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Abstract

Comparison of approaches for spatial interpolation of
weather data on a specific date

G. Burengengwa
Department of Mathematical Sciences,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc
March 2020

This study compares four approaches to spatial interpolation of minimum 
and maximum temperature, and rainfall weather variables using data from 
92 weather stations in the region of KwaZulu-Natal in South Africa. The ap-
proaches are Kriging with external drift (KED), Gaussian filter (GF), random 
forest (RF) and multilayer perceptron (MLP). The comparison was done 
against the background that the need for permanent gridded weather data 
for the region is important for agricultural and forest management. Also, 
there is little information regarding the suitability of methods for predic-
tion in terms of performance variables for gridded data generation. The 
present research addresses these challenges by demonstrating the applica-
tion of KED, GF, RF and MLP at a 1km2 spatial resolution accross three 
weather variables: minimum and maximum temperature, and rainfall to as-
sess their performance. Four specific dates were selected to represent both 
dry and wet seasons for the years 2016 and 2017. The dates are 15th of Jan-
uary 2016 and of 2017 for the summer season, and 15th of July 2016 and 
of 2017 for the winter season respectively. Both years were considered be-
cause from available data, they are on the records as the driest (2016) and 
wettest (2017) in the region for the period 2008 to 2018. A cross-validation 
scheme was employed to assess the model performances and error evalua-
tions were compared using RMSE, MAE and R2 measures. The results were 
found to be almost similar across the four methods except for the RF model 
that outperformed in the periods considered for both years. Particularly, RF 
performed with the lowest RMSE and MAE errors for minimum and maxi-
mum temperature for both 15th of July 2016 and of 2017 as against the other
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ABSTRACT iii

models. The performance of RF is explained by the method’s properties of
being an ensemble technique. RF prediction follows from the principle of
random selection of variables with high importance which allows for the
decrease of uncertainty. The result of this research has importance for guid-
ing decisions regarding forest management and climate driven businesses.
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Chapter 1

Introduction and literature review

1.1 Research background
Access to accurate and reliable data relating to weather in a changing global
climate is increasingly an area of interest to both policymakers, researchers
and people whose livelihoods depend on favorable weather conditions (Glea-
son et al., 2008). Spatial interpolation is an appealing array of methods by
which such accurate and reliable data are derived. Interpolation is a pro-
cess of estimating unknown values in between existing values. Predicting
values of a primary variable at points within the same region of sampled lo-
cations is defined as spatial interpolation (Li and Heap, 2014). The product
of the process is the generation of spatially continuous (interpolated) data.

Spatially continuous meteorological variables are important and serve
as key inputs for many applications related to climate-driven issues. For
instance, in the domain of forestry, the study done by DeCaceres et al. (2018)
shows that process-based models usually requires daily meteorology for
evaluating impacts of varying weather conditions on forest ecosystems. An-
other example is in the case of meteorological sciences where spatially con-
tinuous data are used to develop efficient spatial climate models that ad-
dress climate-driven studies (McKenney et al., 2011). Also, in finance, spa-
tially continuous data are used to detect various economic indicators dur-
ing crisis periods (Vermeulen et al., 2015). Spatially continuous data are also
used in the agriculture sector. The information they provide help farmers
to determine the level of phosphorus content of the soil and thus, guide
them to utilize the right amount of fertilizer in order to avoid soil pollution
(Webster and Oliver, 2007). Agricultural engineers equally need full rainfall
records for estimation of crop yields and growth models. Spatially continu-
ous data are indeed vital for better planning and design.

However, such data are not easily available, difficult to obtain and often

1
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exist at a relatively coarse resolution that leads to a loss of spatial hetero-
geneities in the regional physiography, particularly in areas with steep cli-
mate gradients, as shown by a number of authors (Foster et al., 1996; Rigol
et al., 2001). Given that spatially continuous climatic data are frequently un-
available and essential, there is a need to generate regional information on
climate at high resolution for individual sites or locations. The spatial reso-
lution of the climate surfaces is relative and varies from one application to
another depending on the data available and on the needs for that applica-
tion. Only limited parts of the world have data at a fine resolution, ≤ 1km2

(Hijmans et al., 2005; New et al., 2002).

A number of methods are available for spatial interpolation. These vary
in efficacy and suitability, depending on a number of factors (Li et al., 2011;
Li and Heap, 2008,1).

1.2 Interpolation
Interpolation is a process of estimating unknown values in between exist-
ing values. Specifically, interpolation involves adjusting parameters that fit
a function to a set of k-dimensional data points, where k is a positive in-
teger. Tobler’s first law of geography which says "everything is related to
everything else, but near things are more related than distant things" is the
fundamental basis of all interpolation techniques (Tobler, 1970). Spatial in-
terpolation is used to evaluate physical data in a continuous domain. It
consists of calculating unknown values from a limited number of sample
data points based on the assumption that spatially distributed objects are
spatially correlated (Chorti and Hristopulos, 2008). Spatial interpolation is
generally carried out by estimating a regionalized value at points not sam-
pled from a weight of observed regionalized values (Mitas and Mitasova,
1999).
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Figure 1.1 An example of a random field. In the left plot, the value for the
unsampled point is calculated by weighting the values of the
sample points. The right plot shows a random field with
differences in slope, elevation, vegetation.

Mathematically, a general formulation of the spatial interpolation prob-
lem can be defined with the following statement:

Let us suppose a studied phenomenon zj, j = 1, . . . , n with n values

measured at different points rj = (x[1]j , x[2]j , . . . , x[d]j ), j = 1, . . . , n within a
certain region of d-dimensional space, (see example in Figure 1.1). Thus,
Mitas and Mitasova (1999) defines a spatial interpolation as a problem that
consists of finding a d-variate function F(r) which passes through the given
points, and fulfil the condition,

F(rj) = zj, j = 1, . . . , n (1.1)

An infinite number of functions can be used to define the d-variate func-
tion F(r) and can fulfil the requirement, however, the selection of an ad-
equate method with suitable parameters is crucial given a particular phe-
nomenon and the type of application desired. The many different tech-
niques of interpolation that exist offer diverse performances, according to
the characteristics of original data points (Caruso and Quarta, 1998).

Interpolation occurs with some errors given that an exact value cannot
be estimated. If a considerable amount of errors occurs in predictions, set-
ting such values as input surfaces for other studies may propagate with sig-
nificant consequences within a sensitive system (Mowrer, 1997). Within the
context of applied environmental modelling, effective techniques of spatial
interpolation are required to efficiently predict gridded data while maximiz-
ing the information available from data that are often sparsely distributed
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(Rigol et al., 2001).

However, none of the interpolation methods is generalized to be opti-
mal for all types of areas regardless of some assumptions. Thus, to be able
to achieve an accurate construction of climate change scenarios at daily or
monthly scales for a particular region, it is crucial to determine the best
method, given values from nearby weather stations. The best way of as-
sessing the performance of an interpolation method is to apply, on the same
dataset of climate variables, different interpolation methods and compare
their predictions under the same topographical conditions.

1.3 Classification of spatial interpolation
methods

Spatial interpolation methods are classified into three main groups as non-
geostatistical methods, geostatistical methods and combined methods (Li
and Heap, 2008). In the three different categories of interpolation methods,
different methods are combined in different ways using features described
in table 1.1. The non-geostatistical methods include a range of interpola-
tion methods such as nearest neighbour, inverse distance weighting, trend
surface analysis, thin plate splines, etc. Geostatistical methods include also
a significant range of interpolation methods Kriging and its derived inter-
polation methods such as ordinary Kriging, simple Kriging, Kriging with
an external drift, universal Kriging, model based Kriging, etc. For the com-
bined methods, there are several methods that have been trained together
and found that they give more accurate results while completing each other.
There we have regression Kriging, linear mixed model, trend surface anal-
ysis combined with Kriging, trend surface analysis combined with Kriging,
etc. Also, a number of hybrid methods have been expanded in the field of
machine learning such as support vector machine (SVM), neural network
(NN), random forest (RF), etc (Li and Heap, 2014).

A classification of spatial interpolation methods is based on specific as-
sumptions and features such as:

• Global or local: Interpolation methods are called global when they
estimate the value of a given attribute according to all available data
for a region of interest whereas local methods consider separately the
variation of all of the region within a limited area.

• Exact or approximate: An interpolation method is said to be exact

when for a sampled point, the observed value is equal to the esti-
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mated value and an approximate method can be any other interpo-
lation method apart from the exact method that gives a different value
as the observed one.

• Stochastic and deterministic: A difference between stochastic meth-
ods and deterministic methods is that on top of the estimation value
being interpolated, the stochastic method provides the error associ-
ated with the estimated value unlike deterministic method, which
does not have assessment of error with the predicted value.

• Abrupt or gradual: Abrupt methods are interpolation methods that
give a discrete surface while gradual methods are considered to be
the interpolation methods that give smooth surfaces.

• Univariate or multivariate: The difference between univariate and
multivariate methods is that univariate methods derive the estimate
value from one primary variable whilst multivariate add to a pri-
mary variable one or more other variables, called second variables.

• Convex or non-convex: An interpolation method is convex if the es-
timated value is a value between the maximum and the minimum of
the observed ones and is non-convex otherwise.

• Linear and non-linear: A non-linear interpolation method is a method
that estimates values from a normal distribution of the observed val-
ues and a linear interpolation, does not take into account the normal
distribution.
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Table 1.1 Comparison of some interpolation techniques according to
certain features, as described in the text.

Method Global/local Exact/
approximate

Stochastic/
deterministic

Abrupt/
gradual

Univariable/
multivariable

Convex/
non-convex

Output data
structure

Limitation of the
procedure

Assumption Computing
load

Suitability

Inverse
distance
weighting
(IDW)

Local Inexact with
regular smooth-
ing window but
can be forced to
be exact

Deterministic Gradual Univariate Convex Gridded surface,
contours

LIMITATIONS Underlying sur-
face
is smooth

Small Quick interpola-
tion from sparse
data on regular
grid or irregularly
spaced samples

Thiessen
polygons
or
nearest
neigh-
bours
(NN)

Local Exact Deterministic Abrupt Univariate Convex Polygons or
gridded surfaces

LIMITATIONS Best local
predictor is
nearest data point

Small Nominal data
from
point observa-
tions

Regression
models
(LM)

Global with local
refinements

Approximate Stochastic Abrupt/
gradual if inputs
have gradual
variation

Univariate/
multivariate

Can be
non-convex

Polygons or
continuous,
gridded surface

LIMITATIONS Samples are
independent, nor-
mal
and homoge-
neous
in variance

Small Simple numer-
ical modelling
of expensive
data when bet-
ter methods are
not available
or budgets are
limited

Classification
(CI)

Global Approximate Deterministic Abrupt Univariate Convex Classified poly-
gons

LIMITATIONS Homogeneity
within
boundaries

Small Quick assess-
ments when
data are sparse.
Removing sys-
tematic differ-
ences
before continuous
interpolation
from data points

Trend sur-
face analy-
sis(TSA)

Global Approximate Stochastic Gradual Multivariate Can be
non-convex

Continuous,
gridded surface

LIMITATIONS Phenomenological
explanations of
trend,
normally dis-
tributed data

Small Quick assess-
ments
and removal of
spatial trend

Thin plate
splines
(TPS)

Local/
Global

Exact within
smoothing limits

Deterministic
with
local stochastic
component

Abrupt/
gradual

Univariate/
multivariate

Can be
non-convex

Gridded surface,
contour lines

LIMITATIONS Underlying sur-
face
is smooth every-
where

Small Quick interpola-
tion
(univariate or
multivariate)
of digital eleva-
tion
data and related
attributes to cre-
ate DEMs
from moderately
detailed data

Kriging Local with
global trends
or with global
variograms
when stratified or
not

Exact Stochastic Gradual Univariate/
multivariate

Can be
non-convex

Gridded surface Error assessment
depends on vari-
ogram and
distribution of
data points
and size of
interpolated
blocks.
Requires care
when
modelling spatial
correlation struc-
tures.

Interpolated sur-
face is smooth.
Statistical sta-
tionarity and
the intrinsic
hypothesis

Moderate When data are
sufficient
to compute vari-
ograms,
kriging provides
a good
interpolator for
sparse data.
Binary and nomi-
nal
data can be inter-
polated
with indicator
kriging.
Soft information
can
also be incorpo-
rated as trends
or stratification.
Multivariate data
can be interpo-
lated
with co-kriging.
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In the case of the methods listed in table 1.1, knowing the properties of
these methods helps in choosing an appropriate method depending on the
requirements of each of them.

1.4 Examples of applications of spatial
interpolation by previous scholars

1.4.1 A brief review of Kriging and random forest
performance

Various studies acknowledged the use and performance of Kriging method
in comparison with a number of other methods, including, nearest neigh-
bour, inverse distance weighting and random forest (RF) (Berndt et al., 2018;
Hengl et al., 2018; Pebesma et al., 2016). Of interest is the fact that all three
scholars in the following paragraph affirm the good performance of Krig-
ing. But it is Hengl et al. (2018) that acknowledged the complementarity
value of RF to Kriging. Their study demonstrates that RF can equally per-
form in pair with Kriging. In the current research, it will be of interest to
observe how these different methods perform relative to one another.

In lower Saxony, in northern Germany, Berndt et al. (2018) compared the
performance of Nearest neighbour, inverse distance weighting and Kriging
with external drift (KED) under the influence of temporal resolution and
network density in predicting the following weather variables, precipita-
tion, sunshine duration, relative humidity, cloud coverage and wind speed
for the period 2008 to 2013. They found that ordinary Kriging performed
better than others for wind, cloudiness and sunshine duration, regardless
of network station density and temporal resolution. From a study done
by Pebesma et al. (2016), various spatio-temporal covariance models and
spatio-temporal interpolations were compared to a purely spatial Kriging
approach. It was found that spatio-temporal covariance structures carry
useful information, but that a spatio-temporal Kriging model does not guar-
antee to outperform over a pure spatial prediction unless there exists a
strong correlation between the locations and the temporal dimension. In
Hengl et al. (2018), Random forest (RF) was compared to ordinary Kriging
and regression Kriging for spatial prediction in order to incorporate the ef-
fect of geographical proximity. They found RF to produce equally accurate
predictions as the Kriging methods. In their study, RF was found to easily
adapt locally in time and space in the case of spatio-temporal predictions in
comparison to Kriging.
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1.4.2 A brief review of Meteoland

From the following studies, Meteoland De Cáceres (2019), a new R package
within the R programming language (R Core Team, 2013), which is based
on the Gaussian filter method and is used to predict daily data at unknown
locations, is shown to have been successfully used for spatial predictions
since its launch in 2016 (Germishuizen, 2018; Karavani et al., 2018; Sánchez-
Pinillos et al., 2018). Therefore, given that it is a new technique in the field
of spatial interpolation and has been employed for different purposes, this
raised the interest to compare it with other well-known methods and assess
its performance.

Karavani et al. (2018) used Meteoland to predict weather variables in or-
der to understand the impact of climate change and soil moisture on mush-
room productivity in Mediterranean forests. Strong relationships between
weather conditions and mushroom productivity were found to exist. Kara-
vani et al. (2018) observed that high temperatures tend to negatively impact
the period of yield at the beginning of the fruit season while they enhance
it by its end. In another study, Meteoland was effectively applied in cal-
culating the monthly mean temperature and precipitation (Sánchez-Pinillos
et al., 2018). Sánchez-Pinillos et al. (2018) were interested in the assessement
of post-fire recruitement of non-serotinous pines. They used Meteoland to
derive the spatially continuous data needed for the analysis of the climatic
variables relating to the mechanisms of facilitation or competition between
resprouters and pines. Meteoland was also used to derive mean monthly
temperature and precipitation and the result was then utilized to calculate
the Standardized Precipitation-Evapotranspiration Index (SPEI). The SPEI
calculated assessed the relationship between the effects of the variables em-
ployed and changes operated in water availability between years. This way,
they demonstrate the applicability of the method to problems regarding
mean value calculation.

1.4.3 An example of an interpolation method performance
at a 1km2

"WordClim2" was developed by Fick and Hijmans (2017) to create a dataset
of spatially interpolated monthly temperature, precipitation, solar radia-
tion, wind speed and vapour pressure at high resolution (approximately
1km2) after "WorldClim 1" Hijmans et al. (2005), which created only aver-
age monthly temperature and precipitation. In Fick and Hijmans (2017),
remotely sensed land surface temperature data obtained from the MODIS
satellite were used to improve the estimation of areas where weather station
density is low. They implemented thin-plate smoothing spline algorithm in
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the program SPLINA from ANUSPLIN to interpolate the climatic variables.
The results indicated high correlation values for temperature and solar ra-
diation while the values were low for precipitation and wind speed. They
found the RMSE for the average temperature to be lower between 1.1◦ and
1.4◦C. After adding satellite-derived data, Fick and Hijmans (2017) found no
improvement or even negative effects for all of the other climatic variables
apart from temperature in particular, which showed the greatest positive
effect in regions with high elevation. Contrary to other findings Hutchin-
son (1995); Kilibarda et al. (2014); Neteler (2010) which illustrate that adding
more predictor variables in interpolating climate surfaces can increase pre-
diction precision as demonstrated using splines and other methods, Fick
and Hijmans (2017) work seems to suggest otherwise. Their optimal spline
model formulations used variables that vary across regions and accounted
for local context effects on climatic processes (e.g. the effect of elevation on
precipitation), thereby emphasizing the effect of the latter rather than the
co-variables. Their adaptive approach allows for better model fits in remote
regions.

The impact and findings of "WordClim2" which are a positive effect in
predicting temperature where elevation is high and also the constat of an
increase in predictions while increasing co-variables, inspired us to run in-
terpolation at the same resolution of 1km2 and to evaluate the effect of more
than one co-variable on temperature and rainfall predictions for KZN which
is a region with a presence of mountains.

1.4.4 A brief review of seasonal and geographical effects on
interpolation

In Yuan et al. (2015), thin-plate spline is applied to generate gridded climate
datasets for China from 3 co-variables, longitude, latitude and elevation on
a daily basis. They found a relatively poor performance for precipitation.
The thin-plate spline did not show distinct differences in RMSE for the three
temperature variables. But it was found that in spring and autumn, the av-
eraged R2 were larger for the three variables. The model showed different
performances for precipitation in the four seasons with the lowest perfor-
mance observed in summer. Their findings showed different performances
of the same interpolation method in different seasons, therefore observing
the behaviour of an interpolation method across different seasons is found
worthy to be evaluated in this research.

Given some of the geographical similarities of Australia to South Africa,
it is important to mention the study done by Beesley et al. (2009) which com-
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pared two archived Australia-wide 5km gridded gauge-based daily rainfall.
They used common cross validation statistics, that are of interest in this
research. There were used in order to revise previous error comparisons
done by Jeffrey et al. (2001) and Jeffery (2006) who considered different ob-
servations for their error analyses comparison. The two archived sets are
BAWAP (Bureau of the Australian Water Availability Project) and "SILO"
(Queensland, 1889) and they contain publicly available patched and grid-
ded datasets. The study found that the SILO direct daily rainfall and the
monthly disaggregation method compute almost identical errors for three
different error types, the mean error (ME), the mean absolute error (MAE)
and the root mean squared error (RMSE). Both BAWAP and SILO have simi-
lar errors, however SILO performs slightly better than BAWAP. They found
that the ME decreases considerably for cross validation of wet days, days
with a rainfall record higher than 0.0mm, which implies an underestima-
tion of the wet days.

1.5 Work done in South Africa
A number of studies done in South Africa have employed spatial interpola-
tion methods in different areas of research.

A geographically weighted regression (GWR) approach was used by
Schulze et al. (2007) to interpolate daily, monthly and annual rainfall values
throughout South Africa. Maps of the mean annual precipitation (MAP)
of South Africa were also generated using GWR. Specifically, they used the
GWR to derive a 50-year time series of continuous daily rainfall at stations
that have representative values of the 1946 quaternary catchments cover-
ing the area of study (Schulze et al., 2007). The inverse distance weighted
method was used to evaluate the differences between observed and esti-
mated MAPs values. Therefore, a correction of the interpolated MAPs val-
ues was made using the MAPs values generated by the inverse distance
weighted to fit where there are observed values and at the ungauged loca-
tions.

In Makhuvha et al. (1997), six different regression methods of estimating
missing values at a target site were tested in order to patch rainfall data. The
methods were subdivided into two main approaches, in accordance with
the types of missing values. For this study, Makhuvha et al. (1997) mostly
focused on the background theories of the methods rather than making their
comparison in order to find the most efficient method.

Germishuizen (2018), employed the Meteoland package in evaluating
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the ecological niche distribution of the Eucalyptus gall wasp Leptocybe invasia
in the plantation forestry areas of South Africa and predict the risk of out-
breaks at different spatial and temporal scales. With Meteoland, Germishuizen
(2018), developed monthly grids of different weather variables for the years
2015, 2016 and 2017 and these datasets constitute actual environmental pa-
rameters to define the climatic niche of Leptocybe invasia at monthly inter-
vals and identify seasonal and annual changes in risk of outbreaks.

To estimate rainfall values and patch missing data for different catch-
ments of the Southern Africa, Hughes and Smakhtin (1996) developed some
spatial interpolation approaches. One of the approaches is the VTI model
which they defined as "a semi-distributed model that operates with a daily
time step". They found that in the Southern Cape, the VTI model was more
successful than the patching model, which considers at most five available
sites within the site to be estimated. They found that the patching algorithm
overestimated the high flows.

Niekerk et al. (2011) investigated the suitability of four co-variables namely
slope, aspect, hillshade and distance to the coast for interpolating climate
surfaces in the Western Cape Province. They found no singificant effect
of slope, aspect and hillshade, only the hillshade with a 180◦ azimuth was
found to positively affect rainfall predictions but not temperature predic-
tions. Distance to the coast which is related to large water bodies was
found to decrease the mean error of monthly mean maximum daily tem-
perature by 27%. The latter co-variable was also found to improve the accu-
racy of monthly mean minimum daily temperature interpolations for seven
months, from October up to April.

1.6 Problem statement
Various approaches of spatial interpolation have proven to perform well
in estimating temperature and rainfall. However, most of the scholars have
compared either Kriging with inverse distance weighting and nearest neigh-
bour (Berndt et al., 2018; Coulibaly and Becker, 2007) or with random forest
(Hengl et al., 2018). There is insufficient information on how the perfor-
mance of the Gaussian filter through Meteoland compares to several other
methods across variables in the literature. Also, to the best of my knowl-
edge, no work has looked at the KZN region comparing interpolation meth-
ods performance as set out in this study. In the current research, the focus is
on the minimum and maximum temperature, and rainfall predictions. The
reason for choosing specifically these weather variables is because temper-
ature and rainfall estimations are essential in monitoring the environment,
predicting crop yield, determining the spatial distribution of plant develop-
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ment, conditioning agricultural soil suitability and in many more important
analyses (Flores, Lillo et al., 2010). The oversight observed in the literature is
significant because the region is of great agricultural importance (Wojtasik,
2014). Therefore, in the context of an increasingly variable climate, good
quality estimates of weather data are needed for modelling to guide deci-
sions and policies to wildlife management and agricultural practices.

1.7 Research objective
The main objective of this research is to test and compare the performances
of four methods of interpolation namely Kriging with external drift (KED),
Gaussian filter (GF), random forest (RF) and Multilayer Perceptron (MLP) at
a relatively fine scale of 1km2 resolution applied to minimum and maximum
temperature, and rainfall in the region of KwaZulu Natal (KZN) province of
South Africa. The theory and principles of these four methods are described
in more detail in chapter 2.

1.8 Research questions
Towards addressing this objective, three questions were asked:

• How well do the four methods, KED, GF, RF and MLP, compare to
one another in terms of their predictions of minimum and maximum
temperature, and rainfall?

• Does a method show better predictions between the three weather
variables namely minimum and maximum temperature, and rainfall?

• Does the performance of the methods change between dry and wet
years, or between summer and winter seasons?
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Chapter 2

Overview of the methods applied

The second chapter gives an overview of the methods used in this research.
The chapter begins with a detailed description of each of them and how they
were used. The accuracy metrics used to evaluate the models’ performances
are discussed. Also in this chapter, the study area in which the research is
focused is explored and the source and selection of the co-variables neces-
sary for each interpolation approach are detailed. The chapter closes by a
highlight of the packages employed to run the models.

2.1 Kriging
Kriging is often used across many disciplines. The name is derived from a
South African mining engineer, Daniel Krige (1919− 2013), but it was built
as a method by a French mathematician called Georges Matheron who de-
veloped the general concept and theory of linear geostatistics and for Krig-
ing interpolation (Stein, 2012). Kriging is a spatial prediction known to be
a best linear unbiased prediction (BLUP) because it estimates values for un-
known locations of a sample of observations and, in addition to the interpo-
lation, it generates errors for each predicted value which are not available
for other interpolations methods.

Kriging models are fitted to data obtained for large areas, which is the
reason why they are defined as being global rather than local. Despite the
fact that they are used for prediction, they can also be used for sensitive
analysis of complex computer codes which often need much computer time
and for optimal design that include automobiles, computer monitors and
airplanes (Meckesheimer et al., 2002; Simpson et al., 2001). Some sensitive
analysis and optimization require to interpolate the observed input and out-
put data and this is done using a metamodel of the underlying simulation
model such as Kriging (Van Beers and Kleijnen, 2004).

13
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Other studies using Kriging might consider higher dimensional inputs,
greater than three. For instance, Sacks et al. (1989) used the Kriging mod-
els with k dimensional input where k is a given positive integer however
geostatistics considers two-dimensional or sometimes three-dimensional in-
puts (Kleijnen, 2009).

Kriging requires a good understanding of the spatial behaviour of the
phenomenon represented and of the principles of spatial autocorrelation.
Kriging assumes spatial isotropy and stationarity of the field of study. This
implies that the properties of the field, such as the mean, standard deviation
and autocorrelation do not change over time and that they are spatially uni-
form in all orientations. One of the advantages of Kriging compared to other
interpolation methods is that in the presence of irregularity in the variation
of data, Kriging gives unbiased predictions, while other simple methods of
interpolation may give unreliable predictions (Berndt et al., 2018).

Spatial estimation using Kriging involves the computation of a covari-
ance matrix and the estimation of a semivariogram, which is a variance
function that relates spatial dispersion in a set of data (Sakata et al., 2003). A
semivariogram γ(h), is defined as half the mean squared difference between
two observations of a variable separated by a distance vector h (Uyan and
Cay, 2013). Therefore, considering that statistics and geostatistics are sci-
ences of the unknown, the true semivariogram is never known (Olea, 2006).
However, the following unbiased estimator is used in practice:

γ(h) =
1

2N(h)

N(h)

∑
i=1

(zi − zi+h)
2

where γ(h) is the experimental semivariogram of the distance class h,
N(h) the number of observations, zi and zi+h the observed values at lo-
cations i and i + h separated approximately by h. The locations represent
vectors of coordinates which are denoted as easting and northing for our
purposes, since we are working in two dimensions and h is the lag and has
a magnitude defined by a distance and an orientation.

2.1.1 Variogram model parameters

2.1.1.1 Nugget

The nugget (Fig. 2.1) is the estimated non-zero semivariogram as distance
approaches zero (Kerry and Oliver, 2008). It is one of the most important
parameters in Kriging prediction and needs to be chosen well according to
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Figure 2.1 The figure shows a fitted variogram model. The x-axis
represents the distance between sample points and the y-axis the
calculated value of the variogram. The red squares represent the
lags of the variogram.

the spatial variability of the data. Increasing the nugget size has certain
effects on the model outputs, such as an increase in uncertainty, a decrease
in the relative influence of nearby data and, at more isolated locations, some
surfaces rebound more towards the mean (Pardo-Igúzquiza, 1999).

2.1.1.2 Range

The length of a range (Fig. 2.1) affects predictions. For short range, variance
is higher and predicted values approach the mean, while for long range the
variance is lower and nearby observations influence predicted values the
most (Kerry and Oliver, 2008).

2.1.1.3 Sill

The sill (Fig. 2.1) is a plateau in semivariogram that occurs at a distance de-
fined by the range (Kerry and Oliver, 2008). When there are many isolated
observations, high sill values make estimates move towards the mean while
low sill values pull estimates move towards values nearby observations. In
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the case of sparse observations, the effects are more pronounced.

Geostatistical analysis employs variograms to present correlations of spa-
tial variability (Oliver and Webster, 1990). If the variability of a variogram,
where a variogram is a distance function of a spatial variance, does not vary
across spatial directions, it is called isotropy. If the variability varies with
spatial directions, it is called anisotropy. The anisotropic variogram model
is a function of both distance and direction, and its equation can be written
as follows: (h, θ) =

(
1
2 N(h, θ)

)
(h, θ) = (

1
2

N(h, θ))
N(h,θ)

∑
i=1

[z(xi, θ)− z(xi + h, θ)]2

where

θ, is the angle along point xi and xi+h,

N(h, θ), the pairs of samples with interval h in the angles along xi and
xi+h.

With 2 regionalized variables z and y, we obtain the joint variogram as fol-
lows:

γzy(h) =
1

2N(h)

N(h)

∑
i=1

[z(xi)− z(xi+h)]× [y(xi)− y(xi+h)]

2.1.2 Types of variogram models

A variogram is usually estimated at various lags and a parametric model
is fitted to those estimates before prediction can be performed on spatial
datasets (Gorsich and Genton, 2000). There exist different types of theoreti-
cal variogram models and the variogram properties presented in the previ-
ous paragraph give insights into how a model represents the best fit. There
are four most commonly used models: linear, spherical, Gaussian and ex-
ponential.

2.1.2.1 Spherical model

A curve known as a spherical model (Figure 2.2), is considered to fit the
variogram well in cases where the nugget variance is important but not
large and there is a clear range and sill. In Ly et al. (2011), a spherical model
is given by the following equation:

γ(h) =

{
C0(1− H(0)) + C1(

3
2

h
a − (1

2(
h
a )

3), 0 ≤ h < a,
C0 + C1, a ≤ h,

(2.1)
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where,

C0 is the nugget effect,

h, represents the lag or distance between the observations,

H(0), is the heaviside function which is 1 at lag 0 and 0 otherwise,

a, the range,

and C0 + C1 represents the sill.

2.1.2.2 Exponential model

An exponential model observed in Figure 2.2, is considered when there is a
clear nugget and sill but only a gradual approach to the range. Its equation
is as follows:

γ(h) = C0(1− H(0)) + C1(1− e−
3h
a ), 0 ≤ h (2.2)

The variables are the same as in equation 2.1.

2.1.2.3 Linear model

Hartkamp et al. (1999) define a linear model (Figure 2.2), in presence of a sill
by the following equation:

γ(h) = (C0 + C1)
h
r

, h ∈ (0, r] (2.3)

The variables are the same as in equation 2.1.

2.1.2.4 Gaussian model

A Gaussian model (Figure 2.2), is used in cases where the variation is very
smooth and the nugget variance is very small compared to the spatially
random variation (Hartkamp et al., 1999). The Gaussian model is as follows:

γ(h) = C0(1− H(0)) + C1(1− e−3( h
a )

2
), 0 ≤ h (2.4)

The variables are the same as in equation 2.1.
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Figure 2.2 Examples of the four most commonly used variogram models.

Despite numerous publications on Kriging variogram models, the most
common methods of fitting semivariogram models to experimental semi-
variograms are performed using manual fitting procedures (Ly et al., 2011).
This is not an appropriate approach. Thus, finding a good fit requires mostly
a very good knowledge and experience in the field. Olea (2006) emphasizes
that modelling a semivariogram remains to the uninitiated the most diffi-
cult and intriguing aspect in the application of geostatistics.

2.1.3 Kriging with external drift (KED)

The Kriging with external drift method allows the prediction of a particular
variable, Z, known only at some locations, taking into account another vari-
able, u, known everywhere. A random function, Z(x), is chosen to model
the Z data. The second variable is represented as a regionalized variable,
u(x) (Bourennane et al., 1996). The two quantities are assumed to be linearly
related as Z(x) and u(x) are two ways of expressing the same phenomenon.
It is assumed that Z(x) is on average equal to u(x) up to a constant a0 and
a coefficient b1 by (Bourennane et al., 1996, 2000):

E(Z(x)) = a0 + b1u(x) (2.5)

This method merges both sources of information, uses the variable u(x)
as an external drift function for estimating Z(x). Let us consider the prob-
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lem of improving the estimation of a second-order stationary random func-
tion Z(x). This is solved by introducing the shape function u(x) providing
detail at smaller scale than the average sample spacing for Z(x). The es-
timator is the linear combination of the sample values at location xα(α =
1, . . . , n) with unit sum weight wα,

Ẑ(x0) =
n

∑
α=1

wαZ(xα) (2.6)

with weights constrained to sum to 1 ∑n
α=1 wα = 1

In this way, the prediction error is expected to be zero:

E[Ẑ(x0)− Z(x0)] = 0

E[Ẑ(x0)] = E[Z(x0)]
(2.7)

This equality can be developed into:

E[Ẑ(x0)] =
n

∑
α=1

wαE[Z(xα)]

= a0 + b1

n

∑
α=1

wαu(xα)

= a0 + b1u(x0)

(2.8)

This implies that the weights should on average be consistent with an
exact interpolation of u(x).

u(x0) =
n

∑
α=1

wαu(xα). (2.9)

Therefore, the objective function (O) to minimize in this case consists of
the estimation variance σ2

E and of two constraints:

O = σ2
E − µ1

(
n

∑
α=1

wα − 1

)
− µ2

(
n

∑
α=1

wαu(xα)− u(x0)

)
(2.10)

with µ1 and µ2 the Lagrange parameters, and

σ2
E the estimation variance.

The estimation variance σ2
E is equal to
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σ2
E = var

[
Ẑ(x0)− Z(x0)

]
=

n

∑
α=1

n

∑
β=1

wαwβC(xα − xβ)− 2
n

∑
α=1

wαC(xα − x0) + C(0)
(2.11)

where C is the covariance function.

The partial derivatives of the objective function O(wα, µ1, µ2) are set to
zero to find the minimum of the quadratic function σ2

E:

∂O
∂wα

= 0

∂O
∂µ1

= 0

∂O
∂µ2

= 0

(2.12)



n

∑
β=1

wβC(xα − xβ)− µ1 − µ2u(xα) = C(xα − x0)

n

∑
α=1

wα = 1

n

∑
α=1

wαu(xα) = u(x0)

(2.13)

The result of minimization is a system of linear equations called univer-
sal Kriging equations:

n

∑
β=1

wβC(xα − xβ)− µ1 − µ2u(xα) = C(xα − x0)

n

∑
β=1

wβ = 1

n

∑
β=1

wβu(xβ) = u(x0)

(2.14)

with the minimal estimation variance

σ2
E = C(0)−

n

∑
α=1

wαC(xα − x0) + µ1 + µ2u(x0) (2.15)

Thus, KED consists of incorporating into the Kriging system supplemen-
tary universality conditions about one or several external drift variables,
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ui(x), i = 1, . . . M, measured exhaustively in the spatial domain (Bouren-
nane et al., 2000). The functions ui(x) need to be known at all locations xα of
the samples Z(xα), as well as at nodes of the estimation grid.

The following conditions are added to the Kriging system independently
of the class of covariances, hence the qualificative external. A Kriging sys-
tem while in presence of translation invariant (internal drift) and multiple
external drift, can be written as:

n

∑
β=1

C(xα − xβ)−
L

∑
l=0

µl fl(xα)−
M

∑
i=1

µiui(xα) = C(xα − x0) (2.16)

for α = 1, . . . , n

n

∑
β=1

wβ fl(xβ) = fl(x0) (2.17)

for l = 1, . . . , L

n

∑
β=1

wβui(xβ) = ui(x0) (2.18)

for i = 1, . . . , M

2.1.3.1 Parameterization

The parameters of Kriging with external drift used in this study are the
following:

• A mask: A rectangular grid is first defined, represented by a mask that
contains all the spatial coordinates of the KZN region at a 1km resolu-
tion.

• Among all the drift terms possibilities within universal Kriging. The
"specified drift" was selected.

• The variogram used is a linear variogram.

• The number of specified drifts is also specified and represented by el-
evation and coastal distance.

• The grid to consider for prediction is also defined by the x-points and
y-points.
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2.2 Gaussian interpolation
The truncated Gaussian is a stochastic interpolation method which is based
on facies distribution. The spatial distribution and relationships can be eas-
ily tuned to produce numerous different textures such as high frequency
layering or oriented facies (Beucher and Renard, 2016). For the purpose of
this project, an R package, Meteoland (De Cáceres, 2019), which relies on
the truncated Gaussian filter, is used.

To elaborate and develop Meteoland, De Cáceres (2019) referred to the
concept of interpolation which provides daily values illustrated by Thorn-
ton et al. (1997) whose idea comes from the existence of a model called MT-
CLIM. The model provides daily values from meteorological variables. It
was developed by extrapolating daily observations from a maximum of
two stations to a remote and uninstrumented site. The procedure of ex-
trapolating temperatures with elevation which apply throughout the year
is accomplished by user-specified lapse rates that are derived from regional
observations and holds constant in space and time. The extrapolation of
daily precipitation is achieved using a ratio of mean annual total precipi-
tation between the sites of observation and prediction, with the predicted
occurrence of precipitation events duplicated from the observed time series
of daily precipitation. However, the method does not give allowance for
temporal variation (Thornton et al., 1997).

The MTCLIM model assumes that a reasonable horizontal meteorologi-
cal variability can be represented over a region of approximately 2000 km2.
The assumption is not valid for studies over larger regions where the area
tends to exceed 2000 km2. Based on the MTCLIM logic, Thornton et al.
(1997) included then interpolations between an unspecified number of het-
erogeneously spaced observations in complex terrain that are not restricted
to the area of the terrain.

In developing the method, the idea of the assertion that the area of rela-
tive influence for a given observation should be inversely related to the local
observation density, was derived from the nearest neighbour method. But,
due to the lack of possibility of generating continuous surfaces using the
nearest neighbour method and given a desire to generate a continuous inter-
polation surface which does not have to be perfectly smooth. A surface not
perfectly smooth releases the condition of continuity for the derivatives and
allows the first and the higher-order derivatives to be discontinuous. Thorn-
ton et al. (1997) postulated that the relative influence should decrease with
increasing distance from an observation. The statement was borrowed from
the inverse-distance method. However, the desire to generate a smoother
method where the resultant surface is not required to pass through the ob-
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servations was not fulfilled using the inverse-distance method. The reason
is that the asymptotic condition of the inverse-distance method forces the
surface through all observations and therefore generates anomalies in the
spatial distributions.

For these reasons, the approach of a truncated Gaussian filter with a
surface containing the horizontal projections of the observation locations is
adopted. The truncated filter serves to reduce the number of observations
included in predictions at a given point. A Gaussian function satisfies the
needs for implementing Meteoland given the desired features of being both
an inverse-distance algorithm and a smoothing filter.

Meteoland is then developed from the above mentioned. It provides
estimation of daily weather variables such as precipitation, maximum and
minimum temperature, wind, relative humidity, solar radiation at any loca-
tion of a landscape. The interpolation of the first four variables is done using
truncated Gaussian filters, and consists of spatially defining the weight at
radial distance r to the point of interest p:

W(r) =

{
e−α(r/Rp)2 − e−α if r ≤ Rp

0 otherwise
(2.19)

where α is a unitless shape parameter, Rp the truncation distance from
p, and W(r) the filter weight associated with the radial distance r from p.

Thus for each target point, we have a vector of weights associated with
observations as a result of spatial convolution of the filter with a set of
weather station locations. A constant value for Rp results in a large disparity
in the number of observations where the weights are non zero between the
points in the least and the most densely populated regions of the prediction
grid (Thornton et al., 1997). Rp is automatically adjusted in such a way that
it is smaller in data-rich regions and increases in regions with less data. A
fixed number of observations to be used at every prediction point could be
specified, but this is unfortunately not the best way to proceed because it vi-
olates the requirement for a continuous surface. Instead, we specify at each
point p, an average number of observations N to be included. The trun-
cation distance Rp is then varied as a smooth function of the local station
density in such a way that the average is achieved over the spatial domain.

Therefore, we have a continuous interpolation surface ensured by the
smooth variation of Rp which is accomplished through the iterative estima-
tion of local station density at each prediction point. The estimation of Rp is
done by the following:

1. Rp is initialized at a value specified by the user.
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2. Given Rp, the local density Dp which denotes the number of stations
per area, is calculated after the calculation of interpolation weights Wi
for all i = (1, ..., n) stations using equation 2.19:

Dp =
∑n

i=1 Wi/W̄
πR2

p
(2.20)

where W̄ is the average weights over the untruncated regions of the
filter given by the equation:

W̄ =

∫ Rp
0 W(r)dr

πR2
p

=

(
1− e−α

α

)
− e−α

(2.21)

3. A new Rp is then calculated as a function of N, the average number of
observations and Dp, by the following:

Rp =

√
N∗

Dp · π
(2.22)

where,

N∗ =

{
2N for the first I − 1 iterations
N for the final iteration

4. This new Rp is substituted in equation 2.20 where Dp is in turn used
for the step 3, the process is repeated for the specified number of times
I. The final Rp is then used to generate weights Wi.

Therefore, an estimation of Rp for each target point is done for each day and
weather variable. To compute the algorithm, 4 parameters such as N, R, I
and α are required. In Meteoland, De Cáceres (2019) define the two param-
eters R and I to be set by default, therefore R = 140000 and I = 3 while
the number of observations N and the shape of parameter α depend on the
variable to be interpolated. The values for the interpolation parameters are
specified once and held constant over all days and all prediction points.
Given an arbitrary variable xi, measured at each of the observations points
i = 1, . . . , n, the interpolated value xp of a single prediction point on a single
day is determined in general as:

xp =
∑n

i=1 Wixi

∑n
i=1 Wi

(2.23)
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As mentioned previously, the process of interpolation is done differently
from one variable to another, making the general method specific to predic-
tions of daily minimum and maximum temperature and daily total precipi-
tation, incorporating the influence of elevation differences.

2.2.1 Temperature

Suppose daily temperature is denoted T. Meteoland predicts daily maxi-
mum temperature and daily minimum temperature in the same way. Let us
denote Tp the variable temperature to be predicted at a single target point p
and for a single day based on the observations Ti and interpolation weights
Wi, with i = 1, . . . , n representing the weather stations. A correction for the
effects of elevation differences between the observation and the prediction
points is included in equation 2.23 to predict Tp. The correction is based
on an empirical analysis of the relationship of T to elevation, which is per-
formed once for each day of prediction (Thornton et al., 1997). De Cáceres
(2019) used a weighted least squares regression to assess the relationship be-
tween temperature and elevation. This is done by assessing the difference
in elevations associated with a pair of observations instead of regressing zi
on Ti, where zi are the elevations recorded for stations i with i = 1, . . . , n
. The dependent variable is the corresponding difference in temperatures
associated with a pair of stations and the independent variable is the differ-
ence in elevations associated with the pair. We then have a regression of the
form

(T1 − T2) = β0 + β1(z1 − z2). (2.24)

Here β0 and β1 are the regression coefficients. The daily regression is
performed over all unique pairs of stations. The weights within the pairs of
stations are used to find the regression weights associated with each point.
Thornton et al. (1997) found this approach to be more robust than the sim-
pler method of regressing ti against zi, using the Wi as regression weights.

The daily maximum or minimum temperature Tp is the predicted as fol-
lows:

Tp =
∑n

i=1 Wi[Ti + β0 + β1(zp − zi)]

∑n
i=1 Wi

(2.25)

where zp is the elevation assigned to the target point.

2.2.2 Precipitation

The process of predicting precipitation is different to the prediction of tem-
perature and complicated because it requires predicting both daily precipi-
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tation occurrence and, conditional on that result, daily precipitation amount.
The patterns occurrence of precipitation show some spatial coherence on
wet versus dry when measured at the time scale of a day. Thornton et al.
(1997) defined under that assumption, a binomial predictor of spatial pre-
cipitation occurrence as a function of the weighted occurrence at surround-
ing stations.

Therefore, a precipitation occurrence probability, denoted POPp, is es-
timated for a case of a single prediction point on a given day and given
observations of daily total precipitation Pi and interpolation weights Wi:

POPp =
∑n

i=1 WiPOi

∑n
i=1 Wi

(2.26)

where POi are the binomial variables related to observed precipitation
occurrence, i = (1, . . . , n) the observation locations, n the total number of
observations,

POi =

{
0; Pi = 0
1; Pi > 0

(2.27)

Once POPp is calculated, we then have POp, the daily binomial predic-
tions of precipitation occurrence at a given point, that are based on the
comparison of POPp with a specified critical value, POPcrit, and this criti-
cal value is held constant for the whole spatial and temporal domain of the
simulation,

POp =

{
0; POPp < POPcrit

1; POPp ≥ POPcrit
(2.28)

The prediction of daily total precipitation, Pp, is calculated conditional
on precipitation occurrence of POp = 1. Then precipitation values are trans-
formed using a temporal window of 5 days. Once again, a weighted least
squares is used to account for elevation effects on precipitation. Then, the
normalized difference of the precipitation observations, Pi, for any given
pair of stations define the dependent variable, giving the regression of the
form (

P1 − P2

P1 + P2

)
= β0 + β1(z1 − z2) (2.29)

where β0 and β1 are the regression coefficients, z1 and z2 are the eleva-
tions recorded for two stations denoted as 1 and 2 of a unique pair.

The predicted daily total, Pp, is obtained as follows:
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Pp =
∑n

i=1 WiPiPOi

(
1+ f
1− f

)
∑n

i=1 WiPOi
(2.30)

where f = β0 + B1(zp − zi).

The form of prediction requires that | f |< 1. In Meteoland, a parameter
fmax = 0.95 by default is introduced to force | f |= fmax whenever | f |> fmax.

2.2.3 Parameterization

All the parameters for Meteoland reported in this thesis are given in the
following table:

Parameter Units Description Climatic variable Value
I none Number of station density iterations All 3

R m Truncation radius All 140,000

α
Tmax 3

none Gaussian shape parameter Tmin 3
Prec 5

N
Tmax 30

none Average number of stations Tmin 30
with non-zero weights Prec 20

ST

Tmax 15
days Temporal smoothing width for Tmin 15

elevation regressions Prec 5

POPcrit none Critical precipitation occurrence Prec 0.52

fmax
none Maximum value for prec Prec 0.95

regression extrapolation
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2.3 Random Forest
Random forest is a tree-based supervised learning algorithm that can be
applied to both classification and regression problems. It is an ensemble
of K tree predictors {T1(X), . . . , TK(X)}, where X = {x1, . . . , xp} is a p-
dimensional vector of predictors (Svetnik et al., 2003).

The ensemble produces K outputs, {Ŷ1 = T1(X), . . . , ŶK = TK(X)},
where Ŷk with k = 1, . . . , K, is the prediction given by the kth tree. These
outputs are aggregated for the final predicition according to the type of
problem.

In regression, the final prediction is formed by taking the average pre-
dictions in the following:

Ŷ(X) =
1
K

K

∑
k=1

Tk(X) (2.31)

where k is the individual bootstrap sample; K, the total number of trees
and Tk(X), the individual learner.

The mathematical formulation of RF puts emphasis on training the algo-
rithm iteratively until a strong learner is produced (Breiman, 2001). The
ensemble methods train multiple learners, weak and strong to solve the
same problem. There exist two well-known methods of classification trees,
boosting and bagging, that generate many classifiers and aggregate their
results. Random forest adds an additional layer of randomness to bag-
ging. While each tree is independently constructed using a bootstrap sam-
ple of the dataset in bagging, random forest randomly chooses the best split
amongst a subset of predictors in each node.

Given a training dataset {(Xi, Yi)} with i = 1, . . . , n, as explained by
Segal (2004) and Svetnik et al. (2003), the RF model procedure, illustrated
schematically also in figure 2.3, is explained as follows:

• Randomly draw a bootstrap sample from the training dataset.

• Grow a tree from each bootstrap sample.

• At each node, specify the number of covariates, which has to be less
than or equal to the number of predictors p and choose the best split
based on these covariates.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. OVERVIEW OF THE METHODS APPLIED 29

• Each tree is grown to the maximum depth, until no further splits are
possible.

• Repeat the steps until an adequate large number of trees is grown.

Figure 2.3 Illustration of the random forest model split. The samples are
drawn from the training dataset and trees are grown from the
features (co-variables) selected. Only the best splits from each
tree are taken into consideration to form the output which is
collected in the rectangle of final class.

Random forest depends on two parameters, the number of trees in the
forest and the number of variables at each node in the random subset (Breiman,
2001). To ensure good performance of the model, the number of trees needs
to grow with the number of predictor variables (Svetnik et al., 2003).

Two useful pieces of information on the sample of the dataset is pro-
duced by the model. It measures the importance of the variables and gives
a measure of the proximity that defines the internal structure of the data.
To achieve stable estimates of these two above-mentioned measures, a suf-
ficient number of trees is necessary. Important terms that are used through
the process, are:

• Entropy,
measures the randomness or unpredictability in the dataset,

C

∑
i=1
− filog( fi) (2.32)
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where, fi is the frequency of label i at a node and C is the number of
unique label.

• Information gain,
measures the decrease in entropy after splitting the data on an at-
tribute,

Gain(T, X) = Entropy(T)− Entropy(T, X) (2.33)

where T is the target variable, X the feature to be split on and Entropy(T, X),
the entropy calculated after the data is split on feature X.

2.3.1 Parameterization

For this study, training the random forest model was done including four
co-variables: slope, aspect, distance to coast and elevation in addition to the
spatial coordinates of the weather stations. Random forest depends on two
parameters, mtry which takes the number of variables that are randomly
sampled at each node, and ntree that defines the number of trees used to
grow the forest.

In the implementation applied here, the parameter ntree employed to
grow the ensemble of trees is set to be equal to 500 in order to train the
model. While tuning ntree, it was observed that from about 200 trees there
was no more decrease in error, therefore 500 trees can be considered as
enough to fit the model (Figure 2.4).
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Figure 2.4 The figure shows the decrease in mean squared error (MSE) on
the y-axis as the number of trees increase on the x-axis.

However to make sure that the ntree selected does not represent a small
number of trees, ntree up to 3000 was checked. There was not much differ-
ence between choosing 500 trees or 3000 trees (Figure 2.5). If a considerable
number of trees is selected, every input row finds an opportunity to get pre-
dicted at least a few times.
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Figure 2.5 The figure shows the decrease in mean squared error (MSE) on
the y-axis with increase in the number of trees on the x-axis. Not
much change in error is observed over 500 trees.

Using the random forest package, the variables that are important to the
prediction were checked. The spatial coordinates were considered for all
the models, the co-variables that have greater influence on the predictions,
including elevation, distance to the coast, slope and aspect were analysed.
The importance is displayed at a scale ranging from 0 to 1. Elevation is the
co-variable with the highest importance to the prediction followed by the
distance to the coast in Figure 2.6.
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Figure 2.6 The importance, ranging from 0 to 1, of the four non spatial
co-variables used in the predictions. The blue dot shows the
importance value for each covariable.

2.4 Artificial Neural Network
Artificial neural networks offer methodological advantages over traditional
spatial analysis methods. They are well suited to processing noisy data and
handling non-linear modelling tasks. There are no critical assumptions with
neural networks about the nature of spatial data. A neural network model
is a computer model whose architecture essentially imitates the learning ca-
pabilities of a human’s brain (Yeh et al., 2013). Artificial neural networks are
used to make accurate predictions for highly non-linear systems because
of their capacity to approximate non-linear relations and their derivatives
without knowing the true non-linear function (Joshi, 2016) .

The function of a neural network is determined by the model of the neu-
rons, the network structure and the learning rate (Zhou, 2012). A number
of possible network structures exist, however the multi-layer-feed-forward
network is the most commonly used. Amongst these network structures,
Multi-Layer Perceptron (MLP) and radial basis function network (RBFN)
are the two most well-known neural networks for spatial interpolation (Salcedo-
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Sanz et al., 2016; Seo et al., 2015; Yeh et al., 2013).

For this study, MLP, a feed-forward neural network which is structured
in layers of neuronal units interconnected by weighted links is selected.
Each layer of an MLP is fully connected to the following layer and passes
signals from all its neurons to each neuron in the following layer.

Figure 2.7 An artificial neural network architecture with 3 layers, an input
layer with n neurons, a hidden layer with m neurons and an
output layer with k neurons.

A neural network (Figure 2.7) has 3 types of layers: an input layer, which
accepts input signals from outside. The independent variables used for pre-
diction are set in this layer and represent its neurons. Hidden layers that can
be one or more layers, are represented by neurons that detect the features
found hidden in the inputs. Any continuous function can be represented by
only one hidden layer and more than one hidden layer can represent con-
tinuous and even discontinuous functions. An output layer, in turn, accepts
output signals from the hidden layer, where the number of outputs equals
the number of dependent variables to be predicted.

The mathematical formulation of an MLP can be written in the following
form:

Ŷ = f

(
m

∑
j=1

wkj f

(
n

∑
i=1

wjixi + bj

)
+ bk

)
(2.34)
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where Ŷ is the output matrix that contains the predicted values; f is an
activation function, which is a non-linear complex function that converts
the input signal to an output signal; wkj defines the weights associated to
the connection between hidden and output layers while wji represents the
weights connecting the input and hidden layers; m and n are respectively
the number of neurons in hidden and input layers; xi represents the input
variables given to the input layer; bj and bk are the bias of the neurons in
hidden and output layers respectively.

The weights in equation 2.34 are adaptively changed to minimize the dif-
ference between the desired output and the actual output (Abutaleb, 1991).
This is a time consuming process computed by trial and error due to the
non-existence of a method to determine the optimal number of neurons in
the hidden layers. Such computation is essential to determine the values of
connection weights and the biases of the neurons. Once decided, the goal of
training the algorithm is achieved. The learning process is done using a gra-
dient descent optimization method that updates the weights and bias in the
network as long as the activation function is differentiable. A gradient de-
scent is an iterative algorithm, that starts from a random point on a function
and descends its slope in steps until it reaches the lowest point of the func-
tion. The most commonly used learning algorithm for neural networks is
called back-propagation (Abutaleb, 1991; Beltratti et al., 1996; Pascanu et al.,
2013).

The back-propagation algorithm consists of taking the error calculated
from the comparison of the desired output and the ouput obtained with the
feed-forward network. The error obtained is then back propagated to the
hidden layer, while updating the weights and biases, in order to minimize
the error (Beltratti et al., 1996; More and Deo, 2003; Zhou, 2012). This process
is repeated until the training error is minimized.

2.4.1 Activation function

While training the model, there exists different activation functions denoted
as f in equation 2.34 that can be tested to ensure that the representation
in the input space is mapped to a different output space (Pascanu et al.,
2013). The following four most commonly used activation functions were
implemented in the study reported in this thesis.

• Sigmoid or logistic function (logistic; Fig. 2.8), which ranges between
0 and 1 and therefore is not zero centred and can make optimization
harder. It is in the form of

f (x) =
1

1 + e−x (2.35)
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Figure 2.8 Sigmoid function

• Hyperbolic tangent function (Tanh; Fig. 2.9), a zero-centred function
that ranges between −1 and 1 and is in the form of

f (x) =
e2x − 1
e2x + 1

(2.36)
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Figure 2.9 Tanh function

• Linear function (linear; Fig. 2.10), that ranges from−∞ to +∞ is in the
form

f (x) = ax (2.37)

where a is a positive integer
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Figure 2.10 Linear function

• Rectified Linear units (ReLu; Fig. 2.11), which is the most used activa-
tion function given its fast convergence, is written as

f (x) = max(0, x) (2.38)

i f

{
x < 0 f (x) = 0
otherwise f (x) = x
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Figure 2.11 ReLu function

2.4.2 Structuring the network

The parameters of a neural network such as the number of hidden layers
and of neurons in the hidden layers are not quantified for any particular
application (FrontlineSolvers, 2019). Although, a choice of many hidden
layers in a network can be made, any continuous function can be approx-
imated using a feed-forward network with only one hidden layer (Zhou,
2012). Many hidden layers can introduce divergence in the network, pre-
venting the network from converging on a stable state (Zhou, 2012). This
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suggests the use of a more complicated algorithms to prevent such a prob-
lem. Other important parameters that need to be determined while training
a neural network model exist, such as:

• A batch size, which is a hyper-parameter indicating the number of
samples the model needs to work through before updating the internal
model parameters. This parameter is given by an integer that can be
set at 1 or more than 1 but cannot exceed the number of samples of the
training dataset. If

- batch size = 1, the batch is a stochastic gradient descent (sgd)
which randomly picks one data point from the entire dataset at
each iteration to decrease the error. A stochastic gradient descent
is a method to find the optimal parameter configuration of the
network.

- 1 < batch size < training dataset size, is a mini-batch gradient
descent. A mini-batch tries to find a balance between the good-
ness of gradient descent and speed of sgd.

- batch size = training dataset size, is a batch gradient descent
or full-batch gradient descent. It is less efficient than mini-batch
gradient descent.

• An epoch, is a hyper-parameter that gives the number of times the
learning algorithm needs to go through the entire dataset. This hyper-
parameter is an integer that varies from 1 to infinity, and a high epoch
number allows the model to minimize the error.

• A loss function, which learns to decrease the prediction error by ad-
justing the weights and biases to match the target output.

2.4.3 Normalization of the dataset

In this study, prior to training, the training dataset is normalized which im-
proves the learning in a neural network (Sola et al., 1997). The inputs are
scaled in the range of 0 to 1. Normalization of the dataset is one of the most
important preprocessing steps while working with neural networks (Raad
et al., 2012). The normalization formula is in the form

xijs =
xij − xim

σix
(2.39)

where xijs is the standardized value of variable xi for weather station j;
xij is the value of variable xi for weather station j; xim the mean value of the
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variable xi and σix the standard deviation of the variable xi.

Two architectures are built. One for maximum temperature and mini-
mum temperature together, which gives two neurons in the output layer.
Another architecture for rainfall prediction with one neuron in the output
layer. The neurons in the input and hidden layers are tested and the best
architecture is considered.

2.4.4 Parameterization

For multilayer perceptron, prediction of maximum and minimum tempera-
ture is done by changing the hyper-parameters by trial and error. The best
selections for each dataset are shown in the table below:

Dataset Hidden Neurons Input Variables Activation Optimizer
layer function

Jan 2016 MaxT, MinT 1 18 6 All ReLu sgd
Jan 2016 Rain 1 7 6 All linear sgd

July 2016 MaxT, MinT 1 9 6 All ReLu sgd
July 2016 Rain 1 8 6 All linear sgd

Jan 2017 MaxT, MinT 1 140 6 All ReLu sgd
Jan 2017 Rain 1 56 3 x,y,z ReLu adam

July 2017 MaxT, MinT 1 14 6 All ReLu sgd
July 2017 Rain 1 5 3 x,y,z ReLu sgd

In the Variables column, ’All’ represents x coordinates, y coordinates, el-
evation, slope, aspect and coastal distance. z, represents elevation.

In the optimizer column, sgd represents a stochastic gradient descent al-
gorithm and adam an adaptive moment algorithm. Adam uses the squared
gradients and the estimations of first and second moments of gradient to
scale the learning rate for each weight of the neural network. An nth mo-
ment of a random variable is the expected value of the random variable to
the power of n.

2.5 Accuracy assessment
Evaluating the model accuracy is an essential part in describing how well
the model performs in its prediction. In this study, to assess the perfor-
mance of the four models, a random split of the dataset was performed by
randomly assigning 70% of the data to a training sample and the remaining
30% to a testing sample. The procedure is called cross-validation and it is
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performed to evaluate the ability of the model to predict unseen data (test-
ing sample). We used a 10-fold cross-validation which ensures that obser-
vations from the original dataset are given a chance of appearing in training
and testing set (Kohavi et al., 1995). The entire dataset was randomly split
into 10 folds, where a single fold was retained as the validation data for
testing the model and the remaining 9 folds were used as training data. The
process was repeated 10 times, with each of the 10 folds used exactly once
as the validation data. Then, the results were averaged to produce the esti-
mation.

The procedure is different for the MLP models, for which each dataset
was randomly split into training, validation and testing sets allocating 80%
to training and validation, while 20% to testing. Prior to running the model,
the 80% was then split into 75% for training and 25% for validation. The
process was repeated 10 times and the results were averaged in a single es-
timation.

Three types of goodness-of-fit measure were considered in evaluating
the accuracy of the models, including Root Mean Squared Error (RMSE),
which places a lot of weight on large errors; Mean Absolute Error (MAE),
which is less sensitive to extreme values compared to RMSE and gives an
indication of the error extent; and R2 was assessed to evaluate how well the
predicted values fit compared to the original values.

• Root Mean Squared Error (RMSE) is an error rate of a model obtained
by the square root of the average of squared differences between pre-
dicted and observed values,

RMSE =

√
∑n

i=1(pi − ai)2

n
(2.40)

where a is the actual target, p the predicted target and n the total num-
ber of observations.

• Mean absolute error (MAE) represents the difference between pre-
dicted and observed values extracted by averaged the absolute dif-
ference over the dataset,

MAE =
n

∑
i=1

|pi − ai|
n

(2.41)

the variables are the same as in equation 2.40
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• R2 or coefficient of determination summarizes the explanatory power
of the model,

R2 =
SSR
SST

= 1− SSE
SST

(2.42)

where,

SST =
n

∑
i=1

(ai − ā)2, sum of square total

SSR =
n

∑
i=1

(pi − p̄), sum of square prediction

SSE =
n

∑
i=1

(ai − pi)
2, sum of square error

with ā is the mean value of a and p̄ the mean value of p. The other
variables a, p and n are the same as in equation 2.40

2.6 Study Area
This study was carried out in the KwaZulu-Natal province of South Africa
located in the south-eastern part of the country and which extends over a to-
tal geographical area of approximately 94, 360km2 (Figure 2.12). KwaZulu-
Natal is bordered by the Indian Ocean to the east and the Drakensberg
Mountain escarpment to the west producing a warm, subtropical climate
with inland regions becoming progressively colder. Situated in the South-
ern Hemisphere, the summer season is from about November to February,
and is hot, averaging 28°C. It gets most of the rain during the summer sea-
son (Schulze et al., 2007). Autumn is from March to May, where temper-
atures begin to cool before the warm, dry and clear Winter season that is
from June to August with average temperatures of 23°C.
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Figure 2.12 South Africa map with all its provinces. KwaZulu-Natal
province, the region of interest to this study, is highlighted on
the map with a dark green colour.

2.7 Data source and collection
This section covers the source for the co-variables, the relation between
primary and secondary variables employed to run the models and the co-
variables used for each model.

2.7.1 Co-variables

For the modelling in this study, a Digital Elevation Model (DEM) at 30m
resoultion was used (Figure 2.13). The DEM was sourced from the contour
20m provided by the Department Land Affairs. A DEM is a mathematically-
derived representation of the relief of the Earth’s surface. This was re-
sampled to 1km grid cells for the purpose of this study. Elevation, slope,
aspect and distance to the coast were then calculated from the DEM in the
quantum geographic information system (QGIS).
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Figure 2.13 Digital Elevation Model (DEM) of KwaZulu-Natal at a 30m
resolution

The spatial coordinates, longitude and latitude were converted into UTM
coordinates and this was applied for all the models. Figure 2.14 shows the
correlation between the features. A strong positive correlation of above 0.6
was found between minimum and maximum temperatures. There was a
strong negative correlation observed between longitude and elevation. A
considerable correlation ranging from −0.3 to −0.6 was observed between
maximum temperature and distance to coast as well as between maximum
temperature and elevation. Similar observations are found for the mini-
mum temperature.
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Figure 2.14 Correlation between the features used for interpolation. A
strong positive correlation is given by a darker blue colour and
a strong negative correlation is given by a lighter blue colour.

In this study, the choice of co-variables varies with the method of inter-
polation given the role of each co-variable in the increase of the accuracy
and effect on temperature and precipitation predictions. Elevation was con-
sidered for all four methods given its strong influence on climate. Niekerk
et al. (2011) has found distance to coast to simulate the effect Ocean has on
climate, by improving the accuracy for spatial interpolation. Thus, this co-
variable was used for the three other methods except for GF which, through
Meteoland, does only incorporate elevation, slope and aspect (De Cáceres,
2019). Slope and aspect are mostly used to allow topographical effects on
weather prediction however the use of a linear variogram for KED led to
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not consider slope and aspect.

The following table gives the co-variables considered for each method:

Methods Co-variables
KED Elevation, coastal distance
GF Elevation, slope, aspect
RF Elevation, slope, aspect, coastal distance

MLP Elevation, slope, aspect, coastal distance

2.7.2 Climatic data

For the analyses in this thesis, weather station observations from three sources
were used. Minimum and maximum air temperatures as well as precipita-
tion data of the 15th day of two months, January and July, representing re-
spectively summer and winter of two years, 2016, the driest, and 2017, the
wettest are selected in order to achieve the objective of comparing spatial
interpolation methods on a specific day.

• Data from 69 weather stations were provided by the South African
Sugarcane Research Institute (SASRI). This network of weather sta-
tions is relatively new and has been established to assist with mod-
elling and managing sugarcane plantations. Data is accessible from
(sasri/institute).

• The VitalWeather System, that gives live weather information to in-
dustry sectors, provided with 133 weather stations data for this re-
search. The VitalWeather System is a South African locally developed
system and uses the Davis Vantage Pro2 weather station as a source of
their weather data. This system was primarily designed for fire dan-
ger assessment and is not always reliable for detailed modelling work
(VitalWeather).

• Data from 34 weather stations were given by the South African Weather
Service (SAWS). SAWS is a member of the World Meteorological Or-
ganization and is the meteorological service under the Department of
Environmental Affairs and Tourism of South Africa as explained in
the website (SawsService).
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Stations located at a long distance away from the KZN region were re-
moved to avoid an introduction of bias in the result. Only stations within
and nearby KZN with the presence of data on the 15th of January and July
in the years of interest were considered. Thus 92 weather stations were used
for this study (Figure 2.15). The choice of these 92 stations was motivated by
the spatial variability of their distribution allowing a presence of spatially
complex daily weather data.

 N

Figure 2.15 Spatial distribution of 92 weather stations used for each model
in this study
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Figure 2.16 Total annual rainfall (in mm) for the period 2008 to 2018

The driest years were actually 2014, and then 2012 but they also happen
to have a large number of missing weather stations with respectively 48%
and 72% while 2016 was the third driest year during the 10 year period
and had substantially more weather stations. In 2016, 97% of the weather
stations were present.

2.8 Python and R packages
All the modelling was done using two open source programming languages,
R and Python. Kriging with external drift and Multilayer perceptron were
computed in Python using different python libraries while Gaussian filter
and Random forest were computed using several R packages.

In R, the packages raster and sp were used for the analysis of shapefiles.
The packages randomForest, ranger, caret, custom were used to run random
forest models, and sp and meteoland were used for Meteoland model anal-
yses. In Python, pykrige package was used for Kriging with external drift
analyses. Sci-kitlearn and keras were used to analyse Multilayer perceptron.

QGIS, an open-source cross-platform desktop geographic information
system was employed for generating the maps to spatially view the predic-
tions made with the models.
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Results and discussion

3.1 Analysis from the models
As mentioned in section 2.4 and explained by Kumar et al. (2005), there is no
rule to find the best MLP model, this is found with trial and error. The plots
obtained while training maximum and minimum temperature confirm that
the training data is not overfitted because the validation loss align with the
training loss. Hence, they produce a reduced mean squared error (MSE).
However, for rainfall which represents different patterns, we do not get a
good fit of the data. The small size of the training datasets is the reason of
such results as found by Anctil et al. (2004). Moreover, if the values to train
are around 0 which is the case of the actual rainfall values of July, where
there was nearly no rainfall, we found similar observations of slow conver-
gence and inefficient learning process as found by (Sajikumar et al., 1999).
The learning process would have been different with variation in the dataset
in terms of values and time which implies a wider range of values to train
the model and the change in time if time was considered as a co-variable.

Figures 3.1 and 3.2 illustrate the best models selected for MLP. Train-
ing and validation losses of maximum and minimum temperatures are ob-
served in the plots (a) and (c) that give two outputs in the network archi-
tecture since the two weather variables were combined in fitting the model.
The plots (a) and (c) produce a reduced mean squared error (MSE) and give
nicely curved plots. On the other hand, the plots (b) and (d) show the train-
ing and validation losses for rainfall. All these results were found with 500
number of epochs and variate activation functions and optimizers. Each
caption indicates the parameters selected.

In this study, in figures 3.3 to 3.6 that illustrate the RF model selection
employed for all the datasets, it is found that for the wet year, training rain-
fall does not require a large number of trees and many co-variables. Only

48
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125 trees and one or two co-variables were mostly enough to achieve the
best performance.
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(a) Training and validation losses (MSE) obtained
with MLP model using ReLu activation function
and sgd optimizer with 18 neurons for maxT
and minT
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(b) Training and validation losses (MSE) obtained
with MLP model using linear activation function
and sgd optimizer with 7 neurons for rainfall
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(c) Training and validation losses (MSE) obtained
with MLP model using ReLu activation function
and sgd optimizer with 140 neurons for maxT
and minT
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(d) Training and validation losses (MSE) obtained
with MLP model using ReLu activation function
and adam optimizer with 56 neurons for rainfall

Figure 3.1 (a) and (c) show the training and validation losses of maximum
temperature and minimum temperature for the 15th of January
2016 and 15th of January 2017 respectively while (b) and (d)
show the training and validation losses of rainfall for the same
dataset. One hidden layer, 500 epochs are used for all the models
and 6 inputs for all except for (d) where 3 inputs are used.
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(a) Training and validation losses (MSE) obtained
with MLP model using ReLu activation function
and sgd optimizer with 9 neurons for maxT and
minT
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(b) Training and validation losses (MSE) obtained
with MLP model using linear activation function
and sgd optimizer with 8 neurons for rainfall

0 100 200 300 400 500
Epoch

0

100

200

300

400

lo
ss

validation loss
training loss

(c) Training and validation losses (MSE) obtained
with MLP model using ReLu activation function
and sgd optimizer with 14 neurons for maxT and
minT
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(d) Training and validation losses (MSE) obtained
with MLP model using ReLu activation function
and sgd optimizer with 5 neurons for rainfall

Figure 3.2 (a) and (c) show the training and validation losses of maximum
temperature and minimum temperature for the 15th of July 2016
and 15th of July 2017 respectively while (b) and (d) show the
training and validation losses of rainfall for the same dataset.
One hidden layer, 500 epochs and 6 inputs are used for all the
architectures except for rainfall that used 3 inputs.
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(a) Tuned parameters on R2 (ntrees and mtry) with
a custom RF model. The best set of parameters is
given by ntree=375 and mtry=3

(b) Elevation versus maximum temperature (◦C) for
predicted maximum temperature values in blue
observed values in red

(c) Tuned parameters on R2 (ntrees and mtry) with a
custom RF model. The best set of parameters is
given by ntree=375, 500 and mtry=3

(d) Elevation versus minimum temperature (◦C) for
predicted minimum temperature values in blue
observed values in red

(e) Tuned parameters on R2 (ntrees and mtry) with
a custom RF model. The best set of parameters is
given by ntree=125 with mtry=3 and ntree=500
with mtry=4

(f) Elevation versus rainfall (mm) for predicted
rainfall values in blue observed values in red

Figure 3.3 (a), (c) and (e) show the performance of RF model on the 15th
January 2016 for maxT, minT and rainfall with different
variations and combinations of the parameters. The tuned
parameters are used in the final predictive models. (b), (d) and
(f) show the actual and predicted values on 15th January 2016
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(a) Tuned parameters on R2 (ntrees and mtry) with
a custom RF model. The best set of parameters is
given by ntree=250 and mtry=1

(b) Elevation versus maximum temperature (◦C) for
predicted maximum temperature values in blue
observed values in red

(c) Tuned parameters on R2 (ntrees and mtry) with a
custom RF model. The best set of parameters is
given by ntree=250 and mtry=3

(d) Elevation versus minimum temperature (◦C) for
predicted minimum temperature values in blue
observed values in red

(e) Tuned parameters on R2 (ntrees and mtry) with
a custom RF model. The best set of parameters is
given by ntree=125 and mtry=1

(f) Elevation versus rainfall (mm) for predicted
rainfall values in blue observed values in red

Figure 3.4 (a), (c) and (e) show the performance of RF model on the 15th
January 2017 for maxT, minT and rainfall with different
variations and combinations of the parameters. The tuned
parameters are used in the final predictive models. (b), (d) and
(f) show the actual and predicted values on 15th January 2017
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(a) Tuned parameters on R2 (ntrees and mtry) with
a custom RF model. The best set of parameters is
given by any class of ntree but for mtry=4

(b) Elevation versus maximum temperature (◦C) for
predicted maximum temperature values in blue
observed values in red

(c) Tuned parameters on R2 (ntrees and mtry) with a
custom RF model. The best set of parameters is
given by ntree=375 and mtry=2

(d) Elevation versus minimum temperature (◦C) for
predicted minimum temperature values in blue
observed values in red

(e) Tuned parameters on R2 (ntrees and mtry) with
a custom RF model. The best set of parameters is
given by ntree=125 and mtry=4

(f) Elevation versus rainfall (mm) for predicted
rainfall values in blue observed values in red

Figure 3.5 (a), (c) and (e) show the performance of RF model on the 15th
July 2016 for maxT, minT and rainfall with different variations
and combinations of the parameters. The tuned parameters are
used in the final predictive models. (b), (d) and (f) show the
actual and predicted values on 15th July 2016
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(a) Tuned parameters on R2 (ntrees and mtry) with
a custom RF model. The best set of parameters is
given by mtry=4 and with all the values of ntree

(b) Elevation versus maximum temperature (◦C) for
predicted maximum temperature values in blue
observed values in red

(c) Tuned parameters on R2 (ntrees and mtry) with a
custom RF model. The best set of parameters is
given by ntree=375 and mtry=2

(d) Elevation versus minimum temperature (◦C) for
predicted minimum temperature values in blue
observed values in red

(e) Tuned parameters on R2 (ntrees and mtry) with
a custom RF model. The best set of parameters is
given by ntree=125 and mtry=2

(f) Elevation versus rainfall (mm) for predicted
rainfall values in blue observed values in red

Figure 3.6 (a), (c) and (e) show the performance of RF model on the 15th
July 2017 for maxT, minT and rainfall with different variations
and combinations of the parameters. The tuned parameters are
used in the final predictive models. (b), (d) and (f) show the
actual and predicted values on 15th July 2017
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3.2 Accuracy
This section discusses the performance of the four models namely Kriging
with external drift (KED), Gaussian filter (GF), random forest (RF) and mul-
tilayer perceptron (MLP) in predicting maximum temperature, minimum
temperature and rainfall.

In general, RF model was found to be the most accurate interpolation
approach for all three weather variables across all years and seasons as ob-
tained using all three accuracy measures with a few exceptions (Tables 3.1
and 3.2). The generally good performance of RF can be explained by its be-
ing an ensemble technique (see section 2.3). There were some exceptions,
however, where KED outperformed RF slightly. KED performed better in
terms of RMSE and MAE for maximum temperature and in terms of RMSE
and R2 for minimum temperature (Table 3.1). KED also showed higher ac-
curacy in predicting rainfall for July 2016 (Table 3.2). GF is another model
that showed some exceptions. GF obtained higher accuracy compared to
the three other models for rainfall predictions using RMSE (Table 3.1). The
model also showed a higher accuracy of 91% in terms of R2 for maximum
temperature prediction in July (Table 3.2).

Table 3.1 Performance measured in terms of root mean squared error
(RMSE), mean absolute error (MAE) and R2 of the four models
used in prediction of the three weather variables for the 15th of
January, summer period, in 2016 and 2017. The blue color
highlights the best value found for each evaluation metric.

January
2016 2017

RMSE MAE R2 RMSE MAE R2

MaxT (◦C)

KED 1.43 1.24 0.82 1.09 0.88 0.80
GF 1.58 1.20 0.87 1.44 1.10 0.82
RF 1.02 0.85 0.95 1.27 0.89 0.90

MLP 1.81 1.49 0.71 2.17 1.85 0.02

MinT (◦C)

KED 0.92 0.75 0.91 1.04 0.82 0.87
GF 1.60 1.06 0.76 1.01 0.80 0.90
RF 1.86 0.69 0.86 0.50 0.42 0.97

MLP 1.87 1.49 0.39 1.12 0.81 0.79

Rain (mm)

KED 5.06 4.31 0.37 4.94 3.54 0.53
GF 7.87 6.29 0.40 1.10 4.96 0.52
RF 4.70 3.14 0.87 4.04 2.66 0.87

MLP 8.3 6.4 0.25 7.93 5.94 0.07
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Table 3.2 Performance measured in terms of root mean squared error
(RMSE), mean absolute error (MAE) and R2 of the four models
used in prediction of the three weather variables for the 15th of
July, winter period, in 2016 and 2017. The blue color highlights
the best value found for each evaluation metric.

July
2016 2017

RMSE MAE R2 RMSE MAE R2

MaxT (◦C)

KED 1.35 1.03 0.70 1.46 1.18 0.81
GF 1.34 1.11 0.85 1.51 1.83 0.91
RF 0.54 0.44 0.97 1.16 0.88 0.90

MLP 1.59 1.30 0.18 2.17 1.74 0.51

MinT (◦C)

KED 1.95 1.64 0.71 1.79 1.42 0.76
GF 2.65 2.14 0.61 2.00 1.5 0.73
RF 1.21 0.96 0.91 0.93 0.70 0.93

MLP 1.95 1.56 0.59 1.83 1.50 0.62

Rain (mm)

KED 0.03 0.01 0.95 0.15 0.084 0.92
GF 0.06 0.01 0.94 0.12 0.03 0.94
RF 0.03 0.01 0.92 0.05 0.03 0.90

MLP 0.03 0.06 0 0.06 0.032 0.11

Overall, MLP exhibited the poorest performance of all of the tested mod-
els. MLP may have been sensitive, as discussed in Chronopoulos et al. (2008)
to the relatively small (92 station) dataset.

For the summer season in both years, the four models showed better per-
formance for maximum and minimum temperature prediction indicating
lower RMSE and MAE values which are found to be below 2.17◦C than for
rainfall prediction (Table 3.1). However, the observations were found to be
different for winter where all the four models showed better measurement
error for rainfall prediction than for maximum and minimum temperature
prediction (Table 3.2).

Another observation to highlight is that there was no considerable dif-
ference between predictions of all the weather variables from the driest year
to the wettest year in both seasons. All the models gave similar accuracies
per weather variable in both years. Thus, in this study, goodness of fit mea-
sures were found not to have been influenced by whether or not the year
was wetter or drier.

The results found in this research are comparable with the finding of
Appelhans et al. (2015), who compared several maching learning techniques
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such as RF, neural networks and others to Kriging with elevation only, Krig-
ing with elevation and NDVI (Normalized Difference Vegetation Index) and
kriging with elevation and the sky view factor for the spatial prediction of
air temperature, they found that RF outperformed all other models. More-
over, analyses done by Chen et al. (2017) found the best results with RF in
comparison to other spatial and machine learning models as well as the re-
sults from the study done by Youssef et al. (2016).

For KED, to perform slightly better than RF can be explained by the
strong emphasis of RF on the distance to the coast and the little empha-
sis on the influence of elevation. Similar results were found by Appelhans
et al. (2015), where RF interpolation patterns were brought closer to Kriging
interpolations, in locations where RF put too little emphasis on the influ-
ence of elevation.
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3.3 Interpolated temperature and rainfall
surfaces

The summaries in Tables 3.1 and 3.2 give a good overview of model per-
formance. However, there is a great deal of difference between the patterns
of variability in the three weather variables across space when looking at
the interpolated surface. This is worth exploring further and only one date
is chosen in this study to illustrate the difference observed. The generated
maps of the three weather variables at a 1km2 resolution in the KwaZulu-
Natal (KZN) region on the 15th of July 2016 are displayed (Figure 3.7 to 3.9).

While RF performed well in terms of general goodness of fit, some is-
sues are evident in the patterns of variation that can be seen in maps of
interpolated surfaces. Referring to Figures 3.7 and 3.8, the following point
is most notable. The evidence of a "banding effect" shown by the purple
arrow which was really only obvious in the case of the RF estimates. This
could be linked to an artefact of the model since no other model was able to
capture such effect. It is not clear why it was so obvious for RF. The effect is
stronger for minimum temperature.

It is also observed with all the modelling techniques that minimum and
maximum temperatures values are higher along the coast and decrease as
you move from the east to the west part of KZN. This can be an effect of
the distance to the coast and the elevation used as co-variables which are
similar to the finding in Jarvis and Stuart (2001). For their study, they found
that elevation, urban index and northing, where northing has high corre-
lation with distance from the south coast are the most influential variables
for maximum and minimum temperatures. Thus, our observations validate
theirs.

In Figure 3.9, three of the models generated similar maps for rainfall ex-
cept for the MLP that showed higher rainfall amount along the coast. The
predicted rainfall values with MLP range between 12 and 26.5 mm while
they average 0 mm for the other models. This aligns with the results shown
in Table 3.2 where MLP accuracy measures were found very bad for rainfall.
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(a) Map with Kriging with external drift (b) Map with meteoland

(c) Map with RF (d) Map with MLP

Figure 3.7 Surface interpolations of maximum temperature at a 1km2

resolution on the 15th of July 2016 for the 4 models
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(a) Map with Kriging with external drift (b) Map with meteoland

(c) Map with RF (d) Map with MLP

Figure 3.8 Surface interpolations of minimum temperature at a 1km2

resolution on the 15th of July 2016 for the 4 models
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(a) Map with Kriging with external drift (b) Map with meteoland

(c) Map with RF (d) Map with MLP

Figure 3.9 Surface interpolations of rainfall at a 1km2 resolution on the 15th
of July 2016 for the 4 models
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Chapter 4

Conclusion and future work

In this study, four approaches of interpolation were tested and compared to
determine their performances in predicting minimum and maximum tem-
perature, and rainfall weather variables at a 1km2 spatial resolution in the
region of KwaZulu-Natal (KZN) in South Africa. Kriging with external drift
(KED), Gaussian filter (GF), random forest (RF) and multilayer perceptron
(MLP) are the models compared and trained on four datasets containing
values of the three weather variables collected from 92 weather stations in
the region of interest. It is of importance to know if a model show bet-
ter predictions between the three weather variables in order to specifically
guide decision makers towards choosing a robust model with regards to the
weather variable of interest. Also, if the performance of the models change
between dry and wet years, or between summer and winter seasons.

Given the insufficiency of information in regards to accurate spatial in-
terpolation at a fine resolution in KZN and the increasing demand of grid-
ded data for process based models that heavily rely on climate data, it is of
interest to identify a model that can produce reliable gridded data. In this
regard, it is important to compare well-known models such as KED with
emerging approaches, such as GF, which have recently been used to gener-
ate daily interpolated data

The four datasets in this study included values of the weather variables
derived on the 15th of January that represents the summer period and the
15th of July that represents the winter period in the years 2016 and 2017
respectively. The models were evaluated based on their capacity to reduce
the root mean squared error (RMSE) and the mean absolute error (MAE).
Topographical information including elevation, slope, aspect and distance
to the coast of the sampled locations and of the unsampled locations at 1km2

resolution within KZN were added as inputs to the models. There were ex-
tracted from a digital elevation model (DEM) of 30m resolution. RF and
MLP included all the co-variables, elevation, slope, aspect and distance to
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the coast while with KED only elevation and distance to the coast were con-
sidered given the use of the linear variogram which does not suit the values
of slope and aspect. GF predictions were done with the use of elevation,
slope and aspect since the model does not take any additional information.
RF outperformed the other three models in prediction of the three weather
variables in both seasons for both years with some exceptions. Another as-
set of RF is that it has the lowest computing time, followed by KED. KED
outperformed for minimum and maximum temperature predictions in Jan-
uary 2016 and 2017 respectively. It outperformed also for rainfall predic-
tions in July 2016. Apart from RF and KED, GF also showed almost similar
performance to the KED in predicting minimum and maximum tempera-
ture with an approximate difference of 0.5◦C in all experiments. Also, even
though KED performs slightly better than GF and MLP, it does not have the
advantage of predicting a sequence of daily data. KED can only be applied
on a dataset containing a particular date or on monthly or yearly averaged
data. MLP was the most complex model and required long training in fitting
the data yet it was the least accurate. The low accuracy of MLP is related to
the sensitivity of the model to the amount of data used for fitting it. Thus,
an increase of the data while fitting the MLP model could contribute in a
decrease of errors and therefore in a more reliable prediction. The present
study suggests that there is utility in complementing approaches to spatial
interpolation while deriving gridded data. Although, the results demon-
strate the outperformance of RF compared to other models, they also point
out that in certain variables, KED has the lead. Thus, having the four mod-
els allow for complementarity in which where one model fails, another pro-
vides reduced error range.

Interpolated temperature and rainfall surfaces were produced using the
four models. Even though RF provided lower errors in terms of RMSE and
MAE and has given higher R2, there was a presence of a banding effect
in the interpolated maximum and minimum temperature generated by RF.
The effect was observed along the coast as you get further from the ocean
giving surfaces that do not ressemble true temperatures.

The findings of this research allow us to conclude that RF can be used to
predict minimum and maximum temperature, and rainfall at a 1km2 resolu-
tion in KZN with relatively low error measures. In this research, it was also
shown that accurate interpolation temperature and rainfall surfaces can be
created at a fine resolution in KZN.

This study is limited by scope, and the results reported should be con-
sidered in that regard. The study only focused on specific dates within two
seasons in the KZN region. There is obvious room for expanding the study
beyond these boundaries to include a wider range of periods to enhance its
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generalizability. It is hoped that the work done in the present study will
provide a pointer for future direction in research in this light.
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