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SUMMARY

The main objective of this thesis is to define and investigate the properties of the
integral of a multifunction F' (where F' is from a point set T into a Banach space X)
with respect to a multimeasure M (where M is defined on a ring R and with values in
a Banach space Y). Integration of multifunctions with respect to a vector measure has
been studied extensively because of its applications in mathematical economics. On the
other hand, Papageorgiou [55], and later on Kandilakis [44], considered integration of a
function with respect to a multimeasure. We define our integral in terms of the selectors
of the multifunction F' and the selectors of the multimeasure M so that both the above
two integrals are special cases of our integral.

The first two chapters serve as an introduction and will provide the foundation for
work done in the chapters that follow. In the first chapter we recall some of the basic
definitions and results of the subject of vector measures and measurable functions. In
particular, we give a brief overview of the procedure of extending a vector measure m,
defined originally on a ring R of subsets of a point set T, to a é-ring containing R.

Chapter 2 is devoted to the basic theory of multifunctions and multimeasures. The
standard reference for the section on measurable multifunctions is Maritz [51], who defined
measurability of the multifunction (Definition 2.1.2) as the set-valued version of the mea-
surability of a function (Definition 1.3.5). We start by discussing Maritz’s [51] exposition
of the characterization of measurability of a multifunction in terms of its graph, its inverse
and its Castaing representation. Finally, we consider the measurability of some special
multifunctions, namely the extreme points multifunction and the closed convex hull mul-
tifunction. The better part of Chapter 2 is devoted to the subject of multimeasures.
Following Godet-Thobie [36] we define three different types of multimeasures and then
discuss the logical implications among them. Next we give an outline on the existence of
selectors of a multimeasure M and we discuss the topological properties of Sys, the class
of all selectors of M. In particular, we investigate the conditions which will guarantee
that Syr # 0 and such that M(A) = {m(A) | m € Su}. Finally, we study transition
multimeasures, that 1s multimeasures parametrized by the elements of a measurable space.

In Chapter 3 we are concerned with extension results for multimeasures and transition
multimeasures. We start by extending additive set-valued set functions. Our results are
along the extension procedure for a vector measure as was discussed in Chapter 1. In
the main result of this chapter (Theorem 3.1.12) we prove the set-valued version of the
Carathéodory-Hahn-Kluvanek theorem. In the process we extend the corresponding result
(Theorem 3.1.7) of Kandilakis [44] to additive set-valued set functions. Finally, we prove
extension results for normal multimeasures and transition multimeasures.



In the first section of Chapter 4 we review the bilinear integral [ f(¢)m(dt) of a func-
tion f : T — X with respect to a vector measure m : R — Y as developed by Dinculeanu
[27]. The integral, [ F(t)M(dt) of a multifunction F' with respect to a multimeasure M
is then defined in terms of [ f(t)m(dt). We continue by investigating the convexity and
compactness of our integral and in the process we also establish Radon-Nikodym-type
theorems for our integral. Finally, we discuss the commutativity of the closed convex hull
operator and the extreme points operator with the integral operator.

Finally, in the first part of Chapter 5 we study the properties of the space of integrably
bounded measurable multifunctions. In particular, we prove that the space of integrably
bounded, measurable and compact- and convex-valued multifunctions is separable. In
addition we also. prove the equivalence of our integral and the integral of Debreu [24].
Finally, we investigate the properties of multimeasures defined by densities and we prove
the set-valued version of the Lebesgue decomposition theorem.



OPSOMMING

Die hoofdoel van hierdie tesis is om die integraal van 'n multifunksie F' (waar F' vanaf
'n puntversameling T' na ’n Banach ruimte X gedefinieer is) met betrekking tot 'n mul-
timaat M (waar M op 'n ring R gedefinieer is en met waardes in 'n Banach ruimte Y')
te definieer en dan die eienskappe te ondersoek. Die integrasie van multifunksies met
betrekking tot 'n vektormaat is omvattend bestudeer as gevolg van die toepassings wat
dit in wiskundige ekonomie het. Daarenteen het Papageorgiou [55], en later Kandilakis
[44], integrasie van ’n funksie met betrekking tot 'n multimaat bestudeer. Ons definieer
ons integraal in terme van die selektors van die multifunksie F' en die selektors van die
multimaat M sodat beide bostaande integrale spesiale gevalle is van ons integraal.

Die eerste twee hoofstukke dien as 'n inleiding en vorm die grondslag van die werk
in die daaropvolgende hoofstukke. In die eerste hoofstuk hersien ons sommige van die
basiese definisies en resultate van die teorie van vektormate en meetbare funksies. In die
besonder gee ons 'n kort oorsig van die proses waarvolgens ’n vektormaat m, gedefinieer
op 'n ring R van deelversamelings van 'n puntversameling T', uitgebrei word na 'n é-ring
wat vir R bevat.

Hoofstuk 2 word gewy aan die basiese teorie van multifunksies en multimate. Die
standaard verwysing vir die gedeelte oor meetbare multifunksies is Maritz [51], wat meet-
baarheid van die multifunksie (Definisie 2.1.2) gedefinieer het as die versamelingswaardige
weergawe van die meetbaarheid van 'n funksie (Definisie 1.3.5). Ons begin met 'n be-
spreking van Maritz [51] se uiteensetting van die karakterisering van meetbaarheid van
'n multifunksie in terme van sy grafiek, sy inverse en sy Castaing-voorstelling. Laastens
ondersoek ons die meetbaarheid van sekere spesiale multifunksies, naamlik die ekstreem-
puntmultifunksie en die geslote konvekse omhulsel multifunksie. Die grootste gedeelte
van Hoofstuk 2 word gewy aan die teorie van multimate. Deur gebruik te maak van
Godet-Thobie [36] definieer ons drie verskillende tipes multimate en bespreek dan die
logiese implikasies tussen hulle. Verder skets ons dan ook die bestaan van selektors van 'n
multimaat M en bespreek vervolgens die topologiese eienskappe van Sy, die klas van alle
selektors van M. In die besonder ondersoek ons die voorwaardes wat sal waarborg dat
Sm # 0 en M(A) = {m(A) | m € Sy }. Laastens bestudeer ons oorgangsmultimate, met
ander woorde multimate wat geparametriseer word deur elemente van 'n meetbare ruimte.

In Hoofstuk 3 bewys ons uitbreidingsresultate vir multimate en oorgangsmultimate.
Ons begin deur additiewe versamelingswaardige funksies uit te brei. Ons resultate is vol-
gens die uitbreidingsproses vir vektormate soos in Hoofstuk 1 bespreek. In die hoofresul-
taat (Stelling 3.1.12) van hierdie hoofstuk bewys ons die versamelingswaardige weergawe
van die Carathéodory-Hahn-Kluvanek stelling. In die proses brei ons die ooreenkomstige
resultaat (Stelling 3.1.7) van Kandilakis [44] uit na additiewe versamelingswaardige



funksies. Ons sluit die hoofstuk af met uitbreidingsresultate vir normale multimate en
oorgangsmultimate.

In die eerste gedeelte van Hoofstuk 4 hersien ons die bilineére integraal [ f(¢)m(dt) van
'n funksie f : T — X met betrekking tot ’n vektormaat m : R — Y soos ontwikkel deur
Dinculeanu [27]. Die integral [ F'(t)M(dt) van ’n multifunksie F' met betrekking tot 'n
multimaat M word dan gedefinieer in terme van [ f(¢)m(dt). Ons ondersoek dan verder
die konveksiteit en kompaktheid van ons integraal en terselfdertyd bewys ons Radon-
Nikodym-tipe stellings vir hierdie integraal. Laastens bespreek ons die kommutatiwiteit
van die geslote konvekse omhulsel operator en die ekstreempuntoperator met die inte-
graaloperator.

Laastens, in die eerste gedeelte van Hoofstuk 5 bestudeer ons die eienskappe van die
ruimte van integreerbaar-begrensde meetbare multifunksies. In die besonder bewys ons
dat die ruimte van alle integreerbaar-begrensde, meetbare en konveks- en kompakwaardige
multifunksies separabel is. Ons bewys ook die ekwivalensie van ons integraal met dié van
Debreu [24]. Ons sluit dan die hoofstuk af met 'n ondersoek na die eienskappe van
multimate wat gedefinieer word deur digthede en ons bewys die versamelingswaardige
weergawe van die Lebesgue-ontbindingstelling.
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INTRODUCTION

Multifunctions (set-valued functions) have been of interest for about seventy years
now. For instance, in 1926 Wilson [68] introduced the notion of a multifunction in order
to generalize the concepts of limit inferior and limit superior of a sequence of subsets of a
topological space. The initial development has been slow. Even after World War II there
has been a reluctance in mathematical sciences to deal with sequences of sets and set-
valued maps. Most mathematicians, amongst them the Bourbakis, chose to restrict their
study to single-valued maps, while they regarded set-valued maps as single-valued maps
from a set to the power set of another set. This point of view misled many of the mathe-
maticians into unneccessary detours and the whole study of set-valued analysis inherited
the undeserved image of being something difficult and mysterious. However, as it turned
out, the need for set-valued analysis in other fields of study was pressing enough to help
mathematicians overcome this kind of opposition towards set-valued analysis. Since then
there has been increasing interest in multifunctions because of their importance in several
applied areas of research, such as mathematical economics (see {3,6,41,65]), optimization
and control (see [13,63]), statistics [60], control theory (see [37,38]) and game theory [28].
Some of the recent texts like [5,46] display the applicability of multifunctions in excellent
ways.

Various developments in mathematical economics and optimal control have led to the
study of the measurability of multifunctions. Also, integrals of multifunctions have been
studied in connection with statistical problems (see Kudo [48] and Richter [60]). Ac-
cordingly, many papers dealt with the basic theory of integration of multifunctions and
several approaches were established. A beginning of what might be called a calculus of
multifunctions can be found in [7]. In [7], Aumann considered integration of selectors of
the multifunction and his integral turned out to be the appropriate analytic tool in the
applied fields mentioned before.

On the other hand, the theory of multimeasures (set-valued measures) has its origins
in mathematical economics and in particular in equilibrium theory for exchange economies
with production, in which the coalitions and not the individual agents are the basic eco-
nomic units (see Hildenbrand [42] and Vind [65]).

The traditional economic concept of a set of agents, each of which cannot influence
the outcome of their collective activity but certain coalitions of which can influence that
outcome has received a proper mathematical formulation by means of measure theory. In
[53]) Milnoz and Shapley considered a game with measure space of players, while Aumann
[6] showed how the two basic concepts for an economy, namely the set of competitive
allocations and the core, coincide when the set of consumers is an atomless positive finite
measure space. In fact, the theory of general equilibrium for economies with a continuum



of agents was inaugurated by Aumann [6,7]. Another solution of this equivalence problem
was given by Vind [65], who was the first to introduce the concept of a multimeasure with
values in IR".

Multimeasures in a functional analytical setting appear to have originated with
Brooks’ [10] work on a finitely additive function defined on a o-algebra into the family
of bounded convex subsets of a real Banach space. From this point of departure, Godet-
Thobie has developed the subject of multimeasures extensively during 1970 to 1975 in a
series of papers [31,32,33,34,35], culminating in her thesis [36]. Loosely speaking, one calls
M a multimeasure if the range space Y is (at least) a commutative topological group and
M is suitably countably additive. Central to the approaches that have been taken appear
to be the definitions of convergence of an infinite sum of subsets of Y. In the papers on
multimeasures different types of approaches can be distinguished according to the range
space of the multimeasures. Significant contributions to the study of multimeasures were
made by Artstein [4], Debreu and Schmeidler [25], Schmeidler [63] and Wenxiu, Jifeng
and Aijie [67] for IR™-valued multimeasures, by Alé, de Korvin and Roberts [1,2], Costé
[17,18,19], Hiai [39], Papageorgiou [54,55,56] and Kandilakis [44] for Banach space-valued
multimeasures and by Castaing [12], Costé and Pallu de la Barriére [20,21] and Godet-
Thobie [34,36] for multimeasures in a locally convex vector space.

The main aim in this thesis is to define and investigate the properties of the inte-
gral of a multifunction with respect to a multimeasure. The first two chapters serve
as an introduction, providing the foundation for work done in subsequent chapters. In
the first chapter we study the subject of vector measures and measurable functions,
while in Chapter 2 we are concerned with measurable multifunctions and multimea-
sures. Chapter 3 is devoted to the extension of multimeasures. In Chapter 4 we de-
fine the integral of a multifunction with respect to a multimeasure and we investigate
the properties of this integral. In Chapter 5 we study spaces of integrably bounded
multifunctions and we end the chapter by discussing multimeasures defined by densi-
ties.

xi



CHAPTER 1

VECTOR MEASURES AND
MEASURABLE FUNCTIONS

In this chapter we recall some of the basic definitions and results of the theory of
vector measures and measurable functions. We will refer to the book of Dinculeanu [27]
for most of the definitions and proofs. However, some of the shorter proofs will be included.

Throughout this chapter, and in all subsequent chapters, T will denote a non-empty
point set on which no topological structure is required and X and Y are arbitrary vector
spaces. In particular, X or Y can be the space of real numbers or the space of complex
numbers. Furthermore, if JR denote the set of real numbers, then we denote by IR, the
set of non-negative real numbers and by IR, the set IR, U{co}. Unless otherwise stated,
A will always denote an arbitrary non-empty class of subsets of T.

If A and B are subsets of a given set, then set-theoretic inclusion, proper inclusion
and subtraction will be denoted by A C B, A C B and A\ B, respectively. Also, by AAB
we will denote the symmetric difference between A and B. If A is a subset of a topological
space, then A will denote the closure of the set A. Finally, the symbol IV will denote the
set of natural numbers and the symbol l will indicate the end of the proof of a specific
result.

1.1 Set functions and measures

Definition 1.1.1 A set function is a function defined on A and with values in
Y orin IR,. The set functions with values in IRy having at least one finite value will be
called positive set functions. A positive set function p is finite on A if u(A) < oo
for every A € A, and is o-finite on A if every set A € A is the union of a sequence
(Ax) C A such that u(Ax) < oo for every k € IN.

Definition 1.1.2 A set function m, defined on A and with values in Y or in IR,
s said to be additive if
m(AU B) = m(A) + m(B)

for every pair A, B € A of disjoint sets such that AUB € A.



Definition 1.1.3 A set function m, defined on A and with values in a Hausdorff
topological vector space Y or in IRy, is said to be countably additive if

k=

for every sequence (Ax) C A of mutually disjoint sets such that U2, Ay € A.

Note that if m is a countably additive set function on A and with values in a Hausdorff
topological vector space Y, and if ) € A, then m(0) = 0 and m is additive.

Definition 1.1.4 Let m be a set function, defined on A and with values in a
normed space Y or in IR, such that m(0) =0 if 0 € A. For every A C T we define the
variation of m on A, denoted by v(m,A), by

v(m, A) =sup ) || m(A) |,
i€l
where the supremum is taken for all the families of mutually disjoint sets (A;)icr C A
contained in A. The set function v(m) is called the variation of m.

Remark 1.1.5

(1) In the above definition the supremum may be taken for all the finite families (A;);c
of mutually disjoint sets of A contained in A (see Proposition 1 on page 32 of [27]).

(i) If A is a ring of subsets of T', then the supremum in the above definition may be
taken for all the finite families (A;);es of mutually disjoint sets of A such that U;ejA; = A
(see the Corollary on page 32 of [27]).

Definition 1.1.6 Let m be a set function, defined on A and with values in a
normed space Y or in IRy, such that m(0) = 0 if ) € A. We say that m is with finite
variation (with respect to A) if v(m,A) < 400 for every A € A.

The restriction of the variation v(m) to the class A will again be denoted by v(m).
Observe that to say that a set function m is with finite variation v(m) is the same as to
say that the positive set function v(m) is finite. For most of the properties of the variation
we will refer to [27].

For the rest of this chapter we will let R denote a ring of subsets of 7. The next
result relates the additivity (countably additivity) of a set function m with the additivity
(countably additivity) of its variation v(m).



Theorem 1.1.7 IfY is a normed space and m : R — Y is an additive (countably
additive) set function such that m(Q) = 0, then v(m) is an additive (countably additive)
set function. Conversely, if m : R — Y is an additive set function with finite variation
v(m) and v(m) is countably additive, then m is also countably additive.

PROOF: If we denote by 7(.A) the class of all the subsets B C T such that ANB € A
for every A € A, then from Proposition 18 on page 12 of [27] follows that 7(R) is a ring
containing R. Furthermore, since v(m) is additive (countably additive) on 7(R) ( by
property 9 on page 35 of [27]), it is also additive (countably additive) on R.

Conversely, let (Ax) € R be a sequence of mutually disjoint sets such that A =
U2, Ax € R. For every n € IN we then have that

n

Im(A) = 3 mAl = [Im(4)—m(|) 4l

k=1 k=1

From the countably additivity of v(m), we have that

lim v(m, D A) = lim (v(m,A) - ZJ: v(m,Ak)) =

n—o00 J—00 o

k=n+1

Hence lim;_.., ||m(A) — $4_, m(Ax)|| = 0 and consequently

m(A) = i m(Ag).

k=1

Definition 1.1.8 Let u be a positive (finite or infinite) set function defined on
R. Then we say that a set A € R

(a) is an atom (with respect to pu) if p(A) > 0 and if for every set B € R with B C A
we have that u(B) =0 or u(B) = u(A). We say that p is atomac if there exists
at least one atom in R, and that p is non-atomac if there exists no atom in R.

(b) has the Darbouz property (with respect to p) if for every a € IR such that
0 < a < u(A) there exists a set B € R with B C A and u(B) = a. We say that
i has the Darbouz property if every set A € R has the Darbouz property.

Definition 1.1.9 4 countably additive set function m, defined on R and with
values in a normed space Y or in IRy, is called a measure. A measure with values in

3



IR, is called a positive measure. If p is a positive measure on R, then we say that a
set A € R has finite measure if u(A) < oo, and that A has o-finite measure if A
is the union of a sequence (Ay) of sets with finite measure. If every set A € R has finite
(respectively, o-finite) measure, then we say that p is a finite (respectively, o-finite)
measure.

For the most important properties of measures we refer to page 18 of [27]. In addition,
by the Corollary on page 28 of [27], note that every o-finite non-atomic measure on a é-ring
has the Darboux property.

1.2 Extension of set functions

In this section we give a brief outline of the extension of a vector measure with finite
variation. We first consider extension results for additive set functions and then study
the extension of any vector measure of finite variation. Central to these results is the
uniform continuity of the set functions.

We let S be a ring of subsets of 7" and p a positive, finite, subadditive and increasing
set function on &. It is known that the function p, : § x § — IR defined by

pu(A, B) = p(A\B) + u(B\A), A,BE€S,

is a finite semi-distance on S.

Proposition 1.2.1 ([27], p61, Lemma 1) Let Y be a Banach space, sup-
pose that R is a ring contained in S and let m : R — Y be an additive set function. If
for every A € R

(A < u(A),

then m is uniformly continuous on R.

PROOF: Since m is additive, for all A, B € R we have that

m(A) —m(B) = m[(A\B)U (AN B)] — m[(B\A) U (AN B)]

= m(A\B) — m(B\A).
Consequently, from

[m(A) —m(B)| < |m(A\B)|| + [m(B\A)|
< w(A\B)+ p(B\A)

= pu(A, B)

1



follows then that m is uniformly continuous on R. B

Before we prove our first extension result, we will need the following result, the proof
of which can be found in [29], page 23, Theorem 17.

Proposition 1.2.2 Let U and V be metric spaces, with V complete. If A is a
dense subset of U and if f : A — V is uniformly continuous on A, then f has a unique
continuous extension g : U — V. Moreover, g is uniformly continuous on U.

Theorem 1.2.3 ([27], p62, Theorem 1) Let R be dense in S for the topol-
ogy defined by p,, let Y be a Banach space and m : R — Y an additive set function such

that
[m(A)]| < u(A), AeR.

Then m can be extended to an additive set function n : S — Y such that
In(A)] < w(A), A€S.

Furthermore, if p is additive, then m has finite variation v(m) on R, n has finite variation
v(n) on & and v(n) is an extension of v(m). If p is countably additive, then n is also
countably additive.

PROOF: By Proposition 1.2.1 m is uniformly continuous on the dense set R and by
Proposition 1.2.2 can be extended to a uniformly continuous set function n : § — Y. To
prove that n is additive, let A, B € S be such that AN B = (. Then there exist two
sequences (Ag), (Br) € R such that

pu(Ak, A) — 0 and pu(By, B) — 0

as k — oco. Since the mappings (A,B) — AU B and (A, B) — A\B are uniformly
continuous on S (see Lemma 2 on page 61 of [27]), we deduce that

pu(Ar U Bk, AU B) — 0 and p,(Ax\Bk, A\B) = pu(Ax\Bk, A) — 0
as k — oo. For the disjoint sets A\ B and By we then have that
m(Ak U Bk) = m((Ak\Bk) U Bk) = m(Ak\Bk) + m(Bk)

so that
n(AU B) =n(A) +n(B)

after taking the limit.
Let now A € S and let (Ax) C R be a sequence such that p,(Ax, A) — 0 as k — oco.
Since m and p are continuous, we have that

m(Ag) = n(A) and p(Ax) — u(A)

b}



as k — oo. From ||m(Ayx)|| < p(Ax) follows then that
In(A)l < p(A).

Suppose now that u is additive. Since |m(A)|| < p(A) for all A € R, we deduce
that v(m, A) < p(A); therefore m has finite variation v(m). Consequently, v(m) can be
extended to an additive set function v1(m) on S such that v;(m) < p. Furthermore, from
the inequality ||[n(A)|| < u(A) follows that n has finite variation v(n) on & and that
v(n) < p.

To show that v(n) is an extension of v(m), first note that from

Im(A)l = (A < v(n,A); A€R

follows that
v(m, A) < v(n,A)

for A € R. On the other hand, if v;(m) is the additive extension of v(m) to S, consider
the semi-distance

p1(A, B) = vi(m, A A B).

Then from the inequality v1(m) < p we deduce that p; < p; whence the topology defined
on § by p; is weaker than the topology defined by p. This implies that R is dense in
S for the topology defined by pq, and from ||m(A)|| < wvi(m,A) we deduce that m is
uniformly continuous on R for this topology. Consequently, there exists an additive set
function n; : § — Y such that

[P (A < vi(m, A)

for A € §. Therefore, ny is continuous on S for the semi-distance p; and hence also for
p. Since n and ny are continuous on S for p and are equal on the dense set R, it follows
that n = n;. Consequently,

[n(A)ll < vi(m,A); A€S

so that v(n) < vy(m). In particular, v(n, A) = v1(m, A) for every A € R. Since v(n) and

v1(m) are continuous on S for p and are equal on R, it follows that v(n) = vy(m).
Finally, if p is countably additive, from the inequality ||[n(A)|| < wu(A) we deduce

that n is also countably additive. B

Corollary 1.2.4 Let Y be a Banach space and m : R — Y an additive set func-
tion with finite variation v(m). If v(m) can be extended to a positive, finite, additive set
function v on a ring S O R and if R is dense in S for the semi-distance p,, then m can
be ertended to an additive set function n : S — Y with finite variation v(n) such that
v(n) =v.

We now study the extension of vector measures of bounded variation. For the rest of
this section we let Y be a Banach space and we suppose that y : R — IR, is a measure.

6



We denote by H(R) the class of all sets A C T which can be covered by a sequence
of sets of R. Then R C H(R) and H(R) is a hereditary class, that is, if A € H(R), then
H(R) contains all the subsets of A. Furthermore, H(R) is a o-ring and we call H(R) the
hereditary o-ring generated by R.

The extension of u will be obtained in two steps: First g will be extended to a set
function p* on H(R). If we restrict p* to a certain o-ring 7 (¢), then p* becomes a mea-
sure. In the second step we extend p* from 7 (u) to the o-ring M(p) of p-measurable
sets. The set function p* is then a measure on M(pu).

Definition 1.2.5 For every set A € H(R) we define the outer measure of A,
denoted by p*(A), by

©(A) =inf{§:p(Ak)| (A CR, AC G Ak}.

k=1 k=1

The set function p* defined on H(R) is called the outer measure induced by p. For
some of the properties of an outer measure we refer to page 64 of [27].

Definition 1.2.6 We denote by T (u) the class of all sets B € H(R) such that
p(A) = p (AN B) + p(A\B)

for every A € H(R). We denote by M(p) the class of all sets B C T such that AN B €
T (p) for every A € T(p). The sets in M(u) are called p-measurable sets.

The proofs of the following results about the classes 7 () and M(p) can all be found
on pages 68-72 in [27].

Theorem 1.2.7

(a) The class T (p) is a o-ring containing the ring R and p* is countably additive on
T ().

(b) The class M(p) is a o-algebra containing T (p), and A € M(u) if and only if
AN B e T(u) for every B € R.

(¢) If p is o-finite on R, then a set A C T belongs to T (p) if and only if A= B\N,
where B C T belongs to S(R), the o-ring generated by R, and N C T is such
that p*(N) = 0.



Theorem 1.2.8 If i is o-finite on R, then u* is the unique countably additive
positive extension of p from R to T (p).

We now extend p* from 7 (p) to M(u). But first we need to make the following

Definition 1.2.9 For every set A € M(u) we define the outer-measure p*(A)
by
p*(A) =sup{p™(B) | BC A, BET(p)}.

If we put v(A) = p*(A) for every A € T(p), then from the countable additivity of
v we deduce that v(v) is also countably additive. Then, since v(v, A) = p*(A) for every
A € M(p) (from the Corollary on page 32 of [27]), we have

Proposition 1.2.10 The outer measure p* is positive and countably additive on
M(p).

Definition 1.2.11 The sets E € M(u) with u*(E) = 0 are called p-negligible.
If a property P(t), defined for all t € T, is true for all the points of T' except for a
p-negligible set, then we say that the property P(t) is true p-almost everywhere.

Proposition 1.2.12 ([27], p74, Proposition 9 and 10)
(a) Every set A € H(R) with u*(A) = 0 is p-negligible.

(b) A set A € M(p) is p-negligible if and only if every set B € T (pu) with B C A is
p-negligible.

(¢c) If AN B is p-negligible for every set A € R, then B is p-negligible.

(d) Every subset of a p-negligible set is p-negligible and the union of a sequence of
p-negligible sets is p-negligible.

Proposition 1.2.13 ([27], p75, Proposition 11) Let v, and v, be two
countably additive, positive, o- finite set functions on R. If vy < v, then M(vy) € M(11)
and

vi(A) < v;3(A)
for A € M(1).



PROOF: Obviously, vf(A) < v3(A) for A € H(R). This means that every v;-negligible
set A € H(R) is also v1-negligible. From Corollary 1 on page 71 of [27] follows that
7T () € T(v1). As a consequence of Theorem 1.2.7(b) it follows that M(vy) € M(14).

From the definition of the outer measure we deduce that

Vi(A) < 13(4)
for all A € M(v,). b2

For an application of Proposition 1.2.13, see Proposition 5.2.4.

Definition 1.2.14 If A € M(u) and p*(A) < oo, then we say that A is p-
integrable. We denote the class of the p-integrable sets by X(p). For every p-integrable
set A C T we define the measure u(A) by

We say that a set A € M(p) has o-finite measure if A is the union of a sequence of
p-integrable sets.

We note that every p-negligible set is u-integrable, and p is a finite and complete
measure on X(u), that is, if A is a p-negligible set of (), then every set B C A belongs
to X(p).

Theorem 1.2.15 ([27], p76, Theorem 3) Let m : R — Y be a measure
with finite variation v(m) and S a ring such that R C § C X(v(m)). Then m can be
extended to a measure n : § — Y, with finite variation v(n), such that M(v(m)) =

M(v(n)) and v*(m) = v*(n).

1.3 Measurable functions

As in the previous sections, we let X be any vector space, T' is a non-empty point set and
A is a non-empty class of subsets of 7.

Definition 1.3.1 A function f : T — X is called an A-step function if it is of
the form
f = Z TiX A
i€l
where I is a finite index set, x4, is the characteristic function of the set A;, A; € A and
z; € X for every i € 1. The set of A-step functions f: T — X will be denoted by Ex(A).



Remark 1.3.2
(i) The set Ex(A) is a vector space.

(i1) We will simply write Ex(u) to denote the space of all ¥(u)-step functions.

(iii) If A is a ring of subsets of 7', then the sets A; in the above definition can be taken
to be mutually disjoint (Proposition 1 on page 82 of [27]).

(iv) If R is a ring of subsets of 7" and the function f € Ex(R) is not identically null,
then we can write f uniquely in the form

f ~ Z YiXB;s
jeJ

where J is a finite index set, B; € R are mutually disjoint and y; € X are distinct from
each other and from 0. Such a representation of f will be called the standard representation

of f.
(v) If X is any arbitrary set, then a function f: 7 — X is called an A-step function
if the value f(X) is finite.

Let S be a o-algebra of subsets of 7. Then any set which belongs to § will be called
an S-measurable set. If X is a topological space, then we denote the Borel o-algebra of

X by Bx.

Definition 1.3.3 A function f : T — X is said to be S-measurable if f~'(B) €
S for every B € By.

Remark 1.3.4

(1) If we denote by G the class of all subsets of X generating the o-ring By, that is
if S(G) = Bx, then f : T'— X is S-measurable whenever f~'(A) € S for every A € G.
Indeed, let M be the class of all sets A C X such that f~'(A) € S. Then clearly M is a

o-ring containing G, hence containing Bx also; therefore f is S-measurable.

(ii) From (i) follows that a function f : 7' — X is S-measurable if and only if the
set f7H(C) (f~1(O), respectively) is S-measurable for every closed (open, respectively)
subset C' (O, respectively) of X.

For the rest of this section we let X be a Hausdorff topological space and p a positive
measure on the ring R.

Definition 1.3.5 A function f : T — X is said to be p-measurable if and only
if
(a) for every closed set C C X, the set f~1(C) is u-measurable;
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(b) for every p-integrable set A C T there exists a p-negligible set N C A and a
countable set H C X such that f(A\N) C H.

Remark 1.3.6

(i) It follows from Remark 1.3.4 that condition (a) in the above definition may be
replaced by any one of the following equivalent statements:
(a') For every open subset O of X, the set f~1(0) is p-measurable.
(a") For every Borel subset B of X, the set f~'(B) is u-measurable.

(ii) Condition (b) in the above definition can be replaced by any one of the following
equivalent statements:
(b') for every set A € R there exists a p-negligible set N C A and a countable set H C X
such that f(A\N) C H.
(b") for every p-measurable set A C T' with o-finite measure, there exists a p-negligible

set N C A and a countable set H C X such that f(A\N) C H.

(iii) If X is a separable space (in particular, if X = IR), then condition (b) in the
above definition is superfluous.

Example 1.3.7
1. A set A C T is p-measurable if and only if the characteristic function y 4 of A is
p-measurable.

2. A function f : T — X taking on a finite set of different values aq,ay,...,a, is
p-measurable if and only if the set f~'({ax}) is py-measurable for k =1,2,3,...,n.

3. A function f : T' — X taking on a countable set of different values aq,as,... is
p-measurable if and only if the set f~'({ax}) is py-measurable for k € IV.

4. If X is a Hausdorff topological vector space, then every f € Ex(M(u)) is p-
measurable.

5. If X is a Hausdorff topological vector space, then every p-negligible function
f:T — X is p-measurable.

We now list a few results (which will be needed in the sequel) on measurable functions.
Some of the shorter proofs will be included and we refer to [27] for the rest of the results.
Our first result follows immediately from the definition.

Proposition 1.3.8 If f : T — X is a p-measurable function and if g : T — X
is a function such that f(t) = g(t) p-almost everywhere on T, then g is pu-measurable.

Proposition 1.3.9 ([27], p91, Proposition 10) If f : T — X is a p-
measurable function and if the function g : T — X is equal to f on a p-measurable set
A CT and constant on T\ A, then g is p-measurable.

11



PROOF: We only verify condition (a) in Definition 1.3.5; condition (b) follows easily.
Let O be any open subset of X. If g(T\A) ¢ O, then ¢7'(0) = f~(O)NA € M(y). On
the other hand, if ¢(T'\A) € O, then ¢7'(0) = f~'(0O) UT\A € M(p), which concludes
the proof. &

Proposition 1.3.10 ([27], p93, Proposition 12) If X is a normed

space with topological dual space X', then a function f : T — X is u-measurable if and
only if
(a) for every ' € X', the function t — (2, f(t)) is p-measurable.

(b) for every p-integrable set A C T there exists a p-negligible set N C A and a
countable set H C X such that f(A\N) C H.

Theorem 1.3.11 (Egorov, [27], p94, Theorem 1) Let X be a metric
space and (i) a sequence of p-measurable functions defined on T and with values in X.
If (fx) converges p-almost everywhere to a function f : T — X then

(a) f is p-measurable;

(b) for every u-integrable set A C T and every ¢ > 0, there exists a set B € D(R),
the 6-ring generated by R, with B C A and u(A\B) < ¢, such that (fi) converges
uniformly to f on B.

The following two results are corollaries of Egorov’s theorem and we include the proofs
for completeness.

Corollary 1.3.12 ([27], p96, Corollary 2) Let X be a metric space, (fi)
a sequence of u-measurable functions defined on T and with values in X and let A be a
p-measurable set such that (fi) converges p-almost everywhere on A. If f : T — X is a
function equal p-almost everywhere to the limit of (fr) on A and constant on T\ A, then
f:T — X is p-measurable.

PROOF: Let f(t) =a € X fort € T\ A. For k € IN define the function

9k(t) = { Zk(t) 12 E ?\A.

Then each g is p-measurable (by Proposition 1.3.9). Since g — f p-almost everywhere
on T', it follows from Egorov’s theorem that f is p-measurable. B

Corollary 1.3.13 ([27], p96, Corollary 3) Let X be a metric space and
f:T — X a function. If for every set A € R there exists a sequence (fi) of p-measurable
Junctions converging to f : T — X p-almost everywhere on A, then f : T — X is
pu-measurable.
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PROOF: Let A € R and a € X a constant. Define the function f4 : T'— X by

f(t) ifteA
f*‘(t):{ A & T\A.

Then by Corollary 1.3.12 it follows that fa is p-measurable. From Remark 1.3.6(ii) we
obtain a p-negligible set N C A and a countable set H C X such that f4(A\N) C H.
Consequently, f(A\N) C H, and condition (b) of Definition 1.3.5 is satisfied.

To prove condition (a) of Definition 1.3.5, let O be any open subset of X. If O = X,
then f~1(0) = T € M(p). On the other hand, if O C X, then for every A € R we choose
fa such that fa(t) = a ¢ O for every t € T\ A. From the p-measurability of f, follows
that the set

FHO)nA={te Al f(t)e 0} ={teT| fa(t) € O} = f5(O)
is y-measurable, that is, f~*(O) N A € M(p). From Theorem 1.2.7(b) we then have that
FHO)NA=(f7(O)NA) N A e T(p.
By applying Theorem 1.2.7(b) once more, it follows that f~1(0) € M(u). [

Proposition 1.3.14 ([27], p97, Proposition 13) Iff: 7 — X is a p-
measurable function taking on a countable set of values, then there exists a sequence (fy)
of p-measurable step functions converging to f : T — X on T

PROOF: Let a1, as,... be the values of f. Then for k € IV, the set Ay = f~'({ax})
is y-measurable. If @ € X is a constant, then the step function fi : T' — X, defined by

a; ifteA,1<i<k
fk(t)_{ a if‘teT\ Uf?:l Ai’

is also p-measurable, and the sequence (fi) converges to f on 7. |

Proposition 1.3.15 ([27], p97, Proposition 14) Let X be a metric
space and f : T — X a p-measurable function. For every p-measurable set A C 1" with o-
finite measure, there exists a p-negligible set N C A and a sequence (fi) of p-measurable
functions (with each of them taking on a countable set of values) such that (f),) converges

uniformly to f : T — X on A\N. If X is a normed space, we can choose the sequence
(fr) such that ||fe(t)|| < ||f(2)|| for every k € IN and t € T

From Proposition 1.3.9 and Corollary 1.3.13 of this thesis, and Theorem 2 on page 99
of [27] we have the following

Corollary 1.3.16 Let X be a normed space. A function f : T — X is p-
measurable if and only if fxa is p-measurable for every set A € R.
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Theorem 1.3.17 ([27], p100, Theorem 3) Let (X}) be a sequence of met-
ric spaces, X = I Xy their cartesian product and Y a metric space. For k € IN let

fe: T — Xy be a u-measurable function and let f : T — X be the function defined by the
equality
f() = filt) for teT.

For every continuous mapping g : X — Y, the function go f : T — Y is p-measurable.

PROOF: Let A C T be a p-integrable set. Then for k € IN there exists a u-negligible
set Ny C A and a sequence (fk,), of p-measurable step functions converging to fi on
A\Nj. The set N = U2, Ny is then p-negligible and for every ¢t € A\N and n € IN we
then have lim, o fi,(t) = fe(t). For each p € IN, the functions f, = (firp) : T — X has

a countable set of values and is p-measurable. Consequently,

lim f,(t) = f(t) for t € A\N

P00

so that
Lim (g 0 f,)(t) = lim g(f,(?)) = 9(f(?)) for t € A\N.

The functions g o f, are y-measurable and have a countable set of values. From Corollary
1.3.13 it follows that g o f is y-measurable. B

Corollary 1.3.18 Let X be a normed space, f,g : T — X two p-measurable
functions and c¢ a scalar. Then the functions f + g, c¢f and ||f|| are p-measurable. If
X = IR, then the function fg is also p-measurable.

If X and Z are Banach spaces, then by £*(X, Z) (L(X, Z), respectively) we denote

the vector space of linear (respectively, linear continuous) mappings of X into Z. For
every a € L*(X, Z) we put

ledl = sup{lle(e)l|: z € X, el < 1}.

Definition 1.3.19 We say that a function U : T — L*(X,Z) is simply p-
measurable if for every x € X the function f, : T — Z, defined by f.(t) = U(t)z, is

p-measurable.

Remark 1.3.20

(i) If m is a measure with finite variation v(m), then we say that U is simply m-
measurable if U is simply v(m)- measurable.

(ii) If X is the space of all scalars, then £*(X, Z) = Z, and U is simply p-measurable
if and only if U is y-measurable.
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(iii) Every p-measurable function U : T' — L(X, Z) is also simply p-measurable (see
Corollary 3 on page 101 of [27]), but the converse is not true in general.

(iv) f U,V : T — L*(X,Z) are simply p-measurable functions, then U + V and cU

are also simply p-measurable.

For the rest of this section we will suppose that W is a norming subspace of Z’, that
1s,

llz|| = SUP{I(IT;;T)I : weW, w;é()}

for every z € Z.

Definition 1.3.21 We say that a function U : T — L*(X,Z) is W -weakly p-
measurable if for every x € X and for every w € W, the function f,,, : T — IR, defined
by few(t) = (U(t)z,w), is p-measurable.

Remark 1.3.22
(i) To say that U is W-weakly y-measurable means that for every w € W the function
Uow:T — L(X, ) is simply p-measurable.

(ii) We say that a function f : T — Z is W-weakly p-measurable if, considered with
values in L(IR, Z), it is W-weakly p-measurable, that is, for every w € W the function
(f,w) is p-measurable.

(iii) To say that a function U : T' — L£*(X,Z) is W-weakly p-measurable means
that for every z € X the function f, : T — Z, defined by f,(t) = U(t)z, is W-weakly

pu-measurable.

(iv) If Z is the space of scalars, then to say that a function U : T' — L(X, () = X’
is X-weakly p-measurable means that U is simply p-measurable, that is, for every z € X
the function Uz is u-measurable.

(vy fU,V : T — L*(X, Z) are W-weakly p-measurable, then U + V and cU are also
W-weakly p-measurable.

We will refer to [27], pages 101-106, for the properties of simply and W-weakly u-
measurable functions.
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CHAPTER 2

MULTIFUNCTIONS AND
MULTIMEASURES

This chapter is devoted to the basic theory of multifunctions and multimeasures. The
standard reference for the section on measurable multifunctions will be [51] and most of
the results on multimeasures can be found in [36].

Throughout this chapter we shall employ our standard notations concerning the non-
empty point set 7', the ring R of subsets of T', the positive measure p on R, the é-ring
Y(u) of all p-integrable subsets of T' and the o-ring M(p) of all y-measurable subsets of
&

2.1 Measurable multifunctions

We let X be a non-empty point set and let Po(X) denote the class of all subsets of X.
If with each element ¢ of T' we associate the subset F'(t) of X, then we say that the
mapping t — F(t) is a multifunction of T into X, sometimes denoted by F : T' — X.
A multifunction F' can also be regarded as a single-valued function from 7" into Po(X),
and in this case we write F' : T' — Po(X). We shall employ the latter notation throughout.

Let F': T' — Po(X) be a multifunction. Then we define the domain of F', denoted by
DF) by
Dr ={teT| F(t) # 0},
and the range of F', denoted by Rp, by
Rpr = U F(t).
teT
Furthermore, if A C T, then we put

F(4) = F(1

teA
and we call F'(A) the image of A under F. If P(X) denotes the class of all non-empty
subsets of X and if F' : 7' — P(X) is a multifunction, then the graph of F', denoted by
Grp, is defined by
Grr={(t,z) eT x X | z € F(t)}.
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Definition 2.1.1 Suppose that F : T — Po(X) is a multifunction and let A €
Po(X). Then

(a) the upper inverse of F, denoted by F'*, is defined by
F*(A)={te Dr| F(t) C A};

(b) the lower tnverse of F, denoted by F~, is defined by
F-(A)={teT| Ft)nA#0}.

Definition 2.1.2 A multifunction F : T — Po(X) is said to be p-measurable
if and only if '

(a) for every closed subset C' of X, the set F~(C') is p-measurable;

(b) for every p-integrable set A C T there exists a p-negligible set N C A and a
countable set H C X such that F(A\N) C H.

Remark 2.1.3

(i) The above definition of the measurability of a multifunction is more restrictive
than the original one that appeared in [14]. This definition is in fact only the set-valued
version of Definition 1.3.5.

(ii) Referring to Remark 1.3.6(i), it is no longer true that the set-valued analogues
of (a') and (a”) in Remark 1.3.6(i) are equivalent to condition (a) in Definition 2.1.2. In
fact, as we will see in Proposition 2.1.6 and Corollary 2.1.7, some additional requirements
on the multifunction F' and the sets 7' and X will be needed.

(iii) If X is separable, then condition (b) in Definition 2.1.2 is superfluous.

Proposition 2.1.4 ([51], p33, Lemma 4.1) A function f : T — X is
p-measurable if and only if the multifunction F : T — Po(X), defined by

Fit)={f(@t)} forall teT

is p-measurable.

ProOF: Let C be a closed subset of X. Then condition (a) in Definition 2.1.2 follows
from

fCY=ReTlfe={icTIFOCOI={ cT ' FROAC#0} =F (C)

For condition (b), let A € ¥(g), N C A, u(N) = 0 and H a countable subset of X.
Then

F(A\N)= |J F@&)= U {f@0)}={f@t)| te AN} = f(A\N)CH

teA\N teA\N
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Proposition 2.1.5 ([51], p36, Lemma 4.3) Ifeach F}.: T — Po(X) is a
p-measurable multifunction, then the multifunction F : T — Po(X), defined for all t € T'

by

is p-measurable.

PRrOOF: (a) Let C be a closed subset of X. The implications

toe F7(C) < F(to)NC #0
< Fi,(to))NC # 0 for some ko € IN

< the{teT| Fr,(t)NC # 0} for some ko € IN

< thelF(C
k=

show that F~(C) = U, F; (C). Since F (C) € M(p) for k € IN, it follows that
U2, F (C), and hence F~(C'), belongs to M (u).

To prove condition (b) in Definition 2.1.2, let A be any p-integrable set. For k& € IV
there exists a p-negligible set Ni, with N C A, and a countable set H; C X such that
Fi.(A\N}) C Hy. If we put N = UL, Ny, then

FAAN)= U Feyc U U F(@) U A\ngu < U Hs,
te A\N k=1 te A\ Ny k=1 k=1 k=1
and the proof is finished. [

If we recall that the union (intersection, respectively) of a countable number of closed
(open, respectively) subsets of a topological space is called an F,-set (a Gj-set, respec-
tively), we have the following result.

Proposition 2.1.6 Suppose that every open subset of X is an F,-set and let
F: T — Po(X) be a multifunction. If F~(C) € M(u) for every closed subset C' of X,
then F~(0O) € M(p) for all open subsets O of X.

Corollary 2.1.7 If every open subset of X is an F,-set and if F : T — Po(X) is
a multifunction such that F~(C) € M(p) for every closed subset C' of X, then

(a) for every closed subset C' of X, the set {t € T'| F(t) C C} is p-measurable;

18



(b) for every closed subset C' of X, the set F*(C) is p-measurable;
(¢) for every open subset O of X, the set F~(O) is p-measurable.

PROOF: (a) Let C be any closed subset of X. If C = X, then {t € T'| F(t) C C} =
T € M(u). So suppose that C C X and put O = X\C. Then, by Proposition 2.1.6,
F~(0) € M(p). But

F-(0)={teT| Ft)nO£0}=T\{teT| F(t) C C},

sothat {t € T | F(t) CC} =T\F~(0) € M(p).

(b) Let C be any closed subset of X. Theset Dp = {t € T | F(t)# 0} ={t e T |
F(t)N X # 0} = F~(X) is p-measurable. Hence, T\Dr € M(p). From {t € T' | F(t) C
Cy={teT | F(t)=0}U{t € Dr | F(t) C C} and (a) above follows that

{teDr| Ft)CC} = {teT| Ft)CC}\{teT| F(t)=0}

= {teT| F(t) C C}\(T\Dr) € M(p).
(c) Let O be any open subset of X. Then from Proposition.2.1.6 we have
{teDp | FO)NO#£D}={teT| Ft)NO # 0} € M(p).
=

If X is a topological vector space with topological dual X', then by Pu)(X) (respec-
tively, Px(X)) we will denote the closed (bounded) (respectively, compact) sets in P(X).
A c after f(b) or k£ will mean that the set is in addition convex. A w in front of f(b)

(respectively, k) means that the closedness (respectively, compactness) is with respect to
the weak topology w(X, X’).

We now let (X, d) be a metric space. Then the distance between a point z € X and
a non-empty set A C X is defined as

d(z,A) = inf{d(z,a) | a € A}.
Furthermore, for any A, B € Pi(X), we define their Hausdorff semi-metric by
d(A, B) = sup{d(a,B) | a € A},
and their Hausdorff metric by
H(A,B) = max{d(A, B),d(B, A)}.

Whenever we refer to the metric space Pr(X), it must be understood that Pr(X) is
equipped with the Hausdorff metric H. The following result (the proof of which can be
found on page 354 of [24]) shows that the properties of completeness, compactness and
separability carry over from X to Pi(X).
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Theorem 2.1.8
(a) If (X,d) is a complete metric space, then (Pp(X), H) is a complete metric space.
(b) If (X,d) is a compact metric space, then (Pr(X), H) is a compact metric space.

(¢) If (X,d) is a separable metric space, then (Pr(X), H) is a separable metric space.

Proposition 2.1.9 ([51], p40, Lemma 3.2) Let X be a metric space and
suppose that F' : T — Pr(X) is a multifunction. If F~(O) € M(u) for every open subset
O of X, then F~(C) € M(pu) for every closed subset C of X.

PROOF: First note that Dp = {t € T | Ft)NX # 0} = F~(X) € M(u). Let C
be any non-empty closed subset of X. For k € IN define the open sets Oy by Oy = {z €
X | d(z,C) < ¢}. Since C = {z € X | d(z,C) =0}, we have that C' C Oy and therefore
F~(C) C F~(Oy) for k € IN. Consequently, we have that F~(C) C N32, F'~(Oy). For the
inverse inclusion, let to € N2, F'~(Oy). Then F(to)NOx # O for k € IN. If 2, € F(to)NOy,
then d(zy,C) < ; for k € IN. Furthermore, from the compactness of F(ty) we obtain
a subsequence (zy,) of (zx) such that zy, — z € F(ty) as n — oo. Consequently,
limy, o d(2g,,C) = d(z,C) = 0. The closedness of C implies that € C. We then have
that F'(to) N C # 0, that is, to € F~(C). Therefore the inverse inclusion follows, and

8

F=(C) = (] F7(Ox) € M(p).

k

Il

1

Proposition 2.1.10 ([51], p71, Proposition 7.11) Let X be a separa-
ble locally compact metric space and suppose that F' : T — Po(X) is a multifunction.
Then F : T — Po(X) is p-measurable if and only if F~'(K) € M(u) for every compact
subset K of X.

PROOF: Suppose that F' is g-measurable and let K be any compact subset of X.
Since K is also closed, it follows that F'~(K) € M(pu).

Conversely, suppose that F'~(K) € M(u) for every compact subset K of X. From
page 51 of [49] follows that the separable locally compact metric space X may be written
in the form X = U;¢;K;, where K; is a compact subset of X and [ is a countable index
set. Let C be any closed subset of X. Then C' = U;c;C N K;, with C'N K; a compact
subset of C'. The p-measurability of F' now follows from F~(C) = U;erF~(C N K;) and
from the separability of X. &

For the rest of this section we discuss the generalization given in [51] for Aumann’s

definition of measurability of a multifunction. We also discuss the equivalence between
this generalization and our definition of measurability.

20



Before we give Aumann’s definition, we need to introduce some further notations. If
(04, %) and (22, X3) are two measurable spaces with ¥ and X, o-rings of subsets of the
sets 1 and (2, respectively, then we write

Elxzzz{AngﬂleﬂAGEl,BEZ;g},

and we denote by §(X; x X,) the o-ring generated by £; x Xs.

Definition 2.1.11 A multifunction F :[0,1] — P(IR") is called Borel-measurable

lf GTF = B[O,I]XR" 5

Maritz’s [51] generalization of the above definition consists of [0,1] being replaced by
the non-empty point set 7', the Lebesgue o-algebra being replaced by the o-algebra M (p),
IR"™ by a Polish space X (recall that a Polish space is a separable topological space that
can be metrized by means of a complete metric) and we take F' : T' — P¢(X). We then
have the following

Theorem 2.1.12 ([51], p65, Theorem 6.38) If T is a countable union
of sets of the ring R, X is a Polish space and F : T — P¢(X) is a multifunction, then
the following statements are equivalent:

(a) F is a p-measurable multifunction.
(b) Grr € S(M(p) x Bx).

(¢c) F~(B),F*(B) € M(u) for every B € Bx.

Proposition 2.1.13 If T is a countable union of sets of the ring R, X is a
Polish space and F : T — Pr(X) is a multifunction, then the following statements are
equivalent:

(a) F~(C) e M(u) for all closed subsets C' of X.
(b) F~(0) € M(u) for all open subsets O of X.

(¢c) F~(B) € M(p) for all Borel subsets B of X.

PROOF: (a) < (b): Proposition 2.1.6 and Proposition 2.1.9;
(a) & (c): Theorem 2.1.12.
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2.2 Selectors of multifunctions

Definition 2.2.1 A p-measurable function f : T — X is called a (n-measurable)
selector of a multifunction F : T — P(X) if f(t) € F(t) for everyt € T'. We denote by
Sp the class of all p-measurable selectors of F.

In this section our main concern will be the existence of measurable selectors of mul-
tifunctions. The first result (albeit not in the current form) in this regard was originally
outlined by Rohlin [62]. The same result(in a stronger form) was also obtained in 1965
by Kuratowski and Ryll-Nardzewski [50] and in a restrictive form by Castaing [14].

Theorem 2.2.2 If X is a Polish space and if F : T — Py(X) is a mullifunction
such that F~(0) € M(p) for every open subset O of X, then Sp # 0.

From Proposition 2.1.6 and Theorem 2.2.2 we have that

Corollary 2.2.3 If X is a Polish space and if F : T — P;(X) is a p-measurable
multifunction, then Sp # 0.

Definition 2.2.4 If F : T — P;(X) is a multifunction, then we say that F has a
Castaing representation if there exists a denumerable set {f; | 1 € [} C Sg such that

F(t) ={fi(t) | 1€ I}

for everyt € T'.

Theorem 2.2.5 ([51], p69, Theorem 7.8) If X is a Polish space and if

F:T — Py X) is a p-measurable multifunction, then F has a Castaing representation.

ProoF: Let d be a metric in X compatible with the given topology of X and

le¢ H = {z; | j € IN} be a countable dense subset of X. For j,k € IN consider

the closed spheres Szl_k[.'E]‘] with centre z; and radius 5. For j,k € IN the set Tj; =

{t € T| F(t)n Si[z;] # 0} is p-measurable. For j,k € IV define the multifunction
Fj’k : T — Pf(X) by

P (t) 2 F(t) N SLk[.’E]] ift e Tj,k
S S F @ ikt AT 4
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Let C' be now any closed subset of X. From the py-measurability of F' follows that

F(C) = {teT| Fu(t)nC # 0}

3

= {teTix| Fip(t)NC #0}U{t € T\T; | Fix(t)NC # 0}

= {teT| Ft)nCn S;_k[m]-] £0Yu{teT\T;x| F&)NC # 0} € M(p).

Since X is separable, it follows that each Fjj is y-measurable. From Corollary 2.2.3 we
obtain a p-measurable selector f;: T — X of Fjx. Let I = {(j,k) | j,k € IN} and put
M = {fi(t) | © € I}. Then fi(t) € F(t) for every ¢ € [ and t € T. We now only need
to show that the denumerable set M(t) is dense in F'(t) for every t € T'. So, for t € T,
let z € F(t). For k € IN there exists a z; € H such that d(z,z;) < 575r. Consequently,
F(t)n S;k1+_1[x]~] # (). From the construction of M(¢) we deduce that there is an 1 € [

such that d(z;, fi(t)) < s5r. Hence
4

d(xafi(t)) = d(xvxj) + d(mjafi(t)) < ok

This shows that F/(t) = M(t), and the proof is complete. =

Theorem 2.2.6 ([51], p71, Theorem 7.12) Let X be a separable locally
compact metric space and F : T — Py(X) a multifunction. If F' has a Castaing repre-
sentation, then F' is pu-measurable.

Taking into account that every separable locally compact metric space is Polish ([9],
page 122), we then have

Theorem 2.2.7 Let X be a separable locally compact metric space and F : T —
Ps(X) a multifunction. Then F' is u-measurable if and only if F' has a Castaing repre-
sentation.

The above theorem remains valid if we replace the locally compactness of X by com-
pleteness and if we suppose that 7' is a countable union of sets of the ring R. In fact, we
have the following

Theorem 2.2.8 ([51], p73, Theorem 7.15) Let T' be a countable union
of sets of the ring R, X a Polish space and F : T — P¢(X) a multifunction. Then the

following statements are equivalent:

(a) F has a Castaing representation.
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(b) For every (z,t) € X x T the mapping (z,t) — d(z, F(t)) is S(M(p) x Bx)-

measurable.
(¢) Grp € S(M(p) x Bx).

(d) F is p-measurable.

For the rest of this section we will consider some special multifunctions and their
measurability. We start with the closed convex hull multifunction.

Definition 2.2.9 If X is a linear space and A C X, then we define the convez
hull of A, denoted by co A, as the intersection of all convex subsets of X containing A.
If X is a linear topological space and A C X, then the set ¢o A, called the closed convex
hull of A, is the intersection of all closed convexr subsets of X containing A.

Proposition 2.2.10 ([51], p79, Lemma 8.3) If F : T — P;(IR") is a

p-measurable multifunction, then the multifunction co F' : T' — Py.(IR") is p-measurable.

PROOF: Put
n+1
A:{(Ml,ﬂz,...,#n+1)| /’Lizoa Isua<m+tls Zﬂzzl}
g1

Then the set A may be considered as the compact simplex in IR™*! with vertices e; =
(1,0,0,...,0),e2 = (0,1,0,...,0),...,€n41 = (0,0,0,...,1). Define the multifunction
G:T— Pk(ﬂ%”"'l) by G(t) = A for every ¢t € T'. Furthermore, define the multifunction
K : T — P;(IRC+D*) by
B =Gy xFiH))"™-

To show that K is pg-measurable, let M; be the Castaing representation of G' and let
M; be the Castaing representation of (F'(¢))"*!. If we put M = M; x My, then M is
denumerable. Furthermore,

K(t) = G(t) x (F())""" = My(t) x My(t) = (My x My)(t) = M(t);

therefore, K is p-measurable. Consider now the continuous function f : R"+Y)° — JR"

defined by
n+1

f(/\lv/\% .. '7/\n+1,y17y27- .o 7yn+l) = Z /\iyia

where \; € R™™ y, € IR",1 <i:<n+ 1. Then

n+1 ki
(f o K)(t {Zuzyzlmzoyzeﬁ’()1§ign+1;zui:1}.
pEEL =1

Consequently, (f o K)(t) = (co F')(t) for every ¢t € T. The p-measurability of co F' then
follows from Theorem 7.20 of [51]. &
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Corollary 2.2.11 IfT is a countable union of sets of the ring R, X is a Banach
space with X' separable and if F : T — Py (X) is a p-measurable multifunction, then
o I : T — Pyu)(X) is a p-measurable multifunction.

Definition 2.2.12 Let A be a non-empty subset of a linear space X. A non-
empty subset B of A is called an extreme subset of A if a proper convex combination
aa; + (1 — a)az,0 < a < 1, of two points ay,a; € A is in B only if a; and ay are in B.
An extreme subset of A consisting of only one point is called an extreme point of A.
We denote by ext A the set of all extreme points of A.

Proposition 2.2.13 ([29], p439, Lemma 2) If A is a non-empty com-
pact subset of a locally convex linear topological Hausdorff space X, then ext A # (.

Theorem 2.2.14 (Krein-Milman, [29], p440, Theorem 4) If A is
a compact subset of a locally convex linear topological Hausdorff space X, then A C
coext A, that isco A = coext A. If A is in addition convez, then every closed extreme
subset of A contains an extreme point of A and A = Coext A.

Definition 2.2.15 If X is a real locally convez linear topological Hausdorff space
such that X # {0} and if F : T — Po(X) is a multifunction, then we define the extreme

points multifunction ext F: T — Po(X) by

(ext F)(t) = {z € F(t) | z is an extreme point of F(t)}, t €T.

Proposition 2.2.16 ([51], p84, Proposition 8.17) LetU be a non-empty
compact conver and metrizable subset of X and suppose that X' is separable. If F': T —
Pie(U) is a p-measurable multifunction, then Greyp € S(M(p) xBy). If T is in addition
a countable union of sets of the ring R, then ext F' is a p-measurable multifunction.

Theorem 2.2.17 ([51], p77, Theorem 7.24) LetT be a countable union
of sets of the ring R, X a Suslin space and F : T — Po(X) a multifunction. If Grr €
S(M(p) x Bx), then Sg # 0.

Theorem 2.2.18 ([51], p85, Theorem 8.18) Let T be a countable union

of sets of the ring R, X is a real locally convex linear topological Hausdor(f space, U is a
non-empty compact conver and metrizable subset of X and X' is separable. If F': T —
Pre(U) is a p-measurable multifunction, then

ert SF = Sez't F.
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Theorem 2.2.19 ([51], p89, Theorem 8.21) If F : T — Pi.(RR") is a
p-measurable multifunction, then Gropp € S(M(pu)xBgrn). If T is in addition a countable
union of sets of the ring R, then ext F' is a pu-measurable multifunction.

PROOF: The space IR™ may be written as the union of an increasing sequence (Ay)
of non-empty compact convex subsets of X. Define the multifunctions Gy, : T — P.(IR")
and Fy : T — Pr(Ax) by

Gk(t) = Ar and Fi(t) = F(t) N Ag.
Then the multifunctions Gy and Fj are all y-measurable, and consequently
Gregir, € S(M(p) x Ba,) € S(M(p) X Brn)
for k € IN. Define the multifunction E : T' — Py.(IR") by

[o o le o}

E(t) = U () ezt Fesp(t).

k=1 p=0

Then Grg € S(M(u) x Bgr). Furthermore, from Proposition 3 on page 725 of [41] we
have that (ext F')(t) = E(t) for every t € T'. Hence,

Grestr = Grg € S(M(ﬂ) X BRn),
and the result then follows from Theorem 2.1.12. B

Theorem 2.2.20 ([51], p90, Theorem 8.22) If T' is a countable union
of sets of the ring R and F : T — Pr.(IR") is a p-measurable multifunction, then

Tl SE=15 5 F.

2.3 Multimeasures

In this section we start by establishing the notations and terminology that go along with
the subject of multimeasures.

As before we let 7' be any non-empty point set on which no topological structure
is required and we let Y be a topological vector space with topological dual Y’. By a
set-valued set function we mean a relation defined on a nonempty class A of subsets of T
with values in P(Y), the class of all nonempty subsets of Y. Furthermore, if A, B € P(Y),
then we put

A+B={a+b|ac Abe B}.

In this and in the next section we refer to Godet-Thobie [36] for some of our defini-
tions and results about multimeasures. Due to the possible unavailibity of this reference,
the definitions and results will be formulated and, for the sake of completeness of our
development, some of the proofs from [36] will be included.
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Definition 2.3.1 IfY is a linear topological space, then a set-valued set function
M : A— P(Y) is said to be punctually additive if

M(AUB)= M(A)+ M(B)
for every pair A, B € A of disjoint sets such that AUB € A.

Definition 2.3.2 IfY is a linear topological space, then a set-valued set function
M : A — Ps(Y) is said to be additive if

M(AU B) = M(A) + M(B)

for every pair A, B € A of disjoint sets such that AUB € A.

As for single-valued set functions we have the concept of countable additivity: We say
that a set-valued set function M : A — P(Y) is countably additive if

M(Q A= kff M(Ay),

=1

for every sequence (A;) C A of mutually disjoint sets such that U2, Ay € A. Depending
on how we define the above infinite sum we obtain different notions of countably additiv-
ity, as will be seen below.

For the rest of this section we consider (7',S), where S is a o-ring of subsets of 7'.

By a multimeasure we mean a countably additive set-valued set function M : & —
P(Y) such that M(0) = {0}. In particular, we will differentiate between the following
types of multimeasures:

Definition 2.3.3 IfY is a linear topological space, then a set-valued set function
M :S — P(Y) is called a strong multizmeasure if and only if

(a) M(0) = {0} and M is punctually additive;

(b) for every yi € M(Ay) the series 32,y is unconditionally convergent and

M(QlAk> = {erl y:iyk,ykEM(Ak)}.

k=1

Definition 2.3.4 IfY is a linear topological space, then a set-valued set function
M : S — Ps(Y) is called a normal multimeasure if and only if
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(a) M(0) = {0} and M is additive;

(b) for every sequence (Ax) C S of mutually disjoint sets such that A = U3Z, Ay, we
have that

n—oo

lim H (M(A),é M(Ak)> = 0.

Remark 2.3.5

(i) Note that if the set-valued set function M : & — P(Y) satisfies condition (b) in
Definition 2.3.3, then either M(0) = {0} or M(0) is an unbounded set. Consequently, if
M : 8§ — Py(Y) is countably additive in the sense of Definition 2.3.3, then M(0) = {0}.

(ii) If Y is finite-dimensional, then we can take the series ) 2, y; to be absolutely
convergent (see pages 750 and 92 of [29]). In this case our Definition 2.3.3 coincides with
that of [4].

(iii) Note that from Proposition 6 on page 57 of [36] follows that if Y is sequentially
complete and if the set-valued set function M : & — Pg(Y) satisfies condition (b) in
Definition 2.3.4, then for every y, € M(Ay) the series ¥32,yy is unconditionally convergent
and

M (kgAk) = {{y €Y |y= iyh yr € M(Ak)}-

k=1

Definition 2.3.6 IfY is a linear topological space, then a set-valued set function
M : S8 — Ps(Y) is called a weak multimeasure if and only if

(¢) M(D) = {0};

(b) for everyy' € Y’ the set function A — o(y', M(A)) = sup,cpr(a)(y'sy) is a signed
measure with values in IR U {+o0}.

As for single-valued measures we have the notion of total variation of a set-valued set
function. In what follows A will denote a non-empty class of subsets of T'. Also recall

that ||A|| = sup{|a|]| | a € A} for A € P(Y).

Definition 2.3.7 Let Y be a normed space and suppose that M : A — P(Y) is a
set-valued set function such that M(0) = {0} if 0 € A. For every A C T we define the
variation of M on A, denoted by v(M, A), by

v(M, A) = sngIIM(Ai)II,

1€1

where the supremum is taken for all the families (A;)icr € A of mutually disjoint sets
contained in A.
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The set function v(M) is called the variation of M and the restriction of v(M) to the
class A will again be denoted by v(M).

Definition 2.3.8 Let Y be a normed space and suppose that M : A — P(Y) is
a set-valued set function such that M(0) = {0} if 0 € A. Then we say that M is of
bounded variation (with respect to A) if v(M,A) < oo for every A € A.

Remark 2.3.9

(i) Every set-valued set function of bounded variation is bounded. To say that a
set-valued set function M : § — P(Y) is of bounded variation v(M) is the same as to say
that the set function v(M) is finite.

(i) f M : A— P(Y) is a set-valued set function of bounded variation, then }~72, yx is
absolutely convergent for each y, € M(Ayx), where (Ax) is a sequence of mutually disjoint
elements of A. Indeed, for all n € IN we have that

1D el < D ollwwll < Do NIM(AW)| < oo.
k=1 =1 k=1

The following result about the total variation of a multimeasure is the set-valued ana-
logue for the total variation of a single-valued measure and the proof can be carried out
in the same way.

Proposition 2.3.10 Let Y be a normed space. If M : S — P(Y) is a strong

multimeasure, then the variation v(M) of M is a positive measure.

ProOF: Evidently, from the definition, v(M) is IR;-valued. Also, since every family
of disjoint sets of S contained in () consists only of empty sets, we have that v(M, ) = {0}.

To show the countable additivity of v(M), let (Ax) be a sequence of mutually disjoint
elements of & and let {By, B;..., B;} be a finite partition of U2, Ax. For £ € IN we
have that {Ax N By, Ak N By, ..., Ay N B;} is a finite partition of A;. On the other hand,
{A1 N B;; Ay N B;,...} consists of disjoint elements of § and U2,(Ax N B;) = B;, 1 =
1,2,...,7. Hence

L B

Sl = X (Uns)

1=1

Il
M“'

I1>° M(Ax 0 By
=1

wh
Il
i

J
>_IIM(Axn Bi)|

=1

U(M, Ak)

I
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o5
Il
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I
NgE

x>~
Il

1

29



Since B; C U2, Ay was arbitrary, we deduce that

'U(M, E_j Ak) S gv(M,Ak).

For the inverse inequality, let AN B = () with A, B € §. Choose an arbitrary number
6 such that § < v(M,A)+ v(M, B). Then there are two numbers « and S such that
a<v(M,A), B <v(M,B)and a + 3 = . Consequently, we can find finite partitions
{Ay, As, ..., A} and {By, By, ..., B, } of A and B, respectively, such that

o< IM(AL] and B < 3 [IM(Bill

k=1 k=1

The sets Ay, Ag, ..., Ay, By, B, ..., By, are disjoint, belong to & and are contained in AU B.
Therefore : “
0=a+8< S IMA+X IM(BI| < v(M,AUB).
k=1 k=1

It then follows that v(M, A) + v(M,B) < v(M,AU B). By induction we deduce that

kiv(M7Ak) S U(M?ko Ak)

Definition 2.3.11 IfY is a linear topological space, then a set A € S is said to
be an atom for a multimeasure M : S — P(Y) if M(A) # {0} and if either M(B) = {0}
or M(A\B) = {0} holds for every B C A,B € §. We say that M is atomzic if there

exists at least one atom in S, and that M is non-atomsic if there are no atoms in S.

Definition 2.3.12 Let Y be a linear topological space. If n : S — Y is a pos-
itive measure on S and M : § — P(Y) is a multimeasure, then we say that M is p-

continuous on S if and only if for any A € S with p(A) = 0 we have that M(A) = {0}.

Proposition 2.3.13 Let Y be a normed space and suppose that M : S — P;(Y)

is a normal multimeasure. If p: S — 'Y is a positive measure, then

(a) M is atomic (non-atomic, respectively) if and only if v(M) is atomic (non-atomic,
respectively).

(b) M is p-continuous on S if and only if v(M) is p-continuous on S.

PRroOF: We will only prove (a). The proof of (b) follows trivially from the definition.
Suppose that M is non-atomic and let A € S be an atom of v(M). Then v(M,A) # 0
and there exists a set B C A such that M(B) # {0}. Furthermore, for every C' C B, we
have that M(C) = {0} if v(M,C) = 0. Then, from

M(B\C) + M(A\B) = M(A\C),
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we have that M(B\C) = {0} if M(A\C) = {0}. But then it means that B is an atom of
M, which is a contradiction. &

Theorem 2.3.14 ([36], p59, Theorem 2) Let Y be a Banach space and
suppose that M : S — Ps(Y) is a normal multimeasure. If p is a positive finite measure
on S such that M is p-continuous on S, then

lim M(A)={0}, AcS,
3B (A) = {0}

or equivalently,

lim ||[M(A)| =0, A€S.
n(A)—0

Corollary 2.3.15 ([36], p59, Theorem 2') LetY be a Banach space and
suppose that M : S — Pp(Y) is a strong multimeasure. If p is a positive finite measure
on § such that M is p-continuous on S, then

lim ||[M(A)| =0, A€S.
n(A)—0

PROOF: First note that by Proposition 2 on page 52 of [32] and Proposition 3 on
page 53 of [32] we have that the set-valued set function @M : & — Py(Y) is a normal
multimeasure. The corollary then follows from the equality

[co M(A)|| = H(co M(A),{0}) = H(M(A),{0}) = ||[M(A)]
and Theorem 2.3.14. =

Before discussing the relationships between the different types of multimeasures, we
first look at some examples of multimeasures. Example 2 is due to Hiai [39], page 100,
while the other two were taken from [36], page 57 and [34], page 114.

Example 2.3.16

1. Let (7,S,p) be a positive measure space, Y is a sequentially complete locally
convex topological vector space and let B be a bounded subset of Y. If we put

M={m:8 - Y | mis a measure and m(A) € u(A)B, A € §},
then M : § — P(Y) defined by

M(A) = {Z mi(Ag) | mi € M and {Aq, As, ..., A} is a finite S-measurable partition of A}

k=1
is a strong multimeasure. For the punctual additivity, note that

n n

S muld) € 3. B = U 4B = u(A)B,

k=1 k=1
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which implies that M(A) C u(A)B for every A € S.

If p is a seminorm and € > 0, then we put

Selpl = {z € X | p(z) < e}

Let (A,) € S be a sequence of mutually disjoint sets with A = U2, A,. Then for every
a > 0 there exists a number N such that if m > n > N we have that Y7;_, u(A,¢) < a.
Since B is bounded, for every seminormp and e > 0 there exists an a such that aB C S[p].

If y. € M(A,), where A, = Ul A7 A ﬂA =0, i # j, then y, = r) my(A7), so
that y, € X u(A7)B = u(A,)B. Hence

Zyo'(z Oi= n/l’ A )B g Ss[P]

Consequently, Y22, y, is unconditionally convergent. Furthermore, if y € M(A), then
there exists a finite partition {Ci,Cs,...,C;} of A and measures {my, my,...,m;} such

that y = Zgzl m;(C;). Hence, as

mi()=mi (U cinan),

k=1
we have that

o J 00
g= 30 Ym0 VA =D e
k=11=1 k=1
where y € M(Ay), from the definition of M(Ay).
2. Let m: § = Y be a vector measure. If we define M : S — P(Y) by
M(A)={m(B)| BC A, Be S},

then M is a strong multimeasure. Note that M is non-atomic if and only if m is non-

atomic and v(M, A) = v(m, A) for all A € S.

3. Let (7, S, ) be a measure space and suppose that F': ' — Py.(Y) is a measurable
multifunction such that o(y’, F(-)) is p-integrable for each y' € Y'. If every f € Sp is
Pettis-integrable and if we put

(W) ={[ fOudt) | f € Se}, A€S,

then M : § — Pse(Y) is a weak multimeasure. To see this, note that for all ' € Y’ we

have that
oy, M(A)) = [ oly/, F(1)) n(ab)
Consequently, if (Ax) C S is a sequence of mutually disjoint sets, then

S ol M(A4)) = X [, ols', F0)
= | L, o) ad)

= ot M(J 49)
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For a strong multimeasure M : § — P(Y) the set-valued set function on § induced
by taking the closure or the closed convex hull of M is not always a strong multimeasure.
However, we have the following results:

Theorem 2.3.17 ([36], p57, Proposition 5) Let Y be a linear topologi-
cal space. If M : § — P(Y) is a strong multimeasure, then the set-valued set function

M : S — Ps(Y), defined by M(A) = M(A), is a normal multimeasure.

PROOF: First note that M(AUB) = M(A)+ M(B) for all A, B € S with ANB = 0.
Then we must show that M(AUB) = M(A) + M(B). Since M(A) C M(A) and M(B) C
M (B), we have that

M(AUB)= M(A)+ M(B) C M(A)+ M(B) = M(A)+ M(B).

The converse inclusion follows from the fact that M(A) + M(B) C M(A) + M(B) and
that M(A) + M(B) is closed.

For the countable additivity, note that for every yi, € M(Ax), where (Ay) is a se-
quence of mutually disjoint elements of & with A = U2, Ak, we have that Y32,y is
unconditionally convergent and

M(A) = ¥(A) = {y S s M(Ak)}.

k=1

Theorem 2.3.18 ([39], p99, Theorem 1.3) IfY is a Banach space and
if M : S — P(Y) is a strong multimeasure of bounded variation v(M) such that M(T') is
relatively weakly compact, then M and 6 M are strong multimeasures on S and

v(M,A) =v(M,A) =v(co M, A)
forall A€ S.

PROOF: We only prove that @ M is a strong multimeasure. To show that M is
also a strong multimeasure is quite similar. First note that M (@) = {0} implies that
co M(0) = {0}. Also, since M(T') = M(A)+ M(T\A) for every A € S, M(A) is relatively
w(Y,Y")-compact. The Krein-Smulian theorem ([29], page 434, Theorem 4) implies that
coM(A) is w(Y,Y’)-compact.

To prove the countable additivity, let (Ax) € S be a sequence of mutually disjoint
sets. Then

M (U Ak> =Y M(A)+M ( U Ak)
k=1

k=1 k=n+1
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implies that

EM(G Ak) S 5 M(Aq) +coM( U Ak)

k=1 k=1 k=n+1

Since M is of bounded variation, it follows that both 2o M (U2, ., Ax) and Y32, €0 M (Ax)
are w(Y,Y")-compact. Consequently, we have that

H (wM ([j Ak) ,i@M(Ak))

k=1 k=1

k=n+1 k= k=n+1

= coM U Ak , coM Ak
k=n+1 k_n+1

< WM( U Ak) l+1 3 @M(Ae)|

k=n+1 k=n+1

= (zn:TM Ap) -}—coM( U Ak) z": M(Ax) + i E1\4(/4/%))

8

< 2 Y o(M,A)—0

k=n+1

as n — 0o, which means that o M (U2, Ax) = Y32, 0 M(Ay).
Finally, it is obvious that

v(M,A) =v(M,A) =v(coM, A)
forall A € S. [ |

The following theorem (Propositions 8 and 9 on page 60 of [36]) shows that if the
multimeasure takes on weakly-compact and convex values, then the different types of
multimeasures coincide.

Theorem 2.3.19 If Y is a locally convex topological vector space, then a set-
valued set function M : S — Pur(Y) is a normal multimeasure if and only if M is a
weak multimeasure.

PROOF: Suppose that M is a normal multimeasure. If (Ax) C S is a sequence of
mutually disjoint sets and if A = U2, Ag, then

lim H (M(A), zn; M(Ak)> =0.

Since M(A) € Purc(Y) for all A € S, we have that Y} p_; M(Ax) = > j—1 M(Ax). From
Hormander’s theorem [13, Theorem II-18] we then have that

H(M(A)éM(Ak)) : sup{low',M(A))—a(y',iMmkm: Wil < 1, y'eY'}

k=1
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= sup{|ay M(A)) =Y oy, M(Ax)|: lI¥]l < 1, y'EY’}.
k=1

Consequently, for each y' € Y’ with ||y'|| < 1, we have that Y}_; o(y’, M(Ax)) —
o(y’, M(A)) as n — oco. The positive homogeneity of the support functionals implies
that Sr_, o(y', M(Ax)) — o(y’,M(A)) as n — oo for each y’' € Y’. Finally, since
o(y’, M(0)) =0 for all y’ € Y’, we conclude that M(0) = {0}.

Conversely, suppose that o(y’, M(-)) is a real-valued measure for all ¥’ € Y’ and put
Ry = Uges M(A). Then the boundedness of M implies that o(y’, Rar) is finite, which
implies that Rjs is bounded in Y. To prove the additivity of M, let A, B € S be such
that AN B = . Then it follows that

oy, M(AU B)) = o(y’, M(A)) + o(y', M(B)) = o(y', M(A) + M(B)).

Let now (Ax) € S be a sequence of mutually disjoint sets and let A = UpZ; Ax. If for
n € IN we put B, = U}_, Ak, then we must show that M(B,) converges to M(A) with
respect to the Hausdorff uniformity. If 7= IV U {w} is the Alexandroff compactification
of IN, then we define the multifunction F' : T — Pu.(Y) by

F(n)= M(B,) and F(w)= M(A).

Then from the Corollary of Theorem 2, Chapter 0 of [36] we know that F' is continuous
in w, and since the Vietoris topology with respect to the weak topology and the topology
associated with the Hausdorff uniformity coincide on the family of weakly compact sub-
sets of X, M(B,) converges to M(A); therefore M is a normal multimeasure. 4

We now suppose that M : § — Py(I/R") is a multimeasure of bounded variation.
Let ‘e1, €35 .. €2, be the 2n-vectors (0;...,41,...,0); that is'e; = (1,0,..:,0); é—i=
(-1,0,...,0), e2=(0,1,...,0), ey = (0,—1,...,0), etc. If we put

A) =X o(oen M(4)),

then we call v the tight control measure of M. The measure v : S — IR has the following
properties:

Proposition 2.3.20 If M : S — Py(IR") is a multimeasure of bounded variation
v(M), then

(a) v is a finite and nonnegative measure;

(b) v(A) =0 if and only if M(A) = {0};
(c) IM(A)|]| < v(A) < v(T)< oo for every A€ S;
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(d) v is nonatomic if and only if M is nonatomic.

In [67], page 36, Theorem 1, Wenxiu, Jifeng and Aijie gave the following characteri-
zation of a finite-dimensional strong multimeasure.

Theorem 2.3.21 A set-valued set function M : S — Pr(IR") is a strong multi-
measure if and only if

(a) M is punctually additive;
(b) H(M(Ag), M(A)) — 0 as k — oo, where (Ax) C S is an increasing sequence of
sets such that limy_., Ar = A.

PROOF: Suppose that M : & — Pi(IR") is a strong multimeasure. Since M (0) = {0},
we conclude that M is punctually additive. Consequently, M(A) = M(A\Ax) + M(Ay)

where (Aj) is an increasing sequence of elements of S such that limg— oo Ax = A. Hence

H(M(A),M(Ar)) = H(M(A\Ax) + M(Ax), M(Ar))

< [ M(A\AR) |

< I/(A\Ak) — 0

as k — oo.

Conversely, let (Ay) be a sequence of mutually disjoint elements in S and put A =
U, Ak. Then

lim H (M(A), zn;M(Ak)) = lim H (M(A),M (kg Ak>) = 0.

k=1
Also, for n € IN, we have that

132 M4 | < kiu M(AYI < 3 u(A) = v(U) A < uT) < oo,
k=1 =1 k=1 k=1

where the finite additivity of v follows from the finite additivity of M. This means that
S5, M(Ayg) is a nonempty bounded set. Therefore

i (), 3 )

k=1

IA
S

IN
=

k=n+1
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as n — oo. Consequently, M(A) = M(UZ, Ax) = Ypey M(Ax), which means that M is

a strong multimeasure. I

2.4 Selectors of multimeasures

Definition 2.4.1 Let Y be a linear topological space. If M : & — P(Y) is a
multimeasure, then we call a measure m : S — 'Y a selector of M if m(A) € M(A) for
all A€ S. We denote by Sy the set of selectors of M.

In this section we investigate the existence of selectors of multimeasures and study
their topological properties. In particular, we study the relationship between the selectors
of the multimeasure and certain points of the multimeasure. We also study the conditions
which will guarantee the existence of a selector m of a multimeasure M such that

M(A)={m(A)| A€ S}
for every A € S.

Our first result in this section is due to Hiai [39] and it relates the set of all exposed
points of the multimeasure with the set of all selectors of the multimeasure. We first recall
the notion of an exposed point.

Definition 2.4.2 If Y is a Banach space, then a point y of a set K € P(Y) is
called exposed if there exists a y' € Y' such that (y',y) > (y',z) for all z € K for which
z #y. We denote by exp K the set of all exposed points of the set K.

Theorem 2.4.3 ([39], pl101, Proposition 2.1) LetY be a Banach space
and let M : § — P(Y) be a strong multimeasure of bounded variation v(M). Ify €
exp M(T'), then there exists an m € Sy such that m(T) = y.

PROOF: Let y' € Y’ be such that (y',y) > (v/,2) for all z € M(T\{y}). From the
punctual additivity of M follows that for each A € S we have that y = y; + y, with
y1 € M(A) and y, € M(T'\ A). Since

(v',y) = sup{(y',2)| z € M(T)}

= sup{(y,2) | z € M(A)} +sup{(¥',2) | z € M(T\A)},

it is easy to see that (y',y1) > (y/,2) for all z € M(A)\{y1}. Indeed, (v',31) < (v',2) is
impossible because (y',41) 4+ (y',y2) < (y¥',y). Thus we showed that given A € S, there

exists a point m(A) of M(A) which is exposed by 3’
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It remains to show that m is a measure. Let (Ax) C S be a sequence of mutually
disjoint sets such that A = UpZ; Ax. Since Y32, m(Ay) is absolutely convergent to an
element in M(A) and

o, Sl = 3 sunlle, v & M{A)]

k=1 k=1

= sup{(y’,y) | y € M(A)}

= (y',m(A)),

we deduce that m(A) = Y72, m(Ag). B

Corollary 2.4.4 ([55], p221, Theorem 5.4) Suppose that'Y is a separa-
ble and reflezive Banach space and let M : S — Ps(Y) be a nonatomic strong multimea-
sure of bounded variation v(M). If y € ext M(T'), then there exists an m € Sy such that
m(T) =y.

We now turn to the finite-dimensional case. We first prove the following proposition
concerning the atomic properties of multimeasures and their selectors.

Proposition 2.4.5 If M : S — P(IR") is a strong multimeasure and y is a finite
nonatomic measure such that M is p-continuous, then M is nonatomic.

PROOF: Recall that M is nonatomic if for every A € § with M(A) # {0}, there
exists a set B C A such that M(B) # {0} and M(A\B) # {0}. To the contrary, suppose
that A is an atom of M. Then M(A) # {0}. Since M is p-continuous, it follows that
p(A) > 0. Put u(A) = e. Since p is nonatomic, and thus has the Darboux property, there
is a set A* C A such that u(A*) = 5. Hence, u(A\A*) = 5. Since M is atomic, it follows
that either M(A*) = {0} or M(A\A*) = {0}. Define the set A, € X(A, ) by

pn _{ A* if M(A%) = {0}
1T A\A* if M(A\AY) = {0}.

Then A; C A, M(A;) = {0} and p(A;) = §. Since 0 < p(A\A;) = §, there exists a set

A** C A\A; C A such that u(A**) = 5 and either M(A**) = {0} or M(A\A*) = {0}.
Define the set A; € ¥(A, u) by

A _{ A if M(A™) = {0}
27 A\(A1UA™) if M(A\A™) = {0}.

If M(A*) = {0}, then M(A;) = {0}. If M(A\A**) = {0}, then
H(M(A\(A; U A™)),{0}) < sup [[m(A\(AUA™))|= 0

mGSM
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so that M(A\(A; U A*™)) = {0}. Consequently, A; C A\A; and u(Az) = 55. In general,
there exists a set Az C A\ U;?:l A; such that

€
(A1) = ok+1 and M(Ag+1) = {0}

for k =2,3,.... If we put Ay = A\ U2, A, then the sets Aj are mutually disjoint and
p(Ag) = 0. This means that M(Ag) = {0} because M is p-continuous. Consequently,

M(A) = M (9 Ak) i gj M(Ay) = {0},

a contradiction. 2

Note that if m is a selector of the strong multimeasure M and M is p-continuous,
where p is non-atomic, then m is p-continuous and m is also non-atomic.

Theorem 2.4.6 ([4], p118, Theorem 8.1) Suppose that M : S — P.(IR")
is a strong multimeasure and let p be a finite and nonnegative measure on S. If M is
p-continuous, then for every y € M(A) there exists an m € Sy such that m(A) = y.

The following examples show that neither the convexity of M nor the p-continuity of
M can be omitted in the previous theorem. The first example is due to W. Hildenbrand
[41]. We consider (1,B,)), where I is the closed unit interval [0, 1], B is the Borel o-algebra
of [0,1] and A is the Lebesgue measure on B.

Example 2.4.7
1. For A € B we put

e ! i A(4) = 0
M(A)‘{ R e

Then M is A-continuous, from the definition of M. If m is a selector of M, then m is
A-continuous, and m is non-atomic (the Lebesgue measure A being non-atomic). If also
m([) = 1, then the fact that m has the Darboux property implies that the whole interval
[0,1] is in the range of m, which is a contradiction. Consequently, the only selector of M
is the measure which is identically zero.

2. For A € B we put
M(A) = { {0} if A is a denumerable set

(0,00) otherwise.

For any finite measure y on (I, B) one can construct an uncountable measurable p-null

set (for example the Cantor set). Then it does not follow that M(A) = {0} if u(A) =0
for all A € B. Thus M does not admit a selector at all.
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Theorem 2.4.8 (Lyapunov, [26], p264, p266) Let (,X) be a measur-
able space with ¥ a o-algebra of subsets of the set ().

(a) If Y is a finite-dimensional Banach space and m : ¥ — Y is a bounded measure,
then the range R(m) of m is compact. If m is in addition non-atomic, then R(m)
1S convez.

(b) If Y has the Radon-Nikodym property and m : ¥ — Y is a non-atomic measure
with finite variation v(m), then R(m) is norm-compact and conver in'Y .

The convexity condition on the values of M in Theorem 2.4.6 can be replaced by the
condition of nonatomicity to give the following version of the Lyapunov convexity theorem.

Theorem 2.4.9 ([4], p118, Theorem 8.2) Suppose that M : S — P(IR")

is a strong multimeasure such that M is p-continuous, where p is a finite and nonnegative
measure on S. Then, for every A € S and y € M(A), there exists an m € Sy such that
m(A) =y if and only if M, restricted to the non-atomic part of u, has only convex values.

PROOF: Since the measure p is finite, it has an at most countable number of atoms;
therefore the expressions atomic and non-atomic part of z have meaning. Let Ay, As, ...

be a finite or countable collection of mutually disjoint atoms of S and let A = U3Z, A. If
y € M(A), then y = 332, yx, where y € M(Ayx) for £k € IN. For k € IN, put

) yx if Ay is an atom of m
m(A) _{ 0 otherwise.

Then it follows that m is a selector of M, and m(A) = Y32, m(Ar) = it 1 yx = ¥.
Conversely, let y;,y2 € M(A) and 0 < o < 1. Suppose also that m; and m, are
two selectors of M such that m;(A) = y; and my(A) = y,. Since my and m, are both
p-continuous, it follows that they are both non-atomic. Consider the 2n-dimensional
vector-valued measure (mq,my). From the Lyapunov convexity theorem we obtain a set

B C A such that
m1(B) = ami(A) = ay; and ma(B) = ams(A) = ay,.
Since ma(A\B) = ma(A) — my(B) = (1 — a)ys, it follows that
ayr + (1 — a)ys € M(B) + M(A\B) = M(A)
so that M(A) is convex. B
Theorem 2.4.10 ([4], p119, Theorem 8.3) Suppose that M : S — Py(IR")

is a strong multimeasure of bounded variation. Then for every A € S andy € M(A) there
is an m € Sy such that m(A) = y.
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PrOOF: We first show that the set function o(p, M(-)) is a finite and nonnegative
measure for every p € IR". The finiteness of o(p, M(-)) follows from the boundedness of
M. The boundedness of M also implies that M(0) = {0}, from which we deduce that
o(p, M(0)) = 0. In addition, note that o(p, M(+)) is finitely additive (M being punctually
additive).

[t remains to show that if (Ax) is a sequence of mutually disjoint elements of S, with
A = UL, Ay, then o(p, M(A)) = =2, o(p, M(Ag)). Given € > 0, there is a y € M(A)
such that

o(p,M(A)) —e < p-y < o(p, M(A)).
By the countable additivity of M there is a sequence (yx) in M (Ay) such that y = 372, ys.
Hence

lin}liana(p,M(Ak)) > Y pyk =p-y > o(p,M(A)) —e.
= k=1
On the other hand,
o(p, M(A)) = p-y = 3 p-y»

To complete the proof we only need to show that

Z p-yr+€ > lim sup Z M(Ag)).
k=1 k=1
If not, then
hmsupz — P Yk) hmsupz o(p, M(Ag) —Zp-yk>e.

Therefore, there is an integer ko such that 5 (a(p, M(Ag)) — p - yx) > ¢. Consequent-
ly, there are z1,&s,...,zk, such that Y% (p-zr —p-ye) > € and z, € M(Ag) for
k=1,2,...,ko. The series z1,22,..., %k, Yko+1,- - - 18 convergent and by the countable

additivity of M we get that Y00, ok + Y52, 41 yk € M(A). But

(Zkar E yk) = p-f;xwp- i Yk

k=ko+1 k=1 k=ko+1

ko 00
> e+p Y yktpe Y, Uk

k=1 k=ko+1
= e+p- Y uk

k=1
= e+p-y > o(p, M(A)),

a contradiction.

Lastly, since M is o(p, M(-))-continuous and since M is nonatomic on the nonatomic
part of o(p, M(-)), Theorem 4.2 of [4] implies that the values of M, on the nonatomic
part of o(p, M(-)), are convex. The result then follows from Theorem 2.4.9. w
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Definition 2.4.11 Let Y be a normed space and suppose that m : § — Y and
m;: S =Y (i € I) are vector measures. Then we say that

(a) m is strongly additive if
12 m(AR) || < o0
k=1

for every sequence (Ay) C S of mutually disjoint sets;

(b) {m;|i € I} is uniformly strongly additive if each m; is strongly additive and

lim sip 1Y mi(Ai) || = 0

T Y o
for every sequence (Ax) C S of mutually disjoint sets;
(c) {m; |t € I} is uniformly bounded if for each A € S we have that

sup || mi(4)]| < os.
1€l

Theorem 2.4.12 ([67], p37, Theorem 2) A set-valued set function
M : S — P(IR") is a compact-convez-valued strong multimeasure if and only if M is
punctually additive and there is a sequence (my) of uniformly bounded and uniformly
strongly additive measures on S such that, for every A € S,

M(A) =@ {my(A) | k € IN}.

PROOF: Suppose that M is punctually additive and let M(A) =co {my(A) | k € IN},
where (my) is a sequence of uniformly bounded and uniformly strongly additive measures.
It immediately follows that M is closed- and convex-valued. Then

IAELAMI= ligrnld) LR e NS op (AT <oy

and M is bounded. Also, let (A;) C S be an increasing sequence such that lim;_., A; = A.
Since (my) is uniformly strongly additive and M is punctually additive, we have that

H(M(A;),M(A)) = H(M(A;), M(A\A;) + M(A;))
< IM(A\A;) ||
< sup | me(A\A;)|[— 0

as J — oo. It follows from Theorem 2.3.21 that M is a strong multimeasure.
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Conversely, if M is a compact- and convex-valued strong multimeasure, then M is
punctually additive. Futhermore, there is a countable subset £ = {y1,ya,...} of M(T)
such that M(T) = E. From Theorem 2.4.9 follows that for each yx € E there is an
my € Sy such that mg(T') = yi for k € IN. Consequently,

M(T)=E = {m(T) | k € IN}.
The convexity of M(T) yields M(T) =co{mi(T) | k € IN}. But for A € § we have that
M(T)=co{mi(T)| ke N} C e{mi(A)| ke N} +co{mi(T\A)| k € IN}

C M(A)+ M(T\A) = M(T)
so that
M(A)+ M(T\A) =co{m(A) | k € IN} +co{mi(T\A) | k € IN}.

Since co{my(A) | k € IN} C M(A) and co{mi(T\A) | k € IN} C M(T\A), it follows
that
M(A) =co{mi(A)| k€ IN}.

From ||my(A)|| < ||M(A)|| < oo follows that
sup [|mi(A)|| < [|M(A)]| < oo,
keN

which means that the family {my | £ € IN} is uniformly bounded. Also, for any sequence
(A;) of mutually disjoint elements of S, we have that

IE A< S ImaA)l S S w(4) < u(T) < o

whence each (my) is strongly additive. Finally, if (A;) C S is a decreasing sequence of
sets such that lim;_, A; = 0, then

sup [|me(4;) || < [|M(A;)]| < v(A;) =0
keIN

as j — oo, and hence (my) is uniformly strongly additive. E

Theorem 2.4.13 ([36], p63, Theorem 3) Let Y be a linear topological
space. If M : § — Py(Y) is a set-valued set function such that

(a) M is punctually additive;

(b) for every sequence (Ax) C S of mutually disjoint sets and for every y, € M(Ay)
the series Y 32 yx is unconditionally convergent and

M(GA) g {y % T 3 eM(Ak)},

k=F
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then Sy # 0.

ProoF: If (Ax) C S is a sequence of mutually disjoint sets such that A = U2, Ax,
put
S(A)={yeY | y=_ u yx € M(A)}.
k=1
We first show that B
Z o(y', M(Ax))
k=1

for all y' € Y'. For this purpose, let y € S(A). Then for k£ € IN there exists a yr € M(Ax)
such that y = 3°72, yx. Since

o0

@) = (¥, Zyk = Zy,yk) < Yoy, M(Ax)),

k=1

we deduce that o(y’, S(A)) < Y22, 0(y’, M(A)). For the inverse inequality, take ¢ > 0.
Then for k € IN there exists an element y, € M(Ay) such that

oy, M(A) < (v',u) + 37

By virtue of condition (b), the series Y72, yx is unconditionally convergent with sum, say
y. Then y € S(A) and

ZU(yI>M(Ak)) i Z yayk 2k)
k=1 k=1
= (v, ) +e
k=1

= (yl’ Z yk) +.€
k=1
= (y',y)+e

< o(y,5(4) +e

Since € was arbitrary, we conclude that o(y’,S(A)) = X5, o(y’, M(Ay)).

We now proceed by proving that o(y’, M(A)) = o(y’, S(A)) forally’ € Y and A € S.
Note that since M(A) = S(A), we have that o(y', M(A)) > o(y’,S(A)). For the inverse
inequality, let o(y’, M(A)) > o(y’,S(A)) and put g = o(y', M(A)) — o(y', S(A)). Then
B > 0 and there is an element yz of S(A) such that

o, 5TA) - 5 < Whus) < oy, 5TA).

From yg € S(A) we obtain a sequence (yx) in S(A) such that yx — yg as k — oo. From
(v',yx) = (¥',yp) as k — oo, we deduce that there is a ky € IN such that if k& > ko, then

| (o' 9) — (5" 38) | < g.
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Therefore, if k > kg, then

1

(y',yﬁ)—g < (¥ m) < (v,u8) +

But

,95) 5 > oly/, 5TA)) -

= a(y’,S(A))—Zﬂ > a(y’,S(A)),

N
- @

which in turn implies that (y,yx) > o(y’, S(A)) for all k¥ > ko, contradicting the fact
that (y',yx) < o(y',S(A)) for k > 1. Hence, o(y’, M(A)) < o(y’,S(A)) and the result
follows.

We now proceed by establishing the existence of a selector of M. Consider a well
order on Y’ (whose existence is guarenteed by the well ordering principle) and give Y
the corresponding lexicographical ordering. Since by hypothesis M is compact-valued, we
can find a lexicographic maximum m(A) of M(A) for every A € S. We show that m is a
selector of M. For the additivity of m, let A, B € § be such that AN B = (. If we denote
by < the lexicographical ordering, then for every a € M(A) and b € M(B) we have that
a < m(A) and b < m(B). Since M(AU B) = M(A)+ M(B), every c € M(AU B) can be
written in the form ¢ = a + b, where a € M(A) and b € M(B). Since the lexicographical
ordering is compatible with vector addition, it follows that ¢ < m(A) + m(B). This
means that m(A) + m(B) is the lexicographic maximum of M(A U B) and therefore
m(AU B) = m(A) + m(B). Then we only need to show that for every y’ € Y’ the set
function (y’,m(-)) is a real-valued measure. Indeed, since

—o(—y',M(A)) < (y',m(A)) < o(y',M(A))

for every y' € Y’ and every A € S, and since o(y', M(A)) = Y32, o(y’, M(Ag)), it follows
that (y’,m(-)) is a measure for every y’ € Y. &

We showed in the first part of the proof of the above theorem that if the set-valued
set function M : & — Pi(Y') satisfies condition (b), then

(c) for every sequence (A;) C X of mutually disjoint sets with A = (g2, Ak, we have
that

oy, M(A)) = > o(y', M(Ax))
=1
for every y’' € Y.

We needed condition (a) to show the existence of a selector of M. However, if M : § —
Pre(X) is a weak multimeasure, then M satisfies conditions (a) and (c) (for (a) see [29],
page 414, Lemma 3). Consequently,

Corollary 2.4.14 IfY is a linear topological space and if M : S — Pp.(Y) is a
weak multimeasure, then Sy # ().

45



Denote by ca(Y') the space of all Y-valued measures on S and let 7 denote the topo-
logy of pointwise convergence for ca(Y). Then Sy has the following topological property:

Theorem 2.4.15 ([36], p66, Theorem 5) IfY is a linear topological

space and if M : S — Pi.(Y) is a weak multimeasure, then Sy is T-compact and convez.

PROOF: For every A € S the set
H(A) = {m(A)| m € Su}

is relatively compact in Y and is contained in M(A). By virtue of [45], page 218, we only
need to show that Sy is 7-closed. Indeed, if m(A) € H(A), then there exists a net (m;)ier
in Sy such that lim;e; m;(A) = m(A) for all A € §. Since M(A) is compact, it follows
that m(A) € M(A).

It only remains to show that m is a measure. The additivity of the m;’s implies the
additivity of m. As a consequence of the proof of Theorem 2.4.13 it follows that m is a
measure. We conclude that Sy, is 7-closed and the theorem follows. 5]

In the case that M is a weak multimeasure with nonempty compact and convex val-
ues, the last two theorems show that Sy is compact and convex relative to 7. By the
Krein-Milman theorem it follows that €oext Sy = Sp. As a consequence, we have that

Theorem 2.4.16 ([36], p67, Theorem 6) IfY is a linear topological

space and if M : § — Pr(Y) is a weak multimeasure, then
M(A) = {m(A) | m € Sy} =co{m(A) | m € extSn}
for every A€ S.

ProOOF: Since Sy is 7-compact and convex, Sy, is the closed convex hull of its
lexicographic maximum. By virtue of the proof of Theorem 2.4.13 every lexicographic
maximum of M(A) belongs to H(A) = {m(A) | m € Sy}. The linearity and continuity
of the mapping m — m(A) from ca(Y) into Y implies that H(A) is compact and convex.
As a result we have that M(A) C H(A) for every A € S, while the inverse inclusion
follows trivially.

Lastly, for the second equality, it follows immediately that co{m(A) | m € ext Sy} C
M(A). For the inverse inclusion observe that coext Sy = Sy and that the mapping
m +— m(A) is linear and continuous. |

The following result is a consequence of the first equality in the previous theorem.

Theorem 2.4.17 Let Y be a linear topological space and let M : S — Pp.(Y) be
a weak multimeasure. Then for every A € S and y € M(A) there exists an m € Sy such
that m(A) = y.
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Theorem 2.4.18 ([31], p154, Theorem 3) IfY is a separable Banach
space and if M : & — Pui(Y) is an additive set function (normal multimeasure), then
there exists a sequence (my) C Sy of additive set functions (vector measures) such that

M(A) = {mi(A) | k € N}

for every A € S.

Let (I, =) be a preordered set and let (E,)acr be a family of sets indexed by /. For
each pair (a, ) of elements of I such that a < f3, let f,s be a mapping of Es into E,
such that the relation o < # < v implies f,, = fap 0 fgy and faq is the identity mapping
of E,. If we put G = [I,e1 Ea, let

E = {;E €G I Pral = faﬂ(prﬁx)7 a< ﬂ}

Then E is said to be the inverse limit of the family (E,).er with respect to the family of
mappings (fop) and we write £ = lim. (F,, fap). The pair (E,, fap) is called an inverse
system of sets relative to the index set I. The restriction f, of the projection pr, to £ is
called the canonical mapping of E into E, and we have that f, = f,z0 fs whenever a < 3.

The rest of the results on selectors of multimeasures arise mainly from the following
theorem:

Theorem 2.4.19 (Mittag-Lefﬂer) Let (Y, yap) be an inverse system
of metrizable complete Hausdor[f uniform spaces, indexed by a preordered set I which has
a countable cofinal subset. Let Y = lim._Y, and let y, be the canonical mapping from Y
into Yy,. If, for each o € I, there is an index f = « such that y,5(Ys) is dense in Y,,
then y, is dense in Y, for all a € I.

The next five theorems from [19], pages I11-8 - I11-18, formulated here (without
proofs) in our terminology, are important for the development to follow.

Theorem 2.4.20 IfY is a linear topological space and if M : & — Pr(Y) is an
additive set-valued set function, then for every A € S we have that

M(A) = {m(A)| A€ S).

Theorem 2.4.21 Let Y be a linear topological space. If the ring R is countable
and if the set-valued set function M : R — Ps(Y) is additive, then for every A € R we
have that

M(A) =m(A) | A€ R}.
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Theorem 2.4.22 Let (T,S, 1) be a finite positive measure space with its quotient
ring separable and let Y be a linear topological space. If M : S — Ps(Y) is a p-continuous
normal multimeasure, then for every A € S we have that

M(A) = {m(A) | A € S).

Theorem 2.4.23 IfY is a separable Banach space and M : S — Pp(Y) is a

normal multimeasure, then for every A € S we have that

M(A) = Tm(A) [ A € S).

Theorem 2.4.24 If the Banach space Y has the Radon-Nikodym Property and if
M : S — Ppu(Y) is a normal multimeasure, then for every A € S we have that

M(A) =Tm(A) [ A € S).

Theorem 2.4.25 If the Banach space Y has the Radon-Nikodiym Property and if

M : 8§ — Pp(Y) is a non-atomic normal multimeasure of bounded variation v(M), then

(a) M(A) is convez for all A € S;

(b) |J M(A) is conves.
Aes
PROOF: (a) Since v(M) is non-atomic, it has the Darboux property; therefore, for
k € IN, we obtain a partition Py of T' consisting of 2* elements of S such that

v(M,T)

ok
for all A € P,. We may choose Py in such a way that that Py, is finer than Py for & € IN.
Put R = U2, Pr and denote by ¥ the o-ring generated by R. Then it follows that the
restriction of v(M) to ¥ is also non-atomic. Let now y;,y, € M(T'), « € (0,1) and € > 0.
Since ¥ is countably generated, we obtain selectors my and my of the restriction of M to

Y such that

v(M,A) =

[ (T) = ]l < € and [|ma(T) —gaf| < e

Consequently,
lleys + (1 — a)ya —amy(T) = (1 — a)my(T)|| < e

If we define the measure y: ¥ — IR x Y x Y by
#(A) = (v(M, A),m1(A), my(A)),

then p is non-atomic and with finite measure. Since the space IR X Y x Y has the
Radon-Nikodym Property, we obtain a set A € ¥ such that

lm1(A) — ami(T)|| < € and ||ma(A) — ama(T)|| < e
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Then, since my(A) = mo(T') — ma(T\A), we have that
lleys + (1 — @)y — (ma(A) + ma(T\A))|| < 3e.

Since my(A) + my(T\A) € M(A) + M(T\A) C M(T), it follows that ay; + (1 — a)y: €
M{(T) = M(T).

To prove (b), let y; € M(A1),y2 € M(Az), @ € (0,1) and € > 0. If we put A = A;NA,,
then by the additivity of M, for yi,y, € M(A), yi € M(A;1\A) and y3 € M(A;\A), we
have that

Iy + 91 —wll < € and Jly; +y; —pofl < e
By (a) follows that if we put z = ayj + (1 — @)y}, then z € M(A). Furthermore,
lays + (1 = @)y: —z —ayy — (1 —e)y3|| < e
Also, there exist By C A;\A, By C A)\A, z1 € M(B;) and z; € M(B;) such that
"

llayy — z1]| < € and ||(1 — @)y — 22| < e

Consequently,
lays + (1 — @)ys — (21 + 22 + 2)|| < 3e

The additivity of M implies that z; + z2 + 2 € M(B; U By U A) so that ay; + (1 — a)y,
belongs to the range of M. E

For the rest of this section we will study transition multimeasures and their selec-
tors. We refer to [36] for some of our definitions and results. We consider the measurable
spaces (7',8) and (€2, 7). Unless otherwise stated, Y will be a locally convex vector space.

Definition 2.4.26 A sct-valued set function M : Q) x S — P;(Y) is said to be a
transition multimeasure if and only if

(a) for all A€ S, wr— M(w,A) is an S-measurable multifunction;

(b) for allw € Q, A M(w,A) is a multimeasure.
We will distinguish between strong, normal and weak transition multimeasures.

Definition 2.4.27 A selector transition measure (or simply a transition
selector) of a transition multimeasure M : QxS — Py(Y) is a set function m : QxS —
Y such that

(a) for all A €S, w— m(w,A) is an S-measurable function;

(b) for allw € N, A m(w,A) is a measure;
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(c) for all (w,A) € A xS, m(w,A) € M(w, A).

The set of all transition selectors of M will be denoted by T'Sys.

Theorem 2.4.28 ([36], p91, Theorem 1) Let Y’ be a separable Frechet
space, let (Q,T) be complete and suppose that M : Q2 x § — Pr(Y) is a weak tran-
sition multimeasure. If f : Q — Y is a measurable selector of the multifunction w
ext M(w,T), then there exists a transition selector m : Q x S — Y of M such that

(a) for allw € Q, m(w,T) = f(w).

(b) for all (w,A) € A xS, m(w,A) € ext M(w, A).

PROOF: First note that for every A € S we have that
M(w,T) = M(w,A)+ M(w,T\A), we.

Since f(w) € ext M(w,T) for every w € 2, from Lemma 2 on page 88 of [36] follows that
there exist measurable functions w — m(w, A) and w — m(w, T\ A) such that

f(w) e m(wa A) + m(wv T\A)v

with m(w,A) € ext M(w,A) and m(w,T\A) € ext M(w,T\A). Then the mapping
(w, A) = m(w, A) is the required transition selector of M. &

Theorem 2.4.29 ([36], p92, Theorem 2) Let (Q,7) be complete and sup-
pose that M : Q x § — Pi.(IR") is a transition multimeasure. If f :  — IR" is a mea-
surable function such that f(w) € M(w,T) for all w € ), then there exists a transition
selector m : Q0 x § — IR"™ of M such that

for all w € Q.
PROOF: For n € IN, denote by A, 4, the simplex in IR"! defined by
n+1
An+1 &= {(/'1’1’”2)"'7/‘Ln+1) | i 2 07 1 S 2 S n; Z,uz = ]-}
=1
Consider the continuous mapping h : IR®+tY* — JR" defined by the equality

n+1
h(p1, 825 - s Bnt1, T15, 22, -+« Tng1) = Z HiYi
=1

for p; € R™' and y; € IR", 1 <i < n. Since M(w,T) is a compact and convex subset of
IR"™, we have that
M(w,T)=ho (An+1 X (ext M(w,T))"“) :
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Let
0(w) = {y € Ats X (ext M(w, )" | h(y) = f(w)}

for all w € Q. Then ®(w) # 0 for all w € @ and ® is S(7 x S(Bg~))-measurable. Then,
for 1 =1,2,3,...,n+ 1, there exist mappings y; : & — IR" and y; : 2 — IR such that

n+1

flw) = Z:ui(w)yi(w),

with y; € ext M(w,T), pi(w) > 0, X7 p;(w) = 1. Hence, for 2 = 1,2,3,...,n + 1, there
exists an m; € T'Sy such that m;(w,T') = y;(w) for all w € 2. The mapping

n+1
(w, A) —» m(w, A) = Z: pi(w)mi(w, A)

is then the desired transition selector of M. [

Corollary 2.4.30 ([36], p93, Corollary 1) Let(Q,7T) be complete and sup-
pose that M : Q x § — Pr(IR") is a transition multimeasure. If f : 8 — IR" is a mea-
surable function such that f(w) € M(w,A) for all w € Q, then there exists a transition
selector m : Q0 x § — IR" of M such that

m(w,A) = f(w), A€S
for allw € Q.

PrOOF: The multifunction w — M(w,T\A) is S-measurable and admits a mea-
surable selector g. Consider the restriction My of M to £ x R4, where R, is the
ring of all subsets of A. From the previous theorem there exists an m4 € TSy, such
that ma(w,A) = f(w) for all w € Q. Also, there exists an mqp\4 € T'Smyy, such that
mp\a(w, T\A) = g(w) for all w € Q. Since for all (w,C) € 2 x S,

M(w,C)= Mw,CNA)+ M(w,CNT\A),
it follows that the set function m : ) x § — IR" defined by
m(w,C) = my(w,C N A) + mp\a(w, CNT\A)

is the desired transition selector of M. B

Theorem 2.4.31 ([36], p95, Proposition 1) LetY’ be a separable Frechet
space, let (2,7T) be complete and suppose that M : Q x S — Pi.(Y) is a weak transi-
tion multimeasure. If f : & — Y is a measurable selector of the multifunction w —
ext M(w,A), A € S, then there exists a transition selector m : Q x S — Y of M such
that

for all w € Q.
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PROOF: For all A € S, the multifunction ezt M(-,T\ A) is measurable and admits a
measurable selector g. Using the same notation as in the proof of the previous corollary,
the multimeasures (ext M), and (ext M)\ 4 admit transition selectors ma and mp\a,
respectively. If we definem : 2 xS — Y by

m(w,C) = ma(w,C N A) + mpa(w,CNT\A),

then the result follows. =)

In the next result, we suppose that the o-ring S is generated by the ring R.

Proposition 2.4.32 ([36], p96, Proposition 2)

(a) If p is a finite positive measure on S and m : R — Y is a measure such that
lim,(4)—om(A) = 0 for all A € R, then the extensionn : S — Y of mto S isa
UNIGUE MEASUTE.

(b) LetY be a separable Frechet space, let (2, T) be complete and let p: QxS — IRy
be a transition measure. If m : Q x R — Y is a transition measure such that
lim,,(, 4y—0 m(w, A) = 0 for all (w, A) € O xR, then the extensionn: QxS =Y
of m to ) X § is a unique transition measure.

PRrOOF: To prove (a), note that from Lemma 1 on page 158 of [29] follows that the
quotient set @ = 7 /N (u), where N (p) is the class of all p-negligible sets in 7, is a
complete metric space under the metric

p(A*, B*) = arctan u(A A B), A*,B*€0;A,B€S.
. If we put A =R, then A is dense in ©. The set function m* : © — Y, defined by
m’(A%) = m(A4), A€S,

is uniformly continuous on A. This means that m* can be extended to a unique set
function n*.

To show that n* is additive, let A,B € S be such that AN B = (. Then there
exist sequences (Ag), (Br) € R such that p(Aj, A*) — 0 and p(Bg, B*) — 0. Since the
operations A* U B* and A*\ B* are uniformly continuous, we deduce that

p(Ax U By, A"U B*) = 0 and p(A;\Bg, A"\B")) = p(A;\B;, A™) — 0
as k — oo. Since
m*(A; U Bi) = m((Ax\Bi) U Bx) = m(Ag\Bk) + m(Bx),

we get that
n*(A*U B*) = n*(A") + n*(B")
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after passing to the limit. If we define
n(A) =n*(A%), A€ S,

then it follows that n is an additive set function on §. The countable additivity of n
follows from the p-continuity of n*.

To prove (b), first note that for all w € €, the set function n(w,-) is a measure on S,
where n(w, -) denotes the extension of m(w,-) to §. Furthermore, if A € S, then there is
a sequence (Ax) € R such that

n(w,A) = lim m(w, Ax)

k—o0

for all w € Q. Then it follows easily that n is the desired transition measure. B

Theorem 2.4.33 ([36], p102, Theorem 4) Let (Q,7) be complete, (T, S)
countably generated and let p be a positive finite measure on S. Suppose that M : A xS —
Ps(IR") is a strong transition mullimeasure such that M(w,-) is p-continuous for all
w € QO and such that Gry. ay is S(T x Brn)-measurable. If f: Q — IR" is a measurable
function such that f(w) € M(w,T) for all w € Q, then there exists a transition selector
m:Q xS — IR" of M such that

m(w,T) = f(w), w e .

Theorem 2.4.34 ([36], pl107, Corollary 3) LetY be a separable Frechet
space, let (Q,7T) be complete and (T,S) countably generated and let p be a positive finite
measure on S. Suppose that M : Q X § — Pur(Y) is a transition multimeasure such
that lim,(ay—o ||[M(w, A)|| = 0 for all (w,A) € Q@ xS and let f : Q — IR be a measurable
function. If we define the transition multimeasure N : Q X § — Pur(Y) by

then
TSy = fTSu = {f(w)m(w,A) | m € TSu}.

ProOF: Note that if m € T'Sys, then the mapping (w, A) — f(w)m(w,A) belongs
to T'Sy. If we put n(w, A) = f(w)m(w, A) and Qp = {w € Q| f(w) # 0}, then Qo € T

and the mapping (w, A) — ﬂf‘z’c’d—’;‘l is a transition selector of M on )y x S. The result then
follows from Theorem 2.4.33. &

53



CHAPTER 3

EXTENSION OF SET-VALUED
SET FUNCTIONS

The extension problem for countably additive scalar measures has its roots in inte-
gration theory. To apply the Lebesgue construction it was necessary to extend scalar set
functions, usually defined explicitly only on a ring, to the sigma-algebra of measurable
sets. However, the extension problem for vector measures has had a more difficult devel-
opment. The most inclusive statement about the extension theorem for vector measures
has been given by Kluvanek [47]. On the other hand, only two approaches on the exten-
sion of multimeasures were thus far established. Kandilakis [44] and Xiaoping et al [69)
considered the extension of Banach space-valued multimeasures, while in [67] extension
results for multimeasures with values in a finite-dimensional space were given by Wenxiu
et al.

In this chapter it is our purpose to study the extension of additive set-valued set
functions and multimeasures in general. We also give extension results for transition
multimeasures.

3.1 Extension of additive set-valued set func-
tions

In this section we extend additive set-valued set functions and normal multimeasures.
Our first set of results are along the lines of Theorem 1.2.3. Central to our proofs are the
existence of selectors of the set-valued set functions and the uniform continuity of these
selectors. We also prove the set-valued analogue of the Carathéodory-Hahn-Kluvanek
theorem for additive set-valued set functions, thereby extending the corresponding result
of Kandilakis [44] to additive set-valued set functions.

We let S be a ring of subsets of T and p a positive, finite, subadditive and increasing
set function on S. If we consider the finite semi-distance p, as defined just before Propo-
sition 1.2.1, then our first result is the set-valued analogue of Proposition 1.2.1.
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Proposition 3.1.1 Suppose that Y is a Banach space and let R be a ring con-
tained in S. If M : R — P;(Y) is an additive set-valued set function such that

IM(A)|| < u(A)
for A€ R, then M is a uniformly continuous mapping from (R, p,) into (Ps(Y), H).
ProoF: For A, B € R we have that

H(M(A),M(B)) = H(M(A\B)+ M(AN B), M(B\A)+ M(AnN B))

< H(M(A\B),M(B\A))+ HM(ANB),M(AN B))

IA

H(M(A\B),{0}) + H(M(B\A),{0})
= |[M(A\B)|| + [|[M(B\A)]
< u(A\B) + p(B\A)

= ol A B)

For the rest of this section we suppose that R is a ring dense in S for the topology
defined by p,,.

Proposition 3.1.2 Suppose that Y is a separable Banach space. If M : R —
Pr(Y) ts an additive set-valued set function such that

IM(A) < n(A)

for all A € R, then M can be extended to an additive set-valued set function N : § —
Pr(Y) such that

IN(A)| < p(A)
for all A€ S. If p is additive, then v(N) is an extension of v(M).

PRrOOF: From Theorem 2.4.18 follows that Sas # 0. Since ||[M(A)|| < u(A) for each
A € R, we infer that each m € Sy is uniformly continuous on the dense class R. By
Theorem 1.2.3 follows that each m € Sy; can be extended to a uniformly continuous
finitely additive set function n : § — Y such that |[n(A)|| < u(A) for all A € S. For
A€S, put

N(A)=Tn(B)| BCA,Be3).
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If A,BeS with AN B =0, then

NA) T NB) = MC)+nD)[CCADCB,C,DeS)

— (n(CUD)[CUDCAUBJ

= N(AUB);

whence N is an additive set-valued set function. Clearly we have that ||[N(A)|| < p(A)
for all A € S. We now want to show that

|d(n(A), N(A)) —d(n(B), N(B))| < |[n(A) —n(B)|| + H(N(A), N(B)),

because by the uniform continuity of N and n it will then follow that the set function
A d(n(A),N(A)) is uniformly continuous. Indeed, from

d(n(A),N(4)) < d(n(B),N(A))+ [[n(A) — n(B)]|,
follows that we only need to prove that

d(n(B),N(A)) < d(n(B),N(B))+ H(N(A),N(B)).
For all € > 0 we can choose z € N(A) and y € N(B) such that

d(n(B),y) < d(n(B),N(B))+ 7 and d(y,a) < d(y,N(4))+

N

Consequently, for all € > 0,

d(n(B),2) < d(n(B),y)+d(y, )
< d(y,N(4)) +d(n(B),y) + 5

< d(y,N(A)) +d(n(B),N(B)) + ¢
therefore
d(n(B),N(A)) < d(n(B),N(B))+ H(N(A),N(B)) +e.

Since the set function A — d(n(A), N(A)) is identically null on the dense class R, and
since NV is closed-valued, we deduce that n(A)e N(A) and consequently

N(A) ={n(A) | n € Sy}

for all A € S. Also, by Theorem 2.4.21 we infer that M(A) = N(A) for all A € R. Lastly,
if u is additive, then m has finite variation v(m) on R, n has finite variation v(n) on S
and v(n) is an extension of v(m). Since v(N) = v(n), it follows that v(/N) is an extension

of v(M). i

96



Proposition 3.1.3 Let Y be a separable Banach space. If M : R — Pp(Y) is

an additive set-valued set function such that
IM(A)l| < wu(A)

for all A € R, then M can be extended to an additive set-valued set function N : § —
Psu(Y) such that
IN(A)| < n(A)

for all A € 8. If u is additive, then v(N) is an extension of v(M).

ProoOF: By Theorem 2.4.18 follows that there is a sequence (my) C Sy of finitely
additive set functions from R into Y such that

M(A) = {mi(A) | k€ IN}

for all A € R. Since ||[M(A)|| < p(A) we have that ||mr(A)|| < w(A) for all A € R so
that each my is uniformly continuous on the dense class R. For k& € IN, let n; denote the
extension of my to § and put

N(A) = {n(A) | k € IN}

for all A € S§. Clearly, N is an additive Py;.(Y)-valued set function. Also, since
lnk(A)]| < p(A) for all A € S, we have that ||[N(A)|| < u(A). Lastly, since v(N) = v(ny)
on § and v(M) = v(my) on R, the conclusion follows from Theorem 1.2.3. =

We now discuss the set-valued analogue of the Carathéodory-Hahn-Kluvanek theo-
rem for additive set-valued set functions. The set-valued Carathéodory-Hahn-Kluvanek
theorem has been given by Kandilakis [44, page 88, Theorem 2.6] for countably additive
set-valued set functions. The same type of results were also obtained in [69].

First we give an example of a punctually additive set-valued set function which is not
a strong multimeasure.

Example 3.1.4

Consider the semiring R = {A C IR | A is at most countable} and define the set-
valued set function M : R — [0, co] by

_ ) {0} if Ais finite
M(A) = { {0} if A is countable.

To see that M is punctually additive, let A, B € R be such that AN B = (). If both A
and B are finite, then A U B is finite so that

M(AUB) ={0} = M(A) + M(B).
On the other hand, if either A or B is countable, then A U B is countable and

M(AUB) = {c0} = M(A) + M(B).
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AU N =T, such that A is positive and B is negative with respect to o(y’, N(-)). Since
N(A) € Puie(Y) for every A € S, there is a yo € N(A) such that (y',y0) = o(y’, N(A)).
But then (y',40) = o(y’, N(S)), and from the James theorem follows that N(S) is rel-
atively w(Y,Y")-compact. Since M(A) = N(A) C N(S), we have that M(A) is also
relatively w(Y, Y’)-compact. .4

The next result is due to Alé, de Korvin and Roberts [2]. We give the proof for
completeness.

Proposition 3.1.8 LetY be a separable Banach space and suppose that M : A —
Pive(Y) is an additive set-valued set function. If there exists a finitely additive nonnegative
finite set function p on A such that M is p-continuous, then there exists a o-algebra S, a
normal multimeasure N : S — Psp(Y) and a Boolean isomorphism i : A — S such that

M(A) = N(i(A)) for all A € A.

ProOOF: By the Stone Representation Theorem there exists a compact, Hausdorff
and totally disconnected topological space Y such that A is isomorphic (as a Boolean
algebra) with the algebra A of all clopen subsets of Y. Let : be the isomorphism of A

into .2 From Theorem 2.4.18 we obtain a sequence (my) C Sy of finitely additive set
functions from A into Y such that

M(A) = {mi(A) | k € IN}

for all A € A. Define my (i(A)) = my(A) for all A € A. Also let L (i(A)) = u(A) for all
A € A. Then, for each y’ € Y’, the set function (y’, ;7) is a countably additive measure on
_:(, that is, [ s weakly countably additive on _:l Consequently [ has a countably additive
extension to S(A) the o- algebra generated by A. If we put 5= S(,A) then A is dense

in S in the metric lnduced by ,U Furthermore, since each my is ,U continuous, each i
can be extended to ny: S — Y. If we put

N(A) = {ni (A) | k € N}

for every A € S, then clearly N(i(A)) = M(A) for all A € A. Also, since we have that
ny (A) = lim my (i(A,)) uniformly in k as i(A,) — A in the metric induced by i, it
follows that
H(N(A), N(i(An))) — 0;

therefore N(A) € Pp(Y) for all A € S (since the metric space (Pyi.(Y), H) is complete).

It only remains to show that N is a normal multimeasure. We first show that N is
additive. So, let A, B € § with AN B = (). Then there are mutually disjoint sequences
(Ax), (Bx) € A such that i(Ax) — A and i(By) — B. Hence, from a result by [24, page
4], we have that
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H(N(AU B),N(A) + N(B))

< H(N(AU B),N(A U By)) + H(N(A, U By), N(A) + N(B))

= H(N(AUB),N(AxU By)) + H(N(Ak) + N(Bx), N(A) + N(B))

< H(N(AU B),N(AxU By)) + H(N(Ax), N(A)) + H(N(B), N(B)) — 0

as k — oo; therefore N(AU B) = N(A) + N(B). Consequently, if we put A = UL, A,
then

i (v 5 v - (imk +N( ¥ Ak),§N<Ak>)

b=1 k=n+1 o=}

I (kgl Ak)

< Z(U Ak)—>0

k=n+1

IA

as n — 0o. Hence N is a normal multimeasure. i

Proposition 3.1.9 Let Y be a Banach space and suppose that M : A — Ppy(Y)
is a strongly additive set-valued set function such that the set function A — o(y', M(A))
is a finitely additive measure on A for every y' € Y'. Then there exists a finitely additive
nonnegative real-valued measure p on A such that M is p-continuous on A.

ProOF: Let _,~4 be the Stone representation algebra for A and let 7 : A ——).:1 be a
Boolean isomorphism. Define M: A— Ps(Y) by M(Z(A)) = M(A) for all A € A. Since
i(A) — o(y/, M(Z(A))) is a finitely additive measure on A for every y' € Y, it follows that
(A) — o(y', j\Nd( (A))) is countably additive. By Theorem 3. L. 7 there is a nonnegatlve

and real-valued countably additive measure # on A such that M is ,U continuous on A If
we define p(A) = (i(A)) for A € A, then the result follows. 3]

Proposition 3.1.10 Let Y be a Banach space and suppose that S is a o-algebra
of subsets of the set T and let N : S — Pui(Y) be a set-valued set function such that
for every y' € Y’ the set function A — o(y',N(A)) admits a Hahn decomposition. Then
N(S) is a relatively w(Y,Y")-compact subset of Y.

PROOF: Let y' € Y’ and let (H*,H™) be a Hahn decomposition for the signed
measure o(y’, N(-)). Then we have that

a(y',N(S)) = sup oy, N(A)) = sup o(y', N(An H*)) = o(y', N(H")).
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But N(H*) € Pu(Y), so we can find a yo € N(H"), depending on y’, such that

o(y’, N(H")) = (v',y0) and hence o(y’, N(S)) = (¥',%0). By James’ theorem we con-
clude that N(S) is a w(Y,Y’)-compact subset of Y. H

Proposition 3.1.11 Let Y be a Banach space. If M : A — Pp(Y) is a set-
valued set function such that M(A) is a relatively weakly compact subset of Y and the set
function A — o(y’, M(A)) is a finitely additive measure on A for every y' € Y', then M
is strongly additive.

PROOF: For every y' € Y’ we have that

n n

5l = 1(y',kiyk>| < Y lo(y', M(A))

k=1 k=1

for all y, € M(Ax) with Ay € A, k = 1,2,...,n. But since the set function A
o(y’, M(A)) is of finite variation, we have that lim, ., > 71—, |o(y', M(Ax))| < oo. Hence
02, yk is weakly unconditionally convergent and thus strongly unconditionally conver-

gent (from Day [23]). B

Summarizing the previous four results, we have:

Theorem 3.1.12 IfY is a separable Banach space and if M : A — Pui(Y) is a
set-valued set function such that the set function o(y', M(-)) is a finitely additive measure
on A for every y' € Y', then the following are equivalent :

(a) There exists a o-algebra S, a multimeasure N : & — Pur(Y) and a Boolean

isomorphism i : A — S such that M(A) = N(:(A)) for all A € A.

(b) There exists a finitely additive nonnegative real-valued measure p on A such that
M is p-continuous on A.

(¢) M is strongly additive.
(d) M(A) is a relatively w(Y,Y")-compact subset of Y.

PROOF: We only need to show that (a) implies (d). But M(A) = N(i(A)) C N(S),
which is a relatively weakly compact subset of Y (by Proposition 3.1.10). =]

3.2 Extension of multimeasures

We start this section with two results by Wenxiu, Jifeng and Aijie [67] on the extension of
strong multimeasures. Unless otherwise stated, throughout this section we will suppose
that A is an algebra of subsets of the set T' and we let S be the o-algebra generated by
A.
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Theorem 3.2.1 ([67], p38, Theorem 3) If M : A — Pi.(IR") is a strong

multimeasure, then there exists a unique strong multimeasure N : S — Pr(IR") such that

M(A) = N(A) for all A € A.

PROOF: By Theorem 2.4.12 there exists a sequence (my) of uniformly bounded and
uniform strongly additive measures on A such that

M(A)=co{mi(A)| ke N}, A€ A
Let ny be the extension of my to S and put
N(A)=co{ni(A) | k € IN}.
Then clearly M(A) = N(A) for A € A.

If 7 denotes the extension of the tight control measure v, put
M={Ae A: ||ni(A)| < 7(A)}.

Then A C M. We now proceed to show that M is a monotone class. So let (A4;) € M
be any increasing or decreasing sequence such that lim;_., A; = A. Then

Ine(A)l = || lim ne(A;)]] < lim v(Ag) = v(A).

This shows that A € M, and thus M is a monotone class. By the monotone class theorem
we have that § C M, and therefore

k(A < 7(A)

for every A € S. Also, ||[N(A)|| < 7(A), and hence N(A) € Pr.(IR").
Note that (n) is uniformly bounded on §. To prove that (ny) is uniformly strongly
additive, observe that if (A4;) C A is a sequence of mutually disjoint sets, then

Ilink(Aj)ll < iu(Aj) < v(T) < oo.

This means that (n;) is strongly additive. Lastly,
sup [[nx(A;)[| < ||M(A;)] < v(4;) =0
keN

as j — o0. .

To prove that N is a multimeasure, we only need to prove that N is punctually
additive. Firstly, since (n) is uniformly strongly additive, for any increasing or decreasing
sequence (A;) C S such that lim;_,., A; = A, we have that

H(N(A),N(4;)) = H(e{nw(A)| k€ N}, eo{nk(4;) | k € IN})
= H(co{ni(A;) + n(A\A;) | k € IN},e0{ni(4;) | k € IN})
< sup |Ing(A\A;)[| — 0
keIN
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as j — oo. Consequently, N(A) = lim;_,., N(A;). For A € A, put
M;={Be A| N(AUB)= N(A)+ N(B),An B = (}.
Then for any increasing or decreasing sequence (B;) C M such that lim;_. B; = B, it

it obvious that BN A = () and

N(BU A) = (UBUA) = lim N(B; U A)

F—r0

= lim N(B;)+ N(4)

= N(B)+ N(A).

This means that B € M, and hence M, is a monotone class. It then follows that for
any A€ Aand Be€ S, with ANB=0, N(AUB)= N(A) + N(B). For B € S, put

M;={AeS| N(AUB)=N(A)+ N(B),An B = (}.
Just like before, we can prove that M, is a monotone class and
N(AUB)= N(A)+ N(B)

for A,Be S with AN B =0.
To prove the uniqueness of N, suppose that N* : § — Py.(IR") is a strong multimea-

sure such that N*(A) = M(A) for all A € A. If we put
Ms={Ae€ A| N(A)= N"(A)},

then A C M3 and M3 is a monotone class. Consequently, S C M3 so that N(A) = N*(A)
forall A € S. |

Theorem 3.2.2 ([67], p41, Theorem 8) If M : A — Pi(IR") is a strong
multimeasure, then there exists a unique strong multimeasure N : S — Pi(IR™) such that

M(A) = N(A) for all A € A.
PrOOF: By Theorem 6 of [67],

M(A) = Mi(A) + My(A),

where 3
M, (A) = Z M(AN By) and M,(A) = nh_)rgo M(ANT\ U, By,
k=1
with {By, By,...} an at most countable set of atoms of M. Hence, by the previous
theorem, there are strong multimeasures Ny : § — Py (IR") and N; : S — Px(IR") such
that
Ml(A) = Nl(A) and MQ(A) = NQ(A),
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respectively. If for all A € § we put
N(A) = N1(A) + N3(A), A€ S,

then N is the required strong multimeasure. 7]

Proposition 3.2.3 Let Y be a Banach space and suppose that the o-algebra S
is countably generated and let p : S — Y be a positive measure. If M : A — Pp(Y) is
a normal multimeasure such that M is p-continuous on A, then M can be extended to a

normal multimeasure N : § — Psp(Y) such that |[N(A)|| < u(A) for all A€ S.

PROOF: Since M is additive and the algebra A is countable, it follows from Theorem
2.4.21 that for all A € A

M(A) = {m(A) | m € Sm}.

Furthermore, by Theorem 2.3.14, it follows that lim,(4)—o [[M(A)|| = 0 so that

lim,4)—o ||m(A)|| = 0 for all m € Sy and A € A. Consequently, each m € Sy is
uniformly continuous on the dense class A and thus may be extended to a uniformly
continuous set function n : § — Y. If, for all A € S, we put

N(A) =Tn(B)| BC 4,B € S},

then again we can prove that

N(A) = {n(A4) | n € Sn}

for A€ S. Clearly N extends M to S.
It only remains to show that N is a normal multimeasure. Put N'(A) = {n(B): B C
A, B € 8} and let (Ax) be a sequence of mutually disjoint sets in S. Then

k=1 k=1 k=n+1 k=T k=n+1

H(N'(fj Ak),iN’(Ak)> = (ZN’ +N’( G Ak)>iN,(Ak)+ f: N’(Ak))

> H(N( ) A) $ N/(Ak))
k=n+1 k=n+1
< IN'( U Ak)||+|| > N'(AW) |l

k=n+1 k=n+1

322 (N, Ag) — 0

k=n+1

as n — o0o. This shows that N’ is a strong multimeasure. By Theorem 2.3.17 it follows
that N is a Ps(Y)-valued normal multimeasure. Lastly, since ||n(A)|| < wu(A) for all
A € 8, we conclude that ||[N(A)|| < u(A). =
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Proposition 3.2.4 Let Y be a separable Banach space and let p: S — Y be a
positive measure. If M : A — Pi(Y) is a p-continuous normal multimeasure, then M
can be extended to a normal multimeasure N : & — Pr(Y) such that |[N(A)|| < u(A)
for every A € S.

PROOF: Since M(A) € Pr(Y) for all A € Aand Y is separable, there is a countable
set {y1,¥2,...} which is dense in M(A). By Theorem 2.4.18 there exists a sequence
(my) C Sy such that my(A) = yi for all A € A and by the convexity of M we have that

M(A) =co{mi(A) | k € IN}
for all A € S. Let n; be the extension of my to & and for every A € & put
N(A) =co{ni(A) | k € IN}.
If we put N'(A) = {nx(A) | kK € IN}, then by Theorem 2.3.17 we only need to show that

N’ is a strong multimeasure. Let (A;) be a sequence of mutually disjoint sets in & and

let A = U2, Ax. Then

H(N’(A),gN'(Ak)) : H(N’(A),éN’(Ak))+ f} [V (Ag)l

k=n+1
— G (N,(A),NI(U Ak)) + Z 'U(N’, Ak) — 0
k=1 k=n+1

as n — oo. Hence N'(A) = 32, N’(A;) and therefore N’ is a strong multimeasure. W

3.3 Extension of transition multimeasures

In this last section of this chapter we suppose that (2,7) is a complete measurable space
and R is a ring of subsets of T'. Let S be the o-ring generated by R and let A : QxS — IR,

be a transition measure.

Theorem 3.3.1 If M : Q x R — Pi.(IR") is a strong transition multimeasure of
bounded variation such that limy, 4)—o M(w,A) = 0 for (w, A) € (2, R), then M can be
extended to a strong transition multimeasure N : Q0 X § — Pr.(IR") of bounded variation
such that limy, 4)—o N(w, A) =0 for (w, A) € (,S5).

PRrROOF: For all A € R, define F(w) = M(w, A) for w € Q. Since F' is a measurable
multifunction, there is a sequence (f;) C S of measurable functions f; : O — IR" such
that

F(w) = {fi(w) | k € N}
for all w € Q (see Theorem 2.2.5). By Theorem 2.4.29 follows that there is a sequence
(mi) C TSy such that fi(w) = my(w, A) for all w € Q, and by the convexity of M follows
that
M(w, A) = eco{my(w,A) | k € N}
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for every (w, A) € @ x R. Furthermore, limy(, 4)—o M (w, A) = 0so that limy(, 4)—0 mk(w, A)
= 0 for all (w, A) € 2 x R. By Proposition 2.4.32(b) we may extend each m to a unique
transition measure ny : ) x § — IR". For all (w, A) € Q x S put

N(w,A) =co{ni(w,A) | k€ IN}.

Since, for all A € §, we have that w — {ng(w, A) | k € IN} is a measurable multifunc-
tion, it follows that N is also a measurable multifunction. Clearly A — N(w,A) is a
Pre(IR™)-valued strong multimeasure.

Theorem 3.3.2 Let Y be a Hausdorff locally convex real vector space and Y' a
separable Fréchet space. If M : Q) x R — Pr(Y) is a weak transition multimeasure of
bounded variation such that limy(,, ay—o M(w,A) =0 for (w,A) € (2, R), then M can be
extended to a weak transition multimeasure N : Q x § — Pir(Y) of bounded variation

such that limy(,, 4)—o N(w, A) =0 for (w, A) € (2,S).
Proor: If, for all A € R, we define F(w) = M(w,A), then F is a measurable

multifunction. Since (£2,7) is complete, it is a Souslin family. Hence (see Theorem 8.4 of
[66]), there is a sequence (fx) C S, of measurable functions fi : @ — Y such that

F(w) =co{fe(w) | k € IN}.

By Proposition 2.4.31 there is a sequence (my) C T'Sy such that fi(w) = my(w, A) for
all w € Q, and hence
M(w, A) = e{my(w, A) | k € V)

for every (w, A) € 2 x R. Again, as before, lim), 4)—0 M (w, A) = 0 so that lim), 4y~ mx(w, A)
=0 for all (w,A) € 2 x R. By Proposition 2.4.32(b) we may extend each my to a unique
transition measure n; :  x § — Y. For all (w, A) € Q x § put

N(w,A) =co{ng(w,A) | k€ IN}.

Since A — N(w, A) is a strong multimeasure, it follows from Theorem 5.1 of [54] that
A+ N(w,A) is a weak multimeasure. E
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CHAPTER 4

INTEGRATION

In the first section of this chapter we give a short outline of the integration of point-
valued functions with respect to a vector measure. The standard reference for this section
is Chapter II of the book of Dinculeanu [27]. The last section deals with the integration
of multifunctions with respect to a multimeasure and we study some of the properties of
the resulting set-valued bilinear integral.

Throughout this chapter we will assume that X, Y and Z are Banach spaces. As
introduced in the previous chapters, 7' will denote a non-empty point set on which no
topological structure is required and R is a ring of subsets of 7. Furthermore, we let
m : R — Y be a measure of finite variation v(m), M(v(m)) is the o-ring of v(m)-
measurable subsets of 7" and X(v(m)) is the é-ring of v(m)-integrable subsets of 7'. The
extensions of m and v(m) to ¥(v(m) will again be denoted by m and v(m), respectively.
Finally, we suppose that there is a bilinear mapping (z,y) — zy of X x Y into Z such
that [|zy | < |l lly | for every (z,y) € X x Y.

4.1 Integration of functions

If U and V are normed linear spaces, then £(U, V') will denote the space of all continuous
linear transformations o : U — V equipped with the norm ||a| = sup{|la(u)] | v €
U, ||lul| £ 1}. We recall that £*(U, V') denotes the space of all linear transformations from
U into V. We also recall that

Sx(R) = {f:T—)XI f= ZkaAk,.’Ek € X, Ax ER}
k=1

and

Ex(vim) ={f : T = X | f =3 zixan, o4 € X, Ax € S(u(m))}.

k=1

Definition 4.1.1 For every f = Y7_, zkxa, € Ex(v(m)) we define the integral
of f with respect to m, denoted by [f(t)m(dt), by

/ F(t) m(dt) = gjj zxm(Ay).
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Remark 4.1.2

(1) The corollary on page 108 of [27] implies that the integral of f with respect to m
depends only on f and not on the way in which f is written as a step function. From the
definition of the integral follows immediately that

[xa(tym(dt) = m(a)

for every A € R. If f = Y7, zrxa, € Ex(v(m)) and if A € 7(R), then it follows that
fxa =Yk TkXana € Ex(v(m)) and in this case we write

[ f@ym(d) = [(Fxa)E)mid).

(i) I f =Y F-; zkxa, € Ex(v(m)), then zx € X and m(Ax) € Y for k=1,2,...,n.
The existence of the bilinear transformation (z,y) — zy from X x Y into Z then implies
that Y7, zxm(Ax) € Z so that [f(t)m(dt) € Z.

(iii) We can take Y C £*(X,Z) and the natural bilinear mapping (z,y) — zy with
(z,y) € X x Y. The general situation of a bilinear mapping zy of X x Y into Z
can always be reduced to this case by identifying an element y € Y with the contin-
uous linear mapping z — zy of X into Z. It then follows that if f € Ex(v(m)) and
m : X(v(m)) = Y C L*(X, Z), then [f(t) m(dt) € Z.

For every f € Ex(v(m)) put
Ni(f) = Na(f,m) = Na(f,o(m) = [IF @)l v(m, de).

It then follows that N; is a semi-norm on the space Ex(v(m)). Furthermore, N; defines
on Ex(v(m)) a topology called the topology of the convergence in mean. Also, if f =

Sro1 Tkxa, € Ex(v(m)), then

I [fom@nl = 1L mm(A0l < 3 faam(ad)]

< kinxku (A
< Z leellom, 40 = [117@)o(m.de) = Ny().

Definition 4.1.3 A function f : T — X is said to be m-integrable if there exists
a Cauchy sequence (f) C Ex(v(m)) which converges to f v(m)-almost everywhere on T'.
The integral of f with respect to m is that element of Z, denoted by [ f(t)m(dt),
defined by

Jr@ym(an = Jim [ fi(t)ym(ab)
We will denote by L% (m) the set of all m-integrable functions f: T — X.
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Remark 4.1.4

(i) As for the simple functions, the integral [ f(t) m(dt) does not depend on the Cauchy
sequence (fi) C Ex(v(m)) (see Proposition 9 on page 119 of [27]). Furthermore, every
step function f € Ex(v(m)) is m-integrable, that is, Ex(v(m)) C Lk (m).

(ii) If f is m-integrable, then f is measurable. Note that if f € Lk (m) and A €
M(v(m)), then fxa € L% (m) and we write

[ f0ym@t) = [(Fxa)@)m(a).

Proposition 4.1.5 ([27], p120, Proposition 2; p122, Proposition 4)
Let f:T — X and g : T — X be two functions.

(a) If f(t) = g(t) v(m)-almost everywhere on T and if f € LY (m), then g € Lk (m)

T / m(dt) / g(t) m(dt).

(8) If £ € Lx(m), then ||f]| € Lx(v(m)) and
| [r@ym@l < [l@llvem, de).

Proposition 4.1.6 ([27], p125, Corollary 2) Iff,g € Lk (m), then [||f(t)—
g(t)|| v(m,dt) = 0 if and only if f(t) = g(t) v(m)-almost everywhere on T. In this case
we have that [f(t)m(dt) = [g(t) m(dt).

Just like for the step function, for every m-integrable function f € £%(m) we put
Ni(f) = Mi(f;m) = Ni(f0(m)) = [I1£@)llem, de).

Then N; is a semi-norm on the linear space L% (m) and the topology defined on L (m)
by N; will again be called the topology of the convergence in mean. From the inequality

| [f@ym@l < [Is@lleem,dt) = N(f)

follows that the mapping ¢ : L% (m) — Z, defined by ¥(f) = [f(t) m(dt), is linear and
continuous for N;. Also, from the inequality | Ni(f) — Ni(g) | < Ni(f — g) we deduce
that N; is also continuous on L% (m).

We say that a sequence (fi) C LY (m) converges in mean to a function f € L} (m) if
Jim Na(fi = ) = Jim [ 1fat) = F©)]|0(m, dt) = 0.

Note that if (fz) converges in mean to f, then limy_., Ni(fx) = Ni(f) because N is
continuous, and limy_,., [ fx(t) m(dt) = [ f(t) m(dt) because the integral is continuous.
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Proposition 4.1.7 ([27], p132, Proposition 16) Let y and v be two pos-
itive measures on the ring R. If p < v, then L (v) C LY (p) and

Jls@lua < [ v

for [ € Lk (v).

Let
NEm)={f:T— X | f(t) =0v(m)—a.eonT}.

Denote the quotient space L (m)/Ng(m) by Q% (m) and let [f] denote the equivalence
classes determined by f € L% (m), that is

[fl={9:T — X | g(t) = f(t) v(m) — a.e on T'}.

Then it follows that if we put ||[f]||s = Ni(f), then || - ||; is a norm on Q% (m) and
(Q%(m), || - |l1) is a Banach space. We denote by LF(v(m)) the space of all v(m)-
measurable functions f : 7' — X for which

Noo(f) =inf{a < oo | ||f?)|| £ a v(m)—a.e} < 0.

Then N is a semi-norm on the linear space L§ (v(m)). It then follows that the quotient
space LF(v(m))/Ng(v(m)), which we denote by Q¥ (v(m)), is a Banach space under
the norm Noo([f]) = Neo(f), where [f] € QF(v(m)) is the equivalence class modulo
N (v(m)) of the function f € LZ(v(m)).

Definition 4.1.8 If p is a real number such that 0 < p < oo, then we denote
by L% (v(m)) the set of all v(m)-measurable functions f : T — X for which ||f||F €
Li(v(m)). For every f € L% (v(m)) we put

M) = ([ 1 IPoom, )’

From the above definition then follows immediately that

Proposition 4.1.9 We have that f € L% (v(m)) if and only if f is v(m)-measurable
and |1 € Lia(o(m).

Proposition 4.1.10 If f : T — X is v(m)-measurable and if there ezxists a
positive function g € Li(v(m)) such that ||f(t)|| < g(t) v(m)-almost everywhere on T,

then f € L% (v(m)).
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PrOOF: First note that ||f|[* is v(m)-measurable and |f||? < g¢?. Since ¢* €
L% (v(m)), it then follows from Proposition 19, page 136 of [27] that || f||” € Lk(v(m));
therefore f € L% (v(m)). &

Proposition 4.1.11 (Hﬁldel‘) Let 1 < p< ooandl < g < oo be two real
numbers such that l - l =1. If f € L% (v(m)) and g € L} (v(m)), then fg € L, (m) and

| [ £®)9@) v(m,at)l < [ 1A @)l o(m,dt) < Np()No(9):

PROOF: Since f and g are v(m)-measurable and the mapping (z,y) — zy is contin-
uous, it follows that fg is also v(m)-measurable. Also, since ||f|| € L&(v(m)) and ||g|| €
L% (v(m)), it follows that || f||||g]| € Lk(v(m)). From the inequality || fg|| < |[f]| |l¢]| we
then deduce that fg € £}(m) and

| [ £@g@yoim,at)ll < [Nt v(m, dt) < Ny(f)Ny(g)-
=

Proposition 4.1.12 (Minkowski, [27], p221, Proposition 11) If1
p < oo and f,g € L% (v(m)), then

Np(f‘*‘ﬂ) 2l Np(f)'*'Np(g)-

IA

The topology induced by the semi-norm N, on L% (v(m)) is called the topology of the

convergence in mean of order p. To say that a sequence (f) C L% (v(m)) converges in
L% (v(m)) to a function f € L% (v(m)) means that

lim N, (fi = f) =0.

The quotient space L% (v(m))/Ng(v(m)) = Q% (v(m)) is a Banach space under the norm
A ll> = No(f), £ € [£] € Qk(v(m)).

Proposition 4.1.13 ([27], p226, Theorem 3; p227, Corollary 1 & 2)

(a) The space L% (v(m)) is complete.

(b) The space Ex(R) is dense in L% (v(m)) and if R is countable and X is separable,
then L% (v(m)) is separable.

To end this section, we now discuss the Radon-Nikodym theorem. But first we will
need the notion of locally integrability and the concept of a measure with the direct sum

property.

Definition 4.1.14 A function f : T — X is said to be locally v(m)-integrable
if for every set A € R the function fx 4 is v(m)-integrable.
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Remark 4.1.15

(i) If m is a vector measure with finite variation v(m), then we say that a function
is locally m-integrable if it is locally v(m)-integrable. It follows immediately that every
v(m)-integrable function is locally v(m)-integrable.

(ii) If a function f is v(m)-measurable and bounded on every set A € R, then f
is locally v(m)-integrable. Conversely, every locally v(m)-integrable function is v(m)-
measurable.

Definition 4.1.16 Let m be a vector measure with finite variation v(m). We
denote by D(v(m)) the set of all families (A;)ier of mutually disjoint v(m)-integrable sets
such that T\ U;er A; is v(m)-negligible and such that for every set A € R there exists a
v(m)-negligible set N C A and an at most countable set J C I with AAN = U;es(ANA;).
We then say that m has the direct sum property if D(v(m)) # 0.

Remark 4.1.17
(i) Every bounded measure has the direct sum property.
(i1)) If T € 7(R), then every measure on R has the direct sum property.

(iii) Let ¢ and v be two measures on R and suppose that v is y-continuous. If y has
the direct sum property, then v has the direct sum property.

Let f be a scalar locally v(m)-integrable function. Then from Proposition 5 on page
122 of [27] follows that the scalar set function v, defined on R by

W(4) = [ f(t)v(m, d)

is a v(m)-continuous measure. Conversely, the Radon-Nikodym theorem states that if m
has the direct sum property, then every m-continuous scalar measure v on R is of the
preceding form.

Theorem 4.1.18 (Radon-Nikodym, [27], p182, Theorem 5) Let

m : R — Y be a measure with finite variation v(m). If m has the direct sum property
and if v is an m-continuous scalar measure on R, then there exists a scalar locally v(m)-
integrable function f, such that

v(A4) = [ £,y v(m, (), A€ R.

Moreover, if T € R, then we can take the function f, to be measurable with respect to the
o-ring generated by R.
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We now discuss the generalized Radon-Nikodym theorem. For the rest of this section
we will suppose that W is a norming subspace of Z’, that is

for every z € Z. But first we need the following:

Theorem 4.1.19 ([27], p263, Theorem 4) Let m : R — L(X,Z) be a
measure with finite variation v(m). If m has the direct sum property, then there exists a

function Uy, : T — L(X,W') such that
(a) ||Un(t)]] = 1 v(m)-almost everywhere on T';

(b) (Upnf,w) is v(m)-integrable and

(frwym(an,w) = [ Un®1(2),0) v(m,a)
for f € L% (m) and w € W;
(c) Un(t) € L(X,Z) for everyt €T if Z =W".

Remark 4.1.20

(i) In the proof of the above theorem the function U, is defined in such a way that
for every z € X and for every w € W, the function ¢,,, : T — IR, defined by ¢, (t) =
(Un(t)z,w), is locally v(m)-integrable. Remark 4.1.4(ii) then implies that ¢, ., x4 is v(m)-
measurable for every A € R so that ¢, ,, is also v(m)-measurable.

(ii) Since U, (t) € L(X, Z) it Z = W', it follows that U,, is W-weakly v(m)-measurable.
Furthermore, if W', and hence Z, is separable, then U, is simply v(m)-measurable.
If f:T — X is v(m)-measurable, then the function ¢ : 7" — W' = Z defined by
g(t) = Un(t) f(t) is v(m)- measurable. Furthermore, since

[Un@)FOI < NUn@OINFON = IIf@] v(m)—a.eonT,

it follows that U, f € L}, (m) whenever f € L% (m) (from Propositions 4.1.9 and 4.1.10).
Consequently, if f € L% (m), then for every w € W we have that ([f(¢) m(dt),w) =
JWUn(t) f(t),w) v(m,dt) = (fUn(t)f(t) v(m,dt), w) so that

[1@ym(d) = [Un®) 1) v(m, db).

(iii) If there exists a countable set H C L£(X, W’) such that U, (t) € H v(m)-almost
everywhere (in particular, if £(X, W’) is separable), then U, is v(m)-measurable (from
Proposition 24 on page 106 of [27]). In this case, if we put Y = L(X,W’), then U,, €
LY (v(m)) and

[1@midt) = [Un()£(2) v, dt)
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for f € L(v(m)). In particular, if we put f = x4, then

/U v(m,dt), A € S(v(m)).

We now state the generalized Radon-Nikodym theorem.

Theorem 4.1.21 ([27], pP269, Theorem 5) Let v be a scalar measure on
R and m : R — L(X,Z) a measure with finite variation v(m). If v has the direct sum
property and if m is v-continuous, then there exists a function Vi, : T — L(X,W') such
that

(a) ||Vl is locally v-integrable and
[1@elm,dt) = [IVa®Il @) o0, dt)

for f € Lig(v(m));
(b) (Vi f,w) is v-integrable and

(fr@ymn,w) = [Va(®)1(0),0) v(a)

for f € L (v(m)) and w € W;

(c) Vin(t) € L(X,Z) for everyt €T if Z =W'.

Remark 4.1.22

(i) If W .= Z and W', and thus Z, is separable, then for every f € L% (v(m)) the
function ¢ : ' — W' = Z, defined by g¢(t) = V,.(t) f(t), is v-integrable and

J1@ymat) = [Va)£(t)v(at

(ii) If there exists a countable set H C £(X, W') with V,,(t) € H v-almost everywhere
(in particular, if £(X, W’) is separable), then V,, is v-measurable and

/ m(dt) /v ), f€ Lk(v(m)).

In particular, V,, is locally v-integrable and m(A) = [, V. (t) v(dt), A € X(v(m)).
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Theorem 4.1.23 ([27], p282, Corollary 1) Let X' be separable and let
m : R — Y be a measure with finite variation v(m). If m has the direct sum property,
then the conjugate space of L% (v(m)), 1 <p< oo, is isomorphic and isometric to the space

Q%/(v(m)), ;+; =1

Corollary 4.1.24 ([27], p282, Corollary 2) Let X be a separable and re-
flezive Banach space and let 1 <p<oo. If m: R — Y is a measure with finite variation
v(m) and m has the direct sum property, then Q% (v(m)) is reflezive.

Corollary 4.1.25 ([27], p282, Corollary 3) Let1<p<oo and 1<g<oo
be such that ;1.7+ % =1. Ifm:R — Y is a measure with finite variation v(m) and m has
the direct sum property, then

(Q@r(v(m))) = QE(v(m))

and

(Q@r(v(m)))' = Qr(v(m)) and (QR(v(m)))' = Qr(v(m)).

4.2 Integration of multifunctions

In this section we define and investigate some of the properties of the bilinear integral of
a multifunction with respect to a multimeasure.

Unless otherwise stated, M : R — P(Y) will be a multimeasure of bounded variation
v(M). We will assume that Sy # 0. Indeed, by Theorem 2.5 of [39] follows that this will

be the case if M is a closed-valued strong multimeasure of bounded variation.

Definition 4.2.1 If1 < p < oo, then a multifunction F : T — Po(X) is said to
be p-integrably bounded if there exists a k € L'(v(M)) such that

|F(t)|| < k v(M)—almost everywhere on T.

If F : T — Po(X) is I-integrably bounded by k € Li(v(M)), then we say that F is
integrably bounded by k.

Let F : T — Po(X) be a multifunction and suppose that 1 < p < co. Then we denote
by S%(v(m)) the set of all selectors of F' which belong to £% (v(m)), that is,

Sk(v(m)) ={f € Lx(v(m)) | f € SF}.

It follows that if S%(v(m)) is nonempty and if F' is closed-valued, then S%(v(m)) is a
closed subset of L% (v(m)). Obviously, Sp(v(m)) denotes the set of all v(m)-integrable
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selectors of F'.

We now discuss some results (that we will need in the sequel) about the set ST(v(m)).
The first result is due to Hiai and Umegaki [40, Lemma 1.1 and Corollary 1.2], while the
second result concerns the weak compactness of S}(m). This result was first given by
Castaing [15], modified by Hiai and Umegaki in [40] and later on generalized by Papageor-
giou [54]. We include the proof for completeness. The last result characterizes Sg(v(m))
in terms of decomposability.

Proposition 4.2.2 Let F,F; : T — Pui(X),i = 1,2, be v(m)-measurable multi-
functions such that St.(v(m)) and Sg.(v(m)),i = 1,2, are nonempty for 1 < p < oc.

(a) Then there exists a sequence (fi) C Sh(v(m)) such that F(t) = {fx(t) | k € IN}

v(m)-almost everywhere on T.
(b) If St (v(m)) = SE, (v(m)), then Fi(t) = Fy(t) v(m)-almost everywhere on T

PRrROOF: (a) By Theorem 2.2.5 we obtain a sequence (g;) of v(m)-measurable functions
such that

F(t) ={g;(t) | 1 € IN}

for every t € T. Let {Ay, As,...,A,,...} be a countable measurable partition of 7' such
that v(m, A,) < co. If f € L% (v(m)), then we define for j,l,n € IN

Bjm ={teT|1-1 < |lg;(H)ll < }NA,

and
G XB;in9; T XT\BJ‘znf'

If we put fi = fjin, then (fi) is the desired sequence.
(b) This follows from (a). B

Before we proceed to prove our second result about S%(v(m)), we need the following:

Proposition 4.2.3 ([51], p105, Lemma 10.11) Let X be a Banach

space and suppose that F' : T' — Py.(X) is a v(m)-measurable multifunction. Then, for
every ' € X', the function o(z', F(-)) : T — IR is m-integrable.

Proor: We first show that the function o(z’, F(-)) is v(m)-measurable for each
z' € X'. So let a € IR and define

As={g e X | (2,2) <a} and B,=Yr e X | (z,2)>a}.

Then A, and B, are closed subsets of X and the sets {t € T'| F(¢t)N A, # 0},
{teT| Ft)NnB, #0},{t €T | Ft)NA, =0} and {t € T | F(t)N B, = 0} are all
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v(m)-measurable subsets of T'. If we let a € IR, then it follows that the set

Cla) = {teT| o, F(t))= o}

= {teT| F(t)mA(,#(Z)}n(ﬁ{teT] F(t)Nn B, 1_(2)}>

n(Neerirons. :10})

is v(m)-measurable. Consequently, the set
{teT|o(@,Fit))<a}=({teT| Ft)NA, #0}n{teT | F(t)Nn B, =0})\C(«)

is also v(m)-measurable; hence the function o(z’, F(-)) is v(m)-measurable.

To prove the integrability of o(z’, F(-)), note that since F' is integrably bounded by &
(say), there exists a v(m)-negligible set N C T such that ||F(t)|| < k(t) for all t € T\ N.
It then follows that for any ¢t € T\ N and = € F(t) we have that

lo(2, F(-))| < [(@,2)] < [|2[Ik(?)
v(m)-almost everywhere on T'. This proves that o(z’, F(-)) € L (v(m)). =

Proposition 4.2.4 ([54], p187, Proposition 3.1) Let X' be a separable
Banach space and suppose that the measure m : ¥(v(m)) — Y has the direct sum property.
If F : T — Pyre(X) is an integrably bounded v(m)-measurable multifunction, then St(m)
is a non-empty, convexr and w(Q%(m), Q% (m))-compact subset of Q% (m).

PROOF: By the integrably boundedness of F', there exists a k € LR(v(m)) such
that ||F(t)|| < k v(m)-almost everywhere on T'. Corollary 2.2.3 then provides F' with a
v(m)-measurable selector f : T'— X. Since ||f(t)|| < k(t) v(m)-almost everywhere on T,
Proposition 4.1.10 implies that f € £} (m) so that Sj(m) # 0. Furthermore, note that
by Corollary 1.6 of [40] follows that S}(m) is convex.

To show that S}(m) is w(Q% (m), Q% (m))-compact, first observe that since Sg(m) is
closed in Q% (m), it follows that it is also weakly closed and bounded. By Theorem 4.1.23
we have that (Q%(m)) = Q%.(m). If we let 2’ € Q%,(m), then

sup (2, f(t)) = sup [(a', f(t))v(m,dt)

f€SL(m) feSE(m)
= [ o, F(t)) v(m, ),
where the last equality follows from Theorem 2.2 of [40]. Define

H(t)={z € F(t)]| (2',z) = o(a’, F())}.

Then since F(t) € Pykc(X) it follows immediately that H(¢) is non-empty. To show
that H is v(m)-measurable, note that Gry = {(t,z) € T x X | (2/,z) — o(a’, F(t)) =
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0} N Grg. Since the function (¢,z) — (2',z) — o(a’, F(t)) is jointly measurable and
Grr € S(M(v(m)) x Bx), we have that Grg € S(M(v(m)) x Bx). Applying Theorem
2.2.8 we obtain a v(m)-measurable function h : ' — X such that h(t) € H(t) v(m)-almost
everywhere on T'. Consequently, h € S}(m) and

sup (', (1)) = [ (&, h(t)) v(m, dt) = (=, h(1)).

feSkL(m)

Since 2’ € Q% (m) was arbitrary we conclude that every element of (Q%(m)) = Lgi(m)
attains its supremum on Sk(m), and by James’ theorem it follows that SE(m) is weakly
compact in Q% (m). 2]

Let K be a set of v(m)-measurable functions f : 7' — X. Then we say that K is
decomposable if f,g € K and A € E(v(m)) imply that fxa + gxr\a € K. It then follows
easily that if K is decomposable, then Y-" ; fixa, € K for each finite measurable partition
{4, A ol Tand fiec K,1=1,2,:..,n

Proposition 4.2.5 ([40], p158, Theorem 3.1) Let K be a nonempty closed
subset of L% (v(m)), with 1 < p < co. Then K is decomposable if and only if there exists
a v(m)-measurable multifunction F : T — Py(X) such that K = S(v(m)).

Definition 4.2.6 If M : R — P(Y) is a multimeasure and F : T — Po(X) is
a multifunction, then for every set A € M(v(M)) we define the integral of F with
respect to M, denoted by [, F'(t) M(dt), by the equality

/A F(t)M(dt) = { /A FOm(dt) | T € Shim), me SM}.

We note that the integral of F' with respect to M will always exist, even if F'is not
v(M)-measurable. Moreover, if S;(m) = 0 for all m € Sy, then [, F(t)M(dt) = 0. Also,
if v(M,A) =0 for A € M(v(M)) and Sp(m) # 0 for m € Sy, then [, F(¢)M(dt) = {0}.

Example 4.2.7

Let T' = [0,1], ¥ is the Lebesgue o-algebra of subsets of T" and X is the Lebesgue
measure on X. Define F': T'— IR by F(t)=[0,1] and M : ¥ — IR by M(A) = [0,00). If
we define m : ¥ — IR by m(A) = x4, then m € Sy and [, F(t) M(dt) = [0, 00).

Theorem 4.2.8 If X is a separable Banach space, M : R — P;(Y) is a strong
multimeasure of bounded variation v(M) and if F : T — Py(X) is an integrably bounded
v(M)-measurable multifunction, then [, F(t)M(dt) # 0 for every A € M(v(M)).
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PRrROOF: From Theorem 2.5 of [39] we obtain a selector m : R — Y of M. From the
first part of the proof of Proposition 4.2.4 we deduce that S(m) # 0 for every m € Sy;
therefore [, F(t)M(dt) # 0 for every A € M(v(M)). ]

The proof of the next theorem is identical to Theorem 10.5 on page 99 of [51] and so
will be omitted.

Theorem 4.2.9 Let X be a separable Banach space, M : R — P;(Y) a strong
multimeasure of bounded variation and let F' : T — Po(X) be a p-integrably bounded
multifunction such that Grp € S(M(v(M)) x S(Bx)).

(a) If T' is a countable union of sets of R and if the bounding function k belongs to
Ly (v(M)), then [, F(t)M(dt) # 0 for every A € M(v(M)).

(b) If T € R and if the bounding function k belongs to Lx(v(M)), 1 < p < oo, then
Lo F(t)M(dt) # 0 for every A € M(v(M)).

In our next two results we list some useful properties of the bilinear integral of a
multifunction F' with respect to a multimeasure M. The first theorem is the set-valued
version of the results of [27] on page 109. The second result shows that if /" and M are
both positive, then the integral of ' with respect to M will also be positive, and vice versa.

If X,Y and Z are Banach lattices, then we denote by X, Y, and Z, the positive
cones of X, Y and Z respectively.

Theorem 4.2.10 Suppose that X, Y and Z are Banach lattices, let M : $(v(M)) —
P(Y) be a multimeasure of bounded variation v(M) and let F : T — Po(X) be an inte-

grably bounded v(M)-measurable multifunction.

(a) IfY = L(X,Z) and if M(A) C Yy forall A € X(v(M)), then for all A € X(v(M))
the mapping F' — [, F(t) M(dt) of T into Z is increasing.

(b) If M(A) C Y, for all A € X(v(M)) and if F(t) C Xy v(M)-almost everywhere
onT, then

/E F(t) M(dt) C /F F(t) M(dt),
forall E,F € X(v(M)) with EC F.

(¢) If N : £(v(N)) — P(Y) is a multimeasure of bounded variation v(N) such that
M(A) € N(A) for all A € E(v(N)) and if F(t) C Xy v(N)-almost everywhere
onT, then

/A F(t) M(dt) C /A F(t) N(db).
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(d) For all A € X(v(M)) we have that

| [ Py M@ < [ IF@le(d, db).

Theorem 4.2.11 Suppose that X, Y and Z are Banach lattices, let M : X(v(M)) —
Po(Y) be a multimeasure of bounded variation v(M) and let F' : T — Po(X) be an in-
tegrably bounded v(M)-measurable multifunction. If Y = L(X,Z), M(A) C Yy for all
A€ X(v(M)) and if F(t) C X4 v(M)-almost everywhere on T, then [, F(t) M(dt) C Z,..
Conversely, if X = L(Y,Z), M(A) CYy forall A€ X(v(M)) and if [, F(t) M(dt) C Z,,
then F(t) C Xy v(M)-almost everywhere on T'.

PRrROOF: Let M(A) C Yy for all A € X(v(M)) and let F(t) C X} v(M)-almost
everywhere on T'. From

M(A) = {m(A) | m € Su},

follows that (y’,m(A)) > 0 for every y' € Y and m € Sy. Consequently, for y' € Y/,
m € Sy and f € SE(m) we have that

@, [ f@ymid) = [ 1) m(d) 2 0

so that [, F((t) M(dt) C Z,.
Conversely, by Proposition 4.2.2(a) we obtain a sequence (f;) C Sk(v(M)) such that

F(t) ={fi(t) | k€ N}

v(M)-almost everywhere on 7'. Since [, F'(t) M(dt) C Z,, it then follows that [, fi(t) m(dt) €
Zy for all m € Sy and k € IN. Consequently, for all 2’ € Z), and all A € X(v(M)),

0< (z /A fk(t)m(dt)> % /A () fu(t)) m(dt).

Since m(A) € M(A) C Y, it then follows that 0 < (2/, fx(¢)) and hence fi(t) € X for
each k € IN. We then conclude that F'(t) C X, v(M)-almost everywhere on 7. I

The next theorem shows that the bilinear integral of a multifunction with respect to
a multimeasure is in fact a multimeasure.

Theorem 4.2.12 Let M : R — P;(Y) be a strong multimeasure of bounded
variation v(M) and let F': T — P;(X) be an integrably bounded v(M )-measurable multi-
function. If for each A € X(v(M)) we define N(A) = [, F(t)M(dt), then N : X(v(M)) —

P(Z) is a strong multimeasure of bounded variation.
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PRroOOF: We first show that N is of bounded variation. So let (Ax) C 7' be a sequence
of mutually disjoint sets of ¥(v(M)). From

NI <1, FOMEI< [ IF@) o, o),

follows immediately that /V is indeed of bounded variation.
To show that N is a strong multimeasure, let (Ay) be a sequence of mutually disjoint
sets in X(v(M)) and let A = U32; Ax. Then we need to prove that

(oo

N(A) =Y N(Ag).

k=1

For this purpose, let z; € N(Ay) for k € IN. Then there exist sequences (my) C Sy and
(fx) € Sg(ms) such that z, = [, fi(t) mr(dt) for k € IN. Define f : T — X by

[ fult) ifteA
ﬂ”‘{ﬁmineTQ

and m : X(v(m)) = Y by
m = XA, M1 -+ XA + ...+ XT\U::llAim"’

where xami(B) = mg(AN B) for k =1,2,...,n. By the decomposability of Sg and Sy
we then have that f € Sk(m) and m € Sy, respectively. Consequently, for 2/ € Z', we
have that

=(4Lhmﬂﬂm&0a(ﬁAﬂQMﬁD

as n — oo. This means that the series Y 32, z; converges weakly to z = [, f(t)m(dt)
and a similar property holds for every subseries of Y32, zx. By the Orlicz-Pettis theorem
follows that the series )72, 2z converges unconditionally to z € N(A). This means that
the series )22, N(Ax) is unconditionally convergent and is contained in N(A).

To prove the inverse inclusion, let z € N(A) with A € ¥(v(M)). Then z = [, f(t)m(dt)
for some m € Sy and f € Sp(m). Then, as before, the series Y22, [, f(t) m(dt) con-
verges to z. This shows that z € ¥32, N(Ay), which concludes the proof. 7

We have seen from the previous theorem that if N(A) = [, F/(t) M(dt), where M is a
closed-valued multimeasure of bounded variation v(M) and F' is an integrably bounded
v(M)-measurable multifunction with closed values, then N is a multimeasure. We now
investigate the relationship between Sy, the selectors of M, and Sy, the selectors of N.
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Proposition 4.2.13 Let M : S(v(M)) — Pi(Y) be a strong multimeasure of
bounded variation v(M), let F : T — Pr(X) be an integrably bounded v(M)-measurable
maultifunction and for each A € X(v(M)) let N(A) = [, F(t)M(dt).

(a) If m € Sy and f € SE(m), then the measure defined by n(A) = [, f(t)m(dt) is

a selector of N.

(b) If n € Sy, then there exist an m € Sy and an f € Sp(m) such that n(A) =
4 £(t) m(dt), A € Z(v(M)).

PROOF: (a) Let m € Sy (which exists by Theorem 2.5 of [39]) and let f € Sj(m)
(whose existence is guaranteed by Theorem 4.2.4). Then the measure n : £(v(m)) — Y
defined by n(A) = [, f(t) m(dt) is clearly a selector of N.

(b) Since N is a compact-valued strong multimeasure of bounded variation (by The-
orem 4.2.12), it follows from Theorem 2.5 of [39] that Sy # 0. Let n € Sy. From
Theorem 1 of [34] follows that N(A) = {n(A) | n € Sy}. But Theorem 4.2.4 im-
plies that [, F'(¢t) M(dt) # 0, that is, there exist an m € Sy and an f € SE(m) such
that [, f(t)m(dt) € [, F(t)M(dt) = N(A). Consequently, if n € Sy, then n(A) =
Ja f(@)m(dt), A € T(v(M)). L

Let ca(Y') denote the space of all Y-valued measures on X(v(m)). We now discuss the
topology of pointwise weak convergence on ca(Y'). If we consider Eg(v(m)) ® Y’, then
Er(v(m)) ® Y and ca(Y) can be put into duality as follows:

(m,y) = (m, Z X4 ® yL) = an(yk,m(Ak)),

k=1 F=1

where {A4,..., A,} is a finite v(m)-measurable partition of T and y;, € Y, k = 1,2,...,n.
Then it follows that the topology of pointwise weak convergence on ca(Y') is in fact the

w(ca(Y),Er(v(m)) ® Y’')-topology.

Theorem 4.2.14 Suppose that X is a separable Banach space and Z is
finite-dimensional. Let M : Y(v(M)) — Pu(Y) be a strong multimeasure of bound-
ed variation v(M) and suppose that F : T — Pup(X) is an integrably bounded v(M)-
measurable multifunction. If for each A € L(v(M)) we define N(A) = [, F(t)M(dt),
then N : X(v(M)) — Puir(Z) is a strong multimeasure of bounded variation.

PRrROOF: The fact that N is of bounded variation follows just like before. To show
that N is closed-valued, let ([, fi(t) mi(dt)) € N(A) for A € E(v(M)), where (mi) C Sy
and (fx) C SE(mg). Since Sy is w(ca(Y), Er(v(m)) ® Y')-compact and since Sk(my) is
weakly compact in L (v(m)), there exist sequences (m,) C (my) and (fx;) € (fx) such
that my, —* m € Sy and fi, =" f € Sg(m). Then, for each p € Z, we have

I (7, [, 5O ms, (@) = (b, [ fO)m(at))
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< 1 (. [ fis®ym(@) - (o /fk o ) +
[ (p,/Afk,»( ) ( (dt)) I
(

so that (p, [y fis (s, (d)) = (p, [ F(OYm(dt)) as § — co.
We will now make use of Theorem 2.3.21 in order to show that /V is a strong multimea-

sure. Let A, B € X(v(M)) with AN B = (). To prove that N(AUB) = N(A)+ N(B), we
only need to show that N(A)+N(B) C N(AUB) because the inverse inclusion follows from
the definition of N. So, if z € N(A) + N(B), then z = [, fimi(dt) + [g fama(dt), where
fi € Sk(m;) and m; € Sy, for i = 1,2. Put f = xafi + xBfe and m = xam1 + xpma.
Then f € Sp(m) and m € Sy because both Sp and Sys are decomposable, and therefore
z= [4ugfdm € N(AU B).

Finally, let (Ax) be an increasing sequence in ¥ (v(M)) and put A = U2, Ax. Then

H(N(A), N(Ax)) = H(N(Ax) + N(A\Ax), N(Ar))
< [IN(A\A

< o TE@ 1 o(M,dt) — 0

as k — oo. This shows that /V is indeed a strong multimeasure. '

We now investigate the convexity of [, F'(t) M(dt). In particular, we will see that if
Z is finite dimensional, then [, F'(t) M(dt) is convex. The convexity fails in the infinite
dimensional case; in fact, as it turns out, the closure of the integral will be convex (see
Example 4.2.16 and Theorem 4.2.17 below). For results on the convexity of the integral
of a multifunction with respect to a vector measure, see [13], [40] and [7]. Central to our
proofs is the Lyapunov convexity theorem.

Theorem 4.2.15 Suppose that X is a separable Banach space and Z is
finite-dimensional. If M : Y(v(M)) — Ps(Y) is a non-atomic strong multimeasure of
bounded variation v(M) and F : T — P,s(X) is an integrably bounded v(M)-measurable
maultifunction, then [, F'(t) M(dt) is a convez set for each A € ¥(v(M)).

Proor: If for A € X(v(M)) we put N(A) = [, F'(t) M(dt), then from Theorem
4.2 of [4] follows that we only need to show that N is a bounded non-atomic strong
multimeasure. The fact that N is a strong multimeasure of bounded variation follows
from Theorem 4.2.12. Therefore it only remains to show that N is non-atomic. For this
purpose, if m € Sy, let f € SE(m) and define the set functions n : ¥(v(m)) — Z and
v:Y(v(M)) — IRy by

= [ feym(at) and v(a) = [ |F(0)]lv(M,dt)
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for each A € X(v(M)), respectively. By Proposition 4.2.13(a) we have that n € Sy, and
v is v(M)-continuous. We now proceed by showing that n is v-continuous, because then
N will be v(M)-continuous, and hence non-atomic (by Proposition 2.4.5). Indeed, let
A € Y(v(M)) and let {A; : j € J} be an arbitrary finite partition of A into mutually
disjoint sets A; € X(v(M)). Then

i)l = LI [, feym(@)]

Jj€J JEJ

< [, hrelo, d)

Jj€J
= > v(A;)
JjEJ

= -v(A)

Then, since v(n, A) = sup; Y ;cs |In(A;)||, it follows that v(n) < v and consequently n
is v-continuous; therefore n is v(M)-continuous. But from N(A) = {n(A) | n € Sy}
follows immediately that N is v(M)-continuous.

Example 4.2.16

(1) The following example shows that Theorem 4.2.15 fails if Z is infinite-dimensional:
Let T'= [0, 1], ¥ is the Lebesgue o-algebra of subsets of 7' and X is the Lebesgue measure
on ¥. Put Z = LL(T,%,)) and define FF : T — IR by F(¢t) = {0,1} and M : ¥ —
Lg(T,2,)\) by M(A) = {xa}. Then

/AF(t) M(dt) = {/A F(t)m(dt) | m € SM} R R E Sl =, 1)

which is not convex.

(ii) The following example shows that Theorem 4.2.15 fails if the multimeasure M is
atomic: Let 7' = {to} and ¥ = {0,T}. Define F': T — IR by F(t) = {0,1} and M :
¥ — IRby M(0) = {0} and M(T) = {1}. Then M is atomic and [, F'(¢t) M(dt) = {0,1},

which is not convex.

Theorem 4.2.17 Suppose that X and Z are separable Banach spaces. If
M : X(v(M)) — P¢(Y) is a non-atomic strong multimeasure of bounded variation v(M)
and F : T — Py X) is an integrably bounded v(M)-measurable multifunction, then
J4 F(t) M(dt) is a convex subset of Z for each A € X(v(M)).

PROOF: Let 21,25 € [, F(t) M(dt) for A € X(v(M)), let € > 0 and let o € [0,1].
Then we need to establish the existence of an m € Sy and an f € S}(m) such that

[ ¢ e /Af(t)m(dt)|| <e
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Since z1, 23 € [, F(t) M(dt), there exist m; € Sy and f; € SE(m;), ¢ = 1,2, such that
€ ¢
e = [ i@y ma(d)] < 5 and flea = [ fa(t) ma(dt)] < 5.
Define the set functions n; : ¥(v(M)) — Z (2 = 1,2) by
AN Bt = 3.
ni(4) = [ fi(t)mide), i

In the same way as in the proof of the previous theorem we can prove that each n; is
a non-atomic measure. Consider now the Banach space Z x Z with norm defined by

[(z1, z2)|| = v/||z1]|? + ||z2]|?> and define the set function n : ¥(v(M)) — Z x Z by
n(4) = (m(A), ma(A) = ([ fi(0)ma(dt), [ oy ma(d) ).

Then n is a non-atomic measure with finite variation. Indeed, suppose, on the contrary
that F is a atom for n. Then, for all E' C E, E' € ¥(A,v(m)), we have that either
n(E') = 0 or n(E\E') = 0. This in turn implies that either n{(E’) = 0 = ny(E’) or
ni(E\E') = 0 = ny(F\E'), contradicting the fact that both n; and n, is nonatomic.
From the Lyapunov convexity theorem, it follows that the closure of the range R(n) of n
is convex in Z x Z. Consequently, if A € X(v(M)), then

an(A) + (1 — a)n(0) = an(A) € R(n).
This means that there exists a set A, C A such that
fan(A) ~ n(A)] < & and (1 - a)n(4) ~ n(A\A] <
that is A
lo [ iy miCat) = [ ity matan)] < g
and
1) [ f@mitdn) = [ fiymi(dn)] < 3

~for i = 1,2. If we put

f = fixas + faxm\a., and m = x4,m1 + XT\AaT2,

then m € Sy, f € SE(m) and m(A) = my(As) + ma(A\A,) for all A € E(v(M)). The
result then follows from the fact that

oz + (1~ @)za — [ f(ym(a)]
< oz —a [ f@m@)l +lla [ fi@)midt) - [ @) m@)+
1= 0z = (1 =) [ O mad)| +1(1 =) [ O maldt) = [ oty mala)]

5 6+6+(1 )6+€
— — — = ===
271 b Al e
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Theorem 4.2.18 Let T be a countable union of sets of the ring R and suppose
that Y = Z is a separable reflexive Banach space. If F : T — Py (IR") is an integrably
bounded v( M )-measurable multifunction and M : X(v(M)) — Purc(Y) is a multimeasure
of bounded variation v(M), then for each A € X(v(M)) the set [, F(t) M(dt) is a convex
and w(Y,Y")-compact subset of Y.

PRrROOF: Obviously, for each A € X(v(M)), [, F(t)M(dt) is convex. Further-
more, note that [, F'(¢) M(dt) is of bounded variation and thus bounded. To show that
J4 F(t) M(dt) is a weakly compact subset of Y, let ([, fr(t) mi(dt)) C [, F(t) M(dt) for
all A€ X(v(M)), (mi) C Sy and (f) C Sg(my). Since Sy is compact for the topology
of simple weak pointwise convergence, there exists a sequence (my;) C (my) such that
mi, —* m € Sy. Also, since for each m € Sy, the set S}(m) is compact in Q. (v(m)),
there exists a sequence (fx;) C (fi) such that fi; —* f € Sg(m). Then, if y € Y, the

result then follows from
[ e @me (@) = (v, [ f@yman) |

(v
< (o [ fe@m@n) = (v, [ fi@ym (@) 11+
(o[ ) - o i)

In [4] Artstein discussed Radon-Nikodym derivatives of multimeasures whose values
are convex sets in IR™ while Castaing [12] and Godet-Thobie [35] gave Radon-Nikodym
theorems for multimeasures with compact and convex values in a locally convex topolog-
ical space. Note that Theorem 9.1 on page 120 in [4] has been shown in [22, pp. 305, 308]
to be false. Costé [18] and Hiai [39] discussed Radon-Nikodym theorems for multimeasures
whose values are closed, bounded and convex sets in a separable Banach space. Papageor-
giou [57] proved two set-valued Radon-Nikodym theorems for transition multimeasures,
and the results were recently ([58]) extended to the case where the dominating control
measure is a transition measure. We now continue by establishing Radon-Nikodym-type
theorems for our bilinear set-valued integral. In our first result the range spaces of the
multimeasure and multifunction are finite-dimensional while in the results thereafter we
take the range spaces to be arbitrary Banach spaces.

Theorem 4.2.19 (Radon-Nikod)'rm) Let T' be a countable union of sets of
the ring R, p is a scalar measure on R and let M : X(v(M)) — Pr.(IR") be a multimeasure
of bounded variation v(M). If M is p-continuous on R, then there exists an integrably
bounded v(M )-measurable multifunction F': T — Pr.(IR™) such that

M(4) = [ F(t)u(dt)
for each A € L(v(M)).

87



PRrROOF: From Theorem 2.4.16 follows that
M(A) = {m(A)| m € Su}

for all A € R. This means that every m € Sy is p-continuous on R. Since p has the
direct sum property, from Theorem 4.1.18 follows that for each m € Sy; there exists a
locally p-integrable function f,, : T — IR™ such that

/fm (dt), AcR.

Put
K = {fmxa € Lgn(1) | A€ R,m € Su}.

We first show that K is a closed subset of Lja(p). So let fi,,xa € K and let f be
such that f,,xa — f in Lh.(p). Since Sy is compact for the topology of pointwise
convergence, there exists an m’ € Sys such that my(A) — m/(A) for all A € R. But

lim [(Fxa) (@) p(dt) = Jim [ f,(2)

k—o0 k—oco

= [ fu(t) ()
= [Umxa)(®) (@)

so that f = fouxa € K.

Evidently, K is convex, and by Proposition 4.2.5 there exists an integrably bounded
p-measurable multifunction F' : 7' — Pg.(IR™) such that K = S}(p). Then, for each
AeR,

M(A) = {m(A) | me Su} = {[ fult)u(dt)| me SM}

(frxa)(t) p(dt) | fxa € K}

{
{

= {[ O utat) | 1 € Sh)}
RS

Corollary 4.2.20 Under the hypotheses of Theorem 4.2.19 follows that there ez-
ists a unique integrably bounded v(M )-measurable multifunction F' : T — Pr.(IR") such

that
= [ () u(at
for each A € X(v(M)).
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PRrROOF: Let G : T — Pr(IR") be a multifunction such that M(A) = [, G(t) p(dt)
for each A € £(v(M)). Define ¢ : Sy — Sg(p) by

Then it follows that ¢ is a linear isometric bijection and

SE(k) = ¢(Sm) = S&(p).

From Proposition 4.2.2(b) follows then that F(t) = G(t) v(M )-almost everywhere on
iy =

Corollary 4.2.21 Let T be a countable union of sets of the ring R and let p be
a scalar measure on R. If M : £(v(M)) — Pr.(IR") is a p-continuous multimeasure of
bounded variation v(M), then

S = { 1000 1 € 5} M(at) = FOutat)}.

PrROOF: Let m € Spy. Then for all A € X(v(M)) we have that m(A) € M(A)
so that m is also p-continuous. From Theorem 4.1.18 we obtain an f € Lj(p) such
that m(A) = [, f(t) p(dt) for every A € ¥(u). Then [, f(t) pu(dt) € [, F(t) p(dt) for all
A € X(u). This shows that f € S}(x) and consequently

{/f u(dt) | f € Sh(u), wﬂ:FmMﬁﬁ.

For the inverse inclusion, let f € S}(u) and consider m(A) = [, f(t) u(dt), A € L(u).
Then Proposition 4.2.12(a) implies that m € Sy, and

{/ F(t) u(dt) | f € Sh(u), M(dt) = F(t)p(dt)} e
B

Corollary 4.2.22 Let T be a countable union of sets of the ring R, p is a scalar
measure on R and for v = 1,2 let M; : ¥(v(M;)) — Pr.(IR") be a p-continuous multi-
measure of bounded variation v(M;). If Mi(A) C My(A) for every A € X(v(M;)), then
for v = 1,2 there exists an integrably bounded v(M;)-measurable multifunction F; : T —
Prc(IR") such that Fy(t) C Fy(t).

PrROOF: From Theorem 4.2.19 we obtain an integrably bounded v(M;)-measurable
multifunction F; : T' — Py (IR™) such that

:/Aﬂ(t)u(dt),i =13
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Since M;(A) C My(A) for every A € X(v(My)), it follows that o(p, M1(A)) < o(p, Ma(A))
for p € IR™. Consequently, for p € IR",

/Aa(p,Fl( /F1 (1)) < o(p /Fz u(dt)) = /a(p,Fg(t)),u(dt)
and we deduce that o(p, Fi(t)) < o(p, Fa(t)). Since both F; and F, are convex and
compact-valued, it then follows that Fi(t) C Fa(t). &

Corollary 4.2.23 Let T be a countable union of sets of the ring R and p is a non-
atomic scalar measure on R. If M : ¥(v(M)) — Pr.(IR") is a p-continuous multimeasure
of bounded variation v(M), then there ezists a strong multimeasure N : L(v(M)) —

Pre(IR™) of bounded variation such that co M(A) = N(A) for each A € X(v(M)).

PROOF: From Theorem 4.2.19 follows that there exists an integrably bounded v(M)-
measurable multifunction F' : T' — Py.(IR") such that M(A) = [, F(t)u(dt) for each
A € ¥(v(M)). But then

coM(A) = co/A

F) u(dt) = [ F(t) u(dt) = [ coF(t) ()

‘where the last equality follows from the fact that [, F'(¢) u(dt) is a convex set, and

oo, [ FOu@r) = | o(p, F(®) ()
= [ olp.coF(t) u(dt)
= o(p, [ coF(t)u(dt)

for every p € IR". If we put N(A) = [, coF'(t) u(dt), then N is the desired multimea-
sure. Indeed, by Proposition 2.2.10 follows that co F' is p-measurable. According to
Theorem 4.2.12 we then only need to show that co F' is integrably bounded. To start
with, first note that from the integrably boundedness of F' we obtain a k € L(p) such
that ||F(t)]| < k(t) for every t € T\ N, Where N is some p-negligible subset of T. Let
Z(t) € coF(t) for t € T. Then «(t) = X1 oy(t)zi(t), where z;(t) >0, ¥ a;(t) =1
and z;(t) € F(t)forj =1,2,...,n+1.Ift € T\ N, then it follows easily that ||a:( )| < k(2)
so that co F' is indeed integrably bounded. e

Theorem 4.2.24 Let T be a countable union of sets of the ring R and let X and
Z be separable Banach spaces such thatY C L(X,Z) and Z = W', where W is a norming
subspace of Z'. If M : B(v(M)) — Pr(Y) is a strong multimeasure of bounded variation
v(M) and F : T — P¢(X) is an integrably bounded v(M)-measurable multifunction, then
there exists an integrably bounded v(M )-measurable multifunction G : T — Pr(Z) such

that
/A F(t) M(dt) = /A G(t) (M, dt)
for each A € X(v(M)).
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PROOF: From Theorem 4.2.8 we have that [, F(¢t) M(dt) # 0 for A € X(v(M)).
Then

/AF(t)M(dt) = {/Af(t)m(dt) | fes;(m),mesM}

2 {/AUmf(t)v(m,dt) | f € Sh(m),me SM},

where U, : T — L(Y, Z) is the function whose existence is guaranteed by Theorem 4.1.19.
If, for each t € T', we define

G(t) = {(Unf)(t) | f € Sp(m),m € Sm},

then G is the desired multifunction. Indeed, first note that G(t) € Px(Z) because both Sy
and S}, are compact for the topology of pointwise convergence. To prove the integrably
boundedness of G, let z € G(t) for all t € T. Then there exist m’ € Sy and f' € Sp(m/)
such that z = U,(t) f'(t) for all t € T'. Therefore

Izl = 1Um@F O < N OINSOI = IS @,

which implies that G is indeed integrably bounded.

Furthermore, since the mapping ¢ — (U, f)(t) is v(m)-measurable for each m € Sy
and f € Sg(m), it follows immediately that G is also v(M )-measurable. Obviously, for
each A € ¥(v(M)) we have that

/A F(t) M(dt) = /A G(t) v(M, dt).
]

By making use of Theorem 4.1.21 and Remark 4.1.22 we now have the following corol-
lary, the proof of which is similar to the previous theorem.

Corollary 4.2.25 Let T be a countable union of sets of the ring R and let X
and Z be separable Banach spaces such that Y C L(X,Z) and Z = W', where W is a
norming subspace of Z'. Suppose that M : L(v(M)) — Pr(Y) is a strong multimeasure
of bounded variation v(M) and let F' : T — Py(X) be an integrably bounded v(M)-
measurable multifunction. If p is a scalar measure on R with the direct sum property
such that M is p-continuous, then there exists an integrably bounded v(M)-measurable

multifunction G : T — Pi(Z) such that

/A F(t) M(dt) = /A G(¢) p(dt)

for each A € E(v(M)).
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Theorem 4.2.26 Let T be a countable union of sets of the ring R and let p
be a scalar measure on R. If M : X(v(M)) — Pr.(IR") is a multimeasure of bounded
variation v(M) such that M is p-continuous and if F' : T — Py(X) is an integrably
bounded v(M)- measurable multifunction, then there exists an integrably bounded v(M)-
measurable multifunction G : T' — Py.(IR") such that

[ Py M) = [ FOG®) ()

for all A € E(v(M)).

PRrOOF: By Theorem 4.2.19 we obtain an integrably bounded v(M )-measurable mul-
tifunction G : T — Py(IR") such that M(A) = [, G(t)p(dt) for all A € ¥(v(M)).
Therefore, for m € Sy, there exists a ¢ € S&(p) such that

m(4) = [ g(t) u(de).

Then, since m(dt) = g(t)u(dt), we have that

/f Yr(dt) = /f dte/ G(#) u(dt),

for every f € Sg(m) and therefore [, F(t) M(dt) C [, F(t)G(¢) u(dt) for all A € X(v(M)).
The inverse inclusion follows similarly. &

Theorem 4.2.27 Let T be a countable union of sets of the ring R and let X
and Z be separable Banach spaces such that Y C L(X,Z) and Z = W', where W is a
norming subspace of Z'. Suppose that M : ¥(v(M)) — Pur(Y) is a strong multimeasure
of bounded variation v(M) and let F' : T — Pyi.(X) be an integrably bounded v(M)-
measurable multifunction. If p is a scalar measure on R with the direct sum property
such that M is p-continuous, then [, F(t) M(dt) is a convex and w(Z, Z')-compact subset
of Z for every A € X(v(M)).

PROOF: From Theorem 4.2.24 we obtain an integrably bounded v(M )-measurable
multifunction G : T — Pyk(Z) such that [, F(t) M(dt) = [, G(t) p(dt) for each A €
E(v(M)). If we put N(A) = [, G(t) u(dt), then we know that N : Z(v(M)) — Pur(Z) is
a multimeasure of bounded variation and Sy # 0. Let n € Sy and define ¢ : L, (p) — Z
and ¢ : Sy — Z by

n(dt)
p(dt)

Then 1 is continuous with respect to the norm topologies of the spaces L} (p) and Z.
Also, since ¢ is a linear isometric bijection, it is continuous with respect to the norm
topologies of the spaces ca(Z) and L (x). Theorem 15 on page 422 of [29] asserts that v
is continuous with respect to the topologies w(L (), L% (1)) and w(Z,Z") of the spaces

/g pu(dt), g € [g] and ¢(n) =
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LY (1) and Z, while ¢ is continuous with respect to the topologies w(ca(Z),Er(p) @ Z')
and w(LY(p), L% (1)) of the spaces ca(Z) and Ly(p). We then have that

(¥ 0 9)(Sn) = h(d(Sw)) = $(S(w) = [, G p(dt) = [, F(1) M(dr).

Since 1 0 ¢ is continuous with respect the topologies w(ca(Z),Er(p) ® Z') and w(Z, Z')
of ca(Z) and Z, and since Sy is a convex and w(ca(Z),Er(p) @ Z')-compact subset of
ca(Z), we then have that [, F(t) M(dt) is a convex and w(Z, Z')-compact subset of 7.1l

Corollary 4.2.28 Under the conditions of the previous theorem we have that
[, F(t) M(dt) is a convex and closed subset of Z for every A € X(v(M)).

PROOF: By the previous theorem, [, F(t) M(dt) is a convex and w(Z, Z')-compact
subset of Z; therefore [, F'(t) M(dt) is also w(Z, Z')-closed. The result then follows from
page 422 of [29]. =

The following corollary is a result of the fact that the weak and strong topologies
coincide on finite-dimensional spaces.

Corollary 4.2.29 Let T be a countable union of sets of the ring R and let p be
a scalar measure on R with the direct sum property. If M : X(v(M)) — Pr(IR") is
a p-continuous multimeasure of bounded variation v(M) and F : T — Pr.(IR™) is an
integrably bounded v(M)-measurable multifunction, then [, F(t) M(dt) is a convex and
compact subset of IR™™ for every A € ¥(v(M)).

Proor: If we put Z = IR"™, W = IR"™ and consider IR" C L(IR™, IR"™), then it
follows immediately that Z = W’ and W is a norming subspace of Z’. By Theorem 4.2.27

follows then that [, F'(¢) M(dt) is convex and w(IR™™, (IR"")")-compact, and therefore
convex and compact in IR™™. il

Theorem 4.2.30 If M : X(v(M)) — P(Y) is a strong multimeasure of bounded
variation such that M(T) is relatively weakly compact, then ext M : X(v(M)) — Pur(Y)
is a normal multimeasure.

PRrOOF: Since ext M(A) C M(T) for all A € ¥(v(M)), it follows immediately that
ext M(A) is a relatively weakly compact subset of X. The result then follows from the
fact that ext M(A) C M(A), A € E(v(M)) and that ezt M is an additive set function
(see Proposition 2 of [34]). E

Theorem 4.2.31 Let T be a countable union of sets of the ring R and let p be a
scalar measure on R. If M : E(v(M)) — Pr(IR") is a multimeasure of bounded variation
v(M) such that M is p-continuous, then

exl SM = SextM-
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PROOF: From the Krein-Milman theorem follows that ezt M # 0 and ext Sy # 0.
To show that Sepiar € ext Sy, let m’ € Sepear. Then, since m/(A) € ext M(A) for all
A € B(v(M)), there are no distinct points z1,z; € M(A) such that

m'(A) = az; + (1 — a)zz,a € (0,1).
But then from Theorem 2.4.6 follows that there are mq,mq € Sy such that
z1 = my(A) and z; = my(A)
for all A € ¥(v(M)). Therefore
m'(A) = amy + (1 — a)may,a € (0,1),
which implies that m/(A) € ext Sy and hence
Sezimr € ext Sir.

To prove the inverse inclusion, suppose the above inclusion is strict, that is, there
is an m’' € ext Sy such that m’ ¢ Se;pr. Then, since M(A) = [, F(t) u(dt), where
F : T — P(IR") is an integrably bounded v(M )-measurable multifunction, it follows

from Theorem 5.2 of [56] that —"ii(%)z = fm € SL, p. Consequently

#l(A) = /A ) p(dt) € /A ext F(t) u(dt).

Then there exist no distinct functions fi, fo € Si such that

m'(4) = a [ () w(dt) + (1= a) [ fa(t) u(dt), a € (0,1),

which is in contradiction with the fact that m’ ¢ S . =

Theorem 4.2.32 Let T be a countable union of sets of the ring R and let p be
a non-atomic scalar measure on R. If M : L(v(M)) — Pr.(IR") is a multimeasure of
bounded variation v(M) such that M is p-continuous, and if F' : T — Py(IR") is an
integrably bounded v(M)-measurable multifunction, then

/A F(t) M(dt) = /A F(t) ext M(dt)

for all A € X(v(M)).

ProoF: We only need to prove that [, F'(t) M(dt) C [, F(t) ext M(dt) because the
inverse inclusion follows obviously. By Theorem 4.2.26 we have that [, F(t) M(dt) =
4 F(t)G(t) u(dt), where G : T — Pi.(IR") is an integrably bounded v(M)-measurable
multifunction. But since F(t)G(t) = coext F(t)G(t), we then have that

/A F(8)G(t) u(dt) = /A coext F(£)G(t) u(dt) = / ext F(1)G(t) u(dt).

A
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Then we only need to show that [, ext F(¢t)G(t) u(dt) C [, F(t)ext M(dt). For this pur-
pose, let A € Sko(p) and m € Syr. Then the proof will be complete if we can show that

Ja h(t) p(dt) = [, f(t) m(dt) for f € SE(m) because then
/ u(dt) /f m(dt) Eco/f t) et M(dt) e/F ) et M(dt).
But if g € (1) end £ € Shom), then [y h(0)u(dt) = [y JOg(0) u(d0) = o S mid)

and the proof is complete.

Theorem 4.2.33 Let T be a countable union of sets of the ring R, and suppose
that M : X(v(M)) — Pr.(IR?) is a multimeasure of bounded variation v(M) and F : T —
P;(IR™) is an integrably bounded v(M)-measurable multifunction. If p is a non-atomic
scalar measure on R such that M is p-continuous and if Z = IR™, then

/A F(t) M(dt) = /A F(t) co M(dt)

for all A € E(v(M)).

PrROOF: By Theorem 4.2.26 follows that there is an integrably bounded v(M)-
measurable multifunction G : T' — Py (IR?) such that [, F(t) M(dt) = [, F(t)G(t) p(dt)
for all A € E(v(M)). Since [, F(1)G(t) u(dt) = [, co F(t)G(t) u(dt) for all A € X(v(M)),

we only need to prove that

/AcoF( )G(t) p(dt) = /F( )co M (dt)

for all A € X(v(M)). So let m € Seopr. Then m(A) € co M(A) for all A € ¥(v(M)). But

coM(A) = / / coF(t

that is, there is a ¢ € SL o(u) such that m(A) = [, ¢(¢) u(dt). Then since m(dt)
g(t)p (dt), it follows immediately that [, f(¢)m(dt) = [, f(t)g(t) p(dt) and the proof i

complete.

[l

The next result, which gives the relationship between €053, and Sz, has been given
by Papageorgiou [56]. We include the proof for completeness.

Theorem 4.2.34 Let T be a countable union of sets of the ring R and let p be a
scalar measure on R. If M : E(v(M)) — Po(Y) is a p-continuous strong multimeasure of
bounded variation v(M) and F : T — Py(X) is an integrably bounded v(M)-measurable
multifunction, then

ESM o SEM-
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PROOF: Evidently, Sz is a convex and w(ca(Y),Ex(v(m)) ® Y')-closed subset of
ca(Y). It then follows that €Sy C Sz

Conversely, suppose that the inclusion €Sy, C Sz is strict. Then there exists
an m’ € Sz such that m' ¢ ©oSy. From the separation theorem we then obtain a
y€&x(v(m))®Y', y =371 x4, ® y such that o(y, Sym) < (y,m'). However,

n

(y,m') = > (yi, m' <> oy, M
k=1

k=1
and
o(y,Sm) = sup (y,m)= sup Z (Yk> m(Ar))-
meSy meSM he
Since Sy is decomposable, it follows that for any m; € Sy, k = 1,2,...,n, we have that

m =37, Xa,mkr € Su. Then, since Y} 7_; (yi, m(Ax)) = X1 (Yk, mir(Axk)), we then have
that

o(y,Su) = sup Zyk,mk Ar))

mrESM =1

n

= > sup (yi,mi(Ax))

k=1 MmkESM

n

= > sup (yi,m(Ax))

k=1 mESM
n

= > oy M
k=1

But this is a contradiction and the result follows. B3

Theorem 4.2.35 Let T be a countable union of sets of the ring R and let X
and Y be separable Banach spaces. Suppose that M : X(v(M)) — Py(Y) is a strong
multimeasure of bounded variation v(M) and F : T — Py(X) is an integrably bounded
v(M)-measurable multifunction. Then

(a) T F(t)co M(dt) = @ [, F(t) M(dt) for all A € S(v(M)).

(b) If M is in addition non-atomic, then [, F(t)eo M(dt) = [, F(t) M(dt) for all
A€ E(v(M)).

PROOF: Since Sy = €0Sum, statement (a) then follows from the fact that

AF@EMW):{/f &lfe&()me%M}
=c%/f fe&()me&&

::EAFmMW)
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for all A € ¥(v(M)). To prove the second statement, assume that M is non-atomic. Since
[4 F(t) M(dt) is convex, we have that [, F'(t)eco M (dt) =<co [, F(t) M(dt) = [, F(t) M(dt)
for all A € E(v(M)). B

Note that instead of assuming that M is non-atomic in the second statement of
the above theorem, we may let M be convex-valued. Indeed, if this is the case, then
Sum =Sy = S so that [, F(t)co M(dt) = [, F(t) M(dt) for all A € Z(v(M)).

Theorem 4.2.36 Let T' be a countable union of sets of the ring R and let X
and Y be separable Banach spaces. Suppose that M : L(v(M)) — Pr(Y) is a strong
multimeasure of bounded variation v(M) and F : T — Pr(X) is an integrably bounded
v(M)-measurable multifunction. Then

(a) T, F(t) M(dt) = T, F(t) ext M(d?) for all A € S(v(M)).

(b) If M is in addition convex, then [, F(t) M(dt) = [, F(t)ext M(dt) for all A €
E(v(M)).

PRrROOF: (a) By the Krein-Milman theorem (Theorem 2.2.14) follows that co M =
coext M. Consequently, by applying the previous theorem twice, we have

/A F()M(dt) = /A F(t) @0 M(dt)

=\ /A F(t) et M(dt)

o /AF(t) et M(dt)

for all A € X(v(M)). For statement (b), note that since M is convex-valued, we have
that Sy = o ext Sy and the result follows immediately. [ |
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CHAPTER 5

INTEGRABLE MULTIFUNCTIONS
AND MULTIMEASURES
DEFINED BY DENSITIES

5.1 Introduction

Throughout this chapter, we will employ the notations that were used in the previous
chapters: T' is a non-empty point set on which no topological structure is required and
R is a ring of subsets of T'. We also consider Banach spaces X, Y and Z and a bilinear
mapping (z,y) — zy of X XY into Z such that || zy || < ||z |||| ¥ ||. Unless otherwise
stated, M : R — P¢(Y) is a strong multimeasure of bounded variation v(M). Also, we
will consider a real number p, with 0 < p < oco.

We recall (Definition 4.2.1) that a multifunction F' : T — Py(X) is said to be p-
integrably bounded if there exists a k € Lig(v(M)) such that ||F(t)|| < k(t) v(M)-almost
everywhere on 7T'. Furthermore, if F': T' — P¢(X) is a v(M )-measurable multifunction,
then the mapping h : T' — IRy, defined by

h(t) = @),
is v(M)-measurable, and F' is p-integrably bounded if and only if | F(-)||P € L (M).

Let F,G : T'— Ps(X) be two p-integrably bounded v(M )-measurable multifunctions.
If we can show that H(F(t),G(t)) < ||F(t) — G(t)|| v(M)-almost everywhere on T, then
from the inequality

/(H(F(t),G(t))pv(M,dt) < /(HF(t)Il + [1G@) )" v (M, di)

will follow immediately that the mapping ¢ — H(F(t),G(t)) belongs to Lz (v(M)). So
let z; € F(t) and z; € G(t). Then from ||z; — G(t)|| < ||z1 — @2|| we deduce immediately
that

sup |lz: - G(H)| < sup |21 — 2|
T EF(t) xleF(t))a:ZeG(t)
= |[F(t) -Gl
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Similarly, we can prove that

sup ||zo — F(8)]| < [[F(2) — GQ@)|-

ngG(t)

Consequently,

H(F(t),G(t) = max| sup [lz1 =G|, sup [lzo = F(t)l]

g | EF(t) I’QEG(t)

IN

I1£(t) = G-

Lastly, note that if SE(v(M)) # 0, then

JIF®IoMd) = sup [ If@0)]v(M, db),

feSH(v(M))

which implies that a v(M)-measurable multifunction F' : T' — P¢(X) is integrably bound-
ed if and only if Sk(v(M)) is non-empty and bounded in L (v(M)).

5.2 The spaces LY (v(M)) and LF(v(M))

Definition 5.2.1 A multifunction F : T — Po(X) is called an R-step multi-
function if it is of the form

F = Z XiXA,‘a
€]

where I is a finite index set, A; € R and X; € Po(X) for every € I.

Remark 5.2.2

(i) If we take the sets A; € E(v(M)) in the above definition, then we call F' a step
multifunction.

(i) If F:T — Pyoy(X) (F: T = Pre)(X), respectively) is an R-step multifunction,
or a step multifunction, then we take X; € Py()(X) (Xi € Pr(e)(X), repectively).

Definition 5.2.3 We denote by LY (M) the space of all integrably bounded v(M)-

measurable multifunctions F : T — Po(X). Furthermore, we put
Lix)(M) = {F € Lx(M) | F(t) € Py)(X) v(M) — a.e}

and

Lieyx)(M) = {F € Lx(M) | F(t) € Pi(X) v(M)— a.e}.
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Proposition 5.2.4 Let M,N : R — P;(Y) be two strong multimeasures of
bounded variation v(M) and v(N), respectively. If M(A) C N(A) for every A € R,
then Ly x\(N) C Lyx)(M) and

JIF@®I oM dt) < [IF@)] v(N,d)

fOT‘ F e L}(X)(N)'

PROOF: Since v(M, A) < v(N, A) for every A € R, it follows from Proposition 1.2.13
that M(v(N)) € M(v(M)). Let now F € L}(X)(N). Then F'is v(/N)-measurable and
integrably bounded by k € L}(N). Hence F is v(M )-measurable and integrably bounded
by k € Lg(N) C LR(M). Consequently, F' € L} x)(M). Clearly, for F' € Lyx)(N),

JUFE@l v, dt) < [IF@] o, db).
o

Corollary 5.2.5 If the multifunction F : T — Py(X) is v(M)-measurable and if
there exists a G € Lyx)(M) such that |[F(t)|| < ||G(1)|| v(M)-almost everywhere on T,
then F € Ly x)(M).

PROOF: Since G € Ljx)(M), there exists a k € L(M) such that ||G(t)]| <
k(t) v(M)-almost everywhere on T'. Hence || F'(t)|| < k(t) v(M)-almost everywhere
on T =

Corollary 5.2.6 A multifunction F : T — Ps(X) belongs to L}(X)(M) if and
only if F' is v(M)-measurable and |F(-)|| € Lr(v(M)).

ProOF: By definition, F' € L} x)(M) if and only if F is v(M)-measurable and F is
integrably bounded. But F' is integrably bounded if and only if [|| £(¢)]| v((M,dt) < oo,
that is | F'||€ LR(v(M)). e

Following our discussion in section 5.1, we have that the mapping ¢t — H(F(t),G(t))
belongs to L (v(M)) whenever F,G : T — P;(X) are two integrably bounded v(M)-
measurable multifunctions. We are now in a position to make the following definition.

Definition 5.2.7 If F,d € L}(X)(M), then we put
d(F,G) = [H(F(),G(t)p(M,db).

It then follows immediately that d; is a semi-metric on the space L}(X)(M). On the
space L (M) we now define an equivalence relation a as follows: For two multifunctions
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F,G € L% (M) we write F' = G if and only if F(t) = G(t) v(M)-almost everywhere on
T. If the equivalence class of a multifunction F' € L% (M) is denoted by F' and we put
:11 (I;, E}) = di(F,G), where F' €F,G €@, then

Proposition 5.2.8 (L}(X)(M),:ll) is a metric space.

Definition 5.2.9 We say that a sequence (F;) C L} x)(M) converges in L} x)(M)
to F' if and only if klim d\(Fy, F) = 0. Furthermore, to say that a sequence (F}) C

Lyx)(M) is a Cauchy sequence in LY xy(M) means that j}gigloo d1(F;, Fy) = 0.

The next result shows that L y)(M) is a closed subspace of P(X).

Proposition 5.2.10 If X is a separable Banach space, (Fi) C L} x) (M) and
di(Fy,F)— 0 as k — oo, then F € L}(X)(M).

PROOF: Let (Fy) C L}(X)(M) and suppose that dy(Fg, F') — 0 as k — oo. Then

lim / H(Fy(t), F(t))o(M, dt) = 0,

k—o0

and by the usual arguments we obtain a subsequence (k;) of (k) such that
H(Fy,;(t), F(t)) — 0 as j — oo. But since (Pf(X), H) is a complete metric space and
Fy; € Pg(X), it follows that F' € Pr(X).

It only remains to show that F' is integrably bounded. But this follows immediately
from the fact that

I F@)] < H(F(t), F(2) + || F() ]
v(M)-almost everywhere on 7. =

Proposition 5.2.11 If X is a separable Banach space, then the class of all step
multifunctions in Ly, x)(M) is dense in Li,x)(M).

PROOF: Let F' € Lj,x)(M) be a step multifunction. Then F(t) € Pr(X) v(M)-
a.e on T, and since (P.(X), H) is a separable metric space, we obtain a multifunction

G € Pr.(X) such that H(F(t),G(t)) < i for every € > 0. Consequently, for ¢ > 0, we

have that d;(F,G) < e. Lastly, G is integrably bounded because
IG@) || < H(F(),G(@) + [[F@)l

v(M)-almost everywhere on 7. [
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Corollary 5.2.12 If X is a separable Banach space, then the class of all R-step
multifunctions in Lix(M) is dense in L x\(M).

PROOF: Let F' € Lj,x)(M) and € > 0. Then from the previous proposition we
obtain a step multifunction G : T' — Py.(X) such that d;(F,G) < 5. Put

G =3 Xexan A€ S(o(M)), X # {0},

k=1

From Proposition 13 on page 76 of [27] follows that for every set Ay € X(v(M)) there
exists a set B € R such that

€

B _
U(M,AkA k) < o ”ch”

If we put K = Y°7_; XixB,, then K : T — Py (X) is an R-step multifunction. Further-
more, since

G — K|l = | X Xe(xa, — xB) < DXkl lIxar — x8ll = D | Xell xar28:
k=1

k=1 k=1

we have that

(G, K) = [H(G(), K(8) v(M,dt) <

~—

1G(#) = K@) v(M,dt)

<
S

'U(M, Ak A Bk) || Xk ||

I
g

1

N ﬂ“‘

so that
dl(F,K) S d](F,G)+d1(G,K) < Y€

Corollary 5.2.13 If X is a separable Banach space, then for every multifunction
F e LLC(X)(M) there exists a Cauchy sequence (F,,) of R-step multifunctions F,, : T —
Pre(X) such that H(F,,(t), F(t)) — 0 as m — oo for v(M)-almost all t € T'.

PROOF: Since the set of R-step multifunctions I : T' — Py.(X) is dense in L (x)(M),
there exists a sequence Fj : T' — Pp.(X) of R-step multifunctions such that limg_o, dy(Fx, F')
= 0. Then (Fy) is a Cauchy sequence in Py (X). Since (Pr.(X), H) is a complete metric
space, there exists a subsequence (F};) C (F}) such that H(Fy,(t),G(t)) — 0 as j — oo,
where G : T' — Py.(X). From the inequality

&(F,G) < &(F,F,)+d(G, Fy,)

we deduce that dy(F,G) = 0; therefore F'(t) = G(t) v(M)-almost everywhere on 7'. If we
put F, = F, then (F),) is the desired Cauchy sequence. L
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Theorem 5.2.14 If X is a separable Banach space, then (L} x)(M),dy) is a com-
plete metric space, and L}CC(X)(M) and LL(X)(M) are closed subspaces of L}(X)(M).

PROOF: Let (F}) be a Cauchy sequence in L} x)(M), that is
lim / H(F Yo(M, dt) =
7,k— 00
Since (F%) is a Cauchy sequence in Ps(X) and since (Py(X), H) is a complete metric
space, there exists a multifunction F' € P;(X) such that limg_. H(Fi(t),F(t)) = 0.

Consequently, dy(Fy, F) — 0 as k — co. The fact that F' is integrably bounded follows
from

/|[ 1)1 v(M, dt) /HFk (Mdt+/||Fk )| o(M,dt) < oo.

The last assertion of the theorem follows from Proposition 5.2.10. E

Definition 5.2.15 If F ¢ Lf(X (M), then we put

N(F) = di(F,{0}) = [ IIF@)|o(M, db).

It follows easily that

Proposition 5.2.16 N, is a semi-norm on the space Ly x)(M).

In a way similar to the single-valued case, we will say that a multifunction F' : T' —
Po(X) is M -negligible if F(t) = {0} v(M)-almost everywhere on T'. We denote by N§° (M)
the space of all M-negligible multifunctions. We will also denote the quotient space
LY (M)/Ng (M) by Q%(M). If we put N1 (]'4:') = N;(F'), where F €F, then the mapping
N (+) is a norm on Q}(X)(M). Indeed, from Proposition 5.2.16 we have that N1 (1) is a
semi-norm on Q}(X)(M). Also, note that

N: (I'*:) =0 & F= {0} v(m)—aeon T.

Hence, from Theorem 5.2.14,
Proposition 5.2.17 The space Q}(X)(M) is a Banach space.

Definition 5.2.18 Ifa € IR, then we say that a multifunction F : T — Py(X) is
v(M)-essentially bounded if there is a v(M)-negligible set N C T such that || F'(t) ||
<a forallte T\N.
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Definition 5.2.19 We denote by L (v(M)) the space of all v(M)-essentially
bounded v(M)-measurable multifunctions. Furthermore, for F,G € L¥(v(M)), we put

doo(F,G) = inf{a < +oo | H(F(t),G(t)) < a}

Definition 5.2.20 We say that a sequence (Fy) C L§(v(M)) converges in
LE(v(M)) to F if there exists a v(M)-negligible set N CT such that

lim H(FL(t), (1)) = 0
uniformly for all t € T\N. Furthermore, (F}) is a Cauchy sequence in LY (v(M)) if

}clm doo(Fj,Fk) =

7

Proposition 5.2.21 The space ( F0)(v(M)),ds) is a complete metric space.

PROOF: Let (Fy) be a Cauchy sequence in Lf{y(v(M)). Then for every k € IN there
exists an integer nj such that for r, s > n; we have that

1
doo(Fra Fs) S e
k
Then there exists a v(M )-negligible set A,, such that

H(F.(), F5(t)) <

x| =

for t ¢ A,,. If A is the union of the sets A,,, with r,s > ny, then Ay is v(M)-negligible

and for t ¢ Ay we have
1

k
for r,s > ng. If we put A = U2, Ay, then A is v(M)-negligible and

H(F.(t), Fi(t)) <

H(F.(1), Fi(t)) <

| =

for t ¢ A. This means that Fj(t)) is a Cauchy sequence for each ¢t ¢ A. Since (P¢(X), H)
is complete, there exists an F' € Py(X) such that H(Fg(t),F(t)) — 0for allt ¢ A
and hence d (Fy, F') — 0. Lastly, F' is v(M )-essentially bounded because there exists a
v(M)-negligible set A such that

I[E@)] < H(F(@), (1) + || Fe@) ]| < @

for all ¢t ¢ A. =
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Definition 5.2.22 For F € Lyjx)(v(M)) we put

Noo(F) = doo(F,{0}) = inf{a < +oo ||| F(?)|| < a}.
Proposition 5.2.23 N,, is a semi-norm on the space L5ix)(v(M)).

If we put Neo ( E’) = N (F'), where F is the equivalence class determined by the mul-
tifunction F* € Lf{y)(v(M)), then No is a norm on the quotient space QFx)(v(M)) =
L%ix)(v(M))/N5 (v(M)). Consequently, the space QFy(v(M)) is a Banach space.

If F,G € P#(X), then we define their product FG by
(FG)(t) = {z1z2 | 1 € F(),2z, € G(2)}.

dPropos1t10n 5.2.24 IfF € Ly(x)(M) and G € L§jy)(v(M)), then FG € Ly, (M)
an

| [P&)GE) oM, dt) [ < [ IF@IGE) o(M,dt) < Ni(F)No( ).

PROOF: Since the mapping (z,y) — zy is a continuous mapping from X x Y into
Z, it follows that F'G € Py(Z). Furthermore, if {fx | K € IN} and {gx | £k € IN} are

Castaing representations for ' and G respectively, we have that

(FG)(t) = {(frge)(t) | k € IN}

so that F'( is also v(M )-measurable. To see that F'G is integrably bounded, note that

I(FG)®) || = sup |lzy||
z€F(t),yeG(t)
< sup ||$||||y||
z€F(t),yeG(t

< F@)I No(@) <k,

where k € Ll (v(M)). Lastly, we have that

| [FOG@ oMty | < [IF@GE o(M,d)

< Nuo(G) / | F(0)]|v(a, dt)
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5.3 The space L% (v(M)),0 < p < oo

Definition 5.3.1 If 0 < p < oo, then we denote by L% (v(M)) the space of all
p-integrably bounded v(M)-measurable multifunctions. Also, we put

LYoo (v(M)) = {F € Lx(v(M)) | F(t) € Ps((X) v(M) — a.e}

and

L) (v(M)) = {F € Lk (v(M)) | F(t) € Pre)(X) v(M) — a.e}.
Definition 5.3.2 If F,G € L} ,(v(M)), then we put
d(F,G) = (/(H(F(t), G(t)))Po(M, dt))% .
St (Po) 0B . metaic gpace, 1 follows: that
Proposition 5.3.3 (L} x(v(M)),d,) is a metric space.

Definition 5.3.4 We say that a sequence (Fj) C LY xy(v(M)) converges in
L'}(X)(v(M)) to F' if and only if d,(Fy, F') — 0 as k — oo. Furthermore, we say that a se-
quence (F) in L% xy(v(M)) is a« Cauchy sequence in L x\(v(M)) ifj}ci_lpoo dy(Fj, Fr) =
0

Theorem 5.3.5 (LG x)(v(M)),dy) is a complete metric space, and Ly, x)(v(M))
and Ly x\(v(M)) are closed subspaces of L x\(v(M)).

PROOF: To show that (L% y(v(M)),d,) is complete, let (F)) be a Cauchy sequence
in LY yy(v(M)). Then

,}cim (H(F;(t), Fi(1)))" v(M,dt) = 0.

JyK—00

Since (P4(X), H) is a complete metric space, there exists a multifunction F' : T — Ps(X)
such that klirn H(Fy(t),F(t)) = 0, and d,(Fg,F) — 0 as k — oo. Furthermore, since
| F(t)|| < H(Fk(t),F(t)) + || Fr(?) ||, it follows that F' is p-integrably bounded. Let
(F&) € Lix)(v(M)) be such that d,(Fy, F') — 0 as k — co. Then

lim [ (H(F(t), F(t))" v(M,dt) = 0.

k—o0

This means that there exists a subsequence (k;) C (k) such that H(Fj (t), F(t)) — 0 as
J — oo. But since (Px(X), H) is a complete metric space, we have that F(t) € Py(X).
Finally, Lj . x)(v(M)) is closed because Py((X) is a closed subspace of P(X). W
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Proposition 5.3.6 The space of all R-step multifunctions in Lyx)(v(M)) is
dense in L x)(v(M)).

From Proposition 5.3.6 and since Pj.(X) is separable whenever X is separable, we
have that

Corollary 5.3.7 If the ring R is countable and X is a separable Banach space,
then (LZC(X)(U(M)),dp) is a separable metric space.

Corollary 5.3.8 Ifthe ring R is countable, then (Lie(m)(v(M)), dy) is a separable

metric space.

g P?%?Siﬁon 5.3.9 If1 <r < p<s < oo, then Lyxy(v(M)) N L x)(v(M)) C
Lixr U :
£(X)

PROOF: Let F' € L} x)(v(M)) N Ljx)(v(M)). Then there exists a k € Lg(v(M)) N
Lip(v(M)) such that
@) < k(t) v(M)— a.e onT.

But then k € L(v(M)) (from Proposition 21 on page 237 of [27]), and consequently
F € LY xyo(M)). £

Definition 5.3.10 If F e L x)(v(M)), then we put

N,(F) = (P 0)) = ( [IF@IP v, ar))”

Proposition 5.3.11 N, is a semi-norm on LY xy(v(M)).

~

If F e L%(v(M)) and we put Np (F) = Ny(F), where F is the equivalence class de-

termined by the multifunction F' € L’;(( (M)), then the mapping ]A\pr (+) is a norm on
tooM) = L?,(X( v(M))/Nk(v(M)). 1t then follows that the space Q% x)(v(M)) is a

Banach space.

Theorem 5.3.12 Let p and q, with 1 < p,q < oo be such that % —l—% =1, If
F e Lfx)(v(M)) and G € Ly, (v(M)), then FG € L4 (v(M)) and

Ni(FG) < N,(F)N,(G).
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PROOF: Since (z,y) — zy is a continuous mapping, we have that FG € P¢(Z).
Furthermore, if {fx | k € IN} and {gx | k¥ € IN} are Castaing representations of F' and G
respectively, we have that

(FG)(t) = {fe(t)gr(t) | k € IV}

so that F'G is also v(M)-measurable. Since F' is p-integrably bounded, there

exists a k; € Llg(v(M)) such that |F(t)|| < ki(t) v(M)—almost everywhere, and

since G is g-integrably bounded, there exists a ky € Li(v(M)) such that |G(2)]] <
ko(t) v(M)—almost everywhere. Hence kiky € L(v(M)) and from

I(FGOI = IFOGOI < IFONIGHN < Fa(t)ka(?)

follows that F'G is integrably bounded. Furthermore, taking into account that
N,(F) =||H(F(t),{0})]|p, we have that

| [Fey M@ < [ IFOGE) oM, d)
< [IFOIIGW) o(M,dt)
< I E), D) Ibll H(G@, {01

= Np(F)Ny(G).

Theorem 5.3.13 If1 <p< oo and F,G € Ly (v(M)), then

N,(F +G) < N,(F)+ Ny(G).

PrOOF: If p =1 or p = oo, the inequality follows then immediately. Let 1 < p < oo.
Then we have that

Np(F+G) = ||H(F(2)+ G(2),{0}) I,

IN

1H(F(2),{0}) + H(G(E), {0} l»
< [HE@), {0} [l, + I H(G(2), {0}) [l

== NP(F) i NP(G)'
[ |

For the rest of this section we will study the relationship between our integral and
the Debreu integral. Debreu [24] made use of an embedding theorem [59, Theorem 2]
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in order to treat compact-convex-valued multifunctions as functions, and then developed
the integral of a multifunction as a case within the theory of the integral of a function.
First we state the embedding theorem due to Radstrom [59].

Theorem 5.3.14 If X is a real normed vector space, then the space (Pr.(X), H)
can be embedded as a convex cone in a normed real vector space U such that

(a) the embedding is isometric;
(b) addition in U induces addition in Pr.(X);

(¢) multiplication by non-negative real numbers in U induces the corresponding oper-
ation in Pr(X);

(d) Pre(X) spans U;

(e) the greatest subspace of U contained in the cone Pi.(X) is the set of the one-
element subsets of Pr.(X).

From Theorem 2.1.8 we know that P.(X) is complete whenever X is complete, and
that Pr.(X) (and hence U) is separable whenever X is. By the theorem on page 89 of
[29] we may embed U as a dense subspace of a real Banach space U*, the completion
of U. Obviously, if U is a real Banach space, then U = U*. Consequently, we see that
multifunctions in L y)(v(M)) can be regarded as usual Banach space-valued integrable
functions:

Theorem 5.3.15 If X is a separable Banach space, then there exists a separable
Barlzlac}lz space U such that LZC(X)(U(M)) can be embedded as a convezx cone in LY (v(M))
such that

(a) the embedding is isometric;
(b) addition in L7;(v(M)) induces addition in L} x(v(M));

(¢) multiplication by non-negative real functions in L}, (v(M)) induces the correspond-
ing operation in Ly v (v(M)).

Making use of Theorem 5.3.14, if Y is a Banach space, we embed (Pi.(Y), H) as a
convex cone in a Banach space V*. For the rest of this section we suppose that X = Z is
a real Banach space with X = L(IR",X) and Y = IR". If f,g : T — U™ are two R-step

functions and m : R — V* is a vector measure, then we put

Alf,9) = [ 1) — o)l m(de).
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We say that a sequence (f;) of R-step functions from T to U* (that is, (fx) C &u+(R))
is A-Cauchy if A(f;,fr) — 0 as j,k — oco. If A € Pre(X), then we denote by A* the
image of A in U* under the embedding of Py.(X) in U*. In particular, if F': T" — Py (X)
is a multifunction, then we write F* to denote the function ¢ — (F(t))*. Similarly,
if M : R — Pg(Y) is a multimeasure, then we will write M* to denote the element
(M(A))* in V*.

Definition 5.3.16 We say that a function f : T — U* is m-integrable if there
exists a A-Cauchy sequence (fr) C Ey+(R) converging in measure to f. The sequence
(fr) is said to determine f. A multifunction F : T — Py.(X) is Debreu-integrable
if the function F* : T — U* is M*-integrable. We denote the Debreu integral of F' by
§ F(t) M(dt).

The above definition reduces the theory of integration of compact-and convex-valued
multifunctions to the standard theory of integration of functions. The next result shows
that the determining sequence of R-step functions might as well assume their values in

Pkc(X)'

Proposition 5.3.17 If F : T — Py (X) is Debreu-integrable, then there exists a
sequence (Fi) of R-step functions from T' into Pr.(X) which determines F'.

Debreu [24] proved the first result ([24], page 367, 6.5) about the equivalence of the
Debreu and the Aumann integrals. However, Debreu’s result is valid under the assumption
that the space X is a reflexive Banach space. Extension of this result to the nonreflexive
case was given by Byrne [11]. The main result in Byrne’s extension is the following:

Proposition 5.3.18 Let F : T — Py.(X) be Debreu-integrable and let (Fy) be a
sequence of R-step functions from T into Py.(X) converging pointwise to F'. Then the
set Sp U (U3Z,SE,) ts relatively weakly compact in LY (v(M)).

Theorem 5.3.19 Suppose that X = Z is a real Banach space with X = L(IR", X)
and let Y = IR". If M : R — Pr.(IR") is a multimeasure of bounded variation v(M) and
if F': T — Pr(X) is a Debreu-integrable multifunction, then

/ F(t) M(dt) = ]4 F(t) M(dt).

PROOF: We first prove that [ F(t) M(dt) C § F((t) M(dt). So let z € [ F(t) M(dt).
Then there exists a m € Sy and a f € Sp(m) such that z = [ f(¢)m(dt). Clearly,
d(f(t), F(t)) = 0 v(m)-almost everywhere in T'. Since

d( [ rtymide), § F&) M) < sup [ d(r(@), F(t))mide) =0,

meSy
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(see 6.2 on page 366 of [24]) we have that = = [ f(t) m(dt) € § F(t) M(dt).

Conversely, let z € § F(t) M(dt). Then there is a sequence (F%) of R-step functions
from T to Pr.(X) determining F'. Hence, H(§ Fi(t) M(dt), § F(t) M(dt)) — 0 if k — oo.
Hence, for k € IN, there exists a zx € § Fi(t) M(dt) such that z; — z. Furthermore,
zr = § gi(t)m(dt), where gr € Sp, and m € Sy. Using then Proposition 5.3.18 we
may now assume (perhaps after reindexing) that the sequence (gx) converges weakly to a
function ¢ € L% (m). Consequently,

2 = /gk(t)m(dt) 5 /g(t)m dt

as k — oo, and hence z = [ g(t) m(dt). We only need to show that g € Sp.

Let € be a positive real number and choose a k such that [ || fi(t) — f(¢)|| m(dt) < e
whenever n > k. By [29, page 422, Corollary 14] there exists a convex combination ¢ of
elements of g, (with n > k) of the weakly converging sequence (), with ¢ = 22:1 AiGis
where Zi’:l A;j =1, and for every j € {1,2,...,1}, A\; > 0, ¢; > k, such that

Jl8(t) - g®)lim(at) <

Furthermore, the convexity of F'(¢) for every ¢ € T implies that

d(g(t), F(t)) < 3 Aid(gi, (1), (1))

=1
Since g,(t) € F,(t), we have that d(g,(t), F(t)) < d(F.(t), F(t)), and consequently, for
every n > k,

/d (g F(t)) m(dt) </d m(dt) </H 1), F(t)) m(dt) < e
Thus, [d(¢(t), F(t))m(dt) < e. Since also [d(¢(t),g(t))m(dt) < €, from the triangle

inequality for the function d we obtain

/ d(g m(dt) < 2,

and hence [d(g(t), F'(t)) m(dt) = 0. We deduce that d(g(t), F(t)) = 0 v(m)-almost every-
where in 7" and thus ¢(t) € F(t). |

5.4 Multimeasures defined by densities
Let F': T — P¢(X) be an integrably bounded v(M )-measurable multifunction and put
N(A) = /A F(t) M(dt), A € R.

By Theorem 4.2.12 follows that the set-valued set function N : R — P(Z) is a strong
multimeasure of bounded variation v(N). If we put

= [NF@Ile(M,dt), A€ R,

then v : R — IR is a positive measure and v(N) < v.
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Definition 5.4.1 If the multifunction F and the multimeasures M and N satisfy
N(A) = [, F(t) M(dt), A € R, then we say that N is the product of the multimeasure M
by the multifunction F, or that N is the multimeasure with density F' and base M. The
multimeasure N is denoted by F'M.

Proposition 5.4.2 If F,G : T — Py(X) are two integrably bounded v(M)-

measurable multifunctions and o € IR, then

(F+G)v(M)=Fv(M)+ Gv(M) and (aF)v(M) = a(Fv(M)).

Proposition 5.4.3 Let M,N : R — P(Y) be two strong multimeasures of
bounded variation v(M) and v(N), respectively and suppose that F' : T — Ps(X) is
an integrably bounded v(M)-measurable and v(N)-measurable multifunction. If o and B
are scalars, then

Fav(M) + Bo(N)) = a(Fo(M)) + A(Fu(N)).

Proposition 5.4.4 Suppose that X, Y and Z are Banach lattices, let
M : R — Po(Y) be a multimeasure of bounded variation v(M) and let F : T — Po(X) be
an integrably bounded v(M )-measurable multifunction. If Y = L(X,Z), M(A) C Y, for
all A € R and if F(t) C Xy v(M)-almost everywhere on T, then FM C Z,. Conversely,
if X = L(Y,Z), M(A) C Yy for all A€ R and if FM C Z,, then F(t) C Xy v(M)-

almost on T

PROOF: See the proof of Theorem 4.2.11. =

Proposition 5.4.5 Suppose that X, Y and Z are Banach lattices and let M, N :
R — P(Y) be two strong multimeasures of bounded variations v(M) and v(N). If M(A) C
N(A) for all A€ R and if F(t) C Xy v(N)-almost everywhere on T, then

FM C FN.

Proposition 5.4.6 Let M : R — Pre(IR™) be a multimeasure of bounded vari-
ation v(M) and suppose that Fy, Fy : T — Py (IR™) are two integrably bounded v(M)-
measurable multifunctions. Then

Fio(M) = Foo(M) if and only if Fy(t) = F3(t) v(M)— a.e on T.

PRrROOF: From Fiv(M) = Fyuv(M) we have that

/F1 o(M, dt)) = o(p /F2 o(M, dt))
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for p € IR". Consequently, for p € IR",

/A o(p, Fi(8))o(M,dt) = o(p, ]A Fy(t)o(M, dt))

= [ oo, Fa(0)o( a)

and therefore o(p, Fi(t)) = o(p, F2(t)) so that Fi(t) = Fy(t) v(M)-almost everywhere on
j g 5l

Proposition 5.4.7 If F : T — P(X) is an integrably bounded v(M)-measurable

multifunction, then

Fv(M) = {0} if and only if F(t)= {0} v(M)—a.eon T.

Proposition 5.4.8 Let u be a positive scalar measure and let G : T — Py(X) be
an integrably bounded p-measurable multifunction. If M = Gu and F : T — Py(X) is an
integrably bounded v(M)-measurable multifunction, then FM = (FG)p.

PROOF: Since M is a strong multimeasure of bounded variation v(M), by Theo-
rem 2.5 of [39] we have that Sy # 0. Let m € Sp. Then m(A) € M(A) for every
A € R. Consequently, there exists a g € S&(u) such that m(A) = [, g(¢)p(dt) for every
A € R. Furthermore, if 2 € FM, then z = [, f(t) m(dt) where f € SE(m). But from
m(dt) = g(t)u(dt) we have that z = [, f(¢)g(t)p(dt), and consequently, z € (FG)u. The
inverse inclusion follows similarly. |

Definition 5.4.9 Suppose that M, N : R — P(Y) are two strong multimeasures
of bounded variation v(M) and v(N), respectively. Then we say that M and N are
stngular if for every positive measure p with p < v(M) and p < v(N) we have that
p=0.

Theorem 5.4.10 Suppose that Y is a separable Banach space and let p be a
positive measure on R and suppose that M : R — Ppu(Y) is a strong multimeasure
of bounded variation v(M). If v(M) + p has the direct sum property, then there exists
multimeasures My, My : R — Pg(Y), of bounded variations, such that

M = M, + M,
and such that My is p-continuous and My is p-singular.
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PrROOF: By Theorem 2.5 of [39] we have that Sy # 0. So let m € Sy. Then
m(A) € M(A) for every A € R. But from Theorem 2.4.24 we have that

M(A)={m(A)| Ae R}, AeR.

Since v(M) = wv(m), it then follows that v(m) 4 g has the direct sum property. By
Theorem 7 on page 189 of [27] we then obtain measures my,my; : R — Y, with m,
p-continuous and my p-singular, such that m = my 4+ m,. If we put

M;(A) = {m(A)| A e R}

and

M;(A) = {msy(A) | A€ R},

then M, and M, are the desired multimeasures. [
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