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Abstract Environmental heterogeneity has been shown to
have a profound effect on population dynamics and
biological invasions, yet the effect of its spatial structure
on the dynamics of disease invasion in a spatial host–
parasite system has received little attention. Here we
explore the effect of environment heterogeneity using the
pair approximation and the stochastic spatially explicit
simulation in which the lost patches are clustered in a
fragmented landscape. The intensity of fragmentation is
defined by the amount and spatial autocorrelation of the
lost habitat. More fragmented landscape (high amount of
habitat loss, low clustering of lost patches) was shown to
be detrimental to the parasitic disease invasion and
transmission, which implies that the potential of using
artificial disturbances as a disease-control agency in bio-
logical conservation and management. Two components
of the spatial heterogeneity (the amount and spatial
autocorrelation of the lost habitat) formed a trade-off in
determining the host–parasite dynamics. An extremely
high degree of habitat loss was, counter-intuitively,
harmful to the host. These results enrich our under-

standing of eco-epidemiological, host–parasite systems,
and suggest the possibility of using the spatial arrange-
ment of habitat patches as a conservation tool for
guarding focal species against parasitic infection and
transmission.

Keywords Host–parasite interactions Æ Spatial
heterogeneity Æ Spatial correlation Æ Pair
approximation Æ Individual-based simulation

Introduction

The effect of landscape spatial heterogeneity on popu-
lation dynamics has been thoroughly studied in recent
decades (Cantrell and Cosner 1991; Andren 1994;
Hiebeler 2000; Ovaskainen et al. 2002; Hiebeler and
Morin 2007; Hirzel et al. 2007). In these studies, it has
been found that the habitat loss induced environmental
heterogeneity is mostly due to unprecedented anthro-
pogenic disturbances. It is also obvious that the real
landscape is heterogeneous, where the quality of habitat
varies across space. Suitable habitat patches, are thus
interspersed among the matrix of unsuitable habitat
patches. Consequently, the number of studies on the
effect of the spatial configuration of the landscape on
population dynamics has largely increased, both theo-
retically and empirically (Hiebeler 2000; North and
Ovaskainen 2007; Hirzel et al. 2007). The spatial heter-
ogeneity of the landscape has been shown to strongly
affect the population dynamics, as well as the epidemi-
ological behavior. Specifically, spatial clustering of
suitable or unsuitable habitat patches can increase the
population equilibrium in single species models (Hie-
beler 2005; Hiebeler and Morin 2007; Hirzel et al. 2007).
We intend to explore how this spatial heterogeneity in
landscape affects the spatial dynamics of a host–parasite
system.

Infection disease has been shown to be a crucial
factor affecting species viability and dynamics (Rand
et al. 1995; Keeling et al. 2001; Packer et al. 2003;
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Bairagi et al. 2007; Su et al. 2008a). Scientists are
increasingly interested in eco-epidemiological systems
(Chattopadhyay and Bariagi 2001; Keeling et al. 2001;
Greenman et al. 2004; Webb et al. 2007a; Garrett et al.
2007). Since Anderson and May’s (1979) theoretical
demonstration of the regulation strength of parasites
towards their hosts, much attention has been paid to
the impact of these parasites on host populations in
natural systems (Boots and Sasaki 2001; Deredec and
Courchamp 2006; Webb et al. 2007a, 2007b). As a
result, an epidemiological theory of host–parasite sys-
tems has been developed (Anderson 1991; Sat�o et al.
1994; Rand et al. 1995; Webb et al. 2007a, 2007b),
based largely on the classical mean-field SIR model
(e.g. Bairagi et al. 2007). However, the habitat in these
studies is either homogeneous or made up of identical
patches (e.g., Sat�o et al. 1994), with very few works
really investigating the spatial and environmental het-
erogeneity in the landscape. The field is now beginning
to recognize the importance and complexity of spatial
structure of the eco-epidemiological system, particularly
through the use of computer simulations. Empirical
studies have revealed that the environmental fragmen-
tation and heterogeneity are crucial to the disease
transmission (Murray 1993; Garrett et al. 2007). It is,
thus, necessary to explore the effect of fragmented
landscape with spatially structured heterogeneity on the
host–parasite dynamics.

Many methods have been used to study the spatial
heterogeneity in ecological systems (Li et al. 2005;
Okuyama 2007; Webb et al. 2007a, 2007b; Bolker and
Pacala 1997; North and Ovaskainen 2007), among which
the spatially stochastic simulation is often used (Hui and
MeGeoch 2007; Webb et al. 2007b; Okuyama 2007; Su
et al. 2008b). In particular, the role of spatially struc-
tured heterogeneity in the eco-epidemiological system
has been examined successfully using this method
(Hiebeler 2005; North and Ovaskainen 2007; Melbourne
et al. 2007). A potential problem with such a method is
that the analysis is often restricted to direct computer
simulations, making mathematical analysis impossible.
This dilemma can be resolved by using the method of
moment-closure approximations (e.g., pair approxima-
tion) introduced by Matsuda et al. (1992); see also Iwasa
2000), which has been successfully applied in a wide
range of ecological, epidemiological, and evolutionary
systems (Sat�o et al. 1994; Keeling and Rand 1996;
Ovaskavinen et al. 2002; Hiebeler 2005; Hui and
MeGeoch 2007; Okuyama 2007; Su et al. 2008b). Pair
approximation is a method for constructing a system of
ordinary differential equations for global and local den-
sities, and dealing with them as separate state variables
that change over time (Iwasa 2000). Furthermore, it is
also conceptually and mathematically similar to the join-
count statistics that considers the correlations between
and within focal species (Hui et al. 2006; Su et al. 2008b).

In this paper, we use the pair approximation and
stochastic simulation to examine the effect of a hetero-
geneous landscape on classical host–parasite systems.

We not only test the effect of the amount of habitat loss
but also the spatial autocorrelation of lost patches.
Previous eco-epidemiological theory using spatially
random habitat loss is compared under different spatial
structures. Specifically, the following three questions are
to be addressed: (1) How does the spatially structured
heterogeneity affect the invasion and transmission of the
parasitic disease? (2) How do the occupancy and the
spatial correlation of different populations respond to
the environmental heterogeneity? (3) Do these two
measures of spatial heterogeneity (i.e., the amount and
the spatial autocorrelation of lost patches) impact on
each other?

Model

To examine the effect of spatially structured heteroge-
neity on the host–parasite dynamics, a simple host–
parasite lattice model of the micro-parasite SI systems
was designed. The heterogeneous lattice environment
contains two habitat types: suitable and unsuitable,
where the unsuitable patches can not be occupied
(Hiebeler 2000; Hiebeler and Morin 2007). The pro-
portion of unsuitable patches in the landscape is
described as pu and indicates the amount of habitat loss.
The clustering parameter qu/u represents the spatial
autocorrelation of lost patches, and is the probability
that a randomly chosen neighbor of an unsuitable patch
is also found unsuitable. Therefore, the proportion of
suitable patches is ps = 1 � pu, and the clustering
degree of suitable patches can also be calculated as,
qs=s ¼ 1� pu

1�pu
1� qu=u

� �
. Such a framework allows us to

depict habitats that are not randomly distributed but
rather clustered together by specific degrees and, thus,
facilitate a systematic investigation of the impact of
landscape structure on spatially explicit ecological pro-
cesses and dynamics.

A classical lattice dynamical model of local host–
parasite interactions is then placed on the above heter-
ogeneous landscape. There are four possible states for
each patch: unsuitable (1), suitable but empty (0),
occupied by a susceptible individual (S), or by an in-
fected one (I). A susceptible host can only reproduce if it
is adjacent to a suitable empty patch. Parasitic infection
happens through the contact of infected and susceptible
individuals from neighboring patches. The parasitic
disease transmits both horizontally (to neighbors) and
vertically (to progenies) (Deredec and Courchamp
2006). An infected individual can, thus, reproduce a
progeny in a neighboring suitable, empty patch, and also
transmit the parasite to a susceptible neighbor through
contact. The infected individual has a higher death rate
than the susceptible individual due to the parasitic
infection. A suitable, occupied patch becomes empty
after the individual within it dies and can be reoccupied
in the next time step by the progenies from individuals in
the neighboring patches.
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Pair approximation

Based on the rules described above, a pair approxima-
tion model can be constructed. Let the global density
Pr(t) (r 2 {S, I, 0, 1}) denote the probability that a
randomly chosen patch is in the state r at time t. Dou-
blet density Prr¢ is the probability that a randomly
chosen pair of two neighboring patches is in state rr¢.
Local density Qr/r¢ is the conditional probability that a
randomly chosen neighbor of a patch in state r¢ is in
state r, and Qr/r¢r¢¢ is the conditional probability that a
randomly chosen neighbor of the r¢ patch in a r¢r¢¢ pair
is in state r (r¢r¢¢ 2 {S, I, 0, 1}). The pair approximation
model is as follows,

P 0S ¼ rPSQ0=S � dPS � bPSQI=S ð1Þ
P 0I ¼ bPI QS=I þ rPI Q0=I � d þ að ÞPI ð2Þ
P 00 ¼ dPS þ d þ að ÞPI � rP0QS=0 � rP0QI=0 ð3Þ
P 0SS ¼ 2r hþ 1� hð ÞQS=0S

� �
PS0 � 2dPSS

� 2b 1� hð ÞPSSQI=SS ð4Þ
P 0II ¼ 2b hþ 1� hð ÞQI=SI

� �
PSI þ 2r hþ 1� hð ÞQI=0I

� �
PI0

� 2 d þ að ÞPII

ð5Þ
P 000 ¼ 2 d þ að ÞPI0 þ 2dPS0 � 2r 1� hð ÞP00 QS=00 þ QI=00

� �

ð6Þ
P 0S0 ¼ r 1� hð ÞP00QS=00

� r hþ 1� hð Þ QS=0S þ QI=0S

� �� �
PS0 � dPS0

þ dPSS þ d þ að ÞPSI � b 1� hð ÞPS0QI=S0

ð7Þ

P 0I0 ¼ r 1� hð ÞP00QI=00 þ b 1� hð ÞPS0QI=S0 þ dPSI

þ d þ að ÞPII � d þ að ÞPI0

� r hþ 1� hð Þ QS=0I þ QI=0I
� �� �

PI0

ð8Þ

P 010 ¼ dPS1 þ d þ að ÞPI1 � r 1� hð ÞP10 QS=01 þ QI=01

� �

ð9Þ
P 01S ¼ �dP1S � b 1� hð ÞP1SQI=S1 þ r 1� hð ÞP10QS=01

ð10Þ
P 01I ¼ � d þ að ÞP1I þ r 1� hð ÞP10QI=01 þ b 1� hð ÞP1SQI=S1

ð11Þ
P 0SI ¼ r 1� hð ÞPI0QS=0I þ r 1� hð ÞPS0QI=0S

þ b 1� hð ÞPSSQI=SS

� 2d þ að ÞPSI � bPSI hþ 1� hð ÞQI=SI

� �
ð12Þ

where r represents the reproduction rate, b the transmis-
sion rate of disease; h = 1/z (z is the number of nearest
neighboring patches); d the mortality rate of a host indi-
vidual. An infected individual has an additional mortality
(a) due to the infection. Furthermore, we have Prr¢ =
PrQr¢/r = Pr¢r = Pr¢Qr/r¢, (particularly, P11 = puqu/u),
Pr ¼

P
r0 Prr0 ,

P
r0 Qr0=r ¼ 1, pu = P1 and ps =

P0+PS+PI. According to the pair approximation, in
which triplet densities are substituted by pair densities
(i.e., Qr=r0r00 � Qr=r0 ) (Iwasa 2000; Su et al. 2008b), there
are only seven independent variables namely PS, PI, PSS,

PII, P0S, P0I, PSI. All the other singlet and doublet
probabilities can be calculated from these seven variables.

Spatial analysis

The analytical results from the pair approximation are
too complicated to examine here. We, therefore, adopt
two other methods for analyzing the host–parasite
dynamics. First, we analyzed the spatial dynamics and
equilibriums of the model using numerical solutions
(Hui and MeGeoch 2007). The value of Pr and Qr/r¢ at
time step t = 3000 were assumed to be the equilibriums
of the model. Second, the method of invisibility analysis
was used to examine the disease invasion dynamics (Sat�o
et al. 1994; Iwasa 2000; full detail is given in the
Appendix).

To describe the spatial pattern of population distri-
bution, we adopt a commonly used spatial correlation
index, join-count statistics (Su et al. 2008b). Through
counting the occupancies and spatial correlations, we
can classify population distributions into spatially
aggregated, segregated, and random (Hui et al. 2006),
which is also consistent with the definition of the spatial
structure of landscape. Spatially explicit aggregation can
be described as Cr = Qr/r � Pr > 0, implying the po-
sitive first-order spatial correlation between two adja-
cent occupied patches. The spatially random
distribution has Cr = 0 and indicates the independence
of two adjacent, occupied patches. The spatially segre-
gated distribution can be depicted by Cr < 0, i.e., a
negative spatial correlation between two adjacent pat-
ches (Hui et al. 2006; Hui and MeGeoch 2007).

Mean-field approximation

We also presented the results from the mean-field
approximation, for purposes of comparison. This is
equivalent to assuming Qr/r¢ = Pr, indicating the
probability that an adjacent patch occupied by r is the
same as the global density of population r. Therefore,
we have the following mean-field approximation model,

P 0S ¼ rPS 1� pu � PS � PIð Þ � dPS � bPSPI ð13Þ
P 0I ¼ bPSPI � d þ að ÞPI þ rPI 1� pu � PS � PIð Þ ð14Þ

Individual-based model

Spatially stochastic simulations were also designed to
check the validity and robustness of the pair approxi-
mation. All simulations were run on a two-dimensional
lattice network of 100 · 100 patches. The landscapes
with spatially structured heterogeneity were generated
using Hiebeler’s (2000) algorithm. Synchronized updat-
ing and the von Neumann neighborhood were also
adopted (Hui and MeGeoch 2007). Periodic boundaries
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were used (Su et al. 2008b). Initially, host individuals
(susceptible and infected) were located randomly in the
suitable patches because equilibrium results in such
models are not sensitive to initial conditions (Hiebeler
and Morin 2007; Webb et al. 2007a). For each combi-
nation of model parameters, five repeats were run and
the results were presented as the mean and standard
deviation for comparison. A snapshot of the typical
spatial patterns from simulations in landscapes with
different degrees of spatial heterogeneity was given in
Fig. 1 (t=3000).

Results

A comparison of the results from various amounts of
habitat loss pu predicted by the pair approximation and
the mean-field approximation are shown in Fig. 2a.
There are four areas in the r–b phase diagram from the
pair approximation, which was similar to the result from
the mean-field approximation (Fig. 2a). These four areas
represent: host population extinct due to the excess
mortality, disease-free, endemic but partial infected, and
entirely infected. The areas of ‘‘excess mortality’’ and
‘‘disease-free’’ expanded with the increase of pu, but the
‘‘entirely infected’’ area shrank (Fig. 2a). Infected hosts
were more sensitive to habitat loss than susceptible hosts
because the former were at a higher artificial trophic

level than the latter. At the highest values of pu, the
‘‘entirely infected’’ area disappeared in the pair
approximation model, but not in the mean-field
approximation model (Fig. 2a). The difference indicates
that the non-spatially-structured model can overestimate
the density of infected hosts. Figure 2a also showed that
for a given reproduction rate, the thresholds of disease
invasion and entire infection both increased monotoni-
cally with the increase of pu. Results from the thresholds
of disease invasion, measured as the minimum amount
of habitat loss pu for disease persistence, were consistent
with the above results (Figs. 2a and 3a). The individual-
based model was found to return a higher value than
pair approximation. Furthermore, the ‘‘entirely in-
fected’’ area expanded with the increase of qu/u while
areas of ‘‘excess mortality’’ and ‘‘disease-free’’ both
shrank (Fig. 2b). The invasion thresholds of disease
under different qu/u were also illustrated in Fig. 3b. The
decline in invasion threshold and the increase in total
infection area with the increase of the spatial autocor-
relation qu/u suggest that a high clustering degree of
spatial heterogeneity favors the invasion and transmis-
sion of disease.

Fig. 1 Spatial distributions of population under different spatial
heterogeneity in a 100 · 100 lattice system. The snapshots were
taken at the 3,000th time step. The white squares represent infected
hosts (parasite) and the light gray squares indicate patch occupied
by susceptible hosts. The dark gray squares represent the empty and
suitable patches, and black squares denote unsuitable patches.
Parameters: d = 0.1, a = 0.05, r = 0.25, b = 0.5. Other param-
eters: a pu = 0.2, qu/u = 0.6; b pu = 0.35, qu/u = 0.6; c pu = 0.2,
qu/u = 0.8; d pu = 0.35, qu/u = 0.8
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Fig. 2 The influence of the amount (pu) and spatial clustering (qu/u)
of habitat loss on a spatial host–parasite system. a A comparison
between results from pair approximation and mean-field approx-
imation under various pu with qu/u = 0.6. The white vertical dashed
lines in phase diagrams of the mean-field approximation model
denote the minimum host reproduction rate for survival, r >
d/(1 � pu); the solid curves indicate the invasion threshold, b >
a/(1 � pu � d/r); the black dashed curves represent the entire
infection, b > a/(1 � pu � (d + a)/r). b The bifurcation regions
of pair approximation under different values of qu/u with pu = 0.6.
The parameter space can be divided into four areas corresponding
to host extinction (blue), disease-free (yellow), partial infection (red)
and entire infection (green). Parameters: d = 0.1, a = 0.05, z = 4
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To further examine the effect of habitat loss, we
presented the relative occupancy of total host popula-
tions (S* = (Ps

* + PI
*)/ps) and the spatial correlations

of susceptible hosts (CS
*) and infected ones (CI

*) (Fig. 3c,
e). First, all three models showed that S* decreased at
first but eventually increased with the increasing amount
of habitat loss, but declines again with increase of pu
(Fig. 3c). As noted, the interim increase because the in-
fected hosts decayed at very fast rate, just before
becoming extinct. The shape of S* changed again after
the infected hosts had been driven extinct, which was
due to the fact that the host density per patch was not
sufficiently high at very serious habitat fragmentation.
Second, the spatial correlation of susceptible hosts CS

*,
from the simulation, declined monotonously at first and
then increased gradually with pu, whereas no clear de-
cline was observed from the pair approximation
(Fig. 3e). With the increasing of pu, the spatial correla-
tion of infected hosts CI

* increased under both models
(Fig. 3e), indicating a high degree of clustering of in-
fected hosts under severe habitat loss. The value of CI

*

became zero after the extinction of infected hosts.

Fig. 3 The invasion thresholds,
relative occupancy of the total
hosts (S*), and the spatial
correlations of susceptible and
infected hosts (CS

*, CI
*) at

equilibrium as a function of the
amount (pu) and the spatial
clustering of lost patches (qu/u)
under three different models,
respectively. ‘MFT’, ‘PA’, and
‘IBM’ represent the mean-field
approximation, pair
approximation, and individual-
based simulation models. The
error bars represent the
standard deviation from five
independent individual-based
simulations. Parameters:
a qu/u = 0.75; b pu = 0.15;
c, e b = 0.5, qu/u = 0.7;
d, f b = 0.5, pu = 0.2. Other
parameters: d = 0.1, a = 0.05,
r = 0.25, z = 4

Fig. 4 The temporal dynamics of global densities of susceptible
hosts (Ps, light lines), infected ones (PI, thick lines with dots) and the
relative occupancy of the total hosts (S, thick lines) based on the
pair approximation model under the two different heterogeneity
scenarios: pu = 0.25, qu/u = 0.25 (solid lines); pu = 0.35,
qu/u = 0.5 (dashed lines). Parameters: d = 0.1, a = 0.05,
r = 0.25, b = 0.5, z = 4

893



Figure 3d and f display the equilibrium of the relative
occupancy of total host populations and the spatial cor-
relations of susceptible and infected hosts as qu/u varied.
The mean-field approximation, failed to perceive the
spatial structure of the landscape. Both individual-based
simulations and the pair approximation showed that S*

increased monotonously at first and then declined with
the increase of qu/u (Fig. 3d) because infected host in-
creased at high values of qu/u and eventually infected the
susceptible hosts at an even higher rate. Figure 3f illus-
trates the influence of spatial clustering of the landscape
on the spatial correlations of susceptible and infected
hosts. Spatial correlation of susceptible hosts CS

* in-
creased with the clustering level of lost patches, while this
increasing rate based on the individual-based model was
higher than from pair approximation (Fig. 3f). Intrigu-
ingly, when qu/u < 0.55, the spatial correlation of sus-
ceptible hosts obtained from pair approximation was
higher than from the individual-based simulation. The
spatial correlation of infected hosts CI

* declined slightly
with the increasing of qu/u. These results suggest that
increasing the clustering degree of lost patches has the
same effect as reducing the amount of habitat loss. Since
the amount of habitat loss and spatial correlation of lost
patches had the opposite effects, then increasing pu and
qu/u at the same timemay initiate a trade-off, resulting in a
similar equilibriums not only for global densities (Pr) but
also the relative occupancy (S = (PS + PI)/pS) under
two different scenarios of spatial heterogeneity (pu =
0.25, qu/u = 0.25 and pu = 0.35, qu/u = 0.5) (Fig. 4).

Discussion

Spatial heterogeneity in landscape is a ubiquitous phe-
nomenon in the natural world that has challenged many
assumptions in theoretical work. Because the amount
and the spatial structure of habitat loss together deter-
mine the fragmentation level of the landscape, studies of
such spatial heterogeneity are justified (North and
Ovaskainen 2007). Since Sat�o et al. (1994) firstly showed
that spatial structure can dramatically affect the parasite
(e.g., the emerging of parasite-driven extinction), the
spatial host–parasite interaction has been of interest in
population ecology (Webb et al. 2007a, 2007b). Fol-
lowing Hiebeler (2000), the effect of fragmented land-
scapes on the host–parasite system has been properly
examined here. This work follows a prominent research
direction (Hirzel et al. 2007), and thus provides an
extension to the field of eco-epidemiology.

Due to both the horizontal and vertical disease
transmission, four possible outcomes emerged (Fig. 2),
similar to results predicted from Deredec and Cour-
champ (2006). Regarding the amount of habitat loss pu,
habitat loss can impede the invasion and transmission
of parasitic disease, and is consistent with empirical
studies (Garrett et al. 2007). Severe habitat loss will
increase the chance of dispersing the progeny of in-

fected hosts into unsuitable patches. Furthermore,
habitat loss can decrease the habitat connectivity and
form a boundary between suitable and unsuitable pat-
ches (North and Ovaskainen 2007), which can favor the
susceptible host in escaping from infection. Interest-
ingly, the infected host is more vulnerable to habitat
loss than the susceptible host, even though they are
originally in the same trophic level. This is because the
host–parasite interaction pushes the infected host to a
higher trophic level than the susceptible one. Mean-
while, results also identified that there exists a trade-off
between two opposite effects of habitat loss for sus-
ceptible hosts (Fig. 3c): decrease of the host fitness
(negative) and inhibition of disease transmission (posi-
tive). Within a certain range of habitat loss, susceptible
hosts can counterbalance the positive and negative ef-
fects. This result is consistent with previous studies of
the effect of habitat loss in the predator–prey systems
(Bascompte and Solé, 1998) and in altruistic games
(Zhang et al. 2005).

Spatial clustering of habitat loss has the opposite
effect on disease transmission, and therefore the
amount of habitat loss and its spatial configuration can
interplay and initiate a trade-off (Fig. 4). When
increasing the clustering degree of lost patches, the
clustering degree of suitable patches also increases.
Consequently, more patches are bordered by those with
identical habitat types (Hirzel et al. 2007). Therefore,
the spatial clustering of lost patches can favor the
invasion and transmission of disease. For a community
with competition interactions, the environmental het-
erogeneity may improve the invasion of exotic species
(Melbourne et al. 2007). This is because much higher
heterogeneity (fragmentation) could reduce the inter-
specific conflict, forming refuge areas for less competi-
tive species. Our work indicates that whether or not
spatial heterogeneity can affect the success of an inva-
sion is dependent on the particular ecological process
that is under consideration.

Spatial interactions and heterogeneity have always
been under the spotlight in ecology, and there are a
number of ways to explore their implications (Hiebeler
2000; Okuyama 2007). The individual-based stochastic
model and moment-closure approximations have been
two successful methods (Keeling and Rand 1996;
Hiebeler 2005; Webb et al. 2007a, 2007b). Pair approx-
imation and stochastic simulations can capture the
characteristics of spatially structured heterogeneity,
where the mean-field method fails. Results indicated that
pair approximation can maintain the qualitative
behaviors of host–parasite model based on the stochastic
simulation, although some differences still exist. For
example, spatially stochastic simulation predicted a
higher value for the invasion threshold of disease than
predicted using pair approximation (Fig. 3a, b). The
demographic stochasticity in the spatial stochastic sim-
ulation model is more realistic, and makes the invasion
of disease more difficult than predicted by the pair
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approximation. Read and Keeling (2007) have
shown that the stochasticity can induce an evolutionary
instability in infectious diseases. This issue of stochas-
ticity in epidemiological systems deserves further study.

Environmental heterogeneity can usually be classi-
fied into three major types: temporal heterogeneity,
fixed spatial heterogeneity, and invader-driven hetero-
geneity (Melbourne et al. 2007). Recent progress in the
theory of invasion has also indicated that environ-
mental heterogeneity plays a defining role in the out-
come of invasions and the rate of spread (Melbourne
et al. 2007). We only discussed the effects of fixed
spatial heterogeneity on the host–parasite system.
Further explorations about the roles of other types of
environmental heterogeneity are needed. Moreover, a
study of the case with only horizontal transmission
rather than both vertical and horizontal transmission is
another interesting issue, and then would be explored in
the future. An improved pair approximation method
that can minimize the deviation between its predictions
and results from stochastic simulations is also worth
pursuing in solving relevant questions in applied ecol-
ogy (Sat�o et al. 1994).

Conclusions

Spatial heterogeneity is definitely a key factor affecting
population dynamics and should be considered in all
cases.
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Appendix: invasion criteria

We calculate the critical transmissibility of disease in
detail. Let v denote the vector (PI, PIS, PII, PI0, PI1), the
equations involving I can be written as dv

dt ¼ M � v, where

M¼

�d�a b 0

0 b 1�hð ÞQS=S� 2dþað Þ�bh 0

0 2bh �2 dþað Þ
0 dþb 1�hð ÞQ0=S dþa

0 b 1�hð ÞQ1=S 0

0

BBBBBB@

� ��

� � �

r 0

2r 1�hð ÞQS=0 0

2rh 0

� dþað Þ�r hþ 1�hð ÞQS=0
� �

þr 1�hð ÞQ0=0 0

r 1�hð ÞQ1=0 �d�a

1

CCCCCCA

.
Now, we derive the global and local densities at their

stationary values for the disease-free equilibrium. From
PS + P1 + P0 = 1, P1 = pu, we can get

P0 ¼ 1� pu � PS ð15Þ

Eq. (1) yields

Q0=S ¼
d
r

ð16Þ

and after substituting it into PSQ0/S = P0QS/0 can lead
to

QS=0 ¼
d
r

PS

1� pu � PS
� ð17Þ

From Eq. (6), we get

Q0=0 ¼
d

r 1� hð Þ : ð18Þ

Eq. (7) gives QS/S = h + (1 � h)QS/0, after replac-
ing (17) then yields

QS=S ¼ hþ 1� hð Þ d
r

PS

1� pu � PS
: ð19Þ

Substituting Q0/1 = 1 � Q1/1 � QS/1, Q1/1 = qu/u
and (17) into Eq. (10), we can obtain

QS=1 ¼ 1� qu=u
� � 1� hð ÞPS

1� pu � hPS
: ð20Þ

Using P1QS/1 = PSQ1/S, then

Q1=S ¼ pu 1� qu=u

� �
1� hð Þ

�
1� pu � hPSð Þ: ð21Þ

According to P1Q0/1 = P0Q1/0, we can get

Q1=0 ¼
pu 1� qu=u

� �

1� pu � hPS
ð22Þ

Substituting (16), (19) and (21) into Q0/S +
Q1/S + QS/S = 1, we then get the equation involving
the value Ps, and solve it to give all other global and
local densities at the disease-free equilibrium.

Substituting these stationary values for the disease-
free equilibrium into M and evaluating |M � kI| gives a
characteristic polynomial (k + d + a)2H(k), where

H kð Þ ¼ k3 þ c2k
2 þ c1kþ c0: ð23Þ

The expressions for ci are rather lengthy and we omit
them for brevity. Clearly the polynomial has two nega-
tive eigenvalues (k1 = k2 = �d � a). According to
Routh–Hurwitz conditions, the zeros of H(k) have
Re(k) < 0 must satisfy:

c2[0; c1c2 � c0[0; c0[0 ð24Þ
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Therefore, we can get the critical transmissibility of
disease through analyzing Eq. (24) numerically for fixed
parameters.
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