnvertDrop;1.7;
infiltration;1.0; Ill/s/m

IITopology

public String idBeginMH, idEndMH;
public int indexDsPipe;
public double age;

IIGeometry

public double xBeginMH, yBeginMH, zBeginMH;
public double invertLeveIBeginMH,invertLeveIEndMH;
public double length,slope;

IIHydraulics

public double flow;

IIConstructor

public Pipe (NetworkData nwdata) {
this.nwdata ; nwdata;
indexDsPipe;O;
zBeginMH;O.O;
length;O.O;
slope;O.O;
invertLeveIBeginMH;O.O;
invertLeveIEndMH;O.O;

1**
* Updates the age of pipe, by doing the equavalent of a traversal from
* the outfall manhole and accumulating pipe lengths;
* Performs a nested loop to accumulate all ages. Exits when outfall manhole

180

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application 181

* is found.
*/
public void updateAge(int thisPipelndex) {

Pipe dsPipe;
age: 0;
int indexDsPipe : thisPipelndex;
for (int i:O;i<nwdata.numberPipes;i++) {

dsPipe : nwdata.pipes[indexDsPipel;
age: age + dsPipe.length;
indexDsPipe : dsPipe.indexDsPipe;
if (indexDsPipe::-l) break;

/**
* Updates the flows of all downstream pipes with the contribution due to this pipe;
* this is the equavalent of a post-order traversal from
* the outfall manhole and accumulating pipe flow contributions.
* Performs a nested loop to accumulate all ages. Exits when outfall manhole
* is found.
*/
public void updateFlow(int thisPipelndex) {

Pipe dsPipe;
int indexDsPipe : thisPipelndex;
for (int i:O;i<nwdata.numberPipes;i++){

dsPipe : nwdata.pipes[indexDsPipel;
dsPipe.flow:dsPipe.flow + _infiltration * length;
indexDsPipe : dsPipe.indexDsPipe;
if (indexDsPipe::-l) break;

/**
* Calculatates the length of a pipe by finding the coordinates of
* begin manhole of downstream pipe. Is : 0 for outfall manhole/pipe.
*/
public void updateLength() {

if (indexDsPipel:-l) {
Pipe dsPipe : nwdata.pipes[indexDsPipel;
double xEndMH : dsPipe.xBeginMH;
double yEndMH : dsPipe.yBeginMH;
if (length::O.O) length: Math.sqrt((xEndMH-xBeginMH)*(xEndMH-xBeginMH) +

(yEndMH-yBeginMH)*(yEndMH-yBeginMH));
}

}

/**
* Calculatates the slope of a pipe by finding the ground level of
* begin manhole of downstream pipe. Is : 0 for outfall manhole/pipe,
* assumes lengths have been calculated.
*/

public void updateSlope() {
if (indexDsPipel:-l) {

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application 182

Pipe dsPipe = nwdata.pipes[indexDsPipel;
double glEndMH = dsPipe.zBeginMH;
if (slope==O. 0)
if (length! =0)

slope= (zBeginMH - _beginMHlnvertDrop - (glEndMH - endMHlnvertDrop))/
length;

/**
* Print the age of the pipe.
*/
public void printAge() (

System.out.println(idBeginMH+": "+String.valueOf(age));

/**
* Print the flow of the pipe.
*/
public void printFlow() (

System.out.println(idBeginMH+": "+String.valueOf(flow));

/**
* Print the length of the pipe.
*/
public void printLength() (

System.out.println(idBeginMH+": "+String.valueOf(length));

/**
* Print the ids of the pipe.
*/
public void printPipe() (

System.out.println(idBeginMH+"->"+idEndMH) ;

/**
* Print the slope of the pipe.
*/
public void printSlope() (

System.out.println(idBeginMH+": "+String.valueOf(slope));

C.2 Implementation of a typical Visualization model

package VisualizationModel;

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application 183

public class VisualizationApp (

1**
* Static package level storage of hydraulic model
*1

network data

statie GraphicsData visualizationModel new GraphicsData();

1**
* Public access to a reference of GraphicsData
*1
public statie GraphicsData getVisualizationModel() {return visualizationModel;}

1**
* The final showGraphics method invoked from the CommandMap class; update link
* distances and draw the links and nodes.
*1
public static void showGraphics(int varIndex) (

System.out.println("Showing Graphics Now for variable "+String.valueOf(varIndex));
visualizationModel.updateLinkDistances() ;
visualizationModel.drawLinks() ;
visualizationModel.drawNodes() ;
System.out.println("Graphics shown");

package VisualizationModel;

1**
* Implementation of the Visualization Model; Collects all Link and Node objects;
* must not access the TransformerModule as no return communication supported
*1

public class GraphicsData

liThe links and nodes in the visualization model.
public int numberLinks;
public int numberNodes;

public Link links[];
public Node nodes[];

public void createGraphicsData(int numberLinks, int nUmberNodes){
this.numberLinks numberLinks;
this.numberNodes = numberNodes;

links
nodes

new Link [numberLinks] ;
new Node [numberNodes] ;

for (int i=O;i<numberLinks;i++)
links[i]=new Link(this);

for (int i=O;i<numberNodes;i++)
nodes[i]=new Node (this) ;

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application 184

/**
* Updates all the distances (length) properties of links
*/
public void updateLinkDistances() {

for (int i;O;i<numberLinks;i++)
links[il.updateDistance() ;

System.out.println("Link distances updated");

/**
* Resembles drawing all links with line, text and arrow information
*/
public void drawLinks() {

for (int i;O;i<numberLinks;i++)
links[il .drawLine();
links[il.drawText();
1inks [i1 . drawArrow ();

System.out.println("Links drawn");

/**
* Resembles drawing all nodes with circles
*/
public void drawNodes() {

for (int i;O;i<numberNodes;i++)
nodes[il.drawCircle() ;

System.out.println("Nodes drawn");

package VisualizationModel;

/**
* The basic link class in the Visualization
*/

public class Link {

private GraphicsData gdata;
//Topology
public String id;
public int indexBeginNode;
public int indexEndNode;

//Geometry
public double linkDist;

//Hydraulic
public double value;

public Link(GraphicsData gdata) {

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application 185

this.gdata;gdata;

/**
* Calculates the length of links from the nodal coordinates
*/
public void updateDistance() {

linkDist; Math.sqrt(
(gdata.nodes[indexEndNodel .xCoord-gdata.nodes[indexBeginNodel .xCoord)*
(gdata.nodes[indexEndNodel .xCoord-gdata.nodes[indexBeginNodel .xCoord) +
(gdata.nodes[indexEndNodel .yCoord-gdata.nodes[indexBeginNodel .yCoord)*
(gdata.nodes[indexEndNodel .yCoord-gdata.nodes[indexBeginNodel .yCoord));

/**
* Resembles the drawing of a line in the visualization.
*/
public void drawLine(){

System.out.println("Drawing line from l"+
String. valueOf (gdata. nodes [indexBeginNodel .xCoord) +", "+
String.valueOf (gdata.nodes [indexBeginNodel .yCoord)+"l to ["+
String. valueOf (gdata. nodes [indexEndNodel .xCoord) +", "+
String.valueOf (gdata.nodes [indexEndNodel .yCoord) +"1 for value: "+
String.valueOf(value)) ;

/**
* Resembles the drawing of text at the centre of the link
*/
public void drawText(){

double x (gdata.nodes[indexBeginNodel .xCoord + gdata.nodes[indexEndNodel .xCoord) / 2;
double y ; (gdata.nodes[indexBeginNodel .yCoord + gdata.nodes[indexEndNodel .yCoord) / 2'

System.out.println("Drawing text at ["+String.valueOf(x)+", "+
String.valueOf(y)+

"1 with value :"+
String.valueOf(value)) ;

/**
* Resembles the drawing of an arrow at the centre of the link; must calcu-

late sin and
* required the length of a link in the calculation.
*/
public void drawArrow(){

double x (gdata.nodes[indexBeginNodel .xCoord + gdata.nodes[indexEndNodel .xCoord) / 2'
double y ; (gdata.nodes[indexBeginNodel .xCoord + gdata.nodes[indexEndNodel .xCoord) / 2;
double asin; (gdata.nodes[indexEndNodel .xCoord -

gdata.nodes[indexBeginNodel.xCoord) /linkDist;

System.out.println("Drawing arrow at midpoint ["+String.valueOf(x)+","+
String.valueOf(y)+

"1 with sine value of "+
String.valueOf(asin));

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application 186

package VisualizationModel;

/**
* The basic node class in the Visualization
*/

public class Node

private GraphicsData gdata;
//Topology
public int index;
public String id;

//Geometry
public double xCoord;
public double yCoord;
public double value;

public Node(GraphicsData gdata) (
this.gdata=gdata;

/**
* Resembles drawing a circle at the node
*/
public void drawCircle() (

System.out.println("Drawing circle at ["+
String.valueOf(gdata.nodes[indexl.xCoord)+","+
String.valueOf(gdata.nodes[indexl.yCoord)+"l for value :"+
String.valueOf(value));

}
}

C.3 Transformer module

package TransformerModule;

import VisualizationModel.*;
import HydraulicModel.NetworkData;

/**
* Maps commands from to VisualizationModel; Has access to that model.
*/

public class CommandMap {

/**
* Transfers data using to the DataMap transformer, and finally
* shows a graphic visualization for variable varIndex by calling
* showGraphics in the VisualizationApp.

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application

*
*/

public static void showGraphics(NetworkData nwData, int varIndex) {
GraphicsData gData = VisualizationApp.getVisualizationModel();

DataMap. initTransformer (nwData,gData) ;
DataMap. transferNetworkData (nwData,gData,varIndex) ;

VisualizationApp.showGraphics(varIndex) ;

package TransformerModule;

import HydraulicModel.*;
import VisualizationModel.*;

/**
* Maps data from the Hydraulic Model to the Visualization Model; has ac-

cess to both models.
*/

public class DataMap {

/**
* Initialize the transformer; calls createGraphicsData in GraphicsData
*/

static void initTransformer(NetworkData nwdata, GraphicsData gdata) {
gdata. createGraphicsData (nwdata.numberPipes-l,nwdata.nu mberPipes);

/**
* Transfer the Network from NetworkData to GraphicsData
*/

static void transferNetworkData(NetworkData nwdata, Graphics-
Data gdata, int varIndex) {

I/links
for (int i=O;i<gdata.numberLinks;i++){

gdata.links[il .id = String.valueOf(i);
gdata .links [il.indexBeginNode = i;

switch (varIndex) {
case 0: {gdata.links[il .value =nwdata.pipes[il .length; }
case 1: {gdata.links[il .value =nwdata.pipes[il .slope;}
case 2 : {gdata.links[il .value =nwdata.pipes[il .age; }
case 3 : {gdata.links[il .value =nwdata.pipes[il .flow;}

//nodes
for (int i=O;i<gdata.numberNodes;i++) {

gdata.nodes[il .index = i;
gdata.nodes[il.id = nwdata.pipes[il .idBeginMH;
gdata.nodes[il.xCoord -nwdata.pipes[il.yBeginMH;
gdata.nodes[il .yCoord = -nwdata.pipes[il .xBeginMH;

187

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application

switch (varIndex) {

case 0: {gdata.nodes[iJ .value =nwdata.pipes[iJ .invertLevelBeginMH;}
case 1: {gdata.nodes [ij .value =nwdata.pipes [iJ. invertLevelEndMH;}

case 2: {gdata.nodes[il.value =nwdata.pipes[iJ .zBeginMH;}

II Now must create new index for linkN2 from all nodes

for (int i=O;i<gdata.numberLinks;i++) {

for (int j = O;j<gdata.numberNodes;j++)
if (nwdata.pipes[iJ .idEndMH.equals(gdata.nodes[jJ .id))

gda ta. 1inks [i J . indexEndNode = j;

break;

188

Stellenbosch University http://scholar.sun.ac.za

Appendix C: Source code for typical MC Application

C.4 Implementation of the traversal algorithm

/**
* Updates the age of pipe, by doing the equivalent of an
* in-order traversal from the terminating pipe,
* accumulating pipe lengths; Performs a nested loop to
* accumulate all ages. Exits when terminating pipe is
* found (-1). Operation is of order O(n2)
*/
public void updateAge(int thisPipelndex) {

Pipe dsPipe;
age = 0;
int indexDsPipe = thisPipelndex;
for (int i=O;i<nwdata.numberPipes;i++){

dsPipe = nwdata.pipes[indexDsPipel;
age = age + dsPipe.length;
indexDsPipe = dsPipe.indexDsPipe;
if (indexDsPipe==-l) break;

/**
* Updates the flows of all downstream pipes with the
* contribution due to this pipe;
* (its perLengthContribution x length); This is the
* equivalent of a post-order traversal from the terminating
* pipe and accumulating pipe flow contributions. Performs a
* nested loop to accumulate all ages. Exits when terminating
* pipe is found (-1).
*/
public void updateFlow(int thisPipelndex) {

Pipe dsPipe;
int indexDsPipe = thisPipelndex;
for (int i=O;i<nwdata.numberPipes;i++) {

dsPipe = nwdata.pipes[indexDsPipel;
dsPipe.flow=dsPipe.flow +
_perLengthContribution * length;

indexDsPipe = dsPipe.indexDsPipe;
if (indexDsPipe==-l) break;

189

Stellenbosch University http://scholar.sun.ac.za

Appendix D

Me Instruction Count
Evaluation

190

Stellenbosch University http://scholar.sun.ac.za

Appendix D: MC Instruction Count Evaluation 191

TCE
TEl

ECI
EEl

TMI2
TME2

HMI
HME

Function SaveElevationsO As Integer
Export X & Y Coords from model to DTM File

1 (FNLF)
00
1 (ALFO)
1 (ORDI)
1 (ALFI)
1 (C2FS)
1 (ORDE)
1 (C2CI)
1 (ALFI)
1 (ORDE)
1 (ALFO)
1 (ORDE)
1 (ORDI)
1 (ALFD)
2 (OSDC)
1 (ALLO)
1 (OSDC)
1 (ALFD)
1 (OBW)
00
1 (FNLN)

1 For i= 0 To NumSel-1
0' ..

300 Set Gr = ObjSel.ltem(i) 'Returns part of a collection - graphic in the selection collection
380
19 GrSeIType = Gr.TypeByValue

389 If (Gr.Layer.Name = ElevationTextLayer) And (GrSelType = imsiText) Then
200

2
19 GrVertices.UseWorldCS = True

200
300 Set Ver = GrVertices.ltem(O) , Return the Vertices collection for current graphic
200
380
354 Coord X = -(Ver.Y - TextOffSetConst)
8
4
4 Coord Y = -Ver.X

354
27 Put #1, , Coord
o End If

Next i

TOTAL 3143 End Function

Function LoadElevationsO As Integer
Import X & Y & Z Coords from DTM File to model

1 (CFCl)
1 (OBR)
1 (C2CD)
1 (OCIS)
1 (FNPF)
1 (ALLO)
1 (FNC)
4 (FNPR)
2 (OSDC)
1 (REF)

29 While Not (EOF(l II
27 Get #1, , Coord
4 If Coord.l = -999999 Then GoTo exitpos

613 ZStr = Trim(Format(CoordL Fstr))
2 Set Gr2 = PickEnt(-Coord.Y, -Coord.X, ElevationTextLayer. "0.00")

22
7
8
8

29985.744

Stellenbosch University http://scholar.sun.ac.za

Appendix D: MC Instruction Count Evaluation 192

1 (C2CO)
1 (FFC)
1 (OCAO)
10
1 (ICLO)
1 (FFPF)
1 (ALLO)
1 (FFC)
1 (OROE)
9 (FFPR)
2 (OSOC)
1 (OAOC)
1 (OCAO)
1 (ACFS)
1 (OROl)
1 (ACFI)
1 (OROl)
1 (FNG)
00

If isNothing(Gr2) = False Then
212 Call Gr2.0elete

2000
o End If
2 Sel Gr2 = Nolhing
6 Sel Gr = AeIOr.Graphics.AddText(ZSlr, -Coord.Y, -Coord.X + TextOffSelConst. 0#, TextHeighlConsl, 0, 0, 0, 2)

22
212
200
18
8
4

2000
418 Gr.Propertiest'Laver") = ElevalionTextLayer
380
14 Gr.Properties("PenColor") = -3

380
1 Wend
o expos:

TOTAL 36964,744 End Function

Function LoadSystem() As Integer
Load existing the sewer system model

1 (CFCl)
1 (OTRS)
1 (REF)
1 (C2CI)
1 (FNG)
00
1 (ALFS)
1 (OSM)
1 (C2CS)
1 (FNG)
1 (OAIC)

11 (OROA)
1 (ALFS)
2 (OCSO)
2 (OSOC)
2 (ALLO)
1 (OCSO)
1 (ALLO)
1 (ALFS)
1 (C2CS)
1 (OCSO)
1 (ALLO)
1 (ACLO)
1 (ACLO)
00
00
00
00
3 (OCSO)
3 (ALLO)
00
00
1 (FNG)
00
00
00
00
3 (ALLO)
1 (FNLF)

500 (OROA)
341 (C2LO)
341 (ALLO)
341 (ALLO)
341 (ALLO)
341 (FNG)

00
1 (FNLN)
3 (OROA)
1 (FFPF)
1 (ALLO)
1 (FFC)
1 (OROE)
6 (FFPR)
2 (OMOC)
1 (OCAO)
1 (ACFS)
1 (OROl)

29 While (Not EOF(1»
370 Line lnput #1, sig

19484 Call Parse_inpuI(slg, resuttt), 27, ier)
2 If ier Then
1 '.. Error
o End If

665 typeSIr = UCase$(CSlr(resull(1»)
310 If Left$(typeSlr, 5) = "BOTMH" Then
50 ' Only once

Else
i = i + 1

11 'Deref
665 Smhslr(i) = CSlr(resull(2»
236 Xsm(i) = -val(resull(3» 'SH

8 Ysm(i) = -val(resull(4» 'SH
8

118 Glsm(i) = val(resull(5»
4

665 Emhslr(i) = CSlr(resull(7»
50 If resull(27) = "S" Then

118 Slope(i) = val(resull(26»
4
2 Ism(i) = 0#
2 lem(i) = 0#
0 Else
0 'seldom
0 End If
0

354 Oiam(i) = val(resull(9»
12 Man(i) = val(resull(12»
0 EE1(i) = val(resull(16»
0 End If
1 Wend
0'"
o ' Now Oraw Ihe network
o For i = 1 To TotalPipes
o ' Find End Manhole Coords
12 X = BXsm: Y = BYsm: Z = BGlsm
1 For j = 1 To TotalPipes

500 ' average = TolalPipes I 2
1705 If Emhslr(i) = Srnhstrtj) Then
1364 X = XsmO)
1364 Y = YsmO)
1364 Z = Glsm(j)
341 Exil For

o End If
2 Nextj
3
6 Sel Gr = AeIOr.Graphies.AddLineSingle(Xsm(i), Ysm(i), Glsm(i) • zfaet. X, Y, Z' zfact)

22
212
200
12
8

2000
418 Gr.Properties("Layer") = TopoLayer
380

Stellenbosch University http://scholar.sun.ac.za

Appendix D: MC Instruction Count Evaluation 193

1 (ACFI)
1 (ORDI)
3 (ORDA)
1 (FFPF)
1 (ALLO)
1 (FFC)
1 (ORDE)
9 (FFPR)
1 (OCAD)
1 (ACFS)
1 (ORDI)
1 (ACFI)
1 (ORDI)
3 (ORDA)
1 (ORDE)
1 (FFPF)
1 (ALLO)
1 (FFC)
1 (ORDE)
9 (FFPR)
1 (OCAD)
1 (OCIS)
1 (OADC)
1 (ACFS)
1 (ORDI)
1 (ORDI)
1 (ORDA)
1 (C2CD)
1 (FFPF)
1 (ALLO)
1 (FFC)
1 (ORDE)
9 (FFPR)
1 (OCAD)
1 (OCIS)
2 (OADC)
1 (OSDC)
2 (ODDC)
00
00
00
00
1 (ACFS)
1 (ORDI)
1 (ACFI)
1 (ORDI)
3 (ORDA)
2 (FFPF)
00
2 (ALLO)
2 (FFC)
1 (ORDE)
2 (ORDI)

18 (FFPR)
3 (ORDA)
2 (OCAD)
00
2 (OCIS)
4 (OADC)
4 (ODDC)
2 (ACFS)
2 (ORDI)
1 (ORDE)
2 (ACFI)
2 (ORDI)
2 (OADC)

TOTAL

1 (FNLF)
1 (ALFO)
1 (ORDI)
1 (ALFI)
1 (C2FS)
2 (ORDE)
1 (C2CI)
1 (C2FI)
1 (ORDE)

14
380
3
6

22
212
200
18

2000
418
380
14

380
3

200
6

22
212
200
18

2000
613

4
418
380
380

4
4
6

22
212
200
18

2000
613
8
4
8
o
o
o
o

418
380
14

380
3

12
o

44
424
200
760
36
3

4000
o

1226
16
16

836
760
200
28

760
8

Gr.Propertiest'Pencolor") =-3

'MH Text
Set Gr = ActDr.Graphics.AddText(Smhslr(i), Xsm(i), Ysm(i), GII, TextHeightConst. 0, 0, 0, 2)

Gr.Properties("Layer") = MhTextLayer

Gr .Propertiest'PerColor"} = -3

'Elev Text
Set Gr = ActDr.Graphics.AddText(Trim(Str(Glsm(i))), Xsm(i),

Ysm(i) + TextOffSetConst, GII, TextHeightConst, 0, 0, 0, 2)

Gr.Properties("Layer") = ElevationTextLayer

Gr.Propertiest'Penóotor") = -3

If Slope(i) <> 0 Then
Set Gr = ActDr.Graphics.AddText(Trim(Str(Slope(i))) + "%", (Xsm(i) + X) I 2#,

(Ysm(i) + Y) 12# - TextOffSetConst, GII, TextHeightConst, 0, 0, 0, 2)

Else
'seldom

End If

Gr.Properties("Layer") = InvertTextLayer

Gr.Propertiesf''Per'Color") = -3

'Diam Text
Set Gr = ActDr.Graphics.AddText(Trim(Str(Diam(i))),

(Xsm(i) + X) 12#, (Ysm(i) + Y) 12#, GII, TextHeightConst. 0, 0, 0, 2)
Gr.Properties("Layer") = DiamTextLayer
Gr.Properties("PenColor") = -3

'EE Text

Set Gr = ActDr.Graphics,AddText(Trim(Str(EE1(i))), (Xsm(i) + X) 12#,
(Ysm(i) + Y) 12# + TextOffSetConst, GII, TextHeightConst. 0, 0, 0, 2)

Gr.Properties("Layer") = ErvenLayer
Gr.Propertiest'Penflolcr") =-3

Next i

55211 End Function

Function SaveSystem() As Integer
Save Sewer model

1 For i= 0 To NumSel - 1
300 Set Gr = ObjSel.ltem(i) 'Returns part of a collection - graphic in the selection collection
380
19 GrSeIType = Gr.TypeByValue

389 If Gr.Layer.Name = TopoLayer Then
400

2 If (GrSelType = imsiPolyline) And (GrVertices.Count = 2) Then
174
200

Stellenbosch University http://scholar.sun.ac.za

Appendix D: Me Instruction Count Evaluation 194

1 (ACLI)
1 (ALFI)
1 (ORDE)
1 (ALFO)
1 (ORDE)
1 (ORDI)
2 (ALFD)
1 (ALFO)
1 (ORDE)
1 (ORDI)
2 (ALFD)
00
1 (FNPF)
1 (ALLO)
1 (FNC)
4 (FNPR)
2 (OADD)
2 (ODDC)
1 (REF)
1 (ALFS)
1 (OCSI)
1 (OAII)
1 (FNPF)
1 (ALLO)
1 (FNC)
4 (FNPR)
2 (OADD)
2 (ODDC)
1 (REF)
1 (ALFS)
00
1 (OSI)
1 (C2CI)
1 (OSI)
1 (C2CI)
1 (FNG)
00
1 (C2LS)
00
1 (C2CS)
1 (C2CS)
1 (C2CS)
1 (FNG)
00
00
2 (ORDA)

18 (OTWS)
1 (OCIS)
6 (OCDS)
1 (FNPF)
00
4 (ALLO)
4 (FNC)

16 (FNPR)
4 (ALFS)
4 (REF)
00
2 (OCIS)
2 (OADD)
2 (ODDC)
00
1 (REF)
1 (FNC)
1 (FNPR)
1 (FNPF)

TOTAL

125
5.456

1 (ICLO)
1 (ICLO)
00
1 (ALFO)
2 (ORDE)
1 (ORDI)
2 (ICLO)

29985.744
665
69
2
2

22
7
8
8
8

29985.744
665

o
44
2

44
2
1 '
o

15
o

50
50
50
1
o
o
2

972
613

4314
2
o

88
28
32

2660
119942.976

o
1226

8
8
o

4850
7
2
2

19
200
300
200
380
708
300
200
380
708

o
2

22

ErvenCount = 0
Gr.vertices.UseWorldCS = True

Set Ver = Gr.vertices.ltem(O) , Return the Vertices collection for current graphic

Xi = Ver.x
Y1 = Ver.Y
Set Ver = Gr.vertices.ltem(1)
X2 = Ver.x
Y2 = Ver.Y

Gr2 = PickEnt«X1 + X2) /2#, (Y1 + Y2) /2#, ErvenLayer, TempErvenStr)

Ervenêtr=Grê.Narne
ErvenCount = ErvenCount + val(Ervenstr)

Gr2 = PickEnt«X1 + X2) /2#, (Y1 + Y2) /2#, InvertTextLayer, TemplnvertStr)

InvertString=Gr2.Name

inpas = InStr(1, InvertString, "-")
If inpas = 0 Then
inpas = InStr(1, InvertString, "%")
If inpas> 0 Then

Else
SlopeString = InvertString

End If
SlopeFlagString = "S"
USlnvertString = "0,00"
DSlnvertString = "0.00"

Else

End If

Print #1 , "PIPE ";
Print#1, (PickEnt(X1, Y1, MhTextLayer, "USMH" + Str(i»),Name;" ";
Print #1, Forrnat(-X1, Fstr); ""; Format(-Y1, Fstr); "";
Print #1, (PickEnt(X 1, Y1, Elevation TextLayer, "0. 00")). Name; " ";
Print #1, USlnvertString; "";
Print #1, (PickEnt«X2, Y2, MhTextLayer, "DSMH" + Str(i»).Name; "";
Print #1, DSlnvertString; "";
Print#1, (PickEnt«X1 + X2) /2#, (Y1 + Y2) /2#, DiamTextLayer, TempDiamStr»).Name;" ";
Print #1, Forrnat(CalcLength(Gr), Fstr): "";
Print#1, "C ";
Print #1, ManConst; " ";
Print#1, "E ";
Print #1, InfilConst; " ";
Print #1, StormConst; " ";
Print #1, ErvenCount; " ";
Print #1, "0 0 0 0 0 0 0 0 0 ";
Print #1, Slope String; " "; SlopeFlagString

End If
End If

Next i

201759,464 End Function

AUXILLARY FUNCTIONS

1/n
Assume number of pipes searched in standard radius: -> more found in denser network

Function PickEnt(xClick#, yClick#, layName As String, defaultStr As String) As Graphic
Locale the nearest entity and return it as Graphic

2 Dim Vi As VieW

2 Dim PicRes As Pick Result
o

300 Set Vi = IMSIGX.Application,ActiveDrawing.views.ltem(O)
400
380

6 Dim xVieW#, yVieW#

Stellenbosch University http://scholar.sun.ac.za

Appendix D: MC Instruction Count Evaluation 195

1 (FFC)
6 (FFPR)
1 (OCAD)
1 (FFPF)
1 (AllO)
1 (FFC)
9 (FFPR)
1 (OCAD)
1 (CFCl)
1 (FNPF)
1 (REF)
1 (AllO)
1 (FNC)
1 (FNPF)
2 (FNPR)
00
00
00
1 (ICLO)
1 (ICLO)

TOTAL

1 (ICLO)
1 (IClD)
1 (ICLO)
1 (IClD)
1 (IClD)
1 (IClD)
1 (ICLI)
00
1 (IClD)
00

5.456 (FNLF)
5.456 (ACFI)
5.456 (AlFO)
5.456 (ORDE)
5.456 (ORDI)
5.456 (C2FS)
5.456 (ORDE)
5.456 (AlFD)
5.456 (ORDE)
5.456 (ORDI)
5.456 (OCAD)
5.456 (C2lD)
5.456 (AllD)
5.456 (AllO)

00
00
1 (FNlN)
00
2 (AllO)
1 (ICLO)
1 (ICLO)

TOTAL

27 num:Avg

1 (ICLI)
00
1 (ICLI)
00

27 (FNLF)
27 (ORDA)
27 (IClS)
27 (FNlN)
00
1 (C2CI)
00
00
1 (OSl)
00
1 (C2CI)
00
00
00
1 (ICLI)
1 (ICLI)

212 VLWorldToView xClick#, yClick#, 0, xVieW#, yVieW#, 0
12

2000
6 Set PicRes = Vi.PickPoint(xVieW#, yVieW#, ApertureConst, False, False, True, False, False, False)

22
212
18

2000
29 If PicRes.Count > 0 Then
2 Set PickEnt = GetClosestTextGraphic(layName, PicRes)

24343.744
22

4
o Else
o Set PickEnt = Nothing
o End If
2 Set PicRes = Nothing
2 Set Vi = Nothing

29985.744 End Function

1
o
3
o

5.456
76.384
1636.8
1091.2

2073.28
2122.384

1091.2
1931.424

1091.2
2073.28

10912
27.28

21.824
120.032

o
o
2
o

Function GetClosestTextGraphic(layNarne As String, PicRes As PickResult) As Graphic
Locate the closest text graphic
Dim ClosestGraphic As New Graphic
Dim ClosestDist As Double
Dim GrSel As Graphic
Dim Xp As Double
Dim Yp As Double
Dim xyDist As Double
Dim i As Integer

ClosestDist = 10000000000#

For i = 0 To PicRes.Count - 1

Set GrSel = PicRes.ltem(i).Graphic 'gets selected graphic

If GrSeLlayer.Name = layName Then

xyDist = PicRes.ltem(i)Distance

If xyDist < ClosestDist Then
ClosestDist = xyDist
Set ClosestGraphic = GrSel

End If
End If

Next i

44 Set GetClosestTextGraphic = ClosestGraphic
2 Set GrSel = Nothing
2 Set ClosestGraphic = Nothing

24343.744 End Function

Sub Parse_input(stg As String, ResO As Variant, ByVal nurn As Integer, ier As Integer)
Parses one line of input from text file with 27 columns

1 Const maxcount ;;;42
o
1 Dim lenstr As Integer
o

27 For i% = 1 To num
27

135 Res(i%) = Empty
54 Next i%
o 'Too many fields
2 If num> maxcount Then
o
o End If
7 lenstr = len(stg)
o 'check for blank string
2 If lenstr = 0 Then
o
o End If
O'skip initial blanks

icount%;; 0
~% = 1

Stellenbosch University http://scholar.sun.ac.za

Appendix D: MC Instruction Count Evaluation 196

00
1 (FNLF)
00

27 (FNLF)
27 (OSM)
27 (C2LS)
27 (ALLI)
27 (FNG)
00
o (FNLN)

27 (OAIC)
27 (C2CI)
00
00

27 (OSI)
27 (OSIC)
27 (ACLI)
27 (C2CI)
27 (ACLI)
27 (OSM)
27 (OAIC)
27 (OSII)
27 (ORDA)
27 (ALLS)
27 (OAIC)
27 (ALLI)
27 (FNLN)
1 (ICLI)

o 'Main loop
1 Do
O'Skip over leading blanks - only once typical

27 For JOJo = tt% To lenstr
8370 If (Mid$(stg, j%, 1) <> "") Then
405
54 It% = j%
27 Exit For
o End If
o Nextj%

27 icount% :::;;icount% + 1
54 If icount% > num Then
o 'Exit Sub
o End If

1188 rt% = InStr(H%. stq, "") - 1
27
27
54 If rt% < 0 Then rt% = lenstr
27

8370 tmpstr$ = Mid$(stg. It%. (rt% -It% + 1»
27
54
27

324 Res(icount%) = Impstr$
27 It% = rt% + 1
54
54 Loop Untillt% >= lenstr

ier = 0

TOTAL 19484 End Sub

Function CalcLength(Gr As Graphic) As Double
Calculates the length of a vertex

3 Dim a As Double1 (ICLO)
1 (ICLO)
1 (ICLO)
1 (ALFI)
1 (ORDE)
2 (ALFO)
2 (ORDE)
2 (ORDI)
8 (ALFD)
4 (OSDO)
2 (OMDO)
1 (OADD)
1 (OMS)

2 Dim Vertexl As Vertex
2 Dim Vertex2 As Vertex

19 Gr.Vertices.UseWorldCS = True
200
600 Set Vertexl = GrVertices.llem(O)
400 Set Vertex2 = GrVertices.ltem(l)
760

2832 a = (Vertexl.X - Vertex2X) • (Vertexl.X - Vertex2X) + _
16 (Vertexl.Y - Vertex2.Y)· (Vertexl.Y - Vertex2.Y)
8 CalcLength = Math.Sqr(a)
4
4

TOTAL 4850 End Function

SEWSAN.EXE
Sub READNET()
Load Sewer model

While (Left$(Typestr(i), 5) <> "BOTMH") And (Not EOF(l))1 (CFCl)
1 (OSM)
1 (C2CS)
1 (OAIC)
1 (C2CI)
1 (FNG)
00
1 (OTRS)
1 (REF)
1 (C2CI)
1 (FNG)
1 (ORDA)
1 (ALFS)

29
310.
50
1
2
1 ..
o

370
20149

2
1.
1

665

i = i + 1
If i > (Max_Pipes + 1) Then

End If
Line Input #1. stg
Call Parse_input(stg. resultt), 28. ier)
If Ier Then

Else
typeStr(i) = UCase$(CStr(resuH(l)))

Stellenbosch University http://scholar.sun.ac.za

Appendix D: MC Instruction Count Evaluation 197

1 (OSM) 310 If Left$(Typeslr(i), 5) <> "BOTMH" Then
1 (C2CS) 50.

16 (ORDA) 16
8 (ALFS) 5320 Smhslr(i) = CStr(resull(2))

22 (OCSD) 2596 Ysm(i) = Val(resutt(3»
22 (ALLO) 88 Xsm(i) = Val(resull(4»
4 (ODDG) 16 Glsm(i) = Val(resull(5))
00 0 Ism(i) = Val(resull(6))
00 0 Emhslr(i) = CSlr(resull(7))
00 0 lem(i) = Val(resutt(8»
00 0 Diam(i) = Val(resull(9» /1000
00 0 Lenn(i) = Val(resull(10))
00 0 CLslr(i) = Cêtrfresultt 11))
00 0 CLslr(i) = UCase$(CLslr(i»
00 0 Man(i) = Val(resull(12))
00 0 Exslr(i) = CSlr(resull(13))
00 0 Exslr(i) = UCase$(Exslr(i»
00 0 Infil(i) = Val(resull(14» /1000 /60

30 (ORDA) 30 Typ(i) = Val(resull(15))
1 (FNLF) 1 For j = 1 To 10

10 (OAIC) 10 Ee(i, j) = Val(resull(15 + jj)
1 (FNLN) Nextj
7 (ORDA) 7 Slope(i) = Val(resull(26)) /100
00 0 ISslr(i) = CSlr(resull(27))
00 0 ISslr(i) = UCase$(ISslr(i»
1 (C2CS) 50 If ISslr(i) =" "Then
1 (ACLS) 222 ISslr(i)="I"
00 0 End If
00 0 Addlenn(i) = Val(resull(28))
00 0 End If
00 0 End If
1 (FNG) 1 Wend

TOTAL 78720 End Sub

Sub SAVE_NETO
Save Sewer model

1 (FNLF) 1,.
1 (IClS) 5 For i = 1 To Npipes
1 (ALLS) 12 fileline = '"'
1 (ORDA) 1 Impsir = Typeslr(i)
1 (OSA) 524 file line = fileline + Impsir
1 (ALLS) 12 Impsir = Smhslr(i)
1 (ORDA) 1
8 (OSA) 4192 fileline = tileline + " " + tmpstr
4 (OCDS) 2876 Impsir = Formal$(Ysm(i), '~.OOO")
4 (ORDA) 4
4 (ALLS) 48 fileline = fileline + " " + tmpstr
00 0 Impsir = Formal$(Xsm(i), '-0.000")
00 0 fileline = fileline + " " + tmpstr
00 0 Impsir = Formal$(Glsm(i), '~.OOO")
00 0 fileline = fileline + " " + tmpstr
00 0 Impsir = Formal$(lsm(i), '_0.000")
00 0
2 (OSA) 1048 fileline = fileline + " " + Impsir
00 0
1 (ALLS) 12 Impsir = Emhslr(i)
00 0

10 (OSA) 5240 fileline = fileline + " " + Impsir
5 (OCDS) 3595 tmpstr = Formal$(lem(i), "###0.000")
5 (ORDA) 5 fileline = fileline + " " + tmpstr
5 (ALLS) 60 Impsir = Formal$(Diam(i) , 1000, '_")
00 0 fileline = fileline + " " + tmpstr
00 0 Impsir = Formal$(Lenn(i), "###0.000")
00 0 fileline = fileline + " " + tmpstr
1 (ALLS) 12 Impsir = CLstr(i)
1 (ORDA) 1 fileline = fileline + " " + tmpstr
00 0 Impsir = Formal$(Man(i), "#0.000")
00 0 fileline = fileline + " " + tmpstr
1 (ALLS) 12 Impsir = Exslr(i)
1 (ORDA) filehne = fileline + " " + tmpstr
00 Impsir = Format$(lnfil(i) '1000' 60, ''#0.000'')
00 0 fileline = fileline + " " + Impsir
1 (ALLI) 2 Impsir = Formal$(Typ(i), ''#0'')
1 (ORDA) fileline = fileline + " " + tmpstr
2 (OSA) 1048

10 (FNLF) 10 For j = 1 To 10
10 (OCDS) 7190 Impsir = Formal$(Ee(i, j), ''##0.00'')
10 (OSA) 5240 fileline = fileline + " " + Impsir
20 (ORDA) 20
10 (ALLS) 120

Stellenbosch University http://scholar.sun.ac.za

Appendix D: MC Instruction Count Evaluation 198

10 (FNlN)
00
6 (OSA)
2 (OCOS)
3 (ORDA)
3 (AllS)
00
00
1 (OTWS)
1 (FNlN)

20 Nextj
o tmpstr= Format$(Slope(;) '100, "##0.000")

3144 fileline= fileline + "" + tmpstr
1438 tmpstr= ISstr(i)

3 file line; fileline + " " + tmpstr
36 tmpstr= Format$(Addlenn(i), "###0.000")
o fileline; filel;ne + " " + tmpstr
o
54 Print #1, file line
2 Next;

TOTAL 35988 End Sub

GLSDTM.EXE

function Readnodes(FName:string):boolean;
Read the points to be intermpolated

IfType
/I CoordIype=packed record
/I X,Y,Z:Double;
/I end;
1/ first find number of valid lines to read.
/lOata type of Nodesji]

repeat
1 inc(count);

27 BlockRead(filvar,coord, 1);
4 if coord.z=ssssss then
2 begin

dec(count);
1 break;
o end;
1 until «EOF(Filvar)) or (count = maxIinks));

29
2
o
1

27
8
8
2
1 until (EOF(Filvar) or (count = TotaINodes));

29/1 ..
3

1 (OAIC)
1 (OBR)
1 (C2CO)
1 (OROl)
1 (OSIC)
1 (FNG)
00
1 (FNG)
1 (CFCl)
1 (C2CI)
00
1 (OAIC)
1 (OBR)
2 (AllO)
4 (OROl)
2 (ORDA)
1 (FNG)
1 (CFCl)
1 (C2U)

repeat
inc(count);
BlockRead(filvar,coord,l);
Nodesjcountl.x=Coord.x;
Nodesjcountl.y=Coord.y;

TOTAL 147 end;

1 (FNG)
00
3 (AllO)
6 (OROl)
3 (ORDA)
1 (OBW)
1 (FNlN)

function SaveNodes(FName:string):boolean;
writes the updated nodes
/I ..

1 for i := 1 to TotalNodes do
o begin
12 Coord.Xi=Nodesjij.X:
12 Coord.Y'=Nodesfil.Y;
3 Coord.Zi=Nodesjij.Z;

27 BlockWrite(Filvar,Coord,l);
2 end;

/I ..

57 end;TOTAL

Stellenbosch University http://scholar.sun.ac.za

Appendix E

Me Analysis Results

199

Stellenbosch University http://scholar.sun.ac.za

Appendix E: Me Analysis Results 200

I MODEL-CENTRED DESIGN I

PR1 PR2 PR3 PR4
Type Code Description 104 682 2934 6721
DoE [sj TFD1 Show Direction Definition 1.2 12.1 48.1 494.8
UIC TFD2 Swap Direction Definition 104 682 2934 6721
UIC TMC Topolology MH Correction 125 818 3521 8065

104 682 2934 6721
DoE [sj TCE Topology Model Coord Exp 0.1 4.4 55 283.6
Eq. BICls] TCE Topology Model Coord Exp 0.327 2.143 9.221 21.124

DoE [sj ECI Elevation Model Coord Imp 0.2 0.5. 1.0 1.5
Eq. BICls] ECI Elevation Model Coord Imp 0.015 0.1 0.431 0.988

DoE [sj EEl Elevation Model Elev Exp 0.2 0.5 1 1.5
Eq. BICls] EEl Elevation Model Elev Exp 0.006 0.038 0.167 0.383

DoE [5] TEl Topology Model Elev Imp 1.5 42.1 293.4 2321.8
Eq. BICls] TEl Topology Model Elev Imp 1.7 25.2 344 1693
DoE [5] UE TOTAL: Update Elevations 2.0 47.0 350.4 2608.4
Eq. BICls] UE TOTAL: Update Elevations 2 27.5 353 1715

104 682 2934 6721
DoE [5] TSU Topology Slope Update 2.9 98.3 546 3550
UIC TPU Topology Parcel Update 63 409 1760 4031

104 682 2934 6721
DoE [sj TME2 Second Topology Model Exp 2.3 146.8 1507.9 9017.3
Eq. BICls] TME2 Topology Model Exp 8.2 137.6 2003.0 10024.0

DoE [sj HMI Hydraulic Model Import 7.5 45.0 210.0 1273.5
Eq. BICls] HMI Hydraulic Model Import 8.2 53.7 231.0 529.1
DoE [s] BM TOTAL: Build Model from CAD 9.8 191.8 1717.9 10290.8
Eq. BICls] BM TOTAL: Build Model from CAD 16.3 191.3 2233 10552

104 682 2934 6721
DoE [5] HME Hydraulic Model Export 3.8 22.5 90.0 210.0
Eq. BICls] HME Hydraulic Model Export 3.7 24.5 105.6 241.9

DoE [sj TMI2 Second Topology Model Imp 5.2 40.8 132.8 741.0
Eq. BIC[s] TMI2 Second Topology Model Imp 5.2 37.7 221.5 736.4
Time [5] DM TOTAL: Draw Hydraulic Model 9.0 63.3 222.8 951.0
Eq. BICls] DM TOTAL: Draw Hydraulic Model 8.9 62.2 327.0 978.2

104 682 2934 6721
DoE [sj ALL TOTAL: Build Topo+Model+Draw 20.8 302.1 2291.1 13850.2
Eq. BICls] ALL TOTAL: Build Topo+Mode/+Draw 27.2 281.0 2367.8 13245.2
UIC ALL TOTAL: Mix 292 1909 8215 18817

Notes 1 HMI and HME times are scaled to bring on par with instruction count by
multiplying with 15.

Table E.1: Spreadsheet ofMe performance evaluation

Stellenbosch University http://scholar.sun.ac.za

Appendix F

Source code samples from AC
system

F.I TopoClasses.POTreeTraversal Class

package TopoClasses;

import java.util.*;
import Application.*;
import CoreClasses.*;

/**
* Implementation of a Post-order tree traversal iterator
* Builds a stack of vertices, and provide an iterator to this stack
*/

public class POTreeTraversal implements Iterator (
/**
* Maintain a stack of vertices
*/

private Stack vertexStack;
/**
* The root identifier
*/

private String rootId;

/**
* Public parameterless constructor not used
*/

public POTreeTraversal(){}

/**
* Public constructor
* Initializes the vertex stack

201

Stellenbosch University http://scholar.sun.ac.za

Appendix F: Source code samples from AC system 202

* Reset the visited state on all vertices by calling Util#unVisitVertices(DataModel dm)
* Add the rootid as first element of queue, and set the visited prop-

erty of this item.
* @param rootId the start vertex for the traversal
* @param dm a reference to the DataModel
*
*/

public POTreeTraversal(String rootId, DataModel dm) {
this.rootId = rootId;
vertexStack = new Stack();
Util.unVisitVertices(dm) ;
if (rootId != null) {

vertexStack.push(rootId) ;
Util.vertex(rootId) .visit();

/**
* Public implementation of hasNext() method.
* @return true if the vertex stack is not empty
*
*/

public boolean hasNext() {
if (vertexStack.isEmpty()) return false;
return true;

/**
* Public implementation of next() method.
* Add fromVertices() to stack, as long as it is unvisited.
* Include push from stack for post-order processing.
* @return the next vertex in the virtual iterator
*
*/

public Object next() {
boolean continueClimb;
String currentVertexId (String) vertexStack.peek();

dol
continueClimb=false;
Vertex currentVertex = Util.vertex(currentVertexId);
Iterator e = currentVertex.fromVertices();
while (e.hasNext()) {

Vertex adjacentVertex = Util.vertex(e.next());
if (!adjacentVertex.isVisited()) {

vertexStack.push(adjacentVertex.getId()) ;
adjacentVertex.visit() ;

currentVertexId =adjacentVertex.getId();
continueClimb=true;
break;

}while (continueClimb);

Stellenbosch University http://scholar.sun.ac.za

Appendix F: Source code samples from AC system 203

vertexStack.pop() ;
return currentVertexId;

public void remove() {

Stellenbosch University http://scholar.sun.ac.za

Appendix F: Source code samples from AC system 204

F.2 TopoClasses.DFTreeTraversal Class

package TopoClasses;

import java.util.*;
import Application.*;
import CoreClasses.DataModel;

/**
* Implementation of a depth-first tree traversal iterator
* Builds a stack of vertices, and provide an iterator to this stack
*/

public class DFTreeTraversal implements Iterator (
/**
* Maintain a stack of vertices
*/

private Stack vertexStack;
/**
* The root identifier
*/

private String rootId;

/**
* Public parameterless constructor not used
*/

public DFTreeTraversal() (j

/**
* Public constructor
* Initializes the vertex stack
* Reset the visited state on all vertices by calling Util#unVisitVertices(DataModel dm)
* Add the rootid as first element of queue, and set the visited prop-

erty of this item.
* @param rootId the start vertex for the traversal
* @param dm a reference to the DataModel

*/
public DFTreeTraversal(String rootId, DataModel dm) (

this.rootId = rootId;
vertexStack = new Stack();
Util.unVisitVertices(dm) ;
if (rootId ! = null) (

vertexStack.push(rootId);
Util. vertex (rootId) .visi t ();

/**
* Public implementation of hasNext() method.
* @return true if the vertex stack is not empty
*
*/

public boolean hasNext() {

Stellenbosch University http://scholar.sun.ac.za

Appendix F: Source code samples from AC system 205

if (vertexStack.isEmpty()) return false;
return true;

/**
* Public implementation of next() method.
* Add fromVertices() to stack, as long as it is unvisited.
* @return the next vertex in the virtual iterator
*
*/

public Object next() {
String currentVertexld = (String) vertexStack.pop();
Vertex currentVertex = Util.vertex(currentVertexld);

Iterator e = currentVertex.fromVertices();
while (e.hasNext()) {

Vertex adjacentVertex = Util.vertex((String) e.next());
if (!adjacentVertex.isVisited()) {

vertexStack.push(adjacentVertex.getld()) ;
adjacentVertex.visit() ;

return currentVertexId;

public void remover) {

Stellenbosch University http://scholar.sun.ac.za

Appendix F: Source code samples from AC system 206

F.3 TopoClasses.BFTreeTraversal Class

package TopoClasses;

import java.util.*;
import Application.*;
import CoreClasses.*;

/**
* Implementation of a breadth-first tree traversal iterator
* Builds a vector queue of vertices, and provide an iterator to this vector
*/

public class BFTreeTraversal implements Iterator (
/**
* A Vector queue build the list of vertices
*/

private Vector vertexQueue;

/**
* The root identifier
*/

private String rootId;

/**
* Public parameterless constructor not used
*/

public BFTreeTraversal(){}

/**
* Public constructor
* Initializes the vector queue
* Reset the visited state on all vertices by calling Util#unVisitVertices(DataModel dm)
* Add the rootid as first element of queue, and set the visited prop-

erty of this item.
* @param rootId the start vertex for the traversal
* @param dm a reference to the DataModel
*
*/

public BFTreeTraversal(String rootId, DataModel dm) (
this.rootId = rootId;
vertexQueue = new Vector();
Util.unVisitVertices(dm) ;
if (rootId != null) (

vertexQueue.addElement(rootId) ;
Util.vertex(rootId) .visit();

/**
* Public implementation of hasNext() method.
* @return true if the vertex queue is not empty
*
*/

Stellenbosch University http://scholar.sun.ac.za

Appendix F: Source code samples from AC system 207

public boolean hasNext()
if (vertexQueue.size()
return true;

0) return false;

/**
* Public implementation of next() method.
* Add fromVertices() to queue, as long as it is unvisited.
* @return the next vertex in the virtual iterator
*
*/

public Object next() {
String currentVertexld ~ (String) vertexQueue.elementAt(O);
Vertex currentVertex ~ Util.vertex(currentVertexld);

vertexQueue.removeElementAt(O) ;
Iterator e ~ currentVertex.fromVertices();
while (e.hasNext()) {

Vertex adjacentVertex ~ Util.vertex((String) e.next());
if (!adjacentVertex.isVisited()) {

vertexQueue.addElement(adjacentVertex.getld()) ;
adjacentVertex.visit() ;

return currentVertexId;

public void remover) {

Stellenbosch University http://scholar.sun.ac.za

Appendix F: Source code samples from AC system 208

F.4 TopoClasses.AgeComparator Class

package TopoClasses;

import java.util.*;

/**
* A special implementation of the Comparator Interface
*/

public class AgeComparator implements Comparator{

/**
* Parameterless constructor - not used.
*/
public AgeComparator() {j

/**
* Implementation of the compare method
* Results in sorting from small to large
*/
public int compare(Object ol, Object 02) {

Integer agel,age2;
agel=new Integer(((Vertex) ol) .age);
age2=new Integer(((Vertex) 02) .age);
return (agel.compareTo(age2));

/**
* Implementation of the equals method
*/
public boolean equals (Object obj) {

return super.equals(obj);

Stellenbosch University http://scholar.sun.ac.za

Appendix F: Source code samples from AC system

F.5 TopoClasses. Util Class

package TopoClasses;
import java.util.*;
import CoreClasses.*;
import GeomClasses.*;
import Application.*;

/**
* Utility class for the Topology Package
*/

public class Util {

/**
* Iterate over all manholes in the application, and reset visited state
*/

static void unVisitVertices(DataModel dm) {
Iterator v = dm.getManholes();
while (v.hasNext()) {

String tmpId = (String) v.next();
Vertex tmpVertex = (Vertex) App.getObject(tmpId);
tmpVertex.unvisit() ;

/**
* Iterate over all manholes in the application, and reset age to zero
*/

private static void resetAge(DataModel dm) {
Iterator v = dm.getManholes();
while (v.hasNext()) {

String tmpId = (String) v.next();
Vertex tmpVertex = (Vertex) App.getObject(tmpId);
tmpVertex.resetAge() ;

/**
* Calculate the age of all vertices in the tree.
* Firstly reset the age to zero for all vertices.
* Then switch Vertex#sorting off, since sorting requires age calcula-

tions, and age calculations requires POTreeTraversal (from leaves to root) .
* Then get a post-order traversal iterator (i.e. from leaves to root).
* Then traverse, and increment age by one.
* Untested for branching outEdges!
* Finally, set Vertex#sorting on again.
*/

public statie void calcTreeAge(String rootId, DataModel dm) {
Vertex usVertex, dsVertex;
Edge edge;

209

Stellenbosch University http://scholar.sun.ac.za

Appendix F: Source code samples from AC system

//

resetAge (dm);
Vertex.sorting=false;
Iterator vertexIds = new POTreeTraversal(rootld,dm);
while (vertexlds.hasNext()) (

usVertex =(Vertex) App.getObject((String) vertexlds.next());
if (usVertex.outDegree() > 0) (
Iterator edgelds = usVertex.outEdges();
while (edgelds.hasNext()) (

edge = (Edge) App.getObject((String) edgelds.next());
dsVertex = (Vertex) App.getObject(edge.getTold());
dsVertex.incAge(usVertex.getAge()) ;

//

Vertex.sorting=true;

/**
* Calculate the age in terms of distance (edge lengths) of all ver-

tices in the tree.
* Firstly reset the age to zero for all vertices.
* Then switch Vertex#sorting off, since sorting requires age calcula-

tions, and age calculations requires POTreeTraversal (from leaves to root) .
* Then get a post-order traversal iterator (i.e. from leaves to root).
* Then traverse, and increment age by length of edge (in GeomClasses)
* Untested for branching outEdges!
* Finally, set Vertex#sorting on again.
*/

public statie void calcTreeDistance(String rootId, DataModel dm) (
Vertex usVertex, dsVertex;
Link tmpLink;

//

resetAge (dm) ;
Vertex.sorting=false;
Iterator vertexIds = new POTreeTraversal(rootld,dm);
while (vertexlds.hasNext()) (

usVertex =(Vertex) App.getObject((String) vertexlds.next());
if (usVertex.outDegree() > 0) (
Iterator edgelds = usVertex.outEdges();
while (edgelds.hasNext()) (

tmpLink = GeomClasses.Util.link((String) edgelds.next());
dsVertex = Util.vertex(tmpLink.getTold());
dsVertex.incAge(usVertex.getAge() ,
(new Double (tmpLink.getLength() .getLength())) .intValue());

//

Vertex.sorting=true;

210

Stellenbosch University http://scholar.sun.ac.za

Appendix G

AC Instruction Count
Evaluation

211

Stellenbosch University http://scholar.sun.ac.za

UE.
TCElECV
EEIITB-"IloIE2IIM
HME1TM2
'DM!

'ill,

DATA MODEL I ELEVATION MODEL 1
374 255,_ UpdlMElwllflonsO

ICAD MODELl DATA MODEL I
104,&49 71,507,182 tw_FrotnCMIO
7,995 5,452,590 drrwModelO

]

public void updateElevations() throws RemoteException{
Transfercoordinates from Data Model to DTM Model

10
1 (FNLF)
1 (OROL)
1 (ALLO)
1 (FNC)
1 (OROL)
10
1 (ALLO)
1 (FNC)

10
1 (FFPR)
1 (FFPF)
1 (FNC)
1 (OROL)
1 (FFPR)

10
1 (ALLO)
1 (FNC)
1 (OROl)
1 (FFPR)
1 (OJH)
1 (FNC)

10
1 (FNC)
1 (OROL)
1 (FNPR)
2 (FNC)
1 (OROL)
2 (FNPR)
2 (ALLO)
1 (FNPF)

10
2 (ALLO)
2 (FNC)
2 (FNPF)

10
10

lterator mhlds =manholes.lteratorO;
wille (rnhlds.hasNextO) (

o
1
2

22
7
2
o

22
7
o
2
6
7
2
2
o

22
7
2
2

50
7
o
7
2
2

14
2

/1> boolean hasNext();

131 [llTIlGE Man~ rnh = UtiI.rnanhole(rnhlds.next()):
II> Object next();

102 [MH] II> public sta1Ic Manhole manhole(Object objectld) (
return (Man~) App.getObject«Stmg) obje<:tJd):

83 [GO] /1> public static AppObject getObjec1(String objectld) (
AppObject tmpObj = (AppObject)objedMap.get(objec1ld):

lihash op
rnh.updateElevationO:

II> public void updoteElev.tion(){
lJtj[)TM.UpdateElevation(id):

/1> pubic _ void Upda_a1Ion(Strlng nodell)!
Node tmpNode = node(nodeIO):

II> private static Node node{Object objectld) (
return (Node) App.getObject«String) objectId):44

2
83I,GOJ
8

14

II> public static AppObject getObjec1(Strlng objectd) (
double tmpX = tmpNode.getXO:

/1> pubic d~ getX(){retum x;)
double tmpY = tmpNode.getYO:
II> public double getY(){retum y;)

I...

::t>:g
s
Q.

><'
CJ'.
::t>
CJ
5'
CJ)
q-
t:o...........
o
:J
CJ
oc
:J......
tTl
~..._
c
til...........o
:J

N,_.
N

Stellenbosch University http://scholar.sun.ac.za

1 (FNC) 7 tmpNode.setZ(tmpZ): ~1 (FFPO) 3 II> public void SetZ(double z){1hIs.r-z;} :g1 (ALLD) 4)
1 (FNlN) 2)

ttl
TOTAL 374 ::l

0...publk: void buildModelFromCad() throws RemoteException{ S<.Build 8 hydraulic model from the CAD moclel
11...••

CJ3 (ORDL) 6 if (ds.drawables[i].getDrawType()--DrawAbIe._drawUne){fIline
1 (OROA) 1 II> public Int getDrawTypo(){

~1 (FNC) 7 W(nrf>oints=OrawabieCOf1vener.CIRCU;_SEGMENTS) retum LdrawCirde):
1 (FNPF) 2 W(nrf>oirrts=2) retum LdrawLine): CJ1 (C2lI) 3 W(nrf>oints=1) retum LdrawPoint):

5'3 (C2lI) 9 retum LdrawUndef):
1 (ORDL) 2)

'Jl1 (ALlO) 4 58 [GFC] tmpX1=ds.drawables[i].getFromCoord{).x: q3 (ORDL) 6
1 (ORDA) 1 I:
1 (FNC) 7 II> public Point3O gotFromCoonIO{ Ï),....1 (C2CO 2 W(nrf>oints<=2)
1 (OCO) 10 retum (new Point3DQine(ODl: 0
3 (FNPD) 9 23 !p30] II> pubic Polnt3D(lIoat xx, !Ioat yy, ftoat zz) { ::l
3 (AllO) 12 x=xx:

CJ1 (FNPF) 2 y = yy:
00 0 z e zz: 0
00 0 } I:
1 (C2LI) 3 W(nrf>oints=DrawableConvener.CIRCU;_SEGMENTS) ffcitcle ::l
1 (ORDL) 2 else ,....
00 0 } tTl10 58 [GFC) tmpY1=ds.drawables(i).getFromCoordO·y;

~DO 58 II> public Point3D gotFromCoonIO{
00 0 llGet To Node Coords ..._
10 58 [GFC] tmpX2--ds.drawables(i].getToCoordO.x; I:
00 0 II> public Point3D gotFromCoonIO{ ~
10 58 [GFC] tmpY2--ds.drawables(i].getToCoordO·y; 0".2 (OADC) 8 II> public Point3D gotFromCoonIO{ 02 (ODDC) 8 tmpXc=(tmpX 1-+1mpX2)/2.0: ::l2 (ALlO) 8 tmpYc=(tmpY1-+1mpY2)12.0:
2 (FNPD) 6 nco = new NearestCADObject(tmpXc,tmpYc~ervenLayer:O'1:
1 (FNPI) 2
1 (FNPR) 2
1 (OCO) 10
1 (AllO) 22

10 1553.048 [NCO)
1 (ALlI) 2 84[GI) ervenCount=nco.geUntO:
1 (OROL) 2
1 (FNC) 7 Int go1Im(K
1 (ALlI) 2 tmplnt= Integer.parselnt(nearestString);
1 (OCSI) 69 return tmplnt:
1 (FNPF) 2 }
2 (FNPO) 6 nco = new NearestCADObject(tmpXc,tmpYc._invertTextLayer."O.OO - 0.00");
1 (FNPI) 2
1 (FNPR) 2
1 (OCO) 10
1 (AllO) 22
00 1553.048 [NCO) llInvenStrings
1 (ALlO) 4 495 [GP) sIopevBFnco.getPercentage()JI'%
1 (ORDL) 2 II> doubla gatPercentage{K
1 (FNG) 7 int i"lpos = nearest$tmg.mexOfC'%");
1 (OSI) 44 try{
1 (ALlI) 2 W(i1pos>-1) VI dash found

I
N

1 (C2CI) 2 tmpDouble= Double.parseDouble(nearestString.substring(O.inpos)): ,_.
1 (OSM) 310 }else W1 (OCSO) 118
1 (AllO) 4 } catch (Exception x) {
1 (FNPF) 2 returntmpDou~:

Stellenbosch University http://scholar.sun.ac.za

2 (FNPD)
1 (FNPI)
1 (FNPR)
1 (OCO)
1 (ALLO)
1 (OCIS)
1 (OSA)
10
1 (ALLS)
1 (OROL)
1 (FNC)
1 (FNPF)
2 (FNPD)
1 (FNPI)
1 (FNPR)
1 (OCO)
1 (ALLO)
1 (OCIS)
1 (OSA)

10
1 (ALLS)
2 (FNPO)
1 (FNPQ
1 (FNPR)
1 (OCO)
1 (ALLO)

00
1 (AlLO)
1 (OROL)
1 (FNC)
1 (OCSO)
1 (AlLO)
1 (FNPF)
2 (FNPD)
1 (FNPI)
1 (FNPR)
1 (OCO)
1 (ALLO)

10
1()
1 (FFC)
1 (FFPR)

14 (FFPD)
6 (FFPI)

10

TOTAL

125
5.456

1 (FNC)
1 (ALLI)
1 (FNlF)
1 (C2U)
2 (OROL)
1 (C2CI)
4 (OROL)
1 (OROA)
1 (FNPF)
1 (C2L1)
o (OROL)
1 (FNC)

6
2
2

10
22

613
100 100 [JaYaStringAdd]

1553.048 [NCO)
12
2
7
2
6
2
2

23 [GS)

10
22

613
100 100 [JayaStringAdd]

1553.048 [NCO]
23 [GS]
6
2
2

10
22
o [NCO) NlA
4 137 [GD)
2
7

118
4
2
6
2
2

10
22

1553.048 [NCO]
137 [GD)
212

2
42
12

93895 [SMAL)

104649.24 [BM)

nco = new NearestCADObject(tmpX1.tmpY1~mhTexU..ayer."USMH"+lnteger.toStri1g(O);

usMhText=nco.getStringO;
II> StrIng getString(){

return nearestString;
}

nco = new NearestCADObject(tmpX2.tmpY2~mhTextL.yer."OSMH"+lnteger.toString@;

dsMhText=nco.getStringO;
nco = new NearestCADObject(tmpX1.tmpY1~elevTexU..ayer."0.00");

eleYText=nco.getOoubleO;
II> double ge1llouble{){

tmpDouble= Double.parseQouble(nearestString);
return tmpDouble;

}
[NCO] nco = new NearestCADObject(tmpXc.tmpYc~diamTexU..ayer,"199.W);

diamText=nco.getOouble();
se_.addLlne(usMhT.xt,tmpX1.tmpY1.1mpX2.tmpY2,elevT.xt,uslnYer!,

d_Toxt,dslnvort,dlamToxt,O.OIl.O.sIopeval.1.
erve nCounl,O.O.M.O.O.O.O);

11-> IICross PIatIoon Call

LENGTHY AUXILLARY FUNCTIONS

1/n
Asstme number of pipes searehed in standard raclus: -> more found in denser networtt
This is to ensure compatibllty with the assumptions made fOf'the modek:._ design.

7
2

5.456
16.368
21.824
10.912
43.648

5.456
10.912
16.368

o
38.192

class Nea tObject (
1 l/Constru NearestCADObject(double xPos. double yPos. Stri1g layerT. String defaunStri1g){
1 OrawAbte.resetSnap(); IJreset snap state

5.456 for 0 = 0; j < VoewerExtension.ds.nrDrawables; j++){
5.456
5.456
5.456
5.456

5.456
5.456
5.456
5.456
5.456

W (VoewerExtension.ds.drawables(jJ.getOrawType()=OrawAbIe._drawText)

II> public int geU)rawType(){
ff (nrf>oints=2) return Ldrawlne); IImost cases
ff (nrf>oints=DrawableConverter.CIRCLE__SEGMENTS) return LdrawCircle);
ff (nrf>oints==1) return LdrawPoint);
return LdrawUndef);

;:r:..:g
(1)
:::l
c,S(.
c;J

;:r:..
CJ
5'
VJ
q-
t:
rJ...,......o
:::l
CJoc
:::l...,.
trJ
Oi.._
c~...,.
g'

N.....
~

Stellenbosch University http://scholar.sun.ac.za

1 (C2CS) 272.8 5.456 W(VlOWeIExtension.ds.drawables[jJ.layer.Qe1NameQ.equaJs(layerT)
5 (OROL) 54.56 5.456 'I/most cases not:
1 (ORDA) 5.456 5.456
1 (FNC) 38.192 5.456
1 (FNC) 38.192 5.456 V..werExtension.ds.drawables{j].getNearestEntity«new FIoa~xPos».fIoatValue().
3 (OROL) 32.736 5.456 (new FIoat(yPos».floatValue():
1 (ORDA) 5.456 5.456
2 (OCO) 109.12 5.456
2 (FNC) 76.364 5.456
2 (FNPF) 21.824 5.456
2 (FNPD) 32.736 5.456 I/> public DrawAble getHe.restEntity(float xPos. _ yPos) {
2 (AllO) 240.064 5.456 p3=dxftextTmp.getPositionO:
1 (OROL) 10.912 5.456
1 (FNC) 38.192 5.456
1 (ALlO) 21.824 5.456 dis! = (p3.x-xPos)"(p3.x-xPos)+
1 (OADO) 21.824 5.456 (p3.y-yPOS)"(p3.y-yPos):
2 (OMDO) 43.648 5.456
4 (0500) 87.296 5.456
4 (OROl) 43.648 5.456
1 (C2lD) 27.28 5.456 W (dist < snapMinFloatDistance) (
1 (ALlO) 21.824 5.456 snapMinFIoatDistance=dis!:
1 (AllO) 120.032 5.456 snapEntity=this:
1 (FNPF) 10.912 5.456 retum (this):)

TOTAL 1553.048 [NCO]

1 (C2CO)

00
1 (AllO)
1 (FNC)
2 (FNPR)
3 (FNPD)
1 (ORDL)
10
00
1 (AllO)
2 (C2CD)
1 (ALlS)
2 (FNPD)
1 (FNPF)
1 (FNC)
2 (ALlO)
1 (OROL)
1 (FNC)
1 (FNPF)
1 (AllO)
1 (FNC)
1 (FNlF)
1 (ALlS)
1 (FNG)
1 (OROL)
1 (AllO)

10
2 (FNC)
2 (FNPF)
2 (ALlO)
2 (OSDO)
2 (C2CD)
6 (OROL)

6
2
7

44
2
7
2

7502
2387
341

4092
2387
682

7502
o

4774
1364
2728
2728
2728
4092

o
22
7
4
9
2

83 [GO]
o

22
8

12

public String addUne(StrIng usMhText, double xIC. double yfC. double xtC. double vtC.
double ejev, double uslnvert.
String dsMhText, double dslnvert, double diam.
double leng, double manning, double slope, Int newptpe,
Int enCountA, Int eevenCountB.1nt enCountC.1nt ervenCountD.
Int enCountE.
double PoIntSource1. double PointSource2) tIYows Remo18Exeeptlon (

W (dsMhText=null)(
else{

usManhole=Manhole.eonstruct(usMhText.x1C. yfG. elev. this):
I/> statie pubic Manhole eonstruet(StrIng Id. double x,doWle y,double Z. DataModeI dm) {

44908 [CM]

if (App.eontainsObject(id» { Iionty for numbered systems
else{ IInew: search based on coords for blank systems

tmpMHid=nul:
if «x!=O)&&(yl=O)X
tmpMHid = findNode(x.y.dm):

I/> public statie String findNode{double x, double y. DataModel dm){
lterator v = dm.getManholesQ:

341 AVG 50'!?
341
341
341
341
341
341
341 [GO]
341
341
341
341
341
341

whie (v.hasNextOX

tmpld = (String) v.nextQ:

Node tmpVertex = (Node) App.getObject(tmpld):
W«Math.abs(tmpVertex.getX(~x) < UtiI._deItaX) &&

(Math.abs(tmpVertex.getY()-y) < Uti._deltay) {
resld=tmpld:
break;

:§
s
~
CJ
~
CJ
5'
[Jj
q-
t:
(").......... -o
::l
CJoc
::l.....
trJ
~._
c
til::t
o
::l

N-oi

Stellenbosch University http://scholar.sun.ac.za

1 (ALlS)
1 (FNG)
1 (FNLN)
1 (FNPF)

00
1 (C2CO)
1 (ALlO)
1 (FNPR)
3 (FNPO)
1 (OCO)
1 (FNPR)
3 (FNPO)
1 (FNC)

00
00
00
00
00
1 (FNPR)

00
00
00
1 (CFCO)
1 (FNC)
1 (CROL)
1 (FNPF)
1 (ALlS)
10
1 (ALlS)
3 (ALlO)

00
00
2 (ALlO)
2 (OCO)
2 (ALlO)
2(OCO)

00
10
00
2 (ORDL)
1 (FNC)
1 (ALlS)
1 (FNPF)
1 (OJH)

10
1()
1 (AllO)
3 (FNPR)
2 (CROL)
1 (OCO)
2 (FNC)
2 (FNPF)
2 (AllO)
3 (FNPR)
1 (FNC)

00
00
00
00
1 (ACLD)

00
00
2 (AllO)
2 (OCO)
O()
1 (ACLD)
1 (ACLD)

12
1

682
2
o
2

22
2
9

10
12
54
42
o
o
o
o
o
4
o
o
o
2
7
2
2

12
200
12
12
o
o

44
20
44
20
o

131 [UllLGEl]
o
4
7
12
2

50
44906 (.CM]

75 [MAJ
22
6
4
10
14
4

44
30
35
o
o
o
o
2
o
o

44
20
o
2
2

1
1

341
1

237 [APPO]

75 [MAJ

6 (RES]

)
return (resId):

)
W (tmpMHid=nul)
tmpMH = new Manhole(id.x.y.z):

II> priva1e Manhole(String Id,double x, double y, double z){super (Id,x,y.z);)
II> public Manhole(S1rIng Id,double x, double y, double z){super (Id,x,y,z);)

II> pubic Manhole(String Id,double x, double y, double z){super Pd,x,y.z);)
II> public MaMole(String Id'- x, double y, double z){super (Id,x,y,z);)

II> public Manhole(String Id,double x, double y, double z)(super (Id,x,y,z);)
II> pubic Node(String Id,double x,double y,double z)(

super(id.x.y.z):)
II> public Node(String Id,double x.double y,double z)(

super(K1):
/1-> public Vet1ex(String Id) (/lean construct uncOfWleCtedvertex

super(id):
/1-> public AppObject(String Id) (

W (id=null) {K1=App.getAutoIdO:)

this.id= id:
/lGetting unused id

this.x:x:
this.y=y;
this.z=z:
inFlow = new Hydrograph(nul):
outFlow = new Hydrograph(nuIQ:

toEdges = new HashSetO:
fromEdges = new HashSetO:

else
tmpMH = UtiI.manhole(tmpMHid):

}
manholes.add(usManhole.getld()):

/lsecond dsManhoie = Manhole.construcl(dsMhText.xtC.ytC. O.O. this):
manhoies.add(dsManhole.getJdO):
pipe = new Pipe(usManhole.getJdO.dsManhole.getIdO.null):

II> public PIpe(S1ring _, String told, String Id) (
super(fromld.told.idl:

II> public Pipe(String _, StrIng told, StrIng Id) (
super(fromld.told.id):

II> public PIpe(String _, String told, String Id) (
super(fromld.told.id):
oIdOiameter=O.O:

II> public Pipe(String _, String told, String Id) (
super(fromld.told.id):
bs = new BnSetO:
full = new ResultsO:
II> public Results() (

capRes=O.O:
fIowRes=O.O:

~:g
~
0..~.
CJ
~
CJ
5-
Cl)
q-
t:
(")
.-;.....o
::l
CJoc
::l
.-;.

tTl
o:i..._
c
III
.-;.

§'

N.....
0)

Stellenbosch University http://scholar.sun.ac.za

1 (ACLD)
1 (ACLD)
20
2 (AllO)
2 (OCO)
00
00
O()
00
00
00
00
00
2 (AllO)
2(OCO)
00
1 (ACLD)
1 (ACLD)
1 (ACLD)

00
2 (AllO)
2 (OCO)
1 (ACLD)
1 (ACLD)
1 (ACLD)
1 (ACLD)
1 (ACLD)

00
2 (AllO)
2(OCO)
00
1 (ACLD)
1 (ACLD)

00
2 (AllO)
2 (OCO)
3 (FNPR)
10
3 (FNC)
1 (ALlO)
1 (OCO)
1 (FNC)
1 (FNPR)
1 (C2CI)
10
1 (FNC)
1 (FNPR)
1 (ORDL)

00
1 (C2CI)
1 (ALlI)
1 (C2LI)
1 (ALlS)
1 (FNPF)

00
1 (OJH)
1 (ALlI)
1 (C2CI)
10
1 (FNPF)

00
10
00
00
10
4 (FNC)
2 (FNPD)

2
2
8

44
20
o
o
o

44
20
o
2
2
2
o

44
20
2
2
2
2
2
o

44
20
o
2
2
o

44
20
6

237 tAPPOJ
21
22
10
7 305 [nFV]
2
2

131 [UTILGEl)

7
2
2
o
2
2
3

12
2
o
50
2
2

75 !MAJ
2
o

305 [nFV]
o
o

75 !MAJ
28
6

vefRes.=O.O;
deplhRes--O.O;

wet = new Resulls();
dry = new Results();

II> pWIc Plpe(String frornId, String told, String id) (
super(fTomld,told,id);

public Link(String fTomld. String told. String id) (
super(fromld.told.id);

}
II> public Llnk(String frornId, String told, String Id) (

super(fTomld,told.id);
this.length = new LengthO; II set defaults

1/> public LengthO (
this.usert..ength = 0.0;
this.calcLength = 0.0;
this. length = 0.0;

)
this.sIope = ,_. Slope(); 1/ set defaults

II> public Slope() (
this.userSlope = 0.0;
this.caIcSIope = 0.0;
this.sIope = 0.0;
this.uslnvert= 0.0:
this.dslnvert = 0.0;

)
"'Flow = new Hydrograph(nui);

II> public Hyd"'9raph(String Id) (
super(id);
minVat=O.O:
maxVaI=O.O:

}
outflow = new Hydrograph(nul);

II> pubic Edge(String frornId, String told, String Id) (
super(id);

newFromVertex(fromld);
newToVertex(told);

surfaces = new HashSetO;
II> public void newFromV_x(String v_xld)(

• (addFromVertex(vertexld» UIl.vertex(fromld).addFromEdge(this.id);

II> public boolean addFnomV_x(String v_xldl(
boolean b = (fTomld=null);

• (b) fTomld=vertexld;
retumb:

}
1/> public _n ackFnomEdge(String edgeld)(

boolean b= ~romEdges.contains(edgeld); IIredundant?

• (b) fromEdges.add(edgeld);

return b:
)

II> public void newToV_x(String v.""'xId)(
• (addToVertex(vertexld)) UliI.vertex(told).addFromEdge(this.id);

p;pes.add(p;pe.geUdO);
p;pe·ge<SIopeO·setUsinvert(usinvert);
pipe.ge<SlopeO·setDslnvert(dslnvert);

:g
(t)
::l
Cl.
!><.

CJ
~
CJ
5'
[Jj
q-
t:o.........c
::l
CJ
o
c
::l....
tT1
~..._
c~
i:1".
§

N......
-.J

Stellenbosch University http://scholar.sun.ac.za

4 (OROl) 8 II> pubic void setUslnvert(doubie usinvert){this.U$lnv_uslnvert;) ::t;:..
2 (ALlO) 8 II> pubic void setDslnvert(doubie dslnvert){this.dslnv_dslnvert;) :g3 (FNC) 21 pipe.setDiametertdiam 11000.0); /1m
3 (ALLO) 12 pipe.setl.ength(1eng); /Ir» from coord CTl3 (OROl) 6 pipe.setSlope(sIopeIloo.0); /I"",from coords :::l3 (FNPD) 9 c,2 (ODDe) 8 S<.1 (C2CO) 4 l (mannng_.O)
1 (ALlO) 4 pipe.setManning(UtiI._manConst);

()1 (FNC) 7 eise
1 (FNPD) 3 pipe.setManning(manning);
1 (ORDL) 2 ::t;:..
1 (C2CI) 2 W(newpipe=l) pipe.setExisting(false); CJ1 (FNC) 7
1 (FNPI) 2 5'1 (ALLI) 2 /lA

(/)1 (ALLO) 22 2191 [ERFCOt erventmp=Erf.construct(We.getldO."A··.HydroClasses.UtiI_capitaConSl,
1 (FNC) 7 ervenCountA); ..,
2 (FNPR) 4 c
1 (FNPI) 2 n
1 (FNPD) 3
4 (ORDL) 8 0
1 (FNC) 7 :::l1 (OROl) 2

CJ1 (FNPF) 2
1 (ALLS) 12 0
00 0 II> public static StrIngD construct(String edgeId, String productionld, double capita, int count){ c
1 (FNLF) 2.5 2.5 Avg=2.5 for (int i=O;i<count;i++){ :::l1 (C2LI) 7.5 2.5
1 (OCO) 25 2.5 erf = new ErI(null,edgetd.productionld.capita); Irld to be generated

tTl3 (FNPR) 15 2.5
1 (FNPD) 7.5 2.5 II> pubic ErflStrlng id, String edgeId, StrIng productionId, double capita) (~12 (FNPR) 60 2.5 supe~id.edgeld.productionld.capita); .._
4 (FNPD) 30 2.5 II> pubic ErflStrlng Id, StrIng edgeId, StrIng productionld, double capita) (c4 (FNC) 70 2.5 super(id.edgeld.productionld.capita); Ol
00 0 2.5 II> public Erf{Strlng id, String edgeId, StrIng productionId, double capita} (..........00 0 2.5 super(id,edgeld.productionld.capita); 000 0 2.5 II> pubic ErflString Id, StrIng edgeId, StrIng prodUctionId, double capita} (:::l00 0 2.5 super(id.edgeld.productionld.capita);
00 0 2.5 }
6 (FNPR) 30 2.5 II> public Erf(String Id, String edgeId, StrIng productionld, double capita} (
3 (FNC) 52.5 2.5 super(id.edgeld);
1 (ALLS) 30 2.5 this.productionld = productionId;
1 (ALLO) 10 2.5 this.capita = capita;
00 0 2.5 II> public _(String Id, StrIng edgeld} (

00 0 2.5 super(ld.edgetd);

00 0 2.5 II> public _(StrIng id, String edgeld} (

00 0 2.5 supe~id.edgeld);
1 (ALLO) 55 2.5 vertices = new double[3D;
1 (OCO) 25 2.5 II> public Surface(Strlng Id, String edgeId} (

10 592.5 2.5 [APPel super(id);
1 (ALLO) 55 2.5 this.edgeld=edgeld;

10 762.5 2.5 [nFV] UtiI.edge(edgeld).addSurface(this.id);
1 (ALLS) 30 2.5 erven[iJ=erf.geUdO;
1 (FNC) 17.5 2.5
1 (OROl) 5 2.5
1 (ORDA) 2.5 2.5
1 (ALLS) 30 2.5
1 (FNPF) 5 2.5
1 (FNLN) 5 2.5
1 (FNPF) 2 2.5 retum erven:
00 0 2.5 } N10 187.5 2.5 !MAJ for (FO;i<erventmp.length;i++) erven.add(erventmp[i]);1 (OROl) 5 2.5

001 (ORDA) 2.5 2.5

00 o End of erf add !JE Repeat for B to E

00 0 o [ERFCOt erventmp=Erf.construct(We.getldO.·'B".HydroClasses.UtiI._capitaConSl,

Stellenbosch University http://scholar.sun.ac.za

TOTAL

1 (FNlF)
1 (ORDL)
1 (ALLO)
1 (FNC)
1 (OROL)
10
1 (FNC)
1 (FNPR)
1 (ORDL)
1 (ALLQ
5 (ORDL)

• (FFC)
• (ALLD)
• (FFPF)
• (FFPD)00
2 (C2CO)
2 (OROL)
1 (FNC)
3 (ORDL)
• (FNPD)
1 (FNPI)
2 (FNPR)
1 (ALLO)
1 (OCO)
1 (FNPI)

00
1 (C2CI)
1 (ALLO)
10
1 (OCO)
1 (ORDL)
1 (FNC)
3 (FNPD)
1 (ORDL)

00
1 (C2CO)
1 (ALLO)
10
1 (OCO)
1 (ORDL)
1 (ALLO)
1 (OAIC)
1 (ORDA)
1 (OCO)
'0
'0
1 (ALLI)
1 (FNC)
1 (ORDL)
1 (FNPF)
2 (FNC)
1 (FNPF)
2 (ORDL)
2 (ALLS)
1 (FNPR)
1 (FNC)
1 (ORDL)
1 (FNPR)
00
1 (ALLO)
1 (OAIC)

S1MS [SMAlJ

public void drawModel() throws RemoteException{
Draws the hydraulic model in the CAD Environment

1
2

22
7
2

581 I,1JTLGETJ
7
2
2
2

10
648
16
2.
12
o
•4
7
6

12
2
4

22
10
2
o
2

22
23 [p3D]
10
2

wille (pipelds.hasNextO) (
pipe = lJII.pipe((SUing) pipelds.nextO);

pipe.draw(modeIVoewer);
II> P<lbIIc void draw{1Cad rnocIeW .. werl{

int 0 = modeIVoewer.dral'l..ine(«Node) tris.getUsNode().getXO,
«Node) this.getUsNodeQ).getYQ,
«Node) this.getDsNodeQ).getXO,
«Node) this.getDsNodeQ).getYO);

II> P<lbIc: Int drawLNidouble x1, double y1, double x2, double y2)thlOW$ R...-Exception;
• «dx!Voewer. inputFlel=m.l) & (dxtVlOWOI'.lIeConverterl=m.l) (

0= dxtVoewer.lIeConverter.addl.ine{dxtVoewer .inputFle, (1Ioat) xt. (1Ioat) yt, (1Ioat) x2, (1Ioat) y2, (short) 1. _modeI..ayer);
II> P<lbIIc Object .ddL.ine(DxlFIe dxf, float x1, float y1, float x2, float y2, >hort <Ol, String layer) {

OrawUnes cline = new DrawL..ines(2};

1/> P<lbIIc DrawUnes(lnt nr) {
if (nr> O){
(oe = new Point3O[nr];

dline.addPoint(X1.y1,0.OQ;
9
2
0 116 [AP)
2

22
23 [p3D]
10
2

22
1
1

10
23 [p3D]

116[AP]
2
7
2
2

14
2
4

24
2
7 35 [AD]
2
2
0

22
1

1/> P<lbllcvoidaddPoln1(fIoatx,fIoaty,fIoatz){
'(Ine=nul){
line = new Point3D(2];

}
else. (nrPoints = line.length) (llNA
line{nrPoints++] = new Point3D{x, v. z);

dIine.addPoint(x2, y2, 0 .OQ:
dIine.set~(coI):

dIine.setLayef(dxf.getLaye«layer»:

complete.addDrawable{dIine):

II> P<lbIIc void addDrawable{llrawAble d} {
drawables[nrDrawables++] = d;

retum(cline}:

::t:.:g
Cl)
:::l
0..S<.
o
::t:.
(J

5'
'JJ
q-
t:o.....g'
(J
oc
:::l.....
tri
03c-
ru.........o
:::l

N-CD

Stellenbosch University http://scholar.sun.ac.za

2 (ALLS) 24
1 (FNPR) 2
1 (FNC) 7 35 [ADJ
1 (OROl) 2
1 (FNPR) 2
DO 0
1 (ALLO) 22
1 (OAIC) 1
1 (OROA) 1
1 (FNPF) 2
1 (FFPF) 6
1 (FNC) 7
1 (OROl) 2
1 (FNPF) 2
1 (ALLQ 2
1 (ALLO) 22 2086[REL]
1 (OCO) 10
3 (FNPR) 6
1 (ALLS) 12
1 (OCIS) 613
10 102 I,MHJ
2 (ALLS) 24
2 (OSA) 1048
1 (ALLS) 12
1() 237 [APPO]
1 (FNC) 7
1 (OROL) 2
1 (FNPR) 2
1 (FFC) 212
3 (FFPD) 9
1 (FFPI) 2
1 (FFPR) 2
4 (OAOO) 16
4 (OROL) 8
2 (ODDC) 8
8 (FNC) 56
8 (FNPF) 16
4 (ALLO) 16
4 (ALLO) 88

00 0 773[01]

00 0
2 (C2CO) 4
2 (OROL) 4
1 (FNC) 7
3 (OROL)
3 (FNPO)
1 (FNPI)
2 (FNPR) 4
1 (ALLO) 22
1 (OCO) 10
5 (FNC) 35
5 (FNPI) 10
4 (FNPD) 12
1 (FNPR) 2
5 (OROL) 10
1 (C2CI) 2
1 (ALLO) 22
1 (OCO) 10
4 (FNPR) 8

10 500
1 (ALLI) 2
1 (FNC) 7
1 (OROL) 2
1 (FNPF) 2
2 (FNC) 14
1 (FNPF) 2
2 (OROL)

complete.addDrawable(dline);

If> public void addDrawable(DrawAbie d) (
drawables(nrOrawables-J = d;

return (din.);

retum o.hashCode():

Relation tmpRel = new Reiation(o,id,Rel._linkRelSufflx): llconstruct new external bi'lary relation
If> pubic RelltIon(1nt frornHuhCode, SUing toS1ring, S1ring toClassName) (

tmpFromString=lnteger.toString(fromHasl1Code);

1his.toObject=App.getObject(toString); /Istore reference
this.told=toString; listors id
id=tmpFromStrin~"-"+toClassName; Ilcreat. key string
1his.id = id; /Istore id Iocaly
Rel.addReI(1his); !nile in hasl1table

We·ann_e(rnodeIVoewer);}
If> public void annotat&{lCad rnodelViewer){

modeIVoewer.drawText(id.
(g.tUsNode().getXO + getDsNode().getXO) 12 + 3.0.
(getUsNode().getYO + getDsNodeO.getYO) 12 + 3.0 .3.2);

II->[Cross Boundary]
If> public void drawText(String st, double x1, double y1,int pen, double size) throws RernoteExceptlon{

ff «dxfVtewer.inpu1FIe!=nuH) & (dxfVtewer.fileConverter!=nul) (

dxfVoewer.fieConverter.addText(dxtVoewer.inputFile. st, (float) .1. (float) yt, (short) pen. (float) size. _rnodeITextLayer);
If> pubic void addText(Ox1F1Ie dxf, String text, float posX, float posY, short col, float size, String layer) (

OxfTEXT dxfText = new OxfTEXTO;

dxfTextsetGroup«sI1ort)1.text); f!rext
dxfTextsetGroup«sI1ort) 10.posX); /IX
dxfTextsetGroup«sI1ort) 20.posY); flY
dxfTextsetGroup«sI1ort) 30.0.0f); flZ
dxfText.setGroup«sI1ort) 40.size); /lSizJ3
• (fontsAvailableO) (

DrawText dtext = new DrawText(nul. dxfText. dxf. this);

/1> Assl.l"n&d
dtext.setCoIor(coI);

dtextsetLayer(dxf.getLayer(layer»;

:;t;..:g
s
c,~_
CJ
:;t;..
(J

5"
Vlq-
t:o...,...._
o
:.::l
(J
oc
:.::l...,.
tTl
~.._
c~...,...._
o
:.::l

N
N
o

Stellenbosch University http://scholar.sun.ac.za

2 (AlLS) 24
1 (FNPR) 2

10 35 [AD]
00 0

00 0
00 0
1 (FNLF) 1
1 (OROL) 2
1 (AlLO) 22
1 (FNC) 7
1 (OROL) 2

10 131 (.I1T1LGEl]
1 (FNC) 7
1 (FNPR) 2
1 (OROL) 2
1 (ALLI) 2
1 (FFC) 212
3 (FFPO) 9
00 0

00 0
2 (C2CO) 4
2 (OROL) 4
1 (ALLI) 2
1 (FNC) 7
4 (OROL) 8
3 (FNPO) 9
1 (FNPI) 2
2 (FNPR)

00
1 (C2CI)
1 (AlLO) 22
1 (OCO) 10
1 (FNPI) 2

00 0
1 (C2CQ 2
1 (ALLO) 22
1 (OCO) 10
1 (OROL) 2

10 23 !P3D)
1 (ALLO) 4
1 (OMDC) 4
1 (ODDC) 4
1 (ACLD) 2
1 (FNLF) 1
1 (C2CI) 2
1 (OAIC) 1
1 (OAOD) 4
1 (FNC) 7
1 (ORDl) 2
2 (OAOO) 8
2 (OMDO) 8
20 20 ces.ces
3 (FNPD) 9
00 0
1 (C2CO) 2
1 (ALLO) 22

10 23 !p30]
1 (OCO) 10
1 (C2CI) 2
1 (ORDl) 2
1 (ALLO) 22
1 (OAIC) 1
1 (ORDA) 1
1 (OCO) 10

10 23 !p30]
1 (FNC) 7
1 (ORDl) 2

complete.addDrawable(dtext):

)
lINODES

vmie (nodeIds.hasNext()) (
manhole = U1l.manhole((String) nodelds.nextOl:

manhole.draw(modefVleWer):
I/> public void draw(1Cad modelView8f' H

int 0 = modeMewer.drawCircle(x,y, 5.0);
I/> pubic Int drawClrcle(double x1, double y1, double rad) throws RemoteException;

1I..>(Cross Boundary)
public int drawCirde(doubie xr. double yl. double rad) throws RemoteException(

W ((dxMewer.inputFile!=nuIQ & (dxMewer.fieConvertefl=null» (

0= dxNiewer.fileConverter.addCircIe(dxNiewer.inputFiIe. (float) xt. (float) yl. (float) rad. (short) 1. _modeILayer):

/I.>

I/> pubic Object addClrcle(DxflFle dxf, loat cenlerX, Ioat centerV, ftoat radius, short col, StrIng layer) {
W(radius> Ol(

line = new DrawLines{CIRCLE_SEGMENTS):

I/> pubic DrawLlnes(1nt nr) {
W(nr> Ol(
ine = new Point3D{nr]:)

)
float delta = (float)(2·Math.PUCIRCLE,_SEGMENTS):

float angle = 0:
for (int i = 0: i < CIRCLE_SEGMENTS: i++. ang..-eltal(

line.addPoin4centerX + (fIoat)(radius'Math.cos(angle)).
centerY + (fIoat)(radius'Math.sin(angle».centerZ):

I/> pubic void addPoInt(ftoat x, ftoat y, ftoat zJ (
~ (line =nul) {

line = new Point3D{2]:

else ~ (nrPoints = line.length) (
)
ine{nrPoints++] = new Point3D(x. y. z):
)

line.cIoseO:

:g
s
0..
><'
C0
~
CJ
5'en
q
Co.....
§'
CJo
C
::l.....
trJ
~..._
C
Ol..........
o
::l

N
N......

Stellenbosch University http://scholar.sun.ac.za

00
1 (C2CI)
1 (ACU)
1 (ALLI)
1 (FNC)
1 (CROI.)
1 (FNPF)
2 (FNC)
1 (FNPF)
2 (CROI.)
2 (ALl.S)
1 (FNPR)

10
1 (FNPF)

00
1 (FFPF)

10
1 (FNC)
1 (CROI.)
1 (FNPR)
1 (FFC)
3 (FFPO)
1 (FFPI)
1 (FFPR)
1 (CADO)
1 (CROI.)

10
00
00

14
2
4

24
2

35 [AD]
2
o
6

2086 (IlEL]
7
2
2

212
9
2
2
4
2

n3!Dll
o

II> public void clo .. O {
~ (nrPoints > 0) (
~Closed = true;

line. selCoIor(coI):
line.setl..ayer(dxf.getLayer(layer)):
comP'ete.addDrawable(ine):

retum(lin.);
)

retum o.hasllCode():
Relation tmpRel = new Refation(o.KI,Ret._nodeReiSufflX): I/construct new external binary relation

manhoie.annotate(modeMewer)J
1/> public void annotate(lCad mod&lVlewerj{

modeWlewer.drawText~d.x.y+5.0.3.2):

)/IEND

:g
s
c,S<.
()

:t:.
CJ
5'
CIl
q
co
r-;.
'-.o
::3
CJoc
::3
r-;.

tr1
~..._
c
t:l.l
r-;.
'-.o
::3

N
N
N

Stellenbosch University http://scholar.sun.ac.za

Appendix H

ACAnalysis Results

223

Stellenbosch University http://scholar.sun.ac.za

Cf)
'"0..,
C'O
!:Il
Q..
CJ)
::T
C'O
C'O,....
o.......,
»
()

'"0
C'O..,
0'..,
3
!:Il
~o
C'O
C'O
<
!:Il
C
~.....
o
~

-l
!:Il
crro

I APPLICATION-CENTRED DESIGN I

Standalone Client I Server (One PC) Client I Server (2 PCs)
PR1 PR2 PR3 PR4 PR1 PR2 PR3 PR4 PR1 PR2 PR3 PR4

Type Code Description 104 682 2934 6721 104 682 2934 6721 104 682 2934 6721
DoE[s] TFD1 Show Direction Definition 0.3 0.7 0.9 2.3 0.9 3.3 10.8 23.8 1.0 3.5 11.5 27.0
UIC TFD2 Swap Direction Definition 104 682 2934 6721
UIC TMC Topolology MH Correction 94 614 2641 6049

I 104 682 2934 67211 104 682 2934 67211 104 682 2934 6721
DoE Is] UE TOTAL: Update Elevations 1 0.1 0.2 0.4 1.01 0.2 0.3 0.9 1.31 0.2 0.3 0.4 0.5
Eq. BICIS] UE TOTAL: Update Elevations (scaled) 10.01 0.05 0.22 0.50 1

I 104 682 2934 67211 104 682 2934 67211 104 682 2934 6721
DoE [sJ TSU Topology Slope Update I 0.1 0.9 2.7 5.71 0.2 1.7 3.5 7.21 0.3 0.3 2.0 5.0
UIC TPU Topology Parcel Update 183 546 2347 5376 I

I 104 682 2934 67211 104 682 2934 67211 104 682 2934 6721
DoE Is] BM TOTAL: Build Model from CAD (All) I 0.8 18.7 156.3 1267.11 1.2 22.2 175.8 1250.01 1.2 34.5 179.0 1300.0
Eq. BICls} BM TOTAL: Build Model from CAD (scaled) 10.62 15.15 250.60 1288.40 I

1 104 682 2934 67211 104 682 2934 67211 104 682 2934 6721
DoE Is] DM TOTAL: Draw Hydraulic Model I 0.8 2.5 5.2 10.31 2.3 8.4 30.0 70.01 2.3 9.0 36.0 80.0
Eq. BICIS] DM TOTAL: Draw Hydraulic Model (scaled) 10.19 1.28 5.50 12.60 I

104 682 2934 6721 104 682 2934 6721 104 682 2934 6721
DoE [sI ACCU Accumulate all flows 0.3 1.4 4.9 9.5 0.5 1.8 9.0 12.4 0.3 1.0 3.1 6.0
DoE[s] ANAL Do analysis 0.4 2.0 8.5 15.5 0.6 2.5 8.1 17.0 0.3 1.3 4.3 7.8
DoE[s] DESGN Do design 0.6 2.7 9.5 22.5 0.7 3.3 10.0 19.3 0.4 1.5 5.4 12.8
DoE[s] HAD TOTAL: Hydraulic Analysis & Design 1.3 6.1 22.9 47.5 1.8 7.6 27.1 48.7 1.0 3.8 12.8 26.6

104 682 2934 6721 104 682 2934 67211 104 682 2934 6721
DoE [sI ALL TOTAL: Build Topo+Model+Draw 1.7 21.4 161.9 1278.4 3.7 30.9 206.7 1321.31 3.7 43.8 215.4 1380.5
Eq. BICls} ALL TOTAL: Build Topo+Mode/+Draw 0.8 16.5 256.3 1301.5
UIC ALL TOTAL: Mix 281 1842 7922 18146

Notes 1 All BICs (where indicated) are scaled by 0.2
to accommodate the difference in execution speed of
environments and provide the equivalent Basic Instruction Count

::r:
......

~
~
0..S<.
P;
:l>
(J

:l>
::l
Ol

~
CJ)....
C/l

::0
C'O
C/l
I:._
fil"

N
N
,j::.

Stellenbosch University http://scholar.sun.ac.za

Appendix I

Tutorial for Sewsan AC

1.1 Introduction

The purpose of this appendix is to provide a guide to demonstrate or evaluate
the functionality of the SEWSAN AC application. Contact alex@sinske.com to
obtain the contents of the distribution CD.

1.2 Installing the program

1.2.1 Stand-alone scenario

For the stand-alone (1 PC) scenario, copy all files from the Classes directory
on the distribution CD to a directory with the same name on the hard drive.
Ensure that Java 1.3.0 or later is installed and that the Java program can
be found in the search path. The installation has only been tested under Mi-
crosoft Windows 98 and MicrosoftWindows 2000, but should also work under
Linux, provided an equivalent batch file is used. The program is executed by
typing startStandalone at the command prompt. The CADfiles are located
in the subdirectory Drawings and can be loaded from there. During execu-
tion the console window shows status messages for both the client and server
components.

1.2.2 Single PCclient-server scenario - Java client

For the 1 PC client-server scenario, both the client and server components
are executed on the same PC. This setup requires a web server (http server)

225

Stellenbosch University http://scholar.sun.ac.za

mailto:alex@sinske.com

Appendix I: Tutorial for Sewsan AC 226

running on the computer. The web server is used as codebase for the shared
interface definition files. The webserver must accept requests on localhost or
127.0.0.1

Copy all files from the Classes directory to a directory on the hard drive.
Ensure that Java 1.3.0 or later is installed and that the Java program can
be found in the search path. Ensure the webserver is running and execute
CopyForCS.ba t to copy interface definition files to the webserver. Edit the
batch file if required. It assumes a default Microsoft lIS Webserver setup and
requires javaclasses as virtual directory.

Copy the ClientClasses directory to a directory with the same name on
the hard drive. Now, firstly start the RMl server. This is done by executing
startRMl .bat from the Classes directory. Then start the server by executing
startServer .bat from the Classes directory. This console window will show
all server side messages.

Finally execute startClient. bat from the ClientClasses to start the Java
client. This console window will show any client side messages.

The installation has only been tested under Microsoft Windows 98 and Mi-
crosoft Windows 2000, but should work also under Linux, provided equiva-
lent batch files are used.

The server can also be located on a different PC. All the above-mentioned
batch files must then be edited to reference the lP address of the server PC
instead of 127.0.0.1

1.2.3 Single PCclient-server scenario - Applet client

For the 1 PC client-server scenario, both the client and server components are
executed on the same PC. This setup requires a web server (http server) run-
ning on the computer. The web server is used as codebase for the shared in-
terface definition files as well as for hosting the client side classes in compact
JAR format. The web server must accept requests on localhost or 127.0.0.1

Ensure the web server is running and execute CopyForWWW.batfrom the
Classes directory to copy interface class files to the web server. Edit the
batch file if required. It assumes a default Microsoft lIS web server setup
and requires j avaclassesi as virtual directory. Ensure that you have up-
dated your browser with the Sun Plug-in for Java 1.3.0 or later. This ensures
that the correct virtual machine is available for executing Java code in the

Stellenbosch University http://scholar.sun.ac.za

http://CopyForWWW.bat

Appendix I: Tutorial for Sewsan AC 227

browser. Also ensure that the security settings of the browser allow the exe-
cution of Java code.

Firstly the RMl server must be started. This is done by executing
startRMl .bat from the Classes directory. Then start the server part by ex-
ecuting startServer .bat from the Classes directory. This console window
will show all server messages.

Finally point the internet browser to, http://127.0.0.1/ javaclass-
esi/ ExampleVerySmall. htm to start the Java client. This optional Sun
Plug-in console window will show any client side messages. The installation
has only been tested under Microsoft Windows 98 and Microsoft Windows
2000 with Microsoft Internet Explorer 5.5 and 6.0, but should also work un-
der Linux and Netscape, provided equivalent batch files are used and minor
changes are made.

Alternatively, the server can be located on a different PC. All the above-
mentioned batch files must then be edited to reference the lP address of the
server PC instead of 127.0.0.1

Please note that in the client-server scenario, the CAD(OXF)files are located
on the client machine. The data model as well as DTMare stored on the server.
Within the browser the top menu is not visible, as well as the File Open Dialog
Box for DXF and SOF cannot be shown due to security constraints. Only the
OXF drawing located on the web server and specified in the web page file can
be loaded.

1.3 Description of user interface

The user interface consists of two parts: The DXF Viewer and the SEWSAN
ACMenu. The DXFViewer shows the loaded DXF drawing, the list of layers
and provides command buttons for interactive model editing. The SEWSAN
ACMenu provides access to commands to load a drawing, build a data model,
perform an analysis and design on the model, as well as present results. The
persistent storage of the data model is also supported. The following steps are
performed in general from top to bottom in the SEWSANACMenu.

Stellenbosch University http://scholar.sun.ac.za

Appendix I: Tutorial for Sewsan AC 228

1.4 Loading the CADDrawing

The first step involves loading an existing CADdrawing representing the sewer
layout as well as background street and plot layout. As an alternative an
existing model stored as an SOF data file (compatible with SEWSANMC) can
be loaded using Import Model.

• Select Erase CAD from the SEWSANAC Menu. The existing default
drawing is erased. However, the model data (if present) is not erased.
Certain default layers are created automatically.

• Select Import CADand select ExampleVerySmalljExampleVerySmall. dxf
This will draw lines and text representing the plan view of a sewer net-
work, as well as associated erven (plots).

• Zoom, Pan and Layer functions: The following functions are available
to zoom and pan in the DXFViewer and change visible layers. They are
activated by keeping the LEFTmouse button depressed and moving the
mouse in combination with the follow key on the keyboard:

(1) Dynamic zoom: Keep the CTRL button on the keyboard depressed;
move to the RIGHTwith the mouse to zoom in; to the LEFT zoom out

(2) Dynamic pan: Keep the SHIFT button depressed; move to the RIGHT
to move drawing to the RIGHT;move to the LEFT to move drawing to the
LEFT.

(3) Dynamic viewpoint: Keep the ALTbutton depressed and move the
mouse around the outside of the circle to rotate drawing around Z-axis;
move the mouse inside of the circle in line with centre of circle to rotate
drawing around an axis perpendicular to this line and the centre of the
circle.

(4) Zoom All: Select the x- Y button. Also useful are the Previous and
Next buttons to navigate between saved zoom states. The Y-Z and x-z
are used to change views in 3D drawings.

(5) Layer management: Layers can be switched on and off by clicking on
the layer name in the Layers box.

Stellenbosch University http://scholar.sun.ac.za

Appendix I: Tutorial for Sewsan AC 229

1.5 Building the Data Model

• CADto Model conversion: The next step is to convert the lines, text
and one circle (representing the outfall manhole) to a hydraulic model.
Deselect the CADASTRAL layer to see all the layers that are used in the
conversion. Now select CAD- >Model to start the process. The MODEL

and MODEL-TEXT layers are created, representing the visualization of
the hydraulic model. Deselect the TOPO, DIAM_TXT, ELEV_TXT, ERVEN,

INVERT_TXT and MH_TXT layers, as they have all been processed, and
zoom in to see the pipes, manholes and their identifiers.

• Querying a hydraulic element: The basic engineering objects, i.e. the
manholes (represented by circles) and the pipes (represented by lines)
can be queried by clicking with the RIGHTmouse button on the element.
A pop-up dialog appears showing the information as contained in the
data model for the entity. It can be seen that automatically generated
string identifiers are assigned to the pipe entities, prefixed with _ and
the manholes are assigned identifiers with prefix US and DS. Dismiss the
dialog by selecting CANCEL,unless changes are made.

• Verifying and correcting the topology : The next step is to verify the
topology. Zoom to all (X- Y but ton) and select Show Tapa Errors. Two
asterisks on the SCRATCH2 layer show where pipes enter at a node with
conflicting direction. By selecting Show Link Direction and ensuring
that SCRATCH layer is visible, the defined direction for each link is shown
with an arrow. The link with the arrow pointing in the wrong direction at
an asterisk (top-right pipes) can now be corrected: Zoom in, RIGHT-click
on the link and change the "false" to anything else, e.g. "t" for "true" and
press Ok. Verifythe change by selecting Show Link Direction again or
the Show Tapa Errors which should not show asterisks any more on
the SCRATCH2 layer.

• Adding elements to the topology: This step can also be skipped al-
together for this tutorial. It illustrates how pipes and manholes can
be deleted and how new pipes can be added between new or existing
manholes. It ensures that a consistent state is maintained after each
operation.

Zoom all, and then ensure the CADASTRAL layer is switched on. It can be
seen that plots 16414, 16415 and 16416 are not being served by a sewer.
This will now be corrected by adding a line which terminates as manhole

Stellenbosch University http://scholar.sun.ac.za

Appendix I: Tutorial for Sewsan AC 230

DI070: Zoom/Pan in to see the three plots as well as the terminating
manhole. The buttons in DXFViewer, viz. AddPipe, (Existing) / (New)

will now be used. Select AddPipe. The button changes to Cancel which
will later be used to stop the definition process. Your are now prompted
to select the upstream manhole by LEFT-clicking once at the correct
location, for example under the text 16414. A circle representing the
new manhole is drawn with its identifier. The mode has changed to
select an existing manhole. However, a new manhole is again to be
defined, therefore firstly click on (New) to change the definition mode,
then click under the text 16415 to define the downstream manhole of
the pipe. The pipe as well as the downstream manhole is drawn, as well
as the identifiers. The mode has change to existing, which is correct as
the lastly defined manhole must be selected as start manhole of the next
pipe. Therefore click near the newly added circle. It will flash briefly in
blue. The mode is set to define a new node, which is correct. LEFT-
click under the text 16416 to define the next downstream manhole. To
draw the last pipe, click on the lastly added circle, change the mode to
existing by clicking on the (Existing) button, and click on the circle
representing manhole DI070, the terminating manhole. This process is
now done, so click the Cancel button.

If we assume that the second manhole added is located incorrectly, the
Delete button can be used to remove a manhole as well as depen-
dent topology elements: Select Delete, and click on the second man-
hole added. Now redefine a new pipe from the start manhole to a new
manhole located under the text 16415, and a second one from the last
manhole to the manhole under the text 16416. In a similar way the first
pipe can be deleted, and redefined. When a pipe is deleted, the associ-
ated manholes are not automatically deleted.

The number of erven associated with each pipe may be edited. The de-
fault of 1 class A erf can be edited by RIGHT-clicking on a pipe and
editing the field Number_of_erven .

• Updating elevations : Now load the DTMmodel by selecting Load DTM

in the SEWSANAC Menu. The model will be loaded from the source
(server) directory, and from a filewith the same name as the DXFfile, but
the with the extension DTM.Two new layers are now added, DTM_GRID

and DTM_POINTS. The DTM_GRID layer contains a 5x5 3D-mesh repre-
senting the surface model. The DTM_POINTS layer contains labels (plot-
ted at zero elevation) with the known elevation heights. The dynamic

Stellenbosch University http://scholar.sun.ac.za

Appendix I: Tutorial for Sewsan AC 231

viewpoint can be changed to visualize the DTMmesh and the model as
described under Zoom, Pan and Layer functions.

The elevation at the manholes can now be interpolated from the
known elevations by selecting the Update Elevations option from the
SEWSANACMenu. This can be verified by clicking on a node, and ob-
serving the new Elevation value. Also the Interpolation_state and
Number_block_points variables provide information on the quality of
the interpolation .

• Updating slopes and lengths : Now an initial slope for the pipes in
the model can be calculated, based on the ground elevation, mini-
mum slope along pipes, as well as minimum drop value at manholes.
But first any existing slopes and lengths must be zeroed, by select-
ing Zero slopes & lengths, then Update Lengths/Slopes will cal-
culate lengths and slopes based only on the ground elevations and con-
stant manhole drops. The function Show Invert Level Errors can
then be used. It draws asterisks on the SCRATCH2 layer to indicate
where pipes with zero or negative slopes exists. This can be followed
by Update Inverts/Slopes which also considers minimum slopes and
the transfer oflevels in the direction of the sewer network. The Show In-
vert Level Errors function now displays no errors. The data model is
now ready to be analysed. Should you want to take a break at this stage,
the system can be stored persistently using the Save Model option, and
later loaded again using the Load Model option, after loading the CAD
background drawing.

1.6 Using the Data Model

• Analysing and designing the model: Nowthe flows in the sewer system
can be accumulated for two scenarios, a dry weather condition without
the ingress of rain water, and a wet weather condition with the ingress
of rain water. This is performed by selecting Accumulate Flow from the
menu. A results file is also written, namely CALC. OUT in the program
directory. This file contains a post-order tree of the network, i.e. the
last row contains the outfall manhole, and the longest water course can
be followed from bottom to top of the file. The file also contains data
on the age of each pipe (either length or index based) as well as input
parameters.

Stellenbosch University http://scholar.sun.ac.za

Appendix I: Tutorial for Sewsan AC 232

Next the velocity and flow depth is to be calculated for the two scenar-
ios for all pipes in the sewer network. This is performed by selecting
Hydraulic Analysis from the menu. Again a file is written to the pro-
gram file directory with the name ANAL.OUT.This file contains a list of
all the pipes in no particular order, with Flow Capacity (%), Flow (lis),
Velocity (mis) and Depth of flow (mm) for both the Wet and Dry scenarios
as well as the Full Flow condition. A status field comments on possible
problems with the pipe.

Finally the hydraulic design can be selected by choosing Hydraulic De-
sign from the menu. This starts a calculation of the minimum diameter
required for a pipe in order to accommodate the wet flow scenario. The
result is written to a file, OPT1M.OUTwhich states what size of pipe has
been assign to each pipe. This is automatically followed by another anal-
ysis with the new pipe sizes.

All the analysis and design results for a pipe can be seen by RIGHT-
clicking on the pipe.

• Show queries: Finally the results can be queried graphically, similar
to a GIS system. Predefine queries can be selected in the menu for input
data, such as Diameter, Slope, and results such as Dry weather ve-
locity and Wet weather velocity. The Wet weather flow capac-
i ty in lis or % of full-flow capacity, can also be shown.

The queries are generate on a layer called RESULTS.

• Other menu options : A few other menu options remain in the DXF
Viewer: File / Exit terminates the program; Options / Language
allows selecting the language for the program (at this stage only the
DXFViewer);Options / Show CS toggles the display of the coordinates
axis on the screen; Options / CS position defines where the coordi-
nate axis should appear; Swap Black & White toggles the background
colour of the drawing. Info / Model provides information on the CAD
model, such as the number of lines created. Info / Java presents in-
formation on the Java Virtual Machine state.

This concludes the tutorial. A similar procedure can be followed on the
larger text data sets, which are stored in subdirectories ExampleSmall,

ExampleMedium, ExampleLarge and ExampleHuge, and have been used
for the comparison with the MC design.

Stellenbosch University http://scholar.sun.ac.za

Index

A priori implementation, 60, 136,
152

Abstract data type, 3
ACdesign approach, 2,73
ACquantitative analysis, 139
ActiveX, 15
Algorithmic background, 115
App,95
AppObject, 95
AppSet,99
AppSetObject, 98

Basic engineering objects, 90, 133
Basic Instruction Count, BIC, 16,

139
Basic Operations, 17
BIC, 63, 64, 67, 139-141
BIC (modified), 156
Bottom manhole, 92
Bridges, 4, 29, 48
Bridges, datafile, 29
Bridges, memory, 30, 53

CADmodel, 127, 135
Class diagram, 11
Collaboration diagram, 11
Comparison of complexity, 159
Comparison of design, 151
Complexity, 4
Component diagram, 11
Construction procedure, 45
Contributor hydrograph method,

38

CORBA,14

Data model, 86
DataModel object, 120
DFG,8
Distributed scenario, 14, 62, 87,

129, 138, 147, 152
DoE, 16,63,67, 139, 141, 153
Duration of Execution, 16

Elevation model, 46, 126
Engineering models, 1, 122
Engineering process, 111
Erf,92

Geographical model, 47
Graphs, trees, 93

HashCode, 94
HashMap,94
HashTable, 94
Hydraulic model, 40

Identifiers, 74
Interpolation algorithm, 39

Listener, 12

Manhole,90
Mapping,84
MC design approach, 1
MC evaluation, 32
MC quantitative analysis, 63
Model objects, 135
Modelling methods, 11

233

Stellenbosch University http://scholar.sun.ac.za

Appendix I: Tutorial for Sewsan AC

Modules, 3, 27

Object duplication, 60
Object identifier management, 74,

93
Object interaction, 78
Object name scope, 135, 151
Object relation management, 83,

99
Object set management, 80, 97
00 analysis, 10
00 design, 1°
00 paradigm, 8
00 programming, 1°
Partial model, 27
Partial models, 4
PDS, 18, 64, 70, 147, 156
Persistent Data size, 18
Pipe,91
Point-source, 92
Ports, 29
Presentation model, 126
Principles of 00, 9
Procedural approach, 3
Process, engineering, 27
Product-data model, 117
Program extensibility, 61
Program maintenance, 61

Quantitative comparison, 152
Quantitative criteria, 16

Rel class, 111
Relation, 12
Relation class, 109
Relation complexity, 102
Relation-set, 109
Relations, 83
RelObject, 108

234

Sequence diagram, 11
Sets, 12, 81
SEWSANAC, 133
SEWSANMC, 36
Software model, 27
State diagram, 11
Structured binary files, 49
Structured database files, 50
Structured text files, 49
Sub-model, 28

Test projects, 18
Topography model, 47
Topology model, 42
Transformer, 13, 31, 54
Tree traversal, 58, 135

UIC, 17,64,70, 139, 140, 144, 155
UML, 11
Unstructured binary files, 53
Unstructured text files, 52
User Interaction Count, 17

ViewerExtension class, 128
Views, 11, 15
Visualization model, 42, 87, 124

Stellenbosch University http://scholar.sun.ac.za

