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ABSTRACT 
 
Salinisation is a major environmental hazard that reduces agricultural yields and 

degrades arable land. Two main categories of salinisation are: primary and secondary 

soil salinisation. While primary soil salinisation is caused by natural processes, 

secondary soil salinisation is caused by human factors. Incorrect irrigation practices 

are the major contributor to secondary soil salinisation. Because of low costs and less 

time that is associated with the use of remote sensing techniques, remote sensing data 

is used in this study to identify and map salinised irrigated land between Upington and 

Keimoes, Northern Cape Province, in South Africa. 

 

The aim of this study is to evaluate the potential of digital aerial imagery in 

identifying salinised cultivated land. Two methods were used to realize this aim. The 

first method involved visually identifying salinised areas on NIR, and NDVI images 

and then digitizing them onscreen. In the second method, digital RGB mosaicked, 

stacked, and NDVI images were subjected to unsupervised image classification to 

identify salinised land. Soil samples randomly selected and analyzed for salinity were 

used to validate the results obtained from the analysis of aerial photographs.  

 

Both techniques had difficulties in identifying salinised land because of their inability 

to differentiate salt induced stress from other forms of stress. Visual image analysis 

was relatively successful in identifying salinised land than unsupervised image 

classification. Visual image analysis correctly identified about 55% of salinised land 

while only about 25% was identified by unsupervised classification. The two 

techniques predict that an average of about 10% of irrigated land is affected by 

salinisation in the study area. 

 

This study found that although visual analysis was time consuming and cannot 

differentiate salt induced stress from other forms; it is fairly possible to identify areas 

of crop stress using digital aerial imagery. Unsupervised classification was not 

successful in identifying areas of crop stress. 

 

Key words: Remote sensing, normalized difference vegetation index (NDVI), image 

classification, salinisation, plant stress, orthorectification, mosaicking. 
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OPSOMMING 
 
Versouting is ‘n belangrike omgewingsrisiko wat landbou opbrengste verlaag en lei 

tot die agteruitgang van bewerkbare grond. Die twee hoof katogorië van versouting is: 

primêre en sekondêre grondversouting. Terwyl primêre grondversouting natuurlik is, 

word sekondêre grondversouting veroorsaak deur menslike faktore. Verkeerde 

besproeingspraktyke is die hoofoorsaak van sekondêre grondversouting. Lae kostes en 

min tyd wat geassosiëer word met afstandswaarneming tegnieke het bygedra tot die 

gebruik van afstandswaarneming in die studie om versoute besproeingsgrond te 

identifiseer en te karteer tussen Upington en Keimoes, in die Noord Kaap, Suid 

Afrika.  

 
Die doelwit van die studie is om die potentiaal van digitale lugfoto’s te evalueer vir 

versoute besproeiingsgrond.Twee metodes is gebruik om die doelwit te bereik, 

naamlik die visuele identifisering van versoute areas op NIR en NDVI beelde en dit 

vas te lê op skerm. In die tweede metode is ‘n digitale RGB mosaiek, gestapelde en 

NDVI beelde gebruik in ‘n nie-gerigte beeldklassifikasie om versoute grond te 

identifiseer. Ewekansig geselekteerde grondmonsters is ontleed vir versouting om die 

resultate verkry van die lugfotos te toets.  

 
Beide tegnieke het moeilik versoute grond geidentifiseer as gevolg van hul 

onvermoëe om tussen sout verwante spanning en ander vorms van spanning te 

onderskei. Visuele beeld analise het ongeveer 55% van versoute grond korrek 

geidentifiseer terwyl nie-gerigte klassifikasie ongeveer 25% korrek geklassifiseer het. 

Gemiddeld het beide tegnieke getoon dat 10% van besproeiingsgrond deur versouting 

beïnvloed is in die studie area. 

 

Die studie het gevind dat alhoewel visuele analise tyd rowend is en nie kan onderskei 

tussen sout verwante spanning en ander vorms van spanning nie, is dit nog steeds 

moontlik om oes verwante spanning met digitale lugfoto’s te identifiseer. Nie-

gerigteklassificasiewas nie suksesvol in die identifiseering van oes verwante spanning 

nie. 
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CHAPTER 1: THE PROBLEM OF SALINISATION 
  

1.1 BACKGROUND  

1.1.1 Introduction 

Soil salinisation is a major environmental hazard that causes decline in plant 

productivity and degradation of agricultural land, thus leading to losses in agricultural 

yields (Metternicht & Zink 2003; Wang, Wilson & Shannon 2002; Greiner 1998). 

Rowel (1994) and White (1997) define salinisation as the process by which salts 

accumulate in soils. This problem mostly occurs in soils of arid and semi-arid regions 

(Allison, Brown, Hayward, Richards, Berstein, Fireman, Pearson, Wilcox, Bower, 

Hatcher & Reeve 1969; Fitzpatric 1980; Rowel 1994) as these areas do not have 

enough rainfall to leach out the salts that accumulate in the soil. According to Allison 

et al. (1969), saline soils are practically non-existent in humid regions except when 

soil has been subjected to the influence of sea water in river deltas and low lying lands 

near the sea. 

 

According to Metternicht & Zink (2003) and Szabolcs (1994), the global extent of 

primary salt-affected soils is about 955 million ha, with secondary salinisation 

affecting some 77 million hectares. Also, 58% of secondary salinised areas are 

concentrated in irrigated areas. Metternicht & Zink (2003) further state that nearly 

20% of all irrigated land is salt-affected, and this proportion continues to increase in 

spite of considerable efforts to reclaim land. Careful monitoring of soil salinity is 

required to ensure sustainable land use and management. 

 

1.1.2 Salinisation along the Orange River 

The Northern Cape Province, South Africa, where the study area is situated is semi-

arid. According to the Department of Water Affairs and Forestry (1999), the 

implementation of the Lesotho Highlands Water Project will lead to the reduction of 

the dilution effect of the water from Lesotho because a portion of the water will be 

directed to the Vaal River Catchment. This factor led to the study that was conducted 

by the Department of Water Affairs and Forestry along the Orange River to model the 

extent of salinisation in the area. 
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Despite insufficient data available to conduct the study at the time, the Department’s 

study indicated that salts are being retained in irrigated areas. One of the 

recommendations of the study was that the question of salinisation be urgently studied 

in more detail. Constant monitoring of salinisation along the Orange River will serve 

to provide information on the spatial and temporal distribution of salts. Findings of 

the study will be used as an aid in the decision-making process for water allocation 

and development of the Catchment Management Plan in that area. 

 

According to Lenney, Woodstock, Collins & Hamdy (1996), identifying soils with 

high salinity using remote sensing data has relied primarily on two methods. The first 

method involves identifying saline soils through quantitative assessment of bright 

salt-crusted soils or dark waterlogged fields (Everitt, Escobar, Gerbermann & 

Alanniz; Sharma & Bhargava; Dwivendi & Rao; Mishra; Joshi & Devi as quoted by 

Lenney et al. 1996). In the second method, the presence of salts is inferred by its 

effects on the spectral response of vegetation in imagery (Richardson, Gerbermann, 

Gausman & Cuellar; Everitt, Gerbermann & Cuellar; Wiegand, Everitt & Richardson; 

Wallace, Campbell, Wheaton & McFarlane in Lenney et al. 1996), and from hand-

held radiometric measurements (Toth, Csillag, Micheli & Biehl in Lenney et al. 

1996).  

 

1.1.3 Remote sensing and soil salinisation 

According to McNairn, Ellis, Van der Sanden, Hirose & Brown (2002), and Wang, 

Wilson & Shannon (2002), the vast acreage associated with the global agricultural 

resource base and the high costs and time needed to conduct field surveys make the 

cost of field surveys prohibitive. Also, McNairn et al. (2002) state that the challenge 

of monitoring the state of crops and soil is further complicated by their dynamic 

nature. 

 

Studies conducted by Wiegand, Richardson, Escobar & Gerbermann (1991); 

Muchow, Robertson & Pengelly (1993); Jamieson, Martin, Francis & Wilson (1995); 

Casanova, Epema & Goudriaan (1998); Boegh, Soegaard, Broge, Hasager, Jensen, 

Schelde & Thomsen (2002); Wang, Wilson & Shannon (2002); McNairn et al. (2002), 

and Zhang, Liu & O’Neill (2002) have demonstrated that the state of crops or 

vegetation can be determined by investigating their spectral reflectance patterns. 
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Zhang, Liu & O’Neill (2002) are of the opinion that there has been a growing interest 

in using optical remote sensors for mapping and monitoring crop diseases and stress 

because of the advances in airplane and satellite technology. Because of the 

significance of these findings for crop and vegetation studies, and considering the low 

cost and shorter time required by the use of remote sensing technology, remote 

sensing has become an indispensable tool for studying agricultural resources and crop 

growing conditions (McNairn et al. 2002; Zhang, Liu & O’Neill 2002). 

 

1.2 PROBLEM STATEMENT 

Rowel (1994) and White (1997) state that all irrigation water contains some amount 

of salts. According to White (1997), salts accumulate in soils under irrigation because 

crops take up little of this salt, e.g. NaCl (about one tenth) and transpire nearly all of 

the water. While the salinity of the water in the Orange River has been relatively low 

(Department of Water Affairs and Forestry 1999; Schloms 2002 [Pers comm]), 

because most of the water originates in the high rainfall area of Lesotho where the 

geology brings about water of generally low salt concentration, salts may accumulate 

as a result of irrigation over the long term. Another problem that contributes to 

salinisation is water logging that occurs at local depressions created by filled old 

drainage channels of the river. Salts accumulate in these areas when the water 

evaporates (White 1997). 

 

Although the literature points that several remote sensing data sets are available for 

use in identifying soils with high salt content, the use of remote sensing in studying 

salinisation in South Africa is still lacking. This was revealed by unavailability of 

literature on the use of remote sensing techniques in studying salinised land in South 

Africa. Although it is possible to study and map salinised land by studying the 

reflectance patterns of the soil, this study uses the reflectance patterns of plants in 

salinised land to identify salinised areas. The reason for this choice is that the 

potentially affected areas are under permanent cultivation and studies have shown that 

salinisation alters the reflectance patterns of plants. 

 

Reversing the effects of salinisation can be a very expensive practice, so constant 

monitoring of the state of the soils is essential. This will help in diagnosing the 

problem before it is too severe and then taking steps to avert the situation. 
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1.3 THE STUDY AREA 
The study area selected is located in the Northern Cape Province, South Africa, along 

the lower Orange River, between Keimoes and Upington. The total surface area of the 

study region is 4130 hectares of which 2107 hectares are cultivated agricultural land. 

Orchards and vineyards are a major part of land use in the study area. The average 

maximum daily temperatures are 35oC and 20oC in summer and winter respectively 

and this area has an average precipitation of about 25mm in summer and 5mm in 

winter (South African Weather Service 1991). Figure 1.1 shows the location of the 

study area. On the study area map Upington is situated on the upper side in a 

northeasterly direction and Keimoes is found further down in a southwesterly 

direction. 
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Figure 1.1 Location of the study area 
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1.4 AIMS AND OBJECTIVES 
Studies by Penuelas, Isla, Filella & Araus (1997); Katerji, Van Hoorn, Hamdy & 

Mastrorilli (1998); Wang, Shannon & Grieve (2001), and Wang, Wilson & Shannon 

(2002) succeeded in showing how saline conditions alter the reflectance patterns of 

plants grown under these conditions. These findings on remote sensing and the 

benefits in low costs, less time needed to conduct the study, and the objectivity 

associated with the use of remote sensing constitute sufficient reason to justify the use 

of the technology in studying crop conditions.  

 

The overall aim of the study is to evaluate the potential of visible and near infrared 

digital aerial imagery in the identification of salinised-cultivated land. The following 

objectives will help realise the aim stated above: 

1. Identify cultivated from non-cultivated land in the study area; 

2. Identify and map areas in which  crops show stress; 

3. Evaluate the extent of the problem of saliniastion in the study area; 

4. Evaluate the success of the technique in identifying salinised land. 

 

1.5 DATA REQUIREMENTS 

The data that were used to conduct this study comprise digital aerial images, 

orthophoto maps, digital elevation models (DEMs), and field data. Each of these data 

sets is briefly described below. 

 

1.5.1 Digital aerial imagery 

Digital aerial images were acquired in December 2002 by the company Emoyeni 

(Somerset West). The images overlap by 60% in the flight direction with a 30% side 

lap. The focal length of the camera was 50mm and the average flight height was about 

3960 meters. The resolution of the images is 4079 rows x 4080 columns and each 

pixel represents approximately 0,65m on the ground. The scale of the images is 

1:70000.  

 

Two sets of imagery were acquired. The spectral channels of the colour images 

consist of the red, green, and blue (RGB) bands, whereas the second set of images 

were black and white near infrared (NIR). The study area is covered by 20 RGB and 

20 NIR images. Because the two sets of images were captured separately, they could 
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not cover the same areas on some portions of the study area, more especially images 

at the edges. Vegetated areas appeared in a bright white colour on NIR images while 

non-vegetated areas were dark. On RGB images, vegetated areas appeared green 

while non-vegetated areas were greyish in colour. 

 

1.5.2 Orthophoto maps 

Digital orthophoto maps were obtained from the Chief Directorate of Surveys and 

Mapping in Mowbray. The orthophoto maps were georeferenced to the South African 

LO co-ordinate system  and used as a backdrop for collecting ground control points 

when rectifying digital aerial images. The orthophoto maps that covered the study 

area are 2821CA12, 2821CA13, 2821CA17 and 2821CA18 and they were captured in 

2001. 

 

1.5.3 Digital Elevation Models (DEMs) 

Digital elevation models (DEMs) covering the study area were obtained from the 

Chief Directorate of Surveys and Mapping in Mowbray. The resolution of the DEMs 

was 20 meters. The DEMs were used as a source of elevation data when 

orthorectifying digital aerial images using the Orthobase module of ERDAS Imagine 

Software. 

 

1.5.4 Soil samples 

Considering the time available to conduct this study, and the high costs of laboratory 

analysis, the findings of this study were validated by 24 samples, which were 

collected for the broader study conducted along the Orange River. The broader study 

of which this one formed a sub-component was undertaken for the Water Research 

Commission (WRC) by Mrs T.Volschenk, ARC/Infruitek, Prof. HL Zietsman, 

Department of Geography and Environmental Studies, and Prof. M Fey, Department 

of Soil Science, University of Stellenbosch. The study was aimed at determining the 

seriousness of the problem of salinisation along the Orange River.   

 

Of the 200 randomly and proportionally selected samples from twelve sampled blocks 

for the broader project along the Orange River, 24 samples occurred in the study area 

for this project.  For all areas identified as salinised, control soil samples were 

collected in non-salinised plots adjacent to plots identified as salinised. Thus of the 24 
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samples, 12 were collected from non-salinised plots adjacent to those identified as 

salinised. 

 

The geographical co-ordinates of the selected sites were extracted and provided to the 

field survey team for locating the sites using a GPS. To expedite the location of these 

sites in the field the field team was given a set of twelve A1 sized colour maps 

showing the mosaicked RGB images with a graticule and an overlay of the selected 

sample sites.  This set of twelve maps was accompanied by similar data in TIFF and 

Shape file formats on a Notebook computer, using ESRI’s ArcExplorer software, so 

that the field team could zoom into any area and determine exactly where any 

particular soil sample point was located. 

 

The field teams were also instructed to note the land cover type of the sample sites as 

well as any observations on the soil conditions or factors that could assist in 

explaining observed patterns.  These observations were captured on the database and 

used in an assessment of the accuracy of the aerial photographic techniques employed 

in identifying areas showing some form of vegetation stress. Information on land-

cover types on the sample sites was used to determine classification accuracies. 

 

Soil samples were taken to determine the total salt concentration by measuring the 

electrical conductivity of the saturated soil water extract (ECe) and the soluble cations 

and anions. Soils were sampled at the following depths: 0 to 300mm, 300 to 600mm 

and 600 to 900mm. Soils were dried, sieved, and saturated paste extracts made 

(Richards 1954). The saturation percentage, PH, and EC of the saturated extract (ECe, 

dS/m) were determined. Soluble cations (Na, K, Ca, Mg) in the saturated extract were 

determined using an inductive coupled plasma atomic emission spectrometer (Liberty 

200 ICP, Varian Australia Pty Ltd, Australia) and anions (Cl, SO4) according to 

Richards (1954). The soils were classed for salinity status according to the profile 

mean ECe and soils were considered saline if the ECe was equal to or exceeded 0,75 

dS/m, which is the salinity threshold value beyond which a decrease in yield for 

grapes is expected (Moolman, De Clerg, Wessels, Meiri & Moolman 1999).  

 

 
 



 9

1.6 RESEARCH METHODOLOGY 
In order to realise the overall aim of the study, the following procedures were 

executed: 

1. Orthorectification of digital aerial images to correct for terrain displacement on 

the images, 

2. Digital image mosaicking of each of the two sets of RGB and NIR images to 

produce images of each set that cover the whole study area, 

3. Stacking the NIR and RGB mosiacked images to produce a four-band image 

that can be used for computing the NDVI image, 

4. Manual and digital image classification to identify irrigated land, 

5. Visual and digital image analysis to identify and map potentially salinised land, 

6. Conducting accuracy assessments to determine the success of manual and 

digital image classification techniques, 

7. Validation of results using soil samples obtained from field surveys. 

 

1.7 RESEARCH FRAMEWORK 
The research design depicted in Figure 1.2 shows the sequence of steps followed in 

this study to realise the aim and objectives. The study consists of the following main 

elements: 

 

1. Review of the relevant literature, 

2. Manual and digital image analysis for the identification of irrigated land, 

and potentially salinised areas, 

3. Overall findings of the study. 
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Figure 1.2 Diagrammatical representation of the research design 

PROBLEM FORMULATION AND STUDY AREA DEMARCATION 
Problem formulation. 
Demarcation of the study area, data requirements and research methods. 
 

IMAGE PROCESSING 
Orthorectification, mosaicking, and stacking of digital aerial images. 
 

DIGITAL AERIAL IMAGE ANALYSIS 
Digital and visual image analysis techniques to identify and map irrigated and 
potentially salinised land.    

ACCURACY ASSESSMENT 
Conduct accuracy assessment and validate results from field surveys. 

LITERATURE SURVEY 
Salinisation of soils and plant stress (in particular salt stress). 
Remote sensing of cultivated land. 
   

SYNTHESIS 
Evaluate the findings of the study by revisiting the set objectives. 
Conclusion, guidelines, and recommendations.  
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The literature survey involved a review of the literature to provide the theoretical 

background to the study. Literature consulted covered salinisation, remote sensing and 

the use of remote sensing techniques in studying crop and vegetation stress. Particular 

attention was paid to studies that focused on crop and vegetation salt stress. 

 

Visual and digital image analysis involved manual and digital image classification of 

the digital aerial images to identify irrigated, potentially salinised land. Accuracy 

assessments were conducted on the classified images to determine the success of the 

classification techniques. Chemical analysis of soil samples obtained from field 

surveys were then incorporated to verify salinity areas derived from remote sensing 

mapping. 

 

Overall findings of the study are evaluated at the end of the study to determine the 

success of the study in identifying salinised land. Conclusions are then drawn and 

recommendations made. 

 
1.8 STRUCTURE OF THE THESIS 

In this report, Chapter 1 presents an introduction to salinisation and the use of remote 

sensing techniques in studying salinised land. The problem statement is then defined, 

followed by aims and objectives, and demarcation of the study area. Data needs and 

research methods are also explained in this first chapter. Chapter 2 deals with the 

theoretical background on salinisation and remote sensing. Chapter 3 covers the 

image processing techniques conducted on the images to prepare them for analysis. 

The identification of irrigated land in the study area is explained in Chapter 4, 

followed by the identification and mapping of potentially salinised land in Chapter 5. 

Chapter 6 presents the findings of the study. Conclusions and recommendations are 

made in this last chapter.  

 

In the following chapter, the theoretical background of the study is outlined. 
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CHAPTER 2: REMOTE SENSING AND AGRICULTURE 
 

2.1 INTRODUCTION 

The review of the literature in this chapter provides a theoretical base for the 

identification and mapping of salinised-irrigated land. The first part of the chapter 

deals with salinisation of soils, the causes of salinisation, effects on plant growth, and 

research on salinisation. The remaining parts of the chapter consider literature on 

remote sensing of cultivated land. The use of remote sensing in studying agricultural 

land, particularly the use of the technology in isolating irrigated from non-irrigated 

land, and the use of the technology in studying plant stress are reviewed. 

 

According to Ammissah-Arthur & Miller (2002), the greatest problem facing the 

world today is that of chronic hunger, more especially in developing countries. 

Ammissah-Arthur & Miller (2002) further state that Africa has an annual population 

growth of 2,38% compared to the global rate of 1,33% and that, although it accounts 

for only 10% of the world population, it produces too little to feed its people. In order 

to meet the demands of the growing population, tremendous pressure is being put on 

finite natural resources to provide for the substantial production of food crops, water 

and energy (Zietsman, Vlok & Nel 1998). While farmers and agricultural managers 

strive to increase production while cutting costs, they should also guard against 

damaging the environment. To employ optimised management techniques, highly 

detailed information on the status of the soils, conditions of crops and manifestation 

of diseases is essential. 

 

Greiner (1998); Utset & Borroto (2001); Slavich, Petterson & Griffin (2002), and 

Cuartero & Fernandez-Munoz (1998) state that incorrect methods of irrigation lead to 

salinisation and pose a threat to the sustainability of irrigation agriculture. As outlined 

in Table 2.1, no continent on the globe is free from salt-affected soils. Estimates of the 

Food and Agriculture Organisation (FAO) and United Nations Educational, Scientific 

and Cultural Organisation (UNESCO) reveal that as many as half of the existing 

irrigation systems of the world are affected by salinisation, alkalinisation and water 

logging. About ten million hectares of arable land are abandoned anually because of 

the negative effects of salinity due to irrigation (Szabolcs 1994). Salinisation resulting 
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from the effects of human activities (irrigation being the major contributor) is adding 

to the 954,8 million hectares of land already salinised through natural processes (see 

Table 2.1). 

Table 2.1 The extent of salt-affected soils in the world 

Source:Szabolcs,1994:6 

Continent Area (million ha) % of Total 

North America 

Mexico and Central America 

South America 

Africa 

South Asia 

North and Central Asia 

Southeast Asia 

Australia 

Europe 

15,7 

2,0 

129,2 

80,5 

87,6 

211,7 

20,0 

357,3 

50,8 

1,6 

0,2 

13,5 

8,4 

9,2 

22,2 

2,1 

37,4 

5,3 

TOTAL 954,8 100 

 

Traditionally, field survey methods were commonly used in monitoring agricultural 

crops and the condition of soils. McNairn et al. (2002) argue that the vast acreage that 

is associated with the global agricultural resource base makes the use of field 

surveying methods prohibitive because of high costs and the time that is associated 

with them. Also, the challenge of monitoring the state of crops is further complicated 

by their dynamic nature. Recent developments in remote sensing technology have 

brought new airborne and satellite sensors with high resolution that also provide 

continuous availability of remote sensing data. According to Liu & Kogan (2002), 

remote sensing data provide high-quality spatial and temporal information about land 

surface features, including the behaviour of agricultural crops and cumulative 

environmental crop growing conditions. These developments make remote sensing 

the most economical and convenient way of obtaining information about the 

environment and the conditions of soils and agricultural crops. 
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2.2 SALINISATION 

Salinisation, the process whereby salts accumulate in soils, is the world’s oldest soil-

pollution problem (Rowel 1994). Literature on salinisation indicates that it occurs in 

soils of arid and semi-arid regions (Allison et al. 1969; Fitzpatric 1980; Rowel 1994). 

As stated by Allison et al. (1969), saline soils are practically non-existent in humid 

regions except when the soil has been subjected to the effects of seawater in river 

deltas and low-lying lands near the sea. Restricted drainage is a factor that usually 

contributes to the salinisation of soils (Allison et al. 1969).  

 

Allison et al. (1969), and Szabolcs (1994) identify two major categories of salt-

affected soils:  

(i) Primary soil salinisation – salt-affected soils that develop as a result of 

natural processes and 

(ii) Secondary soil salinisation - soils that have been salinised as a result of  

human activities. 

 

Irrigation and human activities other than irrigation (e.g. deforestation, overgrazing, 

accumulation of air-borne or water-borne salts etc.) are identified as the causes of 

secondary soil salinisation. But according to Lenney, Woodstock, Collins & Hamdy 

(1996); Smets, Kuper, Van Dam, & Feddes (1997); Wienhold & Trooien (1998); 

Katerji et al. (1998); Utset & Borroto (2001), and Slavich, Petterson & Griffin (2002), 

incorrect irrigation practices constitute the major contributor to secondary soil 

salinisation. According to Szabolcs (1994) and White (1997), it is estimated that more 

than half of the irrigated land of the world have been affected by salinisation and the 

problem is increasing rather than decreasing.  

 

2.2.1 Effects of salinisation on plants  

All soils contain a considerable mixture of salts, some of which are essential for plant 

growth. When the concentration of salts becomes excessive, plant growth is 

suppressed and productivity of plants is reduced (Francis & Maas 1994; Greiner 1998; 

Wang et al. 2002). The suppression increases as the concentration of the salt increases 

until the plant dies (Francis & Maas 1994). 
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The fact that crops react differently to salinisation of different levels under different 

conditions has been clearly accounted for in the literature (Maas & Hoffman 1977; 

Francis & Maas 1994; Dudley 1994; Katerji et al. 1998; Armour & Viljoen 2000; 

Asch & Wopereis 2001; Katerji, Van Hoorn, Hamdy & Mastrorilli 2001). Maas & 

Hoffman (1977) maintain that the response of plants to different levels of salts is 

dependent on plant factors, type of soil, water and environmental factors. 

 

Research and experiments conducted on a variety of plants and crop cultivars reveal 

different responses of plants to salinisation. Although all plants are subject to stunting, 

the tolerance threshold varies widely among different crops. Salinisation decreases the 

amount of water available to the plant (by decreasing the osmotic pressure), thus 

leading to leaf burn and defoliation (Thorburn, Walker & Jolly 1995). Salinisation can 

decrease growth and net photosynthesis in plants and alters the reflectance of 

electromagnetic radiation by plants (Penuelas, Isla, Filela & Araus 1997; Jamieson et 

al. 1995; Wang et al. 2002). This impaired photosynthesis leads to reduction in 

biomass and yield of plants. 

 

A study conducted by Cuartero & Fernandez-Munoz (1998) found that salinisation 

reduces tomato seed germination. According to William & Mathews (1990), although 

grapes are moderately resistant to salinity, severe saline conditions inhibit growth and 

delay ripening. 

 

2.2.2 Salinisation research 

Millions of hectares of irrigated land are lost yearly and great losses are incurred in 

agricultural production all over the world because of salinisation. As a result, a variety 

of disciplines have focused on the problem. A wide range of research themes has been 

covered in the literature. These include studies on plant salt tolerance, salt stress and 

plant productivity, plant radiation reflectance under saline conditions, salt infiltration 

rates, irrigation and salinity, etc. (Maas & Hoffman 1977; Katerji, Van Hoorn, Karam 

& Mastrorilli 1996; Katerji et al. 1998; Wang, Shannon & Grieve 2001; Katerji et al. 

2001; Mahmood, Morris, Collopy & Slavich 2001; Asch & Wopereis 2001; Slavich, 

Petterson & Griffin 2002; Wang, Wilson & Shannon 2002; Wang, Poss, Donavan, 

Shannon & Lesch 2002) 
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Thorburn, Walker and Jolly (1995) developed an analytical model, based on 

unsaturated zone water and solute balances, to describe the uptake of saline ground-

water by plants in dry regions. Their study was conducted in Australia in 1995. This 

study found that groundwater depth and salinity were the main controls on the uptake 

of groundwater, while soil properties appeared to have a lesser effect. The model 

showed that uptake of groundwater would result in the complete salinisation of the 

soil profile within 4 to 30 years at sites they studied, unless salts were leached by 

rainfall or floodwater. Penuelas et al. (1997) studied the effects of the soil salinity 

gradient on spectral reflectance of genotypes of barley to determine the efficacy of 

reflectance as a tool for assessing the response of barley to salinity. Using the 

normalised difference vegetation index (NDVI) and the Water Index (WI), they found 

that near-infrared reflectance of barley decreased and visible reflectance increased in 

response to increasing salinity.  

 

2.3 REMOTE SENSING 

Campbell (1996: 5) defines remote sensing as the practice of deriving information 

about the earth’s land and water surfaces using images acquired from an overhead 

perspective, using the electromagnetic spectrum reflected or emitted from the earth’s 

surface. While other authors have their own ways of defining remote sensing, they all 

centre on the observation of features on the surface of the earth by recording the 

behaviour of electromagnetic radiation when it interacts with objects on the surface of 

the earth. Central to the practice of remote sensing is an understanding of the 

electromagnetic spectrum and how it interacts with objects on the surface of the earth. 

 

2.3.1 The electromagnetic spectrum 

According to Campbell (1996), all objects except those at absolute zero temperature 

(0 Kelvin or -273 0C) emit electromagnetic energy, while others reflect radiation from 

other objects. A full range of the electromagnetic energy is radiated towards the earth 

from the sun (Campbell 2002). This range of energy is called the electromagnetic 

spectrum. According to Lindgren (1985), the electromagnetic spectrum is the 

arrangement of electromagnetic radiation according to wavelength or frequency. 

Campbell (1996) maintains that, while electromagnetic energy can be classified 

according to wavelength or frequency, the most commonly used method of classifying 

electromagnetic energy is by wavelength. 
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Arbitrarily, the electromagnetic spectrum can be divided into regions according to 

wavelengths. Figure 2.1 shows the various divisions of the electromagnetic spectrum. 

The waves with the shortest wavelengths are the gamma rays (< 0,03nm), followed by 

the X rays (0,03 – 300nm), ultraviolet (0,30 – 0,38um), visible (0,038 – 0,72um), 

infrared (0,72 – 1mm), microwaves (1 – 300mm) and radio waves (> 30cm). The 

portion of the electromagnetic spectrum that is applicable to remote sensing ranges 

between the ultraviolet (0.3um) and the microwave (0.8um) regions (Lindgren 1985, 

Campbell 1996). 

 

 
Figure 2.1 Major divisions of the electromagnetic spectrum 

Source: Lindgren, 1985: 4 

 

2.3.2 Remote sensing in agriculture 

Lunetta (1999) argues that the launching of the first earth resource satellites (ERTS-1) 

in 1972 by NASA saw the recognition of the utility of space-borne remote-sensor 

platforms and their potential for long-term environmental monitoring. Various 

satellites carrying sensors of different resolutions have been launched since 1972 to 
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assist in studying environmental problems viz. land degradation (e.g. vegetation 

cover, erosion, salinity, urbanisation etc.), water pollution and air pollution. 

 

While the application of remote sensing in agriculture has attracted the attention of 

many countries for many years (Hal-Konyves 1988), the resolution of the data was a 

deterring factor. Zietsman, Vlok & Nel (1998) and Allan (1990) argue that 

applications of remote sensing in agriculture require high spatial, radiometric, 

temporal, and spectral resolution. Research has, however, led to the development of 

new sensors with higher resolution. These developments in remote sensing 

technology have brought many applications of the technology to agricultural studies. 

These applications include crop and stress studies, diseases and weed infestation, 

monitoring the status of agricultural crops, determining biomass, yield focusing, 

precision farming, etc. (Lenney et al. 1996; Lelong, Pinet & Poilve 1998; Blackmer & 

White 1998; Lanjeri, Melia & Segarra 2001; McNairn et al. 2002; Liu 2002; Boegh et 

al. 2002; Haboudane, Miller, Tremblay, Zarco-Tejada & Dextraze 2002; Dabrowska-

Zielinska, Kogan, Ciolkosz, Gruszczynska & Kowalik 2002; Goel, Prasher, Landry, 

Patel, Bonnel, Viau & Miller 2003, Johnson, Roczen, Youkhana, Nemani & Bosch 

2003). 

 

2.3.3 Remote sensing of irrigated land 

Remote sensing has made a significant contribution to vegetation mapping and 

monitoring through the relationship between spectral reflectance and vegetation 

greenness (Lewis 1998). With every object having its own unique way of reacting 

with the electromagnetic spectrum, spectral reflectance (the ratio of radiant energy 

within specific wavelengths reflected by a body to the incident energy within the 

same wavelength) can be used to distinguish objects from one another (Mulders 1987; 

Campbell 1996). According to Hal-Konyves (1988), spectral measurements on a 

single occasion may not be sufficient for the purpose of discrimination and crop 

classification. Various techniques can be used to enhance identification of irrigated 

vegetation from non-irrigated vegetation. These techniques include image 

classification, and vegetation indices. Each of these techniques is discussed in the 

following subsections. 
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2.3.3.1 Image classification 

Image classification is the process of assigning pixels to classes. Campbell (1996) 

state that image classification forms an important part of the field of remote sensing, 

image analysis and pattern recognition. Several techniques are available for 

performing classification of images. These include supervised classification, 

unsupervised classification, fuzzy clustering, artificial neural networks, layered 

classification. Although only unsupervised classification was used in this study, each 

of these techniques is briefly explained in the following paragraphs. This will serve to 

clariffy the differences and basic requirements of some of these techniques.  

 

Supervised classification involves the use of known reflectance, called training areas 

to classify digital images. Training areas, which are areas of homogeneous land cover, 

are used to assist the computer to classify digital images. In contrast to supervised 

classification, unsupervised classification does not make use of training data to 

classify digital images. This technique uses algorithms to group pixels in an image 

into clusters with similar reflectance properties. 

 

According to Campbell (2002), fuzzy clustering attempts to assign pixels to a single 

discrete class. A fuzzy classifier assigns membership to pixels based upon a 

membership function. These membership functions for classes are determined by 

either general relationships or definitions of rules describing the relationship between 

data and classes. The output of a fuzzy classification is likely to form an image that 

shows varied levels of membership for specific classes. 

 

Artificial neural networks (ANNs) are computer programs that are designed to 

simulate human learning processes through establishment and reinforcement of 

linkages between input data and output data (Campbell 2002). They are designed 

using less severe statistical assumptions than many other classifiers. ANNs have been 

found to be accurate in the classification of remotely sensed data. 

 

Layered classification refers to the use of a hierarchical process in which two or more 

steps form the basis of classification (Campbell 2002). In this classification, subsets of 

data are classified in a series of separate steps by applying different forms of 

information in its most effective context. This classification method can only be used 
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if the classification logic can be structured in a way that minimizes errors at the upper 

level of the decision tree.  

 

2.3.3.2 Vegetation indices 

To assist in the study of vegetation by remote sensing, a number of vegetation indices 

have been developed. Vegetation indices are linear or non-linear combinations of 

reflectance acquired in several bands. They are based on digital brightness values and 

attempt to measure biomass. Research has found that in living vegetation there is a 

strong absorption of red light by chlorophyll and a strong reflection of infrared 

radiation by chlorophyll (Wang, Shannon & Grieve 2001; Campbell 2002). This 

relationship raises the measurement values of vegetation indices for healthy 

vegetation and makes it possible to distinguish water, bare soil and stressed vegetation 

from healthy vegetation. 

 

Although several vegetation indices are available for vegetation studies, the 

normalised difference vegetation index (NDVI) is the most commonly used. NDVI is 

computed by the following formula: 

NDVI = IR – R / IR + R, where IR is the amount of infrared reflection and R is the 

amount of red light reflection.  

 

Campbell (2002) warns that, although vegetation indices are powerful tools in 

studying vegetation, care should be taken when using them because they can be 

influenced by the viewing angle, soil background, and differences in row direction 

and spacing in the case of agricultural crops.  

 

Uchida (1997) used the normalised difference vegetation index (NDVI) in a temporal 

analysis of agricultural land use in the semi-arid tropics of India, using IRS data in 

1997. The NDVI of cropped areas was found to be higher than that of forested areas. 

In 1995, Hooda and Dye used NDVI to identify and map irrigated vegetation. They 

used data from the pathfinder AVHRR from the NOAA11 satellite. NDVI was 

calculated from atmospherically corrected surface reflectance from visible and NIR 

channels. They calculated monthly and seasonal NDVI averages. NDVI values of 

irrigated vegetation should be less dependent on climate, so they used this difference 

to separate irrigated from non-irrigated vegetation. 
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2.4 CONCLUSIONS 

The literature reveals that salinisation is an environmental hazard that is increasing 

despite negative experiences. This soil condition has been proved to negatively affect 

the production of most crops thus posing a threat to the sustainability of irrigation 

agriculture. Amongst other causes of secondary soil salinisation, irrigation is 

identified as the main contributor. While the traditional field survey method of 

studying soil salinity has been found to be time consuming and expensive, remote 

sensing technologies require less time and are relatively cost effective in studying 

agricultural problems (salinisation included). 

 

The current state of remote sensing studies and the use of the technology have proved 

to be very useful in the solution of a wide variety of environmental problems, 

including agricultural problems as outlined in this chapter. The application of the 

technology in addressing agricultural problems is the result of the rapid development 

the technology has undergone. This was not the case a few decades ago. 

 

The variety of agricultural problems ranging from state of soils (e.g. salinity, soil 

wetness, etc.) to detection of crop stress and forecasting of yields, that can be adressed 

by the use of remote sensing technology is extensively covered in the literature. 

Studies have revealed the relationships that occur between the conditions of plants 

and alterations that occur in the reflectance characteristics of specific parts of the 

electromagnetic spectrum. These findings make remote sensing an indispensable tool 

in the study of agricultural problems.  

 

The chapter that follows discusses digital image processing techniques conducted on 

the imagery. 
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CHAPTER 3: DIGITAL IMAGE PROCESSING 
 
3.1 INRODUCTION 

Image processing entails operations that are carried out on the imagery to prepare 

them for analysis. According to Campbell (2002), image pre-processing changes data 

and the change is assumed to be beneficial. Orthorectification and image mosaicking 

are the two image pre-processing techniques that the images were subjected to. 

Firstly, the images were orthorectified and thereafter mosaicked to produce an image 

covering the whole study area. Because the RGB and NIR images were captured 

during separate overflights, the mosaicked RGB and NIR images were stacked to 

produce an image with four bands. An NDVI image was computed from this four-

band image. 

 

3.2 ORTHORECTIFICATION 

According to ERDAS (2002), orthorectification is a form of rectification that corrects 

for terrain displacement and should be used if there is a DEM of the study area. The 

process of orthorectification takes the raw digital images and applies a DEM and 

triangulation results to create orthorectified images. It is based on collinearity 

equations that can be derived by using 3D ground control points (GCPs). 

Orthorectification of the aerial images for this study was conducted using the 

ORTHOBASE module of the ERDAS Imagine version 8.6. 

 

The ERDAS Imagine Orthobase module uses a self-calibrating bundle block 

adjustment method in its triangulation, thereby determining the relationship between 

overlapping images and their internal geometry. Images can be orthorectified 

individually or in multiples in a block. The process of orthorectification in Orthobase 

requires a DEM, ground control points, tie points and camera calibration information.  

The two sets of digital imagery (NIR and RGB imagery) were orthorectified 

separately as they were captured during separate overflights.  

 

Ground control points were collected manually using the 1: 10 000 digital orthophoto 

maps as backdrops. The literature shows that it is possible to triangulate a project with 

only three or four GCPs, but it is important to use more GCPs in order to improve 

spatial accuracy. A minimum of six GCPs were collected for each image in the block, 
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most of them in the overlapping areas of the images and distributed throughout the 

images. Because the NIR had shadows, GCPs collected on them were not very 

accurate; corners of some buildings and other structures were not easy to locate 

accurately on these images. This kind of problem was not present in the RGB images. 

 

Automatic tie point generation created many errors and a decision to collect tie points 

manually was taken. In both projects, collecting too many tie points resulted in a 

higher RMS error. The RGB and NIR images were triangulated with total RMS errors 

of 0,64 and 0,88 of a pixel respectively. The much higher RMS error for triangulating 

NIR images could be attributed to the poor GCPs collected on these images because 

of shadows. Figure 3.1 and 3.2 show samples of orthorectified RGB and NIR images 

respectively. 

 

 
Figure 3.1 Orthorectified RGB image 



 24

 
Figure 3.2 Orthorectified NIR image 

 

3.3 IMAGE MOSAICKING  

Mosaicking is the combination of many images to produce one large image of an area.  

Aerial photographs are usually a common source for creating image mosaics. 

According to ERDAS (2002), input images must all contain map and projection 

information, although they need not be in the same projection or have the same cell 

sizes. According to Yehuda & Brand (1998), geometric distortions added during the 

process of orthorectification vary for different photos. This difference may result in 

the features appearing in two map plane coordinates on the two adjacent orthorectified 

images created from both photographs. Yehuda & Brand (1998) further state that 

geometric differences between adjacent photographs also occur and these should be 

dealt with to create a seamless mosaic. These geometric differences are caused by 

sun-angle-dependent shadows, seasonal reflection changes of fields, forests and water 

bodies, different atmospheric conditions, and variations in film development 

procedure (Yehuda & Brand 1998). 

 

The orthorectified NIR and RGB images were mosaicked using the Mosaic tool of 

ERDAS Imagine Software. Manual colour balancing using the linear surface method 
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was applied on all the images. The resultant image mosaics were, however, not 

without problems. Producing a seamless image mosaic without variations in 

reflectance between overlapping images was not possible. An effort was made to 

minimise the variations by trying different mosaicking options. Also, geometric 

mismatches in overlapping images could not be eliminated between some adjacent 

images. The resultant mosaicked images for both NIR and RGB datasets are shown in 

Figures 3.3 and 3.4 respectively. 

 

 
Figure 3.3 Mosaicked RGB images covering the study area 
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Figure 3.4 Mosaicked NIR images covering the study area 

 

3.4 IMAGE STACKING 

The RGB and NIR mosaicked images were stacked to produce one image consisting 

of four bands. An NDVI image was produced from the resultant stacked image. Bands 

4 (NIR band) and 3 (Red band) were used in computing the NDVI values. The 

stacked image was also used as input in an unsupervised image classification for 

identification of irrigated and salinised lands in the study area. The NIR and RGB 

images did not fit precisely on each other when stacked. Areas that were not exactly 

covered by both images were visible along the outer portions of images. The stacked 

image displayed with bands 4, 2, and 1 is shown in Figure 3.5. 
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Figure 3.5 Stacked image of the study area 

 

The image analysis techniques carried out on the images are outlined in the following 

two chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28

CHAPTER 4: IDENTIFICATION OF CULTIVATED LAND 

 
4.1 INTRODUCTION 

Visual air photo interpretation is used in the first part of this chapter to identify 

cultivated land in the study region. Onscreen digitising was used to delineate 

cultivated land. In the second part of the chapter, unsupervised image classification 

was used to identify cultivated land digitally. Lastly, accuracy assessments were 

employed to determine the success of both methods in identifying cultivated land. 

 

4.2 VISUAL INTERPRETATION 

Objects on aerial photographs are distinguished by differences in shapes, tones, 

texture, and sizes. It is possible to visually identify objects in an aerial photo, thus 

communicating this information by the use of maps to users. According to Lillesand 

& Keifer (1979), Campbell (1996), and Sebego & Arnberg (2002), size, shape, 

pattern, shadow, tone, texture and site are some of the basic characteristics that are 

useful for visual photo interpretation. For visual image analysis, Lillesand & Keifer 

(1979) argue that crop classification through photo interpretation is based on the 

premise that specific crop types can be identified by their spectral response pattern 

and photo texture. Nevertheless, multi-date photographs may be necessary when 

similar looking crop types have to be discriminated from one another. However when 

broad classes of crops have to be inventoried, single-date photographs may be 

sufficient. Lillesand & Keifer (1979) maintain that the knowledge and experience of 

the image interpreter is very important in visual image analysis.  

 

Using visual interpretation, the following images were used to identify irrigated land 

in the study area: mosaicked RGB, NIR mosaicked, stacked (RGB and NIR), and the 

NDVI images.  

 

4.2.1 Manual classification of the mosaicked RGB image 

Manual onscreen digitising was used to digitise cultivated land on the mosaicked 

RGB image of the study region. Since this exercise was meant to identify cultivated 

land in the study area, only land used for agriculture was digitised. Agricultural land 

was divided into two categories, viz. vines and orchards; and other crops and fallow 
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land. The pattern and texture of the crops were used to isolate vines and orchards from 

other crop types. As highlighted by Lillesand and Keifer (1979), it proved very 

difficult to isolate the different categories of vines and other crops. It is because of 

this difficulty that all categories of vines and orchards were grouped in one class 

called vines and orchards and a similar grouping of all other crops in a class called 

other crops and fallow land. Fallow land consisted of land that was not cultivated at 

the time of the imagery. Because it was very difficult to tell whether some portions of 

land were covered by grass or planted with some crops (e.g. Lucerne), fallow lands 

were grouped with crops other than vines and orchards. Cultivated land dermacated 

from visual interpretation of the mosaicked RGB image is shown in Figure 4.1. 

 

 
Figure 4.1 Cultivated land demarcated from manual classification of the mosaicked 

RGB image 

 

4.2.2 Manual classification of the mosaicked NIR image 

The same procedure used above was employed to demarcate cultivated land on the 

NIR mosaicked image. Like the manual classification of mosaicked RGB images, 

tone, pattern and texture were used to distinguish land cover types from one another. 

On the NIR image, areas occupied by vegetation appeared in a bright white colour. 
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Two categories of cultivated land-cover types were identified. Vines and orchards 

were classified into one class with fallow lands and other crop types in the other. 

Vines and orchards were distinguished from the other crop types by their tone, 

pattern, and texture on the image. Other crop types displayed a fine texture while 

vines and orchards had a coarse texture, with rows of crops distinguishable in other 

fields. As with the RGB image, it was not possible to distinguish the different types of 

vines and orchards and those of other crop types. Fallow lands appeared darker and in 

some cases it was difficult to tell whether they were fallow or planted with crops that 

were still young. As in the previous manual RGB classification, fallow lands were 

grouped into the same class with other crop types. Figure 4.2 is the diagrammatic 

representation of the result of the manual classification of the NIR image. 

 

 
Figure 4.2 Cultivated land demarcated from manual classification of the NIR 

mosaicked image 

 

4.2.3 Manual classification of the stacked image  

As explained in section 3.3 in Chapter 3, the stacked image consists of four bands 

obtained by stacking the RGB and near infrared bands. Displayed with bands 4, 2 and 

1, vegetation appeared bright red on this image. Manual image classification was 
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conducted by digitising cultivated land. As in the classification of the RGB and NIR 

images, cultivated land was categorized into two groups: vines and orchards; and, 

other crops and fallow land. Tone, pattern and texture of the image were used to 

distinguish vines and orchards, and other crop types. The texture of vines and 

orchards appeared coarser while that of other crop types was fine. The resultant map 

obtained from the manual classification of the stacked image is shown in Figure 4.3. 

 

 
Figure 4.3 Cultivated land demarcated from manual classification of the stacked 

image 

 

4.2.4 Manual classification of the NDVI image 

A normalised difference vegetation index (NDVI) was computed using the stacked 

image to produce an NDVI image. Manual image classification by the use of onscreen 

digitising was conducted on the resultant NDVI image. Cultivated land was classified 

into two classes as was done on the other images. On this image, areas occupied by 

crops and natural vegetation were clearly distinguishable from the other land cover 

types as the former appeared bright white on the image. Areas of low NDVI values 

(non-vegetated areas) appeared darker. On this image, vines and orchards appeared 

brighter than the other crop types because of their higher NDVI values. Fallow land 
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and other crop types had lower NDVI values compared to vines and orchards and 

appeared less bright on the image. Non-vegetated areas appeared darker on this 

image. Distinguishing fallow lands and fields where crops were still young proved 

difficult on the NDVI image. Cultivated land obtained from manual classification of 

the NDVI image is shown in Figure 4.4. 

 

 
Figure 4.4 Cultivated land demarcated from manual classification of the NDVI image 

 

4.3 DIGITAL IMAGE ANALYSIS 

Digital image classification is one of the techniques used for feature extraction in 

digital image analysis. Several classification methods are available for classification 

of remotely sensed data as outlined in section 2.3.3.1. The literature studied did not 

indicate which of the methods are the best in classifying remote sensing data, but it 

showed that each method has its own advantages and disadvantages. According to 

Lillesand & Keifer (1979), using a combination of these classification methods 

produces better results. Unsupervised image classification is the technique used in this 

study.  
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As outlined in ERDAS (2002), ISODATA which is the only available algorithm for 

unsupervised image classification in the package, uses minimum spectral distance to 

assign pixels to a cluster. This process begins with a specified number of arbitrary 

cluster mean(s) of the existing signatures and then it processes repetitively, so that 

those means shift to the means of the clusters in the data. Because the ISODATA is 

iterative, it is not biased to the top of the data file like the one-pass clustering 

algorithms. Performing an ISODATA clustering requires a specification of the 

number of clusters, convergence threshold, and the maximum number of iterations to 

be performed. 

 

Unsupervised classification was conducted on each of the four datasets, viz. RGB 

mosaicked, NIR mosaicked, stacked, and the NDVI images to isolate cultivated land 

in the study area. The NIR mosaicked image was not very successful in separating 

land-cover types, e.g. vines and orchards from other crop types, and fallow from 

barren lands.  Unsupervised classification of this image was not pursued further for 

analysis of cultivated land. Thus, unsupervised classification of the RGB mosaicked, 

stacked, and NDVI images were investigated further for the identification of 

cultivated land.  

 

Classifying the images into many classes produced images that were difficult to 

interpret. A fifteen-class classification for all the images produced results that were 

interpretable. Three broad land-cover categories were isolated from the classified 

images, viz. vines and orchards, other crops and fallow lands, and other land cover 

types. The category of other land cover types consists of pixels covering water, built-

up areas, barren lands, and all other land cover types not related to irrigated land 

merged together. The classification of each of the RGB mosaicked, stacked, and the 

NDVI images are presented in the subsections that follow. 

 

4.3.1 Unsupervised classification of the RGB mosaicked image  

According to Campbell (2002) and Lillesand & Keifer (1979), the most difficult part 

of unsupervised classification is assigning information classes to spectral classes. 

Using the RGB mosaicked image as a reference, spectral classes were assigned to 

information classes. Unsupervised classification produced a number of subclasses that 

needed to be combined in order to generate classes that correspond with those 
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generated by visual image classification technique. Portions of forests, trees and 

shrubs were included in one category as vines and orchards. Crops other than vines 

and orchards also could not be identified as single classes. Pixels covering areas 

occupied by grass, weeds, etc. were included in this category. Similar classes were 

grouped to produce single classes. Figure 4.6 shows cultivated land derived from an 

unsupervised classification of the RGB mosaicked image.    

 
Figure 4.5 Cultivated land demarcated from unsupervised classification of the 

mosaicked RGB image 

 

It is evident from Figure 4.6 that there were difficulties in separating fallow lands and 

barren areas. There are many pixels outside the cultivated area that are visible on the 

map, which fall into the category of other crops and fallow land. This is probably the 

result of the difficulty of the classifier to separate fallow lands, barren areas, grass, 

etc. 

 

4.3.2 Unsupervised classification of the stacked image 

As in the RGB mosaicked image classification above, the RGB mosaicked image was 

used as the basic information in assigning spectral classes to information classes. As 

in the RGB mosaicked image classification, subclasses produced by unsupervised 
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classification needed to be combined to generate classes that correspond to those 

generated by visual image interpretation technique. Three broad land-cover types 

were identified, viz. vines and orchards, other crops and fallow lands, and other land 

cover. Cultivated land obtained from unsupervised classification of the stacked image 

is depicted in Figure 4.8.  

 
Figure 4.6 Cultivated land demarcated from unsupervised classification of the stacked 

image 

 

Unsupervised classification of the stacked image also shows difficulties in separating 

some land-cover types from one another. However, the extent of those overlapping 

classes is not severe as in the classification of the RGB mosaicked image.  

 

4.3.3 Unsupervised classification of the NDVI image 

As in all the above images, the NDVI image was classified into fifteen classes. 

Classes identifying vines and orchards, other crops and fallow lands, and other land 

cover types were identified using the RGB mosaicked image as the basic information. 

Unsupervised classification of the NDVI image also revealed difficulties in separating 

land cover types. Cultivated land demarcated from unsupervised classification of the 

NDVI image is depicted in Figure 4.7. 
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Figure 4.7 Cultivated land demarcated from unsupervised classification of the NDVI 

image 

 

To determine the degree of success for both the manual and digital classification 

methods in the identification of cultivated land, accuracy assessments were 

conducted. The accuracy assessments of all the classified images are evaluated and 

expounded in the section that follows. 

 

4.4 ACCURACY ASSESSMENT 

Land-cover types on sampled sites were identified when the samples were collected. 

These data on land-cover types was used to conduct classification accuracy of both 

the manual and digital classification methods. Confusion matrices were constructed 

after the field reference data was overlaid with the classified images. In these tables, 

errors of commission and omission are tabulated, and the percentage land cover 

correctly classified is calculated by dividing the sum of the diagonals by the total. In 

the confusion matrices, producers’ accuracy (PA) refers to the probability of a land 

use category on the ground being correctly identified on the map (Lenney et al. 1996). 

PA is the ratio of the cell probability of the correctly identified sites to the true 

proportion of that class on the ground. Consumer’s accuracy (CA) is a guide to the 
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reliability of a map as a predictive device and gives the user of the map the percentage 

of each land cover category that is identified accurately by the prediction technique 

(Campbell 2002). 

 

The accuracy assessments of each of the classification techniques are presented in the 

subsections that follow. 

 

4.4.1 Manual image classification 

In order to be as accurate as possible, an area within 3m of the sampled point was 

assumed to be representative of the land cover type of the sampled point. Buffer zones 

of 3m were computed around sampled points (see Figure 4.8 for points around which 

buffer zones were created). Both the buffer shape files and the classified images were 

converted to grids of cell size 0,75m. A combinatorial-AND operation in the GRID 

module of ARCInfo software was used to compare each set of the classified data with 

the reference grid (gridded ground truth data). This operation compares two grids on a 

cell-by-cell basis and produces a grid that gives the number of cells for each 

combination. In this way, all the correctly classified and the incorrectly classified cells 

are shown. The data from the resultant grids were used to compute confusion matrices 

for each classified image. The statistics of these errors for all the images are tabulated 

in Tables 4.1 to 4.4.  
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Figure 4.8 Land use at field sample points 

 

Table 4.1 Confusion matrix comparing cultivated land identified by manual 

classification of the RGB mosaicked image with ground truth data 
                                Ground truth RGB manually classified 

image Vines and orchards Other crops and 

fallow land 
Total CA% 

Vines and orchards 992 0 992 100 
Other crops and fallow land 57 149 206 72,3 
Total 1049 149 1198  
PA% 94,6 100   

Percentage correct 95,2 
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Table 4.2 Confusion matrix comparing cultivated land identified by manual 

classification of the NIR image with ground truth data 
                                     Ground truth NIR manually classified 

image Vines and orchards Other crops and 

fallow land 
Total CA% 

Vines and orchards 1001 0 1001 100 
Other crops and fallow land 48 149 197 75,6 
Total 1049 149 1198  
PA% 94,7 100   

Percentage correct 95,9 
 

Table 4.3 Confusion matrix comparing cultivated land identified by manual 

classification of the stacked image with ground truth data 
                                            Ground truth Stacked manually classified 

image Vines and orchards Other crops and 

fallow land 
Total CA% 

Vines and orchards 994 0 994 100 
Other crops and fallow land 55 149 204 75,6 
Total 1049 149 1198  
PA% 95,4 100   

Percentage correct 95,4 

 

Table 4.4 Confusion matrix comparing cultivated land identified by manual 

classification of the NDVI image with ground truth data 
                                            Ground truth NDVI manually classified 

image Vines and orchards Other crops and 

fallow land 
Total CA% 

Vines and orchards 899 0 899 100 
Other crops and fallow land 150 149 299 49,8 
Total 1049 149 1198  
PA% 85,7 100   

Percentage correct 87,5 
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The statistics in Tables 4.1 to 4.4 show that manual classification of the images for the 

identification of irrigated land was a success. All the images except the manual 

classification of the NDVI images achieved accuracies greater than 95% (refer to 

Tables 4.1 to 4.4). The average percentage of correctly classified land cover by the 

four images is 93,5% with the average probability of vines and orchards being 

correctly classified by all the images at 92,6% while that of other crops and fallow 

lands is 100%. Manual classification was able to identify most of the vines and 

orchards as indicated by higher CA percentages in all the tables above. On average 

only 61,4% of other crops and fallow lands were identified correctly by the different 

techniques. While the statistics in the tables above indicate the high degree of success 

of manual classification of the four images, it should be acknowledged that this has 

been achieved due to the broad classes delimited. 

 

Accuracy assessments for identification of cultivated land by using unsupervised 

image classification are presented in the following section. 

 

4.4.2 Digital image classification 

As with the accuracy assessment of the manually classified images, the statistics of 

errors of commission and omission for digital image classification were obtained from 

the comparison of the grids of ground truth data and the classified images. Statistics 

for errors of commission and omission for each classified image are depicted in 

Tables 4.6 to 4.8. Because the reference grid only had two classes while the grids 

obtained from the classification of the images had three classes, there were no pixels 

tabulated for other land cover types (see Tables 4.5 to 4.7). 
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Table 4.5 Confusion matrix comparing cultivated land identified by unsupervised 

classification of the RGB mosaicked image with ground truth data 
                                            Ground truth Classified RGB image 
Vines and 

orchards 
Other crops and 

fallow land 
Other land 

cover 
Total CA% 

Vines and orchards 387 1 0 388 99,7 
Other crops and fallow land 345 100 0 445 22,5 
Other land cover 317 48 0 365 0 
Total 1049 149 0 1198  
PA% 36,9 67,1 0   

Percentage correct 40,7 

 

Table 4.6 Confusion matrix comparing cultivated land identified by unsupervised 

classification of the stacked image with ground truth data 
                                          Ground truth Classified stacked image 

Vines and 

orchards 
Other crops and 

fallow land 
Other land 

cover 
Total CA% 

Vines and orchards 721 11 0 732 98,5 
Other crops and fallow land 241 96 0 337 28,5 
Other land cover 87 42 0 129 0 
Total 1049 149 0 1198  
PA% 68,7 64,4 0   

Percentage correct 68,2 
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Table 4.7 Confusion matrix comparing cultivated land identified by unsupervised 

classification of the NDVI image with ground truth data 
                                           Ground truth Classified NDVI image 

Vines and 

orchards 
Other crops and 

fallow land 
Other land 

cover 
Total CA% 

Vines and orchards 542 7 0 549 98,7 
Other crops and fallow land 444 127 0 571 22,2 
Other land cover 57 15 0 72 0 
Total 1043 149 0 1192  
PA% 51,9 85,2 0   

Percentage correct 56,1  

    

Judging from the statistics in Tables 4.5 to 4.7, unsupervised classification for the 

identification of cultivated land was not as successful as the manual classification. 

With the percentage of correctly classified land cover at 68,2%, the stacked image 

performed better than the RGB mosaicked and the NDVI images, which attained 

40,7% and 56,1% respectively. All the images managed to correctly classify most of 

the vines and orchards and failed to classify most of other crops and fallow land as 

shown by higher CA percentages for vines and orchards while those of other crops 

and fallow land are lower (refer to Tables 4.5 to 4.7). A significant percentage of 

vines and orchards were incorrectly classified as other crops and fallow land on all the 

images (32,9%, 23% and 42,6% for RGB, stacked and NDVI images respectively). 

Thus, unsupervised classification of these images shows difficulties in separating 

certain land cover types, e.g. vines and orchards from other crops and fallow land.  

 

Digital image analysis revealed difficulties in identifying cultivated land in the study 

area as shown by lower percentages of correctly identified land cover. This is partly 

due to the inability of the classifier to separate land cover types based on single-date 

imagery. Also, the images were not radiometrically calibrated because of lack of 

camera model information. Similar objects may show different reflectance properties 

due to the differences in times of the day that the imagery were captured.  

 

Manual classification of the RGB mosaicked, NIR mosaicked, and the stacked images 

attained the highest accuracies in the identification of cultivated land. These images 
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were used to calculate the extent of cultivated land in the study area. The area was 

calculated by multiplying the number of pixels of each category of cultivated land on 

each image by the area of a pixel. The resultant area for each category was corrected 

using the percentage accurate (PA) for each of the vines and orchards, and other crops 

and fallow lands as a correction factor. The calculated areas for both vines and 

orchards and other crops and fallow lands were added for the three images involved. 

The average area occupied by vines and orchards, and other crops and fallow land is 

1609 and 515 hectares respectively. The total surface area of cultivated land in the 

study area is thus 2124 hectares. 

  

Identification of potentially salinised lands is presented in the following chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 44

CHAPTER 5: IDENTIFICATION OF SALINISED LAND 

 
5.1 INTRODUCTION 

The two techniques, viz. visual and digital air photo interpretation, used in the 

previous chapter to identify irrigated land are again employed in this chapter to 

identify potentially salinised land. The NIR, and the NDVI images were used to 

identify potentially salinised land visually. Again, because of the failure of the NIR  in 

separating land-cover types by unsupervised classification, only RGB mosaicked, 

stacked, and NDVI images were used to identify salinised land. The first part of the 

chapter deals with the visual air photo interpretation and is then followed by the 

digital image analysis. Results of soil samples collected and analysed for salinity are 

integrated in the last part of the chapter to validate the results of the visual and digital 

image analysis techniques in identifying salinised land.   

 
5.2 AIR PHOTO INTERPRETATION 

Interpretation of aerial photographs can be used in assessing crop diseases, insect 

damage, plant stress and damage due to disaster. According to Lillesand and Keifer 

(1979), aerial photo interpretation for crop condition assessment is much more 

difficult than airphoto interpretation for crop type and area inventory. Lillesand and 

Keifer (1979) argue that it is difficult to distinguish the effects of diseases, insect 

damage, nutrient deficiencies or drought from variations caused by plant variety, plant 

maturity, planting rate or background soil differences.  

 

Studies by Penuelas et al. (1997) and Wang, Wilson and Shannon (2002) found that 

saline conditions decrease near infrared reflectance while increasing visible 

reflectance. According to Campbell (2002), the spectral characteristics of a plant leaf 

may change as a result of stress by disease, insect attack, or moisture shortage. 

Campbell (2002) further argues that although these changes occur more or less 

simultaneously in both the visible and the near infrared regions of the electromagnetic 

spectrum, changes in the near infrared region are more noticeable. On NDVI images 

displayed in grey scale, vegetated areas appear brighter than non-vegetated areas 

because of their higher NDVI values. Also, areas of stressed vegetation on different 

fields will be distinguished by appearing darker because of lower NDVI values. Thus, 
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potentially salinised areas will be relatively easier to identify on the NIR, and the 

NDVI images. Therefore, the NIR mosaicked, and the NDVI images were used in the 

identification of potentially salinised land visually. 

 

The use of each of these images in identifying salinised land is discussed in the 

following subsections.  

 

5.2.1 Visual analysis of the NIR mosaicked image 

Although near infrared bands are said to identify stressed vegetation better than the 

visible bands, identifying potentially salinised land on these images was not simple. 

Healthy vegetation on NIR images appeared as a bright white colour. Areas where 

vegetation was stressed appeared darker on the images. Difficulties were experienced 

in identifying potentially salinised land where crops were still young. On these areas, 

more soil was exposed, making it difficult to identify areas where vegetation showed 

stress. Figure 5.1 shows potentially salinised land obtained by visual analysis of the 

NIR images.  

 
Figure 5.1 Salinised land identified by visual interpretation of the NIR mosaicked 

image 

 



 46

Out of the 2124 hectares of cultivated land in the study area, 179,4 hectares of 

irrigated land was identified as salinised by visual analysis of the NIR mosaicked 

image. This constitutes 8.4% of cultivated land in the study region. 

 
5.2.2 Visual analysis of the NDVI image 
On the NDVI image displayed on a grey scale, healthy vegetation appeared white and 

areas of low NDVI values appeared dark. Potentially salinised lands on this image 

were relatively easier to locate. These areas appeared darker compared to areas 

occupied by healthy vegetation. As on the NIR mosaicked image, it was difficult to 

identify potentially salinised areas where crops were still young. These areas exposed 

more soil than vegetation, making these areas look darker. Potentially salinised areas 

on this image were digitised onscreen and represented in Figure 5.2. 

 

 
Figure 5.2 Salinised land identified by visual interpretation of the NDVI image 

 

Visual analysis of the NDVI image revealed that 208,9 hectares (9.8%) of cultivated 

land in the study area is affected by salinisation. 
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Unsupervised classification is used in the following section to identify potentially 

salinised land digitally. 

 

5.3 DIGITAL IMAGE ANALYSIS 

In this section, unsupervised image classification is employed to isolate potentially 

salinised land. RGB mosaicked, stacked, and the NDVI images were subjected to an 

unsupervised image classification technique. The resultant classified images are 

analysed for potentially salinised land. Because unsupervised image classification 

identifies natural groupings in the data, it is hoped that potentially salinised lands will 

be identified in these groupings. Also, since fields are supposed to be cultivated with 

crops of the same type and age, deviations in reflection of electromagnetic radiation 

should be revealed when the images are classified. Classes of salinised areas will 

appear as patchy areas on  cultivated fields. 

 

An unsupervised classification of each of the images for identification of salinised 

land is presented in the following subsections.  

 

5.3.1 Unsupervised classification of the RGB mosaicked image 

After the RGB mosaicked image was classified into fifteen classes, the classified 

image was analysed with the NDVI image as the basic information. Because of their 

lower NDVI values, pixels covering potentially salinised areas appeared darker on the 

NDVI image. These areas appeared as patchy areas on fields on the classified image. 

Unsupervised classification was unable to identify these areas as single classes. These 

potentially salinised areas also covered fallow land, bare soil, grasses and bushes, and 

barren land on some portions of the classified image.  

 

Pixels covering areas of healthy crops were grouped to produce one class called non-

saline land. The same procedure was used to combine all classes covering potentially 

salinised land and those of other land-cover types. The amount of land identified as 

salinised by this image is 1042,8 hectares (about 49%). Figure 5.3 shows potentially 

salinised land obtained from unsupervised classification of the RGB mosaicked 

image. 
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Figure 5.3 Salinised land identified by unsupervised classification of the RGB 

mosaicked images 

 

5.3.2 Unsupervised classification of the stacked image 

Again, using the NDVI image the basic information classes identifying potentially 

salinised areas were identified on the classified stacked image. As in the unsupervised 

classification of the RGB mosaicked image, unsupervised classification of the stacked 

image was also unable to identify potentially salinised areas in single classes. Other 

vegetation types that are not necessarily stressed were classified with potentially 

salinised crops. These vegetation groups may have similar reflectance values to 

potentially salinised vegetation. Pixels identifying salinised land were merged 

together. The same procedure was applied to merge pixels of non-salinised land, and 

also those of land-cover types other than irrigated crops. This image predicted that 

1245,2 hectares (about 59%) are salinised. Salinised land obtained from unsupervised 

classification of the stacked image is depicted in Figure 5.4.  
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Figure 5.4 Salinised land identified by unsupervised classification of the stacked 

image 

 

Unsupervised classification of the stacked image also classified potentially salinised 

areas with other land-cover types, which may not necessarily be salinised. These 

pixels are visible on areas outside irrigated areas. These areas may not necessarily be 

salinised, but vegetation identified in these pixels may be showing similar reflectance 

patterns to crops affected by salinisation. 

 

5.3.3 Unsupervised classification of the NDVI image 

Like the other images, the NDVI image was subjected to unsupervised image 

classification into fifteen classes. The classified image was compared with the NDVI 

image in order to identify potentially salinised land. As in the other two images above, 

pixels covering potentially salinised land were merged. A similar procedure used in 

the two sections above was applied to combine pixels of non-salinised land, and those 

of land-cover types other than vegetation. Potentially salinised land obtained from 

unsupervised classification of the NDVI image amounts to 1053,6 hectares (about 

50%). Salinised land obtained from unsupervised classification of the NDVI image is 

depicted in Figure 5.5. 
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Figure 5.5 Salinised land obtained from unsupervised classification of the NDVI 

image 

 

Pixels identifying potentially salinised areas were classified with other pixels located 

outside areas of irrigated land. These areas may not necessarily be salinised, but they 

may be occupied by vegetation that has similar reflectance patterns to salinised crops.  

 

5.4 FIELD VALIDATION 

Soil samples collected from 12 randomly selected potentially salinised plots taken for 

the larger WRC survey which were analysed for salinity, and another 12 from 

potentially non-salinised plots in the same survey were extracted for this study area. 

These paired samples were used to validate the results of salinised land obtained by 

visual and digital image analysis techniques.This validation is explained in the 

following subsections.  

 

5.4.1 Visual image analysis 

In order to make the validation as accurate as possible, an area within 3m of each 

sampled point was assumed to be representative of the results of that point. Buffer 

zones of 3m were created around sampled points (see Figure 5.6 for points around 
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which buffer zones were created). A value grid of cell size 0,75m indicating salinised 

and non-salinised areas was created from the buffer shapefiles. This grid was overlaid 

on the grids of potentially salinised land obtained from visual analysis of each of the 

NIR, and the NDVI images. Using the results obtained from each overlay, confusion 

matrices (Tables 5.1 and 5.2) were constructed to validate the results.  

 

 
Figure 5.6 Salinity at field sample points 
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Table 5.1 Confusion matrix comparing potentially salinised land identified by visual 

analysis of the NIR mosaicked image with analyzed soil samples 
                                    Field samples  

NIR salinised land Actual saline Actual non-saline Total CA% 

Potential saline 151 155 306 49,3 
Potential non-saline 250 650 900 72,2 
Total 401 805 1206 - 
Percentage 33,3 66,7 100 - 
PA% 37,7 80,7 - - 

Percentage correct 66,4% 

 

Table 5.2 Confusion matrix comparing potentially salinised land identified by visual 

analysis of the NDVI image with analyzed soil samples 
                                                   Field samples  

NDVI salinsed land Actual saline Actual non-saline Total CA% 

Potential saline 186 120 306 60,8 
Potential non-saline 247 653 900 72,5 
Total 433 773 1206 - 
Percentage 35,9 64,1 100 - 
PA% 42,9 84,5 - - 

Percentage correct 69,6% 

 

From the statistics in the Tables 5.1 and 5.2 above, visual analysis of the NIR 

mosaicked and NDVI images respectively achieved 66,4% and 69,6% accuracy in 

identifying salinised and non-salinised land in the study area. Analysis of field 

samples indicate that visual analysis of the NIR mosaicked image could only correctly 

identify 49,3% of salinised land (see Table 5.1).  The probability of salinised land 

being correctly identified by visual analysis of the NIR image is low at 37,7%. Visual 

analysis of the NIR mosaicked image correctly identified most of non-salinised land 

(72,2%). 

 

Visual analysis of the NDVI image managed to correctly identify more salinised land 

than visual analysis of the NIR mosaicked image. About 61% of salinised land was 

correctly identified by visual analysis on this image. Although still low, the 
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probability of salinised land being correctly identified by visual analysis on this image 

is higher than on visual analysis of the NIR image (see PA in Table 5.1 and 5.2). This 

image too managed to identify most of non-salinised land (72.2%). 

 

Although not entirely satisfactory, a fair amount of salinised land was identified by 

visual analysis of the NIR mosaicked, and the NDVI images. As the statistics in 

Tables 5.1 and 5.2 suggest, the NDVI image performed better than the NIR 

mosaicked image in identifying salinised land. The failure of the images to identify 

more salinised land is probably due to an inability to differentiate stress caused by 

salts from other forms of stress. Potentially salinised areas on these two images were 

identified by virtue of vegetation revealing deviations in reflecting electromagnetic 

radiation. Other forms of stress, e.g. waterlogging, diseases, sandy soils, etc. could be 

responsible for differences in reflection values.  

 

Validation of potentially salinised land obtained by digital analysis is presented in the 

following section. 

 

5.4.2 Digital image analysis 

Each of the images classified and analysed for potentially salinised land was 

converted to grids of cell size 0.75m. All grids were clipped, using a coverage that 

was digitised to cover irrigated land in the study area. This was done to minimise the 

effects of pixels outside the irrigated part of the study area. 

 

An area within 3m of each sampled point was assumed to be representative of the 

results of that point. Thus, a 3m buffer was constructed around all the sampled points 

(see Figure 5.6 for points arround which buffer zones were created). A value grid (cell 

size 0,75m) representing potentially saline and non-saline areas was computed from 

the buffers. Using the combinatorial-AND operation in GRID, this grid was compared 

with each of the grids of potentially salinised land obtained from unsupervised 

classification of each of the RGB mosaicked, NDVI, and stacked images. Confusion 

matrices presented in Tables 5.3, 5.4, and 5.5 were constructed from the results 

obtained.  
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Table 5.3 Confusion matrix comparing potentially salinised land identified by 

unsupervised classification of the RGB image with analyzed soil samples 
                                                     Field samples  

RGB salinised land Actual saline Actual non-saline Other land cover Total CA% 

Potential saline 81 280 0 361 22,4 
Potential non-saline 140 495 0 635 77,9 
Other land cover 72 114 0 186 0 
Total 293 889 0 1182 - 
Percentage 24,8 75,2 0 100 - 
PA% 27,6 55,7 0 - - 

Percentage correct 48,7 

 

Table 5.4 Confusion matrix comparing potentially salinised land identified by 

unsupervised classification of the stacked image with analyzed soil samples 
                                                  Field samples  

Stack salinised land Actual saline Actual non-saline Other land cover Total CA% 

Potential saline 92 280 0 372 24,7 
Potential non-saline 148 520 0 668 77,8 
Other land cover 66 100 0 166 0 
Total 306 900  0 1206 - 
Percentage 25,4 74,6 0 100 - 
PA% 30,1 75,8 0 - - 

Percentage correct 50,7 
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Table 5.5 Confusion matrix comparing potentially salinised land identified by 

unsupervised classification of the NDVI image with analyzed soil samples 
                                                   Field samples  

NDVI salinised land Actual saline Actual non-saline Other land cover Total CA% 

Potential saline 129 318 0 447 28,9 
Potential non-saline 111 477 0 588 81,1 
Other land cover 66 105 0 171 0 
Total 306 900 0 1206 - 
Percentage 25,4 74,6 0 100 - 
PA% 42,2 53 0 - - 

Percentage correct 50,3 

 

Unsupervised classification of the RGB mosaicked, stacked, and NDVI images 

respectively achieved 48,7%, 50,7%, and 50,3% accuracies in identifying salinised 

and non-salinised land. The amount of salinised land correctly identified by 

unsupervised classification of the three images is far less than that correctly identified 

by visual analysis of the NIR, and the NDVI images as shown by the CA percentages 

(see Tables 5.1 to 5.5). Unsupervised classification of the NDVI image correctly 

identified more salinised land (28,9%%) than the RGB mosaicked, and the stacked 

images which identified 22,4% and 24,7% respectively. The probability of salinised 

land being corrected classified by unsupervised classification of the RGB mosaicked, 

stacked, and the NDVI images is low (27,6%, 30,1%, and 42,2% for the RGB 

mosaicked, stacked, and NDVI images respectively). 

 

The statistics in Tables 5.3 to 5.5 suggest that unsupervised classification of the three 

images involved had difficulties in identifying salinised land. On average 66,7% of 

saline pixels in the field samples were incorrectly identified as non-saline. Thus, 

unsupervised classification of these images had difficulties in separating salinised 

crops from other land-cover types which have similar reflectance properties. Inability 

to differentiate the salt induced stress from other forms of stress when using 

unsupervised classification also contributed to the poor results. 

 

The overall findings of the study, and the recommendations and directions for further 

study are presented in Chapter 6. 
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CHAPTER 6: SYNTHESIS 
 
6.1 INTRODUCTION 
This chapter presents the overall findings of the study by evaluating the objectives of 

the study. Evaluation of the objectives is dealt with in the first part of the chapter. 

Recommendations and directions for further study are presented in the second part of 

this chapter. This section concludes the chapter and the study. 

 

6.2 FINDINGS OF THE STUDY 

As stated in section 1.4, the overall aim of this study was to evaluate the potential of 

digital aerial imagery in identifying salinised cultivated land in the selected study 

area. The three objectives set to realise this aim are presented in section 1.4. Two 

techniques, viz. visual, and digital image analysis were employed to realise this goal. 

 

The statistics in the confusion matrices in Tables 4.1 to 4.4 show that identification of 

cultivated land by visual classification of the RGB mosaicked, NIR mosaicked, 

stacked, and the NDVI images was fairly successful. On the other hand, unsupervised 

classification was not successful in isolating cultivated land. The percentage of land 

cover correctly classified is low. This is possibly the result of the classifier failing to 

differentiate certain land-cover types. Also, only single-date images were used to 

conduct the study. It is very difficult for a statistical classification algorithm to 

separate certain land-cover types using single-date images, such as for example fallow 

lands from barren lands. 

 

Although visual image analysis could not differentiate salt-induced stress from other 

forms of stress, a fair amount of salinised cultivated land was identified by this 

technique. Visual analysis of the NDVI image proved more useful in identifying 

stressed crops. Visual analysis of this image managed to identify about 61% of 

salinised crops. Visual image analysis of digital aerial images can only be useful in 

surveying crops affected by stress but not to identify a particular kind of stress. 

 

Digital image analysis by means of unsupervised classification revealed major 

difficulties in identifying salinised land. While it was hoped that the natural groupings 

produced by unsupervised image classification would identify salinised land in the 
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study area, it proved impossible to isolate salinised crops from other land-cover types. 

The classifier could not distinguish fallow lands, fields where crops were still young, 

barren lands, and in some cases built-up areas from areas of stressed vegetation. 

Unsupervised image classification alone cannot be useful in a study to identify 

salinised crops. 

 

Both the visual and digital image analysis techniques had difficulties identifying 

salinised lands. The inability of both techniques to differentiate salt induced stress 

from other forms of crop stress contributed to this difficulty. CA percentages for each 

image in the two techniques were used as a correction factor to estimate the amount of 

land identified as salinised. The statistics for this correction are tabulated in Table 6.1. 

 

Table 6.1 Corrected estimates of potentially salinised land 

Analysed image Potentially 

salinised 

land 

(hectares) 

Correction 

factor 

Corrected 

salinised 

land 

(hectares) 

Visually analysed NDVI image 179,4 0,493 88,4 
Visually analysed RGB mosaicked image 208,9 0,608 127,1 
Unsupervised classification of RGB Mosaicked image 1042,8 0,224 233,6 
Unsupervised classification of stacked image 1245,2 0,247 307,6 
Unsupervised classification of the NDVI image 1053,6 0,289 304,5 
Average corrected salinised land (hectares) 212,2 
Average  salinised land (%) 10,1 

 

On average, 212,2 hectares of a total of 2107 of irrigated land is predicted to be 

affected by salinisation. This constitutes about 10% of irrigated land in the study area. 

 

6.3 RECOMMENDATIONS AND DIRECTIONS FOR FURTHER STUDY 

Reversing the effects of severely salinised areas can be a very expensive and 

sometimes an impossible task. It is advantageous to identify salinised land before the 

condition becomes very severe, so that soil reclamation techniques can be 

implemented. This study predicted that about 10% of irrigated land in the study area 

is probably affected by salinisation. Farm managers should take measures to reclaim 
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land identified as salinised. Correct irrigation practices should be implemented to 

prevent further salinisation of land that is not yet salinised.  

 

Of the two techniques employed in this study to identify salinised land, visual aerial 

image analysis is the one method that managed to identify a greater percentage of 

salinised land. However, this method could not distinguish salt stress from other types 

of stress. Salinised areas were identified by virtue of vegetation showing signs of 

stress on the imagery. This technique could have been more successful in identifying 

stressed crops rather identifying crops affected by a particular kind of stress. While 

this technique was able to identify a greater amount of salinised land, more time was 

spent on identifying and digitising affected areas onscreen.  

 

Unsupervised image classification is the other technique that was tested to identify 

salinised land. Unsupervised classification alone could not succeed in identifying 

salinised areas. Coupling unsupervised classification with supervised image 

classification in identifying salinised land should be investigated. Also, the use of 

multi-date images is recommended by most authors since it helps separate land-cover 

types that are difficult to distinguish. In this way, temporarily fallow lands, barren 

lands, built areas, etc. will not be confused with stressed vegetation. Funds available 

to conduct this study could not permit the use of multi-date images. 

 

Another technique that should be investigated in identifying salinised land is rule-

based image classification. Using this technique, rules that will assist the classifier in 

classifying the image can be developed. In this way, only parts of the image that 

satisfy the rules will be classified. Salinised land could be relatively easier to identify 

in this way than by using unsupervised classification only and/or visual analysis. 

Rule-based image classification could not be used in this study because the images 

were not radiometrically calibrated as a result of non-availability of camera model 

information. 
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