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ABSTRACT

Fairness of Machine Learning algorithms is a topic that is receiving increasing attention, as more

and more algorithms permeate the day to day aspects of our lives. One way in which bias can man-

ifest in a data source is through missing values. If data are missing, these data are often assumed

to be missing completely randomly, but usually this is not the case. In reality, the propensity of

data being missing is often tied to socio-economic status or demographic characteristics of individ-

uals. There is very limited research into how missing values and missing value handling methods

can impact the fairness of an algorithm. In this research, we conduct a systematic study starting

from the foundational questions of how the data are missing, how the missing data are dealt with

and how this impacts fairness, based on the outcome of a few different types of machine learning

algorithms. Most researchers, when dealing with missing data, either apply listwise deletion or

tend to use the simpler methods of imputation versus the more complex ones. We study the impact

of these simpler methods on the fairness of algorithms. Our results show that the missing data

mechanism and missing data handling procedure can impact the fairness of an algorithm, and that

under certain conditions the simpler imputation methods can sometimes be beneficial in decreasing

discrimination.

Keywords: fairness in machine learning, missing values, fairness metrics, imputation, algorithmic

bias
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OPSOMMING

Die regverdigheid van masjienleeralgoritmes is ’n onderwerp wat toenemend aandag geniet, soos al

hoe meer algoritmes elke aspek van ons alledaagse lewens deurdring. Een manier waarop sydigheid

in ’n databron kan manifesteer is deur ontbrekende waardes. Indien daar ontbrekende data is,

word daar dikwels aanvaar dat die data op ’n algeheel ewekansige manier ontbrekend is, maar dit

is gewoonlik nie die geval nie. In werklikheid is die geneigdheid vir die afwesigheid van data dik-

wels verwant aan sosio-ekonomiese status of demografiese eienskappe van individue. Daar is baie

beperkte navorsing oor hoe ontbrekende waardes en die hantering daarvan die regverdigheid van

algoritmes kan bëınvloed. In hierdie navorsing voer ons ’n sistematiese studie uit, met die basiese

vrae as beginpunt, soos op watter manier die data ontbrekend is, hoe die ontbrekende waardes

hanteer word en hoe dit regverdigheid bëınvloed, gebaseer op die uitkoms van ’n paar verskillende

masjienleeralgoritmes. Meeste navorsers gebruik skrappingsmetodes of eenvoudige imputasieme-

todes eerder as meer komplekse metodes wanneer hulle met ontbrekende waardes gekonfronteer

word. Ons ondersoek die impak van hierdie eenvoudiger metodes op die regverdigheid van algo-

ritmes. Ons resultate toon dat die onderliggende ontbrekende waarde meganisme en die prosedure

vir die hantering van ontbrekende waardes die regverdigheid van ’n algoritme kan bëınvloed, en

dat onder sekere kondisies die eenvoudiger imputasiemetodes soms kan help om diskriminasie te

verminder.
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CHAPTER 1

INTRODUCTION

‘Big Data processes codify the past. They do not invent the future. Doing that requires moral

imagination, and that’s something only humans can provide. We have to explicitly embed better

values into our algorithms, creating Big Data models that follow our ethical lead. Sometimes that

will mean putting fairness ahead of profit.’ - Cathy O’Neil, Weapons of Math Destruction (O’Neil,

2017).

The pervasiveness of machine learning algorithms in our everyday lives is undeniable. The breadth

of examples that can be given in this regard is substantial: these algorithms are used to award

or deny bank loans, manage admission into educational institutions, considerably speed up the

process of hiring and even aid law enforcement to decide the severity of sentencing of criminals

(Buolamwini and Gebru, 2018; Žliobaitė, 2017; Dunkelau and Leuschel, 2019). Some of the more

seemingly innocuous examples include algorithms making movie recommendations, dating websites

recommending users a suitable partner choice and retail websites with shopping recommendations

(Mehrabi et al., 2021; Barocas et al., 2017; Ntoutsi et al., 2020).

There are many worthwhile reasons for deferring some decisions from humans to computers: they

are faster, they can deal with much larger amounts of information efficiently and accurately, they do

not get lazy or bored and overall they reduce human error (Dunkelau and Leuschel, 2019; Ntoutsi

et al., 2020; Mehrabi et al., 2021). Despite these advantages, there are many examples of where

these algorithms have acted far from justly, with respect to certain sensitive or protected attributes

such as race, gender or nationality. As examples: the Correctional Offender Management Profiling

for Alternative Sanctions (COMPAS) system, which is used by courts in the United States to assess

the risk of re-offence, gave higher risk values for black offenders (lower risk values for white offend-

ers) than their actual risk, facial recognition software which has the lowest accuracy on females who

are darker skinned, and the online advertisement platform, Google Ads which showed considerably

fewer advertisements for high paid jobs to women than to men (Buolamwini and Gebru, 2018;

Ntoutsi et al., 2020; Mehrabi et al., 2021).

1
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One of the main reasons for the biased behaviour of algorithms is the quality of data that they are

trained on. Historic human biases for or against certain groups are inherent in many data sources.

Machine learning algorithms, which are designed to detect and learn patterns in data, use and even

amplify these patterns in making decisions.

An important way in which bias manifests in a data source is through the absence of certain

fields or inputs. Missing data refers to those instances of data which contain fields which have not

been captured or have been lost or deleted (Enders, 2022). If data are missing, these data are

often assumed to be missing completely randomly, but usually this is not the case, and propensity

of data being missing is often tied to socio-economic status or demographic characteristics of in-

dividuals. For convenience sake but to their detriment, the way that data are missing is usually

not taken into account before proceeding with the treatment of missing data (Fernando et al., 2021).

In practice, missing data is often dealt with in one of two ways before any statistical analysis:

these are listwise deletion (LD), which refers to complete removal of that instance of data which

contains the missing fields, or imputation, where at least one value is presented as a placeholder

for the field where there is a missing value. Surprisingly, there is very limited research on fairness

of algorithms in the context of the above missing data considerations, when it is clear that missing

data and bias of an algorithm are related (Fernando et al., 2021). For example, if listwise deletion

is implemented and there are many more missing fields for one group over another, the algorithm

might give more accurate predictions for the group with more observations and perform compar-

atively worse for the other group. When applied in a real world context, these biased decisions

would have a tangible impact on an individual.

The aim of this research is to study the effects of missing values on the fairness of an algorithm.

Fairness (or bias) of algorithms in machine learning is quantified by statistical definitions of so called

‘fairness metrics’, which are based on sub-setting the outcomes of an algorithm in various ways to

allow the difference in treatment of one group over another to be measured. Existing literature

combining the research of fairness of algorithms and missing data is limited to a handful of studies

(Fernando et al., 2021; Zhang and Long, 2021b; Wang and Singh, 2021; Zhang and Long, 2021a).

2
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A systematic study starting from the foundational questions of how the data are missing, how the

missing data are dealt with and how this impacts the fairness metrics, calculated on the outcome of

a few different types of machine learning algorithms, does not exist. Most researchers when dealing

with missing data either listwise delete or tend to use the simpler methods of imputation versus

the more complex ones (Eekhout et al., 2012). The impact of these methods on the fairness of an

algorithm has not been studied. In this research, we will start from this point.

To this end, the remaining chapters are organised as follows: In Chapter 2 we cover the rele-

vant background material for fairness in machine learning. In Chapter 3, we go over the relevant

background on the subject of missing data. In Chapter 4, we present a literature review of the

limited work which combines the two fields of fairness and missing values, and where relevant com-

paring the work which has been done to the work we will be undertaking. In Chapter 5, we cover

the details of our experimental process. In Chapter 6 we present the results of our experiments.

We end the thesis with Chapter 7 which covers our conclusions, recommendations and directions

for future work.

3

https://scholar.sun.ac.za



CHAPTER 2

BACKGROUND: FAIRNESS IN MACHINE LEARNING

2.1 INTRODUCTION

The topic of fairness in machine learning is receiving increasing attention, as machine learning

(ML) algorithms continue to permeate all spheres of life, including banking, education, hiring and

health. With respect to certain ‘sensitive’ or ‘protected’ attributes, such as gender, race, religion

and nationality, these algorithms often display discriminatory behaviour. Some of the more high

profile examples include: commercial, image-based gender classifiers by Microsoft and IBM all

increasingly misclassify when the input individual is dark-skinned or female, with an error rate

for dark-skinned females significantly higher than that for light-skinned males; the US COMPAS

system for predicting re-offence risk giving higher risk values for black offenders (lower risk values

for white offenders) than their actual risk, and Google’s Ads tool for targeted advertising showing

significantly fewer ads for high paid jobs to women than to men (Buolamwini and Gebru, 2018;

Dunkelau and Leuschel, 2019; Ntoutsi et al., 2020). Hence the decisions made by ML algorithms

have a tangible impact on many people’s lives, and so it is of utmost importance to audit these

algorithms at different stages of their development.

This is neatly captured in Barocas et al. (2017) (Figure 2.1) depicting the ‘Machine learning

loop’. It shows the different stages of development and deployment of an ML algorithm where

unfairness could come in. For example, in the measurement stage, data for some individuals may

be captured incorrectly or lost, leading to a biased data set. Data that is non-representative of

the underlying population will then lead to biased models, which output inaccurate decisions for

certain individuals. This event in an individual’s life then goes on to become part of the state of

the world, which again becomes data that is collected. In this simplified but accurate depiction, it

is easy to see how disadvantaged groups could continue to remain disadvantaged.

Despite the potential drawbacks, the merits of decision making by algorithms are manyfold, in-

cluding faster decision making and reduction in human error. For instance, a company could speed

up its hiring process by algorithmically filtering through hundreds of applications, leaving a more

manageable amount for human review (Dunkelau and Leuschel, 2019). Hence to completely dis-

4
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Figure 2.1: The machine learning loop (Barocas et al., 2017, p. 15)

card these algorithms would be short sighted, and so there is a growing body of research into bias

detection metrics and bias mitigation procedures for ML algorithms.

2.2 NOTATION

Without loss of generality we assume a binary classification situation. Let Y be the binary classifi-

cation label taking values in {0, 1} where 1 is the positive outcome and 0 is the negative outcome.

Considering the case of paying back a loan, an outcome of 1 would mean the loan was paid back

in full.

S is the binary sensitive or protected attribute where 1 is the privileged group and 0 is the un-

privileged group. If S is the variable race, 1 could be assumed to correspond to white, and 0 to

non-white, for example. Straightforward extensions exist for more than 2 classes or groups.

X contains the predictor variables which can be numerical or categorical. X may or may not

contain S. Along with Y they form the training data for a classifier. Ŷ are the predicted outcomes

from a classifier, which can be class predictions in {0, 1} or probability scores in [0, 1].

2.3 FAIRNESS THROUGH UNAWARENESS

One might expect that removing the sensitive variable from the model i.e., not using S for training

the classifier, might result in a fair classifier. As we expand next, removing the protected attribute

from the decision process is insufficient, as other predictors can serve as proxies for the protected

5
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attribute, and the classifier will use these proxy variables to indirectly discriminate. Barocas et al.

(2017) explain that several predictors that are slightly predictive of the sensitive variable can be

used to build high accuracy classifiers for that variable. This is demonstrated in Figure 2.2. The

left graph displays a predictor’s distribution separated by groups. There is only a slight difference

in the two distributions. The right plot shows that if we have many such predictors, we can predict

group membership with high accuracy.

Figure 2.2: Sensitive attribute proxies effect (Barocas et al., 2017, p. 44)

Another enlightening example is given in Calders and Verwer (2010), demonstrated on the Adult

income data set (this data set is described in detail in Chapter 5). Calders and Verwer (2010) use a

Naive Bayes classifier to predict the outcome, which is to decide whether the income of an individual

is high or low. They consider the sensitive variable sex, and Figure 2.3 shows the contingency table

of co-occurance counts in the data:

Figure 2.3: Distribution of outcome by gender for the Adult data set (Calders and Verwer, 2010)

As we can see, 30% of all males and only about 11% of all females have a high income, so historically

the data has been biased towards males. Then they apply a Naive Bayes classifier to this data, this

pattern is recognised by the algorithm and also amplified, as can be seen from the distribution of

the predictions in Figure 2.4.
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Figure 2.4: Distribution of predictions when including the sensitive variable in the model (Calders
and Verwer, 2010)

The classifier predicts about 42% of all males having a high income, and only 8% of all females.

Then they remove the sensitive attribute sex from the predictors in the model, the distribution is

as shown in Figure 2.5.

Figure 2.5: Distribution of predictions excluding the sensitive variable from the model (Calders
and Verwer, 2010)

Still, the males are the group favoured by the classifier, more so than even in the training data

itself: 38% males against 10% females. In essence, the model has used the predictors that correlate

with the sex attribute to indirectly discriminate.

2.4 FAIRNESS METRICS

Broadly, there are two main categories of fairness metrics (Friedler et al., 2019; Žliobaitė, 2017;

Verma and Rubin, 2018; Mehrabi et al., 2021; Dunkelau and Leuschel, 2019):

• Group fairness metrics: They aim to ensure non-discrimination across protected groups.

• Individual fairness metrics: They aim to give similar classification to similar individuals.

In this study we only consider the group metrics and how they are influenced by missing values.

Details of individual fairness can be found in Dwork et al. (2012).
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2.4.1 Group metrics

The measures can be divided into two broad categories: those based on predicted outcome (section

2.4.1.1) and those based on both predicted and actual outcome (section 2.4.1.2) (Friedler et al.,

2019; Žliobaitė, 2017; Verma and Rubin, 2018; Mehrabi et al., 2021; Dunkelau and Leuschel, 2019)

2.4.1.1 Measures based on predicted outcome

• Demographic parity (Barocas et al., 2017; Dunkelau and Leuschel, 2019): Also known as

statistical parity, this measure requires the probability for an individual to be assigned the

favourable outcome to be equal across the privileged and unprivileged groups

P (Ŷ = 1 | S = 1) = P (Ŷ = 1 | S = 0)

Hence this criterion requires the prediction to be statistically independent of the sensitive

characteristic. Note that when base rates P (Y | S) differ across the two groups, statistical

parity rules out the perfect predictor.

• Disparate impact (Feldman et al., 2015): Considering the ratio between the groups

P (Ŷ = 1 | S = 0)

P (Ŷ = 1 | S = 1)

we can require that the rates between the two groups not be different by more than a certain

percentage (Friedler et al., 2019).

• Conditional statistical parity (Dunkelau and Leuschel, 2019): Instead of considering all

differences in treatment between the two groups to be discriminatory, this measure considers

some differences to be acceptable. It tries to quantify how much of the difference between

the groups can be explained by other attributes of individuals recorded in X, and only the

remaining differences are said to be discriminatory. For example, part of the difference in

acceptance rates for locals and immigrants may be explained by differences in education

levels. Only the remaining unexplained difference should be considered as discrimination
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(Žliobaitė, 2017). To this end, let L ⊂ X be a set of legitimate factors. Then we require

P (Ŷ = 1 | S = 1, L = l) = P (Ŷ = 1 | S = 0, L = l)

There are limitations of demographic parity. It can easily be satisfied by a randomised classifier

on the disadvantaged group. Given a trained model, one can measure the acceptance rate of

the advantaged group, then simply assign the favourable outcome to disadvantaged individuals

at random (or carelessly), with respect to the same rate. Even though the acceptance rates in

both groups are identical, it is likely that more unqualified applicants will be selected from the

disadvantaged group. As a result, it will appear that members of the unprivileged group performed

worse than members of the privileged group, establishing a negative track record for them. This

situation might arise without malicious intent, for example a company might have historically hired

employees primarily from the privileged group, giving them a better understanding of this group

(Dunkelau and Leuschel, 2019; Barocas et al., 2017).

2.4.1.2 Measures based on predicted and actual outcomes

In general the measures in this category can be thought of as asking whether the error rates for

each group are similar (Friedler et al., 2019). The criteria which describe the quality of a classifier,

which can be formalised in a confusion matrix, come into play in these measures.

• Equalised odds (Hardt et al., 2016): we require that both groups experience the same true

positive rates (TPR) and false positive rates (FPR)

P (Ŷ = 1 | Y = i, S = 1) = P (Ŷ = 1 | Y = i, S = 0), i ∈ {0, 1}

(Note that TPR = 1 - FNR, where FNR is the false negative rate, and FPR = 1 - TNR,

where TNR is the true negative rate)

Equalised Odds can be relaxed into the following two measures:

• Equality of opportunity (Hardt et al., 2016): Requires equality of TPR for both groups

P (Ŷ = 1 | Y = 1, S = 1) = P (Ŷ = 1 | Y = 1, S = 0)
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Note that equality of TPR is equivalent to equality of FNR.

• Predictive equality (Dunkelau and Leuschel, 2019): Requires equality of FPR for both

groups

P (Ŷ = 1 | Y = 0, S = 1) = P (Ŷ = 1 | Y = 0, S = 0)

Note that equality of FPR is equivalent to equality of TNR.

Swapping the order of Y and Ŷ around in the above definitions gives us:

• Conditional use accuracy equality (Dunkelau and Leuschel, 2019): This measure requires

equality of precision or positive predictive value (PPV) and equality of negative predictive

value (NPV):

P (Y = Ŷ | Ŷ = i, S = 1) = P (Y = Ŷ | Ŷ = i, S = 0), i ∈ {0, 1}

This measure can be relaxed into the following measure:

• Predictive parity or PPV equality (Verma and Rubin, 2018): A classifier satisfies this

definition if both groups have equal PPV:

P (Y = 1 | Ŷ = 1, S = 1) = P (Y = 1 | Ŷ = 1, S = 0)

The fairness criteria which condition on the output variable implicitly assume that the true labels

are fair, in other words that the historical data does not contain discrimination. The validity of

this assumption should be regarded with caution. In a context such as credit scoring, for example,

the output captures whether the loan was paid back or not, so the assumption is realistic. On the

other hand, in the context of hiring, for example, if the output variable captures human decisions

for who was hired or not, these decisions may not necessarily have been objective (Žliobaitė, 2017).

Finally, there are limitations of group fairness metrics. A fair decision for each individual can-

not be guaranteed with these measures, rather ‘on average’ the decision is fair across the groups

defined by the protected or sensitive attribute. Details of the limitations can be found in Dwork et

al. (2012).
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2.4.2 Impossibility theorems

Garg et al. (2020) discuss in detail the trade-offs among demographic parity, equalised odds and

predictive parity. They detail how these measures relate to one another, as well as whether they

are compatible or mutually exclusive.

We assume that the ‘base rate’ of the two groups is different. The base rate of a group is

the ratio of people in the group who belong to the positive class (Y = 1) to the total num-

ber of people in that group. So, having unequal base rates across the two groups means that

P (Y = 1 | S = 0) ̸= P (Y = 1 | S = 1). Firstly, we define some shorthand notation for use in this

section.

The group specific TPR:

TPRs = P (Ŷ = 1 | Y = 1, S = s), s ∈ {0, 1}

The group specific FPR:

FPRs = P (Ŷ = 1 | Y = 0, S = s), s ∈ {0, 1}

The group specific PPV:

PPVs = P (Y = 1 | Ŷ = 1, S = s), s ∈ {0, 1}

Next we give proofs which examine the compatibility of demographic parity, equalised odds and

predictive parity. Firstly, using the probability relation

P (A,B) = P (A | B)P (B) = P (B | A)P (A)

the probability distributions linked with the three metrics can be expressed as follows:
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P (Y, Ŷ | S) = P (Y | Ŷ , S)× P (Ŷ | S)

= Predictive Parity ×Demographic Parity

= P (Ŷ | Y, S)× P (Y | S)

= Equalised Odds×Base Rate

(2.1)

• Demographic parity, equalised odds and predictive parity: Assuming unequal base

rates, we start with the assumption of a predictor that satisfies both demographic parity and

equalised odds, then we check if it also satisfies predictive parity. From equation (2.1) we can

get

P (Y = 1 | Ŷ = 1, S) =
P (Ŷ = 1 | Y = 1, S × P (Y = 1 | S)

P (Ŷ = 1 | S)
(2.2)

As the predictor satisfies equalised odds, we have that TPR0 = TPR1 = TPR. Demographic

parity also holds, so we have P (Ŷ = 1 | S = 0) = P (Ŷ = 1 | S = 1) = P (Ŷ = 1). With these

conditions we take the difference of the PPV values of the two groups:

P (Y = 1 | Ŷ = 1, S = 0)− P (Y = 1 | Ŷ = 1, S = 1)

=
TPR[P (Y = 1 | S = 0)− P (Y = 1 | S = 1)]

P (Ŷ = 1)
(2.3)

For predictive parity to be satisfied, we need the PPV to be equal for both groups, and this

means that the difference on the left side of the above equation should equal zero, which

can only happen if the base rates of the two groups are equal (we do not consider the case

when TPR is 0 as the usefulness of such a classifier is limited). Thus, in the case that the

two groups have unequal base rates, we cannot satisfy all 3 of demographic parity, predictive

parity and equalised odds. This is true even in the case of a perfect predictor because when

the base rates are unequal a perfect predictor cannot satisfy demographic parity.

• Demographic parity and Predictive parity: When demographic parity holds we have

P (Ŷ = 1 | S = 0) = P (Ŷ = 1 | S = 1) = P (Ŷ = 1). Next, we take the difference in PPV
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across the two groups

P (Y = 1 | Ŷ = 1, S = 0)− P (Y = 1 | Ŷ = 1, S = 1)

=
TPR0[P (Y = 1 | S = 0)]− TPR1[P (Y = 1 | S = 1)]

P (Ŷ = 1)
(2.4)

For predictive parity to hold, the first line of the equation must be zero, which means that

TPR0

TPR1
=

P (Y = 1 | S = 1)

P (Y = 1 | S = 0)
(2.5)

Thus, while demographic parity and predictive parity can be simultaneously satisfied even

with different base rates, the usefulness of such a classifier is limited when the ratio of the

base rates is significantly different from 1, as this implies that the true positive rate for one

of the groups would be very low.

• Equalised odds and Predictive parity: When equalised odds and predictive parity both

hold, we have TPR0 = TPR1 = TPR, FPR0 = FPR1 = FPR and PPV0 = PPV1 = PPV .

We have

P (Ŷ = 1 | S) =
∑
y

P (Ŷ = 1 | Y, S)P (Y | S)

= P (Ŷ = 1 | Y = 1, S)P (Y = 1 | S) + P (Ŷ = 1 | Y = 0, S)P (Y = 0 | S)

Hence

P (Ŷ = 1 | S) = TPR[P (Y = 1 | S)] + FPR[P (Y = 0 | S)] (2.6)

Using equation (2.1) we can write

P (Ŷ = 1 | Y = 1, S = 0)P (Y = 1 | S = 0)

= P (Y = 1 | Ŷ = 1, S = 0)(TPR[P (Y = 1 | S = 0)] + FPR[P (Y = 0 | S = 0)])

Hence

TPR[P (Y = 1 | S = 0)] = PPV (TPR[P (Y = 1 | S = 0)] + FPR[P (Y = 0 | S = 0)])
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TPR[P (Y = 1 | S = 0)] = PPV (TPR[P (Y = 1 | S = 0)] + FPR[1− P (Y = 1 | S = 0)])

Hence

P (Y = 1 | S = 0) =
PPV × FPR

PPV × FPR+ (1− PPV )TPR
(2.7)

Similarly we have

P (Y = 1 | S = 1) =
PPV × FPR

PPV × FPR+ (1− PPV )TPR
(2.8)

Hence, in the absence of a perfect predictor (when FPR would be equal to 0 and PPV would

be equal to 1), the base rates must be equal if both equalised odds and predictive parity hold.

If we have perfect prediction, equations (2.7) and (2.8) take on the indefinite form 0
0 , and

therefore we cannot conclude anything about the base rates with surety.

• Equalised odds and Demographic parity: If equalised odds is satisfied, then we have

TPR0 = TPR1 = TPR and FPR0 = FPR1 = FPR. Then

P (Ŷ = 1 | S) = TPR[P (Y = 1 | S)] + FPR[P (Y = 0 | S)]

Hence

P (Ŷ = 1 | S = 0)− P (Ŷ = 1 | S = 1)

= TPR[P (Y = 1 | S = 0)−P (Y = 1 | S = 1)]+FPR[P (Y = 0 | S = 0)−P (Y = 0 | S = 1)] (2.9)

Hence

P (Ŷ = 1 | S = 0)− P (Ŷ = 1 | S = 1)

= (TPR− FPR)[P (Y = 1 | S = 0)− P (Y = 1 | S = 1)] (2.10)

Assuming demographic parity, the first line of equation (2.10) is 0, this means either TPR =

FPR or the base rates are the same. However, we assume that the base rates are different so

the only possible option is to have TPR = FPR. Since in general as the goal is to develop

a classifier in which the TPR is a lot higher than the FPR, while simultaneously achieving

demographic parity and equalised odds is mathematically possible, it is not very useful.
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2.5 BIAS MITIGATION ALGORITHMS

Bias mitigation algorithms are classified under three main categories: pre-processing techniques

modify the input data so that any algorithm trained on the data will be fair, in-processing techniques

which change an existing algorithm which should be fair under any inputs, and post-processing

techniques which modify the output of a model to be fair (Friedler et al., 2019). Below we give

some details of these three techniques.

2.5.1 Pre-processing methods

This approach aims to remove bias from the training data so that the model does not have to

account for discrimination (Dunkelau and Leuschel, 2019). The model is trained on fair data which

then gives a fair classifier.

An example is the technique of data massaging. The method takes a number of observations

in the training data and changes their outcome values. A ranker R is used which ranks the individ-

uals by their probability to receive the favourable outcome. The higher this probability, the higher

the individual will rank.

Let ϵ = P (Y = 1 | S = 1) = P (Y = 1 | S = 0) denote the measured discrimination of the

training data. The number of individuals M who are modified is calculated as follows

M = ϵ× |D1| × |D0|
|D1|+ |D0|

where D1 = {X|S = 1} and D0 = {X|S = 0} denote the sets of privileged and unprivileged

individuals respectively. The massaging happens on the sets pr = {X ∈ D0|Y = 0} and dem =

{X ∈ D1|Y = 1} where we sort both sets with respect to their ranks: pr descending and dem

ascending. Labels of the top M individuals in both sets get flipped, which are respectively the M

individuals closest to the decision boundary.
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2.5.2 In-processing methods

These techniques modify particular learning algorithms, by changing the objective function through

regularisation or adding additional constraints (Dunkelau and Leuschel, 2019; Friedler et al., 2019).

An example is Discrimination Aware Decision Tree Construction (Kamiran et al., 2010). In this

method the splitting heuristic used for learning decision trees is changed. The decision tree itera-

tively splits the data set D based on the attribute leading to the largest information gain. Assume

a split which divides the data into k different data splits D1 . . . Dk. The information gain over the

ground truth is defined as

IGY = HY (D)−
k∑

i=1

|Di|
|D|

HY (Di)

where HY denotes the entropy with respect to the ground truth. By accounting for the entropy

HS over the protected attribute, the discrimination gain can be measured by

IGS = HS(D)−
k∑

i=1

|Di|
|D|

HS(Di)

For determining the most suitable split during training, for example, IGY − IGS only allows non-

discriminatory splits.

2.5.3 Post-processing methods

Post-processing algorithms change the model’s predictions to make them fair (Dunkelau and Leuschel,

2019).

An example is Reject Option Based Classification (Kamiran et al., 2012). Let h(X) be the predicted

probability of an individual to belong to the positive class. This technique changes the prediction

of samples for which h(X) is close to the decision boundary by introducing a rejection option. For

the classification threshold θ with 0.5 < θ < 1 let [1 − θ, θ] be the critical region. As an example,

for θ = 0.7 the critical region would be [0.3, 0.7]. If h(X) lies in the critical region, then the pre-

diction is assumed to be dependent on S: disadvantaged individuals receive the positive outcome

Ŷ = 1 and advantaged individuals receive the negative outcome Ŷ = 0. For those observations
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whose prediction score lies outside the critical region, the predictions remain unchanged, i.e., for

h(X) ∈ [0, 1− θ) the prediction is Ŷ = 0 and for h(X) ∈ (θ, 1] it is Ŷ = 1.

2.6 SUMMARY

In this chapter, we covered the ideas that are central to the topic of fairness in machine learning.

We started by demonstrating that simply removing the sensitive attribute from the model is not

sufficient to ensure that a model is fair. In a real world situation, due to legal or other issues,

the sensitive attribute may not be accessible in creating a machine learning model, and so in our

experiments we will exclude this variable from our models.

We next discussed the group fairness metrics, which are used to quantify the bias of an algo-

rithm. These metrics will be used in the empirical study, detailed in Chapter 5. For theoretical

interest, we also investigated the compatibility or conflicts between the different fairness metrics.

Lastly, we discussed the bias mitigation algorithms, which can be used to attempt to remove

the bias of an algorithm at different stages of its development.
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CHAPTER 3

BACKGROUND: MISSING VALUES

3.1 INTRODUCTION

Missing data presents us with a challenging issue and is pervasive across all fields of research. For

example, in the social sciences, it is a given that some respondents will refuse to participate or to

answer certain questions. Another example is from the field of medicine: a clinical trial for a new

medication in which participants drop out of the study because they are having adverse reactions

to the drug (Van Buuren, 2018; Enders, 2022; Kang, 2013). For our use, a practical definition

of missing data can be as follows: those observations in a data set that have no value for some

predictors (Kuhn and Johnson, 2013; Kang, 2013). Inevitably, with most real world data sets, we

are likely to encounter missing values. Most statistical analysis methods can only work on complete

data (Soley-Bori, 2013).

One of the most common ways of dealing with incomplete data cases is to discard the entire

observation. The default in most statistical software is to remove any such observations entirely

(Enders, 2022). There are many problems associated with this approach (Kang, 2013; Beretta and

Santaniello, 2016; Van Buuren, 2018): Parameter estimates from such data can be biased, samples

are less representative of the population of interest, it has a negative effect on statistical power and

it leads to discarding data which is often very costly to collect in the first place. We will elaborate

further on this procedure in the listwise deletion section.

3.2 MISSING DATA CAUSES AND PATTERNS

We can broadly categorise the causes of missing data (Fernando et al., 2021) as follows:

• Partial completion: This can occur in longitudinal studies where a measurement is repeated

after a certain period of time. It results when after collecting a few values of a record, at

a certain point in time or place within a questionnaire or a data collection process, the

remaining attributes or measurements are missing. This could happen towards the end of a

questionnaire, as well as to users more prone to fatigue.

18

https://scholar.sun.ac.za



• Missing by design: This can arise in two ways, contingency attributes and attribute sam-

pling. In contingency attributes there may be certain questions which are not applicable to

all individuals. In attribute sampling, specific design is used to randomly set different subsets

of questions to different individuals.

• Item non-response: Certain types of questions, for example those related to private infor-

mation such as income, may generate a non-response. There are three main ways in which a

non-response can occur: information is not provided, for example if an answer is not known,

the information provided is useless, for example an answer is illegible or impossible, or the

information provided is lost, for example through data processing.

A missing data pattern can be defined as the distribution of observed and missing values in a

data set. Based on the causes of missing data, we can discern the following missing data patterns

(Enders, 2022; Van Buuren, 2018). These are displayed in Figure 3.1. The location of the missing

values in the data set is represented by the shaded areas. Assume we have a data set with four

variables, Y1, Y2, Y3, Y4, the different missing data patterns can be described as follows:

• Univariate pattern: Missing values are isolated to a single variable.

• Unit non-response pattern: This pattern can arise when a researcher administers two

measures which are cheap to collect, to the entire sample (e.g., Y1 and Y2) and collects two

expensive measures (e.g., Y3 and Y4) from a subset of cases only.

• Monotone missing data pattern: This can occur in longitudinal studies where subjects

drop out. This pattern resembles a staircase, in that the cases with missing data on a

particular variable are always missing subsequent variable measurements.

• General missing data pattern: This is the most common pattern. Missing values are

scattered through the data matrix in a random fashion.

• Planned missing data pattern: This can be seen as intentional missing data. For example,

in panel E we see four questionnaires divided across three forms, such that each form includes

Y1 but is missing Y2, Y3 or Y4.

• Latent variable pattern: This pattern is included for completeness as latent variable models

are not usually viewed as missing data problems. Here the values of the latent variable are
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missing for the entire sample.

Regarding missing data patterns, it is no longer important to distinguish between them because

advanced imputation techniques such as multiple imputation are well suited to almost all missing

data patterns. To clarify, the missing data pattern describes the location of the missing values,

they do not explain why the data are missing.

Figure 3.1: Missing data patterns (Enders, 2022, p. 4)
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3.3 MISSING DATA MECHANISMS

Missing data mechanisms (MDM’s) (Little and Rubin, 2019; Enders, 2022; Van Buuren, 2018;

Schouten et al., 2018) describe the relationship between the probability of missingness in a data

set and the variables in the data set. There are three MDM’s, and as agreed by many researchers

the terminology related to these can be confusing.

We define some notation which will be used in the definitions below. As usual let X denote

the n×p matrix which has data values for p predictors on all n observations. Hence X contains the

hypothetically complete data. We use R to denote the n× p matrix containing zeros or ones, such

that R contains the locations of the missing values in X. In particular, we denote the elements of

X and R as xij and rij respectively, such that i = 1, . . . , n and j = 1, . . . , p. We have that rij = 1 if

xij is observed, and rij = 0 if xij is missing. We say that Xobs is the observed data and Xmis stores

the missing data. Xmis contains those elements xij such that rij = 0. Hence X = (Xobs, Xmis)

would denote the hypothetically complete data. Xmis contains real values which are hidden from

us, such that R indicates which values are hidden.

The distribution of R could depend on X = (Xobs, Xmis) and this relation is described by the

missing data model. We denote the parameters of the missing data model by ϕ.

• Missing completely at random, MCAR: The MCAR mechanism is satisfied when the

probability of being missing is unrelated to the data. In particular, the data are said to be

MCAR if

P (R = 0 | Xobs, Xmis, ϕ) = P (R = 0 | ϕ)

The parameter ϕ governs the probability of missingness, but this probability is not related to

any variable in the data set. In MCAR missingness, the observed data points can be seen as

a simple random sample of the complete data. If missingness exists in a data set then MCAR

missingness is the ideal scenario.

• Missing at random, MAR: The MAR mechanism requires that the missingness probability
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only depends on the observed information, i.e., Xobs:

P (R = 0 | Xobs, Xmis, ϕ) = P (R = 0 | Xobs, ϕ)

If MAR is satisfied, i.e., the data are missing as a function of the observed variables, then for

example ϕ could contain the coefficients from a logistic regression model.

• Missing not at random, MNAR: The data are MNAR if the probability of being missing

depends on the missing information Xmis, and can also depend on Xobs. Hence

P (R = 0 | Xobs, Xmis, ϕ)

does not simplify further.

From the point of view of statistical analysis and inference, removing the rows with missing values

before analysis requires the MCAR mechanism to be satisfied, otherwise the parameter estimates

produced will be biased.

3.4 MISSING VALUE HANDLING METHODS

3.4.1 Listwise deletion

Also known as complete case analysis, this method simply removes the entire observation that

contains missing values for some predictors. It is one of the most frequently used techniques to

deal with missing data. Many statisical software packages also use this method as a default. As

mentioned in Section 3.3, if the data are MCAR, then listwise deletion produces unbiased parameter

estimates. The advantage of listwise deletion is that it is a straightforward convenient technique

to use. A disadvantage is that even with MCAR being satisfied, removing entire observations is

wasteful and can lead to loss of statistical power. If data are not MCAR then it produces biased

parameter estimates, and can reduce the variability of the data (Enders, 2022; Kang, 2013).

3.4.2 Single imputation

There are a variety of single imputation methods but in general, even with MCAR being satisfied,

they perform poorly. The meaning of the term ‘single’ here is that this imputation method generates
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a single replacement value per missing value. The advantages of imputation are that you do not have

to throw away entire rows of data and you end up with a complete data set. The disadvantage is

that even when the data are MCAR, most single imputation techniques produce biased parameter

estimates. Also, all single imputation techniques underestimate sampling error (Enders, 2022).

Next we consider some popular single imputation techniques:

• Mean imputation: In mean imputation, we replace the missing values of a variable with

the arithmetic mean of the available cases of that variable. This produces a complete data

set. Intuitively, in mean imputation we are imputing with values that are at the centre of a

distribution, which reduces the variance. With reduced variability the size of covariances and

correlations also reduces. This happens even in the case of MCAR data (Enders, 2022).

• Mode imputation: Mode imputation can be described similarly to mean imputation. Here,

the mode of a variable is calculated on the available cases of the variable and used to impute its

missing values. Mode imputation also leads to an underestimation of the population variance

(Nishanth and Ravi, 2016).

• Regression imputation: In regression imputation, we replace missing values with scores

produced from a regression equation. In the first instance, using the complete variables, we

estimate a set of regression equations to predict the incomplete variables. These estimates

are generated from the complete cases. Intuitively, this technique makes sense as variables

in a data set are likely to be correlated, and we use the information from complete variables

to impute incomplete variables. The number of equations depend on the number of missing

data patterns in the data set (Enders, 2022).

With regression imputation, we overestimate correlations but underestimate variances and

covariances, but not to the same extent as in mean imputation (Enders, 2022).

• k-nearest neighbour (k-NN) imputation: In k-NN imputation, we take the k most

similar observations to the missing observation (where similarity is measured by a distance

metric), then for a continuous variable you replace the missing value by the mean of the k-

nearest neighbours and the mode for a categorical variable (Jonsson and Wohlin, 2004). The

choice of distance metric depends on the nature of the variables we want to use in the distance
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calculation. A measure which can calculate distance based on a mixture of continuous and

categorical variables is the Gower distance (Kowarik and Templ, 2016).

Unlike mean imputation where the replacement value is influenced by all cases, in k-NN

imputation these values are only influenced by the most similar cases. k-NN imputation is

less influenced by the issue of reduced variance than mean imputation (Jonsson and Wohlin,

2004).

3.4.3 Multiple imputation (MI)

Unlike in single imputation, MI produces multiple replacement values for the missing value. As an

overview, see Figure 3.2. MI results in more than one complete data set such that a number of

plausible values are imputed for the missing value. The observed data is identical in these data sets

but the imputed values differ. Next, the analysis of interest is performed on each imputed data set

and the parameters of the model are estimated for each of these. In the last step we pool together

the results of the previous analyses in such a way as to take the uncertainty of imputed values into

account. For details see Van Buuren (2018).

Figure 3.2: Overview of multiple imputation (Van Buuren, 2018)

Despite the fact that approaches like multiple imputation are superior over single imputation meth-

ods or listwise deletion (Enders, 2022; Van Buuren, 2018), the latter continue to be used by re-
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searchers. Eekhout et al. (2012) shows that researchers did not pay attention to the type of

missingness before applying a missingness handling method, most studies (81%) performed a com-

plete case analysis, 14% of studies used a single imputation technique and multiple imputation was

used in 8% of the studies. Despite the statistical superiority of multiple imputation compared to

single imputation, Kowarik and Templ (2016) correctly identify that in a usual statistical analysis,

the aim is often to generate one complete data set which is then analysed by researchers, and hence

single imputation still has importance in the missing data field.

3.5 SUMMARY

In this chapter, we covered the topics underlying the field of missing data. We started with the

causes of missing values and the patterns in missing data.

We then studied the missing data mechanisms, which describe the relationship between the prob-

ability of missingness in a data set and the variables in the data set. In our experiments, we will

start with a complete data set, and then artificially create missingness in the data sets according

to these MDM’s.

We then covered missing data handling procedures, including listwise deletion, single imputation

and multiple imputation. In our experiments, we will use the methods of listwise deletion and some

single imputation methods, in order to remove or impute missing values. We will study the effects

of the MDM’s and missing value handling procedures on the fairness of classification algorithms.
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CHAPTER 4

LITERATURE REVIEW

Existing literature combining the research of fairness of algorithms and missing data is limited to

a handful of studies (Fernando et al., 2021; Zhang and Long, 2021b; Wang and Singh, 2021; Zhang

and Long, 2021a).

The first paper we study (Fernando et al., 2021) is the first piece of research which attempts

to understand the issue of missing values in the context of machine learning fairness. The authors

aim to answer 3 main questions:

• ‘Are missing data and fairness related?’

• ‘Are those subsamples with missing data more or less unfair?’

• ‘Is it the right procedure to delete or replace these values?’

They start by giving a description of the causes of missingness and the causes of unfairness. They

then try to tie up the two. With regards to fairness, the missing data might not be evenly dis-

tributed between the privileged or disadvantaged groups, which could lead to discrimination in

the data and models fitted. Disadvantaged individuals may intentionally omit information if they

believe that a complete answer might lead to a discriminatory or unfair action. Fairness strongly

depends on both the quality of the data and the quality of the processing of these data, these are

the two processes where missing values can appear. Removing data due to a sub-population having

missing values more commonly could result in under-representation.

For their empirical work, they use six data sets (two of these, Adult and COMPAS, are used

in our study as well, see Appendix A for the data sets descriptions) with two sensitive attributes

each, i.e. 12 cases. Using Little’s MCAR global test (Little, 1988), the null hypothesis of MCAR

is rejected with p < 0.001 for all 6 data sets. We will focus on one of these for brevity, the Adult

income data set, which is popular in the field of machine learning fairness and contains missing

values. The two sensitive attributes in this data set are race and sex. They consider only one

fairness metric in their study: Demographic parity (for which they use the term Statistical Parity
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Difference (SPD), see Section 2.4.1.1).

The authors start by analysing the training data itself for fairness (this can be seen as apply-

ing the metric to the output of a perfect predictor), by looking at 3 subsets of the data separately

and applying SPD to them: the data set with all rows, the data set without missing value rows

and the data set with only the missing value rows. This is the first step to understand whether the

missing data rows are more or less unfair. From the results, in 10 out of the 12 cases, the smallest

value of the metric is found on the subsets of instances containing only the missing value rows.

The authors interpret that this shows that ‘the rows containing missing values are fairer than the

rest’. We would like to make a point next about this interpretation, demonstrating it on the Adult

income data set with sensitive attribute Race.

The non-MCAR pattern of missingness in the Adult data set for the variables Occupation, Work

class and Native country suggests that the rows with missing data likely contain a higher propor-

tion of disadvantaged individuals from both whites and non-whites. This means that the rates of

favourable outcome (the favourable outcome being earning an income greater than $50,000) will

likely be lower for both groups in the subset with missing values (than in the full set or the set

without the missing rows), irrespective of the racial group. Comparing the metric on the missing

data rows to the non-missing data rows is hence akin to comparing the metric on two different

data sets. Without standardising with respect to the base rates in each subset, the extent of the

differences between the two sets will be falsely inflated.

By looking at the SPD formula on the training data, where Y is the outcome with 1 being the

favourable or positive outcome, S = 1 indicates whites and 0 indicates non-whites:

SPD = P (Y = 1 | S = 1)− P (Y = 1 | S = 0)

For the subset with only missing value rows, both rates in the above statement will be small, which

leads to the smaller value of SPD on the missing rows.
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Below are the numbers for the Race variable in Adult income data set:

SPDfull = 0.2539− 0.1525 = 0.1014

and on the subset with missing value rows only the two terms are

SPDmissing = 0.1399− 0.1038 = 0.0361

We now take a look at the next set of results, the scenario is 100 repetitions of training/test set

split (25% of the data for test set) using CART (Classification and Regression Trees) as predictive

model. The data subsets again are the data set with all rows, the data set without missing value

rows and the data set with only the missing value rows. The authors use the CART model as it

can handle missing values, without needing to first remove them or impute them, as is the case

with most other machine learning techniques. In 11 out of 12 cases, the rows with missing values

give the lowest SPD value.

The next scenario is the same as the previous apart from one difference: the columns with missing

values are removed. Compared to the previous case, removing the columns with missing values

does not affect the accuracy of the models much. The rows with only missing values still give the

lowest SPD. This is an interesting observation, as it seems to suggest that the missing values in

these rows themselves are not that important, but rather the non-missing information in the rows

with the missing values is more important for accuracy and fairness. Maybe some other variables

in the data are correlated with the variables with missing values, acting as their proxy (this is

plausible as the MDM is not MCAR).

The last set of experiments aims to understand the effect of listwise deletion or imputation with

mean/mode on the fairness of machine learning models, and the trade-off between fairness and

accuracy. They use 6 techniques: Logistic regression (LR), Naive Bayes (NB), Neural Network

(NN), Random Forest (RF), the RPart decision tree (DT) and a support vector machine (SVM)

using a linear kernel. An example of the results is shown in Figure 4.1, on the Adult data set

(Fernando et al., 2021) where the y-axis represents SPD and the x-axis Accuracy. For comparison
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Figure 4.1: SPD vs Accuracy for the six models on adult data set (Fernando et al., 2021, p. 28)

they also plot results from the Majority class model (the model always picks the majority class

and has perfect fairness) and the Perfect model (i.e. the model that is 100% accurate but is not

unbiased).

Their results show that in terms of accuracy, imputation is generally beneficial for all cases and

techniques. In terms of fairness, all methods reduce bias from the perfect model. Regarding the

trade-off between fairness and accuracy, if we compare listwise deletion and imputation, we see the

expected trend of more accuracy for imputation implying less fairness. The authors recommend

that in practice one should try both listwise deletion and imputation to see which models are more

relevant for a particular problem, depending on the trade-off between fairness and performance.

The next research paper (Zhang and Long, 2021b) investigates the impact of missing data imputa-

tion methods on fairness metrics, inspired by the work of Fernando et al. (2021).

Based on the widely used fairness metric equalised odds as defined in (Hardt et al., 2016) they

define the notion of equalised odds difference. Equalised odds difference for classifier h is defined

as

EOD(h) := |FPR1(h)− FPR0(h)|+ |FNR1(h)− FNR0(h)|

Where the subscript 1 refers to the advantaged group and 0 refers to the disadvantaged group.

This notion is then used to measure the unfairness in prediction for different imputation methods,
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where the (binary) sensitive attributes are gender and race. For gender, male is the advantaged

group and for race, white is the advantaged group.

Next they propose a novel notion that measures the fairness of imputation results. For this the

following notation is set up. Sensitive attributes are binary, S = s ∈ {0, 1} with 1 being the ad-

vantaged group. The complete data matrix (containing all the predictors) without missing values

is denoted by X = (xij) ∈ Rn×p. The missing data indicator is denoted by R = (rij) ∈ Rn×p with

rij = 1{xij is observed}. Next define the group specific entities, let Xs = (xsij) and Rs = (rsij)

denote the complete data matrix and missing indicator matrix in sensitive group S = s, (so that

X = X0 ∪ X1 and R = R0 ∪ R1). In group s the data matrix imputed by model g is denoted

by X̂s(g) = (x̂sij(g)). Assuming that both sensitive groups contain missing data, mean square

imputation error of g in group s is defined as

MSIEs(g) =

∑
i,j(x̂

s
ij(g)− xsij)

2(1− rsij)∑
ij 1− rsij

The novel notion of imputation accuracy parity difference, IAPD for imputation model g is then

defined as

IAPD(g) = MSIE1(g)−MSIE0(g)

The usefulness of this measure in regards to measuring fairness is questionable, as higher imputation

accuracy does not necessarily mean higher fairness, especially if the data set contains historic biases.

The authors generate missingness in the first L features in the data set according to the three

missing data mechanisms in a univariate manner. Univariate amputation means that missingness

is generated one variable at a time. Their notation is as follows: given a sample z = (z1, . . . , zp)

the probability that zj is missing is given by the following values shown in Figure 4.2 (where the

values are truncated inside the unit interval [0, 1]) for ∀j ∈ {1, . . . , L} (Zhang and Long, 2021b).

The usefulness of their 11 schemes for generating missingness in categorical variables is not clear,

whereas in their case all predictor variables are numeric. Regarding the results in the paper, they

are all from only the numerical variables in the COMPAS data set (Store, 2016), whereas we are

working with missingness in both continuous and categorical variables. In data sets applicable to
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Figure 4.2: The missing data mechanisms used in (Zhang and Long, 2021b)

the real world, often there are many categorical variables with missing values (as these are used to

capture personal data) and this situation has not been studied much, in comparison to missingness

in numerical or continuous variables (Fernando et al., 2021; Wang and Singh, 2021).

To generate missingness in our research, we have used the R function ampute in package mice

(Van Buuren and Groothuis-Oudshoorn, 2011). This function allows one to generate missingness

in multiple variables simultaneously, according to the missing data mechanisms. This is beneficial

as it can make controlling the overall missingness proportion, i.e., the proportion of cases containing

at least one missing value, more straightforward. The merits of using this function over creating

your own missingness are detailed in Schouten et al. (2018). In particular, amongst other things

we are interested in the effects on fairness metrics of varying the overall missingness proportion

when creating missingness in multiple variables. This can be difficult to control with a univariate

generation process, in that the proportion of missingness desired may not be the proportion that is

achieved. In our scenario, using the multivariate amputation approach in ampute overcomes such

problems of univariate amputation.

Seven imputation methods are investigated: MICE, missForest, K-nearest neighbor (KNN) impu-

tation, two matrix completion methods Soft-Impute and OptSpace, and two deep learning methods

Gain and Misgan. Of these, MICE, missForest, Gain and Misgan are multiple imputation methods

and the remaining are single imputation methods.

Most of these methods are state of the art and not widely known or used by most researchers.

Similarly, most researchers do not investigate the missingness mechanism before applying a miss-
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ing data handling technique to it. For example, in the field of epidemiology, the investigation by

Eekhout et al. (2012) shows that researchers did not pay attention to the type of missingness before

applying a missingness handling method, most studies (81%) performed a complete-case analysis,

14% of studies used a single imputation technique and multiple imputation was used in 8% of the

studies. Despite the statistical superiority of multiple imputation compared to single imputation,

Kowarik and Templ (2016) correctly identify that in a usual statistical analysis, the aim is often to

generate one complete data set which is then analysed by researchers, and hence single imputation

still has importance in the missing data field. In fairness of machine learning research, most soft-

ware such as AIF360 (Bellamy et al., 2018), Aequitas and ThemisML simply removes the rows or

columns containing the missing values or will result in an error if missing values are encountered

(Fernando et al., 2021). Simpler methods dealing with missingness such as complete-case analyses,

mean imputation or single-regression imputation are more widely used, and the effects of these on

fairness metrics have not been studied. In our research we investigate listwise deletion or complete-

case analysis, and the simpler single imputation methods and their effect on fairness.

From their Table 1 results (see Figure 4.3), in their first conclusion, which they term as ‘Observation

1’, the authors conclude that severe imputation unfairness exists among all the imputation meth-

ods, but the threshold of ‘severe’ has not been defined. In their second conclusion, ‘Observation

2’, they conclude that despite a similar overall missingness proportion, imputation fairness can be

influenced by imbalance of missingness between the sensitive groups. Similarly in ’Observation 3’

it is concluded that imputation unfairness tends to grow as missingness proportion increases and

imbalance in the size of sensitive classes leads to imputation unfairness. Regarding Observation

3, an argument about ‘sample imbalance’ is made for the other two datasets, but no comment is

made about the imbalance in sensitive class sizes in the COMPAS dataset, for which Table 1 is

reporting the results and the IAPD is almost always negative. For comparison, the ratio of whites

to non-whites in the COMPAS dataset is 36% : 64%, and the ratio of males to females is 78%

: 22%. The ratios in COMPAS in the case of race seem to go against their argument on sample

imbalance.

From their Table 2 results in Figure 4.4, in their fourth conclusion, ‘Observation 4’, the authors
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Figure 4.3: Table 1 in (Zhang and Long, 2021b)

conclude that for a fixed imputation method, different missing mechanisms lead to different pre-

diction fairness. Hence prediction fairness is linked to the missing mechanism. In ‘Observation

5’, the authors conclude that three imputation methods: SoftImpute, OptSpace and Gain have

smaller EOD consistently compared with other imputation methods or the results from complete

cases and complete data. The trade-off here is that these 3 methods have lower prediction accuracy.

They attribute this to the trade-off between accuracy and fairness in prediction. For any missing

mechanism the prediction accuracy with imputations is lower than that from complete data, and

EOD calculated on models with imputation are smaller than that on complete data. In Table 2

results on prediction fairness, compared to the model built on the complete data set (or complete

cases), the imputations appear to make the predictive models fairer according to EOD. Similarly

in Observation 5 it is said that most imputation models have smaller EOD compared to that on

complete data. If it is the case that the imputations make the models fairer, then this goes against

one of the main conclusions of their research, which they state on the first page under ‘Our contri-

butions’ as ‘Severe unfairness exists in both imputation and prediction after imputation’.

In the machine learning fairness literature, there are different techniques for improving the fair-

ness of algorithms, so called bias mitigation algorithms. These approaches have been developed
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Figure 4.4: Table 2 in (Zhang and Long, 2021b)

on ‘clean’ data sets, whereas real data has many issues to make them ‘dirty’. The authors of the

next paper (Wang and Singh, 2021) address the issues of missing values and selection bias. For

our research only the missing value issue is of interest so we focus on that for the review. In a

nutshell, the authors propose in particular a pre-processing technique of bias mitigation, by altering

an existing one to account for missing values.

In particular, the context is a binary sensitive attribute and non-sensitive categorical predictors

only, with missingness created in only one of these categorical variables. In our research, we use

both continuous and categorical predictors with missingness created in both, as this is a more realis-

tic case, and missingness can be present in one or two variables. The authors propose a reweighting

method for the problem of missing values in categorical predictors.

The two fairness metrics that are used to quantify the fairness are p%-rule and error rate bal-

ance. The p%-rule is defined as:

min

(
P (Ŷ = 1 | S = 1)

P (Ŷ = 1 | S = 0)
,
P (Ŷ = 1 | S = 0)

P (Ŷ = 1 | S = 1)

)
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The higher the value, the fairer the classifier is. Error rate balance is defined as balancing the false

positive rate and false negative rate for both groups. In particular,

P (Ŷ = 0 | Y = y, S = 0) = P (Ŷ = 0 | Y = y, S = 1) ∀y ∈ {0, 1}

When y = 1, the constraint equalizes the false negative rate (FNR) across the two sensitive groups.

When y = 0, the constraint equalizes the false positive rate (FPR). For a fair classifier, the error

rate difference should be small.

The algorithm that is used as a starting point learns a probabilistic transformation to change

feature value labels in the data to reduce discrimination. This algorithm works with categorical

data but does not account for missing values. The authors adjust the transform to include a new

re-weighting scheme to account for missing values. The details of the approach are as follows: They

weight observations with regard to missing values. When training a classifier, they want the classi-

fier to learn more information from those observations which do not contain missing values. They

assign a higher weight to observations without missing values and a lower weight to observations

with missing values. This amounts to oversampling the higher quality observations.

With regards to the empirical work, they use a logistic regression model to predict the outcome.

They create missingness in one of the categorical variables, but no details are given as to how the

missingness was created. They use two real-world data sets (Adult income and COMPAS) and

one synthetic data set. In the experiments that are most relevant to our research, they analyse

the impact of different proportions of missingness and the three MDM’s (Section 3.3) on accuracy

and fairness. In particular, the effect of their reweighting scheme on MAR and MNAR missingness

is investigated. We next discuss the results obtained on the Adult and synthetic data set with

reference to the figures.

The authors give reweighting results for MAR and MNAR only because as shown by their other

experiments MCAR has very little impact on fairness. Figure 4.5 and Figure 4.6 show the average

of measurements from 5-fold cross validation, the standard error is not reported as it is very small.
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The authors interpret the plots as follows: for MAR the re-weighting algorithm is effective when

the percentage of missing values is greater than 5 - 10%. In those cases they can see a 5% to 20%

improvement in fairness with little decrease in accuracy and F1 score (less than a 4% decrease).

The impact on fairness is larger for all the data sets if the missing values are generated from the

MNAR mechanism, as it is correcting a larger bias. In all figures there is a trade-off between

fairness and performance. For example in the figures for MAR (Figure 4.5), in the subfigures show-

ing accuracy and F1 score, the blue lines are higher than the red lines for a tradeoff in fairness scores.

The authors conclude that MNAR has the biggest impact on fairness and MCAR has the least

impact. Hence all MDM’s are not equal when considering fairness. The fixing algorithm for

reweighting is able to mitigate the negative effects of the missing values on fairness with a small

impact on accuracy.

Figure 4.5: Accuracy, F1 score, and fairness measures with MAR before and after reweighting
(Wang and Singh, 2021, p. 113)

Lastly, the work in (Zhang and Long, 2021a) is less relevant to our own research than the other

work reviewed in this chapter. The authors provide theoretical results regarding fairness in the

context of missing data. To this end, they define two ‘data domains’ which are related but also

distinct: the ‘complete case domain’ which contains the complete cases of the data set once we have
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Figure 4.6: Accuracy, F1 score, and fairness measures with MNAR before and after reweighting
(Wang and Singh, 2021, p. 114)

removed the incomplete cases, and the ‘complete data domain’, which refers to the entire data set

including both complete and incomplete cases.

Depending on the nature of the missing data, i.e., the MDM, the data distributions in the complete

case domain and the complete data domain may be different. In particular, if the MDM is MCAR,

the distributions in both domains are the same, but in the case of MAR and MNAR the distribu-

tions could be very different, with the result that an algorithm which is fair in the complete case

domain may be biased towards a sensitive group in the complete data domain.

The end goal is to measure fairness of an algorithm in the complete data domain. This fair-

ness can be estimated by using the observations in the complete case domain. For their choice of

fairness metric, the authors provide upper and lower bounds for the error that is introduced by

the domain shift, when estimating fairness in the complete data domain by using observations in

the complete case domain. The authors propose that their framework for bounding the fairness

estimation error can be adapted to apply to other notions of fairness.
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Lastly, we would like to compare the approaches discussed in this chapter to our approach, to

point out where the similarities and differences lie.

Of the four papers reviewed in this section, the approach in Zhang and Long (2021b) is most

similar to ours, but as mentioned earlier in the chapter, there are important differences between

the approaches also. We recount these again here. In their research, they generate missingness only

in numerical variables whereas we are working with missingness in both continuous and categorical

variables. In data sets applicable to the real world, often there are many categorical variables with

missing values (as these are used to capture personal data). Having missingness in both types of

variables is a more realistic scenario.

The next difference is in how the missingness is generated, they generate it in a univariate manner

whereas we are using R function ampute in package mice. Amongst other merits as mentioned

before, this function allows one to generate missingness in multiple variables simultaneously, ac-

cording to the missing data mechanisms. Using the multivariate amputation approach in ampute

overcomes the problems of univariate amputation.

The next difference is in the missing data handling procedures used. The imputation methods

they use are state of the art (including multiple imputation) and not widely known or used by most

researchers. The effects of simpler single imputation techniques on fairness have not been studied

as we do in our research. Often only one complete set of data is required by a researcher before

they can begin analysis, so it is important to study the simpler techniques despite the superiority

of multiple imputation.

The research of Fernando et al. (2021) does study the effect of listwise deletion or imputation

with mean/mode on the fairness of machine learning models, but their methodology is entirely

different; they do not study the above in the context of the MDM’s.

In the study by Wang and Singh (2021), missingness in only one categorical variable is investi-

gated. In our research, we use both continuous and categorical predictors with missingness created
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in both, as this is a more realistic case, and missingness can be present in one or two variables.

Like our study, they analyse the impact of the 3 missing data mechanisms (MDM) on fairness, but

in particular the effect of their reweighting scheme on MAR and MNAR missingness is investigated.

A systematic study starting from the foundational questions of how the data are missing (i.e.

MDM), how the missing data are dealt with and how this impacts the fairness metrics, calculated

on the outcome of a few different types of machine learning algorithms, does not exist. Most re-

searchers when dealing with missing data either delete listwise or tend to use the simpler methods

of imputation versus the more complex ones (Eekhout et al., 2012). The impact of these methods

on the fairness of an algorithm has not been studied. In our research, we start at this point, in a

sense from the beginning.
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CHAPTER 5

EXPERIMENTS

5.1 OUTLINE AND AIM OF EXPERIMENTS

Broadly, the aim of this research is to understand the impact of missing data and missing data han-

dling procedures on the fairness of machine learning algorithms. We categorise type of missingness

by the MDM (see Section 3.3), of which there are three: Missing completely at random (MCAR),

Missing at random (MAR) and Missing not at random (MNAR) (Van Buuren, 2018; Enders, 2022).

We will create missingness in our data sets artificially according to these MDM’s. Following this,

missing data will be dealt with in the usual ways, either by listwise deletion or by imputation (see

Section 5.5). Following imputation of the relevant training and test sets, classification models will

be created and tuned on training data using 5-fold cross validation, predictions from these models

will be calculated on the test data sets and the fairness metric distributions will then be obtained

from these predictions. As a baseline to compare to, we will also obtain the fairness metric distri-

butions from complete training and complete test sets, such that no amputation or imputation is

performed on these data sets. Details follow in the sections below.

5.2 DATA SETS

We use the below real-world data sets (see Section 5.2.1 to 5.2.3) that are popular in the field of

fairness in machine learning (Friedler et al., 2019; Le Quy et al., 2022; Pessach and Shmueli, 2020).

We start with the assumption that the data sets are complete (i.e., they contain no missing values),

and hence remove any rows with missing values for those data sets which contain missing values.

The reason for adopting this approach is that our interest is in the effects of both the MDM and

the imputation method on fairness, and hence we must restrict ourselves to situations in which the

MDM is known (i.e., created artificially). Note that of the 3 data sets, only German Credit does

not contain any missing data. See Appendix A for information on data set attributes.
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5.2.1 German credit

The data set is publicly available on the UCI machine learning repository (Dua and Graff, 2017).

This data set is comparatively small, containing only 1000 observations. There are 20 predictor

variables, including both categorical and numerical variables. We can obtain two sensitive attributes

from this data set: Sex, which can be obtained from the attribute personal-status-and-sex, and

Age, which is considered as a protected attribute after binarisation into {young, old}. For Sex,

males are the advantaged group and females are the disadvantaged group. For Age, above 25

are the advantaged group and ≤ 25 are the disadvantaged group. Once the protected attributes

are created, the original versions of these variables are removed from the data set. The ratio of

male:female is 690:310 (69%:31%). The ratio of old:young is 810:190 (81%:19%) (the cutoff age of

25 is used to binarise the Age variable). The outcome variable is whether an individual is a good

or bad credit risk, with good credit risk the positive outcome. The ratio of bad:good credit risk

individuals is 300:700 (30%:70%).

5.2.2 Adult income

The data set is publicly available on the UCI machine learning repository (Dua and Graff, 2017). It

contains information about individuals from the 1994 U.S. census. It comes pre-split into a training

and test set. We amalgamate both sets to get one data set. Once the rows with missing values

are removed, we are left with 45222 observations. There are 13 predictor variables including both

numerical and categorical. As in previous work (Le Quy et al., 2022) we also discard the attribute

fnlwgt. The sensitive attributes are sex and race. For sex, males are the advantaged group and for

race, whites are the advantaged group. The ratio of male:female is 32,650:16,192 (66.9%:33.1%).

We convert race into a binary attribute, race = {white, non-white}. The white:non-white ratio is

38,903:6,319 (86%:14%). The outcome variable is whether an individual makes less or more than

$50,000 in yearly income. We take the positive class as >$50,000. The ratio of positive:negative

outcomes is 1:3.03 (25%:75%).

5.2.3 COMPAS

The data set is openly available in a GitHub repository (Store, 2016). It refers to data collected

about the use of the COMPAS risk assessment tool in Broward County, Florida. Recidivism risk
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scores are calculated based on defendants responses to the COMPAS survey. The data set contains

52 predictors, but we follow the process in Le Quy et al. (2022) and keep 11 of these. These 11

contain both numerical and categorical variables. The number of observations is 7214. The sensitive

attributes are race and sex, with whites the advantaged group and non-whites the disadvantaged

group and with females the advantaged group and males the disadvantaged group. The non-

whites:whites ratio is 4760:2454 (66%: 34%). The male:female ratio is 5819:1395 (81%:19%). The

outcome variable is two year recid indicating whether they were rearrested within two years after

the first arrest. The positive outcome is not being rearrested, with ratio of negative:positive being

3251:3963 (45%: 55%).

5.3 DATA AMPUTATION

The task of data amputation in a complete data set is undertaken with the ampute function

(Schouten et al., 2018) in R package mice (Van Buuren and Groothuis-Oudshoorn, 2011; R Core

Team, 2022). With ampute we are able to generate missing values in multiple variables, with dif-

ferent missing data proportions and missingness mechanisms. The merits of using the multivariate

ampute function rather than the current practice of generating missingness in one variable at a time

are detailed in Schouten et al. (2018) along with the pitfalls of the univariate amputation approach.

To summarise the multivariate amputation procedure, the schematic in Figure 5.1 is presented

from Schouten et al. (2018). We will now explain briefly how the function works with reference to

the schematic, and explain how we used the function for our experiments. We list the important

arguments of the function, and explain the values we specified for them.

• prop: With this argument we can specify what proportion of cases will have missing values.

The default missingness proportion is 0.5, and with no concrete reason to do so otherwise, we

use the default proportion. A proportion of 0.5 may seem high, but this may allow us to see

the effects of amputation more clearly.

• patterns: A missingness pattern is a particular combination of variables with missing values

and variables remaining complete. If the number of patterns we have is k then our data set

is randomly divided into k subsets, the sizes of these subsets can vary.
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Figure 5.1: Multivariate amputation schematic from Schouten et al. (2018)

In our case, missingness will either be created in just one variable, in which case there is

only 1 pattern: missingness created in that variable, or it will be created in two variables, in

which case we specify 3 patterns: two patterns of missingness created in one variable each,

and then another pattern where missingness is created simultaneously in both variables.

The variables chosen for creating missingness in will have one of these properties: strongly

associated to the sensitive variable, strongly associated to the outcome variable, or strongly

associated to both. The associations will be established by variable importance plots resulting

from random forest models.

• freq: This argument allows us to vary the size of the subsets created previously through the

patterns argument. The sum of the frequency values should always be 1 in order to divide all

the cases over the subsets. In our case, we either have 1 pattern, in which case a frequency

of 1 is assigned to this pattern, or we have 3 patterns: the patterns with missingness in

one variable only are given frequency 0.4 each, and the pattern where missingness is created
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simultaneously in both variables has frequency 0.2.

• mech: This argument allows us to set the MDM. For MAR, in our case we generate miss-

ingness dependent on the sensitive variable only, this is done for simplicity and consistency

through the missingness scenarios. A higher proportion of missingness is created for the dis-

advantaged group, in line with the assumption that propensity of data being missing is often

tied to socio-economic status or demographic characteristics of individuals, with the disad-

vantaged group being more reluctant to give certain information (Fernando et al., 2021).

If we generate MCAR missingness, this would be the last argument to specify, whereas if

we want to generate MAR or MNAR missingness, there are two further arguments which

need to be specified.

• weights: The weights that we specify in this argument are used to create weighted sum scores

for MAR and MNAR, which determines whether a case receives missing values or not. Based

on its weighted sum score, a case is allocated a probability of being missing. The weights are

chosen by the user. In our case, for MAR we just assign a weight of 1 to the sensitive attribute.

For MNAR, for patterns with one variable missing we assign a weight of 1 to that variable,

and where both variables are missing we assign a weight of 1 to the first variable (although

missingness is created in two variables, the probability of both being missing depends only

on the first). In our case there is no particular reason or need to assign a weight other than

1 to a variable. This argument is used in conjunction with the type argument.

• type: This argument is used in order to allocate each case a probability of being missing,

according to one of four possible logistic distribution functions which is applied to the weighted

sum score. For instance, if a right-tailed (RIGHT) type of missingness is used, candidates with

high weighted sum scores will receive a high probability of being missing. With a left-tailed

(LEFT), centred (MID) or both-tailed (TAIL) missingness type, higher probability values are

given to the candidates with low, average or extreme weighted sum scores respectively. See

Figure 5.2.

The data are randomly divided into k subsets each time the amputation is run, for each data set we

run the amputation i times. For instance, for the Adult data set, i = 50 whereas for the German
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Figure 5.2: Four variants of the logistic distribution function (Schouten et al., 2018)

credit data set, i = 100 (the difference in i here is because the Adult data set has about 50k rows,

whereas the German credit data set has 1000 rows only, running the code on the former for i = 100

would be too time consuming). In brief, each of these i data sets is next divided into training and

test sets, which are then imputed accordingly (see Section 5.5) and used to train the classification

models, after which the fairness metric value is obtained from predictions on the test set.

5.4 TRAINING AND TEST SETS

Each of the amputed data sets is split up into an amputed training set and an amputed test set.

Using the same indices, the complete data set is split up into a complete training set and complete

test set. The test set is a third of the data set and the remaining is the training set. The complete

training and test sets are used to provide the baseline distributions of the metrics. The amputed

training sets are next processed according to an imputation method or listwise deletion. Regarding

the results, these will be calculated on either the complete test sets or the imputed test sets.

To clarify the reasons for a complete test set (contains no missing values) and an imputed test

set (this test set started off with missing values but was imputed according to the imputation

model on the training set): On the imputed test set we only compare the imputation techniques

to each other and the baseline. On the complete test set we compare listwise deletion (LD) to the

other imputation methods and the baseline. Having the comparison of LD with the imputation
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techniques is a relevant comparison because of the frequency with which people perform LD despite

its obvious limitations. Having a test set with missing values is more realistic, but with this we

cannot compare LD as then we would have to delete those test rows with missing values, which

would not be done in reality and even if it was, we then would not have the same size test sets to

compare LD with the imputation techniques. Having a complete test set allows us to compare LD

to the imputation methods.

The training set is used to perform 5-fold cross-validation to choose the best parameters for each

type of classification model. The ‘best’ model is defined as either one that maximises accuracy,

or one that maximises Matthew’s correlation coefficient (MCC). The latter is used for data that

is imbalanced in the outcome classes (Chicco and Jurman, 2020). Once the best model has been

selected through cross-validation, it is fitted on the full training set and predictions of the model

are obtained from the test set. More on model tuning will follow later.

5.5 DATA IMPUTATION

The missing data methods that will be investigated are listwise deletion and three single imputation

techniques: mode imputation (rather than mean imputation, because missingness will be created

in categorical variables as well as numerical/continuous variables), regression imputation and k-NN

imputation. The latter two will be implemented using the R package VIM (Kowarik and Templ,

2016). The first two are straightforward to program manually.

Despite there being a large array of R packages which implement single imputation methods, we

chose the package VIM over other packages for two reasons: First, the variables in our choice of data

sets are a mixture of continuous and categorical. Most other such packages are not designed to deal

with mixed data sets. Second, imputation methods like k-NN imputation using a generalised dis-

tance function (which we require) are not available in these packages. VIM solves both these issues

(Kowarik and Templ, 2016). To calculate distance between two observations it uses an extension

of the Gower distance function.

As a note, in our study both regression imputation and k-NN imputation will use the sensitive

46

https://scholar.sun.ac.za



variable when creating the regression model or calculating distance in k-NN (the imputation model

is not using the sensitive attribute to differentiate between the outputs so it is reasonable to do this).

The test sets which are imputed are done so by using the imputation model on the corresponding

training set.

5.6 CLASSIFICATION MODELS

Model selection is performed on the training set using 5-fold cross validation. The best model is

either one which maximises accuracy or one which maximises MCC. Regarding the range of models,

we chose to implement some of the more popular ones. Logistic regression gives a linear separa-

tion boundary, but is not very flexible, whereas random forests are flexible and a good fit for a

non-linear separation situation. Boosting (trees) again gives a very flexible model. SVM is robust

to outliers and the radial kernel method gives a flexible model. The focus of this research is not

on the classification models themselves, we are implementing the standard ones that are available

(James et al., 2013).

Parameter tuning and model selection:

• Logistic regression: The probabilities that result from the model are converted to class

membership with the classification threshold. The threshold which classifies an observation

to outcome 0 or 1 is varied between 0.05 to 0.95 inclusive.

• Random forests: Most of the parameters are left at their default, for instance the number

of variables considered at each split remains at
√
p where p is the number of predictors. The

number of trees grown is also left at its default value of 500. The ‘cutoff’ argument in the R

function used, randomForest, is varied. This parameter has a similar effect as varying the

threshold in logistic regression.

• Boosting: The number of trees to fit is left at the default value of 100. The interaction depth

is also left at the default of 1. The shrinkage parameter λ is tuned over 4 possible values:

0.001, 0.01, 0.1, 0.2. As for the logistic regression case, we also tune over the classification

threshold value.

• Support vector machines: The cost argument is the default value of 1. Model selection
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includes a choice between a linear or radial kernel. The value of γ for the radial kernel is

left at the default of 1
number of predictors . As per default the data are scaled. We tune the

class.weights parameter which is used for asymmetric class sizes.

Note that the classification models will not use the sensitive variable under consideration as a

predictor.

5.7 FAIRNESS METRICS

Per data set two sensitive attributes each will be considered. We will calculate the following

fairness metrics on our data sets: demographic parity, equality of opportunity, predictive equality

and predictive parity (see Section 2.4 for details of the metrics).

5.8 SUMMARY

The following steps are repeated for the number of iterations required (for example, for the German

credit data set we run 100 iterations):

1. Ampute the data set according to an MDM, where the MDM ∈ {MCAR, MAR, MNAR}.

2. Create training and test splits of the amputed and complete data set, using the same indices,

with two-thirds training and one-third test.

3. Impute the amputed training set where imputation models ∈ {listwise deletion, mode, regres-

sion, k-NN}. Impute the amputed test set with the same model that is used to impute the

training set. So now we have the following sets: complete training, complete test, imputed

training and imputed test.

4. The complete sets are used to calculate baseline results. Regarding the training sets, we

perform 5-fold cross validation for model selection for the following classification models:

{logistic regression, random forests, boosting and support vector machine}. For each model,

the parameters which maximise accuracy (or maximise MCC) are chosen.

5. The chosen model is fit on the entire training set for both complete and imputed training

sets. Predictions from the model are calculated on the complete and imputed test sets. The

fairness metric values are calculated from the predictions.
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Repeating the above steps for the number of iterations gives us a distribution of fairness metric

values.

5.9 COMPUTATIONAL ISSUES

Regarding application of the imputation models and/or classification models discussed above, it

must be noted that due to limitations on time and available computing resources, some of these

may not be applied to a particular data set. For example, the Adult income data set has around

50,000 rows, we ran all the code including imputation and classification models on this data set for

one iteration only, and it took around 8 hours1. To run it for 50 or so iterations (to get a large

enough sample size) for the total of 6 scenarios would take in excess of 3 months, which was not

viable. See Appendix B for further details.

1A virtual machine was used, with dual Intel Xeon Gold 6136 processors and 256 Gb RAM.
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CHAPTER 6

RESULTS

6.1 PRELIMINARIES

As explained previously, the aim of this research is to understand the impact of missing data and

missing data handling procedures on the fairness of machine learning algorithms. We will create

missingness in our data sets artificially according to the MCAR, MAR or MNAR MDM. Following

this, missing data will be dealt with in the usual ways, either by listwise deletion or by imputation.

In our results, we will focus on the following three metrics: demographic parity, equality of oppor-

tunity and predictive equality. Throughout, ‘baseline’ results refers to the fairness metric values

obtained on the complete training and complete test sets. These will be displayed on the plots in

red, as median and interquartile range of the baseline metric values, to allow useful comparison

with the boxplots.

When we refer to variable/s being ‘strongly related’ to another variable, this means strong in

a relative sense to the other predictor variables in the data set. The strength of the relationship has

been inferred from variable importance results from application of random forest predictive models.

We use random forest variable importance to choose variables in which we create missingness, by

seeing how important they are for the outcome variable, the sensitive variables or both.

Again we remind the reader of the reasons for a complete test set (contains no missing values)

and an imputed test set (this test set started off with missing values but was imputed according to

the imputation model on the training set): On the complete test set we compare LD to the other

imputation methods. On the imputed test set we only compare the imputation techniques to each

other. Having a test set with missing values is more realistic, but with this we cannot compare

LD as then we would have to delete those test rows with missing values, which would not be done

in reality and even if it was, we then would not have the same size test sets to compare LD with

the imputation techniques. Having a complete test set allows us to compare LD to the imputation

methods. We also use the complete sets to calculate the baseline results.

50

https://scholar.sun.ac.za



Next, we will report on a subset of the total set of results from all 3 data sets which we believe to be

interesting or instructive. We see if we can observe any commonalities in metric behaviour across

the data sets. We will only look at results from models which maximise accuracy, as the fairness

results do not differ much between maximising accuracy or maximising MCC models, which is a

noteworthy observation in itself. Note, for descriptions we will at times generate one instance of

an amputed then imputed vs complete training/test set, displaying the variable/s which are being

amputed and imputed, to gain insight into why the fairness metrics behave as they do.

We introduce some shorthand notation which is displayed on the plots to follow. The shorthand for

the models is as follows: ‘lr’ is logistic regression, ‘rf’ is random forests, ‘b’ is boosting and ‘svm’

is support vector machine. Listwise deletion will be denoted ‘ld’. With regards to imputation,

we use ‘knn’ to denote k-NN imputation, ‘reg’ is for regression imputation, and ‘mode’ to denote

mode imputation. Plot headings will be given as ‘imputation method.classification model’. So, for

instance, if a plot heading says ‘reg.rf’ then the imputation technique used is regression imputation,

and the classification model fitted is random forests. It will be clear from the context whether the

test sets are also imputed (with the same technique as the corresponding training sets). Regarding

the fairness metrics, demographic parity will be denoted ‘dem.parity’, equality of opportunity will

be denoted ‘eq.opp’ and predictive equality will be denoted as ‘pre.eq’.

Because of the manner in which the fairness metrics are determined, there are numerous possi-

ble combinations of effects which could result in the fairness levels being the same under different

scenarios (e.g. baseline and ampute then impute). For example, if demographic parity is the same

under the baseline scenario and under amputation/imputation then it could be that neither of the

proportions of favourable outcomes for the different sensitive groups changed substantially, or it

could be that both decreased by a similar amount, or both increased by a similar amount. Through-

out the following discussion we will attempt to identify the simplest explanation for the results we

observe, and so in anticipation begin by providing a few preliminary explanations which apply to

multiple of the sets of results which follow, so as to avoid repetition:

1. Complete test set: if the fairness results on the complete test sets and the baseline results

(which are calculated on the complete test sets) are similar, then one possibility is that the
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models on the complete and imputed training sets are similar, which could happen because

the two data sets themselves are similar. This would mean that the imputation is reasonably

faithful to the true data values. Denoted statement 1.

As an example, Figure 6.1 shows COMPAS data with sensitive attribute race, equality of

opportunity metric for the random forest model across listwise deletion, mode or regression

imputation. The baseline distribution and the metric distribution on the complete test set

are similar irrespective of MDM, and statement 1 would be applicable here. It is a point of

interest that with listwise deletion, we would expect that MCAR missingness distribution is

most likely similar to the baseline, as we can expect the remainder of the observations after

listwise deletion to represent a simple random sample of the training data in this case, but

the same pattern is shown for MAR and MNAR also.

Figure 6.1: COMPAS data, sensitive attribute race, equality of opportunity

2. Imputed test set: if the fairness results on the imputed test sets and the baseline results are

similar, then one possibility is that the models on the complete and imputed training sets

are similar, and that the imputed test sets are similar to the complete test sets. This could

happen because the complete and imputed data sets themselves are similar, including the

test sets. This would mean that the imputation is reasonably faithful to the true data values,

both for the training and test sets. Denoted statement 2.

As an example, Figure 6.2 shows COMPAS data with sensitive attribute race, the 3 fair-

ness metrics with regression imputation and random forests model on the imputed test sets,

where this statement would be applicable. In all 3 plots, the metrics distribution and the
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baseline distribution overlap, irrespective of the MDM. In this case we may say something

like ‘For the COMPAS data set with sensitive attribute race, for regression imputation for all

3 metrics and all 3 models, irrespective of MDM, statement 2 holds.

Figure 6.2: COMPAS data, sensitive attribute race, regression imputation and RF model

In the subsequent cases if statement 1 or 2 above is applicable to any results, for brevity we will

just refer the reader to statement 1 or statement 2.

6.2 COMPAS DATA SET

For the COMPAS data set, we only create missingness in variable/s strongly related to both the

sensitive attribute and outcome variable, as the importance plots for either relationship separately

gave overlapping variables for both. For reasons explained in Chapter 5 we will not fit svm or

perform k-NN imputation on this data set.
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6.2.1 Sensitive attribute: Race

6.2.1.1 Missingness created in variable/s strongly related to both sensitive attribute

and outcome variable

• Imputed test set: Regarding mode imputation and the MAR MDM, there is a clear trend

of reduction in discrimination on average from the baseline values for all 3 metrics. This is

demonstrated for the logistic regression model in Figure 6.3. We obtain similar boxplots for

the random forest and boosting models. The two variables in which missingness is created

are ‘age’ and ‘score text’.

Figure 6.3: COMPAS data, sensitive attribute race, mode imputation, LR model

One possible explanation for Figure 6.3 is as follows: from Figure 6.4 we see that, with

amputation by MAR, then imputation by mode, on the imputed training set, the distributions

of variable ‘age’ with respect to outcome 0 or 1 are now less discernible than on the complete

training set. This would likely lead to lower accuracy of the models fitted. With MAR, more

missingness is created for the disadvantaged group, i.e., non-whites, which possibly leads to

higher inaccuracy for them after imputation, and potentially more of the 0 predictions now

being predicted as 1.

We can similarly explain the ‘score text’ variable, see Figure 6.5. The actual categories of this
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Figure 6.4: COMPAS and race: age distribution by outcome in imputed training set

variable are not important in this case, but we look at the overall pattern of the distributions.

The distributions of score text with respect to outcome 0 or 1 are now less discernible than

on the complete training set.

Figure 6.5: COMPAS and race: score text distribution by outcome in imputed training set

For regression imputation for all 3 metrics and all 3 models, irrespective of MDM, statement

2 holds.

• Complete test set: For all 3 metrics, all 3 models, listwise deletion and mode and regression

imputation, statement 1 holds.
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6.2.2 Sensitive attribute: Sex

6.2.2.1 Missingness created in variable/s strongly related to both sensitive attribute

and outcome variable

• Imputed test set: For mode imputation, for all three models and metrics, compared to the

baseline, for MCAR and MNAR the discrimination increases on average, and for MAR the

discrimination sometimes increases and sometimes remains within the baseline on average.

See Figure 6.6 where we show the results for demographic parity. Interestingly, the increase

from the baseline is smallest for the random forest model.

Figure 6.6: COMPAS data, sensitive attribute sex, mode imputation, demographic parity

As a possible reason, we see that on the imputed training set, the distributions of ‘age’ and

‘score text’ with respect to outcome 0 or 1 are now less discernible than on the complete

training set. As an example, see the age and score text variable distributions from MNAR

in Figures 6.7 and 6.8 (Again for the score text variable the actual categories of the variable

are not important here). This would likely lead to lower accuracy of the models fitted and

misclassifications in both directions for the sensitive groups.

For regression imputation for all 3 metrics and all 3 models, irrespective of MDM, statement

2 holds.
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Figure 6.7: COMPAS: score text distribution by outcome in imputed training set, mode imputation

Figure 6.8: COMPAS: age distribution by outcome in imputed training set, mode imputation

• Complete test set: For all 3 metrics, all 3 models, all imputation techniques (including

listwise deletion), statement 1 holds.

6.3 GERMAN CREDIT DATA SET

All classification models and imputation models are fit for this data set as it is of comparatively

small size.
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6.3.1 Sensitive attribute: Sex

6.3.1.1 Missingness created in variable/s strongly related to sensitive attribute

• Complete test set: For all 3 metrics, all 4 classification models and all 4 imputation

techniques, statement 1 holds. See Figure 6.9 displaying demographic parity as an example.

It shows demographic parity for random forests model and all 4 imputation techniques. We

can see that irrespective of the MDM the fairness metric distribution is similar to the baseline.

It is interesting to see that the metric distributions for listwise deletion are similar to those

of the imputation techniques.

Figure 6.9: German data, sensitive attribute sex, complete test set, RF model

• Imputed test set: For all 3 metrics, all models and all imputation methods, statement 2

holds. See Figure 6.10 as an example, which shows the equality of opportunity metric for the

SVM model.

Figure 6.10: German data, sensitive attribute sex, imputed test set, SVM model

6.3.1.2 Missingness created in variable/s strongly related to outcome variable

• Complete test set: For all 3 metrics, all 4 classification models and all 4 imputation

techniques, statement 1 holds.
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• Imputed test set: In the case of mode and MAR, we see a reduction on average in all 3

metric values from the baseline. See Figure 6.11 as an example, which shows all 3 metrics for

the boosting model.

Figure 6.11: German data, sensitive attribute sex, mode imputation, boosting model

As a possible explanation, see Figure 6.12; the variable in which missingness was created

is ‘checking account status’. In the imputed training set the distributions with respect to

outcome of this variable are slightly less discernible than in the complete training set. This

would increase the inaccuracy of the predictive models. Despite the reduced discernibility of

outcome 0 from 1, it still shows that the modal category, category 4, is more strongly linked

to outcome 1 (the last bar in each bar plot is category 4). In MAR, more missingness is

created for the disadvantaged class (females), and the missing values are replaced with the

modal value 4. The mode is related to outcome 1, so it is possible that in the disadvantaged

class many observations which were first being predicted as 0 are now predicted as 1. This

would reduce the discrimination.

Interestingly, for k-NN imputation and predictive equality, for all 4 classification models we

see a reduction in discrimination for MAR. See Figure 6.13.
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Figure 6.12: German data, sensitive attribute sex, checking account variable

Figure 6.13: German data, sensitive attribute sex, k-NN imputation

6.3.1.3 Missingness created in variable/s strongly related to both sensitive attribute

and outcome variable

• Complete test set: For all 3 metrics, all 4 classification models and all 4 imputation models,

statement 1 holds.

• Imputed test set: For all 3 metrics, all 4 classification models and all 3 imputation methods,

statement 2 holds.
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6.3.2 Sensitive attribute: Age

6.3.2.1 Missingness created in variable/s strongly related to sensitive attribute

• Complete test set: For equality of opportunity and predictive equality, for all 4 classification

models and all 4 imputation techniques, statement 1 holds. In the case of Demographic parity

and listwise deletion, we see a reduction on average in the metric value for MAR for some

models. See figure 6.14.

Figure 6.14: German data, sensitive attribute age, LD and demographic parity

A possible explanation: The variables which have missingness are ‘employment since’ and

‘housing’. For MAR, more missingness is created in the disadvantaged class (young). With

listwise deletion, these rows are removed. This means that compared to the complete training

set, there will now be very little training data for the young group, see figures 6.15 and 6.16.

Again the categories of the variables are not important, rather we are showing the reduction

in data amount for the disadvantaged group. It is likely that the model trained on this data is

less accurate for the disadvantaged class. As an example, see Tables 6.1, 6.2 and 6.3, from an

instance of MAR amputed data, where the outcome variable by age has the given proportions

remaining after listwise deletion.

Given the removal of a large amount of the data for the disadvantaged (young) class, the
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out
age 0 1

0 59 63
1 157 388

Table 6.1: Complete training set

out
age 0 1

0 6 6
1 102 247

Table 6.2: Listwise deletion training set

predictions are more likely to match the outcome proportions in the advantaged group. Hence

it is possible that now a higher proportion of 1’s are predicted for the disadvantaged group,

leading to the reduction in demographic parity value for MAR.

Figure 6.15: German credit data: variable employment since, LD

• Imputed test set: For all 3 metrics, all 4 classification models and the 3 imputation tech-

niques, statement 2 holds.

out
age 0 1

0 0.102 0.095
1 0.650 0.637

Table 6.3: Proportions remaining
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Figure 6.16: German credit data: variable housing, LD

6.3.2.2 Missingness created in variable/s strongly related to outcome variable

• Complete test set: For equality of opportunity and predictive equality, for all 4 classification

models and all 4 imputation techniques, statement 1 holds. In the case of demographic parity

and listwise deletion, we see a reduction on average in the metric value for MAR for some

models, see Figure 6.17. Reason analogous to previous section ‘Complete test set’ (see section

6.3.2.1).

Figure 6.17: German data, sensitive attribute age, LD and demographic parity

• Imputed test set: For demographic parity and predictive equality, we see reduction on

average from the baseline in the metric value for MAR and mode imputation. See Figure
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6.18. Possible explanation: One of the variables where missingness is created is checking

account status. From Figure 6.19 we see that the distribution of this variable with respect to

outcome becomes slightly less discernible after imputation with mode, which will likely lead

to reduction in accuracy of the models, but we can still conclude that the modal value 4 is

linked to an outcome of 1 (the last bar in the bar plots is category 4).

From Figure 6.20, we see that the distribution of the variable checking account status with

respect to sensitive attribute changes: with MAR a higher proportion of missingness is cre-

ated for the young group, which is then imputed with the modal value 4, with the last bar in

the bar plots representing category 4, the mode (We assume that the checking account status

variable complete test distribution is similar to the complete training set distribution). This

along with decreased accuracy could lead to a higher proportion of predictions of 1 for the

young group, reducing the discrimination.

Figure 6.18: German data, sensitive attribute age, predictive equality, mode imputation

6.3.2.3 Missingness created in variable/s strongly related to both sensitive attribute

and outcome variable

• Complete test set: For demographic parity and equality of opportunity, for listwise deletion

and MAR, we see a slight reduction on average from the baseline distribution. See figures

6.21 and 6.22.
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Figure 6.19: German data, checking account status by outcome after MAR and mode imputation

Figure 6.20: German data, checking account status by age after MAR and mode imputation

Possible explanation: For MAR, more missingness is created for the disadvantaged class

(young). With listwise deletion, these rows are removed. This means that compared to the

complete training set, there will now be very little training data for the young group. It

is likely that the model trained on this data is less accurate for the disadvantaged class. In

particular, from an instance of a MAR amputation and listwise deletion, the outcome variable

by age has these proportions remaining after listwise deletion, shown in Tables 6.4, 6.5 and

6.6.

Given the removal of a large amount of the data for the disadvantaged (young) class, the
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Figure 6.21: German data, sensitive attribute age, LD and demographic parity

Figure 6.22: German data, sensitive attribute age, LD and equality of opportunity

predictions are more likely to match the outcome proportions in the advantaged class. It is

possible that now a higher proportion of 1’s are predicted for the disadvantaged class, leading

to the reduction in metric value for MAR.

• Imputed test set: For all 3 metrics, all 4 classification models and all imputation techniques,

statement 2 holds.

66

https://scholar.sun.ac.za



out
age 0 1

0 59 63
1 157 388

Table 6.4: Complete training set

out
age 0 1

0 4 11
1 106 229

Table 6.5: Listwise deletion training set

6.4 ADULT INCOME DATASET

The adult income data set is the largest of the 3 data sets we investigate. It also shows the more

interesting boxplots. On this data set, as explained in Section 5.9, we do not fit random forests

and svm models, and we only use listwise deletion, mode and regression as imputation methods,

leaving out knn.

Before we go on, we would first like to point out something interesting which is easily observed in

the Adult data set, which is that the shape of the distributions of the metrics demographic parity

and predictive equality are very similar in this data set. Apart from the similarity in distributions

for demographic parity and predictive equality, we also see some interesting patters in the metric

distributions. See figures 6.23 and 6.24 for an example with boosting.

In the case of the Adult income dataset and referring back to the definitions of the metrics, per-

haps the similarities in Demographic parity and Predictive parity can partially be explained by the

fact that in the outcome variable the majority class is 0 with proportion 75%. Due to this, the

dominating or underlying patterns seen in Demographic parity are from false positives, which could

out
age 0 1

0 0.068 0.175
1 0.675 0.590

Table 6.6: Proportions remaining
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Figure 6.23: Adult data, demographic parity, sensitive attribute sex, boosting model

Figure 6.24: Adult data, predictive equality, sensitive attribute sex, boosting model

account for why it looks similar to predictive equality.

For both sensitive attributes in the Adult income data set, we will now focus on the cases where

missingness is created in variable/s strongly related to both sensitive attribute and outcome vari-

able.
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6.4.1 Sensitive attribute: Race

6.4.1.1 Missingness created in variable/s strongly related to both sensitive attribute

and outcome variable

• Complete test set: In the case of demographic parity and predictive equality, for mode

imputation and both MCAR and MAR, we see an increase on average in the metric value

from the baseline. See figure 6.25.

Figure 6.25: Adult data, sensitive attribute race, mode imputation

Possible explanation: As both demographic parity and predictive equality are increasing,

it is reasonable to assume that the false positive rates for the advantaged class (whites) could
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be increasing.

The variable that is amputed is ‘educational num’. Looking at Figure 6.26, we see that

after imputation the distributions of educational num (the categories of the variable are not

important here) by outcome are more similar to each other than before, which could lead to

reduction in classification accuracy. It is possible that this could lead to more false positives

for the advantaged group (whites), so that some of the predictions will change from 0 to 1,

leading to an increase in the metric value.

Figure 6.26: Adult income data: distribution of educational num by outcome

6.4.2 Sensitive attribute: Sex

6.4.2.1 Missingness created in variable/s strongly related to both sensitive attribute

and outcome variable

• Imputed test set: In figure 6.27, we see that the boxplots for demographic parity and

predictive equality look very similar. This suggests that the false positive rate is driving the

changes in both these boxplots. We also notice the differences in distribution between the

boxplots for logistic regression vs boosting. Even in their baseline we see differences: for the

logistic regression model the baseline distribution is symmetric and narrow, whereas that for

boosting is wider and left skewed. Specifically in the case of mode imputation and MAR,

for demographic parity and predictive equality, the metric value increases on average from
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Figure 6.27: Metric distributions on imputed test set, adult income data

the baseline. Despite this commonality there are significant differences in the distribution of

the metric for logistic regression and boosting, in the skewness of the distributions and the

interquartile ranges. There are differences according to MDM also.

Possible explanation: The variable where missingness and then imputation is created is ed-

ucational num. Again, the actual categories are not important. Looking at the distribution

of the variable with respect to outcome, after an instance of amputation and imputation, see

Figure 6.28, we see that the distributions for outcome 0 and 1 look more similar to each other

than before. This reduced discernability of the outcome by the variable would likely lead

to lower accuracy. Given that MAR creates more missingness for the disadvantaged group

(females) we expect that this group will be affected more by the inaccuracy.

However, the boxplots suggest that although the false positive rate for both are increas-

ing, the advantaged group (males) is increasing at a faster rate than for females, which leads

to increase in the discrimination from the baseline and on average a positive metric value in

predictive equality and demographic parity.

71

https://scholar.sun.ac.za



Looking at educational num distribution for males and females (the first bar in the bar

plots is category 1), Figure 6.29, in the imputed train and hence imputed test set (the dis-

tributions are expected to be similar), the proportions of category 1 (the modal value) for

both males and females increases as compared to the complete test set, but the proportion for

the disadvantaged group (females) increases by a larger amount, as expected through MAR

missingness. With the lower accuracy and the boxplots of demographic parity and predic-

tive equality, it is plausible that more false positives are being predicted for both males and

females, but it is unexpected that we get an increase in discrimination (higher false positive

rate for the males) rather than a reduction, given that with MAR we expect the rate in the

disadvantaged class to increase more.

Figure 6.28: Distribution of educational num by outcome in mode imputed train set

• Complete test set: We see increase in discrimination on average compared to metric dis-

tributions on the imputed test set for demographic parity and predictive equality. See Figure

6.30, for mode imputation, logistic regression and boosting models. Possible explanation: In

the case of imputed train and test set, we expect that the distributions of these two sets will

be similar to each other, as the imputation model built on the training set is used to impute

the test set, whereas in the case of the imputed training and complete test set, these two
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Figure 6.29: Distribution of educational num by sex in mode imputed train set

sets will be less similar to each other, leading to lower accuracy. This could translate to less

unfairness than before, but from the plots we see it leads to an increase in discrimination

compared to the imputed test set, rather than a reduction.

6.5 CONCLUDING OBSERVATIONS

From the fairness metric boxplots seen, especially for the Adult income data set, it became apparent

that to untangle the influence of the missing data mechanisms, the imputation techniques and the

classification models on the fairness metric distributions is a complex task. In future work, we need

to perhaps create simpler scenarios, for example by generating a synthetic data set where we can

control the attribute relationships, to gain clearer insight. Nevertheless, from the results we have

seen, we can make some general comments:

• Missing data mechanisms and missing data handling procedures (listwise deletion or single

imputation) influence the fairness of predictions obtained. This general statement is in agree-

ment with the handful of previous works in the literature.

• Loss of data by listwise deletion for the disadvantaged group, resulting in much less data for

this group compared to the advantaged group, can lead to increased fairness for this group, as

predictions are more likely to match the outcome proportions in the advantaged group. This
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Figure 6.30: Adult data, metric distributions with mode imputation, all three metrics

is in line with Zhang and Long (2021b) observation 2, where they observe that imputation

fairness can be influenced by the imbalance of missingness between the sensitive groups.

• In this study, the MAR missingness in a variable was created by dependence of missingness

only on the sensitive attribute, in particular we implemented the assumption that observations

from disadvantaged groups will contain more missing values. What we observed was that if

missingness is related to the sensitive attribute in this way, the impact can be pronounced.

• For MAR missingness and mode imputation, if the mode of a variable is linked to the

favourable outcome and there is more missingness in this variable for the disadvantaged

group, then imputation by mode will tend to lead to less unfairness for the disadvantaged
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group.

• From our study, the imputation techniques of regression and k-NN tend to be more faithful

to the true data values than mode imputation, leading to similar fairness metric distributions

as in the baseline model. If imputation accuracy is of importance to a researcher, then these

methods are preferred over the very basic imputation by mode or mean.

• We created missingness in those variables which were either strongly related to the sensitive

attribute or outcome variable, or both. These distinctions did not provide us with any obvious

relationship between type of variable amputed and the effect on discrimination.

• Fairness metric results are data set dependent. For instance, we see much more variety of

distributions in the Adult income data set than in the German credit data set. This could

be due to the baseline levels of discrimination in the data sets, some data sets could be more

biased than others. For the same data set, we have also seen that different sensitive attributes

can produce different effects on the fairness. Based on the fairness metric and threshold, a

model may be discriminatory with respect to one sensitive attribute but fair with respect to

another.

• After imputation or deletion, there can be differences in metric distributions between different

machine learning models. This could be due to different levels of trade-off between fairness

and accuracy, and this should be investigated in future work. Although in this work we

have not explicitly reported on accuracy results, by observing the imputation distributions of

variables we have been able to comment on the likely direction of accuracy. Our findings are

in line with previous studies of Fernando et al. (2021) and Zhang and Long (2021b) where they

observe that increased fairness comes at the cost of reduced accuracy. There is an intimate

connection between fairness and accuracy, and this relationship must be investigated in much

more detail in the context of missing values.

• Fairness metric distributions can be strongly related, as we saw in the case of the Adult

income data set for Demographic parity and Predictive equality.
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CHAPTER 7

CONCLUSIONS, RECOMMENDATIONS AND FUTURE

WORK

In this study, our aim was to investigate the impact of missing data mechanisms and the simpler

missing data handling procedures like listwise deletion or single imputation, on the fairness of ma-

chine learning algorithms.

The field of fairness in ML is receiving increasing attention from researchers as more and more

of these algorithms have a tangible impact in our lives. Audits are being conducted at various

stages of the life cycle of algorithms to make them fairer. Existing literature combining the re-

search of fairness of algorithms and missing data is limited to a handful of studies (Fernando et al.,

2021; Zhang and Long, 2021b; Wang and Singh, 2021; Zhang and Long, 2021a). Our research

contributes to these studies.

From the results obtained from our experiments, we observed in general that missing data mech-

anisms and missing data handling procedures influence the fairness of predictions obtained. We

also saw how fairness can be influenced by the extent of imbalance of the missingness between the

sensitive groups. We observed the effects of the trade-off between accuracy and fairness, seeing that

reduced accuracy can lead to increased fairness. These observations are in agreement with previous

studies of the same nature.

In addition, we observed the following in our research, and based on these we can make some

recommendations:

• Loss of data by listwise deletion for the disadvantaged group, resulting in much less data for

this group compared to the advantaged group, can lead to increased fairness for this group,

as predictions are more likely to match the outcome proportions in the advantaged group.

However, in practice we cannot apply LD to a new test observation containing missing values

as this would just remove the entire observation we are trying to make a prediction for.

• For MAR missingness and mode imputation, if the mode of a variable is linked to the
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favourable outcome and there is more missingness in this variable for the disadvantaged

group, then imputation by mode will tend to lead to less unfairness for the disadvantaged

group. Regarding mode (or mean) imputation, despite this approach being very simple, it can

lead to the effect of increased fairness for the disadvantaged group. If fairness of predictions

is one of the concerns of a researcher then even this simple method could give the required

effects, depending of course on how much they are willing to let the accuracy deteriorate.

• From our study, the imputation techniques of regression and k-NN tend to be more faithful

to the true data values than mode imputation, leading to similar fairness metric distributions

as in the baseline model. If imputation accuracy is of importance to a researcher, then these

methods are preferred over the very basic imputation by mode or mean.

Regarding future work, the first aspect which needs to be investigated is the trade-off between

accuracy and fairness, when data are missing according to a particular MDM, and a particular

missing data handling procedure is applied. From our experiments and previous studies, it is

evident that there is an intimate connection between an algorithm’s performance and fairness, and

this needs to be investigated in detail. Based on this relationship, the feasibility of developing

an imputation algorithm that trades off between performance and fairness to impute missing data

fairly should be undertaken. More advanced imputation methods such as multiple imputation and

bias mitigation methods also need to be investigated in the same context.
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APPENDIX A

DATA SETS

The following data set details are taken from Le Quy et al. (2022).

A.1 ADULT INCOME

Figure A.1: Adult income data set attributes
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A.2 GERMAN CREDIT

Figure A.2: German credit data set attributes
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A.3 COMPAS RECIDIVISM

Figure A.3: COMPAS recidivism data set attributes

84

https://scholar.sun.ac.za



APPENDIX B

R PROFILER OUTPUT

The following is the R profiler output, run on the Adult income data set, including all MDM’s,

imputation and classifcation models, for one iteration only. We can see that SVM seems to be

taking up the bulk of the time, followed by k-NN and RF.

$by.total

total.time total.pct self.time self.pct

"comp_res" 28782.0 100.00 0.0 0.00

"kfolds_results" 25944.0 90.14 0.0 0.00

".C" 25444.2 88.40 25444.2 88.40

"svm.formula" 22682.3 78.81 0.5 0.00

"svm" 22682.3 78.81 0.0 0.00

"svm.default" 22676.8 78.79 0.5 0.00

"svm_tune" 18082.4 62.83 0.0 0.00

"predict" 12970.7 45.07 0.0 0.00

"predict.svm" 12739.6 44.26 1.4 0.00

"na.action" 11021.7 38.29 0.0 0.00

"svm_results" 6399.9 22.24 0.0 0.00

".Call" 2984.7 10.37 2984.7 10.37

"imp_n" 2835.7 9.85 0.0 0.00

"kNN" 2823.9 9.81 0.1 0.00

"dist_single" 2764.0 9.60 0.0 0.00

"gowerD" 2764.0 9.60 0.0 0.00

"gowerDind" 2763.8 9.60 0.0 0.00

"randomForest.formula" 954.7 3.32 0.1 0.00

"randomForest" 954.7 3.32 0.0 0.00

"randomForest.default" 951.5 3.31 4.2 0.01

"rf_results" 628.1 2.18 0.0 0.00

"rf_tune" 553.2 1.92 0.0 0.00
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"gbm" 241.0 0.84 0.0 0.00

"gbm.fit" 239.6 0.83 0.8 0.00

"predict.randomForest" 225.8 0.78 4.2 0.01

"b_tune" 189.0 0.66 0.4 0.00

"apply" 80.4 0.28 9.0 0.03

"data.frame" 73.7 0.26 0.0 0.00

"b_results" 69.3 0.24 0.0 0.00

"as.data.frame" 68.8 0.24 0.0 0.00

"as.vector" 68.2 0.24 66.4 0.23

"as.data.frame.matrix" 63.2 0.22 0.1 0.00

"FUN" 58.3 0.20 7.2 0.03

"[" 47.3 0.16 1.0 0.00

"aperm" 40.7 0.14 0.1 0.00

"do.call" 40.6 0.14 0.1 0.00

"[.data.table" 31.3 0.11 11.0 0.04

"aperm.default" 28.7 0.10 28.5 0.10

"factor" 27.1 0.09 21.0 0.07

"matrix" 23.7 0.08 23.6 0.08

"eval" 23.5 0.08 1.7 0.01

"integer" 21.1 0.07 21.1 0.07

"glm.fit" 15.5 0.05 4.2 0.01

"lr_tune" 15.0 0.05 0.1 0.00

"anyDuplicated.default" 14.8 0.05 14.8 0.05

"anyDuplicated" 14.8 0.05 0.0 0.00

"glm" 14.2 0.05 0.0 0.00

"na.omit.data.frame" 14.1 0.05 2.1 0.01

"[.data.frame" 13.7 0.05 3.3 0.01

"table" 13.5 0.05 2.8 0.01

"as.matrix" 13.3 0.05 0.0 0.00

"array" 12.6 0.04 12.4 0.04
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"regressionImp" 11.8 0.04 0.0 0.00

"model.frame.default" 11.1 0.04 0.0 0.00

"checkMissing" 10.0 0.03 0.0 0.00

"double" 9.8 0.03 9.8 0.03

"as.matrix.data.frame" 9.7 0.03 0.0 0.00

"as.integer" 9.4 0.03 9.4 0.03

"summary" 8.9 0.03 0.7 0.00

"standardGeneric" 8.6 0.03 0.3 0.00

"summary.factor" 7.8 0.03 0.2 0.00

".External2" 7.6 0.03 1.2 0.00

"t" 7.4 0.03 0.2 0.00

"model.frame" 7.2 0.03 0.0 0.00

"prettyNum" 6.9 0.02 6.9 0.02

"format" 6.9 0.02 0.0 0.00

"format.default" 6.9 0.02 0.0 0.00

"lr_results" 6.8 0.02 0.0 0.00

"cbind" 6.6 0.02 0.4 0.00

"...elt" 6.3 0.02 0.0 0.00

"capture.output" 6.3 0.02 0.0 0.00

"multinom" 6.3 0.02 0.0 0.00

"withVisible" 6.3 0.02 0.0 0.00

"nnet.default" 6.2 0.02 0.0 0.00

".rowNamesDF<-" 6.0 0.02 0.0 0.00

"as.data.table.list" 5.9 0.02 0.8 0.00

"levels" 5.5 0.02 2.6 0.01

"scale_data_frame" 5.5 0.02 0.0 0.00

"as.data.frame.factor" 5.3 0.02 0.0 0.00

"scale" 5.0 0.02 0.0 0.00

"scale.default" 5.0 0.02 0.0 0.00

"<Anonymous>" 4.9 0.02 0.2 0.00
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"as.factor" 4.8 0.02 0.1 0.00

"is.element" 4.3 0.01 0.2 0.00

"predict.gbm" 4.2 0.01 0.0 0.00

"stats::model.frame" 4.2 0.01 0.0 0.00

"vapply" 4.0 0.01 1.5 0.01

"[[" 3.9 0.01 1.5 0.01

"NextMethod" 3.8 0.01 3.4 0.01

"rm" 3.8 0.01 0.5 0.00

"anyNA" 3.6 0.01 3.6 0.01

"as.matrix.data.table" 3.6 0.01 0.4 0.00

"[.factor" 3.6 0.01 0.1 0.00

"model.matrix" 3.6 0.01 0.0 0.00

"model.matrix.default" 3.5 0.01 0.0 0.00

"is.na" 3.4 0.01 3.1 0.01

"unique" 3.2 0.01 0.6 0.00

"cedta" 3.1 0.01 0.4 0.00

"as.double" 3.0 0.01 3.0 0.01

"order" 2.9 0.01 0.7 0.00

"match.arg" 2.8 0.01 0.8 0.00

"unlist" 2.7 0.01 2.7 0.01

"is.data.frame" 2.7 0.01 0.7 0.00

"sys.call" 2.6 0.01 2.6 0.01

"fn" 2.6 0.01 0.0 0.00

"nzchar" 2.5 0.01 2.5 0.01

"[[.data.frame" 2.4 0.01 0.7 0.00

"lapply" 2.4 0.01 0.3 0.00

"match.call" 2.3 0.01 0.4 0.00

"tryCatch" 2.3 0.01 0.3 0.00

"sample" 2.2 0.01 0.5 0.00

"recycle" 2.2 0.01 0.2 0.00
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"dim" 2.1 0.01 1.6 0.01

"%chin%" 2.1 0.01 1.1 0.00

"try" 2.1 0.01 0.0 0.00

"unique.default" 1.9 0.01 1.6 0.01

"list.names" 1.9 0.01 0.6 0.00

"sweep" 1.9 0.01 0.1 0.00

"tryCatchList" 1.9 0.01 0.1 0.00

"as.character" 1.8 0.01 0.9 0.00

"tryCatchOne" 1.8 0.01 0.5 0.00

"sample.int" 1.7 0.01 0.8 0.00

"na.omit" 1.7 0.01 0.0 0.00

"replace_dot_alias" 1.5 0.01 1.5 0.01

"t.default" 1.5 0.01 1.5 0.01

"as.list" 1.5 0.01 1.1 0.00

"which" 1.5 0.01 0.8 0.00

"%in%" 1.5 0.01 0.4 0.00

"as.vector.factor" 1.5 0.01 0.2 0.00

"quantile" 1.5 0.01 0.0 0.00

"==" 1.4 0.00 0.7 0.00

"quantile.default" 1.4 0.00 0.6 0.00

"force" 1.4 0.00 0.5 0.00

"amp_n" 1.4 0.00 0.0 0.00

"mu.eta" 1.4 0.00 0.0 0.00

"doTryCatch" 1.3 0.00 0.5 0.00

"aic" 1.3 0.00 0.0 0.00

"ampute" 1.3 0.00 0.0 0.00

"sapply" 1.3 0.00 0.0 0.00

"parent.frame" 1.2 0.00 1.2 0.00

"nrow" 1.2 0.00 0.2 0.00

"data.matrix" 1.1 0.00 0.4 0.00
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"formals" 1.1 0.00 0.2 0.00

"paste" 1.1 0.00 0.2 0.00

"row.names<-" 1.1 0.00 0.0 0.00

"row.names<-.data.frame" 1.1 0.00 0.0 0.00

"getOption" 1.0 0.00 1.0 0.00

"names" 1.0 0.00 1.0 0.00

"paste0" 1.0 0.00 0.8 0.00

"na.omit.default" 1.0 0.00 0.4 0.00

"getNamespaceImports" 1.0 0.00 0.2 0.00

"ifelse" 1.0 0.00 0.2 0.00

"perf_mets" 1.0 0.00 0.0 0.00

"as.character.factor" 0.9 0.00 0.9 0.00

"dev.resids" 0.9 0.00 0.9 0.00

"is.data.table" 0.9 0.00 0.9 0.00

"sum" 0.9 0.00 0.9 0.00

"validmu" 0.9 0.00 0.7 0.00

"%iscall%" 0.9 0.00 0.5 0.00

"is.na<-" 0.9 0.00 0.5 0.00

"sys.function" 0.9 0.00 0.5 0.00

"deparse" 0.9 0.00 0.3 0.00

"predict.lm" 0.9 0.00 0.1 0.00

"predict.glm" 0.9 0.00 0.0 0.00

"%*%" 0.8 0.00 0.8 0.00

"c" 0.8 0.00 0.8 0.00

"is.factor" 0.8 0.00 0.8 0.00

"stopifnot" 0.8 0.00 0.5 0.00

"length" 0.7 0.00 0.7 0.00

".unsafe.opt" 0.7 0.00 0.5 0.00

"assign" 0.7 0.00 0.5 0.00

"sort.int" 0.7 0.00 0.5 0.00
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".prepareFastSubset" 0.7 0.00 0.3 0.00

"topenv" 0.7 0.00 0.3 0.00

"exists" 0.7 0.00 0.2 0.00

"Ops.factor" 0.7 0.00 0.1 0.00

"linkinv" 0.7 0.00 0.0 0.00

"sort" 0.7 0.00 0.0 0.00

"sort.default" 0.7 0.00 0.0 0.00

"sum.scores" 0.7 0.00 0.0 0.00

".deparseOpts" 0.6 0.00 0.4 0.00

"asNamespace" 0.6 0.00 0.4 0.00

"getNamespaceName" 0.6 0.00 0.2 0.00

"[<-" 0.6 0.00 0.0 0.00

"data.row.names" 0.6 0.00 0.0 0.00

".getNamespaceInfo" 0.5 0.00 0.5 0.00

"dbinom" 0.5 0.00 0.5 0.00

"dim.data.table" 0.5 0.00 0.5 0.00

"isTRUE" 0.5 0.00 0.5 0.00

"levels.default" 0.5 0.00 0.4 0.00

"substring" 0.5 0.00 0.4 0.00

"copy" 0.5 0.00 0.3 0.00

"setDT" 0.5 0.00 0.2 0.00

"contrasts" 0.5 0.00 0.1 0.00

".Diag" 0.4 0.00 0.4 0.00

"as.list.default" 0.4 0.00 0.4 0.00

"is.na<-.default" 0.4 0.00 0.4 0.00

"sys.parent" 0.4 0.00 0.4 0.00

"[[<-.data.frame" 0.4 0.00 0.3 0.00

"[.table" 0.4 0.00 0.2 0.00

"terms" 0.4 0.00 0.2 0.00

"[<-.data.frame" 0.4 0.00 0.1 0.00
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"rbind" 0.4 0.00 0.1 0.00

"[[<-" 0.4 0.00 0.0 0.00

"ctrfn" 0.4 0.00 0.0 0.00

"simplify2array" 0.4 0.00 0.0 0.00

"all" 0.3 0.00 0.3 0.00

"any" 0.3 0.00 0.3 0.00

"is.nan" 0.3 0.00 0.3 0.00

"isNamespace" 0.3 0.00 0.3 0.00

"match.fun" 0.3 0.00 0.2 0.00

"base::rbind" 0.3 0.00 0.0 0.00

"duplicated" 0.3 0.00 0.0 0.00

"duplicated.data.frame" 0.3 0.00 0.0 0.00

"NCOL" 0.3 0.00 0.0 0.00

"train_test_sets" 0.3 0.00 0.0 0.00

"unique.data.frame" 0.3 0.00 0.0 0.00

"vapply_1i" 0.3 0.00 0.0 0.00

".subset2" 0.2 0.00 0.2 0.00

"chmatch" 0.2 0.00 0.2 0.00

"is.finite" 0.2 0.00 0.2 0.00

"lengths" 0.2 0.00 0.2 0.00

"logical" 0.2 0.00 0.2 0.00

"make.unique" 0.2 0.00 0.2 0.00

"makepredictcall" 0.2 0.00 0.2 0.00

"mapply" 0.2 0.00 0.2 0.00

"nargs" 0.2 0.00 0.2 0.00

"seq_along" 0.2 0.00 0.2 0.00

"variance" 0.2 0.00 0.2 0.00

"all.vars" 0.2 0.00 0.1 0.00

"make.names" 0.2 0.00 0.1 0.00

"model.extract" 0.2 0.00 0.1 0.00

92

https://scholar.sun.ac.za



"predict.multinom" 0.2 0.00 0.1 0.00

"cmpfun" 0.2 0.00 0.0 0.00

"compiler:::tryCmpfun" 0.2 0.00 0.0 0.00

"genCode" 0.2 0.00 0.0 0.00

"is.na.data.frame" 0.2 0.00 0.0 0.00

"reallocate" 0.2 0.00 0.0 0.00

"row.names" 0.2 0.00 0.0 0.00

"row.names.data.frame" 0.2 0.00 0.0 0.00

"-" 0.1 0.00 0.1 0.00

"$" 0.1 0.00 0.1 0.00

".External" 0.1 0.00 0.1 0.00

".Primitive" 0.1 0.00 0.1 0.00

">" 0.1 0.00 0.1 0.00

">=" 0.1 0.00 0.1 0.00

"as.numeric" 0.1 0.00 0.1 0.00

"attr" 0.1 0.00 0.1 0.00

"cb$patchlabels" 0.1 0.00 0.1 0.00

"cb$putcode" 0.1 0.00 0.1 0.00

[ reached ’max’ / getOption("max.print") -- omitted 49 rows ]

$sample.interval

[1] 0.1

$sampling.time

[1] 28782
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APPENDIX C

R CODE

##-------------------------results from all models--------

comp_res <- function(data, n, p, f1, f2, f3, k, form, out, s, s_p,

b_form, type_mar, type_mnar, var_amp,

c_w = 0, outvar_idx, to_imp, reg_f, excl_vars){

imp <- c("ld", "mode", "reg", "knn")

mdm <- c("MCAR", "MAR", "MNAR")

res_full <- list()

for(j in mdm){

#---list of n amputed datasets with mdm = j

dats_amp <- amp_n(data, n, f1, f2, f3, s_p, mdm = j, var_amp, p,

type_mnar, type_mar)

#---training and test sets------

sets_train_test <- train_test_sets(data, dats_amp, n)

train_comp <- sets_train_test$train_full

test_comp <- sets_train_test$complete_test

for(l in imp){

lr_res_mincost <- list(c(), c())

lr_res_maxmcc <- list(c(), c())

lr_res_maxacc <- list(c(), c())

rf_res_mincost <- list(c(), c())

rf_res_maxmcc <- list(c(), c())

rf_res_maxacc <- list(c(), c())

b_res_mincost <- list(c(), c())
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b_res_maxmcc <- list(c(), c())

b_res_maxacc <- list(c(), c())

svm_res_mincost <- list(c(), c())

svm_res_maxmcc <- list(c(), c())

svm_res_maxacc <- list(c(), c())

#---list of n imputed training datasets with imp = l

train_imp <- imp_n(sets_train_test$amputed_train, imp_meth = l, outvar_idx,

to_imp, reg_f, excl_vars)

# #---list of n imputed test sets with imp = l-------

if(l != "ld"){

train_test <- list()

for(a in 1:n){

test_na <- sets_train_test$amputed_test[[a]]

test_na[, var_amp] <- NA

train_test[[a]] <- rbind(train_imp[[a]], test_na)

}

train_test_imp <- imp_n(train_test, imp_meth = l, outvar_idx,

to_imp, reg_f, excl_vars)

test_imps <- list()

for(b in 1:n){

test_imp_1 <- train_test_imp[[b]][-c(1:round(dim(data)[1]*2/3)), ]

rownames(sets_train_test$amputed_test[[b]]) <- rownames(test_imp_1) <-

1:round(dim(data)[1]*1/3)

test_imp <- sets_train_test$amputed_test[[b]]
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for(v in var_amp){

test_imp[is.na(test_imp[,v]),v] <- test_imp_1[is.na(test_imp[,v]),v]

class(test_imp[,v]) <- class(test_comp[[b]][,v])

}

test_imps[[b]] <- test_imp

}

}

#--------------------------------

for(q in 1:n){

if(l!= "ld") res_kfolds <- kfolds_results(train_imp[[q]], list(test_imps[[q]],

test_comp[[q]]),

k=5, form, b_form, out, s)

else res_kfolds <- kfolds_results(train_imp[[q]],

list(test_comp[[q]], test_comp[[q]]),

k=5, form, b_form, out, s)

for(jj in 1:2){

lr_res_mincost[[jj]] <- cbind(lr_res_mincost[[jj]],

t(t(res_kfolds[[1]][[jj]][,1])))

lr_res_maxmcc[[jj]] <- cbind(lr_res_maxmcc[[jj]],

t(t(res_kfolds[[1]][[jj]][,2])))

lr_res_maxacc[[jj]] <- cbind(lr_res_maxacc[[jj]],

t(t(res_kfolds[[1]][[jj]][,3])))

rf_res_mincost[[jj]] <- cbind(rf_res_mincost[[jj]],

t(t(res_kfolds[[2]][[jj]][,1])))
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rf_res_maxmcc[[jj]] <- cbind(rf_res_maxmcc[[jj]],

t(t(res_kfolds[[2]][[jj]][,2])))

rf_res_maxacc[[jj]] <- cbind(rf_res_maxacc[[jj]],

t(t(res_kfolds[[2]][[jj]][,3])))

b_res_mincost[[jj]] <- cbind(b_res_mincost[[jj]],

t(t(res_kfolds[[3]][[jj]][,1])))

b_res_maxmcc[[jj]] <- cbind(b_res_maxmcc[[jj]],

t(t(res_kfolds[[3]][[jj]][,2])))

b_res_maxacc[[jj]] <- cbind(b_res_maxacc[[jj]],

t(t(res_kfolds[[3]][[jj]][,3])))

svm_res_mincost[[jj]] <- cbind(svm_res_mincost[[jj]],

t(t(res_kfolds[[4]][[jj]][,1])))

svm_res_maxmcc[[jj]] <- cbind(svm_res_maxmcc[[jj]],

t(t(res_kfolds[[4]][[jj]][,2])))

svm_res_maxacc[[jj]] <- cbind(svm_res_maxacc[[jj]],

t(t(res_kfolds[[4]][[jj]][,3])))

}

}

tmp <- list(lr_res_mincost = lr_res_mincost, lr_res_maxmcc = lr_res_maxmcc,

lr_res_maxacc = lr_res_maxacc, rf_res_mincost = rf_res_mincost,

rf_res_maxmcc = rf_res_maxmcc, rf_res_maxacc = rf_res_maxacc,

b_res_mincost = b_res_mincost, b_res_maxmcc = b_res_maxmcc,
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b_res_maxacc = b_res_maxacc, svm_res_mincost = svm_res_mincost,

svm_res_maxmcc = svm_res_maxmcc, svm_res_maxacc = svm_res_maxacc)

name <- paste0(j, "_", l)

print(name)

res_full[[name]] <- tmp

}

}

list(res_full = res_full, train_comp = train_comp, test_comp = test_comp)

}

###############################---baseline results----

baseline_res <- function(n, k = 5, form, b_form, out, s, results){

mets <- c("dem.parity", "eq.opp", "pre.eq", "ppv.eq", "npv.eq")

lr_res_mincost <- c()

lr_res_maxmcc <- c()

lr_res_maxacc <- c()

rf_res_mincost <- c()

rf_res_maxmcc <- c()

rf_res_maxacc <- c()

b_res_mincost <- c()

b_res_maxmcc <- c()

b_res_maxacc <- c()

svm_res_mincost <- c()

svm_res_maxmcc <- c()

svm_res_maxacc <- c()
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for(i in 1:n){

#---run the kfolds function----

full_res_kfold <- kfolds_results(results$train_comp[[i]], list(results$test_comp[[i]]),

k, form, b_form, out, s)

lr_res_mincost <- cbind(lr_res_mincost, t(t(full_res_kfold[[1]][[1]][mets,1])))

lr_res_maxmcc <-cbind(lr_res_maxmcc, t(t(full_res_kfold[[1]][[1]][mets,2])))

lr_res_maxacc <-cbind(lr_res_maxacc, t(t(full_res_kfold[[1]][[1]][mets,3])))

rf_res_mincost <- cbind(rf_res_mincost, t(t(full_res_kfold[[2]][[1]][mets,1])))

rf_res_maxmcc <-cbind(rf_res_maxmcc, t(t(full_res_kfold[[2]][[1]][mets,2])))

rf_res_maxacc <- cbind(rf_res_maxacc, t(t(full_res_kfold[[2]][[1]][mets,3])))

b_res_mincost <- cbind(b_res_mincost, t(t(full_res_kfold[[3]][[1]][mets,1])))

b_res_maxmcc <- cbind(b_res_maxmcc, t(t(full_res_kfold[[3]][[1]][mets,2])))

b_res_maxacc <- cbind(b_res_maxacc, t(t(full_res_kfold[[3]][[1]][mets,3])))

svm_res_mincost <- cbind(svm_res_mincost, t(t(full_res_kfold[[4]][[1]][mets,1])))

svm_res_maxmcc <- cbind(svm_res_maxmcc, t(t(full_res_kfold[[4]][[1]][mets,2])))

svm_res_maxacc <- cbind(svm_res_maxacc, t(t(full_res_kfold[[4]][[1]][mets,3])))

}

#------quantiles-------------

lr_mincost <- apply(lr_res_mincost, 1, quantile)

lr_maxmcc <- apply(lr_res_maxmcc, 1, quantile)

lr_maxacc <- apply(lr_res_maxacc, 1, quantile)

rf_mincost <- apply(rf_res_mincost, 1, quantile)

rf_maxmcc <- apply(rf_res_maxmcc, 1, quantile)

rf_maxacc <- apply(rf_res_maxacc, 1, quantile)

b_mincost <- apply(b_res_mincost, 1, quantile)

b_maxmcc <- apply(b_res_maxmcc, 1, quantile)

b_maxacc <- apply(b_res_maxacc, 1, quantile)

svm_mincost <- apply(svm_res_mincost, 1, quantile)
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svm_maxmcc <- apply(svm_res_maxmcc, 1, quantile)

svm_maxacc <- apply(svm_res_maxacc, 1, quantile)

base <- list(lr_mincost = lr_mincost,

lr_maxmcc = lr_maxmcc,

lr_maxacc = lr_maxacc,

rf_mincost = rf_mincost,

rf_maxmcc = rf_maxmcc,

rf_maxacc = rf_maxacc,

b_mincost = b_mincost,

b_maxmcc = b_maxmcc,

b_maxacc = b_maxacc,

svm_mincost = svm_mincost,

svm_maxmcc = svm_maxmcc,

svm_maxacc = svm_maxacc)

base

}

#####-----------------k-folds results function-------------------

kfolds_results <- function(train, tests, k, form, b_form, out, s){

#---k-fold cv on train----

#---Create k equally sized folds----

folds <- cut(seq(1,nrow(train)),breaks=k,labels=FALSE)

#k-fold results structures

lr_pars_sum <- matrix(0, 6, 19)

rf_pars_sum <- matrix(0, 6, 10)

b_pars_sum <- matrix(0, 7, 40)

svm_pars_sum <- matrix(0, 8, 8)

for(i in 1:k){
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#---create train and validation sets------

#---validation set to choose the best parameters for each model-----

valid_idx <- which(folds==i,arr.ind=TRUE)

valid <- train[valid_idx, ]

train_v <- train[-valid_idx, ]

lr_tune_res <- lr_tune(form, out, train_v, valid)

rf_tune_res <- rf_tune(form, out, train_v, valid)

b_tune_res <- b_tune(b_form, out, train_v, valid)

svm_tune_res <- svm_tune(form, out, train_v, valid)

lr_pars_sum <- lr_pars_sum + lr_tune_res

rf_pars_sum <- rf_pars_sum + rf_tune_res

b_pars_sum <- b_pars_sum + b_tune_res

svm_pars_sum <- svm_pars_sum + svm_tune_res

}

#----result averaged over k folds-----

lr_pars <- lr_pars_sum/k

rf_pars <- rf_pars_sum/k

b_pars <- b_pars_sum/k

svm_pars <- svm_pars_sum/k

#---choose best models according to the 3 objectives---

lr_best_pars <- best_pars(lr_pars)

rf_best_pars <- best_pars(rf_pars)

b_best_pars <- best_pars(b_pars)

svm_best_pars <- best_pars(svm_pars)

#---get results from best models on test set

lr_res <- list()
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rf_res <- list()

b_res <- list()

svm_res <- list()

for(jj in 1:length(tests)){

lr_res[[jj]] <- lr_results(train, tests[[jj]], best_mods = lr_best_pars, form, out, s)

rf_res[[jj]] <- rf_results(train, tests[[jj]], best_mods = rf_best_pars, form, out, s)

b_res[[jj]] <- b_results(train, tests[[jj]], best_mods = b_best_pars, b_form, out, s)

svm_res[[jj]] <- svm_results(train, tests[[jj]],

best_mods = svm_best_pars, form, out, s, c_w = 0)

}

list(lr_res = lr_res, rf_res = rf_res, b_res = b_res, svm_res = svm_res)

}

##############################################

###-------amputation---------------

library(mice)

amp_n <- function(data, n, f1, f2, f3, s_p, mdm, var_amp, p,

type_mnar, type_mar){

n_data <- list()

if(length(var_amp) == 1){

#---define missingness patterns-----

pats <- matrix(1,1,dim(data)[2])

pats[1, var_amp] <- 0

#---weights for mar mech------

wgts <- matrix(0,1,dim(data)[2])

wgts[1, s_p] <- 1

#----frequencies vector-----

freqs <- f1

for(i in 1:n){
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if(mdm == "MCAR"){

a <- ampute(data, prop = p, patterns = pats,

mech = "MCAR", freq = freqs)

n_data[[length(n_data) + 1]] <- a$amp

}

#---MAR or MNAR

if(mdm == "MNAR"){

a <- ampute(data, prop = p, patterns = pats,

mech = "MNAR", freq = freqs,

type = type_mnar)

dat <- data

var1 <- a$amp[, var_amp]

if(class(data[,var_amp])=="factor"){

dat[ , var_amp] <- as.factor(var1)

}else{

dat[ , var_amp] <- var1

}

n_data[[length(n_data) + 1]] <- dat

}

if(mdm == "MAR"){

a <- ampute(data, prop = p, patterns = pats,

weights = wgts, freq = freqs,

mech = "MAR", type = type_mar)

dat <- data

var1 <- a$amp[, var_amp]

if(class(data[,var_amp])=="factor"){

dat[ , var_amp] <- as.factor(var1)

}else{

dat[ , var_amp] <- var1
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}

n_data[[length(n_data) + 1]] <- dat

}

}

n_data

}else{

#---define missingness patterns-----

pats <- matrix(1,3,dim(data)[2])

pats[1, var_amp[1]] <- pats[2, var_amp[2]] <- pats[3, var_amp[1]] <-

pats[3, var_amp[2]] <- 0

#---weights for mar mech------

wgts1 <- matrix(0,3,dim(data)[2])

wgts1[1, s_p] <- wgts1[2, s_p] <- wgts1[3, s_p] <- 1

#---weights for mnar mech------

wgts2 <- matrix(0,3,dim(data)[2])

wgts2[1, var_amp[1]] <- wgts2[2, var_amp[2]] <- wgts2[3, var_amp[1]] <- 1

#----frequencies vector-----

freqs <- c(f1, f2, f3)

for(i in 1:n){

if(mdm == "MCAR"){

a <- ampute(data, prop = p, patterns = pats,

mech = "MCAR", freq = freqs)

n_data[[length(n_data) + 1]] <- a$amp

}

#---MAR or MNAR

if(mdm == "MNAR"){

a <- ampute(data, prop = p, patterns = pats, weights = wgts2,

mech = "MNAR", freq = freqs,

type = type_mnar)
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dat <- data

var1 <- a$amp[, var_amp[1]]

if(class(data[,var_amp[1]])=="factor"){

dat[ , var_amp[1]] <- as.factor(var1)

}else{

dat[ , var_amp[1]] <- var1

}

var2 <- a$amp[, var_amp[2]]

if(class(data[,var_amp[2]])=="factor"){

dat[ , var_amp[2]] <- as.factor(var2)

}else{

dat[ , var_amp[2]] <- var2

}

n_data[[length(n_data) + 1]] <- dat

}

if(mdm == "MAR"){

a <- ampute(data, prop = p, patterns = pats,

weights = wgts1, freq = freqs,

mech = "MAR", type = type_mar)

dat <- data

var1 <- a$amp[, var_amp[1]]

if(class(data[,var_amp[1]])=="factor"){

dat[ , var_amp[1]] <- as.factor(var1)

}else{

dat[ , var_amp[1]] <- var1

}

var2 <- a$amp[, var_amp[2]]

if(class(data[,var_amp[2]])=="factor"){

dat[ , var_amp[2]] <- as.factor(var2)

}else{
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dat[ , var_amp[2]] <- var2

}

n_data[[length(n_data) + 1]] <- dat

}

}

n_data

}

}

#------plotting function--------------------

fair_boxplots <- function(ld = T, all = T, base_r, results, lctn){

if(ld == T){

imp <- c("ld","mode", "reg", "knn")

}else{

imp <- c("mode", "reg", "knn")

}

mod_names <- names(results$res_full$MCAR_reg)

mincost <- mod_names[grep("mincost", mod_names)]

maxmcc <- mod_names[grep("maxmcc", mod_names)]

maxacc <- mod_names[grep("maxacc", mod_names)]

objective <- c("mincost", "maxmcc", "maxacc")

obj <- cbind(mincost = mincost, maxmcc = maxmcc, maxacc = maxacc)

n <- dim(results$res_full$MCAR_reg$lr_res_mincost[[1]])[2]

mets <- c("dem.parity", "eq.opp", "pre.eq", "ppv.eq", "npv.eq")

for(m in mets){

for(o in objective){

if(all == T){

f_n <- paste0(lctn, m, "_", o, ".pdf")

pdf(f_n, 8, 7)
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par(mar=c(2.2,4,3.5,1))

if(ld == T){

par(mfrow = c(4,4))

}

if(ld == F){

par(mfrow = c(4,3))

}

}

for(i in obj[, o]){

mod_name <- strsplit(i, split = "_")[[1]][1]

if(all==F){

f_n <- paste0(lctn, m, "_", o, "_", mod_name, ".pdf")

pdf(f_n, 8, 5)

par(mar=c(2.2,4,3.5,1))

if(ld == T){

par(mfrow = c(1, 4))

}

if(ld == F){

par(mfrow = c(1, 3))

}

}

for(j in imp){

idx <- grep(j, names(results$res_full))

imp_mdm <- names(results$res_full[idx])

df <- data.frame(matrix(ncol = 3, nrow = n))

x <- c("mcar", "mar", "mnar")

count = 1

for(k in imp_mdm){

colm <- c()
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for(l in 1:n){

## if ld is true compare all on comp test

## if ld false compare all non-ld on imputed test

if(ld == T) colm <- rbind(colm,

t(t(results$res_full[[k]][[i]][[2]][,l]))[m, ])

else colm <- rbind(colm, t(t(results$res_full[[k]][[i]][[1]][,l]))[m, ])

}

df[, count] <- colm

count = count + 1

}

name <- paste0(j, ".", mod_name)

base_name <- paste0(mod_name, "_", o)

#---baseline-----------------

iqr_min <- base_r[[base_name]][2, m]

med <- base_r[[base_name]][3, m]

iqr_max <- base_r[[base_name]][4, m]

#---------------------

#--------------------------------

names(df) <- x

boxplot(df, ylab = m, main = name, cex.main = 1.1, cex.axis = 1.1,

cex.lab = 1.1)

av <- apply(df, 2, mean)

names(av) <- x

points(av, pch=20, col="blue")

abline(h = med, col = "red")

abline(h = iqr_min, col = "red", lty = 2, lwd = .5)

abline(h = iqr_max, col = "red", lty = 2, lwd = .5)
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}

if(all == F){

mtext(text = o, side = 3, line = -1, outer = TRUE, cex = 0.9, col = "grey50")

dev.off()

}

}

if(all == T){

mtext(text = o, side = 3, line = -1, outer = TRUE, cex = 0.9, col = "grey50")

dev.off()

}

}

}

}

#---function to create the various subsets-------

#---takes in amputed data set list----

train_test_sets <- function(data, amp_data, n){

complete_test <- list()

amputed_test <- list()

amputed_train <- list()

train_full <- list()

for(i in 1:n){

set.seed(i)

test_idx <- sample(1:nrow(data), round(1/3*nrow(data)))

#----complete test set----

test_comp <- data[test_idx, ]

complete_test[[i]] <- test_comp
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#----complete training set---

train_full[[i]] <- data[-test_idx, ]

#----amputed test set----

test_amp <- amp_data[[i]][test_idx, ]

amputed_test[[i]] <- test_amp

#---amputed training set---

train_amp <- amp_data[[i]][-test_idx, ]

amputed_train[[i]] <- train_amp

}

list(complete_test = complete_test, amputed_test = amputed_test,

amputed_train = amputed_train, train_full = train_full)

}

#----imputation fuction---

imp_n <- function(l_dats, imp_meth, outvar_idx, to_imp, reg_f, excl_vars){

imp_dats <- list()

for(i in 1:length(l_dats)){

#----listwise deletion-----------

if(imp_meth == "ld"){

idx_comp <- complete.cases(l_dats[[i]])

comp <- l_dats[[i]][idx_comp, ]

imp_dats[[length(imp_dats) + 1]] <- comp

}

#-----knn imputation-----------

if(imp_meth == "knn"){

knn_imp <- kNN(l_dats[[i]], variable = to_imp, numFun = mean,

useImputedDist = FALSE, imp_var = FALSE,

dist_var = colnames(l_dats[[i]][, -outvar_idx])[-excl_vars])

imp_dat <- knn_imp
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imp_dats[[length(imp_dats) + 1]] <- imp_dat

}

#---mode imputation------categorical vars only----

if(imp_meth == "mode"){

#---get the mode of the variable to be imputed---

#---replace NA’s by mode-------

for(j in 1:length(to_imp)){

if(class(l_dats[[i]][, c(to_imp[j])]) == "factor"){

mode1 <- names(which.max(summary(na.omit(l_dats[[i]][, c(to_imp[j])]))))

l_dats[[i]][which(is.na((l_dats[[i]][, c(to_imp[j])]))), c(to_imp[j])] <- mode1

}

else{

mode1 <- Mode(na.omit(l_dats[[i]][, c(to_imp[j])]))

l_dats[[i]][which(is.na((l_dats[[i]][, c(to_imp[j])]))), c(to_imp[j])] <- mode1

}

}

imp_dats[[length(imp_dats) + 1]] <- l_dats[[i]]

}

#--regression imputation----

if(imp_meth=="reg"){

reg_imp <- regressionImp(reg_f, l_dats[[i]], imp_var = FALSE)

imp_dat <- reg_imp

imp_dats[[length(imp_dats) + 1]] <- imp_dat

}

}

imp_dats

}

111

https://scholar.sun.ac.za



Mode <- function(x) {

ux <- unique(x)

ux[which.max(tabulate(match(x, ux)))]

}

##----------------Logistic Regression------------------

#-----training/validation function------

lr_tune <- function(form, out, train_v, valid){

#-----fit on train_v--------

lr <- glm(form, data=train_v, family="binomial")

#----calculate model over 19 thresholds on valid------

thresh <- seq(0.05, 0.95, length.out = 19)

lr_valid <- predict(lr, valid, type="response")

lr_results_perf <- c()

for(j in thresh){

class_valid <- rep(1 , nrow(valid))

class_valid[lr_valid <= j] <- 0

class_valid <- factor(class_valid, levels = c(0,1))

cm_lr <- table(pred = class_valid, actual = valid[, out])

perf_res_lr <- perf_mets(cm_lr)

p_res_lr <- rbind(thresh = j, perf_res_lr)

lr_results_perf <- cbind(lr_results_perf, p_res_lr)

}

lr_results_perf

}

#----test set results function-----

#---takes in best models as input----

lr_results <- function(train, test, best_mods, form, out, s){

#----fit (on full train set) and predict (on test set) the best models
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##------Logistic regression---------

lr_train <- glm(form, data=train, family="binomial")

lr_preds <- predict(lr_train, test, type="response")

####-------------####---------------###------------------

res_lr <- c()

for(i in 1:3){

test_preds <- rep(1 , nrow(test))

test_preds[lr_preds <= best_mods[1,i]] <- 0

test_preds <- factor(test_preds, levels = c(0,1))

#--dem_parity table----

tab <- table(y_hat = test_preds, s = test[, s])

#---other metrics, 2 tables, for s = 0/ s = 1

tab0<- table(pred = test_preds[which(test[, s]==0)],

actual = test[which(test[, s]==0), out])

tab1 <- table(pred = test_preds[which(test[, s]==1)],

actual = test[which(test[, s]==1), out])

#---fairness metrics values on test set-----

fair_mets <- fair_mets_classifier(tab, tab1, tab0)

#---performance metrics on test set----

cm <- table(pred = test_preds, actual = test[, out])

perf_res <- perf_mets(cm)

perf_res[5, 1] <- perf_res[5, 1]/sum(cm)

#-----combine fairness and performance results----

best <- rbind(best_mods[1,i], perf_res, fair_mets)

rownames(best)[1] <- "thresh"

res_lr <- cbind(res_lr, best)

}

colnames(res_lr) <- c("min cost", "max mcc", "max acc")
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res_lr

}

##--------------Random Forests------------------

library(randomForest)

rf_tune <- function(form, out, train_v, valid){

#----fit model over 10 cutoffs on train and validate on valid------

p <- seq(0.05, 0.95, length.out = 10)

rf_mods_valid <- c()

for(i in p){

#---fit on train----

rf <- randomForest(form, train_v, cutoff = c(i, 1-i))

#---validate on valid---

rf_pred <- predict(rf, newdata = valid)

cm <- table(pred = rf_pred, actual = valid[, out])

perf_res <- perf_mets(cm)

rf_mods_valid <- cbind(rf_mods_valid, rbind(cutoff = i, perf_res))

}

rf_mods_valid

}

rf_results <- function(train, test, best_mods, form, out, s){

res_rf <- c()

for(i in 1:3){

rf_train <- randomForest(form, train,

cutoff = c(best_mods[1,i], 1-best_mods[1, i]))

rf_preds <- predict(rf_train, newdata = test)

#--dem_parity table----

tab <- table(y_hat = rf_preds, s = test[, s])

#---other metrics, 2 tables, for s = 0/ s = 1
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tab0<- table(pred = rf_preds[which(test[, s]==0)],

actual = test[which(test[, s]==0), out])

tab1 <- table(pred = rf_preds[which(test[, s]==1)],

actual = test[which(test[, s]==1), out])

#----fairness metrics values on test set-----

fair_mets <- fair_mets_classifier(tab, tab1, tab0)

#----performance metrics on test set-------

cm <- table(pred = rf_preds, actual = test[, out])

perf_res <- perf_mets(cm)

perf_res[5, 1] <- perf_res[5, 1]/sum(cm)

#-----combine fairness and performance results----

best <- rbind(best_mods[1,i], perf_res, fair_mets)

rownames(best)[1] <- "cutoff"

res_rf <- cbind(res_rf, best)

}

colnames(res_rf) <- c("min cost", "max mcc", "max acc")

res_rf

}

#####------------boosting -----------------

library(gbm)

b_form <- ifelse(as.integer(risk)==1, 0, 1) ~ . - sex

b_tune <- function(b_form, out, train_v, valid){

#---fit model with different shrinkage on train_v-----

#---validate the models on valid with different thresh----

sh <- c(0.001, 0.01, 0.1, 0.2)

th <- seq(0.05, 0.95, length.out = 10)
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b_mods_valid <- c()

for(i in sh){

#---fit on train----

b <- gbm(b_form, data = train_v, distribution = "bernoulli", shrinkage = i)

#---validate on valid---

b_pred <- predict(b, newdata = valid, n.trees = 100, type = "response")

for(j in th){

class_valid <- rep(1 , nrow(valid))

class_valid[b_pred <= j] <- 0

class_valid <- factor(class_valid, levels = c(0,1))

cm <- table(pred = class_valid, actual = valid[, out])

perf_res <- perf_mets(cm)

b_mods_valid <- cbind(b_mods_valid,

rbind(shrinkage = i, perf_res, thresh = j))

}

}

b_mods_valid

}

b_results <- function(train, test, best_mods, b_form, out, s){

res_b <- c()

for(i in 1:3){

b_mod <- gbm(b_form, data = train, distribution = "bernoulli",

shrinkage = best_mods[1, i])

b_test <- predict(b_mod, newdata = test, n.trees = 100, type = "response")

class_test <- rep(1 , nrow(test))

class_test[b_test <= best_mods[7, i]] <- 0

class_test <- factor(class_test, levels = c(0,1))

#--dem_parity table----
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tab <- table(y_hat = class_test, s = test[, s])

#---other metrics, 2 tables, for s = 0/ s = 1

tab0<- table(pred = class_test[which(test[, s]==0)],

actual = test[which(test[, s]==0), out])

tab1 <- table(pred = class_test[which(test[, s]==1)],

actual = test[which(test[, s]==1), out])

#---fairness metrics values on test set-----

fair_mets <- fair_mets_classifier(tab, tab1, tab0)

#------performance metrics on test set----

cm <- table(pred = class_test, actual = test[, out])

perf_res <- perf_mets(cm)

perf_res[5, 1] <- perf_res[5, 1]/sum(cm)

#-----combine fairness and performance results----

best <- rbind(best_mods[1,i], perf_res, fair_mets, best_mods[7, i])

rownames(best)[1] <- "shrinkage"

rownames(best)[12] <- "thresh"

res_b <- cbind(res_b, best)

}

colnames(res_b) <- c("min cost", "max mcc", "max acc")

res_b

}

##------------------svm-----------------------

library(e1071)

svm_tune <- function(form, out, train_v, valid, c_w = 0){

gam <- c(2^-5, 2^-4, 2^-3, 2^-2)

c <- c(0.1, 1, 10)
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wgt <- c(1, 2, 3, 4)

svm_mods <- c()

for(i in c){

for(k in wgt){

#----fit models on train------

#---validate on valid----

c_wts <- c(k)

names(c_wts) <- as.character(c_w)

svm1 <- svm(form, data = train_v, scale = TRUE, kernel = "linear", cost = i,

class.weights = c_wts)

svm_pred1 <- predict(svm1, newdata = valid)

cm1 <- table(pred = svm_pred1, actual = valid[, out])

perf_res1 <- perf_mets(cm1)

svm_mods <- cbind(svm_mods, rbind(svm_c = i, perf_res1, wght = k,

gamma = NA))

for(j in gam){

#----fit models on train------

#---validate on valid----

svm2 <- svm(form, data = train_v, scale = TRUE, kernel = "radial",

cost = i, gamma = j, class.weights = c_wts)

svm_pred2 <- predict(svm2, newdata = valid)

cm2 <- table(pred = svm_pred2, actual = valid[, out])

perf_res2 <- perf_mets(cm2)

svm_mods <- cbind(svm_mods, rbind(svm_c = i, perf_res2, wght = k,

gamma = j))

}

}

}

svm_mods
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}

svm_results <- function(train, test, best_mods, form, out, s, c_w = 0){

res_svm <- c()

for(i in 1:3){

if(is.na(best_mods[8, i])){

#----linear kernel----

c_wts <- c(best_mods[7, i])

names(c_wts) <- as.character(c_w)

svm_mod <- svm(form, data = train, scale = TRUE, kernel = "linear",

cost = best_mods[1, i], class.weights = c_wts)

}else{

#---radial kernel----

c_wts <- c(best_mods[7, i])

names(c_wts) <- as.character(c_w)

svm_mod <- svm(form, data = train, scale = TRUE, kernel = "radial",

cost = best_mods[1, i], gamma = best_mods[8, i],

class.weights = c_wts)

}

test_svm <- predict(svm_mod, newdata = test)

#--dem_parity table----

tab <- table(y_hat = test_svm, s = test[, s])

#---other metrics, 2 tables, for s = 0/ s = 1

tab0 <- table(pred = test_svm[which(test[, s]==0)],

actual = test[which(test[, s]==0), out])

tab1 <- table(pred = test_svm[which(test[, s]==1)],

actual = test[which(test[, s]==1), out])

#---fairness metrics values on test set-----
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fair_mets <- fair_mets_classifier(tab, tab1, tab0)

#----------performance metrics on test set----

cm <- table(pred = test_svm, actual = test[, out])

perf_res <- perf_mets(cm)

perf_res[5, 1] <- perf_res[5, 1]/sum(cm)

#-----combine fairness and performance results----

best <- rbind(best_mods[1,i], perf_res, fair_mets)

rownames(best)[1] <- "svm_cost"

res_svm <- cbind(res_svm, best)

}

colnames(res_svm) <- c("min cost", "max mcc", "max acc")

res_svm

}

#####-------------###############-------------#########

#----best models according to 3 objectives-----

#----same function for all models--------

#---takes in a matrix of all parameter values/models----

#---outputs best model according to objective---

best_pars <- function(pars_full){

#----min cost model---

min_cost_pars <- pars_full[, which.min(pars_full[6, ])]

#---max mcc model----

max_mcc_pars <- pars_full[, which.max(pars_full[5, ])]

#---max acc model----

max_acc_pars <- pars_full[, which.max(pars_full[2, ])]

#----results----

data.frame(min_cost = min_cost_pars, max_mcc = max_mcc_pars,

max_acc = max_acc_pars)
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}

#-----------fairness metrics-----------

#---outcome Y: 1 is positive outcome, 0 is negative outcome

#---sensitive attribute S: 1 is privileged class, 0 is unprivileged class

#--------------#-----------------#--------------------#----------------

#---1. demographic parity--------

#---Can be calculated on a dataset or prediction output of a classifier----

#---takes a table as input------

#---table is of form, (rows are outcome Y/Y_hat and cols are sens. attr S)-----

#----- S

#---- 0 1 -----

#- Y_hat| 0 a b

#- 1 c d

dem_par <- function(tab){

tab[2, 2]/(tab[1,2] + tab[2,2]) - tab[2, 1]/(tab[1,1] + tab[2,1])

}

#----the next metrics can only be calculated with predictions from a model----

#----require as input 2 tables, one for each binary sensitive attribute class

#---the tables are just the confusion matrices --------

#---table is of form, (rows are Y_hat and cols are Y)-----

#----- Y

#---- 0 1 -----

#- Y_hat| 0 a b

#- 1 c d

#--tab1 is for privileged and tab2 for unprivileged-----
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#---2. Equality of opportunity/ equality of TPR-----

eq_opp <- function(tab1, tab2){

tab1[2,2]/(tab1[1,2]+tab1[2,2]) - tab2[2,2]/(tab2[1,2]+tab2[2,2])

}

#---3. Predictive Equality/ equality of FPR-------

pre_eq <- function(tab1, tab2){

tab1[2,1]/(tab1[1,1]+tab1[2,1]) - tab2[2,1]/(tab2[1,1]+tab2[2,1])

}

#---4. TNR/specificity equality-------

tnr_eq <- function(tab1, tab2){

tab1[1,1]/(tab1[1,1]+tab1[2,1]) - tab2[1,1]/(tab2[1,1]+tab2[2,1])

}

#---5. FNR equality-----

fnr_eq <- function(tab1, tab2){

tab1[1,2]/(tab1[1,2]+tab1[2,2]) - tab2[1,2]/(tab2[1,2]+tab2[2,2])

}

#---6. Overall accuracy equality----

ov_acc_eq <- function(tab1, tab2){

(tab1[1,1]+tab1[2,2])/sum(tab1) - (tab2[1,1]+tab2[2,2])/sum(tab2)

}

#---7. PPV equality/ precision equality/ predictive parity-------

ppv_eq <- function(tab1, tab2){

den1 <- tab1[2,1]+tab1[2,2]
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den2 <- tab2[2,1]+tab2[2,2]

if(den1 == 0 && den2 == 0){

0

}else if(den1 == 0 && den2 != 0){

-(tab2[2,2]/den2)

}else if(den2 == 0 && den1 != 0){

tab1[2,2]/den1

}else{

tab1[2,2]/den1 - tab2[2,2]/den2

}

}

#---8. NPV equality-------

npv_eq <- function(tab1, tab2){

den1 <- tab1[1,1]+tab1[1,2]

den2 <- tab2[1,1]+tab2[1,2]

if(den1 == 0 && den2 == 0){

0

}else if(den1 == 0 && den2 != 0){

-(tab2[1,1]/den2)

}else if(den2 == 0 && den1 != 0){

tab1[1,1]/den1

}else{

tab1[1,1]/den1 - tab2[1,1]/den2

}

}
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#############################

#-----Matthews correlation coefficient------

#----takes in confusion matrix/table as input where-----

#---predictions are rows and truth is columns-----

#----assume binary classes are ordered and called 0 and 1

matCC <- function(cm){

cm <- matrix(as.numeric(cm), 2, 2)

num <- cm[2,2]*cm[1,1] - cm[2,1]*cm[1,2]

t1 <- cm[2,2] + cm[2,1]

t2 <- cm[2,2] + cm[1,2]

t3 <- cm[1,1] + cm[2,1]

t4 <- cm[1,1] + cm[1,2]

if(t1==0|t2==0|t3==0|t4==0){

den = 1}

else{

den <- sqrt(t1*t2*t3*t4)

}

num/den

}

#-----------############------------################------------

#-------performance metrics result function--------

#---takes in confusion matrix/table as input, where-------

#-----predictions are rows and truth is in columns------

#----assume binary classes are ordered and called 0 and 1

perf_mets <- function(cm){

acc <- (cm[1,1] + cm[2,2])/sum(cm)

pos_acc <- cm[2,2]/(cm[2,2] + cm[1,2])
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neg_acc <- cm[1,1]/(cm[1,1] + cm[2,1])

mcc <- matCC(cm)

cost <- cm[1,2] + 5*cm[2,1]

mets <- rbind(accy = acc, pos_accy = pos_acc, neg_accy = neg_acc, MCC = mcc,

cost = cost)

mets

}

#-####-------------######-------------######--------------

#----fairness metrics results function-----

#--on classifier outputs, all 5------

#---tab1 is counts of Y_hat and S for dem_parity---

#---tab2 and tab3 are confusion mats for privileged and unprivileged respectiv.

#---form of tables is described in fair_mets.r-------

fair_mets_classifier <- function(tab1, tab2, tab3){

f_mets <- rbind(dem_par(tab1), eq_opp(tab2,tab3), pre_eq(tab2, tab3),

ppv_eq(tab2, tab3), npv_eq(tab2, tab3))

rownames(f_mets) <- c("dem.parity", "eq.opp", "pre.eq", "ppv.eq", "npv.eq")

f_mets

}
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